Sample records for third-order optical susceptibility

  1. Z-scan: A simple technique for determination of third-order optical nonlinearity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Vijender, E-mail: chahal-gju@rediffmail.com; Aghamkar, Praveen, E-mail: p-aghamkar@yahoo.co.in

    Z-scan is a simple experimental technique to measure intensity dependent nonlinear susceptibilities of third-order nonlinear optical materials. This technique is used to measure the sign and magnitude of both real and imaginary part of the third order nonlinear susceptibility (χ{sup (3)}) of nonlinear optical materials. In this paper, we investigate third-order nonlinear optical properties of Ag-polymer composite film by using single beam z-scan technique with Q-switched, frequency doubled Nd: YAG laser (λ=532 nm) at 5 ns pulse. The values of nonlinear absorption coefficient (β), nonlinear refractive index (n{sub 2}) and third-order nonlinear optical susceptibility (χ{sup (3)}) of permethylazine were found to bemore » 9.64 × 10{sup −7} cm/W, 8.55 × 10{sup −12} cm{sup 2}/W and 5.48 × 10{sup −10} esu, respectively.« less

  2. Third-order nonlinear optical properties of thin sputtered gold films

    NASA Astrophysics Data System (ADS)

    Xenogiannopoulou, E.; Aloukos, P.; Couris, S.; Kaminska, E.; Piotrowska, A.; Dynowska, E.

    2007-07-01

    Au films of thickness ranging between 5 and 52 nm were prepared by sputtering on quartz substrates and their third-order nonlinear optical response was investigated by Optical Kerr effect (OKE) and Z-scan techniques using 532 nm, 35 ps laser pulses. All prepared films were characterized by XRD, AFM and UV-VIS-NIR spectrophotometry while their third-order susceptibility χ(3) was measured and found to be of the order of 10 -9 esu. The real and imaginary parts of the third-order susceptibility were found in very good agreement with experimental results and theoretical predictions reported by Smith et al. [D.D. Smith, Y. Yoon, R.W. Boyd, Y.K. Cambell, L.A. Baker, R.M. Crooks, M. George, J. Appl. Phys. 86 (1999) 6200].

  3. Dispersion dependence of second-order refractive index and complex third-order optical susceptibility in oxide glasses

    NASA Astrophysics Data System (ADS)

    Abdel Wahab, F. A.; El-Diasty, Fouad; Abdel-Baki, Manal

    2009-10-01

    A method correlates Fresnel-based spectrophotometric measurements and Lorentz dispersion theory is presented to study the dispersion of nonlinear optical parameters in particularly oxide glasses in a very wide range of angular frequency. The second-order refractive index and third-order optical susceptibility of Cr-doped glasses are determined from linear refractive index. Furthermore, both real and imaginary components of the complex susceptibility are carried out. The study reveals the importance of determining the dispersion of nonlinear absorption (two-photon absorption coefficient) to find the maximum resonant and nonresonant susceptibilities of investigated glasses. The present method is applied on Cr-doped lithium aluminum silicate (LAS) glasses due to their semiconductor-like behavior and also to their application in laser industry.

  4. Optical nonlinearities of excitons in monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Soh, Daniel B. S.; Rogers, Christopher; Gray, Dodd J.; Chatterjee, Eric; Mabuchi, Hideo

    2018-04-01

    We calculate linear and nonlinear optical susceptibilities arising from the excitonic states of monolayer MoS2 for in-plane light polarizations, using second-quantized bound and unbound exciton operators. Optical selection rules are critical for obtaining the susceptibilities. We derive the valley-chirality rule for the second-order harmonic generation in monolayer MoS2 and find that the third-order harmonic process is efficient only for linearly polarized input light while the third-order two-photon process (optical Kerr effect) is efficient for circularly polarized light using a higher order exciton state. The absence of linear absorption due to the band gap and the unusually strong two-photon third-order nonlinearity make the monolayer MoS2 excitonic structure a promising resource for coherent nonlinear photonics.

  5. Characterization of second and third order optical nonlinearities of ZnO sputtered films

    NASA Astrophysics Data System (ADS)

    Larciprete, M. C.; Haertle, D.; Belardini, A.; Bertolotti, M.; Sarto, F.; Günter, P.

    2006-03-01

    We measured the second and third order optical nonlinearity of zinc oxide, grown on glass substrates by the ion beam sputtering technique. Second and third harmonic generation measurements were performed by means of the rotational Maker fringes technique for different polarization configurations, thus allowing the determination of all non-zero components of the second order susceptibility at three different fundamental beam wavelengths, i.e., 1064 nm, 1542 nm and 1907 nm. The dispersion of the nonlinear optical coefficients has been evaluated, while the nonlinear optical coefficients were found to range between 0.9 pm/V and 0.16 pm/V for d33, 0.53 pm/V and 0.08 pm/V for |d15|, 0.31 and 0.08 pm/V for |d31|, with increasing wavelength. Finally, one third order susceptibility, χijkl (3), has been determined by third harmonic generation measurements at a fundamental wavelength λ=1907 nm and a value for χ3333 (3) of 185×10-20 m2/V2 has been found.

  6. Guest-host polymer fibers for nonlinear optics

    NASA Astrophysics Data System (ADS)

    Kuzyk, M. G.; Paek, U. C.; Dirk, C. W.

    1991-08-01

    We report on the fabrication of poly(methyl methacrylate) (PMMA) nonlinear optical fibers with dye-doped cores. The dye-doped cores have an elevated refractive index that defines a waveguiding region with a large third-order susceptibility and with single-mode dimensions. The measured third-order susceptibility of a squarylium-doped PMMA film material and the measured optical loss of the dye-doped fiber core results in a figure of merit that is suitable for all-optical device applications at λ=1.3 μm. The impact of further improvements in PMMA loss and chromophore nonlinearity are also discussed.

  7. Study of third order nonlinearity of chalcogenide thin films using third harmonic generation measurements

    NASA Astrophysics Data System (ADS)

    Rani, Sunita; Mohan, Devendra; Kumar, Manish; Sanjay

    2018-05-01

    Third order nonlinear susceptibility of (GeSe3.5)100-xBix (x = 0, 10, 14) and ZnxSySe100-x-y (x = 2, y = 28; x = 4, y = 20; x = 6, y = 12; x = 8, y = 4) amorphous chalcogenide thin films prepared using thermal evaporation technique is estimated. The dielectric constant at incident and third harmonic wavelength is calculated using "PARAV" computer program. 1064 nm wavelength of Nd: YAG laser is incident on thin film and third harmonic signal at 355 nm wavelength alongwith fundamental light is obtained in reflection that is separated from 1064 nm using suitable optical filter. Reflected third harmonic signal is measured to trace the influence of Bi and Zn on third order nonlinear susceptibility and is found to increase with increase in Bi and Zn content in (GeSe3.5)100-xBix, and ZnxSySe100-x-y chalcogenide thin films respectively. The excellent optical nonlinear property shows the use of chalcogenide thin films in photonics for wavelength conversion and optical data processing.

  8. Quadratic electroabsorption studies of molecular motion in dye-doped polymers

    NASA Astrophysics Data System (ADS)

    Poga, Constantina; Kuzyk, Mark G.; Dirk, Carl W.

    1993-02-01

    This paper reports on quadratic electroabsorption studies of thin-film solid solutions of squarylium dye molecules in poly(methylmethacrylate) polymer with the aim of understanding the role of electronic and reorientational mechanisms in the third-order nonlinear-optical susceptibility. We present a generalized theory of the quadratic electrooptic response that includes both electronic mechanisms and molecular reorientation and show that the ratio of two independent third-order susceptibility tensor components, namely (chi) (3)3333/(chi) (3)1133, determines the relative contribution of each mechanism. Based on these theoretical results, we have designed and built an experiment that determines this ratio as a function of temperature and wavelength. Results show that at room temperature and near the first electronic transition wavelength, the response is dominated by the electronic mechanism, and that the reorientational contribution dominates when the sample is heated above its glass transition temperature. Furthermore, results show that, off-resonance, the sign of the imaginary part of the third-order susceptibility is positive. Quadratic electroabsorption is thus shown to be a versatile tool for measuring the imaginary part of the third-order nonlinear-optical susceptibility which yields information about the interaction of polymer and dopant molecule.

  9. Advanced Instrumentation for Aero Engine Components: Conference Proceedings of the Propulsion and Energetics Panel Symposium (67th) Held in Philadelphia, Pennsylvania on 19-23 May 1986.

    DTIC Science & Technology

    1986-11-01

    optical wave-mixing am., interact via the third order non linear susceptibility of the medium to produce a coherent laser-like signal beam at the higher...is the third order non- linear susceptibility of the medium and determines the shape of the CARS spectrum. It is the sum of a resonant contribution and...simultaneously using an appropriate spectrograph/optical multichannel detector; intensified linear diode array detectors are now used in most systems. The two

  10. Transmission Measurement of the Third-Order Susceptibility of Gold

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Yoon, Youngkwon; Boyd, Robert W.; Crooks, Richard M.; George, Michael

    1999-01-01

    Gold nanoparticle composites are known to display large optical nonlinearities. In order to assess the validity of generalized effective medium theories (EMT's) for describing the linear and nonlinear optical properties of metal nanoparticle composites, knowledge of the linear and nonlinear susceptibilities of the constituent materials is a prerequisite. In this study the inherent nonlinearity of the metal is measured directly (rather than deduced from a suitable EMT) using a very thin gold film. Specifically, we have used the z-scan technique at a wavelength near the transmission window of bulk gold to measure the third-order susceptibility of a continuous thin gold film deposited on a quartz substrate surface-modified with a self-assembled monolayer to promote adhesion and uniformity without affecting the optical properties. We compare our results with predictions which ascribe the nonlinear response to a Fermi-smearing mechanism. Further, we note that the sign of the nonlinear susceptibility is reversed from that of gold nanoparticle composites.

  11. Third-order nonlinear optical property of a polyphenylene oligomer: poly(2,5-dialkozyphenylene)

    NASA Astrophysics Data System (ADS)

    Wu, Jianyao; Yan, Jun; Sun, Diechi; Li, Fuming; Zhou, Luwei; Sun, Meng

    1997-02-01

    The third-order nonlinear optical (NLO) property of a soluble, π-backbone conjugated polymer poly(2,5-dialkozyphenylene) (for abbreviation called dialkozy-PP) is studied at the picosecond time region. The near resonance third-order hyperpolarizability γxxxx at 532 nm is 8.2×10 -30 esu, and the corresponding macroscopic third-order susceptibility χ(3)(- ω, ω, ω, - ω) and nonlinear refractive index n2 are estimated to be 6.3×10 -10 esu and 1.4×10 -8 esu, respectively. The half-width of the laser pulse is 35 ps.

  12. Decrease and enhancement of third-order optical nonlinearity in metal-dielectric composite films

    NASA Astrophysics Data System (ADS)

    Ning, Tingyin; Lu, Heng; Zhou, Yueliang; Man, Baoyuan

    2018-04-01

    We investigate third-order optical nonlinearity in gold nanoparticles embedded in CaCu3Ti4O12 (CCTO) films using the Z-scan method. We observe that the effective third-order nonlinear optical susceptibilities in such composite films can not only be enhanced, in line with the conventional behavior, but also be decreased, depending on the volume concentration of gold. In particular, the nonlinear absorption behavior can be changed from saturable absorption in pure CCTO films to reversed saturable absorption in composite films, and theoretically, even zero nonlinear absorption could be obtained. These results indicate that it should be possible to tune the third-order optical nonlinearity in Au:CCTO composite films by altering the gold concentration, thus making them suitable for applications in photonic devices.

  13. Detecting a pronounced delocalized state in third-harmonic generation phenomenon; a quantum chaos approach

    NASA Astrophysics Data System (ADS)

    Behnia, S.; Ziaei, J.; Khodavirdizadeh, M.

    2018-06-01

    Nonlinear optics (NLO) deserves special attention in new optical devices, making it possible to generate coherent light more efficiently. Among the various NLO phenomena the third-harmonic generation (THG) is at the core of the effective operating mechanism of broadband wavelength conversion, in all-optical devices. Here, we aim to understand how the third-order susceptibility and the electric field may be effectively effect on the localization properties of the light in the THG process when included in a two-mode cavity coherently perturbed by a classical field. We address a stable-unstable transition due to the combination effect of the aforementioned factors. We report a reliable evidence confirming the appearance of chaos in THG under suitable conditions. By tracing the signatures of adjacent-spectral-spacing-ratio (ASSR) distribution and participation ratio, we also find a critical point (ɛc ,κc) =(3 . 1 , 0 . 35) for which a pronounced delocalized response is seen. This study may have profound findings for practical devices, and ushers in new opportunities for practical exploitation of the electric field and the third-order susceptibility effect in nonlinear optical devices.

  14. Contribution to the development of low frequency terahertz coherent Raman micro-spectroscopy and microscopy

    NASA Astrophysics Data System (ADS)

    Ujj, Laszlo

    2018-06-01

    We report the construction and characterization of a coherent Raman tabletop system utilizing a novel astigmatic optical focusing geometry, a broadband nanosecond optical parametric oscillator and volumetric Bragg filters assisting 3CBCRS measuring system for the first time. In order to illustrate the versatility of the measurements and reveal the molecular information obtainable, two well-characterized chemicals were selected. Polarization sensitive epi-detected 3CBCRS spectra of liquid CCl4 and calcite crystal were recorded and analyzed. An unexpected polarization dependence of the signals of the lowest frequency modes of CCl4 was observed. The 1122 third order susceptibility component was phase flipped. The non-resonant susceptibility normalized 1122 component was found to be larger than the 1111 component for the lowest vibrational modes. This anomalous comportment was attributable to the anisotropy Raman tensor invariant in the third order nonlinear susceptibility tensor.

  15. Nonlinear optical behavior of DNA-functionalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kulyk, B.; Krupka, O.; Smokal, V.; Figà, V.; Czaplicki, R.; Sahraoui, B.

    2018-03-01

    The third-order nonlinear optical properties of gold nanoparticles embedded in the DNA-based composites were investigated by means of the third harmonic generation. With this purpose, the thin films comprising DNA-based complexes and Au nanoparticles were spin-deposited on glass substrate and their optical and nonlinear optical features were studied using the Maker-fringe technique at a laser fundamental wavelength of 1064 nm. The values of the third-order susceptibility χ (3)(- 3ω; ω, ω, ω) of the composite films based on DNA complex doped with 5 wt% of N-ethyl-N-(2-hydroxyethyl)-4-(4-nitrophenylazo)aniline were found to be significantly higher than those for pure composite films. Meanwhile, the presence of Au nanoparticles noticeable decreases the third-order nonlinear response of DNA-based composite mainly due to the enhanced absorption and scattering of laser and generated beam, respectively.

  16. Modified two-photon absorption and dispersion of ultrafast third-order polarization beats via twin noisy driving fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Yanpeng; Department of Electronic Science and Technology, Xi'an Jiaotong University, Xi'an 710049; Gan Chenli

    2006-05-15

    We investigate the color-locked twin-noisy-field correlation effects in third-order nonlinear absorption and dispersion of ultrafast polarization beats. We demonstrate a phase-sensitive method for studying the two-photon nondegenerate four-wave mixing (NDFWM) due to atomic coherence in a multilevel system. The reference signal is another one-photon degenerate four-wave-mixing signal, which propagates along the same optical path as the NDFWM signal. This method is used for studying the phase dispersion of the third-order susceptibility and for the optical heterodyne detection of the NDFWM signal. The third-order nonlinear response can be controlled and modified through the color-locked correlation of twin noisy fields.

  17. Synthesis of stable ZnO nanocolloids with enhanced optical limiting properties via simple solution method

    NASA Astrophysics Data System (ADS)

    Ramya, M.; Nideep, T. K.; Vijesh, K. R.; Nampoori, V. P. N.; Kailasnath, M.

    2018-07-01

    In present work, we report the synthesis of stable ZnO nanocolloids through a simple solution method which exhibit enhanced optical limiting threshold. The influences of reaction temperature on the crystal structure as well as linear and nonlinear optical properties of prepared ZnO nanoparticles were carried out. The XRD and Raman analysis reveal that the prepared ZnO nanoparticles retain the hexagonal wurtzite crystal structure. HRTEM analysis confirms the effect of reaction temperature, solvent effect on crystallinity as well as nanostructure of ZnO nanoparticles. It has been found that crystallinity and average diameter increase with reaction temperature where ethylene glycol act as both solvent and growth inhibiter. EDS spectra shows formation of pure ZnO nanoparticles. The direct energy band gap of the nanoparticles increases with decrease in particle size due to quantum confinement effect. The third order nonlinear optical properties of ZnO nanoparticles were investigated by z scan technique using a frequency doubled Nd-YAG nanosecond laser at 532 nm wavelength. The z-scan result reveals that the prepared ZnO nanoparticles exhibit self - defocusing nonlinearity. The two photon absorption coefficient and third - order nonlinear optical susceptibility increases with increasing particle size. The third-order susceptibility of the ZnO nanoparticles is found to be in the order of 10-10 esu, which is at least three order magnitude greater than the bulk ZnO. The optical limiting threshold of the nanoparticles varies in the range of 54 to 17 MW/cm2. The results suggest that ZnO nanoparticles considered as a promising candidates for the future photonic devices.

  18. Third order nonlinearity in pulsed laser deposited LiNbO{sub 3} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumuluri, Anil; Rapolu, Mounika; Rao, S. Venugopal, E-mail: kcjrsp@uohyd.ernet.in, E-mail: svrsp@uohyd.ernet.in

    2016-05-06

    Lithium niobate (LiNbO{sub 3}) thin films were prepared using pulsed laser deposition technique. Structural properties of the same were examined from XRD and optical band gap of the thin films were measured from transmittance spectra recorded using UV-Visible spectrophotometer. Nonlinear optical properties of the thin films were recorded using Z-Scan technique. The films were exhibiting third order nonlinearity and their corresponding two photon absorption, nonlinear refractive index, real and imaginary part of nonlinear susceptibility were calculated from open aperture and closed aperture transmission curves. From these studies, it suggests that these films have potential applications in nonlinear optical devices.

  19. Optical nonlinearities of excitonic states in atomically thin 2D transition metal dichalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soh, Daniel Beom Soo

    We calculated the optical nonlinearities of the atomically thin monolayer transition metal dichalcogenide material (particularly MoS 2), particularly for those linear and nonlinear transition processes that utilize the bound exciton states. We adopted the bound and the unbound exciton states as the basis for the Hilbert space, and derived all the dynamical density matrices that provides the induced current density, from which the nonlinear susceptibilities can be drawn order-by-order via perturbative calculations. We provide the nonlinear susceptibilities for the linear, the second-harmonic, the third-harmonic, and the kerr-type two-photon processes.

  20. Studies on third-order nonlinear optical properties of chalcone derivatives in polymer host

    NASA Astrophysics Data System (ADS)

    Shettigar, Seetharam; Umesh, G.; Chandrasekharan, K.; Sarojini, B. K.; Narayana, B.

    2008-04-01

    In this paper we present the experimental study of the third-order nonlinear optical properties of two chalcone derivatives, viz., 1-(4-methoxyphenyl)-3-(4-butyloxyphenyl)-prop-2-en-1-one and 1-(4-methoxyphenyl)-3-(4-propyloxyphenyl)-prop-2-en-1-one in PMMA host, with the prospective of reaching a compromise between good processability and high nonlinear optical properties. The nonlinear optical properties have been investigated by Z-scan technique using 7 ns laser pulses at 532 nm. The nonlinear refractive index, nonlinear absorption coefficient, magnitude of third-order susceptibility and the coupling factor have been determined. The values obtained are of the order of 10 -14 cm 2/W, 1 cm/GW, 10 -13 esu and 0.2, respectively. The molecular second hyperpolarizability for the chalcone derivatives in polymer is of the order of 10 -31 esu. Different guest/host concentrations have also been studied. The results suggest that the nonlinear properties of the chalcones have been improved when they are used as dopants in polymer matrix. The nonlinear parameters obtained are comparable with the reported values of II-VI compound semiconductors. Hence, these chalcons are a promising class of nonlinear optical dopant materials for optical device applications.

  1. Resonant third-order optical nonlinearities of thin films containing J-aggregates of a cyanine dye or a squarylium dye

    NASA Astrophysics Data System (ADS)

    Li, Zhongyu; Jin, Zhaohui; Kasatani, Kazuo

    2005-01-01

    The third-order optical nonlinearities and responses of thin films containing the J-aggregates of a cyanine dye or a squarylium dye were measured using the degenerate four-wave mixing (DFWM) technique under resonant conditions. The sol-gel silica coating films containing the J-aggregates of the cyanine dye, NK-3261, are stable at room temperature and durable against laser beam irradiation. The temporal profiles of the DFWM signal were measured with a time resolution of 0.3 ps, and were found to consist of at least three components, i.e., the coherent instantaneous nonlinear response and the two slow responses with delay time constants of ca. 1.0 ps and ca. 5.6 ps. The contribution of the later was small. The electronic component of the effective third-order optical nonlinear susceptibility of the film had value of as high as ca. 3.0 x 10-7 esu. We also studied the neat film of a squarylium dye J-aggregates. The temporal profile of the DFWM signal of the neat film of squarylium dye was also found to consist of at least three components, the coherent instantaneous nonlinear response and the delayed response with decay time constants of ca. 0.6 ps and ca. 6.5 ps. The contribution of the slow tail was also very small. The electronic component of effective third-order optical nonlinear susceptibility of the neat film of squarylium dye had value of as high as ca. 3.6 x 10-8 esu.

  2. Optical nonlinearity in gelatin layer film containing Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Hirose, Tomohiro; Arisawa, Michiko; Omatsu, Takashige; Kuge, Ken'ichi; Hasegawa, Akira; Tateda, Mitsuhiro

    2002-09-01

    We demonstrate a novel technique to fabricate a gelatin film containing Au-nano-particles. The technique is based on silver halide photographic development. We investigated third-order non-linearity of the film by forward-four-wave-mixing technique. Peak absorption appeared at the wavelength of 560nm. Self-diffraction by the use of third order nonlinear grating formed by intense pico-second pulses was observed. Experimental diffraction efficiency was proportional to the square of the pump intensity. Third-order susceptibility c(3) of the film was estimated to be 1.8?~10^-7esu.

  3. Investigation of quadratic electro-optic effects and electro-absorption process in GaN/AlGaN spherical quantum dot

    PubMed Central

    2014-01-01

    Quadratic electro-optic effects (QEOEs) and electro-absorption (EA) process in a GaN/AlGaN spherical quantum dot are theoretically investigated. It is found that the magnitude and resonant position of third-order nonlinear optical susceptibility depend on the nanostructure size and aluminum mole fraction. With increase of the well width and barrier potential, quadratic electro-optic effect and electro-absorption process nonlinear susceptibilities are decreased and blueshifted. The results show that the DC Kerr effect in this case is much larger than that in the bulk case. Finally, it is observed that QEOEs and EA susceptibilities decrease and broaden with the decrease of relaxation time. PMID:24646318

  4. Anisotropy in Third-Order Nonlinear Optical Susceptibility of a Squarylium Dye in a Nematic Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Jin, Zhao-Hui; Li, Zhong-Yu; Kasatani, Kazuo; Okamoto, Hiroaki

    2006-03-01

    A squarylium dye is dissolved in 4-cyano-4'-pentylbiphenyl (5CB) and oriented by sandwiching mixtures between two pieces of rubbed glass plates. The optical absorption spectra of the oriented squarylium dye-5CB layers exhibit high anisotropy. The third-order nonlinear optical responses and susceptibilities χ(3)e of squarylium dye in 5CB are measured with light polarizations parallel and perpendicular to the orientational direction by the resonant femtosecond degenerate four-wave mixing (DFWM) technique. Temporal profiles of the DFWM signal of the oriented squarylium dye-5CB layers with light polarizations parallel and perpendicular to the orientational direction are measured with a time resolution of 0.3 ps (FWHM), and are found to consist of two components, i.e., the coherent instantaneous nonlinear response and slow response due to the formation of excited molecules. A high anisotropic ratio of χ(3)e, 10.8±1.2, is observed for the oriented layers.

  5. Third-Order Optical Nonlinearities of Squarylium Dyes with Benzothiazole Donor Groups Measured Using the Picosecond Z-Scan Technique

    NASA Astrophysics Data System (ADS)

    Li, Zhong-Yu; Xu, Song; Chen, Zi-Hui; Zhang, Fu-Shi; Kasatani, Kazuo

    2011-08-01

    Third-order optical nonlinearities of two squarylium dyes with benzothiazole donor groups (BSQ1 and BSQ2) in chloroform solution are measured by a picosecond Z-scan technique at 532 nm. It is found that the two compounds show the saturation absorption and nonlinear self-focus refraction effect. The molecular second hyperpolarizabilities are calculated to be 7.46 × 10-31 esu and 5.01 × 10-30 esu for BSQ1 and BSQ2, respectively. The large optical nonlinearities of squarylium dyes can be attributed to their rigid and intramolecular charge transfer structure. The difference in γ values is attributed to the chloro group of benzene rings of BSQ2 and the one-photon resonance effect. It is found that the third-order nonlinear susceptibilities of two squarylium dyes are mainly determined by the real parts of χ(3), and the large optical nonlinearities of studied squarylium dyes can be attributed to the nonlinear refraction.

  6. Third-order nonlinear optical properties of organic azo dyes by using strength of nonlinearity parameter and Z-scan technique

    NASA Astrophysics Data System (ADS)

    Motiei, H.; Jafari, A.; Naderali, R.

    2017-02-01

    In this paper, two chemically synthesized organic azo dyes, 2-(2,5-Dichloro-phenyazo)-5,5-dimethyl-cyclohexane-1,3-dione (azo dye (i)) and 5,5-Dimethyl-2-tolylazo-cyclohexane-1,3-dione (azo dye (ii)), have been studied from optical Kerr nonlinearity point of view. These materials were characterized by Ultraviolet-visible spectroscopy. Experiments were performed using a continous wave diode-pumped laser at 532 nm wavelength in three intensities of the laser beam. Nonlinear absorption (β), refractive index (n2) and third-order susceptibility (χ (3)) of dyes, were calculated. Nonlinear absorption coefficient of dyes have been calculated from two methods; 1) using theoretical fits and experimental data in the Z-scan technique, 2) using the strength of nonlinearity curves. The values of β obtained from both of the methods were approximately the same. The results demonstrated that azo dye (ii) displays better nonlinearity and has a lower two-photon absorption threshold than azo dye (i). Calculated parameter related to strength of nonlinearity for azo dye (ii) was higher than azo dye (i), It may be due to presence of methyl in azo dye (ii) instead of chlorine in azo dye (i). Furthermore, The measured values of third order susceptibility of azo dyes were from the order of 10-9 esu . These azo dyes can be suitable candidate for optical switching devices.

  7. Enhanced nonlinear optical response of an endohedral metallofullerene through metal-to-cage charge transfer

    NASA Astrophysics Data System (ADS)

    Heflin, J. R.; Marciu, D.; Figura, C.; Wang, S.; Burbank, P.; Stevenson, S.; Dorn, H. C.

    1998-06-01

    A new mechanism for increasing the third-order nonlinear optical susceptibility, χ(3), is described for endohedral metallofullerenes. A two to three orders of magnitude increase in the nonlinear response is reported for degenerate four-wave mixing experiments conducted with solutions of Er2@C82 (isomer III) relative to empty-cage fullerenes. A value of -8.7×10-32esu is found for the molecular susceptibility, γxyyx, of Er2@C82 compared to previously reported values of γxxxx=3×10-34 esu and γxyyx=4×10-35 esu for C60. The results confirm the importance of the metal-to-cage charge-transfer mechanism for enhancing the nonlinear optical response in endohedral metallofullerenes.

  8. Structural control of nonlinear optical absorption and refraction in dense metal nanoparticle arrays.

    PubMed

    Kohlgraf-Owens, Dana C; Kik, Pieter G

    2009-08-17

    The linear and nonlinear optical properties of a composite containing interacting spherical silver nanoparticles embedded in a dielectric host are studied as a function of interparticle separation using three dimensional frequency domain simulations. It is shown that for a fixed amount of metal, the effective third-order nonlinear susceptibility of the composite chi((3))(omega) can be significantly enhanced with respect to the linear optical properties, due to a combination of resonant surface plasmon excitation and local field redistribution. It is shown that this geometry-dependent susceptibility enhancement can lead to an improved figure of merit for nonlinear absorption. Enhancement factors for the nonlinear susceptibility of the composite are calculated, and the complex nature of the enhancement factors is discussed.

  9. Nonlinear optical studies and structure-activity relationship of chalcone derivatives with in silico insights

    NASA Astrophysics Data System (ADS)

    Kar, Swayamsiddha; Adithya, K. S.; Shankar, Pruthvik; Jagadeesh Babu, N.; Srivastava, Sailesh; Nageswara Rao, G.

    2017-07-01

    Nine chalcones were prepared via Claisen-Schmidt condensation, and characterized by UV-vis, IR, 1H NMR, 13C NMR and mass spectrometry. One of the representative member 4-NDM-TC has been studied via single crystal XRD and the TGA/DTA technique. SHG efficiency and NLO susceptibilities of the chalcones have been evaluated by the Kurtz and Perry method and Degenerate Four Wave Mixing techniques respectively. 3-Cl-4‧-HC was noted to possess SHG efficiency 1.37 times that of urea while 4-NDM-TC returned the highest third order NLO susceptibilities with respect to CS2. In silico studies help evaluate various physical parameters, in correlating the observed activities. In conclusion, the structure-activity relationship was derived based on the in silico and experimental results for the third order NLO susceptibilities.

  10. Growth and characterization of a third order nonlinear optical single crystal: Ethylenediamine-4-nitrophenolate monohydrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhanalakshmi, B.; Ponnusamy, S., E-mail: suruponnus@gmail.com; Muthamizhchelvan, C.

    2015-10-15

    Highlights: • EDA4NPH crystal possesses negative nonlinear refractive index. • The crystal exhibits high third-order NLO susceptibility. • Wide transparency of the crystal makes it suitable for NLO applications. • Dielectric studies substantiate the suitability for electro-optic applications. • The crystal possesses suitable mechanical strength for device fabrication. - Abstract: Bulk crystals of the charge-transfer complex, ethylenediamine-4-nitrophenolate monohydrate, were grown by slow solvent evaporation method from aqueous solution at room temperature. The X-ray diffraction measurements showed that the crystal belongs to centrosymmetric space group C2/c of monoclinic system. The functional groups in the complex were identified using FTIR, FTRaman andmore » FTNMR analyses. The Z-scan measurements revealed the negative nonlinear refractive index of the crystal. The nonlinear absorption coefficient and third order nonlinear optical susceptibility calculated from the measurements were −3.5823 × 10{sup −3} cm/W and 2.3762 × 10{sup −6} esu respectively. The crystal was shown to be highly transparent above 366 nm by UV–vis spectroscopy and a yellow fluorescence was observed from PL spectrum. The TG–DTA and DSC analyses showed that the crystal is thermally stable up to 117.4 °C. The crystals were characterized by dielectric, etching and microhardness studies.« less

  11. Large optical second-order nonlinearity of poled WO3-TeO2 glass.

    PubMed

    Tanaka, K; Narazaki, A; Hirao, K

    2000-02-15

    Second-harmonic generation, one of the second-order nonlinear optical properties of thermally and electrically poled WO>(3)-TeO>(2) glasses, has been examined. We poled glass samples with two thicknesses (0.60 and 0.86 mm) at various temperatures to explore the effects of external electric field strength and poling temperature on second-order nonlinearity. The dependence of second-harmonic intensity on the poling temperature is maximum at a specific poling temperature. A second-order nonlinear susceptibility of 2.1 pm/V was attained for the 0.60-mm-thick glass poled at 250 degrees C. This value is fairly large compared with those for poled silica and tellurite glasses reported thus far. We speculate that the large third-order nonlinear susceptibility of WO>(3)- TeO>(2) glasses gives rise to the large second-order nonlinearity by means of a X((2)) = 3X((3)) E(dc) process.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'silva, E.D., E-mail: deepak.dsilva@gmail.com; Podagatlapalli, G. Krishna; Venugopal Rao, S., E-mail: soma_venu@yahoo.com

    Graphical abstract: Photograph and schematic representation of Z-scan experimental setup used to investigate third order nonlinear properties of the chalcone materials. Highlights: ► Br and NO{sub 2} substituted chalcone derivatives were exposed to picosecond laser pulses. ► Third-order nonlinear optical (NLO) properties were investigated. ► Compounds show promising third-order and optical limiting properties. ► These materials found suitable for electrical and optical applications. -- Abstract: In this paper we present results from the experimental study of third-order nonlinear optical (NLO) properties of three molecules of Br and NO{sub 2} substituted chalcone derivatives namely (2E)-1-(4-bromophenyl)-3-[4(methylsulfanyl)phenyl]prop-2-en-1-one (4Br4MSP), (2E)-1-(3-bromophenyl)-3-[4-(methylsulfanyl) phenyl]prop-2-en-1-one (3Br4MSP) and (2E)-3[4(methylsulfanyl)more » phenyl]-1-(4-nitrophenyl)prop-2-en-1-one (4N4MSP). The NLO properties have been investigated by Z-scan technique using 2 ps laser pulses at 800 nm. The nonlinear refractive indices, nonlinear absorption coefficient, and the magnitude of third-order susceptibility have been determined. The values obtained are of the order of 10{sup −7} cm{sup 2}/GW, 10{sup −3} cm/GW and 10{sup −14} esu respectively. The molecular second hyperpolarizability for the chalcone derivatives is of the order of 10{sup −32} esu. The coupling factor, excited state cross section, ground state cross section etc. were determined. The optical limiting (OL) property was studied. The results suggest that the nonlinear properties investigated for present chalcones are comparable with some of the reported chalcone derivatives and can be desirable for NLO applications.« less

  13. Nonlinear Optical Spectroscopy of Two-Dimensional Materials

    NASA Astrophysics Data System (ADS)

    Cui, Qiannan

    Nonlinear optical properties of two-dimensional (2D) materials, such as transition metal dichalcogenides (TMDs), graphene, black phosphorus, and so on, play a key role of understanding nanoscale light-matter interactions, as well as developing nanophotonics applications from solar cells to quantum computation. With ultrafast lasers, we experimentally study nonlinear optical properties of 2D materials. Employing transient absorption microscopy, we study several members of 2D materials, such as WSe2, TiS3 and ReS2. The dynamical saturable absorption process of 2D excitons is spatiotemporally resolved. Intrinsic parameters of these 2D materials, such as exciton lifetime, exciton diffusion coefficient, and exciton mobility, are effectively measured. Especially, in-plane anisotropy of transient absorption and diffusive transport is observed for 2D excitons in monolayer ReS2, demonstrating the in-plane degree of freedom. Furthermore, with quantum interference and control nanoscopy, we all-optically inject, detect and manipulate nanoscale ballistic charge currents in a ReS2 thin film. By tuning the phase difference between one photon absorption and two photon absorption transition paths, sub-picosecond timescale of ballistic currents is coherently controlled for the first time in TMDs. In addition, the spatial resolution is two-order of magnitude smaller than optical diffraction limit. The second-order optical nonlinearity of 2D monolayers is resolved by second harmonic generation (SHG) microscopy. We measure the second-order susceptibility of monolayer MoS 2. The angular dependence of SHG in monolayer MoS2 shows strong symmetry dependence on its crystal lattice structure. Hence, second harmonic generation microscopy can serve as a powerful tool to noninvasively determine the crystalline directions of 2D monolayers. The real and imaginary parts of third-order optical nonlinearity of 2D monolayers are resolved by third harmonic generation (THG) microscopy and two-photon transient absorption microscopy, respectively. With third harmonic generation microscopy, we observe strong and anisotropic THG in monolayer and multilayer ReS2. Comparing with 2D materials with hexagonal lattice, such as MoS2, the third-order susceptibility is higher by one order of magnitude in ReS2 with a distorted 1T structure. The in-plane anisotropy of THG is attributed to the lattice distortion in ReS2 after comparing with a symmetry analysis. With two-photon transient absorption microscopy, we observe a giant two-photon absorption coefficient of monolayer WS2.

  14. Third-order optical nonlinearities of sol-gel silica coating films containing metal porphyrin derivatives measured by resonant femtosecond degenerate four-wave mixing technique

    NASA Astrophysics Data System (ADS)

    Kasatani, Kazuo; Okamoto, Hiroaki; Takenaka, Shunsuke

    2003-11-01

    Third-order optical nonlinearities of sol-gel silica coating films containing metal porphyrin derivatives were measured under resonant conditions by the femtosecond degenerate four-wave mixing (DFWM) technique. Temporal profiles of the DFWM signal were measured with a time resolution of 0.3 ps, and were found to consist of two components, the coherent instantaneous nonlinear response and the delayed response with a decay time constant of several to several hundred ps. The latter can be attributed to population grating of an excited state, and contribution of slow component was very little for a zinc porphyrin derivative. The values of electronic component of the optical nonlinear susceptibility, χ(3) xxxx, for these films were ca. 2 x 10-10 esu.

  15. Investigations on nucleation, HRXRD, optical, piezoelectric, polarizability and Z-scan analysis of L-arginine maleate dihydrate single crystals

    NASA Astrophysics Data System (ADS)

    Sakthy Priya, S.; Alexandar, A.; Surendran, P.; Lakshmanan, A.; Rameshkumar, P.; Sagayaraj, P.

    2017-04-01

    An efficient organic nonlinear optical single crystal of L-arginine maleate dihydrate (LAMD) has been grown by slow evaporation solution technique (SEST) and slow cooling technique (SCT). The crystalline perfection of the crystal was examined using high-resolution X-ray diffractometry (HRXRD) analysis. Photoluminescence study confirmed the optical properties and defects level in the crystal lattice. Electromechanical behaviour was observed using piezoelectric co-efficient (d33) analysis. The photoconductivity analysis confirmed the negative photoconducting nature of the material. The dielectric constant and loss were measured as a function of frequency with varying temperature and vice-versa. The laser damage threshold (LDT) measurement was carried out using Nd:YAG Laser with a wavelength of 1064 nm (Focal length is 35 cm) and the obtained results showed that LDT value of the crystal is high compared to KDP crystal. The high laser damage threshold of the grown crystal makes it a potential candidate for second and higher order nonlinear optical device application. The third order nonlinear optical parameters of LAMD crystal is determined by open-aperture and closed-aperture studies using Z-scan technique. The third order linear and nonlinear optical parameters such as the nonlinear refractive index (n2), two photon absorption coefficient (β), Real part (Reχ3) and imaginary part (Imχ3) of third-order nonlinear optical susceptibility are calculated.

  16. Preparation of polymeric diacetylene thin films for nonlinear optical applications

    NASA Technical Reports Server (NTRS)

    Frazier, Donald O. (Inventor); Mcmanus, Samuel P. (Inventor); Paley, Mark S. (Inventor); Donovan, David N. (Inventor)

    1995-01-01

    A method for producing polymeric diacetylene thin films having desirable nonlinear optical characteristics has been achieved by producing amorphous diacetylene polymeric films by simultaneous polymerization of diacetylene monomers in solution and deposition of polymerized diacetylenes on to the surface of a transparent substrate through which ultraviolet light has been transmitted. These amorphous polydiacetylene films produced by photo-deposition from solution possess very high optical quality and exhibit large third order nonlinear optical susceptibilities, such properties being suitable for nonlinear optical devices such as waveguides and integrated optics.

  17. Enhancing light-atom interactions via atomic bunching

    NASA Astrophysics Data System (ADS)

    Schmittberger, Bonnie L.; Gauthier, Daniel J.

    2014-07-01

    There is a broad interest in enhancing the strength of light-atom interactions to the point where injecting a single photon induces a nonlinear material response. Here we show theoretically that sub-Doppler-cooled two-level atoms that are spatially organized by weak optical fields give rise to a nonlinear material response that is greatly enhanced beyond that attainable in a homogeneous gas. Specifically, in the regime where the intensity of the applied optical fields is much less than the off-resonance saturation intensity, we show that the third-order nonlinear susceptibility scales inversely with atomic temperature and, due to this scaling, can be two orders of magnitude larger than that of a homogeneous gas for typical experimental parameters. As a result, we predict that spatially bunched two-level atoms can exhibit single-photon nonlinearities. Our model is valid for all regimes of atomic bunching and simultaneously accounts for the backaction of the atoms on the optical fields. Our results agree with previous theoretical and experimental results for light-atom interactions that have considered only limited regimes of atomic bunching. For lattice beams tuned to the low-frequency side of the atomic transition, we find that the nonlinearity transitions from a self-focusing type to a self-defocusing type at a critical intensity. We also show that higher than third-order nonlinear optical susceptibilities are significant in the regime where the dipole potential energy is on the order of the atomic thermal energy. We therefore find that it is crucial to retain high-order nonlinearities to accurately predict interactions of laser fields with spatially organized ultracold atoms. The model presented here is a foundation for modeling low-light-level nonlinear optical processes for ultracold atoms in optical lattices.

  18. Third order nonlinear optical properties of a paratellurite single crystal

    NASA Astrophysics Data System (ADS)

    Duclère, J.-R.; Hayakawa, T.; Roginskii, E. M.; Smirnov, M. B.; Mirgorodsky, A.; Couderc, V.; Masson, O.; Colas, M.; Noguera, O.; Rodriguez, V.; Thomas, P.

    2018-05-01

    The (a,b) plane angular dependence of the third-order nonlinear optical susceptibility, χ(3) , of a c-cut paratellurite (α-TeO2) single crystal was quantitatively evaluated here by the Z-scan technique, using a Ti:sapphire femtosecond laser operated at 800 nm. In particular, the mean value Re( ⟨χ(3)⟩a,b )(α-TeO2) of the optical tensor has been extracted from such experiments via a direct comparison with the data collected for a fused silica reference glass plate. A R e (⟨χ(3)⟩(a,b )(α-TeO2)):R e (χ(3))(SiO2 glass) ratio roughly equal to 49.1 is found, and our result compares thus very favourably with the unique experimental value (a ratio of ˜50) reported by Kim et al. [J. Am. Ceram. Soc. 76, 2486 (1993)] for a pure TeO2 glass. In addition, it is shown that the angular dependence of the phase modulation within the (a,b) plane can be fully understood in the light of the strong dextro-rotatory power known for TeO2 materials. Taking into account the optical activity, some analytical model serving to estimate the diagonal and non-diagonal components of the third order nonlinear susceptibility tensor has been thus developed. Finally, Re( χxxxx(3) ) and Re( χxxyy(3) ) values of 95.1 ×10-22 m 2/V2 and 42.0 ×10-22 m2/V2 , respectively, are then deduced for a paratellurite single crystal, considering fused silica as a reference.

  19. Spectroscopic, DFT and Z-scan supported investigation of dicyanoisophorone based push-pull NLOphoric styryl dyes

    NASA Astrophysics Data System (ADS)

    Erande, Yogesh; Sreenath, Mavila C.; Chitrambalam, Subramaniyan; Joe, Isaac H.; Sekar, Nagaiyan

    2017-04-01

    The dicyanoisophorone acceptor based NLOphores with Intramolecular Charge Transfer (ICT) character are newly synthesised, characterised and explored for linear and non linear optical (NLO) property investigation. Strong ICT character of these D-π-A styryl NLOphores is established with support of emission solvatochromism, polarity functions and Generalised Mulliken Hush (GMH) analysis. First, second and third order polarizability of these NLOphores is investigated by spectroscopic and TDDFT computational approach using CAM/B3LYP-6-311 + g (d, p) method. BLA and BOA values of these chromophores are evaluated from ground and excited state optimized geometries and found that the respective structures are approaching towards cyanine limit. Third order nonlinear susceptibility (X(3)) along with nonlinear absorption coefficient (β) and nonlinear refraction (n2) are evaluated for these NLOphores using Z-scan experiment. All four chromophores exhibit large polarization anisotropy (Δα), first order hyperpolarizability (β0), second order hyperpolarizability (γ) and third order nonlinear susceptibility (X(3)). TGA analysis proved these NLOphores are stable up to 320 °C and hence can be used in device fabrication.

  20. Green synthesis and third-order nonlinear optical properties of 6-(9H-carbazol-9-yl) hexyl acetate

    NASA Astrophysics Data System (ADS)

    Chen, Baili; Geng, Feng; Luo, Xuan; Zhong, Quanjie; Zhang, Qingjun; Fang, Yu; Huang, Chuanqun; Yang, Ruizhuang; Shao, Ting; Chen, Shufan

    2016-10-01

    An extremely simple and green approach for the synthesis of photoelectric material 6-(9H-carbazol-9-yl) hexy-acetate (CHA) has been described in detail. The molecular structure of CHA was identified with Fourier transform infrared (FT-IR) spectra and 1H Nuclear Magnetic Resonance (1H NMR) spectroscopy. The optical absorption of CHA was recorded using ultraviolet-visible (UV-vis) spectrum. Notably, the reaction was accomplished in water medium instead of traditional toxic solvents (e.g., benzene and chloroform). The yield of CHA is up to 99%, which is increased by 13% compared with the traditional method. The approach developed by us makes it possible to achieve commercial production of CHA. Moreover, the thermal stability of CHA was studied with thermogravimetric (TG) and derivative thermogravimetric (DTG) method. The third-order nonlinear optical (NLO) properties of CHAn (obtained by new method) and CHAt (obtained by traditional method) have been studied by a Z-scan technique at 440 nm. The thermal decomposition temperature is above 200 °C. The third-order NLO of CHAn and CHAt are the same. The third-order NLO susceptibility χ (3) and two photon Figures of Merit (FOMs) of CHA are 1.58 × 10-8 (esu) and 4.55, respectively. The results reveal that CHA may be a promising candidate for all-optical switching application.

  1. Mechanisms of the Third-Order Nonlinear Optical Response in Dye-Doped Polymers.

    NASA Astrophysics Data System (ADS)

    Poga, Constantina

    Quadratic Electroabsorption is applied to thin -film solid solutions of squarylium dye molecules in poly(methyl methacrylate) polymer to study the mechanisms in the third order nonlinear optical susceptibility. The data are interpreted with the help of a generalized quadratic electrooptic response theory that includes both electronic and hindered molecular motion mechanisms. This theory predicts the tensor ratio of two independent third order susceptibility tensor components, chi_sp{3333}{(3)}/ chi_sp{1133}{(3)}, whose value distinctly characterizes the relative contribution of each mechanism. Although thickness change mechanisms have not been included in this theory, their effect on the tensor ratio chi_sp{3333 }{(3)}/chi_sp{1133} {(3)} has been taken into account for both electrostriction and electrode attraction mechanisms. We measure the tensor ratio with quadratic electroabsorption spectroscopy as a function of temperature and wavelength and find that the response is predominantly electronic at temperatures below the glass transition temperature, but at temperatures higher than the glass transition temperature both reorientational and thickness changes effects play a dominant role. In particular, the contribution of each mechanism has been found for all wavelengths in the visible and the dominant thickness change mechanism has been identified to be electrode attraction. Additionally, the real part of the third-order nonlinear susceptibility can be found through a Kramers-Kronig transformation of the experimentally measured imaginary part. The knowledge of both the real and imaginary part in the visible allows the calculation of the two-photon figure of merit (defined as the real over the imaginary part of chi^{(3) }) which is necessary for determining a material's suitability for all-optical devices. Furthermore, quadratic electroabsorption can be used to characterize the nature of the excited states which in turn can be used to understand the source of the electronic response. For the ISQ chromophore, a one-photon state (at 657nm) and a two-photon state (at 596nm) have been found, and a three-level fit based on these states has been successful in predicting the low temperature chi^{(3)}^ectrum. Quadratic electroabsorption has been proven to be a versatile tool to study the mechanisms of the third -order nonlinear optical response, to measure the electronic gamma, to study the symmetry of the excited states of a molecule and to characterize the suitability of a material for all-optical devices. In this chapter, we start by calculating the change in the imaginary part of the refractive index under the application of an electric field and proceed with connecting this change with the quantities that are experimentally measured by the quadratic electroabsorption experiment. The sample preparation and the data collection are also described.

  2. Microgravity Processing and Photonic Applications of Organic and Polymeric Materials

    NASA Technical Reports Server (NTRS)

    Frazier, Donald 0; Penn, Benjamin G.; Smith, David; Witherow, William K.; Paley, M. S.; Abdeldayem, Hossin A.

    1998-01-01

    In recent years, a great deal of interest has been directed toward the use of organic materials in the development of high-efficiency optoelectronic and photonic devices. There is a myriad of possibilities among organic which allow flexibility in the design of unique structures with a variety of functional groups. The use of nonlinear optical (NLO) organic materials such as thin-film waveguides allows full exploitation of their desirable qualities by permitting long interaction lengths and large susceptibilities allowing modest power input. There are several methods in use to prepare thin films, such as Langmuir-Blodgett (LB) and self-assembly techniques, vapor deposition, growth from sheared solution or melt, and melt growth between glass plates. Organics have many features that make Abstract: them desirable for use in optical devices such as high second- and third-order nonlinearities, flexibility of molecular design, and damage resistance to optical radiation. However, their use in devices has been hindered by processing difficulties for crystals and thin films. In this chapter, we discuss photonic and optoelectronic applications of a few organic materials and the potential role of microgravity on processing these materials. It is of interest to note how materials with second- and third-order nonlinear optical behavior may be improved in a diffusion-limited environment and ways in which convection may be detrimental to these materials. We focus our discussion on third-order materials for all-optical switching, and second-order materials for all-optical switching, and second-order materials for frequency conversion and electrooptics.

  3. Enhancement of nonlinear optical susceptibility of CuPc films by ITO layer

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Zahran, H. Y.; Yahia, I. S.; Shkir, Mohd; AlFaify, S.

    2016-12-01

    In the present study, the Copper Phthalocyanine (CuPc)/ITO thin film was fabricated using thermal evaporation method. The structural property was analyzed by X-ray diffraction study and confirms that the thin film has been preferentially grown along (200) plane. The atomic force microscope study was carried out on deposited film and quality of thin films is assessed by calculating the roughness of the films. The direct and indirect band gap, linear and nonlinear optical characteristics of grown films were calculated by using UV-Vis-NIR spectrometer studies. The calculated values of the first direct and indirect band gaps (Eg1(d) &Eg1(ind)) are 1.879 and 1.644 eV as a fundamental gap, while the values of second direct and indirect band gap (Eg2(d) &Eg2(ind)) are 1.660 and 1.498 eV as an onset gap for CuPc. The values of nonlinear refractive index (n2) and third order nonlinear optical susceptibility (χ3) are found to be 5 × 10-8 and 8 × 10-9 (theoretical) and 5.2 × 10-8 and 1.56 × 10-7 (experimental) respectively. The optical band and third order nonlinear properties suggest that the as-prepared films are may be applied in optoelectronic and nonlinear applications.

  4. Characterization of the excited states of a squaraine molecule with quadratic electroabsorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Poga, C.; Brown, T. M.; Kuzyk, M. G.; Dirk, Carl W.

    1995-04-01

    We apply quadratic electroabsorption spectroscopy (QES) to thin-film solid solutions of squarylium dye molecules in poly(methyl methacrylate) polymer to study the dye's electronic excited states and to investigate the importance of these states with regard to their contribution to the third-order nonlinear-optical susceptibility. We first show that the room-temperature tensor ratio a= chi (3)3333/ chi (3)1133 \\approximately 3 throughout most of the visible region to establish that the electronic mechanism dominates. Because QES is a third-order nonlinear-optical susceptibility measurement, it can be used to identify two photon states. By obtaining good agreement between the quadratic electroabsorption spectrum and a three level model, we conclude that there are two dominant states that contribute to the near-resonant and a two-photon state that are separated by less than 0.2 eV in energy. QES is thus shown to be a versatile tool for measuring the nature of excited states in a molecule. Furthermore, by applying a Kramers-Kronig transformation to determine the real part of the response, we are able to assess the two-photon all-optical device figure of merit of these materials. Such an

  5. Studies on 2-amino-5-nitropyridinium nitrate (2A5NPN): A semi-organic third order nonlinear optical single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivasubramani, V.; Pandian, Muthu Senthil, E-mail: senthilpandianm@ssn.edu.in; Ramasamy, P.

    2016-05-23

    2-amino-5-nitropyridinium nitrate (2A5NPN) is a semi-organic nonlinear optical crystal and optically good quality 2A5NPN single crystals were successfully grown by slow evaporation solution growth technique (SEST) at ambient temperature. The crystallographic structure of the grown crystal was determined by single crystal X-Ray diffraction analysis and it belongs to Monoclinic crystal system with centro symmetric crystalline nature. The crystallinity of the grown crystal was confirmed by powder X-ray diffraction analysis. The other physical properties of grown crystals are also characterized using TG-DTA, UV-Visible NIR, chemical etching, photoconductivity and Z-scan measurements. The Z-scan method reveals that the 2A5NPN crystal possesses multi photonmore » absorption behaviour and the significantly higher third order susceptibility and it is a promising potential NLO material.« less

  6. Large electronic third-order optical nonlinearities of cyanine dyes measured by resonant femtosecond degenerate four-wave mixing

    NASA Astrophysics Data System (ADS)

    Kasatani, Kazuo

    2003-01-01

    Third-order optical nonlinearities of several cyanine dyes were measured under resonant conditions by the femtosecond degenerate four-wave mixing (DFWM) technique. Temporal profiles of the DFWM signal were measured with a time resolution of 0.3 ps, and were found to consist of at least two components, the coherent instantaneous nonlinear response and the delayed response with a decay time constant of several hundred picoseconds. The latter can be attributed to molecular rotational relaxation of these dyes. The values of electronic component of the optical nonlinear susceptibility, χ e xxxx (3), for these dyes were ≈2×10 -12 esu at the very low concentration of 1×10 -5 mol dm -3. The electronic component of molecular hyperpolarizability, γe, was calculated to be ≈1×10 -28 esu for each dye.

  7. Nonlinear optical properties of TeO2-P2 O5- ZnO-LiNbO3 glass doped with Er3+ ions

    NASA Astrophysics Data System (ADS)

    Miedzinski, R.; Fuks-Janczarek, I.; El Sayed Said, Y.

    2016-10-01

    A series of lithium niobate LiNbO3 (LN) single crystals doped with Er3+ were grown under the same conditions by melt-quenching method. The distribution coefficients of rare-earth (RE) elements in the "crystal-melt" system of LN were determined at the beginning of the crystal growth. Their dependence on the dopant concentration in melt for 0.4 and 0.8 wt % was investigated. The procedure is applied to RE-doped lithium niobate (LiNbO3), a material of great interest for optoelectronic applications. We have obtained the real χR(3) and imaginary parts χI(3) of the third-order, nonlinear optical susceptibility to the nonlinear refractive index n2 and the nonlinear absorption coefficient β that are valid for absorbing systems. We show that nonlinear refractive or absorptive effects are the consequence of the interplay between the real and imaginary parts of the third-order susceptibilities of the materials. The method for measuring non-linear absorption coefficients and nonlinear refractive index based on well-known Z-scan is presented.

  8. Investigation on the growth, spectral, lifetime, mechanical analysis and third-order nonlinear optical studies of L-methionine admixtured D-mandelic acid single crystal: A promising material for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Jayaprakash, P.; Sangeetha, P.; Kumari, C. Rathika Thaya; Caroline, M. Lydia

    2017-08-01

    A nonlinear optical bulk single crystal of L-methionine admixtured D-mandelic acid (LMDMA) has been grown by slow solvent evaporation technique using water as solvent at ambient temperature. The crystallized LMDMA single crystal subjected to single crystal X-ray diffraction study confirmed monoclinic system with the acentric space group P21. The FTIR analysis gives information about the modes of vibration in the various functional groups present in LMDMA. The UV-visible spectral analysis assessed the optical quality and linear optical properties such as extinction coefficient, reflectance, refractive index and from which optical conductivity and electric susceptibility were also evaluated. The frequency doubling efficiency was observed using Kurtz Perry powder technique. A multiple shot laser was utilized to evaluate the laser damage threshold energy of the crystal. Discrete thermodynamic properties were carried out by TG-DTA studies. The hardness, Meyer's index, yield strength, elastic stiffness constant, Knoop hardness, fracture toughness and brittleness index were analyzed using Vickers microhardness tester. Layer growth pattern and the surface defect were examined by chemical etching studies using optical microscope. Fluorescence emission spectrum was recorded and lifetime was also studied. The electric field response of crystal was investigated from the dielectric studies at various temperatures at different frequencies. The third-order nonlinear optical response in LMDMA has been investigated using Z-scan technique with He-Ne laser at 632.8 nm and nonlinear parameters such as refractive index (n2), absorption coefficient (β) and susceptibility (χ3) investigated extensively for they are in optical phase conjucation, high-speed optical switches and optical dielectric devices.

  9. Vapor deposition and characterization of supramolecular assemblies for integrated nonlinear optics

    NASA Astrophysics Data System (ADS)

    Esembeson, Bweh

    Very recently, some organic molecules have been developed that are very compact and have exceptionally high molecular polarizabilities which approach the fundamental quantum limit. Supramolecular assemblies created from such highly nonlinear molecules could find applications in integrated nonlinear optics such as all-optical signal processing, electro-optic modulators and frequency conversion. In this work, we have constructed a versatile vacuum deposition system for the creation of organic thin films from these molecules that can be sublimated without decomposition. We have used deposition temperatures of the order of 100--200°C in a high vacuum of 10-6--10 -7 Torrs. While some molecules showed a tendency to form polycrystalline films, others led to very high optical quality films, with a roughness of less than 10 nm over tens of micrometers and no grains detected down to a size of 2 nm, as seen in Atomic Force and Scanning Electron Microscopy studies. The best material we developed has a linear refractive index of 1.8 +/- 0.1 at 1.5 mum and an off-resonant third order susceptibility, chi (3), measured through Degenerate Four Wave Mixing, of 2 +/- 1 x 10-19 m2V-2 at 1.5 mum, a value three orders of magnitude larger than fused silica. This vapor deposited thin film may represent one of the best materials demonstrated to date whereby a large third order susceptibility, high optical quality, and simplicity of fabrication and integration are in perfect harmony for integrated nonlinear optical applications. We have used this novel organic material to create a hybrid organic/silicon-on-insulator waveguide that showed a record high nonlinearity coefficient of 10 5 W-1m-1 and has been used as an all-optical switch for demultiplexing a 120 Gbit/s data stream to 10 Gbit/s on a 6 mm long device.

  10. Bismuth ferrite dielectric nanoparticles excited at telecom wavelengths as multicolor sources by second, third, and fourth harmonic generation.

    PubMed

    Riporto, Jérémy; Demierre, Alexis; Kilin, Vasyl; Balciunas, Tadas; Schmidt, Cédric; Campargue, Gabriel; Urbain, Mathias; Baltuska, Andrius; Le Dantec, Ronan; Wolf, Jean-Pierre; Mugnier, Yannick; Bonacina, Luigi

    2018-05-03

    We demonstrate the simultaneous generation of second, third, and fourth harmonics from a single dielectric bismuth ferrite nanoparticle excited using a telecom fiber laser at 1560 nm. We first characterize the signals associated with different nonlinear orders in terms of spectrum, excitation intensity dependence, and relative signal strengths. Successively, on the basis of the polarization-resolved emission curves of the three harmonics, we discuss the interplay of susceptibility tensor components at different orders and show how polarization can be used as an optical handle to control the relative frequency conversion properties.

  11. Ultrafast Spectroscopic Studies of Two-Photon States in Third Order Optical Processes of Dye Chromophores.

    NASA Astrophysics Data System (ADS)

    Yu, Yi-Zhong

    1995-01-01

    Conjugated organic and polymeric materials usually have large, nonresonant third order optical nonlinearity due to correlations of their delocalized pi -electrons. Most materials studied so far show positive values of third order nonlinear susceptibility when all frequencies that generate the third order effect are below any optical transition. A new class of organic molecules, namely indole squarylium (ISQ) and anilinium squarylium (BSQ), exhibit negative < gamma(-omega_4;omega_1, omega_2,omega_3)> when all three frequencies, omega_1, omega_2 and omega_3, lie below the first electronic transition. Although quantum many-electron calculations based on multiple-excitation configuration interaction have shown that the negative third order coefficient is essentially due to the contribution from high-lying two-photon states, the field of experimental studies exploring the microscopic origins of the negative squaraines remains uncultivated. The work presented in this thesis involves extensive experimental investigation of squaraines using techniques such as time-resolved transit absorption spectroscopy and saturable absorption. Theoretical simulations studying nonlinear absorption behavior of a simplified two-level system with ultrashort pulses are also presented. Part of the thesis is dedicated to the development, fabrication and characterization of our ultrafast laser system which offers tunable femtosecond pulses at wavelengths from UV to IR and served as a major tool in the experimental measurements. The dynamics of the population inversion between the ground state and the first excited state was also investigated through time-resolved experiments. The experiment results agree well with the theoretical predictions. Strong couplings between the gateway state and high-lying two-photon states were observed in BSQ squarylium molecules, which suggested a complete quantum calculation with multiple energy levels is required to correctly describe the negative third order effect.

  12. Enhanced third-order nonlinear optical properties determined in thin films using the Z-scan technique: bis(μ-4,4'-oxydibenzoato)bis[(4'-phenyl-2,2':6',2''-terpyridine)cobalt(II)].

    PubMed

    Liu, Runqiang; Zhao, Ning; Liu, Ping; An, Caixia; Lian, Zhaoxun

    2016-05-01

    π-Conjugated organic materials exhibit high and tunable nonlinear optical (NLO) properties, and fast response times. 4'-Phenyl-2,2':6',2''-terpyridine (PTP) is an important N-heterocyclic ligand involving π-conjugated systems, however, studies concerning the third-order NLO properties of terpyridine transition metal complexes are limited. The title binuclear terpyridine Co(II) complex, bis(μ-4,4'-oxydibenzoato)-κ(3)O,O':O'';κ(3)O'':O,O'-bis[(4'-phenyl-2,2':6',2''-terpyridine-κ(3)N,N',N'')cobalt(II)], [Co2(C14H8O5)2(C21H15N3)2], (1), has been synthesized under hydrothermal conditions. In the crystal structure, each Co(II) cation is surrounded by three N atoms of a PTP ligand and three O atoms, two from a bidentate and one from a symmetry-related monodentate 4,4'-oxydibenzoate (ODA(2-)) ligand, completing a distorted octahedral coordination geometry. Neighbouring [Co(PTP)](2+) units are bridged by ODA(2-) ligands to form a ring-like structure. The third-order nonlinear optical (NLO) properties of (1) and PTP were determined in thin films using the Z-scan technique. The title compound shows a strong third-order NLO saturable absorption (SA), while PTP exhibits a third-order NLO reverse saturable absorption (RSA). The absorptive coefficient β of (1) is -37.3 × 10(-7) m W(-1), which is larger than that (8.96 × 10(-7) m W(-1)) of PTP. The third-order NLO susceptibility χ((3)) values are calculated as 6.01 × 10(-8) e.s.u. for (1) and 1.44 × 10(-8) e.s.u. for PTP.

  13. Z-scan and optical limiting properties of Hibiscus Sabdariffa dye

    NASA Astrophysics Data System (ADS)

    Diallo, A.; Zongo, S.; Mthunzi, P.; Rehman, S.; Alqaradawi, S. Y.; Soboyejo, W.; Maaza, M.

    2014-12-01

    The intensity-dependent refractive index n 2 and the nonlinear susceptibility χ (3) of Hibiscus Sabdariffa dye solutions in the nanosecond regime at 532 nm are reported. More presicely, the variation of n 2, β, and real and imaginary parts of χ (3) versus the natural dye extract concentration has been carried out by z-scan and optical limiting techniques. The third-order nonlinearity of the Hibiscus Sabdariffa dye solutions was found to be dominated by nonlinear refraction, which leads to strong optical limiting of laser.

  14. Efficient optical nonlinear Langmuir-Blodgett films: roles of matrix molecules

    NASA Astrophysics Data System (ADS)

    Ma, Shihong; Lu, Xingze; Liu, Liying; Han, Kui; Wang, Wencheng; Zhang, Zhi-Ming

    1996-10-01

    A novel bifat-chain amphiphilic molecule nitrogencrown (NC) was adopted as an inert material for fabrication of optical nonlinear Langmuir-Blodgett (LB) multilayers. Structural improvement in the Z-type mixed fullerene derivative (C60-Be)/NC LB multilayers samples was realized by insertion of the C60-Be molecules between two hydrophobic chains of the NC molecules. The relatively large third-order susceptibility (chi) (3)xxxx(- 3(omega) ;(omega) ,(omega) ,(omega) ) equals 2.9 multiplied by 10-19 M2V-2 (or 2.1 multiplied by 10-11 esu) was deduced by measuring third harmonic generation (THG) from the C60-Be samples. The second harmonic generation (SHG) intensity increased quadratically with the bilayer number (up to 116 bilayers) in Y-type hemicyanine (HEM)/NC interleaving LB multilayers due to improvement of the structural properties by insertion of the long hydrophobic tail of HEM molecules between two chains of NC molecules. The second-order susceptibility (chi) (2)zxx(-2(omega) ;(omega) ,(omega) ) equals 18 pM V-1 (or 4.35 multiplied by 10-8 esu) was obtained by measuring SHG from the HEM samples. The NC molecule has attractive features as a matrix material in fabrications of LB multilayers made from optically nonlinear materials with hydrophobic long tails or ball-like molecules.

  15. Enhanced nonlinear optical properties of L-arginine stabilized gold nanoparticles embedded in PVP polymer

    NASA Astrophysics Data System (ADS)

    Sunatkari, A. L.; Talwatkar, S. S.; Tamgadge, Y. S.; Muley, G. G.

    2018-05-01

    Highly stable colloidal gold nanoparticles (GNPs) stabilised in l-arginine were synthesized and embedded in polyvinyl pyrrolidone (PVP) polymer matrix to fabricate thin films by spin coating method. Nonlinear optical response of GNP-PVP nanocomposite were investigated using single beam Z-scan technique using He-Ne laser beam in CW regime operated at 632.8 nm as an excitation source. The sign of nonlinear refractive index was found negative, which is of self-defocusing nature. The nonlinear optical parameters estimated for GNP-PVP nanocomposite and found values as large as n2≈(1.7 -3.1 ) ×10-4c m2W-1, β ≈(2.40 -4.69 ) ×10-5c m W-1 and χef f (3 )≈(2.30 -4.34 ) ×10-4e s u . The nonlinear refractive index, absorption coefficient and third order nonlinear susceptibility have found decreasing with the increase in the concentration of l-arginine. Localized surface plasmon resonance (LSPR) peaks show the blue shift. The average size of the GNPs is found reducing from 11 nm to 7.5 nm with the increase in the stabilizer concentration, as analysed by transmission electron microscopy. The XRD study reveals face-centred cubic (fcc) structure of GNPs. The huge nonlinearity is attributed to the thermo-optic phenomenon. The huge enhancement in third order nonlinear susceptibility and nonlinear refractive index indicates that this optical material possess a high potential for various optoelectronic devices applications.

  16. Influence of electron beam irradiation on nonlinear optical properties of Al doped ZnO thin films for optoelectronic device applications in the cw laser regime

    NASA Astrophysics Data System (ADS)

    Antony, Albin; Pramodini, S.; Poornesh, P.; Kityk, I. V.; Fedorchuk, A. O.; Sanjeev, Ganesh

    2016-12-01

    We present the studies on third-order nonlinear optical properties of Al doped ZnO thin films irradiated with electron beam at different dose rate. Al doped ZnO thin films were deposited on a glass substrate by spray pyrolysis deposition technique. The thin films were irradiated using the 8 MeV electron beam from microtron ranging from 1 kG y to 5 kG y. Nonlinear optical studies were carried out by employing the single beam Z-scan technique to determine the sign and magnitude of absorptive and refractive nonlinearities of the irradiated thin films. Continuous wave He-Ne laser operating at 633 nm was used as source of excitation. The open aperture Z-scan measurements indicated the sample displays reverse saturable absorption (RSA) process. The negative sign of the nonlinear refractive index n2 was noted from the closed aperture Z-scan measurements indicates, the films exhibit self-defocusing property due to thermal nonlinearity. The third-order nonlinear optical susceptibility χ(3) varies from 8.17 × 10-5 esu to 1.39 × 10-3 esu with increase in electron beam irradiation. The present study reveals that the irradiation of electron beam leads to significant changes in the third-order optical nonlinearity. Al doped ZnO displays good optical power handling capability with optical clamping of about ∼5 mW. The irradiation study endorses that the Al doped ZnO under investigation is a promising candidate photonic device applications such as all-optical power limiting.

  17. Third-order nonlinear optical properties of methylammonium lead halide perovskite films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Justin C.; Li, Zhen; Ndione, Paul F.

    2016-01-01

    We report third-order nonlinear coefficient values and decay time kinetics vs. halide composition (CH3NH3PbBr3 and CH3NH3PbBr2I), temperature, and excitation wavelength. The maximum values of the third-order nonlinear susceptibility X(3) (-1.6 x 10-6 esu) are similar to or larger than many common third-order materials. The source of the nonlinearity is shown to be primarily excitonic in the tribromide film by virtue of its strong enhancement near the exciton resonance. Nonresonant excitation reduces the nonlinearity significantly, as does increasing the temperature. Substitution of one I for one Br also reduces the nonlinearity by at least one order of magnitude, presumably due tomore » the lack of strong exciton resonance in the substituted form. The thin films are stable, highly homogenous (lacking significant light scattering), and simple and inexpensive to fabricate, making them potentially useful in a variety of optoelectronic applications in which wavelength selectivity is important.« less

  18. Chi 3 dispersion in planar tantalum pentoxide waveguides in the telecommunications window.

    PubMed

    Chen, Ruiqi Y; Charlton, Martin D B; Lagoudakis, Pavlos G

    2009-04-01

    We report on the dispersion of the third-order nonlinear susceptibility (chi(3) or "Chi 3") in planar Ta2O5 waveguides in the telecommunications spectral window. We utilize the observation of third-harmonic generation under ultrashort pulsed excitation as a reference-free characterization method of chi(3) and obtain a large nonlinear coefficient, 2x10(-13) esu, at 1550 nm. Our observation of efficient third-harmonic generation in Ta2O5 waveguides in the telecoms window reveals the potential of this material system in high-speed integrated nonlinear optical switches.

  19. Effets non-lineaires de second ordre dans les verres de silice

    NASA Astrophysics Data System (ADS)

    Godbout, Nicolas

    Materials possessing inversion symmetry can not have a non-zero second-order susceptibility tensor. Since silica glasses are amorphous and isotropic, they possess this symmetry and therefore do not exhibit second-order nonlinear optical effects. However, the symmetry can be broken by several processes. The central question of this thesis is the determination of the mechanisms responsible for the second-order susceptibility in silica glasses after thermal poling. The presence of this nonlinearity arises through one of these mechanisms: the orientation of dipolar moieties possessing a second-order hyperpolarisability, or the build-up of a permanent electric field by charge motion which creates an apparent χ(2) through the already present χ (3). The dipole orientation model has a bigger potential of generating high optical nonlinearities than the built-in field model. This conclusion is based on a study of the crystalline structures of silica. The measurement of Maker fringes is the most informative technique for characterization of the optical properties of bulk poled samples. Measurements on Infrasil™ and Suprasil™ samples show an optically active layer of approximately 9 and 23 microns, with χ(2) susceptibilities of approximately 0.07 pm/V and 0.02 pm/V respectively. The analysis of Maker fringes in a similar sample suggests that the sign of the surface and bulk χ (2)-s is different, supporting the built-in field model as the origin of χ(2). Based on the results analyzed in this thesis, the second- order susceptibility of silica glasses after thermal poling results from the creation of a permanent built-in electric field caused by the movement of cations coupled to the pre-existing third-order nonlinearity. This claim is based on: the observed pump polarization dependence of Maker fringes, predictions of a steady-state ion migration model about the resulting optical properties and their confirmation by optical measurements; the presence of a bulk nonlinearity and its apparent opposite sign to the one of the surface; polarization and depolarization currents showing only signs of ion migration. (Abstract shortened by UMI.)

  20. Investigations on structural, optical, electrical, mechanical and third-order nonlinear behaviour of 3-aminopyridinium 2,4-dinitrophenolate single crystal

    NASA Astrophysics Data System (ADS)

    Mohanbabu, B.; Bharathikannan, R.; Siva, G.

    2017-10-01

    The single crystals of 3-aminopyridinium 2,4-dinitrophenolate (APDP) have been synthesized and grown by slow evaporation technique at room temperature. The crystal system was identified and lattice dimensions were measured from the single-crystal X-ray diffraction (SXRD) analysis. UV-visible absorption and transmittance spectra have been recorded in the region between 250 and 1100 nm. The different vibrational modes of the molecule were studied by Fourier transform infrared (FTIR) spectroscopic analysis. The decreasing tendency of dielectric constant with increasing frequency was analysed in dielectric study. The polarizability value calculated using Penn analysis well agrees with the value calculated using Clausius-Mossotti equation. The photoconductivity and photoluminescence behaviour were also studied on grown APDP crystal. The mechanical strength of the crystal has been studied using a Vickers' microhardness test. The stiffness constant and yield strength of the crystal were also calculated from the microhardness test. The third-order nonlinear optical parameters such as refractive index, absorption coefficient and third-order susceptibility were estimated by Z-scan studies.

  1. Third order nonlinear phenomena in silica solid and hollow whispering gallery mode resonators

    NASA Astrophysics Data System (ADS)

    Farnesi, D.; Barucci, A.; Berneschi, S.; Cosi, F.; Righini, G. C.; Nunzi Conti, G.; Soria, Silvia

    2016-03-01

    We report efficient generation of nonlinear phenomena related to third order optical non-linear susceptibility χ(3) interactions in resonant silica microspheres and microbubbles in the regime of normal dispersion. The interactions here reported are: Stimulated Raman Scattering (SRS), and four wave mixing processes comprising Stimulated Anti-stokes Raman Scattering (SARS) and comb generation. Unusually strong anti-Stokes components and extraordinarily symmetric spectra have been observed. Resonant SARS and SRS corresponding to different Raman bands were also observed. The lack of correlation between stimulated anti-stokes and stokes scattering spectra indicates that the signal has to be resonant with the cavity.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, Deo; Shaaban, E.R., E-mail: esam_ramadan2008@yahoo.com; Shapaan, M.

    Highlights: • Combined experimental and theoretical researches on ZnSe Thin Films. • The film thickness and refractive index were determined using envelope method. • The absorption coefficient and the energy gap were calculated. • Dispersion parameters were determined using Wemple-DiDomenico relation. • The third order susceptibility and nonlinear refractive index were calculated. - Abstract: Zinc selenide (ZnSe) thin films with different thicknesses were evaporated onto glass substrates using the thermal evaporation technique. X-ray diffraction analysis confirmed that both the film and powder have cubic zinc-blende structure. The fundamental optical parameters like absorption coefficient, extinction coefficient and band gap were evaluatedmore » in transparent region of transmittance and reflectance spectrum. The optical transition of the films was found to be allowed, where the energy gap increased from 2.576 to 2.702 eV with increasing film thickness. Also, the refractive index value increase with increasing film thickness. The refractive indices evaluated through envelope method were extrapolated by Cauchy dispersion relationship over the whole spectra range. Additionally, the dispersion of refractive index was determined in terms of Wemple-DiDomenico single oscillator model. Third order susceptibility and nonlinear refractive index were determined for different thickness of ZnSe thin films.« less

  3. Studies on the growth, structural, spectral and third-order nonlinear optical properties of ammonium 3-carboxy-4-hydroxy benzenesulfonate monohydrate single crystal.

    PubMed

    Silambarasan, A; Krishna Kumar, M; Thirunavukkarasu, A; Mohan Kumar, R; Umarani, P R

    2015-01-25

    An organic nonlinear optical bulk single crystal, Ammonium 3-carboxy-4-hydroxy benzenesulfonate monohydrate (ACHBS) was successfully grown by solution growth technique. Single crystal X-ray diffraction study confirms that, the grown crystal belongs to P21/c space group. Powder X-ray diffraction and high resolution X-ray diffraction analyses revealed the crystallinity of the grown crystal. Infrared spectral analysis showed the vibrational behavior of chemical bonds and its functional groups. The thermal stability and decomposition stages of the grown crystal were studied by TG-DTA analysis. UV-Visible transmittance studies showed the transparency region and cut-off wavelength of the grown crystal. The third-order nonlinear optical susceptibility of the grown crystal was estimated by Z-scan technique using He-Ne laser source. The mechanical property of the grown crystal was studied by using Vicker's microhardness test. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Tuning the third-order nonlinear optical properties of In:ZnO thin films by 8 MeV electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Shettigar, Nayana; Pramodini, S.; Kityk, I. V.; Abd-Lefdil, M.; Eljald, E. M.; Regragui, M.; Antony, Albin; Rao, Ashok; Sanjeev, Ganesh; Ajeyakashi, K. C.; Poornesh, P.

    2017-11-01

    We report the third-order nonlinear optical properties of electron beam treated Indium doped ZnO (Zn1-xInxO (x = 0.03) thin films at different dose rate. Zn1-xInxO (x = 0.03) thin films prepared by spray pyrolysis deposition technique were irradiated using 8 MeV electron beam at dose rates ranging from 1 kGy to 4 kGy. X-ray diffraction patterns were obtained to examine the structural changes, The transformation from sphalerite to wurtzite structure of ZnO was observed which indicates occurrence of structural changes due to irradiation. Morphology of irradiated thin films examined using atomic force microscopy (AFM) technique indicates the surface roughness varying with irradiation dose rate. The switching over from Saturable Absorption (SA) to Reverse Saturable Absorption (RSA) behaviour was noted when the irradiation dose rate was increased from 1 kGy to 4 kGy. The significant changes observed in the third-order nonlinear optical susceptibility χ(3) of the Zn1-xInxO (x = 0.03) thin films is attributed mainly due to electron beam irradiation. The study indicates that nonlinear optical parameters can be controlled by electron beam irradiation by choosing appropriate dose rate which is very much essential for device applications. Hence Zn1-xInxO (x = 0.03) materialize as a promising material for use in nonlinear optical device applications.

  5. Synthesis, growth, crystal structure, optical and third order nonlinear optical properties of quinolinium derivative single crystal: PNQI

    NASA Astrophysics Data System (ADS)

    Karthigha, S.; Krishnamoorthi, C.

    2018-03-01

    An organic quinolinium derivative nonlinear optical (NLO) crystal, 1-ethyl-2-[2-(4-nitro-phenyl)-vinyl]-quinolinium iodide (PNQI) was synthesized and successfully grown by slow evaporation solution growth technique. Formation of a crystalline compound was confirmed by single crystal X-ray diffraction. The quinolinium compound PNQI crystallizes in the triclinic crystal system with a centrosymmetric space group of P-1 symmetry. The molecular structure of PNQI was confirmed by 1H NMR and 13C NMR spectral studies. The thermal properties of the crystal have been investigated by thermogravimetric (TG) and differential scanning calorimetry (DSC) studies. The optical characteristics obtained from UV-Vis-NIR spectral data were described and the cut-off wavelength observed at 506 nm. The etching study was performed to analyse the growth features of PNQI single crystal. The third order NLO properties such as nonlinear refractive index (n2), nonlinear absorption coefficient (β) and nonlinear susceptibility (χ (3)) of the crystal were investigated using Z-scan technique at 632.8 nm of Hesbnd Ne laser.

  6. Triphenylamine Derived 3-Acetyl and 3-Benzothiazolyl Bis and Tris Coumarins: Synthesis, Photophysical and DFT Assisted Hyperpolarizability Study

    NASA Astrophysics Data System (ADS)

    Erande, Yogesh; Kothavale, Shantaram; Sreenath, Mavila C.; Chitrambalam, Subramaniyan; Joe, Isaac H.; Sekar, Nagaiyan

    2018-02-01

    Triphenylamine derived bis- and tris-branched donor-pi-acceptor coumarins with acetyl and benzothiazolyl acceptors are studied for their linear and nonlinear optical properties that originate from their photophysical and molecular structure. Plots of solvent polarities versus the Stokes shift, frontier molecular orbital analysis and Generalised Mulliken Hush analysis have established their strong charge transfer character supported by the strong emission solvatochromism of these chromophores. On the basis of excited state intramolecular charge transfer, the first-, second- and third-order polarizability of these dyes are determined by a solvatochromic method and supported by density functional theory calculations using CAM-B3LYP/6-31g(d). Compared to the acetyl group, the benzothiazolyl group is a strong acceptor, and its corresponding derivatives show enhanced absorption, emission maxima and non-linear optical response. Bond length alternation and bond order alternation analysis reveals that these chromophores approach the cyanine-like framework which is responsible for maximum perturbation to produce high nonlinear optical response. Third order nonlinear susceptibility for dyes 1 and 2 is determined by Z-scan measurement. All of these methods are used to determine the nonlinear optical properties, and thermogravimetric analysis suggests that these chromophores are thermally robust and efficient nonlinear optical materials.

  7. Zn doped CdO thin films with enhanced linear and third order nonlinear optical properties for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Bairy, Raghavendra; Jayarama, A.; Shivakumar, G. K.; Patil, P. S.; Bhat, K. Udaya

    2018-04-01

    Thin films of undoped and zinc doped CdO have been deposited on glass substrate using spray pyrolysis technique with various dopant concentrations of Zn such as 1, 5 and 10%. Influence of Zn doping on CdO thin films for the structural, morphological, optical and nonlinear optical properties are reported. XRD analysis reveals that as prepared pure and Zn doped CdO films show polycrystalline nature with face centered cubic structure. Also, Zn doping does not significantly modify the crystallinity and not much increase in the crystallite size of the film. SEM images shows grains which are uniform and grain size with increase in dopant concentration. The transmittance of the prepared CdO films recorded in the UV visible spectra and it shows 50 to 60% in the visible region. The estimated optical band gap increases from 2.60 to 2.70 eV for various dopant concentrations. The nonlinear optical absorption of Zn-doped CdO films have been measured used the Z-scan technique at a wavelength 532 nm. The nonlinear optical absorption coefficient (β), nonlinear refractive index (n2) and the third order nonlinear optical susceptibility (χ(3)) of the pure and Zn doped films were determined.

  8. Third-order optical nonlinearity of N-doped graphene oxide nanocomposites at different GO ratios

    NASA Astrophysics Data System (ADS)

    Kimiagar, Salimeh; Abrinaei, Fahimeh

    2018-05-01

    In the present work, the influence of GO ratios on the structural, linear and nonlinear optical properties of nitrogen-doped graphene oxide nanocomposites (N-GO NCs) has been studied. N-GO NCs were synthesized by hydrothermal method. The XRD, FTIR, SEM, and TEM results confirmed the reduction of GO by nitrogen doping. The energy band gaps of N-GO NCs calculated from UV-Vis analyzed by using Tauc plot. To obtain further insight into potential optical changes in the N-GO NCs by increasing GO contents, Z-scan analysis was performed with nanosecond Nd-YAG laser at 532 nm. The nonlinear absorption coefficient, β, and nonlinear refractive index, n2, for N-GO NCs at the laser intensity of 113 MW/cm were measured and an increase was observed in both parameters after addition of nitrogen to GO. The third-order nonlinear optical susceptibilities of N-GO NCs were measured in the order of 10-9 esu. The results showed that N-GO NCs have negative nonlinearity which can be controlled by GO contents to obtain the highest values for nonlinear optical parameters. The nonlinear optical results not only imply that N-GO NCs can serve as an important material in the advancing of optoelectronics but also open new possibilities for the design of new graphene-based materials by variation of N and GO ratios as well as manufacturing conditions.

  9. Ab-initio and DFT methodologies for computing hyperpolarizabilities and susceptibilities of highly conjugated organic compounds for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Karakas, A.; Karakaya, M.; Ceylan, Y.; El Kouari, Y.; Taboukhat, S.; Boughaleb, Y.; Sofiani, Z.

    2016-06-01

    In this talk, after a short introduction on the methodologies used for computing dipole polarizability (α), second and third-order hyperpolarizability and susceptibility; the results of theoretical studies performed on density functional theory (DFT) and ab-initio quantum mechanical calculations of nonlinear optical (NLO) properties for a few selected organic compounds and polymers will be explained. The electric dipole moments (μ) and dispersion-free first hyperpolarizabilities (β) for a family of azo-azulenes and a styrylquinolinium dye have been determined by DFT at B3LYP level. To reveal the frequency-dependent NLO behavior, the dynamic α, second hyperpolarizabilities (γ), second (χ(2)) and third-order (χ(3)) susceptibilites have been evaluated using time-dependent HartreeFock (TDHF) procedure. To provide an insight into the third-order NLO phenomena of a series of pyrrolo-tetrathiafulvalene-based molecules and pushpull azobenzene polymers, two-photon absorption (TPA) characterizations have been also investigated by means of TDHF. All computed results of the examined compounds are compared with their previous experimental findings and the measured data for similar structures in the literature. The one-photon absorption (OPA) characterizations of the title molecules have been theoretically obtained by configuration interaction (CI) method. The highest occupied molecular orbitals (HOMO), the lowest unoccupied molecular orbitals (LUMO) and the HOMO-LUMO band gaps have been revealed by DFT at B3LYP level for azo-azulenes, styrylquinolinium dye, push-pull azobenzene polymers and by parametrization method 6 (PM6) for pyrrolo-tetrathiafulvalene-based molecules.

  10. Control of optical bistability and third-order nonlinearity via tunneling induced quantum interference in triangular quantum dot molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Si-Cong, E-mail: tiansicong@ciomp.ac.cn; Tong, Cun-Zhu, E-mail: tongcz@ciomp.ac.cn; Zhang, Jin-Long

    The optical bistability of a triangular quantum dot molecules embedded inside a unidirectional ring cavity is studied. The type, the threshold and the hysteresis loop of the optical bistability curves can be modified by the tunneling parameters, as well as the probe laser field. The linear and nonlinear susceptibilities of the medium are also studied to interpret the corresponding results. The physical interpretation is that the tunneling can induce the quantum interference, which modifies the linear and the nonlinear response of the medium. As a consequence, the characteristics of the optical bistability are changed. The scheme proposed here can bemore » utilized for optimizing and controlling the optical switching process.« less

  11. Synthesis, optical, experimental and theoretical investigation of third order nonlinear optical properties of 8-hydroxyquinolinium 2-carboxy-6-nitrophthalate monohydrate single crystal

    NASA Astrophysics Data System (ADS)

    Bharathi, M. Divya; Bhuvaneswari, R.; Srividya, J.; Vinitha, G.; Prithiviraajan, R. N.; Anbalagan, G.

    2018-02-01

    Single crystals of 8-hydroxyquinolinium 2-carboxy-6-nitrophthalate monohydrate (8HQNP) were obtained from slow evaporation solution growth method using methanol-water (1:1) as a solvent. Powder X-ray diffraction was utilized to compute the unit cell parameters and dislocation density of 8HQNP crystal. The crystalline perfection of the as-grown crystal was investigated by high-resolution X-ray diffraction at room temperature. The molecular structure was analyzed by identifying the functional groups from FT-IR and FT-Raman spectra. The cut-off wavelength and the corresponding optical band gap obtained from an optical spectrum were 376 nm and 3.29 eV respectively. The dispersion nature of refractive index was investigated by the single-oscillator Wemple and Di-Domenico model. Red emission was observed in the photoluminescence spectrum when excited with 376 nm. The low birefringence and high laser damage threshold (8.538 GW/cm2) values dictate the suitability of the crystal for optical devices. Z-scan studies revealed the third order nonlinear absorption coefficient (β) and refractive index (n2) of the 8HQNP crystal. The theoretical value of third order nonlinear susceptibility obtained from density function theory is good accordance with the experimental value. The frontier molecular orbital energy gap decreases with increasing external electric field in different directions which attributed to the enhancement of the second hyperpolarizability. The grown title crystal is thermally stable up to 102 °C which was identified using thermal analysis. Mechanical strength of 8HQNP was estimated by using Vicker's microhardness studies.

  12. Enhanced Kerr nonlinearity in a quantized four-level graphene nanostructure

    NASA Astrophysics Data System (ADS)

    Ghahraman, Solookinejad; M, Panahi; E, Ahmadi; Seyyed, Hossein Asadpour

    2016-07-01

    In this paper, a new model is proposed for manipulating the Kerr nonlinearity of right-hand circular probe light in a monolayer of graphene nanostructure. By using the density matrix equations and quantum optical approach, the third-order susceptibility of probe light is explored numerically. It is realized that the enhanced Kerr nonlinearity with zero linear absorption can be provided by selecting the appropriate quantities of controllable parameters, such as Rabi frequency and elliptical parameter of elliptical polarized coupling field. Our results may be useful applications in future all-optical system devices in nanostructures.

  13. Crystal growth and characterization of semi organic nonlinear optical (NLO) piperazinium tetrachlorozincate monohydrate (PTCZ) single crystal

    NASA Astrophysics Data System (ADS)

    Karuppasamy, P.; Pandian, Muthu Senthil; Ramasamy, P.

    2018-04-01

    The semi-organic single crystal of piperazinium tetrachlorozincate monohydrate (PTCZ) was successfully grown by slow evaporation solution technique (SEST). The grown crystal was subjected to the single crystal XRD studies for confirming the unit cell parameters. The optical quality of the grown crystal was identified by the UV-Vis NIR spectrum analysis and the optical band gap energy was calculated. The photoconductivity study reveals that the grown crystal has positive photoconductive nature. The mechanical stability of the grown crystal was analyzed using Vickers microhardness analyzer. The third-order nonlinear optical properties such as nonlinear refractive index (n2), absorption co-efficient (β) and susceptibility (χ(3)) were studied by Z-scan technique at 640 nm using solid state laser.

  14. Microstructure of squarylium dye J aggregate films examined on the basis of optical behavior at low temperature

    NASA Astrophysics Data System (ADS)

    Tatsuura, Satoshi; Tian, Minquan; Furuki, Makoto; Sato, Yasuhiro; Iwasa, Izumi; Pu, Lyong Sun; Kawashima, Hitoshi; Ishikawa, Hiroshi

    2002-10-01

    The microstructure of a spin-coated film of squarylium dye J aggregates is examined on the basis of the measurement of the optical properties and the third-order nonlinear optical susceptibility χ(3) at low temperature. The absorption maximum of J aggregates shifted to lower energies as the film temperature decreased, while χ(3) was independent of the temperature. The latter finding indicates that the coherent length of J aggregates is confined by a structural boundary rather than by phonons; consequently, the observed peak energy shift can be due to temperature-dependent conformational change of the aggregates. The small aggregation size may contribute to the ultrahigh-speed optical response of squarylium dye J aggregates.

  15. Nonlinear-optical studies of organic liquids and polymer optical fibers

    NASA Astrophysics Data System (ADS)

    Vigil, Steven Richard

    We present the results of non-resonant optical Kerr effect measurements of the neat organic liquids nitrobenzene, carbon disulfide, carbon tetrachloride, and methyl-methacrylate. We also present the results of one- photon resonant optical Kerr effect measurements of solutions of the organic dyes indole squarylium and silicon-phthalocyanine:methylmethacrylate (separately) in carbon tetrachloride. Fits of the molecular third-order susceptibility theory to the one-photon resonant data indicate the presence of high-lying two-photon states for each of the dye molecules studied. We also present results concerning light coupling in dye- doped dual-core polymer optical fibers. Measurements of the coupling length at low intensity are in agreement with linear coupling length calculations. Intensity- dependent coupling is observed as the intensity launched into the fiber is increased.

  16. Growth and characterization of new nonlinear optical 1-phenyl-3-(4-dimethylamino phenyl) prop-2-en-1-one (PDAC) single crystals

    NASA Astrophysics Data System (ADS)

    Ravindraswami, K.; Janardhana, K.; Gowda, Jayaprakash; Moolya, B. Narayana

    2018-04-01

    Non linear optical 1-phenyl-3-(4-dimethylamino phenyl) prop-2-en-1-one (PDAC) was synthesized using Claisen - Schmidt condensation method and studied for optical nonlinearity with an emphasis on structure-property relationship. The structural confirmation studies were carried out using 1H-NMR, FT-IR and single crystal XRD techniques. The nonlinear absorption and nonlinear refraction parameters in z-scan with nano second laser pulses were obtained by measuring the profile of propagated beam through the samples. The real and imaginary parts of third-order bulk susceptibility χ(3) were evaluated. Thermo gravimetric analysis is carried out to investigate the thermal stability.

  17. Synthesis and characterization of d10 metal complexes of 3-Me-5-FcPz: Structural, theoretical and third order nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Senthilkumar, Kabali; Thirumoorthy, Krishnan; Vinitha, G.; Soni, Kiran; Bhuvanesh, Nattamai S. P.; Palanisami, Nallasamy

    2017-01-01

    The d10 metal complexes based on 3-methyl-5-ferrocenyl-1H-pyrazole (L = 3-Me-5-FcPz) ligand [M(L)4(NO3)2] Zn=(1) and Cd=(2), [Hg(L)4(NO3)2].dmf (3) have been synthesized and characterized by FT-IR, NMR, UV-Vis and elemental analysis. The molecular structure of compound 2 and its crystal packing were determined by single crystal X-ray diffraction. The nitrate anions are also involved in intermolecular hydrogen bonding with adjacent ferrocene units and it forms zig-zag one-dimensional polymeric structure. UV-Vis investigations on the positive solvatochromic behavior of 1-3 revealed that the solvation of the push-pull character increases with increasing polarity. The third-order nonlinear optical (NLO) properties of 1-3 have been determined by Z-scan technique and the results indicate that compounds 1-3 exhibits the strong self-defocusing effect. The nonlinear susceptibility χ(3) values are calculated in the order of 10-6 esu.

  18. Structural characterizations, Hirshfeld surface analyses, and third-order nonlinear optical properties of two novel chalcone derivatives

    NASA Astrophysics Data System (ADS)

    Maidur, Shivaraj R.; Jahagirdar, Jitendra R.; Patil, Parutagouda Shankaragouda; Chia, Tze Shyang; Quah, Ching Kheng

    2018-01-01

    We report synthesis, characterizations, structure-property relationships, and third-order nonlinear optical studies for two new chalcone derivatives, (2E)-1-(anthracen-9-yl)-3-(4-bromophenyl)prop-2-en-1-one (Br-ANC) and (2E)-1-(anthracen-9-yl)-3-(4-chlorophenyl)prop-2-en-1-one (Cl-ANC). These derivatives were crystallized in the centrosymmetric monoclinic P21/c crystal structure. The intermolecular interactions of both the crystals were visualized by Hirshfeld surface analyses (HSA). The crystals are thermally stable up to their melting points (180.82 and 191.16 °C for Cl-ANC and Br-ANC, respectively). The geometry optimizations, FT-IR spectra, 1H and 13C NMR spectra, electronic absorption spectra, electronic transitions, and HOMO-LUMO energy gaps were studied by Density Functional Theory (DFT) at B3LYP/6-311+G(d, p) level. The theoretical results provide excellent agreement with experimental findings. The electric dipole moments, static polarizabilities, molecular electrostatic potentials (MEP) and global chemical reactivity descriptors (GCRD) were also theoretically computed. The materials exhibited good nonlinear absorption (NLA), nonlinear refraction (NLR) and optical limiting (OL) behavior under diode-pumped solid-state (DPSS) continuous wave (CW) laser excitation (532 nm and 200 mW). The NLO parameters such as NLA coefficient (β∼10-5 cmW-1), NLR index (n2∼10-10 cm2 W-1) and third-order NLO susceptibilities (χ(3) ∼10-7 esu) were measured. Further, we estimated one-photon and two-photon figures of merit, which satisfy the demands (W > 1 and T < 1) for all-optical switching. Thus, the present chalcone derivatives with anthracene moiety are potential materials for OL and optical switching applications.

  19. Optical response of semiconductors in a dc-electric field

    NASA Astrophysics Data System (ADS)

    Prussel, Lucie; Veniard, Valerie

    A deep understanding of the optical properties of solids is crucial for the improvement of nonlinear materials and devices. It offers the opportunity to search for new materials with specific properties. One way to tune some of those properties is to apply an electrostatic field. This gives rise to electro-optic effects. The most known among those is the Pockel or linear electro-optic effect (LEO), which is a second order response property described by the susceptibility χ (2) (- ω ω , 0) . An important nonlinear process is the second harmonic generation (SHG), where two photons are absorbed by the material. While this process is sensitive to the symmetry of the material, adding a static field would enable a nonlinear response from every material, including centrosymmetric ones. This happens through a third order process, named EFISH (Electric Field Induced Second Harmonic) for which the susceptibility of interest is χ (3) (- 2 ω ω , ω , 0) . We have developed a theoretical approach and a numerical tool to study these two nonlinear properties (LEO and EFISH) in the context of Time-dependent Density Functional Theory (TDDFT), and we have applied it to the case of bulk SiC and GaAs as well as layered systems such as Ge/SiGe.

  20. NLOphoric multichromophoric auxiliary methoxy aided triphenylamine D-π-A chromophores - Spectroscopic and computational studies

    NASA Astrophysics Data System (ADS)

    Erande, Yogesh; Kothavale, Shantaram; Sreenath, Mavila C.; Chitrambalam, Subramaniyan; Joe, Isaac H.; Sekar, Nagaiyan

    2017-11-01

    Molecules containing methoxy supported triphenylamine as strong electron-donor and dicyanovinyl as electron-acceptor groups interacting via isophorone as a configurationally locked polyene π-conjugated bridge are studied for their nonlinear optical properties. The photophysical study of examined chromophores in non-polar and polar solvents suggest that they exhibit strong emission solvatochromism and significant charge transfer characteristics supported by Lippert-Mataga plots and Generalised Mulliken Hush analysis. Linear and nonlinear optical properties as well as electronic properties measured by spectroscopic methods and cyclic voltametry and supported by DFT calculation were used to elucidate the structure property relationships. All three chromophores exhibit very high thermal stabilities with the decomposition temperatures higher than 340°C. The vibrational motions play very important role in determining the overall NLO response styryl chromophores which was established by DFT study. Dye 3 with maximum nonlinear optical susceptibility among three D-π-A systems proves that the multibranched push-pull chromophores exhibit a higher third order nonlinear susceptibility and justifies the design strategy.

  1. Incorporation of Keplerate-type Mo-O based macroanions into Zn2Al-LDH results in the formation of all-inorganic composite films with remarkable third-order optical nonlinearity.

    PubMed

    Ren, Haizhou; Shehzad, Farooq Khurum; Zhou, Yunshan; Zhang, Lijuan; Iqbal, Arshad; Long, Yi

    2018-05-01

    Herein, new all-inorganic transparent composite films with the formula (Zn2Al-LDH/{Mo132-Ac})n have been fabricated by a layer-by-layer method using the exfoliated Zn2Al-LDH monolayer nanosheets and Keplerate-type macroanion {Mo132-Ac}. They were characterized by UV-vis absorption spectroscopy, SEM, AFM, and XPS techniques. The Z-scan measurements, which were conducted under laser irradiation at a wavelength of 532 nm, a pulse width of 6 ns, a repetition rate of 10 Hz, and the light intensity at a focus E0 of 10 μJ, revealed that all the films had notable saturated absorption and self-defocusing effect with a large third-order optical nonlinear susceptibility χ(3). With an increase in the number of layers (i.e., n) corresponding to the increase in the thickness of the films, the third-order nonlinear absorption β and refractive effects of the films were improved (i.e., the χ(3) value was up to 1.99 × 10-11 esu when n = 24); this implied that the NLO responses could be modified by fine-tuning the thickness of the composite films to meet the demands of different devices.

  2. Nonlinear optical susceptibilities in the diffusion modified AlxGa1-xN/GaN single quantum well

    NASA Astrophysics Data System (ADS)

    Das, T.; Panda, S.; Panda, B. K.

    2018-05-01

    Under thermal treatment of the post growth AlGaN/GaN single quantum well, the diffusion of Al and Ga atoms across the interface is expected to form the diffusion modified quantum well with diffusion length as a quantitative parameter for diffusion. The modification of confining potential and position-dependent effective mass in the quantum well due to diffusion is calculated taking the Fick's law. The built-in electric field which arises from spontaneous and piezoelectric polarizations in the wurtzite structure is included in the effective mass equation. The electronic states are calculated from the effective mass equation using the finite difference method for several diffusion lengths. Since the effective well width decreases with increasing diffusion length, the energy levels increase with it. The intersubband energy spacing in the conduction band decreases with diffusion length due to built-in electric field and reduction of effective well width. The linear susceptibility for first-order and the nonlinear second-order and third-order susceptibilities are calculated using the compact density matrix approach taking only two levels. The calculated susceptibilities are red shifted with increase in diffusion lengths due to decrease in intersubband energy spacing.

  3. Coherent nonlinear optical response of single-layer black phosphorus: third-harmonic generation

    NASA Astrophysics Data System (ADS)

    Margulis, Vladimir A.; Muryumin, Evgeny E.; Gaiduk, Evgeny A.

    2017-10-01

    We theoretically calculate the nonlinear optical (NLO) response of phosphorene (a black phosphorus monolayer) to a normally incident and linearly polarized coherent laser radiation of frequency ω, resulting in the generation of radiation at frequency 3ω. We derive explicit analytic expressions for four independent nonvanishing elements of the third-order NLO susceptibility tensor, describing the third-harmonic generation (THG) from phosphorene. The final formulas are numerically evaluated for typical values of the system's parameters to explore how the efficiency of the THG varies with both the frequency and the polarization direction of the incident radiation. The results obtained show a resonant enhancement of the THG efficiency when the pump photon energy ℏω approaches a value of one third of the bandgap energy Eg (≈1.5 eV) of phosphorene. It is also shown that the THG efficiency exhibits a specific polarization dependence, allowing the THG to be used for determining the orientation of phosphorene's crystallographic axes. Our findings highlight the material's potential for practical application in nanoscale photonic devices such as frequency convertors operating in the near-infrared spectral range.

  4. Fabrication and notable optical nonlinearities of ultrathin composite films derived from water-soluble Keggin-type polyoxometalates and water-insoluble phthalocyanine.

    PubMed

    Shehzad, Farooq Khurum; Qu, Ningning; Zhou, Yunshan; Zhang, Lijuan; Ji, Huanyao; Shi, Zonghai; Li, Jiaqi; Hassan, Sadaf Ul

    2016-11-28

    Composite films with the general formula (POM/CuTAPc) n derived from water-soluble Keggin-type polyoxometalates (POMs = H 5 PMo 10 V 2 O 40 , H 4 SiW 12 O 40 , H 3 PMo 12 O 40 and H 3 PW 12 O 40 ) and water-insoluble 4,9,16,23-copper tetraaminophthalocyanine (denoted CuTAPc) are successfully fabricated by a layer-by-layer self-assembly technique and systematically characterized. The structure of the polyoxometalate anions in the multilayers is kept intact; the deposition amounts of POM and CuTAPc remain constant in every adsorption cycle of the composite film assembly process. The nonlinear optical properties of the composite films were studied by a Z-scan technique at a wavelength of 532 nm and a pulse width of 7 ns. The results not only show that the composite films exhibit notable optical nonlinear self-defocusing behavior and a saturated absorption effect with the nonlinear optical absorption co-efficient β, refractive index n 2 , and third-order NLO susceptibility χ (3) of the films increasing with the increase in number of layers of the films, but also reveal importantly that the discrepancy of LUMO levels between CuTAPc and POMs is proportional to their third-order NLO response.

  5. Microgravity Processing and Photonic Applications of Organic and Polymeric Materials

    NASA Technical Reports Server (NTRS)

    Frazier, Donald O.; Penn, Benjamin G.; Smith, David D.; Witherow, William K.; Paley, Mark S.; Abdeldayem, Hossin A.

    1997-01-01

    In recent years, a great deal of interest has been directed toward the use of organic materials in the development of high-efficiency optoelectronic and photonic devices. There is a myriad of possibilities among organics which allow flexibility in the design of unique structures with a variety of functional groups. The use of nonlinear optical (NLO) organic materials such as thin-film waveguides allows full exploitation of their desirable qualities by permitting long interaction lengths and large susceptibilities allowing modest power input. There are several methods in use to prepare thin films, such as Langmuir-Blodgett (LB) and self-assembly techniques, vapor deposition, growth from sheared solution or melt, and melt growth between glass plates. Organics have many features that make them desirable for use in optical devices such as high second- and third-order nonlinearities, flexibility of molecular design, and damage resistance to optical radiation. However, their use in devices has been hindered by processing difficulties for crystals and thin films. In this chapter, we discuss photonic and optoelectronic applications of a few organic materials and the potential role of microgravity on processing these materials. It is of interest to note how materials with second- and third-order nonlinear optical behavior may be improved in a diffusion-limited environment and ways in which convection may be detrimental to these materials.

  6. Photodeposition of amorphous polydiacetylene films from monomer solutions onto transparent substrates

    NASA Technical Reports Server (NTRS)

    Paley, M. S.; Frazier, D. O.; Abdeldeyem, H.; Armstrong, S.; McManus, S. P.

    1995-01-01

    Polydiacetylenes are a very promising class of polymers for both photonic and electronic applications because of their highly conjugated structures. For these applications, high-quality thin polydiacetylene films are required. We have discovered a novel technique for obtaining such films of a polydiacetylene derivative of 2-methyl-4-nitroaniline using photodeposition from monomer solutions onto UV transparent substrates. This heretofore unreported process yields amorphous polydiacetylene films with thicknesses on the order of I micron that have optical quality superior to that of films grown by standard crystal growth techniques. Furthermore, these films exhibit good third-order nonlinear optical susceptibilities; degenerate four-wave mixing experiments give x(3) values on the order of 10(exp -8) - 10(exp -7) esu. We have conducted masking experiments which demonstrate that photodeposition occurs only where the substrate is directly irradiated, clearly indicating that the reaction occurs at the surface. Additionally, we have also been able to carry out photodeposition using lasers to form thin polymer circuits. In this work, we discuss the photodeposition of polydiacetylene thin films from solution, perform chemical characterization of these films, investigate the role of the substrate, speculate on the mechanism of the reaction, and make a preliminary determination of the third-order optical nonlinearity of the films. This simple, straightforward technique may ultimately make feasible the production of polydiacetylene thin films for technological applications.

  7. Key functions analysis of a novel nonlinear optical D-π-A bridge type (2E)-3-(4-Methylphenyl)-1-(3-nitrophenyl) prop-2-en-1-one chalcone: An experimental and theoretical approach

    NASA Astrophysics Data System (ADS)

    Patil, Parutagouda Shankaragouda; Shkir, Mohd; Maidur, Shivaraj R.; AlFaify, S.; Arora, M.; Rao, S. Venugopal; Abbas, Haider; Ganesh, V.

    2017-10-01

    In the current work a new third-order nonlinear optical organic single crystal of (2E)-3-(4-Methylphenyl)-1-(3-nitrophenyl) prop-2-en-1-one (ML3NC) has been grown with well-defined morphology using the slow evaporation solution growth technique. X-ray diffraction technique was used to confirm the crystal system. The presence of functional groups in the molecular structure was identified by robust FT-IR and FT-Raman spectra by experimental and theoretical analysis. The ultraviolet-visible-near infrared and photoluminescence studies shows that the grown crystals possess excellent transparency window and green emission band (∼560 nm) confirms their use in green OLEDs. The third-order nonlinear and optical limiting studies have been performed using femtosecond (fs) Z-scan technique. The third-order nonlinear optical susceptibility (χ(3)), second-order hyperpolarizability (γ), nonlinear refractive index (n2) and limiting threshold values are found to be 4.03 × 10-12 esu, 14.2 × 10-32 esu, -4.33 × 10-14 cm2/W and 2.41 mJ/cm2, respectively. Furthermore, the quantum chemical studies were carried out to achieve the ground state molecular geometry and correlate with experimental results. The experimental value of absorption wavelength (λabs = 328 nm) is found to be in excellent accord with the theoretical value (λabs = 328 nm) at TD-DFT/B3LYP/6-31G* level of theory. To understand the static and dynamic NLO behavior, the polarizability (α) and second hyperpolarizability (γ) values were determined using TD-HF method. The computed second hyperpolarizability γ(-3ω; ω,ω,ω) at 800 nm wavelength was found to be 0.499 × 10-32 esu which is in good agreement with experimental value at the same wavelength. These results confirms the applied nature of title molecule in optoelectronic and nonlinear optical devices.

  8. Nonlinear optical properties of Nd3+-Li+ co-doped ZnS-PVP thin films

    NASA Astrophysics Data System (ADS)

    Talwatkar, S. S.; Sunatkari, A. L.; Tamgadge, Y. S.; Muley, G. G.

    2018-04-01

    The nonlinear optical properties of Nd3+-Li+ co-doped ZnS-PVP nanocomposite were studied using a continuous wave (CW) He-Ne laser (λ = 632.8 nm)by z-scan technique. The nonlinear refractive index (n2), absorption coefficient (β) and third order nonlinear susceptibility (χ(3)) of PVP thin films embedded with Nd3+-Li+ co-doped ZnS NPs was found in the order of 10-7 cm2/W, 10-6 cm/W and 10-7 esu respectively. The nonlinearity found increasing with Nd3+-Li+ co-dopant concentration. Based on the results, it is proposed that this material is a new class of luminescent material suitable in optoelectronics devices application, especially in light-emitting devices, electroluminescent devices, display devices, etc.

  9. Effect of antimony (Sb) addition on the linear and non-linear optical properties of amorphous Ge-Te-Sb thin films

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Kaur, J.; Tripathi, S. K.; Sharma, I.

    2017-12-01

    Non-crystalline thin films of Ge20Te80-xSbx (x = 0, 2, 4, 6, 10) systems were deposited on glass substrate using thermal evaporation technique. The optical coefficients were accurately determined by transmission spectra using Swanepoel envelope method in the spectral region of 400-1600 nm. The refractive index was found to increase from 2.38 to 2.62 with the corresponding increase in Sb content over the entire spectral range. The dispersion of refractive index was discussed in terms of the single oscillator Wemple-DiDomenico model. Tauc relation for the allowed indirect transition showed decrease in optical band gap. To explore non-linearity, the spectral dependence of third order susceptibility of a-Ge-Te-Sb thin films was evaluated from change of index of refraction using Miller's rule. Susceptibility values were found to enhance rapidly from 10-13 to 10-12 (esu), with the red shift in the absorption edge. Non-linear refractive index was calculated by Fourier and Snitzer formula. The values were of the order of 10-12 esu. At telecommunication wavelength, these non-linear refractive index values showed three orders higher than that of silica glass. Dielectric constant and optical conductivity were also reported. The prepared Sb doped thin films on glass substrate with observed improved functional properties have a noble prospect in the application of nonlinear optical devices and might be used for a high speed communication fiber. Non-linear parameters showed good agreement with the values given in the literature.

  10. Synthesis, growth, structure, mechanical and optical properties of a new semi-organic 2-methyl imidazolium dihydrogen phosphate single crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagapandiselvi, P., E-mail: nagapandiselvip@ssn.edu.in; Baby, C.; Gopalakrishnan, R.

    2016-09-15

    Highlights: • 2MIDP crystals were grown by slow evaporation solution growth technique. • Single crystal XRD revealed self-assembled supramolecular framework. • Z scan technique is employed for third order nonlinear optical susceptibility. • Structure-property correlation is established. - Abstract: A new semi-organic compound, 2-methyl imidazolium dihydrogen phosphate (2MIDP), was prepared and good quality single crystals of 2MIDP were grown by slow evaporation solution growth technique. Crystal structure elucidated using Single crystal XRD showed that 2MIDP crystallizes in monoclinic system with P2{sub 1}/c space group. FT-IR, UV-Vis-NIR, Fluorescence and FT-NMR spectra confirm the molecular structure of 2MIDP. The UV-Vis-NIR spectra establishedmore » the suitability of the compound for NLO applications. TG-DSC showed that 2MIDP is thermally stable up to 200 °C. Mechanical characteristics like hardness number (H{sub v}), stiffness constant (C{sub 11}), yield strength (σ{sub v}), fracture toughness (K{sub c}) and brittleness index (B{sub i}) were assessed using Vicker’s microhardness tester. Third order nonlinear optical properties determined from Z-scan measurement using femto and picosecond lasers showed two photon reverse saturable absorption. The enhancement of nonlinear optical properties in femto second laser, revealed the suitability of 2MIDP for optical limiting applications.« less

  11. Validity Using Pump-Probe Pulses to Determine the Optical Response of Niobate Crystals

    NASA Technical Reports Server (NTRS)

    Liu, Huimin; Jia, Weiyi

    1997-01-01

    A variety of niobate crystals have found their places in nonlinear optical applications as well as in laser devices. In recent years much attention has been paid to study the ultrafast optical response in a variety of photorefractive crystals such as KTa(1-x)Nb(x)O3 and KNbO3 crystals, glasses, semiconductors and polymers for applications in optical switching, information processing, optical computing, and all-optical device systems. Third-order optical nonlinearity is the most important property for realization of all-optical switching. Therefore experiments have been performed on the third order susceptibility using a variety of techniques such as the third-order harmonic generation, EFISH and degenerate four-wave mixing(DFWM). The latter has been conducted with a variety of pump wavelengths and with nanosecond, picosecond and femtosecond pulses. Niobate crystals, such as potassium niobate KNbO3, potassium tantalate niobate KTN family (KTa(1-x)Nb(x)O3), strontium barium niobate SBN (Sr(x)Ba(1-x)Nb2O6) and potassium-sodium niobate SBN (KNSBN) are attractive due to their photorefractive properties for application in optical storage and processing. The pulsed probe experiments performed on theses materials have suggested two types of time responses. These responses have been associated with an coherent response due to Chi(sup 3), and a long lived component due to excited state population. Recent study of DFWM on KNbO3 and KTN family reveals that the long lived component of those crystals depends on the crystal orientation. A slowly decaying signal is observable when the grating vector K(sub g) is not perpendicular to the C-axis of those photorefractive crystals', otherwise the optical response signal would be only a narrow coherent peak with FWHM equal to the cross-correlation width of the write beam pulses. Based on this understanding, we study the photodynamical process of a variety of niobate crystals using DFWM in a Kg perpindicular to C geometry with a ps-YAG: Nd laser operating at 532nm. However, the discrepancies in numerical estimations of Chi(sup 3) in these materials and other nonlinear optical media have resulted in a number of discussions. In order to better understand the photodynamical process of niobate crystals after an short pulse excitation we analyze the factors governing the coherent signal and present the DFWM spectra of niobate crystals.

  12. Highly linear ring modulator from hybrid silicon and lithium niobate.

    PubMed

    Chen, Li; Chen, Jiahong; Nagy, Jonathan; Reano, Ronald M

    2015-05-18

    We present a highly linear ring modulator from the bonding of ion-sliced x-cut lithium niobate onto a silicon ring resonator. The third order intermodulation distortion spurious free dynamic range is measured to be 98.1 dB Hz(2/3) and 87.6 dB Hz(2/3) at 1 GHz and 10 GHz, respectively. The linearity is comparable to a reference lithium niobate Mach-Zehnder interferometer modulator operating at quadrature and over an order of magnitude greater than silicon ring modulators based on plasma dispersion effect. Compact modulators for analog optical links that exploit the second order susceptibility of lithium niobate on the silicon platform are envisioned.

  13. Precise and absolute measurements of complex third-order optical susceptibility

    NASA Astrophysics Data System (ADS)

    Santran, Stephane; Canioni, Lionel; Cardinal, Thierry; Fargin, Evelyne; Le Flem, Gilles; Rouyer, Claude; Sarger, Laurent

    2000-11-01

    We present precise and absolute measurements of full complex third order optical susceptibility on different fused silica and original glasses composed of tellurium, titanium, niobium erbium. These materials are designed to be the key point for applications ranging form high power laser systems to optoelectronics, their nonlinear index of refraction is a major property and thus must be accurately known. Due to the accuracy and sensitivity of our technique, we have been able to find a large dispersion (more than 30%) of the non linear index of fused silica glasses as a function of their processing mode. On the other hand, measurements on tellurium glasses have shown very strong nonlinearities (40 times higher than fused silica), to be linked to the configurations of their cations and anions. Although the titanium and niobium glasses are less nonlinear, they can be promising matrices for addition of luminescent entities like erbium leading to very interesting laser amplification materials. The experimental set-up is a collinear pump-probe (orthogonally polarized) experiment using transient absorption technique. It is built with around a 100 femtosecond laser oscillator. A fast oscillating delay between the pump and the probe allows us to measure the electronic nonlinearity in quasi real-time. This experiment has the following specifications: an absolute measurement accuracy below 10% mainly due to the laser parameters characterization, a relative measurement accuracy of 1% and a resolution less than 5.10-24m2/V2(50 times less than fused silica).

  14. Crystal growth of triphenylphosphine oxide 4-nitrophenol (TP4N) for nonlinear optical (NLO) applications

    NASA Astrophysics Data System (ADS)

    Pandian, Muthu Senthil; Karuppasamy, P.; Kamalesh, T.; Ramasamy, P.; Verma, Sunil

    2018-04-01

    The optically good quality organic single crystals of triphenylphosphine oxide 4-nitrophenol (TP4N) were successfully grown by slow evaporation solution technique (SEST) using methanol as solvent. The lattice parameters of the grown crystal were confirmed by single crystal X-ray diffraction analysis. The optical transmittance, cut-off wavelength and band gap of the TP4N crystal were obtained by UV-Vis NIR spectrum analysis. The photoluminescence studies were carried out to find out the luminesce properties of TP4N single crystal. The photoconductivity studies reveal that the TP4N crystal has negative photoconductive nature. The third order nonlinear susceptibility (χ(3)) of TP4N crystal was evaluated using the Z-scan technique at 640 nm.

  15. Synthesis, growth, structural and optical studies of a new organic three dimensional framework: 4-(aminocarbonyl)pyridine 4-(aminocarbonyl)pyridinium hydrogen L-malate

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, A.; Vidyavathy, B.; Peramaiyan, G.; Vinitha, G.

    2017-02-01

    4-(aminocarbonyl)pyridine 4-(aminocarbonyl)pyridinium hydrogen L-malate [(4ACP)(4ACP).(LM)] a new organic nonlinear optical (NLO) crystal was grown by the slow evaporation method. Single crystal X-ray diffraction analysis revealed that the [(4ACP)(4ACP).(LM)] crystal belongs to monoclinic crystal system, space group P21/n, with a three dimensional network. Thermogravimetry (TG) and differential thermal (DT) analyses showed that [(4ACP)(4ACP).(LM)] is thermally stable up to 165 °C. The optical transmittance window and the lower cut-off wavelength of [(4ACP)(4ACP).(LM)] were found out by UV-vis-NIR spectral study. The molecular structure of [(4ACP)(4ACP).(LM)] was further confirmed by FTIR spectral studies. The relative dielectric permittivity and dielectric loss were determined as function of frequency and temperature. The third order nonlinear optical property of [(4ACP)(4ACP).(LM)] was studied by the Z-scan technique using a 532 nm diode pumped CW Nd:YAG laser. Nonlinear refractive index, nonlinear absorption coefficient and third order nonlinear susceptibility of the grown crystal were found to be 7.38×10-8 cm2/W, 0.08×10-4 cm/W and 5.36×10-6 esu, respectively. The laser damage threshold value is found to be 1.75 GW/cm2

  16. Direct dry transfer of CVD graphene to an optical substrate by in situ photo-polymerization

    NASA Astrophysics Data System (ADS)

    Kessler, Felipe; Muñoz, Pablo A. R.; Phelan, Ciaran; Romani, Eric C.; Larrudé, Dunieskys R. G.; Freire, Fernando L.; Thoroh de Souza, Eunézio A.; de Matos, Christiano J. S.; Fechine, Guilhermino J. M.

    2018-05-01

    Here, we report on a method that allows graphene produced by chemical vapor deposition (CVD) to be directly transferred to an optically transparent photo resin, by in situ photo-polymerization of the latter, with high efficiency and low contamination. Two photocurable resins, A and B, with different viscosities but essentially the same chemical structure, were used. Raman spectroscopy and surface energy results show that large continuous areas of graphene were transferred with minimal defects to the lower viscosity resin (B), due to the better contact between the resin and graphene. As a proof-of-principle optical experiment, graphene on the polymeric substrate was subjected to high-intensity femtosecond infrared pulses and third-harmonic generation was observed with no noticeable degradation of the sample. A sheet third-order susceptibility χ (3) = 0.71 ×10-28m3V-2 was obtained, matching that of graphene on a glass substrate. These results indicate the suitability of the proposed transfer method, and of the photo resin, for the production of nonlinear photonic components and devices.

  17. Third order nonlinear optical response exhibited by mono- and few-layers of WS 2

    DOE PAGES

    Torres-Torres, Carlos; Perea-López, Néstor; Elías, Ana Laura; ...

    2016-04-13

    In this work, strong third order nonlinear optical properties exhibited by WS 2 layers are presented. Optical Kerr effect was identified as the dominant physical mechanism responsible for these third order optical nonlinearities. An extraordinary nonlinear refractive index together with an important contribution of a saturated absorptive response was observed to depend on the atomic layer stacking. Comparative experiments performed in mono- and few-layer samples of WS 2 revealed that this material is potentially capable of modulating nonlinear optical processes by selective near resonant induced birefringence. In conclusion, we envision applications for developing all-optical bidimensional nonlinear optical devices.

  18. Studies of third-order optical nonlinearities and optical limiting properties of azo dyes.

    PubMed

    Gayathri, C; Ramalingam, A

    2008-03-01

    In order to protect optical sensors and human eyes from debilitating laser effects, the intensity of the incoming laser light has to be opportunely reduced. Here, we report our results on the third-order optical nonlinearity and optical limiting properties of three azo dyes exposed to a 532nm continuous wave laser. We have observed low power optical limiting based on nonlinear refraction in our samples.

  19. Blind third-order dispersion estimation based on fractional Fourier transformation for coherent optical communication

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Guo, Peng; Yang, Aiying; Qiao, Yaojun

    2018-02-01

    In this paper, we propose a blind third-order dispersion estimation method based on fractional Fourier transformation (FrFT) in optical fiber communication system. By measuring the chromatic dispersion (CD) at different wavelengths, this method can estimation dispersion slope and further calculate the third-order dispersion. The simulation results demonstrate that the estimation error is less than 2 % in 28GBaud dual polarization quadrature phase-shift keying (DP-QPSK) and 28GBaud dual polarization 16 quadrature amplitude modulation (DP-16QAM) system. Through simulations, the proposed third-order dispersion estimation method is shown to be robust against nonlinear and amplified spontaneous emission (ASE) noise. In addition, to reduce the computational complexity, searching step with coarse and fine granularity is chosen to search optimal order of FrFT. The third-order dispersion estimation method based on FrFT can be used to monitor the third-order dispersion in optical fiber system.

  20. Structural, optical and nonlinear optical studies of AZO thin film prepared by SILAR method for electro-optic applications

    NASA Astrophysics Data System (ADS)

    Edison, D. Joseph; Nirmala, W.; Kumar, K. Deva Arun; Valanarasu, S.; Ganesh, V.; Shkir, Mohd.; AlFaify, S.

    2017-10-01

    Aluminium doped (i.e. 3 at%) zinc oxide (AZO) thin films were prepared by simple successive ionic layer adsorption and reaction (SILAR) method with different dipping cycles. The structural and surface morphology of AZO thin films were studied by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The optical parameters such as, transmittance, band gap, refractive index, extinction coefficient, dielectric constant and nonlinear optical properties of AZO films were investigated. XRD pattern revealed the formation of hexagonal phase ZnO and the intensity of the film was found to increase with increasing dipping cycle. The crystallite size was found to be in the range of 29-37 nm. Scanning Electron Microscope (SEM) images show the presence of small sized grains, revealing that the smoothest surface was obtained at all the films. The EDAX spectrum of AZO conforms the presence of Zn, O and Al. The optical transmittance in the visible region is high 87% and the band gap value is 3.23 eV. The optical transmittance is decreased with respect to dipping cycles. The room temperature PL studies revealed that the AZO films prepared at (30 cycles) has good film quality with lesser defect density. The third order nonlinear optical parameters were also studied using Z-scan technique to know the applications of deposited films in nonlinear devices. The third order nonlinear susceptibility value is found to be 1.69 × 10-7, 3.34 × 10-8, 1.33 × 10-7and 2.52 × 10-7 for AZO films deposited after 15, 20, 25 and 30 dipping cycles.

  1. Dielectric, optical and mechanical studies of phenolic polyene OH1 organic electrooptic crystal

    NASA Astrophysics Data System (ADS)

    Bharath, D.; Kalainathan, S.

    2014-11-01

    2-{3-[2-(4-Hydroxyphenyl) vinyl]-5, 5-dimethylcyclo-hex-2-en-1-ylidene}malononitrile (OH1) phenolic locked polyene organic material has been synthesized by the Knoevenagel condensation method. OH1 single crystals were grown in methanol by a slow evaporation method. In order to avoid the multinucleation and reduce the metastable zone width, phosphoric acid is added in different concentrations. The linear optical property of OH1 crystal has been studied using UV-vis-NIR spectroscopy in the wavelength range 190-1100 nm and optical constants are calculated theoretically. The magnitude of nonlinear refractive index (10-12 m2/W), nonlinear absorption (10-6 m/W) and third order nonlinear susceptibility (10-6 esu) has been studied using a Z-scan technique. Dielectric property of OH1 crystal has been studied in frequency range 50 Hz-5 MHz. Photoluminescence spectrum was recorded using a xenon lamp in the range of 450-700 nm. Laser optical damage threshold of OH1 crystal was obtained (0.62 GW/cm2) using a pulsed Nd-YAG laser (1064 nm) of repetition rate 10 ns.

  2. Further efforts in optimizing nonlinear optical molecules

    NASA Astrophysics Data System (ADS)

    Dirk, Carl W.; Caballero, Noel; Tan, Alarice; Kuzyk, Mark G.; Cheng, Lap-Tak A.; Katz, Howard E.; Shilling, Marcia; King, Lori A.

    1993-02-01

    We summarize some of our past work in the field on optimizing molecules for second order and third order nonlinear optical applications. We also present some previously unpublished results suggesting a particular optimization of the popular cyano- and nitrovinyl acceptor groups. In addition we provide some new quadratic electro-optic results which serve to further verify our choice of a restricted three-level model suitable for optimizing third order nonlinearities in molecules. Finally we present a new squarylium dye with a large third order optical nonlinearity (-9.5 X 10-34 cm7/esu2; EFISH (gamma) at 1906 nm).

  3. Crystal growth and DFT insight on sodium para-nitrophenolate para-nitrophenol dihydrate single crystal for NLO applications

    NASA Astrophysics Data System (ADS)

    Selvakumar, S.; Boobalan, Maria Susai; Anthuvan Babu, S.; Ramalingam, S.; Leo Rajesh, A.

    2016-12-01

    Single crystals of sodium para-nitrophenolate para-nitrophenol dihydrate (SPPD) were grown by slow evaporation technique and its structure has been studied by FT-IR, FT-Raman and single crystal X-ray diffraction techniques. The optical and electrical properties were characterized by UV-Vis spectrum, and dielectric studies respectively. SPPD was thermally stable up to 128 °C as determined by TG-DTA curves. Using the Kurtz-Perry powder method, the second-harmonic generation efficiency was found to be five times to that of KDP. Third-order nonlinear response was studied using Z-scan technique with a He-Ne laser (632.8 nm) and NLO parameters such as intensity dependent refractive index, nonlinear absorption coefficient and third-order susceptibility were also estimated. The molecular geometry from X-ray experiment in the ground state has been compared using density functional theory (DFT) with appropriate basis set. The first-order hyperpolarizability also calculated using DFT approaches. Stability of the molecule arising from hyperconjugative interactions leading to its nonlinear optical activity and charge delocalization were analyzed using natural bond orbital technique. HOMO-LUMO energy gap value suggests the possibility of charge transfer within the molecule. Based on optimized ground state geometries, Natural bond orbital (NBO) analysis was performed to study donor-acceptor interactions.

  4. Photoinduced second-order optical susceptibilities of Er 2O 3 doped TeO 2-GeO 2-PbO glasses

    NASA Astrophysics Data System (ADS)

    Kassab, L. R. P.; Pinto, R. de A.; Kobayashi, R. A.; Piasecki, M.; Bragiel, P.; Kityk, I. V.

    2007-06-01

    Second-order optical susceptibilities were established in the optically poled erbium doped tellurite glasses near the melting temperature. The non-linear optical susceptibility was formed by bicolor coherent optical treatment performed by two coherent laser beams originated from 50 ps Nd-YAG laser ( λ = 1.32 μm) exciting the high pressure hydrogen laser cell emitting at 1907 nm. The non-centrosymmetric grating of the medium was created by coherent superposition of the fundamental laser illumination at 1907 nm and the doubled frequency one at 953.5 nm. The maximally all-optically poled SHG occurs for 2% doped Er 2O 3 (in weighting units) TeO 2-GeO 2-PbO glass. It was found that the photoinduced SHG demonstrates a saturation during the photo-treatment of 9-10 min using the two beams polarized at angle about 45° between them. During the coherent bicolor optical treatment it was achieved the value of second-order susceptibility up to 3.6 pm/V at 1907 nm. The optimal ratio between the fundamental beam with power density about 1.1 GW/cm 2 and writing doubled frequency seeding beam about 0.015 GW/cm 2 corresponds to the maximal of photoinduced SHG. For glasses with lower concentration of Er 2O 3, the relaxation of the second-order optical susceptibility is substantially longer and achieves SHG value that corresponds to 80% of the maximal ones. It is necessary to emphasize that efficient optically-poled grating exists only within the narrow temperature range near the glassing temperature. Possible physical mechanisms of the phenomenon observed are discussed. Generally the used glasses possess better parameters than early investigated germinate glasses.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H.; Schires, K.; Grillot, F.

    Non-degenerate four-wave mixing in an InAs/InP quantum dot Fabry–Perot laser is investigated with an optical injection-locking scheme. Wavelength conversion is obtained for frequency detunings ranging from +2.5 THz to −3.5 THz. The normalized conversion efficiency is maintained above −40 dB between −1.5 and +0.5 THz with an optical signal-to-noise ratio above 20 dB and a maximal third-order nonlinear susceptibility normalized to material gain of 2 × 10{sup −19} m{sup 3}/V{sup 2}. In addition, we show that injection-locking at different positions in the gain spectrum has an impact on the nonlinear conversion process and the symmetry between up- and down- converted signals.

  6. Crystalline perfection and optical studies of L-Histidinium dihydrogen phosphate orthophosphoric acid (LHDP) single crystals

    NASA Astrophysics Data System (ADS)

    Ittyachan, Reena; Arunkumar, A.; Bhagavannarayana, G.

    2015-10-01

    Single crystals of L-Histidinium dihydrogenphosphate orthophosphoric acid (LHDP) were grown by slow evaporation solution growth technique. The grown crystals were confirmed by single crystal X-ray diffraction techniques. The HRXRD rocking curve measurements revealed the crystalline perfection of grown crystal and the absence of structural grain boundaries. The lower optical cut-off wavelength for this crystal was observed at 240 nm. The third order nonlinear refractive index (n2), nonlinear absorption coefficient (β) and susceptibility (χ(3)) were calculated by Z-scan studies using Nd: YAG laser as a source. The single shot laser damage threshold of grown crystal was measured to be 6.286 GW/cm2 using Nd: YAG laser.

  7. Birth Order and Susceptibility to Peer Modeling Influences in Young Boys

    ERIC Educational Resources Information Center

    Finley, Gordon E.; Cheyne, James A.

    1976-01-01

    Susceptibility to peer modeling influences as a function of birth order was studied by examining the data of 390 boys from kindergarten through third grade who previously had participated in moral transgression experiments. (MS)

  8. Fabrication and Characterization of Thin Film Ion Implanted Composite Materials for Integrated Nonlinear Optical Devices

    NASA Technical Reports Server (NTRS)

    Sarkisov, S.; Curley, M.; Williams, E. K.; Wilkosz, A.; Ila, D.; Poker, D. B.; Hensley, D. K.; Smith, C.; Banks, C.; Penn, B.; hide

    1998-01-01

    Ion implantation has been shown to produce a high density of metal colloids within the layer regions of glasses and crystalline materials. The high-precipitate volume fraction and small size of metal nanoclusters formed leads to values for the third-order susceptibility much greater than those for metal doped solids. This has stimulated interest in use of ion implantation to make nonlinear optical materials. On the other side, LiNbO3 has proved to be a good material for optical waveguides produced by MeV ion implantation. Light confinement in these waveguides is produced by refractive index step difference between the implanted region and the bulk material. Implantation of LiNbO3 with MeV metal ions can therefore result into nonlinear optical waveguide structures with great potential in a variety of device applications. We describe linear and nonlinear optical properties of a waveguide structure in LiNbO3-based composite material produced by silver ion implantation in connection with mechanisms of its formation.

  9. Second-order optical effects in several pyrazolo-quinoline derivatives

    NASA Astrophysics Data System (ADS)

    Makowska-Janusik, M.; Gondek, E.; Kityk, I. V.; Wisła, J.; Sanetra, J.; Danel, A.

    2004-11-01

    Using optical poling of several pyazolo-quinoline (PAQ) derivatives we have found an existence of sufficiently high second order optical susceptibility at wavelength 1.76 μm varying in the range 0.9-2.8 pm/V. The performed quantum chemical simulations of the UV-absorption for isolated, solvated and incorporated into the polymethacrylate (PMMA) polymer films have shown that the PM3 method is the best among the semi-empirical ones to simulate the optical properties. The calculations of the hyperpolarizabilites have shown a good correlation with experimentally measured susceptibilities obtained from the optical poling. We have found that experimental susceptibility depends on linear molecular polarizability and photoinducing changes of the molecular dipole moment. It is clearly seen for the PAQ4-PAQ6 molecules possessing halogen atoms with relatively large polarizabilities.

  10. Optical characteristics of Tl0.995Cu0.005InS2 single crystals

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Ali, H. A. M.; Abu-Samaha, F. S. H.

    2013-04-01

    Optical properties of Tl0.995Cu0.005InS2 single crystals were studied using transmittance and reflectance measurements in the spectral wavelength range of 300-2500 nm. The optical constants (n and k) were calculated at room temperature. The analysis of the spectral behavior of the absorption coefficient in the absorption region revealed indirect transition. The refractive index dispersion data were analyzed in terms of the single oscillator model. Dispersion parameters such as the single oscillator energy (Eo), the dispersion energy (Ed), the high frequency dielectric constant (ε∞), the lattice dielectric constant (εL) and the ratio of free charge carrier concentration to the effective mass (N/m*) were estimated. The third order nonlinear susceptibility (χ(3)) was calculated according to the generalized Miller's rule. Also, the real and imaginary parts of the complex dielectric constant were determined.

  11. Effect of the magnetic field on the nonlinear optical rectification and second and third harmonic generation in double δ-doped GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Martínez-Orozco, J. C.; Rojas-Briseño, J. G.; Rodríguez-Magdaleno, K. A.; Rodríguez-Vargas, I.; Mora-Ramos, M. E.; Restrepo, R. L.; Ungan, F.; Kasapoglu, E.; Duque, C. A.

    2017-11-01

    In this paper we are reporting the computation for the Nonlinear Optical Rectification (NOR) and the Second and Third Harmonic Generation (SHG and THG) related with electronic states of asymmetric double Si-δ-doped quantum well in a GaAs matrix when this is subjected to an in-plane (x-oriented) constant magnetic field effect. The work is performed in the effective mass and parabolic band approximations in order to compute the electronic structure for the system by a diagonalization procedure. The expressions for the nonlinear optical susceptibilities, χ0(2), χ2ω(2), and χ3ω(3), are those arising from the compact matrix density formulation and stand for the NOR, SHG, and THG, respectively. This asymmetric double δ-doped quantum well potential profile actually exhibits nonzero NOR, SHG, and THG responses which can be easily controlled by the in-plane (x-direction) externally applied magnetic field. In particular we find that for the chosen configuration the harmonic generation is in the far-infrared/THz region, thus and becoming suitable building blocks for photodetectors in this range of the electromagnetic spectra.

  12. Research on third-order susceptibility tensor of silicon at telecom wavelength

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Hong; Liu, Hang; Chen, Zhan-Guo; Jia, Gang; Ren, Ce

    2010-10-01

    In this paper, the electro-induced birefringence based on Kerr effect and Franz-Keldysh effect in bulk silicon crystal at 1.3μm wavelengths has been measured. By using Kerr effect, the third-order susceptibility tensor of bulk crystalline silicon has been calculated.The two independent tensor of silicon X (3) susceptibility can be obtained by calculation (3) 6.22 (1 2.2%) 10 -20 m2 V2 and Xxyxy(3) = and xxxx(3) 9.13 (1 +/-2.2%) 10-20 m2 V 2 = m2/V2. The research can drive the silicon utility in the photo-electricity field.

  13. Application of discrete solvent reaction field model with self-consistent atomic charges and atomic polarizabilities to calculate the χ(1) and χ(2) of organic molecular crystals

    NASA Astrophysics Data System (ADS)

    Lu, Shih-I.

    2018-01-01

    We use the discrete solvent reaction field model to evaluate the linear and second-order nonlinear optical susceptibilities of 3-methyl-4-nitropyridine-1-oxyde crystal. In this approach, crystal environment is created by supercell architecture. A self-consistent procedure is used to obtain charges and polarizabilities for environmental atoms. Impact of atomic polarizabilities on the properties of interest is highlighted. This approach is shown to give the second-order nonlinear optical susceptibilities within error bar of experiment as well as the linear optical susceptibilities in the same order as experiment. Similar quality of calculations are also applied to both 4-N,N-dimethylamino-3-acetamidonitrobenzene and 2-methyl-4-nitroaniline crystals.

  14. Nonlinear absorption properties of ZnO and Al doped ZnO thin films under continuous and pulsed modes of operations

    NASA Astrophysics Data System (ADS)

    Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2018-06-01

    In the present investigation, we present the variations in nonlinear optical (NLO) properties of undoped and Al doped ZnO (AZO) films under two different off-resonant regimes using continuous and pulsed mode lasers. Z-scan open aperture experiment is performed to quantify nonlinear absorption constant and imaginary component of third order susceptibility. Reverse saturable absorption (RSA) and saturable absorption (SA) behaviors are noticed in both undoped and AZO films under pulsed mode and continuous wavelength (CW) regime respectively. The RSA and SA behavior observed in the films are attributed to two photon absorption (TPA) and thermal lensing properties respectively. The thermal lensing is assisted by the thermo-optic effects within the films due to the continuous illumination of the laser.

  15. Effect of annealing on structural, electrical and optical properties of p-quaterphenyl thin films

    NASA Astrophysics Data System (ADS)

    Darwish, A. A. A.

    2017-05-01

    Thin films of p-quaterphenyl are deposited by an evaporation technique. IR spectra confirm that the thermal evaporation method is a decent one to acquire p-quaterphenyl films without dissociation. The X-ray diffraction studies demonstrate that the as-deposited and annealed films are polycrystalline with monoclinic structure. The electrical conductivity shows an activated behavior and indicating that p-quaterphenyl behaves as an organic semiconductor. The value of activation energy decreases by annealing, which explains due to the adjustment in the crystallite size. Optical properties of p-quaterphenyl films were performed to determine some optical constants. Dispersion of the refractive index is described utilizing the Wemple-DiDomenico model. In addition, the third order nonlinear susceptibility and the nonlinear refractive index are calculated. The analysis of the absorption coefficient for the as-deposited film showed an allowed direct optical band gap with a value of 2.35 eV, which decreased by annealing to 2.05 eV.

  16. Linear and nonlinear optical characteristics of Te nanoparticles-doped germanate glasses

    NASA Astrophysics Data System (ADS)

    Xu, Zhousu; Guo, Qiangbing; Liu, Chang; Ma, Zhijun; Liu, Xiaofeng; Qiu, Jianrong

    2016-10-01

    Te nanoparticles (NPs)-doped GeO2-MgO-B2O3-Al2O3-TeO2 glasses were prepared by the conventional melt-quenching method. Based on X-ray photoelectron spectroscopy, Raman spectroscopy and transmission electron microscope observation, the coloration of the glass at high TeO2 concentration is ascribed to the precipitation of elemental Te NPs with a size of 5-10 nm in the germanate glass. Optical absorption spectra and nonlinear optical (NLO) properties of the glass samples were analyzed by UV-3600 spectrophotometry and Z-scan technique, respectively. The nonlinear absorption coefficient ( β) and the imaginary part of the third-order NLO susceptibility (Im χ (3)) were estimated to be 1.74 cm/GW and 1.142 × 10-12 esu for laser power of 95 μW, respectively. Due to the excellent NLO properties, the Te NPs-doped germanate glasses may have potential applications for ultrafast optical switch and photonics.

  17. Off-resonant third-order optical nonlinearities of squarylium and croconium dyes

    NASA Astrophysics Data System (ADS)

    Li, Zhongyu; Xu, Song; Niu, Lihong; Zhang, Zhi; Chen, Zihui; Zhang, Fushi

    2008-01-01

    The magnitude and dynamic response of the third-order optical nonlinearities of squarylium and croconium dyes in methanol solution were measured by femtosecond degenerate four-wave mixing (DFWM) technique at 800 nm. Ultrafast nonlinear optical responses have been observed, and the magnitude of the second-order hyperpolarizabilities was evaluated to be 5.80 × 10 -31 esu for the squarylium dye and 8.69 × 10 -31 esu for the croconium dye, respectively. The large optical nonlinearities of the dyes can be attributed to their rigid and intramolecular charge transfer structure, and the instantaneous NLO responses of dyes are shorter than the experimental time resolution (50 fs), which is mainly contributed from the electron delocalization. The fast nonlinear response and large third-order optical nonlinearities show that the studied squarylium and croconium dyes might a kind of promising materials for the applications in all-optical switching and modulator.

  18. Substituent Dependence of Third-Order Optical Nonlinearity in Chalcone Derivatives

    NASA Astrophysics Data System (ADS)

    Kiran, Anthony John; Satheesh Rai, Nooji; Chandrasekharan, Keloth; Kalluraya, Balakrishna; Rotermund, Fabian

    2008-08-01

    The third-order nonlinear optical properties of derivatives of dibenzylideneacetone were investigated using the single beam z-scan technique at 532 nm. A strong dependence of third-order optical nonlinearity on electron donor and acceptor type of substituents was observed. An enhancement in χ(3)-value of one order of magnitude was achieved upon the substitution of strong electron donors compared to that of the molecule substituted with an electron acceptor. The magnitude of nonlinear refractive index of these chalcones is as high as of 10-11 esu. Their nonlinear optical coefficients are larger than those of widely used thiophene oligomers and trans-1-[p-(p-dimethylaminobenzyl-azo)-benzyl]-2-(N-methyl-4-pyridinium)-ethene iodide (DABA-PEI) organic compounds.

  19. Crystal growth and characterization of third order nonlinear optical piperazinium bis(4-hydroxybenzenesulphonate) (P4HBS) single crystal

    NASA Astrophysics Data System (ADS)

    Pichan, Karuppasamy; Muthu, Senthil Pandian; Perumalsamy, Ramasamy

    2017-09-01

    The organic single crystal of piperazinium bis(4-hydroxybenzenesulphonate) (P4HBS) was grown by slow evaporation solution technique (SEST) at room temperature. The lattice parameters of the grown crystal were confirmed by single crystal X-ray diffraction analysis. Functional groups of P4HBS crystal were confirmed by FTIR spectrum analysis. The optical quality of the grown crystal was identified by the UV-Vis NIR spectrum analysis. The grown crystal has good optical transmittance in the range of 410-1100 nm. In photoluminescence spectrum, sharp emission peaks are observed, which indicates the ultraviolet (UV) emission. The photoconductivity study reveals that the grown crystal has negative photoconductive nature. The thermal behaviour of the P4HBS crystal was investigated by thermogravimetric and differential thermal analysis (TG-DTA). The mechanical stability of grown crystal was analyzed and the indentation size effect (ISE) was explained by Hays-Kendall's (HK) approach and proportional specimen resistance model (PSRM). Chemical etching study was carried out and the etch pit density (EPD) was calculated. The dielectric constant (ε‧) and dielectric loss (tan δ) as a function of frequency were measured for the grown crystal. The solid state parameters such as valence electron, plasma energy, Penn gap and Fermi energy were evaluated theoretically for the P4HBS using the empirical relation. The estimated values are used to calculate the electronic polarizability. The third-order nonlinear optical properties such as nonlinear refractive index (n2), absorption co-efficient (β) and susceptibility (χ(3)) were studied by Z-scan technique at 632.8 nm using He-Ne laser.

  20. Investigation on the behavioral difference in third order nonlinearity and optical limiting of Mn0.55Cu0.45Fe2O4 nanoparticles annealed at different temperatures

    NASA Astrophysics Data System (ADS)

    Yuvaraj, S.; Manikandan, N.; Vinitha, G.

    2017-11-01

    Mn0.55Cu0.45Fe2O4 nanoparticles were synthesized by wet chemical co-precipitation method. The obtained samples were annealed at different temperatures (500 °C to 1250 °C). All annealed samples were characterized for their structural, magnetic, linear and non-linear optical properties. XRD results confirm single phase cubic spinel structure only for samples annealed at 800 °C and 1250 °C. The average crystallite sizes of the samples are in the range of 11-37 nm. HR-SEM image of the sample annealed at 800 °C exposed spherical morphology. The quantitative analysis of EDX results is close to the expected values. Bandgaps were evaluated from UV-DRS. The FTIR spectrum showing the essential peaks around 452.1 and 567.2 cm-1 prove the formation of spinel nanoparticles. In PL spectrum, a broad emission peak is attained in visible region at 485 nm. The saturation magnetization (M s), coercivity (H c) and remanence magnetization (M r) are obtained from the hysteresis curve. Nonlinear absorption coefficients (10-4 cm W-1), nonlinear indices of refraction (10-8 cm2 W-1) and the third order nonlinear susceptibilities (10-6 esu) are determined using Z-scan experiment. CW laser beam is utilized to study the optical limiting characteristics and the results prove these materials to be a potential candidate for device applications like optical switches and power limiters.

  1. Rigorous theory of molecular orientational nonlinear optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Chong Hoon, E-mail: chkwak@ynu.ac.kr; Kim, Gun Yeup

    2015-01-15

    Classical statistical mechanics of the molecular optics theory proposed by Buckingham [A. D. Buckingham and J. A. Pople, Proc. Phys. Soc. A 68, 905 (1955)] has been extended to describe the field induced molecular orientational polarization effects on nonlinear optics. In this paper, we present the generalized molecular orientational nonlinear optical processes (MONLO) through the calculation of the classical orientational averaging using the Boltzmann type time-averaged orientational interaction energy in the randomly oriented molecular system under the influence of applied electric fields. The focal points of the calculation are (1) the derivation of rigorous tensorial components of the effective molecularmore » hyperpolarizabilities, (2) the molecular orientational polarizations and the electronic polarizations including the well-known third-order dc polarization, dc electric field induced Kerr effect (dc Kerr effect), optical Kerr effect (OKE), dc electric field induced second harmonic generation (EFISH), degenerate four wave mixing (DFWM) and third harmonic generation (THG). We also present some of the new predictive MONLO processes. For second-order MONLO, second-order optical rectification (SOR), Pockels effect and difference frequency generation (DFG) are described in terms of the anisotropic coefficients of first hyperpolarizability. And, for third-order MONLO, third-order optical rectification (TOR), dc electric field induced difference frequency generation (EFIDFG) and pump-probe transmission are presented.« less

  2. Study of Third-Order Optical Nonlinearities of Se-Sn (Bi,Te) Quaternary Chalcogenide Thin Films Using Ti: Sapphire Laser in Femtosecond Regime

    NASA Astrophysics Data System (ADS)

    Yadav, Preeti; Sharma, Ambika

    2017-01-01

    The objective of the present research work is to study the nonlinear optical properties of quaternary Se-Sn (Bi,Te) chalcogenide thin films. A Z-scan technique utilizing 800 nm femtosecond laser source has been used for the determination of the nonlinear refractive index ( n 2), two-photon absorption coefficient ( β 2) and third-order susceptibility ( χ (3)). In the measurement of n 2, an aperture is placed in the far field before the detector (closed aperture), while for the measurement of β 2, entire transmitted light is collected by the detector without an aperture (open aperture). Self-focusing has been observed in closed aperture transmission spectra. The appearance of the peak after the valley in this spectrum reflects the positive nonlinear refractive index. The calculated value of n 2 of the studied thin films varies from 1.06 × 10-12 cm2/W to 0.88 × 10-12 cm2/W. The compound-dependent behavior of n 2 is explained in this paper. We have also compared the experimental values of n 2 with the theoretically determined values, other compounds of chalcogenide glass and pure silica. The n 2 of the investigated thin films is found to be 3200 times higher than pure silica. The results of the open aperture Z-scan revealed that the value of β 2 of the studied compound is in the order of 10-8 cm/W. The behavior of two-photon absorption is described by means of the optical band gap ( E g) of the studied compound. The variation in the figure-of-merit from 0.32 to 1.4 with varying Sn content is also reported in this paper. The higher value of nonlinearity makes this material advantageous for optical fibers, waveguides and optical limiting devices.

  3. Magnetization-induced second- and third-harmonic generation in transparent magnetic films

    NASA Astrophysics Data System (ADS)

    Ohkoshi, Shin-Ichi; Shimura, Jusuke; Ikeda, Katsuyoshi; Hashimoto, Kazuhito

    2005-01-01

    We describe the magnetization-induced second-harmonic (SH) generation in (FeIIxCrII1-x)1.5[CrIII(CN)6]. 7.5H2O and the magnetization-induced third-harmonic (TH) generation in Y1.5Bi1.5Fe3.8Al1.2O12 (Bi, Al:YIG). The polarization plane of a SH wave from a (FeIIxCrII1-x)1.5[CrIII(CN)6].7.5H2O film was rotated by an applied external magnetic field. This SH rotation is ascribed to the interaction between the electric polarization along the out-of-plane and spontaneous magnetizations. In particular, the magnetic linear term χijkLmagn(1) contributed to the SH rotation. Applying a longitudinal external magnetic field to a Bi,Al:YIG magnetic film rotated the polarization plane of the TH wave. This TH rotation is understood by the contribution of the magnetic term of χyxxxZmagn(1) in a third-order nonlinear optical susceptibility.

  4. Non-critically phase-matched second harmonic generation and third order nonlinearity in organic crystal glucuronic acid γ-lactone

    NASA Astrophysics Data System (ADS)

    Saripalli, Ravi Kiran; Katturi, Naga Krishnakanth; Soma, Venugopal Rao; Bhat, H. L.; Elizabeth, Suja

    2017-12-01

    The linear, second order, and third order nonlinear optical properties of glucuronic acid γ-lactone single crystals were investigated. The optic axes and principal dielectric axes were identified through optical conoscopy and the principal refractive indices were obtained using the Brewster's angle method. Conic sections were observed which is perceived to be due to spontaneous non-collinear phase matching. The direction of collinear phase matching was determined and the deff evaluated in this direction was 0.71 pm/V. Open and closed aperture Z-scan measurements with femtosecond pulses revealed high third order nonlinearity in the form of self-defocusing, two-photon absorption, as well as saturable absorption.

  5. Higgs Mode in the d -Wave Superconductor Bi2Sr2CaCu2O8 +x Driven by an Intense Terahertz Pulse

    NASA Astrophysics Data System (ADS)

    Katsumi, Kota; Tsuji, Naoto; Hamada, Yuki I.; Matsunaga, Ryusuke; Schneeloch, John; Zhong, Ruidan D.; Gu, Genda D.; Aoki, Hideo; Gallais, Yann; Shimano, Ryo

    2018-03-01

    We investigate the terahertz (THz)-pulse-driven nonlinear response in the d -wave cuprate superconductor Bi2Sr2CaCu2O8 +x (Bi2212) using a THz pump near-infrared probe scheme in the time domain. We observe an oscillatory behavior of the optical reflectivity that follows the THz electric field squared and is markedly enhanced below Tc . The corresponding third-order nonlinear effect exhibits both A1 g and B1 g symmetry components, which are decomposed from polarization-resolved measurements. A comparison with a BCS calculation of the nonlinear susceptibility indicates that the A1 g component is associated with the Higgs mode of the d -wave order parameter.

  6. Higgs Mode in the d -Wave Superconductor Bi 2 Sr 2 CaCu 2 O 8 + x Driven by an Intense Terahertz Pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsumi, Kota; Tsuji, Naoto; Hamada, Yuki I.

    We investigated the terahertz (THz)-pulse driven nonlinear response in the d-wave cuprate superconductor Bi 2Sr 2CaCu 2O 8+x (Bi2212) using a THz pump near-infrared probe scheme in the time domain. We have observed an oscillatory behavior of the optical reflectivity that follows the THz electric field squared and is strongly enhanced below Tc. The corresponding third-order nonlinear effect exhibits both A 1g and B 1g symmetry components, which are decomposed from polarization-resolved measurements. Comparison with a BCS calculation of the nonlinear susceptibility indicates that the A 1g component is associated with the Higgs mode of the d-wave order parameter.

  7. Higgs Mode in the d -Wave Superconductor Bi 2 Sr 2 CaCu 2 O 8 + x Driven by an Intense Terahertz Pulse

    DOE PAGES

    Katsumi, Kota; Tsuji, Naoto; Hamada, Yuki I.; ...

    2018-03-14

    We investigated the terahertz (THz)-pulse driven nonlinear response in the d-wave cuprate superconductor Bi 2Sr 2CaCu 2O 8+x (Bi2212) using a THz pump near-infrared probe scheme in the time domain. We have observed an oscillatory behavior of the optical reflectivity that follows the THz electric field squared and is strongly enhanced below Tc. The corresponding third-order nonlinear effect exhibits both A 1g and B 1g symmetry components, which are decomposed from polarization-resolved measurements. Comparison with a BCS calculation of the nonlinear susceptibility indicates that the A 1g component is associated with the Higgs mode of the d-wave order parameter.

  8. Phase-referenced nonlinear spectroscopy of the α-quartz/water interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohno, Paul E.; Saslow, Sarah A.; Wang, Hong-fei

    2016-12-13

    Probing the polarization of water molecules at charged interfaces by second harmonic generation spectroscopy has been heretofore limited to isotropic materials. Here we report non-resonant nonlinear optical measurements at the interface of anisotropic z-cut α-quartz and water under conditions of dynamically changing ionic strength and bulk solution pH. We find that the product of the third-order susceptibility and the interfacial potential, χ (3) × Φ(0), is given by (χ1 (3)–iχ2 (3)) × Φ(0), and that the interference between this product and the second-order susceptibility of bulk quartz depends on the rotation angle of α-quartz around the z axis. Our experimentsmore » show that this newly identified term, iχ (3) × Φ(0), which is out of phase from the surface terms, is of bulk origin. Lastly, the possibility of internally phase referencing the interfacial response for the interfacial orientation analysis of species or materials in contact with α-quartz is discussed along with the implications for conditions of resonance enhancement.« less

  9. Surface plasmon resonance and nonlinear optical behavior of pulsed laser-deposited semitransparent nanostructured copper thin films

    NASA Astrophysics Data System (ADS)

    Kesarwani, Rahul; Khare, Alika

    2018-06-01

    In this paper, surface plasmon resonance (SPR) and nonlinear optical properties of semitransparent nanostructured copper thin films fabricated on the glass substrate at 400 °C by pulsed laser deposition technique are reported. The thickness, linear absorption coefficient and linear refractive index of the films were measured by spectroscopic ellipsometer. The average particle size as measured via atomic force microscope was in the range of 12.84-26.02 nm for the deposition time ranging from 5 to 10 min, respectively. X-ray diffraction spectra revealed the formation of Cu (111) and Cu (200) planes. All these thin films exhibited broad SPR peak. The third-order optical nonlinearity of all the samples was investigated via modified z-scan technique using cw laser at a wavelength of 632.8 nm. The open aperture z-scan spectra of Cu thin film deposited for 5 min duration exhibited reverse saturation absorption whereas all the other samples displayed saturation absorption behavior. The nonlinear refractive index coefficient of these films showed a positive sign having the magnitude of the order of 10- 4 cm/W. The real and imaginary parts of susceptibilities were also calculated from the z-scan data and found to be of the order of 10- 6 esu.

  10. Application of classical models of chirality to optical rectification

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Ou; Gong, Li-Jing; Li, Chun-Fei

    2008-08-01

    Classical models of chirality are used to investigate the optical rectification effect in chiral molecular media. Calculation of the zero frequency first hyperpolarizabilities of chiral molecules with different structures is performed and applied to the derivation of a dc electric-dipole polarization. The expression of second-order nonlinear static-electric-dipole susceptibilities is obtained by theoretical derivation in the isotropic chiral thin films. The microscopic mechanism producing optical rectification is analyzed in view of this calculation. We find that optical rectification is derived from interaction between the electric field gradient (spatial dispersion) and chiral molecules in optically active liquids and solution by our calculation, which is consistent with the result given by Woźniak and Wagnière [Opt. Commun. 114, 131 (1995)]: The optical rectification depends on the fourth-order electric-dipole susceptibilities.

  11. Studies of the Electro-Optic Effect.

    DTIC Science & Technology

    1983-01-01

    electro - optic effect in crystalline solids has been pursued by employing a tight-binding theory for dielectric susceptibilities. The electronic and lattice contributions to the second-order electro - optic susceptibility have been treated separately and the lattice response of a crystal to an external dc electric field has been investigated in a general formalism. The theory has been specifically applied to the compound, tellurium dioxide. In addition, an experimental determination of the electro - optic coefficient, re, in thallium

  12. A time correlation function theory describing static field enhanced third order optical effects at interfaces.

    PubMed

    Neipert, Christine; Space, Brian

    2006-12-14

    Sum vibrational frequency spectroscopy, a second order optical process, is interface specific in the dipole approximation. At charged interfaces, there exists a static field, and as a direct consequence, the experimentally detected signal is a combination of enhanced second and static field induced third order contributions. There is significant evidence in the literature of the importance/relative magnitude of this third order contribution, but no previous molecularly detailed approach existed to separately calculate the second and third order contributions. Thus, for the first time, a molecularly detailed time correlation function theory is derived here that allows for the second and third order contributions to sum frequency vibrational spectra to be individually determined. Further, a practical, molecular dynamics based, implementation procedure for the derived correlation functions that describe the third order phenomenon is also presented. This approach includes a novel generalization of point atomic polarizability models to calculate the hyperpolarizability of a molecular system. The full system hyperpolarizability appears in the time correlation functions responsible for third order contributions in the presence of a static field.

  13. Characterization of electrosynthesized conjugated polymer-carbon nanotube composite: optical nonlinearity and electrical property.

    PubMed

    Bahrami, Afarin; Talib, Zainal Abidin; Shahriari, Esmaeil; Yunus, Wan Mahmood Mat; Kasim, Anuar; Behzad, Kasra

    2012-01-01

    The effects of multi-walled carbon nanotube (MWNT) concentration on the structural, optical and electrical properties of conjugated polymer-carbon nanotube composite are discussed. Multi-walled carbon nanotube-polypyrrole nanocomposites were synthesized by electrochemical polymerization of monomers in the presence of different amounts of MWNTs using sodium dodecylbenzensulfonate (SDBS) as surfactant at room temperature and normal pressure. Field emission scanning electron microscopy (FESEM) indicates that the polymer is wrapped around the nanotubes. Measurement of the nonlinear refractive indices (n(2)) and the nonlinear absorption (β) of the samples with different MWNT concentrations measurements were performed by a single Z-scan method using continuous wave (CW) laser beam excitation wavelength of λ = 532 nm. The results show that both nonlinear optical parameters increased with increasing the concentration of MWNTs. The third order nonlinear susceptibilities were also calculated and found to follow the same trend as n(2) and β. In addition, the conductivity of the composite film was found to increase rapidly with the increase in the MWNT concentration.

  14. Synthesis, growth, structural and optical studies of a new organic three dimensional framework: 4-(aminocarbonyl)pyridine 4-(aminocarbonyl)pyridinium hydrogen L-malate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayalakshmi, A.; Vidyavathy, B., E-mail: vidyavathybalraj@gmail.com; Peramaiyan, G.

    2017-02-15

    4-(aminocarbonyl)pyridine 4-(aminocarbonyl)pyridinium hydrogen L-malate [(4ACP)(4ACP).(LM)] a new organic nonlinear optical (NLO) crystal was grown by the slow evaporation method. Single crystal X-ray diffraction analysis revealed that the [(4ACP)(4ACP).(LM)] crystal belongs to monoclinic crystal system, space group P2{sub 1}/n, with a three dimensional network. Thermogravimetry (TG) and differential thermal (DT) analyses showed that [(4ACP)(4ACP).(LM)] is thermally stable up to 165 °C. The optical transmittance window and the lower cut-off wavelength of [(4ACP)(4ACP).(LM)] were found out by UV–vis–NIR spectral study. The molecular structure of [(4ACP)(4ACP).(LM)] was further confirmed by FTIR spectral studies. The relative dielectric permittivity and dielectric loss were determined asmore » function of frequency and temperature. The third order nonlinear optical property of [(4ACP)(4ACP).(LM)] was studied by the Z-scan technique using a 532 nm diode pumped CW Nd:YAG laser. Nonlinear refractive index, nonlinear absorption coefficient and third order nonlinear susceptibility of the grown crystal were found to be 7.38×10{sup −8} cm{sup 2}/W, 0.08×10{sup −4} cm/W and 5.36×10{sup −6} esu, respectively. The laser damage threshold value is found to be 1.75 GW/cm{sup 2} - Graphical abstract: In the crystal structure of the title complex, the asymmetric unit contains one hydrogen L-malate anion, 4-(aminocarbonyl)pyridinium cation and a neutral isonicotinamide molecule. It is stabilized by intermolecular N-H…O, C-H…O and O-H…O hydrogen bonds which generate a three dimensional network.« less

  15. Influence of bis-thiourea nickel nitrate on the structural, optical, electrical, thermal and mechanical behavior of a KDP single crystal for NLO applications

    NASA Astrophysics Data System (ADS)

    Rasal, Y. B.; Shaikh, R. N.; Shirsat, M. D.; Kalainathan, S.; Hussaini, S. S.

    2017-03-01

    A single crystal of bis-thiourea nickel nitrate (BTNN) doped potassium dihydrogen phosphate (KDP) has been grown from solution at room temperature by a slow evaporation technique. The cell parameters of the grown crystals were determined using single crystal x-ray diffraction analysis. The different functional groups of the grown crystal were confirmed using Fourier transform infrared analysis. The improved optical parameters of the grown crystal have been evaluated in the range of 200-900 nm using UV-visible spectral analysis. The grown crystal was transparent in the entire visible region and the band gap value was found to be 4.96 eV. The influence of BTNN on the third order nonlinear optical properties of KDP crystal has been investigated by means of the Z-scan technique. The second harmonic generation (SHG) efficiency of grown crystal measured using a Nd-YAG laser is 1.98 times higher than that of pure KDP. The third order nonlinear optical susceptibility (χ 3) and nonlinear absorption coefficient (β) of BTNN doped KDP crystal is found to be 1.77  ×  10-5 esu and 5.57  ×  10-6 cm W-1 respectively. The laser damage threshold (LDT) energy for the grown crystal has been measured by using a Q-switched Nd:YAG laser source. The bis-thiourea nickel nitrate shows authoritative impact on the dielectric properties of doped crystal. The influence of bis-thiourea nickel nitrate on the mechanical behavior of KDP crystal has been investigated using Vickers microhardness intender. The thermal behavior of BTNN doped KDP crystal has been analyzed by TGA/DTA analysis.

  16. FDTD modeling of anisotropic nonlinear optical phenomena in silicon waveguides.

    PubMed

    Dissanayake, Chethiya M; Premaratne, Malin; Rukhlenko, Ivan D; Agrawal, Govind P

    2010-09-27

    A deep insight into the inherent anisotropic optical properties of silicon is required to improve the performance of silicon-waveguide-based photonic devices. It may also lead to novel device concepts and substantially extend the capabilities of silicon photonics in the future. In this paper, for the first time to the best of our knowledge, we present a three-dimensional finite-difference time-domain (FDTD) method for modeling optical phenomena in silicon waveguides, which takes into account fully the anisotropy of the third-order electronic and Raman susceptibilities. We show that, under certain realistic conditions that prevent generation of the longitudinal optical field inside the waveguide, this model is considerably simplified and can be represented by a computationally efficient algorithm, suitable for numerical analysis of complex polarization effects. To demonstrate the versatility of our model, we study polarization dependence for several nonlinear effects, including self-phase modulation, cross-phase modulation, and stimulated Raman scattering. Our FDTD model provides a basis for a full-blown numerical simulator that is restricted neither by the single-mode assumption nor by the slowly varying envelope approximation.

  17. Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS2/ZnS nanocrystals

    NASA Astrophysics Data System (ADS)

    Yu, Kuai; Yang, Yang; Wang, Junzhong; Tang, Xiaosheng; Xu, Qing-Hua; Wang, Guo Ping

    2018-06-01

    Broad photoluminescence (PL) emission, a large Stokes shift and extremely long-lived radiative lifetimes are the characteristics of ternary I–III–VI semiconductor nanocrystals (NCs), such as CuInS2 and AgInS2. However, the lack of understanding regarding the intriguing PL mechanisms and photo-carrier dynamics limits their further applications. Here, AgInS2 and AgInS2/ZnS NCs were chemically synthesized and their carrier dynamics were studied by time-resolved PL spectroscopy. The results demonstrated that the surface defect state, which contributed dominantly to the non-radiative decay processes, was effectively passivated through ZnS alloying. Femtosecond transient absorption spectroscopy was also used to investigate the carrier dynamics, revealing the electron storage at the surface state and donor state. Furthermore, the two photon absorption properties of AgInS2 and AgInS2/ZnS NCs were measured using an open-aperture Z-scan technique. The improved third-order nonlinear susceptibility {χ }(3) of AgInS2 through ZnS alloying demonstrates potential application in two photon PL biological imaging.

  18. Crystal structure, thermal and optical properties of Benzimidazole benzimidazolium picrate crystal

    NASA Astrophysics Data System (ADS)

    Jagadesan, A.; Peramaiyan, G.; Srinivasan, T.; Kumar, R. Mohan; Arjunan, S.

    2016-02-01

    A new organic framework of benzimidazole with picric acid has been synthesized. A single crystal with a size of 38×10×4 mm3 was grown by a slow evaporation solution growth technique. X-ray diffraction study revealed that the BZP crystal belongs to triclinic system with space group P-1. High resolution X-ray diffraction study shows the absence of grain boundaries without any defects. The thermal stability and specific heat capacity of BZP were investigated by TG/DT and TG/DSC analyses. From the UV-vis-NIR spectral study, optical transmission window and band gap of BZP were found out. The nonlinear refractive index (n2) and third order susceptibility Re(χ(3)) values of BZP crystal are estimated to be 1.73×10-7 cm2/W and 1.26×10-5 esu, respectively using a Z-scan technique.

  19. Layer-Dependent Third-Harmonic Generation in Graphene

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Guan, Honghua; Dadap, Jerry; Osgood, Richard; Richard Osgood Team

    Graphene has become a subject of intense interest and study because of its remarkable 2D electronic properties. Multilayer graphene also offers an array of properties that are also of interest for optical physics and devices. Despite its second-order-nonlinear optical response is intrinsically weak, third-order nonlinear optical effects in graphene are symmetry-allowed thus leading to studies of several third-order process in few-layer graphene. In this work, we report third-harmonic generation in multilayer graphene mounted on fused silica and with thicknesses which approach the bulk continuum. THG signals show cubic power dependence with respect to the intensity of fundamental beam. Third-harmonic generation spectroscopy enables a good fit using linear optical detection, which shows strong contrast for different layer number graphene. The maximum THG efficiency appears at layer number around 30. Two models are used for describing this layer dependent phenomenon and shows absorption plays a key role in THG of multilayer graphene. This work also provides a new imaging technology for graphene detection and identification with better contrast and resolution. U.S. Department of Energy under Contract No. DE-FG 02-04-ER-46157.

  20. Fe induced optical limiting properties of Zn1-xFexS nanospheres

    NASA Astrophysics Data System (ADS)

    Vineeshkumar, T. V.; Raj, D. Rithesh; Prasanth, S.; Unnikrishnan, N. V.; Mahadevan Pillai, V. P.; Sudarasanakumar, C.

    2018-02-01

    Zn1-xFexS (x = 0.00, 0.01, 0.03, 0.05) nanospheres were synthesized by polyethylene glycol assisted hydrothermal method. XRD studies revealed that samples of all concentrations exhibited cubic structure with crystallite grain size 7-9 nm. TEM and SEM show the formation of nanospheres by dense aggregation of smaller particles. Increasing Zn/Fe ratio tune the band gap from 3.4 to 3.2 eV and also quenches the green luminescence. FTIR spectra reveal the presence of capping agent, intensity variation and shifting of LO and TO phonon modes confirm the presence of Fe ions. Nonlinear optical properties were measured using open and closed aperture z-scan techniques, employing frequency doubled 532 nm pumping sources which indicated reverse saturable absorption (RSA) process. The nonlinear optical coefficients are obtained by two photon absorption (2PA). Composition dependent nonlinear optical coefficients ;β;, nonlinear refractive index, third order susceptibility and optical limiting threshold were estimated. The sample shows good nonlinear absorption and enhancement of optical limiting behavior with increasing Fe volume fraction. Contribution of RSA on optical nonlinearity of Zn1-xFexS nanospheres are also investigated using three different input energies. Zn1-xFexS with comparatively small limiting threshold value is a promising candidate for optical power limiting applications.

  1. β-Octakis(methylthio)porphycenes: synthesis, characterisation and third order nonlinear optical studies.

    PubMed

    Rana, Anup; Lee, Sangsu; Kim, Dongho; Panda, Pradeepta K

    2015-05-04

    A novel electron deficient β-octakis(methylthio)porphycene, along with its Zn(ii) and Ni(ii) derivatives, was synthesized for the first time. The macrocyclic structure exhibits core ruffling with a largely red shifted absorption band (∼750 nm) and also a large enhancement in the third order nonlinear optical response.

  2. Probing the nuclear susceptibility of mesoionic compounds using two-beam coupling with chirp-controlled pulses

    NASA Astrophysics Data System (ADS)

    Bosco, Carlos A. C.; Maciel, Glauco S.; Rakov, Nikifor; de Araújo, Cid B.; Acioli, Lúcio H.; Simas, Alfredo M.; Athayde-Filho, Petrônio F.; Miller, Joseph

    2007-11-01

    The third-order non-linear optical response of mesoionic compounds (MIC) in dimethylsulfoxide (DMSO) and methanol solutions was investigated by use of collinear pump and probe technique with chirp-controlled femtosecond pulses. The experiments allowed the investigation of non-instantaneous nuclear processes and thermal effects induced by two-photon absorption (TPA). We found that the nuclear non-linearity of MIC in DMSO is ˜1/5 the benzene, which was used as a reference material. This result is attributed to the large inertia of MIC to rotation, compared to benzene. The results for MIC in methanol indicate the influence of thermal effects due to TPA.

  3. Measurement of third-order nonlinear susceptibility tensor in InP using extended Z-scan technique with elliptical polarization

    NASA Astrophysics Data System (ADS)

    Oishi, Masaki; Shinozaki, Tomohisa; Hara, Hikaru; Yamamoto, Kazunuki; Matsusue, Toshio; Bando, Hiroyuki

    2018-05-01

    The elliptical polarization dependence of the two-photon absorption coefficient β in InP has been measured by the extended Z-scan technique for thick materials in the wavelength range from 1640 to 1800 nm. The analytical formula of the Z-scan technique has been extended with consideration of multiple reflections. The Z-scan results have been fitted very well by the formula and β has been evaluated accurately. The three independent elements of the third-order nonlinear susceptibility tensor in InP have also been determined accurately from the elliptical polarization dependence of β.

  4. Third-order optical conductivity of an electron fluid

    NASA Astrophysics Data System (ADS)

    Sun, Zhiyuan; Basov, D. N.; Fogler, M. M.

    2018-02-01

    We derive the nonlinear optical conductivity of an isotropic electron fluid at frequencies below the interparticle collision rate. In this regime, governed by hydrodynamics, the conductivity acquires a universal form at any temperature, chemical potential, and spatial dimension. We show that the nonlinear response of the fluid to a uniform field is dominated by the third-order conductivity tensor σ(3 ) whose magnitude and temperature dependence differ qualitatively from those in the conventional kinetic regime of higher frequencies. We obtain explicit formulas for σ(3 ) for Dirac materials such as graphene and Weyl semimetals. We make predictions for the third-harmonic generation, renormalization of the collective-mode spectrum, and the third-order circular magnetic birefringence experiments.

  5. Piezoelectric Field Enhanced Second-Order Nonlinear Optical Susceptibilities in Wurtzite GaN/AlGaN Quantum Wells

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Chuang, S.-L.; Ning, C. Z.; Woo, Alex (Technical Monitor)

    1999-01-01

    Second-order nonlinear optical processes including second-harmonic generation, optical rectification, and difference-frequency generation associated with intersubband transitions in wurtzite GaN/AlGaN quantum well (QW) are investigated theoretically. Taking into account the strain-induced piezoelectric (PZ) effects, we solve the electronic structure of the QW from coupled effective-mass Schrodinger equation and Poisson equation including the exchange-correlation effect under the local-density approximation. We show that the large PZ field in the QW breaks the symmetry of the confinement potential profile and leads to large second-order susceptibilities. We also show that the interband optical pump-induced electron-hole plasma results in an enhancement in the maximum value of the nonlinear coefficients and a redshift of the peak position in the nonlinear optical spectrum. By use of the difference-frequency generation, THz radiation can be generated from a GaN/Al(0.75)Ga(0.25)N with a pump laser of 1.55 micron.

  6. Performance evaluation and optimization of multiband phase-modulated radio over IsOWC link with balanced coherent homodyne detection

    NASA Astrophysics Data System (ADS)

    Zong, Kang; Zhu, Jiang

    2018-04-01

    In this paper, we present a multiband phase-modulated (PM) radio over intersatellite optical wireless communication (IsOWC) link with balanced coherent homodyne detection. The proposed system can provide the transparent transport of multiband radio frequency (RF) signals with higher linearity and better receiver sensitivity than intensity modulated with direct detection (IM/DD) system. The expressions of RF gain, noise figure (NF) and third-order spurious-free dynamic range (SFDR) are derived considering the third-order intermodulation product and amplifier spontaneous emission (ASE) noise. The optimal power of local oscillator (LO) optical signal is also derived theoretically. Numerical results for RF gain, NF and third-order SFDR are given for demonstration. Results indicate that the gain of the optical preamplifier and the power of LO optical signal should be optimized to obtain the satisfactory performance.

  7. Prediction of nonlinear optical properties of organic materials. General theoretical considerations

    NASA Technical Reports Server (NTRS)

    Cardelino, B.; Moore, C.; Zutaut, S.

    1993-01-01

    The prediction of nonlinear optical properties of organic materials is geared to assist materials scientists in the selection of good candidate molecules. A brief summary of the quantum mechanical methods used for estimating hyperpolarizabilities will be presented. The advantages and limitations of each technique will be discussed. Particular attention will be given to the finite-field method for calculating first and second order hyperpolarizabilities, since this method is better suited for large molecules. Corrections for dynamic fields and bulk effects will be discussed in detail, focusing on solvent effects, conformational isomerization, core effects, dispersion, and hydrogen bonding. Several results will be compared with data obtained from third-harmonic-generation (THG) and dc-induced second harmonic generation (EFISH) measurements. These comparisons will demonstrate the qualitative ability of the method to predict the relative strengths of hyperpolarizabilities of a class of compounds. The future application of molecular mechanics, as well as other techniques, in the study of bulk properties and solid state defects will be addressed. The relationship between large values for nonlinear optical properties and large conjugation lengths is well known, and is particularly important for third-order processes. For this reason, the materials with the largest observed nonresonant third-order properties are conjugated polymers. An example of this type of polymer is polydiacetylene. One of the problems in dealing with polydiacetylene is that substituents which may enhance its nonlinear properties may ultimately prevent it from polymerizing. A model which attempts to predict the likelihood of solid-state polymerization is considered, along with the implications of the assumptions that are used. Calculations of the third-order optical properties and their relationship to first-order properties and energy gaps will be discussed. The relationship between monomeric and polymeric third-order optical properties will also be considered.

  8. Theory of plasmonic effects in nonlinear optics: the case of graphene

    NASA Astrophysics Data System (ADS)

    Rostami, Habib; Katsnelson, Mikhail I.; Polini, Marco; Mikhail I. Katsnelson Collaboration; Habib Rostami; Marco Polini Collaboration

    The nonlinear optical properties of two-dimensional electronic systems are beginning to attract considerable interest both in the theoretical and experimental sectors. Recent experiments on the nonlinear optical properties of graphene reveal considerably strong third harmonic generation and four-wave mixing of this single-atomic-layer electronic system. We develop a large-N theory of electron-electron interaction corrections to multi-legged Feynman diagrams describing second- and third-order nonlinear response functions. Our theory is completely general and is useful to understand all second- and third-order nonlinear effects, including harmonic generation, wave mixing, and photon drag. We apply our theoretical framework to the case of graphene, by carrying out microscopic calculations of the second- and third-order nonlinear response functions of an interacting two-dimensional gas of massless Dirac fermions. We compare our results with recent measurements, where all-optical launching of graphene plasmons has been achieved. This work was supported by Fondazione Istituto Italiano di Tecnologia, the European Union's Horizon 2020 research and innovation programme under Grant agreement No. 696656 GrapheneCore, and the ERC Advanced Grant 338957 FEMTO/NANO (M.I.K.).

  9. Flexocoupling impact on the generalized susceptibility and soft phonon modes in the ordered phase of ferroics

    DOE PAGES

    Morozovska, Anna N.; Vysochanskii, Yulian M.; Varenyk, Oleksandr V.; ...

    2015-09-29

    The impact of the flexoelectric effect on the generalized susceptibility and soft phonon dispersion is not well known in the long-range-ordered phases of ferroics. Within the Landau-Ginzburg-Devonshire approach we obtained analytical expressions for the generalized susceptibility and phonon dispersion relations in the ferroelectric phase. The joint action of the static and dynamic flexoelectric effects induces nondiagonal components of the generalized susceptibility, whose amplitude is proportional to the convolution of the spontaneous polarization with the flexocoupling constants. The flexocoupling essentially broadens the k spectrum of the generalized susceptibility and leads to an additional “pushing away” of the optical and acoustic softmore » mode phonon branches. The degeneracy of the transverse optical and acoustic modes disappears in the ferroelectric phase in comparison with the paraelectric phase due to the joint action of flexoelectric coupling and ferroelectric nonlinearity. Lastly, the results obtained might be mainly important for theoretical analyses of a broad spectrum of experimental data, including neutron and Brillouin scattering.« less

  10. Optical increase of photo-integrated micro- and nano-periodic susceptibility lattices

    NASA Astrophysics Data System (ADS)

    Smirnov, Vitaly A.; Vostrikova, Liubov I.

    2015-03-01

    It is demonstrated that the nonlinear photo-integrated micro- and nano-periodic second-order susceptibility lattices with very small amplitudes which were preliminarily recorded using bi-chromatic powerful laser light in amorphous glass materials can be increased up to some orders of magnitude under the action of a simple coherent monochromatic radiation. The optical increase of the small lattices takes place independent of the polarization and direction of propagation of the optical amplifying radiation and is achieved at various wavelengths. The observed phenomenon is not be explained only by nonlinear wave interaction in medium and also may be related to the microscopic asymmetry processes of the optical transitions between local centers in an isotropic medium that leads to the appearance and growth of the all-optically induced small micro- and nano-periodic electrical charges separations inside the sample. Possible mechanisms that may be responsible for the observed effects in the studied phosphate glasses are discussed.

  11. Impact of sulfur content on structural and optical properties of Ge20Se80-xSx chalcogenide glasses thin films

    NASA Astrophysics Data System (ADS)

    Dongol, M.; Elhady, A. F.; Ebied, M. S.; Abuelwafa, A. A.

    2018-04-01

    Chalcogenide system Ge20Se80-xSx (x = 0, 15 and 30%) thin films were prepared by thermal evaporation technique. The amorphous state of the samples was confirmed according to XRD. The structural changes occurring upon replacement Se by S was investigated using Raman spectroscopy. The optical properties of the as-deposited Ge20Se80-xSx thin films have been studied by analysis the transmittance T(λ) measured at room temperature in the wavelength range 200-2500 nm using Swanepoel's method. Urbach energy (Ee) and optical band gap (Eg) were strongly affected by sulfur concentration in the sample. The refractive index evaluated through envelope method was extrapolated by Cauchy dispersion relationship over the whole spectral range. Moreover, the dispersion of refractive index was analyzed in terms of the single-oscillator Wemple-Di Domenico model. The third-order nonlinear susceptibility (χ(3)) and nonlinear refractive index (n2) were calculated and discussed for different Ge20Se80-xSx (x = 0, 15 and 30%).

  12. Highly efficient non-degenerate four-wave mixing under dual-mode injection in InP/InAs quantum-dash and quantum-dot lasers at 1.55 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadeev, T., E-mail: tagir@mailbox.tu-berlin.de; Arsenijević, D.; Huang, H.

    2015-11-09

    This work reports on non-degenerate four-wave mixing under dual-mode injection in metalorganic vapor phase epitaxy grown InP/InAs quantum-dash and quantum dot Fabry-Perot laser operating at 1550 nm. High values of normalized conversion efficiency of −18.6 dB, optical signal-to-noise ratio of 37 dB, and third order optical susceptibility normalized to material gain χ{sup (3)}/g{sub 0} of ∼4 × 10{sup −19} m{sup 3}/V{sup 3} are measured for 1490 μm long quantum-dash lasers. These values are similar to those obtained with distributed-feedback lasers and semiconductor optical amplifiers, which are much more complicated to fabricate. On the other hand, due to the faster gain saturation and enhanced modulation of carriermore » populations, quantum-dot lasers demonstrate 12 dB lower conversion efficiency and 4 times lower χ{sup (3)}/g{sub 0} compared to quantum dash lasers.« less

  13. Synthesis, growth, structural modeling and physio-chemical properties of a charge transfer molecule: Guanidinium tosylate

    NASA Astrophysics Data System (ADS)

    Era, Paavai; Jauhar, RO. MU.; Vinitha, G.; Murugakoothan, P.

    2018-05-01

    An organic nonlinear optical material, guanidinium tosylate was synthesized adopting slow evaporation method and the crystals were harvested from aqueous methanolic medium with dimensions 13 × 9 × 3 mm3. Constitution of crystalline material was confirmed by single crystal X-ray diffraction study. The title compound crystallizes in the monoclinic crystal system with space group P21/c. The UV-vis-NIR spectral study of the grown crystal exhibits high transparency of 80% in the entire visible region with lower cut-off wavelength at 282 nm. Optimized molecular geometry of the grown crystal was obtained using density functional theory (DFT) and the frontier energy gaps calculated from the DFT aids to understand the charge transfer taking place in the molecule. The dielectric properties were studied as a function of temperature and frequency to find the charge distribution within the crystal. The titular compound is thermally stable up to 230 °C assessed by thermogravimetric and differential thermal analysis. Anisotropy in the mechanical behavior was observed while measuring for individual planes. The laser induced surface damage threshold of the grown crystal was measured to be 0.344 GW/cm2 for 1064 nm Nd:YAG laser radiation. Z-scan technique confirms the third-order nonlinear optical property with the ascertained nonlinear refractive index (n2), nonlinear absorption coefficient (β) and third order nonlinear susceptibility (χ(3)). Optical limiting study divulges that the transmitted output power step-up linearly with the increase of the input power at lower power realms and saturates from the threshold 24.95 mW/cm2 and amplitude 0.23 mW/cm2.

  14. ZnO-PVA nanocomposite films for low threshold optical limiting applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viswanath, Varsha; Beenakumari, C.; Muneera, C. I.

    Zinc oxide-PVA nanocomposite films were fabricated adopting a simple method based on solution-casting, incorporating small weight percentages (<1.2 wt%) of ZnO in PVA (∼0.625×10{sup −3}M to 7×10{sup −3}M), and their structure, morphology, linear and low threshold nonlinear optical properties were investigated. The films were characterized as nanostructured ZnO encapsulated between the molecules/chains of the semicrystalline host polymer PVA. The samples exhibited low threshold nonlinear absorption and negative nonlinear refraction, as studied using the Z-scan technique. A switchover from SA to RSA was observed as the concentration of ZnO was increased. The optical limiting of 632.8 nm CW laser light displayedmore » by these nanocomposite films is also demonstrated. The estimated values of the effective coefficients of nonlinear absorption, nonlinear refraction and third-order nonlinear susceptibility, |χ{sup (3)}|, compared to those reported for continuous wave laser light excitation, measure up to the highest among them. The results show that the ZnO-PVA nanocomposite films have great potential applications in future optical and photonic devices.« less

  15. Growth and spectroscopic, thermodynamic and nonlinear optical studies of L-threonine phthalate crystal

    NASA Astrophysics Data System (ADS)

    Theras, J. Elberin Mary; Kalaivani, D.; Jayaraman, D.; Joseph, V.

    2015-10-01

    L-threonine phthalate (LTP) single crystal has been grown using a solution growth technique at room temperature. Single crystal X-ray diffraction analysis reveals that LTP crystallizes in monoclinic crystal system with space group C2/c. The optical absorption studies show that the crystal is transparent in the entire visible region with a cut-off wavelength 309 nm. The optical band gap is found to be 4.05 eV. The functional groups of the synthesized compound have been identified by FTIR spectral analysis. The functional groups present in the material were also confirmed by FT-RAMAN spectroscopy. Surface morphology and the presence of various elements were studied by SEM-EDAX analysis. The thermal stability of LTP single crystal has been analyzed by TGA/DTA studies. The thermodynamic parameters such as activation energy, entropy, enthalpy and Gibbs free energy were determined for the grown material using TG data and Coats-Redfern relation. Since the grown crystal is centrosymmetric, Z-Scan studies were carried out for analyzing the third order nonlinear optical property. The nonlinear absorption coefficient, nonlinear refractive index and susceptibility have been measured using Z-Scan technique.

  16. Mass Movement Susceptibility Mapping Using Satellite Optical Imagery Compared With INSAR Monitoring: Zigui County, Three Gorges Region, China

    NASA Astrophysics Data System (ADS)

    Kincal, Cem; Singleton, Andrew; Liu, Peng; Li, Zhenhong; Drummond, Jane; Hoey, Trevor; Muller, Jan-Peter; Qu, Wei; Zeng, Qiming; Zhang, Jingfa; Du, Peijun

    2010-10-01

    Mass movements on steep slopes are a major hazard to communities and infrastructure in the Three Gorges region, China. Developing susceptibility maps of mass movements is therefore very important in both current and future land use planning. This study employed satellite optical imagery and an ASTER GDEM (15 m) to derive various parameters (namely geology; slope gradient; proximity to drainage networks and proximity to lineaments) in order to create a GIS-based map of mass movement susceptibility. This map was then evaluated using highly accurate deformation signals processed using the Persistent Scatterer (PS) InSAR technique. Areas of high susceptibility correspond well to points of high subsidence, which provides a strong support of our susceptibility map.

  17. Ultrafast carrier dynamics and third-order nonlinear optical properties of AgInS2/ZnS nanocrystals.

    PubMed

    Yu, Kuai; Yang, Yang; Wang, Junzhong; Tang, Xiaosheng; Xu, Qing-Hua; Wang, Guo Ping

    2018-06-22

    Broad photoluminescence (PL) emission, a large Stokes shift and extremely long-lived radiative lifetimes are the characteristics of ternary I-III-VI semiconductor nanocrystals (NCs), such as CuInS 2 and AgInS 2 . However, the lack of understanding regarding the intriguing PL mechanisms and photo-carrier dynamics limits their further applications. Here, AgInS 2 and AgInS 2 /ZnS NCs were chemically synthesized and their carrier dynamics were studied by time-resolved PL spectroscopy. The results demonstrated that the surface defect state, which contributed dominantly to the non-radiative decay processes, was effectively passivated through ZnS alloying. Femtosecond transient absorption spectroscopy was also used to investigate the carrier dynamics, revealing the electron storage at the surface state and donor state. Furthermore, the two photon absorption properties of AgInS 2 and AgInS 2 /ZnS NCs were measured using an open-aperture Z-scan technique. The improved third-order nonlinear susceptibility [Formula: see text] of AgInS 2 through ZnS alloying demonstrates potential application in two photon PL biological imaging.

  18. Crystal growth, spectroscopic, DFT computational and third harmonic generation studies of nicotinic acid

    NASA Astrophysics Data System (ADS)

    Thaya Kumari, C. Rathika; Nageshwari, M.; Raman, R. Ganapathi; Caroline, M. Lydia

    2018-07-01

    An organic centrosymmetric nicotinic acid (NA) single crystal has been grown employing slow evaporation method in water. NA crystallizes in monoclinic system with centric space group P21/C. The experimental and theoretical investigation includes vibrational spectra based on Hartree - Fock (HF) and density functional theory (DFT) has been applied using different function at B3LYP level of theory using 6-311G++(d,p) basis set. The optical transparency of the title molecule was examined by TD- DFT analysis and for comparison basis experimental UV-Vis spectrum was recorded. The interaction of charge within the molecule was analyzed and the HOMO - LUMO energy gap was evaluated. The value of dipole moment, Mulliken charge and molecular electrostatic potential were estimated at the same level of theory. Also the first order hyper polarizability for NA was calculated. The dielectric behavior of the grown crystal was determined for few selected temperatures. The third order nonlinear response of NA has been examined using Z-scan technique and nonlinear susceptibility (χ3), nonlinear refraction (n2) and nonlinear absorption coefficient (β) has been calculated. The current results clearly indicate that the title compound is an excellent applicant in the domain of opto - electronic applications.

  19. Subpiosecond Third Order Nonlinear Response in Polythiophene and Thiopene Based Thin Films

    NASA Technical Reports Server (NTRS)

    Harris, D.; Royer, E.; Dorsinville, R.

    1995-01-01

    Ultrafast relaxation kinetics of the third order nonlinear susceptibility of polythiophene and polycondensed thiophene-based polymer was determined by the forward degenerate four-wave mixing technique. Deep into the absorption band the nonlinear response shows only a fast component (less than 900 fs at 587 nm) while at the edge of the absorption band at 642 nm a much slower and complex decay was measured.

  20. Investigation of Optical Nonlinearities in Bi-Doped Se-Te Chalcogenide Thin Films

    NASA Astrophysics Data System (ADS)

    Yadav, Preeti; Sharma, Ambika

    2015-03-01

    The present paper reports the nonlinear optical properties of chalcogenide Se85- x Te15Bi x (0 ≤ x ≤ 5) thin films. The formulation proposed by Boling, Fournier, and Snitzer and Tichy and Ticha has been used to compute the nonlinear refractive index n 2. The two-photon absorption coefficient β 2, and first- and third-order susceptibilities [ χ (1) and χ (3)] are also reported. The nonlinear refractive index n 2 is well correlated with the linear refractive index n and Wemple-DiDomenico (WDD) parameters, in turn depending on the density ρ and molar volume V m of the system. The density of the system is calculated experimentally by using Archimedes' principle. The linear optical parameters, viz. n, WDD parameters, and optical bandgap E g, are measured experimentally using ellipsometric curves obtained by spectrophotometry. The composition-dependent behavior of n 2 is analyzed on the basis of various parameters, viz. density, bond distribution, cohesive energy (CE), and optical bandgap E g, of the system. The variation of n 2 and β 2 with changing bandgap E g is also reported. The values of n 2 and χ (3) of the investigated chalcogenides are compared with those of pure silica, oxide, and other Se-based glasses.

  1. Kerr nonlinearity and nonlinear absorption coefficient in a four-level M-model cylindrical quantum dot under the phenomenon of electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Behroozian, B.; Askari, H. R.

    2018-07-01

    The Kerr nonlinearity and the nonlinear absorption coefficient in a four-level M-model of a GaAs cylindrical quantum dot (QD) with parabolic potential under electromagnetically induced transparency are investigated. By solving the density matrix equations in the steady-state, the third order susceptibility is obtained. Then, by using the real and imaginary parts of third order susceptibility, the Kerr nonlinearity and the nonlinear absorption coefficient, respectively, for this system are computed. The effects of the radius and height of the cylindrical QD are then investigated. In addition, the effects of the control laser fields on the Kerr nonlinearity and the nonlinear absorption coefficient are investigated.

  2. Studies of Second Order Optical Nonlinearities of 4-Aminobenzophenone (ABP) Single Crystal Films

    NASA Astrophysics Data System (ADS)

    Bhowmik, Achintya; Thakur, Mrinal

    1998-03-01

    Specific organic materials exhibit very high second order optical susceptibilities. Growth of single crystal films of these materials and characterization of nonlinear optical properties are necessary for implementation of device applications. We have grown large-area films ( 1 cm^2 area, 4 μm thick) of ABP by a modification of the shear method. Single crystal nature of the films was confirmed by polarized optical microscopy. X-ray diffraction analysis showed a [100] surface orientation. The absorption spectra revealed transparency from 390 nm to 1940 nm. Significant elements of the second order optical susceptibility tensor were measured by detailed SHG experiments using a Nd:YAG laser (1064 nm, 100 ps, 82 MHz). Second-harmonic power was measured using lock-in detection with carefully selected polarization conditions while the film was rotated about the propagation direction. Using LiNbØas the reference, d-coefficients of ABP were found to be d_23=7.2 pm/V and d_22=0.7 pm/V. Type-I and type-II phase-matching directions were identified on the film by analyzing the optical indicatrix surfaces at fundamental and second-harmonic frequencies.

  3. Enhancement of optical Kerr effect in quantum-cascade lasers with multiple resonance levels.

    PubMed

    Bai, Jing; Citrin, D S

    2008-08-18

    In this paper, we investigated the optical Kerr lensing effect in quantum-cascade lasers with multiple resonance levels. The Kerr refractive index n2 is obtained through the third-order susceptibility at the fundamental frequency chi(3)( omega; omega, omega,-omega). Resonant two-photon processes are found to have almost equal contributions to chi(3)( omega; omega, omega,-omega) as the single-photon processes, which result in the predicted enhancement of the positive nonlinear (Kerr) refractive index, and thus may enhance mode-locking of quantum-cascade lasers. Moreover, we also demonstrate an isospectral optimization strategy for further improving n2 through the band-structure design, in order to boost the multimode performance of quantum-cascade lasers. Simulation results show that the optimized stepwise multiple-quantum-well structure has n2 approximately 10-8 cm2/W, a twofold enhancement over the original flat quantum-well structure. This leads to a refractive-index change (delta)n of about 0.01, which is at the upper bound of those reported for typical Kerr medium. This stronger Kerr refractive index may be important for quantum-cascade lasers ultimately to demonstrate self-mode-locking.

  4. The preparation of a new type of ferrocene-based compounds with large conjugated system containing symmetrical aromatic vinyl with Schiff base moieties and the study of their third-order nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Yu, Weiguo; Jia, Jianhong; Gao, Jianrong; Han, Liang; Li, Yujin

    2016-09-01

    Herein we reported the preparation of a new type of ferrocene-based compounds with large conjugated system containing symmetrical aromatic vinyl and Schiff base moieties and the study of their third-order nonlinear optical (NLO) properties. Their third-order NLO properties were measured using femtosecond laser and degenerate four-wave mixing (DFWM) technique. The obtained χ(3), n2 and γ values of these molecules were found in the range of 0.998-1.429 × 10-12 esu,1.847-2.646 × 10-11 esu and 1.026-1.449 × 10-30 esu, respectively. The response time ranged from 43.65 fs to 61.71 fs. The results indicate that these compounds have potential nonlinear optical applications.

  5. Second and third order nonlinear optical properties of conjugated molecules and polymers

    NASA Technical Reports Server (NTRS)

    Perry, Joseph W.; Stiegman, Albert E.; Marder, Seth R.; Coulter, Daniel R.; Beratan, David N.; Brinza, David E.

    1988-01-01

    Second- and third-order nonlinear optical properties of some newly synthesized organic molecules and polymers are reported. Powder second-harmonic-generation efficiencies of up to 200 times urea have been realized for asymmetric donor-acceptor acetylenes. Third harmonic generation chi(3)s have been determined for a series of small conjugated molecules in solution. THG chi(3)s have also been determined for a series of soluble conjugated copolymers prepared using ring-opening metathesis polymerization. The results are discussed in terms of relevant molecular and/or macroscopic structural features of these conjugated organic materials.

  6. Studies on third-order optical nonlinearity and power limiting of conducting polymers using the z-scan technique for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Pramodini, S.; Sudhakar, Y. N.; SelvaKumar, M.; Poornesh, P.

    2014-04-01

    We present the synthesis and characterization of third-order optical nonlinearity and optical limiting of the conducting polymers poly (aniline-co-o-anisidine) and poly (aniline-co-pyrrole). Nonlinear optical studies were carried out by employing the z-scan technique using a He-Ne laser operating in continuous wave mode at 633 nm. The copolymers exhibited a reverse saturable absorption process and self-defocusing properties under the experimental conditions. The estimated values of βeff, n2 and χ(3) were found to be of the order of 10-2 cm W-1, 10-5 esu and 10-7 esu respectively. Self-diffraction rings were observed due to refractive index change when exposed to the laser beam. The copolymers possess a lower limiting threshold and clamping level, which is essential to a great extent for power limiting devices. Therefore, copolymers of aniline emerge as a potential candidate for nonlinear optical device applications.

  7. Computer program for optical systems ray tracing

    NASA Technical Reports Server (NTRS)

    Ferguson, T. J.; Konn, H.

    1967-01-01

    Program traces rays of light through optical systems consisting of up to 65 different optical surfaces and computes the aberrations. For design purposes, paraxial tracings with astigmation and third order tracings are provided.

  8. Structure Effect of Squarylium Cyanine Dyes on Third-Order Optical Nonlinearities in Ground and Excited States

    NASA Astrophysics Data System (ADS)

    Liu, Xu-chun; Xu, Gang; Si, Jin-hai; Ye, Pei-xian; Lin, Tong; Peng, Bi-xian

    1999-08-01

    A series of squarylium cyanine dyes with different substituents were synthesized and the third-order optical nonlinearities of their ground and excited states were investigated by backward degenerate four-wave-mixing. For the ground state, the molecular hyperpolarizability γg increases with the red-shift of the absorption peak λmaxab of the squaraine with different substituents, whereas for the excited-state molecular hyperpolarizability γe, the nonlinear enhancement γe/γg decreases, which may indicate that in the excited state the electron accepting-donating ability of different substituents changes in the reverse order compared with the order in the ground state.

  9. Nonlinear optical effects on the surface of acridine yellow-doped lead-tin fluorophosphate glass

    NASA Technical Reports Server (NTRS)

    He, K. X.; Bryant, William; Venkateswarlu, Putcha

    1991-01-01

    The second- and third-order nonlinear optical properties of acridine yellow-doped lead-tin fluorophosphate (LTF) glass have been directly studied by measurement of surface enhanced second harmonic generation and third harmonic generation. The three photon excitation fluorescence is also observed. Based on these results, the large nonlinearities of the acridine LTF system which is a new nonlinear optical material are experimentally demonstrated.

  10. Growth, spectral, optical, laser damage threshold and DFT investigations on 2-amino 4-methyl pyridinium 4-methoxy benzoate (2A4MP4MB): A potential organic third order nonlinear optical material for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Krishnakumar, M.; Karthick, S.; Thirupugalmani, K.; Babu, B.; Vinitha, G.

    2018-05-01

    In present investigation, single crystals of organic charge transfer complex, 2-amino-4-methyl pyridinium-4-methoxy benzoate (2A4MP4MB) was grown by controlled slow evaporation solution growth technique using methanol as a solvent at room temperature. Single crystal XRD analysis confirmed the crystal system and lattice parameters of 2A4MP4MB. The crystalline nature, presence of various vibrational modes and other chemical bonds in the compound have been recognized and confirmed by powder X-ray diffraction, FT-IR and FT-Raman spectroscopic techniques respectively. The presence of various proton and carbon positions in title compound was confirmed using 1H NMR and 13C NMR spectral studies. The wide optical operating window and cut-off wavelength were identified and band gap value of the title compound was calculated using UV-vis-NIR study. The specific heat capacity (cp) values of the title compound, 1.712 J g-1·K-1 at 300 K and 13.6 J g-1 K-1 at 433 K (melting point) were measured using Modulated Differential Scanning Calorimetric studies (MDSC). From Z-scan study, nonlinear refractive index (n2), nonlinear absorption (β) and third order nonlinear susceptibility (χ(3)) values were determined. The self-defocusing effect and saturable absorption behavior of the material were utilized to exhibit the optical limiting action at λ = 532 nm by employing the same continuous wave (cw) Nd: YAG laser source. The laser damage threshold (LDT) study of title compound was carried out using Nd: YAG laser of 532 nm wavelength. The Vickers' micro hardness test was carried out at room temperature and obtained results were investigated using classical Meyer's law. In addition, DFT calculations were carried out for the first time for this compound. These characterization studies performed on the title compound planned to probe the valuable and safe region of optical, thermal and mechanical properties to improve efficacy of 2A4MP4MB single crystals in optoelectronic device applications.

  11. Optical and dielectric studies of KH2PO4 crystal influenced by organic ligand of citric acid and L-valine: A single crystal growth and comparative study

    NASA Astrophysics Data System (ADS)

    Anis, Mohd; Hakeem, D. A.; Muley, G. G.

    In the present study pure, citric acid (CA) and L-valine (LV) doped potassium dihydrogen phosphate (KDP) crystals have been grown with the aim to investigate the nonlinear optical applications facilitated by UV-visible, third order nonlinear optical (TONLO) and dielectric properties. The structural parameters of grown crystals have been confirmed by single crystal X-ray diffraction analysis. The enhancement in optical transparency of KDP crystal due to addition of CA and LV has been examined within 200-900 nm by means of UV-visible spectral analysis. In addition, the transmittance data have been used to evaluate the effect of dopants on reflectance, refractive index and extinction coefficient of grown crystals in the visible region. The Z-scan analysis has been performed at 632.8 nm to identify the nature of photoinduced nonlinear refraction and nonlinear absorption in doped KDP crystals. The influence of π-bonded ligand of dopant CA and LV on TONLO susceptibility (χ3), refractive index (n2) and absorption coefficient (β) of KDP crystals has been evaluated to discuss laser assisted device applications. The decrease in dielectric constant and dielectric loss of KDP crystal due to addition of CA and LV has been explored using the temperature dependent dielectric studies.

  12. Mechano-optic logic gate controlled by third-order nonlinear optical properties in a rotating ZnO:Au thin film

    NASA Astrophysics Data System (ADS)

    Carrillo-Delgado, C.; García-Gil, C. I.; Trejo-Valdez, M.; Torres-Torres, C.; García-Merino, J. A.; Martínez-Gutiérrez, H.; Khomenko, A. V.; Torres-Martínez, R.

    2016-01-01

    Measurements of the third-order nonlinear optical properties exhibited by a ZnO thin solid film deposited on a SnO2 substrate are presented. The samples were prepared by a spray pyrolysis processing route. Scanning electron microscopy analysis and UV-Vis spectroscopy studies were carried out. The picosecond response at 1064 nm was explored by the z-scan technique. A large optical Kerr effect with two-photon absorption was obtained. The inhibition of the nonlinear optical absorption together with a noticeable enhancement in the optical Kerr effect in the sample was achieved by the incorporation of Au nanoparticles into the ZnO film. Additionally, a two-wave mixing configuration at 532 nm was performed and an optical Kerr effect was identified as the main cause of the nanosecond third-order optical nonlinearity. The relaxation time of the photothermal response of the sample was estimated to be about 1 s when the sample was excited by nanosecond single-shots. The rotation of the sample during the nanosecond two-wave mixing experiments was analyzed. It was stated that a non-monotonic relation between rotating frequency and pulse repetition rate governs the thermal contribution to the nonlinear refractive index exhibited by a rotating film. Potential applications for switching photothermal interactions in rotating samples can be contemplated. A rotary logic system dependent on Kerr transmittance in a two-wave mixing experiment was proposed.

  13. Plasma impact on structural, morphological and optical properties of copper acetylacetonate thin films

    NASA Astrophysics Data System (ADS)

    Abdel-Khalek, H.; El-Samahi, M. I.; El-Mahalawy, Ahmed M.

    2018-06-01

    The influence of plasma exposure on structural, morphological and optical properties of copper (II) acetylacetonate thin films deposited by thermal evaporation technique was investigated. Copper (II) acetylacetonate as-grown thin films were exposed to the atmospheric plasma for different times. The exposure of as-grown cu(acac)2 thin film to atmospheric plasma for 5 min modified its structural, morphological and optical properties. The effect of plasma exposure on structure and roughness of cu(acac)2 thin films was evaluated by XRD and AFM techniques, respectively. The XRD results showed an increment in crystallinity due to exposure for 5 min, but, when the exposure time reaches 10 min, the film was transformed to an amorphous state. The AFM results revealed a strong modification of films roughness when the average roughness decreased from 63.35 nm to 1 nm as a result of interaction with plasma. The optical properties of as-grown and plasma exposured cu(acac)2 thin films were studied using spectrophotometric method. The exposure of cu(acac)2 thin films to plasma produced the indirect energy gap decrease from 3.20 eV to 2.67 eV for 10 min exposure time. The dispersion parameters were evaluated in terms of single oscillator model for as-grown and plasma exposured thin films. The influence of plasma exposure on third order optical susceptibility was studied.

  14. Characterization of the third-order optical nonlinearity spectrum of barium borate glasses

    NASA Astrophysics Data System (ADS)

    Santos, S. N. C.; Almeida, J. M. P.; Paula, K. T.; Tomazio, N. B.; Mastelaro, V. R.; Mendonça, C. R.

    2017-11-01

    Borate glasses have proven to be an important material for applications ranging from radiation dosimetry to nonlinear optics. In particular, B2O3-BaO based glasses are attractive to frequency generation since their barium metaborate phase (β-BaB2O4 or β-BBO) may be crystallized under proper heat treatment. Despite the vast literature covering their linear and second-order optical nonlinear properties, their third-order nonlinearities remain overlooked. This paper thus reports a study on the nonlinear refraction (n2) of BBO and BBS-DyEu glasses through femtosecond Z-scan technique. The results were modeled using the BGO approach, which showed that oxygen ions are playing a role in the nonlinear optical properties of the glasses studied here. In addition, the barium borate glasses containing rare-earths ions were found to exhibit larger nonlinearities, which is in agreement with previous studies.

  15. Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration

    NASA Astrophysics Data System (ADS)

    Minkovski, N.; Petrov, G. I.; Saltiel, S. M.; Albert, O.; Etchepare, J.

    2004-09-01

    Nonlinear polarization rotation and generation of a polarization component orthogonal to the input beam were observed along fourfold axes of YVO4 and BaF2 crystals. We demonstrate experimentally that in both crystals the angle of rotation is proportional, at low intensities, to the square of the product of the input intensity and the crystal length and is the result of simultaneous action of two third-order processes. This type of nonlinear polarization rotation is driven by the real part of the cubic susceptibility. The recorded energy exchange between the two orthogonal components can exceed 10%. It is to our knowledge the highest energy-conversion efficiency achieved in a single beam nonresonant χ(3) interaction. A simple theoretical model is elaborated to describe the dependence of nonlinear polarization rotation and orthogonal polarization generation on the intensity of the input beam at both low- and high-intensity levels. It reveals the potential contributions from the real and the imaginary parts of the susceptibility tensor. Moreover, this kind of measurement is designed to permit the determination of the magnitude and the sign of the anisotropy of the real part of third-order nonlinearity in crystals with cubic or tetragonal symmetry on the basis of polarization-rotation measurements. The χxxxx(3) component of the third-order susceptibility tensor and its anisotropy sign and amplitude value for BaF2 and YVO4 crystals are estimated and discussed.

  16. Using surface lattice resonances to engineer nonlinear optical processes in metal nanoparticle arrays

    NASA Astrophysics Data System (ADS)

    Huttunen, Mikko J.; Rasekh, Payman; Boyd, Robert W.; Dolgaleva, Ksenia

    2018-05-01

    Collective responses of localized surface plasmon resonances, known as surface lattice resonances (SLRs) in metal nanoparticle arrays, can lead to high quality factors (˜100 ), large local-field enhancements, and strong light-matter interactions. SLRs have found many applications in linear optics, but little work of the influence of SLRs on nonlinear optics has been reported. Here we show how SLRs could be utilized to enhance nonlinear optical interactions. We devote special attention to the sum-frequency, difference-frequency, and third-harmonic generation processes because of their potential for the realization of novel sources of light. We also demonstrate how such arrays could be engineered to enhance higher-order nonlinear optical interactions through cascaded nonlinear processes. In particular, we demonstrate how the efficiency of third-harmonic generation could be engineered via cascaded second-order responses.

  17. Evaluation of polymer based third order nonlinear integrated optics devices

    NASA Astrophysics Data System (ADS)

    Driessen, A.; Hoekstra, H. J. W. M.; Blom, F. C.; Horst, F.; Krijnen, G. J. M.; van Schoot, J. B. P.; Lambeck, P. V.; Popma, Th. J. A.; Diemeer, M. B.

    1998-01-01

    Nonlinear polymers are promising materials for high speed active integrated optics devices. In this paper we evaluate the perspectives polymer based nonlinear optical devices can offer. Special attention is directed to the materials aspects. In our experimental work we applied mainly Akzo Nobel DANS side-chain polymer that exhibits large second and third order coefficients. This material has been characterized by third harmonic generation, z-scan and pump-probe measurements. In addition, various waveguiding structures have been used to measure the nonlinear absorption (two photon absorption) on a ps time-scale. Finally an integrated optics Mach Zehnder interferometer has been realized and evaluated. It is shown that the DANS side-chain polymer has many of the desired properties: the material is easily processable in high-quality optical waveguiding structures, has low linear absorption and its nonlinearity has a pure electronic origin. More materials research has to be done to arrive at materials with higher nonlinear coefficients to allow switching at moderate light intensity ( < 1 W peak power) and also with lower nonlinear absorption coefficients.

  18. Enabling the detection of UV signal in multimodal nonlinear microscopy with catalogue lens components.

    PubMed

    Vogel, Martin; Wingert, Axel; Fink, Rainer H A; Hagl, Christian; Ganikhanov, Feruz; Pfeffer, Christian P

    2015-10-01

    Using an optical system made from fused silica catalogue optical components, third-order nonlinear microscopy has been enabled on conventional Ti:sapphire laser-based multiphoton microscopy setups. The optical system is designed using two lens groups with straightforward adaptation to other microscope stands when one of the lens groups is exchanged. Within the theoretical design, the optical system collects and transmits light with wavelengths between the near ultraviolet and the near infrared from an object field of at least 1 mm in diameter within a resulting numerical aperture of up to 0.56. The numerical aperture can be controlled with a variable aperture stop between the two lens groups of the condenser. We demonstrate this new detection capability in third harmonic generation imaging experiments at the harmonic wavelength of ∼300 nm and in multimodal nonlinear optical imaging experiments using third-order sum frequency generation and coherent anti-Stokes Raman scattering microscopy so that the wavelengths of the detected signals range from ∼300 nm to ∼660 nm. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  19. Cavity enhanced third harmonic generation in graphene

    NASA Astrophysics Data System (ADS)

    Beckerleg, Chris; Constant, Thomas J.; Zeimpekis, Ioannis; Hornett, Samuel M.; Craig, Chris; Hewak, Daniel W.; Hendry, Euan

    2018-01-01

    Graphene displays a surprisingly large third order nonlinearity. Here, we report that conversion efficiencies approaching 10-4 are possible for third harmonic generation (THG). Moreover, the atomically thin nature of graphene allows for simple integration in cavity designs to increase this even further. We demonstrate a 117-fold enhancement, of resonant vs non-resonant wavelengths in the THG from graphene due to the integration of a graphene layer with a resonant cavity. This large enhancement occurs as the cavity is resonant for both the fundamental field and the third harmonic. We model this effect using the finite difference time domain approach. By comparing our model with experiment, we are able to deduce the value of a bulk third order susceptibility of graphene of |χ(3)|=4 ×10-17(m/V ) 2 .

  20. Silicon optical modulators for optical digital and analog communications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yang, Lin; Ding, Jianfeng; Zhang, Lei; Shao, Sizu

    2017-02-01

    Silicon photonics is considered as a promising technology to overcome the difficulties of the existing digital and analog optical communication systems, such as low integration, high cost, and high power consumption. Silicon optical modulator, as a component to transfer data from electronic domain to optical one, has attracted extensive attentions in the past decade. In this paper, we review the statuses of the silicon optical modulators for digital and analog optical communications and introduce our efforts on these topics. We analyze the relationship between the performance and the structural parameters of the silicon optical modulator and present how to optimize its performance including electro-optical bandwidth, modulation efficiency, optical bandwidth and insertion loss. The fabricated silicon optical modulator has an electro-optical bandwidth of 30 GHz. Its extinction ratios are 14.0 dB, 11.2 dB and 9.0 dB at the speeds of 40 Gbps, 50 Gbps and 64 Gbps for OOK modulation. The high extinction ratio of the silicon optical modulator at the high speed makes it very appropriate for the application of optical coherent modulation, such as QPSK and 16-QAM. The fabricated silicon optical modulator also can be utilized for analog optical communication. With respect to a noise floor of -165 dBc, the dynamic ranges for the second-order harmonic and the third-order intermodulation distortion are 90.8 dB and 110.5 dB respectively. By adopting a differential driving structure, the dynamic range for the second-order harmonic can be further improved to 100.0 dB while the third-order intermodulation distortion remains the same level.

  1. Soliton's eigenvalue based analysis on the generation mechanism of rogue wave phenomenon in optical fibers exhibiting weak third order dispersion.

    PubMed

    Weerasekara, Gihan; Tokunaga, Akihiro; Terauchi, Hiroki; Eberhard, Marc; Maruta, Akihiro

    2015-01-12

    One of the extraordinary aspects of nonlinear wave evolution which has been observed as the spontaneous occurrence of astonishing and statistically extraordinary amplitude wave is called rogue wave. We show that the eigenvalues of the associated equation of nonlinear Schrödinger equation are almost constant in the vicinity of rogue wave and we validate that optical rogue waves are formed by the collision between quasi-solitons in anomalous dispersion fiber exhibiting weak third order dispersion.

  2. Growth, structural, thermal, dielectric and nonlinear optical properties of potassium hexachloro cadmate (IV) a novel single crystal

    NASA Astrophysics Data System (ADS)

    Umarani, P.; Jagannathan, K.

    2018-02-01

    The Potassium hexachloro cadmate (IV) (PHC) single crystal was grown from the aqueous of the solution by a controlled evaporation method. Single crystal XRD solved the structure. FTIR is used to identify the functional groups of grown crystal. The UV-Vis-NIR spectrometer was used to find out the UV cut off region and to calculate the optical band gap of the Potassium hexachloro cadmate (IV) single crystal. The EDAX spectrum has been used to identify the compounds present in title compound. The TG-DTA profile shows the thermal stability of the grown crystal of Potassium hexachloro cadmate (IV). The Vicker's hardness measurement was used to calculate the material hardness of the title compound. The dielectric loss and constant varied with frequencies and activation energy is also calculated. The solid state parameters like plasma energy, Penn gap, Fermi energy, electronic polarizability using Penn analysis and Clausius-Mossotti equation were also calculated for the title compound. The Z-scan technique is used to calculate the third order nonlinear susceptibility of a real and imaginary part.

  3. Studies on the growth aspects, structural, thermal, dielectric and third order nonlinear optical properties of solution grown 4-methylpyridinium p-nitrophenolate single crystal

    NASA Astrophysics Data System (ADS)

    Devi, S. Reena; Kalaiyarasi, S.; Zahid, I. MD.; Kumar, R. Mohan

    2016-11-01

    An ionic organic optical crystal of 4-methylpyridinium p-nitrophenolate was grown from methanol by slow evaporation method at ambient temperature. Powder and single crystal X-ray diffraction studies revealed the crystal system and its crystalline perfection. The rocking curve recorded from HRXRD study confirmed the crystal quality. FTIR spectral analysis confirmed the functional groups present in the title compound. UV-visible spectral study revealed the optical window and band gap of grown crystal. The thermal, electrical and surface laser damage threshold properties of harvested crystal were examined by using TGA/DTA, LCR/Impedance Analyzer and Nd:YAG laser system respectively. The third order nonlinear optical property of grown crystal was elucidated by Z-scan technique.

  4. Hydrogen bonding intermolecular effect on electro-optical response of doped 6PCH nematic liquid crystal with some azo dyes

    NASA Astrophysics Data System (ADS)

    Kiani, S.; Zakerhamidi, M. S.; Tajalli, H.

    2016-05-01

    Previous studies on the electro-optical responses of dye-doped liquid crystal have shown that dopant material have a considerable effect on their electro-optical responses. Despite the studies carried out on electro-optical properties of dye-doped liquid crystal, no attention has been paid to study of the interaction and structural effects in this procedure. In this paper, linear dyes and with similar structure were selected as dopants. The only difference in used dyes is the functional groups in their tails. So, doping of these dyes into liquid crystals determines the influence of interaction type on electro-optical behaviours of the doped systems. Therefore, in this work, two aminoazobenzene (;A-dye;: hydrogen bond donor) and dimethyl-aminoazobenzene (;B-dye;) dyes with different compositional percentages in liquid crystal host were used. Electro-optical Kerr behaviour, the pre-transition temperature and third order nonlinear susceptibility were investigated. The obtained results effectively revealed that type of interactions between the dye and liquid crystal is determinative of behavioral difference of doped system, compared to pure liquid crystal. Also, pre-transitional behaviour and thereupon Kerr electro-optical responses were affected by formed interactions into doped systems. In other words, it will be shown that addition of any dopants in liquid crystal, regardless of the nature of interactions, cannot cause appropriate electro-optical responses. In fact, type of dye, nature of interactions between dopant and liquid crystalline host as well as concentration of dye are the key factors in selecting the appropriate liquid crystal and dopant dye.

  5. Third-order optical nonlinearities in bulk and fs-laser inscribed waveguides in strengthened alkali aluminosilcate glass

    NASA Astrophysics Data System (ADS)

    Almeida, Gustavo F. B.; Almeida, Juliana M. P.; Martins, Renato J.; De Boni, Leonardo; Arnold, Craig B.; Mendonca, Cleber R.

    2018-01-01

    The development of advanced photonics devices requires materials with large optical nonlinearities, fast response times and high optical transparency, while at the same time allowing for the micro/nano-processing needed for integrated photonics. In this context, glasses have been receiving considerable attention given their relevant optical properties which can be specifically tailored by compositional control. Corning Gorilla® Glass (strengthened alkali aluminosilicate glass) is well-known for its use as a protective screen in mobile devices, and has attracted interest as a potential candidate for optical devices. Therefore, it is crucial not only to expand the knowledge on the fabrication of waveguides in Gorilla Glass under different regimes, but also to determine its nonlinear optical response, both using fs-laser pulses. Thus, this paper reports, for the first time, characterization of the third-order optical nonlinearities of Gorilla Glass, as well as linear and nonlinear characterization of waveguide written with femtosecond pulses under the low repetition rate regime (1 kHz).

  6. Optical Kerr effect in graphene: Theoretical analysis of the optical heterodyne detection technique

    NASA Astrophysics Data System (ADS)

    Savostianova, N. A.; Mikhailov, S. A.

    2018-04-01

    Graphene is an atomically thin two-dimensional material demonstrating strong optical nonlinearities, including harmonics generation, four-wave mixing, Kerr, and other nonlinear effects. In this paper we theoretically analyze the optical heterodyne detection (OHD) technique of measuring the optical Kerr effect (OKE) in two-dimensional crystals and show how to relate the quantities measured in such experiments with components of the third-order conductivity tensor σαβ γ δ (3 )(ω1,ω2,ω3) of the two-dimensional crystal. Using results of a recently developed quantum theory of the third-order nonlinear electrodynamic response of graphene, we analyze the frequency, charge carrier density, temperature, and other dependencies of the OHD-OKE response of this material. We compare our results with a recent OHD-OKE experiment in graphene and find good agreement between the theory and experiment.

  7. Third order nonlinear optical properties of Mn doped CeO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Mani Rahulan, K.; Angeline Little Flower, N.; Annie Sujatha, R.; Mohana Priya, P.; Gopalakrishnan, C.

    2018-05-01

    Mn doped CeO2 nanoparticles with different ratios of Mn were synthesized by hydrothermal method and their structural properties were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). XRD patterns revealed that the peaks are highly crystalline structure with no segregation of Mn. The surface morphology from SEM reveals that particle size decreases with increase in Mn concentration. Nonlinear optical studies of the samples were measured by single-beam open aperture Z-scan technique using 5 ns laser pulses at 532 nm. The measured optical nonlinearity of all the samples exhibit typical third order nonlinear optical behavior including two-photon absorption (2 PA) and reverse saturable absorption (RSA). The experimental results show that the presence of RSA in these nanoparticles makes them a promising material for the fabrication of optical limiting devices. .

  8. Radiative Susceptibility of Cloudy Atmospheres to Droplet Number Perturbations: 1. Theoretical Analysis and Examples from MODIS

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; Oreopoulos, Lazaros

    2008-01-01

    Theoretical and satellite-based assessments of the sensitivity of broadband shortwave radiative fluxes in cloudy atmospheres to small perturbations in the cloud droplet number concentration (N) of liquid water clouds under constant water conditions are performed. Two approaches to study this sensitivity are adopted: absolute increases in N, for which the radiative response is referred to as absolute cloud susceptibility, and relative increases in N or relative cloud susceptibility. Estimating the former is more challenging as it requires an assumed value for either cloud liquid water content or geometrical thickness; both susceptibilities require an assumed relationship between the droplet volume and effective radius. Expanding upon previous susceptibility studies, present radiative calculations include the effect of AN perturbations on droplet asymmetry parameter and single-scattering albedo, in addition to extinction. Absolute cloud susceptibility has a strong nonlinear dependence on the droplet effective radius as expected, while relative cloud susceptibility is primarily dependent on optical thickness. Molecular absorption and reflecting surfaces both reduce the relative contribution of the cloud to the top-of-atmosphere (TOA) flux and therefore also reduce the TOA albedo susceptibility. Transmittance susceptibilities are negative with absolute values similar to albedo susceptibility, while atmospheric absorptance susceptibilities are about an order of magnitude smaller than albedo susceptibilities and can be either positive or negative. Observation-based susceptibility calculations are derived from MODIS pixel-level retrievals of liquid water cloud optical thickness, effective radius, and cloud top temperature; two data granule examples are shown. Susceptibility quantifies the aerosol indirect effect sensitivity in a way that can be easily computed from model fields. As such, susceptibilities derived from MODIS observations provide a higher-order test of model cloud properties used for indirect effect studies. MODIS-derived global distributions of cloud susceptibility and radiative forcing calculations are presented in a companion paper.

  9. Nonlinear Pauli susceptibilities in Sr 3 Ru 2 O 7 and universal features of itinerant metamagnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shivaram, B. S.; Luo, Jing; Chern, Gia-Wei

    We report, for the first time, measurements of the third order, x 3 and fifth order, x 5, susceptibilities in an itinerant oxide metamagnet, Sr 3Ru 2O 7 for magnetic fields both parallel and perpendicular to the c-axis. These susceptibilities exhibit maxima in their temperature dependence such that T 1 ≈ 2T 3 ≈ 4T 5 where the T i are the position in temperature where a peak in the i-th order susceptibility occurs. These features taken together with the scaling of the critical field with the temperature T 1 observed in a diverse variety of itinerant metamagnets find amore » natural explanation in a single band model with one Van Hove singularity (VHS) and onsite repulsion U. The separation of the VHS from the Fermi energy V, sets a single energy scale, which is the primary driver for the observed features of itinerant metamagnetism at low temperatures.« less

  10. Nonlinear Pauli susceptibilities in Sr 3 Ru 2 O 7 and universal features of itinerant metamagnetism

    DOE PAGES

    Shivaram, B. S.; Luo, Jing; Chern, Gia-Wei; ...

    2018-03-12

    We report, for the first time, measurements of the third order, x 3 and fifth order, x 5, susceptibilities in an itinerant oxide metamagnet, Sr 3Ru 2O 7 for magnetic fields both parallel and perpendicular to the c-axis. These susceptibilities exhibit maxima in their temperature dependence such that T 1 ≈ 2T 3 ≈ 4T 5 where the T i are the position in temperature where a peak in the i-th order susceptibility occurs. These features taken together with the scaling of the critical field with the temperature T 1 observed in a diverse variety of itinerant metamagnets find amore » natural explanation in a single band model with one Van Hove singularity (VHS) and onsite repulsion U. The separation of the VHS from the Fermi energy V, sets a single energy scale, which is the primary driver for the observed features of itinerant metamagnetism at low temperatures.« less

  11. Nonlinear susceptibilities of finite conjugated organic polymers

    NASA Technical Reports Server (NTRS)

    Beratan, David N.; Onuchic, Jose Nelson; Perry, Joseph W.

    1987-01-01

    Tight-binding calculations of the length dependence of the third-order molecular hyperpolarizability for polyenes and polyynes are reported. The pi-electron wave functions were determined by exploiting the limited translational symmetry of the molecules. Perturbation theory was used to calculate the longitudinal component of the electronic nonresonant hyperpolarizability. This is the first two-'band' calculation of third-order hyperpolarizabilities on finite pi-electron systems of varying length. In contrast to the results of the one-'band' models, the hyperpolarizability densities increase rapidly and then, after about 10-15 repeating units, approach an asymptotic value.

  12. Second-harmonic generation in substoichiometric silicon nitride layers

    NASA Astrophysics Data System (ADS)

    Pecora, Emanuele; Capretti, Antonio; Miano, Giovanni; Dal Negro, Luca

    2013-03-01

    Harmonic generation in optical circuits offers the possibility to integrate wavelength converters, light amplifiers, lasers, and multiple optical signal processing devices with electronic components. Bulk silicon has a negligible second-order nonlinear optical susceptibility owing to its crystal centrosymmetry. Silicon nitride has its place in the microelectronic industry as an insulator and chemical barrier. In this work, we propose to take advantage of silicon excess in silicon nitride to increase the Second Harmonic Generation (SHG) efficiency. Thin films have been grown by reactive magnetron sputtering and their nonlinear optical properties have been studied by femtosecond pumping over a wide range of excitation wavelengths, silicon nitride stoichiometry and thermal processes. We demonstrate SHG in the visible range (375 - 450 nm) using a tunable 150 fs Ti:sapphire laser, and we optimize the SH emission at a silicon excess of 46 at.% demonstrating a maximum SHG efficiency of 4x10-6 in optimized films. Polarization properties, generation efficiency, and the second order nonlinear optical susceptibility are measured for all the investigated samples and discussed in terms of an effective theoretical model. Our findings show that the large nonlinear optical response demonstrated in optimized Si-rich silicon nitride materials can be utilized for the engineering of nonlinear optical functions and devices on a Si chip.

  13. Reverse saturable absorption studies in polymerized indole - Effect of polymerization in the phenomenal enhancement of third order optical nonlinearity

    NASA Astrophysics Data System (ADS)

    Jayakrishnan, K.; Joseph, Antony; Bhattathiripad, Jayakrishnan; Ramesan, M. T.; Chandrasekharan, K.; Siji Narendran, N. K.

    2016-04-01

    We report our results on the identification of large order enhancement in nonlinear optical coefficients of polymerized indole and its comparative study with reference to its monomer counterpart. Indole monomer shows virtually little third order effects whereas its polymerized version exhibits phenomenal increase in its third order nonlinear optical parameters such as nonlinear refractive index and nonlinear absorption. Open aperture Z-scan trace of polyindole done with Q-switched Nd:YAG laser source (532 nm, 7 ns), shows β value as high as 89 cm/GW at a beam energy of 0.83 GW/cm2. Closed aperture Z-scan done at identical energies reveals nonlinear refractive index of the order of -3.55 × 10-17 m2/W. Band gap measurement of polyindole was done with UV-Vis absorption spectra and compared with that of Indole. FTIR spectra of the monomer and polymerized versions were recorded and relevant bond formations were confirmed from the characteristic peaks. Photo luminescent spectra were investigated to know the emission features of both molecules. Beam energy (I0) versus nonlinear absorption coefficient (β) plot indicates reverse saturable type of absorption behaviour in polyindole molecules. Degenerate Four Wave Mixing (DFWM) plot of polyindole reveals quite a cubic dependence between probe and phase conjugate signal and the resulting χ(3) is comparable with Z-scan results. Optical limiting efficiency of polyindole is comparable with certain derivatives of porphyrins, phthalocyanines and graphene oxides.

  14. Optical, structural and nonlinear optical properties of laser ablation synthesized Ag nanoparticles and photopolymer nanocomposites based on them

    NASA Astrophysics Data System (ADS)

    Zulina, Natalia A.; Pavlovetc, Ilia M.; Baranov, Mikhail A.; Denisyuk, Igor Yu.

    2017-03-01

    In this work Ag nanoparticles (NPs) stable colloid solution were prepared by laser ablation of chemically pure silver rod in liquid monomer isodecyl acrylate (IDA). Sizes of obtained nanoparticles were determined by scanning electron microscope and vary from 27 to 120 nm. Nanocomposites films were prepared from obtained stable colloid solution of AgNPs by photocuring. For aliphatic polymer IDA long molecules cross-linking Diurethane dimethacrylate, 1,6-Hexandiol diacrylate and Tetra (ethylene glycol) diacrylate were used. Prepared nanomaterials exhibit strong third-order nonlinear optical responses, which was estimated by using z-scan technique. The third-order nonlinear optical coefficients of the studied nanocomposites were found to be up to Reχ(3)=1.31×10-5 (esu) and Imχ(3)=7.64×10-5 (esu).

  15. Preserving Simplecticity in the Numerical Integration of Linear Beam Optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Christopher K.

    2017-07-01

    Presented are mathematical tools and methods for the development of numerical integration techniques that preserve the symplectic condition inherent to mechanics. The intended audience is for beam physicists with backgrounds in numerical modeling and simulation with particular attention to beam optics applications. The paper focuses on Lie methods that are inherently symplectic regardless of the integration accuracy order. Section 2 provides the mathematically tools used in the sequel and necessary for the reader to extend the covered techniques. Section 3 places those tools in the context of charged-particle beam optics; in particular linear beam optics is presented in terms ofmore » a Lie algebraic matrix representation. Section 4 presents numerical stepping techniques with particular emphasis on a third-order leapfrog method. Section 5 discusses the modeling of field imperfections with particular attention to the fringe fields of quadrupole focusing magnets. The direct computation of a third order transfer matrix for a fringe field is shown.« less

  16. Nonlinear optical response in graphene nanoribbons: The critical role of electron scattering

    NASA Astrophysics Data System (ADS)

    Karimi, F.; Davoody, A. H.; Knezevic, I.

    2018-06-01

    Nonlinear nanophotonics has many potential applications, such as in mode locking, frequency-comb generation, and all-optical switching. The development of materials with large nonlinear susceptibility is key to realizing nonlinear nanophotonics. Nanostructured graphene systems, such as graphene nanoribbons and nanoislands, have been predicted to have a strong plasmon-enhanced nonlinear optical behavior in the nonretarded regime. Plasmons concentrate the light field down to subwavelength scales and can enhance the nonlinear optical effects; however, plasmon resonances are narrowband and sensitive to the nanostructure geometry. Here we show that graphene nanoribbons, particularly armchair graphene nanoribbons, have a remarkably strong nonlinear optical response in the long-wavelength regime and over a broad frequency range, from terahertz to the near infrared. We use a quantum-mechanical master equation with a detailed treatment of scattering and show that, in the retarded regime, electron scattering has a critical effect on the optical nonlinearity of graphene nanoribbons, which cannot be captured via the commonly used relaxation-time approximation. At terahertz frequencies, where intraband optical transitions dominate, the strong nonlinearity (in particular, third-order Kerr nonlinearity) stems from the jagged shape of the electron energy distribution, caused by the interband electron scattering mechanisms along with the intraband inelastic scattering mechanisms. We show that the relaxation-time approximation fails to capture this quantum-mechanical phenomenon and results in a significant underestimation of the intraband nonlinearity. At the midinfrared to near infrared frequencies, where interband optical transitions dominate, the Kerr nonlinearity is significantly overestimated within the relaxation-time approximation. These findings unveil the critical effect of electron scattering on the optical nonlinearity of nanostructured graphene, and also underscore the capability of this class of materials for nonlinear nanophotonic applications.

  17. Pulsed laser induced optical nonlinearities in undoped, copper doped and chromium doped CdS quantum dots

    NASA Astrophysics Data System (ADS)

    Sharma, Dimple; Malik, B. P.; Gaur, Arun

    2015-04-01

    Quantum dots (QDs) of CdS, Cu doped and Cr doped CdS were synthesized through chemical co- precipitation method. The synthesized QDs have been characterized by x-ray diffraction, ultraviolet visible absorption spectroscopy. The diameters of QDs were calculated using Debye-Scherrer’s formula and Brus equation. They are found to be in 3.5-3.8 nm range. The nonlinear properties has been studied by the open and closed aperture Z-scan technique using frequency double Nd:YAG laser. The nonlinear refractive index (n2), nonlinear absorption coefficient (β), third order nonlinear susceptibilities (χ3) of QDs has been calculated. It has been found that the values of nonlinear parameters are higher for doped QDs than undoped CdS QDs. Hence they can be regarded as potential material for the development of optoelectronics and photonics devices.

  18. Role of annealing temperatures on structure polymorphism, linear and nonlinear optical properties of nanostructure lead dioxide thin films

    NASA Astrophysics Data System (ADS)

    Zeyada, H. M.; Makhlouf, M. M.

    2016-04-01

    The powder of as synthesized lead dioxide (PbO2) has polycrystalline structure β-PbO2 phase of tetragonal crystal system. It becomes nanocrystallites α-PbO2 phase with orthorhombic crystal system upon thermal deposition to form thin films. Annealing temperatures increase nanocrystallites size from 28 to 46 nm. The optical properties of α-PbO2 phase were calculated from absolute values of transmittance and reflectance at nearly normal incidence of light by spectrophotometer measurements. The refractive and extinction indices were determined and showed a response to annealing temperatures. The absorption coefficient of α-PbO2 films is >106 cm-1 in UV region of spectra. Analysis of the absorption coefficient spectra near optical edge showed indirect allowed transition. Annealing temperature decreases the value of indirect energy gap for α-PbO2 films. The dispersion parameters such as single oscillator energy, dispersion energy, dielectric constant at high frequency and lattice dielectric constant were calculated and its variations with annealing temperatures are reported. The nonlinear refractive index (n2), third-order nonlinear susceptibility (χ(3)) and nonlinear absorption coefficient (βc) were determined. It was found that χ(3), n2 and β increase with increasing photon energy and decrease with increasing annealing temperature. The pristine film of α-PbO2 has higher values of nonlinear optical constants than for annealed films; therefore it is suitable for applications in manufacturing nonlinear optical devices.

  19. Plasma impact on structural, morphological and optical properties of copper acetylacetonate thin films.

    PubMed

    Abdel-Khalek, H; El-Samahi, M I; El-Mahalawy, Ahmed M

    2018-06-15

    The influence of plasma exposure on structural, morphological and optical properties of copper (II) acetylacetonate thin films deposited by thermal evaporation technique was investigated. Copper (II) acetylacetonate as-grown thin films were exposed to the atmospheric plasma for different times. The exposure of as-grown cu(acac) 2 thin film to atmospheric plasma for 5min modified its structural, morphological and optical properties. The effect of plasma exposure on structure and roughness of cu(acac) 2 thin films was evaluated by XRD and AFM techniques, respectively. The XRD results showed an increment in crystallinity due to exposure for 5min, but, when the exposure time reaches 10min, the film was transformed to an amorphous state. The AFM results revealed a strong modification of films roughness when the average roughness decreased from 63.35nm to ~1nm as a result of interaction with plasma. The optical properties of as-grown and plasma exposured cu(acac) 2 thin films were studied using spectrophotometric method. The exposure of cu(acac) 2 thin films to plasma produced the indirect energy gap decrease from 3.20eV to 2.67eV for 10min exposure time. The dispersion parameters were evaluated in terms of single oscillator model for as-grown and plasma exposured thin films. The influence of plasma exposure on third order optical susceptibility was studied. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Investigation of third-order nonlinear and optical power limiting properties of terphenyl derivatives

    NASA Astrophysics Data System (ADS)

    Kamath, Laxminarayana; Manjunatha, K. B.; Shettigar, Seetharam; Umesh, G.; Narayana, B.; Samshuddin, S.; Sarojini, B. K.

    2014-03-01

    A series of new chalcones containing terphenyl as a core and with different functional groups has been successfully synthesized by Claisen-Schmidt condensation method in search of new nonlinear optical (NLO) materials. Molecular structural characterization for the compounds was achieved by FTIR and single crystal X-ray diffraction. The third-order NLO absorption and refraction coefficients were simultaneously determined by Z-scan technique. The measurements were performed at 532 nm with 7 ns laser pulses using a Nd:YAG laser in solution form. The Z-scan experiments reveal that the compounds exhibit strong nonlinear refraction coefficient of the order 10-11 esu and the molecular two photon absorption cross section is 10-46 cm4 s/photon. The results also show that the structures of the compounds have great impact on NLO properties. The compounds show optical power limiting behavior due to two-photon absorption (TPA).

  1. Synthesis, Hirshfeld surface analysis, laser damage threshold, third-order nonlinear optical property and DFT computation studies of Dichlorobis(DL-valine)zinc(II): A spectroscopic approach

    NASA Astrophysics Data System (ADS)

    Chitrambalam, S.; Manimaran, D.; Hubert Joe, I.; Rastogi, V. K.; Ul Hassan, Israr

    2018-01-01

    The organometallic crystal of Dichlorobis(DL-valine)zinc(II) was grown by solution growth method. The computed structural geometry, vibrational wavenumbers and UV-visible spectra were compared with experimental results. Hirshfeld surface map was used to locate electron density and the fingerprint plots percentages are responsible for the stabilization of intermolecular interactions in molecular crystal. The second-order hyperpolarizability value of the molecule was also calculated at density functional theory method. The surface resistance and third-order nonlinear optical property of the crystal were studied by laser induced surface damage threshold and Z-scan techniques, respectively using Nd:YAG laser with wavelength 532 nm. The open aperture result exhibits the reverse saturation absorption, which indicate that this material has potential candidate for optical limiting and optoelectronic applications.

  2. Effect of temperature on the structural, linear, and nonlinear optical properties of MgO-doped graphene oxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Kimiagar, Salimeh; Abrinaei, Fahimeh

    2018-01-01

    Magnesium oxide (MgO)-graphene oxide (GO) nanocomposites were prepared by the hydrothermal method at different temperatures. The effect of growth temperature on the structural, linear, and nonlinear optical (NLO) parameters was investigated. The decoration of MgO on GO sheets was confirmed by X-ray diffraction, scanning electron microscopy, Fourier transform infrared, and UV-visible (UV-vis) spectroscopy analyses. The energy band-gaps of MgO-GO nanocomposites were calculated from UV-vis spectrum using Tauc plot. The NLO parameters of MgO-GO nanocomposites were calculated for the first time by the simple Z-scan technique with nanosecond Nd:YAG laser at 532 nm. The nonlinear absorption coefficient β and nonlinear refractive index n2 for MgO-GO nanocomposites at the laser intensity of 1.1×108 W/cm2 were measured to be in the order of 10-7 cm/W and 10-12 cm2/W, respectively. The third-order NLO susceptibility of MgO-GO nanocomposites was measured in the order of 10-9 esu. The results showed that MgO-GO structures have negative nonlinearity as well as good nonlinear two-photon absorption at 532 nm. Furthermore, the NLO parameters increased by the enhancement of the growth temperature. As the investigation of new materials plays an important role in the advancement of optoelectronics, MgO-GO nanocomposites possess potential applications in NLO devices.

  3. A physical optics/equivalent currents model for the RCS of trihedral corner reflectors

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; Polycarpou, Anastasis C.

    1993-01-01

    The scattering in the interior regions of both square and triangular trihedral corner reflectors is examined. The theoretical model presented combines geometrical and physical optics (GO and PO), used to account for reflection terms, with equivalent edge currents (EEC), used to account for first-order diffractions from the edges. First-order, second-order, and third-order reflection terms are included. Calculating the first-order reflection terms involves integrating over the entire surface of the illuminated plate. Calculating the second- and third-order reflection terms, however, is much more difficult because the illuminated area is an arbitrary polygon whose shape is dependent upon the incident angles. The method for determining the area of integration is detailed. Extensive comparisons between the high-frequency model, Finite-Difference Time-Domain (FDTD) and experimental data are used for validation of the radar cross section (RCS) of both square and triangular trihedral reflectors.

  4. Linear electro-optic effect in semiconductors: Ab initio description of the electronic contribution

    NASA Astrophysics Data System (ADS)

    Prussel, Lucie; Véniard, Valérie

    2018-05-01

    We propose an ab initio framework to derive the electronic part of the second-order susceptibility tensor for the electro-optic effect in bulk semiconductors. We find a general expression for χ(2 ) evaluated within time-dependent density-functional theory, including explicitly the band-gap corrections at the level of the scissors approximation. Excitonic effects are accounted for, on the basis of a simple scalar approximation. We apply our formalism to the computation of the electro-optic susceptibilities for several semiconductors, such as GaAs, GaN, and SiC. Taking into account the ionic contribution according to the Faust-Henry coefficient, we obtain a good agreement with experimental results. Finally, using different types of strain to break centrosymmetry, we show that high electro-optic coefficients can be obtained in bulk silicon for a large range of frequencies.

  5. Solitonic dynamics and excitations of the nonlinear Schrödinger equation with third-order dispersion in non-Hermitian PT-symmetric potentials.

    PubMed

    Chen, Yong; Yan, Zhenya

    2016-03-22

    Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields.

  6. Solitonic dynamics and excitations of the nonlinear Schrödinger equation with third-order dispersion in non-Hermitian PT-symmetric potentials

    PubMed Central

    Chen, Yong; Yan, Zhenya

    2016-01-01

    Solitons are of the important significant in many fields of nonlinear science such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid mechanics, and etc. The stable solitons have been captured not only theoretically and experimentally in both linear and nonlinear Schrödinger (NLS) equations in the presence of non-Hermitian potentials since the concept of the parity-time -symmetry was introduced in 1998. In this paper, we present novel bright solitons of the NLS equation with third-order dispersion in some complex -symmetric potentials (e.g., physically relevant -symmetric Scarff-II-like and harmonic-Gaussian potentials). We find stable nonlinear modes even if the respective linear -symmetric phases are broken. Moreover, we also use the adiabatic changes of the control parameters to excite the initial modes related to exact solitons to reach stable nonlinear modes. The elastic interactions of two solitons are exhibited in the third-order NLS equation with -symmetric potentials. Our results predict the dynamical phenomena of soliton equations in the presence of third-order dispersion and -symmetric potentials arising in nonlinear fiber optics and other physically relevant fields. PMID:27002543

  7. Third order nonlinear optical properties of graphene quantum dots under continuous wavelength regime at 532 nm

    NASA Astrophysics Data System (ADS)

    Kumara, K.; Shetty, T. C. S.; Patil, P. S.; Maidur, Shivaraj R.; Dharmaprakash, S. M.

    2018-04-01

    Graphene quantum dots (GQDs) have drawn more attention due to their multifunctional characteristics which can be used for various applications. However, literature on nonlinear optical (NLO) properties of GQDs is scarcely available. Therefore more investigations are required on NLO properties of GQDs. We report preparation of GQDs from pyrolysis method using citric acid as starting material. Third order nonlinear optical (TNLO) properties are studied using Z-scan technique employing continuous wavelength laser. Study reveals that GQD's show self defocusing effect. This is due to thermal heating of solvent which leads to negative nonlinear refractive index of the material. Open aperture (OA) Z-scan reveals reverse saturation absorption (RSA) nature of the material indicating optical limiting (OL) property. A broad UV absorbance spectrum reveals photoluminescence (PL) emission of the material which is independent of excitation wavelength.

  8. Synthesis, spectral and third-order nonlinear optical properties of terpyridine Zn(II) complexes based on carbazole derivative with polyether group

    NASA Astrophysics Data System (ADS)

    Kong, Ming; Liu, Yanqiu; Wang, Hui; Luo, Junshan; Li, Dandan; Zhang, Shengyi; Li, Shengli; Wu, Jieying; Tian, Yupeng

    2015-01-01

    Four novel Zn(II) terpyridine complexes (ZnLCl2, ZnLBr2, ZnLI2, ZnL(SCN)2) based on carbazole derivative group were designed, synthesized and fully characterized. Their photophysical properties including absorption and one-photon excited fluorescence, two-photon absorption (TPA) and optical power limiting (OPL) were further investigated systematically and interpreted on the basis of theoretical calculations (TD-DFT). The influences of different solvents on the absorption and One-Photon Excited Fluorescence (OPEF) spectral behavior, quantum yields and the lifetime of the chromophores have been investigated in detail. The third-order nonlinear optical (NLO) properties were investigated by open/closed aperture Z-scan measurements using femtosecond pulse laser in the range from 680 to 1080 nm. These results revealed that ZnLCl2 and ZnLBr2 exhibited strong two-photon absorption and ZnLCl2 showed superior optical power limiting property.

  9. Investigation of local strain distribution and linear electro-optic effect in strained silicon waveguides.

    PubMed

    Chmielak, Bartos; Matheisen, Christopher; Ripperda, Christian; Bolten, Jens; Wahlbrink, Thorsten; Waldow, Michael; Kurz, Heinrich

    2013-10-21

    We present detailed investigations of the local strain distribution and the induced second-order optical nonlinearity within strained silicon waveguides cladded with a Si₃N₄ strain layer. Micro-Raman Spectroscopy mappings and electro-optic characterization of waveguides with varying width w(WG) show that strain gradients in the waveguide core and the effective second-order susceptibility χ(2)(yyz) increase with reduced w(WG). For 300 nm wide waveguides a mean effective χ(2)(yyz) of 190 pm/V is achieved, which is the highest value reported for silicon so far. To gain more insight into the origin of the extraordinary large optical second-order nonlinearity of strained silicon waveguides numerical simulations of edge induced strain gradients in these structures are presented and discussed.

  10. Magnetic, electronic, dielectric and optical properties of Pr(Ca:Sr)MnO 3

    NASA Astrophysics Data System (ADS)

    Sichelschmidt, J.; Paraskevopoulos, M.; Brando, M.; Wehn, R.; Ivannikov, D.; Mayr, F.; Pucher, K.; Hemberger, J.; Pimenov, A.; Krug von Nidda, H.-A.; Lunkenheimer, P.; Ivanov, V. Yu.; Mukhin, A. A.; Balbashov, A. M.; Loidl, A.

    2001-03-01

    The charge-ordered perovskite Pr0.65Ca0.28Sr0.07MnO3 was investigated by means of magnetic susceptibility, specific heat, dielectric and optical spectroscopy and electron-spin resonance techniques. Under moderate magnetic fields, the charge order melts yielding colossal magnetoresistance effects with changes of the resistivity over eleven orders of magnitude. The optical conductivity is studied from audio frequencies far into the visible spectral regime. Below the phonon modes hopping conductivity is detected. Beyond the phonon modes the optical conductivity is explained by polaronic excitations out of a bound state. ESR techniques yield detailed informations on the (H,T ) phase diagram and reveal a broadening of the linewidth which can be modeled in terms of activated polaron hopping.

  11. Synthesis, crystal structure and growth of a new inorganic- organic hybrid compound for nonlinear optical applications: Aquadiiodo (3-aminopropanoic acid) cadmium (II)

    NASA Astrophysics Data System (ADS)

    Boopathi, K.; Babu, S. Moorthy; Jagan, R.; Ramasamy, P.

    2017-12-01

    The new inorganic-organic hybrid material aquadiiodo (3-aminopropanoic acid) cadmium (II) [ADI (3-AP) Cd] has been successfully synthesized and good quality crystals have been grown by slow evaporation solution technique. The structure was determined by single crystal X-ray diffraction at room temperature. The compound crystallizes in monoclinic crystal system with centro symmetric space group P21/c and four molecules in the unit cell. The structure of the title compound was further confirmed by 1H and 13C nuclear magnetic resonance spectral analysis. FT-IR spectroscopy was used to confirm the presence of various functional groups in the compound. The transmittance and optical parameters of the crystal were studied by UV- Visible-NIR spectroscopy. The thermal stability of the grown crystal was evaluated using thermogravimetric and differential thermal analyses. Mechanical hardness has been identified by Vickers micro hardness study and work hardening coefficient was calculated. Dielectric measurement was carried out as a function of frequency and results are discussed. The growth mechanism of the crystal was assessed by chemical etching studies. The third-order nonlinear optical susceptibility of [ADI (3-AP) Cd] was derived using the Z-scan technique, and it was 3.24955 × 10-8 esu. The positive nonlinear refractive index 2.48505 × 10-11 m2/W, is an indication of self-defocusing optical nonlinearity of the sample. It is believed that the [ADI (3-AP) Cd] is a promising new candidate for developing efficient nonlinear optical and optical power limiting devices.

  12. Two Photon Absorption in a Novel Nano-optical Material Based on the Nonconjugated Conductive Polymer, Poly(beta-pinene)

    NASA Astrophysics Data System (ADS)

    Titus, Jitto; Thakur, Mrinal

    2006-03-01

    As recently reported, the electrical conductivity of the nonconjugated polymer, poly(beta-pinene) increases by more than ten orders of magnitude upon doping with iodine [1]. The FTIR, optical absorption and EPR measurements have shown that radical cations are formed upon doping and charge-transfer involving the isolated double-bond in poly(beta-pinene). In this report, exceptionally large two-photon absorption in iodine-doped poly(beta-pinene) will be discussed. The linear absorption spectrum of medium-doped poly(beta-pinene) have peaks at about 4 eV and 3.1 eV. The first peak is due to the radical cation and the second due to the charge-transfer between the double bond and the dopant. The two-photon absorption of the medium-doped polymer has been measured at 730-860 nm using open-aperture z-scan with 150 femtosecond pulses from a Ti:Sapphire laser. A two-photon peak at about 1.5 eV with a magnitude of more than 1 cm/MW has been observed. The large magnitude of the two-photon absorption coefficient which is proportional to the imaginary part of the third order susceptibility has been attributed to the special structure of the radical cation and the confinement within a sub-nanometer dimension. [1] Vippa, Rajagopalan and Thakur, J. Poly. Sci. Part B: Poly. Phys., 43, 3695 (2005).

  13. Third-order nonlinear optical properties of acid green 25 dye by Z-scan method

    NASA Astrophysics Data System (ADS)

    Jeyaram, S.; Geethakrishnan, T.

    2017-03-01

    Third-order nonlinear optical (NLO) properties of aqueous solutions of an anthraquinone dye (Acid green 25 dye, color index: 61570) have been studied by Z-scan method with a 5 mW continuous wave (CW) diode laser operating at 635 nm. The nonlinear refractive index (n2) and the absorption coefficient (β) have been evaluated respectively from the closed and open aperture Z-scan data and the values of these parameters are found to increase with increase in concentration of the dye solution. The negative sign of the observed nonlinear refractive index (n2) indicates that the aqueous solution of acid green 25 dye exhibits self-defocusing type optical nonlinearity. The mechanism of the observed nonlinear absorption (NLA) and nonlinear refraction (NLR) is attributed respectively to reverse saturable absorption (RSA) and thermal nonlinear effects. The magnitudes of n2 and β are found to be of the order of 10-7 cm2/W and 10-3 cm/W respectively. With these experimental results, the authors suggest that acid green 25 dye may have potential applications in nonlinear optics.

  14. Explicit formulation of second and third order optical nonlinearity in the FDTD framework

    NASA Astrophysics Data System (ADS)

    Varin, Charles; Emms, Rhys; Bart, Graeme; Fennel, Thomas; Brabec, Thomas

    2018-01-01

    The finite-difference time-domain (FDTD) method is a flexible and powerful technique for rigorously solving Maxwell's equations. However, three-dimensional optical nonlinearity in current commercial and research FDTD softwares requires solving iteratively an implicit form of Maxwell's equations over the entire numerical space and at each time step. Reaching numerical convergence demands significant computational resources and practical implementation often requires major modifications to the core FDTD engine. In this paper, we present an explicit method to include second and third order optical nonlinearity in the FDTD framework based on a nonlinear generalization of the Lorentz dispersion model. A formal derivation of the nonlinear Lorentz dispersion equation is equally provided, starting from the quantum mechanical equations describing nonlinear optics in the two-level approximation. With the proposed approach, numerical integration of optical nonlinearity and dispersion in FDTD is intuitive, transparent, and fully explicit. A strong-field formulation is also proposed, which opens an interesting avenue for FDTD-based modelling of the extreme nonlinear optics phenomena involved in laser filamentation and femtosecond micromachining of dielectrics.

  15. Absolute second order nonlinear susceptibility of Pt nanowire arrays on MgO faceted substrates with various cross-sectional shapes

    NASA Astrophysics Data System (ADS)

    Ogata, Yoichi; Mizutani, Goro

    2013-08-01

    We have measured optical second harmonic generation (SHG) intensity from three types of Pt nanowires with 7 nm widths of elliptical and boomerang cross-sectional shapes and with 2 nm width elliptical cross-sectional shapes on the MgO faceted templates. From the SHG intensities, we calculated the absolute value of the nonlinear susceptibility χ(2) integrated in the direction of the wire-layer thickness. The tentatively obtained bulk χ(2)B of the wire layer was very large, approaching the value of the well-known nonlinear optical material BaTiO3.

  16. The second– and third– order nonlinear optical properties and electronic transition of a NLO chromophore: A DFT study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altürk, Sümeyye, E-mail: sumeyye-alturk@hotmail.com; Avci, Davut, E-mail: davci@sakarya.edu.tr; Tamer, Ömer, E-mail: omertamer@sakarya.edu.tr

    2016-03-25

    It is well known that the practical applications of second-order and third-order nonlinear optical (NLO) materials have been reported in modern technology, such as optical data processing, transmission and storage, etc. In this respect, the linear and nonlinear optical parameters (the molecular static polarizability (α), and the first–order static hyperpolarizability (β{sub 0}), the second–order static hyperpolarizability (γ)), UV-vis spectra and HOMO and LUMO energies of 2-(1′-(4’’’-Methoxyphenyl)-5′-(thien-2″-yl)pyrrol-2′-yl)-1,3-benzothiazole were investigated by using the HSEh1PBE/6–311G(d,p) level of density functional theory. The UV–vis spectra were simulated using TD/HSEh1PBE/6– 311G(d,p) level, and the major contributions to the electronic transitions were obtained. The molecular hardness (η)more » and electronegativity (χ) parameters were also obtained by using molecular frontier orbital energies. The NLO parameters of the title compound were calculated, and obtained data were compared with that of para-Nitroaniline (pNA) which is a typical NLO material and the corresponding experimental data. Obtained data of the chromosphere display significant molecular second-and third-nonlinearity.« less

  17. Influence of tartaric acid on linear-nonlinear optical and electrical properties of KH2PO4 crystal

    NASA Astrophysics Data System (ADS)

    Baig, M. I.; Anis, Mohd; Muley, G. G.

    2017-10-01

    KH2PO4 (KDOP) is widely demanded technological crystal for applications in laser driven photonic devices. Therefore, present article is focused to investigate the effect of tartaric acid (TA) on laser induced nonlinear optical properties of KDOP crystal. The optically transparent TA doped KDOP crystal of size 15 × 10 × 04 mm3 has been grown by slow solvent evaporation technique at 35 °C. The structural analysis of pure and TA doped KDOP crystal has been achieved by means of single crystal X-ray diffraction technique. The functional groups of TA doped KDOP crystal has been identified by means of Fourier transform infrared spectral analysis. The UV-visible studies have been performed to determine the optical transparency and evaluate the linear optical constants of pure and TA doped KDOP crystal. The Kurtz-Perry test has been employed to confirm the frequency doubling phenomenon of crystal and the SHG efficiency of TA doped KDOP crystal is found to be 5.68 times higher than that of standard KDP material. The Z-scan technique has been employed to explore the third order nonlinear optical (TONLO) refraction (n2), absorption (β) and susceptibility (χ3) of pure and TA doped KDOP crystal at 632.8 nm. The TA facilitated optical switching in TONLO response of KDOP crystal is found to be an interesting effect to examine. The laser damage threshold of TA doped KDOP crystal has been determined at 1064 nm using the Nd:YAG laser. The comparative electrical analysis on pure and TA doped KDOP crystal has been accomplished by means of dielectric and photoconductivity characterization studies.

  18. Third-order nonlinear electro-optic measurements in the smectic-? phase

    NASA Astrophysics Data System (ADS)

    Nowicka, Kamila; Bielejewska, Natalia

    2018-02-01

    The chiral smectic subphase with three-layer structure, ?, is now of great interest from the point of view of device technologies such as multistate or symmetric switching. We report that the unique nonlinear electro-optic response can serve as precise mark of the phase transition into three-layer structure. The problem is illustrated with the first and third harmonic electro-optic spectra. Furthermore, the characteristic response of the helical liquid crystal phases correlated with particular collective modes using the Debye-type relaxation method for the well-known prototype liquid crystal material (MHPOBC) are presented.

  19. Tunable room temperature THz sources based on nonlinear mixing in a hybrid optical and THz micro-ring resonator.

    PubMed

    Sinha, Raju; Karabiyik, Mustafa; Al-Amin, Chowdhury; Vabbina, Phani K; Güney, Durdu Ö; Pala, Nezih

    2015-03-24

    We propose and systematically investigate a novel tunable, compact room temperature terahertz (THz) source based on difference frequency generation in a hybrid optical and THz micro-ring resonator. We describe detailed design steps of the source capable of generating THz wave in 0.5-10 THz with a tunability resolution of 0.05 THz by using high second order optical susceptibility (χ((2))) in crystals and polymers. In order to enhance THz generation compared to bulk nonlinear material, we employ a nonlinear optical micro-ring resonator with high-Q resonant modes for infrared input waves. Another ring oscillator with the same outer radius underneath the nonlinear ring with an insulation of SiO2 layer supports the generated THz with resonant modes and out-couples them into a THz waveguide. The phase matching condition is satisfied by engineering both the optical and THz resonators with appropriate effective indices. We analytically estimate THz output power of the device by using practical values of susceptibility in available crystals and polymers. The proposed source can enable tunable, compact THz emitters, on-chip integrated spectrometers, inspire a broader use of THz sources and motivate many important potential THz applications in different fields.

  20. Tunable Room Temperature THz Sources Based on Nonlinear Mixing in a Hybrid Optical and THz Micro-Ring Resonator

    PubMed Central

    Sinha, Raju; Karabiyik, Mustafa; Al-Amin, Chowdhury; Vabbina, Phani K.; Güney, Durdu Ö.; Pala, Nezih

    2015-01-01

    We propose and systematically investigate a novel tunable, compact room temperature terahertz (THz) source based on difference frequency generation in a hybrid optical and THz micro-ring resonator. We describe detailed design steps of the source capable of generating THz wave in 0.5–10 THz with a tunability resolution of 0.05 THz by using high second order optical susceptibility (χ(2)) in crystals and polymers. In order to enhance THz generation compared to bulk nonlinear material, we employ a nonlinear optical micro-ring resonator with high-Q resonant modes for infrared input waves. Another ring oscillator with the same outer radius underneath the nonlinear ring with an insulation of SiO2 layer supports the generated THz with resonant modes and out-couples them into a THz waveguide. The phase matching condition is satisfied by engineering both the optical and THz resonators with appropriate effective indices. We analytically estimate THz output power of the device by using practical values of susceptibility in available crystals and polymers. The proposed source can enable tunable, compact THz emitters, on-chip integrated spectrometers, inspire a broader use of THz sources and motivate many important potential THz applications in different fields. PMID:25800287

  1. Sixth-order wave aberration theory of ultrawide-angle optical systems.

    PubMed

    Lu, Lijun; Cao, Yiqing

    2017-10-20

    In this paper, we develop sixth-order wave aberration theory of ultrawide-angle optical systems like fisheye lenses. Based on the concept and approach to develop wave aberration theory of plane-symmetric optical systems, we first derive the sixth-order intrinsic wave aberrations and the fifth-order ray aberrations; second, we present a method to calculate the pupil aberration of such kind of optical systems to develop the extrinsic aberrations; third, the relation of aperture-ray coordinates between adjacent optical surfaces is fitted with the second-order polynomial to improve the calculation accuracy of the wave aberrations of a fisheye lens with a large acceptance aperture. Finally, the resultant aberration expressions are applied to calculate the aberrations of two design examples of fisheye lenses; the calculation results are compared with the ray-tracing ones with Zemax software to validate the aberration expressions.

  2. Third-order nonlinear optical properties of phthalocyanines in solution and in polystyrene films

    NASA Astrophysics Data System (ADS)

    Reeves, Roger J.; Powell, Richard C.; Chang, Young H.; Ford, Warren T.; Zhu, Weiming

    1996-01-01

    Degenerate four-wave mixing (DFWM) measurements of third-order nonlinear optical (NLO) coefficients of metal-free, Cu, Pt, Pb and Bi octa(2-ethylhexyloxy) phthalocyanines (MPc's) were done with 20 ps duration laser pulses under resonant conditions at 532 nm in polystyrene films and under nonresonant conditions at 1064 nm in chloroform solutions. The NLO coefficients ξxxxx(3) show saturation with increasing incident intensity and no strong dependence on the central metal atom of the MPc below the saturation intensity. Optical delays of the probe-pulse up to 3 ns show an acoustic phonon response in both the polystyrene films and the chloroform solutions. An intensity-dependent absorption coefficient was measured by a pump/probe experiment and used in a simple model to qualitatively account for the saturation of ξ(3) measured by DFWM.

  3. Synthetic magnetism for photon fluids

    NASA Astrophysics Data System (ADS)

    Westerberg, N.; Maitland, C.; Faccio, D.; Wilson, K.; Öhberg, P.; Wright, E. M.

    2016-08-01

    We develop a theory of artificial gauge fields in photon fluids for the cases of both second-order and third-order optical nonlinearities. This applies to weak excitations in the presence of pump fields carrying orbital angular momentum and is thus a type of Bogoliubov theory. The resulting artificial gauge fields experienced by the weak excitations are an interesting generalization of previous cases and reflect the PT-symmetry properties of the underlying non-Hermitian Hamiltonian. We illustrate the observable consequences of the resulting synthetic magnetic fields for examples involving both second-order and third-order nonlinearities.

  4. Preparation, linear and NLO properties of DNA-CTMA-SBE complexes

    NASA Astrophysics Data System (ADS)

    Manea, Ana-Maria; Rau, Ileana; Kajzar, Francois; Meghea, Aurelia

    2013-10-01

    Synthesis of deoxyribonucleic acid (DNA) - was cetyltrimethylammonium (CTMA) - sea buckthorn extract (SBE) at different concentrations is decribed. The complexes were processed into good optical quality thin films by spin coating on different substrates such as: glass, silica and ITO covered glass substrates. SBE contains many bioactive substances that can be used in the treatment of several diseases, such as cardiovascular disease, cancer, and acute mountain sickness. The obtained thin films were characterized for their spectroscopic, fluorescent, linear and nonlinear optical properties as function of SBE concentration. The third-order nonlinear optical (NLO) properties of thin films were determined by the optical third-harmonic generation technique at 1 064.2 nm fundamental wavelength.

  5. Conservation laws and rogue waves for a higher-order nonlinear Schrödinger equation with variable coefficients in the inhomogeneous fiber

    NASA Astrophysics Data System (ADS)

    Du, Zhong; Tian, Bo; Wu, Xiao-Yu; Liu, Lei; Sun, Yan

    2017-07-01

    Subpicosecond or femtosecond optical pulse propagation in the inhomogeneous fiber can be described by a higher-order nonlinear Schrödinger equation with variable coefficients, which is investigated in the paper. Via the Ablowitz-Kaup-Newell-Segur system and symbolic computation, the Lax pair and infinitely-many conservation laws are deduced. Based on the Lax pair and a modified Darboux transformation technique, the first- and second-order rogue wave solutions are constructed. Effects of the groupvelocity dispersion and third-order dispersion on the properties of the first- and second-order rouge waves are graphically presented and analyzed: The groupvelocity dispersion and third-order dispersion both affect the ranges and shapes of the first- and second-order rogue waves: The third-order dispersion can produce a skew angle of the first-order rogue wave and the skew angle rotates counterclockwise with the increase of the groupvelocity dispersion, when the groupvelocity dispersion and third-order dispersion are chosen as the constants; When the groupvelocity dispersion and third-order dispersion are taken as the functions of the propagation distance, the linear, X-shaped and parabolic trajectories of the rogue waves are obtained.

  6. Effect of the internal optics on the outcome of custom-LASIK in an eye model

    NASA Astrophysics Data System (ADS)

    Manns, Fabrice; Ho, Arthur; Parel, Jean-Marie

    2004-07-01

    Purpose. The purpose of this study was to evaluate if changes in the aberration-contribution of the internal optics of the eye have a significant effect on the outcome of wavefront-guided corneal reshaping. Methods. The Navarro-Escudero eye model was simulated using optical analysis software. The eye was rendered myopic by shifting the plane of the retina. Custom-LASIK was simulated by changing the radius of curvature and asphericity of the anterior corneal surface of the eye model. The radius of curvature was adjusted to provide a retinal conjugate at infinity. Three approaches were used to determine the postoperative corneal asphericity: minimizing third-order spherical aberration, minimizing third-order coma, and maximizing the Strehl ratio. The aberration contribution of the anterior corneal surface and internal optics was calculated before and after each simulated customized correction. Results. For a 5.2mm diameter pupil, the contribution of the anterior corneal surface to third-order spherical aberration and coma (in micrometers) was 2.22 and 2.49 preop, -0.36 and 2.83 postop when spherical aberration is minimized, 5.88 and 1.10 postop when coma is minimized, and -0.63 and 2.91 postop when Strehl ratio is maximized. The contribution of the internal optics of the eye to spherical aberration and coma for the same four conditions was: 0.43 and -1.13, 0.37 and -1.10, 0.37 and -1.10 and 0.37 and -1.10, respectively. Conclusion. In the model eye, the contribution of the internal optics of the eye to the change in the ocular aberration state is negligible.

  7. Influence of Tm+3 concentration on the non-linear optical effects of the BiB3O6 : Tm3+ glass nanoparticle-doped polymer

    NASA Astrophysics Data System (ADS)

    Majchrowski, A.; Ebothe, J.; Ozga, K.; Kityk, I. V.; Reshak, A. H.; Lukasiewicz, T.; Brik, M. G.

    2010-01-01

    It is shown that BiB3O6 : Tm3+ glass nanoparticles incorporated into polymethylmethacrylate (PMMA) and polycarbonate (PC) polymer matrices show good second-order susceptibilities under bicolour coherent laser treatment. It is found that only during incorporation into highly polarized PC matrices could one observe an enhancement of the second-order susceptibilities with increasing laser treated power densities. The main increase is observed for all samples at power densities equal to about 0.4 GW cm-2. After passing this value there is a saturation of the output susceptibilities and even an abrupt decrease. The most striking feature is the achievement of second-order susceptibilities equal to about 5 pm V-1 for samples containing 4% nanoparticle (NP) content in the PC matrix. A further increase in the NP concentration to 6% leads to a decrease in susceptibility to 15%. In the case of PMMA matrices these changes do not exceed the background. The same situation is present for the pure BIBO and low-doped Tm materials. The effect is maximal for a low concentration of Tm—about 0.75%. In the case of bulk glasses the intensity dependences of the second-harmonic generation unambiguously show that the achieved maximal values of second-order susceptibilities do not exceed 3 pm V-1 for 0.5% Tm concentration.

  8. Deep tissue imaging of microfracture and non-displaced fracture of bone using the second and third near-infrared therapeutic windows

    NASA Astrophysics Data System (ADS)

    Sordillo, Laura A.; Pu, Yang; Sordillo, P. P.; Budansky, Yury; Alfano, Robert R.

    2014-03-01

    Near-infrared (NIR) light in the wavelengths of 700 nm to 2,000 nm has three NIR optical, or therapeutic, windows, which allow for deeper depth penetration in scattering tissue media. Microfractures secondary to repetitive stress, particularly in the lower extremities, are an important problem for military recruits and athletes. They also frequently occur in the elderly, or in patients taking bisphosphonates or denosumab. Microfractures can be early predictors of a major bone fracture. Using the second and third NIR therapeutic windows, we investigated the results from images of chicken bone and human tibial bone with microfractures and non-displaced fractures with and without overlying tissues of various thicknesses. Images of bone with microfractures and non-displaced fractures with tissue show scattering photons in the third NIR window with wavelengths between 1,650 nm and 1,870 nm are diminished and absorption is increased slightly from and second NIR windows. Results from images of fractured bones show the attenuation length of light through tissue in the third optical window to be larger than in the second therapeutic window. Use of these windows may aid in the detection of bone microfractures, and thus reduce the incidence of major bone fracture in susceptible groups.

  9. Role of annealing on the structural and optical properties of nanostructured diaceto bis-benzimidazole Mn(II) complex thin films

    NASA Astrophysics Data System (ADS)

    Praveen, P. A.; Babu, R. Ramesh; Ramamurthi, K.

    2017-02-01

    A coordination complex, manganese incorporated benzimidazole, thin films were prepared by chemical bath deposition method. Structural characterization of the deposited films, carried out by Fourier transform infrared spectroscopy, Raman and electron paramagnetic resonance spectral analyses, reveals the distorted tetrahedral environment of the metal ion with bis-benzimidazole ligand. Further the molecular composition of the deposited metal complex was estimated by energy-dispersive X-ray spectroscopy. The prepared thin films were thermally treated to study the effect of annealing temperature on the surface morphology and the results showed that the surface homogeneity of the films increased for thermally treated films up to 150 °C. But distortion and voids were observed for the films annealed at 200 °C. The Raman analysis reveals the molecular hydrogen bond distortion which leads to the evaporation of the metal complex from the thin film surface with respect to annealing temperature. The linear and nonlinear optical properties of the as prepared and annealed films were studied using ultraviolet-visible transmittance spectroscopy, second harmonic generation and Z-scan analyses. Films annealed at 150 °C show a better linear transmittance in the visible region and larger SHG efficiency and third order nonlinear susceptibility when compared with the other samples. Further, the film annealed at 150 °C was subjected to optical switching analysis and demonstrated to have an inverted switching behavior.

  10. Low power continuous-wave nonlinear optical effects in MoS2 nanosheets synthesized by simple bath ultrasonication

    NASA Astrophysics Data System (ADS)

    Karmakar, S.; Biswas, S.; Kumbhakar, P.

    2017-11-01

    Here, we have unveiled low power continuous-wave nonlinear optical properties of a few layer (4-12L) Molybdenum disulfide (MoS2) dispersion in N, N-dimethylformamide (DMF) by using spatial self-phase modulation technique. The effective third-order nonlinear susceptibility of the monolayer has been estimated to be as high as ∼10-8 esu. Also a low power technique of syntheses of stable and a few-layer (4-12L) MoS2 dispersion in DMF has been demonstrated here by utilizing ultrasonication bath treatment combined with the natural gravitation sedimentation effect starting from the bulk MoS2 powder. The synthesized samples are exhibiting interesting linear optical absorption and photoluminescence (PL) after exfoliation to a few layer nanosheets (NSs) and the exciton binding energies have been determined from PL emission data in association with 2D hydrogenic Bohr-exciton model. The specific capacitances (Csp) of the electrode prepared with MoS2 NSs have been measured by electrochemical measurement and the highest value of Csp is 382 Fg-1 for 4L sample. The reported intensity driven change of Csp in the presence of light emitted from light emitting diodes of various colours is unprecedented. The demonstrated technique can be scaled up for large scale and easy synthesis of other 2D materials having applications in optoelectronics and energy devices.

  11. Linear and nonlinear optical properties of Sb-doped GeSe2 thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-Ying; Chen, Fen; Lu, Shun-Bin; Wang, Yong-Hui; Shen, Xiang; Dai, Shi-Xun; Nie, Qiu-Hua

    2015-06-01

    Sb-doped GeSe2 chalcogenide thin films are prepared by the magnetron co-sputtering method. The linear optical properties of as-deposited films are derived by analyzing transmission spectra. The refractive index rises and the optical band gap decreases from 2.08 eV to 1.41 eV with increasing the Sb content. X-ray photoelectron spectra further confirm the formation of a covalent Sb-Se bond. The third-order nonlinear optical properties of thin films are investigated under femtosecond laser excitation at 800 nm. The results show that the third-order nonlinear optical properties are enhanced with increasing the concentration of Sb. The nonlinear refraction indices of these thin films are measured to be on the order of 10-18 m2/W with a positive sign and the nonlinear absorption coefficients are obtained to be on the order of 10-10 m/W. These excellent properties indicate that Sb-doped Ge-Se films have a good prospect in the applications of nonlinear optical devices. Project supported by the National Key Basic Research Program of China (Grant No. 2012CB722703), the National Natural Science Foundation of China (Grant No. 61377061), the Young Leaders of Academic Climbing Project of the Education Department of Zhejiang Province, China (Grant No. pd2013092), the Program for Innovative Research Team of Ningbo City, China (Grant No. 2009B217), and the K. C. Wong Magna Fund in Ningbo University, China.

  12. Growth, optical, thermal, mechanical and dielectric studies of sodium succinate hexahydrate (β phase) single crystal: A promising third order NLO material

    NASA Astrophysics Data System (ADS)

    Mageshwari, P. S. Latha; Priya, R.; Krishnan, S.; Joseph, V.; Das, S. Jerome

    2016-11-01

    A third order nonlinear optical (NLO)single crystals of sodium succinate hexahydrate (SSH) (β phase) has been grown by a slow evaporation growth technique using aqueous solution at ambient temperature. The lattice parameters and morphology of SSH were determined by single crystal X-ray diffraction analysis. SSH crystallizes in centrosymmetric monoclinic system with space group P 21 / c and the crystalline purity was analyzed by powder X-ray diffraction analysis. The UV-vis-NIR spectrum reveals that the crystal is transparent in the entire visible region. The recorded FT-IR spectrum verified the presence of various functional groups in the material. NMR analysis of the grown crystal confirms the structural elucidation and detects the major and minor functional groups present in the title compound. ICP-OES analysis proved the presence of sodium in SSH. TG-DTA/DSCanalysis was used to investigate the thermal stability of the material. The dielectric permittivity and dielectric loss of SSH were carried out as a function of frequency for different temperatures and the results were discussed. The mechanical stability was evaluated from Vicker's microhardness test. The third order nonlinear optical properties of SSH has been investigated employing Z-scan technique with He-Ne laser operating at 632.8 nm wavelength.

  13. Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range.

    PubMed

    Zhu, Yu; Hu, Xiaoyong; Fu, Yulan; Yang, Hong; Gong, Qihuang

    2013-01-01

    Actively all-optical tunable plasmon-induced transparency in metamaterials paves the way for achieving ultrahigh-speed quantum information processing chips. Unfortunately, up to now, very small experimental progress has been made for all-optical tunable plasmon-induced transparency in metamaterials in the visible and near-infrared range because of small third-order optical nonlinearity of conventional materials. The achieved operating pump intensity was as high as several GW/cm(2) order. Here, we report an ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials coated on polycrystalline indium-tin oxide layer at the optical communication range. Compared with previous reports, the threshold pump intensity is reduced by four orders of magnitude, while an ultrafast response time of picoseconds order is maintained. This work not only offers a way to constructing photonic materials with large nonlinearity and ultrafast response, but also opens up the possibility for realizing quantum solid chips and ultrafast integrated photonic devices based on metamaterials.

  14. Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range

    PubMed Central

    Zhu, Yu; Hu, Xiaoyong; Fu, Yulan; Yang, Hong; Gong, Qihuang

    2013-01-01

    Actively all-optical tunable plasmon-induced transparency in metamaterials paves the way for achieving ultrahigh-speed quantum information processing chips. Unfortunately, up to now, very small experimental progress has been made for all-optical tunable plasmon-induced transparency in metamaterials in the visible and near-infrared range because of small third-order optical nonlinearity of conventional materials. The achieved operating pump intensity was as high as several GW/cm2 order. Here, we report an ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials coated on polycrystalline indium-tin oxide layer at the optical communication range. Compared with previous reports, the threshold pump intensity is reduced by four orders of magnitude, while an ultrafast response time of picoseconds order is maintained. This work not only offers a way to constructing photonic materials with large nonlinearity and ultrafast response, but also opens up the possibility for realizing quantum solid chips and ultrafast integrated photonic devices based on metamaterials. PMID:23903825

  15. Observation of Third-order Nonlinearities in Graphene Oxide Film at Telecommunication Wavelengths

    DOE PAGES

    Xu, Xiaochuan; Zheng, Xiaorui; He, Feng; ...

    2017-08-29

    All-optical switches have been considered as a promising solution to overcome the fundamental speed limit of the current electronic switches. However, the lack of a suitable third-order nonlinear material greatly hinders the development of this technology. Here in this paper we report the observation of ultrahigh third-order nonlinearity about 0.45 cm 2/GW in graphene oxide thin films at the telecommunication wavelength region, which is four orders of magnitude higher than that of single crystalline silicon. Besides, graphene oxide is water soluble and thus easy to process due to the existence of oxygen containing groups. These unique properties can potentially significantlymore » advance the performance of alloptical switches.« less

  16. Observation of Third-order Nonlinearities in Graphene Oxide Film at Telecommunication Wavelengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaochuan; Zheng, Xiaorui; He, Feng

    All-optical switches have been considered as a promising solution to overcome the fundamental speed limit of the current electronic switches. However, the lack of a suitable third-order nonlinear material greatly hinders the development of this technology. Here in this paper we report the observation of ultrahigh third-order nonlinearity about 0.45 cm 2/GW in graphene oxide thin films at the telecommunication wavelength region, which is four orders of magnitude higher than that of single crystalline silicon. Besides, graphene oxide is water soluble and thus easy to process due to the existence of oxygen containing groups. These unique properties can potentially significantlymore » advance the performance of alloptical switches.« less

  17. Theoretical and Experimental Studies of the Electro-Optic Effect: Toward a Microscopic Understanding.

    DTIC Science & Technology

    1981-08-01

    electro - optic effect is investigated both theoretically and experimentally. The theoretical approach is based upon W.A. Harrison’s ’Bond-Orbital Model’. The separate electronic and lattice contributions to the second-order, electro - optic susceptibility are examined within the context of this model and formulae which can accommodate any crystal structure are presented. In addition, a method for estimating the lattice response to a low frequency (dc) electric field is outlined. Finally, experimental measurements of the electro -

  18. Nonlinear optical memory for manipulation of orbital angular momentum of light.

    PubMed

    de Oliveira, R A; Borba, G C; Martins, W S; Barreiro, S; Felinto, D; Tabosa, J W R

    2015-11-01

    We report on the demonstration of a nonlinear optical memory (NOM) for storage and on-demand manipulation of orbital angular momentum (OAM) of light via higher-order nonlinear processes in cold cesium atoms. A spatially resolved phase-matching technique is used to select each order of the nonlinear susceptibility associated, respectively, with time-delayed four-, six-, and eight-wave mixing processes. For a specific configuration of the stored OAM of the incident beams, we demonstrated that the OAM of the retrieved beam can be manipulated according to the order of the nonlinear process chosen by the operator for reading out the NOM. This demonstration indicates new pathways for applications in classical and quantum information processing where OAM of light is used to encode optical information.

  19. Continuous-Variable Triple-Photon States Quantum Entanglement

    NASA Astrophysics Data System (ADS)

    González, E. A. Rojas; Borne, A.; Boulanger, B.; Levenson, J. A.; Bencheikh, K.

    2018-01-01

    We investigate the quantum entanglement of the three modes associated with the three-photon states obtained by triple-photon generation in a phase-matched third-order nonlinear optical interaction. Although the second-order processes have been extensively dealt with, there is no direct analogy between the second and third-order mechanisms. We show, for example, the absence of quantum entanglement between the quadratures of the three modes in the case of spontaneous parametric triple-photon generation. However, we show robust, seeding-dependent, genuine triple-photon entanglement in the fully seeded case.

  20. Continuous-Variable Triple-Photon States Quantum Entanglement.

    PubMed

    González, E A Rojas; Borne, A; Boulanger, B; Levenson, J A; Bencheikh, K

    2018-01-26

    We investigate the quantum entanglement of the three modes associated with the three-photon states obtained by triple-photon generation in a phase-matched third-order nonlinear optical interaction. Although the second-order processes have been extensively dealt with, there is no direct analogy between the second and third-order mechanisms. We show, for example, the absence of quantum entanglement between the quadratures of the three modes in the case of spontaneous parametric triple-photon generation. However, we show robust, seeding-dependent, genuine triple-photon entanglement in the fully seeded case.

  1. Nonlinear optical properties of rigid-rod polymers

    NASA Technical Reports Server (NTRS)

    Trimmer, Mark S.; Wang, Ying

    1992-01-01

    The purpose of this research project was to integrate enhanced third order nonlinear optical (NLO) properties, especially high x(exp (3)) (greater than 10(exp -8) esu), into Maxdem's novel conjugated rigid-rod polymers while retaining their desirable processing, mechanical, and thermal properties. This work primarily involved synthetic approaches to optimized materials.

  2. Coherent source interaction, third-order nonlinear response of synthesized PEG coated magnetite nanoparticles in polyethylene glycol and its application

    NASA Astrophysics Data System (ADS)

    Gopal, S. Veena; Chitrambalam, S.; Joe, I. Hubert

    2018-01-01

    Third-order nonlinear response of synthesized polyethylene glycol coated Fe3O4 nanoparticles dispersed in a suitable solvent, polyethylene glycol has been studied. The structural characterization of the synthesized magnetite nanoparticles were carried out. The linear optical property of the synthesized magnetite nanoparticles was investigated using UV-visible technique. Both closed and open aperture Z-scan techniques have been performed at 532 nm with pulse width 5 ns and repetition rate 10 Hz. It was found that polyethylene glycol coated magnetite exhibits reverse saturable absorption, with significant nonlinear absorption coefficient. Two-photon absorption intensity dependent positive nonlinear refraction coefficients indicate self focusing phenomena. Results show that higher concentration gives better nonlinear and optical limiting properties.

  3. Radio-frequency low-coherence interferometry.

    PubMed

    Fernández-Pousa, Carlos R; Mora, José; Maestre, Haroldo; Corral, Pablo

    2014-06-15

    A method for retrieving low-coherence interferograms, based on the use of a microwave photonics filter, is proposed and demonstrated. The method is equivalent to the double-interferometer technique, with the scanning interferometer replaced by an analog fiber-optics link and the visibility recorded as the amplitude of its radio-frequency (RF) response. As a low-coherence interferometry system, it shows a decrease of resolution induced by the fiber's third-order dispersion (β3). As a displacement sensor, it provides highly linear and slope-scalable readouts of the interferometer's optical path difference in terms of RF, even in the presence of third-order dispersion. In a proof-of-concept experiment, we demonstrate 20-μm displacement readouts using C-band EDFA sources and standard single-mode fiber.

  4. Transfer function of radio over fiber multimode fiber optic links considering third-order dispersion.

    PubMed

    Capmany, J; Gasulla, Ivana

    2007-08-20

    Although a considerable number of multimode fiber (MMF) links operate in a wavelength region around 850 nm where chromatic dispersion of a given modal group mu is described adequately by the second derivative beta(mu) (2) of the propagation constant beta(mu)(omega), there is also an increasing interest in MMF links transmitting in the second spectral window (@1300nm) where this second derivative vanishes being thus necessary to consider the third derivative beta(mu) (3) in the evaluation of the transfer function of the multimode fiber link. We present in this paper, for the first time to our knowledge, an analytical model for the transfer function of a multimode fiber (MMF) optic link taken into account the impact of third-order dispersion. The model extends the operation of a previously reported one for second-order dispersion. Our results show that the performance of broadband radio over fiber transmission through middle-reach distances can be improved by working at the minimum-dispersion wavelength as long as low-linewidth lasers are employed.

  5. Single nano-hole as a new effective nonlinear element for third-harmonic generation

    NASA Astrophysics Data System (ADS)

    Melentiev, P. N.; Konstantinova, T. V.; Afanasiev, A. E.; Kuzin, A. A.; Baturin, A. S.; Tausenev, A. V.; Konyaschenko, A. V.; Balykin, V. I.

    2013-07-01

    In this letter, we report on a particularly strong optical nonlinearity at the nanometer scale in aluminum. A strong optical nonlinearity of the third order was demonstrated on a single nanoslit. Single nanoslits of different aspect ratio were excited by a laser pulse (120 fs) at the wavelength 1.5 μm, leading predominantly to third-harmonic generation (THG). It has been shown that strong surface plasmon resonance in a nanoslit allows the realization of an effective nanolocalized source of third-harmonic radiation. We show also that a nanoslit in a metal film has a significant advantage in nonlinear processes over its Babinet complementary nanostructure (nanorod): the effective abstraction of heat in a film with a slit makes it possible to use much higher laser radiation intensities.

  6. Anomalous nonlinear absorption in epsilon-near-zero materials: optical limiting and all-optical control.

    PubMed

    Vincenti, M A; de Ceglia, D; Scalora, Michael

    2016-08-01

    We investigate nonlinear absorption in films of epsilon-near-zero materials. The combination of large local electric fields at the fundamental frequency and material losses at the harmonic frequencies induce unusual intensity-dependent phenomena. We predict that the second-order nonlinearity of a low-damping, epsilon-near-zero slab produces an optical limiting effect that mimics a two-photon absorption process. Anomalous absorption profiles that depend on low permittivity values at the pump frequency are also predicted for third-order nonlinearities. These findings suggest new opportunities for all-optical light control and novel ways to design reconfigurable and tunable nonlinear devices.

  7. Third-order-harmonic generation in coherently spinning molecules

    NASA Astrophysics Data System (ADS)

    Prost, E.; Zhang, H.; Hertz, E.; Billard, F.; Lavorel, B.; Bejot, P.; Zyss, Joseph; Averbukh, Ilya Sh.; Faucher, O.

    2017-10-01

    The rotational Doppler effect occurs when circularly polarized light interacts with a rotating anisotropic material. It is manifested by the appearance of a spectral shift ensuing from the transfer of angular momentum and energy between radiation and matter. Recently, we reported terahertz-range rotational Doppler shifts produced in third-order nonlinear optical conversion [O. Faucher et al., Phys. Rev. A 94, 051402(R) (2016), 10.1103/PhysRevA.94.051402]. The experiment was performed in an ensemble of coherently spinning molecules prepared by a short laser pulse exhibiting a twisted linear polarization. The present work provides an extensive analysis of the rotational Doppler effect in third-order-harmonic generation from spinning linear molecules. The underlying physics is investigated both experimentally and theoretically. The implication of the rotational Doppler effect in higher-order processes like high-order-harmonic generation is discussed.

  8. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response.

    PubMed

    Shcherbakov, Maxim R; Neshev, Dragomir N; Hopkins, Ben; Shorokhov, Alexander S; Staude, Isabelle; Melik-Gaykazyan, Elizaveta V; Decker, Manuel; Ezhov, Alexander A; Miroshnichenko, Andrey E; Brener, Igal; Fedyanin, Andrey A; Kivshar, Yuri S

    2014-11-12

    We observe enhanced third-harmonic generation from silicon nanodisks exhibiting both electric and magnetic dipolar resonances. Experimental characterization of the nonlinear optical response through third-harmonic microscopy and spectroscopy reveals that the third-harmonic generation is significantly enhanced in the vicinity of the magnetic dipole resonances. The field localization at the magnetic resonance results in two orders of magnitude enhancement of the harmonic intensity with respect to unstructured bulk silicon with the conversion efficiency limited only by the two-photon absorption in the substrate.

  9. Nonlinear optics and crystalline whispering gallery mode resonators

    NASA Technical Reports Server (NTRS)

    Matsko, Andrey B.; Savchenkov, Anatoliy A.; Ilchenko, Vladimir S.; Maleki, Lute

    2004-01-01

    We report on our recent results concerning fabrication of high-Q whispering gallery mode (WGM) crystalline resonators, and discuss some possible applications of lithium niobate WGM resonators in nonlinear optics and photonics. In particular, we demonstrate experimentally a tunable third-order optical filter fabricated from the three metalized resonators; and report observation of parametric frequency dobuling in a WGM resonator made of periodically poled lithium niobate (PPLN).

  10. Optical sideband generation up to room temperature with mid-infrared quantum cascade lasers.

    PubMed

    Houver, S; Cavalié, P; St-Jean, M Renaudat; Amanti, M I; Sirtori, C; Li, L H; Davies, A G; Linfield, E H; Pereira, T A S; Lebreton, A; Tignon, J; Dhillon, S S

    2015-02-23

    Mid-infrared (MIR) sideband generation on a near infrared (NIR) optical carrier is demonstrated within a quantum cascade laser (QCL). By employing an externally injected NIR beam, E(NIR), that is resonant with the interband transitions of the quantum wells in the QCL, the nonlinear susceptibility is enhanced, leading to both frequency mixing and sideband generation. A GaAs-based MIR QCL (E(QCL) = 135 meV) with an aluminum-reinforced waveguide was utilized to overlap the NIR and MIR modes with the optical nonlinearity of the active region. The resulting difference sideband (E(NIR) - E(QCL)) shows a resonant behavior as a function of NIR pump wavelength and a maximum second order nonlinear susceptibility, χ((2)), of ~1 nm/V was obtained. Further, the sideband intensity showed little dependence with the operating temperature of the QCL, allowing sideband generation to be realized at room temperature.

  11. Theoretical and experimental evaluation of a new organic proton transfer crystal aminoguanidinium p-nitrobenzoate monohydrate for optical limiting applications

    NASA Astrophysics Data System (ADS)

    Shanmugavadivu, T.; Senthilkumar, K.; Dhandapani, M.; Muthuraja, P.; Balachandar, S.; Sethu Raman, M.

    2017-12-01

    Aminoguanidinium p-nitrobenzoate monohydrate (AGPNB), an organic third order nonlinear crystal, was successfully grown by the slow evaporation technique. Single crystal XRD analysis reveals that the grown crystal belongs to monoclinic system with P21/n space group. FT-IR, 1H and 13C NMR spectroscopic studies were carried out to confirm the proton transfer. Optical and thermal suitability were assessed by UV-NIR and TG-DTA studies. Hirshfeld surface analysis predicts that the O⋯H/H⋯O interactions dominated over the crystal structure. Third order nonlinearity was studied by Z-scan analysis and it is found that AGPNB can be used as a reverse satuarble absorption (RSA) based optical limiter at 632.8 nm. Computational studies, such as geometry optimization, Natural bond orbital (NBO) analysis, Mulliken population analysis and Molecular electrostatic potential (MEP) were performed at B3LYP/6-311G(d,p) level of theory. The calculated first order hyperpolarizability of AGPNB is found to be 35 times that of urea.

  12. Laterally coupled circular quantum dots under applied electric field

    NASA Astrophysics Data System (ADS)

    Duque, C. M.; Correa, J. D.; Morales, A. L.; Mora-Ramos, M. E.; Duque, C. A.

    2016-03-01

    The optical response of a system of two laterally coupled quantum dots with circular cross-sectional shape is investigated within the effective mass approximation, taking into account the effects of the change in the geometrical configuration, the application of an external static electric field, and the presence of a donor impurity center. The first-order dielectric susceptibility is calculated in order to derive the corresponding light absorption and relative refractive index coefficients. The possibility of tuning these optical properties by means of changes in the quantum dot symmetry and the electric field intensity is particularly discussed.

  13. Effect of halogenation on the nonlinear optical properties of porthyrin and substituted porphyrins

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.; Moore, Craig E.; Benloss, Angela; Thompson, Albert N., Jr.; Richards, Rosalie A.; Roney, Celeste A.; Sanghadasa, Mohan

    1998-01-01

    The effect that fluorine and chlorine substitution has on the nonlinear optical properties of porphyrin, tetramethylporphyrin and tetraphenylporphyrin has been theoretically studied. The calculations of nonlinear optical properties have been obtained by performing finite-field calculations on structures determined by semiempirical methods. In addition, tetra(p-chlorophenyl)porphyrin and tetra(p-bromophenyl)porphyrin were synthesized by the condensation of pyrrol and the appropriate aldehyde. Thin films of polymethylmethacrylate were obtained containing these materials, by spin coating onto glass substrates. The films were characterized by third-harmonic generation. It was determined that the experimental conditions enhance the third-order polarizability of the tetraphenylporphyrins by a factor of about 1.6.

  14. Influence of post-deposition annealing on structural, morphological and optical properties of copper (II) acetylacetonate thin films.

    PubMed

    Abdel-Khalek, H; El-Samahi, M I; El-Mahalawy, Ahmed M

    2018-05-21

    In this study, the effect of thermal annealing under vacuum conditions on structural, morphological and optical properties of thermally evaporated copper (II) acetylacetonate, cu(acac) 2 , thin films were investigated. The copper (II) acetylacetonate thin films were deposited using thermal evaporation technique at vacuum pressure ~1 × 10 -5  mbar. The deposited films were thermally annealed at 323, 373, 423, and 473 K for 2 h in vacuum. The thermogravimetric analysis of cu(acac) 2 powder indicated a thermal stability of cu(acac) 2 up to 423 K. The effects of thermal annealing on the structural properties of cu(acac) 2 were evaluated employing X-ray diffraction method and the analysis showed a polycrystalline nature of the as-deposited and annealed films with a preferred orientation in [1¯01] direction. Fourier transformation infrared (FTIR) technique was used to negate the decomposition of copper (II) acetylacetonate during preparation or/and annealing up to 423 K. The surface morphology of the prepared films was characterized by means of field emission scanning electron microscopy (FESEM). A significant enhancement of the morphological properties of cu(acac) 2 thin films was obtained till the annealing temperature reaches 423 K. The variation of optical constants that estimated from spectrophotometric measurements of the prepared thin films was investigated as a function of annealing temperature. The annealing process presented significantly impacted the nonlinear optical properties such as third-order optical susceptibility χ (3) and nonlinear refractive index n 2 of cu(acac) 2 thin films. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. A self-assembled nanohybrid composed of fluorophore-phenylamine nanorods and Ag nanocrystals: energy transfer, wavelength shift of fluorescence and TPEF applications for live-cell imaging.

    PubMed

    Kong, Lin; Yang, Jia-xiang; Li, Sheng-li; Zhang, Qiong; Xue, Zhao-ming; Zhou, Hong-ping; Wu, Jie-ying; Jin, Bao-kang; Tian, Yu-peng

    2013-12-02

    A fluorophore-phenylamine derivative (L) has been coupled with silver nanocrystals (NCs) to construct an L-Ag nanohybrid. Owing to synergic effects of the L and Ag components, the exciton-plasmon interactions between L and Ag increase the strength of the donor-acceptor interaction within the nanohybrid, a fact that results in an energy-transfer process and further brings about a dramatic redshift of single-photon absorption and fluorescence, and a decreased fluorescence FL lifetime. The coupling effect also leads to enhancement of a series of nonlinear optical properties, including two-photon-excited fluorescence (TPEF), two-photon-absorption (TPA) cross section (δ), two-photon-absorption coefficient (β), nonlinear refractive index (γ), and third order nonlinear optical susceptibility (χ((3))). The enhanced two-photon fluorescence of the nanohybrid is proven to be potentially useful for two-photon microscopy of live cells, such as HepG2. Moreover, cytotoxicity tests show that the low-micromolar concentrations of the nanohybrid do not cause significant reduction in cell viability over a period of at least 24 h and should be safe for further biological studies. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Third order nonlinear optical properties of bismuth zinc borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shanmugavelu, B.; Ravi Kanth Kumar, V. V., E-mail: ravi.phy@pondiuni.edu.in; Kuladeep, R.

    2013-12-28

    Third order nonlinear optical characterization of bismuth zinc borate glasses are reported here using different laser pulse durations. Bismuth zinc borate glasses with compositions xBi{sub 2}O{sub 3}-30ZnO-(70-x) B{sub 2}O{sub 3} (where x = 30, 35, 40, and 45 mol. %) have been prepared by melt quenching method. These glasses were characterized by Raman, UV-Vis absorption, and Z scan measurements. Raman and UV-Vis spectroscopic results indicate that non-bridging oxygens increase with increase of bismuth content in the glass. Nonlinear absorption and refraction behavior in the nanosecond (ns), picosecond (ps), and femtosecond (fs) time domains were studied in detail. Strong reverse saturable absorption due tomore » dominant two-photon absorption (TPA) was observed with both ps and fs excitations. In the case of ns pulse excitations, TPA and free-carrier absorption processes contribute for the nonlinear absorption. Two-photon absorption coefficient (β) and the absorption cross section due to free carriers (σ{sub e}) are estimated by theoretical fit of the open aperture Z-scan measurements and found to be dependent on the amount of bismuth oxide in the glass composition. In both ns and fs regimes the sign and magnitude of the third order nonlinearity are evaluated, and the optical limiting characteristics are also reported.« less

  17. Probing optically silent superfluid stripes in cuprates

    NASA Astrophysics Data System (ADS)

    Rajasekaran, S.; Okamoto, J.; Mathey, L.; Fechner, M.; Thampy, V.; Gu, G. D.; Cavalleri, A.

    2018-02-01

    Unconventional superconductivity in the cuprates coexists with other types of electronic order. However, some of these orders are invisible to most experimental probes because of their symmetry. For example, the possible existence of superfluid stripes is not easily validated with linear optics, because the stripe alignment causes interlayer superconducting tunneling to vanish on average. Here we show that this frustration is removed in the nonlinear optical response. A giant terahertz third harmonic, characteristic of nonlinear Josephson tunneling, is observed in La1.885Ba0.115CuO4 above the transition temperature Tc = 13 kelvin and up to the charge-ordering temperature Tco = 55 kelvin. We model these results by hypothesizing the presence of a pair density wave condensate, in which nonlinear mixing of optically silent tunneling modes drives large dipole-carrying supercurrents.

  18. Mid-infrared-to-mid-ultraviolet supercontinuum enhanced by third-to-fifteenth odd harmonics.

    PubMed

    Mitrofanov, A V; Voronin, A A; Mitryukovskiy, S I; Sidorov-Biryukov, D A; Pugžlys, A; Andriukaitis, G; Flöry, T; Stepanov, E A; Fedotov, A B; Baltuška, A; Zheltikov, A M

    2015-05-01

    A high-energy supercontinuum spanning 4.7 octaves, from 250 to 6500 nm, is generated using a 0.3-TW, 3.9-μm output of a mid-infrared optical parametric chirped-pulse amplifier as a driver inducing a laser filament in the air. The high-frequency wing of the supercontinuum spectrum is enhanced by odd-order optical harmonics of the mid-infrared driver. Optical harmonics up to the 15th order are observed in supercontinuum spectra as overlapping, yet well-resolved peaks broadened, as verified by numerical modeling, due to spatially nonuniform ionization-induced blue shift.

  19. Third-order nonlinear optical properties of ADP crystal

    NASA Astrophysics Data System (ADS)

    Wang, Mengxia; Wang, Zhengping; Chai, Xiangxu; Sun, Yuxiang; Sui, Tingting; Sun, Xun; Xu, Xinguang

    2018-05-01

    By using the Z-scan method, we investigated the third-order nonlinear optical (NLO) properties of ADP crystal at different wavelengths (355, 532, and 1064 nm) and different orientations ([001], [100], [110], I and II). The experimental data were fitted by NLO theory, to give out the two photon absorption (TPA) coefficient β 2 and the nonlinear refractive index n 2. When the light source changed from a 40 ps, 1064 nm fundamental laser to a 30 ps, 355 nm third-harmonic-generation (THG) laser, the β 2 value increased about 5 times (0.2 × 10‑2 → 1 × 10‑2 cm GW‑1), and the n 2 value increased about 1.5 times (1.5 × 10‑16 → 2.2 × 10‑16 cm2 W‑1). Among all of the orientations, the [110] sample exhibits the smallest β 2, and the second smallest n 2. It indicates that this orientation and its surroundings will be the preferred directions for high-power laser applications of ADP crystal.

  20. Fluorescence and Nonlinear Optical Properties of Alizarin Red S in Solvents and Droplet.

    PubMed

    Sangsefedi, Seyed Ahmad; Sharifi, Soheil; Rezaion, Hadi Rastegar Moghaddam; Azarpour, Afshin

    2018-05-28

    The enhancement of the nonlinear properties of materials is an interesting topic since it has many applications in optical devices and medicines. The Z-scan technique was used to study the values of the two-photon absorption (β), second-order molecular hyperpolarizability (γ R ), third-order susceptibility (χ R ), and nonlinear refractive index (n 2 ) of Alizarin Red S in different media using a continuous-wave diode-pump laser radiation at 532 nm. For Alizarin Red S in a droplet, the β, n 2 , χ R, and γ R were estimated at the order of 10 -7  cm 2 /W and 10 -12  cm/W, 10 -3  m 3  W -1  s -1 and 10 -24  m 6  W -1  s -1 , respectively. The results indicated that the values of β and n 2 reduced, whereas the values of χ R and γ R were enhanced when the solvent was changed from droplet to water, DMF, and dimethyl sulfoxide due to the change in the solvent's dielectric constant (ε). Moreover, the values of β were enhanced by an increase in the concentration of the surfactant in the aqueous solution. The absorption spectra of Alizarin Red S in the aqueous solution was observed at 428 nm, and a few red shifts in the absorption spectra were observed with a reduction in the dielectric constant of the medium. The same effect was observed in the absorption spectra of Alizarin Red S in the droplet when the bulk dielectric constant reduced. The dielectric constant can affect the fluorescence spectra of Alizarin Red S when the solution is changed from water to dimethyl sulfoxide. The dipole moments of Alizarin Red S in the different media were studied using the quantum perturbation theory.

  1. Experimental observation of breathing solitons and a third harmonic in a tapered photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Wang, F.; Yao, C. F.; Li, C. Z.; Jia, Z. X.; Li, Q.; Wu, C. F.; Ohishi, Y.; Qin, W. P.; Qin, G. S.

    2018-02-01

    We report the experimental observation of breathing solitons and a third harmonic in a tapered fluorotellurite photonic crystal fiber (PCF) pumped by a 1560 nm femtosecond fiber laser. The PCF has a core diameter that varies continuously along its length, resulting in a zero-dispersion wavelength that moves from 1325 nm to 906 nm over the transition region. By finely controlling the dispersion map of the tapered PCF and increasing the order of the optical solitons, their breathing behavior is observed in the frequency domain and the number of breaths goes up to 9. Furthermore, the breathing behavior of the optical soliton is transferred to the third harmonic through inter-modal phase-matched processes in the tapered PCF, and the third harmonic also breathes with an increase in the pump power.

  2. Second- and third-order nonlinear optical properties of unsubstituted and mono-substituted chalcones

    NASA Astrophysics Data System (ADS)

    Abegão, Luis M. G.; Fonseca, Ruben D.; Santos, Francisco A.; Souza, Gabriela B.; Barreiros, André Luis B. S.; Barreiros, Marizeth L.; Alencar, M. A. R. C.; Mendonça, Cleber R.; Silva, Daniel L.; De Boni, Leonardo; Rodrigues, J. J.

    2016-03-01

    This work describes the second and third orders of nonlinear optics properties of unsubstituted chalcone (C15H12O) and mono-substituted chalcone (C16H14O2) in solution, using hyper-Rayleigh scattering and Z-Scan techniques to determine the first molecular hyperpolarizability (β) and the two-photon absorption (2PA) cross section respectively. β Values of 25.4 × 10-30 esu and 31.6 × 10-30 esu, for unsubstituted and mono-substituted chalcone, respectively, dissolved in methanol have been obtained. The highest values of 2PA cross-sections obtained were 9 GM and 14 GM for unsubstituted and mono-substituted chalcone, respectively. The experimental 2PA cross sections obtained for each chalcone are in good agreement with theoretical results.

  3. Role of annealing on the structural and optical properties of nanostructured diaceto bis-benzimidazole Mn(II) complex thin films.

    PubMed

    Praveen, P A; Babu, R Ramesh; Ramamurthi, K

    2017-02-15

    A coordination complex, manganese incorporated benzimidazole, thin films were prepared by chemical bath deposition method. Structural characterization of the deposited films, carried out by Fourier transform infrared spectroscopy, Raman and electron paramagnetic resonance spectral analyses, reveals the distorted tetrahedral environment of the metal ion with bis-benzimidazole ligand. Further the molecular composition of the deposited metal complex was estimated by energy-dispersive X-ray spectroscopy. The prepared thin films were thermally treated to study the effect of annealing temperature on the surface morphology and the results showed that the surface homogeneity of the films increased for thermally treated films up to 150°C. But distortion and voids were observed for the films annealed at 200°C. The Raman analysis reveals the molecular hydrogen bond distortion which leads to the evaporation of the metal complex from the thin film surface with respect to annealing temperature. The linear and nonlinear optical properties of the as prepared and annealed films were studied using ultraviolet-visible transmittance spectroscopy, second harmonic generation and Z-scan analyses. Films annealed at 150°C show a better linear transmittance in the visible region and larger SHG efficiency and third order nonlinear susceptibility when compared with the other samples. Further, the film annealed at 150°C was subjected to optical switching analysis and demonstrated to have an inverted switching behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Fabrication and optical nonlinearities of composite films derived from the water-soluble Keplerate-type polyoxometalate and chloroform-soluble porphyrin.

    PubMed

    Shi, Zonghai; Zhou, Yunshan; Zhang, Lijuan; Yang, Di; Mu, Cuncun; Ren, Haizhou; Shehzad, Farooq Khurum; Li, Jiaqi

    2015-03-07

    Composite films derived from the water-soluble Keplerate-type polyoxometalate (NH4)42[Mo132O372(CH3COO)30(H2O)72]·ca. 300H2O·ca. 10CH3COONH4 (denoted (NH4)42{Mo132}) and chloroform-soluble tetraphenylporphyrin perchlorate [H2TPP](ClO4)2 are successfully fabricated by a layer-by-layer self-assembly method and characterized by UV-vis spectroscopy and X-ray photoelectron spectroscopy (XPS). The structure of the {Mo132} and [H2TPP](2+) in the films remain intact in light of the results of UV-vis spectroscopy and XPS. UV-vis spectra measurements reveal that the amounts of deposition of {Mo132} and [H2TPP](2+) remain constant in every adsorption cycle in the composite films assembly process. Nonlinear optical properties of the composite films have been investigated by using the Z-scan technique at a wavelength of 532 nm and pulse width of 7 ns. The results show that the composite films have notable nonlinear saturated absorption and self-defocusing effects. The combination of {Mo132} with [H2TPP](2+) can result in composite films with remarkably enhanced optical nonlinearities. The interfacial charge transfer induced by laser from porphyrin to POM in the films is thought to play a key role in the enhancement of NLO response. The third-order NLO susceptibility χ((3)) of the composite films increases with the increase of film thickness.

  5. Tunneling induced absorption with competing Nonlinearities.

    PubMed

    Peng, Yandong; Yang, Aihong; Xu, Yan; Wang, Peng; Yu, Yang; Guo, Hongju; Ren, Tingqi

    2016-12-13

    We investigate tunneling induced nonlinear absorption phenomena in a coupled quantum-dot system. Resonant tunneling causes constructive interference in the nonlinear absorption that leads to an increase of more than an order of magnitude over the maximum absorption in a coupled quantum dot system without tunneling. Resonant tunneling also leads to a narrowing of the linewidth of the absorption peak to a sublinewidth level. Analytical expressions show that the enhanced nonlinear absorption is largely due to the fifth-order nonlinear term. Competition between third- and fifth-order nonlinearities leads to an anomalous dispersion of the total susceptibility.

  6. Strain engineering of the silicon-vacancy center in diamond

    NASA Astrophysics Data System (ADS)

    Meesala, Srujan; Sohn, Young-Ik; Pingault, Benjamin; Shao, Linbo; Atikian, Haig A.; Holzgrafe, Jeffrey; Gündoǧan, Mustafa; Stavrakas, Camille; Sipahigil, Alp; Chia, Cleaven; Evans, Ruffin; Burek, Michael J.; Zhang, Mian; Wu, Lue; Pacheco, Jose L.; Abraham, John; Bielejec, Edward; Lukin, Mikhail D.; Atatüre, Mete; Lončar, Marko

    2018-05-01

    We control the electronic structure of the silicon-vacancy (SiV) color-center in diamond by changing its static strain environment with a nano-electro-mechanical system. This allows deterministic and local tuning of SiV optical and spin transition frequencies over a wide range, an essential step towards multiqubit networks. In the process, we infer the strain Hamiltonian of the SiV revealing large strain susceptibilities of order 1 PHz/strain for the electronic orbital states. We identify regimes where the spin-orbit interaction results in a large strain susceptibility of order 100 THz/strain for spin transitions, and propose an experiment where the SiV spin is strongly coupled to a nanomechanical resonator.

  7. Third-harmonic generation susceptibility spectroscopy in free fatty acids

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Cheng; Hsu, Hsun-Chia; Lee, Chien-Ming; Sun, Chi-Kuang

    2015-09-01

    Lipid-correlated disease such as atherosclerosis has been an important medical research topic for decades. Many new microscopic imaging techniques such as coherent anti-Stokes Raman scattering and third-harmonic generation (THG) microscopy were verified to have the capability to target lipids in vivo. In the case of THG microscopy, biological cell membranes and lipid bodies in cells and tissues have been shown as good sources of contrast with a laser excitation wavelength around 1200 nm. We report the THG excitation spectroscopy study of two pure free fatty acids including oleic acid and linoleic acid from 1090 to 1330 nm. Different pure fatty acids presented slightly-different THG χ(3) spectra. The measured peak values of THG third-order susceptibility χ(3) in both fatty acids were surprisingly found not to match completely with the resonant absorption wavelengths around 1190 to 1210 nm, suggesting possible wavelengths selection for enhanced THG imaging of lipids while avoiding laser light absorption. Along with the recent advancement in THG imaging, this new window between 1240 to 1290 nm may offer tremendous new opportunities for sensitive label-free lipid imaging in biological tissues.

  8. Second harmonic generation by all-optical poling and its relaxation in the polymer films containing azo sulfonamide chromophores

    NASA Astrophysics Data System (ADS)

    Ortyl, E.; Chan, S. W.; Nunzi, J.-M.; Kucharski, S.

    2006-11-01

    Polyurethane polymers containing azo sulfonamide chromophores were obtained by coupling reaction of the precursor polyurethane with corresponding diazonium salts. The chromophores, showing high hyperpolarizability value on molecular scale, were found to undergo orientation by all-optical poling method yielding macroscopic nonlinear optical response. The rate of generation and decay of the second-order nonlinear susceptibility was evaluated as a function of time. It was established that the polymers containing sulfonamide type chromophores showed higher stability of the nonlinear optical signal as compared with those modified with a nitro-acceptor groups of the Disperse Red type.

  9. The Geometrical Optics PSF with Third Order Aberrations

    NASA Astrophysics Data System (ADS)

    Díaz-Uribe, Rufino; Campos-García, Manuel

    2008-04-01

    In this paper the calculation of the GPSF from the Geometrical Optics Irradiance Law (GOIL) is recalled, including some details not found in other references. Also it is explored an alternative solution based on the Irradiance Transport Equation (ITE). Some simulations of images of an extended object produced by an image forming instrument affected by spherical aberration are shown.

  10. Synthesis, crystal structure and third-order non-linear optical property of heterobimetallic cluster compound [MoOICu 3S 3(2,2'-bipy) 2

    NASA Astrophysics Data System (ADS)

    Li, Yong; Lu, Jing; Xu, Jiqing; Cui, Xiaobing; Sun, Yinghua; Yang, Qingxin; Pan, Lingyun

    2004-03-01

    Nest-shaped cluster [MoOICu 3S 3(2,2'-bipy) 2] ( 1) was synthesized by the treatment of (NH 4) 2MoS 4, CuI, ( n-Bu) 4NI, and 2,2'-bipyridine (2,2'-bipy) through a solid-state reaction. It crystallizes in monoclinic space group P2 1/ n, a=9.591(2) Å, b=14.820(3) Å, c=17.951(4) Å, β=91.98(2)°, V=2549.9(10) Å3, and Z=4. The nest-shaped cluster was obtained for the first time with a neutral skeleton containing 2,2'-bipy ligand. The non-linear optical (NLO) property of [MoOICu 3S 3(2,2'-bipy) 2] in DMF solution was measured by using a Z-scan technique with 15 ns and 532 nm laser pulses. The cluster has large third-order NLO absorption and the third-order NLO refraction, its α2 and n2 values were calculated as 6.2×10 -10 and -3.8×10 -17 m 2 W -1 in a 3.7×10 -4 M DMF solution.

  11. Radiative Susceptibility of Cloudy Atmospheres to Droplet Number Perturbations: 2. Global analysis from MODIS

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Platnick, Steven

    2008-01-01

    Global distributions of albedo susceptibility for areas covered by liquid clouds are presented for 4 months in 2005. The susceptibility estimates are based on expanded definitions presented in a companion paper and include relative cloud droplet number concentration (CDNC) changes, perturbations in cloud droplet asymmetry parameter and single-scattering albedo, atmospheric/surface effects, and incorporation of the full solar spectrum. The cloud properties (optical thickness and effective radius) used as input in the susceptibility calculations come from MODIS Terra and Aqua Collection 5 gridded data. Geographical distributions of susceptibility corresponding to absolute ( absolute cloud susceptibility ) and relative ( relative cloud susceptibility ) CDNC changes are markedly different indicating that the detailed nature of the cloud microphysical perturbation is important for determining the radiative forcing associated with the first indirect aerosol effect. However, both types of susceptibility exhibit common characteristics such as significant reductions when perturbations in single-scattering properties are omitted, significant increases when atmospheric absorption and surface albedo effects are ignored, and the tendency to decrease with latitude, to be higher over ocean than over land, and to be statistically similar between the morning and afternoon MODIS overpasses. The satellite-based susceptibility analysis helps elucidate the role of present-day cloud and land surface properties in indirect aerosol forcing responses. Our realistic yet moderate CDNC perturbations yield forcings on the order of 1-2 W/sq m for cloud optical property distributions and land surface spectral albedos observed by MODIS. Since susceptibilities can potentially be computed from model fields, these results have practical application in assessing the reasonableness of model-generated estimates of the aerosol indirect radiative forcing.

  12. Nonlinear optical properties of semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Ricard, Gianpiero Banfi Vittorio Degiorgio Daniel

    1998-05-01

    This review is devoted to the description of recent experimental results concerning the nonlinear optical properties of semiconductor-doped glasses SDGs with particular emphasis on the regime in which the energy of the incident photon is smaller than the energy gap. A considerable theoretical and experimental effort has been devoted in the last 10years to the fundamental aspects of quantumconfined structures, which have properties somewhat intermediate between the bulk crystals and atoms or molecules. From this point of view, SDGs represent an easily available test system, and optical techniques have been a major diagnostic tool. Luminescence and absorption spectroscopy were extensively used to characterize the electronic states. The experiments aimed at the measurement of the real and imaginary parts of the third-order optical susceptibility of SDGs below the bandgap are described in some detail, and the results obtained with different techniques are compared. Besides the intrinsic fast nonlinearity due to bound electrons, SDGs may present a larger but much slower nonlinearity due to the free carriers generated by two-photon absorption. This implies that experiments have to be properly designed for separation of the two effects. In this article we stress the importance of a detailed structural characterization of the samples. Knowledge of the volume fraction occupied by the nanocrystals is necessary in order to derive from the experimental data the intrinsic nonlinearity and to compare it with the bulk nonlinearity. We discuss recent experiments in which the dependence of the intrinsic nonlinearity on the crystal size is derived by performing, on the samples, measurements of the real part and imaginary part of the nonlinear optical susceptibility and measurements of crystal size and volume fraction. Structural characterization is of interest also for a better understanding of the physical processes underlying the growth of crystallites in SDGs. The average size of nanocrystals can be tailored by controlling the temperature or time of the treatment. The major problem is the size dispersion of the crystallites, which is intrinsic to the diffusion process. At present, this is the major source of the undesired inhomogeneous broadening of the optical transition lines of the SDGs. Efforts are at present being made to fabricate materials, SDGs included, which embed nanocrystals with a reduced spread of sizes. The interest in the nonlinear optical properties is due not only to fundamental reasons but also to possible applications for optical devices. Generally speaking, resonant nonlinearities are much larger than non-resonant nonlinearities, but they are not necessarily the most interesting for applications because materials at resonance absorb the incident radiation and also present long response times. The studies below the bandgap seem to indicate that the values of the intrinsic nonlinearities of nanocrystals in the structures which are at present available are similar to those of the bulk. New and better controlled structures are now under development and have to be tested from the viewpoint of optical nonlinearities. In several situations SDGs cannot be modelled as an ensemble of freely standing nanocrystals, with the glass matrix playing the role of an inert support. Phenomena such as trapping and darkening, which are very probably connected with electronic states at the glasssemiconductor interface, may play a role in determining the optical response. They might give rise to an extrinsic optical nonlinearity which can be even larger than the intrinsic nonlinearity. The physical processes which are involved in these extrinsic nonlinearities are poorly understood and at present being investigated.

  13. Creating a zero-order resonator using an optical surface transformation

    PubMed Central

    Sun, Fei; Ge, Xiaochen; He, Sailing

    2016-01-01

    A novel zero-order resonator has been designed by an optical surface transformation (OST) method. The resonator proposed here has many novel features. Firstly, the mode volume can be very small (e.g. in the subwavelength scale). Secondly, the resonator is open (no reflecting walls are utilized) and resonant effects can be found in a continuous spectrum (i.e. a continuum of eigenmodes). Thirdly, we only need one homogenous medium to realize the proposed resonator. The shape of the resonator can be a ring structure of arbitrary shape. In addition to the natural applications (e.g. optical storage) of an optical resonator, we also suggest some other applications of our novel optical open resonator (e.g. power combination, squeezing electromagnetic energy in the free space). PMID:26888359

  14. Giant Kerr response of ultrathin gold films from quantum size effect.

    PubMed

    Qian, Haoliang; Xiao, Yuzhe; Liu, Zhaowei

    2016-10-10

    With the size of plasmonic devices entering into the nanoscale region, the impact of quantum physics needs to be considered. In the past, the quantum size effect on linear material properties has been studied extensively. However, the nonlinear aspects have not been explored much so far. On the other hand, much effort has been put into the field of integrated nonlinear optics and a medium with large nonlinearity is desirable. Here we study the optical nonlinear properties of a nanometre scale gold quantum well by using the z-scan method and nonlinear spectrum broadening technique. The quantum size effect results in a giant optical Kerr susceptibility, which is four orders of magnitude higher than the intrinsic value of bulk gold and several orders larger than traditional nonlinear media. Such high nonlinearity enables efficient nonlinear interaction within a microscopic footprint, making quantum metallic films a promising candidate for integrated nonlinear optical applications.

  15. Optical assembly of microparticles into highly ordered structures using Ince-Gaussian beams

    NASA Astrophysics Data System (ADS)

    Woerdemann, Mike; Alpmann, Christina; Denz, Cornelia

    2011-03-01

    Ince-Gaussian (IG) beams are a third complete family of solutions of the paraxial Helmholtz equation. While many applications of Hermite-Gaussian and Laguerre-Gaussian beams have been demonstrated for manipulation of microparticles, the potential of the more general class of IG beams has not yet been exploited at all. We describe the unique properties of IG beams with respect to optical trapping applications, demonstrate a flexible experimental realization of arbitrary IG beams and prove the concept by creating two- and three-dimensional, highly ordered assemblies of typical microparticles. The concept is universal and can easily be integrated into existing holographic optical tweezers setups.

  16. Effets optiques et structurels de l'implantation ionique dans des couches minces polymeres

    NASA Astrophysics Data System (ADS)

    Cottin, Pierre

    The main goal of this work is to highlight the effect of ion implantation---a widely spread technique to modify chemical, electrical or optical properties of materials---on the third order nonlinear optical properties (chi (3)) of polymers. This study was limited to four polymers (PMMA, PVK, PVA, CA) for which we developed a fabrication process to obtain high optical quality thin films and controlled thickness compatible with ion implantation depth. Moreover, these polymers show different chemical structures and have in common to have very low nonlinear optical properties. Two faces of the problem were studied. First, the chemical structure of these polymers was characterized using ultraviolet and infrared spectroscopy before and after ion implantation and then was compared with which of intrinsic nonlinear optical polymers. These analysis have clearly shown that from one hand, ion implantation leads to a great number of bond breaks but from the other hand, it creates a high concentration of conjugated bonds characteristic of nonlinear optical polymers. Second, the third order nonlinear optical properties of ion implanted polymers were measured by nonlinear waveguide coupling and by third harmonic generation. For the first method, the coupling function was performed by a diffraction grating etched in a glass substrate whose fabrication process was developed in this particular case. In both cases, the used laser wave-length was 1064 nm with pulse duration of 30 ps and 5 ns respectively. The corresponding modelization for each of these techniques was established and numerically implemented. Both techniques have shown an increase of chi(3) for these polymers after ion implantation but however, they can not reach the performance of chemically designed nonlinear optical polymers. The best results were obtained for 50 keV helium implanted PMMA given |chi(3)(-3o; o, o, o)| = 7.2 x 10-21 m2.V-2 which is six time greater than the pristine material.

  17. Entanglement analysis of a two-atom nonlinear Jaynes-Cummings model with nondegenerate two-photon transition, Kerr nonlinearity, and two-mode Stark shift

    NASA Astrophysics Data System (ADS)

    Baghshahi, H. R.; Tavassoly, M. K.; Faghihi, M. J.

    2014-12-01

    An entangled state, as an essential tool in quantum information processing, may be generated through the interaction between light and matter in cavity quantum electrodynamics. In this paper, we study the interaction between two two-level atoms and a two-mode field in an optical cavity enclosed by a medium with Kerr nonlinearity in the presence of a detuning parameter and Stark effect. It is assumed that the atom-field coupling and third-order susceptibility of the Kerr medium depend on the intensity of the light. In order to investigate the dynamics of the introduced system, we obtain the exact analytical form of the state vector of the considered atom-field system under initial conditions which may be prepared for the atoms (in a coherent superposition of their ground and upper states) and the fields (in a standard coherent state). Then, in order to evaluate the degree of entanglement between the subsystems, we investigate the dynamics of the entanglement by employing the entanglement of formation. Finally, we analyze in detail the influences of the Stark shift, the deformed Kerr medium, the intensity-dependent coupling, and also the detuning parameter on the behavior of this measure for different subsystems. The numerical results show that the amount of entanglement between the different subsystems can be controlled by choosing the evolved parameters appropriately.

  18. Electric field effect on the second-order nonlinear optical properties of parabolic and semiparabolic quantum wells

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Xie, Hong-Jing

    2003-12-01

    By using the compact-density-matrix approach and iterative procedure, a detailed procedure for the calculation of the second-harmonic generation (SHG) susceptibility tensor is given in the electric-field-biased parabolic and semiparabolic quantum wells (QW’s). The simple analytical formula for the SHG susceptibility in the systems is also deduced. By adopting the methods of envelope wave function and displacement harmonic oscillation, the electronic states in parabolic and semi parabolic QW’s with applied electric fields are exactly solved. Numerical results on typical AlxGa1-xAl/GaAs materials show that, for the same effective widths, the SHG susceptibility in semiparabolic QW is larger than that in parabolic QW due to the self-asymmetry of the semiparabolic QW, and the applied electric field can make the SHG susceptibilities in both systems enhance remarkably. Moreover, the SHG susceptibility also sensitively depends on the relaxation rate of the systems.

  19. Modified Kramers-Kronig relations and sum rules for meromorphic total refractive index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peiponen, Kai-Erik; Saarinen, Jarkko J.; Vartiainen, Erik M.

    2003-08-01

    Modified Kramers-Kronig relations and corresponding sum rules are shown to hold for the total refractive index that can be presented as a sum of complex linear and nonlinear refractive indices, respectively. It is suggested that a self-action process, involving the degenerate third-order nonlinear susceptibility, can yield a negative total refractive index at some spectral range.

  20. Enhanced Third-Order Optical Nonlinearity Driven by Surface-Plasmon Field Gradients.

    PubMed

    Kravtsov, Vasily; AlMutairi, Sultan; Ulbricht, Ronald; Kutayiah, A Ryan; Belyanin, Alexey; Raschke, Markus B

    2018-05-18

    Efficient nonlinear optical frequency mixing in small volumes is key for future on-chip photonic devices. However, the generally low conversion efficiency severely limits miniaturization to nanoscale dimensions. Here we demonstrate that gradient-field effects can provide for an efficient, conventionally dipole-forbidden nonlinear response. We show that a longitudinal nonlinear source current can dominate the third-order optical nonlinearity of the free electron response in gold in the technologically important near-IR frequency range where the nonlinearities due to other mechanisms are particularly small. Using adiabatic nanofocusing to spatially confine the excitation fields, from measurements of the 2ω_{1}-ω_{2} four-wave mixing response as a function of detuning ω_{1}-ω_{2}, we find up to 10^{-5} conversion efficiency with a gradient-field contribution to χ_{Au}^{(3)} of up to 10^{-19}  m^{2}/V^{2}. The results are in good agreement with the theory based on plasma hydrodynamics and underlying electron dynamics. The associated increase in the nonlinear conversion efficiency with a decreasing sample size, which can even overcompensate the volume decrease, offers a new approach for enhanced nonlinear nano-optics. This will enable more efficient nonlinear optical devices and the extension of coherent multidimensional spectroscopies to the nanoscale.

  1. Enhanced Third-Order Optical Nonlinearity Driven by Surface-Plasmon Field Gradients

    NASA Astrophysics Data System (ADS)

    Kravtsov, Vasily; AlMutairi, Sultan; Ulbricht, Ronald; Kutayiah, A. Ryan; Belyanin, Alexey; Raschke, Markus B.

    2018-05-01

    Efficient nonlinear optical frequency mixing in small volumes is key for future on-chip photonic devices. However, the generally low conversion efficiency severely limits miniaturization to nanoscale dimensions. Here we demonstrate that gradient-field effects can provide for an efficient, conventionally dipole-forbidden nonlinear response. We show that a longitudinal nonlinear source current can dominate the third-order optical nonlinearity of the free electron response in gold in the technologically important near-IR frequency range where the nonlinearities due to other mechanisms are particularly small. Using adiabatic nanofocusing to spatially confine the excitation fields, from measurements of the 2 ω1-ω2 four-wave mixing response as a function of detuning ω1-ω2, we find up to 10-5 conversion efficiency with a gradient-field contribution to χAu(3 ) of up to 10-19 m2/V2 . The results are in good agreement with the theory based on plasma hydrodynamics and underlying electron dynamics. The associated increase in the nonlinear conversion efficiency with a decreasing sample size, which can even overcompensate the volume decrease, offers a new approach for enhanced nonlinear nano-optics. This will enable more efficient nonlinear optical devices and the extension of coherent multidimensional spectroscopies to the nanoscale.

  2. Passive optical limiting studies of nanostructured Cu doped ZnO-PVA composite thin films

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Sunatkari, A. L.; Talwatkar, S. S.; Pahurkar, V. G.; Muley, G. G.

    2016-01-01

    We prepared undoped and Cu doped ZnO semiconducting nanoparticles (NPs) by chemical co-precipitation method and obtained Cu doped ZnO-polyvinyl alcohol (PVA) nanocomposite thin films by spin coating to investigate third order nonlinear optical and optical limiting properties under cw laser excitation. Powder samples of NPs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy, transmission electron microscopy, ultraviolet-visible (UV-vis) and Fourier transform infrared spectroscopy. XRD pattern and FE-SEM micrograph revealed the presence of hexagonal wurtzite phase ZnO NPs having uniform morphology with average particle size of 20 nm. The presence of excitons and absorption peaks in the range 343-360 nm, revealed by UV-vis study, were attributed to excitons in n = 1 quantum state. Third order NLO properties of all composite thin films were investigated by He-Ne continuous wave (cw) laser of wavelength 632.8 nm using Z-scan technique. Thermally stimulated enhanced values of nonlinear refraction and absorption coefficients were obtained which may be attributed to self-defocusing effect, reverse saturable absorption, weak free carrier absorption and surface states properties originated from thermo optic effect. Optical limiting properties have been studied using cw diode laser of wavelength 808 nm and results are presented.

  3. Coherent detection of THz-induced sideband emission from excitons in the nonperturbative regime

    NASA Astrophysics Data System (ADS)

    Uchida, K.; Otobe, T.; Mochizuki, T.; Kim, C.; Yoshita, M.; Tanaka, K.; Akiyama, H.; Pfeiffer, L. N.; West, K. W.; Hirori, H.

    2018-04-01

    Strong interaction of a terahertz (THz) wave with excitons induces nonperturbative optical effects such as Rabi splitting and high-order sideband generation. Here, we investigated coherent properties of THz-induced sideband emissions from GaAs/AlGaAs multiquantum wells. With increasing THz electric field, optical susceptibility of the THz-dressed exciton shows a redshift with spectral broadening and extraordinary phase shift. This implies that the field ionization of the 1 s exciton modifies the THz-dressed exciton in the nonperturbative regime.

  4. Modeling off-resonant nonlinear-optical cascading in mesoscopic thin films and guest-host molecular systems

    NASA Astrophysics Data System (ADS)

    Dawson, Nathan J.; Andrews, James H.; Crescimanno, Michael

    2013-12-01

    A model for off-resonant microscopic cascading of (hyper)polarizabilities is developed using a self-consistent field approach to study mesoscopic systems of nonlinear polarizable atoms and molecules. We find enhancements in the higher-order susceptibilities resulting from geometrical and boundary orientation effects. We include an example of the dependence on excitation beam cross sectional structure and a simplified derivation of the microscopic cascading of the nonlinear-optical response in guest-host systems.

  5. Gyroscopic behavior exhibited by the optical Kerr effect in bimetallic Au-Pt nanoparticles suspended in ethanol

    NASA Astrophysics Data System (ADS)

    Fernández-Valdés, D.; Torres-Torres, C.; Martínez-González, C. L.; Trejo-Valdez, M.; Hernández-Gómez, L. H.; Torres-Martínez, R.

    2016-07-01

    The modification in the third-order nonlinear optical response exhibited by rotating bimetallic Au-Pt nanoparticles in an ethanol solution was analyzed. The samples were prepared by a sol-gel processing route. The anisotropy associated to the elemental composition of the nanoparticles was confirmed by high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy measurements. The size of the nanoparticles varies in the range from 9 to 13 nm, with an average size of 11 nm. Changes in the spatial orientation of the nanomaterials automatically generated a variation in their plasmonic response evaluated by UV-Vis spectroscopy. A two-wave mixing experiment was conducted to explore an induced birefringence at 532 nm wavelength with nanosecond pulses interacting with the samples. A strong optical Kerr effect was identified to be the main responsible effect for the third-order nonlinear optical phenomenon exhibited by the nanoparticles. It was estimated that the rotation of inhomogeneous nanostructures can provide a remarkable change in the participation of different surface plasmon resonances, if they correspond to multimetallic nanoparticles. Potential applications for developing low-dimensional gyroscopic systems can be contemplated.

  6. Nonlinear optical and microscopic analysis of Cu2+ doped zinc thiourea chloride (ZTC) monocrystal

    NASA Astrophysics Data System (ADS)

    Ramteke, S. P.; Anis, Mohd; Pandian, M. S.; Kalainathan, S.; Baig, M. I.; Ramasamy, P.; Muley, G. G.

    2018-02-01

    Organometallic crystals offer considerable nonlinear response therefore, present article focuses on bulk growth and investigation of Cu2+ ion doped zinc thiourea chloride (ZTC) crystal to explore its technological impetus for laser assisted nonlinear optical (NLO) device applications. The Cu2+ ion doped ZTC bulk single crystal of dimension 03 × 2.4 × 0.4 cm3 has been grown from pH controlled aqueous solution by employing slow solvent evaporation technique. The structural analysis has been performed by means of single crystal X-ray diffraction technique. The doping of Cu2+ ion in ZTC crystal matrix has been confirmed by means of energy dispersive spectroscopic (EDS) technique. The origin of nonlinear optical properties in Cu2+ ion doped ZTC crystal has been studied by employing the Kurtz-Perry test and Z-scan analysis. The remarkable enhancement in second harmonic generation (SHG) efficiency of Cu2+ ion doped ZTC crystal with reference to ZTC crystal has been determined. The He-Ne laser assisted Z-scan analysis has been performed to determine the third order nonlinear optical (TONLO) nature of grown crystal. The TONLO parameters such as susceptibility, absorption coefficient, refractive index and figure of merit of Cu-ZTC crystal have been evaluated using the Z-scan transmittance data. The laser damage threshold of grown crystal to high intensity of Nd:YAG laser is found to be 706.2 MW/cm2. The hardness number, work hardening index, yield strength and elastic stiffness coefficient of grown crystal has been investigated under microhardness study. The etching study has been carried out to determine the growth likelihood, nature of etch pits and surface quality of grown crystal.

  7. Tunneling induced absorption with competing Nonlinearities

    PubMed Central

    Peng, Yandong; Yang, Aihong; Xu, Yan; Wang, Peng; Yu, Yang; Guo, Hongju; Ren, Tingqi

    2016-01-01

    We investigate tunneling induced nonlinear absorption phenomena in a coupled quantum-dot system. Resonant tunneling causes constructive interference in the nonlinear absorption that leads to an increase of more than an order of magnitude over the maximum absorption in a coupled quantum dot system without tunneling. Resonant tunneling also leads to a narrowing of the linewidth of the absorption peak to a sublinewidth level. Analytical expressions show that the enhanced nonlinear absorption is largely due to the fifth-order nonlinear term. Competition between third- and fifth-order nonlinearities leads to an anomalous dispersion of the total susceptibility. PMID:27958303

  8. Stereomotion is processed by the third-order motion system: reply to comment on Three-systems theory of human visual motion perception: review and update

    NASA Astrophysics Data System (ADS)

    Lu, Zhong-Lin; Sperling, George

    2002-10-01

    Two theories are considered to account for the perception of motion of depth-defined objects in random-dot stereograms (stereomotion). In the LuSperling three-motion-systems theory J. Opt. Soc. Am. A 18 , 2331 (2001), stereomotion is perceived by the third-order motion system, which detects the motion of areas defined as figure (versus ground) in a salience map. Alternatively, in his comment J. Opt. Soc. Am. A 19 , 2142 (2002), Patterson proposes a low-level motion-energy system dedicated to stereo depth. The critical difference between these theories is the preprocessing (figureground based on depth and other cues versus simply stereo depth) rather than the motion-detection algorithm itself (because the motion-extraction algorithm for third-order motion is undetermined). Furthermore, the ability of observers to perceive motion in alternating feature displays in which stereo depth alternates with other features such as texture orientation indicates that the third-order motion system can perceive stereomotion. This reduces the stereomotion question to Is it third-order alone or third-order plus dedicated depth-motion processing? Two new experiments intended to support the dedicated depth-motion processing theory are shown here to be perfectly accounted for by third-order motion, as are many older experiments that have previously been shown to be consistent with third-order motion. Cyclopean and rivalry images are shown to be a likely confound in stereomotion studies, rivalry motion being as strong as stereomotion. The phase dependence of superimposed same-direction stereomotion stimuli, rivalry stimuli, and isoluminant color stimuli indicates that these stimuli are processed in the same (third-order) motion system. The phase-dependence paradigm Lu and Sperling, Vision Res. 35 , 2697 (1995) ultimately can resolve the question of which types of signals share a single motion detector. All the evidence accumulated so far is consistent with the three-motion-systems theory. 2002 Optical Society of America

  9. Exact optics - III. Schwarzschild's spectrograph camera revised

    NASA Astrophysics Data System (ADS)

    Willstrop, R. V.

    2004-03-01

    Karl Schwarzschild identified a system of two mirrors, each defined by conic sections, free of third-order spherical aberration, coma and astigmatism, and with a flat focal surface. He considered it impractical, because the field was too restricted. This system was rediscovered as a quadratic approximation to one of Lynden-Bell's `exact optics' designs which have wider fields. Thus the `exact optics' version has a moderate but useful field, with excellent definition, suitable for a spectrograph camera. The mirrors are strongly aspheric in both the Schwarzschild design and the exact optics version.

  10. Micro-/nanoscale multi-field coupling in nonlinear photonic devices

    NASA Astrophysics Data System (ADS)

    Yang, Qing; Wang, Yubo; Tang, Mingwei; Xu, Pengfei; Xu, Yingke; Liu, Xu

    2017-08-01

    The coupling of mechanics/electronics/photonics may improve the performance of nanophotonic devices not only in the linear region but also in the nonlinear region. This review letter mainly presents the recent advances on multi-field coupling in nonlinear photonic devices. The nonlinear piezoelectric effect and piezo-phototronic effects in quantum wells and fibers show that large second-order nonlinear susceptibilities can be achieved, and second harmonic generation and electro-optic modulation can be enhanced and modulated. Strain engineering can tune the lattice structures and induce second order susceptibilities in central symmetry semiconductors. By combining the absorption-based photoacoustic effect and intensity-dependent photobleaching effect, subdiffraction imaging can be achieved. This review will also discuss possible future applications of these novel effects and the perspective of their research. The review can help us develop a deeper knowledge of the substance of photon-electron-phonon interaction in a micro-/nano- system. Moreover, it can benefit the design of nonlinear optical sensors and imaging devices with a faster response rate, higher efficiency, more sensitivity and higher spatial resolution which could be applied in environmental detection, bio-sensors, medical imaging and so on.

  11. Nodal aberration theory for wild-filed asymmetric optical systems

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Cheng, Xuemin; Hao, Qun

    2016-10-01

    Nodal Aberration Theory (NAT) was used to calculate the zero field position in Full Field Display (FFD) for the given aberration term. Aiming at wide-filed non-rotational symmetric decentered optical systems, we have presented the nodal geography behavior of the family of third-order and fifth-order aberrations. Meanwhile, we have calculated the wavefront aberration expressions when one optical element in the system is tilted, which was not at the entrance pupil. By using a three-piece-cellphone lens example in optical design software CodeV, the nodal geography is testified under several situations; and the wavefront aberrations are calculated when the optical element is tilted. The properties of the nodal aberrations are analyzed by using Fringe Zernike coefficients, which are directly related with the wavefront aberration terms and usually obtained by real ray trace and wavefront surface fitting.

  12. The effects of the electric and intense laser field on the binding energies of donor impurity states (1s and 2p±) and optical absorption between the related states in an asymmetric parabolic quantum well

    NASA Astrophysics Data System (ADS)

    Kasapoglu, E.; Sakiroglu, S.; Sökmen, I.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.

    2016-10-01

    We have calculated the effects of electric and intense laser fields on the binding energies of the ground and some excited states of conduction electrons coupled to shallow donor impurities as well as the total optical absorption coefficient for transitions between 1s and 2p± electron-impurity states in a asymmetric parabolic GaAs/Ga1-x AlxAs quantum well. The binding energies were obtained using the effective-mass approximation within a variational scheme. Total absorption coefficient (linear and nonlinear absorption coefficient) for the transitions between any two impurity states were calculated from first- and third-order dielectric susceptibilities derived within a perturbation expansion for the density matrix formalism. Our results show that the effects of the electric field, intense laser field, and the impurity location on the binding energy of 1s-impurity state are more pronounced compared with other impurity states. If the well center is changed to be Lc<0 (Lc>0), the effective well width decreases (increases), and thus we can obtain the red or blue shift in the resonant peak position of the absorption coefficient by changing the intensities of the electric and non-resonant intense laser field as well as dimensions of the well and impurity positions.

  13. Ultrafast third-order nonlinear optical response of pyrene derivatives

    NASA Astrophysics Data System (ADS)

    Shi, Yufang; Li, Zhongguo; Fang, Yu; Sun, Jinyu; Zhao, Minggen; Song, Yinglin

    2017-05-01

    Two mono-substituted pyrene derivatives with delocalized electron system 1-(pyren-1-yl)-3-(4-Methyl thiophene-2-yl) acrylic ketone (13#) and 1-(pyren-1-yl)-3-(4-bromo thiophene-2-yl) acrylic ketone (15#) were successfully synthesized. The resultant compounds were characterized by nuclear magnetic resonance (NMR), infrared spectroscopy (IR), high resolution mass spectrum (HR-MS), and UV-vis spectra. The third-order nonlinear optical properties of the compounds were investigated using Z-scan technique with femtosecond laser pulses at 500 nm and 700 nm, respectively. Both of the compounds showed a decrease in transmittance about the focus, which are typical of two-photon absorption. It was found that the two-photon absorption behavior of the pyrene derivatives were modified by substituents on thiophene ring. These results indicate that both compounds can be promising candidates for future optoelectronic and bio-imaging applications.

  14. Near resonant and nonresonant third-order optical nonlinearities of colloidal InP/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Yang, X.; He, T. C.; Gao, Y.; Demir, H. V.; Sun, X. W.; Sun, H. D.

    2013-01-01

    We have investigated the third-order optical nonlinearities of high-quality colloidal InP/ZnS core-shell quantum dots (QDs) using Z-scan technique with femtosecond pulses. The two-photon absorption cross-sections as high as 6.2 × 103 GM are observed at 800 nm (non-resonant regime) in InP/ZnS QDs with diameter of 2.8 nm, which is even larger than those of CdSe, CdS, and CdTe QDs at similar sizes. Furthermore, both of the 2.2 nm and 2.8 nm-sized InP/ZnS QDs exhibit strong saturable absorption in near resonant regime, which is attributed to large exciton Bohr radius in this material. These results strongly suggest the promising potential of InP/ZnS QDs for widespread applications, especially in two-photon excited bio-imaging and saturable absorbing.

  15. Evaluating the component contribution to nonlinear optical performances using stable [Ni4O4] cuboidal clusters as models.

    PubMed

    Hao, Zhi-Min; Chao, Meng-Yao; Liu, Yan; Song, Ying-Lin; Yang, Jun-Yi; Ding, Lifeng; Zhang, Wen-Hua; Lang, Jian-Ping

    2018-06-19

    Five stable clusters sharing the cuboidal [Ni4O4] skeleton are subjected to third-order nonlinear optical (NLO) property measurements. Preliminary results suggest that the NLO property is largely defined by the cluster core skeleton and the directly coordinated atoms, with limited contribution from the heavy atoms peripherally attached to the aromatic ligands.

  16. The Longwave Silicon Chip - Integrated Plasma-Photonics in Group IV And III-V Semiconductors

    DTIC Science & Technology

    2013-10-01

    infrared applications; SiGeSn heterostructure photonics; group IV plasmonics with silicides , germanicides, doped Si, Ge or GeSn; Franz-Keldysh...SPP waveguide in which localized silicide or germanicide “conductors” are introduced to give local plasmonic confinement. Therefore, guided-wave...reconfigurable integrated optoelectronics, electro-optical logic in silicon, silicides for group IV plasmonics, reviews of third-order nonlinear optical

  17. Towards a unifying theory for the first-, second-, and third-order molecular (non)linear optical response

    NASA Astrophysics Data System (ADS)

    Pérez-Moreno, Javier; Clays, Koen; Kuzyk, Mark G.

    2010-05-01

    We present a procedure for the modeling of the dispersion of the nonlinear optical response of complex molecular structures that is based strictly on the results from experimental characterization. We show how under some general conditions, the use of the Thomas-Kuhn sum-rules leads to a successful modeling of the nonlinear response of complex molecular structures.

  18. Efficient second harmonic generation by para-nitroaniline embedded in electro-spun polymeric nanofibres

    NASA Astrophysics Data System (ADS)

    Gonçalves, Hugo; Saavedra, Inês; Ferreira, Rute AS; Lopes, PE; de Matos Gomes, Etelvina; Belsley, Michael

    2018-03-01

    Intense well polarized second harmonic light was generated by poly(methyl methacrylate) nanofibres with embedded para-nitroaniline nanocrystals. Subwavelength diameter fibres were electro-spun using a 1:2 weight ratio of chromophore to polymer. Analysis of the generated second harmonic light indicates that the para-nitroaniline molecules, which nominally crystalize in the centrosymmetric space group, were organized into noncentrosymmetric structures leading to a second order susceptibility dominated by a single tensor element. Under the best deposition conditions, the nanofibrers display an effective nonlinear optical susceptibility approximately two orders of magnitude greater than that of potassium dihydrogen phosphate. Generalizing this approach to a broad range of organic molecules with strong individual molecular second order nonlinear responses, but which nominally form centrosymmetric organic crystals, could open a new pathway for the fabrication of efficient sub-micron sized second harmonic light generators.

  19. Optical nonlinearity of D-A-π-D and D-A-π-A type of new chalcones for potential applications in optical limiting and density functional theory studies

    NASA Astrophysics Data System (ADS)

    Chandra Shekhara Shetty, T.; Chidan Kumar, C. S.; Gagan Patel, K. N.; Chia, Tze Shyang; Dharmaprakash, S. M.; Ramasami, Ponnadurai; Umar, Yunusa; Chandraju, Siddegowda; Quah, Ching Kheng

    2017-09-01

    Two new chalcones namely, (2E)-1-(3-fluoro-4-methoxyphenyl)-3-(4-methoxyphenyl) prop-2-en-1-one and (2E)-3-(4-chlorophenyl)-1-(3-fluoro-4-methoxyphenyl)prop-2-en-1-one were synthesized and grown as single crystals by slow evaporation technique in methanol. The FTIR spectrum recorded confirms the presence of functional groups in these materials. The molecular conformation of the compounds was achieved by single crystal X-ray diffraction studies. The thermal stability of the crystals was determined from TGA/DSC curve. The third order optical nonlinearity of the chalcone compounds in DMF solution has been carried out using an Nd:YAG laser at 532 nm as the source of excitation. The nonlinear optical response was characterized by measuring the intensity dependent refractive index n2 of the medium using Z-scan technique. It is seen that the molecules exhibit a negative (defocusing) nonlinearity and large nonlinear refractive index of the order of -1.8 × 10-11 esu. The third-order nonlinearity of the studied chalcones is dominated by nonlinear refraction, which leads to strong optical limiting of laser. The result reveals that these two new chalcone molecules would be a promising material for optical limiting applications. In addition, the optimized molecular geometry, vibrational frequencies in gas, and the Molecular Electrostatic Potential (MEP) surface parameters of the two molecules were calculated using DFT/B3LYP method with 6-311++G(d,p) basis set in ground state. All the theoretical calculations were found in good agreement with experimental data.

  20. Bulk growth of undoped and Nd3+ doped zinc thiourea chloride (ZTC) monocrystal: Exploring the remarkably enhanced structural, optical, electrical and mechanical performance of Nd3+ doped ZTC crystal for NLO device applications

    NASA Astrophysics Data System (ADS)

    Anis, Mohd; Muley, Gajanan. G.

    2017-05-01

    In current scenario good quality crystals are demanded for NLO device application hence present communication is aimed to grow bulk crystal and investigate the doping effect of rare earth element Nd3+ on structural, linear-nonlinear optical, luminescence, mechanical and dielectric properties of zinc thiourea chloride (ZTC) crystal. The ZTC crystal of dimension 21×10×8 mm3 and the Nd3+ doped ZTC crystal of dimension 27×17×5 mm3 have been grown from aqueous solution by slow evaporation technique. The elemental analysis of Nd3+ doped ZTC single crystal has been performed by means of energy dispersive spectroscopic technique. The powder X-ray diffraction technique has been employed to confirm the crystalline phase and identify the effect of Nd3+ doping on structural dimensions of ZTC crystal. The grown crystals have been characterized by UV-Vis-NIR study in the range of 190-1100 nm to ascertain the enhancement in optical transparency of ZTC crystal facilitated by dopant Nd3+. The recorded transmittance data has been utilized to investigate the vital optical constants of grown crystals. The second order nonlinear optical behavior of grown crystals has been evaluated by means of Kurtz-Perry test and the second harmonic generation efficiency of Nd3+ doped ZTC crystal is found to be 1.24 times higher than ZTC crystal. The luminescence analysis has been performed to examine the electronic purity and the color centered photoluminescence emission nature of pure and Nd3+ doped ZTC crystals. The influence of Nd3+ ion on mechanical behavior of ZTC crystal has been investigated by means of microhardness studies. The nature of dielectric constant and dielectric loss of pure and Nd3+ doped ZTC crystal has been examined in the range of 40-100 °C under dielectric study. The Z-scan technique has been employed using the He-Ne laser to investigate the third order nonlinear optical (TONLO) nature of Nd3+ doped ZTC single crystal. The magnitude of TONLO susceptibility, absorption coefficient and refraction has been determined using the Z-scan transmittance data.

  1. Thermally stimulated nonlinear refraction in gelatin stabilized Cu-PVP nanocomposite thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamgadge, Y. S., E-mail: ystamgadge@gmail.com; Atkare, D. V.; Pahurkar, V. G.

    2016-05-06

    This article illustrates investigations on thermally stimulated third order nonlinear refraction of Cu-PVP nanocomposite thin films. Cu nanoparticles have been synthesized using chemical reduction method and thin films in PVP matrix have been obtained using spin coating technique. Thin films have been characterized by X-ray diffraction (XRD) and Ultraviolet-visible (UV-vis) spectroscopyfor structural and linear optical studies. Third order nonlinear refraction studies have been performed using closed aperture z-scan technique under continuous wave (CW) He-Ne laser. Cu-PVP nanocomposites are found to exhibit strong nonlinear refractive index stimulated by thermal lensing effect.

  2. Regional Recovery of the Disturbing Gravitational Potential from Satellite Observations of First-, Second- and Third-order Radial Derivatives of the Disturbing Gravitational Potential

    NASA Astrophysics Data System (ADS)

    Novak, P.; Pitonak, M.; Sprlak, M.

    2015-12-01

    Recently realized gravity-dedicated satellite missions allow for measuring values of scalar, vectorial (Gravity Recovery And Climate Experiment - GRACE) and second-order tensorial (Gravity field and steady-state Ocean Circulation Explorer - GOCE) parameters of the Earth's gravitational potential. Theoretical aspects related to using moving sensors for measuring elements of a third-order gravitational tensor are currently under investigation, e.g. the gravity-dedicated satellite mission OPTIMA (OPTical Interferometry for global Mass change detection from space) should measure third-order derivatives of the Earth's gravitational potential. This contribution investigates regional recovery of the disturbing gravitational potential on the Earth's surface from satellite observations of first-, second- and third-order radial derivatives of the disturbing gravitational potential. Synthetic measurements along a satellite orbit at the altitude of 250 km are synthetized from the global gravitational model EGM2008 and polluted by the Gaussian noise. The process of downward continuation is stabilized by the Tikhonov regularization. Estimated values of the disturbing gravitational potential are compared with the same quantity synthesized directly from EGM2008. Finally, this contribution also discusses merging a regional solution into a global field as a patchwork.

  3. Possibilities of the regional gravity field recovery from first-, second- and third-order radial derivatives of the disturbing gravitational potential measured on moving platforms

    NASA Astrophysics Data System (ADS)

    Pitonak, Martin; Sprlak, Michal; Novak, Pavel; Tenzer, Robert

    2016-04-01

    Recently realized gravity-dedicated satellite missions allow for measuring values of scalar, vectorial (Gravity Recovery And Climate Experiment - GRACE) and second-order tensorial (Gravity field and steady-state Ocean Circulation Explorer - GOCE) parameters of the Earth's gravitational potential. Theoretical aspects related to using moving sensors for measuring elements of the third-order gravitational tensor are currently under investigation, e.g., the gravity field-dedicated satellite mission OPTIMA (OPTical Interferometry for global Mass change detection from space) should measure third-order derivatives of the Earth's gravitational potential. This contribution investigates regional recovery of the disturbing gravitational potential on the Earth's surface from satellite and aerial observations of the first-, second- and third-order radial derivatives of the disturbing gravitational potential. Synthetic measurements along a satellite orbit at the altitude of 250 km and along an aircraft track at the altitude of 10 km are synthetized from the global gravitational model EGM2008 and polluted by the Gaussian noise. The process of downward continuation is stabilized by the Tikhonov regularization. Estimated values of the disturbing gravitational potential are compared with the same quantity synthesized directly from EGM2008.

  4. THz-wave generation via difference frequency mixing in strained silicon based waveguide utilizing its second order susceptibility χ((2)).

    PubMed

    Saito, Kyosuke; Tanabe, Tadao; Oyama, Yutaka

    2014-07-14

    Terahertz (THz) wave generation via difference frequency mixing (DFM) process in strain silicon membrane waveguides by introducing the straining layer is theoretically investigated. The Si(3)N(4) straining layer induces anisotropic compressive strain in the silicon core and results in the appearance of the bulk second order nonlinear susceptibility χ((2)) by breaking the crystal symmetry. We have proposed waveguide structures for THz wave generation under the DFM process by .using the modal birefringence in the waveguide core. Our simulations show that an output power of up to 0.95 mW can be achieved at 9.09 THz. The strained silicon optical device may open a widow in the field of the silicon-based active THz photonic device applications.

  5. Dynamic Fatigue of a Titanium Silicate Glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Nettles, Alan T.; Cagle, Holly A.; Smith, W. Scott (Technical Monitor)

    2002-01-01

    A dynamic fatigue study was performed on a Titanium Silicate Glass in order to assess its susceptibility to delayed failure. Fracture mechanics techniques were used to analyze the results for the purpose of making lifetime predictions for optical elements made from this material. The material has reasonably good resistance (N=23 to stress corrosion in ambient conditions).

  6. Nonlinear Fano-Resonant Dielectric Metasurfaces

    DOE PAGES

    Yang, Yuanmu; Wang, Wenyi; Boulesbaa, Abdelaziz; ...

    2015-10-26

    Strong nonlinear light matter interaction is highly sought-after for a variety of applications including lasing and all-optical light modulation. Recently, resonant plasmonic structures have been considered promising candidates for enhancing nonlinear optical processes due to their ability to greatly enhance the optical near-field; however, their small mode volumes prevent the inherently large nonlinear susceptibility of the metal from being efficiently exploited. We present an alternative approach that utilizes a Fano-resonant silicon metasurface. The metasurface results in strong near-field enhancement within the volume of the silicon resonator while minimizing two photon absorption. Here, we measure a third harmonic generation enhancement factormore » of 1.5 105 with respect to an unpatterned silicon film and an absolute conversion efficiency of 1.2 10 6 with a peak pump intensity of 3.2 GW cm 2. The enhanced nonlinearity, combined with a sharp linear transmittance spectrum, results in transmission modulation with a modulation depth of 36%. Finally, the modulation mechanism is studied by pump probe experiments« less

  7. Nonlinear optical measurements of conducting copolymers of aniline under CW laser excitation

    NASA Astrophysics Data System (ADS)

    Pramodini, S.; Poornesh, P.

    2015-08-01

    Synthesis and measurements of third-order optical nonlinearity and optical limiting of conducting copolymers of aniline are presented. Single beam z-scan technique was employed for the nonlinear optical studies. Continuous wave He-Ne laser operating at 633 nm was used as the source of excitation. Copolymer samples exhibited reverse saturable absorption (RSA) process. The nonlinear refraction studies depict that the copolymers exhibit self-defocusing property. The estimated values of βeff, n2 and χ(3) were found to be of the order of 10-2 cm/W, 10-5 esu and 10-7 esu respectively. Self-diffraction rings were observed due to refractive index change when exposed to the laser beam. A good optical limiting and clamping of power of ∼0.9 mW and ∼0.05 mW was observed. Therefore, copolymers of aniline emerge as a potential candidate for photonic device applications.

  8. Optical design and simulation of a new coherence beamline at NSLS-II

    NASA Astrophysics Data System (ADS)

    Williams, Garth J.; Chubar, Oleg; Berman, Lonny; Chu, Yong S.; Robinson, Ian K.

    2017-08-01

    We will discuss the optical design for a proposed beamline at NSLS-II, a late-third generation storage ring source, designed to exploit the spatial coherence of the X-rays to extract high-resolution spatial information from ordered and disordered materials through Coherent Diffractive Imaging, executed in the Bragg- and forward-scattering geometries. This technique offers a powerful tool to image sub-10 nm spatial features and, within ordered materials, sub-Angstrom mapping of deformation fields. Driven by the opportunity to apply CDI to a wide range of samples, with sizes ranging from sub-micron to tens-of-microns, two optical designs have been proposed and simulated under a wide variety of optical configurations using the software package Synchrotron Radiation Workshop. The designs, their goals, and the results of the simulation, including NSLS-II ring and undulator source parameters, of the beamline performance as a function of its variable optical components is described.

  9. Design considerations for multi component molecular-polymeric nonlinear optical materials

    NASA Astrophysics Data System (ADS)

    Singer, K. D.; Kuzyk, M. G.; Fang, T.; Holland, W. R.; Cahill, P. A.

    1990-08-01

    We review our work on multi component polymeric nonlinear optical materials. These materials consist of nonlinear optical molecules incorporated in a polymeric host. A cross-linked triazine polymer incorporating a dicyanovinyl terminated azo dye was found to be relatively stable at 85 deg and possess an electro-optic coefficient of 11pm/V. We have also observed the zero dispersion condition in a new anomalous dispersion dye for phase matched second harmonic generation, and expect efficient conversion to the blue. A squarylium dye, ISQ, has been found to possess a large third order nonlinearity, and may display two-level behavior.

  10. Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation.

    PubMed

    He, Jingsong; Wang, Lihong; Li, Linjing; Porsezian, K; Erdélyi, R

    2014-06-01

    In this paper, we consider the complex modified Korteweg-de Vries (mKdV) equation as a model of few-cycle optical pulses. Using the Lax pair, we construct a generalized Darboux transformation and systematically generate the first-, second-, and third-order rogue wave solutions and analyze the nature of evolution of higher-order rogue waves in detail. Based on detailed numerical and analytical investigations, we classify the higher-order rogue waves with respect to their intrinsic structure, namely, fundamental pattern, triangular pattern, and ring pattern. We also present several new patterns of the rogue wave according to the standard and nonstandard decomposition. The results of this paper explain the generalization of higher-order rogue waves in terms of rational solutions. We apply the contour line method to obtain the analytical formulas of the length and width of the first-order rogue wave of the complex mKdV and the nonlinear Schrödinger equations. In nonlinear optics, the higher-order rogue wave solutions found here will be very useful to generate high-power few-cycle optical pulses which will be applicable in the area of ultrashort pulse technology.

  11. Even-order harmonic cancellation for off-quadrature biased Mach-Zehnder modulator with improved RF metrics using dual wavelength inputs and dual outputs.

    PubMed

    Devgan, Preetpaul S; Diehl, John F; Urick, Vincent J; Sunderman, Christopher E; Williams, Keith J

    2009-05-25

    We present a technique using a dual-output Mach-Zehnder modulator (MZM) with two wavelength inputs, one operating at low-bias and the other operating at high-bias, in order to cancel unwanted even-order harmonics in analog optical links. By using a dual-output MZM, this technique allows for two suppressed optical carriers to be transmitted to the receiver. Combined with optical amplification and balanced differential detection, the RF power of the fundamental is increased by 2 dB while the even-order harmonic is reduced by 47 dB, simultaneously. The RF noise figure and third-order spurious-free dynamic range (SFDR(3)) are improved by 5.4 dB and 3.6 dB, respectively. Using a wavelength sensitive, low V(pi) MZM allows the two wavelengths to be within 5.5 nm of each other for a frequency band from 10 MHz to 100 MHz and 10 nm for 1 GHz.

  12. Pockels effect in strained silicon photonics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Vivien, Laurent; Berciano, Mathias; Damas, Pedro; Marcaud, Guillaume; Le Roux, Xavier; Crozat, Paul; Alonso-Ramos, Carlos A.; Benedikovic, Daniel; Marris-Morini, Delphine; Cassan, Eric

    2017-05-01

    Silicon photonics has generated a strong interest in recent years, mainly for optical communications and optical interconnects in CMOS circuits. The main motivations for silicon photonics are the reduction of photonic system costs and the increase of the number of functionalities on the same integrated chip by combining photonics and electronics, along with a strong reduction of power consumption. However, one of the constraints of silicon as an active photonic material is its vanishing second order optical susceptibility, the so called χ(2) , due to the centrosymmety of the silicon crystal. To overcome this limitation, strain has been used as a way to deform the crystal and destroy the centrosymmetry which inhibits χ(2). The paper presents the recent advances in the development of second-order nonlinearities including discussions from fundamental origin of Pockels effect in silicon until its implementation in a real device. Carrier effects induced by an electric field leading to an electro-optics behavior will also be discussed.

  13. Nonlinear optical anisotropy and molecular orientational distribution in poly(p-phenylene benzobisthiazole) Langmuir-Blodgett films

    NASA Astrophysics Data System (ADS)

    Wang, Liming; Wada, Tatsuo; Yuba, Tomoyuki; Kakimoto, Masaaki; Imai, Yoshio; Sasabe, Hiroyuki

    1996-06-01

    The orientational distribution and packing of polymer chains were investigated in poly(p-phenylene benzobisthiazole) (PBT) Langmuir-Blodgett (LB) films by nonresonant third-harmonic generation measurement at a wavelength of 1907 nm. The tensor components of the third-harmonic susceptibility on the PBT LB film with a surface pressure of 50 mN/m were determined to be χ(3)XXXX=(16.6±2.5)×10-12 and χ(3)YYYY=(2.0±0.3)×10-12. The large nonlinear optical anisotropy can be explained as a result of highly oriented packing of the polymer chains induced by a flow orientation. A Gaussian distribution function with a standard deviation of σ=0.40 gives a practical description of the orientational distribution of PBT polymer chains. A maximum χ(3) value of (26.8±4.4)×10-12 esu is predicted assuming a perfect alignment of polymer chains. The χ(3)XXXX value increased by factor of 2 with the surface pressure from 30 to 50 mN/m mainly due to the packing density of the polymer chains, while the orientational degree did not change.

  14. A Evaluation of Optical Aberrations in Underwater Hologrammetry

    NASA Astrophysics Data System (ADS)

    Kilpatrick, J. M.

    Available from UMI in association with The British Library. An iterative ray-trace procedure is developed in conjunction with semi-analytic expressions for spherical aberration, coma, and astigmatism in the reconstructed holographic images of underwater objects. An exact expression for the astigmatic difference is obtained, based on the geometry of the caustic for refraction. The geometrical characteristics of the aberrated images associated with axial and non-axial field positions are represented by ray intersection diagrams. A third order expression for the wavefront aberration introduced at a planar air/water boundary is given. The associated third order aberration coefficients are used to obtain analytic expressions for the aberrations observed in underwater hologrammetry. The results of the third order treatment are shown to give good agreement with the results obtained by geometrical ray tracing and by direct measurement on the reconstructed real image. The third order aberration coefficients are employed to estimate the limit of resolution in the presence of the aberrations associated with reconstruction in air. In concurrence with practical observations it is found that the estimated resolution is primarily limited by astigmatism. The limitations of the planar window in underwater imaging applications are outlined and various schemes are considered to effect a reduction in the extent of aberration. The analogous problems encountered in underwater photography are examined in order to establish the grounds for a common solution based on a conventional optical corrector. The performance of one such system, the Ivanoff Corrector, is investigated. The spherical aberration associated with axial image formation is evaluated. The equivalence of the third order wavefront aberration introduced at a planar air/water boundary to that introduced upon reconstruction by an appropriate wavelength change is shown to provide a basis for the compensation of aberrations in underwater hologrammetry. The results of experimental trials which demonstrate the correction of astigmatism and field curvature are presented. Exact expressions are obtained for the aberrations in wavelength compensated holograms and are employed to determine the conditions for optimum compensation and the degree of residual aberration. (Abstract shortened by UMI.).

  15. Eye/Sensor Protection against Laser Irradiation Organic Nonlinear Optical Materials

    DTIC Science & Technology

    1989-06-12

    the dipole. When the electric field is small compared to the internal fields due to the electron!, the molecular polarizability (p), which is...polarizability tensors, respectively, the linear polarizability and the second and third-order hyperpolarizability. At lower field intensities ( small E’s) only...nonlinear optical effect: the bonding electrons are well localized so only small changes in charge distribution with changes in local field environments

  16. Optical design with Wood lenses

    NASA Astrophysics Data System (ADS)

    Caldwell, J. Brian

    1991-01-01

    Spherical aberration in a flat surfaced radial gradient-index lens (a Wood lens) with a parabolic index profile can be corrected by altering the profile to Include higher order terms. However this results in a large amowfl of third order coma. This paper presents an alternative method of aberration correction similar to that used in the catadiopthc Schmidtsystem. A Wood lens with a parabolic profile is used to provide all or most of the optical power. Coma is corrected by stop shifting and Spherical aberration is corrected by placing a powerless Wood lens corrector plate at the stop. 1.

  17. Matrix-mediated synthesis of nanocrystalline gamma-Fe2O3 - A new optically transparent magnetic material

    NASA Astrophysics Data System (ADS)

    Ziolo, Ronald F.; Giannelis, Emmanuel P.; Weinstein, Bernard A.; O'Horo, Michael P.; Ganguly, Bishwanath N.; Mehrotra, Vivek; Russell, Michael W.; Huffman, Donald R.

    1992-07-01

    A magnetic material with appreciable optical transmission in the visible region at room temperature is isolated as a gamma-Fe2O3/polymer nanocomposite. The synthesis is carried out in an ion-exchange resin at 60 C. Magnetization and susceptibility data demonstrate loading-dependent saturation moments as high as 46 electromagnetic units per gram and superparamagnetism for lower loadings where particle sizes are less than 100 angstroms. Optical absorption studies show that the small-particle form of gamma-Fe2O3 is considerably more transparent to visible light than the single-crystal form. The difference in absorption ranges from nearly an order of magnitude in the 'red' spectral region to a factor of 3 at 5400 angstroms. The magnetization of the nanocomposite is greater by more than an order of magnitude than those of the strongest room-temperature transparent magnets, FeBO3 and FeF3.

  18. Generalized nonlinear Schrödinger equation and ultraslow optical solitons in a cold four-state atomic system.

    PubMed

    Hang, Chao; Huang, Guoxiang; Deng, L

    2006-03-01

    We investigate the influence of high-order dispersion and nonlinearity on the propagation of ultraslow optical solitons in a lifetime broadened four-state atomic system under a Raman excitation. Using a standard method of multiple-scales we derive a generalized nonlinear Schrödinger equation and show that for realistic physical parameters and at the pulse duration of 10(-6)s, the effects of third-order linear dispersion, nonlinear dispersion, and delay in nonlinear refractive index can be significant and may not be considered as perturbations. We provide exact soliton solutions for the generalized nonlinear Schrödinger equation and demonstrate that optical solitons obtained may still have ultraslow propagating velocity. Numerical simulations on the stability and interaction of these ultraslow optical solitons in the presence of linear and differential absorptions are also presented.

  19. Probing optically silent superfluid stripes in cuprates

    DOE PAGES

    Rajasekaran, S.; Okamoto, J.; Mathey, L.; ...

    2018-02-02

    Unconventional superconductivity in the cuprates coexists with other types of electronic order. However, some of these orders are invisible to most experimental probes because of their symmetry. For example, the possible existence of superfluid stripes is not easily validated with linear optics, because the stripe alignment causes interlayer superconducting tunneling to vanish on average. In this paper, we show that this frustration is removed in the nonlinear optical response. A giant terahertz third harmonic, characteristic of nonlinear Josephson tunneling, is observed in La 1.885Ba 0.115CuO 4 above the transition temperature T c = 13 kelvin and up to the charge-orderingmore » temperature T co = 55 kelvin. We model these results by hypothesizing the presence of a pair density wave condensate, in which nonlinear mixing of optically silent tunneling modes drives large dipole-carrying supercurrents.« less

  20. Probing optically silent superfluid stripes in cuprates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajasekaran, S.; Okamoto, J.; Mathey, L.

    Unconventional superconductivity in the cuprates coexists with other types of electronic order. However, some of these orders are invisible to most experimental probes because of their symmetry. For example, the possible existence of superfluid stripes is not easily validated with linear optics, because the stripe alignment causes interlayer superconducting tunneling to vanish on average. In this paper, we show that this frustration is removed in the nonlinear optical response. A giant terahertz third harmonic, characteristic of nonlinear Josephson tunneling, is observed in La 1.885Ba 0.115CuO 4 above the transition temperature T c = 13 kelvin and up to the charge-orderingmore » temperature T co = 55 kelvin. We model these results by hypothesizing the presence of a pair density wave condensate, in which nonlinear mixing of optically silent tunneling modes drives large dipole-carrying supercurrents.« less

  1. Quasi-phase-matched χ(3 )-parametric interactions in sinusoidally tapered waveguides

    NASA Astrophysics Data System (ADS)

    Saleh, Mohammed F.

    2018-01-01

    In this article, I show how periodically tapered waveguides can be employed as efficient quasi-phase-matching schemes for four-wave mixing parametric processes in third-order nonlinear materials. As an example, a thorough study of enhancing third-harmonic generation in sinusoidally tapered fibers has been conducted. The quasi-phase-matching condition has been obtained for nonlinear parametric interactions in these structures using Fourier-series analysis. The dependencies of the conversion efficiency of the third harmonic on the modulation amplitude, tapering period, longitudinal-propagation direction, and pump wavelength have been studied. In comparison to uniform waveguides, the conversion efficiency has been enhanced by orders of magnitudes. I envisage that this work will have a great impact in the field of guided nonlinear optics using centrosymmetric materials.

  2. On marginally resolved objects in optical interferometry

    NASA Astrophysics Data System (ADS)

    Lachaume, R.

    2003-03-01

    With the present and soon-to-be breakthrough of optical interferometry, countless objects shall be within reach of interferometers; yet, most of them are expected to remain only marginally resolved with hectometric baselines. In this paper, we tackle the problem of deriving the properties of a marginally resolved object from its optical visibilities. We show that they depend on the moments of flux distribution of the object: centre, mean angular size, asymmetry, and curtosis. We also point out that the visibility amplitude is a second-order phenomenon, whereas the phase is a combination of a first-order term, giving the location of the photocentre, and a third-order term, more difficult to detect than the visibility amplitude, giving an asymmetry coefficient of the object. We then demonstrate that optical visibilities are not a good model constraint while the object stays marginally resolved, unless observations are carried out at different wavelengths. Finally, we show an application of this formalism to circumstellar discs.

  3. Combined effects of nonparaxiality, optical activity, and walk-off on rogue wave propagation in optical fibers filled with chiral materials.

    PubMed

    Temgoua, D D Estelle; Tchokonte, M B Tchoula; Kofane, T C

    2018-04-01

    The generalized nonparaxial nonlinear Schrödinger (NLS) equation in optical fibers filled with chiral materials is reduced to the higher-order integrable Hirota equation. Based on the modified Darboux transformation method, the nonparaxial chiral optical rogue waves are constructed from the scalar model with modulated coefficients. We show that the parameters of nonparaxiality, third-order dispersion, and differential gain or loss term are the main keys to control the amplitude, linear, and nonlinear effects in the model. Moreover, the influence of nonparaxiality, optical activity, and walk-off effect are also evidenced under the defocusing and focusing regimes of the vector nonparaxial NLS equations with constant and modulated coefficients. Through an algorithm scheme of wider applicability on nonparaxial beam propagation methods, the most influential effect and the simultaneous controllability of combined effects are underlined, showing their properties and their potential applications in optical fibers and in a variety of complex dynamical systems.

  4. Combined effects of nonparaxiality, optical activity, and walk-off on rogue wave propagation in optical fibers filled with chiral materials

    NASA Astrophysics Data System (ADS)

    Temgoua, D. D. Estelle; Tchokonte, M. B. Tchoula; Kofane, T. C.

    2018-04-01

    The generalized nonparaxial nonlinear Schrödinger (NLS) equation in optical fibers filled with chiral materials is reduced to the higher-order integrable Hirota equation. Based on the modified Darboux transformation method, the nonparaxial chiral optical rogue waves are constructed from the scalar model with modulated coefficients. We show that the parameters of nonparaxiality, third-order dispersion, and differential gain or loss term are the main keys to control the amplitude, linear, and nonlinear effects in the model. Moreover, the influence of nonparaxiality, optical activity, and walk-off effect are also evidenced under the defocusing and focusing regimes of the vector nonparaxial NLS equations with constant and modulated coefficients. Through an algorithm scheme of wider applicability on nonparaxial beam propagation methods, the most influential effect and the simultaneous controllability of combined effects are underlined, showing their properties and their potential applications in optical fibers and in a variety of complex dynamical systems.

  5. Diffracted light from latent images in photoresist for exposure control

    DOEpatents

    Bishop, Kenneth P.; Brueck, Steven R. J.; Gaspar, Susan M.; Hickman, Kirt C.; McNeil, John R.; Naqvi, S. Sohail H.; Stallard, Brian R.; Tipton, Gary D.

    1997-01-01

    In microelectronics manufacturing, an arrangement for monitoring and control of exposure of an undeveloped photosensitive layer on a structure susceptible to variations in optical properties in order to attain the desired critical dimension for the pattern to be developed in the photosensitive layer. This is done by ascertaining the intensities for one or more respective orders of diffracted power for an incident beam of radiation corresponding to the desired critical dimension for the photosensitive layer as a function of exposure time and optical properties of the structure, illuminating the photosensitive layer with a beam of radiation of one or more frequencies to which the photosensitive layer is not exposure-sensitive, and monitoring the intensities of the orders of diffracted radiation due to said illumination including at least the first order of diffracted radiation thereof, such that when said predetermined intensities for the diffracted orders are reached during said illumination of photosensitive layer, it is known that a pattern having at least approximately the desired critical dimension can be developed on the photosensitive layer.

  6. Characteristics of an Optical Delay Line for Radar Testing

    DTIC Science & Technology

    2016-04-12

    MANUFACTURER PERFORMANCE MEASUREMENT ....................................... 2 3 NRL PERFORMANCE MEASUREMENT ...Third-Order-Intercept (TOI) ................... 7 3.4 Phase Noise Measurement ...MANUFACTURER PERFORMANCE MEASUREMENT Figures 3 to 5 are the Miteq’s FODL performance measured by the manufacturer prior to shipping the system to NRL

  7. Nanosecond electric modification of order parameters

    NASA Astrophysics Data System (ADS)

    Borshch, Volodymyr

    In this Dissertation, we study a nanosecond electro-optic response of a nematic liquid crystal in a geometry where an applied electric field E modifies the tensor order parameter but does not change the orientation of the optic axis (director N̂). We use nematics with negative dielectric anisotropy with the electric field applied perpendicularly to N̂. The field changes the dielectric tensor at optical frequencies (optic tensor), due to the following mechanisms: (a) nanosecond creation of biaxial orientational order; (b) uniaxial modification of the orientational order that occurs over the timescales of tens of nanoseconds, and (c) quenching of director fluctuations with a wide range of characteristic times up to milliseconds. We develop a model to describe the dynamics of all three mechanisms. We design the experimental conditions to selectively suppress the contributions from the quenching of director fluctuations (c) and from the biaxial order effect (a) and thus, separate the contributions of the three mechanisms in the electro-optic response. As a result, the experimental data can be well fitted with the model parameters. The analysis provides a rather detailed physical picture of how the liquid crystal responds to a strong electric field, E ˜ 108 V/m, on a timescale of nanoseconds. This work provides a useful guide in the current search of the biaxial nematic phase. Namely, the temperature dependence of the biaxial susceptibility allows one to estimate the temperature of the potential uniaxial-to-biaxial phase transition. An analysis of the quenching of director fluctuations indicates that on a timescale of nanoseconds, the classic model with constant viscoelastic material parameters might reach its limit of validity. The effect of nanosecond electric modification of the order parameter (NEMOP) can be used in applications in which one needs to achieve ultrafast (nanosecond) changes of optical characteristics, such as birefringence.

  8. Sensitivity of optical mass sensor enhanced by optomechanical coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yong, E-mail: hey@cczu.edu.cn

    Optical mass sensors based on cavity optomechanics employ radiation pressure force to drive mechanical resonator whose mechanical susceptibility can be described by nonlinear optical transmission spectrum. In this paper, we present an optical mass sensor based on a two-cavity optomechanical system where the mechanical damping rate can be decreased by adjusting a pump power so that the mass sensitivity which depends on the mechanical quality factor has been enhanced greatly. Compared with that of an optical mass sensor based on single-cavity optomechanics, the mass sensitivity of the optical mass sensor is improved by three orders of magnitude. This is anmore » approach to enhance the mass sensitivity by means of optomechanical coupling, which is suitable for all mass sensor based on cavity optomechanics. Finally, we illustrate the accurate measurement for the mass of a few chromosomes, which can be achieved based on the current experimental conditions.« less

  9. Phase-dependent ultrafast third-order optical nonlinearities in metallophthalocyanine thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Samir; Anil Kumar, K. V.; Dharmaprakash, S. M.; Das, Ritwick

    2016-09-01

    We present a comprehensive study on the impact of phase transformations of metallophthalocyanine thin films on their third-order nonlinear optical (NLO) properties. The metallophthalocyanine thin films are prepared by thermally evaporating the commercially available Copper(II)2,9,16,23-Tetra-tert-butyl-29H,31H-phthalocyanine (CuPc) and Zinc(II) 2,9,16,23-Tetra-tert-butyl-29H,31H-phthalocyanine (ZnPc) powder on glass substrate. Thermal annealing causes a phase transformation which has a distinct signature in powder X-ray diffraction and UV-Vis-NIR spectroscopy. The NLO characteristics which include nonlinear refractive index n2, as well as nonlinear absorption coefficient (βeff), were measured by using a single beam Z-scan technique. An ultrashort pulsed fiber laser emitting femtosecond pulses (Δτ ≈ 250 fs) at 1064 nm central wavelength is used as a source for the Z-scan experiment. The βeff values in as prepared thin films were ascertained to be smaller as compared to the annealed one due to the smaller value of saturation intensity (Is) which, in turn, is a consequence of ground-state bleaching in the thermally unstable amorphous state of the molecule. Interestingly, the nonlinear refractive indices bear opposite sign for CuPc and ZnPc. The variations in the third-order nonlinearity in CuPc and ZnPc are discussed in terms of molecular packing and geometries of metallophthalocyanine molecules.

  10. The influence of aggregation on the third-order nonlinear optical property of π-conjugated chromophores: the case of cyanine dyes.

    PubMed

    Wang, Chao; Yuan, Yizhong

    2018-06-20

    The external molecular environment like the aggregation of molecules can significantly change the intrinsic third-order nonlinear optical (NLO) property of π-conjugated chromophores. A combined experimental and theoretical study was performed to understand the influence of the aggregation of cyanines on the third-order NLO property in spin-coated thin films. Our result indicates that the H and J type cyanine dimers prefer the polyene-like structures and the P type dimer displays a comparatively smaller bond length alternation (BLA). The polarizable continuum model (PCM)-tuned, range-separated (RSE) density functional approach was used to describe the screening effect of the cyanine aggregation. In the thin film, the P aggregate has very small positive isotropic averaged second hyperpolarizability γ, while the J aggregate has the largest positive γ due to the most polarized face-to-tail cyanine-cyanine interaction. Hence, the γ of the isolated cyanines (negative γ) may get cancelled against that of the cyanine aggregates (positive γ) in the thin film. The forward degenerate four-wave mixing technique also confirms a decrease in the magnitude of γ with an increase in the aggregation degree of cyanines. Since the large positive γ of the cyanine also implies strong two-photon absorption (TPA), the J aggregation of cyanines can be used as a potential fabrication method for applications involving TPA.

  11. Bulk crystal growth and their effective third order nonlinear optical properties of 2-(4-fluorobenzylidene) malononitrile (FBM) single crystal

    NASA Astrophysics Data System (ADS)

    Priyadharshini, A.; Kalainathan, S.

    2018-04-01

    2-(4-fluorobenzylidene) malononitrile (FBM), an organic third order nonlinear (TONLO) single crystal with the dimensions of 32 × 7 × 11 mm3, has been successfully grown in acetone solution by slow evaporation technique at 35 °C. The crystal system (triclinic), space group (P-1) and crystalline purity of the titular crystal were measured by single crystal and powder X-ray diffraction, respectively. The molecular weight and the multiple functional groups of the FBM material were confirmed through the mass and FT-IR spectral analysis. UV-Vis-NIR spectral study enroles that the FBM crystal exhibits excellent transparency (83%) in the entire visible and near infra-red region with a wide bandgap 2.90 eV. The low dielectric constant (εr) value of FBM crystal is appreciable for microelectronics industry applications. Thermal stability and melting point (130.09 °C) were ascertained by TGA-DSC analysis. The laser-induced surface damage threshold (LDT) value of FBM specimen is found to be 2.14 GW/cm2, it is fairly good compared to other reported NLO crystals. The third - order nonlinear optical character of the FBM crystal was confirmed through the typical single beam Z-scan technique. All these finding authorized that the organic crystal of FBM is favorably suitable for NLO applications.

  12. Thiophene-based terpyridine and its zinc halide complexes: third-order nonlinear optical properties in the near-infrared region.

    PubMed

    Tan, Jingyun; Li, Rui; Li, Dandan; Zhang, Qiong; Li, Shengli; Zhou, Hongping; Yang, Jiaxiang; Wu, Jieying; Tian, Yupeng

    2015-01-21

    A novel 4'-(4-(diphenylamino)thienyl)-2,2':6',2''-terpyridine ligand () based on thiophene and its complexes (X = Cl, Br, I, SCN) was designed, synthesized and characterized by elemental analysis, far-IR, MALDI-TOF-MS, and single crystal X-ray diffraction analysis. Structural studies revealed that the central zinc(ii) atom adopted a distorted trigonal bipyramidal coordination model. However, there were different hydrogen bonds and stacking models with different counter anions in the crystals. The absorption properties of the compounds were investigated with the aid of TD-DFT computational methods. Furthermore, the third-order nonlinear optical (NLO) properties were systematically studied via open-aperture Z-scan methods using a tunable wavelength femtosecond laser. The results from photophysical property investigations suggested that the complexation of the thiophene-based terpyridine ligand with zinc halides resulted in strong ICT/LLCT bands of about 450 nm, and the complexes exhibited strong nonlinear optical response in the near-infrared range around 850 nm. Above all, the two-photon absorption (2PA) cross-section values (σ) were enhanced by coordination with zinc and influenced by halide ions, reaching up to 2583 GM (X = Br).

  13. Third-order optical nonlinearity studies of bilayer Au/Ag metallic films

    NASA Astrophysics Data System (ADS)

    Mezher, M. H.; Chong, W. Y.; Zakaria, R.

    2016-05-01

    This paper presents nonlinear optical studies of bilayer metallic films of gold (Au) and silver (Ag) on glass substrate prepared using electron beam evaporation. The preparation of Au and Ag nanoparticles (NPs) on the substrate involved the use of electron beam deposition, then thermal annealing at 600 °C and 270 °C, respectively, to produce a randomly distributed layer of Au and a layer of Ag NPs. Observation of field-effect scanning electron microscope images indicated the size of the NPs. Details of the optical properties related to peak absorption of surface plasmon resonance of the nanoparticle were revealed by use of UV-Vis spectroscopy. The Z-scan technique was used to measure the nonlinear absorption and nonlinear refraction of the fabricated NP layers. The third-order nonlinear refractive index coefficients for Au and Ag are (-9.34 and  -1.61)  ×  10-11 cm2 W-1 given lower n 2, in comparison with bilayer (Au and Ag) NPs at  -1.24  ×  10-10 cm2 W-1. The results show bilayer NPs have higher refractive index coefficients thus enhance the nonlinearity effects.

  14. Optical Radiation: Susceptibility and Countermeasures

    DTIC Science & Technology

    1998-12-01

    1995). "Early Visual Acuity Side Effects After Laser Retinal Photocoagulation in Diabetic Retinopathy ," W.D. Kosnik, L. Marouf, and M. Myers...tests. The automatic positioner (AMPS) coupled with the automatic optical test system (PEATS) permits timely and consistent evaluation of candidate...Science and Engineering OR:S&C Optical Radiation: Susceptibility and Countermeasures OSADS Optical Signature, Acquisition, and Detection System

  15. The Charles F. Prentice Award Lecture 2005: optics of the human eye: progress and problems.

    PubMed

    Charman, W Neil

    2006-06-01

    The history of measurements of ocular aberration is briefly reviewed and recent work using much-improved aberrometers and large samples of eyes is summarized. When on-axis, higher-order, monochromatic aberrations are averaged, undercorrected, positive, fourth-order spherical aberration dominates; other Zernike wavefront aberration coefficients have average values near zero. Individually, however, many eyes show substantial amounts of third-order and other fourth-order aberrations; the value of these varies idiosyncratically about zero. Most normal eyes show only small amounts of axial monochromatic aberration for photopic pupils up to around 3 mm; the limits to retinal image quality are then usually set by diffraction, uncorrected or imperfectly corrected spherocylindrical refractive error, accommodation error, and chromatic aberration. Longitudinal chromatic aberration varies very little across the population. With larger mesopic and scotopic pupils, monochromatic aberration plays a more important optical role, but overall visual performance is increasingly dominated by neural factors. Some remaining problems in measuring and modeling the eye's optical performance are discussed.

  16. Extended depth of focus adaptive optics spectral domain optical coherence tomography

    PubMed Central

    Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki

    2012-01-01

    We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA. PMID:23082278

  17. Extended depth of focus adaptive optics spectral domain optical coherence tomography.

    PubMed

    Sasaki, Kazuhiro; Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki

    2012-10-01

    We present an adaptive optics spectral domain optical coherence tomography (AO-SDOCT) with a long focal range by active phase modulation of the pupil. A long focal range is achieved by introducing AO-controlled third-order spherical aberration (SA). The property of SA and its effects on focal range are investigated in detail using the Huygens-Fresnel principle, beam profile measurement and OCT imaging of a phantom. The results indicate that the focal range is extended by applying SA, and the direction of extension can be controlled by the sign of applied SA. Finally, we demonstrated in vivo human retinal imaging by altering the applied SA.

  18. The third-order optical nonlinearities of Ge-Ga-Sb(In)-S chalcogenide glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Haitao, E-mail: guoht_001@opt.ac.cn; Chen, Hongyan; Hou, Chaoqi

    2011-05-15

    Research highlights: {yields} It is firstly demonstrated that the nonlinear refractive index n{sub 2} is dependent on the covalency of bonds in chalcogenide glass. {yields} Homopolar metallic bonds in chalcogenide glass have positive contribution to large nonlinear refractive index n{sub 2} also. {yields} The 80GeS{sub 2}.20Sb{sub 2}S{sub 3} glass would be expected to be used in the all-optical switches working at 1330 nm and 1550 nm telecommunication wavelengths. -- Abstract: The third-order optical nonlinearities of 80GeS{sub 2}.(20 - x)Ga{sub 2}S{sub 3}.xY{sub 2}S{sub 3} (x = 0, 5, 10, 15, 20 and Y = Sb or In) chalcogenide glasses were investigatedmore » utilizing the Z-scan method at the wavelength of 800 nm and their linear optical properties and structure were also studied. By analyzing the compositional dependences and possible influencing factors including the linear refractive index, the concentration of lone electron pairs, the optical bandgap and the amount of weak covalent/homopolar bonds, it indicates that the electronic contribution in weak heteropolar covalent and homopolar metallic bonds is responsible for large nonlinear refractive index n{sub 2} in the chalcogenide glasses. These chalcogenide glasses have characteristics of environmentally friendship, wide transparency in the visible region, high nonlinear refractive index n{sub 2} and low nonlinear absorption coefficient {beta}, and would be expected to be used in the all-optical switches working at 1330 nm and 1550 nm telecommunication wavelengths.« less

  19. Circularly polarized few-cycle optical rogue waves: rotating reduced Maxwell-Bloch equations.

    PubMed

    Xu, Shuwei; Porsezian, K; He, Jingsong; Cheng, Yi

    2013-12-01

    The rotating reduced Maxwell-Bloch (RMB) equations, which describe the propagation of few-cycle optical pulses in a transparent media with two isotropic polarized electronic field components, are derived from a system of complete Maxwell-Bloch equations without using the slowly varying envelope approximations. Two hierarchies of the obtained rational solutions, including rogue waves, which are also called few-cycle optical rogue waves, of the rotating RMB equations are constructed explicitly through degenerate Darboux transformation. In addition to the above, the dynamical evolution of the first-, second-, and third-order few-cycle optical rogue waves are constructed with different patterns. For an electric field E in the three lower-order rogue waves, we find that rogue waves correspond to localized large amplitude oscillations of the polarized electric fields. Further a complementary relationship of two electric field components of rogue waves is discussed in terms of analytical formulas as well as numerical figures.

  20. Effects of higher order aberrations on beam shape in an optical recording system

    NASA Technical Reports Server (NTRS)

    Wang, Mark S.; Milster, Tom D.

    1992-01-01

    An unexpected irradiance pattern in the detector plane of an optical data storage system was observed. Through wavefront measurement and scalar diffraction modeling, it was discovered that the energy redistribution is due to residual third-order and fifth-order spherical aberration of the objective lens and cover-plate assembly. The amount of residual aberration is small, and the beam focused on the disk would be considered diffraction limited by several criteria. Since the detector is not in the focal plane, even this small amount of aberration has a significant effect on the energy distribution. We show that the energy redistribution can adversely affect focus error signals, which are responsible for maintaining sub-micron spot diameters on the spinning disk.

  1. Selectively Plasmon-Enhanced Second-Harmonic Generation from Monolayer Tungsten Diselenide on Flexible Substrates.

    PubMed

    Wang, Zhuo; Dong, Zhaogang; Zhu, Hai; Jin, Lei; Chiu, Ming-Hui; Li, Lain-Jong; Xu, Qing-Hua; Eda, Goki; Maier, Stefan A; Wee, Andrew T S; Qiu, Cheng-Wei; Yang, Joel K W

    2018-02-27

    Monolayer two-dimensional transition-metal dichalcogenides (2D TMDCs) exhibit promising characteristics in miniaturized nonlinear optical frequency converters, due to their inversion asymmetry and large second-order nonlinear susceptibility. However, these materials usually have very short light interaction lengths with the pump laser because they are atomically thin, such that second-harmonic generation (SHG) is generally inefficient. In this paper, we fabricate a judiciously structured 150 nm-thick planar surface consisting of monolayer tungsten diselenide and sub-20 nm-wide gold trenches on flexible substrates, reporting ∼7000-fold SHG enhancement without peak broadening or background in the spectra as compared to WSe 2 on as-grown sapphire substrates. Our proof-of-concept experiment yields effective second-order nonlinear susceptibility of 2.1 × 10 4 pm/V. Three orders of magnitude enhancement is maintained with pump wavelength ranging from 800 to 900 nm, breaking the limitation of narrow pump wavelength range for cavity-enhanced SHG. In addition, SHG amplitude can be dynamically controlled via selective excitation of the lateral gap plasmon by rotating the laser polarization. Such a fully open, flat, and ultrathin profile enables a great variety of functional samples with high SHG from one patterned silicon substrate, favoring scalable production of nonlinear converters. The surface accessibility also enables integration with other optical components for information processing in an ultrathin and flexible form.

  2. A photonic chip based frequency discriminator for a high performance microwave photonic link.

    PubMed

    Marpaung, David; Roeloffzen, Chris; Leinse, Arne; Hoekman, Marcel

    2010-12-20

    We report a high performance phase modulation direct detection microwave photonic link employing a photonic chip as a frequency discriminator. The photonic chip consists of five optical ring resonators (ORRs) which are fully programmable using thermo-optical tuning. In this discriminator a drop-port response of an ORR is cascaded with a through response of another ORR to yield a linear phase modulation (PM) to intensity modulation (IM) conversion. The balanced photonic link employing the PM to IM conversion exhibits high second-order and third-order input intercept points of + 46 dBm and + 36 dBm, respectively, which are simultaneously achieved at one bias point.

  3. Heterodyne effect in Hybrid CARS

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Zhang, Aihua; Zhi, Miaochan; Sokolov, Alexei; Welch, George; Scully, Marlan

    2009-10-01

    We study the interaction between the resonant Raman signal and non-Raman field, either the concomitant nonresonant four-wave-mixing (FWM) background or an applied external field, in our recently developed scheme of coherent Anti-Stokes Raman scattering, a hybrid CARS. Our technique combines instantaneous coherent excitation of several characteristic molecular vibrations with subsequent probing of these vibrations by an optimally shaped, time-delayed, narrowband laser pulse. This pulse configuration mitigates the non-resonant FWM background while maximizing the Raman-resonant signal, and allows rapid and highly specific detection even in the presence of multiple scattering. We apply this method to non-invasive monitoring of blood glucose levels. Under certain conditions we find that the measured signal is linearly proportional to the glucose concentration due to optical interference with the residual background light, which allows reliable detection of spectral signatures down to medically-relevant glucose levels. We also study the interference between the CARS field and an external field (the local oscillator) by controlling their relative phase and amplitude. This control allows direct observation of the real and imaginary components of the third-order nonlinear susceptibility (χ^(3)) of the sample. We demonstrate that the heterodyne method can be used to amplify the signal and thus increase detection sensitivity.

  4. Study of nonlinear refraction of organic dye by Z-scan technique using He-Ne laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medhekar, S.; Kumar, R.; Mukherjee, S.

    2013-02-05

    Laser induced third-order nonlinear optical responses of Brilliant Green solution has been investigated by utilizing single beam Z-scan technique with a continuous-wave He-Ne laser radiation at 632.8 nm. It was observed that the material exhibits self-defocusing type optical nonlinearity. The measurements of nonlinear refraction were carried out at different dye concentrations and found that the increase in solution concentration leads to the linear increase of the nonlinear refractive index. The experimental results confirm great potential of the Brilliant Green for the application in nonlinear optical devices.

  5. Experimental study of the third-order nonlinearity of atomic and molecular gases using 10-μm laser pulses

    NASA Astrophysics Data System (ADS)

    Pigeon, J. J.; Tochitsky, S. Ya.; Welch, E. C.; Joshi, C.

    2018-04-01

    We present measurements of the third-order optical nonlinearity of Kr, Xe, N2, O2, and air at a wavelength near 10 µm by using four-wave mixing of ˜15 -GW /c m2 , 200-ps (full width at half maximum) C O2 laser pulses. Measurements in molecular gases resulted in an asymmetric four-wave mixing spectrum indicating that the nonlinear response is strongly affected by the delayed, rotational contribution to the effective nonlinear refractive index. Within the uncertainty of our measurements, we have found that the long-wavelength nonlinear refractive indices of these gases are consistent with measurements performed in the near IR.

  6. Synthesis, characterization and theoretical investigations of the structure, electronic properties and third-order nonlinearity optics (NLO) of M(DPIP)2

    NASA Astrophysics Data System (ADS)

    Li, Kang; Tang, Guodong; Kou, ShanShan; Culnane, Lance F.; Zhang, Yu; Song, Yinglin; Li, Rongqing; Wei, Changmei

    2015-03-01

    Three complexes of M(DPIP)2 (M = Cu, Co, Zn as 1, 2, 3) were synthesized and characterized by elemental analysis, IR, UV-Vis, thermogravimetry, and X-ray diffraction. Their nonlinear optical properties were measured by the Z-scan technique and yielded a normalized transmittance of about 70% for complex 1 (45 μJ pulse), and 93% for complex 3 (68 μJ pulse at the focus point). The nonlinear absorption coefficient, β, is 1.4 × 10-11 m/W for 1 and 5.6 × 10-13 m/W for 3, and the third-order nonlinear refraction index, n2, is 1.0 × 10-18 m2/W for 3. Complex 1 shows self-defocusing property, while complex 3 exhibits self-focusing property. The thermogravimetric results show that the frame structure of compounds 1-3 begin to collapse at 400, 250 and 280 °C, respectively, which suggests that they elicit excellent thermal stability. This research aims to provide better understanding of these compounds, and offer preliminary explanations for the significant differences between compounds 1-3, in order to potentially help in the designing of future novel materials with NLO properties.

  7. Parallel Optical Random Access Memory (PORAM)

    NASA Technical Reports Server (NTRS)

    Alphonse, G. A.

    1989-01-01

    It is shown that the need to minimize component count, power and size, and to maximize packing density require a parallel optical random access memory to be designed in a two-level hierarchy: a modular level and an interconnect level. Three module designs are proposed, in the order of research and development requirements. The first uses state-of-the-art components, including individually addressed laser diode arrays, acousto-optic (AO) deflectors and magneto-optic (MO) storage medium, aimed at moderate size, moderate power, and high packing density. The next design level uses an electron-trapping (ET) medium to reduce optical power requirements. The third design uses a beam-steering grating surface emitter (GSE) array to reduce size further and minimize the number of components.

  8. Whole-angle spherical retroreflector using concentric layers of homogeneous optical media.

    PubMed

    Oakley, John P

    2007-03-01

    Spherical retroreflectors have a much greater acceptance angle than conventional retroreflectors such as corner cubes. However, the optical performance of known spherical reflectors is limited by spherical aberration. It is shown that third-order spherical aberration may be corrected by using two or more layers of homogeneous optical media of different refractive indices. The performance of the retroreflector is characterized by the scattering (or radar) cross section, which is calculated by using optical design software. A practical spherical reflector is described that offers a significant increase in optical performance over existing devices. No gradient index components are required, and the device is constructed by using conventional optical materials and fabrication techniques. The experimental results confirm that the device operates correctly at the design wavelength of 690 nm.

  9. Optical rogue waves generation in a nonlinear metamaterial

    NASA Astrophysics Data System (ADS)

    Onana Essama, Bedel Giscard; Atangana, Jacques; Biya-Motto, Frederick; Mokhtari, Bouchra; Cherkaoui Eddeqaqi, Noureddine; Kofane, Timoleon Crepin

    2014-11-01

    We investigate the behavior of electromagnetic wave which propagates in a metamaterial for negative index regime. The optical pulse propagation is described by the nonlinear Schrödinger equation with cubic-quintic nonlinearities, second- and third-order dispersion effects. The behavior obtained for negative index regime is compared to that observed for positive index regime. The characterization of electromagnetic wave uses some pulse parameters obtained analytically and called collective coordinates such as amplitude, temporal position, width, chirp, frequency shift and phase. Six frequency ranges have been pointed out where a numerical evolution of collective coordinates and their stability are studied under a typical example to verify our analysis. It appears that a robust soliton due to a perfect compensation process between second-order dispersion and cubic-nonlinearity is presented at each frequency range for both negative and positive index regimes. Thereafter, the stability of the soliton pulse and physical conditions leading to optical rogue waves generation are discussed at each frequency range for both regimes, when third-order dispersion and quintic-nonlinearity come into play. We have demonstrated that collective coordinates give much useful information on external and internal behavior of rogue events. Firstly, we determine at what distance begins the internal excitation leading to rogue waves. Secondly, what kind of internal modification and how it modifies the system in order to build-up rogue events. These results lead to a best comprehension of the mechanism of rogue waves generation. So, it clearly appears that the rogue wave behavior strongly depends on nonlinearity strength of distortion, frequency and regime considered.

  10. Cole-Cole law for critical dynamics in glass-forming liquids.

    PubMed

    Sperl, Matthias

    2006-07-01

    Within the mode-coupling theory (MCT) for glassy dynamics, the asymptotic low-frequency expansions for the dynamical susceptibilities at critical points are compared to the expansions for the dynamic moduli; this shows that the convergence properties of the two expansions can be quite different. In some parameter regions, the leading-order expansion formula for the modulus describes the solutions of the MCT equations of motion outside the transient regime successfully; at the same time, the leading- and next-to-leading-order expansion formulas for the susceptibility fail. In these cases, one can derive a Cole-Cole law for the susceptibilities; and this law accounts for the dynamics for frequencies below the band of microscopic excitations and above the high-frequency part of the alpha peak. It is shown that this scenario explains the optical-Kerr-effect data measured for salol and benzophenone (BZP). For BZP it is inferred that the depolarized light-scattering spectra exhibit a wing for the alpha peak within the Gigahertz band. This wing results from the crossover of the von Schweidler law part of the alpha peak to the high-frequency part of the Cole-Cole peak; and this crossover can be described quantitatively by the leading-order formulas of MCT for the modulus.

  11. Nonlinear optical studies on 1,3-disubstituent chalcones doped polymer films

    NASA Astrophysics Data System (ADS)

    Poornesh, P.; Shettigar, Seetharam; Umesh, G.; Manjunatha, K. B.; Prakash Kamath, K.; Sarojini, B. K.; Narayana, B.

    2009-04-01

    We report the measurements of the third-order nonlinear optical properties of recently synthesized and characterized two different 1,3-disubstituent chalcones doped PMMA films, with the prospective of reaching a good compromise between processability and high nonlinear optical properties. The measurements were done using nanosecond Z-scan at 532 nm. The Z-scan spectra reveal a large negative nonlinear refraction coefficient n2 of the order 10 -11 esu and the molecular two photon absorption cross section is 10 -46 cm 4 s/photon. The doped films exhibit good optical power limiting property under nanosecond regime and the two photon absorption (TPA) is the dominating process leading to the nonlinear behavior. The improvement in the nonlinear properties has been observed when methylenedioxy group is replaced by dimethoxy group due to increase in conjugation length. The observed nonlinear parameters of chalcone derivatives doped PMMA film is comparable with stilbazolieum derivatives, a well-known class of optical materials for photonics and biophotonics applications, which suggests that, these moieties have potential for the application of all-optical limiting and switching devices.

  12. Magnetic, thermal, and optical properties of single-crystalline CoTa2O6 and FeTa2O6 and their anisotropic magnetocaloric effect.

    PubMed

    Christian, A B; Schye, A T; White, K O; Neumeier, J J

    2018-05-16

    The magnetic, thermal, and optical properties of single-crystalline CoTa 2 O 6 and FeTa 2 O 6 are reported. Optical dichroism was observed in CoTa 2 O 6 . Magnetic susceptibility χ(T) measurements reveal long-range antiferromagnetic order with Néel temperatures [Formula: see text] K and 8.11(5) K, respectively, and anisotropy in χ. The thermal expansion coefficients exhibit significant anisotropy and the influence of the magnetic ions and long-range order. A structural phase transition to orthorhombic occurs below T N for FeTa 2 O 6 . Magnetic field H lowers T N with its affect largest when H is directed along either [1 1 0] or [1 [Formula: see text] 0], and smallest when directed along [0 0 1]. This leads to an anisotropic magnetocaloric effect that is investigated through measurements of the specific heat and magnetization in applied magnetic field.

  13. Magnetic, thermal, and optical properties of single-crystalline CoTa2O6 and FeTa2O6 and their anisotropic magnetocaloric effect

    NASA Astrophysics Data System (ADS)

    Christian, A. B.; Schye, A. T.; White, K. O.; Neumeier, J. J.

    2018-05-01

    The magnetic, thermal, and optical properties of single-crystalline CoTa2O6 and FeTa2O6 are reported. Optical dichroism was observed in CoTa2O6. Magnetic susceptibility χ(T) measurements reveal long-range antiferromagnetic order with Néel temperatures K and 8.11(5) K, respectively, and anisotropy in χ. The thermal expansion coefficients exhibit significant anisotropy and the influence of the magnetic ions and long-range order. A structural phase transition to orthorhombic occurs below T N for FeTa2O6. Magnetic field H lowers T N with its affect largest when H is directed along either [1 1 0] or [1  0], and smallest when directed along [0 0 1]. This leads to an anisotropic magnetocaloric effect that is investigated through measurements of the specific heat and magnetization in applied magnetic field.

  14. Cross-quadrature modulation with the Raman-induced Kerr effect

    NASA Astrophysics Data System (ADS)

    Levenson, M. D.; Holland, M. J.; Walls, D. F.; Manson, P. J.; Fisk, P. T. H.; Bachor, H. A.

    1991-08-01

    The Raman-enhanced third-order optical nonlinearity of calcite potentially can support resonant back-action-evading measurement of the optical-field amplitude. In a preliminary experiment, we have observed cross-quadrature modulation transfer between an amplitude-modulated pump beam and an unmodulated probe beam tuned near the Stokes frequency. The theory of Holland et al. [Phys. Rev. A 42, 2995 (1990)] is extended to the case for which intracavity losses are significant in an attempt to account for the observations.

  15. Femtosecond nonlinear optical properties of laser ablated gold nanoparticles in water

    NASA Astrophysics Data System (ADS)

    Krishnakanth, K. N.; Bharathi, M. S. S.; Hamad, S.; Rao, S. Venugopal

    2018-04-01

    Femtosecond third order nonlinear optical (NLO) properties of ultrafast laser ablated gold (Au) colloidsin distilled waterare investigatedusing degenerate four wave mixing technique with 50fs pulses at 800nm wavelength. The estimated value of χ(3) obtained for Au nanoparticles is 1.93×10-14 e.s.u. The characterization of the NPs was achieved done using TEM and HR-TEM techniques. We also present the time resolved studies of Au colloids by using DFWM technique in the forward BOXCAR phase matching geometry.

  16. Chaos-assisted broadband momentum transformation in optical microresonators

    NASA Astrophysics Data System (ADS)

    Jiang, Xuefeng; Shao, Linbo; Zhang, Shu-Xin; Yi, Xu; Wiersig, Jan; Wang, Li; Gong, Qihuang; Lončar, Marko; Yang, Lan; Xiao, Yun-Feng

    2017-10-01

    The law of momentum conservation rules out many desired processes in optical microresonators. We report broadband momentum transformations of light in asymmetric whispering gallery microresonators. Assisted by chaotic motions, broadband light can travel between optical modes with different angular momenta within a few picoseconds. Efficient coupling from visible to near-infrared bands is demonstrated between a nanowaveguide and whispering gallery modes with quality factors exceeding 10 million. The broadband momentum transformation enhances the device conversion efficiency of the third-harmonic generation by greater than three orders of magnitude over the conventional evanescent-wave coupling. The observed broadband and fast momentum transformation could promote applications such as multicolor lasers, broadband memories, and multiwavelength optical networks.

  17. Heterodyne detection using spectral line pairing for spectral phase encoding optical code division multiple access and dynamic dispersion compensation.

    PubMed

    Yang, Yi; Foster, Mark; Khurgin, Jacob B; Cooper, A Brinton

    2012-07-30

    A novel coherent optical code-division multiple access (OCDMA) scheme is proposed that uses spectral line pairing to generate signals suitable for heterodyne decoding. Both signal and local reference are transmitted via a single optical fiber and a simple balanced receiver performs sourceless heterodyne detection, canceling speckle noise and multiple-access interference (MAI). To validate the idea, a 16 user fully loaded phase encoded system is simulated. Effects of fiber dispersion on system performance are studied as well. Both second and third order dispersion management is achieved by using a spectral phase encoder to adjust phase shifts of spectral components at the optical network unit (ONU).

  18. Mach-Zehnder interferometer implementation for thermo-optical and Kerr effect study

    NASA Astrophysics Data System (ADS)

    Bundulis, Arturs; Nitiss, Edgars; Busenbergs, Janis; Rutkis, Martins

    2018-04-01

    In this paper, we propose the Mach-Zehnder interferometric method for third-order nonlinear optical and thermo-optical studies. Both effects manifest themselves as refractive index dependence on the incident light intensity and are widely employed for multiple opto-optical and thermo-optical applications. With the implemented method, we have measured the Kerr and thermo-optical coefficients of chloroform under CW, ns and ps laser irradiance. The application of lasers with different light wavelengths, pulse duration and energy allowed us to distinguish the processes responsible for refractive index changes in the investigated solution. Presented setup was also used for demonstration of opto-optical switching. Results from Mach-Zehnder experiment were compared to Z-scan data obtained in our previous studies. Based on this, a quality comparison of both methods was assessed and advantages and disadvantages of each method were analyzed.

  19. Enhancing microscopic cascading contributions to higher-order nonlinear-optical responses through forced geometric constraints

    NASA Astrophysics Data System (ADS)

    Dawson, Nathan J.; Andrews, James H.; Crescimanno, Michael

    2012-10-01

    We review a model that was developed to take into account all possible microscopic cascading schemes in a single species system out to the fifth order using a self-consistent field approach. This model was designed to study the effects of boundaries in mesoscopic systems with constrained boundaries. These geometric constraints on the macroscopic structure show how the higher-ordered susceptibilities are manipulated by increasing the surface to volume ratio, while the microscopic structure influences the local field from all other molecules in the system. In addition to the review, we discuss methods of modeling real systems of molecules, where efforts are currently underway.

  20. Crystal growth and characterization of semi-organic 2-amino-5-nitropyridinium bromide (2A5NPBr) single crystals for third-order nonlinear optical (NLO) applications

    NASA Astrophysics Data System (ADS)

    Vediyappan, Sivasubramani; Arumugam, Raja; Pichan, Karuppasamy; Kasthuri, Ramachandran; Muthu, Senthil Pandian; Perumal, Ramasamy

    2017-12-01

    Semi-organic nonlinear optical (NLO) 2-amino-5-nitropyridinium bromide (2A5NPBr) single crystals have been grown by slow evaporation solution technique (SEST) with the growth period of 60 days. The single-crystal XRD analysis confirms the unit cell parameters of the grown crystal. The crystallinity of grown 2A5NPBr was analyzed by powder X-ray diffraction (PXRD) measurement. The presence of functional groups of 2A5NPBr crystal was confirmed by Fourier transform infrared (FTIR) spectrum analysis. The optical transmittance of the grown crystal was analyzed by UV-Vis-NIR analysis. It shows good transparency in the visible and NIR region and it is favorable for nonlinear optical (NLO) device applications. The chemical etching study was carried out and it reveals that the grown crystal has less dislocation density. The photoconductivity study reveals that the grown crystal possesses positive photoconductive nature. The thermal stability of the crystal has been investigated by thermogravimetric (TG) and differential thermal analysis (DTA). The dielectric constant and dielectric loss as a function of frequency were measured. The electronic polarizability (α) of 2A5NPBr molecule has been calculated theoretically by different ways such as Penn analysis, Clausius-Mossotti relation, Lorentz-Lorenz equation, optical bandgap, and coupled dipole method (CDM). The obtained values of electronic polarizability (α) are in good agreement with each other. Laser damage threshold (LDT) of 2A5NPBr crystal has been measured using Nd:YAG laser with the wavelength of 1064 nm. Third-order nonlinear optical property of the grown crystal was studied by Z-scan technique using He-Ne laser of wavelength 632.8 nm.

  1. Four-Wave Mixing of Gigawatt Power, Long-Wave Infrared Radiation in Gases and Semiconductors

    NASA Astrophysics Data System (ADS)

    Pigeon, Jeremy James

    The nonlinear optics of gigawatt power, 10 microm, 3 and 200 ps long pulses propagating in gases and semiconductors has been studied experimentally and numerically. In this work, the development of a high-repetition rate, picosecond, CO2 laser system has enabled experiments using peak intensities in the range of 1-10 GW/cm2, approximately one thousand times greater than previous nonlinear optics experiments in the long-wave infrared (LWIR) spectral region. The first measurements of the nonlinear refractive index of the atomic and molecular gases Kr, Xe, N2, O2 and the air at a wavelength near 10 microm were accomplished by studying the four-wave mixing (FWM) of dual-wavelength, 200 ps CO2 laser pulses. These measurements indicate that the nonlinearities of the diatomic molecules N2, O2 and the air are dominated by the molecular contribution to the nonlinear refractive index. Supercontinuum (SC) generation covering the infrared spectral range, from 2-20 microm, was realized by propagating 3 ps, 10 microm pulses in an approximately 7 cm long, Cr-doped GaAs crystal. Temporal measurements of the SC radiation show that pulse splitting accompanies the generation of such broadband light in GaAs. The propagation of 3 ps, 10 microm pulses in GaAs was studied numerically by solving the Generalized Nonlinear Schrodinger Equation (GNLSE). These simulations, combined with analytic estimates, were used to determine that stimulated Raman scattering combined with a modulational instability caused by the propagation of intense LWIR radiation in the negative group velocity dispersion region of GaAs are responsible for the SC generation process. The multiple FWM of a 106 GHz, 200 ps CO2 laser beat-wave propagating in GaAs was used to generate a broadband FWM spectrum that was compressed by the negative group velocity dispersion of GaAs and NaCl crystals to form trains of high-power, picosecond pulses at a wavelength near 10 microm. Experimental FWM spectra obtained using 165 and 882 GHz beat-waves revealed an unexpected and rapid decrease in the FWM yield that was not predicted by the GNLSE model that accounts for third-order nonlinearities alone. These results suggest that the effective nonlinear refractive index of GaAs, having formidable second- and third-order susceptibilities, may be altered by quadratic nonlinearities.

  2. Magnetic anisotropy of some phyllosilicates

    NASA Astrophysics Data System (ADS)

    Borradaile, Graham J.; Werner, Tomasz

    1994-08-01

    Magnetic susceptibility, anisotropy of susceptibility and hysteresis of single microcrystals of chlorite, biotite, phlogopite, muscovite, zinnwaldite and fuchsite were measured in low and high magnetic fields with an alternating gradient force magnetometer (Micromag). Their properties are sufficient to account for the low field susceptibility (AMS) of most micaceous rocks. Nearly all samples show some ferromagnetic contribution at low fields due to inclusions of pseudosingle domain and multidomain magnetite. The paramagnetic contribution isolated at high fields usually exceeds the ferromagnetic contribution. The paramagnetic susceptibility is intrinsic to the silicate lattice and agrees with values predicted from chemical composition within the limits of error. The minimum susceptibility is nearly parallel to c, another axis is parallel to b and the third susceptibility (usually the maximum) is close to a. The paramagnetic susceptibility has a disk-shaped magnitude ellipsoid with strong anisotropy ( P' < 2). The ferromagnetic contributions at low fields have more variably shaped ellipsoids with greater eccentricity ( P' < 5). The silicate lattice does not constrain their orientation. Our technique cannot determine the principal axes of the ferromagnetic component. However, its principal values usually correspond with the paramagnetic principal susceptibilities in order of magnitude. Thus, the combined paramagnetic-ferromagnetic anisotropy recognised in routine studies of AMS should faithfully represent the petrofabric of most micaceous rocks. Nevertheless, nearly 10% of our samples have incompatible anisotropy ellipsoids for the silicate host and magnetite inclusions. These yield a net inverse AMS that does not correctly represent the orientation of the silicate lattice. Therefore, some caution is necessary in petrofabric-AMS studies of micaceous rocks.

  3. Nonlinear optical switching and optical limiting in colloidal CdSe quantum dots investigated by nanosecond Z-scan measurement

    NASA Astrophysics Data System (ADS)

    Valligatla, Sreeramulu; Haldar, Krishna Kanta; Patra, Amitava; Desai, Narayana Rao

    2016-10-01

    The semiconductor nanocrystals are found to be promising class of third order nonlinear optical materials because of quantum confinement effects. Here, we highlight the nonlinear optical switching and optical limiting of cadmium selenide (CdSe) quantum dots (QDs) using nanosecond Z-scan measurement. The intensity dependent nonlinear absorption and nonlinear refraction of CdSe QDs were investigated by applying the Z-scan technique with 532 nm, nanosecond laser pulses. At lower intensities, the nonlinear process is dominated by saturable absorption (SA) and it is changed to reverse saturable absorption (RSA) at higher intensities. The SA behaviour is attributed to the ground state bleaching and the RSA is ascribed to free carrier absorption (FCA) of CdSe QDs. The nonlinear optical switching behaviour and reverse saturable absorption makes CdSe QDs are good candidate for all-optical device and optical limiting applications.

  4. A new fiber optic sensor for inner surface roughness measurement

    NASA Astrophysics Data System (ADS)

    Xu, Xiaomei; Liu, Shoubin; Hu, Hong

    2009-11-01

    In order to measure inner surface roughness of small holes nondestructively, a new fiber optic sensor is researched and developed. Firstly, a new model for surface roughness measurement is proposed, which is based on intensity-modulated fiber optic sensors and scattering modeling of rough surfaces. Secondly, a fiber optical measurement system is designed and set up. Under the help of new techniques, the fiber optic sensor can be miniaturized. Furthermore, the use of micro prism makes the light turn 90 degree, so the inner side surface roughness of small holes can be measured. Thirdly, the fiber optic sensor is gauged by standard surface roughness specimens, and a series of measurement experiments have been done. The measurement results are compared with those obtained by TR220 Surface Roughness Instrument and Form Talysurf Laser 635, and validity of the developed fiber optic sensor is verified. Finally, precision and influence factors of the fiber optic sensor are analyzed.

  5. Gauss-Legendre quadrature method used to evaluate the spatio-temporal intensity of ultrashort pulses in the focal region of lenses.

    PubMed

    García-Martínez, L; Rosete-Aguilar, M; Garduño-Mejia, J

    2012-01-20

    We analyze the spatio-temporal intensity of sub-20 femtosecond pulses with a carrier wavelength of 810 nm along the optical axis of low numerical aperture achromatic and apochromatic doublets designed in the IR region by using the scalar diffraction theory. The diffraction integral is solved by expanding the wave number around the carrier frequency of the pulse in a Taylor series up to third order, and then the integral over the frequencies is solved by using the Gauss-Legendre quadrature method. The numerical errors in this method are negligible by taking 96 nodes and the computational time is reduced by 95% compared to the integration method by rectangles. We will show that the third-order group velocity dispersion (GVD) is not negligible for 10 fs pulses at 810 nm propagating through the low numerical aperture doublets, and its effect is more important than the propagation time difference (PTD). This last effect, however, is also significant. For sub-20 femtosecond pulses, these two effects make the use of a pulse shaper necessary to correct for second and higher-order GVD terms and also the use of apochromatic optics to correct the PTD effect. The design of an apochromatic doublet is presented in this paper and the spatio-temporal intensity of the pulse at the focal region of this doublet is compared to that given by the achromatic doublet. © 2012 Optical Society of America

  6. Fast epi-detected broadband multiplex CARS and SHG imaging of mouse skull cells

    PubMed Central

    Capitaine, Erwan; Moussa, Nawel Ould; Louot, Christophe; Bardet, Sylvia M.; Kano, Hideaki; Duponchel, Ludovic; Lévêque, Philippe; Couderc, Vincent; Leproux, Philippe

    2017-01-01

    We present a bimodal imaging system able to obtain epi-detected mutiplex coherent anti-Stokes Raman scattering (M-CARS) and second harmonic generation (SHG) signals coming from biological samples. We studied a fragment of mouse parietal bone and could detect broadband anti-Stokes and SHG responses originating from bone cells and collagen respectively. In addition we compared two post-processing methods to retrieve the imaginary part of the third-order nonlinear susceptibility related to the spontaneous Raman scattering. PMID:29359100

  7. Dark solitons for a variable-coefficient higher-order nonlinear Schrödinger equation in the inhomogeneous optical fiber

    NASA Astrophysics Data System (ADS)

    Sun, Yan; Tian, Bo; Wu, Xiao-Yu; Liu, Lei; Yuan, Yu-Qiang

    2017-04-01

    Under investigation in this paper is a variable-coefficient higher-order nonlinear Schrödinger equation, which has certain applications in the inhomogeneous optical fiber communication. Through the Hirota method, bilinear forms, dark one- and two-soliton solutions for such an equation are obtained. We graphically study the solitons with d1(z), d2(z) and d3(z), which represent the variable coefficients of the group-velocity dispersion, third-order dispersion and fourth-order dispersion, respectively. With the different choices of the variable coefficients, we obtain the parabolic, periodic and V-shaped dark solitons. Head-on and overtaking collisions are depicted via the dark two soliton solutions. Velocities of the dark solitons are linearly related to d1(z), d2(z) and d3(z), respectively, while the amplitudes of the dark solitons are not related to such variable coefficients.

  8. Photodeposition of Thin Polydiacetylene Films from Solution that Exhibit Large Third-Order Optical Nonlinearities

    NASA Technical Reports Server (NTRS)

    Paley, M. S.; Frazier, D. O.; Abdeldayem, H.; McManus, S. P.

    1994-01-01

    One promising class of organic compounds for applications in the field of nonlinear optics (NLO) are polydiacetylenes, which are of interest because they are highly conjugated polymers capable of exhibiting very large optical nonlinearities with fast response times. During the course of crystal growth studies in anticipation of a space experiment, we discovered a novel, simple method for the formation of polydiacetylene thin films by photodeposition from monomer solutions onto quartz or glass substrates. Characterization of these PDAMNA films is not trivial; they are not soluble in common organic solvents, which makes the standard solution-based methods of polymer analysis useless.

  9. Nonlinear optical behavior of two tetrathiafulvalene derivatives in the picosecond regime

    NASA Astrophysics Data System (ADS)

    Marcovicz, Crislaine; Ferreira, Rudson C.; Santos, Arthur B. S.; Reyna, Albert S.; de Araújo, Cid B.; Malvestiti, Ivani; Falcão, Eduardo H. L.

    2018-06-01

    We report the microwave-assisted synthesis of two symmetrical tetrathiafulvalene (TTF) derivatives via trialkyl phosphite-promoted coupling of a DMIT precursor. The microwave irradiation led to an increase in the reaction yield and significantly reduced the reaction time, affording the 2,3,6,7-tetrakis(2‧-methylacetatethio)tetrathiafulvalene (4) in 74% isolated yield. Hydrolysis of 4 yielded the tetraacid 5 in excellent yield. The nonlinear optical properties of both TTF compounds at 532 nm were studied by using the Z-scan technique in the picosecond regime exhibiting large third-order refractive index and saturated nonlinear absorption with promising applications in optical limiting devices.

  10. Material characterisation with methods of nonlinear optics

    NASA Astrophysics Data System (ADS)

    Prylepa, A.; Reitböck, C.; Cobet, M.; Jesacher, A.; Jin, X.; Adelung, R.; Schatzl-Linder, M.; Luckeneder, G.; Stellnberger, K.-H.; Steck, T.; Faderl, J.; Stehrer, T.; Stifter, D.

    2018-01-01

    In this review, we present nonlinear optical methods, based on the second and third order nonlinear polarization, especially in the context of material characterization tasks outside the area of life sciences—for which these techniques are mostly designed. An overview of application studies reported to date is given, together with a discussion on the advantages and limits of the individual methods. Furthermore, new ways of experimentally combining different optical concepts are introduced, and their potential for characterisation and inspection tasks is evaluated in the context of various case studies, including the investigation of semiconductor surfaces, metals and related corrosion products, as well as of organic materials.

  11. All-Optical Control of Linear and Nonlinear Energy Transfer via the Zeno Effect

    NASA Astrophysics Data System (ADS)

    Guo, Xiang; Zou, Chang-Ling; Jiang, Liang; Tang, Hong X.

    2018-05-01

    Microresonator-based nonlinear processes are fundamental to applications including microcomb generation, parametric frequency conversion, and harmonics generation. While nonlinear processes involving either second- (χ(2 )) or third- (χ(3 )) order nonlinearity have been extensively studied, the interaction between these two basic nonlinear processes has seldom been reported. In this paper we demonstrate a coherent interplay between second- and third- order nonlinear processes. The parametric (χ(2 ) ) coupling to a lossy ancillary mode shortens the lifetime of the target photonic mode and suppresses its density of states, preventing the photon emissions into the target photonic mode via the Zeno effect. Such an effect is then used to control the stimulated four-wave mixing process and realize a suppression ratio of 34.5.

  12. Nonlinear femtosecond near infrared laser structuring in oxide glasses

    NASA Astrophysics Data System (ADS)

    Royon, Arnaud

    Three-dimensional femtosecond laser structuring has a growing interest because of its ease of implementation and the numerous possible applications in the domain of photonic components. Structures such as waveguides, diffraction gratings, optical memories or photonic crystals can be fabricated thanks to this technique. Its use with oxide glasses is promising because of several advantages; they are resistant to flux and ageing, their chemical composition can easily be changed to fit the well-defined requirements of an application. They can already be found in Raman amplifiers, optical fibers, fiber lasers, and other devices. This thesis is based on two axes. The first axis consists in characterizing the linear and nonlinear optical properties of bulk vitreous materials in order to optimize their composition with a particular application in view. Within this context, the nonlinear optical properties, their physical origins (electronic and nuclear) as well as their characteristic response times (from a few femtoseconds to a few hundreds of picoseconds) are described within the Born-Oppenheimer approximation. Fused silica and several sodium-borophosphate glasses containing different concentrations in niobium oxide have been studied. Results show that the nonlinear optical properties of fused silica are mainly from electronic origin, whereas in the sodium-borophosphate glasses, the contribution from nuclear origin becomes predominant when the concentration of niobium oxide exceeds 30%. The second axis is based on the structuring of materials. Three commercially available fused silica samples presenting different fabrication conditions (therefore distinct impurity levels) and irradiated with a near infrared femtosecond laser have been studied. The laser induced defects have been identified by means of several spectroscopic techniques. They show the formation of color centers as well as a densification inside the irradiated area. Their linear refractive index and nonlinear third-order susceptibility properties have been measured. Moreover, the structuring of fused silica at the subwavelength scale into "nanogratings" is observed and the form of birefringence induced by these structures is discussed. In addition to the fused silica samples, several oxide glasses presenting very distinct chemical compositions have been studied. A sodium-borophosphate glass containing niobium oxide exhibits micro-cracks and nano-crystallites following irradiation. A silicate glass with or without a silver component reveals fluorescent rings or "nanograting" structures. A zinc phosphate glass containing silver also presents fluorescent ring structures, with a size of the order of 80 nm, well below the diffraction limit. Pump-probe microscope techniques have been performed on this glass to investigate the laser-glass interaction. The absorption mechanism is determined to be four-photon absorption. The generated free electron density is ˜ 1017 cm-3, which suggests the conclusion that an electron gas rather than a plasma is formed during the laser irradiation.

  13. Nonlinear optical properties and excited state dynamics of sandwich-type mixed (phthalocyaninato)(Schiff-base) triple-decker complexes: Effect of rare earth atom

    NASA Astrophysics Data System (ADS)

    Li, Zhongguo; Gao, Feng; Xiao, Zhengguo; Wu, Xingzhi; Zuo, Jinglin; Song, Yinglin

    2018-07-01

    The third-order nonlinear optical properties of two di-lanthanide (Ln = Tb and Dy) sandwich complexes with mixed phthalocyanine and Schiff-base ligands were studied using Z-scan technique at 532 nm with 20 ps and 4 ns pulses. Both complexes exhibit reverse saturable absorption and self-focusing effect in ps regime, while the second-order hyperpolarizability decreases from Dy to Tb. Interestingly, the Tb triple-decker complexes show larger nonlinear absorption than Dy complexes on ns timescale. The time-resolved pump-probe measurements demonstrate that the nonlinear optical response was caused by excited-state mechanism related to the five-level model, while the singlet state lifetime of Dy complexes is 3 times shorter than that of Tb complexes. Our results indicate the lanthanide ions play a critical role in the photo-physical properties of triple-decker phthalocyanine complexes for their application as optical limiting materials.

  14. Novel space-time trellis codes for free-space optical communications using transmit laser selection.

    PubMed

    García-Zambrana, Antonio; Boluda-Ruiz, Rubén; Castillo-Vázquez, Carmen; Castillo-Vázquez, Beatriz

    2015-09-21

    In this paper, the deployment of novel space-time trellis codes (STTCs) with transmit laser selection (TLS) for free-space optical (FSO) communication systems using intensity modulation and direct detection (IM/DD) over atmospheric turbulence and misalignment fading channels is presented. Combining TLS and STTC with rate 1 bit/(s · Hz), a new code design criterion based on the use of the largest order statistics is here proposed for multiple-input/single-output (MISO) FSO systems in order to improve the diversity order gain by properly chosing the transmit lasers out of the available L lasers. Based on a pairwise error probability (PEP) analysis, closed-form asymptotic bit error-rate (BER) expressions in the range from low to high signal-to-noise ratio (SNR) are derived when the irradiance of the transmitted optical beam is susceptible to moderate-to-strong turbulence conditions, following a gamma-gamma (GG) distribution, and pointing error effects, following a misalignment fading model where the effect of beam width, detector size and jitter variance is considered. Obtained results show diversity orders of 2L and 3L when simple two-state and four-state STTCs are considered, respectively. Simulation results are further demonstrated to confirm the analytical results.

  15. Wide-field high-speed space-division multiplexing optical coherence tomography using an integrated photonic device

    PubMed Central

    Huang, Yongyang; Badar, Mudabbir; Nitkowski, Arthur; Weinroth, Aaron; Tansu, Nelson; Zhou, Chao

    2017-01-01

    Space-division multiplexing optical coherence tomography (SDM-OCT) is a recently developed parallel OCT imaging method in order to achieve multi-fold speed improvement. However, the assembly of fiber optics components used in the first prototype system was labor-intensive and susceptible to errors. Here, we demonstrate a high-speed SDM-OCT system using an integrated photonic chip that can be reliably manufactured with high precisions and low per-unit cost. A three-layer cascade of 1 × 2 splitters was integrated in the photonic chip to split the incident light into 8 parallel imaging channels with ~3.7 mm optical delay in air between each channel. High-speed imaging (~1s/volume) of porcine eyes ex vivo and wide-field imaging (~18.0 × 14.3 mm2) of human fingers in vivo were demonstrated with the chip-based SDM-OCT system. PMID:28856055

  16. Optically induced metal-to-dielectric transition in Epsilon-Near-Zero metamaterials

    PubMed Central

    Kaipurath, R. M.; Pietrzyk, M.; Caspani, L.; Roger, T.; Clerici, M.; Rizza, C.; Ciattoni, A.; Di Falco, A.; Faccio, D.

    2016-01-01

    Epsilon-Near-Zero materials exhibit a transition in the real part of the dielectric permittivity from positive to negative value as a function of wavelength. Here we study metal-dielectric layered metamaterials in the homogenised regime (each layer has strongly subwavelength thickness) with zero real part of the permittivity in the near-infrared region. By optically pumping the metamaterial we experimentally show that close to the Epsilon-Near-Zero (ENZ) wavelength the permittivity exhibits a marked transition from metallic (negative permittivity) to dielectric (positive permittivity) as a function of the optical power. Remarkably, this transition is linear as a function of pump power and occurs on time scales of the order of the 100 fs pump pulse that need not be tuned to a specific wavelength. The linearity of the permittivity increase allows us to express the response of the metamaterial in terms of a standard third order optical nonlinearity: this shows a clear inversion of the roles of the real and imaginary parts in crossing the ENZ wavelength, further supporting an optically induced change in the physical behaviour of the metamaterial. PMID:27292270

  17. Perturbation Theory of Spin-Triplet Superconductivity for Sr 2RuO 4

    NASA Astrophysics Data System (ADS)

    Nomura, Takuji; Yamada, Kosaku

    2000-11-01

    We discuss the possibility of spin-triplet superconductivity within the third order perturbation theory with respect to on-site Coulomb repulsion U. Critical temperature T c for spin-triplet pairing state is calculated in a single-band two-dimensional Hubbard modeland relatively high T c is obtained for moderately large U. The present situation considered here is particularly intended for the main branch γ in Sr2RuO4. According to the calculation, third order vertex correction terms, which are not direct contribution from spin fluctuation, are important, while the bare susceptibility χ0(q) need not always have a prominent peak at q=0 for the spin-triplet pairing state. The picture that strong ferromagnetic spin fluctuations mainly induce the spin-triplet superconductivity in Sr2RuO4 may not be appropriate, and such momentum dependence of renormalized effective interaction between quasi-particles as is not sufficiently taken into accountin spin fluctuation mediated interaction is essential for realizing the spin-triplet pairing.

  18. Nonlinear Optics and Applications

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin A. (Editor); Frazier, Donald O. (Editor)

    2007-01-01

    Nonlinear optics is the result of laser beam interaction with materials and started with the advent of lasers in the early 1960s. The field is growing daily and plays a major role in emerging photonic technology. Nonlinear optics play a major role in many of the optical applications such as optical signal processing, optical computers, ultrafast switches, ultra-short pulsed lasers, sensors, laser amplifiers, and many others. This special review volume on Nonlinear Optics and Applications is intended for those who want to be aware of the most recent technology. This book presents a survey of the recent advances of nonlinear optical applications. Emphasis will be on novel devices and materials, switching technology, optical computing, and important experimental results. Recent developments in topics which are of historical interest to researchers, and in the same time of potential use in the fields of all-optical communication and computing technologies, are also included. Additionally, a few new related topics which might provoke discussion are presented. The book includes chapters on nonlinear optics and applications; the nonlinear Schrodinger and associated equations that model spatio-temporal propagation; the supercontinuum light source; wideband ultrashort pulse fiber laser sources; lattice fabrication as well as their linear and nonlinear light guiding properties; the second-order EO effect (Pockels), the third-order (Kerr) and thermo-optical effects in optical waveguides and their applications in optical communication; and, the effect of magnetic field and its role in nonlinear optics, among other chapters.

  19. Optical recording materials

    NASA Astrophysics Data System (ADS)

    Savant, Gajendra D.; Jannson, Joanna L.

    1991-07-01

    The increased emphasis on speed of operation, wavelength selectivity, compactness, and ruggedization has focused a great deal of attention on the solutions offered by all-optic devices and by hybrid electro-optic systems. In fact, many photonic devices are being considered for use as partial replacements for electronic systems. Optical components, which include modulators, switches, 3-D memory storage devices, wavelength division multiplexers, holographic optical elements, and others, are examples of such devices. The success or failure of these modern optical devices depends, to a great extent, on the performance and survivability of the optical materials used. This is particularly true for volume holographic filters, organic memory media, second- and third-order nonlinear material-based processors and neural networks. Due to the critical importance of these materials and their lack of availability, Physical Optics Corporation (POC) undertook a global advanced optical materials program which has enabled it to introduce several optical devices, based on the new and improved materials which will be described in this article.

  20. Crystal growth, structural, optical, thermal, mechanical, laser damage threshold and electrical properties of triphenylphosphine oxide 4-nitrophenol (TP4N) single crystals for nonlinear optical applications

    NASA Astrophysics Data System (ADS)

    Karuppasamy, P.; Senthil Pandian, Muthu; Ramasamy, P.; Verma, Sunil

    2018-05-01

    The optically good quality single crystals of triphenylphosphine oxide 4-nitrophenol (TP4N) with maximum dimension of 15 × 10 × 5 mm3 were grown by slow evaporation solution technique (SEST) at room temperature. The cell dimensions of the grown TP4N crystal were confirmed by single crystal X-ray diffraction (SXRD) and the crystalline purity was confirmed and planes were indexed by powder X-ray diffraction (PXRD) analysis. Functional groups of TP4N crystal were confirmed by Fourier transform infrared (FTIR) spectral analysis. The optical transmittance of the grown crystal was determined by the UV-Vis NIR spectral analysis and it has good optical transparency in the entire visible region. The band tail (Urbach) energy of the grown crystal was analyzed and it appears to be minimum, which indicates that the TP4N has good crystallinity. The position of valence band (Ev) and conduction band (Ec) of the TP4N have been determined from the electron affinity energy (EA) and the ionization energy (EI) of its elements and using the optical band gap. The thermal behaviour of the grown crystal was investigated by thermogravimetric and differential thermal analysis (TG-DTA). Vickers microhardness analysis was carried out to identify the mechanical stability of the grown crystal and their indentation size effect (ISE) was explained by the Meyer's law (ML), Hays-Kendall's (HK) approach, proportional specimen resistance (PSR) model, modified PSR model (MPSR), elastic/plastic deformation (EPD) model and indentation induced cracking (IIC) model. Chemical etching study was carried out to find the etch pit density (EPD) of the grown crystal. Laser damage threshold (LDT) value was measured by using Nd:YAG laser (1064 nm). The dielectric permittivity (ε՛) and dielectric loss (tan δ) as a function of frequency was measured. The electronic polarizability (α) of the TP4N crystal was calculated. It is well matched to the value which was calculated from Clausius-Mossotti relation, Lorentz-Lorentz equation, optical band gap and coupled dipole method (CDM). The Z-scan technique was carried out using solid state laser (640 nm) to analyze the nonlinear optical properties of the TP4N crystal. It exhibits the self-defocusing and saturable absorbance effect during analysis of closed and open aperture respectively. The nonlinear optical parameters such as refractive index (n2), absorption coefficient (β) and the third order nonlinear optical susceptibility (χ(3)) were analyzed.

  1. Nanoparticles for biomedical imaging, therapy, and quantitative diagnostics

    NASA Astrophysics Data System (ADS)

    Yust, Brian G.

    Nanoparticles and nanomaterials are known to exhibit extraordinary characteristics and have a wide range of application which utilizes their unique properties. In particular, nanoparticles have shown great promise towards advancing the state of biological and biomedical techniques such as in vivo and in vitro imaging modalities, biosensing, and disease detection and therapy. Nanocrystalline hosts: NaYF4, KYF4, KGdF4, NaMF3, and KMF3 (M=Mg, Ba, Mn, Fe, Co, Ni, Cr) doped with rare earth ions have been synthesized by thermolysis, solvothermal, and hydrothermal methods. The morphology and spectroscopic properties have been thoroughly characterized. These nanoparticles (NP) are particularly useful for biomedical purposes since both the exciting and emitting wavelengths are in the near-infrared, where most tissues do not strongly absorb or scatter light. In vivo and in vitro imaging was performed with a 980 nm excitation source. Finally, NPs were conjugated with zinc phthalocyanine, a photosensitizer with a large absorption coefficient in the red and NIR regions, to illustrate the efficacy of these NPs as a platform for dual-mode infrared-activated imaging and photodynamic platforms. In addition, nonlinear optical nanomaterials, such as BaTiO3 and Ag@BaTiO3, were also synthesized and characterized. The nonlinear optical properties were investigated, and it is demonstrated that these nanoparticles can produce phase conjugate waves when used in a counterpropagating four wave mixing setup. The third order susceptibility is quantified using the z-scan technique, and the toxicity of these nanoparticles is also explored.

  2. High-order nonlinear susceptibilities of He

    NASA Astrophysics Data System (ADS)

    Liu, W.-C.; Clark, Charles W.

    1996-05-01

    High-order nonlinear optical response of noble gases to intense laser radiation is of considerable experimental interest, but is difficult to measure or calculate accurately. We have begun a set of calculations of frequency-dependent nonlinear susceptibilities of He 1s^2, within the framework of Rayleigh-Schrödinger perturbation theory at lowest applicable order, with the goal of providing critically evaluated atomic data for modelling high harmonic generation processes. The atomic Hamiltonian is decomposed in term of Hylleraas coordinates and spherical harmonics using the formalism of Pont and Shakeshaft (M. Pont and R. Shakeshaft, Phy. Rev. A 51), 257 (1995), and the hierarchy of inhomogeneous equations of perturbation theory is solved iteratively. A combination of Hylleraas and Frankowski basis functions is used(J. D. Baker, Master thesis, U. Delaware (1988); J. D. Baker, R. N. Hill, and J. D. Morgan, AIP Conference Proceedings 189) 123(1989); the compact Hylleraas basis provides a highly accurate representation of the ground state wavefunction, whereas the diffuse Frankowski basis functions efficiently reproduce the correct asymptotic structure of the perturbed orbitals.

  3. Synthesis, characterization and theoretical investigations of the structure, electronic properties and third-order nonlinearity optics (NLO) of M(DPIP)₂.

    PubMed

    Li, Kang; Tang, Guodong; Kou, ShanShan; Culnane, Lance F; Zhang, Yu; Song, Yinglin; Li, Rongqing; Wei, Changmei

    2015-03-15

    Three complexes of M(DPIP)2 (M=Cu, Co, Zn as 1, 2, 3) were synthesized and characterized by elemental analysis, IR, UV-Vis, thermogravimetry, and X-ray diffraction. Their nonlinear optical properties were measured by the Z-scan technique and yielded a normalized transmittance of about 70% for complex 1 (45 μJ pulse), and 93% for complex 3 (68 μJ pulse at the focus point). The nonlinear absorption coefficient, β, is 1.4×10(-11) m/W for 1 and 5.6×10(-13) m/W for 3, and the third-order nonlinear refraction index, n2, is 1.0×10(-18) m(2)/W for 3. Complex 1 shows self-defocusing property, while complex 3 exhibits self-focusing property. The thermogravimetric results show that the frame structure of compounds 1-3 begin to collapse at 400, 250 and 280°C, respectively, which suggests that they elicit excellent thermal stability. This research aims to provide better understanding of these compounds, and offer preliminary explanations for the significant differences between compounds 1-3, in order to potentially help in the designing of future novel materials with NLO properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Design of an imaging microscope for soft X-ray applications

    NASA Astrophysics Data System (ADS)

    Hoover, Richard B.; Shealy, David L.; Gabardi, David R.; Walker, Arthur B. C., Jr.; Lindblom, Joakim F.

    1988-01-01

    An imaging soft X-ray microscope with a spatial resolution of 0.1 micron and normal incidence multilayer optics is discussed. The microscope has a Schwarzschild configuration, which consists of two concentric spherical mirrors with radii of curvature which minimize third-order spherical aberration, coma, and astigmatism. The performance of the Stanford/MSFC Cassegrain X-ray telescope and its relevance to the present microscope are addressed. A ray tracing analysis of the optical system indicates that diffraction-limited performance can be expected for an object height of 0.2 mm.

  5. Spectral splitting of optical pulses inside a dispersive medium at a temporal boundary

    DOE PAGES

    Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.

    2016-11-07

    We show numerically that the spectrum of an optical pulse splits into multiple, widely separated, spectral bands when it arrives at a temporal boundary across which refractive index changes suddenly. At the same time, the pulse breaks into several temporally separated pulses traveling at different speeds. The number of such pulses depends on the dispersive properties of the medium. We study the effect of second- and third-order dispersion in detail but also consider briefly the impact of other higher-order terms. As a result, a temporal waveguide formed with two temporal boundaries can reflect the temporally separated pulses again and again,more » increasing the number of pulses trapped within the temporal waveguide.« less

  6. Apparatus and process for determining the susceptibility of microorganisms to antibiotics

    NASA Technical Reports Server (NTRS)

    Gibson, Sandra F. (Inventor); Fadler, Norman L. (Inventor)

    1976-01-01

    A process for determining the susceptibility of microorganisms to antibiotics involves introducing a diluted specimen into discrete quantities of a selective culture medium which favors a specific microorganism in that the microorganism is sustained by the medium and when so sustained will change the optical characteristics of the medium. Only the specific microorganism will alter the optical characteristics. Some of the discrete quantities are blended with known antibiotics, while at least one is not. If the specimen contains the microorganisms favored by the selective medium, the optical characteristics of the discrete quantity of pure selective medium, that is the one without antibiotics, will change. If the antibiotics in any of the other discrete quantities are ineffective against the favored microorganisms, the optical characteristics of those quantities will likewise change. No change in the optical characteristics of a discrete quantity indicates that the favored microorganism is susceptible to the antibiotic in the quantity.

  7. Nonlinear intermodulation distortion suppression in coherent analog fiber optic link using electro-optic polymeric dual parallel Mach-Zehnder modulator.

    PubMed

    Kim, Seong-Ku; Liu, Wei; Pei, Qibing; Dalton, Larry R; Fetterman, Harold R

    2011-04-11

    A linearized dual parallel Mach-Zehnder modulator (DPMZM) based on electro-optic (EO) polymer was both fabricated, and experimentally used to suppress the third-order intermodulation distortion (IMD3) in a coherent analog fiber optic link. This optical transmitter design was based on a new EO chromophore called B10, which was synthesized for applications dealing with the fiber-optic communication systems. The chromophore was mixed with amorphous polycarbonate (APC) to form the waveguide's core material. The DPMZM was configured with two MZMs, of different lengths in parallel, with unbalanced input and output couplers and a phase shifter in one arm. In this configuration each of the MZMs carried a different optical power, and imposed a different depth of optical modulation. When the two optical beams from the MZMs were combined to generate the transmitted signal it was possible to set the IMD3 produced by each modulator to be equal in amplitude but 180° out of phase from the other. Therefore, the resulting IMD3 of the DPMZM transmitter was effectively canceled out during two-tone experiments. A reduction of the IMD3 below the noise floor was observed while leaving fifth-order distortion (IMD5) as the dominant IMD product. This configuration has the capability of broadband operation and shot-noise limited operation simultaneously. © 2011 Optical Society of America

  8. Access to long-term optical memories using photon echoes retrieved from electron spins in semiconductor quantum wells

    NASA Astrophysics Data System (ADS)

    Poltavtsev, S. V.; Langer, L.; Yugova, I. A.; Salewski, M.; Kapitonov, Y. V.; Yakovlev, D. R.; Karczewski, G.; Wojtowicz, T.; Akimov, I. A.; Bayer, M.

    2016-10-01

    We use spontaneous (two-pulse) and stimulated (three-pulse) photon echoes for studying the coherent evolution of optically excited ensemble of trions which are localized in semiconductor CdTe/CdMgTe quantum well. Application of transverse magnetic field leads to the Larmor precession of the resident electron spins, which shuffles optically induced polarization between optically accessible and inaccessible states. This results in several spectacular phenomena. First, magnetic field induces oscillations of spontaneous photon echo amplitude. Second, in three-pulse excitation scheme, the photon echo decay is extended by several orders of magnitude. In this study, short-lived optical excitation which is created by the first pulse is coherently transferred into a long-lived electron spin state using the second optical pulse. This coherent spin state of electron ensemble persists much longer than any optical excitation in the system, preserving information on initial optical field, which can be retrieved as a photon echo by means of third optical pulse.

  9. Third harmonic ac susceptibility of superconductors with finite thickness

    NASA Astrophysics Data System (ADS)

    Qin, M. J.; Ong, C. K.

    Third harmonic ac susceptibility of superconducting strips with finite thickness in perpendicularly applied magnetic field Ha = H0 sin(ω t) have been calculated. The flux creep effect is taken into account by using a power-law electric field E( j) = Ec( j/ jc) n. Results for different thicknesses and creep exponents n have been derived and compared to the results derived from the Bean critical state model.

  10. Third-order linearization for self-beating filtered microwave photonic systems using a dual parallel Mach-Zehnder modulator.

    PubMed

    Pérez, Daniel; Gasulla, Ivana; Capmany, José; Fandiño, Javier S; Muñoz, Pascual; Alavi, Hossein

    2016-09-05

    We develop, analyze and apply a linearization technique based on dual parallel Mach-Zehnder modulator to self-beating microwave photonics systems. The approach enables broadband low-distortion transmission and reception at expense of a moderate electrical power penalty yielding a small optical power penalty (<1 dB).

  11. Resonant and Nonresonant Nonlinear Optical Spectroscopy of CDSE Quantum Dots for Nonlinear Photonic Applications

    DTIC Science & Technology

    2006-11-01

    Temple D., Yoo K. P., Kim S. Y., Mott A., Namkung M., and Jung S. S., 2003: Large and pure refractive nonlinearity of nanostructure silica ... aerogel , Appl. Phys. Lett., 82(25), 4444-4446. [18] Sun W., Patton T., Stultz L., andClaude J. P., 2003: Resonant third-order nonlinearities of tetrakis

  12. Tuning the nonlinear optical absorption in Au/BaTiO3 nanocomposites with gold nanoparticle concentration

    NASA Astrophysics Data System (ADS)

    Bijeesh, M. M.; Shakhi, P. K.; Varier, Geetha K.; Nandakumar, P.

    2018-06-01

    We report on the nonlinear optical absorption coefficient of Au/BaTiO3 nanocomposite films and its dependence on gold nanoparticle concentration. Au/BaTiO3 nanocomposite films with different molar ratio of Au/Ba are prepared by sol-gel technique and characterized by X-ray diffraction, UV Visible absorption spectroscopy and high resolution transmission electron microscopy. An open aperture Z-scan technique is employed to study the third order nonlinear optical properties of Au/BaTiO3 thin films. An Nd:YAG laser operating at 532 nm wavelength having a pulse width of 5 ns is used for the measurements. The two-photon absorption coefficient of the films increases linearly with gold nanoparticle concentration and significant enhancement of nonlinear optical absorption is observed. This ability to fine tune the nonlinear optical coefficients of Au/BaTiO3 films would be handy in optical device applications.

  13. Activity of Bacillus thuringiensis against Pryeria sinica(Lepidoptera: Zygaenidae), an invasive pest of Euonymus

    USDA-ARS?s Scientific Manuscript database

    Pryeria sinica Moore (Lepidoptera: Zygaenidae), an invasive pest of Euonymus, is susceptible in the second instar to the Bacillus thuringiensis Berliner product Thuricide®, and to several strains isolated from other B. thuringiensis products. Third instars are also susceptible, while susceptibility...

  14. Non linear optical studies on semiorganic single crystal: L-arginine 4-nitrophenalate 4-nitrophenol dihydrate (LAPP)

    NASA Astrophysics Data System (ADS)

    Mahadevan, M.; Sankar, P. K.; Vinitha, G.; Arivanandhan, M.; Ramachandran, K.; Anandan, P.

    2017-07-01

    L-arginine 4-nitrophenalate 4-nitrophenol dihydrate (LAPP) has been synthesized and grown by solution growth at room temperature using deionized water as a solvent. The various functional groups of the sample were identified by Fourier transform infra-red and Fourier transforms - Raman spectroscopic analyses. The Laser damage threshold of LAPP has been studied. Refractive index of LAPP single crystal was measured using Metricon prism coupler Instrument. The etching studies were carried out to study the quality of the grown crystals. The third order nonlinear optical properties of LAPP sample was analyzed by the Z-scan technique using 532 nm diode pumped CW Nd: YAG laser. The LAPP material exhibits negative optical nonlinearity. The results show that LAPP sample has potential applications in nonlinear optics and it can be exploited for optical limiting or switching.

  15. Spherical tensor analysis of polar liquid crystals with biaxial and chiral molecules

    NASA Astrophysics Data System (ADS)

    Iwamoto, Mitsumasa; Zhong-can, Ou-Yang

    2012-11-01

    With the help of spherical tensor expression, an irreducible calculus of a Lth-rank macroscopic susceptibility χ for a polar liquid crystal (PLC) of biaxial and chiral molecules written as the average of molecular hyperpolarizability tensor β associated with their spherical orientational order parameters (0⩽l⩽L) is presented. Comprehensive formulas of L=1,2 have been obtained and the latter explains the optical activity and spontaneous splay texture observed in bent-core PLC. The expression of L=3 specifies for the molecules with D2 symmetry which can be applied to analyze the nonlinear optical second harmonic generation (SHG) observed in proteins, peptides, and double-stranded DNA at interfaces.

  16. Enhanced Optical Transmission Mediated by Localized Plasmons in Anisotropic, 3D Nanohole Arrays

    PubMed Central

    Yang, Jiun-Chan; Gao, Hanwei; Suh, Jae Yong; Zhou, Wei; Lee, Min Hyung; Odom, Teri W.

    2010-01-01

    This paper describes 3D nanohole arrays whose high optical transmission is mediated more by localized surface plasmon (LSP) excitations than by surface plasmon polaritons (SPPs). First, LSPs on 3D hole arrays lead to optical transmission an order of magnitude higher than 2D planar hole arrays. Second, LSP-mediated transmission is broadband and more tunable than SPP-enhanced transmission which is restricted by Bragg coupling. Third, for the first time, two types of surface plasmons can be selectively excited and manipulated on the same plasmonic substrate. This new plasmonic substrate fabricated by high-throughput nanolithography techniques paves the way for cutting-edge optoelectronic and biomedical applications. PMID:20698633

  17. Predicting the nonlinear optical response in the resonant region from the linear characterization: a self-consistent theory for the first-, second-, and third-order (non)linear optical response

    NASA Astrophysics Data System (ADS)

    Pérez-Moreno, Javier; Clays, Koen; Kuzyk, Mark G.

    2010-08-01

    We introduce a self-consistent theory for the description of the optical linear and nonlinear response of molecules that is based strictly on the results of the experimental characterization. We show how the Thomas-Kuhn sum-rules can be used to eliminate the dependence of the nonlinear response on parameters that are not directly measurable. Our approach leads to the successful modeling of the dispersion of the nonlinear response of complex molecular structures with different geometries (dipolar and octupolar), and can be used as a guide towards the modeling in terms of fundamental physical parameters.

  18. Magnetic susceptibility of alkali-tetracyanoquinodimethane salts and extended Hubbard models with bond order and charge density wave phases

    NASA Astrophysics Data System (ADS)

    Kumar, Manoranjan; Topham, Benjamin J.; Yu, RuiHui; Ha, Quoc Binh Dang; Soos, Zoltán G.

    2011-06-01

    The molar spin susceptibilities χ(T) of Na-tetracyanoquinodimethane (TCNQ), K-TCNQ, and Rb-TCNQ(II) are fit quantitatively to 450 K in terms of half-filled bands of three one-dimensional Hubbard models with extended interactions using exact results for finite systems. All three models have bond order wave (BOW) and charge density wave (CDW) phases with boundary V = Vc(U) for nearest-neighbor interaction V and on-site repulsion U. At high T, all three salts have regular stacks of TCNQ^- anion radicals. The χ(T) fits place Na and K in the CDW phase and Rb(II) in the BOW phase with V ≈ Vc. The Na and K salts have dimerized stacks at T < Td while Rb(II) has regular stacks at 100 K. The χ(T) analysis extends to dimerized stacks and to dimerization fluctuations in Rb(II). The three models yield consistent values of U, V, and transfer integrals t for closely related TCNQ^- stacks. Model parameters based on χ(T) are smaller than those from optical data that in turn are considerably reduced by electronic polarization from quantum chemical calculation of U, V, and t of adjacent TCNQ^- ions. The χ(T) analysis shows that fully relaxed states have reduced model parameters compared to optical or vibration spectra of dimerized or regular TCNQ^- stacks.

  19. Optical micro-cavities on silicon

    NASA Astrophysics Data System (ADS)

    Dai, Daoxin; Liu, Erhu; Tan, Ying

    2018-01-01

    Silicon-based optical microcavities are very popular for many applications because of the ultra-compact footprint, easy scalability, and functional versatility. In this paper we give a discussion about the challenges of the optical microcavities on silicon and also give a review of our recent work, including the following parts. First, a near-"perfect" high-order MRR optical filter with a box-like filtering response is realized by introducing bent directional couplers to have sufficient coupling between the access waveguide and the microrings. Second, an efficient thermally-tunable MRR-based optical filter with graphene transparent nano-heater is realized by introducing transparent graphene nanoheaters. Thirdly, a polarization-selective microring-based optical filter is realized to work with resonances for only one of TE and TM polarizations for the first time. Finally, a on-chip reconfigurable optical add-drop multiplexer for hybrid mode- /wavelength-division-multiplexing systems is realized for the first time by monolithically integrating a mode demultiplexer, four MRR optical switches, and a mode multiplexer.

  20. Tunable Filter Made From Three Coupled WGM Resonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Iltchenko, Vladimir; Maleki, Lute; Matsko, Andrey

    2006-01-01

    A tunable third-order band-pass optical filter has been constructed as an assembly of three coupled, tunable, whispering-gallery-mode resonators similar to the one described in Whispering-Gallery-Mode Tunable Narrow-Band-Pass Filter (NPO-30896), NASA Tech Briefs, Vol. 28, No. 4 (April 2004), page 5a. This filter offers a combination of four characteristics that are desirable for potential applications in photonics: (1) wide real-time tunability accompanied by a high-order filter function, (2) narrowness of the passband, (3) relatively low loss between input and output coupling optical fibers, and (4) a sparse spectrum. In contrast, prior tunable band-pass optical filters have exhibited, at most, two of these four characteristics. As described in several prior NASA Tech Briefs articles, a whispering-gallery-mode (WGM) resonator is a spheroidal, disklike, or toroidal body made of a highly transparent material. It is so named because it is designed to exploit whispering-gallery electromagnetic modes, which are waveguide modes that propagate circumferentially and are concentrated in a narrow toroidal region centered on the equatorial plane and located near the outermost edge. Figure 1 depicts the optical layout of the present filter comprising an assembly of three coupled, tunable WGM resonators. Each WGM resonator is made from a disk of Z-cut LiNbO3 of 3.3-mm diameter and 50-m thickness. The perimeter of the disk is polished and rounded to a radius of curvature of 40 microns. The free spectral range of each WGM resonator is about 13.3 GHz. Gold coats on the flat faces of the disk serve as electrodes for exploiting the electro-optical effect in LiNbO3 for tuning. There is no metal coat on the rounded perimeter region, where the whispering-gallery modes propagate. Light is coupled from an input optical fiber into the whispering-gallery-modes of the first WGM resonator by means of a diamond prism. Another diamond prism is used to couple light from the whispering-gallery-modes of the third WGM resonator to an output optical fiber. The filter operates at a nominal wavelength of 1,550 nm and can be tuned over a frequency range of plus or minus 12 GHz by applying a potential in the range of plus or minus 150 V to the electrodes. The insertion loss (the loss between the input and output coupling optical fibers) was found to be repeatable at 6 dB. The resonance quality factor (Q) of the main sequence of resonator modes was found to be 5 x 10(exp 6), which corresponds to a bandwidth of 30 MHz. The filter can be shifted from one operating frequency to another within a tuning time less than or equal to 30 micro seconds. The transmission curve of the filter at frequencies near the middle of the passband closely approximates a theoretical third-order Butterworth filter profile, as shown in Figure 2.

  1. Third harmonic from air breakdown plasma induced by nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Stafe, M.; Negutu, C.; Puscas, N. N.

    2018-06-01

    Harmonic generation is a nonlinear optical effect consisting in frequency up-conversion of intense laser radiation when phase-matching conditions are fulfilled. Here, we study the mechanisms involved in the third harmonic (TH) generation process, the conversion efficiency, and the properties of TH radiation generated in air by focusing infrared linearly polarized nanosecond laser pulses at intensities of the order of TW/cm2. By analyzing the emission from the air breakdown plasma, we demonstrate that filamentary breakdown plasma containing molecular nitrogen ions acts as an optical nonlinear medium enabling generation of TH radiation in the axial direction. The data reveal important properties of the TH radiation: maximum conversion efficiency of 0.04%, sinc2 dependence of the TH intensity on the square root of the pump intensity, and three times smaller divergence and pulse duration of TH as compared to the pump radiation.

  2. Study of coherence effects in a four-level Ξ‑Λ type system

    NASA Astrophysics Data System (ADS)

    Yadav, Kavita; Wasan, Ajay

    2018-05-01

    We theoretically study the two- and three-photon coherence in a Ξ‑Λ type four-level system for stationary as well moving atoms at the room temperature using density matrix formalism. We discuss the role of dressed states to elucidate the electromagnetically induced transparency and electromagnetically induced absorption phenomena. The presence of the third field induces absorption at the line centre. A negative dispersion slope owing to the enhanced absorption results in super-luminal light propagation and the group index variation with the coupling field is switched from sub- to super-luminal. Group index with probe detuning shows super-luminal light propagation behaviour at the dressed state positions. The three optical fields trigger four-wave mixing as a result of the third order nonlinearity. The transient evolution is also discussed for optimum strengths of the coupling and drive fields to realize the optical switching in the system.

  3. Linear and nonlinear magneto-optical properties of monolayer phosphorene

    NASA Astrophysics Data System (ADS)

    Nguyen, Chuong V.; Ngoc Hieu, Nguyen; Duque, C. A.; Quoc Khoa, Doan; Van Hieu, Nguyen; Van Tung, Luong; Vinh Phuc, Huynh

    2017-01-01

    We theoretically study the magneto-optical properties of monolayer phosphorene under a perpendicular magnetic field. We evaluate linear, third-order nonlinear, and total absorption coefficients and relative refractive index changes as functions of the photon energy and the magnetic field, and show that they are strongly influenced by the magnetic field. The magneto-optical absorption coefficients and relative refractive index changes appear in two different regimes: the microwave to THz and the visible frequency. The amplitude of intra-band transition peaks is larger than that of the inter-band transitions. The resonant peaks are blue-shifted with the magnetic field. Our results demonstrate the potential of monolayer phosphorene as a new two-dimensional material for applications in nano-electronic and optical devices as a promising alternative to graphene.

  4. Plasmon-enhanced versatile optical nonlinearities in a Au-Ag-Au multi-segmental hybrid structure.

    PubMed

    Yao, Lin-Hua; Zhang, Jun-Pei; Dai, Hong-Wei; Wang, Ming-Shan; Zhang, Lu-Man; Wang, Xia; Han, Jun-Bo

    2018-06-27

    A Au-Ag-Au multi-segmental hybrid structure has been synthesized by using an electrodeposition method based on an anodic aluminum oxide (AAO) membrane. The third-order optical nonlinearities, second harmonic generation (SHG) and photoluminescence (PL) properties containing ultrafast supercontinuum generation and plasmon mediated thermal emission have been investigated. Significant optical enhancements have been obtained near surface plasmon resonance wavelength in all the abovementioned nonlinear processes. Comparative studies between the Au-Ag-Au multi-segmental hybrid structure and the corresponding single-component Au and Ag hybrid structures demonstrate that the Au-Ag-Au multi-segmental hybrid structure has much larger optical nonlinearities than its counterparts. These results demonstrate that the Au-Ag-Au hybrid structure is a promising candidate for applications in plasmonic devices and enhancement substrates.

  5. All-optical tunable dual Fano resonance in nonlinear metamaterials in optical communication range

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Hu, Xiaoyong; Li, Chong; Yang, Hong; Gong, Qihuang

    2018-01-01

    Low-power, ultra-fast all-optical tunable dual Fano resonance was realized in a metamaterial coated with a non-linear nanocomposite layer composed of gold nanoparticle-doped polycrystalline barium strontium titanate and multilayer tungsten disulphide microsheets. A high non-linear refractive index of -2.148 × 10-11 m2/W was achieved in the nanocomposite material that originated in the non-linearity enhancement associated with the quantum confinement effect, the local-field enhancement effect, and reinforced interactions between photons and the multilayer tungsten disulphide microsheets. An ultra-low threshold pump intensity of 600 kW/cm2 was obtained. An ultra-fast response time of 25.4 ps was maintained because of the fast relaxation dynamics of the bound electrons in the nanoscale polycrystalline barium strontium titanate grains. The large third-order non-linear responses of the metamaterial were confirmed with a high third harmonic generation conversion efficiency of 5.4 × 10-5. This work may help to pave the way towards realization of ultra-high-speed information processing chips and multifunctional integrated photonic devices based on metamaterials.

  6. Modulating optical rectification, second and third harmonic generation of doped quantum dots: Interplay between hydrostatic pressure, temperature and noise

    NASA Astrophysics Data System (ADS)

    Ganguly, Jayanta; Saha, Surajit; Bera, Aindrila; Ghosh, Manas

    2016-10-01

    We examine the profiles of optical rectification (OR), second harmonic generation (SHG) and third harmonic generation (THG) of impurity doped QDs under the combined influence of hydrostatic pressure (HP) and temperature (T) in presence and absence of Gaussian white noise. Noise has been incorporated to the system additively and multiplicatively. In order to study the above nonlinear optical (NLO) properties the doped dot has been subjected to a polarized monochromatic electromagnetic field. Effect of application of noise is nicely reflected through alteration of peak shift (blue/red) and variation of peak height (increase/decrease) of above NLO properties as temperature and pressure are varied. All such changes again sensitively depends on mode of application (additive/multiplicative) of noise. The remarkable influence of interplay between noise strength and its mode of application on the said profiles has also been addressed. The findings illuminate fascinating role played by noise in tuning above NLO properties of doped QD system under the active presence of both hydrostatic pressure and temperature.

  7. Optical resonance imaging: An optical analog to MRI with sub-diffraction-limited capabilities.

    PubMed

    Allodi, Marco A; Dahlberg, Peter D; Mazuski, Richard J; Davis, Hunter C; Otto, John P; Engel, Gregory S

    2016-12-21

    We propose here optical resonance imaging (ORI), a direct optical analog to magnetic resonance imaging (MRI). The proposed pulse sequence for ORI maps space to time and recovers an image from a heterodyne-detected third-order nonlinear photon echo measurement. As opposed to traditional photon echo measurements, the third pulse in the ORI pulse sequence has significant pulse-front tilt that acts as a temporal gradient. This gradient couples space to time by stimulating the emission of a photon echo signal from different lateral spatial locations of a sample at different times, providing a widefield ultrafast microscopy. We circumvent the diffraction limit of the optics by mapping the lateral spatial coordinate of the sample with the emission time of the signal, which can be measured to high precision using interferometric heterodyne detection. This technique is thus an optical analog of MRI, where magnetic-field gradients are used to localize the spin-echo emission to a point below the diffraction limit of the radio-frequency wave used. We calculate the expected ORI signal using 15 fs pulses and 87° of pulse-front tilt, collected using f /2 optics and find a two-point resolution 275 nm using 800 nm light that satisfies the Rayleigh criterion. We also derive a general equation for resolution in optical resonance imaging that indicates that there is a possibility of superresolution imaging using this technique. The photon echo sequence also enables spectroscopic determination of the input and output energy. The technique thus correlates the input energy with the final position and energy of the exciton.

  8. Theoretical study on the spectroscopic and third-order nonlinear optical properties of two-dimensional charge-transfer pyrazine derivatives

    NASA Astrophysics Data System (ADS)

    Li, Haipeng; Zhang, Yi; Bi, Zetong; Xu, Runfeng; Li, Mingxue; Shen, Xiaopeng; Tang, Gang; Han, Kui

    2017-12-01

    In this paper, density functional theory method was employed to study the electronic absorption spectrum and electronic static second hyperpolarisability of X-shaped pyrazine derivatives with two-dimensional charge-transfer structures. Computational results show that the push-pull electron abilities of the substituent groups and the length of the conjugated chains affect the electronic spectrum and static second hyperpolarisability of the pyrazine derivatives. As the push-pull electron abilities of the substituent groups or the length of the conjugated chains increases, the frontier molecular orbital energy gap decreases, resulting in increased second hyperpolarisability and redshift of the electronic absorption bands. The electronic absorption spectra of the pyrazine derivatives maintain good transparency in the blue light band. The electronic static second hyperpolarisability exhibits a linear relationship to the frontier molecular orbital energy gap. Particularly, increasing/decreasing the push-pull electron abilities of the substituent groups considerably affect the static second hyperpolarisability in long conjugated systems, which is important to the modulation of molecular organic nonlinear optical (NLO) properties. The studied pyrazine derivatives show large third-order NLO response and good transparency in the blue light band and are thus promising candidates as NLO materials for photonics applications.

  9. Hyper-Rayleigh scattering in centrosymmetric systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Mathew D.; Ford, Jack S.; Andrews, David L., E-mail: david.andrews@physics.org

    Hyper-Rayleigh scattering (HRS) is an incoherent mechanism for optical second harmonic generation. The frequency-doubled light that emerges from this mechanism is not emitted in a laser-like manner, in the forward direction; it is scattered in all directions. The underlying theory for this effect involves terms that are quadratic in the incident field and involves an even-order optical susceptibility (for a molecule, its associated hyperpolarizability). In consequence, HRS is often regarded as formally forbidden in centrosymmetric media. However, for the fundamental three-photon interaction, theory based on the standard electric dipole approximation, representable as E1{sup 3}, does not account for all experimentalmore » observations. The relevant results emerge upon extending the theory to include E1{sup 2}M1 and E1{sup 2}E2 contributions, incorporating one magnetic dipolar or electric quadrupolar interaction, respectively, to a consistent level of multipolar expansion. Both additional interactions require the deployment of higher orders in the multipole expansion, with the E1{sup 2}E2 interaction analogous in rank and parity to a four-wave susceptibility. To elicit the correct form of response from fluid or disordered media invites a tensor representation which does not oversimplify the molecular components, yet which can produce results to facilitate the interpretation of experimental observations. The detailed derivation in this work leads to results which are summarized for the following: perpendicular detection of polarization components both parallel and perpendicular to the pump radiation, leading to distinct polarization ratio results, as well as a reversal ratio for forward scattered circular polarizations. The results provide a route to handling data with direct physical interpretation, to enable the more sophisticated design of molecules with sought nonlinear optical properties.« less

  10. Hyper-Rayleigh scattering in centrosymmetric systems

    NASA Astrophysics Data System (ADS)

    Williams, Mathew D.; Ford, Jack S.; Andrews, David L.

    2015-09-01

    Hyper-Rayleigh scattering (HRS) is an incoherent mechanism for optical second harmonic generation. The frequency-doubled light that emerges from this mechanism is not emitted in a laser-like manner, in the forward direction; it is scattered in all directions. The underlying theory for this effect involves terms that are quadratic in the incident field and involves an even-order optical susceptibility (for a molecule, its associated hyperpolarizability). In consequence, HRS is often regarded as formally forbidden in centrosymmetric media. However, for the fundamental three-photon interaction, theory based on the standard electric dipole approximation, representable as E13, does not account for all experimental observations. The relevant results emerge upon extending the theory to include E12M1 and E12E2 contributions, incorporating one magnetic dipolar or electric quadrupolar interaction, respectively, to a consistent level of multipolar expansion. Both additional interactions require the deployment of higher orders in the multipole expansion, with the E12E2 interaction analogous in rank and parity to a four-wave susceptibility. To elicit the correct form of response from fluid or disordered media invites a tensor representation which does not oversimplify the molecular components, yet which can produce results to facilitate the interpretation of experimental observations. The detailed derivation in this work leads to results which are summarized for the following: perpendicular detection of polarization components both parallel and perpendicular to the pump radiation, leading to distinct polarization ratio results, as well as a reversal ratio for forward scattered circular polarizations. The results provide a route to handling data with direct physical interpretation, to enable the more sophisticated design of molecules with sought nonlinear optical properties.

  11. Second harmonic generation polarization properties of myofilaments

    NASA Astrophysics Data System (ADS)

    Samim, Masood; Prent, Nicole; Dicenzo, Daniel; Stewart, Bryan; Barzda, Virginijus

    2014-05-01

    Second harmonic generation (SHG) polarization microscopy was used to investigate the organization of myosin nanomotors in myofilaments of muscle cells. The distribution of the second-order nonlinear susceptibility component ratio χzzz(2)/χzxx(2) along anisotropic bands of sarcomeres revealed differences between the headless and head-containing regions of myofilaments. The polarization-in polarization-out SHG measurements of headless myosin mutants of indirect flight muscle in Drosophila melanogaster confirmed a lower susceptibility component ratio compared to the head-containing myocytes with wild-type myosins. The increase in the ratio is assigned to the change in the deflection angle of the myosin S2 domain and possible contribution of myosin heads. The nonlinear susceptibility component ratio is a sensitive indicator of the myosin structure, and therefore, it can be used for conformational studies of myosin nanomotors. The measured ratio values can also be used as the reference for ab initio calculations of nonlinear optical properties of different parts of myosins.

  12. Investigation of inorganic nonlinear optical potassium penta borate tetra hydrate (PPBTH) single crystals grown by slow evaporation method

    NASA Astrophysics Data System (ADS)

    Arivuselvi, R.; Babu, P. Ramesh

    2018-03-01

    Borates family crystals were plays vital role in the field of non linear optics (NLO) due to needs of wide range of applications. In this report, NLO crystals (potassium penta borate tetra hydrate (KB5H8O12) are grown by slow evaporation method at room temperature (28° C) and studied their physical properties. The harvested single crystals are transparent with the dimension of 12 × 10 × 6 mm3 and colourless. X-ray diffraction of single crystals reveals that the grown crystal belongs to orthorhombic system with non-centrosymmetric space group Pba2. All the absorbed functional groups are present in the order of inorganic compounds expect 1688 cm-1 because of water (Osbnd H sbnd O blending) molecule present in the pristine. Crystals show transparent in the entire visible region with 5.9 eV optical band gap and also it shows excellence in both second and third order nonlinear optical properties. Crystals can withstand upto 154 °C without any phase changes which is observed using thermal (TGA/DTA) analysis.

  13. Nonlinear silicon photonics

    NASA Astrophysics Data System (ADS)

    Tsia, Kevin K.; Jalali, Bahram

    2010-05-01

    An intriguing optical property of silicon is that it exhibits a large third-order optical nonlinearity, with orders-ofmagnitude larger than that of silica glass in the telecommunication band. This allows efficient nonlinear optical interaction at relatively low power levels in a small footprint. Indeed, we have witnessed a stunning progress in harnessing the Raman and Kerr effects in silicon as the mechanisms for enabling chip-scale optical amplification, lasing, and wavelength conversion - functions that until recently were perceived to be beyond the reach of silicon. With all the continuous efforts developing novel techniques, nonlinear silicon photonics is expected to be able to reach even beyond the prior achievements. Instead of providing a comprehensive overview of this field, this manuscript highlights a number of new branches of nonlinear silicon photonics, which have not been fully recognized in the past. In particular, they are two-photon photovoltaic effect, mid-wave infrared (MWIR) silicon photonics, broadband Raman effects, inverse Raman scattering, and periodically-poled silicon (PePSi). These novel effects and techniques could create a new paradigm for silicon photonics and extend its utility beyond the traditionally anticipated applications.

  14. Growth and characterization of benzaldehyde 4-nitro phenyl hydrazone (BPH) single crystal: A proficient second order nonlinear optical material

    NASA Astrophysics Data System (ADS)

    Saravanan, M.; Abraham Rajasekar, S.

    2016-04-01

    The crystals (benzaldehyde 4-nitro phenyl hydrazone (BPH)) appropriate for NLO appliance were grown by the slow cooling method. The solubility and metastable zone width measurement of BPH specimen was studied. The material crystallizes in the monoclinic crystal system with noncentrosymmetric space group of Cc. The optical precision in the whole visible region was found to be excellent for non-linear optical claim. Excellence of the grown crystal is ascertained by the HRXRD and etching studies. Laser Damage Threshold and Photoluminescence studies designate that the grown crystal contains less imperfection. The mechanical behaviour of BPH sample at different temperatures was investigated to determine the hardness stability of the grown specimen. The piezoelectric temperament and the relative Second Harmonic Generation (for diverse particle sizes) of the material were also studied. The dielectric studies were executed at varied temperatures and frequencies to investigate the electrical properties. Photoconductivity measurement enumerates consummate of inducing dipoles due to strong incident radiation and also divulge the nonlinear behaviour of the material. The third order nonlinear optical properties of BPH crystals were deliberate by Z-scan method.

  15. Synthesis and optical properties of azo -dye-attached novel second-order NLO polymers with high thermal stability

    NASA Astrophysics Data System (ADS)

    Ushiwata, Takami; Okamoto, Etsuya; Komatsu, Kyoji; Kaino, Toshikuni

    2001-06-01

    Novel second order nonlinear optical (NLO) polymethacrylate or polyacrylate polymers with high glass transition temperatures containing an azo dye attached as side-chain have been prepared using a new approach from polymethacrylic acid or polyacrylic acid as starting materials. Glass transition temperatures of 150 approximately 170 degree Celsius were obtained for Disperse red 1 dye attached polymethacrylic acid. These are attributed to the hydrogen bonding between the residual carboxyl groups in the starting polymers. Poled films by corona poling exhibited large NLO susceptibilities, (chi) (2)33 up to 53 pm/V at a wavelength of 1.3 micrometer. Due to the high glass transition temperatures of the polymers, long-term stability of the optical nonlinearity at 100 degrees Celsius was observed for 200 hrs or more. However residual carboxyl groups caused absorbance decrease mainly by hydrolysis of the ester bonds of the polymers investigated by UV-Vis absorption measurement. The stability of induced polar order of the NLO polymer was enhanced by using aminoalkyl chromophore and imidizing it thermally to introduce imide structure into the polymer main-chain. This imidized polymer exhibited (chi) (2)33 of 45 pm/V at a wavelength of 1.3 micrometer and maintained about 90% of the initial value after 230 hrs or more at 100 degrees Celsius.

  16. Growth, spectral, linear and nonlinear optical characteristics of an efficient semiorganic acentric crystal: L-valinium L-valine chloride

    NASA Astrophysics Data System (ADS)

    Nageshwari, M.; Jayaprakash, P.; Kumari, C. Rathika Thaya; Vinitha, G.; Caroline, M. Lydia

    2017-04-01

    An efficient nonlinear optical semiorganic material L-valinium L-valine chloride (LVVCl) was synthesized and grown-up by means of slow evaporation process. Single crystal XRD evince that LVVCl corresponds to monoclinic system having acentric space group P21. The diverse functional groups existing in LVVCl were discovered with FTIR spectral investigation. The UV-Visible and photoluminescence spectrum discloses the optical and electronic properties respectively for the grown crystal. Several optical properties specifically extinction coefficient, reflectance, linear refractive index, electrical and optical conductivity were also determined. The SEM analysis was also carried out and it portrayed the surface morphology of LVVCl. The calculated value of laser damage threshold was 2.59 GW/cm2. The mechanical and dielectric property of LVVCl was investigated employing microhardness and dielectric studies. The second and third order nonlinear optical characteristics of LVVCl was characterized utilizing Kurtz Perry and Z scan technique respectively clearly suggest its suitability in the domain of optics and photonics.

  17. The Optical Properties of Ion Implanted Silica

    NASA Technical Reports Server (NTRS)

    Smith, Cydale C.; Ila, D.; Sarkisov, S.; Williams, E. K.; Poker, D. B.; Hensley, D. K.

    1997-01-01

    We will present our investigation on the change in the optical properties of silica, 'suprasil', after keV through MeV implantation of copper, tin, silver and gold and after annealing. Suprasil-1, name brand of silica glass produced by Hereaus Amerisil, which is chemically pure with well known optical properties. Both linear nonlinear optical properties of the implanted silica were investigated before and after thermal annealing. All implants, except for Sn, showed strong optical absorption bands in agreement with Mie's theory. We have also used Z-scan to measure the strength of the third order nonlinear optical properties of the produced thin films, which is composed of the host material and the metallic nanoclusters. For implants with a measurable optical absorption band we used Doyle's theory and the full width half maximum of the absorption band to calculate the predicted size of the formed nanoclusters at various heat treatment temperatures. These results are compared with those obtained from direct observation using transmission electron microscopic techniques.

  18. Characterization of acoustically induced deformations of human tympanic membranes by digital holography and shearography

    NASA Astrophysics Data System (ADS)

    Flores-Moreno, J. M.; Furlong, Cosme; Cheng, Jeffrey T.; Rosowski, John J.; Merchant, S. N.

    2011-08-01

    Recently, we introduced a Digital Optoelectronic Holographic System (DOEHS) for measurement of acoustically induced deformations of the human tympanic membrane (TM) in order to study and diagnose pathologic conditions of the middle-ear. The DOEHS consists of laser-delivery illumination (IS), optical head (OH), image-processing computer (IP), and positioning arm (PS) subsystems. Holographic information is recorded by a CCD and numerically reconstructed by Fresnel approximation. Our holographic otoscope system is currently deployed in a clinic and is packaged in a custom design. Since digital holography is a high sensitivity measurement technique and the interfering light waves travel along different paths, it makes measurements acquired by DOEHS susceptible to external vibrations. In order to avoid this susceptibility, we are testing a shearography setup as OH. Shearography presents same advantages as holographic interferometry, but it is less susceptible to vibration and external noise, which is a characteristic needed for the use of our techniques in a clinical environment. In this paper we present work in progress in our development of a shearography technique based on a Mach-Zehnder configuration as OH and demonstrate its application by quantifying vibrations modes in thin membranes, including human TM. Results are compared with those obtained with DOEHS.

  19. Dynamic evolution of light-induced orientation of dye-doped liquid crystals in liquid phase studied by time-resolved optically heterodyned optical Kerr effect technique.

    PubMed

    Yang, Pei; Liu, Liying; Xu, Lei

    2008-02-28

    Transient evolution of light-induced molecular reorientation both in 1-amino-anthraquinone (1AAQ) dye and azobenzene doped isotropic liquid crystals (LCs) were studied by time-resolved optically heterodyned optical Kerr effect method. The results give clear direct experimental proof that under short pulse (30 ps) excitation, LC molecules orientate toward the excitation light polarization direction in the 1AAQ/LC system. However, LC molecular orientation becomes orthogonal to the light polarization in azobenzene/LC system. Time-resolved excited-state absorption of 1AAQ and wavelength dependent excited-state absorption of azobenzene were also observed and their contributions to the early dynamics of the third order optical responses of the two systems were confirmed. A simplified two-level mean-field theory was derived to reveal the intensity dependence of orientation enhancement factor in azobenzene/LC system considering the photoisomerization process.

  20. Optical super-resolution effect induced by nonlinear characteristics of graphene oxide films

    NASA Astrophysics Data System (ADS)

    Zhao, Yong-chuang; Nie, Zhong-quan; Zhai, Ai-ping; Tian, Yan-ting; Liu, Chao; Shi, Chang-kun; Jia, Bao-hua

    2018-01-01

    In this work, we focus on the optical super-resolution effect induced by strong nonlinear saturation absorption (NSA) of graphene oxide (GO) membranes. The third-order optical nonlinearities are characterized by the canonical Z-scan technique under femtosecond laser (wavelength: 800 nm, pulse width: 100 fs) excitation. Through controlling the applied femtosecond laser energy, NSA of the GO films can be tuned continuously. The GO film is placed at the focal plane as a unique amplitude filter to improve the resolution of the focused field. A multi-layer system model is proposed to present the generation of a deep sub-wavelength spot associated with the nonlinearity of GO films. Moreover, the parameter conditions to achieve the best resolution (˜λ/6) are determined entirely. The demonstrated results here are useful for high density optical recoding and storage, nanolithography, and super-resolution optical imaging.

  1. Enhancement of two photon absorption with Ni doping in the dilute magnetic semiconductor ZnO crystalline nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rana, Amit Kumar; Kumar, Yogendra; Arjunan, M.S.

    2015-12-07

    In this letter, we have investigated the third-order optical nonlinearities of high-quality Ni doped ZnO nanorods crystallized in wurtzite lattice, prepared by the wet chemical method. In our experiments, we found that the two photon absorption coefficient (β) increases by as much as 14 times, i.e., 7.6 ± 0.4 to 112 ± 6 cm/GW, when the Ni doping is increased from 0% to 10%. The substantial enhancement in β is discussed in terms of the bandgap scaling and Ni doping. Furthermore, we also show that the optical bandgap measured by UV-Vis and photoluminescence spectroscopies, continuously redshift with increasing Ni doping concentration.more » We envision that the strong nonlinear optical properties together with their dilute magnetic effects, they form an important class of materials for potential applications in magneto-optical and integrated optical chips.« less

  2. Enhancement of two photon absorption with Ni doping in the dilute magnetic semiconductor ZnO crystalline nanorods

    NASA Astrophysics Data System (ADS)

    Rana, Amit Kumar; J, Aneesh; Kumar, Yogendra; M. S, Arjunan; Adarsh, K. V.; Sen, Somaditya; Shirage, Parasharam M.

    2015-12-01

    In this letter, we have investigated the third-order optical nonlinearities of high-quality Ni doped ZnO nanorods crystallized in wurtzite lattice, prepared by the wet chemical method. In our experiments, we found that the two photon absorption coefficient (β) increases by as much as 14 times, i.e., 7.6 ± 0.4 to 112 ± 6 cm/GW, when the Ni doping is increased from 0% to 10%. The substantial enhancement in β is discussed in terms of the bandgap scaling and Ni doping. Furthermore, we also show that the optical bandgap measured by UV-Vis and photoluminescence spectroscopies, continuously redshift with increasing Ni doping concentration. We envision that the strong nonlinear optical properties together with their dilute magnetic effects, they form an important class of materials for potential applications in magneto-optical and integrated optical chips.

  3. CAD Integration : new optical design possibilities

    NASA Astrophysics Data System (ADS)

    Haumonte, Jean-Baptiste; Venturino, Jean-Claude

    2005-09-01

    The development of optical design and analysis tools in a CAD software can help to optimise the design, size and performance of tomorrow's consumer products. While optics was still held back by software limitations, CAD programs were moving forward in leaps and bounds, improving manufacturing technologies and making it possible to design and produce highly innovative and sophisticated products. The problem was that in the past, 'traditional' optical design programs were only able to simulate spherical and aspherical lenses, meaning that the optical designers were limited to designing systems which were a series of imperfect lenses, each one correcting the last. That is why OPTIS has created the first optical design program to be fully integrated into a CAD program. The technology is available from OPTIS in an integrated SOLIDWORKS or CATIA V5 version. Users of this software can reduce the number of lenses needed in a system. Designers will now have access to complex surfaces such as NURBS meaning they will now be able to define free shape progressive lenses and even improve on optical performances using fewer lenses. This revolutionary technology will allow mechanical designers to work on optical systems and to share information with optical designers for the first time. Previously not possible in a CAD program you may now determine all the optical performances of any optical system, providing first order and third order performances, sequential and non-sequential ray-tracing, wavefront surfaces, point spread function, MTF, spot-diagram, using real optical surfaces and guaranteeing the mechanical precision necessary for an optical system.

  4. Spherical mirror grazing incidence x-ray optics

    NASA Technical Reports Server (NTRS)

    Cash, Jr., Webster C. (Inventor)

    1997-01-01

    An optical system for x-rays combines at least two spherical or near spherical mirrors for each dimension in grazing incidence orientation to provide the functions of a lens in the x-ray region. To focus x-ray radiation in both the X and the Y dimensions, one of the mirrors focusses the X dimension, a second mirror focusses the Y direction, a third mirror corrects the X dimension by removing comatic aberration and a fourth mirror corrects the Y dimension. Spherical aberration may also be removed for an even better focus. The order of the mirrors is unimportant.

  5. Dynamic fatigue of a lithia-alumina-silica glass-ceramic

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.

    1990-01-01

    A dynamic fatigue study was performed on a Li2O-Al2O3-SiO2 glass-ceramic in order to assess its susceptibility to delayed failure. Fracture mechanics techniques were used to analyze the results for the purpose of making lifetime predictions for optical elements made from this material. The material has reasonably good resistance (N = 20) to stress corrosion in ambient conditions. Analysis also indicated the elements should survive applied stresses incurred during grinding and polishing operations.

  6. Single MoO3 nanoribbon waveguides: good building blocks as elements and interconnects for nanophotonic applications

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Wu, Guoqing; Gu, Fuxing; Zeng, Heping

    2015-11-01

    Exploring new nanowaveguide materials and structures is of great scientific interest and technological significance for optical and photonic applications. In this work, high-quality single-crystal MoO3 nanoribbons (NRs) are synthesized and used for optical guiding. External light sources are efficiently launched into the single MoO3 NRs using silica fiber tapers. It is found that single MoO3 NRs are as good nanowaveguides with loss optical losses (typically less than 0.1 dB/μm) and broadband optical guiding in the visible/near-infrared region. Single MoO3 NRs have good Raman gains that are comparable to those of semiconductor nanowaveguides, but the second harmonic generation efficiencies are about 4 orders less than those of semiconductor nanowaveguides. And also no any third-order nonlinear optical effects are observed at high pump power. A hybrid Fabry-Pérot cavity containing an active CdSe nanowire and a passive MoO3 NR is also demonstrated, and the ability of coupling light from other active nanostructures and fluorescent liquid solutions has been further demonstrated. These optical properties make single MoO3 NRs attractive building blocks as elements and interconnects in miniaturized photonic circuitries and devices.

  7. Density matrix perturbation theory for magneto-optical response of periodic insulators

    NASA Astrophysics Data System (ADS)

    Lebedeva, Irina; Tokatly, Ilya; Rubio, Angel

    2015-03-01

    Density matrix perturbation theory offers an ideal theoretical framework for the description of response of solids to arbitrary electromagnetic fields. In particular, it allows to consider perturbations introduced by uniform electric and magnetic fields under periodic boundary conditions, though the corresponding potentials break the translational invariance of the Hamiltonian. We have implemented the density matrix perturbation theory in the open-source Octopus code on the basis of the efficient Sternheimer approach. The procedures for responses of different order to electromagnetic fields, including electric polarizability, orbital magnetic susceptibility and magneto-optical response, have been developed and tested by comparison with the results for finite systems and for wavefunction-based perturbation theory, which is already available in the code. Additional analysis of the orbital magneto-optical response is performed on the basis of analytical models. Symmetry limitations to observation of the magneto-optical response are discussed. The financial support from the Marie Curie Fellowship PIIF-GA-2012-326435 (RespSpatDisp) is gratefully acknowledged.

  8. Nonlinear optical response in narrow graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Karimi, Farhad; Knezevic, Irena

    We present an iterative method to calculate the nonlinear optical response of armchair graphene nanoribbons (aGNRs) and zigzag graphene nanoribbons (zGNRs) while including the effects of dissipation. In contrast to methods that calculate the nonlinear response in the ballistic (dissipation-free) regime, here we obtain the nonlinear response of an electronic system to an external electromagnetic field while interacting with a dissipative environment (to second order). We use a self-consistent-field approach within a Markovian master-equation formalism (SCF-MMEF) coupled with full-wave electromagnetic equations, and we solve the master equation iteratively to obtain the higher-order response functions. We employ the SCF-MMEF to calculate the nonlinear conductance and susceptibility, as well as to calculate the dependence of the plasmon dispersion and plasmon propagation length on the intensity of the electromagnetic field in GNRs. The electron scattering mechanisms included in this work are scattering with intrinsic phonons, ionized impurities, surface optical phonons, and line-edge roughness. Unlike in wide GNRs, where ionized-impurity scattering dominates dissipation, in ultra-narrow nanoribbons on polar substrates optical-phonon scattering and ionized-impurity scattering are equally prominent. Support by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0008712.

  9. Computer simulation of the linear and nonlinear optical susceptibilities of p-nitroaniline in cyclohexane, 1,4-dioxane, and tetrahydrofuran in quadrupolar approximation. II. Local field effects and optical susceptibilitities.

    PubMed

    Reis, H; Papadopoulos, M G; Grzybowski, A

    2006-09-21

    This is the second part of a study to elucidate the local field effects on the nonlinear optical properties of p-nitroaniline (pNA) in three solvents of different multipolar character, that is, cyclohexane (CH), 1,4-dioxane (DI), and tetrahydrofuran (THF), employing a discrete description of the solutions. By the use of liquid structure information from molecular dynamics simulations and molecular properties computed by high-level ab initio methods, the local field and local field gradients on p-nitroaniline and the solvent molecules are computed in quadrupolar approximation. To validate the simulations and the induction model, static and dynamic (non)linear properties of the pure solvents are also computed. With the exception of the static dielectric constant of pure THF, a good agreement between computed and experimental refractive indices, dielectric constants, and third harmonic generation signals is obtained for the solvents. For the solutions, it is found that multipole moments up to two orders higher than quadrupole have a negligible influence on the local fields on pNA, if a simple distribution model is employed for the electric properties of pNA. Quadrupole effects are found to be nonnegligible in all three solvents but are especially pronounced in the 1,4-dioxane solvent, in which the local fields are similar to those in THF, although the dielectric constant of DI is 2.2 and that of the simulated THF is 5.4. The electric-field-induced second harmonic generation (EFISH) signal and the hyper-Rayleigh scattering signal of pNA in the solutions computed with the local field are in good to fair agreement with available experimental results. This confirms the effect of the "dioxane anomaly" also on nonlinear optical properties. Predictions based on an ellipsoidal Onsager model as applied by experimentalists are in very good agreement with the discrete model predictions. This is in contrast to a recent discrete reaction field calculation of pNA in 1,4-dioxane, which found that the predicted first hyperpolarizability of pNA deviated strongly from the predictions obtained using Onsager-Lorentz local field factors.

  10. Theoretical limit of spatial resolution in diffuse optical tomography using a perturbation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konovalov, A B; Vlasov, V V

    2014-03-28

    We have assessed the limit of spatial resolution of timedomain diffuse optical tomography (DOT) based on a perturbation reconstruction model. From the viewpoint of the structure reconstruction accuracy, three different approaches to solving the inverse DOT problem are compared. The first approach involves reconstruction of diffuse tomograms from straight lines, the second – from average curvilinear trajectories of photons and the third – from total banana-shaped distributions of photon trajectories. In order to obtain estimates of resolution, we have derived analytical expressions for the point spread function and modulation transfer function, as well as have performed a numerical experiment onmore » reconstruction of rectangular scattering objects with circular absorbing inhomogeneities. It is shown that in passing from reconstruction from straight lines to reconstruction using distributions of photon trajectories we can improve resolution by almost an order of magnitude and exceed the accuracy of reconstruction of multi-step algorithms used in DOT. (optical tomography)« less

  11. Applications of ultrashort laser pulses in science and technology; Proceedings of the Meeting, The Hague, Netherlands, Mar. 12, 13, 1990

    NASA Technical Reports Server (NTRS)

    Antonetti, Andre (Editor)

    1990-01-01

    Topics discussed are on the generation of high-intensity femtosecond lasers, the high-repetition and infrared femtosecond pulses, and physics of semiconductors and applications. Papers are presented on the femtosecond pulse generation at 193 nm; the generation of intense subpicosecond and femtosecond pulses; intense tunable subpicosecond and femtosecond pulses in the visible and infrared, generated by optical parametric oscillators; a high-efficiency high-energy optical amplifier for femtosecond pulses; and the generation of solitons, periodic pulsing, and nonlinearities in GaAs. Other papers are on ultrafast relaxation dynamics of photoexcited carriers in GaAs, high-order optical nonlinear susceptibilities of transparent glasses, subnanosecond risetime high-power pulse generation using photoconductive bulk GaAs devices, femtosecond studies of plasma formation in crystalline and amorphous silicon, and subpicosecond dynamics of hot carrier relaxation in InP and GaAs.

  12. Polar self-assembled thin films for non-linear optical materials

    DOEpatents

    Yang, XiaoGuang; Swanson, Basil I.; Li, DeQuan

    2000-01-01

    The design and synthesis of a family of calix[4]arene-based nonlinear optical (NLO) chromophores are discussed. The calixarene chromophores are macrocyclic compounds consisting of four simple D-.pi.-A units bridged by methylene groups. These molecules were synthesized such that four D-.pi.-A units of the calix[4]arene were aligned along the same direction with the calixarene in a cone conformation. These nonlinear optical super-chromophores were subsequently fabricated into covalently bound self-assembled monolayers on the surfaces of fused silica and silicon. Spectroscopic second harmonic generation (SHG) measurements were carried out to determine the absolute value of the dominant element of the second-order nonlinear susceptibility, d.sub.33, and the average molecular alignment, .PSI.. A value of d.sub.33 =60 pm/V at a fundamental wavelength of 890 nm, and .PSI..about.36.degree. was found with respect to the surface normal.

  13. Nonlinear optical response of a gold surface in the visible range: A study by two-color sum-frequency generation spectroscopy. I. Experimental determination

    NASA Astrophysics Data System (ADS)

    Dalstein, L.; Revel, A.; Humbert, C.; Busson, B.

    2018-04-01

    We experimentally determine the effective nonlinear second-order susceptibility of gold over the visible spectral range. To reach that goal, we probe by vibrational two-color sum-frequency generation spectroscopy the methyl stretching region of a dodecanethiol self-assembled monolayer adsorbed on a gold film. The sum-frequency generation spectra show a remarkable shape reversal when the visible probe wavelength is tuned from 435 to 705 nm. After correcting from Fresnel effects, the methyl stretching vibrations serve as an internal reference, allowing to extract the dispersion of the absolute phase and relative amplitude of the effective nonlinear optical response of gold in the visible range.

  14. Non-linear non-local molecular electrodynamics with nano-optical fields.

    PubMed

    Chernyak, Vladimir Y; Saurabh, Prasoon; Mukamel, Shaul

    2015-10-28

    The interaction of optical fields sculpted on the nano-scale with matter may not be described by the dipole approximation since the fields may vary appreciably across the molecular length scale. Rather than incrementally adding higher multipoles, it is advantageous and more physically transparent to describe the optical process using non-local response functions that intrinsically include all multipoles. We present a semi-classical approach for calculating non-local response functions based on the minimal coupling Hamiltonian. The first, second, and third order response functions are expressed in terms of correlation functions of the charge and the current densities. This approach is based on the gauge invariant current rather than the polarization, and on the vector potential rather than the electric and magnetic fields.

  15. Fiber-optic epoxy composite cure sensor. II. Performance characteristics

    NASA Astrophysics Data System (ADS)

    Lam, Kai-Yuen; Afromowitz, Martin A.

    1995-09-01

    The performance of a fiber-optic epoxy composite cure sensor, as previously proposed, depends on the optical properties and the reaction kinetics of the epoxy. The reaction kinetics of a typical epoxy system are presented. It is a third-order autocatalytic reaction with a peak observed in each isothermal reaction-rate curve. A model is derived to describe the performance characteristics of the epoxy cure sensor. If a composite coupon is cured at an isothermal temperature, the sensor signal can be used to predict the time when the gel point occurs and to monitor the cure process. The sensor is also shown to perform well in nonstoichiometric epoxy matrices. In addition the sensor can detect the end of the cure without calibration.

  16. Chaos-assisted broadband momentum transformation in optical microresonators.

    PubMed

    Jiang, Xuefeng; Shao, Linbo; Zhang, Shu-Xin; Yi, Xu; Wiersig, Jan; Wang, Li; Gong, Qihuang; Lončar, Marko; Yang, Lan; Xiao, Yun-Feng

    2017-10-20

    The law of momentum conservation rules out many desired processes in optical microresonators. We report broadband momentum transformations of light in asymmetric whispering gallery microresonators. Assisted by chaotic motions, broadband light can travel between optical modes with different angular momenta within a few picoseconds. Efficient coupling from visible to near-infrared bands is demonstrated between a nanowaveguide and whispering gallery modes with quality factors exceeding 10 million. The broadband momentum transformation enhances the device conversion efficiency of the third-harmonic generation by greater than three orders of magnitude over the conventional evanescent-wave coupling. The observed broadband and fast momentum transformation could promote applications such as multicolor lasers, broadband memories, and multiwavelength optical networks. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1989-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  18. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1988-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  19. Contribution of the 2(1)Ag state to the third-order optical nonlinearity in a squaraine dye.

    PubMed

    Andrews, J H; Khaydarov, J D; Singer, K D

    1994-07-01

    We have measured the third-harmonic response, gamma, of a centrosymmetric squaraine dye (ISQ) in chloroform at a range of frequencies for which the third harmonic is above the strong, narrow peak in the dye's linear absorption spectrum but below the UV absorption band. By fitting the experimental dispersion of gamma using a four-level model, we determine the strength, location, and width of the lowest-lying two-photon transition. We find that the 2(1)Ag state appears just above the 1(1)Bu state in energy and that the 1(1)Bu-2(1)Ag transition moment is somewhat smaller than the transition moment between the ground state and the 1(1)Bu state but much larger than previously predicted for comparable squaraine dyes.

  20. A Cross-Dispersed Medium-Resolution Spectrograph for Appalachian State Univeristy's 32-inch Telescope

    NASA Astrophysics Data System (ADS)

    Kluttz, K. A.; Gray, R. O.

    2003-12-01

    We have designed and constructed an economical medium-resolution spectrograph to be used on the 32-inch telescope of Appalachian State University's Dark Sky Observatory (DSO). The primary function of this instrument will be to study shell and emission-line stars. However, we will also use this instrument for chemical abundance studies and radial velocities. The basic design is that of an Ebert spectrograph with a single 6-inch mirror acting as both the collimator and camera. The primary dispersion is accomplished by a reflection grating, and order separation is accomplished by a grism. The spectrograph has been designed so that three wavelength regions are simultaneously imaged on the CCD camera. When the Hα line is centered in the third order, Hβ and lines of Fe II multiplet 42 -- often enhanced in shell and emission-line stars -- appear in the fourth order and the fifth order contains both the Ca II K & H lines. To facilitate abundance measurements, a telluric-free region near 6400Å is available in the third order by tilting the main diffraction grating. Preliminary tests have shown that the resolution of the new spectrograph is 0.42Å in the third order (R ≈ 15,000). This relatively high resolution will allow studies to be conducted at DSO which have not previously been possible with the instrumentation currently in use. Several optical components for this spectrograph were purchased with grants from the Fund for Astrophysical Research and the University Research Council.

  1. Recent developments in high speed lens design at the NPRL

    NASA Astrophysics Data System (ADS)

    McDowell, M. W.; Klee, H. W.

    An account is given of recent South African developments in large aperture lens design for high speed photography that are based on the novel zero-power corrector concept. Complex multiple-element lens configurations based on such conventional optical layouts as the Petzval and double-Gauss can by the means presented be replaced with greatly simplified lens configurations employing as few as four basic elements. A tabulation is made of third-order monochromatic and first-order chromatic aberrations of the basic four-element zero-power corrector design.

  2. Effects of electromagnetic fields on the nonlinear optical properties of asymmetric double quantum well under intense laser field

    NASA Astrophysics Data System (ADS)

    Yesilgul, U.; Sari, H.; Ungan, F.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Sökmen, I.

    2017-03-01

    In this study, the effects of electric and magnetic fields on the optical rectification and second and third harmonic generation in asymmetric double quantum well under the intense non-resonant laser field is theoretically investigated. We calculate the optical rectification and second and third harmonic generation within the compact density-matrix approach. The theoretical findings show that the influence of electric, magnetic, and intense laser fields leads to significant changes in the coefficients of nonlinear optical rectification, second and third harmonic generation.

  3. Strong anharmonicity in the phonon spectra of PbTe and SnTe from first principles

    NASA Astrophysics Data System (ADS)

    Ribeiro, Guilherme A. S.; Paulatto, Lorenzo; Bianco, Raffaello; Errea, Ion; Mauri, Francesco; Calandra, Matteo

    2018-01-01

    At room temperature, PbTe and SnTe are efficient thermoelectrics with a cubic structure. At low temperature, SnTe undergoes a ferroelectric transition with a critical temperature strongly dependent on the hole concentration, while PbTe is an incipient ferroelectric. By using the stochastic self-consistent harmonic approximation, we investigate the anharmonic phonon spectra and the occurrence of a ferroelectric transition in both systems. We find that vibrational spectra strongly depend on the approximation used for the exchange-correlation kernel in density-functional theory. If gradient corrections and the theoretical volume are employed, then the calculation of the phonon frequencies as obtained from the diagonalization of the free-energy Hessian leads to phonon spectra in good agreement with experimental data for both systems. In PbTe we evaluate the linear thermal expansion coefficient γ =2.3 ×10-5K-1 , finding it to be in good agreement with experimental value of γ =2.04 ×10-5K-1 . Furthermore, we study the phonon spectrum and we do reproduce the transverse optical mode phonon satellite detected in inelastic neutron scattering and the crossing between the transverse optical and the longitudinal acoustic modes along the Γ X direction. The phonon satellite becomes broader at high temperatures but its energy is essentially temperature independent, in agreement with experiments. We decompose the self-consistent harmonic free energy in second-, third-, and fourth-order anharmonic terms. We find that the third- and fourth-order terms are small. However, treating the third-order term perturbatively on top of the second-order self-consistent harmonic free energy overestimates the energy of the satellite associated with the transverse optical mode. On the contrary, a perturbative treatment on top of the harmonic Hamiltonian breaks down and leads to imaginary phonon frequencies already at 300 K. In the case of SnTe, we describe the occurrence of a ferroelectric transition from the high-temperature F m 3 ¯m structure to the low-temperature R 3 m one. The transition temperature is, however, underestimated with respect to the experimental one. No satellites are present in the SnTe phonon spectra despite a not negligible anharmonic broadening of the zone-center TO mode.

  4. Low threshold optical bistability in one-dimensional gratings based on graphene plasmonics.

    PubMed

    Guo, Jun; Jiang, Leyong; Jia, Yue; Dai, Xiaoyu; Xiang, Yuanjiang; Fan, Dianyuan

    2017-03-20

    Optical bistability of graphene surface plasmon is investigated numerically, using grating coupling method at normal light incidence. The linear surface plasmon resonance is strongly dependent on Femi-level of graphene, hence it can be tuned in a large wavelength range. Due to the field enhancement of graphene surface plasmon resonance and large third-order nonlinear response of graphene, a low-threshold optical hysteresis has been observed. The threshold value with 20MW/cm2 and response time with 1.7ps have been verified. Especially, it is found that this optical bistability phenomenon is angular insensitivity for near 15° incident angle. The threshold of optical bistability can be further lowered to 0.5MW/cm2 by using graphene nanoribbons, and the response time is also shorten to 800fs. We believe that our results will find potential applications in bistable devices and all-optical switching from mid-IR to THz range.

  5. Linear and Nonlinear Optical Properties of Spherical Quantum Dots: Effects of Hydrogenic Impurity and Conduction Band Non-Parabolicity

    NASA Astrophysics Data System (ADS)

    Rezaei, G.; Vaseghi, B.; Doostimotlagh, N. A.

    2012-03-01

    Simultaneous effects of an on-center hydrogenic impurity and band edge non-parabolicity on intersubband optical absorption coefficients and refractive index changes of a typical GaAs/AlxGa1-x As spherical quantum dot are theoretically investigated, using the Luttinger—Kohn effective mass equation. So, electronic structure and optical properties of the system are studied by means of the matrix diagonalization technique and compact density matrix approach, respectively. Finally, effects of an impurity, band edge non-parabolicity, incident light intensity and the dot size on the linear, the third-order nonlinear and the total optical absorption coefficients and refractive index changes are investigated. Our results indicate that, the magnitudes of these optical quantities increase and their peaks shift to higher energies as the influences of the impurity and the band edge non-parabolicity are considered. Moreover, incident light intensity and the dot size have considerable effects on the optical absorption coefficients and refractive index changes.

  6. Nonlinear propagation analysis of few-optical-cycle pulses for subfemtosecond compression and carrier envelope phase effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizuta, Yo; Nagasawa, Minoru; Ohtani, Morimasa

    2005-12-15

    A numerical approach called Fourier direct method (FDM) is applied to nonlinear propagation of optical pulses with the central wavelength 800 nm, the width 2.67-12.00 fs, and the peak power 25-6870 kW in a fused-silica fiber. Bidirectional propagation, delayed Raman response, nonlinear dispersion (self-steepening, core dispersion), as well as correct linear dispersion are incorporated into 'bidirectional propagation equations' which are derived directly from Maxwell's equations. These equations are solved for forward and backward waves, instead of the electric-field envelope as in the nonlinear Schroedinger equation (NLSE). They are integrated as multidimensional simultaneous evolution equations evolved in space. We investigate, bothmore » theoretically and numerically, the validity and the limitation of assumptions and approximations used for deriving the NLSE. Also, the accuracy and the efficiency of the FDM are compared quantitatively with those of the finite-difference time-domain numerical approach. The time-domain size 500 fs and the number of grid points in time 2048 are chosen to investigate numerically intensity spectra, spectral phases, and temporal electric-field profiles up to the propagation distance 1.0 mm. On the intensity spectrum of a few-optical-cycle pulses, the self-steepening, core dispersion, and the delayed Raman response appear as dominant, middle, and slight effects, respectively. The delayed Raman response and the core dispersion reduce the effective nonlinearity. Correct linear dispersion is important since it affects the intensity spectrum sensitively. For the compression of femtosecond optical pulses by the complete phase compensation, the shortness and the pulse quality of compressed pulses are remarkably improved by the intense initial peak power rather than by the short initial pulse width or by the propagation distance longer than 0.1 mm. They will be compressed as short as 0.3 fs below the damage threshold of fused-silica fiber 6 MW. It is demonstrated that the carrier envelope phase (CEP) causes the difference on the temporal electric-field profile and the intensity spectrum for the initial peak power of the order of megawatts. At the propagation distance longer than the coherence length for third-order harmonics, the difference grows in the spectral components around the third-order and higher-order harmonics. The CEP can be a sensitive marker to monitor the evolution of nonlinear optical process by a few-optical-cycle electric-field wave-packet source.« less

  7. Optical absorption in disordered monolayer molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Ekuma, C. E.; Gunlycke, D.

    2018-05-01

    We explore the combined impact of sulfur vacancies and electronic interactions on the optical properties of monolayer MoS2. First, we present a generalized Anderson-Hubbard Hamiltonian that accounts for both randomly distributed sulfur vacancies and the presence of dielectric screening within the material. Second, we parametrize this energy-dependent Hamiltonian from first-principles calculations based on density functional theory and the Green's function and screened Coulomb (GW) method. Third, we apply a first-principles-based many-body typical medium method to determine the single-particle electronic structure. Fourth, we solve the Bethe-Salpeter equation to obtain the charge susceptibility χ with its imaginary part being related to the absorbance A . Our results show that an increased vacancy concentration leads to decreased absorption both in the band continuum and from exciton states within the band gap. We also observe increased absorption below the band-gap threshold and present an expression, which describes Lifshitz tails, in excellent qualitative agreement with our numerical calculations. This latter increased absorption in the 1.0 -2.5 eV range makes defect engineering of potential interest for solar cell applications.

  8. Stability analysis solutions and optical solitons in extended nonlinear Schrödinger equation with higher-order odd and even terms

    NASA Astrophysics Data System (ADS)

    Peng, Wei-Qi; Tian, Shou-Fu; Zou, Li; Zhang, Tian-Tian

    2018-01-01

    In this paper, the extended nonlinear Schrödinger equation with higher-order odd (third order) and even (fourth order) terms is investigated, whose particular cases are the Hirota equation, the Sasa-Satsuma equation and Lakshmanan-Porsezian-Daniel equation by selecting some specific values on the parameters of higher-order terms. We first study the stability analysis of the equation. Then, using the ansatz method, we derive its bright, dark solitons and some constraint conditions which can guarantee the existence of solitons. Moreover, the Ricatti equation extension method is employed to derive some exact singular solutions. The outstanding characteristics of these solitons are analyzed via several diverting graphics.

  9. Measurement of polarization dependence of two-photon absorption coefficient in InP using extended Z-scan technique for thick materials

    NASA Astrophysics Data System (ADS)

    Oishi, Masaki; Shinozaki, Tomohisa; Hara, Hikaru; Yamamoto, Kazunuki; Matsusue, Toshio; Bando, Hiroyuki

    2018-03-01

    The two-photon absorption coefficient β in InP has been measured in the wavelength range of 1640 to 1800 nm by the Z-scan technique in relatively thick materials. The values of β have been evaluated from the fit to the equation including the spatial and temporal profiles of the focused Gaussian beam. The polarization dependence of β has also been measured. The dependence has been expressed very well by the expression of β with the imaginary part of the third-order nonlinear susceptibility tensor χ(3).

  10. Investigation of the linear and second-order nonlinear optical properties of molecular crystals within the local field theory.

    PubMed

    Seidler, Tomasz; Stadnicka, Katarzyna; Champagne, Benoît

    2013-09-21

    In this paper it is shown that modest calculations combining first principles evaluations of the molecular properties with electrostatic interaction schemes to account for the crystal environment effects are reliable for predicting and interpreting the experimentally measured electric linear and second-order nonlinear optical susceptibilities of molecular crystals within the experimental error bars. This is illustrated by considering two molecular crystals, namely: 2-methyl-4-nitroaniline and 4-(N,N-dimethylamino)-3-acetamidonitrobenzene. Three types of surrounding effects should be accounted for (i) the polarization due to the surrounding molecules, described here by static electric fields originating from their electric dipoles or charge distributions, (ii) the intermolecular interactions, which affect the geometry and particularly the molecular conformation, and (iii) the screening of the external electric field by the constitutive molecules. This study further highlights the role of electron correlation on the linear and nonlinear responses of molecular crystals and the challenge of describing frequency dispersion.

  11. Rogue waves for a discrete (2+1)-dimensional Ablowitz-Ladik equation in the nonlinear optics and Bose-Einstein condensation

    NASA Astrophysics Data System (ADS)

    Wu, Xiao-Yu; Tian, Bo; Chai, Han-Peng; Du, Zhong

    2018-03-01

    Under investigation in this paper is a discrete (2+1)-dimensional Ablowitz-Ladik equation, which is used to model the nonlinear waves in the nonlinear optics and Bose-Einstein condensation. Employing the Kadomtsev-Petviashvili hierarchy reduction, we obtain the rogue wave solutions in terms of the Gramian. We graphically study the first-, second- and third-order rogue waves with the influence of the focusing coefficient and coupling strength. When the value of the focusing coefficient increases, both the peak of the rogue wave and background decrease. When the value of the coupling strength increases, the rogue wave raises and decays in a shorter time. High-order rogue waves are exhibited as one single highest peak and some lower humps, and such lower humps are shown as the triangular and circular patterns.

  12. Fermi-edge singularity and the functional renormalization group

    NASA Astrophysics Data System (ADS)

    Kugler, Fabian B.; von Delft, Jan

    2018-05-01

    We study the Fermi-edge singularity, describing the response of a degenerate electron system to optical excitation, in the framework of the functional renormalization group (fRG). Results for the (interband) particle-hole susceptibility from various implementations of fRG (one- and two-particle-irreducible, multi-channel Hubbard–Stratonovich, flowing susceptibility) are compared to the summation of all leading logarithmic (log) diagrams, achieved by a (first-order) solution of the parquet equations. For the (zero-dimensional) special case of the x-ray-edge singularity, we show that the leading log formula can be analytically reproduced in a consistent way from a truncated, one-loop fRG flow. However, reviewing the underlying diagrammatic structure, we show that this derivation relies on fortuitous partial cancellations special to the form of and accuracy applied to the x-ray-edge singularity and does not generalize.

  13. Walk-off reduction, using an external optical plate and Bessel-Gaussian interaction

    NASA Astrophysics Data System (ADS)

    Masoume, Mansouri; Mohsen, Askarbioki; Saeed Ghavami, Sabouri; Alireza, Khorsandi

    2015-02-01

    To reduce the walk-off angle of the extraordinary third-harmonic ultraviolet wave at 355 nm generated by type II KTiOPO4 and type I β-BaB2O4 optical crystals, and the Gaussian output beam of a Q-switched Nd:YAG laser, a simple theoretical model was developed based on a rotatable BK7 plate of variable thickness. By rotating the plate up to 35° along the beam direction, we reduced the walk-off angle up to ˜ 13%. The same phenomenon is predicted by the model, confirming the performance of the model. It is found that, due to the walk-off effect, the intensity profile of the third-harmonic generation beam is slightly degraded. To compensate for the observed phenomena and further reduce the walk-off, we used a combination of a convex lens and an axicon to transform the beam profile of the interacting fundamental and second-harmonic generation waves to the zero-order Bessel-Gaussian form. As a result, the walk-off is decreased to ˜48.81 mrad, providing ˜30% relative reduction. By using the same BK7 plate rotated up to 35° along the third-harmonic beam direction, the walk-off angle is further reduced to 38.9 mrad. Moreover, it is observed that the beam profile of the emerged Bessel-Gaussian third-harmonic generation beam remains unchanged with no degradation.

  14. Transcranial magnetic stimulation and potential cortical and trigeminothalamic mechanisms in migraine

    PubMed Central

    Andreou, Anna P.; Holland, Philip R.; Akerman, Simon; Summ, Oliver; Fredrick, Joe

    2016-01-01

    Abstract A single pulse of transcranial magnetic stimulation has been shown to be effective for the acute treatment of migraine with and without aura. Here we aimed to investigate the potential mechanisms of action of transcranial magnetic stimulation, using a transcortical approach, in preclinical migraine models. We tested the susceptibility of cortical spreading depression, the experimental correlate of migraine aura, and further evaluated the response of spontaneous and evoked trigeminovascular activity of second order trigemontothalamic and third order thalamocortical neurons in rats. Single pulse transcranial magnetic stimulation significantly inhibited both mechanical and chemically-induced cortical spreading depression when administered immediately post-induction in rats, but not when administered preinduction, and when controlled by a sham stimulation. Additionally transcranial magnetic stimulation significantly inhibited the spontaneous and evoked firing rate of third order thalamocortical projection neurons, but not second order neurons in the trigeminocervical complex, suggesting a potential modulatory effect that may underlie its utility in migraine. In gyrencephalic cat cortices, when administered post-cortical spreading depression, transcranial magnetic stimulation blocked the propagation of cortical spreading depression in two of eight animals. These results are the first to demonstrate that cortical spreading depression can be blocked in vivo using single pulse transcranial magnetic stimulation and further highlight a novel thalamocortical modulatory capacity that may explain the efficacy of magnetic stimulation in the treatment of migraine with and without aura. PMID:27246325

  15. Efficient Third-Order Distributed Feedback Laser with Enhanced Beam Pattern

    NASA Technical Reports Server (NTRS)

    Hu, Qing (Inventor); Lee, Alan Wei Min (Inventor); Kao, Tsung-Yu (Inventor)

    2015-01-01

    A third-order distributed feedback laser has an active medium disposed on a substrate as a linear array of segments having a series of periodically spaced interstices therebetween and a first conductive layer disposed on a surface of the active medium on each of the segments and along a strip from each of the segments to a conductive electrical contact pad for application of current along a path including the active medium. Upon application of a current through the active medium, the active medium functions as an optical waveguide, and there is established an alternating electric field, at a THz frequency, both in the active medium and emerging from the interstices. Spacing of adjacent segments is approximately half of a wavelength of the THz frequency in free space or an odd integral multiple thereof, so that the linear array has a coherence length greater than the length of the linear array.

  16. Effect of reduction time on third order optical nonlinearity of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Sreeja, V. G.; Vinitha, G.; Reshmi, R.; Anila, E. I.; Jayaraj, M. K.

    2017-04-01

    We report the influence of reduction time on structural, linear and nonlinear optical properties of reduced graphene oxide (rGO) thin films synthesized by spin coating method. We observed that the structural, linear and nonlinear optical properties can be tuned with reduction time in GO is due to the increased structural ordering because of the restoration of sp2 carbon atoms with the time of reduction. The nonlinear absorption studies by open aperture Z-scan technique exhibited a saturable absorption. The nonlinear refraction studies showed the self de focusing nature of rGO by closed aperture Z scan technique. The nonlinear absorption coefficient and saturation intensity varies with the time for reduction of GO which is attributed to the depletion of valence band and the conduction band filling effect. Our results emphasize duration for reduction of GO dependent optical nonlinearity of rGO thin films to a great extent and explore its applications Q switched mode locking laser systems for generating ultra short laser pulses and in optical sensors. The rGO coated films were characterized by X-Ray diffraction method (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, UV-Vis absorption spectroscopy (UV-Vis), Photoluminescence (PL) and Scanning electron microscope (SEM) measurements.

  17. Ultrabroadband direct detection of nonclassical photon statistics at telecom wavelength

    PubMed Central

    Wakui, Kentaro; Eto, Yujiro; Benichi, Hugo; Izumi, Shuro; Yanagida, Tetsufumi; Ema, Kazuhiro; Numata, Takayuki; Fukuda, Daiji; Takeoka, Masahiro; Sasaki, Masahide

    2014-01-01

    Broadband light sources play essential roles in diverse fields, such as high-capacity optical communications, optical coherence tomography, optical spectroscopy, and spectrograph calibration. Although a nonclassical state from spontaneous parametric down-conversion may serve as a quantum counterpart, its detection and characterization have been a challenging task. Here we demonstrate the direct detection of photon numbers of an ultrabroadband (110 nm FWHM) squeezed state in the telecom band centred at 1535 nm wavelength, using a superconducting transition-edge sensor. The observed photon-number distributions violate Klyshko's criterion for the nonclassicality. From the observed photon-number distribution, we evaluate the second- and third-order correlation functions, and characterize a multimode structure, which implies that several tens of orthonormal modes of squeezing exist in the single optical pulse. Our results and techniques open up a new possibility to generate and characterize frequency-multiplexed nonclassical light sources for quantum info-communications technology. PMID:24694515

  18. Ultrabroadband direct detection of nonclassical photon statistics at telecom wavelength.

    PubMed

    Wakui, Kentaro; Eto, Yujiro; Benichi, Hugo; Izumi, Shuro; Yanagida, Tetsufumi; Ema, Kazuhiro; Numata, Takayuki; Fukuda, Daiji; Takeoka, Masahiro; Sasaki, Masahide

    2014-04-03

    Broadband light sources play essential roles in diverse fields, such as high-capacity optical communications, optical coherence tomography, optical spectroscopy, and spectrograph calibration. Although a nonclassical state from spontaneous parametric down-conversion may serve as a quantum counterpart, its detection and characterization have been a challenging task. Here we demonstrate the direct detection of photon numbers of an ultrabroadband (110 nm FWHM) squeezed state in the telecom band centred at 1535 nm wavelength, using a superconducting transition-edge sensor. The observed photon-number distributions violate Klyshko's criterion for the nonclassicality. From the observed photon-number distribution, we evaluate the second- and third-order correlation functions, and characterize a multimode structure, which implies that several tens of orthonormal modes of squeezing exist in the single optical pulse. Our results and techniques open up a new possibility to generate and characterize frequency-multiplexed nonclassical light sources for quantum info-communications technology.

  19. Optical properties of the Tietz-Hua quantum well under the applied external fields

    NASA Astrophysics Data System (ADS)

    Kasapoglu, E.; Sakiroglu, S.; Ungan, F.; Yesilgul, U.; Duque, C. A.; Sökmen, I.

    2017-12-01

    In this study, the effects of the electric and magnetic fields as well as structure parameter- γ on the total absorption coefficient, including linear and third order nonlinear absorption coefficients for the optical transitions between any two subband in the Tietz-Hua quantum well have been investigated. The optical transitions were investigated by using the density matrix formalism and the perturbation expansion method. The Tietz-Hua quantum well becomes narrower (wider) when the γ - structure parameter increases (decreases) and so the energies of the bound states will be functions of this parameter. Therefore, we can provide the red or blue shift in the peak position of the absorption coefficient by changing the strength of the electric and magnetic fields as well as the structure parameters and these results can be used to adjust and control the optical properties of the Tietz-Hua quantum well.

  20. Third-order nonlinear optical properties of soluble Cr(III)-dioxolene complexes

    NASA Astrophysics Data System (ADS)

    Noro, Shin-ichiro; Sassa, Takafumi; Aoyama, Tetsuya; Chang, Ho-Chol; Kitagawa, Susumu; Wada, Tatsuo

    2004-10-01

    We synthesized novel ligand-based mixed valence (LBMV) CrIII-dioxolene complexes, [Cr(X4SQ)(X4Cat)(4,4'-di-tert-butyl-2,2'-bpy)] (SQ = semiquinone, Cat = catecohol, 2,2'-bpy = 2,2'-bipyridine; X = Cl (2a) and Br (2b)) and [Cr(X4SQ)(X4Cat)(4,4'-dinonyl-2,2'-bpy)] (X = Cl (3a) and Br (3b)), and prepared thin films for investigating their third-order nonlinear optical (NLO) properties in terms of the mixed valence states. Electronic absorption spectra of these complexes in solution and solid states showed an intervalence charge-transfer (IVCT) band from Cat2- to SQ"- at the IR region, indicating of a coexistence of SQ and Cat ligands, namely, LBMV state of the complexes. These complexes were well soluble in nonpolar organic solvent, which allowed us to prepare thin films by spin coating. The obtained films showed the electronic absorption spectra similar to those in solution and were amorphous because of steric hindrance of halogen and alkyl substituents in o-dioxolene and 2,2'-bpy moieties, respectively. The x(3) values of the films of 3a and 3b with a thickness of 30 ~ 40 nm were determined for 1.0 × 10-12 esu at 1.907 μm.

  1. Symplectic maps and chromatic optics in particle accelerators

    DOE PAGES

    Cai, Yunhai

    2015-07-06

    Here, we have applied the nonlinear map method to comprehensively characterize the chromatic optics in particle accelerators. Our approach is built on the foundation of symplectic transfer maps of magnetic elements. The chromatic lattice parameters can be transported from one element to another by the maps. We also introduce a Jacobian operator that provides an intrinsic linkage between the maps and the matrix with parameter dependence. The link allows us to directly apply the formulation of the linear optics to compute the chromatic lattice parameters. As an illustration, we analyze an alternating-gradient cell with nonlinear sextupoles, octupoles, and decapoles andmore » derive analytically their settings for the local chromatic compensation. Finally, the cell becomes nearly perfect up to the third-order of the momentum deviation.« less

  2. Optical Asymmetry and Nonlinear Light Scattering from Colloidal Gold Nanorods.

    PubMed

    Lien, Miao-Bin; Kim, Ji-Young; Han, Myung-Geun; Chang, You-Chia; Chang, Yu-Chung; Ferguson, Heather J; Zhu, Yimei; Herzing, Andrew A; Schotland, John C; Kotov, Nicholas A; Norris, Theodore B

    2017-06-27

    A systematic study is presented of the intensity-dependent nonlinear light scattering spectra of gold nanorods under resonant excitation of the longitudinal surface plasmon resonance (SPR). The spectra exhibit features due to coherent second and third harmonic generation as well as a broadband feature that has been previously attributed to multiphoton photoluminescence arising primarily from interband optical transitions in the gold. A detailed study of the spectral dependence of the scaling of the scattered light with excitation intensity shows unexpected scaling behavior of the coherent signals, which is quantitatively accounted for by optically induced damping of the SPR mode through a Fermi liquid model of the electronic scattering. The broadband feature is shown to arise not from luminescence, but from scattering of the second-order longitudinal SPR mode with the electron gas, where efficient excitation of the second order mode arises from an optical asymmetry of the nanorod. The electronic-temperature-dependent plasmon damping and the Fermi-Dirac distribution together determine the intensity dependence of the broadband emission, and the structure-dependent absorption spectrum determines the spectral shape through the fluctuation-dissipation theorem. Hence a complete self-consistent picture of both coherent and incoherent light scattering is obtained with a single set of physical parameters.

  3. Enhanced visible light generation in an active microcavity via third-harmonic conversion beyond the non-depletion approximation

    NASA Astrophysics Data System (ADS)

    Yu, Rong; Ding, Chunling; Wang, Jiangpeng; Zhang, Duo

    2017-12-01

    We explore the possibility of using an active doubly resonant microtoroid resonator to produce high-efficiency third-harmonic generation (THG) by exploiting optical third-order nonlinearity. In a microresonator, the active fundamental mode is coherently driven with a continuous-wave input laser at the telecommunication wavelength (1550 nm), and then, the visible THG signal (517 nm) is monitored via an individual bus waveguide. We thoroughly compare our results with those obtained from the conventional passive (i.e., loss) microtoroid resonator by a systematic analysis and detailed numerical simulations based on the Heisenberg-Langevin equations of motion. It is shown that the achievable THG spectrum features an ultralow critical input power. The THG power transmission can be significantly enhanced by about three orders of magnitude at a low input power of 0.1 μ W as compared with the obtained results in the passive microtoroid resonator THG system. Moreover, the THG efficiency can reach up to 100% with optical critical input power as low as a few microwatts. In turn, the analytical expressions of the critical intracavity intensity of the light in the microcavity, the critical input pump power, and the maximum THG efficiency are obtained. The enhanced THG power transmission and high conversion efficiency are attributed to a gain-induced loss compensation in the microtoroid resonator, reducing the effective loss felt by the resonator photons. With state-of-the art technologies in the field of solid-state resonators, including but not limited to microtoroids, the proposed THG scheme is experimentally realizable.

  4. Using artificial neural networks (ANN) for open-loop tomography

    NASA Astrophysics Data System (ADS)

    Osborn, James; De Cos Juez, Francisco Javier; Guzman, Dani; Butterley, Timothy; Myers, Richard; Guesalaga, Andres; Laine, Jesus

    2011-09-01

    The next generation of adaptive optics (AO) systems require tomographic techniques in order to correct for atmospheric turbulence along lines of sight separated from the guide stars. Multi-object adaptive optics (MOAO) is one such technique. Here, we present a method which uses an artificial neural network (ANN) to reconstruct the target phase given off-axis references sources. This method does not require any input of the turbulence profile and is therefore less susceptible to changing conditions than some existing methods. We compare our ANN method with a standard least squares type matrix multiplication method (MVM) in simulation and find that the tomographic error is similar to the MVM method. In changing conditions the tomographic error increases for MVM but remains constant with the ANN model and no large matrix inversions are required.

  5. Optical study of phase transitions in single-crystalline RuP

    NASA Astrophysics Data System (ADS)

    Chen, R. Y.; Shi, Y. G.; Zheng, P.; Wang, L.; Dong, T.; Wang, N. L.

    2015-03-01

    RuP single crystals of MnP-type orthorhombic structure were synthesized by the Sn flux method. Temperature-dependent x-ray diffraction measurements reveal that the compound experiences two structural phase transitions, which are further confirmed by enormous anomalies shown in temperature-dependent resistivity and magnetic susceptibility. Particularly, the resistivity drops monotonically upon temperature cooling below the second transition, indicating that the material shows metallic behavior, in sharp contrast with the insulating ground state of polycrystalline samples. Optical conductivity measurements were also performed in order to unravel the mechanism of these two transitions. The measurement revealed a sudden reconstruction of band structure over a broad energy scale and a significant removal of conducting carriers below the first phase transition, while a charge-density-wave-like energy gap opens below the second phase transition.

  6. A clock transition in a solid-state system

    NASA Astrophysics Data System (ADS)

    Edge, G. J. A.; Potnis, S.; Vutha, A. C.

    2017-04-01

    With the impending redefinition of the SI second based on optical frequency standards, new secondary frequency standards are needed in order to form clock ensembles. Ideally such secondary standards will offer enhanced robustness, portability and high signal-to-noise ratios (SNR), to enable rapid and precise comparisons to be made against primary standards. A clock based on a narrow optical transition, in atoms that are doped into a solid-state host, offers the experimental simplicity and large SNR to satisfy these requirements. The intra-configuration 7F0 ->5D0 transition, in Sm2+ ions doped into a host crystal, is an attractive candidate for such secondary standards due to its low susceptibility to perturbations from the crystal environment. We present results from the interrogation of this clock transition with a narrow linewidth laser.

  7. Molecules with enhanced electronic polarizabilities based on defect-like states in conjugated polymers

    NASA Technical Reports Server (NTRS)

    Beratan, David N. (Inventor)

    1991-01-01

    Highly conjugated organic polymers typically have large non-resonant electronic susceptibilities, which give the molecules unusual optical properties. To enhance these properties, defects are introduced into the polymer chain. Examples include light doping of the conjugated polymer and synthesis, conjugated polymers which incorporate either electron donating or accepting groups, and conjugated polymers which contain a photoexcitable species capable of reversibly transferring its electron to an acceptor. Such defects in the chain permit enhancement of the second hyperpolarizability by at least an order of magnitude.

  8. Linear optical response of carbon nanotubes under axial magnetic field

    NASA Astrophysics Data System (ADS)

    Moradian, Rostam; Chegel, Raad; Behzad, Somayeh

    2010-04-01

    We considered single walled carbon naotubes (SWCNTs) as real three dimensional (3D) systems in a cylindrical coordinate. The optical matrix elements and linear susceptibility, χ(ω), in the tight binding approximation in terms of one-dimensional wave vector, kz and subband index, l are calculated. In an external axial magnetic field optical frequency dependence of linear susceptibility are investigated. We found that axial magnetic field has two effects on the imaginary part of the linear susceptibility spectrum, in agreement with experimental results. The first effect is broadening and the second, splitting. Also we found that for all metallic zigzag and armchair SWCNTs, the axial magnetic field leads to the creation of a peak with energy less than 1.5 eV, contrary to what is observed in the absence of a magnetic field.

  9. Identification and characterization of hydrothermally altered zones in granite by combining synthetic clay content logs with magnetic mineralogical investigations of drilled rock cuttings

    NASA Astrophysics Data System (ADS)

    Meller, Carola; Kontny, Agnes; Kohl, Thomas

    2014-10-01

    Clay minerals as products of hydrothermal alteration significantly influence the hydraulic and mechanical properties of crystalline rock. Therefore, the localization and characterization of alteration zones by downhole measurements is a great challenge for the development of geothermal reservoirs. The magnetite bearing granite of the geothermal site in Soultz-sous-Forêts (France) experienced hydrothermal alteration during several tectonic events and clay mineral formation is especially observed in alteration halos around fracture zones. During the formation of clay minerals, magnetite was oxidized into hematite, which significantly reduces the magnetic susceptibility of the granite from ferrimagnetic to mostly paramagnetic values. The aim of this study was to find out if there exists a correlation between synthetic clay content logs (SCCLs) and measurements of magnetic susceptibility on cuttings in the granite in order to characterize their alteration mineralogy. Such a correlation has been proven for core samples of the EPS1 reference well. SCCLs were created from gamma ray and fracture density logs using a neural network. These logs can localize altered fracture zones in the GPK1-4 wells, where no core material is available. Mass susceptibility from 261 cutting samples of the wells GPK1-GPK4 was compared with the neural network derived synthetic logs. We applied a combination of temperature dependent magnetic susceptibility measurements with optical and electron microscopy, and energy dispersive X-ray spectroscopy to discriminate different stages of alteration. We found, that also in the granite cuttings an increasing alteration grade is characterized by an advancing oxidation of magnetite into hematite and a reduction of magnetic susceptibility. A challenge to face for the interpretation of magnetic susceptibility data from cuttings material is that extreme alteration grades can also display increased susceptibilities due to the formation of secondary magnetite. Low magnetic susceptibility can also be attributed to primary low magnetite content, if the granite facies changes. In order to interpret magnetic susceptibility from cuttings, contaminations with iron from wear debris of the drilling tools must be eliminated. Provided that the magnetic mineralogy of the granite is known in detail, this method in combination with petrographic investigations is suited to indicate and characterize hydrothermal alteration and the appearance of clay.

  10. Flat nonlinear optics: metasurfaces for efficient frequency mixing

    NASA Astrophysics Data System (ADS)

    Nookala, Nishant; Lee, Jongwon; Liu, Yingnan; Bishop, Wells; Tymchenko, Mykhailo; Gomez-Diaz, J. Sebastian; Demmerle, Frederic; Boehm, Gerhard; Amann, Markus-Christian; Wolf, Omri; Brener, Igal; Alu, Andrea; Belkin, Mikhail A.

    2017-02-01

    Gradient metasurfaces, or ultrathin optical components with engineered transverse impedance gradients along the surface, are able to locally control the phase and amplitude of the scattered fields over subwavelength scales, enabling a broad range of linear components in a flat, integrable platform1-4. On the contrary, due to the weakness of their nonlinear optical responses, conventional nonlinear optical components are inherently bulky, with stringent requirements associated with phase matching and poor control over the phase and amplitude of the generated beam. Nonlinear metasurfaces have been recently proposed to enable frequency conversion in thin films without phase-matching constraints and subwavelength control of the local nonlinear phase5-8. However, the associated optical nonlinearities are far too small to produce significant nonlinear conversion efficiency and compete with conventional nonlinear components for pump intensities below the materials damage threshold. Here, we report multi-quantum-well based gradient nonlinear metasurfaces with second-order nonlinear susceptibility over 106 pm/V for second harmonic generation at a fundamental pump wavelength of 10 μm, 5-6 orders of magnitude larger than traditional crystals. Further, we demonstrate the efficacy of this approach to designing metasurfaces optimized for frequency conversion over a large range of wavelengths, by reporting multi-quantum-well and metasurface structures optimized for a pump wavelength of 6.7 μm. Finally, we demonstrate how the phase of this nonlinearly generated light can be locally controlled well below the diffraction limit using the Pancharatnam-Berry phase approach5,7,9, opening a new paradigm for ultrathin, flat nonlinear optical components.

  11. The Kondo problem. II. Crossover from asymptotic freedom to infrared slavery

    NASA Astrophysics Data System (ADS)

    Schlottmann, P.

    1982-04-01

    In the preceding paper we transformed the s-d Hamiltonian onto a resonance level with a large perturbation and derived the scaling equations for the vertices, the invariant coupling, and the resonance width. The scaling equations are integrated under the assumption that the energy dependence of the resonance width can be neglected. The transcendental equation obtained in this way for the renormalized resonance width is solved in the relevant limits and allows a calculation of the static and dynamical susceptibility. At high temperatures the perturbation expansion for the relaxation rate and the susceptibility is reproduced up to third order in Jρ. At low temperatures the lifetime and χ0 remain finite and vary according to a Fermi-liquid theory. The approximation scheme interpolates in this way between the asymptotic freedom and the infrared slavery, yielding a smooth crossover. The present results are in quantitative agreement with previous ones obtained with the relaxation-kernel method by Götze and Schlottmann. The advantages and drawbacks of the method are discussed. The calculation of the dynamical susceptibility is extended to nonzero external magnetic fields. The quasielastic peak of χ''(ω)ω is suppressed at low temperatures and large magnetic fields and shoulders develop at ω=+/-B.

  12. Nonlinear optical effects in organic microstructures

    NASA Astrophysics Data System (ADS)

    Novikov, Vladimir B.; Mamonov, Evgeniy A.; Kopylov, Denis A.; Mitetelo, Nikolai V.; Venkatakrishnarao, D.; Narayana, YSLV; Chandrasekar, R.; Murzina, Tatiana V.

    2017-05-01

    Organic microstructures attract much attention due to their unique properties originating from the design of their shape and optical parameters. In this work we discuss the linear, second- and third-order nonlinear optical effects in arrays and in individual organic microstructures composed by self-assembling technique and formed randomly on top of a solid substrate. The structures under study consist of micro-spheres, -hemispheres or -frustums made of red laser dye and reveal an intense fluorescence (FL) in the visible spectral range. Importantly, that due to a high value of the refractive index and confined geometry, such micro-structures support the excitation of whispering gallery modes (WGM), which brings about strong and spectrally-selected light localization. We show that an amplification of the nonlinear optical effects is observed for these structures as compared to a homogeneous dye film of similar composition. The obtained data are in agreement with the results of the FDTD calculations performed for the structures of different dimensions. Perspectives of application of such type of organic nonlinear microresonators in optical devices are discussed.

  13. Study on gamma and electron beam sterilization of third generation cephalosporins cefdinir and cefixime in solid state

    NASA Astrophysics Data System (ADS)

    Singh, Babita K.; Parwate, Dilip V.; Das Sarma, Indrani B.; Shukla, Sudhir K.

    2010-10-01

    The effect of gamma radiation from 60Co source and 2 MeV e-beam was studied on two thermolabile cephalosporin antibiotics viz cefdinir and cefixime in solid state. The parameters studied to assess radiolytic degradation were loss of chemical and microbiological potency, change in optical rotation, electronic and vibrational absorption characteristics, thermal behavior and color modification. ESR spectroscopic study, HPLC related impurity profile, thermogram and Raman spectrum are applied in deducing the nature of radiolytic impurities and their formation hypotheses. Cefixime is radiation sensitive, whereas cefdinir has acceptable radiation resistance at 25 kGy dose. The nature of radiolytic related impurities and their concentrations indicates that the lactam ring is not highly susceptible to direct radiation attack, which otherwise is considered very sensitive to stress (thermal, chemical and photochemical).

  14. Analyses of Third Order Bose-Einstein Correlation by Means of Coulomb Wave Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biyajima, Minoru; Mizoguchi, Takuya; Suzuki, Naomichi

    2006-04-11

    In order to include a correction by the Coulomb interaction in Bose-Einstein correlation (BEC), the wave function for the Coulomb scattering were introduced in the quantum optical approach to BEC in the previous work. If we formulate the amplitude written by Coulomb wave functions according to the diagram for BEC in the plane wave formulation, the formula for 3{pi} -BEC becomes simpler than that of our previous work. We re-analyze the raw data of 3{pi} -BEC by NA44 and STAR Collaborations by this formula. Results are compared with the previous ones.

  15. Image storage in coumarin-based copolymer thin films by photoinduced dimerization.

    PubMed

    Gindre, Denis; Iliopoulos, Konstantinos; Krupka, Oksana; Champigny, Emilie; Morille, Yohann; Sallé, Marc

    2013-11-15

    We report a technique to encode grayscale digital images in thin films composed of copolymers containing coumarins. A nonlinear microscopy setup was implemented and two nonlinear optical processes were used to store and read information. A third-order process (two-photon absorption) was used to photoinduce a controlled dimer-to-monomer ratio within a defined tiny volume in the material, which corresponds to each recorded bit of data. Moreover, a second-order process (second-harmonic generation) was used to read the stored information, which has been found to be highly dependent upon the monomer-to-dimer ratio.

  16. Baseline susceptibility of Lygus lineolaris (Hemiptera:Miridae) to novaluron

    USDA-ARS?s Scientific Manuscript database

    Tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), populations were collected from field locations in the Mississippi River Delta of Arkansas, Louisiana, and Mississippi. Third instar F1 nymphs from each field location, in addition to a laboratory colony, were screened for susceptibility t...

  17. Afocal three-mirror anastigmat with zigzag optical axis for widened field of view and enlarged aperture

    NASA Astrophysics Data System (ADS)

    Li, Qi; Han, Lin; Jin, Yangming; Shen, Weimin

    2016-10-01

    In order to improve the detection accuracy and range of new generation of Forward Looking Infra-Red (FLIR) system for distant targets, its optical system, which usually consists of a fore afocal telescope and rear imaging lenses, is required to has wide spectral range, large entrance pupil aperture, and wide field of view (FOV). In this paper, a new afocal Three-Mirror Anastigmat (TMA) with widened field of view and high demagnification is suggested. Its mechanical structure remains coaxial, but it has zigzag optical axis through properly and slightly decentering and tilting of the three mirrors to avoid its secondary obscuration due to the third mirror as FOV increase. Compared with conventional off-axis TMA, the suggested zigzag-axis TMA is compact, easy-alignment and low-cost. The design method and optimum result of the suggested afocal TMA is presented. Its initial structural parameters are determined with its first-order relationship and primary aberration theory. Slight and proper decentration and tilt of each mirror is leaded in optimization so that its coaxial mechanical structure is held but attainable FOV and demagnification are respectively as wide and as high as possible. As an example, a 5.5-demagnification zigzag-axis afocal TMA with a wavelength range, an entrance pupil diameter, and FOV respectively from 3μm to 12μm, of 320mm, and 2×3.2 degrees and with a real exit pupil, is designed. Its imaging quality is diffraction limited. It is suitable for fore afocal telescope of the so-called third generation FLIR.

  18. Rogue wave generation by inelastic quasi-soliton collisions in optical fibres

    NASA Astrophysics Data System (ADS)

    Eberhard, M.; Savojardo, A.; Maruta, A.; Römer, R. A.

    2017-11-01

    We demonstrate a simple cascade mechanism that drives the formation and emergence of rogue waves in the generalized non-linear Schr\\"{o}dinger equation with third-order dispersion. This conceptually novel generation mechanism is based on inelastic collisions of quasi-solitons and is well described by a resonant-like scattering behaviour for the energy transfer in pair-wise quasi-soliton collisions. Our results demonstrate a threshold for rogue wave emergence and the existence of a period of reduced amplitudes - a "calm before the storm" - preceding the arrival of a rogue wave event. Comparing with ultra-long time window simulations of $3.865\\times 10^{6}$ps we observe the statistics of rogue waves in optical fibres with an unprecedented level of detail and accuracy, unambiguously establishing the long-ranged character of the rogue wave power-distribution function over seven orders of magnitude.

  19. Biomolecular Imaging with Coherent Nonlinear Vibrational Microscopy

    PubMed Central

    Chung, Chao-Yu; Boik, John; Potma, Eric O.

    2014-01-01

    Optical imaging with spectroscopic vibrational contrast is a label-free solution for visualizing, identifying, and quantifying a wide range of biomolecular compounds in biological materials. Both linear and nonlinear vibrational microscopy techniques derive their imaging contrast from infrared active or Raman allowed molecular transitions, which provide a rich palette for interrogating chemical and structural details of the sample. Yet nonlinear optical methods, which include both second-order sum-frequency generation (SFG) and third-order coherent Raman scattering (CRS) techniques, offer several improved imaging capabilities over their linear precursors. Nonlinear vibrational microscopy features unprecedented vibrational imaging speeds, provides strategies for higher spatial resolution, and gives access to additional molecular parameters. These advances have turned vibrational microscopy into a premier tool for chemically dissecting live cells and tissues. This review discusses the molecular contrast of SFG and CRS microscopy and highlights several of the advanced imaging capabilities that have impacted biological and biomedical research. PMID:23245525

  20. High power continuous-wave titanium:sapphire laser

    DOEpatents

    Erbert, G.V.; Bass, I.L.; Hackel, R.P.; Jenkins, S.L.; Kanz, V.K.; Paisner, J.A.

    1993-09-21

    A high-power continuous-wave laser resonator is provided, wherein first, second, third, fourth, fifth and sixth mirrors form a double-Z optical cavity. A first Ti:sapphire rod is disposed between the second and third mirrors and at the mid-point of the length of the optical cavity, and a second Ti:sapphire rod is disposed between the fourth and fifth mirrors at a quarter-length point in the optical cavity. Each Ti:sapphire rod is pumped by two counter-propagating pump beams from a pair of argon-ion lasers. For narrow band operation, a 3-plate birefringent filter and an etalon are disposed in the optical cavity so that the spectral output of the laser consists of 5 adjacent cavity modes. For increased power, seventy and eighth mirrors are disposed between the first and second mirrors to form a triple-Z optical cavity. A third Ti:sapphire rod is disposed between the seventh and eighth mirrors at the other quarter-length point in the optical cavity, and is pumped by two counter-propagating pump beams from a third pair of argon-ion lasers. 5 figures.

  1. The relationship of motion sickness susceptibility to learned autonomic control for symptom suppression

    NASA Technical Reports Server (NTRS)

    Cowings, P. S.; Toscano, W. B.

    1982-01-01

    Twenty-four men were randomly assigned to four equal groups matched in terms of their Coriolis Sickness Susceptibility Index (CSSI). Two groups of subjects were highly susceptible to motion sickness, and two groups were moderately susceptible. All subjects were given six C551 tests at 5-d intervals. Treatment Groups I (highly susceptible) and II (moderately susceptible) were taught to control their autonomic responses, using a training method called autogenic-feedback training (AFT) before the third, fourth, and fifth CSSI tests. Control groups III (highly susceptible) and IV (moderately susceptible) received no treatment. Results showed that both treatment groups significantly improved performance on CSSI tests after training; neither of the control groups changed significantly. Highly and moderately susceptible subjects in the two treatment groups improved at comparable rates. Highly susceptible control group subjects did not habituate across tests as readily as the moderately susceptible controls.

  2. Adaptive selective relaying in cooperative free-space optical systems over atmospheric turbulence and misalignment fading channels.

    PubMed

    Boluda-Ruiz, Rubén; García-Zambrana, Antonio; Castillo-Vázquez, Carmen; Castillo-Vázquez, Beatriz

    2014-06-30

    In this paper, a novel adaptive cooperative protocol with multiple relays using detect-and-forward (DF) over atmospheric turbulence channels with pointing errors is proposed. The adaptive DF cooperative protocol here analyzed is based on the selection of the optical path, source-destination or different source-relay links, with a greater value of fading gain or irradiance, maintaining a high diversity order. Closed-form asymptotic bit error-rate (BER) expressions are obtained for a cooperative free-space optical (FSO) communication system with Nr relays, when the irradiance of the transmitted optical beam is susceptible to either a wide range of turbulence conditions, following a gamma-gamma distribution of parameters α and β, or pointing errors, following a misalignment fading model where the effect of beam width, detector size and jitter variance is considered. A greater robustness for different link distances and pointing errors is corroborated by the obtained results if compared with similar cooperative schemes or equivalent multiple-input multiple-output (MIMO) systems. Simulation results are further demonstrated to confirm the accuracy and usefulness of the derived results.

  3. Premise and Prediction – How Optic Nerve Head Biomechanics Underlies the Susceptibility and Clinical Behavior of the Aged Optic Nerve Head

    PubMed Central

    Burgoyne, Claude F.; Downs, J. Crawford

    2009-01-01

    We propose that age-related alterations in optic nerve head (ONH) biomechanics underlie the clinical behavior and increased susceptibility of the aged ONH to glaucomatous damage. The literature which suggests that the aged ONH is more susceptible to glaucomatous damage at all levels of intraocular pressure is reviewed. The relevant biomechanics of the aged ONH are discussed and a biomechanical explanation for why, on average, the stiffened peripapillary scleral and lamina cribrosa connective tissues of the aged eye should lead to a shallow (senile sclerotic) form of cupping is proposed. A logic for why age-related axon loss and the optic neuropathy of glaucoma in the aged eye may overlap is discussed. Finally, we argue for a need to characterize all forms of clinical cupping into prelaminar and laminar components so as to add precision to the discussion of clinical cupping which does not currently exist. Such characterization may lead to the early detection of ONH axonal and connective tissue pathology in ocular hypertension and eventually aid in the assessment of etiology in all forms of optic neuropathy including those that may be purely age-related. PMID:18552618

  4. Tailoring Magnetic Properties in Bulk Nanostructured Solids

    NASA Astrophysics Data System (ADS)

    Morales, Jason Rolando

    Important magnetic properties and behaviors such as coercivity, remanence, susceptibility, energy product, and exchange coupling can be tailored by controlling the grain size, composition, and density of bulk magnetic materials. At nanometric length scales the grain size plays an increasingly important role since magnetic domain behavior and grain boundary concentration determine bulk magnetic behavior. This has spurred a significant amount of work devoted to developing magnetic materials with nanometric features (thickness, grain/crystallite size, inclusions or shells) in 0D (powder), 1D (wires), and 2D (thin films) materials. Large 3D nanocrystalline materials are more suitable for many applications such as permanent magnets, magneto-optical Faraday isolators etc. Yet there are relatively few successful demonstrations of 3D magnetic materials with nanoscale influenced properties available in the literature. Making dense 3D bulk materials with magnetic nanocrystalline microstructures is a challenge because many traditional densification techniques (HIP, pressureless sintering, etc.) move the microstructure out of the "nano" regime during densification. This dissertation shows that the Current Activated Pressure Assisted Densification (CAPAD) method, also known as spark plasma sintering, can be used to create dense, bulk, magnetic, nanocrystalline solids with varied compositions suited to fit many applications. The results of my research will first show important implications for the use of CAPAD for the production of exchange-coupled nanocomposite magnets. Decreases in grain size were shown to have a significant role in increasing the magnitude of exchange bias. Second, preferentially ordered bulk magnetic materials were produced with highly anisotropic material properties. The ordered microstructure resulted in changing magnetic property magnitudes (ex. change in coercivity by almost 10x) depending on the relative orientation (0° vs. 90°) of an externally applied magnetic field to the sample. Third, a dense magneto-optical material (rare earth oxide) was produced that rotates transmitted polarized light under an externally applied magnetic field, called the Faraday Effect. The magnitude of the rare earth oxide Faraday Effect surpasses that of the current market leader (terbium gallium garnet) in Faraday isolators by ˜2.24x.

  5. Kinoform optics applied to X-ray photon correlation spectroscopy.

    PubMed

    Sandy, A R; Narayanan, S; Sprung, M; Su, J-D; Evans-Lutterodt, K; Isakovic, A F; Stein, A

    2010-05-01

    Moderate-demagnification higher-order silicon kinoform focusing lenses have been fabricated to facilitate small-angle X-ray photon correlation spectroscopy (XPCS) experiments. The geometric properties of such lenses, their focusing performance and their applicability for XPCS measurements are described. It is concluded that one-dimensional vertical X-ray focusing via silicon kinoform lenses significantly increases the usable coherent flux from third-generation storage-ring light sources for small-angle XPCS experiments.

  6. Bright, dark and W-shaped solitons with extended nonlinear Schrödinger's equation for odd and even higher-order terms

    NASA Astrophysics Data System (ADS)

    Bendahmane, Issam; Triki, Houria; Biswas, Anjan; Saleh Alshomrani, Ali; Zhou, Qin; Moshokoa, Seithuti P.; Belic, Milivoj

    2018-02-01

    We present solitary wave solutions of an extended nonlinear Schrödinger equation with higher-order odd (third-order) and even (fourth-order) terms by using an ansatz method. The including high-order dispersion terms have significant physical applications in fiber optics, the Heisenberg spin chain, and ocean waves. Exact envelope solutions comprise bright, dark and W-shaped solitary waves, illustrating the potentially rich set of solitary wave solutions of the extended model. Furthermore, we investigate the properties of these solitary waves in nonlinear and dispersive media. Moreover, specific constraints on the system parameters for the existence of these structures are discussed exactly. The results show that the higher-order dispersion and nonlinear effects play a crucial role for the formation and properties of propagating waves.

  7. Topological nature of nonlinear optical effects in solids.

    PubMed

    Morimoto, Takahiro; Nagaosa, Naoto

    2016-05-01

    There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by nonlinear susceptibilities, which have complex expressions including many matrix elements and energy denominators. On the other hand, a nonequilibrium steady state under an electric field periodic in time has a concise description in terms of the Floquet bands of electrons dressed by photons. We show theoretically, using the Floquet formalism, that various nonlinear optical effects, such as the shift current in noncentrosymmetric materials, photovoltaic Hall response, and photo-induced change of order parameters under the continuous irradiation of monochromatic light, can be described in a unified fashion by topological quantities involving the Berry connection and Berry curvature. We found that vector fields defined with the Berry connections in the space of momentum and/or parameters govern the nonlinear responses. This topological view offers a route to designing nonlinear optical materials.

  8. Topological nature of nonlinear optical effects in solids

    PubMed Central

    Morimoto, Takahiro; Nagaosa, Naoto

    2016-01-01

    There are a variety of nonlinear optical effects including higher harmonic generations, photovoltaic effects, and nonlinear Kerr rotations. They are realized by strong light irradiation to materials that results in nonlinear polarizations in the electric field. These are of great importance in studying the physics of excited states of the system as well as for applications to optical devices and solar cells. Nonlinear properties of materials are usually described by nonlinear susceptibilities, which have complex expressions including many matrix elements and energy denominators. On the other hand, a nonequilibrium steady state under an electric field periodic in time has a concise description in terms of the Floquet bands of electrons dressed by photons. We show theoretically, using the Floquet formalism, that various nonlinear optical effects, such as the shift current in noncentrosymmetric materials, photovoltaic Hall response, and photo-induced change of order parameters under the continuous irradiation of monochromatic light, can be described in a unified fashion by topological quantities involving the Berry connection and Berry curvature. We found that vector fields defined with the Berry connections in the space of momentum and/or parameters govern the nonlinear responses. This topological view offers a route to designing nonlinear optical materials. PMID:27386523

  9. Giant enhancement of second harmonic generation in nonlinear photonic crystals with distributed Bragg reflector mirrors.

    PubMed

    Ren, Ming-Liang; Li, Zhi-Yuan

    2009-08-17

    We theoretically investigate second harmonic generation (SHG) in one-dimensional multilayer nonlinear photonic crystal (NPC) structures with distributed Bragg reflector (DBR) as mirrors. The NPC structures have periodic modulation on both the linear and second-order susceptibility. Three major physical mechanisms, quasi-phase matching (QPM) effect, slow light effect at photonic band gap edges, and cavity effect induced by DBR mirrors can be harnessed to enhance SHG. Selection of appropriate structural parameters can facilitate coexistence of these mechanisms to act collectively and constructively to create very high SHG conversion efficiency with an enhancement by up to seven orders of magnitude compared with the ordinary NPC where only QPM works. (c) 2009 Optical Society of America

  10. Ultrafast light-induced symmetry changes in single BaTiO 3 nanowires

    DOE PAGES

    Kuo, Yi -Hong; Nah, Sanghee; He, Kai; ...

    2017-01-23

    The coupling of light to nanoscale ferroelectric materials enables novel means of controlling their coupled degrees of freedom and engineering new functionality. Here we present femtosecond time-resolution nonlinear-optical measurements of light-induced dynamics within single ferroelectric barium titanate nanowires. By analyzing the time-dependent and polarization-dependent second harmonic intensity generated by the nanowire, we identify its crystallographic orientation and then make use of this information in order to probe its dynamic structural response and change in symmetry. Here, we show that photo-excitation leads to ultrafast, non-uniform modulations in the second order nonlinear susceptibility tensor, indicative of changes in the local symmetry ofmore » the nanostructure occurring on sub-picosecond time-scales.« less

  11. Effects of age and brightness contrast on perception of the Wundt-Hering illusion.

    PubMed

    Astor-Stetson, E; Purnell, T G

    1990-10-01

    Susceptibility to the Wundt-Hering illusion was studied as a function of age and contrast. Preschoolers, third-graders and college students were shown light-grey, medium-grey, and black Wundt-Hering figures on white ground. Pre-schoolers were most susceptible to the illusion, differing from third graders in the medium and high contrast conditions and from college students in all contrast conditions. Low contrast figures resulted in significantly less distortion than did high contrast figures for the preschoolers. The significant interaction of age and contrast effects highlights the importance of a developmental approach to the study of illusions.

  12. Twistacene contained molecule for optical nonlinearity: Excited-state based negative refraction and optical limiting

    NASA Astrophysics Data System (ADS)

    Wu, Xingzhi; Xiao, Jinchong; Sun, Ru; Jia, Jidong; Yang, Junyi; Ao, Guanghong; Shi, Guang; Wang, Yuxiao; Zhang, Xueru; Song, Yinglin

    2018-06-01

    Spindle-type molecules containing twisted acenes (PyBTA-1 &PyBTA-2) are designed, synthesized characterized. Picosecond Z-scan experiments under 532 nm show reverse saturable absorption and negative nonlinear refraction, indicating large third-order optical nonlinearity in PyBTA-1. The mechanism of the optical nonlinearity is investigated and the results show that the nonlinear absorption and refraction in PyBTA-1 originates from a charge transfer (CT) state. Furthermore, relatively long lifetime and absorptive cross section of the CT state are measured. Based on the excited state absorption in PyBTA-1, strong optical limiting with ∼0.3 J/cm2 thresholds are obtained when excited by picoseconds and nanoseconds pulses. The findings on nonlinear optics suggest PyBTA-1 a promising material of all optical modulation and laser protection, which enrich the potential applications of these spindle-type molecules. Comparing to the previously reported spindle-type molecules with analogous structures, the introduction of ICT in PyBTA-1 &PyBTA-2 dramatically decreases the two-photon absorption while enhances the nonlinear refraction. The results could be used to selectively tailor the optical nonlinearity in such kind of compounds.

  13. Resonant-Raman Intensities of N-layer Transition Metal Dichalcogenides from First Principles

    NASA Astrophysics Data System (ADS)

    Miranda, Henrique; Froehlicher, Guillaume; Lorchat, Ettienne; Fernique, François; Molina-Sánchez, Alejandro; Berciaud, Stéphane; Wirtz, Ludger

    Transition metal dichalcogenides (TMDs) have interesting optical and electronic properties that make them good candidates for nano-engineering applications. Raman spectroscopy provides information about the vibrational modes and optical spectrum at the same time: when the laser energy is close to an electronic transition, the intensity is increased due to resonance. We investigate these effects combining different ab initio methods: we obtain ground-state and vibrational properties from density functional theory and the optical absorption spectrum using GW corrections and the Bethe-Salpeter equation to account for the excitonic effects which are known to play an important role in TMDs. Using a quasi-static finite differences approach, we calculate the dielectric susceptibility for different light polarizations and different phonon modes in order to determine the Raman tensor of TMDs, in particular of multi-layer and bulk MoTe2. We explain recent experimental results for the splitting of high-frequency modes and deviations from the non-resonant Raman model. We also give a brief outlook on possible improvements of the methodology.

  14. Synthesis, structure, optical, photoluminescence and magnetic properties of K2[Co(C2O4)2(H2O)2]·4H2O

    NASA Astrophysics Data System (ADS)

    Narsimhulu, M.; Hussain, K. A.

    2018-06-01

    The synthesis, crystal structure, optical, photoluminescence and magnetic behaviour of potassium bis(oxalato)cobaltate(II)tertrahydrate{K2[Co(C2O4)2(H2O)2]·4H2O} are described. The compound was grown at room temperature from mixture of aqueous solutions by slow evaporation method. The X-ray crystallographic data showed that the compound belongs to the monoclinic crystal system with P21/n space group and Z = 4. The UV-visible diffuse absorbance spectra exhibited bands at 253, 285 and 541 nm in the visible and ultraviolet regions. The optical band gap of the compound was estimated as 3.4 eV. At room temperature, an intense photoluminescence was observed from this material around 392 nm when it excited at 254 nm. The variable temperature dc magnetic susceptibility measurements exposed paramagnetic behaviour at high temperatures and antiferromagnetic ordering at low temperatures.

  15. Nonlinear Optical Properties of Organic and Polymeric Thin Film Materials of Potential for Microgravity Processing Studies

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin; Frazier, Donald O.; Paley, Mark S.; Penn, Benjamin; Witherow, William K.; Bank, Curtis; Shields, Angela; Hicks, Rosline; Ashley, Paul R.

    1996-01-01

    In this paper, we will take a closer look at the state of the art of polydiacetylene, and metal-free phthalocyanine films, in view of the microgravity impact on their optical properties, their nonlinear optical properties and their potential advantages for integrated optics. These materials have many attractive features with regard to their use in integrated optical circuits and optical switching. Thin films of these materials processed in microgravity environment show enhanced optical quality and better molecular alignment than those processed in unit gravity. Our studies of these materials indicate that microgravity can play a major role in integrated optics technology. Polydiacetylene films are produced by UV irradiation of monomer solution through an optical window. This novel technique of forming polydiacetylene thin films has been modified for constructing sophisticated micro-structure integrated optical patterns using a pre-programmed UV-Laser beam. Wave guiding through these thin films by the prism coupler technique has been demonstrated. The third order nonlinear parameters of these films have been evaluated. Metal-free phthalocyanine films of good optical quality are processed in our laboratories by vapor deposition technique. Initial studies on these films indicate that they have excellent chemical, laser, and environmental stability. They have large nonlinear optical parameters and show intrinsic optical bistability. This bistability is essential for optical logic gates and optical switching applications. Waveguiding and device making investigations of these materials are underway.

  16. Optical switch

    DOEpatents

    Reedy, R.P.

    1985-01-18

    An optical switching device is provided whereby light from a first glass fiber or a second glass fiber may be selectively transmitted into a third glass fiber. Each glass fiber is provided with a focusing and collimating lens system. In one mode of operation, light from the first glass fiber is reflected by a planar mirror into the third glass fiber. In another mode of operation, light from the second glass fiber passes directly into the third glass fiber. The planar mirror is attached to a rotatable table which is rotated to provide the optical switching.

  17. Optical switch

    DOEpatents

    Reedy, R.P.

    1987-11-10

    An optical switching device is provided whereby light from a first glass fiber or a second glass fiber may be selectively transmitted into a third glass fiber. Each glass fiber is provided with a focusing and collimating lens system. In one mode of operation, light from the first glass fiber is reflected by a planar mirror into the third glass fiber. In another mode of operation, light from the second glass fiber passes directly into the third glass fiber. The planar mirror is attached to a rotatable table which is rotated to provide the optical switching. 3 figs.

  18. Syntheses of Octasubstituted Metal Phthalocyanines for Nonlinear Optics

    NASA Technical Reports Server (NTRS)

    Guo, Huaisong; Townsend, Cheryl; Sanghadasa, Mohan; Amai, Robert L. S.; Clark, Ronald D.; Penn, Benjamin

    1998-01-01

    Many organic materials can be used as nonlinear optical media. Phthalocyanines are of special interest because they show an unusually large third order nonlinear response, they are thermally and photochemically stable and they can be formed into oriented thin films (Langmuir-Blodgett films). They also can be easily complexed by a large variety of metals, which place them at the interface between organics and organometallics, and allows for fine tuning of the macro cycle electronic properties by the coordinated metal and substituent groups. A series of 1,4,8,11,15,18,22,25-octaalkoxy metal-free and metal phthalocyanines and 2,3,9,10,16,17,23,24-octaalkoxy metal phthalocyanines has been synthesized. Their nonlinear optical properties have been measured. The physical properties of all the phthalocyanines synthesized in this work are subject to both acid and solvent effects.

  19. Average BER analysis of SCM-based free-space optical systems by considering the effect of IM3 with OSSB signals under turbulence channels.

    PubMed

    Lim, Wansu; Cho, Tae-Sik; Yun, Changho; Kim, Kiseon

    2009-11-09

    In this paper, we derive the average bit error rate (BER) of subcarrier multiplexing (SCM)-based free space optics (FSO) systems using a dual-drive Mach-Zehnder modulator (DD-MZM) for optical single-sideband (OSSB) signals under atmospheric turbulence channels. In particular, we consider the third-order intermodulation (IM3), a significant performance degradation factor, in the case of high input signal power systems. The derived average BER, as a function of the input signal power and the scintillation index, is employed to determine the optimum number of SCM users upon the designing FSO systems. For instance, when the user number doubles, the input signal power decreases by almost 2 dBm under the log-normal and exponential turbulence channels at a given average BER.

  20. Molecular structure, second- and third-order nonlinear optical properties and DFT studies of a novel non-centrosymmetric chalcone derivative: (2E)-3-(4-fluorophenyl)-1-(4-{[(1E)-(4-fluorophenyl)methylene]amino}phenyl)prop-2-en-1-one

    NASA Astrophysics Data System (ADS)

    Maidur, Shivaraj R.; Patil, Parutagouda Shankaragouda; Ekbote, Anusha; Chia, Tze Shyang; Quah, Ching Kheng

    2017-09-01

    In the present work, the title chalcone, (2E)-3-(4-fluorophenyl)-1-(4-{[(1E)-(4-fluorophenyl) methylene]amino}phenyl)prop-2-en-1-one (abbreviated as FAMFC), was synthesized and structurally characterized by single-crystal X-ray diffraction. The compound is crystallized in the monoclinic system with non-centrosymmetric space group P21 and hence it satisfies the essential condition for materials to exhibit second-order nonlinear optical properties. The molecular structure was further confirmed by using FT-IR and 1H NMR spectroscopic techniques. The title crystal is transparent in the Vis-NIR region and has a direct band gap. The third-order nonlinear optical properties were investigated in solution (0.01 M) by Z-scan technique using a continuous wave (CW) DPSS laser at the wavelength of 532 nm. The title chalcone exhibited significant two-photon absorption (β = 35.8 × 10- 5 cm W- 1), negative nonlinear refraction (n2 = - 0.18 × 10- 8 cm2 W- 1) and optical limiting (OL threshold = 2.73 kJ cm- 2) under the CW regime. In support of the experimental results, a comprehensive theoretical study was carried out on the molecule of FAMFC using density functional theory (DFT). The optimized geometries and frontier molecular orbitals were calculated by employing B3LYP/6-31 + G level of theory. The optimized molecular structure was confirmed computationally by IR vibrational and 1H NMR spectral analysis. The experimental UV-Vis-NIR spectrum was interpreted using computational chemistry under time-dependent DFT. The static and dynamic NLO properties such as dipole moments (μ), polarizability (α), and first hyperpolarizabilities (β) were computed by using finite field method. The obtained dynamic first hyperpolarizability β(- 2ω;ω,ω) at input frequency ω = 0.04282 a.u. is predicted to be 161 times higher than urea standard. The electronic excitation energies and HOMO-LUMO band gap for FAMFC were also evaluated by DFT. The experimental and theoretical results are in good agreement, and the NLO study suggests that FAMFC molecule can be a potential candidate in the nonlinear optical applications.

Top