Sample records for thousand square feet

  1. 76 FR 15042 - Transfer of Federally Assisted Land or Facility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... comprised of approximately Two- hundred Twenty-eight Thousand (228,000) square feet of parking structure...[ccedil]ade. The transfer does not include Eighteen Thousand Three Hundred (18,300) square feet on the... Hundred Forty-six Thousand, Three Hundred (246,300) square feet of which Two Hundred Twenty-eight Thousand...

  2. Kinetic Super-Resolution Long-Wave Infrared (KSR LWIR) Thermography Diagnostic for Building Envelopes: Scott AFB, IL

    DTIC Science & Technology

    2015-08-18

    techniques of measuring energy loss due to enve- lope inefficiencies from the built environment. A multi-sensor hardware device attached to the roof of a...at this installa- tion, recommends specific energy conservation measures (ECMs), and quantifies significant potential return on investment. ERDC/CERL...to several thousand square feet, total building square feet was used as a metric to measure the cost effectiveness of handheld versus mobile

  3. Channel movement of meandering Indiana streams

    USGS Publications Warehouse

    Daniel, James F.

    1971-01-01

    Because of the consistency of yearly above-average discharge volumes, it was possible to develop a general relation between path-length increase per thousand cubic-feet-per-second-days per square mile of drainage area above average discharge and the width-depth ratio of the channel. Little progress was made toward defining relationships for rotation and translation.

  4. Interim report on the ground-water resources of Manatee County, Florida

    USGS Publications Warehouse

    Peek, Harry M.; Anders, Robert B.

    1955-01-01

    Manatee County comprises an area of about 800 square miles adjacent to the Gulf of Mexico in the southwestern part of the Florida peninsula. The county is underlain at depths ranging from about 200 to 350 feet by a series of limestone formations of Tertiary age having a total thickness of several thousand feet. The upper part of the limestone section consists of the Ocala group of Eocene age, the Suwannee limestone of Oligocene age, and the Tampa formation of early Miocene age. These limestone formations are overlain by the Hawthorn formation of middle Miocene age which consists of interbedded clay, limestone, and sand. The Hawthorn is overlain by undifferentiated deposits of sand, limestone, and shell of Pliocene(?) and Pleistocene age that range in thickness from a few feet to about 75 feet.

  5. A preliminary evaluation of vertical separation between production intervals of coalbed-methane wells and water-supply wells in the Raton basin, Huerfano and Las Animas Counties, Colorado, 1999-2004

    USGS Publications Warehouse

    Watts, Kenneth R.

    2006-01-01

    The Raton Basin in southern Colorado and northern New Mexico is undergoing increased development of its coalbed-methane resources. Annual production of methane from coalbeds in the Raton Basin in Huerfano and Las Animas Counties, Colorado, increased from about 28,000,000 thousand cubic feet from 478 wells to about 80,000,000 thousand cubic feet from 1,543 wells, during 1999-2004. Annual ground-water withdrawals for coalbed-methane production increased from about 1.45 billion gallons from 480 wells to about 3.64 billion gallons from 1,568 wells, during 1999-2004. Where the coalbeds are deeply buried near the center of the Raton Basin, water pressure may be reduced as much as 250 to 300 pounds per square inch to produce the methane from the coalbeds, which is equivalent to a 577- to 692-foot lowering of water level. In 2001, the U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, began an evaluation of the potential effects of coalbed- methane production on the availability and sustainability of ground-water resources. In 2003, there were an estimated 1,370 water-supply wells in the Raton Basin in Colorado, and about 90 percent of these water-supply wells were less than 450 feet deep. The tops of the production (perforated) interval of 90 percent of the coalbed-methane wells in the Raton Basin (for which data were available) are deeper than about 675 feet. The potential for interference of coalbed-methane wells with nearby water-supply wells likely is limited because in most areas their respective production intervals are separated by more than a hundred to a few thousand feet of rock. The estimated vertical separation between production intervals of coalbed-methane and water-supply wells is less than 100 feet in an area about 1 to 6 miles west and southwest of Trinidad Lake and a few other isolated areas. It is assumed that in areas with less than 100 feet of vertical separation, production by coalbed-methane wells has a greater potential for interfering with nearby water-supply wells. More detailed geologic and hydrologic information is needed in these areas to quantify the potential effects of coalbed-methane production on water levels and the availability and sustainability of ground-water resources.

  6. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    This paper evaluates the accuracy of two methods to forecast natural gas prices: using the Energy Information Administration's ''Annual Energy Outlook'' forecasted price (AEO) and the ''Henry Hub'' compared to U.S. Wellhead futures price. A statistical analysis is performed to determine the relative accuracy of the two measures in the recent past. A statistical analysis suggests that the Henry Hub futures price provides a more accurate average forecast of natural gas prices than the AEO. For example, the Henry Hub futures price underestimated the natural gas price by 35 cents per thousand cubic feet (11.5 percent) between 1996 and 2003more » and the AEO underestimated by 71 cents per thousand cubic feet (23.4 percent). Upon closer inspection, a liner regression analysis reveals that two distinct time periods exist, the period between 1996 to 1999 and the period between 2000 to 2003. For the time period between 1996 to 1999, AEO showed a weak negative correlation (R-square = 0.19) between forecast price by actual U.S. Wellhead natural gas price versus the Henry Hub with a weak positive correlation (R-square = 0.20) between forecasted price and U.S. Wellhead natural gas price. During the time period between 2000 to 2003, AEO shows a moderate positive correlation (R-square = 0.37) between forecasted natural gas price and U.S. Wellhead natural gas price versus the Henry Hub that show a moderate positive correlation (R-square = 0.36) between forecast price and U.S. Wellhead natural gas price. These results suggest that agencies forecasting natural gas prices should consider incorporating the Henry Hub natural gas futures price into their forecasting models along with the AEO forecast. Our analysis is very preliminary and is based on a very small data set. Naturally the results of the analysis may change, as more data is made available.« less

  7. Oxygen in general aviation.

    DOT National Transportation Integrated Search

    1966-09-01

    General aviation pilots are increasingly ascending to altitudes exceeding ten thousand feet. As one becomes exposed to heights above twelve thousand feet, blood oxygen saturation diminishes in accordance with a predicable schedule. Recommended measur...

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shyer, E.B.

    The New York State Development of Environmental Conservation`s Division of Mineral Resources is responsible for regulating the oil and gas industry and receiving operator`s annual well production reports. Production year 1970 and 627 active gas wells with reported production of 3 billion cubic feet by New York State operators. Ten years later in 1980, production had more than tripled to 15.5 billion cubic feet and reported active gas wells increased to 1,966. During 1990, reported gas production was 25 billion cubic feet from 5,536 active gas wells. The average production per gas well in 1970 was 4,773 thousand cubic feet.more » Average gas production per well peaked in 1978 with a reported production of 14 billion cubic feet by 1,431 active gas wells which averaged 9,821 thousand cubic feet per well. By 1994 the average production per well had decreased to 3,800 thousand cubic feet, a decrease of approximately 60%. The decrease in average well production is more a reflection of the majority of older wells reaching the lower end of their decline curve than a decrease in overall per well production. The number of completed gas wells increased following the rising price of gas. In 1970 gas was $0.30 per thousand cubic feet. By 1984 the price per thousand cubic feet had peaked at $4. After 1984 the price of gas started to decline while the number of active gas wells continued to increase. Sharp increases in gas production for certain counties such as Steuben in 1972 and 1973 and Chautauqua in 1980-83 reflects the discoveries of new fields such as Adrian Reef and Bass Island, respectively. The Stagecoach Field discovered in 1989 in Tioga County is the newest high producing field in New York State.« less

  9. Benefits from Thinning Black Willow

    Treesearch

    R. L. Johnson; J. S. McKnight

    1969-01-01

    Black willow stands 18 and 24 years old were cut from about 130 square feet of basal area per acre to near 95, 75, and 55 square feet. Growth was best on plots thinned to 55 square feet in the 24-year-old stand and to 95 square feet in the 18-yearold stand. The stands were along the Mississippi River.

  10. North Dakota's forest resources in 2004

    Treesearch

    David Haugen; Gary Brand; Michael Kangas

    2006-01-01

    Results of the combined 2001-2004 annual forest inventory panels for North Dakota show more than 733 thousand acres of forest land that contain an estimated 737 million cubic feet of all live tree volume or approximately 1,005 cubic feet per forest land acre. Timberland area in North Dakota was estimated at 547 thousand acres, with an estimated 358 million cubic feet...

  11. 76 FR 17752 - Notice of Intent To Prepare an Environmental Impact Statement for the San Francisco Veterans...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... issues associated with 945,000 square feet of new construction and approximately 500,000 square feet of... an additional 945,000 square feet of medical facility space (in addition to the existing 1.02 million square feet of medical facility space) to meet the needs of San Francisco Bay Area and northern...

  12. Space Guidelines for Libraries.

    ERIC Educational Resources Information Center

    Wisconsin Coordinating Committee for Higher Education, Madison.

    The following guidelines are recommended: stack space--for each 10 volumes, one square foot of space; reading room--25 square feet per station x 20% of the total undergraduate population; carrel space--25% of the graduate enrollment x 45 square feet; office and auxilliary space--135 square feet x full time equivalent staff. (NI)

  13. 36 CFR 910.33 - Off-street parking.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... not fixed, each seven square feet of gross floor area usable for seating shall be considered one seat; (3) Retail, trade, and service establishments: one parking space for each 750 square feet of gross... each 1,800 square feet of gross floor area. ...

  14. 36 CFR 910.33 - Off-street parking.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... not fixed, each seven square feet of gross floor area usable for seating shall be considered one seat; (3) Retail, trade, and service establishments: one parking space for each 750 square feet of gross... each 1,800 square feet of gross floor area. ...

  15. 36 CFR 910.33 - Off-street parking.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... not fixed, each seven square feet of gross floor area usable for seating shall be considered one seat; (3) Retail, trade, and service establishments: one parking space for each 750 square feet of gross... each 1,800 square feet of gross floor area. ...

  16. 36 CFR 910.33 - Off-street parking.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... not fixed, each seven square feet of gross floor area usable for seating shall be considered one seat; (3) Retail, trade, and service establishments: one parking space for each 750 square feet of gross... each 1,800 square feet of gross floor area. ...

  17. 76 FR 44655 - Transfer of Federally Assisted Land or Facility

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-26

    ... square feet (the ``Property''). NICTD wishes to transfer ownership of the Property to Amtrak for Amtrak's... square feet (the ``Property''). The Northern Indiana Commuter Transportation District (NICTD) requests... approximately 5900 square feet in South Bend, Indiana, to the National Railroad Passenger Corporation (Amtrak...

  18. 76 FR 13580 - Bus Testing; Calculation of Average Passenger Weight and Test Vehicle Weight

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... occupied per standing passenger from 1.5 to 1.75 square feet, and updating the Structural Strength and... standing passenger from 1.5 square feet of free floor space to 1.75 square feet of free floor space to... (assumed to be each 1.75 square foot of free floor space). * * * * * 3. Amend Appendix A to part 665 by...

  19. 75 FR 1401 - Notice of Intent To Prepare a Draft Environmental Impact Statement for the Baldwin Hills Crenshaw...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-11

    ... approximately 535,000 square feet), two grocery stores (totaling approximately 85,000 square feet), restaurants (both in mall and as stand-alone restaurants totaling approximately 156,000 square feet), a movie... with meeting rooms and two restaurants, and 551 condominium units, and 410 apartment units...

  20. 12 CFR 1815.108 - Actions that normally require an EIS.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., convert, or substantially rehabilitate 1,500,000 square feet or more of commercial space, or would result in the construction or installation of 1,500,000 square feet or more of new commercial space, or which would provide sites for 1,500,000 square feet or more of new commercial space. ...

  1. 12 CFR 1815.108 - Actions that normally require an EIS.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., convert, or substantially rehabilitate 1,500,000 square feet or more of commercial space, or would result in the construction or installation of 1,500,000 square feet or more of new commercial space, or which would provide sites for 1,500,000 square feet or more of new commercial space. ...

  2. 12 CFR 1815.108 - Actions that normally require an EIS.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., convert, or substantially rehabilitate 1,500,000 square feet or more of commercial space, or would result in the construction or installation of 1,500,000 square feet or more of new commercial space, or which would provide sites for 1,500,000 square feet or more of new commercial space. ...

  3. 46 CFR 76.50-10 - Location.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... square feet or fraction thereof located in vicinity of exits, except that none required for spaces under 500 square feet. Open decks or enclosed promenades None required. Service spaces Galleys B-II or C-II 1 for each 2,500 square feet or fraction thereof suitable for hazards involved. Main pantries A-II 1...

  4. 46 CFR 76.50-10 - Location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... square feet or fraction thereof located in vicinity of exits, except that none required for spaces under 500 square feet. Open decks or enclosed promenades None required. Service spaces Galleys B-II or C-II 1 for each 2,500 square feet or fraction thereof suitable for hazards involved. Main pantries A-II 1...

  5. 12 CFR 1815.108 - Actions that normally require an EIS.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., convert, or substantially rehabilitate 1,500,000 square feet or more of commercial space, or would result in the construction or installation of 1,500,000 square feet or more of new commercial space, or which would provide sites for 1,500,000 square feet or more of new commercial space. ...

  6. 12 CFR 1815.108 - Actions that normally require an EIS.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., convert, or substantially rehabilitate 1,500,000 square feet or more of commercial space, or would result in the construction or installation of 1,500,000 square feet or more of new commercial space, or which would provide sites for 1,500,000 square feet or more of new commercial space. ...

  7. 24 CFR 35.1350 - Safe work practices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... activities do not disturb painted surfaces that total more than: (1) 20 square feet (2 square meters) on exterior surfaces; (2) 2 square feet (0.2 square meters) in any one interior room or space; or (3) 10...

  8. 24 CFR 35.1350 - Safe work practices.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... activities do not disturb painted surfaces that total more than: (1) 20 square feet (2 square meters) on exterior surfaces; (2) 2 square feet (0.2 square meters) in any one interior room or space; or (3) 10...

  9. 24 CFR 35.1350 - Safe work practices.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... activities do not disturb painted surfaces that total more than: (1) 20 square feet (2 square meters) on exterior surfaces; (2) 2 square feet (0.2 square meters) in any one interior room or space; or (3) 10...

  10. 24 CFR 35.1350 - Safe work practices.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... activities do not disturb painted surfaces that total more than: (1) 20 square feet (2 square meters) on exterior surfaces; (2) 2 square feet (0.2 square meters) in any one interior room or space; or (3) 10...

  11. 24 CFR 35.1350 - Safe work practices.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... activities do not disturb painted surfaces that total more than: (1) 20 square feet (2 square meters) on exterior surfaces; (2) 2 square feet (0.2 square meters) in any one interior room or space; or (3) 10...

  12. Benefit from NASA

    NASA Image and Video Library

    1995-01-01

    Digital data matrix, used to identify the millions of Space Shuttle parts, is being commercialized to make barcoding tamper resistant and invisible to the naked eye. These codes are applied directly to the product regardless of shape, size or color. The markings can range from as small as four microns to as large as two square feet. Using the Vericode Symbol which include such details as the manufacturer, serial numbers, the lot number of the parent material, design changes, special processing to which the part was subjected-everything needed to determine accurately and automatically, the extent of the recall needed, which might be a couple of hundred cars instead of tens of thousands.

  13. 46 CFR 72.05-10 - Type, location, and construction of fire control bulkheads and decks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 500 square feet with combustible furnishings Washrooms toilet spaces, and isolated pantries with... square feet with combustible furnishings 7 A-60 A-0 A-60 A-60 A-60 A-0 A-0 Washrooms, toilet spaces, and... 500 square feet with combustible furnishings Washrooms toilet spaces, and isolated pantries with...

  14. 46 CFR 72.05-10 - Type, location, and construction of fire control bulkheads and decks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 500 square feet with combustible furnishings Washrooms toilet spaces, and isolated pantries with... square feet with combustible furnishings 7 A-60 A-0 A-60 A-60 A-60 A-0 A-0 Washrooms, toilet spaces, and... 500 square feet with combustible furnishings Washrooms toilet spaces, and isolated pantries with...

  15. 46 CFR 72.05-10 - Type, location, and construction of fire control bulkheads and decks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 500 square feet with combustible furnishings Washrooms toilet spaces, and isolated pantries with... square feet with combustible furnishings 7 A-60 A-0 A-60 A-60 A-60 A-0 A-0 Washrooms, toilet spaces, and... 500 square feet with combustible furnishings Washrooms toilet spaces, and isolated pantries with...

  16. 75 FR 20619 - Endangered and Threatened Wildlife and Plants; Permit, Santa Cruz County, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-20

    ... square feet of habitat for the species in Scotts Valley, Santa Cruz County, California. We invite... result in permanent impacts to a total of 483 square feet of habitat for the Mount Hermon June beetle... Mount Hermon June beetle habitat within the permit area: (1) Applicants will purchase 483 square feet of...

  17. 40 CFR 63.5340 - How do I determine the allowable HAP loss?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... appropriate HAP emission limit, expressed in pounds of HAP loss per 1,000 square feet of leather processed... the annual total of leather processed in 1,000's of square feet for each product process operation in... of square feet of leather processed in the previous 12 months in product process operation “i”. HAP...

  18. 75 FR 70081 - Notice of Release From Federal Grant Assurance Obligations for Tucson International Airport...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ...,000 square feet of airport property at Tucson International Airport, Tucson, Arizona, from all... square feet of airport land. The property is separated from the airport by a street and located north of... to make the commercial property owner whole. The release will allow 2,000 square feet to be sold to...

  19. 40 CFR 63.5340 - How do I determine the allowable HAP loss?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... appropriate HAP emission limit, expressed in pounds of HAP loss per 1,000 square feet of leather processed... the annual total of leather processed in 1,000's of square feet for each product process operation in... of square feet of leather processed in the previous 12 months in product process operation “i”. HAP...

  20. KSC-07pd0766

    NASA Image and Video Library

    2007-04-02

    KENNEDY SPACE CENTER, FLA. -- The American flag and the NASA logo shine in the morning sun on the side of the Vehicle Assembly Building after completion of their repainting. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The NASA logo, which is known as the "meatball," measures 110 feet by 132 feet, or about 12,300 square feet. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary. Photo credit: NASA/Jim Grossmann

  1. VAB Flag Painting

    NASA Image and Video Library

    2002-01-01

    On platforms suspended from the top of the 525-foot-high VAB, workers use rollers and brushes to repaint the U.S. flag on the southwest side of the Vehicle Assembly Building. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo is also being painted. Known as the "meatball," the logo measures 110 feet by 132 feet, or about 12,300 square feet. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary.

  2. 40 CFR 63.5340 - How do I determine the allowable HAP loss?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... select the appropriate HAP emission limit, expressed in pounds of HAP loss per 1,000 square feet of... months. Next, determine the annual total of leather processed in 1,000's of square feet for each product... Total of Leather Processed = 1,000's of square feet of leather processed in the previous 12 months in...

  3. 40 CFR Table 1 to Subpart Tttt of... - Leather Finishing HAP Emission Limits for Determining the Allowable HAP Loss

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Product Process Operation HAP Emission Limit (pounds of HAP loss per 1,000 square feet of leather processed) Existingsources Newsources 1. Upholstery Leather (≥4 grams add-on/square feet) 2.6 0.5 2. Upholstery Leather (square feet) 6.8 2.5 3. Water-resistant (≥5,000 Maeser Flexes)/Specialty...

  4. 40 CFR Table 1 to Subpart Tttt of... - Leather Finishing HAP Emission Limits for Determining the Allowable HAP Loss

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Product Process Operation HAP Emission Limit (pounds of HAP loss per 1,000 square feet of leather processed) Existingsources Newsources 1. Upholstery Leather (≥4 grams add-on/square feet) 2.6 0.5 2. Upholstery Leather (square feet) 6.8 2.5 3. Water-resistant (≥5,000 Maeser Flexes)/Specialty...

  5. 40 CFR Table 1 to Subpart Tttt of... - Leather Finishing HAP Emission Limits for Determining the Allowable HAP Loss

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Product Process Operation HAP Emission Limit (pounds of HAP loss per 1,000 square feet of leather processed) Existingsources Newsources 1. Upholstery Leather (≥4 grams add-on/square feet) 2.6 0.5 2. Upholstery Leather (square feet) 6.8 2.5 3. Water-resistant (≥5,000 Maeser Flexes)/Specialty...

  6. 40 CFR 63.5340 - How do I determine the allowable HAP loss?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... select the appropriate HAP emission limit, expressed in pounds of HAP loss per 1,000 square feet of... months. Next, determine the annual total of leather processed in 1,000's of square feet for each product... Total of Leather Processed = 1,000's of square feet of leather processed in the previous 12 months in...

  7. 16 CFR 500.13 - Measurement of commodities by area measure only, how expressed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... declaration of net quantity in terms of square yards, square feet, and square inches shall be expressed in the following manner: (a) If less than 1 square foot (929 cm2), in terms of square inches and fractions thereof. (b) If at least 1 square foot (929 cm2) but less than 4 square feet (37.1 dm2), in terms of square...

  8. 16 CFR 500.13 - Measurement of commodities by area measure only, how expressed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... declaration of net quantity in terms of square yards, square feet, and square inches shall be expressed in the following manner: (a) If less than 1 square foot (929 cm2), in terms of square inches and fractions thereof. (b) If at least 1 square foot (929 cm2) but less than 4 square feet (37.1 dm2), in terms of square...

  9. 16 CFR 500.13 - Measurement of commodities by area measure only, how expressed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... declaration of net quantity in terms of square yards, square feet, and square inches shall be expressed in the following manner: (a) If less than 1 square foot (929 cm2), in terms of square inches and fractions thereof. (b) If at least 1 square foot (929 cm2) but less than 4 square feet (37.1 dm2), in terms of square...

  10. 16 CFR 500.13 - Measurement of commodities by area measure only, how expressed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... declaration of net quantity in terms of square yards, square feet, and square inches shall be expressed in the following manner: (a) If less than 1 square foot (929 cm2), in terms of square inches and fractions thereof. (b) If at least 1 square foot (929 cm2) but less than 4 square feet (37.1 dm2), in terms of square...

  11. 16 CFR 500.13 - Measurement of commodities by area measure only, how expressed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... declaration of net quantity in terms of square yards, square feet, and square inches shall be expressed in the following manner: (a) If less than 1 square foot (929 cm2), in terms of square inches and fractions thereof. (b) If at least 1 square foot (929 cm2) but less than 4 square feet (37.1 dm2), in terms of square...

  12. KSC-07pd0767

    NASA Image and Video Library

    2007-04-02

    KENNEDY SPACE CENTER, FLA. -- The NASA logo shines in the morning sun on the side of the Vehicle Assembly Building after completion of its repainting. The logo, which is known as the "meatball," measures 110 feet by 132 feet, or about 12,300 square feet. The American flag was also painted on the side of the VAB. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary. Photo credit: NASA/Jim Grossmann

  13. VAB Flag Painting

    NASA Image and Video Library

    2002-01-01

    On platforms suspended from the top of the 525-foot-high VAB, workers use rollers and brushes to repaint the NASA logo on the southeast side of the Vehicle Assembly Building. Known as the "meatball," the logo measures 110 feet by 132 feet, or about 12,300 square feet. The U.S. flag is also being repainted. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary.

  14. Nebraska's forest resources in 2002.

    Treesearch

    Katherine P. O' Neill; Earl C. Leatherberry; William R. Lovett

    2004-01-01

    Results of the 2002 annual inventory of Nebraska show an estimated 1,346.5 thousand acres of forest land in the State. The estimated total volume of all live trees on forest land is 1.9 billion cubic feet. An estimated 1,297.4 thousand acres of forest land are classified as timberland. The estimate of growing-stock volume on timberland is 1.6 billion cubic feet. All...

  15. Relation of snowpack Accumulation to Red Pine Stocking

    Treesearch

    Edward A. Hansen

    1969-01-01

    A snow accumulation study was conducted in a 33-year-old red pine plantation thinned to different stocking levels. Snowpack water content increased an average of 2 percent for each 10 square feet of basal area reduction, within the range of 60 to 180 square feet of basal area. Reducing plantation stocking from 180 to 60 square feet of basal area per acre would result...

  16. Simulation analysis of the unconfined aquifer, Raft River geothermal area, Idaho-Utah

    USGS Publications Warehouse

    Nichols, William D.

    1979-01-01

    This study covers about 1,000 mi2 (2,600 km2 ) of the southern Raft River drainage basin in south-central Idaho and northwest Utah. The main area of interest, approximately 200 mi2 (520 km2 ) of semiarid agricultural and rangeland in the southern Raft River Valley that includes the known Geothermal Resource Area near Bridge, Idaho, was modelled numerically to evaluate the hydrodynamics of the unconfined aquifer. Computed and estimated transmissivity values range from 1,200 feet squared per day (110 meters squared per day) to 73,500 feet squared per day (6,830 meters squared per day). Water budgets, including ground-water recharge and discharge for approximate equilibrium conditions, have been computed by several previous investigators; their estimates of available ground-water recharge range from about 46,000 acre-feet per year (57 cubic hectometers per year) to 100,000 acre-feet per year (123 cubic hectometers per year).Simulation modeling of equilibrium conditions represented by 1952 water levels suggests: (1) recharge to the water-table aquifer is about 63,000 acre-feet per year (77 cubic hectometers per year); (2) a significant volume of ground water is discharged through evapotranspiration by phreatophytes growing on the valley bottomlands; (3) the major source of recharge may be from upward leakage of water from a deeper, confined reservoir; and (4) the aquifer transmissivity probably does not exceed about 12,000 feet squared per day (3,100 meters squared per day). Additional analysis carried out by simulating transient conditions from 1952 to 1965 strongly suggests that aquifer transmissivity does not exceed about 7,700 feet squared per day (700 meters squared per day). The model was calibrated using slightly modified published pumpage data; it satisfactorily reproduced the historic water-level decline over the period 1952-65.

  17. 40 CFR Table 1 to Subpart Tttt of... - Leather Finishing HAP Emission Limits for Determining the Allowable HAP Loss

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Operation HAP Emission Limit (pounds of HAP loss per 1,000 square feet of leather processed) Existingsources Newsources 1. Upholstery Leather (≥4 grams add-on/square feet) 2.6 0.5 2. Upholstery Leather (square feet) 6.8 2.5 3. Water-resistant (≥5,000 Maeser Flexes)/Specialty Leather 5.6 4.9 4. Nonwater...

  18. 40 CFR Table 1 to Subpart Tttt of... - Leather Finishing HAP Emission Limits for Determining the Allowable HAP Loss

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Operation HAP Emission Limit (pounds of HAP loss per 1,000 square feet of leather processed) Existingsources Newsources 1. Upholstery Leather (≥4 grams add-on/square feet) 2.6 0.5 2. Upholstery Leather (square feet) 6.8 2.5 3. Water-resistant (≥5,000 Maeser Flexes)/Specialty Leather 5.6 4.9 4. Nonwater...

  19. KSC-07pd0114

    NASA Image and Video Library

    2007-01-17

    KENNEDY SPACE CENTER, FLA. -- On platforms suspended from the top of the 525-foot-high VAB, workers use rollers and brushes to repaint the U.S. flag on the southwest side of the Vehicle Assembly Building. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo is also being painted. Known as the "meatball," the logo measures 110 feet by 132 feet, or about 12,300 square feet. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary. Photo credit: NASA/George Shelton

  20. KSC-07pd0115

    NASA Image and Video Library

    2007-01-17

    KENNEDY SPACE CENTER, FLA. -- On platforms suspended from the top of the 525-foot-high VAB, workers use rollers and brushes to repaint the U.S. flag on the southwest side of the Vehicle Assembly Building. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo is also being painted. Known as the "meatball," the logo measures 110 feet by 132 feet, or about 12,300 square feet. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary. Photo credit: NASA/George Shelton

  1. KSC-07pd0113

    NASA Image and Video Library

    2007-01-17

    KENNEDY SPACE CENTER, FLA. -- On platforms suspended from the top of the 525-foot-high VAB, workers use rollers and brushes to repaint the U.S. flag on the southwest side of the Vehicle Assembly Building. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo is also being painted. Known as the "meatball," the logo measures 110 feet by 132 feet, or about 12,300 square feet. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary. Photo credit: NASA/George Shelton

  2. KSC-07pd0039

    NASA Image and Video Library

    2007-01-09

    KENNEDY SPACE CENTER, FLA. -- Painters' platforms are seen hanging on the side of Kennedy Space Center's 525-foot-high Vehicle Assembly Building to facilitate the repainting of the American flag and the NASA logo. Workers use rollers and brushes to do the painting. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary. The flag spans an area 209 feet by 110 feet, or about 23,437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the "meatball," measures 110 feet by 132 feet, or about 12,300 square feet. Photo credit: NASA/Kim Shiflett

  3. KSC-07pd0040

    NASA Image and Video Library

    2007-01-09

    KENNEDY SPACE CENTER, FLA. -- Painters' platforms are seen hanging on the side of Kennedy Space Center's 525-foot-high Vehicle Assembly Building to facilitate the repainting of the American flag. The NASA logo is also being repainted. Workers use rollers and brushes to do the painting. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary. The flag spans an area 209 feet by 110 feet, or about 23,437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the "meatball," measures 110 feet by 132 feet, or about 12,300 square feet. Photo credit: NASA/Kim Shiflett

  4. KSC-07pd0116

    NASA Image and Video Library

    2007-01-17

    KENNEDY SPACE CENTER, FLA. -- On platforms suspended from the top of the 525-foot-high VAB, workers use rollers and brushes to repaint the NASA logo on the southeast side of the Vehicle Assembly Building. Known as the "meatball," the logo measures 110 feet by 132 feet, or about 12,300 square feet. The U.S. flag is also being repainted. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary. Photo credit: NASA/George Shelton

  5. KSC-07pd0924

    NASA Image and Video Library

    2007-04-19

    KENNEDY SPACE CENTER, FLA. -- The finishing touches are painted on the American flag that embellishes the southwest side of the Vehicle Assembly Building at NASA's Kennedy Space Center. The flag and the NASA logo, which is on the southeast side, have both been refreshed with new paint. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, which is known as the "meatball," measures 110 feet by 132 feet, or about 12,300 square feet. The building stands 525-feet tall. Photo credit: NASA/George Shelton

  6. KSC-07pd0014

    NASA Image and Video Library

    2007-01-04

    KENNEDY SPACE CENTER, FLA. -- Elevated platforms are seen hanging on the side of Kennedy Space Center's Vehicle Assembly Building to facilitate the repainting of the American flag and NASA logo. Workers, suspended on the platforms from the top of the 525-foot-high VAB, use rollers and brushes to do the painting. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the "meatball," measures 110 feet by 132 feet, or about 12,300 square feet. Photo credit: NASA/George Shelton

  7. KSC-07pd0037

    NASA Image and Video Library

    2007-01-09

    KENNEDY SPACE CENTER, FLA. -- Painters' scaffolding is seen hanging on the side of Kennedy Space Center's Vehicle Assembly Building to facilitate the repainting of the American flag. The NASA logo is also being repainted. Workers, suspended on platforms from the top of the 525-foot-high VAB, use rollers and brushes to do the painting. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary. The flag spans an area 209 feet by 110 feet, or about 23,437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the "meatball," measures 110 feet by 132 feet, or about 12,300 square feet. Photo credit: NASA/Kim Shiflett

  8. KSC-07pd0038

    NASA Image and Video Library

    2007-01-09

    KENNEDY SPACE CENTER, FLA. -- Painters' scaffolding is seen hanging on the side of Kennedy Space Center's Vehicle Assembly Building to facilitate the repainting of the American flag and the NASA logo. Workers, suspended on platforms from the top of the 525-foot-high VAB, use rollers and brushes to do the painting. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary. The flag spans an area 209 feet by 110 feet, or about 23,437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the "meatball," measures 110 feet by 132 feet, or about 12,300 square feet. Photo credit: NASA/Kim Shiflett

  9. KSC-07pd0036

    NASA Image and Video Library

    2007-01-09

    KENNEDY SPACE CENTER, FLA. -- Painters' scaffolding is seen hanging on the side of Kennedy Space Center's Vehicle Assembly Building to facilitate the repainting of the NASA logo. The American flag is also being repainted. Workers, suspended on platforms from the top of the 525-foot-high VAB, use rollers and brushes to do the painting. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary. The flag spans an area 209 feet by 110 feet, or about 23,437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the "meatball," measures 110 feet by 132 feet, or about 12,300 square feet. Photo credit: NASA/Kim Shiflett

  10. KSC-07pd0015

    NASA Image and Video Library

    2007-01-04

    KENNEDY SPACE CENTER, FLA. -- Elevated platforms are seen hanging on the side of Kennedy Space Center's Vehicle Assembly Building to facilitate the repainting of the American flag and NASA logo. Workers, suspended on the platforms from the top of the 525-foot-high VAB, use rollers and brushes to do the painting. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the "meatball," measures 110 feet by 132 feet, or about 12,300 square feet. Photo credit: NASA/George Shelton

  11. Workers painting the Flag and Meatball on the VAB

    NASA Image and Video Library

    2007-01-03

    Elevated platforms are seen hanging on the side of Kennedy Space Center's Vehicle Assembly Building in a view looking across from the turn basin. To the right is the large external tank barge. Workers, suspended on the platforms from the top of the 525-foot-high VAB, use rollers and brushes to do the painting. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the "meatball," measures 110 feet by 132 feet, or about 12,300 square feet.

  12. 46 CFR 178.340 - Stability standards for pontoon vessels on protected waters.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... = 2.0 feet (0.61 meters); Mw = Wind heeling moment in foot-pounds (kilogram-meters) P = Wind pressure of 7.5 pounds/square foot (36.6 kilograms/square meter); A = Area, in square feet (square meters), of the projected lateral surface of the vessel above the waterline (including each projected area of the...

  13. 46 CFR 178.340 - Stability standards for pontoon vessels on protected waters.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... = 2.0 feet (0.61 meters); Mw = Wind heeling moment in foot-pounds (kilogram-meters) P = Wind pressure of 7.5 pounds/square foot (36.6 kilograms/square meter); A = Area, in square feet (square meters), of the projected lateral surface of the vessel above the waterline (including each projected area of the...

  14. 46 CFR 178.340 - Stability standards for pontoon vessels on protected waters.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... = 2.0 feet (0.61 meters); Mw = Wind heeling moment in foot-pounds (kilogram-meters) P = Wind pressure of 7.5 pounds/square foot (36.6 kilograms/square meter); A = Area, in square feet (square meters), of the projected lateral surface of the vessel above the waterline (including each projected area of the...

  15. 46 CFR 178.340 - Stability standards for pontoon vessels on protected waters.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... = 2.0 feet (0.61 meters); Mw = Wind heeling moment in foot-pounds (kilogram-meters) P = Wind pressure of 7.5 pounds/square foot (36.6 kilograms/square meter); A = Area, in square feet (square meters), of the projected lateral surface of the vessel above the waterline (including each projected area of the...

  16. 46 CFR 171.052 - Passenger heel requirements for pontoon vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... on exposed or partially protected waters— (i) 10 foot-degrees with a crowding density of 5 square feet per person (2.15 persons per square meter); and (ii) 7 foot-degrees with a crowding density of 2 square feet per person (5.38 persons per square meter); and (2) For operation on protected waters— (i) 5...

  17. 46 CFR 171.052 - Passenger heel requirements for pontoon vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... on exposed or partially protected waters— (i) 10 foot-degrees with a crowding density of 5 square feet per person (2.15 persons per square meter); and (ii) 7 foot-degrees with a crowding density of 2 square feet per person (5.38 persons per square meter); and (2) For operation on protected waters— (i) 5...

  18. 46 CFR 171.052 - Passenger heel requirements for pontoon vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... on exposed or partially protected waters— (i) 10 foot-degrees with a crowding density of 5 square feet per person (2.15 persons per square meter); and (ii) 7 foot-degrees with a crowding density of 2 square feet per person (5.38 persons per square meter); and (2) For operation on protected waters— (i) 5...

  19. 24 CFR 3285.505 - Crawlspace ventilation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... of ventilation openings must not be less than one square foot (ft.2) for every 150 square feet (ft.2) of the home's floor area. The total area of ventilation openings may be reduced to one square foot (ft.2) for every 1,500 square feet (ft.2) of the home's floor area, where a uniform 6-mil polyethylene...

  20. 24 CFR 3285.505 - Crawlspace ventilation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... of ventilation openings must not be less than one square foot (ft.2) for every 150 square feet (ft.2) of the home's floor area. The total area of ventilation openings may be reduced to one square foot (ft.2) for every 1,500 square feet (ft.2) of the home's floor area, where a uniform 6-mil polyethylene...

  1. 46 CFR 171.052 - Passenger heel requirements for pontoon vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... on exposed or partially protected waters— (i) 10 foot-degrees with a crowding density of 5 square feet per person (2.15 persons per square meter); and (ii) 7 foot-degrees with a crowding density of 2 square feet per person (5.38 persons per square meter); and (2) For operation on protected waters— (i) 5...

  2. 24 CFR 3285.505 - Crawlspace ventilation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... of ventilation openings must not be less than one square foot (ft.2) for every 150 square feet (ft.2) of the home's floor area. The total area of ventilation openings may be reduced to one square foot (ft.2) for every 1,500 square feet (ft.2) of the home's floor area, where a uniform 6-mil polyethylene...

  3. 24 CFR 3285.505 - Crawlspace ventilation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of ventilation openings must not be less than one square foot (ft.2) for every 150 square feet (ft.2) of the home's floor area. The total area of ventilation openings may be reduced to one square foot (ft.2) for every 1,500 square feet (ft.2) of the home's floor area, where a uniform 6-mil polyethylene...

  4. Bathymetric contour maps of lakes surveyed in Iowa in 2004

    USGS Publications Warehouse

    Linhart, S. Mike; Lund, Kris D.

    2006-01-01

    Bathymetric data were collected using a boat-mounted, differential global positioning system, echo depth-sounding equipment, and computer software. Data were processed with commercial hydrographic software and exported into a geographic information system for mapping and calculating area and volume. Lake volume estimates ranged from 83,924,000 cubic feet (1,930 acre-feet) at Lake Darling to 5,967,000 cubic feet (140 acre-feet) at Upper Gar Lake. Surface area estimates ranged from 10,660,000 square feet (240 acres) at Lake Darling to 1,557,000 square feet (36 acres) at Upper Gar Lake.

  5. Bathymetric contour maps for lakes surveyed in Iowa in 2003

    USGS Publications Warehouse

    Linhart, S. Mike; Lund, Kris D.

    2006-01-01

    Bathymetric data were collected using boat-mounted, differential global positioning system (GPS) equipment, echo depth-sounding equipment, and computer software. Data were processed with commercial hydrographic software and exported into a geographic information system (GIS) for mapping and calculation of area and volume. Lake volume estimates ranged from 590,501,000 cubic feet (13,600 acre-feet) at Lake Macbride to 17,831,000 cubic feet (410 acre-feet) at Lake Meyer. Surface area estimates ranged from 38,118,000 square feet (875 acres) at Lake Macbride to 1,373,000 square feet (32 acres) at Lake Meyer.

  6. Geohydrology and effects of water use in the Black Mesa area, Navajo and Hopi Indian Reservations, Arizona

    USGS Publications Warehouse

    Eychaner, James H.

    1981-01-01

    The main source of water in the 5,400-square-mile Black Mesa area is the N aquifer, which consists of the Navajo Sandstone and underlying Kayenta Formation and Wingate Sandstone. Water is under confined conditions in the central 3,300 square miles. Transmissivity is less than 1,000 feet squared per day. Storage coefficient is less than 0.0004 in the confined part of the aquifer and at least 0.1 in the unconfined part. Recharge is about 13,000 acre-feet per year, and storage at equilibrium, which was before 1965, was at least 180 million acre-feet. Ground-water withdrawals were less than 400 acre-feet per year before 1970 and increased to 5,300 acre-feet per year 1976-1979. By 1980, municipal-supply pumpage is expected to exceed that for a coal-slurry pipeline. Water levels have declined throughout the confined part of the aquifer. Decline of more than 100 feet was calculated for an area of 200 square miles through 1979 and was projected for 440 square miles through 2001. In the unconfined part, project declines averaged less than 1 foot. If pumping for coal slurry stopped, most of the decline would recover within 10 years. (USGS)

  7. Workers painting the Flag and Meatball on the VAB

    NASA Image and Video Library

    2007-01-03

    Elevated platforms are seen hanging in front of the NASA Logo on the side of Kennedy Space Center's Vehicle Assembly Building. Also in view on the east side of the building are platforms on the facility's large vertical doors. Workers, suspended on the platforms from the top of the 525-foot-high VAB, use rollers and brushes to do the painting. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the "meatball," measures 110 feet by 132 feet, or about 12,300 square feet.

  8. KSC-07pd0005

    NASA Image and Video Library

    2007-01-03

    KENNEDY SPACE CENTER, FLA. -- Elevated platforms are seen hanging on the side of Kennedy Space Center's Vehicle Assembly Building in a view looking across from the turn basin. To the right is the large external tank barge. Workers, suspended on the platforms from the top of the 525-foot-high VAB, use rollers and brushes to do the painting. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the "meatball," measures 110 feet by 132 feet, or about 12,300 square feet. Photo credit: NASA/George Shelton

  9. 40 CFR Table A-2 to Subpart A of... - Units of Measure Conversions

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Meters (m) Feet (ft) 3.28084 Miles (mi) Kilometers (km) 1.60934 Kilometers (km) Miles (mi) 0.62137 Square feet (ft2) Acres 2.29568 × 10−5 Square meters (m2) Acres 2.47105 × 10−4 Square miles (mi2) Square... Mercury (in Hg) 2.95334 × 10−4 Inches of Mercury (inHg) Pounds per square inch (psi) 0.49110 Pounds per...

  10. 40 CFR Table A-2 to Subpart A of... - Units of Measure Conversions

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Meters (m) Feet (ft) 3.28084 Miles (mi) Kilometers (km) 1.60934 Kilometers (km) Miles (mi) 0.62137 Square feet (ft2) Acres 2.29568 × 10−5 Square meters (m2) Acres 2.47105 × 10−4 Square miles (mi2) Square... Mercury (in Hg) 2.95334 × 10−4 Inches of Mercury (inHg) Pounds per square inch (psi) 0.49110 Pounds per...

  11. 40 CFR Table A-2 to Subpart A of... - Units of Measure Conversions

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Meters (m) Feet (ft) 3.28084 Miles (mi) Kilometers (km) 1.60934 Kilometers (km) Miles (mi) 0.62137 Square feet (ft2) Acres 2.29568 × 10−5 Square meters (m2) Acres 2.47105 × 10−4 Square miles (mi2) Square... Mercury (in Hg) 2.95334 × 10−4 Inches of Mercury (inHg) Pounds per square inch (psi) 0.49110 Pounds per...

  12. 40 CFR Table A-2 to Subpart A of... - Units of Measure Conversions

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Meters (m) Feet (ft) 3.28084 Miles (mi) Kilometers (km) 1.60934 Kilometers (km) Miles (mi) 0.62137 Square feet (ft2) Acres 2.29568 × 10−5 Square meters (m2) Acres 2.47105 × 10−4 Square miles (mi2) Square... Mercury (in Hg) 2.95334 × 10−4 Inches of Mercury (inHg) Pounds per square inch (psi) 0.49110 Pounds per...

  13. 40 CFR Table A-2 to Subpart A of... - Units of Measure Conversions

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Meters (m) Feet (ft) 3.28084 Miles (mi) Kilometers (km) 1.60934 Kilometers (km) Miles (mi) 0.62137 Square feet (ft2) Acres 2.29568 × 10−5 Square meters (m2) Acres 2.47105 × 10−4 Square miles (mi2) Square... Mercury (in Hg) 2.95334 × 10−4 Inches of Mercury (inHg) Pounds per square inch (psi) 0.49110 Pounds per...

  14. Rapid Recharge of Parts of the High Plains Aquifer Indicated by a Reconnaissance Study in Oklahoma, 1999

    USGS Publications Warehouse

    Andrews, William J.; Osborn, Noel I.; Luckey, Richard R.

    2000-01-01

    The High Plains aquifer underlies about 174,000 square miles in parts of eight states, including about 7,100 square miles in northwestern Oklahoma (fig. 1). This aquifer consists of the saturated part of the Ogallala Formation and saturated materials of Quaternary Age that are hydraulically connected to the Ogallala. The High Plains aquifer in northwestern Oklahoma is the primary source of water to an important agricultural region. Most water is withdrawn from the aquifer for irrigating wheat and other grain crops, with the remainder used for livestock (primarily cattle and swine), municipal, and domestic needs. Historically, water from precipitation was thought to take hundreds or thousands of years to reach the water table because the depth of the water table is greater than 100 feet over most of the aquifer and the low-permeability beds in the Ogallala would impede downward flow. It also was thought that land uses would take a similar period of time to affect water quality in the aquifer.

  15. Repainting of the VAB continues

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Vehicle Assembly Building (VAB) gets a facelift with the repainting of the American flag and replacing of the bicentennial emblem with the NASA logo. The painting honors NASA's 40th anniversary on Oct. 1 and is expected to be complete in mid- September. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the 'meatball,' will measure 110 feet by 132 feet, or about 12,300 square feet. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls.

  16. KSC-07pd0006

    NASA Image and Video Library

    2007-01-03

    KENNEDY SPACE CENTER, FLA. -- Elevated platforms are seen hanging in front of the NASA Logo on the side of Kennedy Space Center's Vehicle Assembly Building. Also in view on the east side of the building are platforms on the facility's large vertical doors. Workers, suspended on the platforms from the top of the 525-foot-high VAB, use rollers and brushes to do the painting. The flag and logo were last painted in 1998, honoring NASA's 40th anniversary. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the "meatball," measures 110 feet by 132 feet, or about 12,300 square feet. Photo credit: NASA/George Shelton

  17. KSC-98PC-0998

    NASA Image and Video Library

    1998-08-31

    This aerial view shows the Vehicle Assembly Building (VAB) getting a facelift with the repainting of the American flag and replacing of the Bicentennial emblem with the NASA logo. The painting honors NASA's 40th anniversary on Oct. 1 and is expected to be complete in mid-September. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the 'meatball,' measures 110 feet by 132 feet, or about 12,300 square feet. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls.

  18. A "white elephant" in the library: a case study on loss of space from the Arizona Health Sciences Library at the University of Arizona.

    PubMed

    Freiburger, Gary

    2010-01-01

    The Arizona Health Sciences Library is housed in a 4-story building that serves 4 University of Arizona colleges in Tucson. In October 2005, the dean of the college of medicine informed the library director that one floor of the library had to be converted to open classroom space by June 2006. Library staff planned and participated in the conversion of the space. Twenty thousand seven hundred square feet of library space (34% of public space in the building) was used briefly for large classes but is now rarely used. The space is now largely open and contains a variety of moveable seating and tables not suited for quiet study.

  19. 46 CFR 108.201 - Size of sleeping spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... by the occupants, each sleeping space must have for each occupant— (1) 2.8 square meters (approximately 30 square feet) of deck area; and (2) 6 cubic meters (approximately 210 cubic feet) of volume. (c...

  20. 40 CFR 61.03 - Units and abbreviations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... m=meter m2=square meter m3=cubic meter mg=milligram=10−3gram mm=millimeter=10−3meter Mg=megagram... per minute cc=cubic centimeter Ci=curie d=day °F=degree Fahrenheit ft2=square feet ft3=cubic feet gal... square inch gage °R=degree Rankine µl=microliter=10−6liter v/v=volume per volume yd2=square yards yr=year...

  1. 40 CFR 61.03 - Units and abbreviations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... m=meter m2=square meter m3=cubic meter mg=milligram=10−3gram mm=millimeter=10−3meter Mg=megagram... per minute cc=cubic centimeter Ci=curie d=day °F=degree Fahrenheit ft2=square feet ft3=cubic feet gal... square inch gage °R=degree Rankine µl=microliter=10−6liter v/v=volume per volume yd2=square yards yr=year...

  2. 40 CFR 61.03 - Units and abbreviations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... m=meter m2=square meter m3=cubic meter mg=milligram=10−3gram mm=millimeter=10−3meter Mg=megagram... per minute cc=cubic centimeter Ci=curie d=day °F=degree Fahrenheit ft2=square feet ft3=cubic feet gal... square inch gage °R=degree Rankine µl=microliter=10−6liter v/v=volume per volume yd2=square yards yr=year...

  3. 40 CFR 61.03 - Units and abbreviations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... m=meter m2=square meter m3=cubic meter mg=milligram=10−3gram mm=millimeter=10−3meter Mg=megagram... per minute cc=cubic centimeter Ci=curie d=day °F=degree Fahrenheit ft2=square feet ft3=cubic feet gal... square inch gage °R=degree Rankine µl=microliter=10−6liter v/v=volume per volume yd2=square yards yr=year...

  4. 40 CFR 61.03 - Units and abbreviations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... m=meter m2=square meter m3=cubic meter mg=milligram=10−3gram mm=millimeter=10−3meter Mg=megagram... per minute cc=cubic centimeter Ci=curie d=day °F=degree Fahrenheit ft2=square feet ft3=cubic feet gal... square inch gage °R=degree Rankine µl=microliter=10−6liter v/v=volume per volume yd2=square yards yr=year...

  5. The timber industries of Kentucky

    Treesearch

    James T. Bones; Chauncey J. Lohr

    1977-01-01

    The 1974 timber-industry survey in Kentucky showed that, since 1969: Total timber output has increased 1 percent to 98.1 million cubic feet. Sawlog production has declined less than ½ percent to 489 million board feet. Pulpwood production has increased 69 percent to 133 thousand cords. Veneer-log production has declined 10 percent to 6.3 million board feet....

  6. North Dakota's forest resources in 2002.

    Treesearch

    David Haugen; Gary Brand; Travis Rymal; Michael Kangas

    2004-01-01

    Results of the combined 2001 and 2002 annual forest inventories of North Dakota show over 824 thousand acres of forest land. There are an estimated 744 million cubic feet of all live tree volume, or approximately 902 cubic feet per acre of forest land. Timberland totals 696 million acres with an estimated 409 million cubic feet of growing-stock volume, or...

  7. Repainting of the VAB continues

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Painters are suspended on platforms from the top of the 525-foot- high Vehicle Assembly Building (VAB) at KSC during repainting of the American flag and NASA logo. The flag spans an area 209 feet by 110 feet, or about 23,437 square feet, and will require 510 gallons of red, white and blue paint. Each stripe of the flag is 9 feet wide and each star is 6 feet in diameter. The previous Bicentennial Emblem on the right side of the VAB doors is being replaced by the NASA logo, honoring NASA's 40th anniversary (in October). The logo will cover an area 110 feet by 132 feet, or about 12,300 square feet. The painting platforms are operated by two electric motors and travel 35 feet per minute. Work is being done with rollers, with brushes being used for details. The paint was donated by ICI Devoe of Louisville, Ky. Work is expected to be completed in mid-September.

  8. Repainting of the VAB nearly finished

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This aerial view shows the Vehicle Assembly Building (VAB) getting a facelift with the repainting of the American flag and replacing of the Bicentennial emblem with the NASA logo. The painting honors NASA's 40th anniversary on Oct. 1 and is expected to be complete in mid-September. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the 'meatball,' measures 110 feet by 132 feet, or about 12,300 square feet. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls.

  9. Repainting of the VAB continues

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The American flag is being repainted on the side of the Vehicle Assembly Building (VAB). The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. In addition to the flag, the NASA logo, also known as the 'meatball,' is being painted on the VAB. When finished, the logo will measure 110 feet by 132 feet, or about 12,300 square feet. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls. The painting honors NASA's 40th anniversary on Oct. 1 and is expected to be complete in mid-September.

  10. Repainting of the VAB nearly finished

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This aerial view shows the Vehicle Assembly Building (VAB) getting a facelift with the repainting of the American flag and replacing of the bicentennial emblem with the NASA logo. The painting honors NASA's 40th anniversary on Oct. 1 and is expected to be complete in mid-September. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the 'meatball,' measures 110 feet by 132 feet, or about 12,300 square feet. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls.

  11. Repainting of the VAB continues

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The NASA logo, also known as the 'meatball,' is painted on the side of the Vehicle Assembly Building (VAB). When finished, the logo will measure 110 feet by 132 feet, or about 12,300 square feet. Workers, suspended on platforms from the top of the 525- foot-high VAB, are using rollers and brushes to do the painting. In addition to the logo, the American flag is also being repainted on the other side of the VAB. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls. The painting honors NASA's 40th anniversary on Oct. 1 and is expected to be complete in mid- September.

  12. KSC-98pc988

    NASA Image and Video Library

    1998-08-28

    KENNEDY SPACE CENTER, FLA. -- The American flag is being repainted on the side of the Vehicle Assembly Building (VAB). The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. In addition to the flag, the NASA logo, also known as the "meatball," is being painted on the VAB. When finished, the logo will measure 110 feet by 132 feet, or about 12,300 square feet. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls. The painting honors NASA’s 40th anniversary on Oct. 1 and is expected to be complete in mid-September

  13. KSC-98pc986

    NASA Image and Video Library

    1998-08-28

    KENNEDY SPACE CENTER, FLA. -- The Vehicle Assembly Building (VAB) gets a facelift with the repainting of the American flag and replacing of the bicentennial emblem with the NASA logo. The painting honors NASA’s 40th anniversary on Oct. 1 and is expected to be complete in mid-September. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the "meatball," will measure 110 feet by 132 feet, or about 12,300 square feet. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls

  14. KSC-98pc996

    NASA Image and Video Library

    1998-08-31

    KENNEDY SPACE CENTER, FLA. -- This aerial view shows the Vehicle Assembly Building (VAB) getting a facelift with the repainting of the American flag and replacing of the bicentennial emblem with the NASA logo. The painting honors NASA's 40th anniversary on Oct. 1 and is expected to be complete in mid-September. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the "meatball," measures 110 feet by 132 feet, or about 12,300 square feet. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls

  15. KSC-98pc997

    NASA Image and Video Library

    1998-08-31

    KENNEDY SPACE CENTER, FLA. -- This aerial view shows the Vehicle Assembly Building (VAB) getting a facelift with the repainting of the American flag and replacing of the Bicentennial emblem with the NASA logo. The painting honors NASA's 40th anniversary on Oct. 1 and is expected to be complete in mid-September. The flag spans an area 209 feet by 110 feet, or about 23,437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The logo, also known as the "meatball," measures 110 feet by 132 feet, or about 12,300 square feet. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls

  16. 76 FR 21928 - Washington State University; Facility Operating License No. R-76; Washington State University...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ... late 2008, the site was surrounded for a distance of 400 meters (1300 feet) in all directions by... course is separated from the NRCR by 100 to 200 meters (330 to 660 feet) of land. There is a parcel of land abutting the NRCR of about 10,000 square meters (109,000 square feet) of virgin prairie land which...

  17. Hydrologic analysis of the High Plains aquifer system in Box Butte County, Nebraska

    USGS Publications Warehouse

    Pettijohn, R.A.; Chen, Hsiu-Hsiung

    1984-01-01

    During the past 40 years, pumpage of ground water for irrigation from the High Plains aquifer system underlying Box Butte County, Nebraska, has resulted in a steady decline of water levels. Consequently, a digital model of the aquifer system was constructed to evaluate various water-management alternatives. The hydraulic conductivity of the aquifer system ranges from 6 to 60 feet per day; the specific yield ranges from 12 to 21 percent; and natural recharge ranges from 0.06 to 4.33 inches annually. Predevelopment saturated thickness (1938) ranged from 190 to 510 feet. Water pumped in 1980 was estimated at 104,000 acre-feet from an estimated recoverable volume of 34.4 million acre-feet in the aquifer system. Results from model simulation predict that the area of water-level declines of 10 feet or more will increase from 336 square miles (1981) to 630 square miles by 1991 if pumpage is increased at the maximum annual rate experienced for the period 1972-81. Maximum water-level declines would increase from 50 feet (1981) to 79 feet (1991). However, pumpage rates held at the 1981 level (no further development) would limit the decline area of 10 feet or more to 530 square miles by 1991 and the maximum decline to 63 feet. (USGS)

  18. Most Costly Insects & Diseases of Southern Hardwoods

    Treesearch

    T. H. Filer; J. D. Solomon

    1987-01-01

    Insect borers, especially carpenter worms and red oak borers, cause degrade in oaks, an average of $45 per thousand board feet, and an annual loss of $112 million in the 2.5 billion board feet of oaks cut annually.

  19. The timber industries of New Hampshire and Vermont

    Treesearch

    James T. Bones; Nicolas Engalichev; William G. Gove

    1974-01-01

    The 1972 timber-industry surveys showed that, since the 1959 survey in New Hampshire: Total roundwood output has declined 17 percent to 50.2 million cubic feet. Sawlog production has declined 22 percent to 182.0 million board feet. Pulpwood production has declined 7 percent to 200.7 thousand cords. Veneer-log production has declined 84 percent to 2.1 million board feet...

  20. 46 CFR 28.555 - Freeing ports.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., for area in square meters, or 7.6 plus 0.115 times the length of the bulwark, in feet, for the area in square feet. The length of bulwark need not exceed 0.7 times the overall length of the vessel. (d) Except... than 0.07 times the length of the bulwark, in meters, for an area in square meters (0.23 times the...

  1. 46 CFR 28.555 - Freeing ports.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., for area in square meters, or 7.6 plus 0.115 times the length of the bulwark, in feet, for the area in square feet. The length of bulwark need not exceed 0.7 times the overall length of the vessel. (d) Except... than 0.07 times the length of the bulwark, in meters, for an area in square meters (0.23 times the...

  2. 46 CFR 28.555 - Freeing ports.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., for area in square meters, or 7.6 plus 0.115 times the length of the bulwark, in feet, for the area in square feet. The length of bulwark need not exceed 0.7 times the overall length of the vessel. (d) Except... than 0.07 times the length of the bulwark, in meters, for an area in square meters (0.23 times the...

  3. 46 CFR 28.555 - Freeing ports.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., for area in square meters, or 7.6 plus 0.115 times the length of the bulwark, in feet, for the area in square feet. The length of bulwark need not exceed 0.7 times the overall length of the vessel. (d) Except... than 0.07 times the length of the bulwark, in meters, for an area in square meters (0.23 times the...

  4. 46 CFR 28.555 - Freeing ports.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., for area in square meters, or 7.6 plus 0.115 times the length of the bulwark, in feet, for the area in square feet. The length of bulwark need not exceed 0.7 times the overall length of the vessel. (d) Except... than 0.07 times the length of the bulwark, in meters, for an area in square meters (0.23 times the...

  5. 46 CFR 168.15-15 - Size.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... accommodate, must be marked outside the space. (b) Each room must be of such size that there is at least 1.8 square meters (20 square feet) of deck area and a volume of at least 4.2 cubic meters (150 cubic feet...

  6. 46 CFR 168.15-15 - Size.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... accommodate, must be marked outside the space. (b) Each room must be of such size that there is at least 1.8 square meters (20 square feet) of deck area and a volume of at least 4.2 cubic meters (150 cubic feet...

  7. Estimate of Errors of Pressure Predictions Without Meteorological Forecasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1957-07-31

    Independent methods of estimating pressure were considered-- the range of application in height is from that of baro-fuzed tactical weapons (a few thousand feet) to that of the control of height of aircraft at high altitude (45,000 feet).

  8. Market for Hawaii hardwood lumber in new single-family houses on Oahu, Hawaii

    Treesearch

    John D. Zinnikas; R. Sidney Boone

    1967-01-01

    The total potential market for flooring, siding, and cabinet and millwork in new single-family houses on Oahu was between 10½ and 11 million board feet of lumber in 1963. The total possible market for lumber in new single-family house construction from 1965 to 1970 is estimated at 18 to 23 million square feet of floor-ing, 28 to 36 million square feet of...

  9. KSC-98pc987

    NASA Image and Video Library

    1998-08-28

    KENNEDY SPACE CENTER, FLA. -- The NASA logo, also known as the "meatball," is painted on the side of the Vehicle Assembly Building (VAB). When finished, the logo will measure 110 feet by 132 feet, or about 12,300 square feet. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. In addition to the logo, the American flag is also being repainted on the other side of the VAB. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls. The painting honors NASA’s 40th anniversary on Oct. 1 and is expected to be complete in mid-September

  10. Repainting of the VAB continues

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Painters are dwarfed by the six-foot stars in the blue field of the American flag they are repainting on the side of the Vehicle Assembly Building (VAB). The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. In addition to the flag, the NASA logo, also known as the 'meatball,' is being painted on the VAB. When finished, the logo will measure 110 feet by 132 feet, or about 12,300 square feet. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls. The painting honors NASA's 40th anniversary on Oct. 1 and is expected to be complete in mid-September.

  11. Hydrology and subsidence potential of proposed coal-lease tracts in Delta County, Colorado

    USGS Publications Warehouse

    Brooks, Tom

    1983-01-01

    Potential subsidence from underground coal mining and associated hydrologic impacts were investigated at two coal-lease tracts in Delta County, Colorado. Alteration of existing flow systems could affect water users in the surrounding area. The Mesaverde Formation transmits little ground water because of the neglibile transmissivity of the 1,300 feet of fine-grained sandstone, coal , and shale comprising the formation. The transmissivities of coal beds within the lower Mesaverde Formation ranged from 1.5 to 16.7 feet squared per day, and the transmissivity of the upper Mesaverde Formation, based on a single test, was 0.33 foot squared per day. Transmissivities of the alluvium ranged from 108 to 230 feet squared per day. The transmissivity of unconsolidated Quaternary deposits, determined from an aquifer test, was about 1,900 feet squared per day. Mining beneath Stevens Gulch and East Roatcap Creek could produce surface expressions of subsidence. Subsidence fractures could partly drain alluvial valley aquifers or streamflow in these mines. (USGS)

  12. KSC-98pc915

    NASA Image and Video Library

    1998-08-13

    KENNEDY SPACE CENTER, FLA. -- Painters are suspended on platforms from the top of the 525-foot-high Vehicle Assembly Building (VAB) at KSC during repainting of the American flag and NASA logo. The flag spans an area 209 feet by 110 feet, or about 23,437 square feet, and will require 510 gallons of red, white and blue paint. Each stripe of the flag is 9 feet wide and each star is 6 feet in diameter. The previous Bicentennial Emblem on the right side of the VAB doors is being replaced by the NASA logo, honoring NASA’s 40th anniversary (in October). The logo will cover an area 110 feet by 132 feet, or about 12,300 square feet. The painting platforms are operated by two electric motors and travel 35 feet per minute. Work is being done with rollers, with brushes being used for details. The paint was donated by ICI Devoe of Louisville, Ky. Work is expected to be completed in mid-September

  13. KSC-98pc989

    NASA Image and Video Library

    1998-08-28

    KENNEDY SPACE CENTER, FLA. -- Painters are dwarfed by the six-foot stars in the blue field of the American flag they are repainting on the side of the Vehicle Assembly Building (VAB). The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. In addition to the flag, the NASA logo, also known as the "meatball," is being painted on the VAB. When finished, the logo will measure 110 feet by 132 feet, or about 12,300 square feet. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls. The painting honors NASA’s 40th anniversary on Oct. 1 and is expected to be complete in mid-September

  14. 40 CFR 49.128 - Rule for limiting particulate matter emissions from wood products industry sources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... veneer dryers must not exceed 0.3 pounds per 1000 square feet of veneer dried (3/8 inch basis), one-hour average. (ii) PM10 emissions from steam heated veneer dryers must not exceed 0.3 pounds per 1000 square... dryers must not exceed a total of 0.3 pounds per 1000 square feet of veneer dried (3/8 inch basis) and 0...

  15. 16 CFR 500.8 - Units of weight or mass and measure.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... shall be in terms of both square yards, square feet, and square inches and SI metric square meters, square decimeters, square centimeters, or square millimeters. (e) Statements of dry measure shall be in...

  16. 16 CFR 500.8 - Units of weight or mass and measure.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... shall be in terms of both square yards, square feet, and square inches and SI metric square meters, square decimeters, square centimeters, or square millimeters. (e) Statements of dry measure shall be in...

  17. 16 CFR 500.8 - Units of weight or mass and measure.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... shall be in terms of both square yards, square feet, and square inches and SI metric square meters, square decimeters, square centimeters, or square millimeters. (e) Statements of dry measure shall be in...

  18. 16 CFR 500.8 - Units of weight or mass and measure.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... be in terms of both square yards, square feet, and square inches and SI metric square meters, square decimeters, square centimeters, or square millimeters. (e) Statements of dry measure shall be in terms of...

  19. 16 CFR 500.8 - Units of weight or mass and measure.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... shall be in terms of both square yards, square feet, and square inches and SI metric square meters, square decimeters, square centimeters, or square millimeters. (e) Statements of dry measure shall be in...

  20. 46 CFR 28.160 - Portable fire extinguishers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 2,500 square feet (269.1 sq. meters) or fraction thereof suitable for hazards involved. Paint... square feet (269.1 sq. meters) or fraction thereof located in the vicinity of exits, either inside or... spaces; Internal combustion propelling machinery B-II 1 for each 1,000 brake horsepower or fraction...

  1. School Facility Recommendations for Class Size Reduction.

    ERIC Educational Resources Information Center

    Evans, Ann M.

    The California Department of Education encourages its school districts to make every effort to reduce classroom size and maintain the physical size of 960 square feet for elementary schools and 1,350 square feet for kindergartens. This report examines the Code of Regulations relative to classroom size in elementary, kindergarten, and special…

  2. Geohydrology of the Winchester Subbasin, Riverside County, California

    USGS Publications Warehouse

    Kaehler, Charles A.; Burton, Carmen A.; Rees, Terry F.; Christensen, Allen H.

    1998-01-01

    Aquifer-test results indicate that the transmissivity is about 950 feet squared per day in the eastern part of the Winchester subbasin near the boundary with the Hemet subbasin and about 72 feet squared per day in the western part of the subbasin near the boundary with th

  3. Repainting of the VAB continues

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The worker on the lower left applies the red paint to the chevron while the worker on the right fills in the blue field to the NASA logo they are painting on the Vehicle Assembly Building (VAB). When finished, the logo, also known as the 'meatball,' will measure 110 feet by 132 feet, or about 12,300 square feet. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls. In addition to the logo, the American flag is being repainted on the other side of the VAB. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The painting honors NASA's 40th anniversary on Oct. 1 and is expected to be complete in mid-September.

  4. KSC-98pc990

    NASA Image and Video Library

    1998-08-28

    KENNEDY SPACE CENTER, FLA. -- The worker on the lower left applies the red paint to the chevron while the worker on the right fills in the blue field to the NASA logo they are painting on the Vehicle Assembly Building (VAB). When finished, the logo, also known as the "meatball," will measure 110 feet by 132 feet, or about 12,300 square feet. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls. In addition to the logo, the American flag is being repainted on the other side of the VAB. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The painting honors NASA’s 40th anniversary on Oct. 1 and is expected to be complete in mid-September

  5. KSC-98pc991

    NASA Image and Video Library

    1998-08-28

    KENNEDY SPACE CENTER, FLA. -- The worker on the lower left applies the red paint to the chevron while the worker on the right fills in the blue field to the NASA logo they are painting on the Vehicle Assembly Building (VAB). When finished, the logo, also known as the "meatball," will measure 110 feet by 132 feet, or about 12,300 square feet. Workers, suspended on platforms from the top of the 525-foot-high VAB, are using rollers and brushes to do the painting. The entire fleet of orbiters is also receiving the addition of the NASA logo on their wings and sidewalls. In addition to the logo, the American flag is being repainted on the other side of the VAB. The flag spans an area 209 feet by 110 feet, or about 23, 437 square feet. Each stripe is 9 feet wide and each star is 6 feet in diameter. The painting honors NASA’s 40th anniversary on Oct. 1 and is expected to be complete in mid-September

  6. An allocation of undiscovered oil and gas resources to Big South Fork National Recreation Area and Obed Wild and Scenic River, Kentucky and Tennessee

    USGS Publications Warehouse

    Schenk, Christopher J.; Klett, Timothy R.; Charpentier, Ronald R.; Cook, Troy A.; Pollastro, Richard M.

    2006-01-01

    The U.S. Geological Survey (USGS) estimated volumes of undiscovered oil and gas resources that may underlie Big South Fork National Recreation Area and Obed Wild and Scenic River in Kentucky and Tennessee. Applying the results of existing assessments of undiscovered resources from three assessment units in the Appalachian Basin Province and three plays in the Cincinnati Arch Province that include these land parcels, the USGS allocated approximately (1) 16 billion cubic feet of gas, 15 thousand barrels of oil, and 232 thousand barrels of natural gas liquids to Big South Fork National Recreation Area; and (2) 0.5 billion cubic feet of gas, 0.6 thousand barrels of oil, and 10 thousand barrels of natural gas liquids to Obed Wild and Scenic River. These estimated volumes of undiscovered resources represent potential volumes in new undiscovered fields, but do not include potential additions to reserves within existing fields.

  7. 38 CFR 17.63 - Approval of community residential care facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... patients in the event of fire or other emergency. Incorporation by reference of these materials was..., exclusive of closet space, at least 100 square feet for a single-resident room, or 80 square feet for each... independent living situation. (i) Records. (1) The facility must maintain records on each resident in a secure...

  8. 46 CFR 177.500 - Means of escape.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cinemas, and public accommodation spaces as defined in § 175.400 of this subchapter, except overnight accommodation spaces: One person may be permitted for each 0.9 square meters (10 square feet) of deck area. In..., or the equivalent, of more than 6.1 meters (20 feet) in length is prohibited. (h) Each door, hatch...

  9. 30 CFR 77.1109 - Quantity and location of firefighting equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... paragraph (b) for each 2,500 square feet of floor space in a wooden or other flammable structure, or for each 5,000 square feet of floor space in a metal, concrete-block, or other type of non-flammable... the following combustible liquid storage installations: (1) Near each above ground or unburied...

  10. 30 CFR 77.1109 - Quantity and location of firefighting equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... paragraph (b) for each 2,500 square feet of floor space in a wooden or other flammable structure, or for each 5,000 square feet of floor space in a metal, concrete-block, or other type of non-flammable... the following combustible liquid storage installations: (1) Near each above ground or unburied...

  11. 46 CFR 72.20-20 - Sleeping accommodations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... be of such size that there is at least 2.78 square meters (30 square feet) of deck area and a volume of at least 5.8 cubic meters (210 cubic feet) for each person accommodated. The clear head room shall... another. The berth must be composed of materials not likely to corrode. The overall size of a berth must...

  12. 46 CFR 92.20-20 - Sleeping accommodations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... must be of such size that there is at least 2.78 square meters (30 square feet) of deck area and a volume of at least 5.8 cubic meters (210 cubic feet) for each person accommodated. The clear head room... placed above another. The berth must be composed of materials not likely to corrode. The overall size of...

  13. 46 CFR 92.20-20 - Sleeping accommodations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... must be of such size that there is at least 2.78 square meters (30 square feet) of deck area and a volume of at least 5.8 cubic meters (210 cubic feet) for each person accommodated. The clear head room... placed above another. The berth must be composed of materials not likely to corrode. The overall size of...

  14. 46 CFR 72.20-20 - Sleeping accommodations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... be of such size that there is at least 2.78 square meters (30 square feet) of deck area and a volume of at least 5.8 cubic meters (210 cubic feet) for each person accommodated. The clear head room shall... another. The berth must be composed of materials not likely to corrode. The overall size of a berth must...

  15. 36 CFR 292.16 - Standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... on the property. Signs not to exceed 20 square feet in area, 6 feet in length and 15 feet maximum... and liquid waste originating on or resulting from use of the property. (4) All new utilities will be...-foot frontage on new building sites. (iv) All new buildings set in 10 feet from each side of property...

  16. 46 CFR 190.20-20 - Sleeping accommodations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... persons. (c) Each room must be of such size that there are at least 2.78 square meters (30 square feet) of deck area and a volume of at least 5.8 cubic meters (210 cubic feet) for each person accommodated. The... size of a berth must not be less than 68 centimeters (27 inches) wide by 190 centimeters (75 inches...

  17. 46 CFR 32.40-20 - Sleeping accommodations-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... must be of such size that there is at least 2.78 square meters (30 square feet) of deck area and a volume of at least 5.8 cubic meters (210 cubic feet) for each person accommodated. The clear head room... another. The berth must be composed of materials not likely to corrode. The overall size of a berth must...

  18. 46 CFR 32.40-20 - Sleeping accommodations-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... must be of such size that there is at least 2.78 square meters (30 square feet) of deck area and a volume of at least 5.8 cubic meters (210 cubic feet) for each person accommodated. The clear head room... another. The berth must be composed of materials not likely to corrode. The overall size of a berth must...

  19. Health sciences library building projects, 1998 survey.

    PubMed Central

    Bowden, V M

    1999-01-01

    Twenty-eight health sciences library building projects are briefly described, including twelve new buildings and sixteen additions, remodelings, and renovations. The libraries range in size from 2,144 square feet to 190,000 gross square feet. Twelve libraries are described in detail. These include three hospital libraries, one information center sponsored by ten institutions, and eight academic health sciences libraries. Images PMID:10550027

  20. 78 FR 932 - Alabama Power Company; Notice of Application for Amendment of License and Soliciting Comments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ... prior registration, using the eComment system at http://www.ferc.gov/docs-filing/ecomment.asp . You must... square feet) with 20 tie cleats placed for a total of 10 boat slips. The application also requests... addition, the application includes an existing dock with 10 boat slips and 20 tie cleats (2802 square feet...

  1. Hydrology of the southeastern Coastal Plain aquifer system in South Carolina and parts of Georgia and North Carolina

    USGS Publications Warehouse

    Aucott, Walter R.

    1996-01-01

    Transmissivity values used in the flow simulation range from less than 1,000 feet squared per day near the updip limit of most aquifers to about 30,000 feet squared per day in the Middendorf aquifer in the Savannah River Plant area. Vertical hydraulic conductivity values used in simulation of confining units range from about 6x10-7 feet per day for the confining unit between the Middendorf and Black Creek aquifers in coastal areas to 3x10-2 feet per day for most of the confining units near their updip limits. Storage coefficients used in transient simulations were 0.15 where unconfined conditions exist and 0.0005 where confined conditions exist.

  2. Birch veneer and plywood demand: projected needs of the industry

    Treesearch

    Clark E. McDonald

    1969-01-01

    Production of hardwood plywood in the United States has increased steadily from 1955 to 1967 - almost doubling during this period (table 1). The peak year for shipments of hardwood plywood was 1965, for all species (1,668,313,000 square feet surface measure) and also for birch ( 600,72 3,000 square feet surface measure). The U.S. Bureau of Census figures are not...

  3. Lumber and plywood used in California apartment construction, 1969

    Treesearch

    George B. Harpole

    1973-01-01

    The volume of lumber and plywood products used in apartment construction in California was estimated from a sample of apartments for which architectural plans were completed in 1969. Excluding wood mouldings, doors, cabinets, and shelving, an average of 4.85 board feet of lumber and 2.03 square feet (318-inch basis) of plywood per square foot of floor area were used in...

  4. Understory Vegetation and Overstory Growth in Pine and Pine-Hardwood Shelterwood Stands in the Ouachita Mountains: 5-Year Results

    Treesearch

    Michael G. Shelton

    2004-01-01

    Abstract - Treatments were two overstory compositions (a pine basal area of 30 square feet per acre with and without 15 square feet per acre of hardwoods) and two methods of submerchantable hardwood control (chainsaw felling with and without stump-applied herbicide). After the fifth growing season, pine regeneration averaged 1,870 seedlings per acre...

  5. 26 CFR 1.168(j)-1T - Questions and answers concerning tax-exempt entity leasing rules (temporary).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... same project if the buildings are constructed, under a common plan, within a reasonable time of each...-exempt use property rules? A-8. “Predominantly used” means that for more than 50 percent of the time used...,000 square feet), plus common area of 5,000 square feet. E uses the auditorium 80 percent of the time...

  6. 26 CFR 1.168(j)-1T - Questions and answers concerning tax-exempt entity leasing rules (temporary).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... same project if the buildings are constructed, under a common plan, within a reasonable time of each...-exempt use property rules? A-8. “Predominantly used” means that for more than 50 percent of the time used...,000 square feet), plus common area of 5,000 square feet. E uses the auditorium 80 percent of the time...

  7. 26 CFR 1.168(j)-1T - Questions and answers concerning tax-exempt entity leasing rules (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... same project if the buildings are constructed, under a common plan, within a reasonable time of each...-exempt use property rules? A-8. “Predominantly used” means that for more than 50 percent of the time used...,000 square feet), plus common area of 5,000 square feet. E uses the auditorium 80 percent of the time...

  8. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, an orbital maneuvering system (OMS) pod is moved into place on Atlantis. It is one of two OMS pods attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, an orbital maneuvering system (OMS) pod is moved into place on Atlantis. It is one of two OMS pods attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.

  9. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, an orbital maneuvering system (OMS) pod is suspended in air as it is moved toward Atlantis for installation. Two OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, an orbital maneuvering system (OMS) pod is suspended in air as it is moved toward Atlantis for installation. Two OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.

  10. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, an orbital maneuvering system (OMS) pod is moved closer to Atlantis for installation. Two OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, an orbital maneuvering system (OMS) pod is moved closer to Atlantis for installation. Two OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.

  11. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, technicians make adjustments to the orbital maneuvering system (OMS) pod being installed on Atlantis. The OMS pod is one of two that are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, technicians make adjustments to the orbital maneuvering system (OMS) pod being installed on Atlantis. The OMS pod is one of two that are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.

  12. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, one of two orbital maneuvering system (OMS) pods is being moved for installation on Atlantis. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, one of two orbital maneuvering system (OMS) pods is being moved for installation on Atlantis. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.

  13. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, technicians move an orbital maneuvering system (OMS) pod into the correct position on Atlantis. The OMS pod is one of two that are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, technicians move an orbital maneuvering system (OMS) pod into the correct position on Atlantis. The OMS pod is one of two that are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.

  14. Low flow of streams in the Susquehanna River basin of New York

    USGS Publications Warehouse

    Randall, Allan D.

    2011-01-01

    The principal source of streamflow during periods of low flow in the Susquehanna River basin of New York is the discharge of groundwater from sand-and-gravel deposits. Spatial variation in low flow is mostly a function of differences in three watershed properties: the amount of water that is introduced to the watershed and available for runoff, the extent of surficial sand and gravel relative to till-mantled bedrock, and the extent of wetlands. These three properties were consistently significant in regression equations that were developed to estimate several indices of low flow expressed in cubic feet per second or in cubic feet per second per square mile. The equations explain 90 to 99 percent of the spatial variation in low flow. A few equations indicate that underflow that bypasses streamflow-measurement sites through permeable sand and gravel can significantly decrease low flows. Analytical and numerical groundwater-flow models indicate that spatial extent, hydraulic conductivity and thickness, storage capacity, and topography of stratified sandand- gravel deposits affect low-flow yields from those deposits. Model-simulated discharge of groundwater to streams at low flow reaches a maximum where hydraulic-conductivity values are about 15 feet per day (in valleys 0.5 mile wide) to 60 feet per day (in valleys 1 mile wide). These hydraulic-conductivity values are much larger than those that are considered typical of till and bedrock, but smaller than values reported for productive sand-and-gravel aquifers in some valley reaches in New York. Differences in the properties of till and bedrock and in land-surface slope or relief within the Susquehanna River basin of New York apparently have little effect on low flow. Three regression equations were selected for practical application in estimating 7-day mean low flows in cubic feet per second with 10-year and 2-year recurrence intervals, and 90-percent flow duration, at ungaged sites draining more than 30 square miles; standard errors were 0.88, 1.40, and 1.95 cubic feet per second, respectively. Equations that express low flows in cubic feet per second per square mile were selected for estimating these three indices at ungaged sites draining less than 30 square miles; standard errors were 0.012, 0.018, and 0.022 cubic feet per second per square mile, respectively.

  15. Dual frequency scatterometer measurement of ocean wave height

    NASA Technical Reports Server (NTRS)

    Johnson, J. W.; Jones, W. L.; Swift, C. T.; Grantham, W. L.; Weissman, D. E.

    1975-01-01

    A technique for remotely measuring wave height averaged over an area of the sea surface was developed and verified with a series of aircraft flight experiments. The measurement concept involves the cross correlation of the amplitude fluctuations of two monochromatic reflected signals with variable frequency separation. The signal reflected by the randomly distributed specular points on the surface is observed in the backscatter direction at nadir incidence angle. The measured correlation coefficient is equal to the square of the magnitude of the characteristic function of the specular point height from which RMS wave height can be determined. The flight scatterometer operates at 13.9 GHz and 13.9 - delta f GHz with a maximum delta f of 40 MHz. Measurements were conducted for low and moderate sea states at altitudes of 2, 5, and 10 thousand feet. The experimental results agree with the predicted decorrelation with frequency separation and with off-nadir incidence angle.

  16. The timber industries of West Virginia

    Treesearch

    James T. Bones; Ralph P., Jr. Glover

    1977-01-01

    The 1974 timber-industry survey in West Virginia showed that since 1965: Total roundwood output of industrial products has declined by 19 percent to 106.6 million cubic feet. Sawlog production has declined by 14 percent to 464 million board feet. Pulpwood production has declined by 33 percent to 214 thousand cords. Veneer-log production has declined by 38 percent to 3....

  17. Logging costs and production rates for the group selection cutting method

    Treesearch

    Philip M. McDonald

    1965-01-01

    Young-growth, mixed-conifer stands were logged by a group-selection method designed to create openings 30, 60, and 90 feet in diameter. Total costs for felling, limbing, bucking, and skidding on these openings ranged from $7.04 to $7.99 per thousand board feet. Cost differences between openings were not statistically significant. Logging costs for group selection...

  18. The Pacific Basin market for wood products for military support activities

    Treesearch

    John D. Zinnikas

    1966-01-01

    Military support activities in Hawaii use between 50 and 150 thousand board feet of lumber annually for which locally grown and produced hardwood lumber might be used. In addition, the "other Pacific" market uses about 2 million board feet of hard-wood lumber annually. The Pacific Basin can be an important market for the Hawaii timber products industry...

  19. Ohio timber products output - 1983

    Treesearch

    Richard H. Widmann; Michael Long

    1986-01-01

    The total industrial harvest in Ohio was over 82 million cubic feet in 1983. This was up 17 percent since 1978. Sawlogs accounted for 57 percent of the total and pulpwood accounted for 36 percent. During this 5-year period, sawlog production was up 7 percent to 318.3 million board feet, and total pulpwood production was up 24 percent to 461.8 thousand cords....

  20. Solar space heating installed at Kansas City, Kansas

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The solar energy system was constructed with the 48,800 square feet warehouse to heat the warehouse area of about 39,000 square feet while an auxiliary energy system heats the office area of about 9,800 square feet. The building is divided into 20 equal units, and each has its own solar system. The modular design permits the flexibility of combining multiple units to form offices or warehouses of various size floor areas as required by a tenant. Each unit has 20 collectors which are mounted in a single row. The collectors are double glazed flat plate collectors with a gross area of 7,800 sq ft. Air is heated either through the collectors or by the electric resistance duct coils. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are presented.

  1. SIMS prototype system 4: Design data brochure

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A pre-package prototype unit having domestic hot water and room solar heating capability that uses air as the collector fluid is described. This system is designed to be used with a small single-family dwelling where a roof mounted collector array is not feasible. The prototype unit is an assemble containing 203 square feet of effective collector surface with 113 cubic feet of rock storage. The design of structure and storage is modular, which permits expansion and reduction of the collector array and storage bed in 68 square feet and 37 cubic feet increments respectively. The system is designed to be transportable. This permitted assemble and certification testing in one area and installation in another area without tear down and reassemble. Design, installation, operation, performance and maintenance of this system are described.

  2. Changes in ground-water levels in the Carlin Trend area, north-central Nevada, 1989-2003

    USGS Publications Warehouse

    Plume, Russell W.

    2005-01-01

    Ground-water pumpage in support of gold mining activities, including mine dewatering, has resulted in water-level declines and rises in different parts of the Carlin Trend area in north-central Nevada. Total annual pumpage at the Gold Quarry, Carlin, Genesis, and Betze Mines has ranged from about 5,000 acre-feet in 1989 to almost 130,000 acre-feet in 1994 and 1998. Excess water from the mines is stored in the TS Ranch and Maggie Creek Reservoirs. Aquifers in the Carlin Trend area are comprised of carbonate rocks of Cambrian to Permian age and basin-fill deposits and interbedded volcanic rocks of Tertiary and Quaternary age. Since 1992, water levels in carbonate-rock aquifers near the Gold Quarry Mine have declined as much as 680 feet below an elongate area 12 miles long and 6 miles wide northwest and southeast from the mine. Since 1990, water levels have declined by more than 1,600 feet in the deepest part of the cone of depression at the Betze Mine. The area encompassed by the main part of the cone, which is 7 miles long by 4 miles wide, did not change much during 1993-2003, although its depth had doubled. Near both mines, the cones of depression are bounded by faults acting as barriers to ground-water flow. Water levels in the volcanic rocks of northern Boulder Flat began to rise soon after the TS Ranch Reservoir began filling in 1990 because of infiltration. Since 1990, the net water-level rise around the reservoir has been 50 feet or more over an area of about 2 square miles, and 20 feet or more over an area of about 60 square miles. Since 1992, water levels in basin-fill deposits in Boulder Flat have risen 5 feet or more over an estimated area of 20 square miles as a result of (1) use of water from the Betze Mine as a substitute for irrigation pumpage, (2) water from the TS Ranch Reservoir infiltrating volcanic rocks and then flowing southward into adjacent basin-fill deposits, (3) secondary recharge of water from the mine for irrigating about 10,000 acres, and (4) discharge from three new springs in northeastern Boulder Flat. Water-level declines in carbonate rocks near the Gold Quarry Mine have not affected water levels in overlying basin-fill deposits. Declines were no more than a few feet north and west of the mine because older basin-fill deposits at the base of the Carlin Formation consist of fine-grained poorly permeable sediments. Water levels rose 5 feet to more than 20 feet over an area of 6-7 square miles around the Maggie Creek Reservoir in response to infiltration. A few miles farther south, water levels rose as much as 5 feet over an area of 3 square miles as a combined result of the infiltration of irrigation water and flow of Maggie Creek into permeable volcanic rocks in the stream channel. An area of 1,900 acres about 10 miles north of Battle Mountain in the Clovers Area has been pumped for irrigation since the early 1970's. Since 1989, water levels have declined 5-15 feet over an area of 15 square miles.

  3. Effects of Retaining a Hardwood Component During the Application of Uneven-Aged Silviculture in a Shortleaf Pine-Oak Stand: 6-Year Results

    Treesearch

    Michael G. Shelton

    2004-01-01

    Abstract - Treatments were the following hardwood basal areas (square feet per acre) and spatial arrangements: 0, 15-grouped, 15-scattered, 30-scattered, and an untreated control. Pine basal area was reduced by harvesting to 60 square feet per acre in all treatments except the control. After six growing seasons, pine regeneration ranged from 8,890...

  4. Timber resources of the Kuskokwim flood plain and adjacent upland.

    Treesearch

    Karl M. Hegg; Harold. Sieverding

    1979-01-01

    The first intensive forest inventory of the Kuskokwim River flood plains and adjacent uplands was conducted in 1967. A commercial forest area of 252.5 thousand acres (102.2 thousand hectares) was identified with a growing-stock volume of 343.0 million cubic feet (9.7 million cubic meters). A noncommercial stratum was also examined that had substantial standing volume...

  5. Timber resource statistics for the Porcupine inventory unit ofAlaska, 1978.

    Treesearch

    Theodore S. Setzer

    1987-01-01

    A timber resource inventory of the Porcupine inventory unit, Alaska, was conducted in 1977 and 1978. Statistics on forest area, timber volumes, and annual growth and mortality from this inventory are presented. Timberland area is estimated at 1,453 thousand acres, and net growing stock volume, mostly softwood, is 530,505 thousand cubic feet. Net annual growth of...

  6. Timber resource statistics for the Yakataga inventory unit, Alaska, 1976.

    Treesearch

    Willem W.S. van Hees

    1985-01-01

    Statistics on forest area, total gross and net timber volumes, and annual net growth and mortality are presented from the 1976 timber inventory of the Yakataga unit, Alaska. Timberland area is estimated at 209.3 thousand acres (84.7 thousand ha), net growing stock volume at 917.1 million cubic feet (26.0 million m3), and annual net growth and...

  7. 46 CFR 108.489 - Helicopter fueling facilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the rate of 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot... for each square meter (.1 gallon per minute for each square foot) of area covered for five minutes. (3....87 square meters (300 square feet). (b) If the fire protection system required by § 108.487 of this...

  8. 46 CFR 108.489 - Helicopter fueling facilities.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the rate of 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot... for each square meter (.1 gallon per minute for each square foot) of area covered for five minutes. (3....87 square meters (300 square feet). (b) If the fire protection system required by § 108.487 of this...

  9. 46 CFR 108.489 - Helicopter fueling facilities.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the rate of 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot... for each square meter (.1 gallon per minute for each square foot) of area covered for five minutes. (3....87 square meters (300 square feet). (b) If the fire protection system required by § 108.487 of this...

  10. 46 CFR 171.145 - Drainage of a vessel with a cockpit.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... either of the following equations: A=0.1(D) square inches. A=6.94(D) square centimeters. Where— A = the combined area of the scuppers in square inches (square centimeters). D = the area of the cockpit in square feet (square meters). (e) The cockpit deck of a vessel that operates on exposed or partially protected...

  11. 46 CFR 171.145 - Drainage of a vessel with a cockpit.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... either of the following equations: A=0.1(D) square inches. A=6.94(D) square centimeters. Where— A = the combined area of the scuppers in square inches (square centimeters). D = the area of the cockpit in square feet (square meters). (e) The cockpit deck of a vessel that operates on exposed or partially protected...

  12. 46 CFR 171.145 - Drainage of a vessel with a cockpit.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... either of the following equations: A=0.1(D) square inches. A=6.94(D) square centimeters. Where— A = the combined area of the scuppers in square inches (square centimeters). D = the area of the cockpit in square feet (square meters). (e) The cockpit deck of a vessel that operates on exposed or partially protected...

  13. 46 CFR 171.145 - Drainage of a vessel with a cockpit.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... either of the following equations: A=0.1(D) square inches. A=6.94(D) square centimeters. Where— A = the combined area of the scuppers in square inches (square centimeters). D = the area of the cockpit in square feet (square meters). (e) The cockpit deck of a vessel that operates on exposed or partially protected...

  14. 46 CFR 171.145 - Drainage of a vessel with a cockpit.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... either of the following equations: A=0.1(D) square inches. A=6.94(D) square centimeters. Where— A = the combined area of the scuppers in square inches (square centimeters). D = the area of the cockpit in square feet (square meters). (e) The cockpit deck of a vessel that operates on exposed or partially protected...

  15. 46 CFR 108.489 - Helicopter fueling facilities.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the rate of 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot... for each square meter (.1 gallon per minute for each square foot) of area covered for five minutes. (3....87 square meters (300 square feet). (b) If the fire protection system required by § 108.487 of this...

  16. 46 CFR 108.489 - Helicopter fueling facilities.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the rate of 6.52 liters per minute for each square meter (.16 gallons per minute for each square foot... for each square meter (.1 gallon per minute for each square foot) of area covered for five minutes. (3....87 square meters (300 square feet). (b) If the fire protection system required by § 108.487 of this...

  17. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers discuss the next step in moving the orbital maneuvering system (OMS) pod behind them. The OMS pod will be installed on Atlantis. Two OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers discuss the next step in moving the orbital maneuvering system (OMS) pod behind them. The OMS pod will be installed on Atlantis. Two OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.

  18. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, technicians make final adjustments to the orbital maneuvering system (OMS) pod being installed on Atlantis. The OMS pod is one of two that are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, technicians make final adjustments to the orbital maneuvering system (OMS) pod being installed on Atlantis. The OMS pod is one of two that are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.

  19. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, one of two orbital maneuvering system (OMS) pods is lifted off its stand to move it toward Atlantis for installation. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.

    NASA Image and Video Library

    2003-10-30

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, one of two orbital maneuvering system (OMS) pods is lifted off its stand to move it toward Atlantis for installation. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts.

  20. Distribution of Mature Cones, Conelets, and Old Cones in Shortleaf Pine-Oak Stands an Uneven-Aged Regeneration Cut

    Treesearch

    Kenneth J. Grayson; Robert F. Wittwer; Michael G. Shelton

    2004-01-01

    Sixteen shortleaf pine trees were felled in a stand 10 years after an uneven-aged regeneration cut reduced pine basal area to 60 square feet per acre and hardwoods were controlled. Sixteen unreleased trees in an adjacent uncut pine-hardwood stand (120 square feet per acre) were felled for comparison. Sample trees were selected from four 2-inch d.b.h. classes (11, 13,...

  1. Geohydrology of the Englishtown Formation in the northern Coastal Plain of New Jersey

    USGS Publications Warehouse

    Nichols, W.D.

    1977-01-01

    The Englishtown Formation of the Matawan Group of Late Cretaceous age is exposed in the western part of the New Jeresy Coastal Plain along a northeast-southwest trending zone extending from Raritan Bay to Delaware Bay. In outcrop, in the northern part of the Coastal Plain, the Englishtown typically consists of a series of thin, cross-stratified, fine- to medium-grained lignitic quartz sand beds intercalated with thin beds of sandy silty clay and clayey silt, ranging in total thickness from about 140 feet (43 meters) near Raritan Bay to about 50 feet (15 meters) near Trenton. In the subsurface of the northern part of the Coastal Plain, the formation retains most of the lithologic characteristics displayed in outcrop. In northern and eastern Ocean County the Englishtown can be subdivided into three distinct lithologic units; upper and lower units of quartz sand with thin interbeds of dark sandy silt, separated by a thick sequence of sandy and clayey lignitic silt. The confined part of the aquifer in the Englishtown Formation is utilized as a source of water over an area of about 1,100 square miles (2,849 square kilometers) of the New Jersey Coastal Plain and is an important source of supply in Monmouth and northern Ocean Counties. The annual average rate of withdrawal from the aquifer in the two-county area increased from 5.5 million gallons per day (0.24 cubic meters per second) in 1959 to 9.5 million gallons per day (0.4 cubic meters per second) in 1970. Water levels in parts of this area were declining 8 to 12 feet (2.4 to 3.6 meters) per year as of 1970 and they declined as much as 140 feet (43 meters) between 1959 and 1970 near pumping centers. The aquifer transmissivity ranges from 2,400 square feet per day to 650 square feet per day (223 square meters per day to 60 square meters per day); the estimated hydraulic conductivity ranges from about 11 feet per day to 20 feet per day (3.3 meters per day to 6.1 meters per day); and the storage coefficient ranges from 8 x 10-5 to 3 x 10-4. The underlying and overlying confining beds, which have an average thickness of 200 feet (61 meters) and 40 feet (12 meters), respectively, have vertical hydraulic conductivities on the order of 1 x 10-5 feet per day (3 x 10-6 meters per day) and specific storage on the order of 8 x 10-5 ft-1 (2.4 x 10-5 m-1). The Englishtown aquifer is an integral part of the complex multi- aquifer system of the New Jersey Coastal Plain. The withdrawal of water from the Englishtown aquifer has had a marked effect on the water level in the overlying Moutn Laurel aquifer, and these effects will continue so long as the water level in the Englishtown continues to decline. Any increase in the development of the Mount Laurel aquifer that reduces the volume of leakage to the Englishtown will cause an increase in the rate of water-level decline in the Englishtown even with no increase in direct withdrawals. The interrelationship and interdependency between pumping stresses in individual aquifers within the complex Coastal Plain aquifer sytem must be recognized and appreciated, and the hydrodynamics of all parts of the system must be considered if reliable predictions of aquifer response to these stresses are to be made. Such predictions generally require a simulation model analysis of the system.

  2. 48 CFR 552.270-20 - Payment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., ABOA square footage delivered will be confirmed by either: (1) The Government's measurement of plans... of ABOA square footage stated in the lease. (c) If the amount of ABOA square footage delivered is... space delivered and the annual rental will be adjusted as follows: ABOA square feet not delivered...

  3. 48 CFR 552.270-20 - Payment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., ABOA square footage delivered will be confirmed by either: (1) The Government's measurement of plans... of ABOA square footage stated in the lease. (c) If the amount of ABOA square footage delivered is... space delivered and the annual rental will be adjusted as follows: ABOA square feet not delivered...

  4. 48 CFR 552.270-20 - Payment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., ABOA square footage delivered will be confirmed by either: (1) The Government's measurement of plans... of ABOA square footage stated in the lease. (c) If the amount of ABOA square footage delivered is... space delivered and the annual rental will be adjusted as follows: ABOA square feet not delivered...

  5. 48 CFR 552.270-20 - Payment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., usable square footage delivered will be confirmed by either: (1) The Government's measurement of plans... of usable square footage stated in the lease. (c) If the amount of usable square footage delivered is... space delivered and the annual rental will be adjusted as follows: Usable square feet (USF) not...

  6. 48 CFR 552.270-20 - Payment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., ABOA square footage delivered will be confirmed by either: (1) The Government's measurement of plans... of ABOA square footage stated in the lease. (c) If the amount of ABOA square footage delivered is... space delivered and the annual rental will be adjusted as follows: ABOA square feet not delivered...

  7. Northern Chile and Andes Mountains seen from STS-61 Shuttle Endeavour

    NASA Image and Video Library

    1993-12-09

    STS061-101-023 (8 Dec 1993) --- This color photograph is a spectacular, panoramic (southeastern view) shot that features the northern half of the country of Chile and the Andes Mountains of South America. The Atacama Desert, one of the driest regions on earth, is clearly visible along the northern Chilean coast. This desert extends from roughly Arica in the north to the city of Caldera in the south, a distance of six hundred miles. Some parts of this very arid region go for more than twenty years without measurable precipitation. It is an area of dramatic and abrupt elevation changes. For example, from the waters edge there is an escarpment of the coastal plateau that rises like an unbroken wall two or three thousand feet above the Pacific Ocean. From the coastal plateau, there is an even more dramatic increase in elevation -- from two thousand feet above sea level to an average elevation of thirteen thousand feet above sea level in the Bolivian Altiplano. This elevation change occurs within a one hundred to two hundred mile distance from the Pacific Ocean. The north-south trending spine of the Andes Mountains can be seen on this photograph. Several of the volcanic peaks in this mountain chain exceed 20,000 feet above sea level. Interspersed with these volcanic peaks, numerous dry lake beds (salars) can be seen as highly reflective surfaces. The largest of these salars (Salar de Uyuni) is visible at the edge of the Hubble Space Telescope (HST). Offshore, the cold Peruvian current produces low stratus clouds that can be found along this coastline at certain times of the year. This is the same type of meteorological phenomena that is found along the southern California coast and the Skeleton coast of southwestern Africa.

  8. Timber resource statistics for the Yakutat inventory unit, Alaska, 1975.

    Treesearch

    Willem W.S. Van Hees; Vernon J. LaBau

    1984-01-01

    Statistics on forest area, total gross and net,timber volumes, and annual net growth and mortality are presented from the 1975 timber inventory of the Yakutat unit, Alaska. Area of timberland is estimated at 236.3 thousand acres (95.6 thousand ha), net volume of growing stock at 1.1 billion cubic feet (29.9 million m3), and annual net growth and...

  9. Test well DO-CE 88 at Cambridge, Dorchester County, Maryland

    USGS Publications Warehouse

    Trapp, Henry; Knobel, LeRoy L.; Meisler, Harold; Leahy, P. Patrick

    1984-01-01

    Test well DO-CE 88 at Cambridge, Maryland, penetrated 3,299 feet of unconsolidated Quaternary, Tertiary and Cretaceous sediments and bottomed in quartz-monzonite gneiss. The well was drilled to provide data for a study of the aquifer system of the northern Atlantic Coastal Plain. Twenty-one core samples were collected. Six sand zones were tested for aquifer properties and sampled for ground-water chemistry. Point-water heads were measured at seven depths. Environmental heads (which ranged from - 18.33 to + 44.16 feet relative to sea level)indicate an upward component of flow. A temperature log showed a maximum temperature of 41.9 degrees Celsius and a mean temperature gradient of 0.00838 degrees Celsius per foot. The water analyses delineated the freshwater-saltwater transition zone between 2,650 and 3,100 feet. The ground water changes progressively downward from a sodium bicarbonate to a sodium chloride character. Clays in the analyzed core samples belong to the montmorillonite and kaolinite groups, and mean cation exchange capacity ranged from 8.3 to 38.9 milliequivalents per 100 grams. Vertical and horizontal hydraulic conductivities measured in cores ranged from 1.5 x 10 6 to 1.3 feet per day and from 7.3 x 10 -6 to 1.3 feet per day, respectively, but the most permeable sands were not cored. Porosity was 1.5 percent in the quartz monzonite bedrock and ranged from 22.4 to 41 percent in the overlying sediments. Transmissivities from aquifer tests ranged from 25 to 850 feet squared per day; horizontal hydraulic conductivities ranged from.2.5 to 85 feet squared per day, and intrinsic permeabilities ranged from 0.8 to 23 micrometers squared. Fossils identified in core samples include palynomorphs, dinoflagellates, and foraminifers.

  10. Aquifer test results, Green Swamp area, Florida

    USGS Publications Warehouse

    Tibbals, C.H.; Grubb, Hayes F.

    1982-01-01

    An aquifer test conducted in the Green Swamp area December 15-16 , 1975 was designed to stress the uppermost part of the Floridan aquifer so that the leakage characteristics of the overlying confining bed could be determined. A well tapping the upper part of the Floridan aquifer was pumped at a rate of about 1,040 gallons per minute for 35 hours; drawdown was measured in the Floridan aquifer and in two horizons in the confining bed. Analysis of the data indicates that the transmissivity of the uppper 160 feet of the Floridan is 13,000 square feet per day, the storage coefficient is about 0.0002.5, and the overlying confining bed leakance coefficient is about 0.02 to 0.025 per day. The vertical hydraulic diffusivity of the confining bed ranged from 610 square feet per day to 16,000 square feet per day. Results of the test indicate that, in the area of the test site, a Floridan aquifer well field would induce additional recharge to the Floridan. As a result of that increased recharge , water levels in the surficial aquifer would tend to stand lower, runoff from the area would tend to be less, and, perhaps, evapotranspiration would be less than normal.(USGS)

  11. Geohydrology and water quality of stratified-drift aquifers in the Saco and Ossipee River basins, east-central New Hampshire

    USGS Publications Warehouse

    Moore, R.B.; Medalie, Laura

    1995-01-01

    Stratified-drift aquifers discontinuously underlie 152.5 square miles of the Saco and Ossipee River Basins, which have a total drainage area of 869.4 square miles. Saturated thicknesses of stratified drift in the study area are locally greater than 280 feet, but generally are less. Transmissivity locally exceeds 8,000 feet squared per day but are generally less. About 93.6 square miles, or 10.8 percent of the study area, are identified as having transmissivity greater than 1,000 feet squared per day. The stratified-drift aquifer in Ossipee, Freedom, Effingham, Madison, and Tamworth was analyzed for the availability of ground water by use of transient simulations and a two-dimensional, finite-difference ground-water-flow model. The numerical -model results indicate that potential available water amounts in this aquifer are 7.72 million gallons per day. Sample results of water- quality analyses obtained from 25 test wells and 4 springs indicated that water was generally suitable for drinking and other domestic purposes. Concen- trations of dissolved constituents in ground-water samples are less than or meet U.S. Environmental Protection Agency (USEPA)primary and secondary drinking-water regulations. Concentrations of inorganic constituents that exceeded the USEPA's secondary regulations were chloride and sodium, iron manganese, and fluoride.

  12. A technique for estimating ground-water levels at sites in Rhode Island from observation-well data

    USGS Publications Warehouse

    Socolow, Roy S.; Frimpter, Michael H.; Turtora, Michael; Bell, Richard W.

    1994-01-01

    Estimates of future high, median, and low ground- water levels are needed for engineering and architectural design decisions and for appropriate selection of land uses. For example, the failure of individual underground sewage-disposal systems due to high ground-water levels can be prevented if accurate water-level estimates are available. Estimates of extreme or average conditions are needed because short duration preconstruction obser- vations are unlikely to be adequately represen- tative. Water-level records for 40 U.S. Geological Survey observation wells in Rhode Island were used to describe and interpret water-level fluctuations. The maximum annual range of water levels average about 6 feet in sand and gravel and 11 feet in till. These data were used to develop equations for estimating future high, median, and low water levels on the basis of any one measurement at a site and records of water levels at observation wells used as indexes. The estimating technique relies on several assumptions about temporal and spatial variations: (1) Water levels will vary in the future as they have in the past, (2) Water levels fluctuate seasonally (3) Ground-water fluctuations are dependent on site geology, and (4) Water levels throughout Rhode Island are subject to similar precipitation and climate. Comparison of 6,697 estimates of high, median, and low water levels (depth to water level exceeded 95, 50, and 5 percent of the time, respectively) with the actual measured levels exceeded 95, 50, and 5 percent of the time at 14 sites unaffected by pumping and unknown reasons, yielded mean squared errors ranging from 0.34 to 1.53 square feet, 0.30 to 1.22 square feet, and 0.32 to 2.55 square feet, respectively. (USGS)

  13. KENNEDY SPACE CENTER, FLA. - This bird's-eye view of a high bay in the Orbiter Processing Facility (OPF) shows Space Shuttle Atlantis surrounded by the standard platforms and equipment required to process a Space Shuttle orbiter for flight. The high bay is 197 feet (60 meters) long, 150 feet (46 meters) wide, 95 feet (29 meters) high, and encompasses a 29,000-square-foot (2,694-meter) area. Platforms, a main access bridge, and two rolling bridges with trucks provide access to various parts of the orbiter. The next mission scheduled for Atlantis is STS-114, a utilization and logistics flight to the International Space Station.

    NASA Image and Video Library

    2003-09-03

    KENNEDY SPACE CENTER, FLA. - This bird's-eye view of a high bay in the Orbiter Processing Facility (OPF) shows Space Shuttle Atlantis surrounded by the standard platforms and equipment required to process a Space Shuttle orbiter for flight. The high bay is 197 feet (60 meters) long, 150 feet (46 meters) wide, 95 feet (29 meters) high, and encompasses a 29,000-square-foot (2,694-meter) area. Platforms, a main access bridge, and two rolling bridges with trucks provide access to various parts of the orbiter. The next mission scheduled for Atlantis is STS-114, a utilization and logistics flight to the International Space Station.

  14. Bathymetric Contour Maps of Lakes Surveyed in Iowa in 2005

    USGS Publications Warehouse

    Linhart, S.M.; Lund, K.D.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, conducted bathymetric surveys on seven lakes in Iowa during 2005 (Arrowhead Pond, Central Park Lake, Lake Keomah, Manteno Park Pond, Lake Miami, Springbrook Lake, and Yellow Smoke Lake). The surveys were conducted to provide the Iowa Department of Natural Resources with information for the development of total maximum daily load limits, particularly for estimating sediment load and deposition rates. The bathymetric surveys provide a baseline for future work on sediment loads and deposition rates for these lakes. All of the lakes surveyed in 2005 are man-made lakes with fixed spillways. Bathymetric data were collected using boat-mounted, differential global positioning system, echo depth-sounding equipment, and computer software. Data were processed with commercial hydrographic software and exported into a geographic information system for mapping and calculating area and volume. Lake volume estimates ranged from 47,784,000 cubic feet (1,100 acre-feet) at Lake Miami to 2,595,000 cubic feet (60 acre-feet) at Manteno Park Pond. Surface area estimates ranged from 5,454,000 square feet (125 acres) at Lake Miami to 558,000 square feet (13 acres) at Springbrook Lake.

  15. Israel: Possible Military Strike Against Iran’s Nuclear Facilities

    DTIC Science & Technology

    2012-03-27

    centrifuge facility and a larger commercial facility located at this site. The commercial facility is reportedly hardened by steel-reinforced concrete , buried...prime minister has had to contemplate. A strike against Iran’s nuclear facilities could lead to regional conflagration , tens of thousands of...high explosives, and can penetrate more than 6 feet of reinforced concrete . The GBU-28 5000-lb class weapon penetrates at least 20 feet of concrete

  16. Reinvisioning and redesigning “a library for the fifteenth through twenty-first centuries”: a case study on loss of space from the Library and Center for Knowledge Management, University of California, San Francisco*

    PubMed Central

    Persily, Gail L.; Butter, Karen A.

    2010-01-01

    The University of California, San Francisco, is an academic health sciences campus that is part of a state public university system. Space is very limited at this urban campus, and the library building's 90,000 square feet represent extremely valuable real estate. A planning process spanning several years initially proposed creating new teaching space utilizing 10,000 square feet of the library. A collaborative campus-wide planning process eventually resulted in the design of a new teaching and learning center that integrates clinical skills, simulation, and technology-enhanced education facilties on one entire floor of the building (21,000 square feet). The planning process resulted in a project that serves the entire campus and strengthens the library's role in the education mission. The full impact of the project is yet unknown as construction is not complete. PMID:20098654

  17. Evaluation of the Seat Index Point Tool for Military Seats

    DTIC Science & Technology

    2014-12-01

    millimeters mm2 ft2 squarefeet 0.093 square meters m2 yd2 square yard 0.836 square meters m2 Ac acres 0.405 hectares ha mi2 square miles 2.59 square...square miles mi2 VOLUME mL milliliters 0.034 fluid ounces fl oz L liters 0.264 gallons gal m3 cubic meters 35.314 cubic feet ft3 m3 cubic meters

  18. Ground water in the Thousand Oaks area, Ventura County, California

    USGS Publications Warehouse

    French, James J.

    1980-01-01

    The ground-water basin beneath the city of Thousand Oaks, Calif. , corresponds closely in area with the surface-water drainage basin of Conejo Valley. Before World War II there was little ground-water development. After World War II, urban development put a stress on the ground-water basin; many wells were drilled and water levels in wells were drawn down as much as 300 feet in places. Beginning in 1963, imported water replaced domestic and municipal ground-water systems, and water levels rapidly recovered to predevelopment levels or nearly so. Most of the ground water in the Thousand Oaks area is stored in fractured basalt of the middle Miocene Conejo Volcanics. Depending on the degree of occurrence of open fractures and cavities in the basalt, recoverable ground water in the upper 300 to 500 feet of aquifer is estimated to be between 400,000 and 600,000 acre-feet. The yield of water from wells in the area ranges from 17 to 1,080 gallons per minute. Most of the ground-water in the eastern part of the valley is high insulfate and has a dissolved-solids concentration greater than 1,000 milligrams per liter. In the western part of the valley the ground-water is mostly of a bicarbonate type, and the dissolved-solids concentration is less than 800 milligrams per liter. In most areas of Conejo Valley, ground-water is a viable resource for irrigation of public lands and recreation areas. (USGS)

  19. 40 CFR Table 28 to Subpart G of... - Deck Seam Length Factors a (SD) for Internal Floating Roof Tanks

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Deck Seam Length Factors a (SD) for... (SD) for Internal Floating Roof Tanks Deck construction Typical deck seam length factor Continuous... decks only. Units for SD are feet per square feet. b SD=1/W, where W = sheet width (feet). c If no...

  20. 40 CFR Table 28 to Subpart G of... - Deck Seam Length Factors a (SD) for Internal Floating Roof Tanks

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Deck Seam Length Factors a (SD) for... (SD) for Internal Floating Roof Tanks Deck construction Typical deck seam length factor Continuous... decks only. Units for SD are feet per square feet. b SD=1/W, where W = sheet width (feet). c If no...

  1. 25 CFR 39.902 - Allocation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... allocated to all Bureau operated and contract schools based on the number of square feet of floor space used... quarters shall be specifically excluded from the computation. (b) Square footage figures used in... Facilities Engineering. (c) In those cases, such as contract schools, where square footage figures are not...

  2. 25 CFR 39.902 - Allocation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... allocated to all Bureau operated and contract schools based on the number of square feet of floor space used... quarters shall be specifically excluded from the computation. (b) Square footage figures used in... Facilities Engineering. (c) In those cases, such as contract schools, where square footage figures are not...

  3. 25 CFR 39.902 - Allocation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... allocated to all Bureau operated and contract schools based on the number of square feet of floor space used... quarters shall be specifically excluded from the computation. (b) Square footage figures used in... Facilities Engineering. (c) In those cases, such as contract schools, where square footage figures are not...

  4. 25 CFR 39.902 - Allocation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... allocated to all Bureau operated and contract schools based on the number of square feet of floor space used... quarters shall be specifically excluded from the computation. (b) Square footage figures used in... Facilities Engineering. (c) In those cases, such as contract schools, where square footage figures are not...

  5. 25 CFR 39.902 - Allocation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... allocated to all Bureau operated and contract schools based on the number of square feet of floor space used... quarters shall be specifically excluded from the computation. (b) Square footage figures used in... Facilities Engineering. (c) In those cases, such as contract schools, where square footage figures are not...

  6. Permafrost

    USGS Publications Warehouse

    Ray, Louis L.

    1993-01-01

    In 1577, on his second voyage to the New World in search of the Northwest Passage, Sir Martin Frobisher reported finding ground in the far north that was frozen to depths of "four or five fathoms, even in summer," and that the frozen condition "so combineth the stones together that scarcely instruments with great force can unknit them." This permanently frozen ground, now termed permafrost, underlies perhaps a fifth of the Earth's land surface. It occurs in Antarctica but is most extensive in the Northern Hemisphere. In the lands surrounding the Arctic Ocean, its maximum thickness has been reported in thousands of feet as much as 5,000 feet in Siberia and 2,000 feet in northern Alaska.

  7. Project CHECO Southeast Asia Report. Interdiction in Route Package One, 1968

    DTIC Science & Technology

    1969-06-30

    For instance, on 31 July, 50 trucks were spotted on Route 101 and attacked with negligible results, But during 100 percent moonlight , very few trucks...to collect their repair equipment where needed. To counter such a stereotyped strike pattern, a proposal was made to shift interdiction points...per thousand sorties. A total of 4,150 reconnaissance sorties was flown; 4,000,000 feet of film were exposed plus another 800,000 feet of gun-camera

  8. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, one of two orbital maneuvering system (OMS) pods removed from Endeavour is lowered toward a transporter. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts. OMS pods are removed during Orbiter Major Modifications. Once removed, the OMS pods undergo in-depth structural inspections, system checks and the thrusters are changed out.

    NASA Image and Video Library

    2003-09-05

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, one of two orbital maneuvering system (OMS) pods removed from Endeavour is lowered toward a transporter. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts. OMS pods are removed during Orbiter Major Modifications. Once removed, the OMS pods undergo in-depth structural inspections, system checks and the thrusters are changed out.

  9. KENNEDY SPACE CENTER, FLA. - Technicians in the Orbiter Processing Facility oversee removal of one of two orbital maneuvering system (OMS) pods from Endeavour. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts. OMS pods are removed during Orbiter Major Modifications. Once removed, the OMS pods undergo in-depth structural inspections, system checks and the thrusters are changed out.

    NASA Image and Video Library

    2003-09-05

    KENNEDY SPACE CENTER, FLA. - Technicians in the Orbiter Processing Facility oversee removal of one of two orbital maneuvering system (OMS) pods from Endeavour. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts. OMS pods are removed during Orbiter Major Modifications. Once removed, the OMS pods undergo in-depth structural inspections, system checks and the thrusters are changed out.

  10. KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare to remove one of two orbital maneuvering system (OMS) pods from Endeavour. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts. OMS pods are removed during Orbiter Major Modifications. Once removed, the OMS pods undergo in-depth structural inspections, system checks and the thrusters are changed out.

    NASA Image and Video Library

    2003-09-05

    KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare to remove one of two orbital maneuvering system (OMS) pods from Endeavour. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts. OMS pods are removed during Orbiter Major Modifications. Once removed, the OMS pods undergo in-depth structural inspections, system checks and the thrusters are changed out.

  11. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, one of two orbital maneuvering system (OMS) pods removed from Endeavour is suspended overhead. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts. OMS pods are removed during Orbiter Major Modifications. Once removed, the OMS pods undergo in-depth structural inspections, system checks and the thrusters are changed out.

    NASA Image and Video Library

    2003-09-05

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, one of two orbital maneuvering system (OMS) pods removed from Endeavour is suspended overhead. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts. OMS pods are removed during Orbiter Major Modifications. Once removed, the OMS pods undergo in-depth structural inspections, system checks and the thrusters are changed out.

  12. KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, one of two orbital maneuvering system (OMS) pods removed from Endeavour is lowered onto a transporter. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts. OMS pods are removed during Orbiter Major Modifications. Once removed, the OMS pods undergo in-depth structural inspections, system checks and the thrusters are changed out.

    NASA Image and Video Library

    2003-09-05

    KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, one of two orbital maneuvering system (OMS) pods removed from Endeavour is lowered onto a transporter. The OMS pods are attached to the upper aft fuselage left and right sides. Fabricated primarily of graphite epoxy composite and aluminum, each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. Each pod houses the Reaction Control System propulsion components used for inflight maneuvering and is attached to the aft fuselage with 11 bolts. OMS pods are removed during Orbiter Major Modifications. Once removed, the OMS pods undergo in-depth structural inspections, system checks and the thrusters are changed out.

  13. Water-resources appraisal of the Wet Mountain Valley, in parts of Custer and Fremont counties, Colorado

    USGS Publications Warehouse

    Londquist, C.J.; Livingston, R.K.

    1978-01-01

    The Wet Mountain Valley is an intermontane trough filled to a depth of at least 6,700 feet with unconsolidated deposits. Ground water occurs under both artesian and water-table conditions within the basin-fill aquifer and ground-water moverment is toward Grape and Texas Creeks. The depth to the water table is less than 10 feet in an area of about 40 square miles along the central part of the valley and is less than 100 feet in most of the remainder of the valley. Ground water stored in the upper 200 feet of saturated basin-fill sediments is estimated to total 1.5 million acre-feet. Yields greater than 50 gallons per minute generally can be expected from wells in the central part of the basin-fill aquifer, and yields less than 50 gallons per minute are generally reported from wells around the edge of the basin-fill aquifer. Yields of wells in the mountainous areas are generally less than 20 gallons per minute. Most streamflow occurs as a result of snowmelt runoff during June and July. The long-term annual runoff at seven stations ranges from an estimated 0.02 cubic foot per second per square mile to an estimated 1.17 cubic feet per second per square mile, generaly increasing with station altitude. Generalized annyal water budgets for two areas in the Wet Mountain Valley indicate that surface-water outflow is only 7 to 11 percent of the total water supply from precipitation and other sources. The remaining water is lost to the atmosphere by evapotranspiration. The quality of both the surface and ground water is generally within the recommended limits for drinking water set by the U.S. Public Health Service. (Woodard-USGS)

  14. 16 CFR 501.4 - Chamois.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... expressed: Provided: (a) The quantity of contents for full skins is expressed in terms of square feet with any remainder in terms of the common or decimal fraction of the square foot. (b) The quantity of contents for cut skins of any configuration is expressed in terms of square inches and fractions thereof...

  15. 16 CFR 501.4 - Chamois.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... expressed: Provided: (a) The quantity of contents for full skins is expressed in terms of square feet with any remainder in terms of the common or decimal fraction of the square foot. (b) The quantity of contents for cut skins of any configuration is expressed in terms of square inches and fractions thereof...

  16. 16 CFR 501.4 - Chamois.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... expressed: Provided: (a) The quantity of contents for full skins is expressed in terms of square feet with any remainder in terms of the common or decimal fraction of the square foot. (b) The quantity of contents for cut skins of any configuration is expressed in terms of square inches and fractions thereof...

  17. 16 CFR 501.4 - Chamois.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... expressed: Provided: (a) The quantity of contents for full skins is expressed in terms of square feet with any remainder in terms of the common or decimal fraction of the square foot. (b) The quantity of contents for cut skins of any configuration is expressed in terms of square inches and fractions thereof...

  18. 16 CFR 501.4 - Chamois.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... expressed: Provided: (a) The quantity of contents for full skins is expressed in terms of square feet with any remainder in terms of the common or decimal fraction of the square foot. (b) The quantity of contents for cut skins of any configuration is expressed in terms of square inches and fractions thereof...

  19. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A solar heating system designed to supply a major portion of the space and water heating requirements for a restaurant is described. The restaurant has a floor space of approximately 4,650 square feet and requires approximate 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10 to the 6th power Btu/Yr (specified) building heating and hot water heating.

  20. Solar heating and hot water system installed at Shoney's Restaurant, North Little Rock, Arkansas

    NASA Astrophysics Data System (ADS)

    1980-08-01

    A solar heating system designed to supply a major portion of the space and water heating requirements for a restaurant is described. The restaurant has a floor space of approximately 4,650 square feet and requires approximate 1500 gallons of hot water daily. The solar energy system consists of 1,428 square feet of Chamberlain flat plate liquid collector subsystem, and a 1500 gallon storage subsystem circulating hot water producing 321 x 10 to the 6th power Btu/Yr (specified) building heating and hot water heating.

  1. Geologic history and hydrogeologic setting of the Edwards-Trinity aquifer system, west-central Texas

    USGS Publications Warehouse

    Barker, R.A.; Bush, P.W.; Baker, E.T.

    1994-01-01

    Because the diagenetic effects of cementation, recrystallization, and mineral replacement diminish the hydraulic conductivity of most rocks composing the Trinity and Edwards-Trinity aquifers, transmissivity values average less than 10,000 feet squared per day over more than 90 percent of the study area. However, the effects of tectonic fractures and dissolution in the Balcones fault zone cause transmissivity values to average about 750,000 feet squared per day in the Edwards aquifer, which occupies less than 10 percent of the study area.

  2. Hydrogeologic framework and geochemistry of the intermediate aquifer system in parts of Charlotte, De Soto, and Sarasota counties, Florida

    USGS Publications Warehouse

    Torres, A.E.; Sacks, L.A.; Yobbi, D.K.; Knochenmus, L.A.; Katz, B.G.

    2001-01-01

    The hydrogeologic framework underlying the 600-square-mile study area in Charlotte, De Soto, and Sarasota Counties, Florida, consists of the surficial aquifer system, the intermediate aquifer system, and the Upper Floridan aquifer. The hydrogeologic framework and the geochemical processes controlling ground-water composition were evaluated for the study area. Particular emphasis was given to the analysis of hydrogeologic and geochemical data for the intermediate aquifer system. Flow regimes are not well understood in the intermediate aquifer system; therefore, hydrogeologic and geochemical information were used to evaluate connections between permeable zones within the intermediate aquifer system and between overlying and underlying aquifer systems. Knowledge of these connections will ultimately help to protect ground-water quality in the intermediate aquifer system. The hydrogeology was interpreted from lithologic and geophysical logs, water levels, hydraulic properties, and water quality from six separate well sites. Water-quality samples were collected from wells located along six ground-water flow paths and finished at different depth intervals. The selection of flow paths was based on current potentiometric-surface maps. Ground-water samples were analyzed for major ions; field parameters (temperature, pH, specific conductance, and alkalinity); stable isotopes (deuterium, oxygen-18, and carbon-13); and radioactive isotopes (tritium and carbon-14). The surficial aquifer system is the uppermost aquifer, is unconfined, relatively thin, and consists of unconsolidated sand, shell, and limestone. The intermediate aquifer system underlies the surficial aquifer system and is composed of clastic sediments interbedded with carbonate rocks. The intermediate aquifer system is divided into three permeable zones, the Tamiami/Peace River zone (PZ1), the Upper Arcadia zone (PZ2), and the Lower Arcadia zone (PZ3). The Tamiami/Peace River zone (PZ1) is the uppermost zone and is the thinnest and generally, the least productive zone in the intermediate aquifer system. The Upper Arcadia zone (PZ2) is the middle zone and productivity is generally higher than the overlying permeable zone. The Lower Arcadia zone (PZ3) is the lowermost permeable zone and is the most productive zone in the intermediate aquifer system. The intermediate aquifer system is underlain by the Upper Floridan aquifer, which consists of a thick, stratified sequence of limestone and dolomite. The Upper Floridan aquifer is the most productive aquifer in the study area; however, its use is generally restricted because of poor water quality. Interbedded clays and fine-grained clastics separate the aquifer systems and permeable zones. The hydraulic properties of the three aquifer systems are spatially variable. Estimated trans-missivity and horizontal hydraulic conductivity varies from 752 to 32,900 feet squared per day and from 33 to 1,490 feet per day, respectively, for the surficial aquifer system; from 47 to 5,420 feet squared per day and from 2 to 102 feet per day, respectively, for the Tamiami/Peace River zone (PZ1); from 258 to 24,633 feet squared per day and from 2 to 14 feet per day, respectively, for the Upper Arcadia zone (PZ2); from 766 to 44,900 feet squared per day and from 10 to 201 feet per day, respectively, for the Lower Arcadia zone (PZ3); and from 2,350 to 7,640 feet squared per day and from 10 to 41 feet per day, respectively, for the Upper Floridan aquifer. Confining units separating the aquifer systems have leakance coefficients estimated to range from 2.3 x 10-5 to 5.6 x 10-3 feet per day per foot. Strata composing the confining unit separating the Upper Floridan aquifer from the intermediate aquifer system are substantially more permeable than confining units separating the permeable zones in the intermediate aquifer system or separating the surficial aquifer and intermediate aquifer systems. In Charlotte, Sarasota, and western De Soto Counties, hydraulic

  3. Solar heating and domestic hot water system installed at Kansas City, Fire Stations, Kansas City, Missouri

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.

  4. Solar heating system at Quitman County Bank, Marks, Mississippi

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Information on the Solar Energy Heating System installed in a single story wood frame, cedar exterior, sloped roof building is presented. The system has on-site temperature and power measurements readouts. The 468 square feet of Solaron air flat plate collectors provide for 2,000 square feet of space heating, an estimated 60 percent of the heating load. Solar heated air is distributed to the 235 cubic foot rock storage box or to the load (space heating) by a 960 cubic feet per minute air handler unit. A 7.5 ton Carrier air-to-air heat pump with 15 kilowatts of electric booster strips serve as a back-up (auxiliary) to the solar system. Motorized dampers control the direction of airflow and back draft dampers prevent thermal siphoning of conditioned air.

  5. Bathymetric Contour Maps for Lakes Surveyed in Iowa in 2006

    USGS Publications Warehouse

    Linhart, S.M.; Lund, K.D.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Iowa Department of Natural Resources, conducted bathymetric surveys on two lakes in Iowa during 2006 (Little Storm Lake and Silver Lake). The surveys were conducted to provide the Iowa Department of Natural Resources with information for the development of total maximum daily load limits, particularly for estimating sediment load and deposition rates. The bathymetric surveys can provide a baseline for future work on sediment loads and deposition rates for these lakes. Both of the lakes surveyed in 2006 are natural lakes. For Silver Lake, bathymetric data were collected using boat-mounted, differential global positioning system, echo depth-sounding equipment, and computer software. For Little Storm Lake, because of its shallow nature, bathymetric data were collected using manual depth measurements. Data were processed with commercial hydrographic software and exported into a geographic information system for mapping and calculating area and volume. Lake volumes were estimated to be 7,547,000 cubic feet (173 acre-feet) at Little Storm Lake and 126,724,000 cubic feet (2,910 acre-feet) at Silver Lake. Surface areas were estimated to be 4,110,000 square feet (94 acres) at Little Storm Lake and 27,957,000 square feet (640 acres) at Silver Lake.

  6. Installing Juno Radiation Vault

    NASA Image and Video Library

    2010-07-12

    Technicians installed a special radiation vault onto the propulsion module of NASA Juno spacecraft. Each titanium wall measures nearly a square meter nearly 10 square feet in area and about 1 centimeter a third of an inch in thickness.

  7. 46 CFR 116.520 - Emergency evacuation plan.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... person may be permitted for each 0.28 square meters (3 square feet) of deck area; and (2) Identify at least two means of escape complying with § 114.400 from the space being evacuated; and (c) Include...

  8. 7 CFR 3550.117 - WWD grant purposes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Construction and/or partitioning off a portion of the dwelling for a bathroom, not to exceed 4.6 square meters (48 square feet) in size. (f) Pay reasonable costs for closing abandoned septic tanks and water wells...

  9. 7 CFR 3550.117 - WWD grant purposes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Construction and/or partitioning off a portion of the dwelling for a bathroom, not to exceed 4.6 square meters (48 square feet) in size. (f) Pay reasonable costs for closing abandoned septic tanks and water wells...

  10. Installation package for air flat plate collector

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Solar 2 dimensions are four feet by eight feet by two and one half inches. The collector weighs 130 pounds and has an effective solar collection area of over 29.5 square feet. This area represents 95 percent of the total surface of the collector. The installation, operation and maintenance manual, safety hazard analysis, special handling instructions, materials list, installation concept drawings, warranty and certification statement are included in the installation package.

  11. 16 CFR 500.12 - Measurement of commodities by length and width, how expressed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... square foot (929 cm2) be expressed in terms of length and width in linear measure. The customary inch... of 1 square foot (929 cm2) or more, but less than 4 square feet (37.1 dm2), be expressed in terms of... in square inches with length and width expressed in the largest whole unit (yard or foot) with any...

  12. 16 CFR 500.12 - Measurement of commodities by length and width, how expressed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... square foot (929 cm2) be expressed in terms of length and width in linear measure. The customary inch... of 1 square foot (929 cm2) or more, but less than 4 square feet (37.1 dm2), be expressed in terms of... in square inches with length and width expressed in the largest whole unit (yard or foot) with any...

  13. 16 CFR 500.12 - Measurement of commodities by length and width, how expressed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... square foot (929 cm2) be expressed in terms of length and width in linear measure. The customary inch... of 1 square foot (929 cm2) or more, but less than 4 square feet (37.1 dm2), be expressed in terms of... in square inches with length and width expressed in the largest whole unit (yard or foot) with any...

  14. 16 CFR 500.12 - Measurement of commodities by length and width, how expressed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... square foot (929 cm2) be expressed in terms of length and width in linear measure. The customary inch... of 1 square foot (929 cm2) or more, but less than 4 square feet (37.1 dm2), be expressed in terms of... in square inches with length and width expressed in the largest whole unit (yard or foot) with any...

  15. Ship Dynamics in the Surf Zone Model Testing

    DTIC Science & Technology

    2008-07-01

    was implemented for ease of transportation and ease of assembly. Each module was 10 feet square consisting of oriented strand board ( OSB ) plywood with...frame, constructed of 2 inch by 4 inch by 10 feet pieces of wood, was measured, cut, laid, and screwed together for each module. Pieces of OSB

  16. 46 CFR 171.057 - Intact stability requirements for a sailing catamaran.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... displacement of the vessel, in kilograms (pounds). X=4.88 kilograms/square meter (1.0 pounds/square foot). (b... sail area above the deck, in meters (feet). W=the total displacement of the vessel, in kilograms...

  17. 46 CFR 171.057 - Intact stability requirements for a sailing catamaran.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... displacement of the vessel, in kilograms (pounds). X=4.88 kilograms/square meter (1.0 pounds/square foot). (b... sail area above the deck, in meters (feet). W=the total displacement of the vessel, in kilograms...

  18. 46 CFR 171.057 - Intact stability requirements for a sailing catamaran.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... displacement of the vessel, in kilograms (pounds). X=4.88 kilograms/square meter (1.0 pounds/square foot). (b... sail area above the deck, in meters (feet). W=the total displacement of the vessel, in kilograms...

  19. 46 CFR 171.057 - Intact stability requirements for a sailing catamaran.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... displacement of the vessel, in kilograms (pounds). X=4.88 kilograms/square meter (1.0 pounds/square foot). (b... sail area above the deck, in meters (feet). W=the total displacement of the vessel, in kilograms...

  20. Geohydrology and effects of water use in the Black Mesa area, Navajo and Hopi Indian Reservations, Arizona

    USGS Publications Warehouse

    Eychaner, James H.

    1983-01-01

    The N aquifer is the main source of water in the 5,400-square-mile Black Mesa area in the Navajo and Hopi Indian Reservations in northeastern Arizona. The N aquifer consists of the Navajo Sandstone and parts of the underlying Kayenta Formation and Wingate Sandstone of Jurassic and Triassic age. Maximum saturated thickness of the aquifer is about 1,050 feet in the northwestern part of the area, and the aquifer thins to extinction to the southeast. Water is under confined conditions in the central 3,300 square miles of the area. To the east, north, and west of Black Mesa, the aquifer is exposed at the surface, and water is unconfined. The aquifer was in equilibrium before about 1965. Recharge of about 13,000 acre-feet per year was balanced primarily by discharge near Moenkopi Wash and Laguna Creek and by evapotranspiration. At least 180 million acre-feet of water was in storage. The estimated average hydraulic conductivity of the aquifer is 0.65 foot per day. The confined storage coefficient is estimated to be about 0.0004 where the aquifer is thickest, and the estimated unconfined storage coefficient ranges from 0.10 to 0.15. Ground-water withdrawals that averaged 5,300 acre-feet per year from 1976 to 1979 have caused water levels to decline in wells in the confined part of the aquifer. Withdrawals include an average of 3,700 acre-feet per year to supply a coal-slurry pipeline from a coal mine on Black Mesa. Six observation wells equipped with water-level recorders have been used to monitor aquifer response. The water level in one well 32 miles south of the mine declined 17 feet from 1972 through 1979 and 3.5 feet during 1979. A mathematical model of the N aquifer was developed and calibrated for equilibrium and nonequilibrium conditions. The model was used in part to improve estimates of aquifer characteristics and the water budget, and it successfully reproduced the observed response of the aquifer through 1979. The model results indicate that about 95 percent of the 44,000 acre-feet of water pumped from 1965 to 1979 was withdrawn from storage, but the reduction amounted to less than 0.03 percent of total storage. Water-level declines through 1979 were estimated to be more than 100 feet in an area of 200 square miles. Four projections of future water-level changes were made using the model. The most probable projection indicates that water-level declines would exceed 100 feet in an area of 440 square miles by 2001. Most of the decline would be recovered within a few years if withdrawals at the mine ceased. By 1990, however, municipal-supply pumpage is expected to exceed pumpage at the mine, and this pumpage would continue to have significant impacts on water levels in the Black Mesa area.

  1. Digital-simulation and projection of water-level declines in basalt aquifers of the Odessa-Lind area, east-central Washington

    USGS Publications Warehouse

    Luzier, J.E.; Skrivan, James A.

    1975-01-01

    A digital computer program using finite-difference techniques simulates an intensively pumped, multilayered basalt-aquifer system near Odessa. The aquifers now developed are in the upper 1,000 feet of a regionally extensive series of southwesterly dipping basalt flows of the Columbia River Group. Most of the aquifers are confined. Those in the depth range of about 500 to 1,000 feet are the chief source of ground water pumped from irrigation wells. Transmissivity of these aquifers ranges from less than 2,700 feet squared per day to more than 40,000 feet squared per day, and storage coefficients range from 0.0015 to 0.006. Shallower aquifers are generally much less permeable, but they are a source of recharge to deeper aquifers with lower artesian heads; vertical leakage occurs along joints in the basalt and down uncased wells, which short circuit the aquifer system. For model analysis, the deeper, pumped aquifers were grouped and treated as a single layer with drawdown-dependent leakage from an overlying confining layer. Verification of the model was achieved primarily by closely matching observed pumpage-related head declines ranging from about 10 feet to more than 40 feet over the 4-year period from March 1967 to March 1971. Projected average annual rates of decline in the Odessa-Lind area during the 14-year period from March 1967 to March 1981 are: from 1 to 9 feet per year if pumpage is maintained at the 1970 rate of 117,000 acre-feet per year; or, from 3 to 33 feet per year if 1970 pumpage is increased to 233,000 acre-feet per year, which includes 116,000 acre-feet per year covered by water-right applications held in abeyance. In each case, projected drawdown on the northeast side of a major ground-water barrier is about double that on the southwest side because of differences in transmissivity and storage coefficient and in sources of recharge.

  2. Health sciences library building projects, 1996-1997 survey.

    PubMed Central

    Bowden, V M

    1998-01-01

    Nine building projects are briefly described, including four new libraries, two renovations, and three combined renovations and additions. The libraries range in size from 657 square feet to 136,832 square feet, with seating varying from 14 to 635. Three hospital libraries and four academic health sciences libraries are described in more detail. In each case an important consideration was the provision for computer access. Two of the libraries expanded their space for historical collections. Three of the libraries added mobile shelving as a way of storing print materials while providing space for other activities. Images PMID:9549012

  3. Simulation of flow in the upper North Coast Limestone Aquifer, Manati-Vega Baja area, Puerto Rico

    USGS Publications Warehouse

    Cherry, Gregory S.

    2001-01-01

    A two-dimensional computer ground-water model was constructed of the Manati-Vega Baja area to improve the understanding of the unconfined upper aquifer within the North Coast Province of Puerto Rico. The modeled area covers approximately 79 square miles within the municipios of Manati and Vega Baja and small portions of Vega Alta and Barceloneta. Steady-state two-dimensional ground-water simulations were correlated to conditions prior to construction of the Laguna Tortuguero outlet channel in 1940 and calibrated to the observed potentiometric surface in March 1995. At the regional scale, the unconfined Upper North Coast Limestone aquifer is a diffuse ground-water flow system through the Aguada and Aymamon limestone units. The calibrated model input parameters for aquifer recharge varied from 2 inches per year in coastal areas to 18 inches per year in the upland areas south of Manati and Vega Baja. The calibrated transmissivity values ranged from less than 500 feet squared per day in the upland areas near the southern boundary to 70,000 feet squared per day in the areas west of Vega Baja. Increased ground-water withdrawals from 1.0 cubic foot per second for 1940 conditions to 26.3 cubic feet per second in 1995, has reduced the natural ground-water discharge to springs and wetland areas, and induced additional recharge from the rivers. The most important regional drainage feature is Laguna Tortuguero, which is the major ground-water discharge body for the upper aquifer, and has a drainage area of approximately 17 square miles. The discharge to the sea from Laguna Tortuguero through the outlet channel has been measured on a bi-monthly basis since 1974. The outflow represents a combination of ground- and surface-water discharge over the drainage area. Hydrologic conditions, prior to construction of the Laguna Tortuguero outlet channel in 1943, can be considered natural conditions with minimal ground-water pumpage (1.0 cubic foot per second), and heads in the lagoon were 2.4 feet higher. The model was calibrated to March 1995 conditions during a dry period of minimal aquifer recharge and relatively constant water levels in the upper aquifer. For the steady-state 1995 model simulation, however, ground-water pumpage had been increased to 26.3 cubic foot per second, due to increased demand for public water supply, the heads at 0.9 feet, and the outflow to the sea at Laguna Tortuguero had been lowered considerably. Simulated ground-water inflow for 1940 hydrologic conditions included 35.9 cubic feet per second from areal recharge, contributions from streamflow along the southern boundary of 1.6 cubic feet per second, and streamflow infiltration to the upper aquifer of 4.2 cubic feet per second. Simulated ground-water outflow for 1940 hydrologic conditions are discharge to springs of 17.4 cubic feet per second, total ground-water withdrawals of 1.0 cubic feet per second, and aquifer contribution to streamflow or wetland areas of 23.4 cubic feet per second. Simulated ground-water inflow for hydrologic conditions of March 1995 include d contributions from streamflow along the southern boundary of 1.6 cubic feet per second, areal recharge of 35.9 cubic feet per second, and streamflow infiltration to the upper aquifer of 11 cubic feet per second. Simulated ground-water outflow for hydrologic conditions of March 1995 are ground-water withdrawals of 26.3 cubic feet per second, discharge from springs of 7.3 cubic feet per second, and aquifer contribution to streamflow or wetland areas of 14 .9 cubic feet per second. The overall ground-water budget increased from 41.8 cubic feet per second for 1940 conditions to 48.6 cubic feet per second for the hydrologic conditions of March 1995. The increase in ground-water budget is a direct result of increased ground-water withdrawals, which induced greater streamflow infiltration. Simulated ground-water flux to Laguna Tortuguero for 1940 conditions was 11 cubic feet per second, which drop

  4. 76 FR 51461 - Notice of Release From Quitclaim Deed and Federal Grant Assurance Obligations for Phoenix-Mesa...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-18

    ... of approximately 1,727 square feet of airport property at Phoenix-Mesa Gateway, Mesa, Arizona, from... conditions contained in the Quitclaim Deed and Grant Assurance obligations for approximately 1,727 square...

  5. 14 CFR 91.159 - VFR cruising altitude or flight level.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... magnetic course of zero degrees through 179 degrees, any odd thousand foot MSL altitude +500 feet (such as 3,500, 5,500, or 7,500); or (2) On a magnetic course of 180 degrees through 359 degrees, any even...

  6. 14 CFR 91.159 - VFR cruising altitude or flight level.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... magnetic course of zero degrees through 179 degrees, any odd thousand foot MSL altitude +500 feet (such as 3,500, 5,500, or 7,500); or (2) On a magnetic course of 180 degrees through 359 degrees, any even...

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lohse, Alan

    On December 8, 1977, Gruy Federal, Inc. took over the C.D. Hopkins et al. No. 2 well, located near Jesup in Wayne County, Georgia, to be deepened and used for geothermal temperature-gradient measurements. The well was drilled from 4,009 to 4,341 feet, then diamond cored to 4,371 feet, 28 feet of core being obtained for analysis. After logging by the USGS District Groundwater Office in Atlanta, the well was terminated with 3 1/2 inch tubing to 4,386 feet. Scientists from Virginia Polytechnic Institute determined the bottom-hole temperature to be 60 C (140 F) at 1,331 meters (4,365 feet). Over themore » interval 47-1,331 meters (154-4,365 feet) the least-squares temperature gradient was 29.3 {+-} 0.14 C/km (1.61 {+-} 0.25 F/100 ft).« less

  8. Summary of hydrologic testing of the Floridan aquifer system at Hunter Army Airfield, Chatham County, Georgia

    USGS Publications Warehouse

    Williams, Lester J.

    2010-01-01

    A 1,168-foot deep test well was completed at Hunter Army Airfield in the summer of 2009 to investigate the potential of using the Lower Floridan aquifer as a source of water supply to satisfy increased needs as a result of base expansion and increased troop levels. The U.S. Geological Survey conducted hydrologic testing at the test site including flowmeter surveys, packer-slug tests, and aquifer tests of the Upper and Lower Floridan aquifers. Flowmeter surveys were completed at different stages of well construction to determine the depth and yield of water-bearing zones and to identify confining beds that separate the main producing aquifers. During a survey when the borehole was open to both the upper and lower aquifers, five water-bearing zones in the Upper Floridan aquifer supplied 83.5 percent of the total pumpage, and five water-bearing zones in the Lower Floridan aquifer supplied the remaining 16.5 percent. An upward gradient was indicated from the ambient flowmeter survey: 7.6 gallons per minute of groundwater was detected entering the borehole between 750 and 1,069 feet below land surface, then moved upward, and exited the borehole into lower-head zones between 333 and 527 feet below land surface. During a survey of the completed Lower Floridan well, six distinct water-producing zones were identified; one 17-foot-thick zone at 768-785 feet below land surface yielded 47.9 percent of the total pumpage while the remaining five zones yielded between 2 and 15 percent each. The thickness and hydrologic properties of the confining unit separating the Upper and Lower Floridan aquifers were determined from packer tests and flowmeter surveys. This confining unit, which is composed of rocks of Middle Eocene age, is approximately 160 feet thick with horizontal hydraulic conductivities determined from four slug tests to range from 0.2 to 3 feet per day. Results of two separate slug tests within the middle confining unit were both 2 feet per day. Aquifer testing indicated the Upper Floridan aquifer had a transmissivity of 40,000 feet squared per day, and the Lower Floridan aquifer had a transmissivity of 10,000 feet squared per day. An aquifer test conducted on the combined aquifer system, when the test well was open from 333 to 1,112 feet, gave a transmissivity of 50,000 feet squared per day. Additionally, during the 72-hour test of the Lower Floridan aquifer, a drawdown response was observed in the Upper Floridan aquifer wells.

  9. 40 CFR 147.2555 - Aquifer exemptions since January 1, 1999.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 1, 1999 Formation Approximate depth (feet belowground surface) Location Powder River Basin, only approximately 0.4 square miles of the Lance Formation which is less than 0.005% of the Basin at indicated depths... Christensen respectively, and radius of 1,320 feet. Both wells are located in the Christensen Ranch, in...

  10. 40 CFR 147.2555 - Aquifer exemptions since January 1, 1999.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 1, 1999 Formation Approximate depth (feet belowground surface) Location Powder River Basin, only approximately 0.4 square miles of the Lance Formation which is less than 0.005% of the Basin at indicated depths... Christensen respectively, and radius of 1,320 feet. Both wells are located in the Christensen Ranch, in...

  11. 40 CFR 147.2555 - Aquifer exemptions since January 1, 1999.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 1, 1999 Formation Approximate depth (feet belowground surface) Location Powder River Basin, only approximately 0.4 square miles of the Lance Formation which is less than 0.005% of the Basin at indicated depths... Christensen respectively, and radius of 1,320 feet. Both wells are located in the Christensen Ranch, in...

  12. KENNEDY SPACE CENTER, FLA. - This bird's-eye view of a high bay in the Orbiter Processing Facility (OPF) shows the open payload bay of Space Shuttle Discovery surrounded by the standard platforms and equipment required to process a Space Shuttle orbiter. The high bay is 197 feet (60 meters) long, 150 feet (46 meters) wide, 95 feet (29 meters) high, and encompasses a 29,000-square-foot (2,694-meter) area. The 30-ton (27-metric-ton) bridge crane (yellow device, right) has a hook height of approximately 66 feet (20 meters). Platforms, a main access bridge, and two rolling bridges with trucks provide access to various parts of the orbiter. In addition to routine servicing and checkout, the inspections and modifications made to enhance Discovery's performance and upgrade its systems were performed in the OPF during its recently completed Orbiter Major Modification (OMM) period.

    NASA Image and Video Library

    2003-09-02

    KENNEDY SPACE CENTER, FLA. - This bird's-eye view of a high bay in the Orbiter Processing Facility (OPF) shows the open payload bay of Space Shuttle Discovery surrounded by the standard platforms and equipment required to process a Space Shuttle orbiter. The high bay is 197 feet (60 meters) long, 150 feet (46 meters) wide, 95 feet (29 meters) high, and encompasses a 29,000-square-foot (2,694-meter) area. The 30-ton (27-metric-ton) bridge crane (yellow device, right) has a hook height of approximately 66 feet (20 meters). Platforms, a main access bridge, and two rolling bridges with trucks provide access to various parts of the orbiter. In addition to routine servicing and checkout, the inspections and modifications made to enhance Discovery's performance and upgrade its systems were performed in the OPF during its recently completed Orbiter Major Modification (OMM) period.

  13. Around Marshall

    NASA Image and Video Library

    1993-09-01

    Marshall Space Flight Center's F-1 Engine Test Stand is shown in this picture. Constructed in 1963, the test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and was designed to assist in the development of the F-1 Engine. Capability is provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. The foundation of the stand is keyed into the bedrock approximately 40 feet below grade.

  14. 78 FR 21398 - Notice of Intent to Prepare a Supplemental Environmental Impact Statement for the Approval of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... square foot tribal gaming facility to be located on the Tribe's Reservation, which qualifies as ``Indian... for the management of a 203,000 square foot gaming facility on the Tribe's Reservation, which is... total estimated gaming floor area for the gaming facility is 70,000 square feet. The exterior of the...

  15. Solar heating system at Security State Bank, Starkville, Mississippi

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The 312 square feet of Solaron flat plate air collectors provide for 788 square feet of space heating, an estimated 55 percent of the heating load. Solar heated air is distributed to the 96 cubic foot steel cylinder, which contains two inch diameter rocks. An air handler unit moves the air over the collector and into the steel cylinder. Four motorized dampers and two gravity dampers are also part of the system. A Solaron controller which has sensors located at the collectors, rock storage, and at the return air, automatically controls the system. Auxiliary heating energy is provided by electric resistance duct heaters.

  16. Preliminary investigation of the performance of a single tubular combustor at pressure up to 12 atmospheres

    NASA Technical Reports Server (NTRS)

    Wear, Jerrold D; Butze, Helmut F

    1954-01-01

    The effects of combustor operation at conditions representative of those encountered in high pressure-ratio turbojet engines or at high flight speeds on carbon deposition, exhaust smoke, and combustion efficiency were studied in a single tubular combustor. Carbon deposition and smoke formation tests were conducted over a range of combustor-inlet pressures from 33 to 173 pounds per square inch absolute and combustor reference velocities from 78 to 143 feet per second. Combustion efficiency tests were conducted over a range of pressures from 58 to 117 pounds per square inch absolute and velocities from 89 to 172 feet per second.

  17. Solar heating and cooling system installed at Leavenworth, Kansas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A solar heating and cooling is described which is designed to furnish 90 percent of the overall heating load, 70 percent of the cooling load and 100 percent of the domestic hot water load. The building has two floors with a total of 12,000 square feet gross area. The system has 120 flat-plate liquid solar panels with a net area of 2,200 square feet. Five 3 ton Arkla solar assisted absorption units provide the cooling, in conjunction with a 3,000 gallon chilled water storage tank. Two 3,000 gallon storage tanks are provided with one designated for summer use, whereas both tanks are utilized during winter.

  18. Fifteen-Year Growth of a Thinned White Spruce Plantation

    Treesearch

    Robert F. Wambach; John H. Cooley

    1969-01-01

    Mean annual increment at age 38 in a thinned white spruce plantation was 102 cubic feet or 0.85 cords per acre per year. Periodic annual increment during the 15 years after thinning seemed to be maximum for residual basal areas between 100 and 120 square feet per acre. OXFORD: 562.2:174.7 Picca glauca: (775):242

  19. 14 CFR 25.365 - Pressurized compartment loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... multiplied by a factor of 1.33 for airplanes to be approved for operation to 45,000 feet or by a factor of 1.67 for airplanes to be approved for operation above 45,000 feet, omitting other loads. (e) Any... an engine disintegration; (2) Any opening in any pressurized compartment up to the size Ho in square...

  20. 36 CFR 14.96 - Procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., for line right-of-way in excess of 100 feet in width or for a structure or facility right-of-way of over 10,000 square feet must state the reasons why the larger right-of-way is required. Rights-of-way will not be issued in excess of such sizes in the absence of a satisfactory showing of the need...

  1. 36 CFR 14.96 - Procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., for line right-of-way in excess of 100 feet in width or for a structure or facility right-of-way of over 10,000 square feet must state the reasons why the larger right-of-way is required. Rights-of-way will not be issued in excess of such sizes in the absence of a satisfactory showing of the need...

  2. 36 CFR 14.91 - Procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., for a line right-of-way in excess of 100 feet in width or for a structure or facility right-of-way of over 10,000 square feet must state the reasons why the larger right-of-way is required. Rights-of-way... drawing on a scale sufficiently large to show clearly their dimensions and relative positions. When two or...

  3. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... per square inch) with from 6 to 76 m. (15 to 250 feet) of air-supply hose. (c) The specified air... pounds per square inch gage). (d)(1) Where the pressure in the air-supply system exceeds 863 kN/m.2 (125 pounds per square inch gage), the respirator shall be equipped with a pressure-release mechanism that...

  4. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... per square inch) with from 6 to 76 m. (15 to 250 feet) of air-supply hose. (c) The specified air... pounds per square inch gage). (d)(1) Where the pressure in the air-supply system exceeds 863 kN/m.2 (125 pounds per square inch gage), the respirator shall be equipped with a pressure-release mechanism that...

  5. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... per square inch) with from 6 to 76 m. (15 to 250 feet) of air-supply hose. (c) The specified air... pounds per square inch gage). (d)(1) Where the pressure in the air-supply system exceeds 863 kN/m.2 (125 pounds per square inch gage), the respirator shall be equipped with a pressure-release mechanism that...

  6. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... per square inch) with from 6 to 76 m. (15 to 250 feet) of air-supply hose. (c) The specified air... pounds per square inch gage). (d)(1) Where the pressure in the air-supply system exceeds 863 kN/m.2 (125 pounds per square inch gage), the respirator shall be equipped with a pressure-release mechanism that...

  7. 42 CFR 84.149 - Type C supplied-air respirator, demand and pressure demand class; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... per square inch) with from 6 to 76 m. (15 to 250 feet) of air-supply hose. (c) The specified air... pounds per square inch gage). (d)(1) Where the pressure in the air-supply system exceeds 863 kN/m.2 (125 pounds per square inch gage), the respirator shall be equipped with a pressure-release mechanism that...

  8. Spokane Valley-Rathdrum Prairie aquifer, Washington and Idaho

    USGS Publications Warehouse

    Drost, B.W.; Seitz, Harold R.

    1977-01-01

    The Spokane Valley-Rathdrum Prairie aquifer is composed of unconsolidated Quaternary glaciofluvial deposits underlying an area of about 350 square miles. Transmissivities in the aquifer range from about 0.13 million to 11 million feet squared per day and ground-water velocities exceed 60 feet per day in some areas. The water-table gradient ranges from about 2 feet per mile to more than 60 feet per mile, and during a year the water table fluctuates on the order of 5 to 10 feet. For most of the aquifer the water table is between 40 and 400 feet below land surface. The aquifer is recharged and discharged at an average rate of about 1,320 cubic feet per second. Water is presently (1976) pumped from the aquifer at an average rate of about 239 cubic feet per second for domestic, industrial, and agricultural uses. Most of this is discharged to the Spokane River, lost to evapotranspiration, or applied to the land surface with little or no change in quality. However, about 34 cubic feet per second becomes waste water generated by domestic and industrial activities and is returned to the aquifer by percolation from cesspools and drain fields. The quality of water in the aquifer is generally good. Less than one-half of 1 percent of the 3,300 analyses available exceeded the maximum contaminant levels specified in the National Interim Primary (or Proposed Secondary) Drinking Water Regulations (U.S. Environmental Protection Agency, 1975) for constituents which may be hazardous to health. Of the 6,300 analyses for constituents considered detrimental to the esthetic quality of water, about 1.4 percent have yielded values which exceeded the recommended levels. Alternative water sources for the area supplied by the aquifer are the Spokane and Little Spokane Rivers, lakes adjacent to the aquifer, and other aquifers. All of these potential sources are less desirable than the Spokane Valley-Rathdrum Prairie aquifer because of insufficient supplies, poor water quality, and (or) remoteness from the areas of need.

  9. Remediation System Evaluation, Central City/Clear Creek Superfund Site Argo Tunnel Water Treatment Plant

    EPA Pesticide Factsheets

    Clear Creek originates in the mountains near Colorado's Continental Divide and runs 60 miles east and several thousand feet lower in elevation to Golden, Colorado, a western suburb of Denver, Colorado and then discharges to the South Platte River north...

  10. Dedicated Space | Poster

    Cancer.gov

    The three-story, 330,000-square-foot Advanced Technology Research Facility has nearly 40,000 square feet designated as partnership space (shown in blue) for co-location of collaborators from industry, academia, nonprofit sectors, and other government agencies. The partnership space, combined with multiple conference rooms and meeting areas, encourages both internal and

  11. Dedicated Space | Poster

    Cancer.gov

    The three-story, 330,000-square-foot Advanced Technology Research Facility has nearly 40,000 square feet designated as partnership space (shown in blue) for co-location of collaborators from industry, academia, nonprofit sectors, and other government agencies. The partnership space, combined with multiple conference rooms and meeting areas, encourages both internal and external collaborations.

  12. Final Environmental Assessment (EA) for the Revitalization of Military Family Housing Keesler AFB, MS

    DTIC Science & Technology

    2006-03-01

    12,000 square feet each). An Olympic-size swimming pool (approximately 71 feet by 164 feet). Twelve covered bus stops. A skateboard park...11,644 Covered Bus Stop 100 12 1,200 Skateboard Park 10,890 1 10,890 Storage Unit 100 534 53,400 Total N/A N/A 125,134 Location to be determined...Olympic-size Swimming Pool 1 1 Covered Bus Stop 5 4 3 12 Skateboard Park 1 1 Storage Unit 0 294 160 80 534 2.6 ALTERNATIVE 1 (IMMEDIATE

  13. A profile of the nonresidential nonbuilding construction market for lumber and plywood

    Treesearch

    H. N. Spelter

    Estimates of the amounts of lumber and plywood used in constructing nonresidential nonbuilding structures in 1982 are presented. The market is stratified by six construction types. Lumber and plywood use is stratified by two end-use categories. Total lumber use is estimated at 507 million board feet. Total plywood use at 362 million square feet (3/8-in. basis)....

  14. Predicting the losses in sawtimber volume and quality from fires in oak-hickory forests.

    Treesearch

    Robert M. Loomis

    1974-01-01

    Presents a method for predicting future sawtimber losses due to fire-caused wounds. Losses are in terms of: (1) lumber value in dollars, (2) volume in board feet, (3) length of defect in feet, and (4) cross sectional area of defect in square inches. The methods apply to northern red, black, scarlet, white and chestnut oaks.

  15. E-5070

    NASA Image and Video Library

    1959-12-16

    Side view of a F-105B (serial #54-0102) photographed on Rogers Dry Lakebed at Edwards Air Force Base, California in 1959. The black stripes across the left wheel-panel complete the lettering on the bottom of the wing when wheels are retracted. Two of the F-105B characteristics are fuselage length of 61 feet 1.33 inches and a wing area of 385.0 square feet.

  16. Parachute Testing for Mars Science Laboratory

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The team developing the landing system for NASA's Mars Science Laboratory tested the deployment of an early parachute design in mid-October 2007 inside the world's largest wind tunnel, at NASA Ames Research Center, Moffett Field, California.

    In this image, an engineer is dwarfed by the parachute, which holds more air than a 280-square-meter (3,000-square-foot) house and is designed to survive loads in excess of 36,000 kilograms (80,000 pounds).

    The parachute, built by Pioneer Aerospace, South Windsor, Connecticut, has 80 suspension lines, measures more than 50 meters (165 feet) in length, and opens to a diameter of nearly 17 meters (55 feet). It is the largest disk-gap-band parachute ever built and is shown here inflated in the test section with only about 3.8 meters (12.5 feet) of clearance to both the floor and ceiling.

    The wind tunnel, which is 24 meters (80 feet) tall and 37 meters (120 feet) wide and big enough to house a Boeing 737, is part of the National Full-Scale Aerodynamics Complex, operated by the U.S. Air Force, Arnold Engineering Development Center.

    NASA's Jet Propulsion Laboratory, Pasadena, California, is building and testing the Mars Science Laboratory spacecraft for launch in 2009. The mission will land a roving analytical laboratory on the surface of Mars in 2010. JPL is a division of the California Institute of Technology.

  17. SOLID STATE SENSOR FOR INSPECTION OF PRESTRESSED CONCRETE PRESSURE PIPE - PHASE I

    EPA Science Inventory

     

    An important type of water pipe is the Prestressed Concrete Cylinder Pipe (PCCP). There are thousands of miles of PCCP installed in the United States in sections with lengths up to 20 feet an...

  18. Live-sawing: a way to increase lumber grade yield and mill profits

    Treesearch

    Neil K. Huyler

    1974-01-01

    A study to compare live-sawing with conventional grade-sawing of factory-grade 3 red oak sawlogs revealed that live-sawing results in substantial increases in production rate, overrun, log value per thousand board feet, and significant reduction in size of the breakeven log diameter.

  19. Technique for estimating the 2- to 500-year flood discharges on unregulated streams in rural Missouri

    USGS Publications Warehouse

    Alexander, Terry W.; Wilson, Gary L.

    1995-01-01

    A generalized least-squares regression technique was used to relate the 2- to 500-year flood discharges from 278 selected streamflow-gaging stations to statistically significant basin characteristics. The regression relations (estimating equations) were defined for three hydrologic regions (I, II, and III) in rural Missouri. Ordinary least-squares regression analyses indicate that drainage area (Regions I, II, and III) and main-channel slope (Regions I and II) are the only basin characteristics needed for computing the 2- to 500-year design-flood discharges at gaged or ungaged stream locations. The resulting generalized least-squares regression equations provide a technique for estimating the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year flood discharges on unregulated streams in rural Missouri. The regression equations for Regions I and II were developed from stream-flow-gaging stations with drainage areas ranging from 0.13 to 11,500 square miles and 0.13 to 14,000 square miles, and main-channel slopes ranging from 1.35 to 150 feet per mile and 1.20 to 279 feet per mile. The regression equations for Region III were developed from streamflow-gaging stations with drainage areas ranging from 0.48 to 1,040 square miles. Standard errors of estimate for the generalized least-squares regression equations in Regions I, II, and m ranged from 30 to 49 percent.

  20. Geohydrology and simulated ground-water flow in northwestern Elkhart County, Indiana

    USGS Publications Warehouse

    Arihood, L.D.; Cohen, D.A.

    1998-01-01

    In 1994, the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency and the City of Elkhart, developed a ground-water model of the Elkhart, Indiana, area to determine the avail-ability and source of water at potential new well fields. The modeled area covered 190 square miles of northwestern Elkhart County and a small part of southern Michigan. Three Superfund sites and several other sites in this area are undergoing environmental cleanup. The model would be used to guide the location of well fields so that Superfund sites and environmental cleanup areas would not be within recharge areas for the well fields. The City of Elkhart obtains its water supply from two aquifers separated by a generally continuous confining unit. The upper aquifer is composed primarily of sand and gravel of glacial origin. Thickness of the upper aquifer ranges from 0 to 116 feet and averages 47 feet. The lower aquifer is composed of sand and gravel with interbedded lenses of silt and clay. Thickness of the lower aquifer ranges from 1 to 335 feet and averages 35 feet. The intervening confining unit is composed of silt and clay with interbedded sand and gravel; the confining unit ranges from 0 to 177 feet, with an average thickness of 27 feet. Flow through the aquifers is generally horizontal vertically downward from the upper aquifer, through the confining unit, and into the lower aquifer, except where flow is vertically upward at the St. Joseph River and other large streams. The hydraulic characteristics of the aquifers and confining unit were estimated by analyzing aquifer-test data from well drillers? logs and by calibration of the model. The horizontal hydraulic conductivity of the upper aquifer is 170 feet per day within about 1 mile of the St. Joseph and Elkhart Rivers and 370 feet per day at distances greater than about 1 mile. The horizontal hydraulic conductivity of the lower aquifer is 370 feet per day throughout the modeled area, with the exception of an area near the center of the modeled area where the horizontal hydraulic conductivity is 170 feet per day. Transmissivity of the lower aquifer increases generally from southwest to northeast; transmissivity values range from near 0 where the lower aquifer is absent to 57,000 square feet per day and average about 8,100 square feet per day. The vertical hydraulic conductivity of the confining unit is 0.07 feet per day; the vertical conductivity of the streambeds commonly is 1.0 foot per day and ranges from 0.05 foot per day to 50 feet per day. The areal recharge rate to the outwash deposits was determined by a base-flow separation technique to be 16 inches per year, and the areal recharge rate to the till was assumed to be 4 inches per year. A two-layer digital model was used to simulate flow in the ground-water system. The model was calibrated on the basis of historical water-use data, water-level records, and gain/loss data for streams during May and June 1979. The model was recalibrated with water-use data and water-level records from 1988. For 1979 data, 49 percent of the inflow to the model area is from precipitation and 46 percent is ground-water inflow across the model boundaries. Most of the ground-water inflow across the model boundary is from the north and east, which corresponds to high values of transmissivity?as high as 57,000 feet squared per day?in the model layers in the northern and eastern areas. Eighty-two percent of the ground-water discharge is to the streams; 5 percent of the ground-water discharge is to wells. Source areas and flow paths to the City of Elkhart public well fields are affected by the location of streams and the geology in the area. Flow to the North Well Field originates north-west of the well field, forms relatively straight flow paths, and moves southeast toward the well field and the St. Joseph River. Flow to the South Well Field begins mostly in the out-wash along Yellow Creek south of the well field, moves northward, and t

  1. 75 FR 62417 - Draft Environmental Impact Statement for the Proposed Manzanita Band of Kumeyaay Indians Fee-to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-08

    ...,000 square feet of food/beverage and retail components; a 38,660-square-foot entertainment venue; and..., Federal review (by the National Indian Gaming Commission) of the development and management contract, and... Division of Environmental, Cultural Resources Management and Safety, at the telephone number provided in...

  2. Summary of hydrologic testing of the Floridan aquifer system at Fort Stewart, Georgia

    USGS Publications Warehouse

    Gonthier, Gerard

    2011-01-01

    Flowmeter surveys at the study site indicate several permeable zones within the Floridan aquifer system. The Upper Floridan aquifer is composed of two water-bearing zones-the upper zone and the lower zone. The upper zone extends from 520 to 650 feet below land surface, contributes 96 percent of the total flow, and is more permeable than the lower zone, which extends from 650 to 705 feet below land surface and contributes the remaining 4 percent of the flow. The Lower Floridan aquifer consists of three zones at depths of 912-947, 1,090-1,139, and 1,211-1,250 feet below land surface that are inter-layered with three less-permeable zones. The Lower Floridan confining unit includes a permeable zone that extends from 793 to 822 feet below land surface. Horizontal hydraulic conductivity values of the Lower Floridan confining unit derived from slug tests within four packer-isolated intervals were from 2 to 20 feet per day, with a high value of 70 feet per day obtained for one of the intervals. Aquifer testing, using analytical techniques and model simulation, indicated the Upper Floridan aquifer had a transmissivity of about 100,000 feet squared per day, and the Lower Floridan aquifer had a transmissivity of 7,000 feet squared per day. Flowmeter surveys, slug tests within packer-isolated intervals, and parameter-estimation results indicate that the hydraulic properties of the Lower Floridan confining unit are similar to those of the Lower Floridan aquifer. Water-level data, for each aquifer test, were filtered for external influences such as barometric pressure, earth-tide effects, and long-term trends to enable detection of small water-level responses to aquifer-test pumping of less than 1 foot. During a 72-hour aquifer test of the Lower Floridan aquifer, a drawdown response of 0.3 to 0.4 foot was observed in two Upper Floridan aquifer wells, one of which was more than 1 mile away from the pumped well.

  3. Geohydrology of the Flints Pond Aquifer, Hollis, New Hampshire

    USGS Publications Warehouse

    Ayotte, Joseph D.; Dorgan, Tracy H.

    1995-01-01

    Flints pond has been subjected to accelerated eutrophication as a result of watershed development (building of new homes and conversion of summer cottages into permanent homes) since the 1930's. Ground-water flow is the primary recharge and discharge mechanism for Flints Pond. The saturated thickness, transmissive properties, and altitude of the water table were determined by use of surface geophysics, test drilling, and aquifer-test data. Information on the geohydrology of the adjacent Flints Pond aquifer can be used in developing a water and nutrient budget for the pond-aquifer system. Ground-penetrating-radar surveys were done over more than 4 miles of the study area and on Flints Pond. Three distinct reflection signatures were commonly identifiable on the radar profiles: (1) thin, relatively flat-lying, continuous reflectors that represent fine-grained lacustrine sediment; (2) subparallel to hummocky and chaotic, coarse-grained reflectors that possibly represent coarse-grained ice-contact deposits or deltaic sediments in a lacustrine environment; and (3) sharply diffracted, fine-grained, chaotic reflectors that represent till and (or) till over bedrock. The saturated thickness of the aquifer exceeds 90 feet in the northern end of the study area and averages 30 to 50 feet in the southern and eastern parts. The saturated thickness of the western part is generally less than 10 feet. Test borings were completed at 19 sites and 13 wells (6 of which were nested pairs) were installed in various lithologic units. A water-table map, constructed from data collected in November 1994, represents average water-table conditions in the aquifer. Horizontal hydraulic conductivities calculated from single-well aquifer test data for stratified drift range from 2.8 to 226 feet per day. Hydraulic conductivities were quantitatively correlated with the reflector signatures produced with ground-penetrating radar so that transmissivities could be inferred for areas where well data were unavailable but where ground- penetrating-radar surveys were done. A saturated- thickness and transmissivity map for the aquifer shows that transmissivities exceeds 3,000 feet squared per day in the southern and east-central parts of the aquifer. Transmissivity ranges from 1,000 to 2,000 feet squared per day in the northern part of the aquifer and is generally less than 1,000 feet squared per day in the western part.

  4. Hydrogeology of the Waverly-Sayre area in Tioga and Chemung ounties, New York and Bradford County, Pennsylvania

    USGS Publications Warehouse

    Reynolds, Richard J.

    2002-01-01

    The hydrogeology of a 135-square-mile area centered at Waverly, N.Y. and Sayre, Pa. is summarized in a set of five maps and a sheet of geologic sections, all at 1:24,000 scale, that depict locations of wells and test holes (sheet 1), surficial geology (sheet 2), altitude of the water table (sheet 3), saturated thickness of the surficial aquifer (sheet 4), thickness of the lacustrine confining unit (sheet 5), and geologic sections (sheet 6). The valley-fill deposits that form the aquifer system in the Waverly-Sayre area occupy an area of approximately 30 square miles, within the valleys of the Susquehanna River, Chemung River, and Cayuta Creek.The saturated thickness of the surficial aquifer, which consists of alluvium, valley-train outwash, and underlying ice-contact deposits, ranges from zero to 90 feet and is greatest in areas where (1) the outwash is underlain by ice-contact sand and gravel or (2) the outwash is overlain by alluvium and alluvial fans. Estimated transmissivity of the surficial aquifer ranges from 5,600 to 100,270 feet squared per day, and estimated hydraulic conductivity ranges from 50 feet per day for ice-contact deposits to 1,300 feet per day for well-sorted, valley-train outwash.The surficial aquifer is underlain by deposits of lacustrine sand, silt, and clay in the main valleys; these deposits reach thicknesses of as much as 150 ft and form a thick confining unit. Beneath the lacustrine silt and clay confining unit is a thin, discontinuous sand and gravel aquifer whose thickness averages 5 feet but may be as much as 30 feet locally. This confined aquifer supplies many domestic well in the area; yields average about 22 gallons per minute for 6-inch-diameter, open-ended wells. Average annual recharge to the aquifer system is estimated to be approximately 52.5 Mgal/d (million gallons per day), of which 29.7 Mgal/d is from direct precipitation, 7.6 Mgal/d is from unchanneled upland runoff that infiltrates the stratified drift along the valley wall, and 15.2 Mgal/d is from infiltration from tributary streams on the valley floor.

  5. August Median Streamflow on Ungaged Streams in Eastern Aroostook County, Maine

    USGS Publications Warehouse

    Lombard, Pamela J.; Tasker, Gary D.; Nielsen, Martha G.

    2003-01-01

    Methods for estimating August median streamflow were developed for ungaged, unregulated streams in the eastern part of Aroostook County, Maine, with drainage areas from 0.38 to 43 square miles and mean basin elevations from 437 to 1,024 feet. Few long-term, continuous-record streamflow-gaging stations with small drainage areas were available from which to develop the equations; therefore, 24 partial-record gaging stations were established in this investigation. A mathematical technique for estimating a standard low-flow statistic, August median streamflow, at partial-record stations was applied by relating base-flow measurements at these stations to concurrent daily flows at nearby long-term, continuous-record streamflow- gaging stations (index stations). Generalized least-squares regression analysis (GLS) was used to relate estimates of August median streamflow at gaging stations to basin characteristics at these same stations to develop equations that can be applied to estimate August median streamflow on ungaged streams. GLS accounts for varying periods of record at the gaging stations and the cross correlation of concurrent streamflows among gaging stations. Twenty-three partial-record stations and one continuous-record station were used for the final regression equations. The basin characteristics of drainage area and mean basin elevation are used in the calculated regression equation for ungaged streams to estimate August median flow. The equation has an average standard error of prediction from -38 to 62 percent. A one-variable equation uses only drainage area to estimate August median streamflow when less accuracy is acceptable. This equation has an average standard error of prediction from -40 to 67 percent. Model error is larger than sampling error for both equations, indicating that additional basin characteristics could be important to improved estimates of low-flow statistics. Weighted estimates of August median streamflow, which can be used when making estimates at partial-record or continuous-record gaging stations, range from 0.03 to 11.7 cubic feet per second or from 0.1 to 0.4 cubic feet per second per square mile. Estimates of August median streamflow on ungaged streams in the eastern part of Aroostook County, within the range of acceptable explanatory variables, range from 0.03 to 30 cubic feet per second or 0.1 to 0.7 cubic feet per second per square mile. Estimates of August median streamflow per square mile of drainage area generally increase as mean elevation and drainage area increase.

  6. 7 CFR 25.103 - Area size and boundary requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... requirements. A nominated area: (1) May not exceed one thousand square miles in total land area; (2) Must have... section to Round II, Round IIS and Round III designations: (i) A Census tract larger than 1,000 square miles shall be reduced to a 1,000 square mile area with a continuous boundary, if necessary, after...

  7. 7 CFR 25.103 - Area size and boundary requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... requirements. A nominated area: (1) May not exceed one thousand square miles in total land area; (2) Must have... section to Round II, Round IIS and Round III designations: (i) A Census tract larger than 1,000 square miles shall be reduced to a 1,000 square mile area with a continuous boundary, if necessary, after...

  8. 7 CFR 25.103 - Area size and boundary requirements

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... requirements. A nominated area: (1) May not exceed one thousand square miles in total land area; (2) Must have... section to Round II, Round IIS and Round III designations: (i) A Census tract larger than 1,000 square miles shall be reduced to a 1,000 square mile area with a continuous boundary, if necessary, after...

  9. 7 CFR 25.103 - Area size and boundary requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... requirements. A nominated area: (1) May not exceed one thousand square miles in total land area; (2) Must have... section to Round II, Round IIS and Round III designations: (i) A Census tract larger than 1,000 square miles shall be reduced to a 1,000 square mile area with a continuous boundary, if necessary, after...

  10. Solar heating system installed at Blakedale Professional Center, Greenwood, South Carolina

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Information on the solar heating system installed at the Blakedale Professional Center, in Greenwood, South Carolina is presented. The information consists of site and building description, solar system description, performance evaluation, system problems and installation drawings. The solar system was designed to provide approximately 85 percent of the building's heating requirements. The system was installed concurrently with building construction and heats 4,440 square feet of the building. There are 954 square feet of liquid flat plate collectors that are proof-mounted and have a drain-down system to protect the collectors from freezing. A 5,000 gallon steel, polyurethane insulated tank buried underground provides storage. The system was fully instrumented for performance evaluation and integrated into the National Solar Data Network.

  11. Bexar County Parking Garage Photovoltaic Panels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weir, Golda

    2012-01-23

    The main objective of the Bexar County Parking Garage Photovoltaic (PV) Panel project is to install a PV System that will promote the use of renewable energy. This project will also help sustain Bexar County ongoing greenhouse gas emissions reduction and energy efficiency goals. The scope of this project includes the installation of a 100-kW system on the top level of a new 236,285 square feet parking garage. The PV system consists of 420 solar panels that covers 7,200 square feet and is tied into the electric-grid. It provides electricity to the office area located within the garage. The estimatedmore » annual electricity production of the PV system is 147,000 kWh per year.« less

  12. Hydrology of the Floridan Aquifer in Northwest Volusia County, Florida

    USGS Publications Warehouse

    Rutledge, A.T.

    1982-01-01

    Northwest Volusia County, in east-central Florida, is a 262-square-mile area including the southern part of the Crescent City Ridge and the northern tip of the DeLand Ridge. The hydrogeologic units in the area include the Floridan aquifer, which is made up of parts of the Lake City Limestone, the Avon Park Limestone, and the Ocala Limestone, all of Eocene age; the confining bed, which is composed of clays of Miocene or Pliocene age; and the surficial aquifer, which is made up of Pleistocene and Holocene sands. Ornamental fern growing is a $12 million per year industry in northwest Volusia County. Fern culture requires a large amount of good-quality water for irrigation, and more significantly, a large water withdrawal rate for freeze protection during winter months. The source of most water used is the Floridan aquifer. The large irrigation withdrawals, especially in winter months when spray irrigation is used for freeze protection of ferns, introduce problems such as the potential for saltwater intrusion, the temporary loss of water in domestic wells caused by large potentiometric drawdown, and increased sinkhole activity. The water budget of the surficial layer consists of 55 inches per year rainfall, 39 inches per year evapotranspiration, 13 inches per year runoff, and a net downward leakage of 3 inches per year. Average ground-water irrigational withdrawal is 8.1 million gallons per day, while the peak withdrawal rate is 300 million gallons per day during freeze-protection pumpage. The average irrigation well depth exceeds 300 feet. Transmissivities of the Floridan aquifer range from 4,500 to 160,000 feet squared per day. Highest transmissivities are in the DeLeon Springs area and the lowest are in the east Pierson area. Storage coefficients range from 0.0003 to 0.0013. The water budget of the Floridan aquifer under present conditions of withdrawal consists of 108 cubic feet per second recharge, 2 cubic feet per second horizontal ground-water inflow, 34 cubic feet per second direct discharge, 40 cubic feet per second upward leakage, 22 cubic feet per second horizontal outflow, and 14 cubic feet per second pumpage. The Floridan aquifer contains good-quality water in most of the study area, but also contains brackish water underneath the stressed zones and in the upper zones along the western and southern limits of the area. The altitude of the fresh- saltwater interface varies in the area from 1,500 to 300 feet below sea level. Areal drawdowns in the fern-growing areas of Pierson are 5 feet during growth irrigation periods and 20 to 30 feet during freeze-protection withdrawals. The drawdown in the Pierson area at the end of one intense period of pumpage exceeded 30 feet over a 4.4-square-mile area. A significant amount of the withdrawn water was replaced by leakage during the pumping period. Drawdowns in some pumping wells in northeast Pierson exceed 90 feet during freeze-protection withdrawals. No long-term residual drawdown has occurred. The predominant effect of pumpage on the water budget of the Floridan aquifer has been an increase in recharge. Sinkhole activity has been increased by the temporary increase in load on the aquifer's skeletal structure during intense lowering of the potentiometric surface. There is no evidence of saltwater intrusion, but a monitoring network for future early detection is suggested.

  13. 30 CFR 942.817 - Performance standards-Underground mining activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (ii) Culvert spacing shall not exceed one thousand (1,000) feet on grades of zero (0) to three (3... or greater. Culverts shall be installed at closer intervals than the maximum in this part if required... intersecting drainages. Culverts may be constructed at greater intervals than the maximum indicated in this...

  14. 30 CFR 942.817 - Performance standards-Underground mining activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (ii) Culvert spacing shall not exceed one thousand (1,000) feet on grades of zero (0) to three (3... or greater. Culverts shall be installed at closer intervals than the maximum in this part if required... intersecting drainages. Culverts may be constructed at greater intervals than the maximum indicated in this...

  15. 30 CFR 942.817 - Performance standards-Underground mining activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (ii) Culvert spacing shall not exceed one thousand (1,000) feet on grades of zero (0) to three (3... or greater. Culverts shall be installed at closer intervals than the maximum in this part if required... intersecting drainages. Culverts may be constructed at greater intervals than the maximum indicated in this...

  16. 25 CFR 241.2 - Annette Islands Reserve; definition; exclusive fishery; licenses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of said islands, rocks, and islets. (b) Exclusive fishery. The Annette Islands Reserve is declared to.... (a) Definition. The Annette Islands Reserve is defined as the Annette Islands in Alaska, as set apart... waters within three thousand feet from the shore lines at mean low tide of Annette Island, Ham Island...

  17. 75 FR 13301 - Los Vaqueros Reservoir Expansion, Contra Costa and Alameda Counties, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Los Vaqueros Reservoir Expansion, Contra Costa... Reservoir Expansion Final EIS/EIR. Los Vaqueros Expansion is a proposed action in the August 2000 CALFED Bay... Vaqueros Reservoir from its existing capacity of 100 thousand acre-feet (TAF). A 175 TAF expansion option...

  18. Testing a Parachute for Mars in World's Largest Wind Tunnel

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The team developing the landing system for NASA's Mars Science Laboratory tested the deployment of an early parachute design in mid-October 2007 inside the world's largest wind tunnel, at NASA Ames Research Center, Moffett Field, California.

    In this image, two engineers are dwarfed by the parachute, which holds more air than a 280-square-meter (3,000-square-foot) house and is designed to survive loads in excess of 36,000 kilograms (80,000 pounds).

    The parachute, built by Pioneer Aerospace, South Windsor, Connecticut, has 80 suspension lines, measures more than 50 meters (165 feet) in length, and opens to a diameter of nearly 17 meters (55 feet). It is the largest disk-gap-band parachute ever built and is shown here inflated in the test section with only about 3.8 meters (12.5 feet) of clearance to both the floor and ceiling.

    The wind tunnel, which is 24 meters (80 feet) tall and 37 meters (120 feet) wide and big enough to house a Boeing 737, is part of the National Full-Scale Aerodynamics Complex, operated by the U.S. Air Force, Arnold Engineering Development Center.

    NASA's Jet Propulsion Laboratory, Pasadena, California, is building and testing the Mars Science Laboratory spacecraft for launch in 2009. The mission will land a roving analytical laboratory on the surface of Mars in 2010. JPL is a division of the California Institute of Technology.

  19. Remedial investigation report, site 2-Pesticide Pit Burial Area, Stewart Air National Guard Base, Newburgh, New York. Volume 1. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Site 2-Pesticide Pit Burial Area was investigated under the Installation Restoration Program. A removal action was conducted in 1988, when pesticide containers and contaminated soil were excavated from the pit. The pit covered an area of approximately 1000 square feet and was approximately 12 feet deep. The report recommends no further action based on study results.

  20. Remedial investigation report, site 2-Pesticide Pit Burial Area, Stewart Air National Guard Base, Newburgh, New York. Volume 2. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Site 2-Pesticide Pit Burial Area was investigated under the Installation Restoration Program. A removal action was conducted in 1988, when pesticide containers and contaminated soil were excavated from the pit. The pit covered an area of approximately 1000 square feet and was approximately 12 feet deep. The report recommends no further action based on study results.

  1. Projected effects of intermittent changes in withdrawal of water from the Arikaree Aquifer near Wheatland, southeastern Wyoming

    USGS Publications Warehouse

    Hoxie, Dwight T.

    1979-01-01

    Effects on streamflows and ground-water levels attributable to a proposed intermittent change in use and sites of withdrawal of 3 ,146 acre-feet of water from the Arikaree aquifer in central Platte County, WY, are assessed with a previously developed ground-water flow model. This water has been permitted for agricultural use by the State of Wyoming, and under the proposal would supplement, when needed, existing industrial surface- and ground-water supplies for the Laramie River Station of the Missouri Basin Power Project. Under a scenario wherein the supplemental industrial usage occurs in every 10th year commencing in 1980, the model predicts a cumulative streamflow-depletion rate in the Laramie and North Laramie Rivers of 7.7 cubic feet per second in the year 2020 compared to a rate of 6.9 cubic feet per second that is predicted if the intermittent industrial usage does not occur. Areas in which drawdowns relative to the simulated 1973 head configuration exceed 5, 10, 25, and 50 feet are predicted to be 107, 78, 38, and 2 square miles, respectively, in 2020 under the intermittent-usage scenario compared to corresponding areas of 104, 76, 36, and 2 square miles that are predicted if the intermittent industrial usage does not occur. (USGS).

  2. 49 CFR 178.348-4 - Pressure relief.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...+460)]; A = The exposed surface area of tank shell—square meters (square feet); L = The latent heat of... unloading rates must be included on the metal specification plate. (3) Cargo tanks used in dedicated service...), the ratio of specific heats of the vapor. If (K) is unknown, let C = 315. C = 520[K(2/(K+1))[(K+1)/(K...

  3. 49 CFR 178.348-4 - Pressure relief.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...+460)]; A = The exposed surface area of tank shell—square meters (square feet); L = The latent heat of... unloading rates must be included on the metal specification plate. (3) Cargo tanks used in dedicated service...), the ratio of specific heats of the vapor. If (K) is unknown, let C = 315. C = 520[K(2/(K+1))[(K+1)/(K...

  4. 49 CFR 178.348-4 - Pressure relief.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...+460)]; A = The exposed surface area of tank shell—square meters (square feet); L = The latent heat of... unloading rates must be included on the metal specification plate. (3) Cargo tanks used in dedicated service...), the ratio of specific heats of the vapor. If (K) is unknown, let C = 315. C = 520[K(2/(K+1))[(K+1)/(K...

  5. 49 CFR 178.348-4 - Pressure relief.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...+460)]; A = The exposed surface area of tank shell—square meters (square feet); L = The latent heat of... unloading rates must be included on the metal specification plate. (3) Cargo tanks used in dedicated service...), the ratio of specific heats of the vapor. If (K) is unknown, let C = 315. C = 520[K(2/(K+1))[(K+1)/(K...

  6. 76 FR 62440 - Final Environmental Impact Statement for the Manzanita Band of Kumeyaay Indians Fee-to-Trust...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ...,000 square feet of food/beverage and retail components; 38,660-square foot entertainment venue; and... of the project site, Federal review (by NIGC) of the development and management contract, and... Resources Management and safety, at the address listed in the FOR FURTHER INFORMATION CONTACT section of...

  7. Bathymetry of Lake Manatee, Manatee County, Florida, 2009

    USGS Publications Warehouse

    Bellino, Jason C.; Pfeiffer, William R.

    2010-01-01

    Lake Manatee, located in central Manatee County, Florida, is the principal drinking-water source for Manatee and Sarasota Counties. The drainage basin of Lake Manatee encompasses about 120 square miles, and the reservoir covers a surface area of about 1,450 acres at an elevation of 38.8 feet above NAVD 88 or 39.7 feet above NGVD 29. The full pool water-surface elevation is 39.1 feet above NAVD 88 (40.0 feet above NGVD 29), and the estimated minimum usable elevation is 25.1 feet above NAVD 88 (26.0 feet above NGVD 29). The minimum usable elevation is based on the elevation of water intake structures. Manatee County has used the stage/volume relation that was developed from the original survey in the 1960s to estimate the volume of water available for consumption. Concerns about potential changes in storage capacity of the Lake Manatee reservoir, coupled with a recent drought, led to this bathymetry mapping effort.

  8. Well installation, single-well testing, and particle-size analysis for selected sites in and near the Lost Creek Designated Ground Water Basin, north-central Colorado, 2003-2004

    USGS Publications Warehouse

    Beck, Jennifer A.; Paschke, Suzanne S.; Arnold, L. Rick

    2011-01-01

    This report describes results from a groundwater data-collection program completed in 2003-2004 by the U.S. Geological Survey in support of the South Platte Decision Support System and in cooperation with the Colorado Water Conservation Board. Two monitoring wells were installed adjacent to existing water-table monitoring wells. These wells were installed as well pairs with existing wells to characterize the hydraulic properties of the alluvial aquifer and shallow Denver Formation sandstone aquifer in and near the Lost Creek Designated Ground Water Basin. Single-well tests were performed in the 2 newly installed wells and 12 selected existing monitoring wells. Sediment particle size was analyzed for samples collected from the screened interval depths of each of the 14 wells. Hydraulic-conductivity and transmissivity values were calculated after the completion of single-well tests on each of the selected wells. Recovering water-level data from the single-well tests were analyzed using the Bouwer and Rice method because test data most closely resembled those obtained from traditional slug tests. Results from the single-well test analyses for the alluvial aquifer indicate a median hydraulic-conductivity value of 3.8 x 10-5 feet per second and geometric mean hydraulic-conductivity value of 3.4 x 10-5 feet per second. Median and geometric mean transmissivity values in the alluvial aquifer were 8.6 x 10-4 feet squared per second and 4.9 x 10-4 feet squared per second, respectively. Single-well test results for the shallow Denver Formation sandstone aquifer indicate a median hydraulic-conductivity value of 5.4 x 10-6 feet per second and geometric mean value of 4.9 x 10-6 feet per second. Median and geometric mean transmissivity values for the shallow Denver Formation sandstone aquifer were 4.0 x 10-5 feet squared per second and 5.9 x 10-5 feet squared per second, respectively. Hydraulic-conductivity values for the alluvial aquifer in and near the Lost Creek Designated Ground Water Basin generally were greater than hydraulic-conductivity values for the Denver Formation sandstone aquifer and less than hydraulic-conductivity values for the alluvial aquifer along the main stem of the South Platte River Basin reported by previous studies. Particle sizes were analyzed for a total of 14 samples of material representative of the screened interval in each of the 14 wells tested in this study. Of the 14 samples collected, 8 samples represent the alluvial aquifer and 6 samples represent the Denver Formation sandstone aquifer in and near the Lost Creek Designated Ground Water Basin. The sampled alluvial aquifer material generally contained a greater percentage of large particles (larger than 0.5 mm) than the sampled sandstone aquifer material. Alternatively, the sampled sandstone aquifer material generally contained a greater percentage of fine particles (smaller than 0.5 mm) than the sampled alluvial aquifer material consistent with the finding that the alluvial aquifer is more conductive than the sandstone aquifer in the vicinity of the Lost Creek Designated Ground Water Basin.

  9. Minor floods of 1938 in the North Atlantic States

    USGS Publications Warehouse

    ,

    1947-01-01

    Five noteworthy floods occurred during 1938 in the North Atlantic States. The first flood was in January, the others were in June, July, August, and September. The floods of January, June, and August were relatively local events in Connecticut, New Jersey, and New York, respectively. The floods of July and September were widespread, reaching from New Jersey and New York to New Hampshire in generally coincident locations. The flood of September, the most severe, is described in appropriate detail in Water-Supply Paper 867; the others in this volume are in separate sections arranged chronologically. Extraordinary floods in Connecticut during January 1938 resulted from a critical combination of warm rainfall and virtual overnight melting of the accumulated snowfall of winter. Seven small streams in central and western Connecticut rose to levels on January 25 higher than those reached during the great floods of March 1936. Crest discharge of these streams approximated 100 second-feet per square mile. Ice cover was loosened and sent downstream in recurrent jams. In general, the larger rivers did not attain extraordinary stages. The Connecticut River at Hartford peaked at a stage 3.6 feet above ordinary flood level. Direct damage by the flood was relatively small. Snow cover on January 20, at the beginning of the rains, varied from 0.25 inch along the coast to 2.75 inches water equivalent in the northern part of the State. Precipitation between January 24 and 26 exceeded 2.75 inches in only three small areas. Total supply as water in snow and precipitation did not exceed 4.8 inches over any tributary area. Maximum measured flood run-off was 2.7 inches. The flood of June 1938 in New Jersey was the immediate result of a 30-hour rainstorm on June 26-27 that centered along a line extending from Odessa, Del., to Milton, N. J. Storm rainfall exceeded 5 inches over a total area of 2,900 square miles. River stages in the central parts of the storm area rose to levels that approached and on a few rivers exceeded previous maxima of record. Damage was extensive throughout the storm area, especially in Burlington, N. J., where Sylvan Lake Dam failed. The highest rate of flow per unit of area measured was 88 second-feet per square mile. However, all peak discharges were exceeded during the later floods of 1938 or by the flood of September 1, 1940, which produced discharges over 1,000 second-feet per square mile in southern New Jersey. The maximum volume of direct runoff during the flood, expressed in mean depth in inches on the drainage area, was 2.1 inches. From July 17 to 25, 1938, there was an irregular series of rainstorms over the eastern seaboard that brought more than 10 inches of rain over an area of 2,000 square miles and more than 6 inches over 23,000 square miles. Nearly 14 inches of rain fell at Long Branch, N. J. Extraordinary floods occurred mainly in the smaller tributary streams. Damage to highways, homes, factories, and crops, particularly the tobacco co-op in Connecticut, was extensive. Crest discharges at 12 gaging stations exceeded those previously observed. Maximum rates of discharge varied from 601 second-feet per square mile for an area of 2.91 square miles in New Jersey to 35 second-feet per square mile for an area of 711 square miles in Connecticut. Antecedent soil moisture prior to the storm was probably normal or a little above. The maximum volume of direct runoff was 4.75 inches in Massachusetts, 5.6 inches in eastern Connecticut, 6.75 inches in the Catskill Mountain region of New York, and 4.95 inches in the Raritan River Basin of New Jersey. Infiltration indices from 0.09 .to 0.21 inch per hour were computed, such rates being within the range defined for basins in the same areas during the floods of September 1938. The flood of August 6-11, 1938, in the Catskill Mountain region of New York resulted from heavy rains with a maximum of 8 inches at two centers. Rainfall exceeded 3 inches over more than 3,000

  10. Streamflow from the United States into the Atlantic Ocean during 1931-1960

    USGS Publications Warehouse

    Bue, Conrad D.

    1970-01-01

    Streamflow from the United States into the Atlantic Ocean, between the international stream St. Croix River, inclusive, and Cape Sable, Fla., averaged about 355,000 cfs (cubic feet per second) during the 30-year period 1931-60, or roughly 20 percent of the water that, on the average flows out of the conterminous United States. The area drained by streams flowing into the Atlantic Ocean is about 288,000 square miles, including the Canadian part of the St. Croix and Connecticut River basins, or a little less than 10 percent of the area of the conterminous United States. Hence, the average streamflow into the Atlantic Ocean, in terms of cubic feet per second per square mile, is about twice the national average of the flow that leaves the conterminous United States. Flow from about three-fourths of the area draining into the Atlantic Ocean is gaged at streamflow measuring stations of the U.S. Geological Survey. The remaining one-fourth of the drainage area consists mostly of low-lying coastal areas from which the flow was estimated, largely on the basis of nearby gaging stations. Streamflow, in terms of cubic feet per second per square mile, decreases rather progressively from north to south. It averages nearly 2 cfs along the Maine coast, about 1 cfs along the North Carolina coast, and about 0.9 cfs along the Florida coast.

  11. Aletsch Glacier, Switzerland

    NASA Image and Video Library

    2002-09-03

    Aletsch Glacier, the largest glacier of Europe, covers more than 120 square kilometers (more than 45 square miles) in southern Switzerland. At its eastern extremity lies a glacierlake, Mdrjelensee (2,350 meters/7,711 feet above sea level). To the west rises Aletschhorn (4,195 meters/13,763 feet), which was first climbed in 1859. The Rhone River flows along the southern flank of the mountains. This image was acquired on July 23, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. http://photojournal.jpl.nasa.gov/catalog/PIA03857

  12. Ponderosa pine mortality resulting from a mountain pine beetle outbreak

    Treesearch

    William F. McCambridge; Frank G. Hawksworth; Carleton B. Edminster; John G. Laut

    1982-01-01

    From 1965 to 1978, mountain pine beetles killed 25% of the pines taller than 4.5 feet in a study area in north-central Colorado. Average basal area was reduced from 92 to 58 square feet per acre. Mortality increased with tree diameter up to about 9 inches d.b.h. Larger trees appeared to be killed at random. Mortality was directly related to number of trees per acre and...

  13. Saturn Apollo Program

    NASA Image and Video Library

    1967-09-09

    This photograph depicts the F-1 engine firing in the Marshall Space Flight Center’s F-1 Engine Static Test Stand. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. It is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, designed to assist in the development of the F-1 Engine. Capability is provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. The foundation of the stand is keyed into the bedrock approximately 40 feet below grade.

  14. Effect of Water Immersion on Fiber/Matrix Adhesion

    DTIC Science & Technology

    1993-01-01

    ABBREVIATIONS 0C Degrees Centigrade KSI Thousand Pounds Per Square Inch MSI Million Pounds Per Square Inch OCF Owens Corning Fiberglas PEEK...A209 Dr. David Hartman Gaithersburg, MD 20899 Owens - Corning Fiberglas Corp. Technical Center Dr. Forrest Sloan 2790 Columbus Road, Rt. 16 Allied

  15. Eleuthera Island, Bahamas

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Eleuthera Island, (24.5N, 76.0W) Bahamas Island Group, is one of several within the archipelago surrounded by shallow seas, visible here as light blue. Mosaic patterns of sand waves built by sea bottom currents in the shallows stand out in stark contrast to the deep blue of the ocean depths of a thousand feet in the Exuma Sound.

  16. Minnesota timber industry--an assessment of timber product output and use, 1992.

    Treesearch

    Ronald L. Hackett; Richard A. Dahlman

    1997-01-01

    In 1992, volume of industrial roundwood products removed from Minnesota's forest totaled 392 million cubic feet--14% more than in 1990. Mill byproducts generated from primary manufacturers decreased 2% to 1,595 thousand tons, green weight. Almost all plant residues were used, primarily for fuel and fiber products. Pulpwood was the leading roundwood product at...

  17. Low-Cost Opportunity for Small-Scale Manufacture of Hardwood Blanks

    Treesearch

    Bruce G. Hansen; Philip A. Araman

    1985-01-01

    We analyzed the manufacture of standard-size hardwood blanks from lumber on a relatively small scale by conventional processing. Requiring an investment of just over $200,000, the conventional mill can process 500 M bf (thousand board feet) of kiln-dried lumber annually. The study focused on the economics associated with manufacture of blanks from four species -...

  18. Estimators and characteristics of logging residue in Montana.

    Treesearch

    James. O Howard; Carl E. Fiedler

    1984-01-01

    Ratios are presented for estimating volume and characteristics of logging residue in Montana. They relate cubic-foot volume of residue to thousand board feet of timber harvested and to acres harvested. Tables show gross and net volume of residue, with and without bark, by diameter and length classes; by number of pieces per acre; by percent soundness; by product...

  19. 30 CFR 203.73 - How do suspension volumes apply to natural gas?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false How do suspension volumes apply to natural gas... suspension volumes apply to natural gas? You must measure natural gas production under the royalty-suspension volume as follows: 5.62 thousand cubic feet of natural gas, measured in accordance with 30 CFR part 250...

  20. Historical trends of timber product output in the South

    Treesearch

    Tony G. Johnson; Daniel P. Stratton

    1998-01-01

    This report contains historical data of canvasses of primary wood-using plants conducted periodically in the 13 Southern States and presents changes in product output by year of survey species group, and product by thousand cubic feet and standard units. This data complements the Forest Inventory and Analysis periodic inventory of volume, growth, and removals from each...

  1. Seasonal influence on Ohio hardwood stumpage price trends

    Treesearch

    T. Eric McConnell

    2014-01-01

    The average annual percentage rates of change in real sawtimber stumpage prices from 1978 through 2012 (dollars per thousand board feet, Doyle) for the 10 commercial hardwood species of Ohio were determined. Each species was then further examined for differing trend lines between the spring and fall reporting periods. Annual real rates of change ranged from -1.10...

  2. 30 CFR 203.73 - How do suspension volumes apply to natural gas?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false How do suspension volumes apply to natural gas... § 203.73 How do suspension volumes apply to natural gas? You must measure natural gas production under the royalty-suspension volume as follows: 5.62 thousand cubic feet of natural gas, measured in...

  3. Environmental Assessment: Installation Development at Lackland Air Force Base, Texas

    DTIC Science & Technology

    2006-12-01

    37 TRW 37th Training Wing MCF/day thousand cubic feet per day AAM Annual Arithmetic Mean mgd million gallons per day AAQS ambient air quality...Industrial Hygiene Association NAAQS National Ambient Air Quality Standards AICUZ Air Installation Compatible Use Zone NEPA National Environmental...AFB....................................... 3-33 Table 3-8 Federal Ambient Air Quality Standards

  4. Regionalized equations for bankfull-discharge and channel characteristics of streams in New York State—Hydrologic Region 5 in central New York

    USGS Publications Warehouse

    Westergard, Britt E.; Mulvihill, Christiane I.; Ernst, Anne G.; Baldigo, Barry P.

    2005-01-01

    Equations that relate drainage area to bankfull discharge and channel dimensions (width, depth, and cross-sectional area) at gaged sites are needed to define bankfull discharge and channel dimensions at ungaged sites and to provide information for the design of stream-restoration projects. Such equations are most accurate if derived from streams within an area of uniform hydrologic, climatic, and physiographic conditions and applied only within that region. A study to develop equations to predict bankfull data for ungaged streams in New York established eight regions that coincided with previously defined hydrologic regions. This report presents drainage areas and bankfull characteristics (discharge and channel dimensions) for streams in central New York (Region 5) selected for this pilot study.Stream-survey data and discharge records from seven active (currently gaged) sites and nine inactive (discontinued gaged) sites were used in regression analyses to relate size of drainage area to bankfull discharge and bankfull channel width, depth, and cross-sectional area. The resulting equations are:(1) bankfull discharge, in cubic feet per second = 45.3*(drainage area, in square miles)0.856;(2) bankfull channel width, in feet = 13.5*(drainage area, in square miles)0.449;(3) bankfull channel depth, in feet = 0.801*(drainage area, in square miles)0.373; and(4) bankfull channel cross-sectional area, in square feet = 10.8*(drainage area, in square miles)0.823.The high correlation coefficients (R2) for these four equations (0.96, 0.92, 0.91, 0.98, respectively) indicate that much of the variation in the variables is explained by the size of the drainage area. Recurrence intervals for the estimated bankfull discharge of each stream ranged from 1.11 to 3.40 years; the mean recurrence interval was 1.51 years. The 16 surveyed streams were classified by Rosgen stream type; most were mainly C-type reaches, with occasional B- and F-type reaches. The Region 5 equation was compared with equations developed for six other large areas in the Northeast. The major differences among results indicate a need to refine equations so they can be applied by water-resources managers to local planning and design efforts.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, C.D.; Allison, M.L.

    The Bluebell field is productive from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated lacustrine environment. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1,000 to 3,000 vertical feet (300-900 m), then stimulating the entire interval. This completion technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. Geologic and engineering characterization has been usedmore » to define improved completion techniques. A two-year characterization study involved detailed examination of outcrop, core, well logs, surface and subsurface fractures, produced oil-field waters, engineering parameters of the two demonstration wells, and analysis of past completion techniques and effectiveness. The characterization study resulted in recommendations for improved completion techniques and a field-demonstration program to test those techniques. The results of the characterization study and the proposed demonstration program are discussed in the second annual technical progress report. The operator of the wells was unable to begin the field demonstration this project year (October 1, 1995 to September 20, 1996). Correlation and thickness mapping of individual beds in the Wasatch Formation was completed and resulted in a. series of maps of each of the individual beds. These data were used in constructing the reservoir models. Non-fractured and fractured geostatistical models and reservoir simulations were generated for a 20-square-mile (51.8-km{sup 2}) portion of the Bluebell field. The modeling provides insights into the effects of fracture porosity and permeability in the Green River and Wasatch reservoirs.« less

  6. Acquisition of a High-resolution Inductively Coupled Plasma Mass Spectrometer for Cosmochemical and Geochemical Research

    NASA Technical Reports Server (NTRS)

    Lauretta, D. S.

    2004-01-01

    The primary goal of our research in this program is to develop new techniques for the analysis of volatile trace elements in very small samples using inductively coupled plasma mass spectrometry (ICP-MS) in preparation for samples returned by the Stardust mission. The instrument that will serve as the basis of our experiments is the ELEMENT2 high-resolution ICP-MS. We have spent the past year designing the laboratory to house this instrument as well as space to store and prepare samples returned by the Stardust mission. Unfortunately, the location that we had initially selected for the instrument turned out to be insufficient for our needs. This was determined almost eight months into the first year of our funding cycle, after extensive work including the production of engineering drawings. However, during this time the Lunar and Planetary Laboratory was selected to lead Phoenix, the first Mars Scout mission. As a result of this award LPL purchased a new, 50,000 square foot building. We have acquired 1400 square feet of laboratory space in this new facility. Four-hundred square feet will be used for a class-100 clean room. This area is designated for storage and preparation of extraterrestrial materials. The additional 1000 square feet will house the ELEMENT2 ICP-MS and peripheral devices. This is an enormous amount of space for this instrument, but it provides plenty of room for expansion in the future. The ICP-MS and the clean room facilities have been purchased. The instrument has been delivered. The startup time for this instrument is relatively short and we expect to be collecting our first data by mid-summer.

  7. Prediction of yield in old-field sweetgum stands in southern New Jersey

    Treesearch

    John J. Phillips

    1961-01-01

    During a recent soil-site study of sweetgum in southern New Jersey, measurements of volume were also made on forty-six 0.1-acre plots. These plots were in pure, well-stocked, even-aged stands ranging in age from 30 to 65 years. Basal area ranged from 117 to 245 square feet per acre, with a mean of 180. Site index varied from 60 to 95 feet at 50 years. The trees were of...

  8. Ground-water potentialities in the Crescent Valley, Eureka and Lander Counties, Nevada

    USGS Publications Warehouse

    Zones, Christie Paul

    1961-01-01

    The Crescent Valley is an intermontane basin in Eureka and Lander Counties, just south of the Humboldt River in north-central Nevada. The valley floor, with an area of about 150 square miles, has a shape that more nearly resembles a Y than a crescent, although the valley apparently was named after the arc described by its southern part and northeastern arm. The northwestern arm of the Y extends northward to the small railroad town of Beowawe on the Humboldt River; the northeastern arm lies east of the low Dry Hills. The leg of the Y extends southwestward toward a narrow gap which separates the Crescent Valley from the Carico Lake Valley. The total drainage area of the Crescent Valley-about 700 square miles--includes also the slopes of the bordering mountain ranges: the Shoshone Range to the west, the Cortez Mountains to the east, and the Toiyabe Range to the south. The early history of the Crescent Valley was dominated by mining of silver and gold, centered at Lander in the Shoshone Range and at Cortez and Mill Canyon in the Cortez Mountains, but in recent years the only major mining activity has been at Gold Acres; there open-pit mining of low-grade gold ore has supported a community of about 200. For many years the only agricultural enterprises in the valley were two cattle ranches, but recently addition lands have been developed for the raising of crops in the west-central part of the valley. The average annual precipitation upon the floor of the Crescent Valley is probably less than 7 inches, of which only a little more than 1 inch formally falls during the growing season (from June through September). This is far less than the requirement of any plants of economic value, and irrigation is essential to agricultural development. Small perennial streams rising in the mountains have long been utilized for domestic supply, mining and milling activities of the past, and irrigation, and recently some large wells have been developed for irrigation. In 1956 the total pumpage from wells in the valley was 2,300 acre-feet. The Crescent Valley is a basin in which has accumulated a large volume of sediments that had been eroded and transported by streams from the surrounding mountains. The deepest wells have penetrated only the upper 350 feet of these sediments, which on the basis of the known thickness of sediments in other intermontane basins in central Nevada may be as much as several thousand feet thick. Because this valley fill is saturated practically to the level of the valley floor, the total volume of ground water in storage amounts to millions of acre-feet. In practically all wells drilled to date, the water has been of a quality satisfactory for irrigation and domestic use. The amount of water that can be developed and used perennially is far smaller than the total in storage and is dependent upon the average annual recharge to the ground-water reservoir. This recharge comes principally from streams, fed largely by snowmelt, that drain the higher mountains. The average annum recharge to the valley fill is estimated to be about 13,000 acre-feet. This natural supply, which is largely consumed by native vegetation on the valley floor, constitutes a perennial supply for beneficial use only to the extent that the natural discharge can be reduced. In time, much of the natural discharge, can probably be salvaged, if it is economically feasible to pump ground water after water levels have been lowered as much as 100 feet in the areas that now appear to be favorable for the development of irrigation supplies. In 5 wells in the phreatophyte area, where the water table is within 3-8 feet of the land surface, the trends in water level have paralleled those, in precipitation-downward during the dry years 1952-55, upward in wetter 1956 and 1957, and as high in 1957 as at any time since 1948. In most wells there is also a seasonal fluctuation of 1-3 feet, from a high in the spring to a low in the fall. There is no evi

  9. Validation of a Ground-Water Flow Model of the Mississippi River Valley Alluvial Aquifer Using Water-Level and Water-Use Data for 1998-2005 and Evaluation of Water-Use Scenarios

    USGS Publications Warehouse

    Gillip, Jonathan A.; Czarnecki, John B.

    2009-01-01

    A ground-water flow model of the Mississippi River Valley alluvial aquifer in eastern Arkansas, developed in 2003 to simulate the period of 1918-98, was validated with the addition of water-level and water-use data that extended the observation period to 2005. The original model (2003) was calibrated using water-level observations from 1972, 1982, 1992, and 1998, and water-use data through 1997. The original model subsequently was used to simulate water levels from 1999 to 2049 and showed that simulation of continued pumping at the 1997 water-use rate could not be sustained indefinitely without causing dry cells in the model. After publication of the original ground-water flow model, a total of 3,616 water-level observations from 698 locations measured during the period of 1998 to 2005 became available. Additionally, water-use data were compiled and used for the same period, totaling 290,005 discrete water-use values from 43,440 wells with as many as 39,169 wells pumping in any one year. Total pumping (which is primarily agricultural) for this 8-year period was about 2.3 trillion cubic feet of water and was distributed over approximately 10,340 square miles within the model area. An updated version of the original ground-water flow model was used to simulate the period of 1998-2005 with the additional water-level and water-use data. Water-level observations for 1998-2005 ranged from 74 to 293 feet above National Geodetic Vertical Datum of 1929 across the model area. The maximum water-level residual (observed minus simulated water-level values) for the 3,616 water-level observations was 52 feet, the minimum water-level residual was 60 feet, the average annual root mean squared error was 8.2 feet, and the annual average absolute residual was 6.0 feet. A correlation coefficient value of 0.96 was calculated for the line of best fit for observed to simulated water levels for the combined 1998-2005 dataset, indicating a good fit to the data and an acceptable validation of the model. After the validation process was completed, additional ground-water model simulations were run to evaluate the response of the aquifer with the 2005 water-use rate applied through 2049 (scenario 1) and the 2005 water-use rate increased 2 percent annually until 2049 (scenario 2). Scenario 1 resulted in 779 dry cells (779 square miles) by 2049 and scenario 2 resulted in 2,910 dry cells (2,910 square miles) by 2049. In both scenarios, the dry cells are concentrated in the Grand Prairie area and Cache River area west of Crowleys Ridge. However, scenario 2 resulted in dry cells to the east of Crowleys Ridge as well. A simulation applying the 1997 water-use rate contained in the original ground-water flow model resulted in 401 dry cells (401 square miles) in the Grand Prairie and Cache River areas.

  10. 40 CFR 63.5345 - How do I distinguish between the two upholstery product process operations?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... less than 4 grams of finish add-on per square foot, and operations with 4 grams or more of finish add... process. (2) Use a scale with an accuracy of at least 5 percent of the mass in grams of the representative... mass in grams gained on the representative section by its surface area in square feet to determine...

  11. 40 CFR 63.5345 - How do I distinguish between the two upholstery product process operations?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... less than 4 grams of finish add-on per square foot, and operations with 4 grams or more of finish add... process. (2) Use a scale with an accuracy of at least 5 percent of the mass in grams of the representative... mass in grams gained on the representative section by its surface area in square feet to determine...

  12. NASA MISR Studies Smoke Plumes from California Sand Fire

    NASA Image and Video Library

    2016-08-02

    39,000 acres (60 square miles, or 160 square kilometers). Thousands of residents were evacuated, and the fire claimed the life of one person. The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite passed over the region on July 23 around 11:50 a.m. PDT. At left is an image acquired by MISR's 60-degree forward-viewing camera. The oblique view angle makes the smoke more apparent than it would be in a more conventional vertical view. This cropped image is about 185 miles (300 kilometers) wide. Smoke from the Sand Fire is visible on the right-hand side of the image. Stereoscopic analysis of MISR's multiple camera angles is used to compute the height of the smoke plume from the Sand Fire. In the right-hand image, these heights are superimposed on the underlying image. The color scale shows that the plume extends up to about 4 miles (6 kilometers) above its source in Santa Clarita, but rapidly diminishes in height as winds push it to the southwest. The data compare well with a pilot report issued at Los Angeles International Airport on the evening of July 22, which reported smoke at 15,000-18,000 feet altitude (4.5 to 5.5 kilometers). Air quality warnings were issued for the San Fernando Valley and the western portion of Los Angeles due to this low-hanging smoke. However, data from air quality monitoring instruments seem to indicate that the smoke did not actually reach the ground. These data were captured during Terra orbit 88284. http://photojournal.jpl.nasa.gov/catalog/PIA20724

  13. 24 CFR 3280.202 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... room or space not more than 32 square feet in surface area, whichever is less; (10) Plastic light... center; (ii) Non-structural lattice work; (iii) Mating and closure molding; and (iv) Other items not...

  14. Manganese deposits in the Drum Mountains, Juab and Millard Counties, Utah

    USGS Publications Warehouse

    Crittenden, Max D.; Straczek, John A.; Roberts, Ralph Jackson

    1961-01-01

    The Drum Mountains are in west-central Utah 30 miles northwest of Delta, between the Sevier Desert on the east and Whirlwind Valley on the west. It is a typically barren desert range comprising a westward-tilted structural unit in which is exposed as much as 9,000 feet of quartzite (Cambrian and Precambrian?) and 3,000 feet of carbonate rocks of Cambrian age. These beds, which strike northward and dip west, are cut by myriad east- to northeast-trending faults with displacements of a few feet to a few thousand feet. Quartz monzonite dikes, pebble dikes, and vein deposits are present locally along the faults. The Cambrian rocks are overlain unconformably by volcanic rocks of probable Tertiary age. Bodies of manganese carbonate ore were formed by replacement of two 20-foot beds of impure dolomite at the base of the sequence of carbonate rocks, along their intersection with certain preore faults. The feeding fissures locally contain veins in which rhodochrosite is associated with base metal sulfides. Downward- moving meteoric water has oxidized the ore bodies to a depth of 100 to 200 feet except where they are sealed off by structural or stratigraphic traps.From 1925 to 1953, 72,462 long tons of manganese ore with an average grade of about 25 percent Mn were shipped.

  15. Water resources of the Blackstone River basin, Massachusetts

    USGS Publications Warehouse

    Izbicki, John A.

    2000-01-01

    By 2020, demand for water in the Blackstone River Basin is expected to be 52 million gallons per day, one-third greater than the demand of 39 million gallons per day in 1980. Most of this increase is expected to be supplied by increased withdrawals of ground water from stratified-drift aquifers in the eastern and northern parts of the basin. Increased withdrawals from stratified-drift aquifers along the Blackstone River and in the western part of the basin also are expected.The eastern and northern parts of the Blackstone River Basin contain numerous small, discontinuous aquifers which, as a group, comprise the largest ground-water resource of the study area. Fifteen aquifers, ranging in areal extent from 0.57 to 4.3 square miles, were identified. These aquifers have maximum saturated thicknesses ranging from less than 10 feet to 105 feet and maximum transmissivities ranging from less than 1,000 to more than 20,000 feet squared per day. Yields of nine study aquifers were estimated by use of digital ground-water-flow models. Yields depend on the hydraulic properties of the aquifer and the amount of streamflow available for depletion by wells. If streamflow is maintained at 98-percent duration, long-term yields from the aquifers that would be expected to be equaled or exceeded 50 percent of the time range from 0.22 to 11 million gallons per day, and long-term yields equaled or exceeded 95 percent of the time range from 0.06 to 1.0 million gallons per day. If streamflow is maintained at 99.5-percent duration, long-term yields equaled or exceeded 50 percent of the time range from 0.22 to 11 million gallons per day, long-term yields equaled or exceeded 95 percent of the time range from 0.04 to 1.4 million gallons per day, and longterm yields equaled or exceeded 98 percent of the time range from 0.02 to 0.39 million gallons per day. Maintaining streamflow at 98-percent duration is a more restrictive criterion than maintaining streamflow at 99.5-percent duration. The upper Lake Quinsigamond, upper West River, and Stone Brook aquifers are capable of sustaining withdrawals of at least 1 million gallons per day more than their rates in the mid-1980s. The upper Mill River and Auburn aquifers are not capable of sustaining additional withdrawals of 0.25 million gallons per day. Ground-water quality in the Auburn aquifer has been degraded by activities and contaminants associated with urbanization.A nearly continuous deposit of stratified drift almost 30 miles long and from 400 feet to more than 1 mile wide occupies lowland areas along the southeastern part of the Blackstone River. These deposits were divided into four aquifers ranging in areal extent from 1.8 to 3.5 square miles. These aquifers have maximum saturated thicknesses ranging from 54 to 170 feet and maximum transmissivities ranging from less than 1,500 to more than 20,000 feet squared per day. The Blackstone River receives substantial amounts of treated municipal wastewater. Infiltration of poor-quality surface water has significantly increased the specific conductance and the concentrations of all major ions, ammonia, iron, and manganese in the water pumped from at least two wells near the river. These wells derive about 41 and 48 percent of their yield from infiltrated surface water. At both sites, aquifer heterogeneity controlled the movement of infiltrated water to the wells. At one of these sites, where the flow of infiltrated water was tracked (by use of a digital model) in three dimensions, infiltrated water moved to the well through gravel layers that did not constitute the entire thickness of the aquifer. Changes in stream discharge that resulted in changes in surface-water quality also affected the quality of ground water at that site. The western part of the Blackstone River Basin contains the smallest aquifers evaluated in the study area. Six aquifers, ranging in areal extent from 0.05 to 1.3 square miles, were identified. The hydraulic properties of most of these aquifers have not been determined, but available data indicate that maximum saturated thicknesses range from 28 to 71 feet and maximum transmissivities range from 2,300 to 15,000 feet squared per day.

  16. Alaska's lumber-drying industry—impacts from a federal grant program.

    Treesearch

    David L. Nicholls; Allen M. Brackley; Thomas D. Rojas

    2006-01-01

    A survey determined that installed dry kiln capacity in Alaska more than doubled to an estimated 220 thousand board feet (mbf) within 4 years (2000-2004). This increased ability to produce dry lumber and value-added products resulted from industry efforts to obtain federal funding to support a dry kiln grant program. This report reviews grantees' progress in...

  17. Estimators and characteristics of logging residue in California.

    Treesearch

    James O. Howard; Julianne K. Bulgrin

    1986-01-01

    Ratios are presented for estimating volume and characteristics of logging residue in California. The ratios relate cubic-foot volume of residue to thousand board feet of timber harvested and to acres harvested. Tables show gross and net volume of residue, with and without bark, by diameter and length classes, by number of pieces per acre, by softwoods and hardwoods, by...

  18. Alaska midgrade logs: supply and offshore demand.

    Treesearch

    Donald F. Flora; Wendy J. McGinnis

    1989-01-01

    The outlook for shipments and prices of export logs from Alaska differs significantly by grade (quality class). For the majority lying in the middle of the value range, the trend of prices is projected to increase $200 per thousand board feet, or about 55 percent, by 2000. Shipments are expected to rise about 30 percent by 1995 and then subside about 10 percent. These...

  19. Estimating sawmill processing capacity for tongass timber: 2007 and 2008 update

    Treesearch

    Susan J. Alexander; Daniel J. Parrent

    2010-01-01

    In spring and summer of 2008 and 2009, sawmill production capacity and utilization information was collected from major wood manufacturers in southeast Alaska. The estimated mill capacity in southeast Alaska for calendar year 2007 was 292,350 thousand board feet (mbf) (log scale), and for calendar year 2008 was 282,350 mbf (log scale). Mill production in calendar year...

  20. Estimating sawmill processing capacity for Tongass timber: 2009 and 2010 Update

    Treesearch

    Susan J. Alexander; Daniel J. Parrent

    2012-01-01

    In spring and summer of 2010 and 2011, sawmill production capacity and wood utilization information was collected from major wood manufacturers in southeast Alaska. The estimated mill capacity in southeast Alaska for calendar year (CY) 2009 was 249,350 thousand board feet (mbf) (log scale), and for CY 2010 was 155,850 mbf (log scale), including idle sawmills. Mill...

  1. Economics of cutting hardwood dimension parts with an automated system

    Treesearch

    Henry A. Huber; Steve Ruddell; Kalinath Mukherjee; Charles W. McMillin

    1989-01-01

    A financial analysis using discounted cash-flow decision methods was completed to determine the economic feasibility of replacing a conventional roughmill crosscut and rip operation with a proposed automated computer vision and laser cutting system. Red oak and soft maple lumber were cut at production levels of 30 thousand board feet (MBF)/day and 5 MBF/day to produce...

  2. Comparison of lumber values for Grade-3 hardwood logs from thinnings and mature stands

    Treesearch

    David M. Emanuel

    1983-01-01

    The value per M bf (thousand board feet) of the lumber sawed from Grade-3 logs, 8 to 11 inches in diameter, from thinnings was compared with that from a harvest of mature-stand cut. The species tested were red oak (Quercus rubra L.), yellow-poplar (Liriodendron tulipifera L.), and hard maple (Acer saccharum Marsh...

  3. Mineral resource potential map of the Spanish Peaks Wilderness Study Area, Huerfano and Las Animas counties, Colorado

    USGS Publications Warehouse

    Budding, Karin E.; Kluender, Steven E.

    1983-01-01

    The depth of several thousand feet at which coal may underlie the surface rocks of the study area makes it a resource with little likelihood of development. The potential for oil and gas appears low because of the apparent lack of structural traps and the intense igneous activity in the area.

  4. Red Oak Borer

    Treesearch

    D. E. Donley; R.E. Acciavatti

    1980-01-01

    The red oak borer, Enaphalodes rufulus (Haldeman)3, is an important member of the oak borer complex that permanently damages the wood of living oak trees and causes a decrease in lumber grade. The loss in grade can amount to 40 percent of the current tree value, which, at today's prices, is about $80 per thousand board feet for factory grade lumber in terms of...

  5. 14 CFR 91.179 - IFR cruising altitude or flight level.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...: (1) When operating below 18,000 feet MSL and— (i) On a magnetic course of zero degrees through 179 degrees, any odd thousand foot MSL altitude (such as 3,000, 5,000, or 7,000); or (ii) On a magnetic course... magnetic course of zero degrees through 179 degrees, any odd flight level (such as 190, 210, or 230); or...

  6. 14 CFR 91.179 - IFR cruising altitude or flight level.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...: (1) When operating below 18,000 feet MSL and— (i) On a magnetic course of zero degrees through 179 degrees, any odd thousand foot MSL altitude (such as 3,000, 5,000, or 7,000); or (ii) On a magnetic course... magnetic course of zero degrees through 179 degrees, any odd flight level (such as 190, 210, or 230); or...

  7. Estimating sawmill processing capacity for Tongass timber.

    Treesearch

    Kenneth A. Kilborn; Daniel J. Parrent; Robert D. Housley

    2004-01-01

    In spring 2001 and 2003, sawmill capacity and utilization information was collected directly from 20 producers (usually the largest and most active) in southeast Alaska. The estimated mill capacity in southeast Alaska for calendar year (CY) 2000 was 501,850 thousand board feet (MBF) (log scale) and for CY 2002 was 453,850 MBF (log scale). The actual production by these...

  8. Estimating sawmill processing capacity for Tongass timber: 2005 and 2006 update

    Treesearch

    Allen M. Brackley; Lisa K. Crone

    2009-01-01

    In spring 2006 and 2007, sawmill capacity and wood utilization information was collected for selected mills in southeast Alaska. The collected information is required to prepare information for compliance with Section 705(a) of the Tongass Timber Reform Act. The total estimated design capacity in the region (active and inactive mills) was 289,850 thousand board feet (...

  9. Estimating sawmill processing capacity for Tongass timber: 2003 and 2004 update.

    Treesearch

    Allen M. Brackley; Daniel J. Parrent; Thomas D. Rojas

    2006-01-01

    In spring 2004 and 2005, sawmill capacity and wood utilization information was collected for selected mills in southeast Alaska. The collected information is required to prepare information for compliance with Section 705(a) of the Tongass Timber Reform Act. The total capacity in the region (active and inactive mills) was 370,350 thousand board feet (mbf) Scribner log...

  10. Summary of the Snake River plain Regional Aquifer-System Analysis in Idaho and eastern Oregon

    USGS Publications Warehouse

    Lindholm, G.F.

    1996-01-01

    Regional aquifers underlying the 15,600-square-mile Snake River Plain in southern Idaho and eastern Oregon was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis program. The largest and most productive aquifers in the Snake River Plain are composed of Quaternary basalt of the Snake River Group, which underlies most of the 10,8000-square-mile eastern plain. Aquifer tests and simulation indicate that transmissivity of the upper 200 feet of the basalt aquifer in the eastern plain commonly ranges from about 100,000 to 1,000,000 feet squared per day. However, transmissivity of the total aquifer thickness may be as much as 10 million feet squared per day. Specific yield of the upper 200 feet of the aquifer ranges from about 0.01 to 0.20. Average horizontal hydraulic conductivity of the upper 200 feet of the basalt aquifer ranges from less than 100 to 9,000 feet per day. Values may be one to several orders of magnitude higher in parts in individual flows, such as flow tops. Vertical hydraulic conductivity is probably several orders of magnitude lower than horizontal hydraulic conductivity and is generally related to the number of joints. Pillow lava in ancestral Snake River channels has the highest hydraulic conductivity of all rock types. Hydraulic conductivity of the basalt decreases with depth because of secondary filling of voids with calcite and silica. An estimated 80 to 120 million acre-feet of water is believed to be stored in the upper 200 feet of the basalt aquifer in the eastern plain. The most productive aquifers in the 4,800-square-mile western plain are alluvial sand and gravel in the Boise River valley. Although aquifer tests indicate that transmissivity of alluvium in the Boise River valley ranges from 5,000 to 160,000 feet squared per day, simulation suggests that average transmissivity of the upper 500 feet is generally less than 20,000 feet squared per day. Vertically averaged horizontal hydraulic conductivity of the upper 500 feet of alluvium ranges from about 4 to 40 feet per day; higher values can be expected in individual sand and gravel zones. Vertical hydraulic conductivity is considerably lower because of the presence of clay layers. Hydraulic heads measured in piezometers, interpreted from diagrams showing ground-water flow and equipotential lines and estimated by computer simulation, demonstrate that water movement is three dimensional through the rock framework. Natural recharge takes place along the margins of the plain where head decreases with depth; discharge takes place near some reaches of the Snake River and the Boise River where head increases with depth. Geothermal water in rhyolitic rocks in the western plain and western part of the eastern plain has higher hydraulic head than the overlying cold water. Geothermal water, therefore, moves upward and merges into the cold-water system. Basin water-budget analyses indicate that the volume of cold water. Carbon-14 age determinations, which indicate that residence time of geothermal water is 17,700 to 20,300 years, plus or minus 4,000 years, imply slow movement of water through the geothermal system. Along much of its length, the Snake River gains large quantities of ground water. On the eastern plain, the river gained about 1.9 million acre-feet of water between Blackfoot and Neeley, Idaho, in 1980. Between Milner and King Hill, Idaho, the river gained 4.7 million acre-feet, mostly as spring flow from the north side. Upstream from Blackfoot and in the vicinity of Lake Walcott, the rover loses flow to ground water during parts or all of the year. On the western plain, river gains from ground water are small relative to those on the eastern plain; most are from seepage. Streams in tributary drainage basins supply calcium/bicarbonate type and calcium/magnesium/bicarbonate type water to the plain. Water type is a reflection of the chemical composition of rocks in the drainage basin, Concentrations of dissolved solids are smallest, about 50 milligrams per liter, in streams such as the Boise River that drain areas of granitic rocks; concentrations are greatest, about 400 milligrams per liter, in streams such as the Owyhee and Raft Rivers that drain area of sedimentary rocks. Water chemistry reflects the interaction of surface water and ground water. The chemical composition of ground water in the plain is essentially the same as that in streamflow and groundwater discharge from tributary drainage basins. Tributary drainage basins supplied 85 percent of the ground-water recharge in the eastern plain during 1980 and a nearly equivalent percentage of the solute load in ground water; human activities and dissolution of minerals supplied the other solutes. Dissolved-solids concentrations in ground water were generally less than 400 milligrams per liter. Water from the lower geothermal system is chemically different from water from the upper cold-water system. Geothermal water typically has greater concentrations of sodium, bicarbonate, sulfate, chloride, fluoride, silica, arsenic, boron, and lithium and smaller concentrations of calcium, magnesium, and hydrogen. Difference are attributed to ion exchange as geothermal moves through the rock framework. Irrigation, mostly on the Snake River Plain, accounted for about 96 percent of consumptive water use in Idaho during 1980. The use of surface water for irrigation for more than 100 years has caused major changes in the hydrologic system on the plain. Construction of dams, reservoirs, and diversifications effected planned changes in the surface-water system but resulted in largely unplanned changes in the ground-water system. During those years of irrigation, annual recharge in the main part of the eastern plain increased to about 6.7 million acre-feet in 1980, or by about 70 percent. Most of the increase was from percolation of surface water diverted for irrigation. From preirrigation to 1952, groundwater storage increased about 24 million acre-feet, and storage decreased from 1952 to 1964 and from 1976 to 1980 because of below-normal precipitation and increased withdrawals of ground water for irrigation. Annual ground-water discharge increased to about 7.1 million acre-feet in 1980, or about 80 percent since the start of irrigation. About 10 percent of the 1980 total discharge was ground-water pumpage. About 3.1 million acres, or almost one-third of the plain, was irrigated during 1980: 2.0 million acres with surface water, 1.0 million acres with ground water, and 0.1 million acres with combined surface and ground water. About 8.9 million acre-feet of Snake River water was diverted for irrigation during 1980 and 2.3 million acre-feet of ground water was pumped from 5,300 wells. Most irrigation wells on the eastern plain are open to basalt. About two-thirds of them yield more than 1,500 gallons per minute with a reported maximum of 7,240 gallons per minute; drawdown is less than 20 feet in two-thirds of the wells. Most irrigation wells on the western plain are open to sedimentary rocks. About one-third of them yield more than 1,00 gallons per minute with a reported maximum of 3,850 gallons per minute; drawndown is less than 20 feet in about one-fifth of the wells. The major instream use of water on the Snake River Plain is hydroelectric power generation. Fifty-two million acre-feet of water generated 2.6 million megawatthours of electricity during 1980. Digital computer ground-water flows models of the eastern and western plain reasonably simulated regional changes in water levels and ground-water discharges from 1880 (preirrigation) to 1980. Model results support the concept of three-dimensional flow and the hypotheses of no underflow between the eastern and western plain. Simulation of the regional aquifer system in the eastern plain indicates that is 1980 hydrologic conditions, including pumpage, were to remain the same for another 30 years, moderate declines in ground-water levels and decreases in spring discharges would continue. Increased ground-water pumpage to irrigate an additional 1 million acres could cause ground-water levels to decline a few tens of feet in the central part of the plain and could cause corresponding decreases in ground-water discharge. A combination of actions such as increased ground-water pumpage and decreased use of surface water for irrigation (resulting in reduced recharge) would accentuate the changes.

  11. 36 CFR 28.12 - Development standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... significant harm to the natural resources of the Seashore. (c) Minimum lot size is 4,000 square feet. A... allowable accessory structure and is calculated in measuring lot occupancy. (h) No sign may be self...

  12. 36 CFR 28.12 - Development standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... significant harm to the natural resources of the Seashore. (c) Minimum lot size is 4,000 square feet. A... allowable accessory structure and is calculated in measuring lot occupancy. (h) No sign may be self...

  13. 36 CFR 28.12 - Development standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... significant harm to the natural resources of the Seashore. (c) Minimum lot size is 4,000 square feet. A... allowable accessory structure and is calculated in measuring lot occupancy. (h) No sign may be self...

  14. Solar heating, cooling, and domestic hot water system installed at Kaw Valley State Bank and Trust Company, Topeka, Kansas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The building has approximately 5600 square feet of conditioned space. Solar energy was used for space heating, space cooling, and preheating domestic hot water (DHW). The solar energy system had an array of evacuated tube-type collectors with an area of 1068 square feet. A 50/50 solution of ethylene glycol and water was the transfer medium that delivered solar energy to a tube-in-shell heat exchanger that in turn delivered solar heated water to a 1100 gallon pressurized hot water storage tank. When solar energy was insufficient to satisfy the space heating and/or cooling demand, a natural gas-fired boiler provided auxiliary energy to the fan coil loops and/or the absorption chillers. Extracts from the site files, specification references, drawings, and installation, operation and maintenance instructions are presented.

  15. Architecture, ethics & the environment: An exploration of nature & the human spirit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, J.A.; Payton, N.I.; Tice, D.

    1994-12-31

    Haymount is a new town planned with the belief that Sustainable Development is based upon a Trilogy of: ecology, sociology and economics. The design embodies a holistic approach to the healing of nature and the human spirit. When complete, the town will contain 4000 homes, 250,000 square feet of retail space and a half-million square feet of office/commercial space. At the same time, Haymount will employ state of the art techniques in wastewater, stormwater and wildlife management, utilize non-toxic building materials and techniques, practice energy and water conservation, and accomplish all of this in a manner that discourages use ofmore » the automobile while encouraging pedestrian life and community vitality. Yet, Haymount is not a philanthropic exercise. Rather it is a sound business proposition with excellent profit returns to the investors.« less

  16. Nile River, Lake Nasser, Aswan High Dam, Egypt

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Aswan High Dam, 2.5 miles across and 364 feet high, (24.0N, 33.0E) completed in 1971, was constructed to supply cheap hydroelectric power to both Egypt and Sudan by impounding, controling and regulating the flood waters of the Nile River in Lake Nasser, the world's second largest artifical lake. The lake extends over 500 miles in length, covers an area of some 2,000 square miles and is as much as 350 feet deep at the face of the dam.

  17. Environmental Assessment for Proposed Royal Saudi Air Force F-15SA Beddown, Mountain Home AFB

    DTIC Science & Technology

    2012-08-01

    construction footprints was added to the area of potential ground disturbance. This area comprises a total of 14.08 acres for all projects. As yet...Affected Area (square feet)2 Potential Ground Disturbance (acres) New Impervious Surface (acres) January 2013-July 2013 Aircraft Parking... surface up to and including 3,000 feet above ground level (AGL) within a 5.9 statute mile radius of the airfield. Under the control of the Mountain Home

  18. Geohydrology and water resources of the Papago Farms--Great Plain area, Papago Indian Reservation, Arizona, and the upper Rio Sonoyta area, Sonora, Mexico

    USGS Publications Warehouse

    Hollett, Kenneth J.

    1985-01-01

    The Papago Farms-Great Plain and upper Rio Sonoyta study area includes about 490 square miles in south-central Arizona and north-central Sonora, Mexico. The area is characterized by a broad, deep, sediment-filled basin bounded by low, jagged fault-block mountains. The climate is arid to semiarid. The climate and abundant ground water provide favorable conditions for irrigated agriculture. Annual precipitation averages 5 to 8 inches per year on the desert floor. Runoff, which occurs as intermittent streamflow and sheetflow, is too short lived and too laden with suspended sediment to be a reliable source for irrigation or public supply. Nearly all the water used to irrigate more than 5,000 cultivated acres in the study area is withdrawn from the unconsolidated to partly consolidated basin fill. The ground water occurs in the deposits under unconfined (water-table) conditions with a saturated thickness that ranges from zero along the mountain fronts to more than 8,000 feet in the center of the basin. The amount of recoverable ground water in storage to a depth of 400 feet below the 1978-80 water table is estimated to be about 10 million acre-feet. Depths to water range from about 500 feet near the southern boundary of the study area to about 150 feet in the center of the study area. Ground water enters the area principally as underflow beneath the San Simon and Chukut Kuk Washes and as recharge along the mountain fronts. On the basis of model results, annual inflow to the ground-water system is estimated to be about 4,390 acre-feet. Ground water moves through the study area along paths that encircle a virtually impermeable unit in the basin center, termed 'the lakebed-clay deposits,' and moves westward to an outflow point beneath the Rio Sonoyta south of Cerro La Nariz. Rates of water movement range from less than I foot per year in clays to about 160 feet per year in well-sorted, coarse stream-channel deposits. Transmissivities along the basin margins range from 10,000 to 40,000 feet squared per day, whereas transmissivities in the basin-center lakebed-clay deposits are estimated to be less than 100 feet squared per day. Most Wells that are located along the basin margin and tap more than 300 feet of saturated basin fill in the upper1,000 feet of the aquifer should yield from 500 to 3,000 gallons per minute to properly constructed and developed wells. Specific capacities should range from 10 to 50 gallons per minute per foot of drawdown. The water in the aquifer is moderate to poor in chemical quality for irrigation and public-supply use. The ground water is mainly a sodium bicarbonate type with dissolved-solids concentrations that range from about 250 to 5,000 milligrams per liter and average about 530 milligrams per liter. The poorest quality water is associated with the basin-center lakebed-clay deposits. In most of the basin, the water contains fluoride concentrations that exceed the maximum contaminant levels acceptable for drinking water. Waters from the basin-center lakebed-clay deposits are also anomalously high in dissolved arsenic and unacceptable for public supply. High concentrations of sodium and bicarbonate in the ground water of the study area present potential hazards to most crops, and the use of this type of water requires careful farm-management practices. In 1981 outflow resulting from withdrawals of water from the aquifer was about 23,2'00 acre-feet. Storage is being depleted at a rate of about 19,000 acre-feet per year. On the basis of a mathematical simulation of the groundwater system and withdrawal rates in 1981, storage depletion and drawdown of the water table were projected to 1991. Water-level declines in 199t were estimated to be as much as 20 feet at Papago Farms and more than 40 feet in the area south of the basin-center lakebed-clay deposits. The estimated amount of depletion in 1991 of ground water stored in the upper 400 feet of the aquifer is less than 3.0 percent of the total amou

  19. Analysis of Changes in Ground-Water Levels in a Sewered and an Unsewered Area of Nassau County, Long Island, New York.

    PubMed

    Sulam, Dennis J

    1979-09-01

    From the 195O's to the early 1970's expansion of sanitary sewerage in southwest Nassau County contributed to progressive declines in ground-water levels. Since the early 197O's, however, 10 years after the area was fully sewered, water levels have not declined significantly, which suggests that the water table may have reached a new equilibrium position. Double-mass-curve analyses show that during 1953-76 the average weighted ground-water levels in a 32-square-mile (83-square-kilometer) part of the sewered area declined 12.2 feet (3.73 meters) more than those in the unsewered area to the east. However, by 1973 this decline was 13.5 feet (4.1 meters). Finite-difference digital-model results indicate that 3.6 feet (1.1 meters) of the relative 1953-76 decline was due to pumping in adjacent Queens County and that most of the remaining decline was a result of sewerage. Streamflow within the sewered area decreased in response to the lowered ground-water levels, and ground-water levels in the adjacent unsewered area were also lowered because of the sewerage.

  20. The development of the ''Sleeping Giant'' deep basin natural gas, Alberta Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, D.L.

    1984-02-01

    During the past seven years attention has been focused on ''mega'' projects and the frontier areas for continental energy self sufficiency. However, a giant conventional resource project has been developing without fanfare. This project has potential impact on the well being of Canada and the North American energy scene. This ''Sleeping Giant'', which delivered its initial sales gas on November 1, 1979 is the Alberta (Elmworth) Deep Basin. The project area covers 67,400 square km (26,000 square miles) and contains potentially hydrocarbon bearing sediments over a thickness of 4,572 meters (15,000 feet). This basin is best equated in terms ofmore » size and reserves to the famous San Juan Basin. Since its discovery in 1976 approximately 1,000 multi-zoned gas wells have been drilled and reserves in the order of 140,000 10/sup 6/m/sup 3/ (5 trillion cubic feet) have been recognized by gas purchasers. Ten gas plants have been constructed with capacity of roughly 28,174 10/sup 3/m/sup 3/ (1 billion cubic feet) per day. This paper documents the development of these reserves and the stages in the construction of field facilities.« less

  1. Multiple-Coil, Pulse-Induction Metal Detector

    NASA Technical Reports Server (NTRS)

    Lesky, Edward S.; Reid, Alan M.; Bushong, Wilton E.; Dickey, Duane P.

    1988-01-01

    Multiple-head, pulse-induction metal detector scans area of 72 feet squared with combination of eight detector heads, each 3 ft. square. Head includes large primary coil inducing current in smaller secondary coils. Array of eight heads enables searcher to cover large area quickly. Pulses applied to primary coil, induced in secondary coils measured to determine whether metal present within range of detector head. Detector designed for recovery of Space Shuttle debris.

  2. 49 CFR 572.102 - Drop test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... that ensure instant release onto a rigidly supported flat horizontal steel plate, which is 2 inches thick and 2 feet square. The plate shall have a clean, dry surface and any microfinish of not less than...

  3. Ground-water hydrology and simulation of ground-water flow at Operable Unit 3 and surrounding region, U.S. Naval Air Station, Jacksonville, Florida

    USGS Publications Warehouse

    Davis, J.H.

    1998-01-01

    The Naval Air Station, Jacksonville (herein referred to as the Station), occupies 3,800 acres adjacent to the St. Johns River in Duval County, Florida. Operable Unit 3 (OU3) occupies 134 acres on the eastern side of the Station and has been used for industrial and commercial purposes since World War II. Ground water contaminated by chlorinated organic compounds has been detected in the surficial aquifer at OU3. The U.S. Navy and U.S. Geological Survey (USGS) conducted a cooperative hydrologic study to evaluate the potential for ground water discharge to the neighboring St. Johns River. A ground-water flow model, previously developed for the area, was recalibrated for use in this study. At the Station, the surficial aquifer is exposed at land surface and forms the uppermost permeable unit. The aquifer ranges in thickness from 30 to 100 feet and consists of unconsolidated silty sands interbedded with local beds of clay. The low-permeability clays of the Hawthorn Group form the base of the aquifer. The USGS previously conducted a ground-water investigation at the Station that included the development and calibration of a 1-layer regional ground-water flow model. For this investigation, the regional model was recalibrated using additional data collected after the original calibration. The recalibrated model was then used to establish the boundaries for a smaller subregional model roughly centered on OU3. Within the subregional model, the surficial aquifer is composed of distinct upper and intermediate layers. The upper layer extends from land surface to a depth of approximately 15 feet below sea level; the intermediate layer extends from the upper layer down to the top of the Hawthorn Group. In the northern and central parts of OU3, the upper and intermediate layers are separated by a low-permeability clay layer. Horizontal hydraulic conductivities in the upper layer, determined from aquifer tests, range from 0.19 to 3.8 feet per day. The horizontal hydraulic conductivity in the intermediate layer, determined from one aquifer test, is 20 feet per day. An extensive stormwater drainage system is present at OU3 and the surrounding area. Some of the stormwater drains have been documented to be draining ground water from the upper layer of the surficial aquifer, whereas other drains are only suspected to be draining ground water. The subregional model contained 78 rows and 148 columns of square model cells that were 100 feet on each side. Vertically, the surficial aquifer was divided into two layers; layer 1 represented the upper layer and layer 2 represented the intermediate layer. Steady-state ground-water flow conditions were assumed. The model was calibrated to head data collected on October 29 and 30, 1996. After calibration, the model matched all 67 measured heads to within the calibration criterion of 1 foot; and 48 of 67 simulated heads (72 percent) were within 0.5 foot. Model simulated recharge rates ranged from 0.4 inch per year in areas that were largely paved to 13.0 inches per year in irrigated areas. Simulated hydraulic conductivities in the upper layer at OU3 ranged from 0.5 foot per day in the north to 1.0 foot per day in the south. Simulated vertical leakance between the upper and intermediate layers ranged from 1.0x10-6 per day in an area with low-permeability clays to 4.3x10-2 per day in an area that had been dredged. Simulated transmissivities in the intermediate layer ranged from 25 feet squared per day in an area of low-permeability channel-fill deposits to a high of 1,200 feet squared per day in areas covering most of OU3. Simulated riverbed conductances ranged from 4 to 60 feet squared per day and simulated bottom conductances of leaking stormwater drains ranged from 5 to 20 feet squared per day. The direction and velocity of ground-water flow was determined using particle-tracking techniques. Ground-water flow in the upper layer was generally eastward toward the St. Johns River. However, leaking stormwat

  4. Hydrologic reconnaissance of the Noatak River basin, Alaska, 1978

    USGS Publications Warehouse

    Childers, Joseph M.; Kernodle, Donald R.

    1981-01-01

    Hydrologic data were collected in 1978 described water resources of the Noatak River basin, Alaska. Streamflow varies seasonally. No flow was observed from the upper part of the basin in late winter (April). In the lower part of the basin springs support perennial flow in the Kugururok River and downstream along the Noatak. The discharge of the Noatak was 150 cubic feet per second in April 1978. During the summer, rainstorms are common, and runoff produces high flow. During August 1978, flow was normal in the basin; unit runoff averaged about 1 cubic foot per second per square mile. The Noatak is a gravel-bed stream of moderate slope. It drops about 1,800 feet in elevation from a point near the head waters to the mouth, a distance of 400 miles. Streambed material in most places is gravel, cobbles, and boulders, maximum riffle depths and pool widths increase in a downstream direction. Stream velocity in August 1978 increased from about 1 foot per second in the upper basin to about 4 feet per second in the lower reaches. High-water marks of the maximum evident flood were found at elevations from bankfull to 5 feet above bankfull. Maximum evident flood unit runoff rates were estimated to be less than 50 cubic feet per second per square mile. Scars produced by ice jams were seldom seen above bankfull. Bank erosion appears to be most active in the lowlands. Water in the Noatak River basin is virtually unaffected by man 's activity. Water quality varies with location, weather, season, and source; the water is normally clear, cool, and hard. During late winter sea water intrudes into the Lower Noatak Canyon. Benthic invertebrate community composition and variability suggest the river 's undiminished natural quality. (USGS)

  5. Hydrology and simulation of ground-water flow in Kamas Valley, Summit County, Utah

    USGS Publications Warehouse

    Brooks, L.E.; Stolp, B.J.; Spangler, L.E.

    2003-01-01

    Kamas Valley, Utah, is located about 50 miles east of Salt Lake City and is undergoing residential development. The increasing number of wells and septic systems raised concerns of water managers and prompted this hydrologic study. About 350,000 acre-feet per year of surface water flows through Kamas Valley in the Weber River, Beaver Creek, and Provo River, which originate in the Uinta Mountains east of the study area. The ground-water system in this area consists of water in unconsolidated deposits and consolidated rock; water budgets indicate very little interaction between consolidated rock and unconsolidated deposits. Most recharge to consolidated rock occurs at higher altitudes in the mountains and discharges to streams and springs upgradient of Kamas Valley. About 38,000 acre-feet per year of water flows through the unconsolidated deposits in Kamas Valley. Most recharge is from irrigation and seepage from major streams; most discharge is to Beaver Creek in the middle part of the valley. Long-term water-level fluctuations range from about 3 to 17 feet. Seasonal fluctuations exceed 50 feet. Transmissivity varies over four orders of magnitude in both the unconsolidated deposits and consolidated rock and is typically 1,000 to 10,000 feet squared per day in unconsolidated deposits and 100 feet squared per day in consolidated rock as determined from specific capacity. Water samples collected from wells, streams, and springs had nitrate plus nitrite concentrations (as N) substantially less than 10 mg/L. Total and fecal coliform bacteria were detected in some surface-water samples and probably originate from livestock. Septic systems do not appear to be degrading water quality. A numerical ground-water flow model developed to test the conceptual understanding of the ground-water system adequately simulates water levels and flow in the unconsolidated deposits. Analyses of model fit and sensitivity were used to refine the conceptual and numerical models.

  6. KSC-07pd0158

    NASA Image and Video Library

    2007-01-23

    KENNEDY SPACE CENTER, FLA. -- The right-hand orbital maneuvering system pod is being delivered to Orbiter Processing Facility bay 2 for installation on the orbiter Endeavour. The orbital maneuvering system/reaction control system left- and right-hand pods are attached to the upper aft fuselage left and right sides. Each pod is fabricated primarily of graphite epoxy composite and aluminum. Each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. The orbiter is being prepared for its first launch in just over four years. The vehicle has undergone an extensive modification period, including the addition of all of the return-to-flight safety upgrades added to both Discovery and Atlantis. Endeavour is targeted for launch of mission STS-118 on June 28. Photo credit: NASA/Kim Shiflett

  7. KSC-07pd0159

    NASA Image and Video Library

    2007-01-23

    KENNEDY SPACE CENTER, FLA. -- The right-hand orbital maneuvering system pod is driven past the Vehicle Assembly Building on its way to Orbiter Processing Facility bay 2 for installation on the orbiter Endeavour. The orbital maneuvering system/reaction control system left- and right-hand pods are attached to the upper aft fuselage left and right sides. Each pod is fabricated primarily of graphite epoxy composite and aluminum. Each pod is 21.8 feet long and 11.37 feet wide at its aft end and 8.41 feet wide at its forward end, with a surface area of approximately 435 square feet. The orbiter is being prepared for its first launch in just over four years. The vehicle has undergone an extensive modification period, including the addition of all of the return-to-flight safety upgrades added to both Discovery and Atlantis. Endeavour is targeted for launch of mission STS-118 on June 28. Photo credit: NASA/Kim Shiflett

  8. Use of surface and borehole geophysical surveys to determine fracture orientation and other site characteristics in crystalline bedrock terrain, Millville and Uxbridge, Massachusetts

    USGS Publications Warehouse

    Hansen, Bruce P.; Lane, John W.

    1995-01-01

    Four geophysical techniques were used to determine bedrock-fracture orientation and other site characteristics that can be used to determine ground-water movement and contaminant transport at a fractured crystalline bedrock site in Millville and Uxbridge, Massachusetts. Azimuthal seismic- refraction and azimuthal square-array direct-current resistivity surveys were conducted at three sites. Borehole-radar surveys were conducted in a cluster of three wells. Ground-penetrating radar surveys were conducted along roads in the study area. Azimuthal seismic-refraction data indicated a primary fracture strike between 56 and 101 degrees at three sites. Graphical and analytical analysis of azimuthal square-array resistivity data indicated a primary fracture strike from 45 to 90 degrees at three sites. Directional borehole-radar data from three wells indicated 46 fractures or fracture zones located as far as 147 feet from the surveyed wells. Patterns of low radar-wave velocity and high radar- wave attenuation from cross-hole radar surveys of two well pairs were interpreted as a planar fracture zone that strikes 297 degrees and dips 55 degrees south. Ground-penetrating radar surveys with 100-MHz antennas penetrated as much as 150 feet of bedrock where the bedrock surface was at or near land surface. Horizontal and subhorizontal fractures were observed on the ground-penetrating radar records at numerous locations. Correlation of data sets indicates good agreement and indicates primary high- angle fracturing striking east-northeast. Secondary bedrock porosity and average fracture aperture determined from square-array resistivity data averaged 0.0044 and 0.0071 foot. Depths to bedrock observed on the ground-penetrating radar records were 0 to 20 feet below land surface along most of the area surveyed. A bedrock depth from 45 to 50 feet below land surface was observed along one section of Conestoga Drive.

  9. Simulation of a long-term aquifer test conducted near the Rio Grande, Albuquerque, New Mexico

    USGS Publications Warehouse

    McAda, Douglas P.

    2001-01-01

    A long-term aquifer test was conducted near the Rio Grande in Albuquerque during January and February 1995 using 22 wells and piezometers at nine sites, with the City of Albuquerque Griegos 1 production well as the pumped well. Griegos 1 discharge averaged about 2,330 gallons per minute for 54.4 days. A three-dimensional finite-difference ground-water-flow model was used to estimate aquifer properties in the vicinity of the Griegos well field and the amount of infiltration induced into the aquifer system from the Rio Grande and riverside drains as a result of pumping during the test. The model was initially calibrated by trial-and-error adjustments of the aquifer properties. The model was recalibrated using a nonlinear least-squares regression technique. The aquifer system in the area includes the middle Tertiary to Quaternary Santa Fe Group and post-Santa Fe Group valley- and basin-fill deposits of the Albuquerque Basin. The Rio Grande and adjacent riverside drains are in hydraulic connection with the aquifer system. The hydraulic-conductivity values of the upper part of the Santa Fe Group resulting from the model calibrated by trial and error varied by zone in the model and ranged from 12 to 33 feet per day. The hydraulic conductivity of the inner-valley alluvium was 45 feet per day. The vertical to horizontal anisotropy ratio was 1:140. Specific storage was 4 x 10-6 per foot of aquifer thickness, and specific yield was 0.15 (dimensionless). The sum of squared errors between the observed and simulated drawdowns was 130 feet squared. Not all aquifer properties could be estimated using nonlinear regression because of model insensitivity to some aquifer properties at observation locations. Hydraulic conductivity of the inner-valley alluvium, middle part of the Santa Fe Group, and riverbed and riverside-drain bed and specific yield had low sensitivity values and therefore could not be estimated. Of the properties estimated, hydraulic conductivity of the upper part of the Santa Fe Group was estimated to be 12 feet per day, the vertical to horizontal anisotropy ratio was estimated to be 1:82, and specific storage was estimated to be 1.2 x 10-6 per foot of aquifer thickness. The overall sum of squared errors between the observed and simulated drawdowns was 87 feet squared, a significant improvement over the model calibrated by trial and error. At the end of aquifer-test pumping, induced infiltration from the Rio Grande and riverside drains was simulated to be 13 percent of the total amount of water pumped. The remainder was water removed from aquifer storage. After pumping stopped, induced infiltration continued to replenish aquifer storage. Simulations estimated that 5 years after pumping began (about 4.85 years after pumping stopped), 58 to 72 percent of the total amount of water pumped was replenished by induced infiltration from the Rio Grande surface-water system.

  10. Aquifer characteristics, water availability, and water quality of the Quaternary aquifer, Osage County, northeastern Oklahoma, 2001-2002

    USGS Publications Warehouse

    Mashburn, Shana L.; Cope, Caleb C.; Abbott, Marvin M.

    2003-01-01

    Additional sources of water are needed on the Osage Reservation for future growth and development. The Quaternary aquifer along the Arkansas River in the Osage Reservation may represent a substantial water resource, but limited amounts of hydrogeologic data were available for the aquifer. The study area is about 116 square miles of the Quaternary aquifer in the Arkansas River valley and the nearby upland areas along the Osage Reservation. The study area included the Arkansas River reach downstream from Kaw Lake near Ponca City, Oklahoma to upstream from Keystone Lake near Cleveland, Oklahoma. Electrical conductivity logs were produced for 103 test holes. Water levels were determined for 49 test holes, and 105 water samples were collected for water-quality field analyses at 46 test holes. Water-quality data included field measurements of specific conductance, pH, water temperature, dissolved oxygen, and nitrate (nitrite plus nitrate as nitrogen). Sediment cores were extracted from 20 of the 103 test holes. The Quaternary aquifer consists of alluvial and terrace deposits of sand, silt, clay, and gravel. The measured thickness of the alluvium ranged from 13.7 to 49.8 feet. The measured thickness of the terrace sediments ranged from 7 to 93.8 feet. The saturated thickness of all sediments ranged from 0 to 38.2 feet with a median of 24.8 feet. The weighted-mean grain size for cores from the alluvium ranged from 3.69 to 0.64 f, (0.08- 0.64 millimeter), and ranged from 4.02 to 2.01 f (0.06-0.25 millimeter) for the cores from terrace deposits. The mean of the weighted-mean grain sizes for cores from the alluvium was 1.67 f (0.31 millimeter), and the terrace deposits was 2.73 f (0.15 millimeter). The hydraulic conductivity calculated from grain size of the alluvium ranged from 2.9 to 6,000 feet per day and of the terrace deposits ranged from 2.9 to 430 feet per day. The calculated transmissivity of the alluvium ranged from 2,000 to 26,000 feet squared per day with a median of 5,100 feet squared per day. Water in storage in the alluvium was estimated to be approximately 200,000 acre-feet. The amount of water annually recharging the aquifer was estimated to be approximately 4,800 acre-feet. Specific conductance for all water samples ranged from 161 to 6,650 microsiemens per centimeter. Median specific conductance for the alluvium was 683 microsiemens per centimeter and for the terrace deposits was 263 microsiemens per centimeter. Dissolved-solids concentrations, estimated from specific conductance, for water samples from the aquifer ranged from 88 to 3,658 milligrams per liter. Estimated median dissolved- solids concentration for the alluvium was 376 milligrams per liter and for the terrace deposits was 145 milligrams per liter. More than half of the samples from the Quaternary aquifer were estimated to contain less than 500 milligrams per liter dissolved solids. Field-screened nitrate concentrations for the sampling in December 2001-August 2002 ranged from 0 to 15 milligrams per liter. The field-screened nitrate concentrations for the second sampling in September 2002 were less than corresponding laboratory reported values.

  11. Regionalized equations for bankfull-discharge and channel characteristics of streams in New York State—Hydrologic Region 7 in western New York

    USGS Publications Warehouse

    Mulvihill, Christiane I.; Ernst, Anne G.; Baldigo, Barry P.

    2006-01-01

    Computation of bankfull discharge and channel dimensions (width, depth, and cross-sectional area) at ungaged sites requires equations that relate bankfull discharge and channel dimensions to drainage-area at gaged sites. Bankfull-channel information commonly is needed for watershed assessments, stream channel classification, and the design of stream-restoration projects. Such equations are most accurate if they are derived on the basis of data from streams within a region of uniform hydrologic, climatic, and physiographic conditions and applied only within that region. New York State contains eight hydrologic regions that were previously delineated on the basis of high-flow (flood) characteristics. This report presents drainage areas and associated bankfull characteristics (discharge and channel dimensions) for surveyed streams in western New York (Region 7).Stream-survey data and discharge records from seven active and three inactive USGS streamflow-gaging stations were used in regression analyses to relate drainage area to bankfull discharge and to bankfull channel width, depth, and cross-sectional area. The resulting equations are:(1) bankfull discharge, in cubic feet per second = 37.1*(drainage area, in square miles)0.765;(2) bankfull channel width, in feet = 10.8*(drainage area, in square miles)0.458;(3) bankfull channel depth, in feet = 1.47*(drainage area, in square miles)0.199; and(4) bankfull channel cross-sectional area, in square feet = 15.9*(drainage area, in square mile)0.656.The coefficients of determination (R2) for these four equations were 0.94, 0.89, 0.52, and 0.96, respectively. The high coefficients of determination for three of these equations (discharge, width, and cross-sectional area) indicate that much of the range in the variables was explained by the drainage area. The low coefficient of determination for the equation relating bankfull depth to drainage area, however, suggests that other factors also affected water depth. Recurrence intervals for the estimated bankfull discharge of each stream ranged from 1.05 to 3.60 years; the mean recurrence interval was 2.13 years. The 10 surveyed streams were classified by Rosgen stream type; most were C- and E-type, with occasional B- and F-type cross sections. The equation (curve) for bankfull discharge for Region 7 was compared with those previously developed for four other hydrologic regions in New York State. The differences confirm that the hydraulic geometry of streams is affected by local climatic and physiographic conditions.

  12. Hydrologic and water-quality conditions in the Horse Creek Basin, west-central Florida, October 1992-February 1995

    USGS Publications Warehouse

    Lewelling, B.R.

    1997-01-01

    A baseline study of the 241-square-mile Horse Creek basin was undertaken from October 1992 to February 1995 to assess the hydrologic and water-quality conditions of one of the last remaining undeveloped basins in west-central Florida. During the period of the study, much of the basin remained in a natural state, except for limited areas of cattle and citrus production and phosphate mining. Rainfall in 1993 and 1994 in the Horse Creek basin was 8 and 31 percent, respectively, above the 30-year long-term average. The lowest and highest maximum instantaneous peak discharge of the six daily discharge stations occurred at the Buzzard Roost Branch and the Horse Creek near Arcadia stations with 185 to 4,180 cubic feet per second, respectively. The Horse Creek near Arcadia station had the lowest number of no-flow days with zero days and the Brushy Creek station had the highest number with 113 days. During the study, the West Fork Horse Creek subbasin had the highest daily mean discharge per square mile with 30.6 cubic feet per second per square mile, and the largest runoff coefficient of 43.7 percent. The Buzzard Roost Branch subbasin had the lowest daily mean discharge per square mile with 5.05 cubic feet per second per square mile, and Brushy Creek and Brandy Branch shared the lowest runoff coefficient of 0.6 percent. Brandy Branch had the highest monthly mean runoff in both 1993 and 1994 with 11.48 and 19.28 inches, respectively. During the high-baseflow seepage run, seepage gains were 8.87 cubic feet per second along the 43-mile Horse Creek channel. However, during the low-baseflow seepage run, seepage losses were 0.88 cubic foot per second. Three methods were used to estimate average annual ground-water recharge in the Horse Creek basin: (1) well hydrograph, (2) chloride mass balance, and (3) streamflow hydrograph. Estimated average annual recharge using these three methods ranged from 3.6 to 8.7 inches. The high percentage of carbonate plus bicarbonate analyzed at the Carlton surficial aquifer well could indicate an upward ground-water flow from the underlying intermediate aquifer system. Based on constituent concentrations in water samples from the six daily discharge stations, concentrations generally are lower in the upper three subbasins, West Fork Horse Creek, Upper Horse Creek, and Brushy Creek than in the lower three subbasins. Typically, concentrations were highest for major ions at Buzzard Roost Branch and nutrients at Brushy Creek.

  13. Regionalized equations for bankfull-discharge and channel characteristics of streams in New York State—Hydrologic Region 6 in the Southern Tier of New York

    USGS Publications Warehouse

    Mulvihill, Christiane I.; Ernst, Anne G.; Baldigo, Barry P.

    2005-01-01

    Equations that relate bankfull discharge and channel characteristics (width, depth, and cross-sectional area) to drainage-area size at gaged sites are needed to define bankfull discharge and channel dimensions at ungaged sites and to provide information for watershed assessments, stream-channel classification, and the design of stream-restoration projects. Such equations are most accurate if derived from streams within an area of uniform hydrologic, climatic, and physiographic conditions and applied only within that region. In New York State, eight hydrologic regions were previously defined on the basis of similar high-flow (flood) characteristics. This report presents drainage areas and associated bankfull characteristics (discharge and channel dimensions) for surveyed streams in southwestern New York (Region 6).Stream-survey data and discharge records from 11 active (currently gaged) sites and 3 inactive (discontinued) sites were used in regression analyses to relate bankfull discharge and bankfull channel width, depth, and cross-sectional area to the size of the drainage area. The resulting equations are:(1) bankfull discharge, in cubic feet per second = 48.0*(drainage area, in square miles)0.842;(2) bankfull channel width, in feet = 16.9*(drainage area, in square miles)0.419;(3) bankfull channel depth, in feet = 1.04*(drainage area, in square miles)0.244; and(4) bankfull channel cross-sectional area, in square feet = 17.6*(drainage area, in square miles)0.662.The coefficient of determination (R2) for these four equations were 0.90, 0.79, 0.64, and 0.89, respectively. The high correlation coefficients for bankfull discharge and cross-sectional area indicate that much of the variation in these variables is explained by the size of the drainage area. The smaller correlation coefficients for bankfull channel width and depth indicate that other factors also affect these relations. Recurrence intervals for the estimated bankfull discharge of each stream ranged from 1.01 to 2.35 years; the mean recurrence interval was 1.54 years. The 14 surveyed streams were classified by Rosgen stream type; most were C-type reaches, with occasional B-type reaches. The Region 6 equation (curve) for bankfull discharge was compared with equations previously developed for four other large areas in New York State and southeastern Pennsylvania. The differences among results indicate that, although the equations need to be refined by region before being applied by water-resources managers to local planning and design efforts, similar regions have similar relations between bankfull discharge and channel characteristics.

  14. The "great" price spike of '93: an analysis of lumber and stumpage prices in the Pacific Northwest.

    Treesearch

    Brent L. Sohngen; Richard W. Haynes

    1994-01-01

    Lumber prices for coast Douglas-fir (Psuedotsuga menziesii (Mirb.) Franco var. menziesii) swung rapidly from a low of $306 per thousand board feet (MBF) in September 1992 to a high of $495/MBF in March 1993. This price spike represented a sizable increase in the value of lumber over a short period, but it was not the historical...

  15. Voices from Denali: "it's bigger than wilderness"

    Treesearch

    Alan E. Watson; Katie Knotek; Neal Christensen

    2005-01-01

    Denali National Park and Preserve, at over 6 million acres (2.5 million ha) contains the highest point in North America. Mount McKinley, at more than 20,000 feet (more than 6,000 m) above sea level, watches over thousands of caribou, moose, packs of wolves, grizzly bears, and Dall sheep, as well as many other mountains and a vast amount of rare plant life. Research was...

  16. Geomorphology of the north flank of the Uinta Mountains

    USGS Publications Warehouse

    Bradley, W.H.

    1936-01-01

    beds now form hogbacks ranked along the sides of the fold. In places large faults, approximating the regional strike, cut these steeply inclined beds. Gently warped Tertiary sediments, mostly of Eocene age, fill the large Green River Basin, which lies north of the range, to a depth of several thousand feet and lap up on the flanks of the mountains, from which they were chiefly derived.

  17. Final design proposal: Delta Group-Nood Rider 821(tm)

    NASA Technical Reports Server (NTRS)

    Pastega, C. B.; Vahey, B. P.; Hoffman, K. W.; Doherty, M. C.; Fay, M. J.; Konesky, A. L.; Lilly, D. C.; Moody, D. J.

    1991-01-01

    The Nood Rider 821 (trademark) twin-engine, prop passenger aircraft is described. It is argued that the aircraft is very economical to operate and maintain, offering competitive advantages in the air travel marketplace. The aircraft was designed to operate in 'Aeroworld', a fictional world where the passengers are ping pong balls and the distances between cites are on the order of thousands of feet.

  18. Cost of Sawing Timber (COST) Module (Version 1.0) for Windows®

    Treesearch

    A. Jefferson, Jr. Palmer; Janice K. Wiedenbeck; Robert W. Mayer; Robert W. Mayer

    2005-01-01

    The Cost of Sawing Timber (COST) Module calculates the cost of operations per minute and per thousand board feet for a hardwood sawmill. It may be used independently or as a source of cost information for use in sawmill efficiency software such as the SOLVE program. Cost figures are calculated on the basis of information entered by the user. Sawmill managers use these...

  19. Deliverable 2.4.4 -- Evaluation and single-well models for the demonstration wells, Class 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deo, Milind; Morgan Craig D.

    2000-07-12

    Two single-well models were developed for Michelle Ute and Malnar Pike wells. The perforated intervals span thousands of feet in both the wells. Geological properties were calculated for all the perforated beds. The information was used to develop models for these two wells. These were comprehensive models since they took into account all the perforated beds.

  20. Advanced recovery systems wind tunnel test report

    NASA Technical Reports Server (NTRS)

    Geiger, R. H.; Wailes, W. K.

    1990-01-01

    Pioneer Aerospace Corporation (PAC) conducted parafoil wind tunnel testing in the NASA-Ames 80 by 120 test sections of the National Full-Scale Aerodynamic Complex, Moffett Field, CA. The investigation was conducted to determine the aerodynamic characteristics of two scale ram air wings in support of air drop testing and full scale development of Advanced Recovery Systems for the Next Generation Space Transportation System. Two models were tested during this investigation. Both the primary test article, a 1/9 geometric scale model with wing area of 1200 square feet and secondary test article, a 1/36 geometric scale model with wing area of 300 square feet, had an aspect ratio of 3. The test results show that both models were statically stable about a model reference point at angles of attack from 2 to 10 degrees. The maximum lift-drag ratio varied between 2.9 and 2.4 for increasing wing loading.

  1. Building Energy Management Open Source Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Saifur

    Funded by the U.S. Department of Energy in November 2013, a Building Energy Management Open Source Software (BEMOSS) platform was engineered to improve sensing and control of equipment in small- and medium-sized commercial buildings. According to the Energy Information Administration (EIA), small- (5,000 square feet or smaller) and medium-sized (between 5,001 to 50,000 square feet) commercial buildings constitute about 95% of all commercial buildings in the U.S. These buildings typically do not have Building Automation Systems (BAS) to monitor and control building operation. While commercial BAS solutions exist, including those from Siemens, Honeywell, Johnsons Controls and many more, they aremore » not cost effective in the context of small- and medium-sized commercial buildings, and typically work with specific controller products from the same company. BEMOSS targets small and medium-sized commercial buildings to address this gap.« less

  2. Hydrogeology of rocks penetrated by test well JF-3, Jackass Flats, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plume, R.W.; La Camera, R.J.

    1996-12-31

    The U.S. Department of Energy and U.S. Geological Survey are monitoring water levels in southern Nevada and adjacent parts of California in response to concern about the potential effects of pumping ground water to support the Yucca Mountain Site-Characterization Program. Well JF-3 was drilled in the western part of Jackass Flats for monitoring water levels, for determining the likelihood of a hydraulic connection between well JF-3 and production wells J-12 and J-13, and for measuring the hydraulic properties of the Topopah Spring Tuff. The borehole for JF-3 penetrated about 480 feet of alluvium and 818 feet of underlying volcanic rock.more » The well was finished at a depth of 1,138 feet below land surface near the base of the Topopah Spring Tuff, which is the principal volcanic-rock aquifer in the area. The Topopah Spring Tuff at well JF-3 extends from depths of 580 feet to 1,140 feet and consists of about 10 feet of partly to moderately welded ash-flow tuff; 10 feet of vitrophyre; 440 feet of devitrified, moderately to densely welded ash-flow tuff; 80 feet of densely welded ash-flow tuff; 10 feet of vitric, nonwelded to partly welded ash-flow tuff; and 10 feet of ashfall tuff. Fractures and lithophysae are most common in the devitrified tuff, especially between depths of 600 feet and 1,040 feet. Much of the water produced in well JF-3 probably comes from the sequence of these devitrified tuffs that is below the water table. The transmissivity of the aquifer is an estimated 140,000-160,000 feet squared per day and hydraulic conductivity is 330-370 feet per day. These values exceed estimates made at well J-13 by two orders of magnitude. Such large differences may be accounted for by differences in the development of fractures and lithophysae in the Topopah Spring Tuff at the two wells.« less

  3. Hydrogeology and simulation of ground-water flow near the Lantana Landfill, Palm Beach County, Florida

    USGS Publications Warehouse

    Russell, G.M.; Wexler, E.J.

    1993-01-01

    The Lantana landfill in Palm Beach County has a surface that is 40 to 50 feet above original ground level and consists of about 250 acres of compacted garbage and trash. Parts of the landfill are below the water table. Surface-resistivity measurements and water-quality analyses indicate that leachate-enriched ground water along the eastern perimeter of the landfill has moved about 500 feet eastward toward an adjacent lake. Concentrations of chloride and nutrients within the leachate-enriched ground water were greater than background concentrations. The surficial aquifer system in the area of the landfill consists primarily of sand of moderate permeability, from land surface to a depth of about 68 feet deep, and consists of sand interbedded with sandstone and limestone of high permeability from a depth of about 68 feet to a depth of 200 feet. The potentiometric surface in the landfill is higher than that in adjacent areas to the east, indicating ground-water movement from the landfill toward a lake to the east. Steady-state simulation of ground-water flow was made using a telescoping-grid technique where a model covering a large area is used to determine boundaries and fluxes for a finer scale model. A regional flow model encompassing a 500-square mile area in southeastern Palm Beach County was used to calculate ground-water fluxes in a 126.5-square mile subregional area. Boundary fluxes calculated by the subregional model were then used to calculate boundary fluxes for a local model of the 3.75-square mile area representing the Lantana landfill site and vicinity. Input data required for simulating ground-water flow in the study area were obtained from the regional flow models, thus, effectively coupling the models. Additional simulations were made using the local flow model to predict effects of possible remedial actions on the movement of solutes in the ground-water system. Possible remedial actions simulated included capping the landfill with an impermeable layer and pumping five leachate recovery wells. Results of the flow analysis indicate that the telescoping grid modeling approach can be used to simulate ground-water flow in small areas such as the Lantana landfill site and to simulate the effects of possible remedial actions. Water-quality data indicate the leachate-enriched ground water is divided vertically into two parts by a fine sand layer at about 40 to 50 feet below land surface. Data also indicate the extent of the leachate-enriched ground-water contamination and concentrations of constituents seem to be decreasing over time.

  4. Characteristics of fractures in crystalline bedrock determined by surface and borehole geophysical surveys, eastern surplus superfund site, Meddybemps, Maine

    USGS Publications Warehouse

    Hansen, Bruce P.; Stone, Janet Radway; Lane, John W.

    1999-01-01

    Surface and borehole geophysical methods were used to determine fracture orientation in crystalline bedrock at the Eastern Surplus Superfund Site in Meddybemps, Maine. Fracture-orientation information is needed to address concerns about the fate of contaminants in ground water at the site. Azimuthal square-array resistivity surveys were conducted at 3 locations at the site, borehole-acoustic televiewer and borehole-video logs were collected in 10 wells, and single-hole directional radar surveys were conducted in 9 wells. Borehole-video logs were used to supplement the results of other geophysical techniques and are not described in this report. Analysis of azimuthal square-array resistivity data indicated that high-angle fracturing generally strikes northeast-southwest at the three locations. Borehole-acoustic televiewer logs detected one prominent low-angle and two prominent high-angle fracture sets. The low-angle fractures strike generally north-northeast and dip about 20 degrees west-northwest. One high-angle fracture set strikes north-northeast and dips east-southeast; the other high-angle set strikes east-northeast and dips south-southeast. Single-hole directional radar surveys identified two prominent fracture sets: a low-angle set striking north-northeast, dipping west-northwest; and a high-angle fracture set striking north-northeast, dipping east-southeast. Two additional high-angle fracture sets are defined weakly, one striking east-west, dipping north; and a second striking east-west, dipping south. Integrated results from all of the geophysical surveys indicate the presence of three primary fracture sets. A low-angle set strikes north-northeast and dips west-northwest. Two high-angle sets strike north-northeast and east-northeast and dip east-southeast and south-southeast. Statistical correction of the fracture data for orientation bias indicates that high-angle fractures are more numerous than observed in the data but are still less numerous than the low-angle fractures. The orientation and distribution of water-yielding fractures sets were determined by correlating the fracture data from this study with previously collected borehole-flowmeter data. The water-yielding fractures are generally within the three prominent fracture sets observed for the total fracture population. The low-angle water-yielding fractures primarily strike north-northeast to west-northwest and dip west-northwest to south-southwest. Most of the high-angle water-yielding fractures strike either north-northeast or east-west and dip east-southeast or south. The spacing between water-yielding fractures varies but the probable average spacing is estimated to be 30 feet for low-angle fractures; 27 feet for the east-southeast dipping, high-angle fractures; and 43 feet for the south-southeast dipping, high-angle fractures. The median estimated apparent transmissivity of individual water-yielding fractures or fracture zones was 0.3 feet squared per day and ranged from 0.01 to 382 feet squared per day. Ninety-five percent of the water-yielding fractures or fracture zones had an estimated apparent transmissivity of 19.5 feet squared per day or less. The orientation, spacing, and hydraulic properties of water-yielding fractures identified during this study can be used to help estimate recharge, flow, and discharge of ground water contaminants. High-angle fractures provide vertical pathways for ground water to enter the bedrock, interconnections between low-angle fractures, and, subsequently, pathways for water flow within the bedrock along fracture planes. Low-angle fractures may allow horizontal ground-water flow in all directions. The orientation of fracturing and the hydraulic properties of each fracture set strongly affect changes in ground-water flow under stress (pumping) conditions.

  5. Solar heating system installed at Jackson, Tennessee. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-10-01

    The solar energy heating system installed at the Coca-Cola Bottling Works in Jackson, Tennessee is described. The system consists of 9480 square feet of Owens-Illinois evacuated tubular solar collectors with attached specular cylindrical reflectors and will provide space heating for the 70,000 square foot production building in the winter, and hot water for the bottle washing equipment the remainder of the year. Component specifications and engineering drawings are included. (WHK)

  6. Artesian pressures and water quality in Paleozoic aquifers in the Ten Sleep area of the Bighorn Basin, north-central Wyoming

    USGS Publications Warehouse

    Cooley, M.E.

    1985-01-01

    Major Paleozoic artesian aquifers in the southeastern Bighorn Basin of Wyoming area, in descending order, the Tensleep Sandstone; the Madison Limestone and Bighorn Dolomite, which together form the Madison-Bighorn aquifer; and the Flathead Sandstone. Operating yields commonly are more than 1,000 gallons per minute from flowing wells completed in the Madison-Bighorn aquifer. The initial test of one well indicated a flow of 14,000 gallons per minute. Wellhead pressures range from less than 50 to more than 400 pounds per square inch. Transmissivities are 500-1,900 feet squared per day for the Madison-Bighorn aquifer and 90-325 feet squared per day for the Tensleep and Flathead Sandstones. Despite extensive development for irrigation there have been few decreases in pressure. Some decreases in pressure have occurred in wells completed in the Flathead Sandstone. Fractures along linear structural features result in significant secondary permeability and allow upward interformational movement of water that affects the altitude of the potentiometric surfaces in the Tensleep Sandstone and Madison-Bighorn aquifer. Upward-moving water from the Tensleep and other formations discharges at the land surface as springs along or near these lineations. Water from the aquifers generally contains minimal concentrations of dissolved solids and individual constituents but has excessive hardness. The water is satisfactory for irrigation and other purposes when hardness is not a detrimental factor. Wellhead temperatures range from 11 degrees to 27.5 degrees C, giving a geothermal gradient of about 0.44 degrees C per 100 feet. (USGS)

  7. Diffuse-flow conceptualization and simulation of the Edwards aquifer, San Antonio region, Texas

    USGS Publications Warehouse

    Lindgren, R.J.

    2006-01-01

    A numerical ground-water-flow model (hereinafter, the conduit-flow Edwards aquifer model) of the karstic Edwards aquifer in south-central Texas was developed for a previous study on the basis of a conceptualization emphasizing conduit development and conduit flow, and included simulating conduits as one-cell-wide, continuously connected features. Uncertainties regarding the degree to which conduits pervade the Edwards aquifer and influence ground-water flow, as well as other uncertainties inherent in simulating conduits, raised the question of whether a model based on the conduit-flow conceptualization was the optimum model for the Edwards aquifer. Accordingly, a model with an alternative hydraulic conductivity distribution without conduits was developed in a study conducted during 2004-05 by the U.S. Geological Survey, in cooperation with the San Antonio Water System. The hydraulic conductivity distribution for the modified Edwards aquifer model (hereinafter, the diffuse-flow Edwards aquifer model), based primarily on a conceptualization in which flow in the aquifer predominantly is through a network of numerous small fractures and openings, includes 38 zones, with hydraulic conductivities ranging from 3 to 50,000 feet per day. Revision of model input data for the diffuse-flow Edwards aquifer model was limited to changes in the simulated hydraulic conductivity distribution. The root-mean-square error for 144 target wells for the calibrated steady-state simulation for the diffuse-flow Edwards aquifer model is 20.9 feet. This error represents about 3 percent of the total head difference across the model area. The simulated springflows for Comal and San Marcos Springs for the calibrated steady-state simulation were within 2.4 and 15 percent of the median springflows for the two springs, respectively. The transient calibration period for the diffuse-flow Edwards aquifer model was 1947-2000, with 648 monthly stress periods, the same as for the conduit-flow Edwards aquifer model. The root-mean-square error for a period of drought (May-November 1956) for the calibrated transient simulation for 171 target wells is 33.4 feet, which represents about 5 percent of the total head difference across the model area. The root-mean-square error for a period of above-normal rainfall (November 1974-July 1975) for the calibrated transient simulation for 169 target wells is 25.8 feet, which represents about 4 percent of the total head difference across the model area. The root-mean-square error ranged from 6.3 to 30.4 feet in 12 target wells with long-term water-level measurements for varying periods during 1947-2000 for the calibrated transient simulation for the diffuse-flow Edwards aquifer model, and these errors represent 5.0 to 31.3 percent of the range in water-level fluctuations of each of those wells. The root-mean-square errors for the five major springs in the San Antonio segment of the aquifer for the calibrated transient simulation, as a percentage of the range of discharge fluctuations measured at the springs, varied from 7.2 percent for San Marcos Springs and 8.1 percent for Comal Springs to 28.8 percent for Leona Springs. The root-mean-square errors for hydraulic heads for the conduit-flow Edwards aquifer model are 27, 76, and 30 percent greater than those for the diffuse-flow Edwards aquifer model for the steady-state, drought, and above-normal rainfall synoptic time periods, respectively. The goodness-of-fit between measured and simulated springflows is similar for Comal, San Marcos, and Leona Springs for the diffuse-flow Edwards aquifer model and the conduit-flow Edwards aquifer model. The root-mean-square errors for Comal and Leona Springs were 15.6 and 21.3 percent less, respectively, whereas the root-mean-square error for San Marcos Springs was 3.3 percent greater for the diffuse-flow Edwards aquifer model compared to the conduit-flow Edwards aquifer model. The root-mean-square errors for San Antonio and San Pedro Springs were appreciably greater, 80.2 and 51.0 percent, respectively, for the diffuse-flow Edwards aquifer model. The simulated water budgets for the diffuse-flow Edwards aquifer model are similar to those for the conduit-flow Edwards aquifer model. Differences in percentage of total sources or discharges for a budget component are 2.0 percent or less for all budget components for the steady-state and transient simulations. The largest difference in terms of the magnitude of water budget components for the transient simulation for 1956 was a decrease of about 10,730 acre-feet per year (about 2 per-cent) in springflow for the diffuse-flow Edwards aquifer model compared to the conduit-flow Edwards aquifer model. This decrease in springflow (a water budget discharge) was largely offset by the decreased net loss of water from storage (a water budget source) of about 10,500 acre-feet per year.

  8. Hydrologic analysis of the Rio Grande Basin north of Embudo, New Mexico; Colorado and New Mexico

    USGS Publications Warehouse

    Hearne, G.A.; Dewey, J.D.

    1988-01-01

    Water yield was estimated for each of the five regions that represent contrasting hydrologic regimes in the 10,400 square miles of the Rio Grande basin above Embudo, New Mexico. Water yield was estimated as 2,800 cubic feet per second for the San Juan Mountains, and 28 cubic feet per second for the Taos Plateau. Evapotranspiration exceeded precipitation by 150 cubic feet per second on the Costilla Plains and 2,400 cubic feet per second on the Alamosa Basin. A three-dimensional model was constructed to represent the aquifer system in the Alamosa Basin. A preliminary analysis concluded that: (1) a seven-layer model representing 3,200 feet of saturated thickness could accurately simulate the behavior of the flow equation; and (2) the 1950 condition was approximately stable and would be a satisfactory initial condition. Reasonable modifications to groundwater withdrawals simulated 1950-79 water-level declines close to measured value. Sensitivity tests indicated that evapotranspiration salvage was the major source, 69 to 82 percent, of groundwater withdrawals. Evapotranspiration salvage was projected to be the source of most withdrawals. (USGS)

  9. Maximum known stages and discharges of New York streams and their annual exceedance probabilities through September 2011

    USGS Publications Warehouse

    Wall, Gary R.; Murray, Patricia M.; Lumia, Richard; Suro, Thomas P.

    2014-01-01

    Maximum known stages and discharges at 1,400 sites on 796 streams within New York are tabulated. Stage data are reported in feet. Discharges are reported as cubic feet per second and in cubic feet per second per square mile. Drainage areas range from 0.03 to 298,800 square miles; excluding the three sites with larger drainage areas on the St. Lawrence and Niagara Rivers, which drain the Great Lakes, the maximum drainage area is 8,288 square miles (Hudson River at Albany). Most data were obtained from U.S. Geological Survey (USGS) compilations and records, but some were provided by State, local, and other Federal agencies and by private organizations. The stage and discharge information is grouped by major drainage basins and U.S. Geological Survey site number, in downstream order. Site locations and their associated drainage area, period(s) of record, stage and discharge data, and flood-frequency statistics are compiled in a Microsoft Excel spreadsheet. Flood frequencies were derived for 1,238 sites by using methods described in Bulletin 17B (Interagency Advisory Committee on Water Data, 1982), Ries and Crouse (2002), and Lumia and others (2006). Curves that “envelope” maximum discharges within their range of drainage areas were developed for each of six flood-frequency hydrologic regions and for sites on Long Island, as well as for the State of New York; the New York curve was compared with a curve derived from a plot of maximum known discharges throughout the United States. Discharges represented by the national curve range from at least 2.7 to 4.9 times greater than those represented by the New York curve for drainage areas of 1.0 and 1,000 square miles. The relative magnitudes of discharge and runoff in the six hydrologic regions of New York and Long Island suggest the largest known discharges per square mile are in the southern part of western New York and the Catskill Mountain area, and the smallest are on Long Island.

  10. Salt transport in a tidal canal, West Neck Creek, Virginia

    USGS Publications Warehouse

    Bales, Jerad D.; Skrobialowski, Stanley C.; ,

    1993-01-01

    Flow and stability were monitored during 1989-92 in West Neck Creek, Virginia, which provides a direct hydraulic connection between the saline waters of Chesapeake Bay and the relatively fresh waters of Currituck Sound, North Carolina. Flow in the tidal creek was to the south 64 percent of the time, but 80 percent of the southward flows were less than 40 cubic feet per second. The highest flows were associated with rain storms. Salinity ranged from 0.1 parts per thousand to 24.5 per thousand, and the highest salinities were observed during periods of sustained, strong northerly winds. Salt loads ranged from 302 tons per day to the north to 4,500 tons per day to the south.

  11. Increased oil production and reserves from improved completion techniques in the Bluebell field, Uinta Basin, Utah. Tenth quarterly technical progress report, January 1, 1996--March 31, 1996. Revised

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, M.L.

    1996-05-13

    The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin will is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil- bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch Formations in the Bluefell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of themore » project. Data (net pay thickness, porosity, and water saturation) of more than 100 individuals beds in he lower Green River and Wasatch Formations were used to generate geostatistical realization (numerical- representation) of the reservoir properties. The data set was derived from the Michelle Ute and Malnar Pike demonstration wells and 22 other wells in a 20 (52 km{sup 2}) square-mile area. Beds were studied independently of each other. Principles of sequential Gaussian simulations were used to generate geostatistical realizations of the beds.« less

  12. Assessment of Habitat, Fish Communities, and Streamflow Requirements for Habitat Protection, Ipswich River, Massachusetts, 1998-99

    USGS Publications Warehouse

    Armstrong, David S.; Richards, Todd A.; Parker, Gene W.

    2001-01-01

    The relations among stream habitat, fish communities, and hydrologic conditions were investigated in the Ipswich River Basin in northeastern Massachusetts. Data were assessed from 27 sites on the mainstem of the Ipswich River from July to September 1998 and from 10 sites on 5 major tributaries in July and August 1999. Habitat assessments made in 1998 determined that in a year with sustained streamflow for most of the summer, the Ipswich River contains diverse, high-quality aquatic habitat. Channel types are predominantly low gradient glides, pools, and impoundments, with a sandy streambed and a forest or shrub riparian zone. Features that provide fish habitat are located mostly along stream margins; these features include overhanging brush, undercut banks, exposed roots, and woody debris. These habitat features decrease in availability to aquatic communities with declining streamflows and generally become unavailable after streamflows drop to the point where the edge of water recedes from the stream banks.The mainstem and tributaries were sampled to determine fish species composition, relative abundance, and length frequency. Fish sampling indicates that the fish community in the Ipswich River is currently a warm-water fish community dominated by pond-type fish. However, historical temperature data, and survival of stocked trout in the mainstem Ipswich into late summer of 1998, indicate that the Ipswich River potentially could support cold-water fish species if adequate flows are maintained. Dominant fish species sampled in the mainstem Ipswich River were redfin pickerel (Esox americanus), American eel (Anguilla rostrata), and pumpkinseed (Lepomis gibbosus), which together represented 41, 22, and 10 percent, respectively, of 4,745 fish sampled. The fish communities of the mainstem and tributaries contained few fluvial-dependent or fluvial-specialist species (requiring flow), and were dominated by macrohabitat generalists (tolerant of low-flow, warm-water, and ponded conditions). In comparison to a nearby river (Lamprey River, N.H.), and a reference fish community developed for inland New England streams, the Ipswich fish community would be expected to have appreciably higher percentages of fluvial-dependent and fluvial-specialist species were streamflows restored.Four riffle sites on the mainstem of the Ipswich River were identified as critical habitat areas because they are among the first sites to exhibit fish-passage problems or to dry during low flows. A watershed-scale precipitation-runoff model previously developed for the Ipswich River was used to simulate streamflows at these four sites for the period 1961-95 under no withdrawals (for water supply) and 1991 land use to evaluate habitat suitability under conditions that approximate the natural flow conditions. These simulated flows were used to calculate streamflow requirements by the Tennant and New England Aquatic-Base-Flow methods. Stream channels were surveyed at the critical riffle sites, and Water Surface Profile models were used to simulate streamflows and hydraulic characteristics needed for determining streamflow requirements by use of the Wetted-Perimeter and R2Cross methods. Normalized by drainage area to units of cubic feet per second per square mile, these methods yielded the following streamflow requirements: 0.50 cubic feet per second per square mile for the Tennant 30-percent QMA method, 0.42 cubic feet per second per square mile for the wetted-perimeter value necessary to maintain wetted perimeter at three altered riffle sites, 0.42 cubic feet per second per square mile for the R2Cross value required to maintain R2Cross hydraulic criteria at a natural riffle site, and 0.34 cubic feet per second per square mile for the aquatic-base-flow median of monthly mean flows for August for the simulated 1961-95 period under no withdrawals and 1991 land use. The mean streamflow requirement determined from these four methods is 0.42 cubic feet per second per square

  13. Remote detection of CAT by infrared radiation

    NASA Technical Reports Server (NTRS)

    Astheimer, R. W.

    1969-01-01

    The remote detection of clear air turbulence (CAT) was investigated using an airborne scanning infrared spectrometer. Results of the flight tests indicated a high correlation between turbulence and temperature changes, and remote detection was obtained at distances up to 10 miles. Since CAT can extend horizontally over 50 miles, but is usually limited vertically to a few thousand feet, it is concluded that the best avoidance maneuver is a change in altitude.

  14. Searching for solitude in the wilderness of southeast Alaska

    Treesearch

    Mary Emerick; David N. Cole

    2008-01-01

    Our group of wilderness campers perched on the rocks, enjoying the sounds of the nearby waterfall and the tide stealing in across the flats. Granite walls soared thousands of feet in the air; icebergs floated by on their way from calving glacier to the open sea. Loons called, and a rustling in the woods across the channel meant that a bear or deer might step out onto...

  15. Effects of Market Prices and Silvicultural Practices on Lumber Value of Standing Trees In Uneven-Ages Plots

    Treesearch

    David W. Patterson

    1998-01-01

    Uneven-aged management plots were established using three variables (site index, basal area, and maximum diameter). This study looked at the significance of the variables on the lumber volume per acre, lumber value per thousand board feet (Mbf), and stand value per acre as well as the influence on these analysis by market prices (May 1997, May 1998, and October 1998)....

  16. Timber resource statistics for the Tuxedni Bay inventory unit, Alaska, 1971

    Treesearch

    Karl M. Hegg

    1979-01-01

    Area and volume data are given for the first intensive inventory of a 188,000-acre unit on the west side of Cook Inlet, 130 miles southwest of Anchorage. Commercial forest land totaled 45 thousand acres with a total cubic volume of 105 million feet. The major species component is a hybrid mixture of Sitka and white spruce. An introductory section has comments on this...

  17. Jammed systems of oriented needles always percolate on square lattices

    NASA Astrophysics Data System (ADS)

    Kondrat, Grzegorz; Koza, Zbigniew; Brzeski, Piotr

    2017-08-01

    Random sequential adsorption (RSA) is a standard method of modeling adsorption of large molecules at the liquid-solid interface. Several studies have recently conjectured that in the RSA of rectangular needles, or k -mers, on a square lattice, percolation is impossible if the needles are sufficiently long (k of order of several thousand). We refute these claims and present rigorous proof that in any jammed configuration of nonoverlapping, fixed-length, horizontal, or vertical needles on a square lattice, all clusters are percolating clusters.

  18. Texas floods of 1940

    USGS Publications Warehouse

    Breeding, Seth D.

    1948-01-01

    Floods occurred in Texas during, June, July, and November 1940 that exceeded known stages on many small streams and at a few places on the larger streams. Stages at several stream-gaging stations exceeded the maximum known at those places since the collection of daily records began. A storm, haying its axis generally on a north-south line from Cameron to Victoria and extending across the Brazos, Colorado, Lavaca, and Guadalupe River Basins, caused heavy rainfall over a large part of south-central Texas. The maximum recorded rain of 22.7 inches for the 2-day period June 29-30 occurred at Engle. Of this amount, 17.5 inches fell in the 12-hour period between 8 p.m. June 29, and 8 a.m. June 30. Light rains fell at a number of places on June 28, and additional light rains fell at many places within the area from July 1 to 4. During the period June 28 to July 4 more than 20 inches of rain fell over an area of 300 square miles, more than 15 inches over 1,920 square miles, and more than 10 inches over 5,100 square miles. The average annual rainfall for the area experiencing the heaviest rainfall during this storm is about 35 inches. Farming is largely confined to the fertile flood plains in much of the area subjected to the record-breaking floods in June and July. Therefore these floods, coming at the height of the growing season, caused severe losses to crops. Much damage was done also to highways and railways. The city of Hallettsville suffered the greatest damage of any urban area. The Lavaca River at that place reached a stage 8 feet higher than ever known before, drowned several people, destroyed many homes, and submerged almost the entire business district. The maximum discharge there was 93,100 second-feet from a drainage area of 101 square miles. Dry Creek near Smithville produced a maximum discharge of 1,879 second-feet from an area of 1.48 square miles and a runoff of 11.3 inches in a 2-day period from a rainfall of 19.5 inches. The area in the Colorado River Basin between Smithville and La Grange, amounting to 550 square miles, had an average rainfall of 19.3 inches, of which 11.5 inches appeared as runoff. The maximum discharge at La Grange was 182,000 second-feet, with much the greater part coming from below Smithville. This is probably a record-breaking flood for the area between Smithville and La Grange, but stages as much as 16 feet higher have occurred at La Grange. Heavy rainfall over the east half of Texas November 21-26 caused large floods in all streams in Texas east of the Guadalupe River. The maximum recorded rainfall for the 2-day period November 24-25 was 20.46 inches at Hempstead, of which 16.00 inches fell in 24 hours or less. The storm occurred during the period November 20-26, with the greater part of the rain falling November 23-25. During the period November 20-26, rainfall in Texas amounted to more than 15 inches over an area of 3,380 square miles, and 'to more than 10 inches over an area of 17,570 square miles. The average annual rainfall for the area in Texas experiencing more than 10 inches of rain during this storm ranges from 501 inches on the east border of the State to 35 inches near the west edge of the area. The study of this storm for the purposes of this report is limited to the San Jacinto River Basin, which had an average rainfall of 13.6 inches. This basin has an area of 2,791 square miles above the gaging station near Huffman and is typical in topographic and hydrologic features of much of eastern Texas. The stage reached at the gage near Huffman was about 1 foot higher than known before, the maximum discharge was 253,000 second-feet, and the runoff from the storm amounted to 8.8 inches. The November flood came after crops had been harvested, and its damage was mainly the destruction of highways and railways and the drowning of livestock. The storage reservoirs on the Colorado River located well upstream from the storm areas herein studied had very little effect on

  19. Floods of April 28, 1966 in the northern part of Dallas, Texas

    USGS Publications Warehouse

    Mills, Willard B.; Schroeder, Elmer E.

    1969-01-01

    The flood was caused by a 5-hour storm in the early hours of April 28. Antecedent rainfall had so saturated the area that the intense, but relatively low, total rainfall (less than a 50-year return period) caused historical floods to be exceeded at many points. A peak runoff rate of 3,160 cubic feet per second per square mile occurred on a 1.5 square-mile area within the watershed.

  20. Hydrologic and salinity characteristics of Currituck Sound and selected tributaries in North Carolina and Virginia, 1998–99

    USGS Publications Warehouse

    Caldwell, William Scott

    2001-01-01

    Data collected at three sites in Currituck Sound and three tributary sites between March 1, 1998, and February 28, 1999, were used to describe hydrologic and salinity characteristics of Currituck Sound. Water levels and salinity were measured at West Neck Creek at Pungo and at Albemarle and Chesapeake Canal near Princess Anne in Virginia, and at Coinjock, Bell Island, Poplar Branch, and Point Harbor in North Carolina. Flow velocity also was measured at the West Neck Creek and Coinjock sites.The maximum water-level range during the study period was observed near the lower midpoint of Currituck Sound at Poplar Branch. Generally, water levels at all sites were highest during March and April, and lowest during November and December. Winds from the south typically produced higher water levels in Currituck Sound, whereas winds from the north typically produced lower water levels. Although wind over Currituck Sound is associated with fluctuations in water level within the sound, other mechanisms, such as the effects of wind on Albemarle Sound and on other water bodies south of Currituck Sound, likely affect low-frequency water-level variations in Currituck Sound.Flow in West Neck Creek ranged from 313 cubic feet per second to the south to -227 cubic feet per second to the north (negative indicates flow to the north). Flow at the Coinjock site ranged from 15,300 cubic feet per second to the south to -11,700 cubic feet per second to the north. Flow was to the south 68 percent of the time at the West Neck Creek site and 44 percent of the time at the Coinjock site. Daily flow volumes were calculated as the sum of the instantaneous flow volumes. The West Neck Creek site had a cumulative flow volume to the south of 7.69 x 108 cubic feet for the period March 1, 1998, to February 28, 1999; the Coinjock site had a cumulative flow volume to the north of -1.33 x 1010 cubic feet for the same study period.Wind direction and speed influence flow at the West Neck Creek and Coinjock sites, whereas precipitation alone has little effect on flow at these sites. Flow at the West Neck Creek site is semidiurnal but is affected by wind direction and speed. Flow to the south (positive flow) was associated with wind speeds averaging more than 15 miles per hour from the northwest; flow to the north (negative flow) was associated with wind speeds averaging more than 15 miles per hour from the south and southwest. Flow at the Coinjock site reacted in a more unpredictable manner and was not affected by winds or tides in the same manner as West Neck Creek, with few tidal characteristics evident in the record.Throughout the study period, maximum salinity exceeded 3.5 parts per thousand at all sites; however, mean and median salinities were below 3.5 parts per thousand at all sites except the Point Harbor site (3.6 and 4.2 parts per thousand, respectively) at the southern end of the sound. Salinities were less than or equal to 3.5 parts per thousand nearly 100 percent of the time at the Bell Island and Poplar Branch sites in Currituck Sound and about 86 percent of the time at the Albemarle and Chesapeake Canal site north of the sound. Salinity at the West Neck Creek and Coinjock sites was less than or equal to 3.5 parts per thousand about 82 percent of the time.During this study, prevailing winds from the north were associated with flow to the south and tended to increase salinity at the West Neck Creek and the Albemarle and Chesapeake Canal sites. Conversely, these same winds tended to decrease salinity at the other sites. Prevailing winds from the south and southwest were associated with flow to the north and tended to increase salinity at the Poplar Branch and Point Harbor sites in Currituck Sound and at the Coinjock site, but these same winds tended to decrease salinity at the West Neck Creek and the Albemarle and Chesapeake Canal sites. The greatest variations in salinity were observed at the northernmost site, West Neck Creek, and thesouthernmost site, Point Harbor. The least variation in salinity was observed at the upper midpoint of the sound at the Bell Island site.Daily salt loads were computed for 364 days at the West Neck Creek site and 348 days at the Coinjock site from March 1, 1998, to February 28, 1999. The cumulative salt load at West Neck Creek was 28,170 tons to the south, and the cumulative salt load at the Coinjock site was -872,750 tons to the north.The cumulative salt load passing the West Neck Creek site during the study period would be 0.01 part per thousand if uniformly distributed throughout the sound (approximately 489,600 acre-feet in North Carolina). If the cumulative salt load passing the Coinjock site were uniformly distributed throughout the sound, the salinity in the sound would be 0.32 part per thousand. The net transport at the West Neck Creek and Coinjock sites indicates inflow of salt into the sound. A constant inflow of freshwater from tributaries and ground-water sources also occurs; however, the net flow volumes from these freshwater sources are not documented, and the significance of these freshwater inflows toward diluting the net import of salt into the sound is beyond the scope of this study.

  1. Energy Conservation Featured in Illinois High School

    ERIC Educational Resources Information Center

    Modern Schools, 1976

    1976-01-01

    The William Fremd High School in Palatine, Illinois, scheduled to open in 1977, is being built with energy conservation uppermost in mind. In this system, 70 heat pumps will heat and cool 300,000 square feet of educational facilities. (Author/MLF)

  2. 5. Log draft horse barn. Detail of west side showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Log draft horse barn. Detail of west side showing Dutch door and square notching at wall corner. View to east. - William & Lucina Bowe Ranch, Log Draft Horse Barn, 290 feet southwest of House, Melrose, Silver Bow County, MT

  3. Solar heating and domestic hot water system installed at Kansas City, Fire Station, Kansas City, Missouri. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-07-01

    This document is the final report of the solar energy heating and hot water system installed at the Kansas City Fire Station, Number 24, 2309 Hardesty Street, Kansas City, Missouri. The solar system was designed to provide 47 percent of the space heating, 8800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1428 cubic feet of 1/2 inch diameter pebbles weighing 71 1/2 tons, a DHW preheat tank, blowers, pumps, heatmore » exchangers, air ducting, controls and associated plumbing. Two 120-gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30-kilowatt electric unit heaters. There are six modes of system operation. This project is part of the Department of Energy PON-1 Solar Demonstration Program with DOE cost sharing $154,282 of the $174,372 solar system cost. The Final Design Review was held March 1977, the system became operational March 1979 and acceptance test was completed in September 1979.« less

  4. The surficial aquifer in east-central St Johns County, Florida

    USGS Publications Warehouse

    Hayes, Eugene C.

    1981-01-01

    The surficial aquifer, a composite of confined and unconfined water-bearing zones overlying the Miocene Hawthorn Formation, is an important source of water in St. Johns County, Fla. The water from wells open to the surficial aquifer generally meets quality standards recommended by the U.S. Environmental Protection Agency for public water supplies, except for concentrations of iron that for most wells are substantially greater than the recommended limit of 0.3 milligrams per liter. Data from 12 test wells drilled to the top of the Hawthorn formation, about 100 feet below land surface, indicate that the productive zones and confining beds in the surficial aquifer are discontinuous. Test well yields from individual zones range from less than 1 to 42 gallons per minute from depths between 20 and 100 feet below land surface. The most productive zones were generally found in the Tillman Ridge area, about 10 square miles in the west-central part of the area of investigation. Analysis of an aquifer test on a well in the Tillman Ridge area indicates a transmissivity of about 6,500 to 7,000 feet squared per day. The best local source of good quality water for development of a relatively large water supply is in the vicinity of Tillman Ridge. (USGS)

  5. Earth observations taken by the STS-112 crew

    NASA Image and Video Library

    2002-10-10

    STS112-705-011 (7-18 October 2002) --- The light-blue region in the middle of this view, photographed from the Space Shuttle Atlantis, is the shallow flat platform known as the Great Bahama Bank. The platform is covered by less than 100 feet of water. Andros Island, the biggest island in the Bahamas chain, is the highest part of this platform and appears partly under cloud cover in the center of the view. The edges of the platform are steep, dropping off thousands of feet into the ocean depths, the deepest water indicated by deep blues. The 50-mile-wide Strait of Florida is the deep water along the left and lower sides of the view. The Key Largo part of the Florida Peninsula appears in the extreme lower left.

  6. A stop-restart solid propellant study with salt quench

    NASA Technical Reports Server (NTRS)

    Kumar, R. N.

    1976-01-01

    Experiments were conducted to gain insight into the unsatisfactory performance of the salt quench system of solid propellants in earlier studies. Nine open-air salt spray tests were conducted and high-speed cinematographic coverage was obtained of the events. It is shown that the salt spray by the detonator is generally a two-step process yielding two different fractions. The first fraction consists of finely powdered salt and moves practically unidirectionally at a high velocity (thousand of feet per second) while the second fraction consists of coarse particles and moves randomly at a low velocity (a few feet per second). Further investigation is required to verify the speculation that a lower quench charge ratio (weight of salt/propellant burning area) than previously employed may lead to an efficient quench

  7. Large area pulsed solar simulator

    NASA Technical Reports Server (NTRS)

    Kruer, Mark A. (Inventor)

    1999-01-01

    An advanced solar simulator illuminates the surface a very large solar array, such as one twenty feet by twenty feet in area, from a distance of about twenty-six feet with an essentially uniform intensity field of pulsed light of an intensity of one AMO, enabling the solar array to be efficiently tested with light that emulates the sun. Light modifiers sculpt a portion of the light generated by an electrically powered high power Xenon lamp and together with direct light from the lamp provide uniform intensity illumination throughout the solar array, compensating for the square law and cosine law reduction in direct light intensity, particularly at the corner locations of the array. At any location within the array the sum of the direct light and reflected light is essentially constant.

  8. Hydrology of the Texas Gulf Coast aquifer systems

    USGS Publications Warehouse

    Ryder, Paul D.; Ardis, Ann F.

    1991-01-01

    A complex, multilayered ground-water flow system exists in the Coastal Plain sediments of Texas. The Tertiary and Quaternary clastic deposits have an areal extent of 114,000 square miles onshore and in the Gulf of Mexico. Two distinct aquifer systems are recognized within the sediments, which range in thickness from a few feet to more than 12,000 feet The older system--the Texas coastal uplands aquifer system-consists of four aquifers and two confining units in the Claiborne and Wilcox Groups. It is underlain by the practically impermeable Midway confining unit or by the top of the geopressured zone. It is overlain by the nearly impermeable Vicksburg-Jackson confining unit, which separates it from the younger coastal lowlands aquifer system. The coastal lowlands aquifer system consists of five permeable zones and two confining units that range in age from Oligocene to Holocene. The hydrogeologic units of both systems are exposed in bands that parallel the coastline. The units dip and thicken toward the Gulf. Quality of water in the aquifer systems is highly variable, with dissolved solids ranging from less than 500 to 150,000 milligrams per liter.Substantial withdrawal from the aquifer systems began in the early 1900's and increased nearly continuously into the 1970's. The increase in withdrawal was relatively rapid from about 1940 to 1970. Adverse hydrologic effects, such as saltwater encroachment in coastal areas, land-surface subsidence in the Houston-Galveston area, and long-term dewatering in the Whiter Garden area, were among some of the factors that caused pumping increases to slow or to cease in the 1970's and 1980's.Ground-water withdrawals in the study area in 1980 were about 1.7 billion gallons per day. Nearly all of the withdrawal was from four units: Permeable zones A, B, and C of Miocene age and younger, and the lower Claiborae-upper Wilcox aquifer. Ground-water levels have declined hundreds of feet in the intensively pumped areas of Houston-Galveston, Kingsville, Winter Garden, and Lufkin-Nacogdoches. Water-level declines have caused inelastic compaction of clays which, in turn, has resulted in land-surface subsidence of more than one foot in an area of about 2,000 square miles. Maximum subsidence of nearly 10 feet occurs in the Pasadena area east of Houston.A three-dimensional, variable-density digital model was developed to simulate predevelopment and transient flow in the aquifer systems. The modeled area is larger than the study area, and includes adjacent parts of Louisiana and Mexico. The transient model calibration period was from 1910 (predevelopment) to 1982. Model-generated head distributions, water-level hydrographs, and land-surface subsidence were matched to measured data in selected, intensively pumped areas.For the study area, mean horizontal hydraulic conductivity in the calibrated model ranges from 10 feet per day for the middle Wilcox aquifer to 25 feet per day for permeable zone A. Mean transmissivity ranges from about 4,600 feet squared per day for the middle Claiborne aquifer to about 10,400 feet squared per day for permeable zone D. Mean vertical hydraulic conductivity ranges from 1.1x10-5 feet per day for the Vicksburg-Jackson confining unit, to 3.8x10-3 feet per day for permeable zone A. Mean values of calibrated storage coefficient range from 52x10-4 for the middle Claiborne aquifer to 1.7x10-3 for the middle Wilcox aquifer and permeable zone C. Calibrated inelastic specific storage values for clay beds in permeable zones A, B, and C in the Houston-Galveston area are 8.5x10-5, 8.0x10-5, and 8.0x10-6 feet-1, respectively. These values are 85, 80, and 8 times greater than the estimated elastic specific storage value for the clays in permeable zones A, B, and C, respectively.Recharge rates were mapped for predevelopment conditions as determined from a steady-state model calibration. A maximum rate of 3 inches per year was simulated in small areas, and the average rate for the study area was 034 inch per year. Total simulated recharge was 85 million cubic feet per day in the outcrop area. Recharge was equal to discharge in outcrop areas (79 million cubic feet per day) plus net lateral flow out of the study area (6 million cubic feet per day).Rates of inflow and outflow to the ground-water system have nearly tripled from predevelopment to 1982 (85 to 276 million cubic feet per day) based on model simulation. Withdrawal of 231 million cubic feet per day was supplied principally by an increase in outcrop recharge and, to a lesser extent, from a decrease in natural discharge and release of water from storage in aquifers and compacting clay beds. The average simulated 1982 recharge rate for the study area was 0.52 inch per year, with a maximum simulated rate of 6 inches per year in Jackson and Wharton Counties.Because withdrawal has caused problems such as saltwater intrusion, land-surface subsidence, and aquifer dewatering, the Texas Department of Water Resources has projected that ground-water use will decline substantially in most of the study area by the year 2030. Some areas remain favorable for development of additional ground-water supplies. Pumping from older units that are farther inland and in areas where potential recharge is greater will minimize adverse hydrologic effects.

  9. R/V SIKULIAQ - A New Ice-capable Asset For The Future UNOLS Fleet

    NASA Astrophysics Data System (ADS)

    Whitledge, T. E.; Oliver, D. K.

    2010-12-01

    The University of Alaska Fairbanks is constructing a new research vessel with a contract with Marinette Marine Corp. in Marinette, Wisconsin on behalf of the NSF for future scientific studies with an emphasis in the North Pacific Ocean and Alaskan waters. The 254 foot vessel will be capable of breaking 2.5 foot thick ice at 2 knots with an endurance of 45 days at sea and cruising at 14.2 knots. The vessel has formerly been known as the Alaska Region Research Vessel (ARRV) but has recently been named the R/V Sikuliaq (pronounced [see-KOO-lee-auk] which is an Inupiaq word meaning “new sea ice that is safe to walk on”). The R/V Sikuliaq will have a beam of 52 feet and a draft of 18.9 feet that will carry 26 scientists and a crew of 20. Berthing accommodations are a combination of single/double rooms. One stateroom and the common areas of the vessel are designed for ADA access and accommodations. The total laboratory space (main, analytical, electronics, wet, upper, and Baltic room will be 2100 square feet. The 3690 square foot working deck that is approximately 70 feet in length will accommodate 2-4 vans. The vessel design strives to have the lowest possible environmental impact, including a low underwater-radiated noise signature. The science systems are prescribed to be state-of-the-art for bottom mapping, over-the-side “hands free” gear handling, broad band communications and scientific walk-in freezer and environmental chamber.

  10. Coal resources of the Alton, Utah, EMRIA site

    USGS Publications Warehouse

    Bowers, William E.; Aigen, A.A.; Landis, Edwin R.

    1976-01-01

    The estimated original identified coal resources of the Alton, Utah, EMRIA (Energy Minerals Rehabilitation Inventory and Analysis) site--an area of about 3.6 square miles (9.3 square kilometres)--total almost 49 million tons (45 megatonnes). A larger area that surrounds and includes the Alton EMRIA site proper contains estimated original identified coal resources of almost 309 million tons (281 megatonnes). Of these estimated resources in the EMRIA site proper, almost 27 million tons (25 megatonnes) are in beds more than 10 feet thick (3 metres); these beds are overlain by less-than 200 feet (60 metres) of overburden. In the larger area around and including the EMRIA site, about 88.5 million tons (81 megatonnes) are in beds more than ten feet (3 metres) thick with less than 200 feet (60 metres) of overburden. All the estimated resources are in the Smirl zone in the upper part of the Dakota Formation of Cretaceous age. The coal has an apparent rank of subbituminous B, an average heating value of about 9,560 Btu, an average sulfur content of about 1.0 percent, and an average ash content of 7.2 percent. When compared with the average abundance of elements in the crust of the Earth as a whole, only selenium and boron were present in the Alton area coal samples in amounts an order of magnitude greater than the average crustal abundance. Beryllium, fluorine, nickel, zinc, and zirconium are all present in the Alton area samples in amounts that are about an order of magnitude less than the average crustal abundance.

  11. Ground-water resources of McKenzie County, North Dakota. Part III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croft, M.G.

    Ground water suitable for domestic and livestock supplies in McKenzie County is available from three aquifer systems in semiconsolidated rocks of Late Cretaceous and Tertiary age. Ground water from aquifers in unconsolidated sand and gravel of Quaternary age is suitable for domestic, livestock, municipal, industrial, and irrigation uses. Rocks older than Late Cretaceous age extend to 15,000 feet (4572 meters) and generally contain brackish water that is unsuitable for most purposes. The Fox Hills and basal Hell Creek aquifer system is used as a source for livestock and domestic supplies. It generally is 1100 to 1800 feet (335 to 549more » meters) in depth, and the transmissivity is 200 to 300 feet squared per day (19 to 28 meters squared per day). The water is lower in dissolved solids than water in overlying aquifers of Tertiary age and has a median dissolved-solids concentration of about 1325 milligrams per liter. Wells may yield 100 gallons per minute (6.3 liters per second). Six aquifers, each consisting of 50 to 176 feet (15 to 54 meters) of unconsolidated sand and gravel of Quaternary age, occur in McKensie County. The sand and gravel could yield 100 to more than 500 gallons per minute (6.3 to 32 liters per second). The water from four of the aquifers generally is a sodium bicarbonate type and has a median dissolved-solids concentration of 1100 to 2330 milligrams per liter. Water from the Charbonneau, Tobacco Garden, and Yellowstone-Missouri aquifers is suitable for irrigation. 26 figs., 9 tabs.« less

  12. Water resources of Spink County, South Dakota

    USGS Publications Warehouse

    Hamilton, L.J.; Howells, L.W.

    1996-01-01

    Spink County, an agricultural area of about 1,505 square miles, is in the flat to gently rolling James River lowland of east-central South Dakota. The water resources are characterized by the highly variable flows of the James River and its tributaries and by aquifers both in glacial deposits of sand and gravel, and in sandstone in the bedrock. Glacial aquifers underlie about half of the county, and bedrock aquifers underlie most of the county. The James River is an intermittent prairie stream that drains nearly 8,900 square miles north of Spink County and has an average annual discharge of about 124 cubic feet per second where it enters the county. The discharge is augmented by the flow of Snake and Turtle Creeks, each of which has an average annual flow of about 25 to 30 cubic feet per second. Streamflow is unreliable as a water supply because precipitation, which averages 18.5 inches annually, is erratic both in volume and in distribution, and because the average annual potential evapotranspiration rate is 43 inches. The flow of tributaries generally ceases by summer, and zero flows are common in the James River in fall and winter. Aquifers in glacial drift deposits store nearly 3.3 million acre-feet of fresh to slightly saline water at depths of from near land surface to more than 500 feet below land surface beneath an area of about 760 square miles. Yields of properly developed wells in the more productive aquifers exceed 1,000 gallons per minute in some areas. Withdrawals from the aquifers, mostly for irrigation, totaled about 15,000 acre-feet of water in 1990. Water levels in observation wells generally have declined less than 15 feet over several decades of increasing pumpage for irrigation, but locally have declined nearly 30 feet. Water levels generally rose during the wet period of 1983-86. In Spink County, bedrock aquifers store more than 40 million acre-feet of slightly to moderately saline water at depths of from 80 to about 1,300 feet below land surface. Yields of properly developed wells range from 2 to 600 gallons per minute. The artesian head of the heavily used Dakota aquifer has declined about 350 feet in the approximately 100 years since the first artesian wells were drilled in the county, but water levels have stabilized locally as a result of decreases in the discharge of water from the wells. Initial flows of from 4 gallons per minute to as much as 30 gallons per minute of very hard water can be obtained in the southwestern part of the county, where drillers report artesian heads of nearly 100 feet above land surface. The quality of water from aquifers in glacial drift varies greatly, even within an aquifer. Concentrations of dissolved solids in samples ranged from 151 to 9,610 milligrams per liter, and hardness ranged from 84 to 3,700 milligrams per liter. Median concentrations of dissolved solids, sulfate, iron, and manganese in some glacial aquifers are near or exceed Secondary Maximum Contaminant Levels (SMCL's) established by the U.S. Environmental Protection Agency (EPA). Some of the water from aquifers in glacial drift is suitable for irrigation use. Water samples from aquifers in the bedrock contained concentrations of dissolved solids that ranged from 1,410 to 2,670 milligrams per liter (sum of constituents) and hardness that ranged from 10 to 1,400 milligrams per liter; these concentrations generally are largest for aquifers below the Dakota aquifer. Median concentrations of dissolved solids, sulfate, iron, and manganese in Dakota wells either are near or exceed EPA SMCL's. Dissolved solids, sodium, and boron concentrations in water from bedrock aquifers commonly are too large for the water to be suitable for irrigation use.

  13. Hydrogeologic evaluation of the Upper Floridan aquifer in the southwestern Albany area, Georgia

    USGS Publications Warehouse

    Warner, Debbie

    1997-01-01

    A cooperative study by the Albany Water, Gas, and Light Commission and the U.S. Geological Survey was conducted to evaluate the hydrogeology of the Upper Floridan aquifer in an area southwest of Albany and west of the Flint River in Dougherty County, Ga. The study area lies in the Dougherty Plain district of the Coastal Plain physiographic province. In this area, the Upper Floridan aquifer is comprised of the upper Eocene Ocala Limestone, confined below by the middle Eocene Lisbon Formation, and semiconfined above by the undifferentiated Quaternary overburden. The overburden ranges in thickness from about 30 to 50 feet and consists of fine to coarse quartz sand, clayey sand, sandy clay, and clay. The Upper Floridan aquifer has been subdivided into an upper water-bearing zone and a lower water-bearing zone based on differences in lithology and yield. In the study area, the upper water-bearing zone generally consists of dense, highly weathered limestone of low permeability and ranges in thickness from 40 to 80 feet. The lower water-bearing zone consists of hard, slightly weathered limestone that exhibits a high degree of secondary permeability that has developed along fractures and joints, and ranges in thickness from about 60 to 80 feet. Borehole geophysical logs and borehole video surveys indicate two areas of high permeability in the lower water-bearing zone-one near the top and one near the base of the zone. A wellfield consisting of one production well and five observation-well clusters (one deep, intermediate, and shallow well in each cluster) was constructed for this study. Spinner flowmeter tests were conducted in the production well between the depths of 110 and 140 feet below land surface to determine the relative percentages of water contributed by selected vertical intervals of the lower water-bearing zone. Pumping rates during these tests were 1,080, 2,200, and 3,400 gallons per minute. The results of these pumping tests show that the interval between 118 and 124 feet below land surface contributes a significant percentage of the total yield to the well. An aquifer test was conducted by pumping the production well at a constant rate of 3,300 gallons per minute for about 49 hours. Time-dependent water-level data were collected throughout the pumping and recovery phases of the test in the pumped well and the observation wells. The maximum measured drawdown in the observation wells was about 2.6 ft. At about 0.5 mile from the pumped well, there was little measurable effect from pumping. Water levels increased during the test in wells located within about 3.75 miles of the Flint River (about 0.5 miles east of the pumping well). This water-level increase correlated with a 3.5-feet increase in the stage of the Flint River. The hydraulic characteristics of the Upper Floridan aquifer were evaluated using the Hantush-Jacob curve-matching and Jacob straight-line methods. Using the Hantush-Jacob method, values for transmissivity ranged from about 120,000 to 506,000 feet squared per day; values for storage coefficient ranged from 1.4 x 10-4 to 6.3 x 10-4; and values for vertical hydraulic conductivity of the overlying sediments ranged from 4.9 to 6.8 feet per day. Geometric averages for these values of transmissivity, storage coefficient, and vertical hydraulic conductivity were calculated to be 248,000 feet squared per day, 2.7 x 10-4, and 5.5 feet per day, respectively. If a dual porosity aquifer model (fracture flow plus matrix flow) is assumed instead of leakage, and the Jacob straight-line method is used with late time-drawdown data, the calculated transmissivity of the fractures ranged from about 233,000 to 466,000 feet squared per day; and storage coefficient of the fractures plus the matrix ranged from 5.1 x 10-4 to 2.9 x 10-2.

  14. School Tucked in an Envelope.

    ERIC Educational Resources Information Center

    AIA Journal, 1981

    1981-01-01

    At the Telluride (Colorado) school, the classroom wing was outfitted with a thick floor slab and a greenhouse space where heat is stored in waterfilled tubes. The gymnasium's southwestern wall was transformed into a Trombe wall by applying 2,000 square feet of glazing. (Author/MLF)

  15. Hydrogeology, water quality, and water-supply potential of the Lower Floridan Aquifer, coastal Georgia, 1999-2002

    USGS Publications Warehouse

    Falls, W. Fred; Harrelson, Larry G.; Conlon, Kevin J.; Petkewich, Matthew D.

    2005-01-01

    The hydrogeology and water quality of the upper permeable and Fernandina permeable zones of the Lower Floridan aquifer were studied at seven sites in the 24-county study area encompassed by the Georgia Coastal Sound Science Initiative. Although substantially less than the Upper Floridan aquifer in coastal Georgia, transmissivities for the Lower Floridan aquifer are in the same range as other water-supply aquifers in Georgia and South Carolina and could meet the needs of public drinking-water supply. Water of the upper permeable zone of the Lower Floridan aquifer exceeds the Federal secondary drinking-water standards for sulfate and total dissolved solids at most coastal Georgia sites and the Federal secondary drinking-water standard for chloride at the Shellman Bluff site. The top of the Lower Floridan aquifer correlates within 50 feet of the previously reported top, except at the St Simons Island site where the top is more than 80 feet higher. Based on the hydrogeologic characteristics, the seven sites are divided into the northern sites at Shellman Bluff, Richmond Hill, Pembroke, and Pineora; and southern sites at St Marys, Brunswick, and St Simons Island. At the northern sites, the Lower Floridan aquifer does not include the Fernandina permeable zone, is thinner than the overlying Upper Floridan aquifer, and consists of only strata of the middle Eocene Avon Park Formation. Transmissivities in the Lower Floridan aquifer are 8,300 feet squared per day at Richmond Hill and 6,000 feet squared per day at Shellman Bluff, generally one tenth the transmissivity of the Upper Floridan aquifer at these sites. At the southern sites, the upper permeable zone of the Lower Floridan aquifer is thicker than the Upper Floridan aquifer and consists of porous limestone and dolomite interbedded with nonporous strata of the middle Eocene Avon Park and early Eocene Oldsmar Formations. Transmissivities for the upper permeable zone of the Lower Floridan aquifer are 500 feet squared per day at the St Simons Island site and 13,000 feet squared per day at the St Marys site. The Lower Floridan aquifer at the Brunswick and St Marys sites includes the Fernandina permeable zone, which consists of saltwater-bearing dolomite. Hydrographs of Coastal Sound Science Initiative wells and other nearby wells open to the Upper Floridan aquifer, and the upper permeable and Fernandina permeable zones of the Lower Floridan aquifer have similar trends. Water levels in wells open to the Upper and Lower Floridan aquifers are below land surface at the northern sites and the St Simons Island site, and above land surface at the Brunswick and St Marys sites, as of January 1, 2004. Freshwater is present in the Lower Floridan aquifer at Pineora, Pembroke, and St Marys, and from 1,259 to 1,648 feet below land surface at Brunswick. Slightly saline water is present in the Lower Floridan aquifer at Richmond Hill, Shellman Bluff, St Simons Island, and from 1,679 to 1,970 feet below land surface in well 34H495 at Brunswick. The upper permeable zone of the Lower Floridan aquifer contains bicarbonate water at the Pembroke site, sulfate-bicarbonate water at the Brunswick site, and sulfate water at the St Simons Island, Shellman Bluff, St Marys, and Richmond Hill sites. The bicarbonate, sulfate-bicarbonate, and sulfate waters are saturated relative to calcite and dolomite, and undersaturated with gypsum and anhydrite. The Fernandina permeable zone in well 34H495 includes moderately saline water, very saline water, and brine. The Fernandina permeable zone of the Lower Floridan aquifer beneath downtown Brunswick contains chloride water that is slightly undersaturated to saturated with gypsum and anhydrite. Concentrations of total dissolved solids, sulfate, and chloride exceeded the Federal secondary drinking-water standards. The chloride-contaminated plumes beneath downtown Brunswick would require at least a 12- to 20-percent contribution of very saline water from the Fernandi

  16. Configuration of freshwater/saline-water interface and geologic controls on distribution of freshwater in a regional aquifer system, central lower peninsula of Michigan

    USGS Publications Warehouse

    Westjohn, David B.; Weaver, T.L.

    1996-01-01

    Electrical-resistivity logs and water-quality data were used to delineate the fresh water/saline-water interface in a 22,000-square-mile area of the central Michigan Basin, where Mississippian and younger geologic units form a regional system of aquifers and confining units.Pleistocene glacial deposits in the central Lower Peninsula of Michigan contain freshwater, except in a 1,600-square-mile area within the Saginaw Lowlands, where these deposits typically contain saline water. Pennsylvanian and Mississippian sandstones are freshwater bearing where they subcrop below permeable Pleistocene glacial deposits. Down regional dip from subcrop areas, salinity of ground water progressively increases in Early Pennsylvanian and Mississippian sandstones, and these units contain brine in the central part of the basin. Freshwater is present in Late Pennsylvanian sandstones in the northern and southern parts of the aquifer system. Typically, saline water is present in Pennsylvanian sandstones in the eastern and western parts of the aquifer system.Relief on the freshwater/saline-water interface is about 500 feet. Altitudes of the interface are low (300 to 400 feet above sea level) along a north-south-trending corridor through the approximate center of the area mapped. In isolated areas in the northern and western parts of the aquifer system, the altitude of the base of freshwater is less than 400 feet, but altitude is typically more than 400 feet. In the southern and northern parts of the aquifer system where Pennsylvanian rocks are thin or absent, altitudes of the base of freshwater range from 700 to 800 feet and from 500 to 700 feet above sea level, respectively.Geologic controls on distribution of freshwater in the regional aquifer system are (1) direct hydraulic connection of sandstone aquifers and freshwater-bearing, permeable glacial deposits, (2) impedance of upward discharge of saline water from sandstones by lodgement tills, (3) impedance of recharge of freshwater to bedrock (or discharge of saline water from bedrock) by Jurassic red beds, and (4) vertical barriers to ground-water flow within and between sandstone units.

  17. Water resources of the Kettle River watershed, east-central Minnesota

    USGS Publications Warehouse

    Helgesen, John O.; Lindholm, G.F.; Broussard, W.L.; Ericson, D.W.

    1973-01-01

    The glacial deposits are generally less than 100 feet thick. Bedrock consists of several types and occasionally crops out at land surface. Topography ranges from gently rolling to steeply undulating. About 1,060 square miles is drained by the Kettle River and its tributaries, and about 510 square miles by smaller streams that are direct tributaries to the St. Croix River. Peat and swamp areas are common, particularly in the eastern part of the area. Most of the watershed is forested, mainly with hardwoods.

  18. Dimension Yields from Yellow-Poplar Lumber.

    DTIC Science & Technology

    1984-06-01

    the poor SP Split (includes end checks longer face and then on the good face. than 4 in.) - - The boards and each of their SW Sapwood + + defects were...Cutting Size Random SA = surface area of cutting width Adjustment Adjusted Y-ekd in square inches Length Width reading reading Using the previous...cutting sizes from 4 4 surface area of a 57- by 4-inch FAS yellow-poplar lumber cutting is 1.583 square feet: 3551.58 = 224 cuttings per 1.000 Cutting

  19. Forced-convection Heat Transfer to Water at High Pressures and Temperatures in the Nonboiling Region

    NASA Technical Reports Server (NTRS)

    Kaufman, S J; Henderson, R W

    1951-01-01

    Forced-convection heat-transfer data have been obtained for water flowing in an electrically heated tube of circular cross section at water pressures of 200 and 2000 pounds per square inch, and temperatures in the nonboiling region, for water velocities ranging between 5 and 25 feet per second. The results indicate that conventional correlations can be used to predict heat-transfer coefficients for water at pressures up to 2000 pounds per square inch and temperatures in the nonboiling region.

  20. Environmental Assessment for Construction at US Central Command Headquarters Complex MacDill AFB, Florida

    DTIC Science & Technology

    2005-12-01

    facility would cover approximately 85,000 square-feet, which would include an approximately 15,000 square-foot auditorium wing . The entire JICCENT...1992. US Air Force, 1986. From the 1940s to Now … A Historical Synopsis of the 56th Tactical Training Wing … and MacDill Air Force Base, Florida...leucocephalus T T Wood stork Mycteria americana E E Brown pelican Pelecanus occidentalis - sse Least tern Sterna antillarum - T Roseate tern Sterna dou!{alii

  1. August median streamflow on ungaged streams in Eastern Coastal Maine

    USGS Publications Warehouse

    Lombard, Pamela J.

    2004-01-01

    Methods for estimating August median streamflow were developed for ungaged, unregulated streams in eastern coastal Maine. The methods apply to streams with drainage areas ranging in size from 0.04 to 73.2 square miles and fraction of basin underlain by a sand and gravel aquifer ranging from 0 to 71 percent. The equations were developed with data from three long-term (greater than or equal to 10 years of record) continuous-record streamflow-gaging stations, 23 partial-record streamflow- gaging stations, and 5 short-term (less than 10 years of record) continuous-record streamflow-gaging stations. A mathematical technique for estimating a standard low-flow statistic, August median streamflow, at partial-record streamflow-gaging stations and short-term continuous-record streamflow-gaging stations was applied by relating base-flow measurements at these stations to concurrent daily streamflows at nearby long-term continuous-record streamflow-gaging stations (index stations). Generalized least-squares regression analysis (GLS) was used to relate estimates of August median streamflow at streamflow-gaging stations to basin characteristics at these same stations to develop equations that can be applied to estimate August median streamflow on ungaged streams. GLS accounts for different periods of record at the gaging stations and the cross correlation of concurrent streamflows among gaging stations. Thirty-one stations were used for the final regression equations. Two basin characteristics?drainage area and fraction of basin underlain by a sand and gravel aquifer?are used in the calculated regression equation to estimate August median streamflow for ungaged streams. The equation has an average standard error of prediction from -27 to 38 percent. A one-variable equation uses only drainage area to estimate August median streamflow when less accuracy is acceptable. This equation has an average standard error of prediction from -30 to 43 percent. Model error is larger than sampling error for both equations, indicating that additional or improved estimates of basin characteristics could be important to improved estimates of low-flow statistics. Weighted estimates of August median streamflow at partial- record or continuous-record gaging stations range from 0.003 to 31.0 cubic feet per second or from 0.1 to 0.6 cubic feet per second per square mile. Estimates of August median streamflow on ungaged streams in eastern coastal Maine, within the range of acceptable explanatory variables, range from 0.003 to 45 cubic feet per second or 0.1 to 0.6 cubic feet per second per square mile. Estimates of August median streamflow per square mile of drainage area generally increase as drainage area and fraction of basin underlain by a sand and gravel aquifer increase.

  2. Short-range inverse-square law experiment in space

    NASA Technical Reports Server (NTRS)

    Paik, H. J.; Moody, M. V.

    2002-01-01

    Newton's inverse-square law is a cornerstone of General Relativity. Its validity has been demonstrated to better than one part in thousand in ranges greater than 1 cm. The range below 1 mm has been left largely unexplored, due to the difficulties associated with designing sensitive short-range experiments. However, the theoretical rationale for testing Newton's law at ranges below 1 mm has become very strong recently.

  3. Parallel block schemes for large scale least squares computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golub, G.H.; Plemmons, R.J.; Sameh, A.

    1986-04-01

    Large scale least squares computations arise in a variety of scientific and engineering problems, including geodetic adjustments and surveys, medical image analysis, molecular structures, partial differential equations and substructuring methods in structural engineering. In each of these problems, matrices often arise which possess a block structure which reflects the local connection nature of the underlying physical problem. For example, such super-large nonlinear least squares computations arise in geodesy. Here the coordinates of positions are calculated by iteratively solving overdetermined systems of nonlinear equations by the Gauss-Newton method. The US National Geodetic Survey will complete this year (1986) the readjustment ofmore » the North American Datum, a problem which involves over 540 thousand unknowns and over 6.5 million observations (equations). The observation matrix for these least squares computations has a block angular form with 161 diagnonal blocks, each containing 3 to 4 thousand unknowns. In this paper parallel schemes are suggested for the orthogonal factorization of matrices in block angular form and for the associated backsubstitution phase of the least squares computations. In addition, a parallel scheme for the calculation of certain elements of the covariance matrix for such problems is described. It is shown that these algorithms are ideally suited for multiprocessors with three levels of parallelism such as the Cedar system at the University of Illinois. 20 refs., 7 figs.« less

  4. Erosional and Depositional Aspects of Hurricane Camille in Virginia, 1969

    USGS Publications Warehouse

    Williams, Garnett P.; Guy, Harold P.

    1973-01-01

    Probably the worst natural disaster in central Virginia's recorded history was the flood resuiting from an 8-hour deluge of about 28 inches (710 mm) of rain on the night of August 19-20, 1969. This study examines some of the intensive sediment erosion and deposition that resulted from the storm and flood. Most of the 150 people whom the flood killed in this mountainous area died from broken bones and other blunt-force injuries, rather than by drowning. The transport of sediment and other debris by the water therefore was very significant in loss of life and in property damage. Erosion resulted mainly from debris avalanches down the mountain-sides and channel scour along streams and head-water tributaries. Total amounts of sediment yield from certain mountainous areas in Nelson County were about 3.2-4.6 million cubic feet per square mile, probably the equivalent of several thousand years of normal denudation. Characteristics of the debris avalanches were that (1) they usually followed pre-existing depressions on hillsides and occurred on slopes greater than 35 percent, (2) the upslope tip of the avalanche scar tended to be located at the steepest part of the hillside, where the convex slope merged with the concave or planar zone immediately below, (3) hillsides facing north, northeast and east were more susceptible to avalanching than slopes facing other directions, and (4) debris-avalanches caused rapid and devastating surges of water and sediment in the mountain-stream channels. Such surges in some instances temporarily blocked the channel flow upstream. Slightly more than half of the total sediment contributed to the stream system was from erosion of stream channels. Channel erosion was very irregularly distributed; some ravines 10-20 feet wide and 5-10 feet deep were scoured in places which formerly had only a very small channel, whereas other channels only a few hundred yards away experienced little or no channel erosion. By the use of figures for the total amount of sediment removed from a drainage basin and the duration of the storm, estimates were made of the storm-average sediment-transport rate at the mouth of various basins. For drainage basins ranging up to about 1.5 square miles, the estimated storm-average sediment-transport rates varied from practically nothing to as much as 172,000 pounds per second (7.4 million tons per day). The types of sediment deposits were (1) debris-avalanche deposits, rather rare, at the base of hillslopes, (2) mountain-stream channel deposits, usually in scattered sediment patches but locally occurring as large wedge-shaped deposits behind debris dams, (3) alluvial fans, (4) delta-like deposits at the junction of a stream and major highway, where water backed up during the flood due to plugging of a culvert, and (5) accretion deposits on flood plains. The highway deltas and some downstream flood-plain sediments consisted mostly of sand-sized grains, but the other types of deposits usually contained particles ranging from silt or clay to boulders 5-10 feet in diameter. Changes in grain size and in volume of deposition with distance downstream were measured, and sedimentary features of the various types of deposits are described.

  5. Ground-water resources in the Hood Basin, Oregon

    USGS Publications Warehouse

    Grady, Stephen J.

    1983-01-01

    The Hood Basin, an area of 1,035 square miles in north-central Oregon, includes the drainage basins of all tributaries of the Columbia River between Eagle Creek and Fifteenmile Creek. The physical characteristics and climate of the basin are diverse. The Wasco subarea, in the eastern half of the basin, has moderate relief, mostly intermittent streams, and semiarid climate. The Hood subarea, in the western half, has rugged topography, numerous perennial streams, and a humid climate.Water-bearing geologic units that underlie the basin include volcanic, volcaniclastic, and sedimentary rocks of Miocene to Holocene age, and unconsolidated surficial deposits of Pleistocene and Holocene age. The most important water-bearing unit, the Columbia River Basalt Group, underlies almost the entire basin. Total thickness probably exceeds 2,000 feet, but by 1980 only the upper 1,000 feet or less had been developed by wells. Wells in this unit generally yield from 15 to 1,000 gallons per minute and a few yield as much as 3,300 gallons per minute.The most productive aquifer in the Columbia River Basalt Group is The Dalles Ground Water Reservoir, a permeable zone of fractured basalt about 25 to 30 square miles in extent that underlies the city of The Dalles. During the late 1950's and mid-1960's, withdrawals of 15,000 acre-feet per year or more caused water levels in the aquifer to decline sharply. Pumpage had diminished to about 5,000 acre-feet per year in 1979 and water levels have stabilized, indicating that ground water recharge and discharge, including the pumping, are in balance.The other principal geologic units in the basin have more limited areal distribution and less saturated thickness than the Columbia River Basalt Group. Generally, these units are capable of yielding from a few to a hundred gallons per minute to wells.Most of the ground water in the basin is chemically suitable for domestic, irrigation, or other uses. Some ground water has objectionable concentrations of iron (0.3 to 6.4 milligrams per liter) and manganese (0.05 to 1.2 milligrams per liter) or is moderately hard to very hard (60 to 260 milligrams per liter as CaCO3).The principal use of ground water in the Hood Basin is for irrigation of crops, with an estimated withdrawal of 7,700 acre-feet in 1979. Additional ground-water withdrawals in 1979 were estimated as: Industrial, 2,600 acre-feet; public supply, 2,100 acre-feet; and domestic and stock supply, 200 acre-feet.

  6. Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, 1901-1994, with projections to 2020

    USGS Publications Warehouse

    Kernodle, J.M.; McAda, D.P.; Thorn, C.R.

    1995-01-01

    This report describes a three-dimensional finite-difference ground-water-flow model of the Santa Fe Group aquifer system in the Albuquerque Basin, which comprises the Santa Fe Group (late Oligocene to middle Pleistocene age) and overlying valley and basin-fill deposits (Pleistocene to Holocene age). The model is designed to be flexible and adaptive to new geologic and hydrologic information as it becomes available by using a geographic information system as a data-base manager to interface with the model. The aquifer system was defined and quantified in the model consistent with the current (July 1994) understanding of the structural and geohydrologic framework of the basin. Rather than putting the model through a rigorous calibration process, dis- crepancies between simulated and measured responses in hydraulic head were taken to indicate that the understanding of a local part of the aquifer system was incomplete or incorrect. The model simulates ground-water flow over an area of about 2,400 square miles to a depth of 1,730 to about 2,020 feet below the water table with 244 rows, 178 columns, and 11 layers. Of the 477,752 cells in the model, 310,376 are active. The top four model layers approximate the 80-foot thickness of alluvium in the incised and refilled valley of the Rio Grande to provide detail of the effect of ground-water withdrawals on the surface- water system. Away from the valley these four layers represent the interval within the Santa Fe Group aquifer system between the com- puted predevelopment water table and a level 80 feet below the grade of the Rio Grande. The simulations include initial condi- tions (steady-state), the 1901-1994 historical period, and four possible ground-water withdrawal scenarios from 1994 to 2020. The model indicates that for the year ending in March 1994, net surface-water loss in the basin resulting from the City of Albuquerque's ground-water withdrawal totaled about 53,000 acre- feet. The balance of the about 123,000 acre-feet of withdrawal came from aquifer storage depletion (about 67,800 acre-feet) and captured or salvaged evapotranspiration (about 2,500 acre-feet). In the four scenarios projected from 1994 to 2020, City of Albuquerque annual withdrawals ranged from about 98,700 to about 177,000 acre-feet by the year 2020. The range of resulting sur- face-water loss was from about 62,000 to about 77,000 acre-feet. The range of aquifer storage depletion was from about 33,400 to about 95,900 acre-feet. Captured evapotranspiration and drain- return flow remained nearly constant for all scenarios. From 1994 to 2020, maximum projected declines in hydraulic head in the pri- mary water-production zone of the aquifer (model layer 9) for the four scenarios ranged from 55 to 164 feet east of the Rio Grande, and from 91 to 258 feet west of the river. Average declines in a 383.7-square-mile area around Albuquerque ranged from 28 to 65 feet in the production zone for the same period.

  7. Facilities Planning Guide for the Community College System.

    ERIC Educational Resources Information Center

    Massachusetts Advisory Council on Education, Boston.

    These guidelines include definitions pertaining to educational criteria and planning criteria, and guidelines regarding--(1) administrative ratios, (2) space allocation in assignable square feet, (3) area conversion factors, (4) gross building area distribution, (5) curriculum balance development, (6) project performance schedule, and (7) project…

  8. 75 FR 18826 - Mr. Howard Rosenfeld; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-13

    ... to; (4) an existing 25-foot-high, 22-foot-square stone-masonry building to house; (5) a new turbine generator unit, with a maximum hydraulic capacity of 5 cubic feet per second (cfs) and total installed...

  9. Property transfer

    NASA Image and Video Library

    2011-08-24

    Stennis Space Center Director Patrick Scheuermann (l) addresses visitors gathered for the official transfer of the former Mississippi Army Ammunition Plant facilities to NASA. The action transferred 1.6 million square feet of facility space, increasing Stennis work facilities by about one-third and setting the stage for years of expansion.

  10. Lindsay Light Radiological Survey 160 N Columbus Drive Lower Level, March 2013

    EPA Pesticide Factsheets

    The background radiation levels in the area were recorded being between 3,000 and 3,500 cpm. Radiation levels at the surface of soil in the approximately 60 square-feet area interest were measured between 3,000 and 4,000 cpm.

  11. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A solar heating on cooling system is described which is designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 solargenics, series 76, flat plate collectors with a total area of 1,596 square feet. The solar loop circulates an ethylene glyco water solution through the collectors into a hot water system exchanger. The water storage subsystem consists of a heat exchanger, two 2,300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water water fixtures. The building cold water system provides make up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described.

  12. Transmissivity and storage coefficient estimates from slug tests, Naval Air Warfare Center, West Trenton, New Jersey

    USGS Publications Warehouse

    Fiore, Alex R.

    2014-01-01

    Slug tests were conducted on 56 observation wells open to bedrock at the former Naval Air Warfare Center (NAWC) in West Trenton, New Jersey. Aquifer transmissivity (T) and storage coefficient (S) values for most wells were estimated from slug-test data using the Cooper-Bredehoeft-Papadopulos method. Test data from three wells exhibited fast, underdamped water-level responses and were analyzed with the Butler high-K method. The range of T at NAWC was approximately 0.07 to 10,000 square feet per day. At 11 wells, water levels did not change measurably after 20 minutes following slug insertion; transmissivity at these 11 wells was estimated to be less than 0.07 square feet per day. The range of S was approximately 10-10 to 0.01, the mode being 10-10. Water-level responses for tests at three wells fit poorly to the type curves of both methods, indicating that these methods were not appropriate for adequately estimating T and S from those data.

  13. Next generation fire suppressants

    NASA Technical Reports Server (NTRS)

    Brown, Jerry A.

    1995-01-01

    Spectrex, Inc., located in Cedar Grove, NJ is a manufacturer of fire detection and suppression equipment. Spectrex is one of the original pioneers in high speed fire detection and suppression systems for combat vehicles. Spectrex has installed fire suppressions systems in thousands of combat vehicles and ships throughout the world. Additionally, they manufacture flame explosion detectors, ship damage control systems, and optical gas and vapor detectors. The culmination of several years of research and development has recently produced an innovative electro-optical continuous monitoring systems called SharpEye 20/20I IR(sup 3) and SAFEYE that provide fast and reliable gas, vapor, aerosol, flame, and explosion detection. SharpEye 20/20I IR(sup 3) is a self-contained triple spectrum flame detector which scans for oscillating IR radiation (1 to 10 Hz) in the spectral bands ranging from 4.0 to 5.0 microns and uses programmed algorithms to check the ratio and correlation of data received by the three sensors to make the system highly immune to false alarms. It is extremely sensitive as it can detect a 1 x 1 square foot gasoline pan fire at 200 feet in less than 3 seconds. The sensitivity is user programmable, offering 4 ranges of detection. SAFEYE is comprised of a selected number of multispectral ban microprocessors controlled detectors which are in communication with one or more radiation sources that is projected along a 600 feet optical path. The signals from the selected narrow bands are processed and analyzed by highly sophisticated algorithms. It is ideal for high risk, remote, large areas such as petroleum and chemical manufacturing sites, waste dumps, aircraft cargo bays, and ship compartments. The SAFEYE will perform direct readings of the presence or rate of rise of concentrations of gases, vapors, or aerosols at the range of parts per million and provide alarms at various set points at different levels of concentrations.

  14. Review of quantitative surveys of the length and stability of MTBE, TBA, and benzene plumes in groundwater at UST sites.

    PubMed

    Connor, John A; Kamath, Roopa; Walker, Kenneth L; McHugh, Thomas E

    2015-01-01

    Quantitative information regarding the length and stability condition of groundwater plumes of benzene, methyl tert-butyl ether (MTBE), and tert-butyl alcohol (TBA) has been compiled from thousands of underground storage tank (UST) sites in the United States where gasoline fuel releases have occurred. This paper presents a review and summary of 13 published scientific surveys, of which 10 address benzene and/or MTBE plumes only, and 3 address benzene, MTBE, and TBA plumes. These data show the observed lengths of benzene and MTBE plumes to be relatively consistent among various regions and hydrogeologic settings, with median lengths at a delineation limit of 10 µg/L falling into relatively narrow ranges from 101 to 185 feet for benzene and 110 to 178 feet for MTBE. The observed statistical distributions of MTBE and benzene plumes show the two plume types to be of comparable lengths, with 90th percentile MTBE plume lengths moderately exceeding benzene plume lengths by 16% at a 10-µg/L delineation limit (400 feet vs. 345 feet) and 25% at a 5-µg/L delineation limit (530 feet vs. 425 feet). Stability analyses for benzene and MTBE plumes found 94 and 93% of these plumes, respectively, to be in a nonexpanding condition, and over 91% of individual monitoring wells to exhibit nonincreasing concentration trends. Three published studies addressing TBA found TBA plumes to be of comparable length to MTBE and benzene plumes, with 86% of wells in one study showing nonincreasing concentration trends. © 2014 GSI Environmental Inc. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  15. Water-level and recoverable water in storage changes, High Plains aquifer, predevelopment to 2015 and 2013–15

    USGS Publications Warehouse

    McGuire, Virginia L.

    2017-06-01

    The High Plains aquifer underlies 111.8 million acres (about 175,000 square miles) in parts of eight States—Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. Water-level declines began in parts of the High Plains aquifer soon after the beginning of substantial irrigation with groundwater in the aquifer area (about 1950). This report presents water-level changes and change in recoverable water in storage in the High Plains aquifer from predevelopment (about 1950) to 2015 and from 2013 to 2015.The methods to calculate area-weighted, average water-level changes; change in recoverable water in storage; and total recoverable water in storage used geospatial data layers organized as rasters with a cell size of 500 meters by 500 meters, which is an area of about 62 acres. Raster datasets of water-level changes are provided for other uses.Water-level changes from predevelopment to 2015, by well, ranged from a rise of 84 feet to a decline of 234 feet. Water-level changes from 2013 to 2015, by well, ranged from a rise of 24 feet to a decline of 33 feet. The area-weighted, average water-level changes in the aquifer were an overall decline of 15.8 feet from predevelopment to 2015 and a decline of 0.6 feet from 2013 to 2015. Total recoverable water in storage in the aquifer in 2015 was about 2.91 billion acre-feet, which was a decline of about 273.2 million acre-feet since predevelopment and a decline of 10.7 million acre-feet from 2013 to 2015.

  16. Thickness of surficial sediment at and near the Idaho National Engineering Laboratory, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, S.R.; Liszewski, M.J.; Ackerman, D.J.

    1996-06-01

    Thickness of surficial sediment was determined from natural-gamma logs in 333 wells at and near the Idaho National Engineering Laboratory in eastern Idaho to provide reconnaissance data for future site-characterization studies. Surficial sediment, which is defined as the unconsolidated clay, silt, sand, and gravel that overlie the uppermost basalt flow at each well, ranges in thickness from 0 feet in seven wells drilled through basalt outcrops east of the Idaho Chemical Processing Plant to 313 feet in well Site 14 southeast of the Big Lost River sinks. Surficial sediment includes alluvial, lacustrine, eolian, and colluvial deposits that generally accumulated duringmore » the past 200 thousand years. Additional thickness data, not included in this report, are available from numerous auger holes and foundation borings at and near most facilities.« less

  17. Coal geology of the Northeast Circle area, McCone and Dawson counties, Montana

    USGS Publications Warehouse

    Wincentsen, Herbert

    1979-01-01

    The Northeast Circle area is in central McCone and northern Dawson Counties, northeastern Montana. The area encompasses about 940 square miles and has a maximum relief of greater than 1,000 feet. The lowest point (altitude of less than 2,200 feet) is in the Redwater River Valley in the northern part of the area. The highest point (altitude of less than 3,200 feet) is on the Yellowstone-Missouri divide, located in parts of Tps. 18 and 19 N., Rso 49, 50, and 51E., and T. 20 N., Rs. 52 and 53 E. Surface exposures in most of the area consist of yellowish or light-colored sandy shales of the Tongue River Member of the Paleocene Fort Union Formation. The coal beds in the Northeast Circle area occur in the lower 500 feet of this member and are persistent in the field. The predominant structural features of the area are the northeast end of the Weldon monocline-fault in Tps. 21 and 22 N., R. 47 E., and a small steep depression near Circle in sec. 10, T. 19 N., R. 48 E. Otherwise, the structure of the area is nearly flat. Coal in the Northeast Circle area is composed of six main beds: the S, L1, R, Q, P, and Pust beds, in ascending stratigraphic order. Of these, the S, Pust, and P beds are the thickest. The S bed is more than 20 feet thick in some places, but usually ranges in thickness from 6 to 10 feet. The Pust bed, which is about 430-490 feet above the S bed, is more than 18 feet thick in the upper bench and as much as 9 feet thick in the lower bench. Coal thickness in the P bed varies from 0 to 10.5 feet. The other coal seams in the area are generally less than 5 feet thick. All coals are lignite in rank.

  18. Distance-constrained orthogonal Latin squares for brain-computer interface.

    PubMed

    Luo, Gang; Min, Wanli

    2012-02-01

    The P300 brain-computer interface (BCI) using electroencephalogram (EEG) signals can allow amyotrophic lateral sclerosis (ALS) patients to instruct computers to perform tasks. To strengthen the P300 response and increase classification accuracy, we proposed an experimental design where characters are intensified according to orthogonal Latin square pairs. These orthogonal Latin square pairs satisfy certain distance constraint so that neighboring characters are not intensified simultaneously. However, it is unknown whether such distance-constrained, orthogonal Latin square pairs actually exist. In this paper, we show that for every matrix size commonly used in P300 BCI, thousands to millions of such distance-constrained, orthogonal Latin square pairs can be systematically and efficiently constructed and are sufficient for the purpose of being used in P300 BCI.

  19. 12 CFR 1815.110 - Categorical exclusion.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 9 2012-01-01 2012-01-01 false Categorical exclusion. 1815.110 Section 1815..., equipment, supplies and services; space acquisition; property management; and security); (b) Actions... of 200,000 square feet or less of existing commercial space when all the following conditions are met...

  20. 12 CFR 1815.110 - Categorical exclusion.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 9 2013-01-01 2013-01-01 false Categorical exclusion. 1815.110 Section 1815..., equipment, supplies and services; space acquisition; property management; and security); (b) Actions... of 200,000 square feet or less of existing commercial space when all the following conditions are met...

  1. 12 CFR 1815.110 - Categorical exclusion.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 10 2014-01-01 2014-01-01 false Categorical exclusion. 1815.110 Section 1815..., equipment, supplies and services; space acquisition; property management; and security); (b) Actions... of 200,000 square feet or less of existing commercial space when all the following conditions are met...

  2. 1961-1968 New Construction Report.

    ERIC Educational Resources Information Center

    National Association of Physical Plant Administrators of Universities and Colleges, Richmond, IN.

    137 NAPPA colleges and universities provided data for this summary. Projects are summarized by thirteen building classifications. Under each classification the following information headings are used--(1) name of institution, (2) project completion date, (3) gross square feet, (4) net assignable area, (5) construction costs, (6) number of stories,…

  3. Flight Tests of a 40-Foot Nominal Diameter Modified Ringsail Parachute Deployed at Mach 1.64 and Dynamic Pressure of 9.1 Pounds Per Square Foot

    NASA Technical Reports Server (NTRS)

    Eckstrom, Clinton V.; Murrow, Harold N.; Preisser, John S.

    1967-01-01

    A ringsail parachute, which had a nominal diameter of 40 feet (12.2 meters) and reference area of 1256 square feet (117 m(exp 2)) and was modified to provide a total geometric porosity of 15 percent of the reference area, was flight tested as part of the rocket launch portion of the NASA Planetary Entry Parachute Program. The payload for the flight test was an instrumented capsule from which the test parachute was ejected by a deployment mortar when the system was at a Mach number of 1.64 and a dynamic pressure of 9.1 pounds per square foot (43.6 newtons per m(exp 2)). The parachute deployed to suspension line stretch in 0.45 second with a resulting snatch force of 1620 pounds (7200 newtons). Canopy inflation began 0.07 second later and the parachute projected area increased slowly to a maximum of 20 percent of that expected for full inflation. During this test, the suspension lines twisted, primarily because the partially inflated canopy could not restrict the twisting to the attachment bridle and risers. This twisting of the suspension lines hampered canopy inflation at a time when velocity and dynamic-pressure conditions were more favorable.

  4. Characterization of fractures and flow zones in a contaminated shale at the Watervliet Arsenal, Albany County, New York

    USGS Publications Warehouse

    Williams, John H.; Paillet, Frederick L.

    2002-01-01

    Flow zones in a fractured shale in and near a plume of volatile organic compounds at the Watervliet Arsenal in Albany County, N. Y. were characterized through the integrated analysis of geophysical logs and single- and cross-hole flow tests. Information on the fracture-flow network at the site was needed to design an effective groundwater monitoring system, estimate offsite contaminant migration, and evaluate potential containment and remedial actions.Four newly drilled coreholes and four older monitoring wells were logged and tested to define the distribution and orientation of fractures that intersected a combined total of 500 feet of open hole. Analysis of borehole-wall image logs obtained with acoustic and optical televiewers indicated 79 subhorizontal to steeply dipping fractures with a wide range of dip directions. Analysis of fluid resistivity, temperature, and heat-pulse and electromagnetic flowmeter logs obtained under ambient and short-term stressed conditions identified 14 flow zones, which consist of one to several fractures and whose estimated transmissivity values range from 0.1 to more than 250 feet squared per day.Cross-hole flow tests, which were used to characterize the hydraulic connection between fracture-flow zones intersected by the boreholes, entailed (1) injection into or extraction from boreholes that penetrated a single fracture-flow zone or whose zones were isolated by an inflatable packer, and (2) measurement of the transient response of water levels and flow in surrounding boreholes. Results indicate a wellconnected fracture network with an estimated transmissivity of 80 to 250 feet squared per day that extends for at least 200 feet across the site. This interconnected fracture-flow network greatly affects the hydrology of the site and has important implications for contaminant monitoring and remedial actions.

  5. Construction Progress and Science Planning for the New Research Vessel R/V Sikuliaq

    NASA Astrophysics Data System (ADS)

    Whitledge, T. E.

    2011-12-01

    The research vessel R/V Sikuliaq (pronounced [see-KOO-lee-auk]) is currently being constructed on behalf of the NSF to support future scientific studies in high latitude waters. The 261 foot global class vessel will be capable of breaking 2.5 foot thick ice at 2 knots with an endurance of 45 days at sea and cruising at 11 knots. The R/V Sikuliaq will have a beam of 52 feet and a draft of 18.9 feet that will carry 26 scientists and a crew of 20. Berthing accommodations are a combination of single/double rooms with one stateroom and the common areas of the vessel are designed for ADA access and accommodations. The total laboratory space (main, analytical, electronics, wet, upper, and Baltic room will be 2100 square feet. The 4360 square foot working deck that is approximately 70 feet in length will accommodate 2-4 vans and multiple science operations. The vessel design strives to have the lowest possible environmental impact, including a low underwater-radiated noise signature. The science systems are prescribed to be state-of-the-art for bottom mapping, over-the-side "hands free" gear handling, broad band communications and scientific walk-in freezer and environmental chamber. More details and photos of the construction progress are available on the website at www.sfos.uaf.edu/arrv. The tentative shipyard schedule has a launch date of June 2012 and delivery to the University of Alaska Fairbanks in June 2013. Scientific operations following trials and testing is planned to start in January 2014. A Sikuliaq science planning workshop has been arranged for 18-19 February 2012 in Salt Lake City, UT just prior to the 2012 Ocean Sciences meeting. Interested participants should contact Terry Whitledge (terry@ims.uaf.edu).

  6. Research Vessel R/V Sikuliaq: Joining the UNOLS Fleet in 2014

    NASA Astrophysics Data System (ADS)

    Whitledge, T. E.

    2013-12-01

    The global class research vessel R/V Sikuliaq is being constructed on behalf of the NSF to support future scientific studies in high latitude waters. The 261 foot vessel will be capable of breaking 2.5 foot thick ice at 2 knots with an endurance of 45 days at sea and cruising at 11 knots. The R/V Sikuliaq has a beam of 52 feet and a draft of 18.9 feet that will carry 26 scientists and a crew of 20. Berthing accommodations are a combination of single/double rooms with one stateroom and the common areas of the vessel are designed for ADA access and accommodations. The total laboratory space (main, analytical, electronics, wet, upper, and Baltic room are 2100 square feet. The 4360 square foot working deck that is approximately 70 feet in length will accommodate 2-4 vans and multiple science operations. The vessel design strives to have the lowest possible environmental impact, including a low underwater-radiated noise signature. The science systems are prescribed to be state-of-the-art for bottom mapping, over-the-side 'hands free' gear handling, broad band communications and scientific walk-in freezer and environmental chamber. More details and photos of the construction progress are available on the website at www.sfos.uaf.edu/arrv. The vessel was launched in October 2012 and delivery to the University of Alaska Fairbanks is scheduled for November 2013. Scientific operations following testing and science sea trials are planned to start in summer of 2014. Questions about the science systems or vessel capabilities should be directed to Terry Whitledge (terry@ims.uaf.edu).

  7. Research Vessel R/V Sikuliaq: A New Asset For The UNOLS Fleet

    NASA Astrophysics Data System (ADS)

    Whitledge, T. E.

    2012-12-01

    The research vessel R/V Sikuliaq is currently being constructed on behalf of the NSF to support future scientific studies in high latitude waters. The 261 foot global class vessel will be capable of breaking 2.5 foot thick ice at 2 knots with an endurance of 45 days at sea and cruising at 11 knots. The R/V Sikuliaq will have a beam of 52 feet and a draft of 18.9 feet that will carry 26 scientists and a crew of 20. Berthing accommodations are a combination of single/double rooms with one stateroom and the common areas of the vessel are designed for ADA access and accommodations. The total laboratory space (main, analytical, electronics, wet, upper, and Baltic room will be 2100 square feet. The 4360 square foot working deck that is approximately 70 feet in length will accommodate 2-4 vans and multiple science operations. The vessel design strives to have the lowest possible environmental impact, including a low underwater-radiated noise signature. The science systems are prescribed to be state-of-the-art for bottom mapping, over-the-side "hands free" gear handling, broad band communications and scientific walk-in freezer and environmental chamber. More details and photos of the construction progress are available on the website at www.sfos.uaf.edu/arrv. The shipyard schedule has a launch date of October 2012 and delivery to the University of Alaska Fairbanks in July 2013. Scientific operations following trials and testing is planned to start in January 2014. Questions about the science systems or vessel capabilities should be directed to Terry Whitledge (terry@ims.uaf.edu).;

  8. Hydrogeology of the Susquehanna River valley-fill aquifer system in the Endicott-Vestal area of southwestern Broome County, New York

    USGS Publications Warehouse

    Randall, Allan D.; Kappel, William M.

    2015-07-29

    Three localities in Endicott were identified where thick ice-contact deposits capable of supporting municipal supply wells are documented by test wells or extrapolated to be present from nearby data and depositional history. Chemical analyses of water samples disclosed no contaminants in these localities when sampled, but the presence of contaminants or natural high iron a few thousand feet away from each locality is documented.

  9. North Fork Snoqualmie River Basin Wildlife Study.

    DTIC Science & Technology

    1981-03-01

    purposes other than travel. In Olympic National Park , marked mountain goats have been ob- served to descend several thousand feet to a valley floor for...Howard Hanson Reservoir near the mouth of the Green River. The reservoir’s pool was full. These gillnets were the "experimental type " and included...river below the proposed damsite. A secondary purpose was to allow comparisons of the amount and type of habitat in different river sections. We used the

  10. Use of Weather Information by General Aviation Pilots. Part 2. Qualitative: Exploring Factors Involved in Weather-Related Decision Making

    DTIC Science & Technology

    2008-03-01

    fic nstances wthn some gven text, speech, or behavor (Mles & Huberman , 1994). Multple nstances of a sngle factor then consttute a “theme...Aerospace Medcne. Mles, M.B., and Huberman , A.M. (1994). Qualitative data analysis. Thousand Oaks, CA: Sage. Mlgram, S. (2004). Obedience to authority...personal minimum for GA VFR visibility ________ statute miles 12. Your normal personal minimum for GA VFR cloud ceiling ________ feet AGL For

  11. Analyses of potential factors affecting survival of juvenile salmonids volitionally passing through turbines at McNary and John Day Dams, Columbia River

    USGS Publications Warehouse

    Beeman, John; Hansel, Hal; Perry, Russell; Hockersmith, Eric; Sandford, Ben

    2011-01-01

    This report describes analyses of data from radio- or acoustic-tagged juvenile salmonids passing through hydro-dam turbines to determine factors affecting fish survival. The data were collected during a series of studies designed to estimate passage and survival probabilities at McNary (2002-09) and John Day (2002-03) Dams on the Columbia River during controlled experiments of structures or operations at spillways. Relatively few tagged fish passed turbines in any single study, but sample sizes generally were adequate for our analyses when data were combined from studies using common methods over a series of years. We used information-theoretic methods to evaluate biological, operational, and group covariates by creating models fitting linear (all covariates) or curvilinear (operational covariates only) functions to the data. Biological covariates included tag burden, weight, and water temperature; operational covariates included spill percentage, total discharge, hydraulic head, and turbine unit discharge; and group covariates included year, treatment, and photoperiod. Several interactions between the variables also were considered. Support of covariates by the data was assessed by comparing the Akaike Information Criterion of competing models. The analyses were conducted because there was a lack of information about factors affecting survival of fish passing turbines volitionally and the data were available from past studies. The depth of acclimation, tag size relative to fish size (tag burden), turbine unit discharge, and area of entry into the turbine intake have been shown to affect turbine passage survival of juvenile salmonids in other studies. This study indicates that turbine passage survival of the study fish was primarily affected by biological covariates rather than operational covariates. A negative effect of tag burden was strongly supported in data from yearling Chinook salmon at John Day and McNary dams, but not for subyearling Chinook salmon or juvenile steelhead. The negative effect of tag burden in data we examined from yearling Chinook salmon supports the recent findings from laboratory studies of barotrauma effects. A curvilinear (quadratic) effect of turbine unit discharge was weakly supported in data from subyearling Chinook salmon at John Day Dam. The maximum survival from those data was estimated to occur at a discharge of 15.9 thousand cubic feet per second, but the estimate was imprecise (95 percent confidence interval of -1.7-33.7 thousand cubic feet per second). This estimate is within the range of 1 percent of peak turbine operating efficiency (12.0-21.6 thousand cubic feet per second), but is lower than the 17.2 thousand cubic feet per second discharge at peak operating efficiency (at a head of 102 feet near the median in the data we examined). Effects of water temperature were supported in four of the five examined data sets and were strongly supported in all but one. Spill percentage, head, and total discharge received weak or moderate support in some cases. The results are consistent with those of several controlled field experiments of turbine discharge. Studies based on the Hi-Z Turb'N tag (balloon tag) often show small, generally statistically insignificant, differences in survival at different turbine discharge levels. Some studies also show that a quadratic equation can be well fit to the relation of survival and turbine unit discharge. The lack of support for the operational covariates in most of the data sets we examined may be due to the small effect turbine discharge has even in controlled studies, the observational nature of the data we used, and the evaluation method. We assessed support of the data for models of linear and quadratic effects, whereas controlled experiments often statistically compare the point estimates of survival from each operational treatment studied. The results of our analyses suggest tag burden should be minimized or controlled for in analyses of future stu

  12. Surface waters of Elk Creek basin in southwestern Oklahoma

    USGS Publications Warehouse

    Westfall, A.O.

    1963-01-01

    The purpose of this study is to (1) determine the average discharge during a period that is representative of average streamflow conditions, (2) determine the range of discharge, and (3) determine the storage required to supplement natural flows during drought periods. Elk Creek drains 587 square miles of the North Fork Red River basin. The climate is subhumid, and precipitation averages about 23 inches per year. The average discharge at the gaging station near Hobart is 50 cfs (cubic feet per second) or 36,200 acre-feet per year during a 19-year base period, water years 1938-56. The yearly average discharge ranged from 4.6 cfs in 1940 to 146 cfs in 1957. Maximum runoff generally occurs during May and June. The maximum monthly runoff was 64,520 acre-feet in May 1957. The maximum yearly runoff was 105,500 acre-feet in 1957. There is no sustained base flow in the basin. Severe droughts occurred in 1938-40 and 1952-56. The most extended drought occurred from June 1951 to March 1957, during which time there was a prolonged period of no flow of 182 days in 1954-55. A usable storage of 28,000 acre-feet would have been required to provide a regulated discharge of 1,500 acre-feet per month throughout these drought periods. (available as photostat copy only)

  13. Hydrology of the Jackson, Tennessee, area and delineation of areas contributing ground water to the Jackson well fields

    USGS Publications Warehouse

    Bailey, Z.C.

    1993-01-01

    A comprehensive hydrologic investigation of the Jackson area in Madison County, Tennessee, was conducted to provide information for the development of a wellhead-protection program for two municipal well fields. The136-square-mile study area is between the Middle Fork Forked Deer and South Fork Forked Deer Rivers and includes the city of Jackson. The formations that underlie and crop out in the study area, in descending order, are the Memphis Sand, Fort Pillow Sand, and Porters Creek Clay. The saturated thickness of the Memphis Sand ranges from 0 to 270 feet; the Fort Pillow Sand, from 0 to 180 feet. The Porters Creek Clay, which ranges from 130 to 320 feet thick, separates a deeper formation, the McNairy Sand, from the shallower units. Estimates by other investigators of hydraulic conductivity for the Memphis Sand range from 80 to 202 feet per day. Estimates of transmissivity of the Memphis Sand range from 2,700 to 33,000 feet squared per day. Estimates of hydraulic conductivity for the Fort Pillow Sand range from 68 to 167 feet per day, and estimates of transmissivity of that unit range from 6,700 to 10,050 feet squared per day. A finite-difference, ground-water flow model was calibrated to steady-state hydrologic conditions of April 1989, and was used to simulate hypothetical pumping plans for the North and South Well Fields. The aquifers were represented as three layers in the model to simulate the ground-water flow system. Layer 1 is the saturated part of the Memphis Sand; layer 2 is the upper half of the Fort Pillow Sand; and layer 3 is the lower half of the Fort Pillow Sand. The steady-state water budget of the simulated system showed that more than half of the inflow to the ground-water system is underflow from the model boundaries. Most of this inflow is discharged as seepage to the rivers and to pumping wells. Slightly less than half of the inflow is from areal recharge and recharge from streams. About 75 percent of the discharge from the system is into the streams, lakes, and out of the model area through a small quantity of ground-water underflow. The remaining 25 percent is discharge to pumping wells. The calibrated model was modified to simulate the effects on the ground-water system of three hypothetical pumping plans that increased pumping from the North Well Field to up to 20 million gallons per day, and from the South Well Field, to up to 15 million gallons per day. Maximum drawdown resulting from the 20 million-gallons-per-day rate of simulated pumping was 44.7 feet in a node containing a pumping well, and maximum drawdown over an extended area was about 38 feet. Up to 34 percent of ground-water seepage to streams in the calibrated model was intercepted by pumping in the simulations. A maximum of 9 percent more water was induced through model boundaries. A particle-tracking program, MODPATH, was used to delineate areas contributing water to the North and South Well Fields for the calibrated model and the three pumping simulations, and to estimate distances for different times-of-travel to the wells. The size of the area contributing water to the North Well Field, defined by the 5-year time-of-travel capture zone, is about 0.8 by 1.8 miles for the calibrated model and pumping plan 1. The size of the area for pumping plan 2 is 1.1 by 2.0 miles and, for pumping plan 3, 1.6 by 2.2 miles. The range of distance for l-year time-of-travel to individual wells is 200 to 800 feet for the calibrated model and plan 1, and 350 to 950 feet for plans 2 and 3. The size of the area contributing water to the South Well Field, defined by the 5-year time-of-travel capture zone, is about 0.8 by 1.4 miles for the calibrated model. The size of the area for pumping plans 1 and 3 is 1.6 by 2.2 miles and, for pumping plan 2, 1.1 by 1.7 miles. The range of distance for l-year time-of-travel to individual wells is 120 to 530 feet for the calibrated model, 670 to 1,300 feet for pumping plans 1 and 3, and 260 to 850 feet

  14. Longleaf pine cone production in relation to site index, stand age, and stand density

    Treesearch

    Thomas Croker

    1973-01-01

    Few cones were produced in stands less than 30 years old. In stands 30 to 70 years in age, production seemed best at timber densities of about 30 square feet of basal area per acre, and tended to increase with increasing site index.

  15. Transportation and Distribution Systems in the Inland Empire: The Impact of the Port Ensenada Proposal : Phase I

    DOT National Transportation Integrated Search

    2009-06-25

    Over the last decades the Inland Empire has emerged as a global distribution center with over 700 million square feet of distribution and warehouses under roof. Along with this phenomenal growth, the transportation infrastructure of the region has be...

  16. Identification of HVAC (Heating, Ventilating, and Air Conditioning) Deficiencies Using Analysis of Job Order Data

    DTIC Science & Technology

    1989-09-01

    Maintenance Evaluation Team ( MEMET ), stated, in his booklet To Aspire For Excellence, the need for emphasis on product- oriented performance (3:17). Existing...JOAGE - Job Order/Facility Age JOSF - Job Order/Facility Square Feet LSD - Least Significant Difference MEMET - Mechanical Equipment Maintenance

  17. Thermal Standard for Small Rural Schools.

    ERIC Educational Resources Information Center

    Strandberg (J.S.) Consulting Engineering, Fairbanks, AK.

    The Standard's purpose is to provide design requirements that will improve energy utilization in new State of Alaska owned rural educational facilities ranging in size from 7,000 to 12,000 square feet. The Standard covers exterior envelopes and selection of heating, ventilating and air conditioning systems, service water systems, energy…

  18. The Task Group on Limited War. Volume 3

    DTIC Science & Technology

    1958-09-01

    modern two-story building with over 350,000 square feet of work space. At present, the Laboratory emplots approximately 1,100 people, of whi&. 400...election, mishandling of various disabled veterans r and survivors r claims by the Ministry of National Defense cost the government votes in several

  19. 7 CFR 3550.117 - WWD grant purposes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (48 square feet) in size. (f) Pay reasonable costs for closing abandoned septic tanks and water wells... for individuals to: (a) Extend service lines from the system to their residence. (b) Connect service lines to residence's plumbing. (c) Pay reasonable charges or fees for connecting to a system. (d) Pay...

  20. 7 CFR 3550.117 - WWD grant purposes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (48 square feet) in size. (f) Pay reasonable costs for closing abandoned septic tanks and water wells... for individuals to: (a) Extend service lines from the system to their residence. (b) Connect service lines to residence's plumbing. (c) Pay reasonable charges or fees for connecting to a system. (d) Pay...

  1. Environmental Impact Assessment. Overall Training Mission, Fort Chaffee, Arkansas,

    DTIC Science & Technology

    1975-04-01

    Dichlorvos strips for flies, Chlordane for termites , Phostoxin for grain insects, Diazinon for roaches, Naled mixed with Ortho emulsifier for mosquitoes...where there are 23 steel igloos with concrete floors, ranging in size from 200 to 800 square feet. All igloos are mounded with an earth blanket and

  2. Biotechnology Process Engineering Center at MIT - Overview

    Science.gov Websites

    laboratories. Biotechnology-related research in the labs of over 15 faculty members in the Biological 60,000 square feet for biotechnology-related engineering research. This centralization and consolidation wider array of equipment and facilities available in other MIT labs and Centers. Some examples include

  3. BAS Brings Continuous Savings to Nebraska School District.

    ERIC Educational Resources Information Center

    Energy Management Technology, 1985

    1985-01-01

    Discusses advantages of a building automation system (BAS) used for monitoring and controlling 16 buildings (1,000,000 square feet). Problems solved and savings occurred with air handlers, indoor pool, minerals in boilers, and service tunnels. The system included numerous advantages for operators and paid for itself in 15 months. (DH)

  4. 46 CFR 190.07-10 - Construction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... use of other suitable material in special cases, having in mind the risk of fire. (b) The boundary... bulkheads and decks separating the accomodations and control stations from hold and machinery spaces... square feet or less from accommodations and control stations shall be of “A-15” Class construction as...

  5. 40 CFR 63.5400 - How do I measure the quantity of leather processed?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... leather processed? 63.5400 Section 63.5400 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... area of each piece of processed or shipped leather with a computer scanning system accurate to 0.1 square feet. The computer scanning system must be initially calibrated for minimum accuracy to the...

  6. 40 CFR 63.5400 - How do I measure the quantity of leather processed?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... leather processed? 63.5400 Section 63.5400 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... area of each piece of processed or shipped leather with a computer scanning system accurate to 0.1 square feet. The computer scanning system must be initially calibrated for minimum accuracy to the...

  7. 40 CFR 63.5400 - How do I measure the quantity of leather processed?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... leather processed? 63.5400 Section 63.5400 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... area of each piece of processed or shipped leather with a computer scanning system accurate to 0.1 square feet. The computer scanning system must be initially calibrated for minimum accuracy to the...

  8. 40 CFR 63.5400 - How do I measure the quantity of leather processed?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... leather processed? 63.5400 Section 63.5400 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... processed or shipped leather with a computer scanning system accurate to 0.1 square feet. The computer scanning system must be initially calibrated for minimum accuracy to the manufacturer's specifications. For...

  9. 40 CFR 63.5400 - How do I measure the quantity of leather processed?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... leather processed? 63.5400 Section 63.5400 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... processed or shipped leather with a computer scanning system accurate to 0.1 square feet. The computer scanning system must be initially calibrated for minimum accuracy to the manufacturer's specifications. For...

  10. Development, testing, and certification of life sciences engineering solar collector

    NASA Technical Reports Server (NTRS)

    Caudle, J. M.

    1978-01-01

    Results are presented for the development of an air flat plate collector for use with solar heating, combined heating and cooling, and hot water systems. The contract was for final development, testing, and certification of the collector, and for delivery of a 320 square feet collector panel.

  11. Application of acoustic velocity meters for gaging discharge of three low-velocity tidal streams in the St. Johns River basin, northeast Florida

    USGS Publications Warehouse

    Sloat, J.V.; Gain, W.S.

    1995-01-01

    Index-velocity data collected with acoustic velocity meters, stage data, and cross-sectional area data were used to calculate discharge at three low-velocity, tidal streamflow stations in north-east Florida. Discharge at three streamflow stations was computed as the product of the channel cross-sectional area and the mean velocity as determined from an index velocity measured in the stream using an acoustic velocity meter. The tidal streamlflow stations used in the study were: Six Mile Creek near Picolata, Fla.; Dunns Creek near Satsuma, Fla.; and the St. Johns River at Buffalo Bluff. Cross-sectional areas at the measurement sections ranged from about 3,000 square feet at Six Mile Creek to about 18,500 square feet at St. Johns River at Buffalo Bluff. Physical characteristics for all three streams were similar except for drainage area. The topography primarily is low-relief, swampy terrain; stream velocities ranged from about -2 to 2 feet per second; and the average change in stage was about 1 foot. Instantaneous discharge was measured using a portable acoustic current meter at each of the three streams to develop a relation between the mean velocity in the stream and the index velocity measured by the acoustic velocity meter. Using least-squares linear regression, a simple linear relation between mean velocity and index velocity was determined. Index velocity was the only significant linear predictor of mean velocity for Six Mile Creek and St. Johns River at Buffalo Bluff. For Dunns Creek, both index velocity and stage were used to develop a multiple-linear predictor of mean velocity. Stage-area curves for each stream were developed from bathymetric data. Instantaneous discharge was computed by multiplying results of relations developed for cross-sectional area and mean velocity. Principal sources of error in the estimated discharge are identified as: (1) instrument errors associated with measurement of stage and index velocity, (2) errors in the representation of mean daily stage and index velocity due to natural variability over time and space, and (3) errors in cross-sectional area and mean-velocity ratings based on stage and index velocity. Standard errors for instantaneous discharge for the median cross-sectional area for Six Mile Creek, Dunns Creek, and St. Johns River at Buffalo Bluff were 94,360, and 1,980 cubic feet per second, respectively. Standard errors for mean daily discharge for the median cross-sectional area for Six Mile Creek, Dunns Creek, and St. Johns River at Buffalo Bluff were 25, 65, and 455 cubic feet per second, respectively. Mean daily discharge at the three sites ranged from about -500 to 1,500 cubic feet per second at Six Mile Creek and Dunns Creek and from about -500 to 15,000 cubic feet per second on the St. Johns River at Buffalo Bluff. For periods of high discharge, the AVM index-velocity method tended to produce estimates accurate with 2 to 6 percent. For periods of moderate discharge, errors in discharge may increase to more than 50 percent. At low flows, errors as a percentage of discharge increase toward infinity.

  12. Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The final results of the design and operation of a computer controlled solar heated and cooled 40,000 square foot manufacturing building, sales office, and computer control center/display room are summarized. The system description, test data, major problems and resolutions, performance, operation and maintenance manual, equipment manufacturers' literature, and as-built drawings are presented. The solar system is composed of 6,000 square feet of flat plate collectors, external above ground storage subsystem, controls, absorption chiller, heat recovery, and a cooling tower.

  13. Geology and energy resources of the Sand Butte Rim NW Quadrangle, Sweetwater County, Wyoming

    USGS Publications Warehouse

    Roehler, Henry W.

    1979-01-01

    The Sand Butte Rim NW 71-minute quadrangle occupies 56 square miles of an arid, windy, sparsely vegetated area of ridges and valleys on the east flank of the Rock Springs uplift in southwest Wyoming. The area is underlain by a succession of sedimentary rocks, about 20,000 feet thick, that includes 28 formations ranging in age from Cambrian to Tertiary. Upper Cretaceous and lower Tertiary formations crop out and dip 3?-6? southeast. They are unfaulted and generally homoclinal, but a minor anticlinal nose is present. Older rocks in the subsurface are faulted and folded. Coal resources are estimated to be nearly I billion short tons of subbituminous coal, in beds more than 2.5 feet thick, under less than 3,000 feet of overburden, in the Fort Union Formation of Paleocene age and the Lance and Almond Formations of Cretaceous age.

  14. Aerogels Insulate Against Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In 1992, NASA started to pursue the development of aerogel for cryogenic insulation. Kennedy Space Center awarded Small Business Innovation Research (SBIR) contracts to Aspen Systems Inc., of Marlborough, Massachusetts, that resulted in a new manufacturing process and a new flexible, durable, easy-to-use form of aerogel. Aspen Systems formed Aspen Aerogels Inc., in Northborough, Massachusetts, to market the product, and by 2009, the company had become the leading provider of aerogel in the United States, producing nearly 20 million square feet per year. With an array of commercial applications, the NASA-derived aerogel has most recently been applied to protect and insulate people s hands and feet.

  15. Design and development of a hard tube flexible radiator system

    NASA Technical Reports Server (NTRS)

    Hixon, C. W.

    1980-01-01

    The construction and operational characteristics of an extended life flexible radiator panel is described. The radiator panel consists of a flexible fin laminate and stainless steel flow tubes designed for a 90 percent probability of surviving 5 years in an Earth orbit micrometeoroid environment. The radiator panel rejects 1.1 kW sub t of heat into an environmental sink temperature of 0 F. Total area is 170 square feet and the panel extends 25 feet in the fully deployed position. When retracted the panel rolls onto a 11.5 inch diameter by 52 inch long storage drum, for a final stored diameter of 22 inches.

  16. Ground water in selected areas in the Klamath Basin, Oregon

    USGS Publications Warehouse

    Leonard, A.R.; Harris, A.B.

    1973-01-01

    GROUNDWATER FEATURES OF SIX LOWLAND AREAS IN THE KLAMATH BASIN OF OREGON--KLAMATH MARSH AREA, AND SPRAGUE RIVER, SWAN LAKE, YONNA, POE, AND LANGELL VALLEYS--ARE DESCRIBED. RUGGED MOUNTAINS AND RIDGES SURROUND AND SEPARATE THESE LOWLANDS WHERE FLOORS RANGE IN ALTITUDE FROM 4,100 FEET IN POE VALLEY TO 4,600 FEET NORTH OF KLAMATH MARSH. THE SIX AREAS EXTEND OVER A NORTH-SOUTH DISTANCE OF 70 MILES, AN EAST-WEST DISTANCE OF 40 MILES, AND INCLUDE AN AREA OF APPROXIMATELY 600 SQUARE MILES. THE AREA IS SEMIARID AND RECEIVED ABOUT 14 TO 18 INCHES OF PRECIPITATION A YEAR. EXTINCT VOLCANOES AND THEIR EXTRUSIONS CHARACTERIZE THE AREA. MOST WELLS TAP PERMEABLE BASALT OR CINDERY RUBBLE BENEATH THE LACUSTRINE BEDS. THE DEPTHS OF WELLS RANGE FROM LESS THAN 50 TO NEARLY 2,000 FEET--MOST ARE BETWEEN 100 AND 1,000 FEET DEEP. FLOWING WELLS OCCUR IN ALL AREAS EXCEPT SWAN LAKE VALLEY. THE MOST EXTENSIVE AREA OF FLOWING WELLS IS IN THE SPRAGUE RIVER VALLEY, WHERE ABOUT 25 WELLS, SOME FLOWING MORE THAN 2,000 GPM, SUPPLY WATER FOR IRRIGATION. WATER LEVELS IN WELLS FLUCTUATE SEASONALLY FROM 1 TO 4 FEET. GROUNDWATER IN THE BASIN IS OF EXCELLENT QUALITY FOR DRINKING, IRRIGATION, AND MOST INDUSTRIAL USES.

  17. Crew Earth Observations (CEO) by Expedition Five Crew

    NASA Image and Video Library

    2002-10-25

    ISS005-E-18511 (25 October 2002) --- Mount Saint Helens, Washington, is featured in this image photographed by an Expedition 5 crewmember on the International Space Station (ISS). On May 18, 1980, Mount Saint Helens volcano erupted. A series of earthquakes preceded the eruption, triggering a collapse of the north side of the mountain into a massive landslide. This avalanche coincided with a huge explosion that destroyed over 270 square miles of forest in a few seconds, and sent a billowing cloud of ash and smoke 80,000 feet into the atmosphere. The crewmembers on the Station captured this detailed image of the volcano’s summit caldera. In the center of the crater sits a lava dome that is 876 feet above the crater floor and is about 3,500 feet in diameter. The upper slopes of the 1980 blast zone begin at the gray colored region that extends north (upper left) from the summit of the volcano. The deeply incised valley to the left (west) is the uppermost reach of the South Fork of the Toutle River. Devastating mudslides buried the original Toutle River Valley to an average depth of 150 feet, but in places up to 600 feet. The dark green area south of the blast zone is the thickly forested region of the Gifford Pinchot National Forest.

  18. A PIECE OF THE SPACE SHUTTLE CHALLENGER WASHED ASHORE AT COCOA BEACH

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A Cocoa Beach front-end loader holds a large piece of debris from the Space Shuttle orbiter Challenger after it washed ashore in Cocoa Beach near the Coconuts on the Beach restaurant and bar. The piece, about 15 feet by 6 feet, is believed to be part of an elevon or rudder. It is one of the biggest pieces to wash ashore to date. A smaller piece was found several blocks south. NASA recovered thousands of pounds of debris from the Atlantic Ocean after the Jan. 28, 1986 accident which destroyed the Shuttle and claimed the lives of the seven crew members; about 50 percent of the orbiter remained in the ocean after search operations were suspended. Those remains are stored at Cape Canaveral Air Station, mostly in two Minutemen silos. The two newly recovered pieces will be brought by flatbed truck to KSC's Security Patrol Headquarters on Contractor Road for examination and temporary storage.

  19. A PIECE OF THE SPACE SHUTTLE CHALLENGER WASHED ASHORE AT COCOA BEACH

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A large piece of debris from the Space Shuttle orbiter Challenger washes up on Cocoa Beach near the Coconuts on the Beach restaurant and bar almost 11 years after Challenger exploded shortly after liftoff from KSC's Launch Pad 39B. The piece, about 15 feet by 6 feet, is believed to be part of an elevon or rudder. It is one of the biggest pieces to wash ashore to date. A smaller piece also was found Tuesday several blocks south. NASA recovered thousands of pounds of debris from the Atlantic Ocean after the Jan. 28, 1986 accident; about 50 percent of the orbiter remained in the ocean after search operations were suspended. The previously retrieved remains are stored at Cape Canaveral Air Station, mostly in two Minutemen silos. The two newly recovered pieces will be brought to KSC's Security Patrol Headquarters on Contractor Road for examination, documentation and temporary storage.

  20. Physical and chemical characteristics of Lake Powell at the forebay and outflows of Glen Canyon Dam, northeastern Arizona, 1990-91

    USGS Publications Warehouse

    Hart, R.J.; Sherman, K.M.

    1996-01-01

    The physical and chemical characteristics of Lake Powell have a direct effect on the quality of water below Glen Canyon Dam. Understanding the physical and chemical characteristics of the lake and outflows from the dam is essential in order to effectively manage the operation of the dam. During August 1990 to September 1991, physical and chemical measurements were made and water samples were collected in the forebay of Lake Powell and at the outflows (draft tubes) of Glen Canyon Dam to document the physical and chemical characteristics of water entering the Colorado River. A persistent chemocline in the forebay of Lake Powell fluctuated seasonally during the study. Thermal stratification began in mid-April and persisted into late October. Spatial variation of specific conductance, pH, water temperature, and dissolved-oxygen concentration in the forebay was negligible. Sodium and sulfate were the dominant ions. Major ions, nutrients, and metals generally increased in concentration with depth in the forebay. Concentrations of dissolved nitrogen (as nitrite plus nitrate) in the forebay ranged from less than 0.02 to 0.58 milligrams per liter. Strontium and lithium were the most abundant metals. Dissolved organic carbon ranged from about 2.6 to 4.9 milligrams per. liter with larger concentrations generally occurring in the epilimnion. No diel variations of chemical constituents were observed. Vertical-attenuation coefficients of light penetration in the forebay ranged from 0.058 to 0.080 microeinsteins per meter squared per second, and the euphotic depth ranged from about 82 to 113 feet. Generally, the physical and chemical characteristics of outflows through the draft tubes of Glen Canyon Dam were similar to the physical and chemical characteristics of the water at penstock depth and deeper depths. Specific conductance ranged from 803 to 1,090 microsiemens per centimeter, and pH values ranged from about 7.2 to 8.0. Water temperatures measured in the outflows ranged from 7.0 to 9.0 degrees Celsius, and dissolved oxygen ranged from about 6.5 to 9.1 milligrams per liter. Concentrations of dissolved nitrogen (as nitrite plus nitrate) ranged from 0.13 to 0.74 milligrams per liter. Dissolved phosphorus (as orthophosphate) and ammonia (NH4) generally were less than the minimum reporting level of 0.01 milligrams per liter. Availability and Quality of Water from Drift Aquifers in Marshall, Pennington, Polk, and Red Lake Counties, Northwestern Minnesota By R.J. Lindgren Abstract Sand and gravel aquifers present within glacial deposits are important sources of water in Marshall, Pennington, Polk, and Red Lake Counties in northwestern Minnesota. Saturated thicknesses of the unconfined aquifers range from 0 to 30 feet. Estimated horizontal hydraulic conductivities range from 2.5 to 600 feet per day. Transmissivity of the unconfined aquifers ranges from 33 to greater than 3,910 feet squared per day. Theoretical maximum well yields for 6 wells with specific-capacity data range from 12 to 123 gallons per minute. Saturated thicknesses of shallow confined aquifers (depth to top of the aquifer less than 100 feet below land surface) range from 0 to 150 feet. Thicknesses of intermediate, deep, and basal confined aquifers (depths to top of the aquifer from 100 to 199 feet, from 200 to 299 feet, and 300 feet or more below land surface, respectively) range from 0 to more than 126 feet. Transmissivity of the confined aquifers ranges from 2 to greater than 210,000 feet squared per day. Theoretical maximum well yields range from 3 to about 2,000 gallons per minute. Recharge to ground water is predominantly from precipitation that percolates downward to the saturated zone. Recharge to unconfined aquifers in the study area ranged from 4.5 to 12.0 inches per year during 1991 and 1992, based on hydrograph analysis. Model simulations done for this study indicate that recharge rates from 8 to 9 inches per year to unconfined aquifers produce the best matches

Top