Sample records for threaded pin tool

  1. Effect of Thread and Rotating Speed on Material Flow Behavior and Mechanical Properties of Friction Stir Lap Welding Joints

    NASA Astrophysics Data System (ADS)

    Ji, Shude; Li, Zhengwei; Zhou, Zhenlu; Wu, Baosheng

    2017-10-01

    This study focused on the effects of thread on hook and cold lap formation, lap shear property and impact toughness of alclad 2024-T4 friction stir lap welding (FSLW) joints. Except the traditional threaded pin tool (TR-tool), three new tools with different thread locations and orientations were designed. Results showed that thread significantly affected hook, cold lap morphologies and lap shear properties. The tool with tip-threaded pin (T-tool) fabricated joint with flat hook and cold lap, which resulted in shear fracture mode. The tools with bottom-threaded pin (B-tool) eliminated the hook. The tool with reverse-threaded pin (R-tool) widened the stir zone width. When using configuration A, the joints fabricated by the three new tools showed higher failure loads than the joint fabricated by the TR-tool. The joint using the T-tool owned the optimum impact toughness. This study demonstrated the significance of thread during FSLW and provided a reference to optimize tool geometry.

  2. Effect of Pin Geometry on the Mechanical Strength of Friction-Stir-Welded Polypropylene Composite Plates

    NASA Astrophysics Data System (ADS)

    Kordestani, F.; Ashenai Ghasemi, F.; Arab, N. B. M.

    2017-09-01

    Friction stir welding (FSW) is a solid-state welding process, which has successfully been applied in aerospace and automotive industries for joining materials. The friction stir tool is the key element in the FSW process. In this study, the effect of four different tool pin geometries on the mechanical properties of two types of polypropylene composite plates, with 30% glass and carbon fiber, respectively, were investigated. For this purpose, four pins of different geometry, namely, a threaded-tapered pin, square pin, four-flute threaded pin, and threaded-tapered pin with a chamfer were made and used to carry out the butt welding of 5-mm-thick plates. The standard tensile and Izod impact tests were performed to evaluate the tensile strength and impact toughness of welded specimens. The results indicated that the threaded-tapered pin with a chamfer produced welds with a better surface appearance and higher tensile and impact strengths. The tests also showed that, with the threaded-tapered pin with a chamfer, the impact strength of the glass- and carbon-fiber composite welds were about 40 and 50%, respectively, of that of the base materials.

  3. Effects of thread interruptions on tool pins in friction stir welding of AA6061

    DOE PAGES

    Reza-E-Rabby, Md.; Tang, Wei; Reynolds, Anthony P.

    2017-06-21

    In this paper, effects of pin thread and thread interruptions (flats) on weld quality and process response parameters during friction stir welding (FSW) of 6061 aluminium alloy were quantified. Otherwise, identical smooth and threaded pins with zero to four flats were adopted for FSW. Weldability and process response variables were examined. Results showed that threads with flats significantly improved weld quality and reduced in-plane forces. A three-flat threaded pin led to production of defect-free welds under all examined welding conditions. Spectral analyses of in-plane forces and weld cross-sectional analysis were performed to establish correlation among pin flats, force dynamics andmore » defect formation. Finally, the lowest in-plane force spectra amplitudes were consistently observed for defect-free welds.« less

  4. Effects of thread interruptions on tool pins in friction stir welding of AA6061

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reza-E-Rabby, Md.; Tang, Wei; Reynolds, Anthony P.

    In this paper, effects of pin thread and thread interruptions (flats) on weld quality and process response parameters during friction stir welding (FSW) of 6061 aluminium alloy were quantified. Otherwise, identical smooth and threaded pins with zero to four flats were adopted for FSW. Weldability and process response variables were examined. Results showed that threads with flats significantly improved weld quality and reduced in-plane forces. A three-flat threaded pin led to production of defect-free welds under all examined welding conditions. Spectral analyses of in-plane forces and weld cross-sectional analysis were performed to establish correlation among pin flats, force dynamics andmore » defect formation. Finally, the lowest in-plane force spectra amplitudes were consistently observed for defect-free welds.« less

  5. Tensile Shear Properties of the Friction Stir Lap Welded Joints and Material Flow Mechanism Under Pulsatile Revolutions

    NASA Astrophysics Data System (ADS)

    Hu, Yanying; Liu, Huijie; Du, Shuaishuai

    2018-06-01

    The aim of the present article is to offer insight into the effects of pin profiles on interface defects, tensile shear properties, microstructures, and the material flow of friction stir lap welded joints. The results indicate that, compared to the lap joints welded by the single threaded plane pin, the three-plane threaded pin, and the triangle threaded pin, the lap joint obtained by the conventional conical threaded pin is characterized by the minimum interface defect. The alternate threads and planes on the pin provide periodical stress, leading to pulsatile material flow patterns. Under the effect of pulsatile revolutions, an asymmetrical flow field is formed around the tool. The threads on the pin force the surrounding material to flow downward. The planes cannot only promote the horizontal flow of the material by scraping, but also provide extra space for the material vertical flow. A heuristic model is established to describe the material flow mechanism during friction stir lap welding under the effect of pulsatile revolutions.

  6. Effect of Pin Tool Shape on Metal Flow During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    McClure, J. C.; Coronado, E.; Aloor, S.; Nowak, B.; Murr, L. M.; Nunes, Arthur C., Jr.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    It has been shown that metal moves behind the rotating Friction Stir Pin Tool in two separate currents or streams. One current, mostly on the advancing side, enters a zone of material that rotates with the pin tool for one or more revolutions and eventually is abandoned behind the pin tool in crescent-shaped pieces. The other current, largely on the retreating side of the pin tool is moved by a wiping process to the back of the pin tool and fills in between the pieces of the rotational zone that have been shed by the rotational zone. This process was studied by using a faying surface copper trace to clarify the metal flow. Welds were made with pin tools having various thread pitches. Decreasing the thread pitch causes the large scale top-to-bottorn flow to break up into multiple vortices along the pin and an unthreaded pin tool provides insufficient vertical motion for there to be a stable rotational zone and flow of material via the rotational zone is not possible leading to porosity on the advancing side of the weld.

  7. Mechanical properties of friction stir welded butt joint of steel/aluminium alloys: effect of tool geometry

    NASA Astrophysics Data System (ADS)

    Syafiq, W. M.; Afendi, M.; Daud, R.; Mazlee, M. N.; Majid, M. S. Abdul; Lee, Y. S.

    2017-10-01

    This paper described the mechanical properties from hardness testing and tensile testing of Friction Stir Welded (FSW) materials. In this project, two materials of aluminium and steel are welded using conventional milling machine and tool designed with different profile and shoulder size. During welding the temperature along the weld line is collected using thermocouples. Threaded pins was found to produce stronger joints than cylindrical pins. 20 mm diameter shoulder tool welded a slightly stronger joint than 18 mm diameter one, as well as softer nugget zone due to higher heat input. Threaded pins also contributed to higher weld temperature than cylindrical pins due to increase in pin contact surface. Generally, higher temperatures were recorded in aluminium side due to pin offset away from steel.

  8. Gimballed Shoulders for Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Carter, Robert; Lawless, Kirby

    2008-01-01

    In a proposed improvement of tooling for friction stir welding, gimballed shoulders would supplant shoulders that, heretofore, have been fixedly aligned with pins. The proposal is especially relevant to self-reacting friction stir welding. Some definitions of terms, recapitulated from related prior NASA Tech Briefs articles, are prerequisite to a meaningful description of the proposed improvement. In friction stir welding, one uses a tool that includes (1) a rotating shoulder on top (or front) of the workpiece and (2) a pin that rotates with the shoulder and protrudes from the shoulder into the depth of the workpiece. In conventional friction stir welding, the main axial force exerted by the tool on the workpiece is reacted through a ridged backing anvil under (behind) the workpiece. When conventional friction stir welding is augmented with an auto-adjustable pin-tool (APT) capability, the depth of penetration of the pin into the workpiece is varied in real time by a position- or forcecontrol system that extends or retracts the pin as needed to obtain the desired effect. In self-reacting (also known as self-reacted) friction stir welding as practiced heretofore, there are two shoulders: one on top (or front) and one on the bottom (or back) of the workpiece. In this case, a threaded shaft protrudes from the tip of the pin to beyond the back surface of the workpiece. The back shoulder is held axially in place against tension by a nut on the threaded shaft. Both shoulders rotate with the pin and remain aligned coaxially with the pin. The main axial force exerted on the workpiece by the tool and front shoulder is reacted through the back shoulder and the threaded shaft into the friction-stir-welding machine head, so that a backing anvil is no longer needed. A key transmits torque between the bottom shoulder and the threaded shaft, so that the bottom shoulder rotates with the shaft. This concludes the prerequisite definitions of terms.

  9. Alignment Pins for Assembling and Disassembling Structures

    NASA Technical Reports Server (NTRS)

    Campbell, Oliver C.

    2008-01-01

    Simple, easy-to-use, highly effective tooling has been devised for maintaining alignment of bolt holes in mating structures during assembly and disassembly of the structures. The tooling was originally used during removal of a body flap from the space shuttle Atlantis, in which misalignments during removal of the last few bolts could cause the bolts to bind in their holes. By suitably modifying the dimensions of the tooling components, the basic design of the tooling can readily be adapted to other structures that must be maintained in alignment. The tooling includes tapered, internally threaded alignment pins designed to fit in the bolt holes in one of the mating structures, plus a draw bolt and a cup that are used to install or remove each alignment pin. In preparation for disassembly of two mating structures, external supports are provided to prevent unintended movement of the structures. During disassembly of the structures, as each bolt that joins the structures is removed, an alignment pin is installed in its place. Once all the bolts have been removed and replaced with pins, the pins maintain alignment as the structures are gently pushed or pulled apart on the supports. In assembling the two structures, one reverses the procedure described above: pins are installed in the bolt holes, the structures are pulled or pushed together on the supports, then the pins are removed and replaced with bolts. The figure depicts the tooling and its use. To install an alignment pin in a bolt hole in a structural panel, the tapered end of the pin is inserted from one side of the panel, the cup is placed over the pin on the opposite side of the panel, the draw bolt is inserted through the cup and threaded into the pin, the draw bolt is tightened to pull the pin until the pin is seated firmly in the hole, then the draw bolt and cup are removed, leaving the pin in place. To remove an alignment pin, the cup is placed over the pin on the first-mentioned side of the panel, the draw bolt is inserted through the cup and threaded into the pin, then the draw bolt is tightened to pull the pin out of the hole.

  10. Tool for Two Types of Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Carter, Robert

    2006-01-01

    A tool that would be useable in both conventional and self-reacting friction stir welding (FSW) has been proposed. The tool would embody both a prior tooling concept for self-reacting FSW and an auto-adjustable pin-tool (APT) capability developed previously as an augmentation for conventional FSW. Some definitions of terms are prerequisite to a meaningful description of the proposed tool. In conventional FSW, depicted in Figure 1, one uses a tool that includes (1) a rotating shoulder on top (or front) of the workpiece and (2) a rotating pin that protrudes from the shoulder into the depth of the workpiece. The main axial force exerted by the tool on the workpiece is reacted through a ridged backing anvil under (behind) the workpiece. When conventional FSW is augmented with an APT capability, the depth of penetration of the pin into the workpiece is varied in real time by a position- or force-control system that extends or retracts the pin as needed to obtain the desired effect. In self-reacting (also known as self-reacted) friction stir welding (SR-FSW), there are two rotating shoulders: one on top (or front) and one on the bottom (or back) of the workpiece. In this case, a threaded shaft protrudes from the tip of the pin to beyond the back surface of the workpiece. The back shoulder is held axially in place against tension by a nut on the threaded shaft. The main axial force exerted on the workpiece by the tool and front shoulder is reacted through the back shoulder and the threaded shaft, back into the FSW machine head, so that a backing anvil is no longer needed. A key transmits torque between the bottom shoulder and the threaded shaft, so that the bottom shoulder rotates with the shaft. A tool for SRFSW embodying this concept was reported in "Mechanism for Self-Reacted Friction Stir Welding" (MFS-31914), NASA Tech Briefs, Vol. 28, No. 10 (October 2004), page 53. In its outward appearance, the proposed tool (see Figure 2) would fit the above description of an SR-FSW tool. In this case, the FSW machine would have an APT capability and the pin would be modified to accept a bottom shoulder. The APT capability could be used to vary the distance between the front and back shoulders in real time to accommodate process and workpiece-thickness variations. The tool could readily be converted to a conventional FSW tool, with or without APT capability, by simply replacing the modified pin with a conventional FSW pin.

  11. Friction Stir Weld Tools

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)

    2007-01-01

    A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.

  12. Friction stir weld tools

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Payton, Lewis N. (Inventor)

    2007-01-01

    A friction stir weld tool sleeve is supported by an underlying support pin. The pin material is preferably selected for toughness and fracture characteristics. The pin sleeve preferably has a geometry which employs the use of an interrupted thread, a plurality of flutes and/or eccentric path to provide greater flow through. Paddles have been found to assist in imparting friction and directing plastic metal during the welding process.

  13. Effect of tool pin features on process response variables during friction stir welding of dissimilar aluminum alloys

    DOE PAGES

    Rabby, Reza; Tang, Wei; Reynolds, A. P.

    2015-05-13

    In this article, the effect of pin features and orientation/placement of the materials on advancing side were investigated for friction stir welding (FSW) of dissimilar aluminum alloys AA2050 and AA6061. Pins for FSW were produced with a 2.12 mm pitch thread having three flats/flutes. Three sets of rotational speed/welding speed were used to perform a series of welds in a butt joint arrangement. The results show that, joint quality, process response variables and welding temperature are highly affected by pin features and material orientation in FSW. Defect free joints with effective material transportation in the weld nugget zone were obtainedmore » when welding was performed with AA2050 on the advancing side. The tool also encounters less in-plane reaction force for welding with 2050 on the advancing side. Pin with thread+3 flats produces quality welds at low rotational and travel speed regardless of the location of alloys on advancing or retreating side.« less

  14. Effect of tool pin features on process response variables during friction stir welding of dissimilar aluminum alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabby, Reza; Tang, Wei; Reynolds, A. P.

    In this article, the effect of pin features and orientation/placement of the materials on advancing side were investigated for friction stir welding (FSW) of dissimilar aluminum alloys AA2050 and AA6061. Pins for FSW were produced with a 2.12 mm pitch thread having three flats/flutes. Three sets of rotational speed/welding speed were used to perform a series of welds in a butt joint arrangement. The results show that, joint quality, process response variables and welding temperature are highly affected by pin features and material orientation in FSW. Defect free joints with effective material transportation in the weld nugget zone were obtainedmore » when welding was performed with AA2050 on the advancing side. The tool also encounters less in-plane reaction force for welding with 2050 on the advancing side. Pin with thread+3 flats produces quality welds at low rotational and travel speed regardless of the location of alloys on advancing or retreating side.« less

  15. Effect of pin tool design on the material flow of dissimilar AA7075-AA6061 friction stir welds

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammed M.; Ishak, M.; Rejab, M. R. M.

    2017-10-01

    Tool design is the most influential aspect in the friction stir welding (FSW) technology. Influence of pin tool geometry on material flow pattern are studied in this work during the FSW of dissimilar AA7075 and AA6061 aluminium alloys. Three truncated pin tool profiles (threaded, threaded with single flat, and unthreaded with single flat) were used to prepare the weldments. The workpieces were joined using a custom-made clamping system under 1100 rpm of spindle speed, 300 mm/min of traverse rate and 3° of tilt angle. The metallographic analysis showed that defect-free welds can be produced using the three pin tools with significant changes in the mixing stir zone structure. The results declared that the introducing of the flat on the cone of the probe deviates the pattern of the onion rings without changing the chemical composition of the created layers. This in turn improves the hardness distribution and tensile strength of the welded joint. It was also noted that both heat affected zone (HAZ) and thermal-mechanical affected zone (TMAZ) are similar in composition to their corresponding base materials (BM).

  16. Downhole tool

    DOEpatents

    Hall, David R.; Muradov, Andrei; Pixton, David S.; Dahlgren, Scott Steven; Briscoe, Michael A.

    2007-03-20

    A double shouldered downhole tool connection comprises box and pin connections having mating threads intermediate mating primary and secondary shoulders. The connection further comprises a secondary shoulder component retained in the box connection intermediate a floating component and the primary shoulders. The secondary shoulder component and the pin connection cooperate to transfer a portion of makeup load to the box connection. The downhole tool may be selected from the group consisting of drill pipe, drill collars, production pipe, and reamers. The floating component may be selected from the group consisting of electronics modules, generators, gyroscopes, power sources, and stators. The secondary shoulder component may comprises an interface to the box connection selected from the group consisting of radial grooves, axial grooves, tapered grooves, radial protrusions, axial protrusions, tapered protrusions, shoulders, and threads.

  17. Characterization of the Micro Textures in a Friction Stir Weld

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Nunes, Arthur C.

    2004-01-01

    In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. The Dynamically-Recrystallized-Zone (DXZ) of a polished and etched FSW cross-section exhibits contrasting bands (the "onion-ring" structure), the origins of which are unclear. An orientation image mapping (OIM) study suggests that the corresponding bands may correspond respectively to a "straight-through" current of metal bypassing the pin tool in a single rotation or less and a "maelstrom" current rotating a number of times around the pin tool.

  18. Repeatable reference for positioning sensors and transducers in drill pipe

    DOEpatents

    Hall, David R.; Fox, Joe; Pixton, David S.; Hall, Jr., H. Tracy

    2005-05-03

    A drill pipe having a box end having a tapered thread, and an internal shoulder and an external face for engagement with a drill pipe pin end having a tapered mating thread, and an external shoulder and an external face adapted for data acquisition or transmission. The relative dimensions of the box and pin ends are precisely controlled so that when the tool joint is made up, a repeatable reference plane is established for transmitting power and tuning downhole sensors, transducers, and means for sending and receiving data along the drill string. When the power or data acquisition and transmission means are located in the tool joint, the dimensions of the tool joint are further proportioned to compensate for the loss of cross-sectional area in order maintain the joints ability to sustain nominal makeup torque.

  19. Effects of various tool pin profiles on mechanical and metallurgical properties of friction stir welded joints of cryorolled AA2219 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Kamal Babu, Karupannan; Panneerselvam, Kavan; Sathiya, Paulraj; Noorul Haq, Abdul Haq; Sundarrajan, Srinivasan; Mastanaiah, Potta; Srinivasa Murthy, Chunduri Venkata

    2018-02-01

    Friction stir welding (FSW) process was conducted on cryorolled (CR) AA2219 plate using different tool pin profiles such as cylindrical pin, threaded cylindrical pin, square pin and hexagonal pin profiles. The FSW was carried out with pairs of 6 mm thick CR aluminium plates with different tool pin profiles. The different tool pin profile weld portions' behaviors like mechanical (tensile strength, impact and hardness) and metallurgical characteristics were analyzed. The results of the mechanical analysis revealed that the joint made by the hexagonal pin tool had good strength compared to other pin profiles. This was due to the pulsating action and material flow of the tool resulting in dynamic recrystallization in the weld zone. This was confirmed by the ultra fine grain structure formation in Weld Nugget (WN) of hexagonal pin tool joint with a higher percentage of precipitate dissolution. The fractograph of the hexagonal tool pin weld portion confirmed the finer dimple structure morphology without having any interior defect compared to other tool pin profiles. The lowest weld joint strength was obtained from cylindrical pin profile weld joint due to insufficient material flow during welding. The Transmission Electron Microscope and EDX analysis showed the dissolution of the metastable θ″, θ' (Al2Cu) partial precipitates in the WN and proved the influence of metastable precipitates on enhancement of mechanical behavior of weld. The XRD results also confirmed the Al2Cu precipitation dissolution in the weld zone.

  20. End-threaded intramedullary positive profile screw ended self-tapping pin (Admit pin) - A cost-effective novel implant for fixing canine long bone fractures.

    PubMed

    Chanana, Mitin; Kumar, Adarsh; Tyagi, Som Prakash; Singla, Amit Kumar; Sharma, Arvind; Farooq, Uiase Bin

    2018-02-01

    The current study was undertaken to evaluate the clinical efficacy of end-threaded intramedullary pinning for management of various long bone fractures in canines. This study was conducted in two phases, managing 25 client-owned dogs presented with different fractures. The technique of application of end-threaded intramedullary pinning in long bone fractures was initially standardized in 6 clinical patients presented with long bone fractures. In this phase, end-threaded pins of different profiles, i.e., positive and negative, were used as the internal fixation technique. On the basis of results obtained from standardization phase, 19 client-owned dogs clinically presented with different fractures were implanted with end-threaded intramedullary positive profile screw ended self-tapping pin in the clinical application phase. The patients, allocated randomly in two groups, when evaluated postoperatively revealed slight pin migration in Group-I (negative profile), which resulted in disruption of callus site causing delayed union in one case and large callus formation in other two cases whereas no pin migration was observed in Group-II (positive profile). Other observations in Group-I was reduced muscle girth and delayed healing time as compared to Group-II. In clinical application, phase 21 st and 42 nd day post-operative radiographic follow-up revealed no pin migration in any of the cases, and there was no bone shortening or fragment collapse in end-threaded intramedullary positive profile screw ended self-tapping pin. The end-threaded intramedullary positive profile screw ended self-tapping pin used for fixation of long bone fractures in canines can resist pin migration, pin breakage, and all loads acting on the bone, i.e., compression, tension, bending, rotation, and shearing to an extent with no post-operative complications.

  1. Influence of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite

    NASA Astrophysics Data System (ADS)

    DijuSamuel, G.; Raja Dhas, J. Edwin

    2017-10-01

    This paper focus on impact of tool pin in friction stir welding on activated carbon reinforced aluminium metal matrix composite. For fabrication of metal matrix composite AA6061 is used as matrix and activated carbon is used as reinforcement and it is casted using modified stir casting technique. After casting metal matrix composite has undergone various microstructure tests like SEM,EDAX and XRD. FSW is carried out in this metal matrix composite by choosing various tool pin profile like square,round,Threaded round, hexagon and taper. The quality of welded plates is measured in terms of ultimate tensile strength and hardness.

  2. Improved Screw-Thread Lock

    NASA Technical Reports Server (NTRS)

    Macmartin, Malcolm

    1995-01-01

    Improved screw-thread lock engaged after screw tightened in nut or other mating threaded part. Device does not release contaminating material during tightening of screw. Includes pellet of soft material encased in screw and retained by pin. Hammer blow on pin extrudes pellet into slot, engaging threads in threaded hole or in nut.

  3. Downhole Data Transmission System

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Fox, Joe

    2004-04-06

    A system for transmitting data through a string of down-hole components. In accordance with one aspect, the system includes a plurality of downhole components, such as sections of pipe in a drill string. Each downhole component includes a pin end and a box end, with the pin end of one downhole component being adapted to be connected to the box end of another. Each pin end includes external threads and an internal pin face distal to the external threads. Each box end includes an internal shoulder face with internal threads distal to the internal shoulder face. The internal pin face and the internal shoulder face are aligned with and proximate each other when the pin end of the one component is threaded into a box end of the other component.

  4. Control of Structure in Conventional Friction Stir Welds through a Kinematic Theory of Metal Flow

    NASA Technical Reports Server (NTRS)

    Rubisoff, H.A.; Schneider, J.A.; Nunes, A.C.

    2009-01-01

    In friction stir welding (FSW), a rotating pin is translated along a weld seam so as to stir the sides of the seam together. Metal is prevented from flowing up the pin, which would result in plowing/cutting instead of welding, by a shoulder on the pin. In conventional FSW, the weld metal rests on an "anvil", which supports the heavy "plunge" load on the tool. In this study, both embedded tungsten wires along and copper plating on the faying surfaces were used to trace the flow of AA2219 weld metal around the C-FSW tool. The effect of tool rotational speed, travel speed, plunge load, and pin thread pitch on the resulting weld metal flow was evaluated. Plan, longitudinal, and transverse section x-ray radiographs were examined to trace the metal flow paths. The results are interpreted in terms of a kinematic theory of metal flow in FSW.

  5. Pressure Roller For Tape-Lift Tests

    NASA Technical Reports Server (NTRS)

    Abrams, Eve

    1991-01-01

    Rolling device applies nearly constant, uniform pressure to surface. Simple tool exerts nearly constant pressure via compression of sheath by fixed amount. Pins hold wheels on cylinder and cylinder on tangs of handle. Cylinder and handle made of metal or plastic. Sheath press-fit or glued to cylinder. End pins attached to cylinder by adhesive or screw threads. Device intended for use in taking tape-lift samples of particulate contamination on surface.

  6. An automated tool-joint inspection device for the drillstring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, M.C.; Dale, B.A.; Kusenberger, F.N.

    1984-06-01

    This paper discusses the development of an automated tool joint inspection device-i.e., the fatigue crack detector (FCD), which can detect defects in the threaded region of drillpipe and drill collars. Inspection tests conducted at a research test facility and at drilling rig sites indicate that this device can detect both simulated defects (saw slots and drilled holes) and service-induced defects, such as fatigue cracks, pin stretch (plastic deformation), mashed threads, and corrosion pitting. The system operates on an electromagnetic-flux leakage principle and has several advantages over the conventional method of magnetic particle inspection.

  7. An automated tool joint inspection device for the drill string

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, M.C.; Dale, B.A.; Kusenberger, F.N.

    1983-02-01

    This paper discusses the development of an automated tool joint inspection device (i.e., the Fatigue Crack Detector), which is capable of detecting defects in the threaded region of drill pipe and drill collars. On the basis of inspection tests conducted at a research test facility and at drilling rig sites, this device is capable of detecting both simulated defects (saw slots and drilled holes) and service-induced defects, such as fatigue cracks, pin stretch (plastic deformation), mashed threads, and corrosion pitting. The system employs an electromagnetic flux-leakage principle and has several advantages over the conventional method of magnetic particle inspection.

  8. Corrosion Properties of Cryorolled AA2219 Friction Stir Welded Joints Using Different Tool Pin Profiles

    NASA Astrophysics Data System (ADS)

    Kamal Babu, K.; Panneerselvam, K.; Sathiya, P.; Noorul Haq, A.; Sundarrajan, S.; Mastanaiah, P.; Srinivasa Murthy, C. V.

    The purpose of this paper is to present the corrosion behavior of the Cryorolled (CR) material and its Friction Stir Welded joints. Due to the thermal cycles of Friction Stir Welding (FSW) process, the corrosion behavior of the material gets affected. Here, the cryorolling process was carried out on AA2219 alloy and CR material was joined by FSW process using four different pin tool profiles such as cylindrical, threaded cylindrical, square and hexagonal pin. The FSW joints were analyzed by corrosion resistance with the help of potentiodynamic polarization test with 3.5% NaCl solution. From the analysis, it is found that CR AA2219 material exhibits good corrosion resistance compared to the base AA2219 material, and also a hexagonal pin profile FSW joint exhibits high corrosion resistance. Among the weld joints created by four different tools, the lowest corrosion resistance was found in the cylindrical pin tool FSW welds. Further, the corroded samples were investigated through metallurgical investigations like OM, Transmission Electron Microscopy (TEM), Energy-Dispersive X-ray Spectroscopy (EDX) and X-Ray Diffraction (XRD). It was found that the amount of dissolution of Al2Cu precipitate was present in the weld nugget. The amount of dissolution of Al2Cu precipitate is higher in the weld nugget produced by hexagonal pin tool. This is due to the enhancement of the corrosion resistance.

  9. Modeling of AA5083 Material-Microstructure Evolution During Butt Friction-Stir Welding

    DTIC Science & Technology

    2010-07-01

    a rigid material. Its density and thermal properties are set to that of AISI- H13 , the hot-worked tool steel which is often used as a FSW- tool ...joining process (Ref 1-3). Within FSW, a (typically) cylindrical tool - pin (threaded at the bottom and terminated with a circular-plate shape shoulder...applied to the shoulder and owing to frictional sliding and plastic deforma- tion, substantial amount of heat is generated at the tool /work- piece

  10. Adjustable-Torque Truss-Joint Mechanism

    NASA Technical Reports Server (NTRS)

    Bush, Harold G.; Wallsom, Richard E.

    1993-01-01

    Threaded pin tightened or loosened; tedious trial-and-error procedure shortened. Mechanism joining strut and node in truss structure preloaded to desired stress to ensure tight, compressive fit preventing motion of strut during loading or vibration. Preload stress on stack of Belleville spring washers adjusted by tightening or loosening threaded Belleville-washer-alignment pin. Pin turned, by use of allen wrench, to adjust compression preload on Belleville washers and adjusts joint-operating torque.

  11. Pausing and activating thread state upon pin assertion by external logic monitoring polling loop exit time condition

    DOEpatents

    Chen, Dong; Giampapa, Mark; Heidelberger, Philip; Ohmacht, Martin; Satterfield, David L; Steinmacher-Burow, Burkhard; Sugavanam, Krishnan

    2013-05-21

    A system and method for enhancing performance of a computer which includes a computer system including a data storage device. The computer system includes a program stored in the data storage device and steps of the program are executed by a processer. The processor processes instructions from the program. A wait state in the processor waits for receiving specified data. A thread in the processor has a pause state wherein the processor waits for specified data. A pin in the processor initiates a return to an active state from the pause state for the thread. A logic circuit is external to the processor, and the logic circuit is configured to detect a specified condition. The pin initiates a return to the active state of the thread when the specified condition is detected using the logic circuit.

  12. Mechanism for Self-Reacted Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Venable, Richard; Bucher, Joseph

    2004-01-01

    A mechanism has been designed to apply the loads (the stirring and the resection forces and torques) in self-reacted friction stir welding. This mechanism differs somewhat from mechanisms used in conventional friction stir welding, as described below. The tooling needed to apply the large reaction loads in conventional friction stir welding can be complex. Self-reacted friction stir welding has become popular in the solid-state welding community as a means of reducing the complexity of tooling and to reduce costs. The main problems inherent in self-reacted friction stir welding originate in the high stresses encountered by the pin-and-shoulder assembly that produces the weld. The design of the present mechanism solves the problems. The mechanism includes a redesigned pin-and-shoulder assembly. The welding torque is transmitted into the welding pin by a square pin that fits into a square bushing with set-screws. The opposite or back shoulder is held in place by a Woodruff key and high-strength nut on a threaded shaft. The Woodruff key reacts the torque, while the nut reacts the tensile load on the shaft.

  13. Evaluation of Friction Stir Processing of HY-80 Steel Under Wet and Dry Conditions

    DTIC Science & Technology

    2012-03-01

    MS80. The tool design included a convex scroll shoulder with a step-spiral protruding pin (CS4). Figure 4. PCBN FSW/P threaded tool. 12 For...and cooling water was pumped through during the FSW/P process, Figure 7. Sea salt was added to distilled water to create a 3.5% salt content. 14... Vacuum hot extraction was used to determine the hydrogen concentration as specified by ASTM E 146–83. In addition, combustion infrared detection

  14. Remote vacuum or pressure sealing device and method for critical isolated systems

    DOEpatents

    Brock, James David [Newport News, VA; Keith, Christopher D [Newport News, VA

    2012-07-10

    A remote vacuum or pressure sealing apparatus and method for making a radiation tolerant, remotely prepared seal that maintains a vacuum or pressure tight seal throughout a wide temperature range. The remote sealing apparatus includes a fixed threaded sealing surface on an isolated system, a gasket, and an insert consisting of a plug with a protruding sample holder. An insert coupling device, provided for inserting samples within the isolated system, includes a threaded fastener for cooperating with the fixed threaded sealing surface on the isolated system. The insert coupling device includes a locating pin for azimuthal orientation, coupling pins, a tooted coaxial socket wrench, and an insert coupling actuator for actuating the coupling pins. The remote aspect of the sealing apparatus maintains the isolation of the system from the user's environment, safely preserving the user and the system from detrimental effect from each respectively.

  15. [The VB system: a new modular osteosynthesis material involving both screws and wires].

    PubMed

    Dubert, T; Valenti, P; Dinh, A; Osman, N

    2002-01-01

    VB is an osteosynthesis system for the stabilisation of small fragments, which combines the benefits of both wires and screws. It is a modular system comprising a threaded pin and a ring. The threaded pin is first positioned. Then a ring is grasped and opened by the progressive angulation of a screwdriver. Still anchored on the screwdriver, the ring slides easily on the pin. It is clamped on the pin by simply removing the screwdriver and the pin is then cut. This modular system includes 1.8 and 1.1 mm pins and different types of rings (threaded or non threaded, with or without collars). The system is easy to handle and can be introduced using an open or percutaneous technique, allowing compression or distraction. Our preliminary series, performed in accordance with National clinical trial protocol (Huriet) consisted of 50 cases in 24 patients (five women and 19 men) with an average age of 48 years, and a follow-up of more than six months. Fourteen cases of fractures (28 implants) were treated as emergencies (two radial heads, one capitellum, one trochlea of the humerus, seven distal radius fractures, one trapezium, two metacarpals) and 12 cases (22 implants) were elective cases: arthrodesis (one trapezo-metacarpal, one intermetacarpal, two interphalangeal, two carpal), non-union (six scaphoids, one phalangeal) and one phalangeal malunion. Hardware removal was performed in 16 cases. No implant failure has been detected. One case, a DIP arthrodesis, had a suspicion of sepsis which led to the removal of the implants at six weeks. The results of this study have convinced us of the merits of the system, which combines the advantages of both wires and screws. The system allows the user to perform either distraction or compression, and to adjust the force by hand. Compared to the fixed amount of compression produced by lag screws, this feature seems to be a real step forward.

  16. Unraveling the Processing Parameters in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Nunes, Arthur C., Jr.

    2005-01-01

    In friction stir welding (FSW), a rotating threaded pin tool is translated along a weld seam, literally stirring the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path or paths is required. In this study, various markers are used to trace the flow paths of the metal. X-ray radiographs record the segmentation and position of the wire. Several variations in the trajectories can be differentiated within the weld zone.

  17. Nuclear reactor fuel assembly duct-tube-to-handling-socket attachment system

    DOEpatents

    Christiansen, David W.; Smith, Bob G.

    1982-01-01

    A reusable system for removably attaching the upper end 10of a nuclear reactor duct tube to the lower end 30 of a nuclear reactor fuel assembly handling socket. A transition ring 20, fixed to the duct tube's upper end 10, has an interior-threaded section 22 with a first locking hole segment 24. An adaptor ring 40, fixed to the handling socket's lower end 30 has an outside-threaded section 42 with a second locking hole segment 44. The inside 22 and outside 42 threaded sections match and can be joined so that the first 24 and second 44 locking hole segments can be aligned to form a locking hole. A locking ring 50, with a locking pin 52, slides over the adaptor ring 40 so that the locking pin 52 fits in the locking hole. A swage lock 60 or a cantilever finger lock 70 is formed from the locking cup collar 26 to fit in a matching groove 54 or 56 in the locking ring 50 to prevent the locking ring's locking pin 52 from backing out of the locking hole.

  18. Computed Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.

    2005-01-01

    In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and is carried with the macro-flow of the weld metal. By using CT images, a 3-dimensional (3D) image of the lead flow pattern can be reconstructed. CT imaging was found to be a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.

  19. Computer Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.

    2004-01-01

    In friction stir welding, a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. This solid-state technique has been successfully used in the joining of materials that are difficult to fusion weld such as aluminum alloys. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and thus tracks the aluminum deformation flow paths in a unique 3-dimensional manner. CT scanning is a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.

  20. Low backlash direct drive actuator

    DOEpatents

    Kuklo, Thomas C.

    1994-01-01

    A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw.

  1. Influence of tool geometry and processing parameters on welding defects and mechanical properties for friction stir welding of 6061 Aluminium alloy

    NASA Astrophysics Data System (ADS)

    Daneji, A.; Ali, M.; Pervaiz, S.

    2018-04-01

    Friction stir welding (FSW) is a form of solid state welding process for joining metals, alloys, and selective composites. Over the years, FSW development has provided an improved way of producing welding joints, and consequently got accepted in numerous industries such as aerospace, automotive, rail and marine etc. In FSW, the base metal properties control the material’s plastic flow under the influence of a rotating tool whereas, the process and tool parameters play a vital role in the quality of weld. In the current investigation, an array of square butt joints of 6061 Aluminum alloy was to be welded under varying FSW process and tool geometry related parameters, after which the resulting weld was evaluated for the corresponding mechanical properties and welding defects. The study incorporates FSW process and tool parameters such as welding speed, pin height and pin thread pitch as input parameters. However, the weld quality related defects and mechanical properties were treated as output parameters. The experimentation paves way to investigate the correlation between the inputs and the outputs. The correlation between inputs and outputs were used as tool to predict the optimized FSW process and tool parameters for a desired weld output of the base metals under investigation. The study also provides reflection on the effect of said parameters on a welding defect such as wormhole.

  2. Self-locking double retention redundant pull pin release

    NASA Technical Reports Server (NTRS)

    Killgrove, Thomas O. (Inventor)

    1987-01-01

    A double-retention redundant pull pin release system is disclosed. The system responds to a single pull during an intentional release operation. A spiral-threaded main pin is seated in a mating bore in a housing, which main pin has a flange fastened thereon at the part of the main pin which is exterior to the housing. Accidental release tends to rotate the main pin. A secondary pin passes through a slightly oversized opening in the flange and is seated in a second bore in the housing. The pins counteract against one another to prevent accidental release. A frictional lock is shared between the main and secondary pins to enhance further locking of the system. The secondary pin, in response to a first pull, is fully retracted from its bore and flange hole. Thereafter the pull causes the main pin to rotate free of the housing to release, for example, a parachute mechanism.

  3. Counterrotating-Shoulder Mechanism for Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2007-01-01

    A counterrotating-shoulder mechanism has been proposed as an alternative to the mechanism and fixtures used in conventional friction stir welding. The mechanism would internally react most or all of the forces and torques exerted on the workpiece, making it unnecessary to react the forces and torques through massive external fixtures. In conventional friction stir welding, a rotating pin tool is inserted into, and moved along, a weld seam. As the pin tool moves, it stirs together material from the opposite sides of the seam to form the weld. A large axial plunge force must be exerted upon the workpiece through and by the pin tool and a shoulder attached above the pin tool in order to maintain the pressure necessary for the process. The workpiece is secured on top of an anvil, which supports the workpiece against the axial plunge force and against the torque exerted by the pin tool and shoulder. The anvil and associated fixtures must be made heavy (and, therefore, are expensive) to keep the workpiece stationary. In addition, workpiece geometries must be limited to those that can be accommodated by the fixtures. The predecessor of the proposed counterrotating-shoulder mechanism is a second-generation, self-reacting tool, resembling a bobbin, that makes it possible to dispense with the heavy anvil. This tool consists essentially of a rotating pin tool with opposing shoulders. Although the opposing shoulders maintain the necessary pressure without need to externally apply or react a large plunge force, the torque exerted on the workpiece remains unreacted in the absence of a substantial external fixture. Depending on the RPM and the thickness of the workpiece, the torque can be large. The proposed mechanism (see figure) would include a spindle attached to a pin tool with a lower shoulder. The spindle would be coupled via splines to the upper one of three bevel gears in a differential drive. The middle bevel gear would be the power-input gear and would be coupled to the upper and lower bevel gears. The lower bevel gear would be attached to the upper shoulder and would slide and rotate freely over the spindle. The spindle would be fastened by its threaded upper end to an external submechanism that would exert axial tension on the spindle to load the workpiece in compression between the shoulders. By reducing or eliminating (relative to the use of a self reacting tool) the torque that must be reacted externally, the use of the proposed tool would reduce the tendency toward distortion or slippage of the workpiece. To begin a weld, the spindle would be inserted through a hole in the workpiece or run-on tab at the beginning of the seam and fastened to the loading submechanism. Rotation and axial loading would be increased gradually from zero and, after a time to be determined by trial and error, translation along the weld seam would be increased gradually from zero to a steady weld speed. The weld would be ended by running the mechanism off the workpiece or, if the lower shoulder were detachable, by detaching the lower shoulder from the spindle and pulling the pin tool out.

  4. Study of Measurement Strategies of Geometric Deviation of the Position of the Threaded Holes

    NASA Astrophysics Data System (ADS)

    Drbul, Mário; Martikan, Pavol; Sajgalik, Michal; Czan, Andrej; Broncek, Jozef; Babik, Ondrej

    2017-12-01

    Verification of product and quality control is an integral part of current production process. In terms of functional requirements and product interoperability, it is necessary to analyze their dimensional and also geometric specifications. Threaded holes are verified elements too, which are a substantial part of detachable screw connections and have a broad presence in engineering products. This paper deals with on the analysing of measurement strategies of verification geometric deviation of the position of the threaded holes, which are the indirect method of measuring threaded pins when applying different measurement strategies which can affect the result of the verification of the product..

  5. Low backlash direct drive actuator

    DOEpatents

    Kuklo, T.C.

    1994-10-25

    A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw. 10 figs.

  6. Design of New Muzzle for 80mm Diamter Single-Stage Gas Gun

    NASA Astrophysics Data System (ADS)

    Russell, R. T.; Starks, K. S.; Grote, D. L., II; Vandersall, K. S.; Zhou, M.; Thadhani, N. N.

    1999-06-01

    In this paper, we describe the design of a new muzzle for the Georgia Institute of Technology's 80mm diameter single-stage gas gun. The muzzle is designed to accommodate both normal and inclined impact experiments. Modular target-holding assemblies are mounted on a hardened tool steel annular plate 3 inches in thickness and 15 inches in diameter. This plate is threaded on to the gun barrel and locked into place by an anti-backlash assembly to prevent loss of alignment. The target mount for normal impact experiments consists of two 4.5 inch diameter semi-cylindrical ring sections with surfaces lapped perpendicular to the major bore axis. The inclined target mount includes a pair of concentric cylinder sections with an inner diameter of 8 inches. Tilt adjustment is achieved around two mutually perpendicular and intersecting axis of rotation, as in a gimbals assembly. Coarse alignment allows for angles between -10 and +30 degrees. Fine alignment is achieved using 3/8 inch machine screws with 40 threads per inch. This mechanism yields a precision of 0.025 inches per revolution, the same precision found in a micrometer. The linear distance between the adjustment mechanisms and the axes of rotation geometrically enhances fine alignment. Velocity measurement assemblies using shear pins, time of arrival pins, and laser/photo-diode circuits are designed as bolt-on modules.

  7. Innovative Tools Advance Revolutionary Weld Technique

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The iconic, orange external tank of the space shuttle launch system not only contains the fuel used by the shuttle s main engines during liftoff but also comprises the shuttle s backbone, supporting the space shuttle orbiter and solid rocket boosters. Given the tank s structural importance and the extreme forces (7.8 million pounds of thrust load) and temperatures it encounters during launch, the welds used to construct the tank must be highly reliable. Variable polarity plasma arc welding, developed for manufacturing the external tank and later employed for building the International Space Station, was until 1994 the best process for joining the aluminum alloys used during construction. That year, Marshall Space Flight Center engineers began experimenting with a relatively new welding technique called friction stir welding (FSW), developed in 1991 by The Welding Institute, of Cambridge, England. FSW differs from traditional fusion welding in that it is a solid-state welding technique, using frictional heat and motion to join structural components without actually melting any of the material. The weld is created by a shouldered pin tool that is plunged into the seam of the materials to be joined. The tool traverses the line while rotating at high speeds, generating friction that heats and softens but does not melt the metal. (The heat produced approaches about 80 percent of the metal s melting temperature.) The pin tool s rotation crushes and stirs the plasticized metal, extruding it along the seam as the tool moves forward. The material cools and consolidates, resulting in a weld with superior mechanical properties as compared to those weld properties of fusion welds. The innovative FSW technology promises a number of attractive benefits. Because the welded materials are not melted, many of the undesirables associated with fusion welding porosity, cracking, shrinkage, and distortion of the weld are minimized or avoided. The process is more energy efficient, safe (no toxic smoke or shielding gas, liquid metal splatter, arcing, dangerous voltage, or radiation), and environmentally sound (no consumables, fumes, or noise) than fusion welding. Under computer control, an automated FSW machine can create welds with high reproducibility, improving efficiency and overall quality of manufactured materials. The process also allows for welding dissimilar metals as well as those metals considered to be "unweldable" such as the 7xxx series aluminum alloys. Its effectiveness and versatility makes FSW useful for aerospace, rail, automotive, marine, and military applications. A downside to FSW, however, is the keyhole opening left in the weld when the FSW pin tool exits the weld joint. This is a significant problem when using the FSW process to join circumferential structures such as pipes and storage containers. Furthermore, weld joints that taper in material thickness also present problems when using the conventional FSW pin tool, because the threaded pin rotating within the weld joint material is a fixed length. There must be capability for the rotating pin to both increase and decrease in length in real time while welding the tapered material. (Both circumferential and tapered thickness weldments are found in the space shuttle external tank.) Marshall engineers addressed both the keyhole and tapered material thickness problems by developing the auto-adjustable pin tool. This unique piece of equipment automatically withdraws the pin into the tool s shoulder for keyhole closeout. In addition, the auto-adjustable pin tool retracts, or shortens, the rotating pin while welding a weld joint that tapers from one thickness to a thinner thickness. This year, the impact of the Marshall innovation was recognized with an "Excellence in Technology Transfer Award" from the Federal Laboratory Consortium.

  8. Tool Removes Coil-Spring Thread Inserts

    NASA Technical Reports Server (NTRS)

    Collins, Gerald J., Jr.; Swenson, Gary J.; Mcclellan, J. Scott

    1991-01-01

    Tool removes coil-spring thread inserts from threaded holes. Threads into hole, pries insert loose, grips insert, then pulls insert to thread it out of hole. Effects essentially reverse of insertion process to ease removal and avoid further damage to threaded inner surface of hole.

  9. An experimental in vivo analysis of the resorption to ultrasound activated pins (Sonic weld) and standard biodegradable screws (ResorbX) in sheep.

    PubMed

    Pilling, E; Mai, R; Theissig, F; Stadlinger, B; Loukota, R; Eckelt, U

    2007-09-01

    We compared the healing and reaction in the mandibles of 11 sheep of a conventional bioresorbable screw osteosynthesis with the newly developed ultrasound-activated pin osteosynthesis. The thermal stress caused by insertion of the ultrasound-aided pins leads to no cellular reaction around the pin. There is neither clinical nor histological evidence of any initial inflammation that could have been induced by the insertion. Adequate attachment of fibrous tissue to the pin head and the absence of any inflammation are important preconditions for the introduction of this new method of osteosynthesis into clinical practice. Further advantageous characteristics are easy intraoperative handling and a reduction in operating time, because cutting the thread is not required. There must be sufficient interlinkage of the polymer and the trabecular structures to ensure stability.

  10. Lunar drill footplate and casing

    NASA Technical Reports Server (NTRS)

    Maassen, Erik C.; Hendrix, Thomas H.; Morrison, Eddie W.; Phillips, Rodrick B.; Le, Vu Quang; Works, Bruce A.

    1989-01-01

    To prevent hole collapse during lunar drilling operations, a casing has been devised of a graphite reinforced polyimide composite which will be able to withstand the lunar environment. Additionally, this casing will be inserted into the ground in segments two meters long which will penetrate the regolith simultaneously with the auger. The vertical action of the mobile platform will provide a downward force to the casing string through a special adaptor, giving the casing the needed impetus to sink the anticipated depth of ten meters. Casing segments will be connected with a simple snap arrangement. Excess casing will be cut off by a cylindrical cutting tool which will also transport the excess casing away from the hole. A footplate will be incorporated to grasp the auger rod string during rod segment additions or removals. The footplate grasping mechanism will consist of a set of vice-like arms, one end of each bearing threaded to a common power screw. The power screw will be threaded such that one end's thread pitch opposes that of the other end. The weight of the auger and rod string will be transmitted through the arms to the power screw and absorbed by a set of three ball bearing assemblies. The power screw will be driven by a one-half horsepower brushless motor actuated by radio control. The footplate will rest on four short legs and be anchored with pins that are an integral part of each leg.

  11. Wear-Induced Changes in FSW Tool Pin Profile: Effect of Process Parameters

    NASA Astrophysics Data System (ADS)

    Sahlot, Pankaj; Jha, Kaushal; Dey, G. K.; Arora, Amit

    2018-06-01

    Friction stir welding (FSW) of high melting point metallic (HMPM) materials has limited application due to tool wear and relatively short tool life. Tool wear changes the profile of the tool pin and adversely affects weld properties. A quantitative understanding of tool wear and tool pin profile is crucial to develop the process for joining of HMPM materials. Here we present a quantitative wear study of H13 steel tool pin profile for FSW of CuCrZr alloy. The tool pin profile is analyzed at multiple traverse distances for welding with various tool rotational and traverse speeds. The results indicate that measured wear depth is small near the pin root and significantly increases towards the tip. Near the pin tip, wear depth increases with increase in tool rotational speed. However, change in wear depth near the pin root is minimal. Wear depth also increases with decrease in tool traverse speeds. Tool pin wear from the bottom results in pin length reduction, which is greater for higher tool rotational speeds, and longer traverse distances. The pin profile changes due to wear and result in root defect for long traverse distance. This quantitative understanding of tool wear would be helpful to estimate tool wear, optimize process parameters, and tool pin shape during FSW of HMPM materials.

  12. Friction Stir Welding of Al-Cu Bilayer Sheet by Tapered Threaded Pin: Microstructure, Material Flow, and Fracture Behavior

    NASA Astrophysics Data System (ADS)

    Beygi, R.; Kazeminezhad, M.; Kokabi, A. H.; Loureiro, A.

    2015-06-01

    The fracture behavior and intermetallic formation are investigated after friction stir welding of Al-Cu bilayer sheets performed by tapered threaded pin. To do so, temperature, axial load, and torque measurements during welding, and also SEM and XRD analyses and tensile tests on the welds are carried out. These observations show that during welding from Cu side, higher axial load and temperature lead to formation of different kinds of Al-Cu intermetallics such as Al2Cu, AlCu, and Al4Cu9. Also, existence of Al(Cu)-Al2Cu eutectic structures, demonstrates liquation during welding. The presence of these intermetallics leads to highly brittle fracture and low strength of the joints. In samples welded from Al side, lower axial load and temperature are developed during welding and no intermetallic compound is observed which results in higher strength and ductility of the joints in comparison with those welded from Cu side.

  13. Mechanical Property Analysis in the Retracted Pin-Tool (RPT) Region of Friction Stir Welded (FSW) Aluminum Lithium 2195

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey; Oelgoetz, Peter A.

    1999-01-01

    The "Auto-Adjustable Pin Tool for Friction Stir Welding", was developed at The Marshall Space Flight Center to address process deficiencies unique to the FSW process. The auto-adjustable pin tool, also called the retractable pin-tool (R.PT) automatically withdraws the welding probe of the pin-tool into the pin-tool's shoulder. The primary function of the auto-adjustable pin-tool is to allow for keyhole closeout, necessary for circumferential welding and localized weld repair, and, automated pin-length adjustment for the welding of tapered material thickness. An overview of the RPT hardware is presented. The paper follows with studies conducted using the RPT. The RPT was used to simulate two capabilities; welding tapered material thickness and closing out the keyhole in a circumferential weld. The retracted pin-tool regions in aluminum- lithium 2195 friction stir weldments were studied through mechanical property testing and metallurgical sectioning. Correlation's can be =de between retractable pin-tool programmed parameters, process parameters, microstructure, and resulting weld quality.

  14. Manual adjustable probe tool for friction stir welding

    NASA Technical Reports Server (NTRS)

    Oelgoetz, Peter A. (Inventor); Ding, Jeff (Inventor)

    2000-01-01

    A friction stir welding tool is provided generally comprising three parts: a rotatable welding tool body (22) that has an outer threaded surface (32) and a probe (24) extending from a distal end of the body, a shoulder (26), which has a threaded inner surface (40) and a bore (36) at a distal end of the shoulder, and a jam nut (28), which has a threaded inner surface (42). The shoulder is threaded onto the tool body such that the probe extends from the shoulder through the bore by a preferred length. The jam nut is then threaded onto the tool body to secure the shoulder. The tool is operatively connected to a drive motor for rotating the tool body. The shoulder may include a knife edge projecting from the distal end (38) thereof adjacent the bore. The knife edge inhibits the weld material from migrating along the probe to intrude inside the shoulder, where it may prevent separation of the tool body and the shoulder when readjustment of the tool is necessary.

  15. Origin analysis of expanded stacking faults by applying forward current to 4H-SiC p-i-n diodes

    NASA Astrophysics Data System (ADS)

    Hayashi, Shohei; Naijo, Takanori; Yamashita, Tamotsu; Miyazato, Masaki; Ryo, Mina; Fujisawa, Hiroyuki; Miyajima, Masaaki; Senzaki, Junji; Kato, Tomohisa; Yonezawa, Yoshiyuki; Kojima, Kazutoshi; Okumura, Hajime

    2017-08-01

    Stacking faults expanded by the application of forward current to 4H-SiC p-i-n diodes were observed using a transmission electron microscope to investigate the expansion origin. It was experimentally confirmed that long-zonal-shaped stacking faults expanded from basal-plane dislocations converted into threading edge dislocations. In addition, stacking fault expansion clearly penetrated into the substrate to a greater depth than the dislocation conversion point. This downward expansion of stacking faults strongly depends on the degree of high-density minority carrier injection.

  16. Method for forming precision clockplate with pivot pins

    DOEpatents

    Wild, Ronald L [Albuquerque, NM

    2010-06-01

    Methods are disclosed for producing a precision clockplate with rotational bearing surfaces (e.g. pivot pins). The methods comprise providing an electrically conductive blank, conventionally machining oversize features comprising bearing surfaces into the blank, optionally machining of a relief on non-bearing surfaces, providing wire accesses adjacent to bearing surfaces, threading the wire of an electrical discharge machine through the accesses and finishing the bearing surfaces by wire electrical discharge machining. The methods have been shown to produce bearing surfaces of comparable dimension and tolerances as those produced by micro-machining methods such as LIGA, at reduced cost and complexity.

  17. PEO Ammunition Systems Portfolio Book 2012-2013

    DTIC Science & Technology

    2011-02-02

    assembly. Aluminum ogive contains firing pin, a rubber anti-creep spring and M550 fuze escapement assembly and is threaded to projectile body...51 The Mortar Weapons and Fire Control Family M95/M96 Mortar Fire Control System (MFCS) – Mounted...52 M150/M151 Mortar Fire Control System Dismounted (MFCS-D

  18. VoiceThread as a Peer Review and Dissemination Tool for Undergraduate Research

    NASA Astrophysics Data System (ADS)

    Guertin, L. A.

    2012-12-01

    VoiceThread has been utilized in an undergraduate research methods course for peer review and final research project dissemination. VoiceThread (http://www.voicethread.com) can be considered a social media tool, as it is a web-based technology with the capacity to enable interactive dialogue. VoiceThread is an application that allows a user to place a media collection online containing images, audio, videos, documents, and/or presentations in an interface that facilitates asynchronous communication. Participants in a VoiceThread can be passive viewers of the online content or engaged commenters via text, audio, video, with slide annotations via a doodle tool. The VoiceThread, which runs across browsers and operating systems, can be public or private for viewing and commenting and can be embedded into any website. Although few university students are aware of the VoiceThread platform (only 10% of the students surveyed by Ng (2012)), the 2009 K-12 edition of The Horizon Report (Johnson et al., 2009) lists VoiceThread as a tool to watch because of the opportunities it provides as a collaborative learning environment. In Fall 2011, eleven students enrolled in an undergraduate research methods course at Penn State Brandywine each conducted their own small-scale research project. Upon conclusion of the projects, students were required to create a poster summarizing their work for peer review. To facilitate the peer review process outside of class, each student-created PowerPoint file was placed in a VoiceThread with private access to only the class members and instructor. Each student was assigned to peer review five different student posters (i.e., VoiceThread images) with the audio and doodle tools to comment on formatting, clarity of content, etc. After the peer reviews were complete, the students were allowed to edit their PowerPoint poster files for a new VoiceThread. In the new VoiceThread, students were required to video record themselves describing their research and taking the viewer through their poster in the VoiceThread. This new VoiceThread with their final presentations was open for public viewing but not public commenting. A formal assessment was not conducted on the student impact of using VoiceThread for peer review and final research presentations. From an instructional standpoint, requiring students to use audio for the peer review commenting seemed to result in lengthier and more detailed reviews, connected with specific poster features when the doodle tool was utilized. By recording themselves as a "talking head" for the final product, students were required to be comfortable and confident with presenting their research, similar to what would be expected at a conference presentation. VoiceThread is currently being tested in general education Earth science courses at Penn State Brandywine as a dissemination tool for classroom-based inquiry projects and recruitment tool for Earth & Mineral Science majors.

  19. Results of Performance Tests Performed on the John Watts WW Casing Connection on 7" Pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John D. Watts

    2000-02-01

    Stress Engineering Services (SES) was contracted by Mr. John Watts to test his ''WW'' threaded connection developed for oilfield oil and gas service. This work was a continuation of testing performed by SES as reported in August of 1999. The connection design tested was identified as ''WW''. The samples were all integral (no coupled connections) and contained a wedge thread form with 90{sup o} flank angles relative to the pipe centerline. The wedge thread form is a variable width thread that primarily engages on the flanks. This thread form provides very high torque capacity and good stabbing ability and makeup.more » The test procedure selected for one of the samples was the newly written ISO 13679 procedure for full scale testing of casing and tubing connections, which is currently going through the ISO acceptance process. The ISO procedure requires a variety of tests that includes makeup/breakout testing, internal gas sealability/external water sealability testing with axial tension, axial compression, bending, internal gas thermal cycle tests and limit load (failure) tests. This test procedure was performed with one sample. Four samples were tested to failure. Table 1 contains a summary of the tasks performed by SES. The project started with the delivery of test samples by Mr. Watts. Pipe from the previous round of tests was used for the new samples. Figure 1 shows the structural and sealing results relative to the pipe body. Sample 1 was used to determine the torque capacity of the connection. Torque was applied to the capacity of SES's equipment which was 28,424 ft-lbs. From this, an initial recommended torque range of 7,200 to 8,800 ft-lbs. was selected. The sample was disassembled and while there was no galling observed in the threads, the end of the pin had collapsed inward. Sample 2 received three makeups. Breakouts 1 and 2 also had collapsing of the pin end, with no thread galling. From these make/breaks, it was decided to reduce the amount of lubricant applied to the connection by applying it to the box or pin only and reducing the amount applied. Samples 3 and 4 received one makeup only. Sample 5 initially received two make/breaks to test for galling resistance before final makeup, No galling was observed. Later, three additional make/breaks were performed with no pin end collapse and galling over 1/2 a thread occurring on one of the breakouts. During the make/break tests, the stabbing and hand tight makeup of the WW connection was found to be very easy and trouble free. There was no tendency to crossthread, even when stabbed at an angle, and it screwed together very smoothly up to hand tight. During power tight makeup, there was no heat generated in the box (as checked by hand contact) and no jerkiness associated with any of the makeups or breakouts. Sample 2 was tested in pure compression. The maximum load obtained was 1,051 kips and the connection was beginning to significantly deform as the sample buckled. Actual pipe yield was 1,226 kips. Sample 3 was capped-end pressure tested to failure. The capped-end yield pressure of the pipe was 16,572 psi and the sample began to leak at 12,000 psi. Sample 4 was tested in pure tension. The maximum load obtained was 978 kips and the connection failed by fracture at the pin critical section. Actual pipe yield was 1,226 kips. Sample 5 was tested in combined tension/compression and internal gas pressure. The sample was assembled, setup and tested four times. The first time was with a torque of 7,298 ft-lbs and the connection leaked halfway to ISO Load Point 2 with loads of 693 kips and 4,312 psi. The second time the torque was increased to 14,488 ft-lbs and a leak occurred at 849 kips and 9,400 psi, which was ISO Load Point 2. The third time the makeup torque was again increased, to 20,456 ft-lbs, and a leak occurred at 716 kips and 11,342 psi, ISO Load Point 4. The fourth test was with the same torque as before, 20,617 ft-lbs, and the connection successfully tested up to load step 56, ISO Load Point 6 (second round) before leaking at 354 kips and 11,876 psi. At this point, time and funds prevented additional testing to be performed.« less

  20. Electrical contact tool set station

    DOEpatents

    Byers, M.E.

    1988-02-22

    An apparatus is provided for the precise setting to zero of electrically conductive cutting tools used in the machining of work pieces. An electrically conductive cylindrical pin, tapered at one end to a small flat, rests in a vee-shaped channel in a base so that its longitudinal axis is parallel to the longitudinal axis of the machine's spindle. Electronic apparatus is connected between the cylindrical pin and the electrically conductive cutting tool to produce a detectable signal when contact between tool and pin is made. The axes of the machine are set to zero by contact between the cutting tool and the sides, end or top of the cylindrical pin. Upon contact, an electrical circuit is completed, and the detectable signal is produced. The tool can then be set to zero for that axis. Should the tool contact the cylindrical pin with too much force, the cylindrical pin would be harmlessly dislodged from the vee-shaped channel, preventing damage either to the cutting tool or the cylindrical pin. 5 figs.

  1. 7 CFR 1728.97 - Incorporation by reference of electric standards and specifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Brackets (5-53) Bulletin 50-56 (T-3), RUS Specifications for Steel Plate Anchors for Transmission Lines (12-53) Bulletin 50-60 (T-9), RUS Specification—Single Pole Steel Structures, Complete with Arms (12-71... Pole Top Pins with 1″ Diameter Lead Threads (2-79) Bulletin 50-32 (D-4), RUS Specifications for Steel...

  2. Design of Friction Stir Welding Tool for Avoiding Root Flaws

    PubMed Central

    Ji, Shude; Xing, Jingwei; Yue, Yumei; Ma, Yinan; Zhang, Liguo; Gao, Shuangsheng

    2013-01-01

    In order to improve material flow behavior during friction stir welding and avoid root flaws of weld, a tool with a half-screw pin and a tool with a tapered-flute pin are suggested. The effect of flute geometry in tool pins on material flow velocity is investigated by the software ANSYS FLUENT. Numerical simulation results show that high material flow velocity appears near the rotational tool and material flow velocity rapidly decreases with the increase of distance away from the axis of the tool. Maximum material flow velocity by the tool with the tapered-flute pin appears at the beginning position of flute and the velocity decreases with the increase of flow length in flute. From the view of increasing the flow velocity of material near the bottom of the workpiece or in the middle of workpiece, the tool with the half-screw pin and the tool with the tapered-flute pin are both better than the conventional tool. PMID:28788426

  3. Design of Friction Stir Welding Tool for Avoiding Root Flaws.

    PubMed

    Ji, Shude; Xing, Jingwei; Yue, Yumei; Ma, Yinan; Zhang, Liguo; Gao, Shuangsheng

    2013-12-12

    In order to improve material flow behavior during friction stir welding and avoid root flaws of weld, a tool with a half-screw pin and a tool with a tapered-flute pin are suggested. The effect of flute geometry in tool pins on material flow velocity is investigated by the software ANSYS FLUENT. Numerical simulation results show that high material flow velocity appears near the rotational tool and material flow velocity rapidly decreases with the increase of distance away from the axis of the tool. Maximum material flow velocity by the tool with the tapered-flute pin appears at the beginning position of flute and the velocity decreases with the increase of flow length in flute. From the view of increasing the flow velocity of material near the bottom of the workpiece or in the middle of workpiece, the tool with the half-screw pin and the tool with the tapered-flute pin are both better than the conventional tool.

  4. Miniature Release Mechanism or Diminutive Assembly for Nanosatellite Deployables (DANY)

    NASA Technical Reports Server (NTRS)

    Santos Soto, Luis H. (Inventor); Hesh, Scott V. (Inventor); Hudeck, John D. (Inventor)

    2017-01-01

    Miniature release mechanisms constrain objects, such as deployables during the launch of space vehicles, such as small satellites and nanosatellites, and enable the release of the objects once a desired destination is reached by the space vehicle. Constraint and release of the objects are achieved by providing a secure threaded interface that may be released by the release mechanisms. The release mechanisms include a housing structure; a release block can include a threaded interface; one or more retracting pins; one or more release springs; a breakable link, such as a plastic link; a cable harness clamp; and a circuit board. The release mechanism can be 0.1875 inches (approximately 4.8 mm) thick.

  5. Earth boring apparatus with multiple welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolton, J.B.; Crews, S.T.

    1981-06-16

    A box tool joint member of generally tubular configuration is adapted for securement by welding to one end of a steel tube to form a drill pipe. The box tool joint member comprises a body having a cylindrical outer periphery, an internally threaded socket at one end of the body, and a weld neck of smaller outer diameter than the body adjacent to the other end of the body. A tapered transition piece connecting the neck with the adjacent end of the body provides an elevator shoulder. A correlative pin tool joint member is welded to the opposite end ofmore » the tube to complete the drill pipe. The box tool joint member has an annular band of hard facing over the outer periphery of the transition piece and extending down over the adjacent part of the weld neck and up around the adjacent part of the body. The hard facing is corrosion resistant and has a smooth finished surface. Underneath the hard facing and extending beyond both ends of the hard facing is an annular butter layer of non-hardenable steel. The tool joint member is hardened and tempered after the butter layer is welded into a body groove and before the hard facing is welded on .The butter layer is grooved before the hard facing is welded on.« less

  6. Retractable Pin Tools for the Friction Stir Welding Process

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Two companies have successfully commercialized a specialized welding tool developed at the Marshall Space Flight Center (MSFC). Friction stir welding uses the high rotational speed of a tool and the resulting frictional heat created from contact to crush, 'stir' together, and forge a bond between two metal alloys. It has had a major drawback, reliance on a single-piece pin tool. The pin is slowly plunged into the joint between two materials to be welded and rotated as high speed. At the end of the weld, the single-piece pin tool is retracted and leaves a 'keyhole,' something which is unacceptable when welding cylindrical objects such as drums, pipes and storage tanks. Another drawback is the requirement for different-length pin tools when welding materials of varying thickness. An engineer at the MSFC helped design an automatic retractable pin tool that uses a computer-controlled motor to automatically retract the pin into the shoulder of the tool at the end of the weld, preventing keyholes. This design allows the pin angle and length to be adjusted for changes in material thickness and results in a smooth hole closure at the end of the weld. Benefits of friction stir welding, using the MSFC retractable pin tool technology, include the following: The ability to weld a wide range of alloys, including previously unweldable and composite materials; provision of twice the fatigue resistance of fusion welds and no keyholes; minimization of material distortion; no creation of hazards such as welding fumes, radiation, high voltage, liquid metals, or arcing; automatic retraction of the pin at the end of the weld; and maintaining full penetration of the pin.

  7. Investigating the Effects of Pin Tool Design on Friction Stir Welded Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Rubisoff, H. A.; Querin, J. A.; Schneider, Judy A.; Magee, D.

    2009-01-01

    Friction stir welding (FSWing), a solid state joining technique, uses a non-consumable rotating pin tool to thermomechanically join materials. Heating of the weldment caused by friction and deformation is a function of the interaction between the pin tool and the work piece. Therefore, the geometry of the pin tool is in part responsible for the resulting microstructure and mechanical properties. In this study microwave sintered tungsten carbide (WC) pin tools with tapers and flats were used to FSW Ti-6Al-4V. Transverse sections of welds were mechanically tested, and the microstructure was characterized using optical microscopy (OM) and scanning election microscopy (SEM). X-ray diffraction (XRD) and electron back-scatter diffraction (EBSD) were used to characterize the texture within the welds produced from the different pin tool designs.

  8. Nuclear reactor alignment plate configuration

    DOEpatents

    Altman, David A; Forsyth, David R; Smith, Richard E; Singleton, Norman R

    2014-01-28

    An alignment plate that is attached to a core barrel of a pressurized water reactor and fits within slots within a top plate of a lower core shroud and upper core plate to maintain lateral alignment of the reactor internals. The alignment plate is connected to the core barrel through two vertically-spaced dowel pins that extend from the outside surface of the core barrel through a reinforcement pad and into corresponding holes in the alignment plate. Additionally, threaded fasteners are inserted around the perimeter of the reinforcement pad and into the alignment plate to further secure the alignment plate to the core barrel. A fillet weld also is deposited around the perimeter of the reinforcement pad. To accomodate thermal growth between the alignment plate and the core barrel, a gap is left above, below and at both sides of one of the dowel pins in the alignment plate holes through with the dowel pins pass.

  9. Benefit from NASA

    NASA Image and Video Library

    1998-12-01

    Two companies have successfully commercialized a specialized welding tool developed at the Marshall Space Flight Center (MSFC). Friction stir welding uses the high rotational speed of a tool and the resulting frictional heat created from contact to crush, "stir" together, and forge a bond between two metal alloys. It has had a major drawback, reliance on a single-piece pin tool. The pin is slowly plunged into the joint between two materials to be welded and rotated as high speed. At the end of the weld, the single-piece pin tool is retracted and leaves a "keyhole," something which is unacceptable when welding cylindrical objects such as drums, pipes and storage tanks. Another drawback is the requirement for different-length pin tools when welding materials of varying thickness. An engineer at the MSFC helped design an automatic retractable pin tool that uses a computer-controlled motor to automatically retract the pin into the shoulder of the tool at the end of the weld, preventing keyholes. This design allows the pin angle and length to be adjusted for changes in material thickness and results in a smooth hole closure at the end of the weld. Benefits of friction stir welding, using the MSFC retractable pin tool technology, include the following: The ability to weld a wide range of alloys, including previously unweldable and composite materials; provision of twice the fatigue resistance of fusion welds and no keyholes; minimization of material distortion; no creation of hazards such as welding fumes, radiation, high voltage, liquid metals, or arcing; automatic retraction of the pin at the end of the weld; and maintaining full penetration of the pin.

  10. Calibration of 3D ALE finite element model from experiments on friction stir welding of lap joints

    NASA Astrophysics Data System (ADS)

    Fourment, Lionel; Gastebois, Sabrina; Dubourg, Laurent

    2016-10-01

    In order to support the design of such a complex process like Friction Stir Welding (FSW) for the aeronautic industry, numerical simulation software requires (1) developing an efficient and accurate Finite Element (F.E.) formulation that allows predicting welding defects, (2) properly modeling the thermo-mechanical complexity of the FSW process and (3) calibrating the F.E. model from accurate measurements from FSW experiments. This work uses a parallel ALE formulation developed in the Forge® F.E. code to model the different possible defects (flashes and worm holes), while pin and shoulder threads are modeled by a new friction law at the tool / material interface. FSW experiments require using a complex tool with scroll on shoulder, which is instrumented for providing sensitive thermal data close to the joint. Calibration of unknown material thermal coefficients, constitutive equations parameters and friction model from measured forces, torques and temperatures is carried out using two F.E. models, Eulerian and ALE, to reach a satisfactory agreement assessed by the proper sensitivity of the simulation to process parameters.

  11. Remote Coupling of Electrical Connectors

    NASA Technical Reports Server (NTRS)

    Barbour, R. T.

    1985-01-01

    Device alines plug and receptacle axially and radially. Standard multiple-pin plug and socket mounted in mechanism. As threaded shaft moves out from its mounting bracket, two sets of petals engage each other and correct misalinement. Misalinement absorbed by spring-mounted swivels. Designed for umbilical cables between Space Shuttle and payload, mechanism adaptable to other remote or hazardous situations in which human not available to connect mating parts by hand.

  12. Microstructural Evolution in Friction Stir Welding of Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Rubisoff, H.; Querin, J.; Magee, D.; Schneider, J.

    2008-01-01

    Friction stir welding (FSW) is a thermo-mechanical process that utilizes a nonconsumable rotating pin tool to consolidate a weld joint. In the conventional FSW process, the pin tool is responsible for generating both the heat required to soften the material and the forces necessary to deform and combine the weld seam. As such, the geometry of the pin tool is important to the quality of the weld and the process parameters required to produce the weld. Because the geometry of the pin tool is limitless, a reduced set of pin tools was formed to systematically study their effect on the weldment with respect to mechanical properties and resultant microstructure. In this study 0deg, 15deg, 30deg, 45deg, and 60deg tapered, microwave sintered, tungsten carbide (WC) pin tools were used to FSW Ti-6Al-4V. Transverse sections of the weld were used to test for mechanical properties and to document the microstructure using optical microscopy. X-ray diffraction (XRD) was also used to characterize the microstructure in the welds. FSW results for the 45deg and 60deg pin tools are reported in this paper.

  13. HEXPANDO Expanding Head for Fastener-Retention Hexagonal Wrench

    NASA Technical Reports Server (NTRS)

    Bishop, John

    2011-01-01

    The HEXPANDO is an expanding-head hexagonal wrench designed to retain fasteners and keep them from being dislodged from the tool. The tool is intended to remove or install socket-head cap screws (SHCSs) in remote, hard-to-reach locations or in circumstances when a dropped fastener could cause damage to delicate or sensitive hardware. It is not intended for application of torque. This tool is made of two assembled portions. The first portion of the tool comprises tubing, or a hollow shaft, at a length that gives the user adequate reach to the intended location. At one end of the tubing is the expanding hexagonal head fitting with six radial slits cut into it (one at each of the points of the hexagonal shape), and a small hole drilled axially through the center and the end opposite the hex is internally and externally threaded. This fitting is threaded into the shaft (via external threads) and staked or bonded so that it will not loosen. At the other end of the tubing is a knurled collar with a through hole into which the tubing is threaded. This knob is secured in place by a stop nut. The second assembled portion of the tool comprises a length of all thread or solid rod that is slightly longer than the steel tubing. One end has a slightly larger knurled collar affixed while the other end is tapered/pointed and threaded. When the two portions are assembled, the all thread/rod portion feeds through the tubing and is threaded into the expanding hex head fitting. The tapered point allows it to be driven into the through hole of the hex fitting. While holding the smaller collar on the shaft, the user turns the larger collar, and as the threads feed into the fitting, the hex head expands and grips the SHCS, thus providing a safe way to install and remove fasteners. The clamping force retaining the SHCS varies depending on how far the tapered end is inserted into the tool head. Initial tests of the prototype tool, designed for a 5 mm or # 10SHCS have resulted in up to 8 lb (.35.6 N) of pull force to dislodge the SHCS from the tool. The tool is designed with a lead-in angle from the diameter of the tubing to a diameter the same as the fastener head, to prevent the fastener head from catching on any obstructions encountered that could dislodge the fastener during retrieval.

  14. Gimbaled-shoulder friction stir welding tool

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor); Lawless, Kirby G. (Inventor)

    2010-01-01

    A gimbaled-shoulder friction stir welding tool includes a pin and first and second annular shoulders coupled to the pin. At least one of the annular shoulders is coupled to the pin for gimbaled motion with respect thereto as the tool is rotated by a friction stir welding apparatus.

  15. The class characteristic mark of the H&M Mul-T-Lock picking tool in toolmarks examination.

    PubMed

    Volkov, Nikolai; Finkelstein, Nir; Novoselsky, Yehuda; Tsach, Tsadok

    2014-07-01

    Mul-T-Lock is a high security lock cylinder distinguished by the use of a telescoping "pin-in-pin"-tumbler design. Picking the Mul-T-Lock cylinder with a traditional picking tool is highly complicated because it can get stuck between the inner and outer pins. The H&M Mul-T-Lock picking tool was designed to overcome this problem and facilitate the picking of the "pin-in-pin" cylinder. The purpose of this research is to determine whether H&M Mul-T-Lock picking tool leaves class characteristic mark and whether it can be distinguished from traditional picking tools marks and from regular key marks. It also describes and determines the class characteristic mark left on telescopic pins, its origin, recurrence, and its benefit to the toolmarks examiner. When receiving a Mul-T-Lock from a crime scene, a toolmarks examiner can quickly determine whether or not it was picked by an H&M Mul-T-Lock picking tool by noticing the class characteristic mark which this typical tool leaves. © 2014 American Academy of Forensic Sciences.

  16. VoiceThread: A Useful Program Evaluation Tool

    ERIC Educational Resources Information Center

    Mott, Rebecca

    2018-01-01

    With today's technology, Extension professionals have a variety of tools available for program evaluation. This article describes an innovative platform called VoiceThread that has been used in many classrooms but also is useful for conducting virtual focus group research. I explain how this tool can be used to collect qualitative participant…

  17. System for Controlling the Stirring Pin of a Friction Stir Welding Apparatus

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor); Romine, Peter L. (Inventor); Oelgoetz, Peter A. (Inventor)

    2002-01-01

    A control is provided for a friction stir welding apparatus comprising a pin tool which includes a shoulder and a rotating pin extending outwardly from the shoulder of the pin tool and which, in use, is plunged into a workpiece formed contacting workpiece members to stir weld the members together. The control system controls the penetration of the pin tool into the workpiece members which are mounted on a support anvil. The control system includes a pin length controller for controlling pin length relative to the shoulder and for producing a corresponding pin length signal. A pin force sensor senses the force being exerted on the pin during welding and produces a corresponding actual pin force signal. A probe controller controls a probe extending outwardly from the pin, senses a parameter related to the distance between the probe and the supporting anvil and produces a corresponding probe signal. A workpiece standoff sensor senses the standoff distance between the workpiece and the standoff sensor and produces a corresponding standoff signal. A control unit receives the various signals, together with a weld schedule, and, based on these signals and the weld schedule, controls the pin length controller so as to control pin penetration into the workpiece.

  18. Friction Stir Welding of Tapered Thickness Welds Using an Adjustable Pin Tool

    NASA Technical Reports Server (NTRS)

    Adams, Glynn; Venable, Richard; Lawless, Kirby

    2003-01-01

    Friction stir welding (FSW) can be used for joining weld lands that vary in thickness along the length of the weld. An adjustable pin tool mechanism can be used to accomplish this in a single-pass, full-penetration weld by providing for precise changes in the pin length relative to the shoulder face during the weld process. The difficulty with this approach is in accurately adjusting the pin length to provide a consistent penetration ligament throughout the weld. The weld technique, control system, and instrumentation must account for mechanical and thermal compliances of the tooling system to conduct tapered welds successfully. In this study, a combination of static and in-situ measurements, as well as active control, is used to locate the pin accurately and maintain the desired penetration ligament. Frictional forces at the pin/shoulder interface were a source of error that affected accurate pin position. A traditional FSW pin tool design that requires a lead angle was used to join butt weld configurations that included both constant thickness and tapered sections. The pitch axis of the tooling was fixed throughout the weld; therefore, the effective lead angle in the tapered sections was restricted to within the tolerances allowed by the pin tool design. The sensitivity of the FSW process to factors such as thickness offset, joint gap, centerline offset, and taper transition offset were also studied. The joint gap and the thickness offset demonstrated the most adverse affects on the weld quality. Two separate tooling configurations were used to conduct tapered thickness welds successfully. The weld configurations included sections in which the thickness decreased along the weld, as well as sections in which the thickness increased along the weld. The data presented here include weld metallography, strength data, and process load data.

  19. The use of power tools in the insertion of cortical bone screws.

    PubMed

    Elliott, D

    1992-01-01

    Cortical bone screws are commonly used in fracture surgery, most patterns are non-self-tapping and require a thread to be pre-cut. This is traditionally performed using hand tools rather than their powered counterparts. Reasons given usually imply that power tools are more dangerous and cut a less precise thread, but there is no evidence to support this supposition. A series of experiments has been performed which show that the thread pattern cut with either method is identical and that over-penetration with the powered tap is easy to control. The conclusion reached is that both methods produce consistently reliable results but use of power tools is much faster.

  20. Developing eThread pipeline using SAGA-pilot abstraction for large-scale structural bioinformatics.

    PubMed

    Ragothaman, Anjani; Boddu, Sairam Chowdary; Kim, Nayong; Feinstein, Wei; Brylinski, Michal; Jha, Shantenu; Kim, Joohyun

    2014-01-01

    While most of computational annotation approaches are sequence-based, threading methods are becoming increasingly attractive because of predicted structural information that could uncover the underlying function. However, threading tools are generally compute-intensive and the number of protein sequences from even small genomes such as prokaryotes is large typically containing many thousands, prohibiting their application as a genome-wide structural systems biology tool. To leverage its utility, we have developed a pipeline for eThread--a meta-threading protein structure modeling tool, that can use computational resources efficiently and effectively. We employ a pilot-based approach that supports seamless data and task-level parallelism and manages large variation in workload and computational requirements. Our scalable pipeline is deployed on Amazon EC2 and can efficiently select resources based upon task requirements. We present runtime analysis to characterize computational complexity of eThread and EC2 infrastructure. Based on results, we suggest a pathway to an optimized solution with respect to metrics such as time-to-solution or cost-to-solution. Our eThread pipeline can scale to support a large number of sequences and is expected to be a viable solution for genome-scale structural bioinformatics and structure-based annotation, particularly, amenable for small genomes such as prokaryotes. The developed pipeline is easily extensible to other types of distributed cyberinfrastructure.

  1. Sectional device handling tool

    DOEpatents

    Candee, Clark B.

    1988-07-12

    Apparatus for remotely handling a device in an irradiated underwater environment includes a plurality of tubular sections interconnected end-to-end to form a handling structure, the bottom section being adapted for connection to the device. A support section is connected to the top tubular section and is adapted to be suspended from an overhead crane. Each section is flanged at its opposite ends. Axially retractable bolts in each bottom flange are threadedly engageable with holes in the top flange of an adjacent section, each bolt being biased to its retracted position and retained in place on the bottom flange. Guide pins on each top flange cooperate with mating holes on adjacent bottom flanges to guide movement of the parts to the proper interconnection orientation. Each section carries two hydraulic line segments provided with quick-connect/disconnect fittings at their opposite ends for connection to the segments of adjacent tubular sections upon interconnection thereof to form control lines which are connectable to the device and to an associated control console.

  2. Tool Releases Optical Elements From Spring Brackets

    NASA Technical Reports Server (NTRS)

    Gum, J. S.

    1984-01-01

    Threaded hooks retract bracket arms holding element. Tool uses three hooks with threaded shanks mounted in ring-shaped holder to pull on tabs to release optical element. One person can easily insert or remove optical element (such as prism or lens) from spring holder or bracket with minimal risk of damage.

  3. Pin Tool Geometry Effects in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Querin, J. A.; Rubisoff, H. A.; Schneider, J. A.

    2009-01-01

    In friction stir welding (FSW) there is significant evidence that material can take one of two different flow paths when being displaced from its original position in front of the pin tool to its final position in the wake of the weld. The geometry of the pin tool, along with the process parameters, plays an important role in dictating the path that the material takes. Each flow path will impart a different thermomechanical history on the material, consequently altering the material microstructure and subsequent weld properties. The intention of this research is to isolate the effect that different pin tool attributes have on the flow paths imparted on the FSWed material. Based on published weld tool geometries, a variety of weld tools were fabricated and used to join AA2219. Results from the tensile properties and microstructural characterization will be presented.

  4. Vertebral stabilization using positively threaded profile pins and polymethylmethacrylate, with or without laminectomy, for spinal canal stenosis and vertebral instability caused by congenital thoracic vertebral anomalies.

    PubMed

    Aikawa, Takeshi; Kanazono, Shinichi; Yoshigae, Yuki; Sharp, Nicholas J H; Muñana, Karen R

    2007-07-01

    To describe diagnostic findings, surgical technique, and outcome in dogs with thoracic spinal canal stenosis and vertebral instability secondary to congenital vertebral anomalies. Retrospective clinical study. Dogs (n=9) with thoracic spinal canal stenosis. Medical records (1995-1996; 2000-2006) of 9 dogs with a myelographic diagnosis of spinal canal stenosis and/or vertebral instability secondary to congenital vertebral anomaly that were surgically managed by vertebral stabilization with or without laminectomy were reviewed. Data on pre- and postoperative neurologic status, diagnostic findings, surgical techniques, and outcomes were retrieved. Follow-up evaluations were performed at 1, 2, and 6 months. Long-term outcome was assessed by means of clinical examination or owner telephone interviews. Spinal cord compression was confirmed by myelography, and in 2 dogs, dynamic compression by stress myelography. Eight dogs regained the ability to ambulate postoperatively. One dog with a partial recovery regained voluntary movement but did not become ambulatory. Spinal cord injury secondary to congenital vertebral anomaly may have a good outcome when treated by vertebral stabilization with or without laminectomy. Adequate stabilization of the vertebrae and improved neurologic outcome were achieved in most dogs. Vertebral stabilization using positively threaded profile pins and polymethylmethacrylate with or without laminectomy is an effective treatment for spinal canal stenosis and vertebral instability secondary to congenital thoracic vertebral anomalies.

  5. The Plastic Flow Field in the Vicinity of the Pin-Tool During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Bernstein, E. L.; Nunes, A. C., Jr.

    2000-01-01

    The plastic flow field in the vicinity of the pin-tool during Friction Stir Welding (FSW) needs to be understood if a theoretical understanding of the process is to be attained. The structure of welds does not exhibit the flow field itself, but consists in a residue of displacements left by the plastic flow field. The residue requires analysis to extract from it the instantaneous flow field around the pin-tool. A simplified merry-go-round model makes sense of some tracer experiments reported in the literature. A quantitative comparison is made of the displacements of copper wire markers with displacements computed from a hypothetical plastic flow field. The hypothetical plastic flow field consists in a circular rotation field about a translating pin tool with angular velocity varying with radius from the pin centerline. A sharply localized rotational field comprising slip on a surface around the tool agreed better with observations than a distributed slip field occupying a substantial volume around the tool. Both the tracer and the wire displacements support the "rotating plug" model, originally invoked or thermal reasons, of the FSW process.

  6. Carbon Nanotube Fiber Ionization Mass Spectrometry: A Fundamental Study of a Multi-Walled Carbon Nanotube Functionalized Corona Discharge Pin for Polycyclic Aromatic Hydrocarbons Analysis.

    PubMed

    Nahan, Keaton S; Alvarez, Noe; Shanov, Vesselin; Vonderheide, Anne

    2017-11-01

    Mass spectrometry continues to tackle many complicated tasks, and ongoing research seeks to simplify its instrumentation as well as sampling. The desorption electrospray ionization (DESI) source was the first ambient ionization source to function without extensive gas requirements and chromatography. Electrospray techniques generally have low efficiency for ionization of nonpolar analytes and some researchers have resorted to methods such as direct analysis in real time (DART) or desorption atmospheric pressure chemical ionization (DAPCI) for their analysis. In this work, a carbon nanotube fiber ionization (nanoCFI) source was developed and was found to be capable of solid phase microextraction (SPME) of nonpolar analytes as well as ionization and sampling similar to that of direct probe atmospheric pressure chemical ionization (DP-APCI). Conductivity and adsorption were maintained by utilizing a corona pin functionalized with a multi-walled carbon nanotube (MWCNT) thread. Quantitative work with the nanoCFI source with a designed corona discharge pin insert demonstrated linearity up to 0.97 (R 2 ) of three target PAHs with phenanthrene internal standard. Graphical Abstract ᅟ.

  7. Carbon Nanotube Fiber Ionization Mass Spectrometry: A Fundamental Study of a Multi-Walled Carbon Nanotube Functionalized Corona Discharge Pin for Polycyclic Aromatic Hydrocarbons Analysis

    NASA Astrophysics Data System (ADS)

    Nahan, Keaton S.; Alvarez, Noe; Shanov, Vesselin; Vonderheide, Anne

    2017-09-01

    Mass spectrometry continues to tackle many complicated tasks, and ongoing research seeks to simplify its instrumentation as well as sampling. The desorption electrospray ionization (DESI) source was the first ambient ionization source to function without extensive gas requirements and chromatography. Electrospray techniques generally have low efficiency for ionization of nonpolar analytes and some researchers have resorted to methods such as direct analysis in real time (DART) or desorption atmospheric pressure chemical ionization (DAPCI) for their analysis. In this work, a carbon nanotube fiber ionization (nanoCFI) source was developed and was found to be capable of solid phase microextraction (SPME) of nonpolar analytes as well as ionization and sampling similar to that of direct probe atmospheric pressure chemical ionization (DP-APCI). Conductivity and adsorption were maintained by utilizing a corona pin functionalized with a multi-walled carbon nanotube (MWCNT) thread. Quantitative work with the nanoCFI source with a designed corona discharge pin insert demonstrated linearity up to 0.97 (R2) of three target PAHs with phenanthrene internal standard. [Figure not available: see fulltext.

  8. Constructing Visually-Based Digital Conversations in EFL with VoiceThread

    ERIC Educational Resources Information Center

    Kent, David

    2017-01-01

    VoiceThread holds potential to provide students who rarely speak in class a means to create visually-based digital conversations. In light of this, pedagogical affordances of the tool are considered, along with efficacy behind VoiceThread development within English as a Foreign Language contexts. Instructional strategies, supported by examples,…

  9. FastGCN: A GPU Accelerated Tool for Fast Gene Co-Expression Networks

    PubMed Central

    Liang, Meimei; Zhang, Futao; Jin, Gulei; Zhu, Jun

    2015-01-01

    Gene co-expression networks comprise one type of valuable biological networks. Many methods and tools have been published to construct gene co-expression networks; however, most of these tools and methods are inconvenient and time consuming for large datasets. We have developed a user-friendly, accelerated and optimized tool for constructing gene co-expression networks that can fully harness the parallel nature of GPU (Graphic Processing Unit) architectures. Genetic entropies were exploited to filter out genes with no or small expression changes in the raw data preprocessing step. Pearson correlation coefficients were then calculated. After that, we normalized these coefficients and employed the False Discovery Rate to control the multiple tests. At last, modules identification was conducted to construct the co-expression networks. All of these calculations were implemented on a GPU. We also compressed the coefficient matrix to save space. We compared the performance of the GPU implementation with those of multi-core CPU implementations with 16 CPU threads, single-thread C/C++ implementation and single-thread R implementation. Our results show that GPU implementation largely outperforms single-thread C/C++ implementation and single-thread R implementation, and GPU implementation outperforms multi-core CPU implementation when the number of genes increases. With the test dataset containing 16,000 genes and 590 individuals, we can achieve greater than 63 times the speed using a GPU implementation compared with a single-thread R implementation when 50 percent of genes were filtered out and about 80 times the speed when no genes were filtered out. PMID:25602758

  10. FastGCN: a GPU accelerated tool for fast gene co-expression networks.

    PubMed

    Liang, Meimei; Zhang, Futao; Jin, Gulei; Zhu, Jun

    2015-01-01

    Gene co-expression networks comprise one type of valuable biological networks. Many methods and tools have been published to construct gene co-expression networks; however, most of these tools and methods are inconvenient and time consuming for large datasets. We have developed a user-friendly, accelerated and optimized tool for constructing gene co-expression networks that can fully harness the parallel nature of GPU (Graphic Processing Unit) architectures. Genetic entropies were exploited to filter out genes with no or small expression changes in the raw data preprocessing step. Pearson correlation coefficients were then calculated. After that, we normalized these coefficients and employed the False Discovery Rate to control the multiple tests. At last, modules identification was conducted to construct the co-expression networks. All of these calculations were implemented on a GPU. We also compressed the coefficient matrix to save space. We compared the performance of the GPU implementation with those of multi-core CPU implementations with 16 CPU threads, single-thread C/C++ implementation and single-thread R implementation. Our results show that GPU implementation largely outperforms single-thread C/C++ implementation and single-thread R implementation, and GPU implementation outperforms multi-core CPU implementation when the number of genes increases. With the test dataset containing 16,000 genes and 590 individuals, we can achieve greater than 63 times the speed using a GPU implementation compared with a single-thread R implementation when 50 percent of genes were filtered out and about 80 times the speed when no genes were filtered out.

  11. Developing eThread Pipeline Using SAGA-Pilot Abstraction for Large-Scale Structural Bioinformatics

    PubMed Central

    Ragothaman, Anjani; Feinstein, Wei; Jha, Shantenu; Kim, Joohyun

    2014-01-01

    While most of computational annotation approaches are sequence-based, threading methods are becoming increasingly attractive because of predicted structural information that could uncover the underlying function. However, threading tools are generally compute-intensive and the number of protein sequences from even small genomes such as prokaryotes is large typically containing many thousands, prohibiting their application as a genome-wide structural systems biology tool. To leverage its utility, we have developed a pipeline for eThread—a meta-threading protein structure modeling tool, that can use computational resources efficiently and effectively. We employ a pilot-based approach that supports seamless data and task-level parallelism and manages large variation in workload and computational requirements. Our scalable pipeline is deployed on Amazon EC2 and can efficiently select resources based upon task requirements. We present runtime analysis to characterize computational complexity of eThread and EC2 infrastructure. Based on results, we suggest a pathway to an optimized solution with respect to metrics such as time-to-solution or cost-to-solution. Our eThread pipeline can scale to support a large number of sequences and is expected to be a viable solution for genome-scale structural bioinformatics and structure-based annotation, particularly, amenable for small genomes such as prokaryotes. The developed pipeline is easily extensible to other types of distributed cyberinfrastructure. PMID:24995285

  12. Pin Load Control Applied to Retractable Pin Tool Technology and its Characterization

    NASA Technical Reports Server (NTRS)

    Oelgoetz, Peter A.

    2000-01-01

    Until the development of retractable pin tool (RPT) technology, friction stir welding (FSW) was limited to constant thickness joining of aluminum materials and the choices of keyhole elimination focused on traditional fusion and plug weld repair techniques. An invention, US Patent Number 5,893,507, "Auto-Adjustable Pin Tool for Friction Stir Welding" assigned to NASA, demonstrated an approach to resolve these serious drawbacks. This approach brings forth a technique that allows the crater, or keyhole, to be closed out automatically at the end of the weld joint without adding any additional equipment or material. Also the probe length can be varied automatically in the weld joint to compensate for material thickness changes, such as, in a tapered joint. This paper reports the effects of pin extension and retraction rates in the weld joint and its correlation to weld quality. The investigation utilized a pin load-detecting device that was integrated in the Phase 2A RPT designed by Boeing for NASA/MSFC. The RPT modification provided pin load data that was accessed and used to eliminate root side indications and determine pin manipulation rates necessary to produce consistence homogeneous joints.

  13. Pin Load Control Applied to Retractable Pin Tool Technology and its Characterization

    NASA Technical Reports Server (NTRS)

    Oelgoetz, Peter

    2000-01-01

    Until the development of retractable pin tool (RPT) technology, friction stir welding (FSW) was limited to constant thickness joining of aluminum materials and the choices of keyhole elimination focused on traditional fusion and plug weld repair techniques. An invention, US Patent Number 5,893.507, "Auto-Adjustable Pin Tool for Friction Stir Welding" assigned to NASA, demonstrated an approach to resolve these serious drawbacks. This approach brings forth a technique that allows the crater, or keyhole, to be closed out automatically at the end of the weld joint without adding any additional equipment or material. Also the probe length can be varied automatically in the weld joint to compensate for material thickness changes, such as, in a tapered joint. This paper reports the effects of pin extension and retraction rates in the weld joint and its correlation to weld quality. The investigation utilized a pin load-detecting device that was integrated in the Phase 2A RPT designed by Boeing for NASA/MSFC. The RPT modification provided pin load data that was accessed and used to eliminate root side indications and determine pin manipulation rates necessary to produce consistence homogeneous joints.

  14. Pin Load Control Applied to Retractable Pin Tool Technology and Its Characterization

    NASA Technical Reports Server (NTRS)

    Olegoetz, P.

    1999-01-01

    Until the development of retractable pin tool (RPT) technology, friction stir welding (FSW) was limited to constant thickness joining of aluminum materials and the choices of keyhole elimination focused on traditional fusion and plug weld repair techniques. An invention, US Patent Number 5,893,507, "Auto-Adjustable Pin Tool for Friction Stir Welding" assigned to NASA, demonstrated an approach to resolve these serious drawbacks. This approach brings forth a technique that allows the crater, or keyhole, to be closed out automatically at the end of the weld joint without adding any additional equipment or material. Also the probe length can be varied automatically in the weld joint to compensate for material thickness changes, such as, in a tapered joint. This paper reports the effects of pin extension and retraction rates in the weld joint and its correlation to weld quality. The investigation utilized a pin load-detecting device that was integrated in the Phase IIA RPT designed by Boeing for NASA/MSFC. The RPT modification provided pin load data that was accessed and used to eliminate root side indications and determine pin manipulation rates necessary to produce consistence homogeneous joints.

  15. Plastic Clamp Retains Clevis Pin

    NASA Technical Reports Server (NTRS)

    Cortes, R. G.

    1983-01-01

    Plastic clamp requires no special installation or removal tools. Clamp slips easily over end of pin. Once engaged in groove, holds pin securely. Installed and removed easily without special tools - screwdriver or putty knife adequate for prying out of groove. Used to retain bearings, rollers pulleys, other parts that rotate. Applications include slowly and intermittently rotating parts in appliances.

  16. Auto-adjustable pin tool for friction stir welding

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor); Oelgoetz, Peter A. (Inventor)

    1999-01-01

    An auto-adjusting pin tool for friction stir welding is presented wherein the pin tool automatically adjusts for welding materials of varying thicknesses, and the pin can be incrementally withdrawn from the workpieces thus eliminating any crater or keyhole in the weld. The inventive apparatus is comprised of a welding head housing a motor connected to a controller instrument package and an arbor supported by bearings. The arbor forms an interior cylinder and is encircled by a stationary slip ring though which are ported hydraulic passageways into the interior cylinder of the arbor such that a piston housed therein may be moved axially. Coupled to the piston is a pin tool which is treaded on its lower end and which is moveably seated in, and extending through, a shoulder housing having concave lower face. When welding, the rotating treaded end of the pin enters and stirs the workpieces while the lower face of the shoulder housing compacts the workpieces. As the welding head traverses the shoulder housing the controller senses any rising pressure on the lower face of the shoulder housing and withdraws the arbor to keep the pressure constant. At the same time, the piston moves towards the workpieces thus extending the pin further from the shoulder. This keeps the pin at a proper depth in the workpieces regardless of their thicknesses. As the weld terminates this same operation can be used to incrementally withdraw the pin during the final part of the traverse, thus eliminating any keyhole or crater that would otherwise be created.

  17. Tool for use in lifting pin supported objects

    NASA Technical Reports Server (NTRS)

    Marzek, R. A.; Read, W. S. (Inventor)

    1974-01-01

    A tool for use in lifting a pin-supported, electronic package mounted in juxtaposition with the surface of an electronic circuit board is described. The tool is configured to be received beneath a pin-supported package and is characterized by a manually operable linkage, including an elongated, rigid link is supported for axial reciprocation and a pivotal link pinned to the body and supported for oscillation induced in response to axial motion imparted to the rigid link. A lifting plate is pivotally coupled to the distal end of the pivotal link so that oscillatory motion imparted to the pivotal link serves to move the plate vertically for elevating the plate into lifting engagement with the electronic package positioned thereabove.

  18. Fatal hemorrhage following sacroiliac joint fusion surgery: A case report.

    PubMed

    Palmiere, Cristian; Augsburger, Marc; Del Mar Lesta, Maria; Grabherr, Silke; Borens, Olivier

    2017-05-01

    Threaded pins and wires are commonly used in orthopedic practice and their migration intra- or post-operatively may be responsible for potentially serious complications. Vascular and visceral injury from intra-pelvic pin or guide-wire migration during or following hip surgery has been reported frequently in the literature and may result in progression through soft tissues with subsequent perforation of organs and vessels. In this report, we describe an autopsy case involving a 40-year old man suffering from chronic low back pain due to sacroiliac joint disruption. The patient underwent minimally invasive sacroiliac joint arthrodesis. Some intra-operative bleeding was noticed when a drill was retrieved, though the patient died postoperatively. Postmortem investigations allowed the source of bleeding to be identified (a perforation of a branch of the right internal iliac artery) and a potentially toxic tramadol concentration in peripheral blood to be measured. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Microstructure and Mechanical Performance of Friction Stir Spot-Welded Aluminum-5754 Sheets

    NASA Astrophysics Data System (ADS)

    Pathak, N.; Bandyopadhyay, K.; Sarangi, M.; Panda, Sushanta Kumar

    2013-01-01

    Friction stir spot welding (FSSW) is a recent trend of joining light-weight sheet metals while fabricating automotive and aerospace body components. For the successful application of this solid-state welding process, it is imperative to have a thorough understanding of the weld microstructure, mechanical performance, and failure mechanism. In the present study, FSSW of aluminum-5754 sheet metal was tried using tools with circular and tapered pin considering different tool rotational speeds, plunge depths, and dwell times. The effects of tool design and process parameters on temperature distribution near the sheet-tool interface, weld microstructure, weld strength, and failure modes were studied. It was found that the peak temperature was higher while welding with a tool having circular pin compared to tapered pin, leading to a bigger dynamic recrystallized stir zone (SZ) with a hook tip bending towards the upper sheet and away from the keyhole. Hence, higher lap shear separation load was observed in the welds made from circular pin compared to those made from tapered pin. Due to influence of size and hardness of SZ on crack propagation, three different failure modes of weld nugget were observed through optical cross-sectional micrograph and SEM fractographs.

  20. MACHINING ELIMINATION THROUGH APPLICATION OF THREAD FORMING FASTENERS IN NET SHAPED CAST HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleaver, Ryan J; Cleaver, Todd H; Talbott, Richard

    The ultimate objective of this work was to eliminate approximately 30% of the machining performed in typical automotive engine and transmission plants by using thread forming fasteners in as-cast holes of aluminum and magnesium cast components. The primary issues at the source of engineers reluctance to implementing thread forming fasteners in lightweight castings are: * Little proof of consistency of clamp load vs. input torque in either aluminum or magnesium castings. * No known data to understand the effect on consistency of clamp load as casting dies wear. The clamp load consistency concern is founded in the fact that amore » portion of the input torque used to create clamp load is also used to create threads. The torque used for thread forming may not be consistent due to variations in casting material, hole size and shape due to tooling wear and process variation (thermal and mechanical). There is little data available to understand the magnitude of this concern or to form the basis of potential solutions if the range of clamp load variation is very high (> +/- 30%). The range of variation that can be expected in as-cast hole size and shape over the full life cycle of a high pressure die casting die was established in previous work completed by Pacific Northwest National Laboratory, (PNNL). This established range of variation was captured in a set of 12 cast bosses by designing core pins at the size and draft angles identified in the sited previous work. The cast bosses were cut into nuts that could be used in the Ford Fastener Laboratory test-cell to measure clamp load when a thread forming fastener was driven into a cast nut. There were two sets of experiments run. First, a series of cast aluminum nuts were made reflecting the range of shape and size variations to be expected over the life cycle of a die casting die. Taptite thread forming fasteners, (a widely used thread forming fastener suitable for aluminum applications), were driven into the various cored, as-cast nuts at a constant input torque and resulting clamp loads were recorded continuously. The clamp load data was used to determine the range of clamp loads to be expected. The bolts were driven to failure. The clamp load corresponding to the target input of 18.5 Nm was recorded for each fastener. In a like fashion, a second set of experiments were run with cast magnesium nuts and ALtracs thread forming fasteners, (a widely used thread forming fastener suitable for magnesium applications). Again all clamp loads were recorded and analyzed similarly to the Taptites in aluminum cast nuts. Results from previous work performed on the same test cell for a Battelle project using standard M8 bolts into standard M8 nuts were included as a comparator for a standard bolt and nut application. The results for the thread forming fasteners in aluminum cast holes were well within industry expectations of +/- 30% for out of the box and robustness range testing. The results for the dry and lubed extreme conditions were only slightly higher than industry expectations at +/- 35.6%. However, when compared to the actual Battelle results (+/- 40%) for a standard bolt and nut the tread forming fasteners performed slightly better. The results for the thread forming fasteners in magnesium cast holes were all well within industry expectations of +/- 30% for all three conditions. The robustness range (.05mm larger and smaller holes than the expected wear pattern of a die casting die at full life cycle) results also fell within the industry expectations for standard threaded fasteners. These results were very encouraging. It was concluded that this work showed that clamp load variation with thread forming fasteners is consistent with industry expectations for standard steel bolts and nuts at +/- 30%. There does not appear to be any significant increase in clamp load variation due to the application of thread forming fasteners in as-cast holes of aluminum or magnesium over the effective life of a die casting mold. The fully implemented potential benefit of thread forming fasteners in as-cast holes of aluminum and magnesium is estimated to be 6 trillion Btu per year for North America. Economic benefit is estimated to be nearly $800 million per year. Environmental benefits and quality improvements will also result from full implementation of this technology.« less

  1. Self-advancing step-tap tool

    NASA Technical Reports Server (NTRS)

    Pettit, Donald R. (Inventor); Penner, Ronald K. (Inventor); Franklin, Larry D. (Inventor); Camarda, Charles J. (Inventor)

    2008-01-01

    Methods and tool for simultaneously forming a bore in a work piece and forming a series of threads in said bore. In an embodiment, the tool has a predetermined axial length, a proximal end, and a distal end, said tool comprising: a shank located at said proximal end; a pilot drill portion located at said distal end; and a mill portion intermediately disposed between said shank and said pilot drill portion. The mill portion is comprised of at least two drill-tap sections of predetermined axial lengths and at least one transition section of predetermined axial length, wherein each of said at least one transition section is sandwiched between a distinct set of two of said at least two drill-tap sections. The at least two drill-tap sections are formed of one or more drill-tap cutting teeth spirally increasing along said at least two drill-tap sections, wherein said tool is self-advanced in said work piece along said formed threads, and wherein said tool simultaneously forms said bore and said series of threads along a substantially similar longitudinal axis.

  2. HPC Profiling with the Sun Studio™ Performance Tools

    NASA Astrophysics Data System (ADS)

    Itzkowitz, Marty; Maruyama, Yukon

    In this paper, we describe how to use the Sun Studio Performance Tools to understand the nature and causes of application performance problems. We first explore CPU and memory performance problems for single-threaded applications, giving some simple examples. Then, we discuss multi-threaded performance issues, such as locking and false-sharing of cache lines, in each case showing how the tools can help. We go on to describe OpenMP applications and the support for them in the performance tools. Then we discuss MPI applications, and the techniques used to profile them. Finally, we present our conclusions.

  3. Comparison of the Effects of Tool Geometry for Friction Stir Welding Thin Sheet Aluminum Alloys for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Merry, Josh; Takeshita, Jennifer; Tweedy, Bryan; Burford, Dwight

    2006-01-01

    In this presentation, the results of a recent study on the effect of pin tool design for friction stir welding thin sheets (0.040") of aluminum alloys 2024 and 7075 are provided. The objective of this study was to investigate and document the effect of tool shoulder and pin diameter, as well as the presence of pin flutes, on the resultant microstructure and mechanical properties at both room temperature and cryogenic temperature. Specifically, the comparison between three tools will include: FSW process load analysis (tool forces required to fabricate the welds), Static Mechanical Properties (ultimate tensile strength, yield strength, and elongation), and Process window documenting the range of parameters that can be used with the three pin tools investigated. All samples were naturally aged for a period greater than 10 days. Prior research has shown 7075 may require post weld heat treatment. Therefore, an additional pair of room temperature and cryogenic temperature samples was post-weld aged to the 7075-T7 condition prior to mechanical testing.

  4. Conceptual Design Study on Bolts for Self-Loosing Preventable Threaded Fasteners

    NASA Astrophysics Data System (ADS)

    Noma, Atsushi; He, Jianmei

    2017-11-01

    Threaded fasteners using bolts is widely applied in industrial field as well as various fields. However, threaded fasteners using bolts have loosing problems and cause many accidents. In this study, the purpose is to obtain self-loosing preventable threaded fasteners by applying spring characteristic effects on bolt structures. Helical-cutting applied bolt structures is introduced through three dimensional (3D) CAD modeling tools. Analytical approaches for evaluations on the spring characteristic effects helical-cutting applied bolt structures and self-loosing preventable performance of threaded fasteners were performed using finite element method and results are reported. Comparing slackness test results with analytical results and more details on evaluating mechanical properties will be executed in future study.

  5. Visualization of protein interaction networks: problems and solutions

    PubMed Central

    2013-01-01

    Background Visualization concerns the representation of data visually and is an important task in scientific research. Protein-protein interactions (PPI) are discovered using either wet lab techniques, such mass spectrometry, or in silico predictions tools, resulting in large collections of interactions stored in specialized databases. The set of all interactions of an organism forms a protein-protein interaction network (PIN) and is an important tool for studying the behaviour of the cell machinery. Since graphic representation of PINs may highlight important substructures, e.g. protein complexes, visualization is more and more used to study the underlying graph structure of PINs. Although graphs are well known data structures, there are different open problems regarding PINs visualization: the high number of nodes and connections, the heterogeneity of nodes (proteins) and edges (interactions), the possibility to annotate proteins and interactions with biological information extracted by ontologies (e.g. Gene Ontology) that enriches the PINs with semantic information, but complicates their visualization. Methods In these last years many software tools for the visualization of PINs have been developed. Initially thought for visualization only, some of them have been successively enriched with new functions for PPI data management and PIN analysis. The paper analyzes the main software tools for PINs visualization considering four main criteria: (i) technology, i.e. availability/license of the software and supported OS (Operating System) platforms; (ii) interoperability, i.e. ability to import/export networks in various formats, ability to export data in a graphic format, extensibility of the system, e.g. through plug-ins; (iii) visualization, i.e. supported layout and rendering algorithms and availability of parallel implementation; (iv) analysis, i.e. availability of network analysis functions, such as clustering or mining of the graph, and the possibility to interact with external databases. Results Currently, many tools are available and it is not easy for the users choosing one of them. Some tools offer sophisticated 2D and 3D network visualization making available many layout algorithms, others tools are more data-oriented and support integration of interaction data coming from different sources and data annotation. Finally, some specialistic tools are dedicated to the analysis of pathways and cellular processes and are oriented toward systems biology studies, where the dynamic aspects of the processes being studied are central. Conclusion A current trend is the deployment of open, extensible visualization tools (e.g. Cytoscape), that may be incrementally enriched by the interactomics community with novel and more powerful functions for PIN analysis, through the development of plug-ins. On the other hand, another emerging trend regards the efficient and parallel implementation of the visualization engine that may provide high interactivity and near real-time response time, as in NAViGaTOR. From a technological point of view, open-source, free and extensible tools, like Cytoscape, guarantee a long term sustainability due to the largeness of the developers and users communities, and provide a great flexibility since new functions are continuously added by the developer community through new plug-ins, but the emerging parallel, often closed-source tools like NAViGaTOR, can offer near real-time response time also in the analysis of very huge PINs. PMID:23368786

  6. Examining Literacy Teachers' Perceptions of the Use of VoiceThread in an Elementary, Middle School, and a High School Classroom for Enhancing Instructional Goals

    ERIC Educational Resources Information Center

    Stover, Katie; Kissel, Brian; Wood, Karen; Putman, Michael

    2015-01-01

    In today's digital age, Web 2.0 tools such as VoiceThread allow users to integrate images, voices, and responses within one digital platform, providing students with the opportunity to add another layer of meaning to their texts. We conducted this research to expand our understanding of the processes necessary for integrating digital tools into…

  7. The Evolution of Friction Stir Welding Theory at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C.

    2012-01-01

    From 1995 to the present the friction stir welding (FSW) process has been under study at Marshall Space Flight Center (MSFC). This is an account of the progressive emergence of a set of conceptual tools beginning with the discovery of the shear surface, wiping metal transfer, and the invention of a kinematic model and making possible a treatment of both metallurgical structure formation and process dynamics in friction stir welding from a unified point of view. It is generally observed that the bulk of the deformation of weld metal around the FSW pin takes place in a very narrow, almost discontinuous zone with high deformation rates characteristic of metal cutting. By 1999 it was realized that this zone could be treated as a shear surface like that in simple metal cutting models. At the shear surface the seam is drawn out and compressed and pressure and flow conditions determine whether or not a sound weld is produced. The discovery of the shear surface was followed by the synthesis of a simple 3- flow kinematic model of the FSW process. Relative to the tool the flow components are: (1) an approaching translational flow at weld speed V, (2) a rotating cylindrical plug flow with the angular velocity of the tool , and (3) a relatively slow ring vortex flow (like a smoke ring) encircling the tool and driven by shoulder scrolls and pin threads. The rotating plug flow picks up an element of weld metal, rotates it around with the tool, and deposits it behind the tool ( wiping metal transfer ); it forms plan section loops in tracers cut through by the tool. Radially inward flow from the ring vortex component retains metal longer in the rotating plug and outward flow expels metal earlier; this interaction forms the looping weld seam trace and the tongue and groove bimetallic weld contour. The radial components of the translational and ring vortex flows introduce parent metal intrusions into the small grained nugget material close to the tool shoulder; if this feature is pronounced, nugget collapse may result. Certain weld features, in particular internal banding seen in transverse section as onion rings and associated surface ridges called tool marks , have long implied an oscillation flow component, but have only recently been attributed in the literature to tool eccentricity. Rotating plug shape, typically a hollow cylinder flared at the end where it sticks to the shoulder, varies as pressure distribution on the tool determines where sticking occurs. Simplified power input estimates balanced against heat loss estimates give reasonable temperature estimates, explain why the power requirement changes hardly at all over a wide range of RPM s, and yield isotherms that seem to fall along boundaries of parameter windows of operation.

  8. Downhole component with a pressure equalization passageway

    DOEpatents

    Hall, David R.; Pixton, David S.; Dahlgren, Scott; Reynolds, Jay T.; Breihan, James W.; Briscoe, Michael A.

    2006-08-22

    The present invention includes a downhole component adapted for transmitting downhole data. The downhole component includes a threaded end on a downhole component. The threaded end furthermore includes an interior region, and exterior region, and a mating surface wherein a cavity is formed. A data transmission element is disposed in the cavity and displaces a volume of the cavity. At least one passageway is formed in the threaded region between interior and exterior regions. The passageway is in fluid communication with both the interior and exterior regions and thereby relieves pressure build up of thread lubricant upon tool joint make up.

  9. Tool for Inspecting Alignment of Twinaxial Connectors

    NASA Technical Reports Server (NTRS)

    Smith, Christopher R.

    2008-01-01

    A proposed tool would be used to inspect alignments of mating twinaxial-connector assemblies on interconnecting wiring harnesses. More specifically, the tool would be used to inspect the alignment of each contact pin of each connector on one assembly with the corresponding socket in the corresponding connector on the other assembly. It is necessary to inspect the alignment because if mating of the assemblies is attempted when any pin/socket pair is misaligned beyond tolerance, the connection will not be completed and the dielectric material in the socket will be damaged (see Figure 1). Although the basic principle of the tool is applicable to almost any type of mating connector assemblies, the specific geometry of the tool must match the pin-and-socket geometry of the specific mating assemblies to be inspected. In the original application for which the tool was conceived, each of the mating assemblies contains eight twinaxial connectors; the pin diameter is 0.014 in. (.0.35 mm), and the maximum allowable pin/socket misalignment is 0.007 in. (.0.18 mm). Incomplete connections can result in loss of flight data within the functional path to the space shuttle crew cockpit displays. The tool (see Figure 2) would consist mainly of a transparent disk with alignment clocking tabs that can be fitted onto either connector assembly. Sets of circles or equivalent reference markings are affixed to the face of the tool, located at the desired positions of the mating contact pairs. An inspector would simply fit the tool onto a connector assembly, engaging the clocking tabs until the tool fits tightly. The inspector would then align one set of circles positioning a line of sight perpendicular to one contact within the connector assembly. Mis alignments would be evidenced by the tip of a pin contact straying past the inner edge of the circle. Socket contact misalignments would be evidenced by a crescent-shaped portion of the white dielectric appearing within the circle. The tool could include a variable magnifier plus an illuminator that could be configured so as not to cast shadows.

  10. Investigation of the material flow and texture evolution in friction-stir welded aluminum alloy

    NASA Astrophysics Data System (ADS)

    Kang, Suk Hoon; Han, Heung Nam; Oh, Kyu Hwan; Cho, Jae-Hyung; Lee, Chang Gil; Kim, Sung-Joon

    2009-12-01

    The material flow and crystallographic orientation in aluminum alloy sheets joined by friction stir welding (FSW) were investigated by electron back scattered diffraction (EBSD). The microstructure and microtexture of the material near the stir zone was found to be influenced by the rotational behavior of the tool pin. It was found that, during FSW, the forward movement of the tool pin resulted in loose contact between the tool pin and the receding material at the advancing side. This material behavior inside the joined aluminum plates was also observed by an X-ray micrograph by inlaying a gold marker into the plates. As the advancing speed of the tool increases at a given rotation speed, the loose contact region widens. As the microtexture of the material near the stir zone is very close to the simple shear texture on the basis of the frame of the tool pin in the normal and tangent directions, the amount of incompletely rotated material due to the loose contact could be estimated from the tilt angle of the shear texture in the pole figure around the key hole.

  11. Deformation During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    White, Henry J.

    2002-01-01

    Friction Stir Welding (FSW) is a solid state welding process that exhibits characteristics similar to traditional metal cutting processes. The plastic deformation that occurs during friction stir welding is due to the superposition of three flow fields: a primary rotation of a radially symmetric solid plug of metal surrounding the pin tool, a secondary uniform translation, and a tertiary ring vortex flow (smoke rings) surrounding the tool. If the metal sticks to the tool, the plug surface extends down into the metal from the outer edge of the tool shoulder, decreases in diameter like a funnel, and closes up beneath the pin. Since its invention, ten years have gone by and still very little is known about the physics of the friction stir welding process. In this experiment, an H13 steel weld tool (shoulder diameter, 0.797 in; pin diameter, 0.312 in; and pin length, 0.2506 in) was used to weld three 0.255 in thick plates. The deformation behavior during friction stir welding was investigated by metallographically preparing a plan view sections of the weldment and taking Vickers hardness test in the key-hole region.

  12. Abrasive Wear Resistance of Tool Steels Evaluated by the Pin-on-Disc Testing

    NASA Astrophysics Data System (ADS)

    Bressan, José Divo; Schopf, Roberto Alexandre

    2011-05-01

    Present work examines tool steels abrasion wear resistance and the abrasion mechanisms which are one main contributor to failure of tooling in metal forming industry. Tooling used in cutting and metal forming processes without lubrication fails due to this type of wear. In the workshop and engineering practice, it is common to relate wear resistance as function of material hardness only. However, there are others parameters which influences wear such as: fracture toughness, type of crystalline structure and the occurrence of hard precipitate in the metallic matrix and also its nature. In the present investigation, the wear mechanisms acting in tool steels were analyzed and, by normalized tests, wear resistance performance of nine different types of tool steels were evaluated by pin-on-disc testing. Conventional tool steels commonly used in tooling such as AISI H13 and AISI A2 were compared in relation to tool steels fabricated by sintering process such as Crucible CPM 3V, CPM 9V and M4 steels. Friction and wear testing were carried out in a pin-on-disc automated equipment which pin was tool steel and the counter-face was a abrasive disc of silicon carbide. Normal load of 5 N, sliding velocity of 0.45 m/s, total sliding distance of 3000 m and room temperature were employed. The wear rate was calculated by the Archard's equation and from the plotted graphs of pin cumulated volume loss versus sliding distance. Specimens were appropriately heat treated by quenching and three tempering cycles. Percentage of alloying elements, metallographic analyses of microstructure and Vickers microhardness of specimens were performed, analyzed and correlated with wear rate. The work is concluded by the presentation of a rank of tool steel wear rate, comparing the different tool steel abrasion wear resistance: the best tool steel wear resistance evaluated was the Crucible CPM 9V steel.

  13. New Tool Creates a Big Stir

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A new self-adjusting, retractable pin tool for friction stir welding is now used in the manufacturing of components for NASA Space Shuttles. Friction stir welding is a process that makes straight-line welds without bringing the parent material to a liquid state. This is accomplished through high-speed rotation, which generates frictional heat between the welding tool and the piece being welded. This heat causes the material to soften to the point of plasticity without allowing it to melt. The plasticized material is then transferred from the front edge of the welding tool to the trail edge, where it joins the pieces being welded. However, a major flaw of this method is its reliance on a single-piece pin tool. The weld is left unfinished and a hole remains where the pin was inserted. The hole must be covered with a rivet in order to preserve the integrity of the weld. The NASA-developed pin tool, however, eliminates the need for this finishing step, as its retraction allows continuous rewelding at lesser depths, until the hole is completely closed. With this NASA technology, welding of higher strength alloys, as well as non-planer and variable thickness structures can be achieved.

  14. Method and device for determining the position of a cutting tool relative to the rotational axis of a spindle-mounted workpiece

    DOEpatents

    Williams, R.R.

    1980-09-03

    The present invention is directed to a method and device for determining the location of a cutting tool with respect to the rotational axis of a spindle-mounted workpiece. A vacuum cup supporting a machinable sacrificial pin is secured to the workpiece at a location where the pin will project along and encompass the rotational axis of the workpiece. The pin is then machined into a cylinder. The position of the surface of the cutting tool contacting the machine cylinder is spaced from the rotational axis of the workpiece a distance equal to the radius of the cylinder.

  15. Method and device for determining the position of a cutting tool relative to the rotational axis of a spindle-mounted workpiece

    DOEpatents

    Williams, Richard R.

    1982-01-01

    The present invention is directed to a method and device for determining the location of a cutting tool with respect to the rotational axis of a spindle-mounted workpiece. A vacuum cup supporting a machinable sacrifical pin is secured to the workpiece at a location where the pin will project along and encompass the rotational axis of the workpiece. The pin is then machined into a cylinder. The position of the surface of the cutting tool contacting the machine cylinder is spaced from the rotational aixs of the workpiece a distance equal to the radius of the cylinder.

  16. Inducement of semitendinosus tendon regeneration to the pes anserinus after its harvest for anterior cruciate ligament reconstruction-A new inducer grafting technique

    PubMed Central

    2012-01-01

    Purpose To investigate the usefulness of the “inducer grafting” technique for regeneration of the semitendinosus (ST) tendon after its harvest for anterior cruciate ligament (ACL) reconstruction. Methods Twenty knees of 20 patients (mean age at the time of surgery, 23.1 years) underwent ACL reconstruction with a double bundle autograft using the ST tendon (7 patients) and the ST + the gracilis (G) tendons (13 patients). “Inducer grafting” technique After harvesting the ST tendon, a passing pin with a loop thread is inserted along with the tendon stripper. The passing pin is pulled out from the medial thigh and the loop thread retained. As an inducer graft, the ST tendon branch is used. After the ACL graft has been secured, the inducer graft is sutured to the pes anserinus and the proximal end passed through by pulling the thread out. Then the inducer graft is placed within the tendon canal. The mean follow-up period was 15 months. The presence and morphology of the regenerated ST tendon were examined by MRI. And the isometric hamstring strength was examined at 45°, 90° and 120° of knee flexion. Results One month after the operation in all the patients, MRI demonstrated a low-intensity structure at the anatomical location of the ST, at the level of the superior pole of the patella and the joint line, apparently representing the regenerated ST tendon. Four months after the operation, the distal portion of the regenerated ST tendon had reached the pes anserinus in all patients. Twelve months after the operation, the regenerated ST tendon was hypertrophic in 19 of the 20 patients (95%). The isometric knee flexion torque of the ACL-reconstructed limb was significantly lower at 90° and 120° compared with the contralateral limb. Conclusion These results suggest that the “inducer grafting” technique is able to improve the regeneration rate of the harvested ST tendon and promote hypertrophy of the regenerated ST tendon, extending all the way to the pes anserinus. However, this technique couldn’t improve the deficits in knee flexion torque after ACL reconstruction. PMID:22607724

  17. THREADED ADAPTOR FOR LUGGED PIPE ENDS

    DOEpatents

    Robb, J.E.

    1962-06-01

    An adaptor is designed for enabling a threaded part to be connected to a member at a region having lugs normally receiving bayonet slots of another part for attachment of the latter. It has been found desirable to replace a closure cap connected in a bayonet joint to the end of a coolant tube containing nuclear- reactor fuel elements, with a threaded valve. An adaptor is used which has J- slots receiving lugs on the end of the reactor tube, a thread for connection with the valve, and gear-tooth section enabling a gear-type of tool to rotate the adaptor to seal the valve to the end of the reactor tube. (AEC)

  18. Evaluation of Forces on the Welding Probe of the Automated Retractable Pin-Tool (RPT)

    NASA Technical Reports Server (NTRS)

    Ding, R. J.

    2001-01-01

    The NASA invention entitled 'The Hydraulic Controlled Auto-Adjustable Pin Tool for Friction Stir Welding' (US Patent 5,893,507), better known as the Retractable Pin-Tool (RPT), has been instrumented with a load-detecting device allowing the forces placed on the welding probe to be measured. As the welding probe is plunged into the material, the forces placed on the probe can now be characterized. Of particular interest are those forces experienced as the welding probe comes within close proximity to the back-up anvil. For a given material, it is believed that unique forces are generated relative to the distance between the welding probe and the anvil. The forces have been measured and characterized for several materials, and correlations have been made between these forces and the pin's position relative to the backside of the weld material.

  19. Investigation of Friction Stir Welding of Al Metal Matrix Composite Materials

    NASA Technical Reports Server (NTRS)

    Diwan, Ravinder M.

    2003-01-01

    The innovative process of Friction Stir Welding (FSW) has generated tremendous interest since its inception about a decade or so ago since the first patent in 1991 by TWI of Cambridge, England. This interest has been seen in many recent international conferences and publications on the subject and relevant published literature. Still the process needs both intensive basic study of deformation mechanisms during this FSW process and analysis and feasibility study to evaluate production methods that will yield high quality strong welds from the stirring action of the appropriate pin tool into the weld plate materials. Development of production processes is a complex task that involves effects of material thickness, materials weldability, pin tool design, pin height, and pin shoulder diameter and related control conditions. The frictional heating with rotational speeds of the pin tool as it plunges into the material and the ensuing plastic flow arising during the traverse of the welding faying surfaces provide the known special advantages of the FSW process in the area of this new advanced joining technology.

  20. Influence of basal-plane dislocation structures on expansion of single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes

    NASA Astrophysics Data System (ADS)

    Hayashi, Shohei; Yamashita, Tamotsu; Senzaki, Junji; Miyazato, Masaki; Ryo, Mina; Miyajima, Masaaki; Kato, Tomohisa; Yonezawa, Yoshiyuki; Kojima, Kazutoshi; Okumura, Hajime

    2018-04-01

    The origin of expanded single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes was investigated by the stress-current test. At a stress-current density lower than 25 A cm-2, triangular stacking faults were formed from basal-plane dislocations in the epitaxial layer. At a stress-current density higher than 350 A cm-2, both triangular and long-zone-shaped stacking faults were formed from basal-plane dislocations that converted into threading edge dislocations near the interface between the epitaxial layer and the substrate. In addition, the conversion depth of basal-plane dislocations that expanded into the stacking fault was inside the substrate deeper than the interface. These results indicate that the conversion depth of basal-plane dislocations strongly affects the threshold stress-current density at which the expansion of stacking faults occurs.

  1. Macrostructure of Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Aloor, S.; Nowak, B.; Vargas, R.; McClure, J. C.; Murr, L. E.; Nunes, A. C.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    This paper will discuss two of the well know large scale features of friction stir welds: the "onion rings" seen in transverse sections, and the striations on the surface of the work piece. It will be shown that the surface features (sometimes called "tool marks") are the result of irregularities on the rotating shoulder of the pin tool and disappear when the shoulder is polished. The "onion ring" structure seen in transverse cross sections is formed by parts of the "carousel", the zone of material adjacent to and rotating with the pin tool, that are shed off in each rotation. The relation between the carousel and the "ring vortex", a rotational flow extending both in and out of the carousel and resembling a smoke-ring with the hole centered on the pin tool, will be discussed.

  2. FODEM: A Multi-Threaded Research and Development Method for Educational Technology

    ERIC Educational Resources Information Center

    Suhonen, Jarkko; de Villiers, M. Ruth; Sutinen, Erkki

    2012-01-01

    Formative development method (FODEM) is a multithreaded design approach that was originated to support the design and development of various types of educational technology innovations, such as learning tools, and online study programmes. The threaded and agile structure of the approach provides flexibility to the design process. Intensive…

  3. Method for forming materials

    DOEpatents

    Tolle, Charles R [Idaho Falls, ID; Clark, Denis E [Idaho Falls, ID; Smartt, Herschel B [Idaho Falls, ID; Miller, Karen S [Idaho Falls, ID

    2009-10-06

    A material-forming tool and a method for forming a material are described including a shank portion; a shoulder portion that releasably engages the shank portion; a pin that releasably engages the shoulder portion, wherein the pin defines a passageway; and a source of a material coupled in material flowing relation relative to the pin and wherein the material-forming tool is utilized in methodology that includes providing a first material; providing a second material, and placing the second material into contact with the first material; and locally plastically deforming the first material with the material-forming tool so as mix the first material and second material together to form a resulting material having characteristics different from the respective first and second materials.

  4. Friction Stir Welding for Aluminum Metal Matrix Composites (MMC's) (Center Director's Discretionary Fund, Project No. 98-09)

    NASA Technical Reports Server (NTRS)

    Lee, J. A.; Carter, R. W.; Ding, J.

    1999-01-01

    This technical memorandum describes an investigation of using friction stir welding (FSW) process for joining a variety of aluminum metal matrix composites (MMC's) reinforced with discontinuous silicon-carbide (SiC) particulate and functional gradient materials. Preliminary results show that FSW is feasible to weld aluminum MMC to MMC or to aluminum-lithium 2195 if the SiC reinforcement is <25 percent by volume fraction. However, a softening in the heat-affected zone was observed and is known to be one of the major limiting factors for joint strength. The pin tool's material is made from a low-cost steel tool H-13 material, and the pin tool's wear was excessive such that the pin tool length has to be manually adjusted for every 5 ft of weldment. Initially, boron-carbide coating was developed for pin tools, but it did not show a significant improvement in wear resistance. Basically, FSW is applicable mainly for butt joining of flat plates. Therefore, FSW of cylindrical articles such as a flange to a duct with practical diameters ranging from 2-5 in. must be fully demonstrated and compared with other proven MMC joining techniques for cylindrical articles.

  5. The Effect of Tool Profiles on Mechanical Properties of Friction Stir Welded Al5052 T-Joints.

    PubMed

    Kim, Byeong-Jin; Bang, Hee-Seon; Bang, Han-Sur

    2018-03-01

    Al5052 T butt joints with two skins (5 mm) and one stringer (3 mm) has been successfully welded by friction stir welding (FSW). Notably, this paper has been investigated the effect of tool shape on welded formation mechanism and mechanical properties. The used shapes of tool pin are two types which are cylinder (type 1) and frustum (type 2). Dimension on two types of tool pin shape is respectively pin length of 4.7 mm and pin diameter of frustum type of top (5 mm) and bottom (3 mm). The results of experiment show that inner defects in FSWed T-joints increase significantly in accordance with traverse speed. The maximum tensile strength of welded joint fabricated using type 1 is equivalent to 85% that of the base metal, which is approximately 10% higher than that of type 2. Because welded joint of type 1 has more smoothly plastic flow in comparison with type 2. Consequently, the results show that type 1 is better appropriate for friction stir welded Al5052 T butt joints than type 2.

  6. Process Model for Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Adams, Glynn

    1996-01-01

    Friction stir welding (FSW) is a relatively new process being applied for joining of metal alloys. The process was initially developed by The Welding Institute (TWI) in Cambridge, UK. The FSW process is being investigated at NASA/MSEC as a repair/initial weld procedure for fabrication of the super-light-weight aluminum-lithium shuttle external tank. The FSW investigations at MSFC were conducted on a horizontal mill to produce butt welds of flat plate material. The weldment plates are butted together and fixed to a backing plate on the mill bed. A pin tool is placed into the tool holder of the mill spindle and rotated at approximately 400 rpm. The pin tool is then plunged into the plates such that the center of the probe lies at, one end of the line of contact, between the plates and the shoulder of the pin tool penetrates the top surface of the weldment. The weld is produced by traversing the tool along the line of contact between the plates. A lead angle allows the leading edge of the shoulder to remain above the top surface of the plate. The work presented here is the first attempt at modeling a complex phenomenon. The mechanical aspects of conducting the weld process are easily defined and the process itself is controlled by relatively few input parameters. However, in the region of the weld, plasticizing and forging of the parent material occurs. These are difficult processes to model. The model presented here addresses only variations in the radial dimension outward from the pin tool axis. Examinations of the grain structure of the weld reveal that a considerable amount of material deformation also occurs in the direction parallel to the pin tool axis of rotation, through the material thickness. In addition, measurements of the axial load on the pin tool demonstrate that the forging affect of the pin tool shoulder is an important process phenomenon. Therefore, the model needs to be expanded to account for the deformations through the material thickness and the forging affect of the shoulder. The energy balance at the boundary of the plastic region with the environment required that energy flow away from the boundary in both radial directions. One resolution to this problem may be to introduce a time dependency into the process model, allowing the energy flow to oscillate across this boundary. Finally, experimental measurements are needed to verify the concepts used here and to aid in improving the model.

  7. GaAsP/InGaP HBTs grown epitaxially on Si substrates: Effect of dislocation density on DC current gain

    NASA Astrophysics Data System (ADS)

    Heidelberger, Christopher; Fitzgerald, Eugene A.

    2018-04-01

    Heterojunction bipolar transistors (HBTs) with GaAs0.825P0.175 bases and collectors and In0.40Ga0.60P emitters were integrated monolithically onto Si substrates. The HBT structures were grown epitaxially on Si via metalorganic chemical vapor deposition, using SiGe compositionally graded buffers to accommodate the lattice mismatch while maintaining threading dislocation density at an acceptable level (˜3 × 106 cm-2). GaAs0.825P0.175 is used as an active material instead of GaAs because of its higher bandgap (increased breakdown voltage) and closer lattice constant to Si. Misfit dislocation density in the active device layers, measured by electron-beam-induced current, was reduced by making iterative changes to the epitaxial structure. This optimized process culminated in a GaAs0.825P0.175/In0.40Ga0.60P HBT grown on Si with a DC current gain of 156. By considering the various GaAsP/InGaP HBTs grown on Si substrates alongside several control devices grown on GaAs substrates, a wide range of threading dislocation densities and misfit dislocation densities in the active layers could be correlated with HBT current gain. The effect of threading dislocations on current gain was moderated by the reduction in minority carrier lifetime in the base region, in agreement with existing models for GaAs light-emitting diodes and photovoltaic cells. Current gain was shown to be extremely sensitive to misfit dislocations in the active layers of the HBT—much more sensitive than to threading dislocations. We develop a model for this relationship where increased base current is mediated by Fermi level pinning near misfit dislocations.

  8. Self-Reacting Friction Stir Welding for Aluminum Alloy Circumferential Weld Applications

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerry; Cantrell, Mark; Carter, Robert

    2003-01-01

    Friction stir welding is an innovative weld process that continues to grow in use, in the commercial, defense, and space sectors. It produces high quality and high strength welds in aluminum alloys. The process consists of a rotating weld pin tool that plasticizes material through friction. The plasticized material is welded by applying a high weld forge force through the weld pin tool against the material during pin tool rotation. The high weld forge force is reacted against an anvil and a stout tool structure. A variation of friction stir welding currently being evaluated is self-reacting friction stir welding. Self-reacting friction stir welding incorporates two opposing shoulders on the crown and root sides of the weld joint. In self-reacting friction stir welding, the weld forge force is reacted against the crown shoulder portion of the weld pin tool by the root shoulder. This eliminates the need for a stout tooling structure to react the high weld forge force required in the typical friction stir weld process. Therefore, the self-reacting feature reduces tooling requirements and, therefore, process implementation costs. This makes the process attractive for aluminum alloy circumferential weld applications. To evaluate the application of self-reacting friction stir welding for aluminum alloy circumferential welding, a feasibility study was performed. The study consisted of performing a fourteen-foot diameter aluminum alloy circumferential demonstration weld using typical fusion weld tooling. To accomplish the demonstration weld, weld and tack weld development were performed and fourteen-foot diameter rings were fabricated. Weld development consisted of weld pin tool selection and the generation of a process map and envelope. Tack weld development evaluated gas tungsten arc welding and friction stir welding for tack welding rings together for circumferential welding. As a result of the study, a successful circumferential demonstration weld was produced leading the way for future circumferential weld implementation.

  9. Developing Oral Proficiency with VoiceThread: Learners' Strategic Uses and Views

    ERIC Educational Resources Information Center

    Dugartsyrenova, Vera A.; Sardegna, Veronica G.

    2017-01-01

    This study explored Russian as a foreign language (RFL) learners' self-reported strategic uses of "VoiceThread" (VT)--a multimodal asynchronous computer-mediated communication tool--in order to gain insights into learner perceived effectiveness of VT for second language (L2) oral skills development and to determine the factors that…

  10. Welding of Al6061and Al6082-Cu composite by friction stir processing

    NASA Astrophysics Data System (ADS)

    Iyer, R. B.; Dhabale, R. B.; Jatti, V. S.

    2016-09-01

    Present study aims at investigating the influence of process parameters on the microstructure and mechanical properties such as tensile strength and hardness of the dissimilar metal without and with copper powder. Before conducting the copper powder experiments, optimum process parameters were obtained by conducting experiments without copper powder. Taguchi's experimental L9 orthogonal design layout was used to carry out the experiments without copper powder. Threaded pin tool geometry was used for conducting the experiments. Based on the experimental results and Taguchi's analysis it was found that maximum tensile strength of 66.06 MPa was obtained at 1400 rpm spindle speed and weld speed of 20 mm/min. Maximum micro hardness (92 HV) was obtained at 1400 rpm spindle speed and weld speed of 16 mm/min. At these optimal setting of process parameters aluminium alloys were welded with the copper powder. Experimental results demonstrated that the tensile strength (96.54 MPa) and micro hardness (105 HV) of FSW was notably affected by the addition of copper powder when compared with FSW joint without copper powder. Tensile failure specimen was analysed using Scanning Electron Microscopy in order to study the failure mechanism.

  11. Continuous Monitoring of Pin Tip Wear and Penetration into Rock Surface Using a New Cerchar Abrasivity Testing Device

    NASA Astrophysics Data System (ADS)

    Hamzaban, Mohammad-Taghi; Memarian, Hossein; Rostami, Jamal

    2014-03-01

    Evaluation of rock abrasivity is important when utilizing mechanized excavation in various mining and civil projects in hard rock. This is due to the need for proper selection of the rock cutting tools, estimation of the tool wear, machine downtime for cutter change, and costs. The Cerchar Abrasion Index (CAI) test is one of the simplest and most widely used methods for evaluating rock abrasivity. In this study, a new device for the determination of frictional forces and depth of pin penetration into the rock surface during a Cerchar test is discussed. The measured parameters were used to develop an analytical model for calculation of the size of the wear flat (and hence a continuous measure of CAI as the pin moves over the sample) and pin tip penetration into the rock during the test. Based on this model, continuous curves of CAI changes and pin tip penetration into the rock were plotted. Results of the model were used for introduction of a new parameter describing rock-pin interaction and classification of rock abrasion.

  12. Advanced Neutronics Tools for BWR Design Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santamarina, A.; Hfaiedh, N.; Letellier, R.

    2006-07-01

    This paper summarizes the developments implemented in the new APOLLO2.8 neutronics tool to meet the required target accuracy in LWR applications, particularly void effects and pin-by-pin power map in BWRs. The Method Of Characteristics was developed to allow efficient LWR assembly calculations in 2D-exact heterogeneous geometry; resonant reaction calculation was improved by the optimized SHEM-281 group mesh, which avoids resonance self-shielding approximation below 23 eV, and the new space-dependent method for resonant mixture that accounts for resonance overlapping. Furthermore, a new library CEA2005, processed from JEFF3.1 evaluations involving feedback from Critical Experiments and LWR P.I.E, is used. The specific '2005-2007more » BWR Plan' settled to demonstrate the validation/qualification of this neutronics tool is described. Some results from the validation process are presented: the comparison of APOLLO2.8 results to reference Monte Carlo TRIPOLI4 results on specific BWR benchmarks emphasizes the ability of the deterministic tool to calculate BWR assembly multiplication factor within 200 pcm accuracy for void fraction varying from 0 to 100%. The qualification process against the BASALA mock-up experiment stresses APOLLO2.8/CEA2005 performances: pin-by-pin power is always predicted within 2% accuracy, reactivity worth of B4C or Hf cruciform control blade, as well as Gd pins, is predicted within 1.2% accuracy. (authors)« less

  13. A Fast and On-Machine Measuring System Using the Laser Displacement Sensor for the Contour Parameters of the Drill Pipe Thread.

    PubMed

    Dong, Zhixu; Sun, Xingwei; Chen, Changzheng; Sun, Mengnan

    2018-04-13

    The inconvenient loading and unloading of a long and heavy drill pipe gives rise to the difficulty in measuring the contour parameters of its threads at both ends. To solve this problem, in this paper we take the SCK230 drill pipe thread-repairing machine tool as a carrier to design and achieve a fast and on-machine measuring system based on a laser probe. This system drives a laser displacement sensor to acquire the contour data of a certain axial section of the thread by using the servo function of a CNC machine tool. To correct the sensor's measurement errors caused by the measuring point inclination angle, an inclination error model is built to compensate data in real time. To better suppress random error interference and ensure real contour information, a new wavelet threshold function is proposed to process data through the wavelet threshold denoising. Discrete data after denoising is segmented according to the geometrical characteristics of the drill pipe thread, and the regression model of the contour data in each section is fitted by using the method of weighted total least squares (WTLS). Then, the thread parameters are calculated in real time to judge the processing quality. Inclination error experiments show that the proposed compensation model is accurate and effective, and it can improve the data acquisition accuracy of a sensor. Simulation results indicate that the improved threshold function is of better continuity and self-adaptability, which makes sure that denoising effects are guaranteed, and, meanwhile, the complete elimination of real data distorted in random errors is avoided. Additionally, NC50 thread-testing experiments show that the proposed on-machine measuring system can complete the measurement of a 25 mm thread in 7.8 s, with a measurement accuracy of ±8 μm and repeatability limit ≤ 4 μm (high repeatability), and hence the accuracy and efficiency of measurement are both improved.

  14. A Fast and On-Machine Measuring System Using the Laser Displacement Sensor for the Contour Parameters of the Drill Pipe Thread

    PubMed Central

    Sun, Xingwei; Chen, Changzheng; Sun, Mengnan

    2018-01-01

    The inconvenient loading and unloading of a long and heavy drill pipe gives rise to the difficulty in measuring the contour parameters of its threads at both ends. To solve this problem, in this paper we take the SCK230 drill pipe thread-repairing machine tool as a carrier to design and achieve a fast and on-machine measuring system based on a laser probe. This system drives a laser displacement sensor to acquire the contour data of a certain axial section of the thread by using the servo function of a CNC machine tool. To correct the sensor’s measurement errors caused by the measuring point inclination angle, an inclination error model is built to compensate data in real time. To better suppress random error interference and ensure real contour information, a new wavelet threshold function is proposed to process data through the wavelet threshold denoising. Discrete data after denoising is segmented according to the geometrical characteristics of the drill pipe thread, and the regression model of the contour data in each section is fitted by using the method of weighted total least squares (WTLS). Then, the thread parameters are calculated in real time to judge the processing quality. Inclination error experiments show that the proposed compensation model is accurate and effective, and it can improve the data acquisition accuracy of a sensor. Simulation results indicate that the improved threshold function is of better continuity and self-adaptability, which makes sure that denoising effects are guaranteed, and, meanwhile, the complete elimination of real data distorted in random errors is avoided. Additionally, NC50 thread-testing experiments show that the proposed on-machine measuring system can complete the measurement of a 25 mm thread in 7.8 s, with a measurement accuracy of ±8 μm and repeatability limit ≤ 4 μm (high repeatability), and hence the accuracy and efficiency of measurement are both improved. PMID:29652836

  15. Drill string transmission line

    DOEpatents

    Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Bradford, Kline; Fox, Joe

    2006-03-28

    A transmission line assembly for transmitting information along a downhole tool comprising a pin end, a box end, and a central bore traveling between the pin end and the box end, is disclosed in one embodiment of the invention as including a protective conduit. A transmission line is routed through the protective conduit. The protective conduit is routed through the central bore and the ends of the protective conduit are routed through channels formed in the pin end and box end of the downhole tool. The protective conduit is elastically forced into a spiral or other non-linear path along the interior surface of the central bore by compressing the protective conduit to a length within the downhole tool shorter than the protective conduit.

  16. Table-driven software architecture for a stitching system

    NASA Technical Reports Server (NTRS)

    Thrash, Patrick J. (Inventor); Miller, Jeffrey L. (Inventor); Pallas, Ken (Inventor); Trank, Robert C. (Inventor); Fox, Rhoda (Inventor); Korte, Mike (Inventor); Codos, Richard (Inventor); Korolev, Alexandre (Inventor); Collan, William (Inventor)

    2001-01-01

    Native code for a CNC stitching machine is generated by generating a geometry model of a preform; generating tool paths from the geometry model, the tool paths including stitching instructions for making stitches; and generating additional instructions indicating thickness values. The thickness values are obtained from a lookup table. When the stitching machine runs the native code, it accesses a lookup table to determine a thread tension value corresponding to the thickness value. The stitching machine accesses another lookup table to determine a thread path geometry value corresponding to the thickness value.

  17. Study on Joint Interface and Mechanical Properties of Cu/Pb-Sn/Cu Lap Joint Produced by Friction Stir Soldering Process

    NASA Astrophysics Data System (ADS)

    Sarkari Khorrami, Mahmoud; Kokabi, Amir Hossein; Movahedi, Mojtaba

    2015-05-01

    In this work, friction stir soldering (FSS) as a new approach for fabrication of copper/copper lap joints was introduced. This process is principally based on the friction stir processing (FSP) that can be performed using FSP tools with and without pin on the top sheet. In the present study, Pb-Sn foil was used as a solder which would be melted and then extruded in the area between the copper sheets during FSS process. This process was carried out using tools with and without pin at various rotation speeds of 1200, 1400, and 1600 rpm and traverse speed of 32 mm/min. Also, the same joint was fabricated using furnace soldering to compare the mechanical properties obtained with FSS and furnace soldering processes. It was observed that FSS possesses some advantages over the conventional furnace soldering process including the formation of more bond area at the interface corresponding to the higher fracture load of FSS joints compared with furnace soldering one. Moreover, it was concluded that the thickness of intermetallic compounds (IMCs) and the formation of voids at the joint interface were the predominant factor determining the mechanical properties of the FSS joints produced by FSS tool with and without pin, respectively. The microstructural examinations revealed that Cu-Sn IMCs of Cu3Sn and Cu6Sn5 were formed at the joint interface. It was observed that the FSS joint produced by tool with pin experienced the more peak temperature in comparison with that produced by pin-free tool. This may lead to the formation of thicker IMCs at the interface. Of course, the thickness of IMCs can be controlled by choosing proper FSS parameters, especially the rotation speed of the tool.

  18. Threading on ADI Cast Iron, Developing Tools and Conditions

    NASA Astrophysics Data System (ADS)

    Elósegui, I.; de Lacalle, L. N. López

    2011-01-01

    The present work is focussed on the improvement of the design and performance of the taps used for making threaded holes in ADI (Austempered Ductile Iron). It is divided in two steps: a) The development of a method valid to compare the taps wear without reaching the end of their life, measuring the required torque to make one threaded hole, after having made previously a significant number of threaded holes. The tap wear causes some teeth geometrical changes, that supposes an increase in the required torque and axial force. b) The taps wear comparison method is open to apply on different PVD coated taps, AlTiN, AlCrSiN, AlTiSiN, , and to different geometries.

  19. Multisurface fixture permits easy grinding of tool bit angles

    NASA Technical Reports Server (NTRS)

    Jones, C. R.

    1966-01-01

    Multisurface fixture with a tool holder permits accurate grinding and finishing of right and left hand single point threading tools. All angles are ground by changing the fixture position to rest at various references angles without removing the tool from the holder.

  20. Transforming Interaction and Social Presence through Course Design: Authentic Implementation of Threaded Discussion Tools

    ERIC Educational Resources Information Center

    Pierce, Richard

    2013-01-01

    This study investigated course design factors influencing social presence and the development of ICT self-efficacy. Instructional design factors that promoted authentic uses of threaded discussions as a vehicle to establish social presence, self-directed learning and cooperative learning resulted in 900 posts in a semester, when no posts were…

  1. Theory, Self, and Rhetoric Or, What To Do With Ariadne's Thread.

    ERIC Educational Resources Information Center

    Marinara, Martha

    Using Ariadne's thread in the narrative of the labyrinth as a metaphor for the elusiveness of language, this paper explores the concept of "self" to prepare for the discussion of autobiography as a "tool" for teaching writing, and to create a connection between a politically enabled self, a private self, and critical theory.…

  2. The Plunge Phase of Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur; McClure, John; Avila, Ricardo

    2005-01-01

    Torque and plunge force during the initial plunge phase in Friction Stir Welding were measured for a 0.5 inch diameter pin entering a 2219 aluminum alloy plate. Weld structures were preserved for metallographic observation by making emergency stops at various plunge depths. The plunging pin tool is seen to be surrounded by a very fine grained layer of recrystallized metal extending substantially below the bottom of the pin, implying a shear interface in the metal below and not at the tool-metal interface. Torque and plunge force during the initial plunge phase in Friction Stir Welding are calculated from a straight forward model based on a concept to plastic flow in the vicinity of the plunging tool compatible with structural observations. The concept: a disk of weld metal seized to and rotating with the bottom of the pin is squeezed out laterally by the plunge force and extruded upwards in a hollow cylinder around the tool. As the shear surface separating rotating disk from stationary weld metal engulfs fresh metal, the fresh metal is subjected to severe shear deformation, which results in its recrystallization. Encouraging agreement between computations and measured torque and plunge force is obtained.

  3. On the Performance of an Algebraic MultigridSolver on Multicore Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, A H; Schulz, M; Yang, U M

    2010-04-29

    Algebraic multigrid (AMG) solvers have proven to be extremely efficient on distributed-memory architectures. However, when executed on modern multicore cluster architectures, we face new challenges that can significantly harm AMG's performance. We discuss our experiences on such an architecture and present a set of techniques that help users to overcome the associated problems, including thread and process pinning and correct memory associations. We have implemented most of the techniques in a MultiCore SUPport library (MCSup), which helps to map OpenMP applications to multicore machines. We present results using both an MPI-only and a hybrid MPI/OpenMP model.

  4. Flow in the Proximity of the Pin-Tool in Friction Stir Welding and Its Relation to Weld Homogeneity

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2000-01-01

    In the Friction Stir Welding (FSW) process a rotating pin inserted into a seam literally stirs the metal from each side of the seam together. It is proposed that the flow in the vicinity of the pin-tool comprises a primary rapid shear over a cylindrical envelope covering the pin-tool and a relatively slow secondary flow taking the form of a ring vortex about the tool circumference. This model is consistent with a plastic characterization of metal flow, where discontinuities in shear flow are allowed but not viscous effects. It is consistent with experiments employing several different kinds of tracer: atomic markers, shot, and wire. If a rotating disc with angular velocity w is superposed on a translating continuum with linear velocity omega, the trajectories of tracer points become circular arcs centered upon a point displaced laterally a distance v/omega from the center of rotation of the disc in the direction of the advancing side of the disc. In the present model a stream of metal approaching the tool (taken as the coordinate system of observation) is sheared at the slip surface, rapidly rotated around the tool, sheared again on the opposite side of the tool, and deposited in the wake of the tool. Local shearing rates are high, comparable to metal cutting in this model. The flow patterns in the vicinity of the pin-tool determine the level of homogenization and dispersal of contaminants that occurs in the FSW process. The approaching metal streams enfold one another as they are rotated around the tool. Neglecting mixing they return to the same lateral position in the wake of the tool preserving lateral tracer positions as if the metal had flowed past the tool like an extrusion instead of being rotated around it. (The seam is, however, obliterated.) The metal stream of thickness approximately that of the tool diameter D is wiped past the tool at elevated temperatures drawn out to a thickness of v/2(omega) in the wiping zone. Mixing distances in the wiping zone are multiplied in the unfolded metal. Inhomogeneities on a smaller scale than the mixing length are obliterated, but structure on a larger scale may be transmitted to the wake of a FSW weld.

  5. An Upgrade Pinning Block: A Mechanical Practical Aid for Fast Labelling of the Insect Specimens.

    PubMed

    Ghafouri Moghaddam, Mohammad Hossein; Ghafouri Moghaddam, Mostafa; Rakhshani, Ehsan; Mokhtari, Azizollah

    2017-01-01

    A new mechanical innovation is described to deal with standard labelling of dried specimens on triangular cards and/or pinned specimens in personal and public collections. It works quickly, precisely, and easily and is very useful for maintaining label uniformity in collections. The tools accurately sets the position of labels in the shortest possible time. This tools has advantages including rapid processing, cost effectiveness, light weight, and high accuracy, compared to conventional methods. It is fully customisable, compact, and does not require specialist equipment to assemble. Conventional methods generally require locating holes on the pinning block surface when labelling with a resulting risk to damage of the specimens. Insects of different orders can be labelled by this simple and effective tool.

  6. An Upgrade Pinning Block: A Mechanical Practical Aid for Fast Labelling of the Insect Specimens

    PubMed Central

    Ghafouri Moghaddam, Mohammad Hossein; Rakhshani, Ehsan; Mokhtari, Azizollah

    2017-01-01

    Abstract A new mechanical innovation is described to deal with standard labelling of dried specimens on triangular cards and/or pinned specimens in personal and public collections. It works quickly, precisely, and easily and is very useful for maintaining label uniformity in collections. The tools accurately sets the position of labels in the shortest possible time. This tools has advantages including rapid processing, cost effectiveness, light weight, and high accuracy, compared to conventional methods. It is fully customisable, compact, and does not require specialist equipment to assemble. Conventional methods generally require locating holes on the pinning block surface when labelling with a resulting risk to damage of the specimens. Insects of different orders can be labelled by this simple and effective tool. PMID:29104440

  7. Open Reduction With K-Wire Stabilization of Fracture Dislocations of the Mandibular Condyle: A Retrospective Review.

    PubMed

    Haghighi, Kayvon; Manolakakis, Manolis G; Balog, Connor

    2017-06-01

    The aim of this study was to determine the feasibility of direct transcortical stabilization of fracture dislocations of the mandibular condyle (FDMCs) using narrow-diameter non-threaded Kirschner wire (K-wire). This retrospective review reports on the treatment outcomes for 12 patients (15 fractures) with FDMCs treated with open reduction using transcortical 0.027-inch K-wire stabilization. Postoperative parameters of relevance included infection, facial nerve function, hardware removal, mandibular range of motion, and radiographic determination of fracture union. Three patients had bilateral FDMCs and 9 had unilateral FDMCs (age range at time of injury, 14 to 72 yr; mean age, 32 yr). Postoperative follow-up ranged from 6 weeks to 2 years. Four patients required removal of K-wire hardware for different reasons. K-wires were removed because of infection in 1 patient. Another patient required removal because of migration of the pin into the joint space. One pin was removed electively and another was removed for nonspecific postoperative symptoms that resolved after pin removal. Persistent facial nerve deficit was observed in 1 patient. Open reduction with transcortical K-wire stabilization can achieve satisfactory outcomes for the treatment of FDMC. Further investigation is needed in determining the efficacy of this fixation technique in the management of FDMC. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  8. A simple, cheap, one-minute method to mount insect pins for use as sharp-tipped probes in plant dissection.

    PubMed

    Frohlich, Michael W

    2005-08-01

    A new method is presented for twist mounting insect pins onto standard dissecting (teasing) needles. Insect pins, with their sharp points, are ideal for fine dissection of plants, especially of shoot tips and early developing flower buds. Twist mounting makes them convenient and effective dissecting tools to prepare specimens for SEM.

  9. IMp: The customizable LEGO(®) Pinned Insect Manipulator.

    PubMed

    Dupont, Steen; Price, Benjamin; Blagoderov, Vladimir

    2015-01-01

    We present a pinned insect manipulator (IMp) constructed of LEGO® building bricks with two axes of movement and two axes of rotation. In addition we present three variants of the IMp to emphasise the modular design, which facilitates resizing to meet the full range of pinned insect specimens, is fully customizable, collapsible, affordable and does not require specialist tools or knowledge to assemble.

  10. Shifting from Obligatory Discourse to Rich Dialogue: Promoting Student Interaction in Asynchronous Threaded Discussion Postings

    ERIC Educational Resources Information Center

    Mooney, Mara; Southard, Sheryne; Burton, Christie H.

    2014-01-01

    Asynchronous online threaded discussions are widely recognized as a tool to enhance learning in the virtual classroom. While they can serve as a mechanism for reinforcing material and promoting a deeper understanding of course content, discussion boards often lack rich and dynamic dialogue, and instead serve as a field of obligatory discourse,…

  11. Cargo-Positioning System for Next-Generation Spacecraft

    NASA Technical Reports Server (NTRS)

    Holladay, Jon; Colton, Jonathan

    2006-01-01

    A report discusses a proposed system for mounting loaded pallets in the cargo bay of a next-generation space-shuttle-like spacecraft, such that the center of mass of the cargo would lie within a 1-in. (2.54-cm) cube that would also contain the center of mass of the spacecraft. The system would include (1) an algorithm for planning the locations of the pallets, given the geometric and weight properties of the pallets, and the geometric restrictions of the cargo bay; (2) quick-connect/quick-disconnect mounting mechanisms similar to those now used on air hoses; (3) other mounting mechanisms, comprising mostly spring-loaded pins, in a locking subsystem that would prevent shifting of the pallets under load; and (4) mechanisms for performing fine position adjustments to satisfy the center-of-mass requirement. The position- adjusting mechanisms would be motor-driven lead-screw mechanisms in groups of three - one for positioning each pin of the locking subsystem along each of three mutually perpendicular coordinate axes. The system also would include a triple-threaded screw that would provide compensation for thermal expansion or contraction of the spacecraft.

  12. Motor-driven screwing and transporting tool for reactor pressure vessel head retaining fastenings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholz, M.

    1977-09-13

    The invention concerns a motor-driven screwing and transporting tool for tightening or loosening the threaded studs and associated tightening nuts of the head bolting of pressure vessels. After the tightening nuts are loosened or before they are tightened, the weight of the studs is taken over by rotating bearings that can be lifted, so that the studs with their tightening nuts can be screwed in or out, the screw threads of the studs being thus weight-relieved. The invention is intended primarily for nuclear reactor pressure vessels. 21 claims, 6 figures.

  13. Fastener Starter

    NASA Technical Reports Server (NTRS)

    Chandler, Faith; Garton, Harry; Valentino, Bill; Amett, Mike

    2005-01-01

    The Fastener Starter is a creative solution to prevent the loss of small fasteners during their installation. This is the only currently available tool that can firmly grip and hold a single screw, bolt, nut, washer, spacer, or any combination of these parts. Other commercially available fastener starters are unable to accommodate a variety of parts simultaneously. The Fastener Starter is a more capable and easier tool to use than prior tools. Its compact size allows it to be used effectively in cramped, difficult-to-see locations. Its design also allows it to be used with or without handles and extenders in other difficult-to-reach locations. It provides better protection against cross threading and loss of fasteners and associated parts. The Fastener Starter is non-magnetic and does not off-gas, thus meeting flight hardware requirements. The Fastener Starter incorporates a combination of features of several commercially available tools, providing an improved means of installing small fasteners. The Fastener Starter includes a custom molded insert that can be removed easily and replaced with a conventional tool bit (e.g., a screwdriver or hex-driver bit). When used with the insert, the Fastener Starter prevents cross threading and damage to internal threaded holes. This is achieved by allowing the fastener to slip within the tool insert when used without a conventional tool bit. Alternatively, without the insert and with a tool bit, the Fastener Starter can torque a fastener. The Fastener Starter has a square recess hole that accepts a conventional square drive handle or extension to accommodate a variety of applications by providing flexibility in handle style and length.

  14. Wear behavior of carbide tool coated with Yttria-stabilized zirconia nano particles.

    NASA Astrophysics Data System (ADS)

    Jadhav, Pavandatta M.; Reddy, Narala Suresh Kumar

    2018-04-01

    Wear mechanism takes predominant role in reducing the tool life during machining of Titanium alloy. Challenges of wear mechanisms such as variation in chip, high pressure loads and spring back are responsible for tool wear. In addition, many tool materials are inapt for machining due to low thermal conductivity and volume specific heat of these materials results in high cutting temperature during machining. To confront this issue Electrostatic Spray Coating (ESC) coating technique is utilized to enhance the tool life to an acceptable level. The Yttria Stabilized Zirconia (YSZ) acts as a thermal barrier coating having high thermal expansion coefficient and thermal shock resistance. This investigation focuses on the influence of YSZ nanocoating on the tungsten carbide tool material and improve the machinability of Ti-6Al-4V alloy. YSZ nano powder was coated on the tungsten carbide pin by using ESC technique. The coatings have been tested for wear and friction behavior by using a pin-on-disc tribological tester. The dry sliding wear test was performed on Titanium alloy (Ti-6Al-4V) disc and YSZ coated tungsten carbide (pin) at ambient atmosphere. The performance parameters like wear rate and temperature rise were considered upon performing the dry sliding test on Ti-6Al-4V alloy disc. The performance parameters were calculated by using coefficient of friction and frictional force values which were obtained from the pin on disc test. Substantial resistance to wear was achieved by the coating.

  15. 18 CFR 367.3940 - Account 394, Tools, shop and garage equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Ladders. (21) Lathes. (22) Machine tools. (23) Motor-driven tools. (24) Motors. (25) Pipe threading and..., shop and garage equipment. 367.3940 Section 367.3940 Conservation of Power and Water Resources FEDERAL... equipment. (a) This account must include the cost of tools, implements, and equipment used in construction...

  16. IMp: The customizable LEGO® Pinned Insect Manipulator

    PubMed Central

    Dupont, Steen; Price, Benjamin; Blagoderov, Vladimir

    2015-01-01

    Abstract We present a pinned insect manipulator (IMp) constructed of LEGO® building bricks with two axes of movement and two axes of rotation. In addition we present three variants of the IMp to emphasise the modular design, which facilitates resizing to meet the full range of pinned insect specimens, is fully customizable, collapsible, affordable and does not require specialist tools or knowledge to assemble. PMID:25685035

  17. Manufacture of threads with variable pitch by using noncircular gears

    NASA Astrophysics Data System (ADS)

    Slătineanu, L.; Dodun, O.; Coteață, M.; Coman, I.; Nagîț, G.; Beșliu, I.

    2016-08-01

    There are mechanical equipments in which shafts threaded with variable pitch are included. Such a shaft could be met in the case of worm specific to the double enveloping worm gearing. Over the years, the researchers investigated some possibilities to geometrically define and manufacture the shaft zones characterized by a variable pitch. One of the methods able to facilitate the manufacture of threads with variable pitch is based on the use of noncircular gears in the threading kinematic chain for threading by cutting. In order to design the noncircular gears, the mathematical law of pitch variation has to be known. An analysis of pitch variation based on geometrical considerations was developed in the case of a double enveloping globoid worm. Subsequently, on the bases of a proper situation, a numerical model was determined. In this way, an approximately law of pitch variation was determined and it could be taken into consideration when designing the noncircular gears included in the kinematic chain of the cutting machine tool.

  18. Better Seals for Vacuum Bags

    NASA Technical Reports Server (NTRS)

    Penn, B.; Clemons, J. M.

    1983-01-01

    Roller tool spreads even layer of adhesive. Tool easily constructed from metal, plastic, or wood. Sewing-thread spool serves as roller, nail as axle, and jigsawed block of wood as handle. Tool rolled and pressed against plastic film to assure even layer of adhesive around periphery.

  19. Analysis of Full-Test tools and their limitations as applied to terminal junction blocks

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1983-01-01

    Discovery of unlocked contacts in Deutsch Block terminal junctions in Solid Rocket Booster flight hardware prompted an investigation into pull test techniques to help insure against possible failures. Internal frictional forces between socket and pin and between wire and grommet were examined. Pull test force must be greater than internal friction yet less than the crimp strength of the pin or socket. For this reason, a 100 percent accurate test is impossible. Test tools were evaluated. Available tools are adequate for pull testing.

  20. Web Annotation and Threaded Forum: How Did Learners Use the Two Environments in an Online Discussion?

    ERIC Educational Resources Information Center

    Sun, Yanyan; Gao, Fei

    2014-01-01

    Web annotation is a Web 2.0 technology that allows learners to work collaboratively on web pages or electronic documents. This study explored the use of Web annotation as an online discussion tool by comparing it to a traditional threaded discussion forum. Ten graduate students participated in the study. Participants had access to both a Web…

  1. PinAPL-Py: A comprehensive web-application for the analysis of CRISPR/Cas9 screens.

    PubMed

    Spahn, Philipp N; Bath, Tyler; Weiss, Ryan J; Kim, Jihoon; Esko, Jeffrey D; Lewis, Nathan E; Harismendy, Olivier

    2017-11-20

    Large-scale genetic screens using CRISPR/Cas9 technology have emerged as a major tool for functional genomics. With its increased popularity, experimental biologists frequently acquire large sequencing datasets for which they often do not have an easy analysis option. While a few bioinformatic tools have been developed for this purpose, their utility is still hindered either due to limited functionality or the requirement of bioinformatic expertise. To make sequencing data analysis of CRISPR/Cas9 screens more accessible to a wide range of scientists, we developed a Platform-independent Analysis of Pooled Screens using Python (PinAPL-Py), which is operated as an intuitive web-service. PinAPL-Py implements state-of-the-art tools and statistical models, assembled in a comprehensive workflow covering sequence quality control, automated sgRNA sequence extraction, alignment, sgRNA enrichment/depletion analysis and gene ranking. The workflow is set up to use a variety of popular sgRNA libraries as well as custom libraries that can be easily uploaded. Various analysis options are offered, suitable to analyze a large variety of CRISPR/Cas9 screening experiments. Analysis output includes ranked lists of sgRNAs and genes, and publication-ready plots. PinAPL-Py helps to advance genome-wide screening efforts by combining comprehensive functionality with user-friendly implementation. PinAPL-Py is freely accessible at http://pinapl-py.ucsd.edu with instructions and test datasets.

  2. Composite drill pipe

    DOEpatents

    Leslie, James C [Fountain Valley, CA; Leslie, II, James C.; Heard, James [Huntington Beach, CA; Truong, Liem , Josephson; Marvin, Neubert [Huntington Beach, CA; Hans, [Anaheim, CA

    2008-12-02

    A composite pipe segment is formed to include tapered in wall thickness ends that are each defined by opposed frustoconical surfaces conformed for self centering receipt and intimate bonding contact within an annular space between corresponding surfaces of a coaxially nested set of metal end pieces. The distal peripheries of the nested end pieces are then welded to each other and the sandwiched and bonded portions are radially pinned. The composite segment may include imbedded conductive leads and the axial end portions of the end pieces are shaped to form a threaded joint with the next pipe assembly that includes a contact ring in one pipe assembly pierced by a pointed contact in the other to connect the corresponding leads across the joint.

  3. Flow Patterns During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Guerra, M.; Schmidt, C.; McClure, J. C.; Murr, L. E.; Nunes, A. C.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Friction Stir Welding is a relatively new technique for welding that uses a cylindrical pin or nib inserted along the weld seam. The nib (usually threaded) and the shoulder in which it is mounted are rapidly rotated and advanced along the seam. Extreme deformation takes place leaving a fine equiaxed structure in the weld region., The flow of metal during Friction Stir Welding is investigated using a faying surface tracer and a nib frozen in place during welding. It is shown that material is transported by two processes. The first is a wiping of material from the advancing front side of the nib onto a zone of material that rotates and advances with the nib. The material undergoes a helical motion within the rotational zone that both rotates and advances and descends in the wash of the threads on the nib and rises on the outer part of the rotational zone. After one or more rotations, this material is sloughed off in its wake of the nib, primarily on the advancing side. The second process is an entrainment of material from the front retreating side of the nib that fills in between the sloughed off pieces from the advancing side.

  4. Shadow-Bitcoin: Scalable Simulation via Direct Execution of Multi-Threaded Applications

    DTIC Science & Technology

    2015-08-10

    Shadow- Bitcoin : Scalable Simulation via Direct Execution of Multi-threaded Applications Andrew Miller University of Maryland amiller@cs.umd.edu Rob...Shadow plug-in that directly executes the Bitcoin reference client software. To demonstrate the usefulness of this tool, we present novel denial-of...service attacks against the Bit- coin software that exploit low-level implementation ar- tifacts in the Bitcoin reference client; our determinis- tic

  5. Magnetic coupling device

    DOEpatents

    Nance, Thomas A [Aiken, SC

    2009-08-18

    A quick connect/disconnect coupling apparatus is provided in which a base member is engaged by a locking housing through a series of interengagement pins. The pins maintain the shaft in a locked position. Upon exposure to an appropriately positioned magnetic field, pins are removed a sufficient distance such that the shaft may be withdrawn from the locking housing. The ability to lock and unlock the connector assembly requires no additional tools or parts apart from a magnetic key.

  6. A Tool for Intersecting Context-Free Grammars and Its Applications

    NASA Technical Reports Server (NTRS)

    Gange, Graeme; Navas, Jorge A.; Schachte, Peter; Sondergaard, Harald; Stuckey, Peter J.

    2015-01-01

    This paper describes a tool for intersecting context-free grammars. Since this problem is undecidable the tool follows a refinement-based approach and implements a novel refinement which is complete for regularly separable grammars. We show its effectiveness for safety verification of recursive multi-threaded programs.

  7. Friction Stir Weld System for Welding and Weld Repair

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey (Inventor); Romine, Peter L. (Inventor); Oelgoetz, Peter A. (Inventor)

    2001-01-01

    A friction stir weld system for welding and weld repair has a base foundation unit connected to a hydraulically controlled elevation platform and a hydraulically adjustable pin tool. The base foundation unit may be fixably connected to a horizontal surface or may be connected to a mobile support in order to provide mobility to the friction stir welding system. The elevation platform may be utilized to raise and lower the adjustable pin tool about a particular axis. Additional components which may be necessary for the friction stir welding process include back plate tooling, fixturing and/or a roller mechanism.

  8. Practical Formal Verification of MPI and Thread Programs

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, Ganesh; Kirby, Robert M.

    Large-scale simulation codes in science and engineering are written using the Message Passing Interface (MPI). Shared memory threads are widely used directly, or to implement higher level programming abstractions. Traditional debugging methods for MPI or thread programs are incapable of providing useful formal guarantees about coverage. They get bogged down in the sheer number of interleavings (schedules), often missing shallow bugs. In this tutorial we will introduce two practical formal verification tools: ISP (for MPI C programs) and Inspect (for Pthread C programs). Unlike other formal verification tools, ISP and Inspect run directly on user source codes (much like a debugger). They pursue only the relevant set of process interleavings, using our own customized Dynamic Partial Order Reduction algorithms. For a given test harness, DPOR allows these tools to guarantee the absence of deadlocks, instrumented MPI object leaks and communication races (using ISP), and shared memory races (using Inspect). ISP and Inspect have been used to verify large pieces of code: in excess of 10,000 lines of MPI/C for ISP in under 5 seconds, and about 5,000 lines of Pthread/C code in a few hours (and much faster with the use of a cluster or by exploiting special cases such as symmetry) for Inspect. We will also demonstrate the Microsoft Visual Studio and Eclipse Parallel Tools Platform integrations of ISP (these will be available on the LiveCD).

  9. In situ repair of a failed compression fitting

    DOEpatents

    Wolbert, R.R.; Jandrasits, W.G.

    1985-08-05

    A method and apparatus for the in situ repair of a failed compression fitting is provided. Initially, a portion of a guide tube is inserted coaxially in the bore of the compression fitting and locked therein. A close fit dethreading device is then coaxially mounted on the guide tube to cut the threads from the fitting. Thereafter, the dethreading device and guide tube are removed and a new fitting is inserted onto the dethreaded fitting with the body of the new fitting overlaying the dethreaded portion. Finally, the main body of the new fitting is welded to the main body of the old fitting whereby a new threaded portion of the replacement fitting is precisely coaxial with the old threaded portion. If needed, a bushing is located on the dethreaded portion which is sized to fit snugly between the dethreaded portion and the new fitting. Preferably, the dethreading device includes a cutting tool which is moved incrementally in a radial direction whereby the threads are cut from the threaded portion of the failed fitting in increments.

  10. In situ repair of a failed compression fitting

    DOEpatents

    Wolbert, Ronald R.; Jandrasits, Walter G.

    1986-01-01

    A method and apparatus for the in situ repair of a failed compression fitg is provided. Initially, a portion of a guide tube is inserted coaxially in the bore of the compression fitting and locked therein. A close fit dethreading device is then coaxially mounted on the guide tube to cut the threads from the fitting. Thereafter, the dethreading device and guide tube are removed and a new fitting is inserted onto the dethreaded fitting with the body of the new fitting overlaying the dethreaded portion. Finally, the main body of the new fitting is welded to the main body of the old fitting whereby a new threaded portion of the replacement fitting is precisely coaxial with the old threaded portion. If needed, a bushing is located on the dethreaded portion which is sized to fit snugly between the dethreaded portion and the new fitting. Preferably, the dethreading device includes a cutting tool which is moved incrementally in a radial direction whereby the threads are cut from the threaded portion of the failed fitting in increments.

  11. Effect of Weld Tool Geometry on Friction Stir Welded AA2219-T87 Properties

    NASA Technical Reports Server (NTRS)

    Querin, Joseph A.; Schneider, Judy A.

    2008-01-01

    In this study, flat panels of AA2219-T87 were friction stir welded (FSWed) using weld tools with tapered pins The three pin geometries of the weld tools included: 0 (straight cylinder), 30 , and 60 angles on the frustum. For each weld tool geometry, the FSW process parameters were optimized to eliminate defects. A constant heat input was maintained while varying the process parameters of spindle rpm and travel speed. This provided a constant heat input for each FSW weld panel while altering the hot working conditions imparted to the workpiece. The resulting mechanical properties were evaluated from tensile test results of the FSW joint.

  12. Shotgun cartridge rock breaker

    DOEpatents

    Ruzzi, Peter L.; Morrell, Roger J.

    1995-01-01

    A rock breaker uses shotgun cartridges or other firearm ammunition as the explosive charge at the bottom of a drilled borehole. The breaker includes a heavy steel rod or bar, a gun with a firing chamber for the ammunition which screws onto the rod, a long firing pin running through a central passage in the rod, and a firing trigger mechanism at the external end of the bar which strikes the firing pin to fire the cartridge within the borehole. A tubular sleeve surround the main body of the rod and includes slits the end to allow it to expand. The rod has a conical taper at the internal end against which the end of the sleeve expands when the sleeve is forced along the rod toward the taper by a nut threaded onto the external end of the rod. As the sleeve end expands, it pushes against the borehole and holds the explosive gasses within, and also prevents the breaker from flying out of the borehole. The trigger mechanism includes a hammer with a slot and a hole for accepting a drawbar or drawpin which, when pulled by a long cord, allows the cartridge to be fired from a remote location.

  13. Germanium photodetectors fabricated on 300 mm silicon wafers for near-infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Zeller, John W.; Rouse, Caitlin; Efstathiadis, Harry; Dhar, Nibir K.; Wijewarnasuriya, Priyalal; Sood, Ashok K.

    2017-09-01

    SiGe p-i-n photodetectors have been fabricated on 300 mm (12") diameter silicon (Si) wafers utilizing high throughput, large-area complementary metal-oxide semiconductor (CMOS) technologies. These Ge photodetectors are designed to operate in room temperature environments without cooling, and thus have potential size and cost advantages over conventional cooled infrared detectors. The two-step fabrication process for the p-i-n photodetector devices, designed to minimize the formation of defects and threading dislocations, involves low temperature epitaxial growth of a thin p+ (boron) Ge seed/buffer layer, followed by higher temperature deposition of a thicker Ge intrinsic layer. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated uniform layer compositions with well defined layer interfaces and reduced dislocation density. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) was likewise employed to analyze the doping levels of the p+ and n+ layers. Current-voltage (I-V) measurements demonstrated that these SiGe photodetectors, when exposed to incident visible-NIR radiation, exhibited dark currents down below 1 μA and significant enhancement in photocurrent at -1 V. The zero-bias photocurrent was also relatively high, showing a minimal drop compared to that at -1 V bias.

  14. Horizontal integration of OMIM across the medical school preclinical curriculum for early reinforcement of clinical genetics principles.

    PubMed

    Diehl, Adam C; Reader, Lauren; Hamosh, Ada; Bodurtha, Joann N

    2015-02-01

    With the relentless expansion of genetics into every field of medicine, stronger preclinical and clinical medical student education in genetics is needed. The explosion of genetic information cannot be addressed by simply adding content hours. We proposed that students be provided a tool to access accurate clinical information on genetic conditions and, through this tool, build life-long learning habits to carry them through their medical careers. Surveys conducted at the Johns Hopkins University School of Medicine revealed that medical students in all years lacked confidence when approaching genetic conditions and lacked a reliable resource for accurate genetic information. In response, the school created a horizontal thread that stretches across the first-year curriculum and is devoted to teaching students how to use Online Mendelian Inheritance in Man (OMIM) (http://omim.org) and the databases to which it links as a starting point for approaching genetic conditions. The thread improved the first-year students' confidence in clinical genetics concepts and encouraged use of OMIM as a primary source for genetic information. Most students showed confidence in OMIM as a learning tool and wanted to see the thread repeated in subsequent years. Incorporating OMIM into the preclinical curriculum improved students' confidence in clinical genetics concepts.

  15. Tribological Properties Of Coal Slurries

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.; Schrubens, Dale L.

    1988-01-01

    Report describes study of tribological properties of coal/methanol slurries with pin-on-disk tribometer. Coefficients of friction, rates of wear of steel pin, and morphological studies of worn surfaces conducted on pins and disks of AISI 440C HT stainless steel and M-50 tool steel, both used as bearing steels. Coal slurries considered as replacement fuels in terrestrial oil-burning facilities and possible fuels for future aircraft turbine engines. Rates of wear of metallic components through which slurries flow limit such practical applications.

  16. Toward automated interpretation of integrated information: Managing "big data" for NDE

    NASA Astrophysics Data System (ADS)

    Gregory, Elizabeth; Lesthaeghe, Tyler; Holland, Stephen

    2015-03-01

    Large scale automation of NDE processes is rapidly maturing, thanks to recent improvements in robotics and the rapid growth of computer power over the last twenty years. It is fairly straightforward to automate NDE data collection itself, but the process of NDE remains largely manual. We will discuss three threads of technological needs that must be addressed before we are able to perform automated NDE. Spatial context, the first thread, means that each NDE measurement taken is accompanied by metadata that locates the measurement with respect to the 3D physical geometry of the specimen. In this way, the geometry of the specimen acts as a database key. Data context, the second thread, means that we record why the data was taken and how it was measured in addition to the NDE data itself. We will present our software tool that helps users interact with data in context, Databrowse. Condition estimation, the third thread, is maintaining the best possible knowledge of the condition (serviceability, degradation, etc.) of an object or part. In the NDE context, we can prospectively use Bayes' Theorem to integrate the data from each new NDE measurement with prior knowledge. These tools, combined with robotic measurements and automated defect analysis, will provide the information needed to make high-level life predictions and focus NDE measurements where they are needed most.

  17. Finite Element Analysis of Laser Engineered Net Shape (LENS™) Tungsten Clad Squeeze Pins

    NASA Astrophysics Data System (ADS)

    Sakhuja, Amit; Brevick, Jerald R.

    2004-06-01

    In the aluminum high-pressure die-casting and indirect squeeze casting processes, local "squeeze" pins are often used to minimize internal solidification shrinkage in heavy casting sections. Squeeze pins frequently fail in service due to molten aluminum adhering to the H13 tool steel pins ("soldering"). A wide variety of coating materials and methods have been developed to minimize soldering on H13. However, these coatings are typically very thin, and experience has shown their performance on squeeze pins is highly variable. The LENS™ process was employed in this research to deposit a relatively thick tungsten cladding on squeeze pins. An advantage of this process was that the process parameters could be precisely controlled in order to produce a satisfactory cladding. Two fixtures were designed and constructed to enable the end and outer diameter (OD) of the squeeze pins to be clad. Analyses were performed on the clad pins to evaluate the microstructure and chemical composition of the tungsten cladding and the cladding-H13 substrate interface. A thermo-mechanical finite element analysis (FEA) was performed to assess the stress distribution as a function of cladding thickness on the pins during a typical casting thermal cycle. FEA results were validated via a physical test, where the clad squeeze pins were immersed into molten aluminum. Pins subjected to the test were evaluated for thermally induced cracking and resistance to soldering of the tungsten cladding.

  18. Protein Structure Prediction by Protein Threading

    NASA Astrophysics Data System (ADS)

    Xu, Ying; Liu, Zhijie; Cai, Liming; Xu, Dong

    The seminal work of Bowie, Lüthy, and Eisenberg (Bowie et al., 1991) on "the inverse protein folding problem" laid the foundation of protein structure prediction by protein threading. By using simple measures for fitness of different amino acid types to local structural environments defined in terms of solvent accessibility and protein secondary structure, the authors derived a simple and yet profoundly novel approach to assessing if a protein sequence fits well with a given protein structural fold. Their follow-up work (Elofsson et al., 1996; Fischer and Eisenberg, 1996; Fischer et al., 1996a,b) and the work by Jones, Taylor, and Thornton (Jones et al., 1992) on protein fold recognition led to the development of a new brand of powerful tools for protein structure prediction, which we now term "protein threading." These computational tools have played a key role in extending the utility of all the experimentally solved structures by X-ray crystallography and nuclear magnetic resonance (NMR), providing structural models and functional predictions for many of the proteins encoded in the hundreds of genomes that have been sequenced up to now.

  19. THREAD: A programming environment for interactive planning-level robotics applications

    NASA Technical Reports Server (NTRS)

    Beahan, John J., Jr.

    1989-01-01

    THREAD programming language, which was developed to meet the needs of researchers in developing robotics applications that perform such tasks as grasp, trajectory design, sensor data analysis, and interfacing with external subsystems in order to perform servo-level control of manipulators and real time sensing is discussed. The philosophy behind THREAD, the issues which entered into its design, and the features of the language are discussed from the viewpoint of researchers who want to develop algorithms in a simulation environment, and from those who want to implement physical robotics systems. The detailed functions of the many complex robotics algorithms and tools which are part of the language are not explained, but an overall impression of their capability is given.

  20. Application Of Laser Induced Breakdown Spectroscopy (LIBS) Technique In Investigation Of Historical Metal Threads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Kareem, O.; Khedr, A.; Abdelhamid, M.

    Analysis of the composition of an object is a necessary step in the documentation of the properties of this object for estimating its condition. Also this is an important task for establishing an appropriate conservation treatment of an object or to follow up the result of the application of the suggested treatments. There has been an important evolution in the methods used for analysis of metal threads since the second half of the twentieth century. Today, the main considerations of selecting a method are based on the diagnostic power, representative sampling, reproducibility, destructive nature/invasiveness of analysis and accessibility to themore » appropriate instrument. This study aims at evaluating the usefulness of the use of Laser Induced Breakdown Spectroscopy (LIBS) Technique for analysis of historical metal threads. In this study various historical metal threads collected from different museums were investigated using (LIBS) technique. For evaluating usefulness of the suggested analytical protocol of this technique, the same investigated metal thread samples were investigated with Scanning Electron Microscope (SEM) with energy-dispersive x-ray analyzer (EDX) which is reported in conservation field as the best method, to determine the chemical composition, and corrosion of investigated metal threads. The results show that all investigated metal threads in the present study are too dirty, strongly damaged and corroded with different types of corrosion products. Laser Induced Breakdown Spectroscopy (LIBS) Technique is considered very useful technique that can be used safely for investigating historical metal threads. It is, in fact, very useful tool as a noninvasive method for analysis of historical metal threads. The first few laser shots are very useful for the investigation of the corrosion and dirt layer, while the following shots are very useful and effective for investigating the coating layer. Higher number of laser shots are very useful for the main composition of the metal thread. There is a necessity to carry out further research to investigate and determine the most appropriate and effective approaches and methods for conservation of these metal threads.« less

  1. I Remember That from My Pins!: Using Pinterest to Encourage Active Learning

    ERIC Educational Resources Information Center

    Joyce, Amanda

    2017-01-01

    Social media is integral to students' lives. Pinterest, an online social network for "Pinning" (sharing) links and images, is the fastest-growing social media tool in history. The purpose of this investigation was to determine the effectiveness of a semester-long active-learning assignment using the Pinterest platform. Forty-nine…

  2. Alignment Tool For Inertia Welding

    NASA Technical Reports Server (NTRS)

    Snyder, Gary L.

    1991-01-01

    Compact, easy-to-use tool aligns drive bar of inertia welder over hole in stub. Ensures drive bar concentric to hole within 0.002 in. (0.051 mm.). Holds two batteries and light bulb. Electrical circuit completed, providing current to bulb when pin in contact with post. When pin centered in post hole, it does not touch post, and lamp turns off. Built for use in making repair welds on liquid-oxygen-injector posts in Space Shuttle main engine. Version having suitably modified dimensions used to facilitate alignment in other forests of post.

  3. Closed-Loop Control System for Friction Stir Welding Retractable Pin Tool

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey; Romine, Peter L.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    NASA invention disclosure, NASA Case No. MFS-31413, entitled "System for Controlling the Stirring Pin of a Friction Stir Welding Apparatus", (Patent Pending) authored by Jeff Ding, Dr Peter Romine and Pete Oelgoetz, addresses the precision control of the friction stir welding process. The closed-loop control system automatically adjusts the spinning welding pin, real-time, to maintain a precise penetration ligament (i.e., distance between pin-tip and weld panel backside surface). A specific pin length can be maintained while welding constant thickness or tapered material thickness weld panels. The closed-loop control system provides operator data and information relative to the exact position of the welding pin inside the weld joint. This paper presents the closed-loop RPT control system that operates using the auto-feedback of force signals sensed by the tip and shoulder of the welding pin. Significance: The FSW process can be successfully used in a production environment only if there is a method or technique that informs the FSW operator the precise location of the welding pin inside the weld joint. This is essential for applications in aerospace, automotive, pressure vessel, commercial aircraft and other industries.

  4. Gravitropism of Arabidopsis thaliana roots requires the polarization of PIN2 toward the root tip in meristematic cortical cells.

    PubMed

    Rahman, Abidur; Takahashi, Maho; Shibasaki, Kyohei; Wu, Shuang; Inaba, Takehito; Tsurumi, Seiji; Baskin, Tobias I

    2010-06-01

    In the root, the transport of auxin from the tip to the elongation zone, referred to here as shootward, governs gravitropic bending. Shootward polar auxin transport, and hence gravitropism, depends on the polar deployment of the PIN-FORMED auxin efflux carrier PIN2. In Arabidopsis thaliana, PIN2 has the expected shootward localization in epidermis and lateral root cap; however, this carrier is localized toward the root tip (rootward) in cortical cells of the meristem, a deployment whose function is enigmatic. We use pharmacological and genetic tools to cause a shootward relocation of PIN2 in meristematic cortical cells without detectably altering PIN2 polarization in other cell types or PIN1 polarization. This relocation of cortical PIN2 was negatively regulated by the membrane trafficking factor GNOM and by the regulatory A1 subunit of type 2-A protein phosphatase (PP2AA1) but did not require the PINOID protein kinase. When GNOM was inhibited, PINOID abundance increased and PP2AA1 was partially immobilized, indicating both proteins are subject to GNOM-dependent regulation. Shootward PIN2 specifically in the cortex was accompanied by enhanced shootward polar auxin transport and by diminished gravitropism. These results demonstrate that auxin flow in the root cortex is important for optimal gravitropic response.

  5. Optimizing ATLAS code with different profilers

    NASA Astrophysics Data System (ADS)

    Kama, S.; Seuster, R.; Stewart, G. A.; Vitillo, R. A.

    2014-06-01

    After the current maintenance period, the LHC will provide higher energy collisions with increased luminosity. In order to keep up with these higher rates, ATLAS software needs to speed up substantially. However, ATLAS code is composed of approximately 6M lines, written by many different programmers with different backgrounds, which makes code optimisation a challenge. To help with this effort different profiling tools and techniques are being used. These include well known tools, such as the Valgrind suite and Intel Amplifier; less common tools like Pin, PAPI, and GOoDA; as well as techniques such as library interposing. In this paper we will mainly focus on Pin tools and GOoDA. Pin is a dynamic binary instrumentation tool which can obtain statistics such as call counts, instruction counts and interrogate functions' arguments. It has been used to obtain CLHEP Matrix profiles, operations and vector sizes for linear algebra calculations which has provided the insight necessary to achieve significant performance improvements. Complimenting this, GOoDA, an in-house performance tool built in collaboration with Google, which is based on hardware performance monitoring unit events, is used to identify hot-spots in the code for different types of hardware limitations, such as CPU resources, caches, or memory bandwidth. GOoDA has been used in improvement of the performance of new magnetic field code and identification of potential vectorization targets in several places, such as Runge-Kutta propagation code.

  6. Development of stiffer and ductile glulam portal frame

    NASA Astrophysics Data System (ADS)

    Komatsu, Kohei

    2017-11-01

    Portal frame structures, which are constituted of straight glulam beams and columns connected semi-rigidly by steel insert gusset plate with a lot of drift pins, were the first successful glulam structures widely used in Japan. In addition to this connection system, the author invented also a new type of jointing devise for glulam structures named as "Lagscrewbolt" which had a full threaded portion at inner part to grip wooden member as well as another thread part at the end of shank to connect with other member. The initial type of "Lagscrewbolt" was successfully applied to a various types of glulam buildings which could be rapidly built-up on construction site. Its strength performance, however, was rather brittle therefore the improvement of the ductility was a crucial research subject. In order to give a sufficient ductility on the "Lagscrewbolted joint system", so-called "Slotted Bolted Connection" concept was adopted for making use of large energy dissipation characteristics due to high-tension bolted steel connection with slotted bolt holes. Static & dynamic performance of glulam portal frame specimens was evaluated by static cyclic loading test as well as shaking table test. Current latest form of the jointing system can show very high ductility as well as stable hysteretic cyclic loops by inserting brass-shim between steel-to-steel friction interfaces

  7. Disentangling vortex pinning landscape in chemical solution deposited superconducting YBa2Cu3O7-x films and nanocomposites

    NASA Astrophysics Data System (ADS)

    Palau, A.; Vallès, F.; Rouco, V.; Coll, M.; Li, Z.; Pop, C.; Mundet, B.; Gàzquez, J.; Guzman, R.; Gutierrez, J.; Obradors, X.; Puig, T.

    2018-07-01

    In-field angular pinning performances at different temperatures have been analysed on chemical solution deposited (CSD) YBa2Cu3O7-x (YBCO) pristine films and nanocomposites. We show that with this analysis we are able to quantify the vortex pinning strength and energies, associated with different kinds of natural and artificial pinning defects, acting as efficient pinning centres at different regions of the H-T phase diagram. A good quantification of the variety of pinning defects active at different temperatures and magnetic fields provides a unique tool to design the best vortex pinning landscape under different operating conditions. We have found that by artificially introducing a unique defect in the YBCO matrix, the stacking faults, we are able to modify three different contributions to vortex pinning (isotropic-strong, anisotropic-strong, and isotropic-weak). The isotropic-strong contribution, widely studied in CSD YBCO nanocomposites, is associated with nanostrained regions induced at the partial dislocations surrounding the stacking faults. Moreover, the stacking fault itself acts as a planar defect which provides a very effective anisotropic-strong pinning at H//ab. Finally, the large presence of Cu-O cluster vacancies found in the stacking faults have been revealed as a source of isotropic-weak pinning sites, very active at low temperatures and high fields.

  8. Improving Joint Formation and Tensile Properties of Dissimilar Friction Stir Welding of Aluminum and Magnesium Alloys by Solving the Pin Adhesion Problem

    NASA Astrophysics Data System (ADS)

    Liu, Zhenlei; Ji, Shude; Meng, Xiangchen

    2018-03-01

    Friction stir welding (FSW), as a solid-state welding technology invented by TWI in 1991, has potential to join dissimilar Al/Mg alloys. In this study, the pin adhesion phenomenon affecting joint quality during FSW of 6061-T6 aluminum and AZ31B magnesium alloys was investigated. The adhesion phenomenon induced by higher heat input easily transformed the tapered-and-screwed pin into a tapered pin, which greatly reduced the tool's ability to drive the plasticized materials and further deteriorated joint formation. Under the condition without the pin adhesion, the complex intercalated interlayer at the bottom of stir zone was beneficial to mechanical interlocking of Al/Mg alloys, improving tensile properties. However, the formation of intermetallic compounds was still the main reason of the joint fracture, significantly deteriorating tensile properties. Under the welding speed of 60 mm/min without the pin adhesion phenomenon, the maximum tensile strength of 107 MPa and elongation of 1.2% were achieved.

  9. Wallops Ship Surveillance System

    NASA Technical Reports Server (NTRS)

    Smith, Donna C.

    2011-01-01

    Approved as a Wallops control center backup system, the Wallops Ship Surveillance Software is a day-of-launch risk analysis tool for spaceport activities. The system calculates impact probabilities and displays ship locations relative to boundary lines. It enables rapid analysis of possible flight paths to preclude the need to cancel launches and allow execution of launches in a timely manner. Its design is based on low-cost, large-customer- base elements including personal computers, the Windows operating system, C/C++ object-oriented software, and network interfaces. In conformance with the NASA software safety standard, the system is designed to ensure that it does not falsely report a safe-for-launch condition. To improve the current ship surveillance method, the system is designed to prevent delay of launch under a safe-for-launch condition. A single workstation is designated the controller of the official ship information and the official risk analysis. Copies of this information are shared with other networked workstations. The program design is divided into five subsystems areas: 1. Communication Link -- threads that control the networking of workstations; 2. Contact List -- a thread that controls a list of protected item (ocean vessel) information; 3. Hazard List -- threads that control a list of hazardous item (debris) information and associated risk calculation information; 4. Display -- threads that control operator inputs and screen display outputs; and 5. Archive -- a thread that controls archive file read and write access. Currently, most of the hazard list thread and parts of other threads are being reused as part of a new ship surveillance system, under the SureTrak project.

  10. Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

    DTIC Science & Technology

    2011-01-01

    tool material (AISI H13 tool steel ) is modeled as an isotropic linear-elastic material. Within the analysis, the effects of some of the FSW key process...threads/m; (b) tool 598 material = AISI H13 tool steel ; (c) workpiece material = 599 AA5059; (d) tool rotation speed = 500 rpm; (e) tool travel 600 speed...the strain-hardening term is augmented to take into account for the effect of dynamic recrystallization) while the FSW tool material (AISI H13

  11. Fundamental Study of Material Flow in Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Reynolds, Anthony P.

    1999-01-01

    The presented research project consists of two major parts. First, the material flow in solid-state, friction stir, butt-welds as been investigated using a marker insert technique. Changes in material flow due to welding parameter as well as tool geometry variations have been examined for different materials. The method provides a semi-quantitative, three-dimensional view of the material transport in the welded zone. Second, a FSW process model has been developed. The fully coupled model is based on fluid mechanics; the solid-state material transport during welding is treated as a laminar, viscous flow of a non-Newtonian fluid past a rotating circular cylinder. The heat necessary for the material softening is generated by deformation of the material. As a first step, a two-dimensional model, which contains only the pin of the FSW tool, has been created to test the suitability of the modeling approach and to perform parametric studies of the boundary conditions. The material flow visualization experiments agree very well with the predicted flow field. Accordingly, material within the pin diameter is transported only in the rotation direction around the pin. Due to the simplifying assumptions inherent in the 2-D model, other experimental data such as forces on the pin, torque, and weld energy cannot be directly used for validation. However, the 2-D model predicts the same trends as shown in the experiments. The model also predicts a deviation from the "normal" material flow at certain combinations of welding parameters, suggesting a possible mechanism for the occurrence of some typical FSW defects. The next step has been the development of a three-dimensional process model. The simplified FSW tool has been designed as a flat shoulder rotating on the top of the workpiece and a rotating, cylindrical pin, which extends throughout the total height of the flow domain. The thermal boundary conditions at the tool and at the contact area to the backing plate have been varied to fit experimental data such as temperature profiles, torque and tool forces. General aspects of the experimentally visualized material flow pattern are confirmed by the 3-D model.

  12. Experimental Investigation on Friction Stir Welding of Cryorolled AA2219 Aluminum Alloy Joints

    NASA Astrophysics Data System (ADS)

    Babu, K. Kamal; Panneerselvam, K.; Sathiya, P.; Haq, A. Noorul; Sundarrajan, S.; Mastanaiah, P.; Murthy, C. V. Srinivasa

    2017-07-01

    In this paper, experimental investigation on cryorolled aluminum AA2219-T87 plate by using friction stir welding (FSW) process is carried out. AA2219-T87 plates with a size of 200×100×22.4 mm were rolled and reduced to 12.2mm thickness (more than 45% of reduction in total thickness of the base material) at cryogenic temperature (operating temperature range -90--30∘C). The cryorolled (CR) plates have reduced grain size, improved hardness and increased corrosion resistance property compared with the uncryorolled AA2219-T87 plates. FSW joints of cryorolled AA2219-T87 plates were prepared using cylindrical threaded FSW tool pin profile. Mechanical and metallurgical behaviors of friction stir welded joints were analyzed and the effects of the FSW process parameters are discussed in this paper. The variation of microhardness in the FSW joint regions were correlated with the microstructure of FSW joints. Cryorolled plate and FSW joints were tested for corrosion resistance using potentiodynamic polarization test. FSW joints shows better result during the corrosion resistance analysis compared to base AA2219-T87. The X-ray diffraction (XRD) test results showed that fine α-Al grains with eutectic phase (Al2Cu) were present in the weld nugget (WN). The large clusters of strengthening precipitates were reduced in size and merged with the weld nugget portion.

  13. Friction stir lap joining of automotive aluminium alloy and carbon-fiber-reinforced plastic

    NASA Astrophysics Data System (ADS)

    Bang, H. S.; Das, A.; Lee, S.; Bang, H. S.

    2018-05-01

    Multi-material combination such as aluminium alloys and carbon-fiber-reinforced plastics (CFRP) are increasingly used in the aircraft and automobile industries to enhance strength-to-weight ratio of the respective parts and components. Various processes such as adhesive bonding, mechanical fasteners and laser beam joining were employed to join metal alloy and CFRP sheets. However, long processing time of adhesive bonding, extra weight induced by mechanical fasteners and high operating cost of the laser is major limitations of these processes. Therefore, friction stir welding is an alternative choice to overcome those limitations in joining of CFRP and aluminium alloys. In the present work, an attempt is undertaken to join AA5052 alloy and polyamide 66 CFRP sheets by friction stir lap joining technique using pinned and pin-less tools. The joint qualities are investigated extensively at different joining conditions using two different types of tools and surface ground aluminium sheets. The results show that pin-less tool and surface ground aluminium alloy can provide the suitable joint with maximum joint strength around 8 MPa.

  14. Vortex energy landscape from real space imaging analysis of YBa2Cu3O7 with different defect structures

    NASA Astrophysics Data System (ADS)

    Luccas, R. F.; Granados, X.; Obradors, X.; Puig, T.

    2014-10-01

    A methodology based on real space vortex image analysis is presented able to estimate semi-quantitatively the relevant energy densities of an arbitrary array of vortices, map the interaction energy distributions and evaluate the pinning energy associated to particular defects. The combined study using nanostructuration tools, a vortex visualization technique and the energy method is seen as an opportunity to estimate vortex pinning potentials strengths. Particularly, spatial distributions of vortex energy densities induced by surface nanoindented scratches are evaluated and compared to those of twin boundaries. This comparative study underlines the remarkable role of surface nanoscratches in pinning vortices and its potentiality in the design of novel devices for pinning and guiding vortex motion.

  15. Carbon and metal-carbon implantations into tool steels for improved tribological performance

    NASA Astrophysics Data System (ADS)

    Hirvonen, J.-P.; Harskamp, F.; Torri, P.; Willers, H.; Fusari, A.; Gibson, N.; Haupt, J.

    1997-05-01

    The high-fluence implantation of carbon and dual implantations of metal-metalloid pairs into steels with different microstructures are briefly reviewed. A previously unexamined system, the implantation of Si and C into two kinds of tool steels, M3 and D2, have been studied in terms of microstructure and tribological performance. In both cases ion implantation transfers a surface into an amorphous layer. However, the tribological behavior of these two materials differs remarkably: in the case of ion-implanted M3 a reduction of wear in a steel pin is observed even at high pin loads, whereas in the case of ion-implanted D2 the beneficial effects of ion implantation were limited to the lowest pin load. The importance of an initial phase at the onset of sliding is emphasized and a number of peculiarities observed in ion-implanted M3 steel are discussed.

  16. Composite drill pipe and method for forming same

    DOEpatents

    Leslie, James C; Leslie, II, James C; Heard, James; Truong, Liem V; Josephson, Marvin

    2012-10-16

    A lightweight and durable drill pipe string capable of short radius drilling formed using a composite pipe segment formed to include tapered wall thickness ends that are each defined by opposed frustoconical surfaces conformed for self-aligning receipt and intimate bonding contact within an annular space between corresponding surfaces of a coaxially nested set of metal end pieces and a set of nonconductive sleeves. The distal peripheries of the nested end pieces and sleeves are then welded to each other and the sandwiched and bonded portions are radially pinned. The composite segment may include imbedded conductive leads and the axial end portions of the end pieces are shaped to form a threaded joint with the next pipe assembly that includes contact rings in the opposed surfaces of the pipe joint for contact together.

  17. Gravitropism of Arabidopsis thaliana Roots Requires the Polarization of PIN2 toward the Root Tip in Meristematic Cortical Cells[C][W

    PubMed Central

    Rahman, Abidur; Takahashi, Maho; Shibasaki, Kyohei; Wu, Shuang; Inaba, Takehito; Tsurumi, Seiji; Baskin, Tobias I.

    2010-01-01

    In the root, the transport of auxin from the tip to the elongation zone, referred to here as shootward, governs gravitropic bending. Shootward polar auxin transport, and hence gravitropism, depends on the polar deployment of the PIN-FORMED auxin efflux carrier PIN2. In Arabidopsis thaliana, PIN2 has the expected shootward localization in epidermis and lateral root cap; however, this carrier is localized toward the root tip (rootward) in cortical cells of the meristem, a deployment whose function is enigmatic. We use pharmacological and genetic tools to cause a shootward relocation of PIN2 in meristematic cortical cells without detectably altering PIN2 polarization in other cell types or PIN1 polarization. This relocation of cortical PIN2 was negatively regulated by the membrane trafficking factor GNOM and by the regulatory A1 subunit of type 2-A protein phosphatase (PP2AA1) but did not require the PINOID protein kinase. When GNOM was inhibited, PINOID abundance increased and PP2AA1 was partially immobilized, indicating both proteins are subject to GNOM-dependent regulation. Shootward PIN2 specifically in the cortex was accompanied by enhanced shootward polar auxin transport and by diminished gravitropism. These results demonstrate that auxin flow in the root cortex is important for optimal gravitropic response. PMID:20562236

  18. Friction stir welding tool

    DOEpatents

    Tolle, Charles R.; Clark, Denis E.; Barnes, Timothy A.

    2008-04-15

    A friction stir welding tool is described and which includes a shank portion; a shoulder portion which is releasably engageable with the shank portion; and a pin which is releasably engageable with the shoulder portion.

  19. Forces associated with pneumatic power screwdriver operation: statics and dynamics.

    PubMed

    Lin, Jia-Hua; Radwin, Robert G; Fronczak, Frank J; Richard, Terry G

    2003-10-10

    The statics and dynamics of pneumatic power screwdriver operation were investigated in the context of predicting forces acting against the human operator. A static force model is described in the paper, based on tool geometry, mass, orientation in space, feed force, torque build up, and stall torque. Three common power hand tool shapes are considered, including pistol grip, right angle, and in-line. The static model estimates handle force needed to support a power nutrunner when it acts against the tightened fastener with a constant torque. A system of equations for static force and moment equilibrium conditions are established, and the resultant handle force (resolved in orthogonal directions) is calculated in matrix form. A dynamic model is formulated to describe pneumatic motor torque build-up characteristics dependent on threaded fastener joint hardness. Six pneumatic tools were tested to validate the deterministic model. The average torque prediction error was 6.6% (SD = 5.4%) and the average handle force prediction error was 6.7% (SD = 6.4%) for a medium-soft threaded fastener joint. The average torque prediction error was 5.2% (SD = 5.3%) and the average handle force prediction error was 3.6% (SD = 3.2%) for a hard threaded fastener joint. Use of these equations for estimating handle forces based on passive mechanical elements representing the human operator is also described. These models together should be useful for considering tool handle force in the selection and design of power screwdrivers, particularly for minimizing handle forces in the prevention of injuries and work related musculoskeletal disorders.

  20. The Analysis of Electrical Energy Consumption of the Impact Screwdriver During Assembly of Fixed Threaded Joints

    NASA Astrophysics Data System (ADS)

    Grinevich, I.; Nikishin, Vl.; Mozga, N.; Laitans, M.

    2017-06-01

    The paper deals with the possibilities of reducing the consumption of electrical energy of the impact screwdriver during the assembly of fixed threaded joints. The recommendations related to a decrease in electrical energy consumption would allow reducing product costs but so far there have been no such recommendations from the producers of the tool as to the effective operating regimes of the impact screwdrivers in relation to electrical energy consumption and necessary tightening moment of the nut. The aim of the study is to find out the economical operating mode of the electrical impact screwdriver when assembling fixed threaded joints. By varying the set speed of the rotor head and working time of the impact mechanism, there is an opportunity to determine electrical energy consumption of the tool for the given tightening moment. The results of the experiment show that at the same tightening moment obtained the electrical energy consumption of the impact screwdriver is less at a higher starting set speed of the rotor head but shorter operating time of the impact mechanism than at a lower speed of the rotor head and longer operating time of the impact mechanism.

  1. Screw-locking wrench

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2007-01-01

    A tool comprises a first handle and a second handle, each handle extending from a gripping end portion to a working end portion, the first handle having first screw threads disposed circumferentially about an inner portion of a first through-hole at the working end portion thereof, the second handle having second screw threads disposed circumferentially about an inner portion of a second through-hole at the working end portion thereof, the first and second respective through-holes being disposed concentrically about a common axis of the working end portions. First and second screw locks preferably are disposed concentrically with the first and second respective through-holes, the first screw lock having a plurality of locking/unlocking screw threads for engaging the first screw threads of the first handle, the second screw lock having a plurality of locking/unlocking screw threads for engaging the second screw threads of the second handle. A locking clutch drive, disposed concentrically with the first and second respective through-holes, engages the first screw lock and the second screw lock. The first handle and the second handle are selectively operable at their gripping end portions by a user using a single hand to activate the first and second screw locks to lock the locking clutch drive for either clockwise rotation about the common axis, or counter-clockwise rotation about the common axis, or to release the locking clutch drive so that the handles can be rotated together about the common axis either the clockwise or counter-clockwise direction without rotation of the locking clutch drive.

  2. USSR Report, Machine Tools and Metalworking Equipment, No. 6

    DTIC Science & Technology

    1983-05-18

    production output per machine tool at a tool plant average 2-3 times the figures for tool shops. This is explained by the well-known advantages of...specialized production. Specifically, the advantages of standardization and unification of machine- attachment design can be fully exploited in...lemiiiiä IS MVCti\\e UtiUzation °f appropriate special equipmeT ters)! million thread-cutting dies, and 2.3 million milling cut- The advantages of

  3. Heat Treatment of Tools in Light Industry

    NASA Astrophysics Data System (ADS)

    Petukhov, V. A.

    2005-09-01

    Heat treatment processes for some tools (knitting needles, travelers for thimbles of spinning and doubling frames, thread-forming spinnerets) used for the production of cloths, hosiery, and other articles) in the knitting and textile industries are considered. Problems of the choice of steel and the kind and parameters of heat treatment are discussed in connection with the special features of tool design and operating conditions.

  4. Change Management Meets Web 2.0

    ERIC Educational Resources Information Center

    Gale, Doug

    2008-01-01

    Web 2.0 is the term used to describe a group of web-based creativity, information-sharing, and collaboration tools including wikis, blogs, social networks, and folksonomies. The common thread in all of these tools is twofold: They enable collaboration and information sharing, and their impact on higher education has been dramatic. A recent study…

  5. Logging while fishing: An alternate method to cut and thread fishing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tollefsen, E.; Crary, S.; Flores, B.

    1996-12-31

    New technology has been introduced to allow completion of the wireline logging program after the tool string has become lodged in the wellbore. Charges associated with extracting a stuck tool are substantial. These charges result from the nonproductive time during the fishing trip, an associated wiper trip, and re-logging the well. The ability to continue the logging program while retrieving the logging string from the wellbore is needed. Logging While Fishing (LWF) is a hybrid of existing technologies combined with a new sub capable of severing a cable remotely. This new method is comprised of cut and thread fishing, drillpipemore » conveyed logging, and bridled tool techniques. Utilizing these techniques it is possible to complete wireline logging operations while removing a stuck tool from the wellbore. Completing logging operations using this hybrid method will save operating companies time and money. Other benefits, depending on the situation, include reduced fishing time and an increased level of safety. This application has been demonstrated on jobs in the Gulf of Mexico, North Sea, Venezuela, and Southeast Asia.« less

  6. A nondestructive, reproducible method of measuring joint reaction force at the distal radioulnar joint.

    PubMed

    Canham, Colin D; Schreck, Michael J; Maqsoodi, Noorullah; Doolittle, Madison; Olles, Mark; Elfar, John C

    2015-06-01

    To develop a nondestructive method of measuring distal radioulnar joint (DRUJ) joint reaction force (JRF) that preserves all periarticular soft tissues and more accurately reflects in vivo conditions. Eight fresh-frozen human cadaveric limbs were obtained. A threaded Steinmann pin was placed in the middle of the lateral side of the distal radius transverse to the DRUJ. A second pin was placed into the middle of the medial side of the distal ulna colinear to the distal radial pin. Specimens were mounted onto a tensile testing machine using a custom fixture. A uniaxial distracting force was applied across the DRUJ while force and displacement were simultaneously measured. Force-displacement curves were generated and a best-fit polynomial was solved to determine JRF. All force-displacement curves demonstrated an initial high slope where relatively large forces were required to distract the joint. This ended with an inflection point followed by a linear area with a low slope, where small increases in force generated larger amounts of distraction. Each sample was measured 3 times and there was high reproducibility between repeated measurements. The average baseline DRUJ JRF was 7.5 N (n = 8). This study describes a reproducible method of measuring DRUJ reaction forces that preserves all periarticular stabilizing structures. This technique of JRF measurement may also be suited for applications in the small joints of the wrist and hand. Changes in JRF can alter native joint mechanics and lead to pathology. Reliable methods of measuring these forces are important for determining how pathology and surgical interventions affect joint biomechanics. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  7. Defect features, texture and mechanical properties of friction stir welded lap joints of 2A97 Al-Li alloy thin sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Haiyan

    1.4 mm 2A97 Al-Li alloy thin sheets were welded by friction stir lap welding using the stirring tools with different pin length at different rotational speeds. The influence of pin length and rotational speed on the defect features and mechanical properties of lap joints were investigated in detail. Microstructure observation shows that the hook defect geometry and size mainly varies with the pin length instead of the rotational speed. The size of hook defects on both the advancing side (AS) and the retreating side (RS) increased with increasing the pin length, leading to the effective sheet thickness decreased accordingly. Electronmore » backscatter diffraction analysis reveals that the weld zones, especially the nugget zone (NZ), have the much lower texture intensity than the base metal. Some new texture components are formed in the thermo-mechanical affected zone (TMAZ) and the NZ of joint. Lap shear test results show that the failure load of joints generally decreases with increasing the pin length and the rotational speed. The joints failed during the lap shear tests at three locations: the lap interface, the RS of the top sheet and the AS of the bottom sheet. The fracture locations are mainly determined by the hook defects. - Highlights: • Hook defect size mainly varies with the pin length of stirring tool. • The proportion of LAGBs and substructured grains increases from NZ to TMAZ. • Weld zones, especially the NZ, have the much lower texture intensity than the BM. • Lap shear failure load and fracture location of joints is relative to the hook defects.« less

  8. Effect of deep cryogenic treatment on the formation of nano-sized carbides and the wear behavior of D2 tool steel

    NASA Astrophysics Data System (ADS)

    Amini, Kamran; Akhbarizadeh, Amin; Javadpour, Sirus

    2012-09-01

    The effect of deep cryogenic treatment on the microstructure, hardness, and wear behavior of D2 tool steel was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), hardness test, pin-on-disk wear test, and the reciprocating pin-on-flat wear test. The results show that deep cryogenic treatment eliminates retained austenite, makes a better carbide distribution, and increases the carbide content. Furthermore, some new nano-sized carbides form during the deep cryogenic treatment, thereby increasing the hardness and improving the wear behavior of the samples.

  9. Where I'm From: Cultural Exchange through the Arts and Voicethread

    ERIC Educational Resources Information Center

    Song, Young Imm Kang; Donovan, Lisa

    2013-01-01

    This paper discusses a cultural exchange project that is being conducted between classrooms at the Songwon Elementary School in South Korea and the Lee School in Massachusetts, USA. As its main communication tool between the students in the two countries, this project uses VoiceThread--an audiovisual discussion tool that can serve as an ideal…

  10. High-Powered, Ultrasonically Assisted Thermal Stir Welding

    NASA Technical Reports Server (NTRS)

    Ding, Robert

    2013-01-01

    This method is a solid-state weld process capable of joining metallic alloys without melting. The weld workpieces to be joined by thermal stir welding (TSW) are drawn, by heavy forces, between containment plates past the TSW stir tool that then causes joining of the weld workpiece. TSW is similar to friction stir welding (FSW) in that material is heated into a plastic state (not melted) and stirred using a stir rod. The FSW pin tool is an integrated geometrical structure consisting of a large-diameter shoulder, and a smaller-diameter stir pin protruding from the shoulder. When the pin is plunged into a weld workpiece, the shoulder spins on the surface of the weld workpiece, thus inducing frictional heat into the part. The pin stirs the fraying surfaces of the weld joint, thus joining the weld workpiece into one structure. The shoulder and stir pin of the FSW pin tool must rotate together at a desired rotational speed. The induced frictional energy control and stir pin control of the pin tool cannot be de-coupled. The two work as one integrated unit. TSW, on the other hand, de-couples the heating and stirring of FSW, and allows for independent control of each process element. A uniquely designed induction coil heats the weld workpiece to a desired temperature, and once heated, the part moves into a stir rod whose RPM is also independently controlled. As the weld workpiece moves into the stir rod, the piece is positioned, or sandwiched, between upper and lower containment plates. The plate squeezes together, thus compressing the upper and lower surfaces of the weld workpiece. This compressive force, also called consolidation force, consolidates the plastic material within the weld nugget material as it is being stirred by the stir rod. The stir rod is positioned through the center of the top containment plate and protrudes midway through the opposite lower containment plate where it is mechanically captured. The upper and lower containment plates are separated by a distance equal to the thickness of the material being welded. The TSW process can be significantly improved by reducing the draw forces. This can be achieved by reducing the friction forces between the weld workpieces and the containment plates. High-power ultrasonic (HPU) vibrations of the containment plates achieve friction reduction in the TSW process. Furthermore, integration of the HPU energy into the TSW stir rod can increase tool life of the stir rod, and can reduce shear forces to which the stir rod is subjected during the welding process. TSW has been used to successfully join 0.500-in (˜13-mm) thick commercially pure (CP) titanium, titanium 6AL- 4V, and titanium 6AL-4V ELI in weld joint lengths up to 9 ft (˜2.75-m) long. In addition, the TSW process was used to fabricate a sub-scale hexagonally shaped gun turret component for the U.S. Navy. The turret is comprised of six 0.5000-in (˜13-mm) thick angled welds. Each angled weld joint was prepared by machining the mating surfaces to 120deg. The angled weld joint was then fixtured using an upper and lower containment plate of the same geometry of the angled weld joint. The weld joint was then stirred by the stir rod as it and the upper and lower containment plates traverse through the angled joint prep.

  11. Using VoiceThread to Promote Collaborative Learning in On-Line Clinical Nurse Leader Courses.

    PubMed

    Fox, Ola H

    The movement to advance the clinical nurse leader (CNL) as an innovative new role for meeting higher health care quality standards continues with CNL programs offered on-line at colleges and universities nationwide. Collaborative learning activities offer the opportunity for CNL students to gain experience in working together in small groups to negotiate and solve care process problems. The challenge for nurse educators is to provide collaborative learning activities in an asynchronous learning environment that can be considered isolating by default. This article reports on the experiences of 17 CNL students who used VoiceThread, a cloud-based tool that allowed them to communicate asynchronously with one another through voice comments for collaboration and sharing knowledge. Participants identified benefits and drawbacks to using VoiceThread for collaboration as compared to text-based discussion boards. Students reported that the ability to hear the voice of their peers and the instructor helped them feel like they were in a classroom communicating with "real" instructor and peers. Students indicated a preference for on-line classes that used VoiceThread discussions to on-line classes that used only text-based discussion boards. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. High-Level Data Races

    NASA Technical Reports Server (NTRS)

    Artho, Cyrille; Havelund, Klaus; Biere, Armin; Koga, Dennis (Technical Monitor)

    2003-01-01

    Data races are a common problem in concurrent and multi-threaded programming. They are hard to detect without proper tool support. Despite the successful application of these tools, experience shows that the notion of data race is not powerful enough to capture certain types of inconsistencies occurring in practice. In this paper we investigate data races on a higher abstraction layer. This enables us to detect inconsistent uses of shared variables, even if no classical race condition occurs. For example, a data structure representing a coordinate pair may have to be treated atomically. By lifting the meaning of a data race to a higher level, such problems can now be covered. The paper defines the concepts view and view consistency to give a notation for this novel kind of property. It describes what kinds of errors can be detected with this new definition, and where its limitations are. It also gives a formal guideline for using data structures in a multi-threading environment.

  13. Channel nut tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olson, Marvin

    A method, system, and apparatus for installing channel nuts includes a shank, a handle formed on a first end of a shank, and an end piece with a threaded shaft configured to receive a channel nut formed on the second end of the shaft. The tool can be used to insert or remove a channel nut in a channel framing system and then removed from the channel nut.

  14. Friction Stir Welding of Steel Alloys

    NASA Technical Reports Server (NTRS)

    Ding, R. Jeffrey; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The friction stir welding process has been developed primarily for the welding of aluminum alloys. Other higher melting allows such, as steels are much more difficult to join. Special attention must be given to pin tool material selection and welding techniques. This paper addresses the joining of steels and other high melting point materials using the friction stir welding process. Pin tool material and welding parameters will be presented. Mechanical properties of weldments will also be presented. Significance: There are many applications for the friction stir welding process other than low melting aluminum alloys. The FSW process can be expanded for use with high melting alloys in the pressure vessel, railroad and ship building industries.

  15. Production Engineering Program to Develop Improved Mass-Production Process for M42/M46 Grenade Bodies

    DTIC Science & Technology

    1978-03-01

    J16 Photograph 3 Knurling Tool Installed in Machine . . ....... 16 Photograph 4 Shrapnel Pattern Being Knurled Into M42 Grenade Cylinder...body Fenn mill embossing rolls. Roehlen was awarded a cuxiu**L am’i labricated a knurling tool for use in the modified Tesker thread-rolling machine ...automatic grinding machine . IKratz-Wilde was not successful in developing tooling to produce domes to the inertia-welded assembly design. (See Figure

  16. Power hand tool kinetics associated with upper limb injuries in an automobile assembly plant.

    PubMed

    Ku, Chia-Hua; Radwin, Robert G; Karsh, Ben-Tzion

    2007-06-01

    This study investigated the relationship between pneumatic nutrunner handle reactions, workstation characteristics, and prevalence of upper limb injuries in an automobile assembly plant. Tool properties (geometry, inertial properties, and motor characteristics), fastener properties, orientation relative to the fastener, and the position of the tool operator (horizontal and vertical distances) were measured for 69 workstations using 15 different pneumatic nutrunners. Handle reaction response was predicted using a deterministic mechanical model of the human operator and tool that was previously developed in our laboratory, specific to the measured tool, workstation, and job factors. Handle force was a function of target torque, tool geometry and inertial properties, motor speed, work orientation, and joint hardness. The study found that tool target torque was not well correlated with predicted handle reaction force (r=0.495) or displacement (r=0.285). The individual tool, tool shape, and threaded fastener joint hardness all affected predicted forces and displacements (p<0.05). The average peak handle force and displacement for right-angle tools were twice as great as pistol grip tools. Soft-threaded fastener joints had the greatest average handle forces and displacements. Upper limb injury cases were identified using plant OSHA 200 log and personnel records. Predicted handle forces for jobs where injuries were reported were significantly greater than those jobs free of injuries (p<0.05), whereas target torque and predicted handle displacement did not show statistically significant differences. The study concluded that quantification of handle reaction force, rather than target torque alone, is necessary for identifying stressful power hand tool operations and for controlling exposure to forces in manufacturing jobs involving power nutrunners. Therefore, a combination of tool, work station, and task requirements should be considered.

  17. Friction Stir Welding of Al-B4C Composite Fabricated by Accumulative Roll Bonding: Evaluation of Microstructure and Mechanical Behavior

    NASA Astrophysics Data System (ADS)

    Moradi Faradonbeh, Alireza; Shamanian, Morteza; Edris, Hossein; Paidar, Moslem; Bozkurt, Yahya

    2018-02-01

    In this investigation, friction stir welding (FSW) of Al-B4C composite fabricated by 10 cycles accumulative roll bonding was conducted. In order to investigate the influences of pin geometry on microstructure and mechanical properties, four different pin geometries (cylindrical, square, triangular and hexagonal) were selected. It was found that FSW parameters had a major effect on the fragmentation and distribution of reinforcement particles in stir zone. When the tool travel speed was increased, the distribution of B4C particles was become gradually uniform in the aluminum matrix. The effect of tool rotational speed on the peak temperature was determined to be greater than the tool travel speed. The attained data of tensile properties and microhardness tests showed that the tool travel speed had bilateral effect on the tensile strength. The maximum tensile joint efficiency was obtained as 238% for FSWed of Al-2%B4C composite to annealed base Al sheet.

  18. Kidwatching: A Vygotskyan Approach to Children's Language In the "Star Wars" Age.

    ERIC Educational Resources Information Center

    Monroe, Suzanne S.

    A Vygotskyan review of children's language examines language samples of a 7-year-old boy at home, at a birthday party, and at play in a sandbox. The language samples indicate common patterns, including his use of tools and symbol together in play. A common thread in the samples is his involvement with high tech tools of futuristic toys. Vygotsky…

  19. Tool For Friction Stir Tack Welding of Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerald W.; Dingler, Johnny W.; Loftus, Zachary

    2003-01-01

    A small friction-stir-welding tool has been developed for use in tack welding of aluminum-alloy workpieces. It is necessary to tack-weld the workpieces in order to hold them together during friction stir welding because (1) in operation, a full-size friction-stir-welding tool exerts a large force that tends to separate the workpieces and (2) clamping the workpieces is not sufficient to resist this force. It is possible to tack the pieces together by gas tungsten arc welding, but the process can be awkward and time-consuming and can cause sufficient damage to necessitate rework. Friction stir tack welding does not entail these disadvantages. In addition, friction stir tack welding can be accomplished by use of the same automated equipment (except for the welding tool) used in subsequent full friction stir welding. The tool for friction stir tack welding resembles the tool for full friction stir welding, but has a narrower shoulder and a shorter pin. The shorter pin generates a smaller workpiece-separating force so that clamping suffices to keep the workpieces together. This tool produces a continuous or intermittent partial-penetration tack weld. The tack weld is subsequently consumed by action of the larger tool used in full friction stir welding tool.

  20. Thermo-Mechanical Processing in Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Schneider, Judy

    2003-01-01

    Friction stir welding is a solid-phase joining, or welding process that was invented in 1991 at The Welding Institute (TWI). The process is potentially capable of joining a wide variety of aluminum alloys that are traditionally difficult to fusion weld. The friction stir welding (FSW) process produces welds by moving a non-consumable rotating pin tool along a seam between work pieces that are firmly clamped to an anvil. At the start of the process, the rotating pin is plunged into the material to a pre-determined load. The required heat is produced by a combination of frictional and deformation heating. The shape of the tool shoulder and supporting anvil promotes a high hydrostatic pressure along the joint line as the tool shears and literally stirs the metal together. To produce a defect free weld, process variables (RPM, transverse speed, and downward force) and tool pin design must be chosen carefully. An accurate model of the material flow during the process is necessary to guide process variable selection. At MSFC a plastic slip line model of the process has been synthesized based on macroscopic images of the resulting weld material. Although this model appears to have captured the main features of the process, material specific interactions are not understood. The objective of the present research was to develop a basic understanding of the evolution of the microstructure to be able to relate it to the deformation process variables of strain, strain rate, and temperature.

  1. Statistics of dislocation pinning at localized obstacles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dutta, A.; Bhattacharya, M., E-mail: mishreyee@vecc.gov.in; Barat, P.

    2014-10-14

    Pinning of dislocations at nanosized obstacles like precipitates, voids, and bubbles is a crucial mechanism in the context of phenomena like hardening and creep. The interaction between such an obstacle and a dislocation is often studied at fundamental level by means of analytical tools, atomistic simulations, and finite element methods. Nevertheless, the information extracted from such studies cannot be utilized to its maximum extent on account of insufficient information about the underlying statistics of this process comprising a large number of dislocations and obstacles in a system. Here, we propose a new statistical approach, where the statistics of pinning ofmore » dislocations by idealized spherical obstacles is explored by taking into account the generalized size-distribution of the obstacles along with the dislocation density within a three-dimensional framework. Starting with a minimal set of material parameters, the framework employs the method of geometrical statistics with a few simple assumptions compatible with the real physical scenario. The application of this approach, in combination with the knowledge of fundamental dislocation-obstacle interactions, has successfully been demonstrated for dislocation pinning at nanovoids in neutron irradiated type 316-stainless steel in regard to the non-conservative motion of dislocations. An interesting phenomenon of transition from rare pinning to multiple pinning regimes with increasing irradiation temperature is revealed.« less

  2. Autophagy regulated by prolyl isomerase Pin1 and phospho-Ser-GSK3αβ involved in protection of oral squamous cell carcinoma against cadmium toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    So, Keum-Young; Ahn, Sang-Gun; Oh, Seon-Hee, E-mail: seonh@chosun.ac.kr

    Prolyl isomerase Pin1 plays an important role in cell proliferation and is overexpressed in many human tumors. However, its role in autophagy induction remains undefined. Here we show that Pin1 regulates cell survival via autophagy in cadmium (Cd)-exposed oral squamous cell carcinoma (OSCC). OSCC exposure to Cd induced autophagy, as demonstrated by the formation of green fluorescent punctae in transfected cells expressing GFP-conjugated microtubule-associated protein light chain 3 (LC3) and by LC3 flux in the presence of autophagy inhibitors. Suppression of Atg5 enhanced Cd-induced apoptosis, indicating that autophagy is involved in cell protection. In dose–response experiments, cleavage of procaspase-3, PARP-1,more » and LC3-II was induced by Cd with an IC{sub 50} of 45 μM. Expression of Pin1 was decreased at or above the Cd IC{sub 50} value and was inversely correlated with the level of phospho(p)-Ser-GSK3αβ. Genetic or pharmacologic inhibition of Pin1 suppressed Cd-induced autophagy, but increased p-Akt-mediated p-Ser-GSK3αβ; this was reversed by overexpression of Pin1. However, suppression of GSK3αβ inhibited Cd-induced autophagy and induced apoptosis, which could be reversed by overexpression of GSK3β. The PI3K inhibitor Ly294002 blocked p-Akt-mediated increases in p-Ser-GSK3αβ and autophagy and induced apoptosis. Therefore, p-Ser-GSK3αβ can directly regulate Cd-induced autophagy, although its function is suppressed by Pin1. Collectively, the present results indicate that targeting Pin1 and GSK3αβ at the same time could be an effective therapeutic tool for Cd-induced carcinogenesis. - Highlights: • Pin1 regulated autophagy to protect cells from cadmium toxicity. • Pin1 suppression inhibited cadmium-induced autophagy and induced apoptosis. • Pin1 inhibited the function of p-Ser-GSK3αβ in autophagy regulation. • p-Ser-GSK3αβ regulated autophagy independently of Pin1.« less

  3. Fuel rod assembly to manifold attachment

    DOEpatents

    Donck, Harry A.; Veca, Anthony R.; Snyder, Jr., Harold J.

    1980-01-01

    A fuel element is formed with a plurality of fuel rod assemblies detachably connected to an overhead support with each of the fuel rod assemblies having a gas tight seal with the support to allow internal fission gaseous products to flow without leakage from the fuel rod assemblies into a vent manifold passageway system on the support. The upper ends of the fuel rod assemblies are located at vertically extending openings in the support and upper threaded members are threaded to the fuel rod assemblies to connect the latter to the support. The preferred threaded members are cap nuts having a dome wall encircling an upper threaded end on the fuel rod assembly and having an upper sealing surface for sealing contact with the support. Another and lower seal is achieved by abutting a sealing surface on each fuel rod assembly with the support. A deformable portion on the cap nut locks the latter against inadvertent turning off the fuel rod assembly. Orienting means on the fuel rod and support primarily locates the fuel rods azimuthally for reception of a deforming tool for the cap nut. A cross port in the fuel rod end plug discharges into a sealed annulus within the support, which serves as a circumferential chamber, connecting the manifold gas passageways in the support.

  4. Concurrent Breakpoints

    DTIC Science & Technology

    2011-12-18

    Proceedings of the SIGMET- RICS Symposium on Parallel and Distributed Tools, pages 48–59, 1998. [8] A. Dinning and E. Schonberg . Detecting access...multi- threaded programs. ACM Trans. Comput. Syst., 15(4):391– 411, 1997. [38] E. Schonberg . On-the-fly detection of access anomalies. In Proceedings

  5. Systematic and Scalable Testing of Concurrent Programs

    DTIC Science & Technology

    2013-12-16

    The evaluation of CHESS [107] checked eight different programs ranging from process management libraries to a distributed execution engine to a research...tool (§3.1) targets systematic testing of scheduling nondeterminism in multi- threaded components of the Omega cluster management system [129], while...tool for systematic testing of multithreaded com- ponents of the Omega cluster management system [129]. In particular, §3.1.1 defines a model for

  6. Prosthetic Tool For Holding Small Ferromagnetic Parts

    NASA Technical Reports Server (NTRS)

    Norton, William E.; Carden, James R.; Belcher, Jewell G., Jr.; Vest, Thomas W.

    1995-01-01

    Tool attached to prosthetic hand or arm enables user to hold nails, screws, nuts, rivets, and other small ferromagnetic objects on small magnetic tip. Device adjusted to hold nail or screw at proper angle for hammering or for use of screwdriver, respectively. Includes base connector with threaded outer surface and lower male member inserted in standard spring-action, quick-connect/quick-disconnect wrist adapter on prosthetic hand or arm.

  7. Simulation of the Vortex Dynamics in a Real Pinning Landscape of YBa 2 Cu 3 O 7 - δ Coated Conductors

    DOE PAGES

    Sadovskyy, I. A.; Koshelev, A. E.; Glatz, A.; ...

    2016-01-01

    The ability of high-temperature superconductors (HTSs) to carry very large currents with almost no dissipation makes them irreplaceable for high-power applications. The development and further improvement of HTS-based cables require an in-depth understanding of the superconducting vortex dynamics in the presence of complex pinning landscapes. We present a critical current analysis of a real HTS sample in a magnetic field by combining state-of-the-art large-scale Ginzburg-Landau simulations with reconstructive three-dimensional scanning-transmission-electron-microscopy tomography of the pinning landscape in Dy-doped YBa 2Cu 3O 7-δ. This methodology provides a unique look at the vortex dynamics in the presence of a complex pinning landscape responsiblemore » for the high-current-carrying-capacity characteristic of commercial HTS wires. Finally, our method demonstrates very good functional and quantitative agreement of the critical current between simulation and experiment, providing a new predictive tool for HTS wire designs.« less

  8. Simulation of the Vortex Dynamics in a Real Pinning Landscape of YBa 2 Cu 3 O 7 - δ Coated Conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadovskyy, I. A.; Koshelev, A. E.; Glatz, A.

    The ability of high-temperature superconductors (HTSs) to carry very large currents with almost no dissipation makes them irreplaceable for high-power applications. The development and further improvement of HTS-based cables require an in-depth understanding of the superconducting vortex dynamics in the presence of complex pinning landscapes. We present a critical current analysis of a real HTS sample in a magnetic field by combining state-of-the-art large-scale Ginzburg-Landau simulations with reconstructive three-dimensional scanning-transmission-electron-microscopy tomography of the pinning landscape in Dy-doped YBa 2Cu 3O 7-δ. This methodology provides a unique look at the vortex dynamics in the presence of a complex pinning landscape responsiblemore » for the high-current-carrying-capacity characteristic of commercial HTS wires. Finally, our method demonstrates very good functional and quantitative agreement of the critical current between simulation and experiment, providing a new predictive tool for HTS wire designs.« less

  9. Simulation of the Vortex Dynamics in a Real Pinning Landscape of YBa 2 Cu 3 O 7 - δ Coated Conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadovskyy, I. A.; Koshelev, A. E.; Glatz, A.

    Tmore » he ability of high-temperature superconductors (HSs) to carry very large currents with almost no dissipation makes them irreplaceable for high-power applications. he development and further improvement of HS-based cables require an in-depth understanding of the superconducting vortex dynamics in the presence of complex pinning landscapes. Here, we present a critical current analysis of a real HS sample in a magnetic field by combining state-of-the-art large-scale Ginzburg-Landau simulations with reconstructive three-dimensional scanning-transmission-electron-microscopy tomography of the pinning landscape in Dy-doped YBa 2 Cu 3 O 7 - δ . his methodology provides a unique look at the vortex dynamics in the presence of a complex pinning landscape responsible for the high-current-carrying-capacity characteristic of commercial HS wires. Our method demonstrates very good functional and quantitative agreement of the critical current between simulation and experiment, providing a new predictive tool for HS wire designs.« less

  10. Comparison between effects of free curcumin and curcumin loaded NIPAAm-MAA nanoparticles on telomerase and PinX1 gene expression in lung cancer cells.

    PubMed

    Badrzadeh, Fariba; Akbarzadeh, Abolfazl; Zarghami, Nosratollah; Yamchi, Mohammad Rahmati; Zeighamian, Vahide; Tabatabae, Fateme Sadate; Taheri, Morteza; Kafil, Hossein Samadi

    2014-01-01

    Herbal compounds such as curcumin which decrease telomerase and gene expression have been considered as beneficial tools for lung cancer treatment. In this article, we compared the effects of pure curcumin and curcumin-loaded NIPAAm-MAA nanoparticles on telomerase and PinX1 gene expression in a lung cancer cell line. A tetrazolium-based assay was used for determination of cytotoxic effects of curcumin on the Calu-6 lung cancer cell line and telomerase and pinX1 gene expression was measured with real-time PCR. MTT assay showed that Curcumin-loaded NIPAAm-MAA inhibited the growth of the Calu-6 lung cancer cell line in a time and dose-dependent manner. Our q-PCR results showed that the expression of telomerase gene was effectively reduced as the concentration of curcumin-loaded NIPAAm-MAA increased while expression of the PinX1 gene became elevated. The results showed that curcumin- loaded- NIPAAm-MAA exerted cytotoxic effects on the Calu-6 cell line through down-regulation of telomerase and stimulation of pinX1 gene expression. NIPPAm-MAA could be good carrier for such kinds of hydrophobic agent.

  11. Comparison of computational results of the SABRE LMFBR pin bundle blockage code with data from well-instrumented out-of-pile test bundles (THORS bundles 3A and 5A)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dearing, J.F.

    The Subchannel Analysis of Blockages in Reactor Elements (SABRE) computer code, developed by the United Kingdom Atomic Energy Authority, is currently the only practical tool available for performing detailed analyses of velocity and temperature fields in the recirculating flow regions downstream of blockages in liquid-metal fast breeder reactor (LMFBR) pin bundles. SABRE is a subchannel analysis code; that is, it accurately represents the complex geometry of nuclear fuel pins arranged on a triangular lattice. The results of SABRE computational models are compared here with temperature data from two out-of-pile 19-pin test bundles from the Thermal-Hydraulic Out-of-Reactor Safety (THORS) Facility atmore » Oak Ridge National Laboratory. One of these bundles has a small central flow blockage (bundle 3A), while the other has a large edge blockage (bundle 5A). Values that give best agreement with experiment for the empirical thermal mixing correlation factor, FMIX, in SABRE are suggested. These values of FMIX are Reynolds-number dependent, however, indicating that the coded turbulent mixing correlation is not appropriate for wire-wrap pin bundles.« less

  12. On pins and needles: how vaccines are portrayed on Pinterest.

    PubMed

    Guidry, Jeanine P D; Carlyle, Kellie; Messner, Marcus; Jin, Yan

    2015-09-22

    Vaccination is an effective public health tool for reducing morbidity and mortality caused by infectious diseases. However, increasing numbers of parents question the safety of vaccines or refuse to vaccinate their children outright. The Internet is playing a significant role in the growing voice of the anti-vaccination movement as a growing number of people use the Internet to obtain health information, including information about vaccines. Given the role the Internet plays in providing vaccination-related communication, coupled with limited research in this area, this study focused on the social media platform Pinterest, analyzing 800 vaccine-related pins through a quantitative content analysis. The majority of the pins were anti-vaccine, and most were original posts as opposed to repins. Concerns about vaccine safety and side effects were oft-repeated themes, as was the concept of conspiracy theory. Pro-vaccine pins elicited consistently more engagement than anti-vaccine pins. Health educators and public health organizations should be aware of these dynamics, since a successful health communication campaign should start with an understanding of what and how publics communicate about the topic at hand. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Study of tapping process of carbon fiber reinforced plastic composites/AA7075 stacks

    NASA Astrophysics Data System (ADS)

    D'Orazio, Alessio; Mehtedi, Mohamad El; Forcellese, Archimede; Nardinocchi, Alessia; Simoncini, Michela

    2018-05-01

    The present investigation aims at studying the tapping process of a three-layer stack constituted by two CFRP layers and a core plate in AA7075 aluminum alloy. The CFRP laminates were obtained by a pre-impregnated woven sample made up of T700 carbon fibers and a thermoset epoxy matrix. Tapping experiments were performed on a 5-axis machining center instrumented with a dynamometer to measure thrust force generated during process. A high-speed steel tool, coated with nanocomposite TiAlN, was used. According to the tool manufacturer recommendations, rotational speed and feed rate were 800 rpm and 1000 mm/min, respectively. Similar thrust force time history responses were obtained by tapping different holes, even though the vertical force increases with number of threaded holes. Furthermore, a quantitative evaluation of delamination at the periphery of entry holes was carried out. The delamination at the entry hole strongly increases with number of threaded holes.

  14. ITRB Spar Domestic Source

    DTIC Science & Technology

    2012-12-14

    Each pair of rollers is designed to capture the shafts mounted to both ends of the tool lid. Additionally, a safety pin can be put in place to...ITRB for the AH-64D. The scope of the program included structural design , materials selection, manufacturing producibility analysis, tooling design ...responsible for tooling design and fabrication, fabrication process development and fabrication of spars and test samples; G3 who designed the RTM

  15. Constant time worker thread allocation via configuration caching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichenberger, Alexandre E; O'Brien, John K. P.

    Mechanisms are provided for allocating threads for execution of a parallel region of code. A request for allocation of worker threads to execute the parallel region of code is received from a master thread. Cached thread allocation information identifying prior thread allocations that have been performed for the master thread are accessed. Worker threads are allocated to the master thread based on the cached thread allocation information. The parallel region of code is executed using the allocated worker threads.

  16. Thermomechanical conditions and stresses on the friction stir welding tool

    NASA Astrophysics Data System (ADS)

    Atthipalli, Gowtam

    Friction stir welding has been commercially used as a joining process for aluminum and other soft materials. However, the use of this process in joining of hard alloys is still developing primarily because of the lack of cost effective, long lasting tools. Here I have developed numerical models to understand the thermo mechanical conditions experienced by the FSW tool and to improve its reusability. A heat transfer and visco-plastic flow model is used to calculate the torque, and traverse force on the tool during FSW. The computed values of torque and traverse force are validated using the experimental results for FSW of AA7075, AA2524, AA6061 and Ti-6Al-4V alloys. The computed torque components are used to determine the optimum tool shoulder diameter based on the maximum use of torque and maximum grip of the tool on the plasticized workpiece material. The estimation of the optimum tool shoulder diameter for FSW of AA6061 and AA7075 was verified with experimental results. The computed values of traverse force and torque are used to calculate the maximum shear stress on the tool pin to determine the load bearing ability of the tool pin. The load bearing ability calculations are used to explain the failure of H13 steel tool during welding of AA7075 and commercially pure tungsten during welding of L80 steel. Artificial neural network (ANN) models are developed to predict the important FSW output parameters as function of selected input parameters. These ANN consider tool shoulder radius, pin radius, pin length, welding velocity, tool rotational speed and axial pressure as input parameters. The total torque, sliding torque, sticking torque, peak temperature, traverse force, maximum shear stress and bending stress are considered as the output for ANN models. These output parameters are selected since they define the thermomechanical conditions around the tool during FSW. The developed ANN models are used to understand the effect of various input parameters on the total torque and traverse force during FSW of AA7075 and 1018 mild steel. The ANN models are also used to determine tool safety factor for wide range of input parameters. A numerical model is developed to calculate the strain and strain rates along the streamlines during FSW. The strain and strain rate values are calculated for FSW of AA2524. Three simplified models are also developed for quick estimation of output parameters such as material velocity field, torque and peak temperature. The material velocity fields are computed by adopting an analytical method of calculating velocities for flow of non-compressible fluid between two discs where one is rotating and other is stationary. The peak temperature is estimated based on a non-dimensional correlation with dimensionless heat input. The dimensionless heat input is computed using known welding parameters and material properties. The torque is computed using an analytical function based on shear strength of the workpiece material. These simplified models are shown to be able to predict these output parameters successfully.

  17. Wiping Metal Transfer in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Much evidence suggests that as the friction stir pin-tool moves along a weld seam the displacement of metal takes place by a wiping action at the surface of a plug of metal that rotates with the tool. The wiping model is explained and some consequences for the friction stir welding process are drawn.

  18. Screw-Thread Standards for Federal Services, 1957. Handbook H28 (1957), Part 3

    DTIC Science & Technology

    1957-09-01

    MOUNTING THREADS PHOTOGRAPHIC EQUIPMENT THREADS ISO METRIC THREADS; MISCELLANEOUS THREADS CLASS 5 INTERFERENCE-FIT THREADS, TRIAL STANDARD WRENCH...Bibliography on measurement of pitch diameter by means of wires 60 Appendix 14. Metric screw-thread standards 61 1. ISO thread profiles...61 2. Standard series for ISO metric threads 62 3. Designations for ISO metric threads 62 Tables Page Table XII. 1.—Basic

  19. Abrikosov fluxonics in washboard nanolandscapes

    NASA Astrophysics Data System (ADS)

    Dobrovolskiy, Oleksandr V.

    2017-02-01

    Abrikosov fluxonics, a domain of science and engineering at the interface of superconductivity research and nanotechnology, is concerned with the study of the properties and dynamics of Abrikosov vortices in nanopatterned superconductors, with particular focus on their confinement, manipulation, and exploitation for emerging functionalities. Vortex pinning, guided vortex motion, and the ratchet effect are three main fluxonic ;tools; which allow for the dynamical (pinned or moving), the directional (angle-dependent), and the orientational (current polarity-sensitive) control of the fluxons, respectively. Thanks to the periodicity of the vortex lattice, several groups of effects emerge when the vortices move in a periodic pinning landscape: Spatial commensurability of the location of vortices with the underlying pinning nanolandscape leads to a reduction of the dc resistance and the microwave loss at the so-called matching fields. Temporal synchronization of the displacement of vortices with the number of pinning sites visited during one half ac cycle manifests itself as Shapiro steps in the current-voltage curves. Delocalization of vortices oscillating under the action of a high-frequency ac drive can be tuned by a superimposed dc bias. In this short review a set of experimental results on the vortex dynamics in the presence of periodic pinning potentials in Nb thin films is presented. The consideration is limited to one particular type of artificial pinning structures - directly written nanolandscapes of the washboard type, which are fabricated by focused ion beam milling and focused electron beam induced deposition. The reported results are relevant for the development of fluxonic devices and the reduction of microwave losses in superconducting planar transmission lines.

  20. The Pitt Innovation Challenge (PInCh): Driving Innovation in Translational Research Through an Incentive-Based, Problem-Focused Competition.

    PubMed

    Fitzpatrick, Nicole Edgar; Maier, John; Yasko, Laurel; Mathias, David; Qua, Kacy; Wagner, Erika; Miller, Elizabeth; Reis, Steven E

    2017-05-01

    Translational research aims to move scientific discoveries across the biomedical spectrum from the laboratory to humans, and to ultimately transform clinical practice and public health policies. Despite efforts to accelerate translational research through national initiatives, several major hurdles remain. The authors created the Pitt Innovation Challenge (PInCh) as an incentive-based, problem-focused approach to solving identified clinical or public health problems at the University of Pittsburgh Clinical and Translational Science Institute in spring 2014. With input from a broad range of stakeholders, PInCh leadership arrived at the challenge question: How do we empower individuals to take control of their own health outcomes? The authors developed the PInCh's three-round proposal submission and review process as well as an online contest management tool to support the process. Ninety-two teams submitted video proposals in round one. Proposals included mobile applications (29; 32%), other information technology (19; 21%), and community program (22; 24%) solutions. Ten teams advanced to the final round, where three were awarded $100,000 to implement their solution over 12 months. In a 6-month follow-up survey, 6/11 (55%) team leaders stated the PInCh helped to facilitate connections outside their normal sphere of collaborators. Additional educational training sessions related to problem-focused research will be developed. The PInCh will be expanded to engage investment and industry communities to facilitate the translation of solutions to clinical practice via commercialization pathways. External organizations and other universities will be engaged to use the PInCh as a mechanism to fuel innovation in their spaces.

  1. Effect of Weld Tool Geometry on Friction Stir Welded Ti-6Al-4V

    NASA Technical Reports Server (NTRS)

    Querin, Joseph A.; Schneider, Judy A.

    2008-01-01

    In this study, flat 0.250" thick Ti-6Al-4V panels were friction stir welded (FSWed) using weld tools with tapered pins. The five different pin geometries of the weld tools included: 0 degree (straight cylinder), 15 degree, 30 degree, 45 degree, and 60 degree angles on the frustum. All weld tools had a smooth 7 degree concave shoulder and were made from microwave sintered tungsten carbide. For each weld tool geometry, the FSW process parameters were optimized to eliminate internal defects. All the welds were produced in position control with a 2.5 degree lead angle using a butt joint configuration for the panels. The process parameters of spindle rpm and travel speed were varied, altering the hot working conditions imparted to the workpiece. Load cells on the FSWing machine allowed for the torque, the plunge force, and the plow force to be recorded during welding. Resulting mechanical properties were evaluated from tensile tests results of the FSWjoints. Variations in the material flow were investigated by use of microstructural analysis including optical microscopy (OM), scanning electron microscopy (SEM), and orientation image mapping (aIM).

  2. Dedicated memory structure holding data for detecting available worker thread(s) and informing available worker thread(s) of task(s) to execute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, George L.; Eichenberger, Alexandre E.; O'Brien, John K. P.

    The present disclosure relates generally to a dedicated memory structure (that is, hardware device) holding data for detecting available worker thread(s) and informing available worker thread(s) of task(s) to execute.

  3. Controlling Force and Depth in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Adams, Glynn; Loftus, Zachary; McCormac, Nathan; Venable, Richard

    2005-01-01

    Feedback control of the penetration force applied to a pin tool in friction stir welding has been found to be a robust and reliable means for controlling the depth of penetration of the tool. This discovery has made it possible to simplify depth control and to weld with greater repeatability, even on workpieces with long weld joints. Prior to this discovery, depths of penetration in friction stir welding were controlled by hard-tooled roller assemblies or by depth actuators controlled by feedback from such external sensors as linear variable-differential transformers or laser-based devices. These means of control are limited: A hard-tooled roller assembly confines a pin tool to a preset depth that cannot be changed easily during the welding process. A measurement by an external sensor is only an indirect indicative of the depth of penetration, and computations to correlate such a measurement with a depth of penetration are vulnerable to error. The present force-feedback approach exploits the proportionality between the depth and the force of penetration Unlike a depth measurement taken by an external sensor, a force measurement can be direct because it can be taken by a sensor coupled directly to the pin tool. The reading can be processed through a modern electronic servo control system to control an actuator to keep the applied penetration force at the desired level. In comparison with the older depth-control methods described above, this method offers greater sensitivity to plasticizing of the workpiece metal and is less sensitive to process noise, resulting in a more consistent process. In an experiment, a tapered panel was friction stir welded while controlling the force of penetration according to this method. The figure is a plot of measurements taken during the experiment, showing that force was controlled with a variation of 200 lb (890 N), resulting in control of the depth of penetration with a variation of 0.004 in. (0.1 mm).

  4. ATLAS offline software performance monitoring and optimization

    NASA Astrophysics Data System (ADS)

    Chauhan, N.; Kabra, G.; Kittelmann, T.; Langenberg, R.; Mandrysch, R.; Salzburger, A.; Seuster, R.; Ritsch, E.; Stewart, G.; van Eldik, N.; Vitillo, R.; Atlas Collaboration

    2014-06-01

    In a complex multi-developer, multi-package software environment, such as the ATLAS offline framework Athena, tracking the performance of the code can be a non-trivial task in itself. In this paper we describe improvements in the instrumentation of ATLAS offline software that have given considerable insight into the performance of the code and helped to guide the optimization work. The first tool we used to instrument the code is PAPI, which is a programing interface for accessing hardware performance counters. PAPI events can count floating point operations, cycles, instructions and cache accesses. Triggering PAPI to start/stop counting for each algorithm and processed event results in a good understanding of the algorithm level performance of ATLAS code. Further data can be obtained using Pin, a dynamic binary instrumentation tool. Pin tools can be used to obtain similar statistics as PAPI, but advantageously without requiring recompilation of the code. Fine grained routine and instruction level instrumentation is also possible. Pin tools can additionally interrogate the arguments to functions, like those in linear algebra libraries, so that a detailed usage profile can be obtained. These tools have characterized the extensive use of vector and matrix operations in ATLAS tracking. Currently, CLHEP is used here, which is not an optimal choice. To help evaluate replacement libraries a testbed has been setup allowing comparison of the performance of different linear algebra libraries (including CLHEP, Eigen and SMatrix/SVector). Results are then presented via the ATLAS Performance Management Board framework, which runs daily with the current development branch of the code and monitors reconstruction and Monte-Carlo jobs. This framework analyses the CPU and memory performance of algorithms and an overview of results are presented on a web page. These tools have provided the insight necessary to plan and implement performance enhancements in ATLAS code by identifying the most common operations, with the call parameters well understood, and allowing improvements to be quantified in detail.

  5. Effect of biomimetic non-smooth unit morphology on thermal fatigue behavior of H13 hot-work tool steel

    NASA Astrophysics Data System (ADS)

    Meng, Chao; Zhou, Hong; Cong, Dalong; Wang, Chuanwei; Zhang, Peng; Zhang, Zhihui; Ren, Luquan

    2012-06-01

    The thermal fatigue behavior of hot-work tool steel processed by a biomimetic coupled laser remelting process gets a remarkable improvement compared to untreated sample. The 'dowel pin effect', the 'dam effect' and the 'fence effect' of non-smooth units are the main reason of the conspicuous improvement of the thermal fatigue behavior. In order to get a further enhancement of the 'dowel pin effect', the 'dam effect' and the 'fence effect', this study investigated the effect of different unit morphologies (including 'prolate', 'U' and 'V' morphology) and the same unit morphology in different sizes on the thermal fatigue behavior of H13 hot-work tool steel. The results showed that the 'U' morphology unit had the optimum thermal fatigue behavior, then the 'V' morphology which was better than the 'prolate' morphology unit; when the unit morphology was identical, the thermal fatigue behavior of the sample with large unit sizes was better than that of the small sizes.

  6. Influence of FSW pin tool geometry on plastic flow of AA7075 T651

    NASA Astrophysics Data System (ADS)

    Lertora, Enrico; Mandolfino, Chiara; Gambaro, Carla

    2016-10-01

    In this paper the behaviour of the plastic flow during Friction Stir Welding of AA7075 T651 plates, realized with different shaped tools, has been investigated. In particular, the influence of the shape of three tools was studied using copper strips placed along the welds. After welding, radiography and metallurgical analysis were used in order to investigate the marker movement and its fragmentation.

  7. Auto-Adjustable Tool for Self-Reacting and Conventional Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Carter, Robert W. (Inventor)

    2002-01-01

    A friction stir welding dcvice that is configured to perform convention friction stir welding as well as self-reacting friction stir welding is described. A pin passes hrough an upper shoulder and can selectively attach 10 and detach from a lower shoulder in a preferred embodiment. A controller maintains thc discrete position of, and/or force applied by, the upper and lower shoulders during self-reacting friction stir welding, or maintains the pin at a desired depth and/or applied force during conventional friction stir welding.

  8. The protein-protein interaction network of eyestalk, Y-organ and hepatopancreas in Chinese mitten crab Eriocheir sinensis.

    PubMed

    Hao, Tong; Zeng, Zheng; Wang, Bin; Zhang, Yichen; Liu, Yichen; Geng, Xuyun; Sun, Jinsheng

    2014-03-27

    The protein-protein interaction network (PIN) is an effective information tool for understanding the complex biological processes inside the cell and solving many biological problems such as signaling pathway identification and prediction of protein functions. Eriocheir sinensis is a highly-commercial aquaculture species with an unclear proteome background which hinders the construction and development of PIN for E. sinensis. However, in recent years, the development of next-generation deep-sequencing techniques makes it possible to get high throughput data of E. sinensis tanscriptome and subsequently obtain a systematic overview of the protein-protein interaction system. In this work we sequenced the transcriptional RNA of eyestalk, Y-organ and hepatopancreas in E. sinensis and generated a PIN of E. sinensis which included 3,223 proteins and 35,787 interactions. Each protein-protein interaction in the network was scored according to the homology and genetic relationship. The signaling sub-network, representing the signal transduction pathways in E. sinensis, was extracted from the global network, which depicted a global view of the signaling systems in E. sinensis. Seven basic signal transduction pathways were identified in E. sinensis. By investigating the evolution paths of the seven pathways, we found that these pathways got mature in different evolutionary stages. Moreover, the functions of unclassified proteins and unigenes in the PIN of E. sinensis were predicted. Specifically, the functions of 549 unclassified proteins related to 864 unclassified unigenes were assigned, which respectively covered 76% and 73% of all the unclassified proteins and unigenes in the network. The PIN generated in this work is the first large-scale PIN of aquatic crustacean, thereby providing a paradigmatic blueprint of the aquatic crustacean interactome. Signaling sub-network extracted from the global PIN depicts the interaction of different signaling proteins and the evolutionary paths of the identified signal transduction pathways. Furthermore, the function assignment of unclassified proteins based on the PIN offers a new reference in protein function exploration. More importantly, the construction of the E. sinensis PIN provides necessary experience for the exploration of PINs in other aquatic crustacean species.

  9. Expressing Parallelism with ROOT

    NASA Astrophysics Data System (ADS)

    Piparo, D.; Tejedor, E.; Guiraud, E.; Ganis, G.; Mato, P.; Moneta, L.; Valls Pla, X.; Canal, P.

    2017-10-01

    The need for processing the ever-increasing amount of data generated by the LHC experiments in a more efficient way has motivated ROOT to further develop its support for parallelism. Such support is being tackled both for shared-memory and distributed-memory environments. The incarnations of the aforementioned parallelism are multi-threading, multi-processing and cluster-wide executions. In the area of multi-threading, we discuss the new implicit parallelism and related interfaces, as well as the new building blocks to safely operate with ROOT objects in a multi-threaded environment. Regarding multi-processing, we review the new MultiProc framework, comparing it with similar tools (e.g. multiprocessing module in Python). Finally, as an alternative to PROOF for cluster-wide executions, we introduce the efforts on integrating ROOT with state-of-the-art distributed data processing technologies like Spark, both in terms of programming model and runtime design (with EOS as one of the main components). For all the levels of parallelism, we discuss, based on real-life examples and measurements, how our proposals can increase the productivity of scientists.

  10. Expressing Parallelism with ROOT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piparo, D.; Tejedor, E.; Guiraud, E.

    The need for processing the ever-increasing amount of data generated by the LHC experiments in a more efficient way has motivated ROOT to further develop its support for parallelism. Such support is being tackled both for shared-memory and distributed-memory environments. The incarnations of the aforementioned parallelism are multi-threading, multi-processing and cluster-wide executions. In the area of multi-threading, we discuss the new implicit parallelism and related interfaces, as well as the new building blocks to safely operate with ROOT objects in a multi-threaded environment. Regarding multi-processing, we review the new MultiProc framework, comparing it with similar tools (e.g. multiprocessing module inmore » Python). Finally, as an alternative to PROOF for cluster-wide executions, we introduce the efforts on integrating ROOT with state-of-the-art distributed data processing technologies like Spark, both in terms of programming model and runtime design (with EOS as one of the main components). For all the levels of parallelism, we discuss, based on real-life examples and measurements, how our proposals can increase the productivity of scientists.« less

  11. Self-Advancing Step-Tap Drills

    NASA Technical Reports Server (NTRS)

    Pettit, Donald R.; Camarda, Charles J.; Penner, Ronald K.; Franklin, Larry D.

    2007-01-01

    Self-advancing tool bits that are hybrids of drills and stepped taps make it possible to form threaded holes wider than about 1/2 in. (about 13 mm) without applying any more axial force than is necessary for forming narrower pilot holes. These self-advancing stepped-tap drills were invented for use by space-suited astronauts performing repairs on reinforced carbon/carbon space-shuttle leading edges during space walks, in which the ability to apply axial drilling forces is severely limited. Self-advancing stepped-tap drills could also be used on Earth for making wide holes without applying large axial forces. A self-advancing stepped-tap drill (see figure) includes several sections having progressively larger diameters, typically in increments between 0.030 and 0.060 in. (between about 0.8 and about 1.5 mm). The tip section, which is the narrowest, is a pilot drill bit that typically has a diameter between 1/8 and 3/16 in. (between about 3.2 and about 4.8 mm). The length of the pilot-drill section is chosen, according to the thickness of the object to be drilled and tapped, so that the pilot hole is completed before engagement of the first tap section. Provided that the cutting-edge geometry of the drill bit is optimized for the material to be drilled, only a relatively small axial force [typically of the order of a few pounds (of the order of 10 newtons)] must be applied during drilling of the pilot hole. Once the first tap section engages the pilot hole, it is no longer necessary for the drill operator to apply axial force: the thread engagement between the tap and the workpiece provides the axial force to advance the tool bit. Like the pilot-drill section, each tap section must be long enough to complete its hole before engagement of the next, slightly wider tap section. The precise values of the increments in diameter, the thread pitch, the rake angle of the tap cutting edge, and other geometric parameters of the tap sections must be chosen, in consideration of the workpiece material and thickness, to prevent stripping of threads during the drilling/tapping operation. A stop-lip or shoulder at the shank end of the widest tap section prevents further passage of the tool bit through the hole.

  12. Welding Development: Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ding, Jeff

    2007-01-01

    This paper presents the basic understanding of the friction stir welding process. It covers process description, pin tool operation and materials, metal flow theory, mechanical properties, and materials welded using the process. It also discusses the thermal stir welding process and the differences between thermal stir and friction stir welding. MSFC weld tools used for development are also presented.

  13. Determination of X-ray flux using silicon pin diodes

    PubMed Central

    Owen, Robin L.; Holton, James M.; Schulze-Briese, Clemens; Garman, Elspeth F.

    2009-01-01

    Accurate measurement of photon flux from an X-ray source, a parameter required to calculate the dose absorbed by the sample, is not yet routinely available at macromolecular crystallography beamlines. The development of a model for determining the photon flux incident on pin diodes is described here, and has been tested on the macromolecular crystallography beamlines at both the Swiss Light Source, Villigen, Switzerland, and the Advanced Light Source, Berkeley, USA, at energies between 4 and 18 keV. These experiments have shown that a simple model based on energy deposition in silicon is sufficient for determining the flux incident on high-quality silicon pin diodes. The derivation and validation of this model is presented, and a web-based tool for the use of the macromolecular crystallography and wider synchrotron community is introduced. PMID:19240326

  14. Measurement of carbon distribution in nuclear fuel pin cladding specimens by means of a secondary ion mass spectrometer

    NASA Astrophysics Data System (ADS)

    Bart, Gerhard; Aerne, Ernst Tino; Burri, Martin; Zwicky, Hans-Urs

    1986-11-01

    Cladding carburization during irradiation of advanced mixed uranium plutonium carbide fast breeder reactor fuel is possibly a life limiting fuel pin factor. The quantitative assessment of such clad carbon embrittlement is difficult to perform by electron microprobe analysis because of sample surface contamination, and due to the very low energy of the carbon K α X-ray transition. The work presented here describes a method developed at the Swiss Federal Institute for Reactor Research (EIR) to use shielded secondary ion mass spectrometry (SIMS) as an accurate tool to determine radial distribution profiles of carbon in radioactive stainless steel fuel pin cladding. Compared with nuclear microprobe analysis (NMA) [1], which is also an accurate method for carbon analysis, the SIMS method distinguishes itself by its versatility for simultaneous determination of additional impurities.

  15. 16 CFR 503.2 - Status of specific items under the Fair Packaging and Labeling Act.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (wooden, plastic). Compacts and mirrors. Diaries and calendars. Flower seeds. Footwear. Garden tools. Gift... gloves (household). Safety flares. Safety pins. School supplies. Sewing accessories. Silverware...

  16. 16 CFR 503.2 - Status of specific items under the Fair Packaging and Labeling Act.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (wooden, plastic). Compacts and mirrors. Diaries and calendars. Flower seeds. Footwear. Garden tools. Gift... gloves (household). Safety flares. Safety pins. School supplies. Sewing accessories. Silverware...

  17. Improving the particle distribution and mechanical properties of friction-stir-welded composites by using a smooth pin tool

    NASA Astrophysics Data System (ADS)

    Liu, Huijie; Hu, Yanying; Zhao, Yunqiang; Fujii, Hidetoshi

    2017-09-01

    Friction stir welding (FSW) is a very promising technique for joining particle-reinforced aluminum-matrix composites (PRAMCs), but with increase in the volume fraction of reinforcing particles, their distribution in welds becomes inhomogeneous. This leads to an inconsistent deformation of welds and their destruction at low stresses. In order to improve the weld microstructure, a smooth pin tool was used for the friction stir welding of AC4A + 30 vol.% SiC particle-reinforced aluminum-matrix composites. The present work describes the effect of welding parameters on the characteristics of particle distribution and the mechanical properties of welds. The ultimate strength of weld reached, 309 MPa, was almost 190% of that of the basic material. The mechanism of SiC particle conglomeration is clearly illustrated by means of schematic illustrations.

  18. Calculation of a fluctuating entropic force by phase space sampling.

    PubMed

    Waters, James T; Kim, Harold D

    2015-07-01

    A polymer chain pinned in space exerts a fluctuating force on the pin point in thermal equilibrium. The average of such fluctuating force is well understood from statistical mechanics as an entropic force, but little is known about the underlying force distribution. Here, we introduce two phase space sampling methods that can produce the equilibrium distribution of instantaneous forces exerted by a terminally pinned polymer. In these methods, both the positions and momenta of mass points representing a freely jointed chain are perturbed in accordance with the spatial constraints and the Boltzmann distribution of total energy. The constraint force for each conformation and momentum is calculated using Lagrangian dynamics. Using terminally pinned chains in space and on a surface, we show that the force distribution is highly asymmetric with both tensile and compressive forces. Most importantly, the mean of the distribution, which is equal to the entropic force, is not the most probable force even for long chains. Our work provides insights into the mechanistic origin of entropic forces, and an efficient computational tool for unbiased sampling of the phase space of a constrained system.

  19. Single-cell-based system to monitor carrier driven cellular auxin homeostasis

    PubMed Central

    2013-01-01

    Background Abundance and distribution of the plant hormone auxin play important roles in plant development. Besides other metabolic processes, various auxin carriers control the cellular level of active auxin and, hence, are major regulators of cellular auxin homeostasis. Despite the developmental importance of auxin transporters, a simple medium-to-high throughput approach to assess carrier activities is still missing. Here we show that carrier driven depletion of cellular auxin correlates with reduced nuclear auxin signaling in tobacco Bright Yellow-2 (BY-2) cell cultures. Results We developed an easy to use transient single-cell-based system to detect carrier activity. We use the relative changes in signaling output of the auxin responsive promoter element DR5 to indirectly visualize auxin carrier activity. The feasibility of the transient approach was demonstrated by pharmacological and genetic interference with auxin signaling and transport. As a proof of concept, we provide visual evidence that the prominent auxin transport proteins PIN-FORMED (PIN)2 and PIN5 regulate cellular auxin homeostasis at the plasma membrane and endoplasmic reticulum (ER), respectively. Our data suggest that PIN2 and PIN5 have different sensitivities to the auxin transport inhibitor 1-naphthylphthalamic acid (NPA). Also the putative PIN-LIKES (PILS) auxin carrier activity at the ER is insensitive to NPA in our system, indicating that NPA blocks intercellular, but not intracellular auxin transport. Conclusions This single-cell-based system is a useful tool by which the activity of putative auxin carriers, such as PINs, PILS and WALLS ARE THIN1 (WAT1), can be indirectly visualized in a medium-to-high throughput manner. Moreover, our single cell system might be useful to investigate also other hormonal signaling pathways, such as cytokinin. PMID:23379388

  20. The Pitt Innovation Challenge (PInCh): Driving Innovation in Translational Research Through an Incentive-Based, Problem-Focused Competition

    PubMed Central

    Fitzpatrick, Nicole Edgar; Maier, John; Yasko, Laurel; Mathias, David; Qua, Kacy; Wagner, Erika; Miller, Elizabeth; Reis, Steven E.

    2017-01-01

    Problem Translational research aims to move scientific discoveries across the biomedical spectrum from the laboratory to humans, and to ultimately transform clinical practice and public health policies. Despite efforts to accelerate translational research through national initiatives, several major hurdles remain. Approach The authors created the Pitt Innovation Challenge (PInCh) as an incentive-based, problem-focused approach to solving identified clinical or public health problems at the University of Pittsburgh Clinical and Translational Science Institute in spring 2014. With input from a broad range of stakeholders, PInCh leadership arrived at the challenge question: How do we empower individuals to take control of their own health outcomes? The authors developed the PInCh’s three-round proposal submission and review process as well as an online contest management tool to support the process. Outcomes Ninety-two teams submitted videos proposals in round one. Proposals included mobile applications (29, 32%), other information technology (19, 21%), and community program (22, 24%) solutions. Ten teams advanced to the final round, where three were awarded $100,000 to implement their solution over twelve months. In a six-month follow-up survey, 6/11 (55%) team leaders stated the PInCh helped to facilitate connections outside their normal sphere of collaborators. Next Steps Additional educational training sessions related to problem-focused research will be developed. The PInCh will be expanded to engage investment and industry communities to facilitate the translation of solutions to clinical practice via commercialization pathways. External organizations and other universities will be engaged to use the PInCh as a mechanism to fuel innovation in their spaces. PMID:27508341

  1. Thread selection according to power characteristics during context switching on compute nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, Charles J.; Blocksome, Michael A.; Randles, Amanda E.

    Methods, apparatus, and products are disclosed for thread selection during context switching on a plurality of compute nodes that includes: executing, by a compute node, an application using a plurality of threads of execution, including executing one or more of the threads of execution; selecting, by the compute node from a plurality of available threads of execution for the application, a next thread of execution in dependence upon power characteristics for each of the available threads; determining, by the compute node, whether criteria for a thread context switch are satisfied; and performing, by the compute node, the thread context switchmore » if the criteria for a thread context switch are satisfied, including executing the next thread of execution.« less

  2. Thread selection according to predefined power characteristics during context switching on compute nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Methods, apparatus, and products are disclosed for thread selection during context switching on a plurality of compute nodes that includes: executing, by a compute node, an application using a plurality of threads of execution, including executing one or more of the threads of execution; selecting, by the compute node from a plurality of available threads of execution for the application, a next thread of execution in dependence upon power characteristics for each of the available threads; determining, by the compute node, whether criteria for a thread context switch are satisfied; and performing, by the compute node, the thread context switchmore » if the criteria for a thread context switch are satisfied, including executing the next thread of execution.« less

  3. Modified locking thread form for fastener

    NASA Technical Reports Server (NTRS)

    Roopnarine, (Inventor); Vranish, John D. (Inventor)

    1998-01-01

    A threaded fastener has a standard part with a standard thread form characterized by thread walls with a standard included angle, and a modified part complementary to the standard part having a modified thread form characterized by thread walls which are symmetrically inclined with a modified included angle that is different from the standard included angle of the standard part's thread walls, such that the threads of one part make pre-loaded edge contact with the thread walls of the other part. The thread form of the modified part can have an included angle that is greater, less, or compound as compared to the included angle of the standard part. The standard part may be a bolt and the modified part a nut, or vice versa. The modified thread form holds securely even under large vibrational forces, it permits bi-directional use of standard mating threads, is impervious to the build up of tolerances and can be manufactured with a wider range of tolerances without loss of functionality, and distributes loading stresses (per thread) in a manner that decreases the possibility of single thread failure.

  4. H-BLAST: a fast protein sequence alignment toolkit on heterogeneous computers with GPUs.

    PubMed

    Ye, Weicai; Chen, Ying; Zhang, Yongdong; Xu, Yuesheng

    2017-04-15

    The sequence alignment is a fundamental problem in bioinformatics. BLAST is a routinely used tool for this purpose with over 118 000 citations in the past two decades. As the size of bio-sequence databases grows exponentially, the computational speed of alignment softwares must be improved. We develop the heterogeneous BLAST (H-BLAST), a fast parallel search tool for a heterogeneous computer that couples CPUs and GPUs, to accelerate BLASTX and BLASTP-basic tools of NCBI-BLAST. H-BLAST employs a locally decoupled seed-extension algorithm for better performance on GPUs, and offers a performance tuning mechanism for better efficiency among various CPUs and GPUs combinations. H-BLAST produces identical alignment results as NCBI-BLAST and its computational speed is much faster than that of NCBI-BLAST. Speedups achieved by H-BLAST over sequential NCBI-BLASTP (resp. NCBI-BLASTX) range mostly from 4 to 10 (resp. 5 to 7.2). With 2 CPU threads and 2 GPUs, H-BLAST can be faster than 16-threaded NCBI-BLASTX. Furthermore, H-BLAST is 1.5-4 times faster than GPU-BLAST. https://github.com/Yeyke/H-BLAST.git. yux06@syr.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  5. Metrics for Mechanics and Other Practical People.

    ERIC Educational Resources Information Center

    Richmond, Doug

    This handbook on the metric system is printed in a large type for ease of reading. It includes several tables of often-used facts. A brief background of the metric system is presented, followed by chapters on metric uses with electricity, length, pressure, temperature, threaded fastenings, tools, torque, volume, and weight. Each chapter provides a…

  6. The Virtual Lecture Hall: Utilisation, Effectiveness and Student Perceptions

    ERIC Educational Resources Information Center

    Cramer, Kenneth M.; Collins, Kandice R.; Snider, Don; Fawcett, Graham

    2007-01-01

    We presently introduce the Virtual Lecture Hall (VLH), an instructional computer-based platform for delivering Microsoft PowerPoint slides threaded with audio clips for later review. There were 839 male and female university students enrolled in an introductory psychology class who had access to review class lectures via the VLH. This tool was…

  7. Ariadne's Thread and Indra's Net: Reflections on Ethnography, Ethnicity, Identity, Culture, and Interaction.

    ERIC Educational Resources Information Center

    Moerman, Michael

    1993-01-01

    Defines and illustrates the main tools used in intercultural research: ethnography, ethnicity, social interaction, identity, and culture. These are the ongoing product of intersecting processes. All are social accomplishments, influenced by the context in which they occur. The anthropologist and native jointly participate in these enterprises. (17…

  8. Social Networking Goes to School

    ERIC Educational Resources Information Center

    Davis, Michelle R.

    2010-01-01

    Just a few years ago, social networking meant little more to educators than the headache of determining whether to penalize students for inappropriate activities captured on Facebook or MySpace. Now, teachers and students have an array of social-networking sites and tools--from Ning to VoiceThread and Second Life--to draw on for such serious uses…

  9. Machine Shop. Module 5: Lathes. Instructor's Guide.

    ERIC Educational Resources Information Center

    Nobles, Jack

    This document consists of materials for a 10-unit course on the following topics: (1) types and parts of lathes; (2) lathe accessories, maintenance, and safety; (3) lathe operations and tooling; (4) lathe calculations; (5) lathe taper and thread applications; (6) planning considerations; (7) cutting fluids, lathe center alignment, and lathe gaps;…

  10. Benchmark and Framework for Encouraging Research on Multi-Threaded Testing Tools

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Stoller, Scott D.; Ur, Shmuel

    2003-01-01

    A problem that has been getting prominence in testing is that of looking for intermittent bugs. Multi-threaded code is becoming very common, mostly on the server side. As there is no silver bullet solution, research focuses on a variety of partial solutions. In this paper (invited by PADTAD 2003) we outline a proposed project to facilitate research. The project goals are as follows. The first goal is to create a benchmark that can be used to evaluate different solutions. The benchmark, apart from containing programs with documented bugs, will include other artifacts, such as traces, that are useful for evaluating some of the technologies. The second goal is to create a set of tools with open API s that can be used to check ideas without building a large system. For example an instrumentor will be available, that could be used to test temporal noise making heuristics. The third goal is to create a focus for the research in this area around which a community of people who try to solve similar problems with different techniques, could congregate.

  11. Analysis-Based Verification: A Programmer-Oriented Approach to the Assurance of Mechanical Program Properties

    DTIC Science & Technology

    2010-05-27

    programming language, threads can only communicate through fields and this assertion prohibits an alias to the object under construction from being writ- ten...1.9. We call this type of reporting “compiler-like” in the sense that the descriptive message output by the tool has to communicate the semantics of...way to communicate a “need” for further annotation to the tool user because a precise expression of both the location and content of the needed

  12. Continuous directional water transport on the peristome surface of Nepenthes alata

    NASA Astrophysics Data System (ADS)

    Chen, Huawei; Zhang, Pengfei; Zhang, Liwen; Liu, Hongliang; Jiang, Ying; Zhang, Deyuan; Han, Zhiwu; Jiang, Lei

    2016-04-01

    Numerous natural systems contain surfaces or threads that enable directional water transport. This behaviour is usually ascribed to hierarchical structural features at the microscale and nanoscale, with gradients in surface energy and gradients in Laplace pressure thought to be the main driving forces. Here we study the prey-trapping pitcher organs of the carnivorous plant Nepenthes alata. We find that continuous, directional water transport occurs on the surface of the ‘peristome’—the rim of the pitcher—because of its multiscale structure, which optimizes and enhances capillary rise in the transport direction, and prevents backflow by pinning in place any water front that is moving in the reverse direction. This results not only in unidirectional flow despite the absence of any surface-energy gradient, but also in a transport speed that is much higher than previously thought. We anticipate that the basic ‘design’ principles underlying this behaviour could be used to develop artificial fluid-transport systems with practical applications.

  13. Use of an extracapsular stabilization technique to repair cruciate ligament ruptures in two avian species.

    PubMed

    Chinnadurai, Sathya K; Spodnick, Gary; Degernes, Laurel; DeVoe, Ryan S; Marcellin-Little, Denis J

    2009-12-01

    An extracapsular stabilization technique was used to repair cruciate ligament ruptures in a trumpeter hornbill (Bycanistes bucinator) and an African grey parrot (Psittacus erithacus). The hornbill demonstrated cranial drawer motion and severe rotational instability of the stifle from ruptures of the cranial and caudal cruciate ligaments and stifle joint capsule. The luxation was reduced, and the fibula was cranially transposed, in relation to the tibiotarsus, and anchored with 2 positive profile threaded acrylic pins. A lateral extracapsular stabilization was then performed. The African grey parrot had a traumatic stifle luxation, and an open reduction and a lateral extracapsular stabilization were performed. Both birds regained function of the affected leg by 1 month after surgery. Extracapsular stabilization allows motion of the stifle joint to be maintained during the postoperative recovery period, an advantage over rigid stabilization. Maintaining motion in the stifle joint facilitates physical therapy and can aid in full recovery after avian stifle injuries.

  14. Pinning and Practice: Using Pinterest as a Tool for Developing Pedagogical Content Knowledge

    ERIC Educational Resources Information Center

    Grote-Garcia, Stephanie; Vasinda, Sheri

    2014-01-01

    Pinterest (http://www.pinterest.com/) is one of the fastest growing social media sites (Duggan & Smith, 2013) and teachers are using it more and more for pedagogical ideas. In response to the increased use of social media in K-12 classrooms, it is highly important to prepare preservice teachers to incorporate these tools into their pedagogy.…

  15. Friction Stir Welding Development at NASA, Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Gentz, Steve (Technical Monitor)

    2001-01-01

    Friction stir welding (FSW) is a solid state process that pan be used to join materials without melting. The process was invented by The Welding Institute (TWI), Cambridge, England. Friction stir welding exhibits several advantages over fusion welding in that it produces welds with fewer defects and higher joint efficiency and is capable of joining alloys that are generally considered non-weldable with a fusion weld process. In 1994, NASA-Marshall began collaborating with TWI to transform FSW from a laboratory curiosity to a viable metal joining process suitable for manufacturing hardware. While teamed with TWI, NASA-Marshall began its own FSW research and development effort to investigate possible aerospace applications for the FSW process. The work involved nearly all aspects of FSW development, including process modeling, scale-up issues, applications to advanced materials and development of tooling to use FSW on components of the Space Shuttle with particular emphasis on aluminum tanks. The friction stir welding process involves spinning a pin-tool at an appropriate speed, plunging it into the base metal pieces to be joined, and then translating it along the joint of the work pieces. In aluminum alloys the rotating speed typically ranges from 200 to 400 revolutions per minute and the translation speed is approximately two to five inches per minute. The pin-tool is inserted at a small lead angle from the axis normal to the work piece and requires significant loading along the axis of the tool. An anvil or reaction structure is required behind the welded material to react the load along the axis of the pin tool. The process requires no external heat input, filler material, protective shielding gas or inert atmosphere typical of fusion weld processes. The FSW solid-state weld process has resulted in aluminum welds with significantly higher strengths, higher joint efficiencies and fewer defects than fusion welds used to join similar alloys.

  16. Cutting thread at flexible endoscopy.

    PubMed

    Gong, F; Swain, P; Kadirkamanathan, S; Hepworth, C; Laufer, J; Shelton, J; Mills, T

    1996-12-01

    New thread-cutting techniques were developed for use at flexible endoscopy. A guillotine was designed to follow and cut thread at the endoscope tip. A new method was developed for guiding suture cutters. Efficacy of Nd: YAG laser cutting of threads was studied. Experimental and clinical experience with thread-cutting methods is presented. A 2.4 mm diameter flexible thread-cutting guillotine was constructed featuring two lateral holes with sharp edges through which sutures to be cut are passed. Standard suture cutters were guided by backloading thread through the cutters extracorporeally. A snare cutter was constructed to retrieve objects sewn to tissue. Efficacy and speed of Nd: YAG laser in cutting twelve different threads were studied. The guillotine cut thread faster (p < 0.05) than standard suture cutters. Backloading thread shortened time taken to cut thread (p < 0.001) compared with free-hand cutting. Nd: YAG laser was ineffective in cutting uncolored threads and slower than mechanical cutters. Results of thread cutting in clinical studies using sewing machine (n = 77 cutting episodes in 21 patients), in-vivo experiments (n = 156), and postsurgical cases (n = 15 over 15 years) are presented. New thread-cutting methods are described and their efficacy demonstrated in experimental and clinical studies.

  17. Functional brain areas associated with manipulation of a prehensile tool: a PET study.

    PubMed

    Tsuda, Hayato; Aoki, Tomoko; Oku, Naohiko; Kimura, Yasuyuki; Hatazawa, Jun; Kinoshita, Hiroshi

    2009-09-01

    Using PET, brain areas representing the use of a well-learned tool (chopsticks) were investigated in 10 normal common users. The experimental task was to hold the tool in their right hand and use it to pick up and transport a small pin from a table. Data for the same task performed using only the fingers were also obtained as a control. The results showed an extensive overlap in activated areas with and without the use of the tool. The tool-use prehension, compared to the finger prehension, was associated with higher activities in the caudal-ventral premotor, dorsal premotor, superior parietal, posterior intraparietal, middle temporal gyrus, and primary sensory, occipital cortices, and the cerebellum. These are thus considered to be the human cortical and subcortical substrates representing the use of the tool studied. The activity of the posterior intraparietal area was negatively correlated with the number of drops of the pin, whereas occipital activity was positively correlated with the same error parameter. The caudal-ventral premotor and posterior intraparietal areas are together known to be involved in tool use-related modulation in peripersonal space. The correlation results suggest that this modulation depends on the level of performance. The coactivated left middle temporal gyrus further suggests that familiarity with a tool as well as the knowledge about its usage plays a role in peripersonal space modulation. Superior parietal activation, along with occipital activation, indicates the involvement of visual-spatial attention in the tool use, possibly reflecting the effect of interaction between the prehension (task) and the tool. 2009 Wiley-Liss, Inc.

  18. Pin bearing evaluation of LTM25 composite materials

    NASA Technical Reports Server (NTRS)

    Shah, C. H.; Postyn, A. S.

    1996-01-01

    This report summarizes pin bearing evaluations of LTM25 composite materials. Northrop Grumman Corporation conducted pin bearing testing and fabricate two panels from composite materials that cure at low temperatures. These materials are being incorporated into Unmanned Aerial Vehicles (UAVS) to reduce manufacturing costs since they allow the use of low-cost tooling and facilities. Two composite prepreg product forms were evaluated; MR50/LTM25 unidirectional tape, batch 2881vd and CFS003/LTM25 woven cloth, batch 2216. Northrop Grumman fabricated, machined, and tested specimens to determine the bearing strength in accordance with MIL-HDBK-17D, Volume 1, Section 7.2.4. Quasi-isotropic laminates from the two product forms were fabricated for these tests. In addition, 2 quasi-isotropic panels of dimensions 12 in. x 28 in. were fabricated (one each from the two product forms), inspected, and shipped to NASA Langley for further evaluation.

  19. Accuracy and repeatability positioning of high-performancel athe for non-circular turning

    NASA Astrophysics Data System (ADS)

    Majda, Paweł; Powałka, Bartosz

    2017-11-01

    This paper presents research on the accuracy and repeatability of CNC axis positioning in an innovative lathe with an additional Xs axis. This axis is used to perform movements synchronized with the angular position of the main drive, i.e. the spindle, and with the axial feed along the Z axis. This enables the one-pass turning of non-circular surfaces, rope and trapezoidal threads, as well as the surfaces of rotary tools such as a gear cutting hob, etc. The paper presents and discusses the interpretation of results and the calibration effects of positioning errors in the lathe's numerical control system. Finally, it shows the geometric characteristics of the rope thread turned at various spindle speeds, including before and after-correction of the positioning error of the Xs axis.

  20. Creating a 'Born Digital' Introductory Online Geology Course with a Community of Inquiry that Supports Discussion of Societal Challenges

    NASA Astrophysics Data System (ADS)

    d'Alessio, M. A.; Schwartz, J. J.

    2014-12-01

    With earth science relevant to so many societal challenges, we created an introductory geology course as a forum for students to explore the interplay between geoscience and society. With new media and digital tools enabling such rich collaboration, we designed the course as a fully online lecture and laboratory experience that meets the natural science general education requirements of our university. We hook students by using popular Hollywood blockbusters paired with documentary films that address related science content. Student ask questions using an online question ranking tool (Google Moderator) to guide the direction of further content delivery using the slide sharing/collaboration tool 'VoiceThread.' It allows instructors to post slides, add video narration, and invite students to comment or answer specific questions using video, voice, or text. Students report that VoiceThread makes an asynchronous class feel like a face-to-face experience. Student also collect data using online tools and pool their data in Google Spreadsheets. They discuss their collective findings in VoiceThread. With these tools in place, each content unit culminates with a challenge scenario. Students work in teams to come to a consensus about a real-world decision that requires them to apply their geologic knowledge. Examples include whether or not to evacuate a town in light of volcanic activity, which house to purchase in an earthquake prone area, which industry was polluting local groundwater, and whether or not to sell mineral rights for hydraulic fracturing. While many of these activities are widely utilized, our approach using them in an integrated online lecture/lab environment is unique. A survey of student attitudes towards the course revealed that students felt a stronger personal connection to the course instructor and one another than typical face-to-face GE classes, including those from our own department. Students' self-report of how much they learned was strongly correlated to their perceived sense of community. We attribute the high course grades and low failure rates (30% A's with only 13% D/F/W) to this sense of community and the socially relevant content it enabled students to engage, as the scores were much higher than more traditional face-to-face courses taught by the same instructors.

  1. Thread gauge for measuring thread pitch diameters

    DOEpatents

    Brewster, A.L.

    1985-11-19

    A thread gauge which attaches to a vernier caliper to measure the thread pitch diameter of both externally threaded and internally threaded parts is disclosed. A pair of anvils are externally threaded with threads having the same pitch as those of the threaded part. Each anvil is mounted on a stem having a ball on which the anvil can rotate to properly mate with the parts to which the anvils are applied. The stems are detachably secured to the caliper blades by attachment collars having keyhole openings for receiving the stems and caliper blades. A set screw is used to secure each collar on its caliper blade. 2 figs.

  2. Thread gauge for measuring thread pitch diameters

    DOEpatents

    Brewster, Albert L.

    1985-01-01

    A thread gauge which attaches to a vernier caliper to measure the thread pitch diameter of both externally threaded and internally threaded parts. A pair of anvils are externally threaded with threads having the same pitch as those of the threaded part. Each anvil is mounted on a stem having a ball on which the anvil can rotate to properly mate with the parts to which the anvils are applied. The stems are detachably secured to the caliper blades by attachment collars having keyhole openings for receiving the stems and caliper blades. A set screw is used to secure each collar on its caliper blade.

  3. Three-dimensional planning and use of patient-specific guides improve glenoid component position: an in vitro study.

    PubMed

    Walch, Gilles; Vezeridis, Peter S; Boileau, Pascal; Deransart, Pierric; Chaoui, Jean

    2015-02-01

    Glenoid component positioning is a key factor for success in total shoulder arthroplasty. Three-dimensional (3D) measurements of glenoid retroversion, inclination, and humeral head subluxation are helpful tools for preoperative planning. The purpose of this study was to assess the reliability and precision of a novel surgical method for placing the glenoid component with use of patient-specific templates created by preoperative surgical planning and 3D modeling. A preoperative computed tomography examination of cadaveric scapulae (N = 18) was performed. The glenoid implants were virtually placed, and patient-specific guides were created to direct the guide pin into the desired orientation and position in the glenoid. The 3D orientation and position of the guide pin were evaluated by performing a postoperative computed tomography scan for each scapula. The differences between the preoperative planning and the achieved result were analyzed. The mean error in 3D orientation of the guide pin was 2.39°, the mean entry point position error was 1.05 mm, and the mean inclination angle error was 1.42°. The average error in the version angle was 1.64°. There were no technical difficulties or complications related to use of patient-specific guides for guide pin placement. Quantitative analysis of guide pin positioning demonstrated a good correlation between preoperative planning and the achieved position of the guide pin. This study demonstrates the reliability and precision of preoperative planning software and patient-specific guides for glenoid component placement in total shoulder arthroplasty. Copyright © 2015. Published by Elsevier Inc.

  4. HMMerThread: detecting remote, functional conserved domains in entire genomes by combining relaxed sequence-database searches with fold recognition.

    PubMed

    Bradshaw, Charles Richard; Surendranath, Vineeth; Henschel, Robert; Mueller, Matthias Stefan; Habermann, Bianca Hermine

    2011-03-10

    Conserved domains in proteins are one of the major sources of functional information for experimental design and genome-level annotation. Though search tools for conserved domain databases such as Hidden Markov Models (HMMs) are sensitive in detecting conserved domains in proteins when they share sufficient sequence similarity, they tend to miss more divergent family members, as they lack a reliable statistical framework for the detection of low sequence similarity. We have developed a greatly improved HMMerThread algorithm that can detect remotely conserved domains in highly divergent sequences. HMMerThread combines relaxed conserved domain searches with fold recognition to eliminate false positive, sequence-based identifications. With an accuracy of 90%, our software is able to automatically predict highly divergent members of conserved domain families with an associated 3-dimensional structure. We give additional confidence to our predictions by validation across species. We have run HMMerThread searches on eight proteomes including human and present a rich resource of remotely conserved domains, which adds significantly to the functional annotation of entire proteomes. We find ∼4500 cross-species validated, remotely conserved domain predictions in the human proteome alone. As an example, we find a DNA-binding domain in the C-terminal part of the A-kinase anchor protein 10 (AKAP10), a PKA adaptor that has been implicated in cardiac arrhythmias and premature cardiac death, which upon stress likely translocates from mitochondria to the nucleus/nucleolus. Based on our prediction, we propose that with this HLH-domain, AKAP10 is involved in the transcriptional control of stress response. Further remotely conserved domains we discuss are examples from areas such as sporulation, chromosome segregation and signalling during immune response. The HMMerThread algorithm is able to automatically detect the presence of remotely conserved domains in proteins based on weak sequence similarity. Our predictions open up new avenues for biological and medical studies. Genome-wide HMMerThread domains are available at http://vm1-hmmerthread.age.mpg.de.

  5. HMMerThread: Detecting Remote, Functional Conserved Domains in Entire Genomes by Combining Relaxed Sequence-Database Searches with Fold Recognition

    PubMed Central

    Bradshaw, Charles Richard; Surendranath, Vineeth; Henschel, Robert; Mueller, Matthias Stefan; Habermann, Bianca Hermine

    2011-01-01

    Conserved domains in proteins are one of the major sources of functional information for experimental design and genome-level annotation. Though search tools for conserved domain databases such as Hidden Markov Models (HMMs) are sensitive in detecting conserved domains in proteins when they share sufficient sequence similarity, they tend to miss more divergent family members, as they lack a reliable statistical framework for the detection of low sequence similarity. We have developed a greatly improved HMMerThread algorithm that can detect remotely conserved domains in highly divergent sequences. HMMerThread combines relaxed conserved domain searches with fold recognition to eliminate false positive, sequence-based identifications. With an accuracy of 90%, our software is able to automatically predict highly divergent members of conserved domain families with an associated 3-dimensional structure. We give additional confidence to our predictions by validation across species. We have run HMMerThread searches on eight proteomes including human and present a rich resource of remotely conserved domains, which adds significantly to the functional annotation of entire proteomes. We find ∼4500 cross-species validated, remotely conserved domain predictions in the human proteome alone. As an example, we find a DNA-binding domain in the C-terminal part of the A-kinase anchor protein 10 (AKAP10), a PKA adaptor that has been implicated in cardiac arrhythmias and premature cardiac death, which upon stress likely translocates from mitochondria to the nucleus/nucleolus. Based on our prediction, we propose that with this HLH-domain, AKAP10 is involved in the transcriptional control of stress response. Further remotely conserved domains we discuss are examples from areas such as sporulation, chromosome segregation and signalling during immune response. The HMMerThread algorithm is able to automatically detect the presence of remotely conserved domains in proteins based on weak sequence similarity. Our predictions open up new avenues for biological and medical studies. Genome-wide HMMerThread domains are available at http://vm1-hmmerthread.age.mpg.de. PMID:21423752

  6. Development of a State Machine Sequencer for the Keck Interferometer: Evolution, Development and Lessons Learned using a CASE Tool Approach

    NASA Technical Reports Server (NTRS)

    Rede, Leonard J.; Booth, Andrew; Hsieh, Jonathon; Summer, Kellee

    2004-01-01

    This paper presents a discussion of the evolution of a sequencer from a simple EPICS (Experimental Physics and Industrial Control System) based sequencer into a complex implementation designed utilizing UML (Unified Modeling Language) methodologies and a CASE (Computer Aided Software Engineering) tool approach. The main purpose of the sequencer (called the IF Sequencer) is to provide overall control of the Keck Interferometer to enable science operations be carried out by a single operator (and/or observer). The interferometer links the two 10m telescopes of the W. M. Keck Observatory at Mauna Kea, Hawaii. The IF Sequencer is a high-level, multi-threaded, Hare1 finite state machine, software program designed to orchestrate several lower-level hardware and software hard real time subsystems that must perform their work in a specific and sequential order. The sequencing need not be done in hard real-time. Each state machine thread commands either a high-speed real-time multiple mode embedded controller via CORB A, or slower controllers via EPICS Channel Access interfaces. The overall operation of the system is simplified by the automation. The UML is discussed and our use of it to implement the sequencer is presented. The decision to use the Rhapsody product as our CASE tool is explained and reflected upon. Most importantly, a section on lessons learned is presented and the difficulty of integrating CASE tool automatically generated C++ code into a large control system consisting of multiple infrastructures is presented.

  7. Development of a state machine sequencer for the Keck Interferometer: evolution, development, and lessons learned using a CASE tool approach

    NASA Astrophysics Data System (ADS)

    Reder, Leonard J.; Booth, Andrew; Hsieh, Jonathan; Summers, Kellee R.

    2004-09-01

    This paper presents a discussion of the evolution of a sequencer from a simple Experimental Physics and Industrial Control System (EPICS) based sequencer into a complex implementation designed utilizing UML (Unified Modeling Language) methodologies and a Computer Aided Software Engineering (CASE) tool approach. The main purpose of the Interferometer Sequencer (called the IF Sequencer) is to provide overall control of the Keck Interferometer to enable science operations to be carried out by a single operator (and/or observer). The interferometer links the two 10m telescopes of the W. M. Keck Observatory at Mauna Kea, Hawaii. The IF Sequencer is a high-level, multi-threaded, Harel finite state machine software program designed to orchestrate several lower-level hardware and software hard real-time subsystems that must perform their work in a specific and sequential order. The sequencing need not be done in hard real-time. Each state machine thread commands either a high-speed real-time multiple mode embedded controller via CORBA, or slower controllers via EPICS Channel Access interfaces. The overall operation of the system is simplified by the automation. The UML is discussed and our use of it to implement the sequencer is presented. The decision to use the Rhapsody product as our CASE tool is explained and reflected upon. Most importantly, a section on lessons learned is presented and the difficulty of integrating CASE tool automatically generated C++ code into a large control system consisting of multiple infrastructures is presented.

  8. "How Did We Get Here?": Topic Drift in Online Health Discussions.

    PubMed

    Park, Albert; Hartzler, Andrea L; Huh, Jina; Hsieh, Gary; McDonald, David W; Pratt, Wanda

    2016-11-02

    Patients increasingly use online health communities to exchange health information and peer support. During the progression of health discussions, a change of topic-topic drift-can occur. Topic drift is a frequent phenomenon linked to incoherence and frustration in online communities and other forms of computer-mediated communication. For sensitive topics, such as health, such drift could have life-altering repercussions, yet topic drift has not been studied in these contexts. Our goals were to understand topic drift in online health communities and then to develop and evaluate an automated approach to detect both topic drift and efforts of community members to counteract such drift. We manually analyzed 721 posts from 184 threads from 7 online health communities within WebMD to understand topic drift, members' reaction towards topic drift, and their efforts to counteract topic drift. Then, we developed an automated approach to detect topic drift and counteraction efforts. We detected topic drift by calculating cosine similarity between 229,156 posts from 37,805 threads and measuring change of cosine similarity scores from the threads' first posts to their sequential posts. Using a similar approach, we detected counteractions to topic drift in threads by focusing on the irregular increase of similarity scores compared to the previous post in threads. Finally, we evaluated the performance of our automated approaches to detect topic drift and counteracting efforts by using a manually developed gold standard. Our qualitative analyses revealed that in threads of online health communities, topics change gradually, but usually stay within the global frame of topics for the specific community. Members showed frustration when topic drift occurred in the middle of threads but reacted positively to off-topic stories shared as separate threads. Although all types of members helped to counteract topic drift, original posters provided the most effort to keep threads on topic. Cosine similarity scores show promise for automatically detecting topical changes in online health discussions. In our manual evaluation, we achieved an F1 score of .71 and .73 for detecting topic drift and counteracting efforts to stay on topic, respectively. Our analyses expand our understanding of topic drift in a health context and highlight practical implications, such as promoting off-topic discussions as a function of building rapport in online health communities. Furthermore, the quantitative findings suggest that an automated tool could help detect topic drift, support counteraction efforts to bring the conversation back on topic, and improve communication in these important communities. Findings from this study have the potential to reduce topic drift and improve online health community members' experience of computer-mediated communication. Improved communication could enhance the personal health management of members who seek essential information and support during times of difficulty. ©Albert Park, Andrea L Hartzler, Jina Huh, Gary Hsieh, David W McDonald, Wanda Pratt. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 02.11.2016.

  9. 78 FR 76815 - Steel Threaded Rod From India: Preliminary Affirmative Countervailing Duty Determination and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ... DEPARTMENT OF COMMERCE International Trade Administration [C-533-856] Steel Threaded Rod From... exporters of steel threaded rod from India. The period of investigation (``POI'') is January 1, 2012... this investigation is steel threaded rod. Steel threaded rod is certain threaded rod, bar, or studs, of...

  10. The Online Writing Lab (OWL) and the Forum: A Tool for Writers in Distance Education Environments.

    ERIC Educational Resources Information Center

    Terryberry, Karl

    2002-01-01

    Demonstrates how to integrate static web pages with the dynamic forum for an effective learning experience on the online writing lab (OWL). Explains why asynchronous feedback provides effective, individualized writing instruction to students with various learning styles and how collaborative learning is fostered through threaded discussion groups.…

  11. Tool for Guiding An Auger

    NASA Technical Reports Server (NTRS)

    Wesselski, C. J.

    1983-01-01

    Auger and Ram have same pitch, which minimizes damage to workpiece and load carried by auger. Auger firmly fastened onto ram shaft by screw and kept from rotating on shaft by slot machined into end of stem and male driving lug that engages slot. Used to install threaded studs in plastic or rubber where impractical to mold them in.

  12. Metalworking. A Bilingual Text = Trabajo en Metal. Un Texto Bilingue.

    ERIC Educational Resources Information Center

    Los Angeles Unified School District, CA. Div. of Career and Continuing Education.

    This booklet is a course of instruction in metal working in a two-column, English-Spanish format. Following an introduction to metal working and a lesson on safety, the booklet contains 17 units organized in 2 parts. Part 1, bench metal work, covers metals, processes, and tools; cutting; filling; drilling; grinding; bending and shaping; threading;…

  13. Online discussion groups for bulimia nervosa: an inductive approach to Internet-based communication between patients.

    PubMed

    Wesemann, Dorette; Grunwald, Martin

    2008-09-01

    Online discussion forums are often used by people with eating disorders. This study analyses 2,072 threads containing a total of 14,903 postings from an unmoderated German "prorecovery" forum for persons suffering from bulimia nervosa (www.ab-server.de) during the period from October 2004 to May 2006. The threads were inductively analyzed for underlying structural types, and the various types found were then analyzed for differences in temporal and quantitative parameters. Communication in the online discussion forum occurred in three types of thread: (1) problem-oriented threads (78.8% of threads), (2) communication-oriented threads (15.3% of threads), and (3) metacommunication threads (2.6% of threads). Metacommunication threads contained significantly more postings than problem-oriented and communication-oriented threads, and they were viewed significantly more often. Moreover, there are temporal differences between the structural types. Topics relating to active management of the disorder receive great attention in prorecovery forums. (c) 2008 by Wiley Periodicals, Inc.

  14. Probing dynamics and pinning of single vortices in superconductors at nanometer scales.

    PubMed

    Embon, L; Anahory, Y; Suhov, A; Halbertal, D; Cuppens, J; Yakovenko, A; Uri, A; Myasoedov, Y; Rappaport, M L; Huber, M E; Gurevich, A; Zeldov, E

    2015-01-07

    The dynamics of quantized magnetic vortices and their pinning by materials defects determine electromagnetic properties of superconductors, particularly their ability to carry non-dissipative currents. Despite recent advances in the understanding of the complex physics of vortex matter, the behavior of vortices driven by current through a multi-scale potential of the actual materials defects is still not well understood, mostly due to the scarcity of appropriate experimental tools capable of tracing vortex trajectories on nanometer scales. Using a novel scanning superconducting quantum interference microscope we report here an investigation of controlled dynamics of vortices in lead films with sub-Angstrom spatial resolution and unprecedented sensitivity. We measured, for the first time, the fundamental dependence of the elementary pinning force of multiple defects on the vortex displacement, revealing a far more complex behavior than has previously been recognized, including striking spring softening and broken-spring depinning, as well as spontaneous hysteretic switching between cellular vortex trajectories. Our results indicate the importance of thermal fluctuations even at 4.2 K and of the vital role of ripples in the pinning potential, giving new insights into the mechanisms of magnetic relaxation and electromagnetic response of superconductors.

  15. Probing dynamics and pinning of single vortices in superconductors at nanometer scales

    NASA Astrophysics Data System (ADS)

    Embon, L.; Anahory, Y.; Suhov, A.; Halbertal, D.; Cuppens, J.; Yakovenko, A.; Uri, A.; Myasoedov, Y.; Rappaport, M. L.; Huber, M. E.; Gurevich, A.; Zeldov, E.

    2015-01-01

    The dynamics of quantized magnetic vortices and their pinning by materials defects determine electromagnetic properties of superconductors, particularly their ability to carry non-dissipative currents. Despite recent advances in the understanding of the complex physics of vortex matter, the behavior of vortices driven by current through a multi-scale potential of the actual materials defects is still not well understood, mostly due to the scarcity of appropriate experimental tools capable of tracing vortex trajectories on nanometer scales. Using a novel scanning superconducting quantum interference microscope we report here an investigation of controlled dynamics of vortices in lead films with sub-Angstrom spatial resolution and unprecedented sensitivity. We measured, for the first time, the fundamental dependence of the elementary pinning force of multiple defects on the vortex displacement, revealing a far more complex behavior than has previously been recognized, including striking spring softening and broken-spring depinning, as well as spontaneous hysteretic switching between cellular vortex trajectories. Our results indicate the importance of thermal fluctuations even at 4.2 K and of the vital role of ripples in the pinning potential, giving new insights into the mechanisms of magnetic relaxation and electromagnetic response of superconductors.

  16. Hybrid Gama Emission Tomography (HGET): FY16 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Erin A.; Smith, Leon E.; Wittman, Richard S.

    2017-02-01

    Current International Atomic Energy Agency (IAEA) methodologies for the verification of fresh low-enriched uranium (LEU) and mixed oxide (MOX) fuel assemblies are volume-averaging methods that lack sensitivity to individual pins. Further, as fresh fuel assemblies become more and more complex (e.g., heavy gadolinium loading, high degrees of axial and radial variation in fissile concentration), the accuracy of current IAEA instruments degrades and measurement time increases. Particularly in light of the fact that no special tooling is required to remove individual pins from modern fuel assemblies, the IAEA needs new capabilities for the verification of unirradiated (i.e., fresh LEU and MOX)more » assemblies to ensure that fissile material has not been diverted. Passive gamma emission tomography has demonstrated potential to provide pin-level verification of spent fuel, but gamma-ray emission rates from unirradiated fuel emissions are significantly lower, precluding purely passive tomography methods. The work presented here introduces the concept of Hybrid Gamma Emission Tomography (HGET) for verification of unirradiated fuels, in which a neutron source is used to actively interrogate the fuel assembly and the resulting gamma-ray emissions are imaged using tomographic methods to provide pin-level verification of fissile material concentration.« less

  17. Magnesium Based Composite via Friction Stir Processing

    DTIC Science & Technology

    2013-04-01

    study. FSP was carried out with a stepped spiral conical tool with a featureless shoulder and a pin length of 6.5 mm, which was made of H13 tool ...of a high strength rotating tool to locally heat the work piece and produce intense plastic deformation. The interplay between temperature and strain... steel . A set of holes with a depth of about 6 mm were drilled into the plate in the pattern shown in Fig.1 (a) and the B4C powder was then filled into

  18. Two years' outcome of thread lifting with absorbable barbed PDO threads: Innovative score for objective and subjective assessment.

    PubMed

    Ali, Yasser Helmy

    2018-02-01

    Thread-lifting rejuvenation procedures have evolved again, with the development of absorbable threads. Although they have gained popularity among plastic surgeons and dermatologists, very few articles have been written in literature about absorbable threads. This study aims to evaluate two years' outcome of thread lifting using absorbable barbed threads for facial rejuvenation. Prospective comparative stud both objectively and subjectively and follow-up assessment for 24 months. Thread lifting for face rejuvenation has significant long-lasting effects that include skin lifting from 3-10 mm and high degree of patients' satisfaction with less incidence rate of complications, about 4.8%. Augmented results are obtained when thread lifting is combined with other lifting and rejuvenation modalities. Significant facial rejuvenation is achieved by thread lifting and highly augmented results are observed when they are combined with Botox, fillers, and/or platelet rich plasma (PRP) rejuvenations.

  19. Thread gauge for tapered threads

    DOEpatents

    Brewster, Albert L.

    1994-01-11

    The thread gauge permits the user to determine the pitch diameter of tapered threads at the intersection of the pitch cone and the end face of the object being measured. A pair of opposed anvils having lines of threads which match the configuration and taper of the threads on the part being measured are brought into meshing engagement with the threads on opposite sides of the part. The anvils are located linearly into their proper positions by stop fingers on the anvils that are brought into abutting engagement with the end face of the part. This places predetermined reference points of the pitch cone of the thread anvils in registration with corresponding points on the end face of the part being measured, resulting in an accurate determination of the pitch diameter at that location. The thread anvils can be arranged for measuring either internal or external threads.

  20. Thread gauge for tapered threads

    DOEpatents

    Brewster, A.L.

    1994-01-11

    The thread gauge permits the user to determine the pitch diameter of tapered threads at the intersection of the pitch cone and the end face of the object being measured. A pair of opposed anvils having lines of threads which match the configuration and taper of the threads on the part being measured are brought into meshing engagement with the threads on opposite sides of the part. The anvils are located linearly into their proper positions by stop fingers on the anvils that are brought into abutting engagement with the end face of the part. This places predetermined reference points of the pitch cone of the thread anvils in registration with corresponding points on the end face of the part being measured, resulting in an accurate determination of the pitch diameter at that location. The thread anvils can be arranged for measuring either internal or external threads. 13 figures.

  1. CNT coated thread micro-electro-mechanical system for finger proprioception sensing

    NASA Astrophysics Data System (ADS)

    Shafi, A. A.; Wicaksono, D. H. B.

    2017-04-01

    In this paper, we aim to fabricate cotton thread based sensor for proprioceptive application. Cotton threads are utilized as the structural component of flexible sensors. The thread is coated with multi-walled carbon nanotube (MWCNT) dispersion by using facile conventional dipping-drying method. The electrical characterization of the coated thread found that the resistance per meter of the coated thread decreased with increasing the number of dipping. The CNT coated thread sensor works based on piezoresistive theory in which the resistance of the coated thread changes when force is applied. This thread sensor is sewed on glove at the index finger between middle and proximal phalanx parts and the resistance change is measured upon grasping mechanism. The thread based microelectromechanical system (MEMS) enables the flexible sensor to easily fit perfectly on the finger joint and gives reliable response as proprioceptive sensing.

  2. “How Did We Get Here?”: Topic Drift in Online Health Discussions

    PubMed Central

    Hartzler, Andrea L; Huh, Jina; Hsieh, Gary; McDonald, David W; Pratt, Wanda

    2016-01-01

    Background Patients increasingly use online health communities to exchange health information and peer support. During the progression of health discussions, a change of topic—topic drift—can occur. Topic drift is a frequent phenomenon linked to incoherence and frustration in online communities and other forms of computer-mediated communication. For sensitive topics, such as health, such drift could have life-altering repercussions, yet topic drift has not been studied in these contexts. Objective Our goals were to understand topic drift in online health communities and then to develop and evaluate an automated approach to detect both topic drift and efforts of community members to counteract such drift. Methods We manually analyzed 721 posts from 184 threads from 7 online health communities within WebMD to understand topic drift, members’ reaction towards topic drift, and their efforts to counteract topic drift. Then, we developed an automated approach to detect topic drift and counteraction efforts. We detected topic drift by calculating cosine similarity between 229,156 posts from 37,805 threads and measuring change of cosine similarity scores from the threads’ first posts to their sequential posts. Using a similar approach, we detected counteractions to topic drift in threads by focusing on the irregular increase of similarity scores compared to the previous post in threads. Finally, we evaluated the performance of our automated approaches to detect topic drift and counteracting efforts by using a manually developed gold standard. Results Our qualitative analyses revealed that in threads of online health communities, topics change gradually, but usually stay within the global frame of topics for the specific community. Members showed frustration when topic drift occurred in the middle of threads but reacted positively to off-topic stories shared as separate threads. Although all types of members helped to counteract topic drift, original posters provided the most effort to keep threads on topic. Cosine similarity scores show promise for automatically detecting topical changes in online health discussions. In our manual evaluation, we achieved an F1 score of .71 and .73 for detecting topic drift and counteracting efforts to stay on topic, respectively. Conclusions Our analyses expand our understanding of topic drift in a health context and highlight practical implications, such as promoting off-topic discussions as a function of building rapport in online health communities. Furthermore, the quantitative findings suggest that an automated tool could help detect topic drift, support counteraction efforts to bring the conversation back on topic, and improve communication in these important communities. Findings from this study have the potential to reduce topic drift and improve online health community members’ experience of computer-mediated communication. Improved communication could enhance the personal health management of members who seek essential information and support during times of difficulty. PMID:27806924

  3. Design of internal screw thread measuring device based on the Three-Line method principle

    NASA Astrophysics Data System (ADS)

    Hu, Dachao; Chen, Jianguo

    2010-08-01

    In accordance with the principle of Three-Line, this paper analyze the correlation of every main parameter of internal screw thread, and then designed a device to measure the main parameters of internal screw thread. Internal thread parameters, such as the pitch diameter, thread angle and screw-pitch of common screw thread, terraced screw thread, zigzag screw thread were obtained through calculation and measurement. The practical applications have proved that this device is convenience to use, and the measurements have a high accuracy. Meanwhile, the application for the patent of invention has been accepted by the Patent Office (Filing number: 200710044081.5).

  4. Versatile Friction Stir Welding/Friction Plug Welding System

    NASA Technical Reports Server (NTRS)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  5. Thread angle dependency on flame spread shape over kenaf/polyester combined fabric

    NASA Astrophysics Data System (ADS)

    Azahari Razali, Mohd; Sapit, Azwan; Nizam Mohammed, Akmal; Nor Anuar Mohamad, Md; Nordin, Normayati; Sadikin, Azmahani; Faisal Hushim, Mohd; Jaat, Norrizam; Khalid, Amir

    2017-09-01

    Understanding flame spread behavior is crucial to Fire Safety Engineering. It is noted that the natural fiber exhibits different flame spread behavior than the one of the synthetic fiber. This different may influences the flame spread behavior over combined fabric. There is a research has been done to examined the flame spread behavior over kenaf/polyester fabric. It is seen that the flame spread shape is dependent on the thread angle dependency. However, the explanation of this phenomenon is not described in detail in that research. In this study, explanation about this phenomenon is given in detail. Results show that the flame spread shape is dependent on the position of synthetic thread. For thread angle, θ = 0°, the polyester thread is breaking when the flame approach to the thread and the kenaf thread tends to move to the breaking direction. This behavior produces flame to be ‘V’ shape. However, for thread angle, θ = 90°, the polyester thread melts while the kenaf thread decomposed and burned. At this angle, the distance between kenaf threads remains constant as flame approaches.

  6. The effect of thread pattern upon implant osseointegration.

    PubMed

    Abuhussein, Heba; Pagni, Giorgio; Rebaudi, Alberto; Wang, Hom-Lay

    2010-02-01

    Implant design features such as macro- and micro-design may influence overall implant success. Limited information is currently available. Therefore, it is the purpose of this paper to examine these factors such as thread pitch, thread geometry, helix angle, thread depth and width as well as implant crestal module may affect implant stability. A literature search was conducted using MEDLINE to identify studies, from simulated laboratory models, animal, to human, related to this topic using the keywords of implant thread, implant macrodesign, thread pitch, thread geometry, helix angle, thread depth, thread width and implant crestal module. The results showed how thread geometry affects the distribution of stress forces around the implant. A decreased thread pitch may positively influence implant stability. Excess helix angles in spite of a faster insertion may jeopardize the ability of implants to sustain axial load. Deeper threads seem to have an important effect on the stabilization in poorer bone quality situations. The addition of threads or microthreads up to the crestal module of an implant might provide a potential positive contribution on bone-to to-implant contact as well as on the preservation of marginal bone; nonetheless this remains to be determined. Appraising the current literature on this subject and combining existing data to verify the presence of any association between the selected characteristics may be critical in the achievement of overall implant success.

  7. Participation in asynchronous online discussion forums does improve student learning of gross anatomy.

    PubMed

    Green, Rodney A; Farchione, Davide; Hughes, Diane L; Chan, Siew-Pang

    2014-01-01

    Asynchronous online discussion forums are common in blended learning models and are popular with students. A previous report has suggested that participation in these forums may assist student learning in a gross anatomy subject but it was unclear as to whether more academically able students post more often or whether participation led to improved learning outcomes. This study used a path model to analyze the contribution of forum participation, previous academic ability, and student campus of enrolment to final marks in a multicampus gross anatomy course for physiotherapy students. The course has a substantial online learning management system (LMS) that incorporates asynchronous forums as a learning tool, particularly to answer learning objectives. Students were encouraged to post new threads and answer queries in threads started by others. The forums were moderated weekly by staff. Discussion forums were the most used feature of the LMS site with 31,920 hits. Forty-eight percent of the students posted at least once with 186 threads initiated by students and a total of 608 posts. The total number of posts made a significant direct contribution to final mark (P = 0.008) as did previous academic ability (P = 0.002). Although campus did not contribute to final mark, there was a trend for students at the campus where the course coordinator was situated to post more often than those at the other campus (P = 0.073). These results indicate that asynchronous online discussion forums can be an effective tool for improving student learning outcomes as evidenced by final marks in gross anatomy teaching. Copyright © 2013 American Association of Anatomists.

  8. Memory Benchmarks for SMP-Based High Performance Parallel Computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, A B; de Supinski, B; Mueller, F

    2001-11-20

    As the speed gap between CPU and main memory continues to grow, memory accesses increasingly dominates the performance of many applications. The problem is particularly acute for symmetric multiprocessor (SMP) systems, where the shared memory may be accessed concurrently by a group of threads running on separate CPUs. Unfortunately, several key issues governing memory system performance in current systems are not well understood. Complex interactions between the levels of the memory hierarchy, buses or switches, DRAM back-ends, system software, and application access patterns can make it difficult to pinpoint bottlenecks and determine appropriate optimizations, and the situation is even moremore » complex for SMP systems. To partially address this problem, we formulated a set of multi-threaded microbenchmarks for characterizing and measuring the performance of the underlying memory system in SMP-based high-performance computers. We report our use of these microbenchmarks on two important SMP-based machines. This paper has four primary contributions. First, we introduce a microbenchmark suite to systematically assess and compare the performance of different levels in SMP memory hierarchies. Second, we present a new tool based on hardware performance monitors to determine a wide array of memory system characteristics, such as cache sizes, quickly and easily; by using this tool, memory performance studies can be targeted to the full spectrum of performance regimes with many fewer data points than is otherwise required. Third, we present experimental results indicating that the performance of applications with large memory footprints remains largely constrained by memory. Fourth, we demonstrate that thread-level parallelism further degrades memory performance, even for the latest SMPs with hardware prefetching and switch-based memory interconnects.« less

  9. Documentation for MeshKit - Reactor Geometry (&mesh) Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Rajeev; Mahadevan, Vijay

    2015-09-30

    This report gives documentation for using MeshKit’s Reactor Geometry (and mesh) Generator (RGG) GUI and also briefly documents other algorithms and tools available in MeshKit. RGG is a program designed to aid in modeling and meshing of complex/large hexagonal and rectilinear reactor cores. RGG uses Argonne’s SIGMA interfaces, Qt and VTK to produce an intuitive user interface. By integrating a 3D view of the reactor with the meshing tools and combining them into one user interface, RGG streamlines the task of preparing a simulation mesh and enables real-time feedback that reduces accidental scripting mistakes that could waste hours of meshing.more » RGG interfaces with MeshKit tools to consolidate the meshing process, meaning that going from model to mesh is as easy as a button click. This report is designed to explain RGG v 2.0 interface and provide users with the knowledge and skills to pilot RGG successfully. Brief documentation of MeshKit source code, tools and other algorithms available are also presented for developers to extend and add new algorithms to MeshKit. RGG tools work in serial and parallel and have been used to model complex reactor core models consisting of conical pins, load pads, several thousands of axially varying material properties of instrumentation pins and other interstices meshes.« less

  10. Method for molding threads in graphite panels

    DOEpatents

    Short, W.W.; Spencer, C.

    1994-11-29

    A graphite panel with a hole having a damaged thread is repaired by drilling the hole to remove all of the thread and making a new hole of larger diameter. A bolt with a lubricated thread is placed in the new hole and the hole is packed with graphite cement to fill the hole and the thread on the bolt. The graphite cement is cured, and the bolt is unscrewed therefrom to leave a thread in the cement which is at least as strong as that of the original thread. 8 figures.

  11. Sample and length-dependent variability of 77 and 4.2 K properties in nominally identical RE123 coated conductors

    NASA Astrophysics Data System (ADS)

    Rossi, L.; Hu, X.; Kametani, F.; Abraimov, D.; Polyanskii, A.; Jaroszynski, J.; Larbalestier, D. C.

    2016-05-01

    We present a broad study by multiple techniques of the critical current and critical current density of a small but representative set of nominally identical commercial RE123 (REBa2Cu3O7-δ , RE = rare Earth, here Y and Gd) coated conductors (CC) recently fabricated by SuperPower Inc. to the same nominal high pinning specification with BaZrO3 and RE2O3 nanoprecipitate pinning centers. With high-field low-temperature applications to magnet technology in mind, we address the nature of their tape-to-tape variations and length-wise I c inhomogeneities by measurements on a scale of about 2 cm rather than the 5 m scale normally supplied by the vendor and address the question of whether these variations have their origin in cross-sectional or in vortex pinning variations. Our principal method has been a continuous measurement transport critical current tool (YateStar) that applies about 0.5 T perpendicular and parallel to the tape at 77 K, thus allowing variations of c-axis and ab-plane properties to be clearly distinguished in the temperature and field regime where strong pinning defects are obvious. We also find such in-field measurements at 77 K to be more valuable in predicting 4.2 K, high-field properties than self-field, 77 K properties because the pinning centers controlling 77 K performance play a decisive role in introducing point defects that also add strongly to J c at 4.2 K. We find that the dominant source of I c variation is due to pinning center fluctuations that control J c, rather than to production defects that locally reduce the active cross-section. Given the 5-10 nm scale of these pinning centers, it appears that the route to greater I c homogeneity is through more stringent control of the REBCO growth conditions in these Zr-doped coated conductors.

  12. The measure method of internal screw thread and the measure device design

    NASA Astrophysics Data System (ADS)

    Hu, Dachao; Chen, Jianguo

    2008-12-01

    In accordance with the principle of Three-Line, this paper analyzed the correlation of every main parameter of internal screw thread, and then designed a device to measure the main parameters of internal screw thread. Basis on the measured value and corresponding formula calculation, we can get the internal thread parameters, such as the pitch diameter, thread angle and screw-pitch of common screw thread, terraced screw thread, zigzag screw thread and some else. The practical application has proved that this operation of this device is convenience, and the measured dates have a high accuracy. Meanwhile, the application of this device's patent of invention is accepted by the Patent Office. (The filing number: 200710044081.5)

  13. Insertion tube methods and apparatus

    DOEpatents

    Casper, William L.; Clark, Don T.; Grover, Blair K.; Mathewson, Rodney O.; Seymour, Craig A.

    2007-02-20

    A drill string comprises a first drill string member having a male end; and a second drill string member having a female end configured to be joined to the male end of the first drill string member, the male end having a threaded portion including generally square threads, the male end having a non-threaded extension portion coaxial with the threaded portion, and the male end further having a bearing surface, the female end having a female threaded portion having corresponding female threads, the female end having a non-threaded extension portion coaxial with the female threaded portion, and the female end having a bearing surface. Installation methods, including methods of installing instrumented probes are also provided.

  14. Subsurface drill string

    DOEpatents

    Casper, William L [Rigby, ID; Clark, Don T [Idaho Falls, ID; Grover, Blair K [Idaho Falls, ID; Mathewson, Rodney O [Idaho Falls, ID; Seymour, Craig A [Idaho Falls, ID

    2008-10-07

    A drill string comprises a first drill string member having a male end; and a second drill string member having a female end configured to be joined to the male end of the first drill string member, the male end having a threaded portion including generally square threads, the male end having a non-threaded extension portion coaxial with the threaded portion, and the male end further having a bearing surface, the female end having a female threaded portion having corresponding female threads, the female end having a non-threaded extension portion coaxial with the female threaded portion, and the female end having a bearing surface. Installation methods, including methods of installing instrumented probes are also provided.

  15. Student outcomes associated with use of asynchronous online discussion forums in gross anatomy teaching.

    PubMed

    Green, Rodney A; Hughes, Diane L

    2013-01-01

    Asynchronous online discussion forums are increasingly common in blended learning environments but the relationship to student learning outcomes has not been reported for anatomy teaching. Forums were monitored in two multicampus anatomy courses; an introductory first year course and a second year physiotherapy-specific course. The forums are structured with a separate site for each course module and moderated weekly by staff. Students are encouraged to post to new threads (initial post) and answer queries in threads started by others (reply post). Analysis of forums was conducted separately for each course and included overall activity (posts and views) for a full semester and a detailed analysis for one week in the middle of semester. Students were classified as zero, moderate, or high contributors to the forums based on the number of posts. Final mark for the course was related to level of forum contribution using nonparametric tests. Forum threads were characterized as task-focused, administrative, or other. A higher proportion of second year (36%) than first-year (17%) students posted on the forums and the postings were more likely to be task-focused and student initiated. Second-year students that posted frequently to the forum gained a higher final mark for the course than those that did not post or only posted a moderate number of times (P < 0.01). This relationship was not evident for first-year students who had a much higher proportion of administrative threads. Forums in anatomy courses can be powerful learning tools encouraging deeper learning and improved learning outcomes. Copyright © 2012 American Association of Anatomists.

  16. CMS event processing multi-core efficiency status

    NASA Astrophysics Data System (ADS)

    Jones, C. D.; CMS Collaboration

    2017-10-01

    In 2015, CMS was the first LHC experiment to begin using a multi-threaded framework for doing event processing. This new framework utilizes Intel’s Thread Building Block library to manage concurrency via a task based processing model. During the 2015 LHC run period, CMS only ran reconstruction jobs using multiple threads because only those jobs were sufficiently thread efficient. Recent work now allows simulation and digitization to be thread efficient. In addition, during 2015 the multi-threaded framework could run events in parallel but could only use one thread per event. Work done in 2016 now allows multiple threads to be used while processing one event. In this presentation we will show how these recent changes have improved CMS’s overall threading and memory efficiency and we will discuss work to be done to further increase those efficiencies.

  17. Re-Writing the Construction History of Boughton House (northamptonshire, Uk) with the Help of DOCU-TOOLS®

    NASA Astrophysics Data System (ADS)

    Schuster, J. C.

    2017-08-01

    The tablet-based software docu-tools digitize the documentation of buildings, simplifies construction and facility management and the data analysis in building and construction-history research. As a plan-based software, `pins' can be set to record data (images, audio, text etc.), each data point containing a time and date stamp. Once a pin is set and information recorded, it can never be deleted from the system, creating clear contentious-free documentation. Reports to any/all data recorded can immediately be generated through various templates in order to share, document, analyze and archive the information gathered. The software both digitizes building condition assessment, as well as simplifies the fully documented management and solving of problems and monitoring of a building. Used both in the construction industry and for documenting and analyzing historic buildings, docu-tools is a versatile and flexible tool that has become integral to my work as a building historian working on the conservation and curating of the historic built environment in Europe. I used the software at Boughton House, Northamptonshire, UK, during a one-year research project into the construction history of the building. The details of how docu-tools was used during this project will be discussed in this paper.

  18. Multi-threading: A new dimension to massively parallel scientific computation

    NASA Astrophysics Data System (ADS)

    Nielsen, Ida M. B.; Janssen, Curtis L.

    2000-06-01

    Multi-threading is becoming widely available for Unix-like operating systems, and the application of multi-threading opens new ways for performing parallel computations with greater efficiency. We here briefly discuss the principles of multi-threading and illustrate the application of multi-threading for a massively parallel direct four-index transformation of electron repulsion integrals. Finally, other potential applications of multi-threading in scientific computing are outlined.

  19. Development and application of a microarray meter tool to optimize microarray experiments

    PubMed Central

    Rouse, Richard JD; Field, Katrine; Lapira, Jennifer; Lee, Allen; Wick, Ivan; Eckhardt, Colleen; Bhasker, C Ramana; Soverchia, Laura; Hardiman, Gary

    2008-01-01

    Background Successful microarray experimentation requires a complex interplay between the slide chemistry, the printing pins, the nucleic acid probes and targets, and the hybridization milieu. Optimization of these parameters and a careful evaluation of emerging slide chemistries are a prerequisite to any large scale array fabrication effort. We have developed a 'microarray meter' tool which assesses the inherent variations associated with microarray measurement prior to embarking on large scale projects. Findings The microarray meter consists of nucleic acid targets (reference and dynamic range control) and probe components. Different plate designs containing identical probe material were formulated to accommodate different robotic and pin designs. We examined the variability in probe quality and quantity (as judged by the amount of DNA printed and remaining post-hybridization) using three robots equipped with capillary printing pins. Discussion The generation of microarray data with minimal variation requires consistent quality control of the (DNA microarray) manufacturing and experimental processes. Spot reproducibility is a measure primarily of the variations associated with printing. The microarray meter assesses array quality by measuring the DNA content for every feature. It provides a post-hybridization analysis of array quality by scoring probe performance using three metrics, a) a measure of variability in the signal intensities, b) a measure of the signal dynamic range and c) a measure of variability of the spot morphologies. PMID:18710498

  20. Automatic Multilevel Parallelization Using OpenMP

    NASA Technical Reports Server (NTRS)

    Jin, Hao-Qiang; Jost, Gabriele; Yan, Jerry; Ayguade, Eduard; Gonzalez, Marc; Martorell, Xavier; Biegel, Bryan (Technical Monitor)

    2002-01-01

    In this paper we describe the extension of the CAPO parallelization support tool to support multilevel parallelism based on OpenMP directives. CAPO generates OpenMP directives with extensions supported by the NanosCompiler to allow for directive nesting and definition of thread groups. We report first results for several benchmark codes and one full application that have been parallelized using our system.

  1. Maintaining Consistency in Distributed Systems

    DTIC Science & Technology

    1991-11-01

    type of 8 concurrency is readily controlled using synchronization tools such as monitors or semaphores . which are a standard part of most threads...sug- gested that these issues are often best solved using traditional synchronization constructs, such as monitors and semaphores , and that...data structures would normally arise within individual programs, and be controlled using mutual exclusion constructs, such as semaphores and monitors

  2. Designing Stories for Educational Video Games: Analysis and Evaluation

    ERIC Educational Resources Information Center

    López-Arcos, J. R.; Padilla-Zea, N.; Paderewski, P.; Gutiérrez, F. L.

    2017-01-01

    The use of video games as an educational tool initially causes a higher degree of motivation in students. However, the inclusion of educational activities throughout the game can cause this initial interest to be lost. A good way to maintain motivation is to use a good story that is used as guiding thread with which to contextualize the other…

  3. Demonstration of Hydrostatic Paradox with Plastic Bottles and LabQuest Vernier

    ERIC Educational Resources Information Center

    Kodejška, Cenek

    2018-01-01

    This work focuses on the experimental demonstration of the hydrostatic paradox using simple tools in the form of plastic bottles and plastic syringes with a thread. For the evaluation of the results obtained the data logger Lab Quest Vernier was used. The construction of the device is presented in the first part of this paper. The second part…

  4. Technological Pedagogical Content Knowledge and Teaching Poetry: Preparing Preservice Teachers to Integrate Content with VoiceThread Technology

    ERIC Educational Resources Information Center

    Carlson, David Lee; Archambault, Leanna

    2013-01-01

    Although there is a vast research base on the literacy practices of adolescents and the issues surrounding the integration of technology despite current widespread access to tools and the Internet (Cuban, 2003), very little has been completed on the attempts of teacher educators to integrate technology within a specific content area to prepare…

  5. Method for molding threads in graphite panels

    DOEpatents

    Short, William W.; Spencer, Cecil

    1994-01-01

    A graphite panel (10) with a hole (11) having a damaged thread (12) is repaired by drilling the hole (11) to remove all of the thread and make a new hole (13) of larger diameter. A bolt (14) with a lubricated thread (17) is placed in the new hole (13) and the hole (13) is packed with graphite cement (16) to fill the hole and the thread on the bolt. The graphite cement (16) is cured, and the bolt is unscrewed therefrom to leave a thread (20) in the cement (16) which is at least as strong as that of the original thread (12).

  6. Self-locking threaded fasteners

    DOEpatents

    Glovan, Ronald J.; Tierney, John C.; McLean, Leroy L.; Johnson, Lawrence L.

    1996-01-01

    A threaded fastener with a shape memory alloy (SMA) coatings on its threads is disclosed. The fastener has special usefulness in high temperature applications where high reliability is important. The SMA coated fastener is threaded into or onto a mating threaded part at room temperature to produce a fastened object. The SMA coating is distorted during the assembly. At elevated temperatures the coating tries to recover its original shape and thereby exerts locking forces on the threads. When the fastened object is returned to room temperature the locking forces dissipate. Consequently the threaded fasteners can be readily disassembled at room temperature but remains securely fastened at high temperatures. A spray technique is disclosed as a particularly useful method of coating of threads of a fastener with a shape memory alloy.

  7. Method for Estimating Thread Strength Reduction of Damaged Parent Holes with Inserts

    NASA Technical Reports Server (NTRS)

    Johnson, David L.; Stratton, Troy C.

    2005-01-01

    During normal assembly and disassembly of bolted-joint components, thread damage and/or deformation may occur. If threads are overloaded, thread damage/deformation can also be anticipated. Typical inspection techniques (e.g. using GO-NO GO gages) may not provide adequate visibility of the extent of thread damage. More detailed inspection techniques have provided actual pitch-diameter profiles of damaged-hardware holes. A method to predict the reduction in thread shear-out capacity of damaged threaded holes has been developed. This method was based on testing and analytical modeling. Test samples were machined to simulate damaged holes in the hardware of interest. Test samples containing pristine parent-holes were also manufactured from the same bar-stock material to provide baseline results for comparison purposes. After the particular parent-hole thread profile was machined into each sample a helical insert was installed into the threaded hole. These samples were tested in a specially designed fixture to determine the maximum load required to shear out the parent threads. It was determined from the pristine-hole samples that, for the specific material tested, each individual thread could resist an average load of 3980 pounds. The shear-out loads of the holes having modified pitch diameters were compared to the ultimate loads of the specimens with pristine holes. An equivalent number of missing helical coil threads was then determined based on the ratio of shear-out loads for each thread configuration. These data were compared with the results from a finite element model (FEM). The model gave insights into the ability of the thread loads to redistribute for both pristine and simulated damage configurations. In this case, it was determined that the overall potential reduction in thread load-carrying capability in the hardware of interest was equal to having up to three fewer threads in the hole that bolt threads could engage. One- half of this potential reduction was due to local pitch-diameter variations and the other half was due to overall pitch-diameter enlargement beyond Class 2 fit. This result was important in that the thread shear capacity for this particular hardware design was the limiting structural capability. The details of the method development, including the supporting testing, data reduction and analytical model results comparison will be discussed hereafter.

  8. Simulations of Si-PIN photodiode based detectors for underground explosives enhanced by ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Yücel, Mete; Bayrak, Ahmet; Yücel, Esra Barlas; Ozben, Cenap S.

    2018-02-01

    Massive Ammonium Nitrate (NH4-NO3) based explosives buried underground are commonly used in terror attacks. These explosives can be detected using neutron scattering method with some limitations. Simulations are very useful tools for designing a possible detection system for these kind of explosives. Geant4 simulations were used for generating neutrons at 14 MeV energy and tracking them through the scattering off the explosive embedded in soil. Si-PIN photodiodes were used as detector elements in the design for their low costs and simplicity for signal readout electronics. Various neutron-charge particle converters were applied on to the surface of the photodiodes to increase the detection efficiency. Si-PIN photodiodes coated with 6LiF provided the best result for a certain energy interval. Energy depositions in silicon detector from all secondary particles generated including photons were taken into account to generate a realistic background. Humidity of soil, one of the most important parameter for limiting the detection, was also studied.

  9. The research and development of the non-contact detection of the tubing internal thread with a line structured light

    NASA Astrophysics Data System (ADS)

    Hu, Yuanyuan; Xu, Yingying; Hao, Qun; Hu, Yao

    2013-12-01

    The tubing internal thread plays an irreplaceable role in the petroleum equipment. The unqualified tubing can directly lead to leakage, slippage and bring huge losses for oil industry. For the purpose of improving efficiency and precision of tubing internal thread detection, we develop a new non-contact tubing internal thread measurement system based on the laser triangulation principle. Firstly, considering that the tubing thread had a small diameter and relatively smooth surface, we built a set of optical system with a line structured light to irradiate the internal thread surface and obtain an image which contains the internal thread profile information through photoelectric sensor. Secondly, image processing techniques were used to do the edge detection of the internal thread from the obtained image. One key method was the sub-pixel technique which greatly improved the detection accuracy under the same hardware conditions. Finally, we restored the real internal thread contour information on the basis of laser triangulation method and calculated tubing thread parameters such as the pitch, taper and tooth type angle. In this system, the profile of several thread teeth can be obtained at the same time. Compared with other existing scanning methods using point light and stepper motor, this system greatly improves the detection efficiency. Experiment results indicate that this system can achieve the high precision and non-contact measurement of the tubing internal thread.

  10. Measurement of Sound Speed in Thread

    NASA Astrophysics Data System (ADS)

    Saito, Shigemi; Shibata, Yasuhiro; Ichiki, Akira; Miyazaki, Akiho

    2006-05-01

    By employing thin wires, human hairs and threads, the measurement of sound speed in a thread whose diameter is smaller than 0.2 mm has been attempted. Preparing two cylindrical ceramic transducers with a 300 kHz resonance frequency, a perforated glass bead to be knotted by a sample thread is bonded to the center of the end surface of each transducer. After connecting these transducers with a sample thread, a receiving transducer is attached at a ceiling so as to hang another transmitting transducer with the thread. A glass bead is bonded to another end surface of the transmitting transducer so that tension, varied with a hanged plumb, can be applied to the sample thread. The time delay of the received signal relative to the transmitting pulse is measured while gradually shortening the thread. Sound speed is determined by the proportionality of time delay with thread length. Although the measured values for metallic wires are somewhat different from the values derived from the density and Young’s modulus cited in references, they are reproducible. The sound speed for human hairs of over twenty samples, which varies between 2000 and 2500 m/s, seems to depend on hair quality. Sound speed in a cotton thread is found to approach a constant value under large tension. An advanced measurement system available for uncut threads is also presented, where semi cylindrical transducers pinch the thread.

  11. 78 FR 79670 - Steel Threaded Rod From Thailand: Preliminary Determination of Sales at Less Than Fair Value and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-549-831] Steel Threaded Rod From... ``Department'') preliminarily determines that steel threaded rod from Thailand is being, or is likely to be... Investigation The merchandise covered by this investigation is steel threaded rod. Steel threaded rod is certain...

  12. 49 CFR 178.46 - Specification 3AL seamless aluminum cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... circular. (5) All openings must be threaded. Threads must comply with the following: (i) Each thread must be clean cut, even, without checks, and to gauge. (ii) Taper threads, when used, must conform to one of the following: (A) American Standard Pipe Thread (NPT) type, conforming to the requirements of NBS...

  13. 49 CFR 178.46 - Specification 3AL seamless aluminum cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... circular. (5) All openings must be threaded. Threads must comply with the following: (i) Each thread must be clean cut, even, without checks, and to gauge. (ii) Taper threads, when used, must conform to one of the following: (A) American Standard Pipe Thread (NPT) type, conforming to the requirements of NBS...

  14. 49 CFR 178.46 - Specification 3AL seamless aluminum cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... circular. (5) All openings must be threaded. Threads must comply with the following: (i) Each thread must be clean cut, even, without checks, and to gauge. (ii) Taper threads, when used, must conform to one of the following: (A) American Standard Pipe Thread (NPT) type, conforming to the requirements of NBS...

  15. 49 CFR 178.46 - Specification 3AL seamless aluminum cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... circular. (5) All openings must be threaded. Threads must comply with the following: (i) Each thread must be clean cut, even, without checks, and to gauge. (ii) Taper threads, when used, must conform to one of the following: (A) American Standard Pipe Thread (NPT) type, conforming to the requirements of NBS...

  16. AN MHD AVALANCHE IN A MULTI-THREADED CORONAL LOOP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hood, A. W.; Cargill, P. J.; Tam, K. V.

    For the first time, we demonstrate how an MHD avalanche might occur in a multithreaded coronal loop. Considering 23 non-potential magnetic threads within a loop, we use 3D MHD simulations to show that only one thread needs to be unstable in order to start an avalanche even when the others are below marginal stability. This has significant implications for coronal heating in that it provides for energy dissipation with a trigger mechanism. The instability of the unstable thread follows the evolution determined in many earlier investigations. However, once one stable thread is disrupted, it coalesces with a neighboring thread andmore » this process disrupts other nearby threads. Coalescence with these disrupted threads then occurs leading to the disruption of yet more threads as the avalanche develops. Magnetic energy is released in discrete bursts as the surrounding stable threads are disrupted. The volume integrated heating, as a function of time, shows short spikes suggesting that the temporal form of the heating is more like that of nanoflares than of constant heating.« less

  17. Self-locking threaded fasteners

    DOEpatents

    Glovan, R.J.; Tierney, J.C.; McLean, L.L.; Johnson, L.L.

    1996-01-16

    A threaded fastener with a shape memory alloy (SMA) coatings on its threads is disclosed. The fastener has special usefulness in high temperature applications where high reliability is important. The SMA coated fastener is threaded into or onto a mating threaded part at room temperature to produce a fastened object. The SMA coating is distorted during the assembly. At elevated temperatures the coating tries to recover its original shape and thereby exerts locking forces on the threads. When the fastened object is returned to room temperature the locking forces dissipate. Consequently the threaded fasteners can be readily disassembled at room temperature but remains securely fastened at high temperatures. A spray technique is disclosed as a particularly useful method of coating of threads of a fastener with a shape memory alloy. 13 figs.

  18. Cribellate thread production in spiders: Complex processing of nano-fibres into a functional capture thread.

    PubMed

    Joel, Anna-Christin; Kappel, Peter; Adamova, Hana; Baumgartner, Werner; Scholz, Ingo

    2015-11-01

    Spider silk production has been studied intensively in the last years. However, capture threads of cribellate spiders employ an until now often unnoticed alternative of thread production. This thread in general is highly interesting, as it not only involves a controlled arrangement of three types of threads with one being nano-scale fibres (cribellate fibres), but also a special comb-like structure on the metatarsus of the fourth leg (calamistrum) for its production. We found the cribellate fibres organized as a mat, enclosing two parallel larger fibres (axial fibres) and forming the typical puffy structure of cribellate threads. Mat and axial fibres are punctiform connected to each other between two puffs, presumably by the action of the median spinnerets. However, this connection alone does not lead to the typical puffy shape of a cribellate thread. Removing the calamistrum, we found a functional capture thread still being produced, but the puffy shape of the thread was lost. Therefore, the calamistrum is not necessary for the extraction or combination of fibres, but for further processing of the nano-scale cribellate fibres. Using data from Uloborus plumipes we were able to develop a model of the cribellate thread production, probably universally valid for cribellate spiders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Microstructural Characteristics and Mechanical Properties of Friction Stir Welded Thick 5083 Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Imam, Murshid; Sun, Yufeng; Fujii, Hidetoshi; Ma, Ninshu; Tsutsumi, Seiichiro; Murakawa, Hidekazu

    2017-01-01

    Joining thick sections of aluminum alloys by friction stir welding (FSW) in a single pass needs to overcome many challenges before it comes to full-scale industrial use. Important parameters controlling the structure-properties relationships both across weld cross-section and through thickness direction were investigated through mechanical testing, electron backscatter diffraction technique, transmission electron microscopy, and occurrence of serrated plastic flow. The evolution of the properties in the weld cross-section shows that the presence of undissolved and fragmented Al_6MnFe particles cause discrepancies in establishing the Hall-Petch relationship, and derive the strengthening from the Orowan strengthening mechanism. A `stop action' friction stir weld has been prepared to understand the role of geometrical features of the tool probe in the development of the final microstructure after complete weld. Sectioning through the `stop action' weld with the probe in situ displays the individual effect of thread and flat on the grain structure formation. The material at the thread surface experiences more severe deformation than the material at flat surface. Both the high-angle boundaries and mean grain size are found to be higher at the thread surface. The strain hardening capacity, stress serration amplitude, and frequency are observed to be higher in the stir zone than other weld regions.

  20. THREaD Mapper Studio: a novel, visual web server for the estimation of genetic linkage maps

    PubMed Central

    Cheema, Jitender; Ellis, T. H. Noel; Dicks, Jo

    2010-01-01

    The estimation of genetic linkage maps is a key component in plant and animal research, providing both an indication of the genetic structure of an organism and a mechanism for identifying candidate genes associated with traits of interest. Because of this importance, several computational solutions to genetic map estimation exist, mostly implemented as stand-alone software packages. However, the estimation process is often largely hidden from the user. Consequently, problems such as a program crashing may occur that leave a user baffled. THREaD Mapper Studio (http://cbr.jic.ac.uk/threadmapper) is a new web site that implements a novel, visual and interactive method for the estimation of genetic linkage maps from DNA markers. The rationale behind the web site is to make the estimation process as transparent and robust as possible, while also allowing users to use their expert knowledge during analysis. Indeed, the 3D visual nature of the tool allows users to spot features in a data set, such as outlying markers and potential structural rearrangements that could cause problems with the estimation procedure and to account for them in their analysis. Furthermore, THREaD Mapper Studio facilitates the visual comparison of genetic map solutions from third party software, aiding users in developing robust solutions for their data sets. PMID:20494977

  1. Acoustic reverse-time migration using GPU card and POSIX thread based on the adaptive optimal finite-difference scheme and the hybrid absorbing boundary condition

    NASA Astrophysics Data System (ADS)

    Cai, Xiaohui; Liu, Yang; Ren, Zhiming

    2018-06-01

    Reverse-time migration (RTM) is a powerful tool for imaging geologically complex structures such as steep-dip and subsalt. However, its implementation is quite computationally expensive. Recently, as a low-cost solution, the graphic processing unit (GPU) was introduced to improve the efficiency of RTM. In the paper, we develop three ameliorative strategies to implement RTM on GPU card. First, given the high accuracy and efficiency of the adaptive optimal finite-difference (FD) method based on least squares (LS) on central processing unit (CPU), we study the optimal LS-based FD method on GPU. Second, we develop the CPU-based hybrid absorbing boundary condition (ABC) to the GPU-based one by addressing two issues of the former when introduced to GPU card: time-consuming and chaotic threads. Third, for large-scale data, the combinatorial strategy for optimal checkpointing and efficient boundary storage is introduced for the trade-off between memory and recomputation. To save the time of communication between host and disk, the portable operating system interface (POSIX) thread is utilized to create the other CPU core at the checkpoints. Applications of the three strategies on GPU with the compute unified device architecture (CUDA) programming language in RTM demonstrate their efficiency and validity.

  2. Geant4 Computing Performance Benchmarking and Monitoring

    DOE PAGES

    Dotti, Andrea; Elvira, V. Daniel; Folger, Gunter; ...

    2015-12-23

    Performance evaluation and analysis of large scale computing applications is essential for optimal use of resources. As detector simulation is one of the most compute intensive tasks and Geant4 is the simulation toolkit most widely used in contemporary high energy physics (HEP) experiments, it is important to monitor Geant4 through its development cycle for changes in computing performance and to identify problems and opportunities for code improvements. All Geant4 development and public releases are being profiled with a set of applications that utilize different input event samples, physics parameters, and detector configurations. Results from multiple benchmarking runs are compared tomore » previous public and development reference releases to monitor CPU and memory usage. Observed changes are evaluated and correlated with code modifications. Besides the full summary of call stack and memory footprint, a detailed call graph analysis is available to Geant4 developers for further analysis. The set of software tools used in the performance evaluation procedure, both in sequential and multi-threaded modes, include FAST, IgProf and Open|Speedshop. In conclusion, the scalability of the CPU time and memory performance in multi-threaded application is evaluated by measuring event throughput and memory gain as a function of the number of threads for selected event samples.« less

  3. Reliability and One-Year Stability of the PIN3 Neighborhood Environmental Audit in Urban and Rural Neighborhoods.

    PubMed

    Porter, Anna K; Wen, Fang; Herring, Amy H; Rodríguez, Daniel A; Messer, Lynne C; Laraia, Barbara A; Evenson, Kelly R

    2018-06-01

    Reliable and stable environmental audit instruments are needed to successfully identify the physical and social attributes that may influence physical activity. This study described the reliability and stability of the PIN3 environmental audit instrument in both urban and rural neighborhoods. Four randomly sampled road segments in and around a one-quarter mile buffer of participants' residences from the Pregnancy, Infection, and Nutrition (PIN3) study were rated twice, approximately 2 weeks apart. One year later, 253 of the year 1 sampled roads were re-audited. The instrument included 43 measures that resulted in 73 item scores for calculation of percent overall agreement, kappa statistics, and log-linear models. For same-day reliability, 81% of items had moderate to outstanding kappa statistics (kappas ≥ 0.4). Two-week reliability was slightly lower, with 77% of items having moderate to outstanding agreement using kappa statistics. One-year stability had 68% of items showing moderate to outstanding agreement using kappa statistics. The reliability of the audit measures was largely consistent when comparing urban to rural locations, with only 8% of items exhibiting significant differences (α < 0.05) by urbanicity. The PIN3 instrument is a reliable and stable audit tool for studies assessing neighborhood attributes in urban and rural environments.

  4. PICH and BLM limit histone association with anaphase centromeric DNA threads and promote their resolution

    PubMed Central

    Ke, Yuwen; Huh, Jae-Wan; Warrington, Ross; Li, Bing; Wu, Nan; Leng, Mei; Zhang, Junmei; Ball, Haydn L; Li, Bing; Yu, Hongtao

    2011-01-01

    Centromeres nucleate the formation of kinetochores and are vital for chromosome segregation during mitosis. The SNF2 family helicase PICH (Plk1-interacting checkpoint helicase) and the BLM (the Bloom's syndrome protein) helicase decorate ultrafine histone-negative DNA threads that link the segregating sister centromeres during anaphase. The functions of PICH and BLM at these threads are not understood, however. Here, we show that PICH binds to BLM and enables BLM localization to anaphase centromeric threads. PICH- or BLM-RNAi cells fail to resolve these threads in anaphase. The fragmented threads form centromeric-chromatin-containing micronuclei in daughter cells. Anaphase threads in PICH- and BLM-RNAi cells contain histones and centromere markers. Recombinant purified PICH has nucleosome remodelling activities in vitro. We propose that PICH and BLM unravel centromeric chromatin and keep anaphase DNA threads mostly free of nucleosomes, thus allowing these threads to span long distances between rapidly segregating centromeres without breakage and providing a spatiotemporal window for their resolution. PMID:21743438

  5. Understanding thread properties for red blood cell antigen assays: weak ABO blood typing.

    PubMed

    Nilghaz, Azadeh; Zhang, Liyuan; Li, Miaosi; Ballerini, David R; Shen, Wei

    2014-12-24

    "Thread-based microfluidics" research has so far focused on utilizing and manipulating the wicking properties of threads to form controllable microfluidic channels. In this study we aim to understand the separation properties of threads, which are important to their microfluidic detection applications for blood analysis. Confocal microscopy was utilized to investigate the effect of the microscale surface morphologies of fibers on the thread's separation efficiency of red blood cells. We demonstrated the remarkably different separation properties of threads made using silk and cotton fibers. Thread separation properties dominate the clarity of blood typing assays of the ABO groups and some of their weak subgroups (Ax and A3). The microfluidic thread-based analytical devices (μTADs) designed in this work were used to accurately type different blood samples, including 89 normal ABO and 6 weak A subgroups. By selecting thread with the right surface morphology, we were able to build μTADs capable of providing rapid and accurate typing of the weak blood groups with high clarity.

  6. Face Gear Drive with Spur Involute Pinion: Geometry, Generation by a Worm, Stress Analysis

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Fuentes, Alfonso; Zanzi, Claudio; Pontiggia, Matteo; Handschuh, Robert F. (Technical Monitor)

    2002-01-01

    A face gear drive with a spur involute pinion is considered. The generation of the face gear is based on application of a grinding or cutting worm whereas the conventional method of generation is based on application of an involute shaper. An analytical approach is proposed for the determination of: (1) the worm thread surface; (2) avoidance of singularities of the worm thread surface, (air) dressing of the worm; and (3) determination of stresses of the face-gear drive. A computer program for simulation of meshing and contact of the pinion and face-gear has been developed. Correction of machine-tool settings is proposed for reduction of the shift of the bearing contact caused by misalignment. An automatic development of the model of five contacting teeth has been proposed for stress analysis. Numerical examples for illustration of the developed theory are provided.

  7. Tooling Converts Stock Bearings To Custom Bearings

    NASA Technical Reports Server (NTRS)

    Fleenor, E. N., Jr.

    1983-01-01

    Technique for reworking stock bearings saves time and produces helicopter-rotor bearings ground more precisely. Split tapered ring at one end of threaded bolt expands to hold inside of inner race bearing assembly; nut, at other end of bolt, adjusts amount of spring tension. Piece of hardware grasps bearing firmly without interfering with grinding operation. Operation produces bearing of higher quality than commercially available bearings.

  8. Structural Turnbuckle Bears Compressive or Tensile Loads

    NASA Technical Reports Server (NTRS)

    Bateman, W. A.; Lang, C. H.

    1985-01-01

    Column length adjuster based on turnbuckle principle. Device consists of internally and externally threaded bushing, threaded housing and threaded rod. Housing attached to one part and threaded rod attached to other part of structure. Turning double threaded bushing contracts or extends rod in relation to housing. Once adjusted, bushing secured with jamnuts. Device used for axially loaded members requiring length adjustment during installation.

  9. Do dual-thread orthodontic mini-implants improve bone/tissue mechanical retention?

    PubMed

    Lin, Yang-Sung; Chang, Yau-Zen; Yu, Jian-Hong; Lin, Chun-Li

    2014-12-01

    The aim of this study was to understand whether the pitch relationship between micro and macro thread designs with a parametrical relationship in a dual-thread mini-implant can improve primary stability. Three types of mini-implants consisting of single-thread (ST) (0.75 mm pitch in whole length), dual-thread A (DTA) with double-start 0.375 mm pitch, and dual-thread B (DTB) with single-start 0.2 mm pitch in upper 2-mm micro thread region for performing insertion and pull-out testing. Histomorphometric analysis was performed in these specimens in evaluating peri-implant bone defects using a non-contact vision measuring system. The maximum inserted torque (Tmax) in type DTA was found to be the smallest significantly, but corresponding values found no significant difference between ST and DTB. The largest pull-out strength (Fmax) in the DTA mini-implant was found significantly greater than that for the ST mini-implant regardless of implant insertion orientation. Mini-implant engaged the cortical bone well as observed in ST and DTA types. Dual-thread mini-implant with correct micro thread pitch (parametrical relationship with macro thread pitch) in the cortical bone region can improve primary stability and enhanced mechanical retention.

  10. Three-dimensional optimization and sensitivity analysis of dental implant thread parameters using finite element analysis.

    PubMed

    Geramizadeh, Maryam; Katoozian, Hamidreza; Amid, Reza; Kadkhodazadeh, Mahdi

    2018-04-01

    This study aimed to optimize the thread depth and pitch of a recently designed dental implant to provide uniform stress distribution by means of a response surface optimization method available in finite element (FE) software. The sensitivity of simulation to different mechanical parameters was also evaluated. A three-dimensional model of a tapered dental implant with micro-threads in the upper area and V-shaped threads in the rest of the body was modeled and analyzed using finite element analysis (FEA). An axial load of 100 N was applied to the top of the implants. The model was optimized for thread depth and pitch to determine the optimal stress distribution. In this analysis, micro-threads had 0.25 to 0.3 mm depth and 0.27 to 0.33 mm pitch, and V-shaped threads had 0.405 to 0.495 mm depth and 0.66 to 0.8 mm pitch. The optimized depth and pitch were 0.307 and 0.286 mm for micro-threads and 0.405 and 0.808 mm for V-shaped threads, respectively. In this design, the most effective parameters on stress distribution were the depth and pitch of the micro-threads based on sensitivity analysis results. Based on the results of this study, the optimal implant design has micro-threads with 0.307 and 0.286 mm depth and pitch, respectively, in the upper area and V-shaped threads with 0.405 and 0.808 mm depth and pitch in the rest of the body. These results indicate that micro-thread parameters have a greater effect on stress and strain values.

  11. SMT-Aware Instantaneous Footprint Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Probir; Liu, Xu; Song, Shuaiwen

    Modern architectures employ simultaneous multithreading (SMT) to increase thread-level parallelism. SMT threads share many functional units and the whole memory hierarchy of a physical core. Without a careful code design, SMT threads can easily contend with each other for these shared resources, causing severe performance degradation. Minimizing SMT thread contention for HPC applications running on dedicated platforms is very challenging, because they usually spawn threads within Single Program Multiple Data (SPMD) models. To address this important issue, we introduce a simple scheme for SMT-aware code optimization, which aims to reduce the memory contention across SMT threads.

  12. Fastener starter tool

    NASA Technical Reports Server (NTRS)

    Chandler, Faith T. (Inventor); Arnett, Michael C. (Inventor); Garton, Harry L. (Inventor); Valentino, William D. (Inventor)

    2003-01-01

    A fastener starter tool includes a number of spring retention fingers for retaining a small part, or combination of parts. The tool has an inner housing, which holds the spring retention fingers, a hand grip, and an outer housing configured to slide over the inner housing and the spring retention fingers toward and away from the hand grip, exposing and opening, or respectively, covering and closing, the spring retention fingers. By sliding the outer housing toward (away from) the hand grip, a part can be released from (retained by) the tool. The tool may include replaceable inserts, for retaining parts, such as screws, and configured to limit the torque applied to the part, to prevent cross threading. The inner housing has means to transfer torque from the hand grip to the insert. The tool may include replaceable bits, the inner housing having means for transferring torque to the replaceable bit.

  13. Fluid sampling tool

    DOEpatents

    Johnston, Roger G.; Garcia, Anthony R. E.; Martinez, Ronald K.

    2001-09-25

    The invention includes a rotatable tool for collecting fluid through the wall of a container. The tool includes a fluid collection section with a cylindrical shank having an end portion for drilling a hole in the container wall when the tool is rotated, and a threaded portion for tapping the hole in the container wall. A passageway in the shank in communication with at least one radial inlet hole in the drilling end and an opening at the end of the shank is adapted to receive fluid from the container. The tool also includes a cylindrical chamber affixed to the end of the shank opposite to the drilling portion thereof for receiving and storing fluid passing through the passageway. The tool also includes a flexible, deformable gasket that provides a fluid-tight chamber to confine kerf generated during the drilling and tapping of the hole. The invention also includes a fluid extractor section for extracting fluid samples from the fluid collecting section.

  14. SEM and fractography analysis of screw thread loosening in dental implants.

    PubMed

    Scarano, A; Quaranta, M; Traini, T; Piattelli, M; Piattelli, A

    2007-01-01

    Biological and technical failures of implants have already been reported. Mechanical factors are certainly of importance in implant failures, even if their exact nature has not yet been established. The abutment screw fracture or loosening represents a rare, but quite unpleasant failure. The aim of the present research is an analysis and structural examination of screw thread or abutment loosening compared with screw threads or abutment without loosening. The loosening of screw threads was compared to screw thread without loosening of three different implant systems; Branemark (Nobel Biocare, Gothenburg, Sweden), T.B.R. implant systems (Benax, Ancona, Italy) and Restore (Lifecore Biomedical, Chaska, Minnesota, USA). In this study broken screws were excluded. A total of 16 screw thread loosenings were observed (Group I) (4 Branemark, 4 T.B.R and 5 Restore), 10 screw threads without loosening were removed (Group II), and 6 screw threads as received by the manufacturer (unused) (Group III) were used as control (2 Branemark, 2 T.B.R and 2 Restore). The loosened abutment screws were retrieved and analyzed under SEM. Many alterations and deformations were present in concavities and convexities of screw threads in group I. No macroscopic alterations or deformations were observed in groups II and III. A statistical difference of the presence of microcracks were observed between screw threads with an abutment loosening and screw threads without an abutment loosening.

  15. XMOS XC-2 Development Board for Mechanical Control and Data Collection

    NASA Technical Reports Server (NTRS)

    Jarnot, Robert F.; Bowden, William J.

    2011-01-01

    The scanning microwave limb sounder (SMLS) will use technological improvements in low-noise mixers to provide precise data on the Earth s atmospheric composition with high spatial resolution. This project focuses on the design and implementation of a realtime control system needed for airborne engineering tests of the SMLS. The system must coordinate the actuation of optical components using four motors with encoder readback, while collecting synchronized telemetric data from a GPS receiver and 3-axis gyrometric system. A graphical user interface for testing the control system was also designed using Python. Although the system could have been implemented with an FPGA(fieldprogrammable gate array)-based setup, a processor development kit manufactured by XMOS was chosen. The XMOS architecture allows parallel execution of multiple tasks on separate threads, making it ideal for this application. It is easily programmed using XC (a subset of C). The necessary communication interfaces were implemented in software, including Ethernet, with significant cost and time reduction compared to an FPGA-based approach. A simple approach to control the chopper, calibration mirror, and gimbal for the airborne SMLS was needed. The XMOS board allows for multiple threads and real-time data acquisition. The XC-2 development kit is an attractive choice for synchronized, real-time, event-driven applications. The XMOS is based on the transputer microprocessor architecture developed for parallel computing, which is being revamped in this new platform. The XMOS device has multiple cores capable of running parallel applications on separate threads. The threads communicate with each other via user-defined channels capable of transmitting data within the device. XMOS provides a C-based development environment using XC, which eliminates the need for custom tool kits associated with FPGA programming. The XC-2 has four cores and necessary hardware for Ethernet I/O.

  16. A Moiré Pattern-Based Thread Counter

    ERIC Educational Resources Information Center

    Reich, Gary

    2017-01-01

    Thread count is a term used in the textile industry as a measure of how closely woven a fabric is. It is usually defined as the sum of the number of warp threads per inch (or cm) and the number of weft threads per inch. (It is sometimes confusingly described as the number of threads per square inch.) In recent years it has also become a subject of…

  17. Does Simultaneous Liposuction Adversely Affect the Outcome of Thread Lifts? A Preliminary Result.

    PubMed

    Lee, Yong Woo; Park, Tae Hwan

    2018-04-11

    Along with advances in thread lift techniques and materials, ancillary procedures such as fat grafting, liposuction, or filler injections have been performed simultaneously. Some surgeons think that these ancillary procedures might affect the aesthetic outcomes of thread lifting possibly due to inadvertent injury to threads or loosening of soft tissue via passing the cannula in the surgical plane of the thread lifts. The purpose of the current study is to determine the effect of such ancillary procedures on the outcome of thread lifts in the human and cadaveric setting. We used human abdominal tissue after abdominoplasty and cadaveric faces. In the abdominal tissue, liposuction parallel to the parallel axis was performed in one area for 5 min. We counted 30 passes when liposuction was performed in one direction. This was repeated as we changed the direction of passages. The plane of thread lifts (dermal vs subcutaneous) and angle between liposuction and thread lifts (parallel vs perpendicular) were differentiated in this abdominal tissue study group. Then, we performed parallel or perpendicular thread lifts using a small slit incision. Using a tensiometer, the maximum holding strength was measured when pulling the thread out of the skin as much as possible. We also used faces of cadavers to prove whether the finding in human abdominal tissue is really valid with corresponding techniques. Our pilot study using abdominal tissue showed that liposuction after thread lifts adversely affects it regardless of the vector of thread lifts. In the cadaveric study, however, liposuction prior to thread lifting does not significantly affect the holding strength of thread lifts. Liposuction or fat grafting in the appropriate layer would not be a hurdle to safely performing simultaneous thread lifts if the target lift tissue is intra-SMAS or just above the SMAS layer. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  18. On the utility of threads for data parallel programming

    NASA Technical Reports Server (NTRS)

    Fahringer, Thomas; Haines, Matthew; Mehrotra, Piyush

    1995-01-01

    Threads provide a useful programming model for asynchronous behavior because of their ability to encapsulate units of work that can then be scheduled for execution at runtime, based on the dynamic state of a system. Recently, the threaded model has been applied to the domain of data parallel scientific codes, and initial reports indicate that the threaded model can produce performance gains over non-threaded approaches, primarily through the use of overlapping useful computation with communication latency. However, overlapping computation with communication is possible without the benefit of threads if the communication system supports asynchronous primitives, and this comparison has not been made in previous papers. This paper provides a critical look at the utility of lightweight threads as applied to data parallel scientific programming.

  19. Ropes: Support for collective opertions among distributed threads

    NASA Technical Reports Server (NTRS)

    Haines, Matthew; Mehrotra, Piyush; Cronk, David

    1995-01-01

    Lightweight threads are becoming increasingly useful in supporting parallelism and asynchronous control structures in applications and language implementations. Recently, systems have been designed and implemented to support interprocessor communication between lightweight threads so that threads can be exploited in a distributed memory system. Their use, in this setting, has been largely restricted to supporting latency hiding techniques and functional parallelism within a single application. However, to execute data parallel codes independent of other threads in the system, collective operations and relative indexing among threads are required. This paper describes the design of ropes: a scoping mechanism for collective operations and relative indexing among threads. We present the design of ropes in the context of the Chant system, and provide performance results evaluating our initial design decisions.

  20. Lack of ubiquitin immunoreactivities at both ends of neuropil threads. Possible bidirectional growth of neuropil threads.

    PubMed

    Iwatsubo, T; Hasegawa, M; Esaki, Y; Ihara, Y

    1992-02-01

    Immunocytochemically, neuropil threads (curly fibers) were investigated in the Alzheimer's disease brain using a confocal laser scanning fluorescence microscope by double labeling with tau/ubiquitin antibodies. Ubiquitin immunoreactivities were found to be lacking at one or both ends in more than 40% of tau-positive threads. Immunoelectron microscopy showed that bundles of paired helical filaments, which constitute neuropil threads, were positive for ubiquitin around their midportions, but often negative at their ends. Since it is reasonable to postulate that tau deposition as paired helical filaments precedes ubiquitination, the aforementioned observation suggests that the ends of the threads are newly formed portions, and thus the threads are often growing bidirectionally in small neuronal processes.

  1. Gold thread implantation promotes hair growth in human and mice

    PubMed Central

    Kim, Jong-Hwan; Cho, Eun-Young; Kwon, Euna; Kim, Woo-Ho; Park, Jin-Sung; Lee, Yong-Soon

    2017-01-01

    Thread-embedding therapy has been widely applied for cosmetic purposes such as wrinkle reduction and skin tightening. Particularly, gold thread was reported to support connective tissue regeneration, but, its role in hair biology remains largely unknown due to lack of investigation. When we implanted gold thread and Happy Lift™ in human patient for facial lifting, we unexpectedly found an increase of hair regrowth in spite of no use of hair growth medications. When embedded into the depilated dorsal skin of mice, gold thread or polyglycolic acid (PGA) thread, similarly to 5% minoxidil, significantly increased the number of hair follicles on day 14 after implantation. And, hair re-growth promotion in the gold threadimplanted mice were significantly higher than that in PGA thread group on day 11 after depilation. In particular, the skin tissue of gold thread-implanted mice showed stronger PCNA staining and higher collagen density compared with control mice. These results indicate that gold thread implantation can be an effective way to promote hair re-growth although further confirmatory study is needed for more information on therapeutic mechanisms and long-term safety. PMID:29399026

  2. metAlignID: a high-throughput software tool set for automated detection of trace level contaminants in comprehensive LECO two-dimensional gas chromatography time-of-flight mass spectrometry data.

    PubMed

    Lommen, Arjen; van der Kamp, Henk J; Kools, Harrie J; van der Lee, Martijn K; van der Weg, Guido; Mol, Hans G J

    2012-11-09

    A new alternative data processing tool set, metAlignID, is developed for automated pre-processing and library-based identification and concentration estimation of target compounds after analysis by comprehensive two-dimensional gas chromatography with mass spectrometric detection. The tool set has been developed for and tested on LECO data. The software is developed to run multi-threaded (one thread per processor core) on a standard PC (personal computer) under different operating systems and is as such capable of processing multiple data sets simultaneously. Raw data files are converted into netCDF (network Common Data Form) format using a fast conversion tool. They are then preprocessed using previously developed algorithms originating from metAlign software. Next, the resulting reduced data files are searched against a user-composed library (derived from user or commercial NIST-compatible libraries) (NIST=National Institute of Standards and Technology) and the identified compounds, including an indicative concentration, are reported in Excel format. Data can be processed batch wise. The overall time needed for conversion together with processing and searching of 30 raw data sets for 560 compounds is routinely within an hour. The screening performance is evaluated for detection of pesticides and contaminants in raw data obtained after analysis of soil and plant samples. Results are compared to the existing data-handling routine based on proprietary software (LECO, ChromaTOF). The developed software tool set, which is freely downloadable at www.metalign.nl, greatly accelerates data-analysis and offers more options for fine-tuning automated identification toward specific application needs. The quality of the results obtained is slightly better than the standard processing and also adds a quantitative estimate. The software tool set in combination with two-dimensional gas chromatography coupled to time-of-flight mass spectrometry shows great potential as a highly-automated and fast multi-residue instrumental screening method. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Performance Analysis of and Tool Support for Transactional Memory on BG/Q

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schindewolf, M

    2011-12-08

    Martin Schindewolf worked during his internship at the Lawrence Livermore National Laboratory (LLNL) under the guidance of Martin Schulz at the Computer Science Group of the Center for Applied Scientific Computing. We studied the performance of the TM subsystem of BG/Q as well as researched the possibilities for tool support for TM. To study the performance, we run CLOMP-TM. CLOMP-TM is a benchmark designed for the purpose to quantify the overhead of OpenMP and compare different synchronization primitives. To advance CLOMP-TM, we added Message Passing Interface (MPI) routines for a hybrid parallelization. This enables to run multiple MPI tasks, eachmore » running OpenMP, on one node. With these enhancements, a beneficial MPI task to OpenMP thread ratio is determined. Further, the synchronization primitives are ranked as a function of the application characteristics. To demonstrate the usefulness of these results, we investigate a real Monte Carlo simulation called Monte Carlo Benchmark (MCB). Applying the lessons learned yields the best task to thread ratio. Further, we were able to tune the synchronization by transactifying the MCB. Further, we develop tools that capture the performance of the TM run time system and present it to the application's developer. The performance of the TM run time system relies on the built-in statistics. These tools use the Blue Gene Performance Monitoring (BGPM) interface to correlate the statistics from the TM run time system with performance counter values. This combination provides detailed insights in the run time behavior of the application and enables to track down the cause of degraded performance. Further, one tool has been implemented that separates the performance counters in three categories: Successful Speculation, Unsuccessful Speculation and No Speculation. All of the tools are crafted around IBM's xlc compiler for C and C++ and have been run and tested on a Q32 early access system.« less

  4. Scheduler for multiprocessor system switch with selective pairing

    DOEpatents

    Gara, Alan; Gschwind, Michael Karl; Salapura, Valentina

    2015-01-06

    System, method and computer program product for scheduling threads in a multiprocessing system with selective pairing of processor cores for increased processing reliability. A selective pairing facility is provided that selectively connects, i.e., pairs, multiple microprocessor or processor cores to provide one highly reliable thread (or thread group). The method configures the selective pairing facility to use checking provide one highly reliable thread for high-reliability and allocate threads to corresponding processor cores indicating need for hardware checking. The method configures the selective pairing facility to provide multiple independent cores and allocate threads to corresponding processor cores indicating inherent resilience.

  5. 78 FR 20175 - Proposed Collection; Comment Request for Information Collection tools.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... Form 8879-PE, IRS e-file Signature Authorization for Form 1065; Revenue Procedure 2009-32, Reliance... e-file Signature Authorization for Form 1065. OMB Number: 1545-2042. Form Number: 8879-PE. Abstract... personal identification number (PIN) to electronically sign a partnership's electronic income tax return...

  6. Threaded biliary inside stents are a safe and effective therapeutic option in cases of malignant hilar obstruction.

    PubMed

    Inatomi, Osamu; Bamba, Shigeki; Shioya, Makoto; Mochizuki, Yosuke; Ban, Hiromitsu; Tsujikawa, Tomoyuki; Saito, Yasuharu; Andoh, Akira; Fujiyama, Yoshihide

    2013-02-14

    Although endoscopic biliary stents have been accepted as part of palliative therapy for cases of malignant hilar obstruction, the optimal endoscopic management regime remains controversial. In this study, we evaluated the safety and efficacy of placing a threaded stent above the sphincter of Oddi (threaded inside plastic stents, threaded PS) and compared the results with those of other stent types. Patients with malignant hilar obstruction, including those requiring biliary drainage for stent occlusion, were selected. Patients received either one of the following endoscopic indwelling stents: threaded PS, conventional plastic stents (conventional PS), or metallic stents (MS). Duration of stent patency and the incident of complication were compared in these patients. Forty-two patients underwent placement of endoscopic indwelling stents (threaded PS = 12, conventional PS = 17, MS = 13). The median duration of threaded PS patency was significantly longer than that of conventional PS patency (142 vs. 32 days; P = 0.04, logrank test). The median duration of threaded PS and MS patency was not significantly different (142 vs. 150 days, P = 0.83). Stent migration did not occur in any group. Among patients who underwent threaded PS placement as a salvage therapy after MS obstruction due to tumor ingrowth, the median duration of MS patency was significantly shorter than that of threaded PS patency (123 vs. 240 days). Threaded PS are safe and effective in cases of malignant hilar obstruction; moreover, it is a suitable therapeutic option not only for initial drainage but also for salvage therapy.

  7. Exploration of microfluidic devices based on multi-filament threads and textiles: A review

    PubMed Central

    Nilghaz, A.; Ballerini, D. R.; Shen, W.

    2013-01-01

    In this paper, we review the recent progress in the development of low-cost microfluidic devices based on multifilament threads and textiles for semi-quantitative diagnostic and environmental assays. Hydrophilic multifilament threads are capable of transporting aqueous and non-aqueous fluids via capillary action and possess desirable properties for building fluid transport pathways in microfluidic devices. Thread can be sewn onto various support materials to form fluid transport channels without the need for the patterned hydrophobic barriers essential for paper-based microfluidic devices. Thread can also be used to manufacture fabrics which can be patterned to achieve suitable hydrophilic-hydrophobic contrast, creating hydrophilic channels which allow the control of fluids flow. Furthermore, well established textile patterning methods and combination of hydrophilic and hydrophobic threads can be applied to fabricate low-cost microfluidic devices that meet the low-cost and low-volume requirements. In this paper, we review the current limitations and shortcomings of multifilament thread and textile-based microfluidics, and the research efforts to date on the development of fluid flow control concepts and fabrication methods. We also present a summary of different methods for modelling the fluid capillary flow in microfluidic thread and textile-based systems. Finally, we summarized the published works of thread surface treatment methods and the potential of combining multifilament thread with other materials to construct devices with greater functionality. We believe these will be important research focuses of thread- and textile-based microfluidics in future. PMID:24086179

  8. Evaluation of Diet-Related Infographics on Pinterest for Use of Behavior Change Theories: A Content Analysis

    PubMed Central

    Strickling, Kate; Payne, Hannah E; Jensen, Kayla C; West, Joshua H

    2016-01-01

    Background There is increasing interest in Pinterest as a method of disseminating health information. However, it is unclear whether the health information promoted on Pinterest is evidence-based or incorporates behavior change theory. Objectives The objective of the study was to determine the presence of health behavior theory (HBT) constructs in pins found on Pinterest and assess the relationship between various pin characteristics and the likelihood of inclusion of HBT. Methods A content analysis was conducted on pins collected from Pinterest identified with the search terms “nutrition infographic” and “healthy eating infographic.” The coding rubric included HBT constructs, pin characteristics, and visual communication tools. Each HBT construct was coded as present or not present (yes=1, no=0). A total theory score was calculated by summing the values for each of the 9 constructs (range 0-9). Adjusted regression analysis was used to identify factors associated with the inclusion of health behavior change theory in pins (P<.05). Results The mean total theory score was 2.03 (SD 1.2). Perceived benefits were present most often (170/236, 72%), followed by behavioral capability (123/238, 51.7%) and perceived severity (79/236, 33.5%). The construct that appeared the least was self-regulation/self-control (2/237, 0.8%). Pin characteristics associated with the inclusion of HBT included a large amount of text (P=.01), photographs of real people (P=.001), cartoon pictures of food (P=.01), and the presence of references (P=.001). The number of repins (P=.04), likes (P=.01), and comments (P=.01) were positively associated with the inclusion of HBT. Conclusions These findings suggest that current Pinterest infographics targeting healthy eating contain few HBT elements. Health professionals and organizations should create and disseminate infographics that contain more elements of HBT to better influence healthy eating behavior. This may be accomplished by creating pins that use both text and images of people and food in order to portray elements of HBT and convey nutritional information. PMID:27932316

  9. Evaluation of Diet-Related Infographics on Pinterest for Use of Behavior Change Theories: A Content Analysis.

    PubMed

    Wilkinson, Jessica L; Strickling, Kate; Payne, Hannah E; Jensen, Kayla C; West, Joshua H

    2016-12-08

    There is increasing interest in Pinterest as a method of disseminating health information. However, it is unclear whether the health information promoted on Pinterest is evidence-based or incorporates behavior change theory. The objective of the study was to determine the presence of health behavior theory (HBT) constructs in pins found on Pinterest and assess the relationship between various pin characteristics and the likelihood of inclusion of HBT. A content analysis was conducted on pins collected from Pinterest identified with the search terms "nutrition infographic" and "healthy eating infographic." The coding rubric included HBT constructs, pin characteristics, and visual communication tools. Each HBT construct was coded as present or not present (yes=1, no=0). A total theory score was calculated by summing the values for each of the 9 constructs (range 0-9). Adjusted regression analysis was used to identify factors associated with the inclusion of health behavior change theory in pins (P<.05). The mean total theory score was 2.03 (SD 1.2). Perceived benefits were present most often (170/236, 72%), followed by behavioral capability (123/238, 51.7%) and perceived severity (79/236, 33.5%). The construct that appeared the least was self-regulation/self-control (2/237, 0.8%). Pin characteristics associated with the inclusion of HBT included a large amount of text (P=.01), photographs of real people (P=.001), cartoon pictures of food (P=.01), and the presence of references (P=.001). The number of repins (P=.04), likes (P=.01), and comments (P=.01) were positively associated with the inclusion of HBT. These findings suggest that current Pinterest infographics targeting healthy eating contain few HBT elements. Health professionals and organizations should create and disseminate infographics that contain more elements of HBT to better influence healthy eating behavior. This may be accomplished by creating pins that use both text and images of people and food in order to portray elements of HBT and convey nutritional information. ©Jessica L Wilkinson, Kate Strickling, Hannah E Payne, Kayla C Jensen, Joshua H West. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 08.12.2016.

  10. Lack of ubiquitin immunoreactivities at both ends of neuropil threads. Possible bidirectional growth of neuropil threads.

    PubMed Central

    Iwatsubo, T.; Hasegawa, M.; Esaki, Y.; Ihara, Y.

    1992-01-01

    Immunocytochemically, neuropil threads (curly fibers) were investigated in the Alzheimer's disease brain using a confocal laser scanning fluorescence microscope by double labeling with tau/ubiquitin antibodies. Ubiquitin immunoreactivities were found to be lacking at one or both ends in more than 40% of tau-positive threads. Immunoelectron microscopy showed that bundles of paired helical filaments, which constitute neuropil threads, were positive for ubiquitin around their midportions, but often negative at their ends. Since it is reasonable to postulate that tau deposition as paired helical filaments precedes ubiquitination, the aforementioned observation suggests that the ends of the threads are newly formed portions, and thus the threads are often growing bidirectionally in small neuronal processes. Images Figure 1 Figure 2 PMID:1310831

  11. Fatigue acceptance test limit criterion for larger diameter rolled thread fasteners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kephart, A.R.

    1997-05-01

    This document describes a fatigue lifetime acceptance test criterion by which studs having rolled threads, larger than 1.0 inches in diameter, can be assured to meet minimum quality attributes associated with a controlled rolling process. This criterion is derived from a stress dependent, room temperature air fatigue database for test studs having a 0.625 inch diameter threads of Alloys X-750 HTH and direct aged 625. Anticipated fatigue lives of larger threads are based on thread root elastic stress concentration factors which increase with increasing thread diameters. Over the thread size range of interest, a 30% increase in notch stress ismore » equivalent to a factor of five (5X) reduction in fatigue life. The resulting diameter dependent fatigue acceptance criterion is normalized to the aerospace rolled thread acceptance standards for a 1.0 inch diameter, 0.125 inch pitch, Unified National thread with a controlled Root radius (UNR). Testing was conducted at a stress of 50% of the minimum specified material ultimate strength, 80 Ksi, and at a stress ratio (R) of 0.10. Limited test data for fastener diameters of 1.00 to 2.25 inches are compared to the acceptance criterion. Sensitivity of fatigue life of threads to test nut geometry variables was also shown to be dependent on notch stress conditions. Bearing surface concavity of the compression nuts and thread flank contact mismatch conditions can significantly affect the fastener fatigue life. Without improved controls these conditions could potentially provide misleading acceptance data. Alternate test nut geometry features are described and implemented in the rolled thread stud specification, MIL-DTL-24789(SH), to mitigate the potential effects on fatigue acceptance data.« less

  12. Wedges for ultrasonic inspection

    DOEpatents

    Gavin, Donald A.

    1982-01-01

    An ultrasonic transducer device is provided which is used in ultrasonic inspection of the material surrounding a threaded hole and which comprises a wedge of plastic or the like including a curved threaded surface adapted to be screwed into the threaded hole and a generally planar surface on which a conventional ultrasonic transducer is mounted. The plastic wedge can be rotated within the threaded hole to inspect for flaws in the material surrounding the threaded hole.

  13. Apparatus for accurately preloading auger attachment means for frangible protective material

    NASA Technical Reports Server (NTRS)

    Wood, K. E.

    1983-01-01

    Apparatus for preloading a spring loaded threaded member is described. The apparatus is formed of three telescoping tubes. The innermost tube has means to prevent rotation of the threaded member. The middle tube is threadedly engaged with the threaded member and by axial movement applies a preload thereto. The outer tube engages a nut which may be rotated to retain the threaded member in axial position to maintain the preload.

  14. Analysis and design of friction stir welding tool

    NASA Astrophysics Data System (ADS)

    Jagadeesha, C. B.

    2016-12-01

    Since its inception no one has done analysis and design of FSW tool. Initial dimensions of FSW tool are decided by educated guess. Optimum stresses on tool pin have been determined at optimized parameters for bead on plate welding on AZ31B-O Mg alloy plate. Fatigue analysis showed that the chosen FSW tool for the welding experiment has not ∞ life and it has determined that the life of FSW tool is 2.66×105 cycles or revolutions. So one can conclude that any arbitrarily decided FSW tool generally has finite life and cannot be used for ∞ life. In general, one can determine the suitability of tool and its material to be used in FSW of the given workpiece materials in advance by this analysis in terms of fatigue life of the tool.

  15. Effect of thread shape on screw stress concentration by photoelastic measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dragoni, E.

    1994-11-01

    The screw stress concentration for six nut-bolt connections embodying three different thread profiles and two nut shapes is measured photoelastically. Buttress (nearly zero flank angle), trapezoidal (15-deg flank angle), and triangular (30-deg flank angle) thread forms are examined in combination with standard and lip-type nuts. The effect of the thread profile on the screw stress concentration appears to be dependent upon the kind of nut considered. If the fastening incorporates a standard nut, the buttress thread is stronger than the triangular one, which, in turn, behaves better than the trapezoidal contour. The improvement is roughly a 20% reduction in themore » stress concentration factor from the trapezoidal to the buttress thread. In the case of lip nut, conversely, this tendency is somewhat reversed, with the trapezoidal thread performing slightly (but not decidedly) better than the other two shapes. Finally, averaged over all three thread forms, the lip nut exhibits a stress concentration factor which is about 50% lower than that of the standard nut.« less

  16. Quick connect fastener

    NASA Technical Reports Server (NTRS)

    Weddendorf, Bruce (Inventor)

    1994-01-01

    A quick connect fastener and method of use is presented wherein the quick connect fastener is suitable for replacing available bolts and screws, the quick connect fastener being capable of installation by simply pushing a threaded portion of the connector into a member receptacle hole, the inventive apparatus being comprised of an externally threaded fastener having a threaded portion slidably mounted upon a stud or bolt shaft, wherein the externally threaded fastener portion is expandable by a preloaded spring member. The fastener, upon contact with the member receptacle hole, has the capacity of presenting cylindrical threads of a reduced diameter for insertion purposes and once inserted into the receiving threads of the receptacle member hole, are expandable for engagement of the receptacle hole threads forming a quick connect of the fastener and the member to be fastened, the quick connect fastener can be further secured by rotation after insertion, even to the point of locking engagement, the quick connect fastener being disengagable only by reverse rotation of the mated thread engagement.

  17. Form and function of cnidarian spirocysts. III. Ultrastructure of the thread and the function of spirocysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariscal, R.N.; McLean, R.B.; Hand, C.

    1977-01-01

    Unlike most nematocysts, undischarged spirocyst threads bear hollow tubules rather than spines. The undischarged tubules are interconnected in hexagonal arrays and appear to be arranged in bundles along the length of the thread. Although the wall of the thread is folded in length and width, the tubules are not. Upon discharge and contact with sea water, the tubules solubilize and adhere to various substrates and prey. Traction between such objects and the everting thread causes the tubules to spin out into a web or meshwork of fine microfibrillae. Lack of contact of the everting thread with objects results in themore » tubules forming small droplets of partially solubilized material, some of which appear to be arranged in a helical pattern around the thread. The web or meshwork formed by the solubilized tubules in contact with various substrates probably serves to increase significantly the surface area and adhesive properties of the everted spirocyst thread.« less

  18. Nano-enabled sensors, electronics and energy source on polymer, paper and thread substrates

    NASA Astrophysics Data System (ADS)

    Mostafalu, Pooria

    Over the past decades, design and development of portable devices for monitoring of biomarkers especially for at risk patients is receiving considerable attention. These devices are either single use diagnostic platforms, wearable on body or on fabric, or they are implanted close to the tissue and organ that it monitors and cures. Sensors, energy sources, and data acquisition devices are the main components of a such monitoring platform. Sensors collect the information using bio-recognition tools such as enzymes and antibodies. Then, the transducers (electrodes, fluorophore, etc) convert it to the appropriate format, for instance electrical and optical signals. After that, data acquisition system amplifies and digitizes the signal and transfers the data to the recording instruments for further processing. Moreover, energy sources are necessary for powering the sensors and electronics. In wearable and implantable applications, these devices need to be flexible, light weight and biocompatible, and their performance should be similar to their rigid counterparts. In this dissertation we address these requirement for wearable and implantable devices. We showed integrated sensors, electronics, and energy sources on flexible polymers, paper, and thread. These devices provide many advantages for monitoring of the physiological condition of a patient and treatment accordingly. Real-time capability of the platform was enabled using wireless telemetry. One of the major innovations of this dissertation is the use of thread as a substrate for making medical diagnostic devices. While conventional substrates (glass, silicon, polyimide, PDMS etc) hold great promise for making wearable and implantable devices, their overall structure and form has remained essentially two dimensional, limiting their function to tissue surfaces such as skin. However, the ability to integrate functional components such as sensors, actuators, and electronics in a way that they penetrate multiple layers of tissues in a 3D topology would be a significant surgical advance. We have devised an integrated thread-based diagnostic (TDD) system with the ability to measure physical (strain and temperature) and chemical (pH and glucose) markers in the body in vivo. Such device was made from threads, which have been widely used in the apparel industry and is readily available as a low-cost biocompatible material.

  19. Listening to Bodies and Watching Machines: Developing Health Information Skills, Tools and Services for People Living with Chronic Kidney Disease

    ERIC Educational Resources Information Center

    Godbold, Natalya

    2013-01-01

    When patients need information, they may visit a doctor, ask a nurse, or look online. But these are not the only sources of information used by patients. This paper examines discussion threads in online renal support groups to describe how people living with kidney failure conceive of help, information and support. I use Actor Network Theory to…

  20. Automatic Multilevel Parallelization Using OpenMP

    NASA Technical Reports Server (NTRS)

    Jin, Hao-Qiang; Jost, Gabriele; Yan, Jerry; Ayguade, Eduard; Gonzalez, Marc; Martorell, Xavier; Biegel, Bryan (Technical Monitor)

    2002-01-01

    In this paper we describe the extension of the CAPO (CAPtools (Computer Aided Parallelization Toolkit) OpenMP) parallelization support tool to support multilevel parallelism based on OpenMP directives. CAPO generates OpenMP directives with extensions supported by the NanosCompiler to allow for directive nesting and definition of thread groups. We report some results for several benchmark codes and one full application that have been parallelized using our system.

  1. A Study of Topic and Topic Change in Conversational Threads

    DTIC Science & Technology

    2009-09-01

    AUTHOR(S) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS( ES ) 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND...ADDRESS( ES ) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION / AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES...unigrams. By converting documents to a vector space representations, the tools of geometry and algebra can be applied, and questions of difference

  2. Automated Chat Thread Analysis: Untangling the Web

    DTIC Science & Technology

    2010-01-01

    delays, distractions, errant information sources, and overall cognitive effort. The most significant challenge to conducting an effective after...to emphasize. Thus, the goal is to develop a tool that serves as a cognitive aid to instructors developing an After-Action Review (AAR). Our...work is being done by the “ Cognitive Agent that Learns and Organizes” (CALO) project, a joint effort between SRI and Stanford University’s Center for

  3. Quality Tools and TRIZ Based Quality Improvement Case Study at PT ‘X’ A Plastic Moulding Manufacturing Industry

    NASA Astrophysics Data System (ADS)

    Wirawan, Christina; Chandra, Fory

    2016-02-01

    Theory of Inventive Problem Solving (TRIZ) is a creative encouraging problem solving method. TRIZ is prepared by Altshuller for product design. Altshuller prepared contradiction matrix and suggestion to solve contradictions usually occur in product design. This paper try to combine TRIZ with quality tools such as Pareto and Fault Tree Analysis (FTA) to solve contradiction in quality improvement problem, neither than product design problem. Pareto used to identify defect priority, FTA used to analysis and identify root cause of defect. When there is contradiction in solving defect causes, TRIZ used to find creative problem solving. As a case study, PT ’X’, a plastic molding manufacturing industry was taken. PT ‘X’ using traditional press machine to produce plastic thread cone. There are 5 defect types that might occur in plastic thread cone production, incomplete form, dirty, mottle, excessive form, rugged. Research about quality improvement effort using DMAIC at PT ‘X’ have been done by Fory Candra. From this research, defect types, priority, root cause from FTA, recommendation from FMEA. In this research, from FTA reviewed, contradictions found among causes troublesome quality improvement efforts. TRIZ used to solve the contradictions and quality improvement effort can be made effectively.

  4. cuBLASTP: Fine-Grained Parallelization of Protein Sequence Search on CPU+GPU.

    PubMed

    Zhang, Jing; Wang, Hao; Feng, Wu-Chun

    2017-01-01

    BLAST, short for Basic Local Alignment Search Tool, is a ubiquitous tool used in the life sciences for pairwise sequence search. However, with the advent of next-generation sequencing (NGS), whether at the outset or downstream from NGS, the exponential growth of sequence databases is outstripping our ability to analyze the data. While recent studies have utilized the graphics processing unit (GPU) to speedup the BLAST algorithm for searching protein sequences (i.e., BLASTP), these studies use coarse-grained parallelism, where one sequence alignment is mapped to only one thread. Such an approach does not efficiently utilize the capabilities of a GPU, particularly due to the irregularity of BLASTP in both execution paths and memory-access patterns. To address the above shortcomings, we present a fine-grained approach to parallelize BLASTP, where each individual phase of sequence search is mapped to many threads on a GPU. This approach, which we refer to as cuBLASTP, reorders data-access patterns and reduces divergent branches of the most time-consuming phases (i.e., hit detection and ungapped extension). In addition, cuBLASTP optimizes the remaining phases (i.e., gapped extension and alignment with trace back) on a multicore CPU and overlaps their execution with the phases running on the GPU.

  5. Assessment of SFR Wire Wrap Simulation Uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delchini, Marc-Olivier G.; Popov, Emilian L.; Pointer, William David

    Predictive modeling and simulation of nuclear reactor performance and fuel are challenging due to the large number of coupled physical phenomena that must be addressed. Models that will be used for design or operational decisions must be analyzed for uncertainty to ascertain impacts to safety or performance. Rigorous, structured uncertainty analyses are performed by characterizing the model’s input uncertainties and then propagating the uncertainties through the model to estimate output uncertainty. This project is part of the ongoing effort to assess modeling uncertainty in Nek5000 simulations of flow configurations relevant to the advanced reactor applications of the Nuclear Energy Advancedmore » Modeling and Simulation (NEAMS) program. Three geometries are under investigation in these preliminary assessments: a 3-D pipe, a 3-D 7-pin bundle, and a single pin from the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility. Initial efforts have focused on gaining an understanding of Nek5000 modeling options and integrating Nek5000 with Dakota. These tasks are being accomplished by demonstrating the use of Dakota to assess parametric uncertainties in a simple pipe flow problem. This problem is used to optimize performance of the uncertainty quantification strategy and to estimate computational requirements for assessments of complex geometries. A sensitivity analysis to three turbulent models was conducted for a turbulent flow in a single wire wrapped pin (THOR) geometry. Section 2 briefly describes the software tools used in this study and provides appropriate references. Section 3 presents the coupling interface between Dakota and a computational fluid dynamic (CFD) code (Nek5000 or STARCCM+), with details on the workflow, the scripts used for setting up the run, and the scripts used for post-processing the output files. In Section 4, the meshing methods used to generate the THORS and 7-pin bundle meshes are explained. Sections 5, 6 and 7 present numerical results for the 3-D pipe, the single pin THORS mesh, and the 7-pin bundle mesh, respectively.« less

  6. Thread bonds in molecules

    NASA Astrophysics Data System (ADS)

    Ivlev, B.

    2017-07-01

    Unusual chemical bonds are proposed. Each bond is characterized by the thread of a small radius, 10-11 cm, extended between two nuclei in a molecule. An analogue of a potential well, of the depth of MeV scale, is formed within the thread. This occurs due to the local reduction of zero point electromagnetic energy. This is similar to formation of the Casimir well. The electron-photon interaction only is not sufficient for formation of thread state. The mechanism of electron mass generation is involved in the close vicinity, 10-16 cm, of the thread. Thread bonds are stable and cannot be created or destructed in chemical or optical processes.

  7. Flare particle acceleration in the interaction of twisted coronal flux ropes

    NASA Astrophysics Data System (ADS)

    Threlfall, J.; Hood, A. W.; Browning, P. K.

    2018-03-01

    Aim. The aim of this work is to investigate and characterise non-thermal particle behaviour in a three-dimensional (3D) magnetohydrodynamical (MHD) model of unstable multi-threaded flaring coronal loops. Methods: We have used a numerical scheme which solves the relativistic guiding centre approximation to study the motion of electrons and protons. The scheme uses snapshots from high resolution numerical MHD simulations of coronal loops containing two threads, where a single thread becomes unstable and (in one case) destabilises and merges with an additional thread. Results: The particle responses to the reconnection and fragmentation in MHD simulations of two loop threads are examined in detail. We illustrate the role played by uniform background resistivity and distinguish this from the role of anomalous resistivity using orbits in an MHD simulation where only one thread becomes unstable without destabilising further loop threads. We examine the (scalable) orbit energy gains and final positions recovered at different stages of a second MHD simulation wherein a secondary loop thread is destabilised by (and merges with) the first thread. We compare these results with other theoretical particle acceleration models in the context of observed energetic particle populations during solar flares.

  8. Long-term effect of the insoluble thread-lifting technique.

    PubMed

    Fukaya, Mototsugu

    2017-01-01

    Although the thread-lifting technique for sagging faces has become more common and popular, medical literature evaluating its effects is scarce. Studies on its long-term prognosis are particularly uncommon. One hundred individuals who had previously undergone insoluble thread-lifting were retrospectively investigated. Photos in frontal and oblique views from the first and last visits were evaluated by six female individuals by guessing the patients' ages. The mean guessed age was defined as the apparent age, and the difference between the real and apparent ages was defined as the youth value. The difference between the youth values before and after the thread-lift was defined as the rejuvenation effect and analyzed in relation to the time since the operation, the number of threads used and the number of thread-lift operations performed. The rejuvenation effect decreased over the first year after the operation, but showed an increasing trend thereafter. The rejuvenation effect increased with the number of threads used and the number of thread-lift operations performed. The insoluble thread-lifting technique appears to be associated with both early and late effects. The rejuvenation effect appeared to decrease during the first year, but increased thereafter. A multicenter trial is necessary to confirm these findings.

  9. Thread Migration in the Presence of Pointers

    NASA Technical Reports Server (NTRS)

    Cronk, David; Haines, Matthew; Mehrotra, Piyush

    1996-01-01

    Dynamic migration of lightweight threads supports both data locality and load balancing. However, migrating threads that contain pointers referencing data in both the stack and heap remains an open problem. In this paper we describe a technique by which threads with pointers referencing both stack and non-shared heap data can be migrated such that the pointers remain valid after migration. As a result, threads containing pointers can now be migrated between processors in a homogeneous distributed memory environment.

  10. Real-time inextensible surgical thread simulation.

    PubMed

    Xu, Lang; Liu, Qian

    2018-03-27

    This paper discusses a real-time simulation method of inextensible surgical thread based on the Cosserat rod theory using position-based dynamics (PBD). The method realizes stable twining and knotting of surgical thread while including inextensibility, bending, twisting and coupling effects. The Cosserat rod theory is used to model the nonlinear elastic behavior of surgical thread. The surgical thread model is solved with PBD to achieve a real-time, extremely stable simulation. Due to the one-dimensional linear structure of surgical thread, the direct solution of the distance constraint based on tridiagonal matrix algorithm is used to enhance stretching resistance in every constraint projection iteration. In addition, continuous collision detection and collision response guarantee a large time step and high performance. Furthermore, friction is integrated into the constraint projection process to stabilize the twining of multiple threads and complex contact situations. Through comparisons with existing methods, the surgical thread maintains constant length under large deformation after applying the direct distance constraint in our method. The twining and knotting of multiple threads correspond to stable solutions to contact and friction forces. A surgical suture scene is also modeled to demonstrate the practicality and simplicity of our method. Our method achieves stable and fast simulation of inextensible surgical thread. Benefiting from the unified particle framework, the rigid body, elastic rod, and soft body can be simultaneously simulated. The method is appropriate for applications in virtual surgery that require multiple dynamic bodies.

  11. High precision optomechanical assembly using threads as mechanical reference

    NASA Astrophysics Data System (ADS)

    Lamontagne, Frédéric; Desnoyers, Nichola; Bergeron, Guy; Cantin, Mario

    2016-09-01

    A convenient method to assemble optomechanical components is to use threaded interface. For example, lenses are often secured inside barrels using threaded rings. In other cases, multiple optical sub-assemblies such as lens barrels can be threaded to each other. Threads have the advantage to provide a simple assembly method, to be easy to manufacture, and to offer a compact mechanical design. On the other hand, threads are not considered to provide accurate centering between parts because of the assembly clearance between the inner and outer threads. For that reason, threads are often used in conjunction with precision cylindrical surfaces to limit the radial clearance between the parts to be centered. Therefore, tight manufacturing tolerances are needed on these pilot diameters, which affect the cost of the optical assembly. This paper presents a new optomechanical approach that uses threads as mechanical reference. This innovative method relies on geometric principles to auto-center parts to each other with a very low centering error that is usually less than 5 μm. The method allows to auto-center an optical group in a main barrel, to perform an axial adjustment of an optical group inside a main barrel, and to perform stacking of multiple barrels. In conjunction with the lens auto-centering method that also used threads as a mechanical reference, this novel solution opens new possibilities to realize a variety of different high precision optomechanical assemblies at lower cost.

  12. Pins and posters: Paradigms for content publication on situated displays.

    PubMed

    José, Rui; Pinto, Hélder; Silva, Bruno; Melro, Ana

    2013-01-01

    Public-display systems are still far from being a medium for meeting people's diverse communication goals. Moving toward open displays will require publication paradigms that can overcome the challenges of meaningful engagement and enable users to fully understand and control the publication process. The metaphors of pins and posters have inspired two complementary paradigms for public displays. Researchers implemented these paradigms in the Instant Places system, which they deployed on 10 displays in diverse urban locations for six months. They collected user and system data regarding the users' practices. The findings improve the understanding of what might drive user-generated content in networks of urban displays. Such knowledge can inform the design of tools and procedures for situated publication in public displays.

  13. Threaded biliary inside stents are a safe and effective therapeutic option in cases of malignant hilar obstruction

    PubMed Central

    2013-01-01

    Background Although endoscopic biliary stents have been accepted as part of palliative therapy for cases of malignant hilar obstruction, the optimal endoscopic management regime remains controversial. In this study, we evaluated the safety and efficacy of placing a threaded stent above the sphincter of Oddi (threaded inside plastic stents, threaded PS) and compared the results with those of other stent types. Methods Patients with malignant hilar obstruction, including those requiring biliary drainage for stent occlusion, were selected. Patients received either one of the following endoscopic indwelling stents: threaded PS, conventional plastic stents (conventional PS), or metallic stents (MS). Duration of stent patency and the incident of complication were compared in these patients. Results Forty-two patients underwent placement of endoscopic indwelling stents (threaded PS = 12, conventional PS = 17, MS = 13). The median duration of threaded PS patency was significantly longer than that of conventional PS patency (142 vs. 32 days; P = 0.04, logrank test). The median duration of threaded PS and MS patency was not significantly different (142 vs. 150 days, P = 0.83). Stent migration did not occur in any group. Among patients who underwent threaded PS placement as a salvage therapy after MS obstruction due to tumor ingrowth, the median duration of MS patency was significantly shorter than that of threaded PS patency (123 vs. 240 days). Conclusions Threaded PS are safe and effective in cases of malignant hilar obstruction; moreover, it is a suitable therapeutic option not only for initial drainage but also for salvage therapy. PMID:23410217

  14. Parallel Implementation of 3-D Iterative Reconstruction With Intra-Thread Update for the jPET-D4

    NASA Astrophysics Data System (ADS)

    Lam, Chih Fung; Yamaya, Taiga; Obi, Takashi; Yoshida, Eiji; Inadama, Naoko; Shibuya, Kengo; Nishikido, Fumihiko; Murayama, Hideo

    2009-02-01

    One way to speed-up iterative image reconstruction is by parallel computing with a computer cluster. However, as the number of computing threads increases, parallel efficiency decreases due to network transfer delay. In this paper, we proposed a method to reduce data transfer between computing threads by introducing an intra-thread update. The update factor is collected from each slave thread and a global image is updated as usual in the first K sub-iteration. In the rest of the sub-iterations, the global image is only updated at an interval which is controlled by a parameter L. In between that interval, the intra-thread update is carried out whereby an image update is performed in each slave thread locally. We investigated combinations of K and L parameters based on parallel implementation of RAMLA for the jPET-D4 scanner. Our evaluation used four workstations with a total of 16 slave threads. Each slave thread calculated a different set of LORs which are divided according to ring difference numbers. We assessed image quality of the proposed method with a hotspot simulation phantom. The figure of merit was the full-width-half-maximum of hotspots and the background normalized standard deviation. At an optimum K and L setting, we did not find significant change in the output images. We also applied the proposed method to a Hoffman phantom experiment and found the difference due to intra-thread update was negligible. With the intra-thread update, computation time could be reduced by about 23%.

  15. Effect of Processing Parameters on Plastic Flow and Defect Formation in Friction-Stir-Welded Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Zeng, X. H.; Xue, P.; Wang, D.; Ni, D. R.; Xiao, B. L.; Ma, Z. Y.

    2018-07-01

    The effect of processing parameters on material flow and defect formation during friction stir welding (FSW) was investigated on 6.0-mm-thick 2014Al-T6 rolled plates with an artificially thickened oxide layer on the butt surface as the marker material. It was found that the "S" line in the stir zone (SZ) rotated with the pin and stayed on the retreating side (RS) and advancing side (AS) at low and high heat inputs, respectively. When the tool rotation rate was extremely low, the oxide layer under the pin moved to the RS first and then to the AS perpendicular to the welding direction, rather than rotating with the pin. The material flow was driven by the shear stresses produced by the forces at the pin-workpiece interface. With increases of the rotation rate, the depth of the shoulder-affected zone (SAZ) first decreased and then increased due to the decreasing shoulder friction force and increasing heat input. Insufficient material flow appeared in the whole of the SZ at low rotation rates and in the bottom of the SZ at high rotation rates, resulting in the formation of the "S" line. The extremely inadequate material flow is the reason for the lack of penetration and the kissing bonds in the bottom of the SZ at extremely low and low rotation rates, respectively.

  16. Effect of Processing Parameters on Plastic Flow and Defect Formation in Friction-Stir-Welded Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Zeng, X. H.; Xue, P.; Wang, D.; Ni, D. R.; Xiao, B. L.; Ma, Z. Y.

    2018-04-01

    The effect of processing parameters on material flow and defect formation during friction stir welding (FSW) was investigated on 6.0-mm-thick 2014Al-T6 rolled plates with an artificially thickened oxide layer on the butt surface as the marker material. It was found that the "S" line in the stir zone (SZ) rotated with the pin and stayed on the retreating side (RS) and advancing side (AS) at low and high heat inputs, respectively. When the tool rotation rate was extremely low, the oxide layer under the pin moved to the RS first and then to the AS perpendicular to the welding direction, rather than rotating with the pin. The material flow was driven by the shear stresses produced by the forces at the pin-workpiece interface. With increases of the rotation rate, the depth of the shoulder-affected zone (SAZ) first decreased and then increased due to the decreasing shoulder friction force and increasing heat input. Insufficient material flow appeared in the whole of the SZ at low rotation rates and in the bottom of the SZ at high rotation rates, resulting in the formation of the "S" line. The extremely inadequate material flow is the reason for the lack of penetration and the kissing bonds in the bottom of the SZ at extremely low and low rotation rates, respectively.

  17. High-temperature change of the creep rate in YBa2Cu3O7-δ films with different pinning landscapes

    NASA Astrophysics Data System (ADS)

    Haberkorn, N.; Miura, M.; Baca, J.; Maiorov, B.; Usov, I.; Dowden, P.; Foltyn, S. R.; Holesinger, T. G.; Willis, J. O.; Marken, K. R.; Izumi, T.; Shiohara, Y.; Civale, L.

    2012-05-01

    Magnetic relaxation measurements in YBa2Cu3O7-δ (YBCO) films at intermediate and high temperatures show that the collective vortex creep based on the elastic motion of the vortex lattice has a crossover to fast creep that significantly reduces the superconducting critical current density (Jc). This crossover occurs at temperatures much lower than the irreversibility field line. We study the influence of different kinds of crystalline defects, such as nanorods, twin boundaries, and nanoparticles, on the high-temperature vortex phase diagram of YBCO films. We found that the magnetization relaxation data is a fundamental tool to understand the pinning at high temperatures. The results indicate that high Jc values are directly associated with small creep rates. Based on the analysis of the depinning temperature in films with columnar defects, our results indicate that the size of the defects is the relevant parameter that determines thermal depinning at high temperatures. Also, the extension of the collective creep regime depends on the density of the pinning centers.

  18. Mesoscopic modeling for nucleic acid chain dynamics

    PubMed Central

    Sales-Pardo, M.; Guimerà, R.; Moreira, A. A.; Widom, J.; Amaral, L. A. N.

    2007-01-01

    To gain a deeper insight into cellular processes such as transcription and translation, one needs to uncover the mechanisms controlling the configurational changes of nucleic acids. As a step toward this aim, we present here a mesoscopic-level computational model that provides a new window into nucleic acid dynamics. We model a single-stranded nucleic as a polymer chain whose monomers are the nucleosides. Each monomer comprises a bead representing the sugar molecule and a pin representing the base. The bead-pin complex can rotate about the backbone of the chain. We consider pairwise stacking and hydrogen-bonding interactions. We use a modified Monte Carlo dynamics that splits the dynamics into translational bead motion and rotational pin motion. By performing a number of tests, we first show that our model is physically sound. We then focus on a study of the kinetics of a DNA hairpin—a single-stranded molecule comprising two complementary segments joined by a noncomplementary loop—studied experimentally. We find that results from our simulations agree with experimental observations, demonstrating that our model is a suitable tool for the investigation of the hybridization of single strands. PMID:16089566

  19. 78 FR 12718 - Certain Steel Threaded Rod From the People's Republic of China: Affirmative Final Determination...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-570-932] Certain Steel Threaded Rod... Preliminary Determination of the circumvention inquiry concerning the antidumping duty order on certain steel threaded rod (``steel threaded rod'') from the People's Republic of China (``PRC'').\\1\\ The period of...

  20. An Alternative Frictional Boundary Condition for Computational Fluid Dynamics Simulation of Friction Stir Welding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Gaoqiang; Feng, Zhili; Zhu, Yucan

    For better application of numerical simulation in optimization and design of friction stir welding (FSW), this paper presents a new frictional boundary condition at the tool/workpiece interface for computational fluid dynamics (CFD) modeling of FSW. The proposed boundary condition is based on an implementation of the Coulomb friction model. Using the new boundary condition, the CFD simulation yields non-uniform distribution of contact state over the tool/workpiece interface, as validated by the experimental weld macrostructure. It is found that interfacial sticking state is present over large area at the tool-workpiece interface, while significant interfacial sliding occurs at the shoulder periphery, themore » lower part of pin side, and the periphery of pin bottom. Due to the interfacial sticking, a rotating flow zone is found under the shoulder, in which fast circular motion occurs. The diameter of the rotating flow zone is smaller than the shoulder diameter, which is attributed to the presence of the interfacial sliding at the shoulder periphery. For the simulated welding condition, the heat generation due to friction and plastic deformation makes up 54.4 and 45.6% of the total heat generation rate, respectively. In conclusion, the simulated temperature field is validated by the good agreement to the experimental measurements.« less

  1. An Alternative Frictional Boundary Condition for Computational Fluid Dynamics Simulation of Friction Stir Welding

    DOE PAGES

    Chen, Gaoqiang; Feng, Zhili; Zhu, Yucan; ...

    2016-07-11

    For better application of numerical simulation in optimization and design of friction stir welding (FSW), this paper presents a new frictional boundary condition at the tool/workpiece interface for computational fluid dynamics (CFD) modeling of FSW. The proposed boundary condition is based on an implementation of the Coulomb friction model. Using the new boundary condition, the CFD simulation yields non-uniform distribution of contact state over the tool/workpiece interface, as validated by the experimental weld macrostructure. It is found that interfacial sticking state is present over large area at the tool-workpiece interface, while significant interfacial sliding occurs at the shoulder periphery, themore » lower part of pin side, and the periphery of pin bottom. Due to the interfacial sticking, a rotating flow zone is found under the shoulder, in which fast circular motion occurs. The diameter of the rotating flow zone is smaller than the shoulder diameter, which is attributed to the presence of the interfacial sliding at the shoulder periphery. For the simulated welding condition, the heat generation due to friction and plastic deformation makes up 54.4 and 45.6% of the total heat generation rate, respectively. In conclusion, the simulated temperature field is validated by the good agreement to the experimental measurements.« less

  2. Developing a scalable modeling architecture for studying survivability technologies

    NASA Astrophysics Data System (ADS)

    Mohammad, Syed; Bounker, Paul; Mason, James; Brister, Jason; Shady, Dan; Tucker, David

    2006-05-01

    To facilitate interoperability of models in a scalable environment, and provide a relevant virtual environment in which Survivability technologies can be evaluated, the US Army Research Development and Engineering Command (RDECOM) Modeling Architecture for Technology Research and Experimentation (MATREX) Science and Technology Objective (STO) program has initiated the Survivability Thread which will seek to address some of the many technical and programmatic challenges associated with the effort. In coordination with different Thread customers, such as the Survivability branches of various Army labs, a collaborative group has been formed to define the requirements for the simulation environment that would in turn provide them a value-added tool for assessing models and gauge system-level performance relevant to Future Combat Systems (FCS) and the Survivability requirements of other burgeoning programs. An initial set of customer requirements has been generated in coordination with the RDECOM Survivability IPT lead, through the Survivability Technology Area at RDECOM Tank-automotive Research Development and Engineering Center (TARDEC, Warren, MI). The results of this project are aimed at a culminating experiment and demonstration scheduled for September, 2006, which will include a multitude of components from within RDECOM and provide the framework for future experiments to support Survivability research. This paper details the components with which the MATREX Survivability Thread was created and executed, and provides insight into the capabilities currently demanded by the Survivability faculty within RDECOM.

  3. Nebo: An efficient, parallel, and portable domain-specific language for numerically solving partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Earl, Christopher; Might, Matthew; Bagusetty, Abhishek

    This study presents Nebo, a declarative domain-specific language embedded in C++ for discretizing partial differential equations for transport phenomena on multiple architectures. Application programmers use Nebo to write code that appears sequential but can be run in parallel, without editing the code. Currently Nebo supports single-thread execution, multi-thread execution, and many-core (GPU-based) execution. With single-thread execution, Nebo performs on par with code written by domain experts. With multi-thread execution, Nebo can linearly scale (with roughly 90% efficiency) up to 12 cores, compared to its single-thread execution. Moreover, Nebo’s many-core execution can be over 140x faster than its single-thread execution.

  4. Three-dimensional imaging of threading dislocations in GaN crystals using two-photon excitation photoluminescence

    NASA Astrophysics Data System (ADS)

    Tanikawa, Tomoyuki; Ohnishi, Kazuki; Kanoh, Masaya; Mukai, Takashi; Matsuoka, Takashi

    2018-03-01

    The three-dimensional imaging of threading dislocations in GaN films was demonstrated using two-photon excitation photoluminescence. The threading dislocations were shown as dark lines. The spatial resolutions near the surface were about 0.32 and 3.2 µm for the in-plane and depth directions, respectively. The threading dislocations with a density less than 108 cm-2 were resolved, although the aberration induced by the refractive index mismatch was observed. The decrease in threading dislocation density was clearly observed by increasing the GaN film thickness. This can be considered a novel method for characterizing threading dislocations in GaN films without any destructive preparations.

  5. On Designing Lightweight Threads for Substrate Software

    NASA Technical Reports Server (NTRS)

    Haines, Matthew

    1997-01-01

    Existing user-level thread packages employ a 'black box' design approach, where the implementation of the threads is hidden from the user. While this approach is often sufficient for application-level programmers, it hides critical design decisions that system-level programmers must be able to change in order to provide efficient service for high-level systems. By applying the principles of Open Implementation Analysis and Design, we construct a new user-level threads package that supports common thread abstractions and a well-defined meta-interface for altering the behavior of these abstractions. As a result, system-level programmers will have the advantages of using high-level thread abstractions without having to sacrifice performance, flexibility or portability.

  6. Nebo: An efficient, parallel, and portable domain-specific language for numerically solving partial differential equations

    DOE PAGES

    Earl, Christopher; Might, Matthew; Bagusetty, Abhishek; ...

    2016-01-26

    This study presents Nebo, a declarative domain-specific language embedded in C++ for discretizing partial differential equations for transport phenomena on multiple architectures. Application programmers use Nebo to write code that appears sequential but can be run in parallel, without editing the code. Currently Nebo supports single-thread execution, multi-thread execution, and many-core (GPU-based) execution. With single-thread execution, Nebo performs on par with code written by domain experts. With multi-thread execution, Nebo can linearly scale (with roughly 90% efficiency) up to 12 cores, compared to its single-thread execution. Moreover, Nebo’s many-core execution can be over 140x faster than its single-thread execution.

  7. Message passing with queues and channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dozsa, Gabor J; Heidelberger, Philip; Kumar, Sameer

    In an embodiment, a reception thread receives a source node identifier, a type, and a data pointer from an application and, in response, creates a receive request. If the source node identifier specifies a source node, the reception thread adds the receive request to a fast-post queue. If a message received from a network does not match a receive request on a posted queue, a polling thread adds a receive request that represents the message to an unexpected queue. If the fast-post queue contains the receive request, the polling thread removes the receive request from the fast-post queue. If themore » receive request that was removed from the fast-post queue does not match the receive request on the unexpected queue, the polling thread adds the receive request that was removed from the fast-post queue to the posted queue. The reception thread and the polling thread execute asynchronously from each other.« less

  8. A software bus for thread objects

    NASA Technical Reports Server (NTRS)

    Callahan, John R.; Li, Dehuai

    1995-01-01

    The authors have implemented a software bus for lightweight threads in an object-oriented programming environment that allows for rapid reconfiguration and reuse of thread objects in discrete-event simulation experiments. While previous research in object-oriented, parallel programming environments has focused on direct communication between threads, our lightweight software bus, called the MiniBus, provides a means to isolate threads from their contexts of execution by restricting communications between threads to message-passing via their local ports only. The software bus maintains a topology of connections between these ports. It routes, queues, and delivers messages according to this topology. This approach allows for rapid reconfiguration and reuse of thread objects in other systems without making changes to the specifications or source code. A layered approach that provides the needed transparency to developers is presented. Examples of using the MiniBus are given, and the value of bus architectures in building and conducting simulations of discrete-event systems is discussed.

  9. Push-To-Lock, Push-To-Release Mechanism

    NASA Technical Reports Server (NTRS)

    Lozano, Anselmo, Jr.

    1991-01-01

    Latch locked or unlocked with single motion of hand. No tools needed to operate it, and user easily opens or closes it with heavily gloved hand. When unlocked, stem free of main body. In locked state, dowel pins in main body hold stem. Latch equipped with lock and key so only authorized users operate it.

  10. A simple method to compare firing pin marks using stereomicroscope and Microsoft office (Windows 8) tools.

    PubMed

    Suresh, R

    2017-08-01

    Pertinent marks of fired cartridge cases such as firing pin, breech face, extractor, ejector, etc. are used for firearm identification. A non-standard semiautomatic pistol and four .22rim fire cartridges (head stamp KF) is used for known source comparison study. Two test fired cartridge cases are examined under stereomicroscope. The characteristic marks are captured by digital camera and comparative analysis of striation marks is done by using different tools available in the Microsoft word (Windows 8) of a computer system. The similarities of striation marks thus obtained are highly convincing to identify the firearm. In this paper, an effort has been made to study and compare the striation marks of two fired cartridge cases using stereomicroscope, digital camera and computer system. Comparison microscope is not used in this study. The method described in this study is simple, cost effective, transport to field study and can be equipped in a crime scene vehicle to facilitate immediate on spot examination. The findings may be highly helpful to the forensic community, law enforcement agencies and students. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A novel hybrid joining methodology for composite to steel joints

    NASA Astrophysics Data System (ADS)

    Sarh, Bastian

    This research has established a novel approach for designing, analyzing, and fabricating load bearing structural connections between resin infused composite materials and components made of steel or other metals or alloys. A design philosophy is proposed wherein overlapping joint sections comprised of fiber reinforced plastics (FRP's) and steel members are connected via a combination of adhesive bonding and integrally placed composite pins. A film adhesive is utilized, placed into the dry stack prior to resin infusion and is cured after infusion through either local heat elements or by placing the structure into an oven. The novel manner in which the composite pins are introduced consists of perforating the steel member with holes and placing pre-formed composite pins through them, also prior to resin infusion of the composite section. In this manner joints are co-molded structures such that secondary processing is eliminated. It is shown that such joints blend the structural benefits of adhesive and mechanically connected joints, and that the fabrication process is feasible for low-cost, large-scale production as applicable to the shipbuilding industry. Analysis procedures used for designing such joints are presented consisting of an adhesive joint design theory and a pin placement theory. These analysis tools are used in the design of specimens, specific designs are fabricated, and these evaluated through structural tests. Structural tests include quasi-static loading and low cycle fatigue evaluation. This research has thereby invented a novel philosophy on joints, created the manufacturing technique for fabricating such joints, established simple to apply analysis procedures used in the design of such joints (consisting of both an adhesive and a pin placement analysis), and has validated the methodology through specimen fabrication and testing.

  12. 49 CFR 178.42 - Specification 3E seamless steel cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (valves, fuse plugs, etc.) for those openings. Threads conforming to the following are required on openings. (1) Threads must be clean cut, even, without checks, and to gauge. (2) Taper threads, when used, must be of length not less than as specified for American Standard taper pipe threads. (3) Straight...

  13. 49 CFR 178.42 - Specification 3E seamless steel cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (valves, fuse plugs, etc.) for those openings. Threads conforming to the following are required on openings. (1) Threads must be clean cut, even, without checks, and to gauge. (2) Taper threads, when used, must be of length not less than as specified for American Standard taper pipe threads. (3) Straight...

  14. Neuropil threads occur in dendrites of tangle-bearing nerve cells.

    PubMed

    Braak, H; Braak, E

    1988-01-01

    Transparent Golgi preparations counterstained for Alzheimer's neurofibrillary changes rendered possible the demonstration of neuropil threads in defined cellular processes. Only dendrites of tangle-bearing cortical nerve cells were found to contain neuropil threads. Processes of glial cells as well as axons present in the material were devoid of neuropil threads.

  15. 49 CFR 178.42 - Specification 3E seamless steel cylinders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (valves, fuse plugs, etc.) for those openings. Threads conforming to the following are required on openings. (1) Threads must be clean cut, even, without checks, and to gauge. (2) Taper threads, when used, must be of length not less than as specified for American Standard taper pipe threads. (3) Straight...

  16. Threaded Cognition: An Integrated Theory of Concurrent Multitasking

    ERIC Educational Resources Information Center

    Salvucci, Dario D.; Taatgen, Niels A.

    2008-01-01

    The authors propose the idea of threaded cognition, an integrated theory of concurrent multitasking--that is, performing 2 or more tasks at once. Threaded cognition posits that streams of thought can be represented as threads of processing coordinated by a serial procedural resource and executed across other available resources (e.g., perceptual…

  17. 49 CFR 178.42 - Specification 3E seamless steel cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (valves, fuse plugs, etc.) for those openings. Threads conforming to the following are required on openings. (1) Threads must be clean cut, even, without checks, and to gauge. (2) Taper threads, when used, must be of length not less than as specified for American Standard taper pipe threads. (3) Straight...

  18. 49 CFR 178.42 - Specification 3E seamless steel cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (valves, fuse plugs, etc.) for those openings. Threads conforming to the following are required on openings. (1) Threads must be clean cut, even, without checks, and to gauge. (2) Taper threads, when used, must be of length not less than as specified for American Standard taper pipe threads. (3) Straight...

  19. A Primer on the Effective Use of Threaded Discussion Forums.

    ERIC Educational Resources Information Center

    Kirk, James J.; Orr, Robert L.

    Threaded discussion forums are asynchronous, World Wide Web-based discussions occurring under a number of different topics called threads. By allowing students to post, read, and respond to messages independently of time or place, threaded discussion forums give students an opportunity for deeper reflection and more thoughtful replies than chat…

  20. 46 CFR 164.023-7 - Performance; non-standard thread.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 6 2010-10-01 2010-10-01 false Performance; non-standard thread. 164.023-7 Section 164... Performance; non-standard thread. (a) Use Codes 1, 2, 3, 4BC, 4RB, 5 (any). Each non-standard thread which...) testing machine. (2) Single strand breaking strength (after weathering). After exposure in a sunshine...

  1. 46 CFR 164.023-7 - Performance; non-standard thread.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 6 2011-10-01 2011-10-01 false Performance; non-standard thread. 164.023-7 Section 164... Performance; non-standard thread. (a) Use Codes 1, 2, 3, 4BC, 4RB, 5 (any). Each non-standard thread which...) testing machine. (2) Single strand breaking strength (after weathering). After exposure in a sunshine...

  2. Threaded average temperature thermocouple

    NASA Technical Reports Server (NTRS)

    Ward, Stanley W. (Inventor)

    1990-01-01

    A threaded average temperature thermocouple 11 is provided to measure the average temperature of a test situs of a test material 30. A ceramic insulator rod 15 with two parallel holes 17 and 18 through the length thereof is securely fitted in a cylinder 16, which is bored along the longitudinal axis of symmetry of threaded bolt 12. Threaded bolt 12 is composed of material having thermal properties similar to those of test material 30. Leads of a thermocouple wire 20 leading from a remotely situated temperature sensing device 35 are each fed through one of the holes 17 or 18, secured at head end 13 of ceramic insulator rod 15, and exit at tip end 14. Each lead of thermocouple wire 20 is bent into and secured in an opposite radial groove 25 in tip end 14 of threaded bolt 12. Resulting threaded average temperature thermocouple 11 is ready to be inserted into cylindrical receptacle 32. The tip end 14 of the threaded average temperature thermocouple 11 is in intimate contact with receptacle 32. A jam nut 36 secures the threaded average temperature thermocouple 11 to test material 30.

  3. A Moiré Pattern-Based Thread Counter

    NASA Astrophysics Data System (ADS)

    Reich, Gary

    2017-10-01

    Thread count is a term used in the textile industry as a measure of how closely woven a fabric is. It is usually defined as the sum of the number of warp threads per inch (or cm) and the number of weft threads per inch. (It is sometimes confusingly described as the number of threads per square inch.) In recent years it has also become a subject of considerable interest and some controversy among consumers. Many consumers consider thread count to be a key measure of the quality or fineness of a fabric, especially bed sheets, and they seek out fabrics that advertise high counts. Manufacturers in turn have responded to this interest by offering fabrics with ever higher claimed thread counts (sold at ever higher prices), sometime achieving the higher counts by distorting the definition of the term with some "creative math." In 2005 the Federal Trade Commission noted the growing use of thread count in advertising at the retail level and warned of the potential for consumers to be misled by distortions of the definition.

  4. Hyperunstable matrix proteins in the byssus of Mytilus galloprovincialis.

    PubMed

    Sagert, Jason; Waite, J Herbert

    2009-07-01

    The marine mussel Mytilus galloprovincialis is tethered to rocks in the intertidal zone by a holdfast known as the byssus. Functioning as a shock absorber, the byssus is composed of threads, the primary molecular components of which are collagen-containing proteins (preCOLs) that largely dictate the higher order self-assembly and mechanical properties of byssal threads. The threads contain additional matrix components that separate and perhaps lubricate the collagenous microfibrils during deformation in tension. In this study, the thread matrix proteins (TMPs), a glycine-, tyrosine- and asparagine-rich protein family, were shown to possess unique repeated sequence motifs, significant transcriptional heterogeneity and were distributed throughout the byssal thread. Deamidation was shown to occur at a significant rate in a recombinant TMP and in the byssal thread as a function of time. Furthermore, charge heterogeneity presumably due to deamidation was observed in TMPs extracted from threads. The TMPs were localized to the preCOL-containing secretory granules in the collagen gland of the foot and are assumed to provide a viscoelastic matrix around the collagenous fibers in byssal threads.

  5. Robotic tool positioning process using a multi-line off-axis laser triangulation sensor

    NASA Astrophysics Data System (ADS)

    Pinto, T. C.; Matos, G.

    2018-03-01

    Proper positioning of a friction stir welding head for pin insertion, driven by a closed chain robot, is important to ensure quality repair of cracks. A multi-line off-axis laser triangulation sensor was designed to be integrated to the robot, allowing relative measurements of the surface to be repaired. This work describes the sensor characteristics, its evaluation and the measurement process for tool positioning to a surface point of interest. The developed process uses a point of interest image and a measured point cloud to define the translation and rotation for tool positioning. Sensor evaluation and tests are described. Keywords: laser triangulation, 3D measurement, tool positioning, robotics.

  6. Self-cleaning threaded rod spinneret for high-efficiency needleless electrospinning

    NASA Astrophysics Data System (ADS)

    Zheng, Gaofeng; Jiang, Jiaxin; Wang, Xiang; Li, Wenwang; Zhong, Weizheng; Guo, Shumin

    2018-07-01

    High-efficiency production of nanofibers is the key to the application of electrospinning technology. This work focuses on multi-jet electrospinning, in which a threaded rod electrode is utilized as the needless spinneret to achieve high-efficiency production of nanofibers. A slipper block, which fits into and moves through the threaded rod, is designed to transfer polymer solution evenly to the surface of the rod spinneret. The relative motion between the slipper block and the threaded rod electrode promotes the instable fluctuation of the solution surface, thus the rotation of threaded rod electrode decreases the critical voltage for the initial multi-jet ejection and the diameter of nanofibers. The residual solution on the surface of threaded rod is cleaned up by the moving slipper block, showing a great self-cleaning ability, which ensures the stable multi-jet ejection and increases the productivity of nanofibers. Each thread of the threaded rod electrode serves as an independent spinneret, which enhances the electric field strength and constrains the position of the Taylor cone, resulting in high productivity of uniform nanofibers. The diameter of nanofibers decreases with the increase of threaded rod rotation speed, and the productivity increases with the solution flow rate. The rotation of electrode provides an excess force for the ejection of charged jets, which also contributes to the high-efficiency production of nanofibers. The maximum productivity of nanofibers from the threaded rod spinneret is 5-6 g/h, about 250-300 times as high as that from the single-needle spinneret. The self-cleaning threaded rod spinneret is an effective way to realize continuous multi-jet electrospinning, which promotes industrial applications of uniform nanofibrous membrane.

  7. Pin on disk against ball on disk for the evaluation of wear improvement on cryo-treated metal cutting shears

    NASA Astrophysics Data System (ADS)

    Jimbert, P.; Iturrondobeitia, M.; Ibarretxe, J.; Fernandez-Martinez, R.

    2015-03-01

    When talking about trybology, the election of the laboratory experiment type is a common problem of discussion. Laboratory wear methods are not designed to exactly reproduce the real working conditions of the analyzed part itself but serve to engineers and researcher to extrapolate the laboratory results to the real application. In order to shed some light on this issue, two wear tests have been analyzed following an ASTM standard and using the same experimental parameters and testing pair-materials in order to be able to make a comparison: Pin-on-Disk (PoD) against Ball-on-Disk (BoD). Three different tool steel have been analyzed in this study, AISI D2, AISI A8 and AISI H13, used to produce metal cutting shears. Metal on metal dry sliding tests were designed in order to reproduce the tool working conditions. These three materials were cryogenically treated and compared against no cryogenically treated ones to measure the improvement on their wear resistance due to cryogenic treatment. Finally, the wear rates obtained with both laboratory tests were compared against some real production metal cutting tools wear data. Results revealed an improvement of the wear resistance for cryo-treated samples of around 20% with the BoD test and around 6% with the PoD test. Real production tools wear was calculated for one of the tool steels and for two different applications. The improvement was approximately the one revealed by the BoD test. So, for the studied case, the BoD laboratory test gives more realistic prediction of real tool life improvement due to the cryogenic treatment.

  8. Multi-threading performance of Geant4, MCNP6, and PHITS Monte Carlo codes for tetrahedral-mesh geometry.

    PubMed

    Han, Min Cheol; Yeom, Yeon Soo; Lee, Hyun Su; Shin, Bangho; Kim, Chan Hyeong; Furuta, Takuya

    2018-05-04

    In this study, the multi-threading performance of the Geant4, MCNP6, and PHITS codes was evaluated as a function of the number of threads (N) and the complexity of the tetrahedral-mesh phantom. For this, three tetrahedral-mesh phantoms of varying complexity (simple, moderately complex, and highly complex) were prepared and implemented in the three different Monte Carlo codes, in photon and neutron transport simulations. Subsequently, for each case, the initialization time, calculation time, and memory usage were measured as a function of the number of threads used in the simulation. It was found that for all codes, the initialization time significantly increased with the complexity of the phantom, but not with the number of threads. Geant4 exhibited much longer initialization time than the other codes, especially for the complex phantom (MRCP). The improvement of computation speed due to the use of a multi-threaded code was calculated as the speed-up factor, the ratio of the computation speed on a multi-threaded code to the computation speed on a single-threaded code. Geant4 showed the best multi-threading performance among the codes considered in this study, with the speed-up factor almost linearly increasing with the number of threads, reaching ~30 when N  =  40. PHITS and MCNP6 showed a much smaller increase of the speed-up factor with the number of threads. For PHITS, the speed-up factors were low when N  =  40. For MCNP6, the increase of the speed-up factors was better, but they were still less than ~10 when N  =  40. As for memory usage, Geant4 was found to use more memory than the other codes. In addition, compared to that of the other codes, the memory usage of Geant4 more rapidly increased with the number of threads, reaching as high as ~74 GB when N  =  40 for the complex phantom (MRCP). It is notable that compared to that of the other codes, the memory usage of PHITS was much lower, regardless of both the complexity of the phantom and the number of threads, hardly increasing with the number of threads for the MRCP.

  9. Exploring Elephant Seals in New Jersey: Preschoolers Use Collaborative Multimedia Albums

    ERIC Educational Resources Information Center

    Fantozzi, Victoria B.

    2012-01-01

    VoiceThread is a website that allows users to create multimedia slideshows, or "threads," and then open these threads to other users for commentary or collaboration. This article shares the experiences of one multiage (3- to 5-year-olds) preschool classroom's use of VoiceThread. The purpose of the article is to introduce early childhood educators…

  10. A C++ Thread Package for Concurrent and Parallel Programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jie Chen; William Watson

    1999-11-01

    Recently thread libraries have become a common entity on various operating systems such as Unix, Windows NT and VxWorks. Those thread libraries offer significant performance enhancement by allowing applications to use multiple threads running either concurrently or in parallel on multiprocessors. However, the incompatibilities between native libraries introduces challenges for those who wish to develop portable applications.

  11. A multi-threaded version of MCFM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, John M.; Ellis, R. Keith; Giele, Walter T.

    We report on our findings modifying MCFM using OpenMP to implement multi-threading. By using OpenMP, the modified MCFM will execute on any processor, automatically adjusting to the number of available threads. We then modified the integration routine VEGAS to distribute the event evaluation over the threads, while combining all events at the end of every iteration to optimize the numerical integration. Furthermore, we took special care so that the results of the Monte Carlo integration were independent of the number of threads used, to facilitate the validation of the OpenMP version of MCFM.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skochko, G.W.; Herrmann, T.P.

    Axial load cycling fatigue tests of threaded fasteners are useful in determining fastener fatigue failure or design properties. By using appropriate design factors between the failure and design fatigue strengths, such tests are used to establish fatigue failure and design parameters of fasteners for axial and bending cyclic load conditions. This paper reviews the factors which influence the fatigue strength of low Alloy steel threaded fasteners, identifies those most significant to fatigue strength, and provides design guidelines based on the direct evaluation of fatigue tests of threaded fasteners. Influences on fatigue strength of thread manufacturing process (machining and rolling ofmore » threads), effect of fastener membrane and bending stresses, thread root radii, fastener sizes, fastener tensile strength, stress relaxation, mean stress, and test temperature are discussed.« less

  13. Patterning of leaf vein networks by convergent auxin transport pathways.

    PubMed

    Sawchuk, Megan G; Edgar, Alexander; Scarpella, Enrico

    2013-01-01

    The formation of leaf vein patterns has fascinated biologists for centuries. Transport of the plant signal auxin has long been implicated in vein patterning, but molecular details have remained unclear. Varied evidence suggests a central role for the plasma-membrane (PM)-localized PIN-FORMED1 (PIN1) intercellular auxin transporter of Arabidopsis thaliana in auxin-transport-dependent vein patterning. However, in contrast to the severe vein-pattern defects induced by auxin transport inhibitors, pin1 mutant leaves have only mild vein-pattern defects. These defects have been interpreted as evidence of redundancy between PIN1 and the other four PM-localized PIN proteins in vein patterning, redundancy that underlies many developmental processes. By contrast, we show here that vein patterning in the Arabidopsis leaf is controlled by two distinct and convergent auxin-transport pathways: intercellular auxin transport mediated by PM-localized PIN1 and intracellular auxin transport mediated by the evolutionarily older, endoplasmic-reticulum-localized PIN6, PIN8, and PIN5. PIN6 and PIN8 are expressed, as PIN1 and PIN5, at sites of vein formation. pin6 synthetically enhances pin1 vein-pattern defects, and pin8 quantitatively enhances pin1pin6 vein-pattern defects. Function of PIN6 is necessary, redundantly with that of PIN8, and sufficient to control auxin response levels, PIN1 expression, and vein network formation; and the vein pattern defects induced by ectopic PIN6 expression are mimicked by ectopic PIN8 expression. Finally, vein patterning functions of PIN6 and PIN8 are antagonized by PIN5 function. Our data define a new level of control of vein patterning, one with repercussions on other patterning processes in the plant, and suggest a mechanism to select cell files specialized for vascular function that predates evolution of PM-localized PIN proteins.

  14. VizieR Online Data Catalog: X-Ray source properties for NGC 2207/IC 2163 (Mineo+, 2014)

    NASA Astrophysics Data System (ADS)

    Mineo, S.; Rappaport, S.; Levine, A.; Pooley, D.; Steinhorn, B.; Homan, J.

    2017-08-01

    We analyzed four Chandra ACIS-S observations of the galaxy pair NGC 2207/IC 2163. The data reduction was done following the standard CIAO threads (CIAO version 4.6, CALDB version 4.5.9) for soft (0.5-2 keV), hard (2-8 keV), and broad (0.5-8.0 keV) energy bands. All Chandra data sets were reprocessed using chandra_repro, a script that automates the recommended data-processing steps presented in the CIAO analysis threads. Using the script fluximage, we computed a monochromatic exposure map for the mean photon energy of each band: 1.25 keV, 5.0 keV, and 4.25 keV for the soft, hard, and broad band, respectively. fluximage outputs both the instrument map for the center of each energy band using the tool mkinstmap and the exposure maps in sky coordinates for each energy band using mkexpmap. (5 data files).

  15. Collar nut and thrust ring

    DOEpatents

    Lowery, Guy B.

    1991-01-01

    A collar nut comprises a hollow cylinder having fine interior threads at one end for threadably engaging a pump mechanical seal assembly and an inwardly depending flange at the other end. The flange has an enlarged portion with a groove for receiving an O-ring for sealing against the intrusion of pumpage from the exterior. The enlarged portion engages a thrust ring about the pump shaft for crushing a hard O-ring, such as a graphite O-ring. The hard O-ring seals the interior of the mechanical seal assembly and pump housing against the loss of lubricants or leakage of pumpage. The fine threads of the hollow cylinder provide the mechanical advantage for crushing the hard O-ring evenly and easily with a hand tool from the side of the collar nut rather than by tightening a plurality of bolts from the end and streamlines the exterior surface of the mechanical seal. The collar nut avoids the spatial requirements of bolt heads at the end of a seal and associated bolt head turbulence.

  16. Nutrient Deprivation Induces Property Variations in Spider Gluey Silk

    PubMed Central

    Blamires, Sean J.; Sahni, Vasav; Dhinojwala, Ali; Blackledge, Todd A.; Tso, I-Min

    2014-01-01

    Understanding the mechanisms facilitating property variability in biological adhesives may promote biomimetic innovations. Spider gluey silks such as the spiral threads in orb webs and the gumfoot threads in cobwebs, both of which comprise of an axial thread coated by glue, are biological adhesives that have variable physical and chemical properties. Studies show that the physical and chemical properties of orb web gluey threads change when spiders are deprived of food. It is, however, unknown whether gumfoot threads undergo similar property variations when under nutritional stress. Here we tested whether protein deprivation induces similar variations in spiral and gumfoot thread morphology and stickiness. We manipulated protein intake for the orb web spider Nephila clavipes and the cobweb spider Latrodectus hesperus and measured the diameter, glue droplet volume, number of droplets per mm, axial thread width, thread stickiness and adhesive energy of their gluey silks. We found that the gluey silks of both species were stickier when the spiders were deprived of protein than when the spiders were fed protein. In N. clavipes a concomitant increase in glue droplet volume was found. Load-extension curves showed that protein deprivation induced glue property variations independent of the axial thread extensions in both species. We predicted that changes in salt composition of the glues were primarily responsible for the changes in stickiness of the silks, although changes in axial thread properties might also contribute. We, additionally, showed that N. clavipes' glue changes color under protein deprivation, probably as a consequence of changes to its biochemical composition. PMID:24523902

  17. [Mechanical behaviour of three types of surgical knots using 4/0 monofilament].

    PubMed

    Gil Santos, Luis; Más-Estellés, Jorge; Salmerón Sánchez, Manuel; Barrios, Carlos

    2012-01-01

    To experimentally study the behaviour of 4 types of monofilament with 3 knotting techniques, very often used in surgery, employing mechanical tests. Four 4/0 monofilaments were chosen, two of nylon, and the other two of polypropylene. Three types of knot designs were made with each thread. The first design (D-S-S) consisted of a double half-knot (D) followed by one single (S) in the opposite direction, a third S in turn in the opposite direction. The configuration of the second design was D-S-D, and the third, S-S-D. A mechanical fracture test was performed by stretching the thread at a rate of 4N/s, the force and deformation being recorded at intervals of 100 ms. There was a decrease in the force and deformation in the tests on threads with knots compared to threads without knots. In all cases the rupture of the thread occurred in the knot area, presumably due to damage caused to the thread during the knotting process. The D-S-D knot had the greatest resistance with polypropylene threads, and S-S-D provided the greatest resistance with nylon threads Polypropylene threads, with D-S-D knots, should be more indicated to suture tissues that have to support great forces and with little deformation of the suture (e.g., tendons). Nylon threads, with S-S-D knots, would be better indicated for tissues that have to support smaller forces and that require greater elasticity (e.g., skin). Copyright © 2011 AEC. Published by Elsevier Espana. All rights reserved.

  18. Reshaping the Energy Landscape Transforms the Mechanism and Binding Kinetics of DNA Threading Intercalation.

    PubMed

    Clark, Andrew G; Naufer, M Nabuan; Westerlund, Fredrik; Lincoln, Per; Rouzina, Ioulia; Paramanathan, Thayaparan; Williams, Mark C

    2018-02-06

    Molecules that bind DNA via threading intercalation show high binding affinity as well as slow dissociation kinetics, properties ideal for the development of anticancer drugs. To this end, it is critical to identify the specific molecular characteristics of threading intercalators that result in optimal DNA interactions. Using single-molecule techniques, we quantify the binding of a small metal-organic ruthenium threading intercalator (Δ,Δ-B) and compare its binding characteristics to a similar molecule with significantly larger threading moieties (Δ,Δ-P). The binding affinities of the two molecules are the same, while comparison of the binding kinetics reveals significantly faster kinetics for Δ,Δ-B. However, the kinetics is still much slower than that observed for conventional intercalators. Comparison of the two threading intercalators shows that the binding affinity is modulated independently by the intercalating section and the binding kinetics is modulated by the threading moiety. In order to thread DNA, Δ,Δ-P requires a "lock mechanism", in which a large length increase of the DNA duplex is required for both association and dissociation. In contrast, measurements of the force-dependent binding kinetics show that Δ,Δ-B requires a large DNA length increase for association but no length increase for dissociation from DNA. This contrasts strongly with conventional intercalators, for which almost no DNA length change is required for association but a large DNA length change must occur for dissociation. This result illustrates the fundamentally different mechanism of threading intercalation compared with conventional intercalation and will pave the way for the rational design of therapeutic drugs based on DNA threading intercalation.

  19. Influence of Micro Threads Alteration on Osseointegration and Primary Stability of Implants: An FEA and In Vivo Analysis in Rabbits.

    PubMed

    Chowdhary, Ramesh; Halldin, Anders; Jimbo, Ryo; Wennerberg, Ann

    2015-06-01

    To describe the early bone tissue response to implants with and without micro threads designed to the full length of an oxidized titanium implant. A pair of two-dimensional finite element models was designed using a computer aided three-dimensional interactive application files of an implant model with micro threads in between macro threads and one without micro threads. Oxidized titanium implants with (test implants n=20) and without (control implants n=20) micro thread were prepared. A total of 12 rabbits were used and each received four implants. Insertion torque while implant placement and removal torque analysis after 4 weeks was performed in nine rabbits, and histomorphometric analysis in three rabbits, respectively. Finite element analysis showed less stress accumulation in test implant models with 31Mpa when compared with 62.2 Mpa in control implant model. Insertion and removal torque analysis did not show any statistical significance between the two implant designs. At 4 weeks, there was a significant difference between the two groups in the percentage of new bone volume and bone-to-implant contact in the femur (p< .05); however, not in the tibia. The effect of micro threads was prominent in the femur suggesting that micro threads promote bone formation. The stress distribution supported by the micro threads was especially effective in the cancellous bone. © 2013 Wiley Periodicals, Inc.

  20. Thread scheduling for GPU-based OPC simulation on multi-thread

    NASA Astrophysics Data System (ADS)

    Lee, Heejun; Kim, Sangwook; Hong, Jisuk; Lee, Sooryong; Han, Hwansoo

    2018-03-01

    As semiconductor product development based on shrinkage continues, the accuracy and difficulty required for the model based optical proximity correction (MBOPC) is increasing. OPC simulation time, which is the most timeconsuming part of MBOPC, is rapidly increasing due to high pattern density in a layout and complex OPC model. To reduce OPC simulation time, we attempt to apply graphic processing unit (GPU) to MBOPC because OPC process is good to be programmed in parallel. We address some issues that may typically happen during GPU-based OPC simulation in multi thread system, such as "out of memory" and "GPU idle time". To overcome these problems, we propose a thread scheduling method, which manages OPC jobs in multiple threads in such a way that simulations jobs from multiple threads are alternatively executed on GPU while correction jobs are executed at the same time in each CPU cores. It was observed that the amount of GPU peak memory usage decreases by up to 35%, and MBOPC runtime also decreases by 4%. In cases where out of memory issues occur in a multi-threaded environment, the thread scheduler was used to improve MBOPC runtime up to 23%.

  1. Nanofibre production in spiders without electric charge.

    PubMed

    Joel, Anna-Christin; Baumgartner, Werner

    2017-06-15

    Technical nanofibre production is linked to high voltage, because nanofibres are typically produced by electrospinning. In contrast, spiders have evolved a way to produce nanofibres without high voltage. These spiders are called cribellate spiders and produce nanofibres within their capture thread production. It is suggested that their nanofibres become frictionally charged when brushed over a continuous area on the calamistrum, a comb-like structure at the metatarsus of the fourth leg. Although there are indications that electrostatic charges are involved in the formation of the thread structure, final proof is missing. We proposed three requirements to validate this hypothesis: (1) the removal of any charge during or after thread production has an influence on the structure of the thread; (2) the characteristic structure of the thread can be regenerated by charging; and (3) the thread is attracted to or repelled from differently charged objects. None of these three requirements were proven true. Furthermore, mathematical calculations reveal that even at low charges, the calculated structural assembly of the thread does not match the observed reality. Electrostatic forces are therefore not involved in the production of cribellate capture threads. © 2017. Published by The Company of Biologists Ltd.

  2. Final report on EURAMET.L-S21: `Supplementary comparison of parallel thread gauges'

    NASA Astrophysics Data System (ADS)

    Mudronja, Vedran; Šimunovic, Vedran; Acko, Bojan; Matus, Michael; Bánréti, Edit; István, Dicso; Thalmann, Rudolf; Lassila, Antti; Lillepea, Lauri; Bartolo Picotto, Gian; Bellotti, Roberto; Pometto, Marco; Ganioglu, Okhan; Meral, Ilker; Salgado, José Antonio; Georges, Vailleau

    2015-01-01

    The results of the comparison of parallel thread gauges between ten European countries are presented. Three thread plugs and three thread rings were calibrated in one loop. Croatian National Laboratory for Length (HMI/FSB-LPMD) acted as the coordinator and pilot laboratory of the comparison. Thread angle, thread pitch, simple pitch diameter and pitch diameter were measured. Pitch diameters were calibrated within 1a, 2a, 1b and 2b calibration categories in accordance with the EURAMET cg-10 calibration guide. A good agreement between the measurement results and differences due to different calibration categories are analysed in this paper. This comparison was a first EURAMET comparison of parallel thread gauges based on the EURAMET ctg-10 calibration guide, and has made a step towards the harmonization of future comparisons with the registration of CMC values for thread gauges. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCL, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  3. Model for threading dislocations in metamorphic tandem solar cells on GaAs (001) substrates

    NASA Astrophysics Data System (ADS)

    Song, Yifei; Kujofsa, Tedi; Ayers, John E.

    2018-02-01

    We present an approximate model for the threading dislocations in III-V heterostructures and have applied this model to study the defect behavior in metamorphic triple-junction solar cells. This model represents a new approach in which the coefficient for second-order threading dislocation annihilation and coalescence reactions is considered to be determined by the length of misfit dislocations, LMD, in the structure, and we therefore refer to it as the LMD model. On the basis of this model we have compared the average threading dislocation densities in the active layers of triple junction solar cells using linearly-graded buffers of varying thicknesses as well as S-graded (complementary error function) buffers with varying thicknesses and standard deviation parameters. We have shown that the threading dislocation densities in the active regions of metamorphic tandem solar cells depend not only on the thicknesses of the buffer layers but on their compositional grading profiles. The use of S-graded buffer layers instead of linear buffers resulted in lower threading dislocation densities. Moreover, the threading dislocation densities depended strongly on the standard deviation parameters used in the S-graded buffers, with smaller values providing lower threading dislocation densities.

  4. Present Situation of the Anti-Fatigue Processing of High-Strength Steel Internal Thread Based on Cold Extrusion Technology: A Review

    NASA Astrophysics Data System (ADS)

    Miao, Hong; Jiang, Cheng; Liu, Sixing; Zhang, Shanwen; Zhang, Yanjun

    2017-03-01

    The adoption of cold-extrusion forming for internal thread net forming becomes an important component of anti-fatigue processing with the development of internal thread processing towards high performance, low cost and low energy consumption. It has vast application foreground in the field of aviation, spaceflight, high speed train and etc. The internal thread processing and anti-fatigue manufacture technology are summarized. In terms of the perspective of processing quality and fatigue serving life, the advantages and disadvantages of the processing methods from are compared. The internal thread cold-extrusion processing technology is investigated for the purpose of improving the anti-fatigue serving life of internal thread. The superiorities of the plastic deformation law and surface integrity of the metal layer in the course of cold extrusion for improving its stability and economy are summed up. The proposed research forecasts the development tendency of the internal thread anti-fatigue manufacturing technology.

  5. Press-fit versus threaded acetabular cups in total hip arthroplasty: Functional and radiological results after five years.

    PubMed

    Ellenrieder, Martin; Bader, Rainer; Bergschmidt, Philipp; Mittelmeier, Wolfram

    2016-03-01

    Prospectively the outcome after total hip replacement with a new threaded acetabular cup design was compared to an established press-fit cup. After 1, 2 and 5 years, the 36-item Short Form Health Survey, Western Ontario and McMaster University Osteoarthritis Index and Harris Hip Score revealed no significant differences between the two groups (each group: n=42 patients), except for a higher Harris Hip Score in the threaded cup group after five years (p=0.02). After five years, one threaded cup had a mild radiolucent line without further signs of loosening. All other cups of both groups (98.6%) showed a full osseous integration. The cup inclination angle ranged from 41-58° (threaded cups) to 39-77° (press-fit cups). The new threaded cup provides equivalent clinical outcomes and osseous integration but more precise implant positioning compared to the press-fit design. No complications typically ascribed to threaded cups (acetabular fractures, bone resorption, nerve impairment) occurred.

  6. Multithreading with separate data to improve the performance of Backpropagation method

    NASA Astrophysics Data System (ADS)

    Dhamma, Mulia; Zarlis, Muhammad; Budhiarti Nababan, Erna

    2017-12-01

    Backpropagation is one method of artificial neural network that can make a prediction for a new data with learning by supervised of the past data. The learning process of backpropagation method will become slow if we give too much data for backpropagation method to learn the data. Multithreading with a separate data inside of each thread are being used in order to improve the performance of backpropagtion method . Base on the research for 39 data and also 5 times experiment with separate data into 2 thread, the result showed that the average epoch become 6490 when using 2 thread and 453049 epoch when using only 1 thread. The most lowest epoch for 2 thread is 1295 and 1 thread is 356116. The process of improvement is caused by the minimum error from 2 thread that has been compared to take the weight and bias value. This process will be repeat as long as the backpropagation do learning.

  7. Servicing a globally broadcast interrupt signal in a multi-threaded computer

    DOEpatents

    Attinella, John E.; Davis, Kristan D.; Musselman, Roy G.; Satterfield, David L.

    2015-12-29

    Methods, apparatuses, and computer program products for servicing a globally broadcast interrupt signal in a multi-threaded computer comprising a plurality of processor threads. Embodiments include an interrupt controller indicating in a plurality of local interrupt status locations that a globally broadcast interrupt signal has been received by the interrupt controller. Embodiments also include a thread determining that a local interrupt status location corresponding to the thread indicates that the globally broadcast interrupt signal has been received by the interrupt controller. Embodiments also include the thread processing one or more entries in a global interrupt status bit queue based on whether global interrupt status bits associated with the globally broadcast interrupt signal are locked. Each entry in the global interrupt status bit queue corresponds to a queued global interrupt.

  8. Modeling and Experiment of Melt Impregnation of Continuous Fiber-reinforced Thermoplastic with Pins

    NASA Astrophysics Data System (ADS)

    Yang, Jian-Jun; Xin, Chun-Ling; Tang, Ke; Zhang, Zhi-Cheng; Yan, Bao-Rui; Ren, Feng; He, Ya-Dong

    2016-05-01

    Melt impregnation is a crucial method for continuous fiber-reinforced thermoplastic. It was developed several years ago for thermosetting plastic, but it is very popular now in the thermoplastic matrices, with a much higher viscosity. In this paper, we propose a mathematic model based on Darcy's law, which combined with processing parameters and material physical parameters. Then we use this model to predict the influence of processing parameters on the degree of impregnation of the prepreg, and the trend of prediction is consistent with the experimental results. Therefore, the exhaustive numerical study enables to define the optimal processing conditions for a perfect impregnation. The results are shown to be effective tools for finding optimal pulling speed, pin number and pressure for a given fluid/fibers pair.

  9. Cross-species functional diversity within the PIN auxin efflux protein family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Connor, Devin Lee; Elton, Samuel; Ticchiarelli, Fabrizio

    In Arabidopsis, development during flowering is coordinated by transport of the hormone auxin mediated by polar-localized PIN-FORMED1 (AtPIN1). However Arabidopsis has lost a PIN clade sister to AtPIN1, Sister-of-PIN1 (SoPIN1), which is conserved in flowering plants. Here, we previously proposed that the AtPIN1 organ initiation and vein patterning functions are split between the SoPIN1 and PIN1 clades in grasses. Here we show that in the grass Brachypodium sopin1 mutants have organ initiation defects similar to Arabidopsis atpin1, while loss of PIN1 function in Brachypodium has little effect on organ initiation but alters stem growth. Heterologous expression of Brachypodium SoPIN1 andmore » PIN1b in Arabidopsis provides further evidence of functional specificity. SoPIN1 but not PIN1b can mediate flower formation in null atpin1 mutants, although both can complement a missense allele. The behavior of SoPIN1 and PIN1b in Arabidopsis illustrates how membrane and tissue-level accumulation, transport activity, and interaction contribute to PIN functional specificity.« less

  10. Cross-species functional diversity within the PIN auxin efflux protein family

    DOE PAGES

    O'Connor, Devin Lee; Elton, Samuel; Ticchiarelli, Fabrizio; ...

    2017-10-24

    In Arabidopsis, development during flowering is coordinated by transport of the hormone auxin mediated by polar-localized PIN-FORMED1 (AtPIN1). However Arabidopsis has lost a PIN clade sister to AtPIN1, Sister-of-PIN1 (SoPIN1), which is conserved in flowering plants. Here, we previously proposed that the AtPIN1 organ initiation and vein patterning functions are split between the SoPIN1 and PIN1 clades in grasses. Here we show that in the grass Brachypodium sopin1 mutants have organ initiation defects similar to Arabidopsis atpin1, while loss of PIN1 function in Brachypodium has little effect on organ initiation but alters stem growth. Heterologous expression of Brachypodium SoPIN1 andmore » PIN1b in Arabidopsis provides further evidence of functional specificity. SoPIN1 but not PIN1b can mediate flower formation in null atpin1 mutants, although both can complement a missense allele. The behavior of SoPIN1 and PIN1b in Arabidopsis illustrates how membrane and tissue-level accumulation, transport activity, and interaction contribute to PIN functional specificity.« less

  11. COMPOSE-HPC: A Transformational Approach to Exascale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernholdt, David E; Allan, Benjamin A.; Armstrong, Robert C.

    2012-04-01

    The goal of the COMPOSE-HPC project is to 'democratize' tools for automatic transformation of program source code so that it becomes tractable for the developers of scientific applications to create and use their own transformations reliably and safely. This paper describes our approach to this challenge, the creation of the KNOT tool chain, which includes tools for the creation of annotation languages to control the transformations (PAUL), to perform the transformations (ROTE), and optimization and code generation (BRAID), which can be used individually and in combination. We also provide examples of current and future uses of the KNOT tools, whichmore » include transforming code to use different programming models and environments, providing tests that can be used to detect errors in software or its execution, as well as composition of software written in different programming languages, or with different threading patterns.« less

  12. Hand-handle interface force and torque measurement system for pneumatic assembly tool operations: suggested enhancement to ISO 6544.

    PubMed

    Lin, Jia-Hua; McGorry, Raymond W; Chang, Chien-Chi

    2007-05-01

    A hand-handle interface force and torque measurement system is introduced to fill the void acknowledged in the international standard ISO 6544, which governs pneumatic, assembly tool reaction torque and force measurement. This system consists of an instrumented handle with a sensor capable of measuring grip force and reaction hand moment when threaded, fastener-driving tools are used by operators. The handle is rigidly affixed to the tool in parallel to the original tool handle allowing normal fastener-driving operations with minimal interference. Demonstration of this proposed system was made with tools of three different shapes: pistol grip, right angle, and in-line. During tool torque buildup, the proposed system measured operators exerting greater grip force on the soft joint than on the hard joint. The system also demonstrated that the soft joint demanded greater hand moment impulse than the hard joint. The results demonstrate that the measurement system can provide supplemental data useful in exposure assessment with power hand tools as proposed in ISO 6544.

  13. Biomechanical investigation of thread designs and interface conditions of zirconia and titanium dental implants with bone: three-dimensional numeric analysis.

    PubMed

    Fuh, Lih-Jyh; Hsu, Jui-Ting; Huang, Heng-Li; Chen, Michael Y C; Shen, Yen-Wen

    2013-01-01

    Bone stress and interfacial sliding at the bone-implant interface (BII) were analyzed in zirconia and titanium implants with various thread designs and interface conditions (bonded BII and contact BIIs with different frictional coefficients) for both conventional and immediately loaded treatments. A total of 18 finite element models comprising two implant materials (zirconia and titanium), three thread designs (different shapes and pitches), and three interface conditions (bonded and contact BIIs) were analyzed to assess the effects on bone stresses and on sliding at the BII. The material properties of the bone model were anisotropic, and a lateral force of 130 N was applied as the loading condition. In the immediately loaded implant, the stress was highly concentrated at one site of the peri-implant bone. The peak bone stress was more than 20% lower in zirconia implants than in titanium implants for a bonded BII and 14% to 20% lower for a contact BII. The bone stresses did not differ significantly between implants with V-shaped threads and square threads. However, sliding at the BII was more than 25% lower with square-thread implants than with V-shaped-thread implants for titanium implants and 36% lower for zirconia implants. Reducing the thread size and pitch in cortical bone (via two V-shaped threads with different pitches) decreased the bone stress by 13%. Increasing the frictional coefficient reduced sliding at the BII in both zirconia and titanium implants. As an implant material, zirconia can reduce the bone stress in the crestal cortical region. Bone stress and sliding at the BII are heavily dependent on the thread design and the frictional coefficient at the BII of immediately loaded implants.

  14. TENOGENIC DIFFERENTIATION OF HUMAN MSCs INDUCED BY THE TOPOGRAPHY OF ELECTROCHEMICALLY ALIGNED COLLAGEN THREADS

    PubMed Central

    Kishore, Vipuil; Bullock, Whitney; Sun, Xuanhao; Van Dyke, William Scott; Akkus, Ozan

    2011-01-01

    Topographical cues from the extracellular microenvironment can influence cellular activity including proliferation and differentiation. Information on the effects of material topography on tenogenic differentiation of human mesenchymal stem cells (human MSCs) is limited. A methodology using the principles of isoelectric focusing has previously been developed in our laboratory to synthesize electrochemically aligned collagen (ELAC) threads that mimics the packing density, alignment and strength of collagen dense connective tissues. In the current study, human MSCs were cultured on ELAC and randomly-oriented collagen threads and the effect of collagen orientation on cell morphology, proliferation and tenogenic differentiation was investigated. The results indicate that higher rates of proliferation were observed on randomly oriented collagen threads compared to ELAC threads. On the other hand, tendon specific markers such as scleraxis, tenomodulin, tenascin-C and collagen-III were significantly increased on ELAC threads compared to randomly oriented collagen threads. Additionally, osteocalcin, a specific marker of bone differentiation was suppressed on ELAC threads. Previous studies have reported that BMP-12 is a key growth factor to induce tenogenic differentiation of human MSCs. To evaluate the synergistic effect of BMP-12 and collagen orientation, human MSCs were cultured on ELAC threads in culture medium supplemented with and without BMP-12. The results revealed that BMP-12 did not have an additional effect on the tenogenic differentiation of human MSCs on ELAC threads. Together, these results suggest that ELAC induces tenogenic differentiation of human MSCs by presenting an aligned and dense collagen substrate, akin to the tendon itself. In conclusion, ELAC has a significant potential to be used as a tendon replacement and in the development of an osteotendinous construct towards the regeneration of bone-tendon interfaces. PMID:22177622

  15. Bioglass incorporation improves mechanical properties and enhances cell-mediated mineralization on electrochemically aligned collagen threads.

    PubMed

    Nijsure, Madhura P; Pastakia, Meet; Spano, Joseph; Fenn, Michael B; Kishore, Vipuil

    2017-09-01

    Bone tissue engineering mandates the development of a functional scaffold that mimics the physicochemical properties of native bone. Bioglass 45S5 (BG) is a highly bioactive material known to augment bone formation and restoration. Hybrid scaffolds fabricated using collagen type I and BG resemble the organic and inorganic composition of the bone extracellular matrix and hence have been extensively investigated for bone tissue engineering applications. However, collagen-BG scaffolds developed thus far do not recapitulate the aligned structure of collagen found in native bone. In this study, an electrochemical fabrication method was employed to synthesize BG-incorporated electrochemically aligned collagen (BG-ELAC) threads that are compositionally similar to native bone. Further, aligned collagen fibrils within BG-ELAC threads mimic the anisotropic arrangement of collagen fibrils in native bone. The effect of BG incorporation on the mechanical properties and cell-mediated mineralization on ELAC threads was investigated. The results indicated that BG can be successfully incorporated within ELAC threads, without disturbing collagen fibril alignment. Further, BG incorporation significantly increased the ultimate tensile stress (UTS) and modulus of ELAC threads (p < 0.05). SBF conditioning showed extensive mineralization on BG-ELAC threads that increased over time demonstrating the bone bioactivity of BG-ELAC threads. Additionally, BG incorporation into ELAC threads resulted in increased cell proliferation (p < 0.05) and deposition of a highly dense and continuous mineralized matrix. In conclusion, incorporation of BG into ELAC threads is a viable strategy for the development of an osteoconductive material for bone tissue engineering applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2429-2440, 2017. © 2017 Wiley Periodicals, Inc.

  16. Using all of your CPU's in HIPE

    NASA Astrophysics Data System (ADS)

    Jacobson, J. D.; Fadda, D.

    2012-09-01

    Modern computer architectures increasingly feature multi-core CPU's. For example, the MacbookPro features the Intel quad-core i7 processors. Through the use of hyper-threading, where each core can execute two threads simultaneously, the quad-core i7 can support eight simultaneous processing threads. All this on your laptop! This CPU power can now be put into service by scientists to perform data reduction tasks, but only if the software has been designed to take advantage of the multiple processor architectures. Up to now, software written for Herschel data reduction (HIPE), written in Jython and JAVA, is single-threaded and can only utilize a single processor. Users of HIPE do not get any advantage from the additional processors. Why not put all of the CPU resources to work reducing your data? We present a multi-threaded software application that corrects long-term transients in the signal from the PACS unchopped spectroscopy line scan mode. In this poster, we present a multi-threaded software framework to achieve performance improvements from parallel execution. We will show how a task to correct transients in the PACS Spectroscopy Pipeline for the un-chopped line scan mode, has been threaded. This computation-intensive task uses either a one-parameter or a three parameter exponential function, to characterize the transient. The task uses a JAVA implementation of Minpack, translated from the C (Moshier) and IDL (Markwardt) by the authors, to optimize the correction parameters. We also explain how to determine if a task can benefit from threading (Amdahl's Law), and if it is safe to thread. The design and implementation, using the JAVA concurrency package completions service is described. Pitfalls, timing bugs, thread safety, resource control, testing and performance improvements are described and plotted.

  17. Using a source-to-source transformation to introduce multi-threading into the AliRoot framework for a parallel event reconstruction

    NASA Astrophysics Data System (ADS)

    Lohn, Stefan B.; Dong, Xin; Carminati, Federico

    2012-12-01

    Chip-Multiprocessors are going to support massive parallelism by many additional physical and logical cores. Improving performance can no longer be obtained by increasing clock-frequency because the technical limits are almost reached. Instead, parallel execution must be used to gain performance. Resources like main memory, the cache hierarchy, bandwidth of the memory bus or links between cores and sockets are not going to be improved as fast. Hence, parallelism can only result into performance gains if the memory usage is optimized and the communication between threads is minimized. Besides concurrent programming has become a domain for experts. Implementing multi-threading is error prone and labor-intensive. A full reimplementation of the whole AliRoot source-code is unaffordable. This paper describes the effort to evaluate the adaption of AliRoot to the needs of multi-threading and to provide the capability of parallel processing by using a semi-automatic source-to-source transformation to address the problems as described before and to provide a straight-forward way of parallelization with almost no interference between threads. This makes the approach simple and reduces the required manual changes in the code. In a first step, unconditional thread-safety will be introduced to bring the original sequential and thread unaware source-code into the position of utilizing multi-threading. Afterwards further investigations have to be performed to point out candidates of classes that are useful to share amongst threads. Then in a second step, the transformation has to change the code to share these classes and finally to verify if there are anymore invalid interferences between threads.

  18. Pin1At regulates PIN1 polar localization and root gravitropism.

    PubMed

    Xi, Wanyan; Gong, Ximing; Yang, Qiaoyun; Yu, Hao; Liou, Yih-Cherng

    2016-01-21

    Root gravitropism allows plants to establish root systems and its regulation depends on polar auxin transport mediated by PIN-FORMED (PIN) auxin transporters. PINOID (PID) and PROTEIN PHOSPHATASE 2A (PP2A) act antagonistically on reversible phosphorylation of PINs. This regulates polar PIN distribution and auxin transport. Here we show that a peptidyl-prolyl cis/trans isomerase Pin1At regulates root gravitropism. Downregulation of Pin1At suppresses root agravitropic phenotypes of pp2aa and 35S:PID, while overexpression of Pin1At affects root gravitropic responses and enhances the pp2aa agravitropic phenotype. Pin1At also affects auxin transport and polar localization of PIN1 in stele cells, which is mediated by PID and PP2A. Furthermore, Pin1At catalyses the conformational change of the phosphorylated Ser/Thr-Pro motifs of PIN1. Thus, Pin1At mediates the conformational dynamics of PIN1 and affects PID- and PP2A-mediated regulation of PIN1 polar localization, which correlates with the regulation of root gravitropism.

  19. Pin1At regulates PIN1 polar localization and root gravitropism

    PubMed Central

    Xi, Wanyan; Gong, Ximing; Yang, Qiaoyun; Yu, Hao; Liou, Yih-Cherng

    2016-01-01

    Root gravitropism allows plants to establish root systems and its regulation depends on polar auxin transport mediated by PIN-FORMED (PIN) auxin transporters. PINOID (PID) and PROTEIN PHOSPHATASE 2A (PP2A) act antagonistically on reversible phosphorylation of PINs. This regulates polar PIN distribution and auxin transport. Here we show that a peptidyl-prolyl cis/trans isomerase Pin1At regulates root gravitropism. Downregulation of Pin1At suppresses root agravitropic phenotypes of pp2aa and 35S:PID, while overexpression of Pin1At affects root gravitropic responses and enhances the pp2aa agravitropic phenotype. Pin1At also affects auxin transport and polar localization of PIN1 in stele cells, which is mediated by PID and PP2A. Furthermore, Pin1At catalyses the conformational change of the phosphorylated Ser/Thr-Pro motifs of PIN1. Thus, Pin1At mediates the conformational dynamics of PIN1 and affects PID- and PP2A-mediated regulation of PIN1 polar localization, which correlates with the regulation of root gravitropism. PMID:26791759

  20. Stream Splitting in Support of Intrusion Detection

    DTIC Science & Technology

    2003-06-01

    increased. Every computer on the Internet has no need to see the traffic of every other computer on the Internet. Indeed if this was so, nothing would get ...distinguishes the stream splitter from other network analysis tools. B. HIGH LEVEL DESIGN To get the desired level of performance, a multi-threaded...of greater concern than added accuracy of a Bayesian model. This is a case where close is good enough . b. PassiveSensors Though similar to active

  1. Shared prefetching to reduce execution skew in multi-threaded systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichenberger, Alexandre E; Gunnels, John A

    Mechanisms are provided for optimizing code to perform prefetching of data into a shared memory of a computing device that is shared by a plurality of threads that execute on the computing device. A memory stream of a portion of code that is shared by the plurality of threads is identified. A set of prefetch instructions is distributed across the plurality of threads. Prefetch instructions are inserted into the instruction sequences of the plurality of threads such that each instruction sequence has a separate sub-portion of the set of prefetch instructions, thereby generating optimized code. Executable code is generated basedmore » on the optimized code and stored in a storage device. The executable code, when executed, performs the prefetches associated with the distributed set of prefetch instructions in a shared manner across the plurality of threads.« less

  2. Evolution of the ATLAS Software Framework towards Concurrency

    NASA Astrophysics Data System (ADS)

    Jones, R. W. L.; Stewart, G. A.; Leggett, C.; Wynne, B. M.

    2015-05-01

    The ATLAS experiment has successfully used its Gaudi/Athena software framework for data taking and analysis during the first LHC run, with billions of events successfully processed. However, the design of Gaudi/Athena dates from early 2000 and the software and the physics code has been written using a single threaded, serial design. This programming model has increasing difficulty in exploiting the potential of current CPUs, which offer their best performance only through taking full advantage of multiple cores and wide vector registers. Future CPU evolution will intensify this trend, with core counts increasing and memory per core falling. Maximising performance per watt will be a key metric, so all of these cores must be used as efficiently as possible. In order to address the deficiencies of the current framework, ATLAS has embarked upon two projects: first, a practical demonstration of the use of multi-threading in our reconstruction software, using the GaudiHive framework; second, an exercise to gather requirements for an updated framework, going back to the first principles of how event processing occurs. In this paper we report on both these aspects of our work. For the hive based demonstrators, we discuss what changes were necessary in order to allow the serially designed ATLAS code to run, both to the framework and to the tools and algorithms used. We report on what general lessons were learned about the code patterns that had been employed in the software and which patterns were identified as particularly problematic for multi-threading. These lessons were fed into our considerations of a new framework and we present preliminary conclusions on this work. In particular we identify areas where the framework can be simplified in order to aid the implementation of a concurrent event processing scheme. Finally, we discuss the practical difficulties involved in migrating a large established code base to a multi-threaded framework and how this can be achieved for LHC Run 3.

  3. Tissue reactions to modern suturing material in colorectal surgery.

    PubMed

    Molokova, O A; Kecherukov, A I; Aliev, F Sh; Chernov, I A; Bychkov, V G; Kononov, V P

    2007-06-01

    Morphological changes in the wall of the large intestine were studied after its manual suturing by a double-row interrupted suture with modern suture threads. Light and scanning electron microscopy showed "fuse properties" and "sawing effect" of polyfilament twisted threads (e.g. vicryl). Monofilament threads were free from these drawbacks and therefore were preferable. Metal elastic threads on the basis of titanium-nickelide alloys caused no inflammatory changes in tissues.

  4. FR/HR Sewing Thread

    DTIC Science & Technology

    2015-09-01

    position unless so designated by other authorized documents. Citation of trade names in this report does not constitute an official endorsement or...project to design and develop a Fire Resistant (FR) and Heat Resistant (HR) sewing thread. The main goal of the project is to produce sewing threads made...addresses the design , development and testing of various Fire Resistant (FR)/Heat Resistant (HR) sewing threads for US Army applications. Such a sewing

  5. Advanced Numerical Techniques of Performance Evaluation. Volume 1

    DTIC Science & Technology

    1990-06-01

    system scheduling3thread. The scheduling thread then runs any other ready thread that can be found. A thread can only sleep or switch out on itself...Polychronopoulos and D.J. Kuck. Guided Self- Scheduling : A Practical Scheduling Scheme for Parallel Supercomputers. IEEE Transactions on Computers C...Kuck 1987] C.D. Polychronopoulos and D.J. Kuck. Guided Self- Scheduling : A Practical Scheduling Scheme for Parallel Supercomputers. IEEE Trans. on Comp

  6. Mechanical properties of silk of the Australian golden orb weavers Nephila pilipes and Nephilaplumipes.

    PubMed

    Kerr, Genevieve G; Nahrung, Helen F; Wiegand, Aaron; Kristoffersen, Joanna; Killen, Peter; Brown, Cameron; Macdonald, Joanne

    2018-02-22

    Silks from orb-weaving spiders are exceptionally tough, producing a model polymer for biomimetic fibre development. The mechanical properties of naturally spun silk threads from two species of Australian orb-weavers, Nephila pilipes and Nephila plumipes , were examined here in relation to overall thread diameter, the size and number of fibres within threads, and spider size. N. pilipes , the larger of the two species, had significantly tougher silk with higher strain capacity than its smaller congener, producing threads with average toughness of 150 MJ m -3 , despite thread diameter, mean fibre diameter and number of fibres per thread not differing significantly between the two species. Within N. pilipes , smaller silk fibres were produced by larger spiders, yielding tougher threads. In contrast, while spider size was correlated with thread diameter in N. plumipes , there were no clear patterns relating to silk toughness, which suggests that the differences in properties between the silk of the two species arise through differing molecular structure. Our results support previous studies that found that the mechanical properties of silk differ between distantly related spider species, and extends on that work to show that the mechanical and physical properties of silk from more closely related species can also differ remarkably. © 2018. Published by The Company of Biologists Ltd.

  7. AthenaMT: upgrading the ATLAS software framework for the many-core world with multi-threading

    NASA Astrophysics Data System (ADS)

    Leggett, Charles; Baines, John; Bold, Tomasz; Calafiura, Paolo; Farrell, Steven; van Gemmeren, Peter; Malon, David; Ritsch, Elmar; Stewart, Graeme; Snyder, Scott; Tsulaia, Vakhtang; Wynne, Benjamin; ATLAS Collaboration

    2017-10-01

    ATLAS’s current software framework, Gaudi/Athena, has been very successful for the experiment in LHC Runs 1 and 2. However, its single threaded design has been recognized for some time to be increasingly problematic as CPUs have increased core counts and decreased available memory per core. Even the multi-process version of Athena, AthenaMP, will not scale to the range of architectures we expect to use beyond Run2. After concluding a rigorous requirements phase, where many design components were examined in detail, ATLAS has begun the migration to a new data-flow driven, multi-threaded framework, which enables the simultaneous processing of singleton, thread unsafe legacy Algorithms, cloned Algorithms that execute concurrently in their own threads with different Event contexts, and fully re-entrant, thread safe Algorithms. In this paper we report on the process of modifying the framework to safely process multiple concurrent events in different threads, which entails significant changes in the underlying handling of features such as event and time dependent data, asynchronous callbacks, metadata, integration with the online High Level Trigger for partial processing in certain regions of interest, concurrent I/O, as well as ensuring thread safety of core services. We also report on upgrading the framework to handle Algorithms that are fully re-entrant.

  8. Plasma treatments of wool fiber surface for microfluidic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeon, So-Hyoun; Hwang, Ki-Hwan; Lee, Jin Su

    Highlights: • We used atmospheric plasma for tuning the wettability of wool fibers. • The wicking rates of the wool fibers increased with increasing treatment time. • The increasing of wettability results in removement of fatty acid on the wool surface. - Abstract: Recent progress in health diagnostics has led to the development of simple and inexpensive systems. Thread-based microfluidic devices allow for portable and inexpensive field-based technologies enabling medical diagnostics, environmental monitoring, and food safety analysis. However, controlling the flow rate of wool thread, which is a very important part of thread-based microfluidic devices, is quite difficult. For thismore » reason, we focused on thread-based microfluidics in the study. We developed a method of changing the wettability of hydrophobic thread, including wool thread. Thus, using natural wool thread as a channel, we demonstrate herein that the manipulation of the liquid flow, such as micro selecting and micro mixing, can be achieved by applying plasma treatment to wool thread. In addition to enabling the flow control of the treated wool channels consisting of all natural substances, this procedure will also be beneficial for biological sensing devices. We found that wools treated with various gases have different flow rates. We used an atmospheric plasma with O{sub 2}, N{sub 2} and Ar gases.« less

  9. Carbon Nanotube Thread Electrochemical Cell: Detection of Heavy Metals.

    PubMed

    Zhao, Daoli; Siebold, David; Alvarez, Noe T; Shanov, Vesselin N; Heineman, William R

    2017-09-19

    In this work, all three electrodes in an electrochemical cell were fabricated based on carbon nanotube (CNT) thread. CNT thread partially insulated with a thin polystyrene coating to define the microelectrode area was used as the working electrode; bare CNT thread was used as the auxiliary electrode; and a micro quasi-reference electrode was fabricated by electroplating CNT thread with Ag and then anodizing it in chloride solution to form a layer of AgCl. The Ag|AgCl coated CNT thread electrode provided a stable potential comparable to the conventional liquid-junction type Ag|AgCl reference electrode. The CNT thread auxiliary electrode provided a stable current, which is comparable to a Pt wire auxiliary electrode. This all-CNT thread three electrode cell has been evaluated as a microsensor for the simultaneous determination of trace levels of heavy metal ions by anodic stripping voltammetry (ASV). Hg 2+ , Cu 2+ , and Pb 2+ were used as a representative system for this study. The calculated detection limits (based on the 3σ method) with a 120 s deposition time are 1.05, 0.53, and 0.57 nM for Hg 2+ , Cu 2+ , and Pb 2+ , respectively. These electrodes significantly reduce the dimensions of the conventional three electrode electrochemical cell to the microscale.

  10. Lightning Pin Injection Testing on MOSFETS

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Szatkowski, George N.; Koppen, Sandra V.; Mielnik, John J.; Vaughan, Roger K.; Wysocki, Philip F.; Celaya, Jose R.; Saha, Sankalita

    2009-01-01

    Lightning transients were pin-injected into metal-oxide-semiconductor field-effect transistors (MOSFETs) to induce fault modes. This report documents the test process and results, and provides a basis for subsequent lightning tests. MOSFETs may be present in DC-DC power supplies and electromechanical actuator circuits that may be used on board aircraft. Results show that unprotected MOSFET Gates are susceptible to failure, even when installed in systems in well-shielded and partial-shielded locations. MOSFET Drains and Sources are significantly less susceptible. Device impedance decreased (current increased) after every failure. Such a failure mode may lead to cascading failures, as the damaged MOSFET may allow excessive current to flow through other circuitry. Preliminary assessments on a MOSFET subjected to 20-stroke pin-injection testing demonstrate that Breakdown Voltage, Leakage Current and Threshold Voltage characteristics show damage, while the device continues to meet manufacturer performance specifications. The purpose of this research is to develop validated tools, technologies, and techniques for automated detection, diagnosis and prognosis that enable mitigation of adverse events during flight, such as from lightning transients; and to understand the interplay between lightning-induced surges and aging (i.e. humidity, vibration thermal stress, etc.) on component degradation.

  11. Effect of oxygen concentration in ZDP containing oils on surface composition and wear

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Ferrante, J.

    1983-01-01

    A pin-on-disk wear study was performed with the lubricants dibutyl sebacate (DBS) and mineral oil (MO) with and without 1 weight percent zinc-dialkyl-dithiophospatee (ZDP) as an additive. The pin was annealed pure iron and the disk was M-2 tool steel. The selected load and speed guaranteed boundary lubrication. The ambient atmospheric oxygen concentration in an oxygen-nitrogen mixture was varied from 0 percent to 20 percent in order to examine its relationship to ZDP effectiveness. Auger electron spectroscopy combined with argon ion bombardment (depth profiling) was used to determine surface elemental composition on the pin when tested in DBS with and without ZDP. The ambient atmosphere was found to cause large variations in wear rate and surface composition. With MO, ZDP reduced wear under all conditions, but had little advantage over oxides formed at 20 percent oxygen atmosphere. With DBS, ZDP reduced wear at 0 percent oxygen, but gave varied results at other oxygen concentrations. Depth profiling revealed sulfuide formation at 0 percent oxygen and probably sulfates at 20 percent oxygen. The results are significant because varied oxygen concentrations can occur under actual lubricating conditions in practical machinery.

  12. Development of High Fidelity, Fuel-Like Thermal Simulators for Non-Nuclear Testing

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, S. M.; Farmer, J.; Dixon, D.; Kapernick, R.; Dickens, R.; Adams, M.

    2007-01-01

    Non-nuclear testing can be a valuable tool in development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Work at the NASA Marshall Space Flight Center seeks to develop high fidelity thermal simulators that not only match the static power profile that would be observed in an operating, fueled nuclear reactor, but to also match the dynamic fuel pin performance during feasible transients. Comparison between the fuel pins and thermal simulators is made at the fuel clad surface, which corresponds to the sheath surface in the thermal simulator. Static and dynamic fuel pin performance was determined using SINDA-FLUINT analysis, and the performance of conceptual thermal simulator designs was compared to the expected nuclear performance. Through a series of iterative analysis, a conceptual high fidelity design will be developed, followed by engineering design, fabrication, and testing to validate the overall design process. Although the resulting thermal simulator will be designed for a specific reactor concept, establishing this rigorous design process will assist in streamlining the thermal simulator development for other reactor concepts.

  13. Design of a Pneumatic Tool for Manual Drilling Operations in Confined Spaces

    NASA Astrophysics Data System (ADS)

    Janicki, Benjamin

    This master's thesis describes the design process and testing results for a pneumatically actuated, manually-operated tool for confined space drilling operations. The purpose of this device is to back-drill pilot holes inside a commercial airplane wing. It is lightweight, and a "locator pin" enables the operator to align the drill over a pilot hole. A suction pad stabilizes the system, and an air motor and flexible drive shaft power the drill. Two testing procedures were performed to determine the practicality of this prototype. The first was the "offset drill test", which qualified the exit hole position error due to an initial position error relative to the original pilot hole. The results displayed a linear relationship, and it was determined that position errors of less than .060" would prevent the need for rework, with errors of up to .030" considered acceptable. For the second test, a series of holes were drilled with the pneumatic tool and analyzed for position error, diameter range, and cycle time. The position errors and hole diameter range were within the allowed tolerances. The average cycle time was 45 seconds, 73 percent of which was for drilling the hole, and 27 percent of which was for positioning the device. Recommended improvements are discussed in the conclusion, and include a more durable flexible drive shaft, a damper for drill feed control, and a more stable locator pin.

  14. Friction Stir Welding at MSFC: Kinematics

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.

    2001-01-01

    In 1991 The Welding Institute of the United Kingdom patented the Friction Stir Welding (FSW) process. In FSW a rotating pin-tool is inserted into a weld seam and literally stirs the faying surfaces together as it moves up the seam. By April 2000 the American Welding Society International Welding and Fabricating Exposition featured several exhibits of commercial FSW processes and the 81st Annual Convention devoted a technical session to the process. The FSW process is of interest to Marshall Space Flight Center (MSFC) as a means of avoiding hot-cracking problems presented by the 2195 aluminum-lithium alloy, which is the primary constituent of the Lightweight Space Shuttle External Tank. The process has been under development at MSFC for External Tank applications since the early 1990's. Early development of the FSW process proceeded by cut-and-try empirical methods. A substantial and complex body of data resulted. A theoretical model was wanted to deal with the complexity and reduce the data to concepts serviceable for process diagnostics, optimization, parameter selection, etc. A first step in understanding the FSW process is to determine the kinematics, i.e., the flow field in the metal in the vicinity of the pin-tool. Given the kinematics, the dynamics, i.e., the forces, can be targeted. Given a completed model of the FSW process, attempts at rational design of tools and selection of process parameters can be made.

  15. Cantilever clamp fitting

    NASA Technical Reports Server (NTRS)

    Melton, Patrick B. (Inventor)

    1989-01-01

    A device is disclosed for sealing and clamping a cylindrical element which is to be attached to an object such as a wall, a pressurized vessel or another cylindrical element. The device includes a gland having an inner cylindrical wall, which is threaded at one end and is attached at a bendable end to a deformable portion, which in turn is attached to one end of a conical cantilever structure. The other end of the cantilever structure connects at a bendable area to one end of an outer cylindrical wall. The opposite end of cylindrical wall terminates in a thickened portion, the radially outer surface of which is adapted to accommodate a tool for rotating the gland. The terminal end of cylindrical wall also includes an abutment surface, which is adapted to engage a seal, which in turn engages a surface of a receiver. The receiver further includes a threaded portion for engagement with the threaded portion of gland whereby a tightening rotation of gland relative to receiver will cause relative movement between cylindrical walls and of gland. This movement causes a rotation of the conical structure and thus a bending action at bending area and at the bending end of the upper end of inner cylindrical wall. These rotational and bending actions result in a forcing of the deformable portion radially inwardly so as to contact and deform a pipe. This forcible contact creates a seal between gland and pipe, and simultaneously clamps the pipe in position.

  16. Solar Filament Longitudinal Oscillations along a Magnetic Field Tube with Two Dips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Yu-Hao; Zhang Li-Yue; Ouyang, Y.

    Large-amplitude longitudinal oscillations of solar filaments have been observed and explored for more than ten years. Previous studies are mainly based on the one-dimensional rigid flux tube model with a single magnetic dip. However, it has been noted that there might be two magnetic dips, and hence two threads, along one magnetic field line. Following previous work, we intend to investigate the kinematics of the filament longitudinal oscillations when two threads are magnetically connected, which is done by solving one-dimensional radiative hydrodynamic equations with the numerical code MPI-AMRVAC. Two different types of perturbations are considered, and the difference from previousmore » works resulting from the interaction of the two filament threads is investigated. We find that even with the inclusion of the thread–thread interaction, the oscillation period is modified weakly, by at most 20% compared to the traditional pendulum model with one thread. However, the damping timescale is significantly affected by the thread–thread interaction. Hence, we should take it into account when applying the consistent seismology to the filaments where two threads are magnetically connected.« less

  17. 3D-Printed specimens as a valuable tool in anatomy education: A pilot study.

    PubMed

    Garas, Monique; Vaccarezza, Mauro; Newland, George; McVay-Doornbusch, Kylie; Hasani, Jamila

    2018-06-06

    Three-dimensional (3D) printing is a modern technique of creating 3D-printed models that allows reproduction of human structures from MRI and CT scans via fusion of multiple layers of resin materials. To assess feasibility of this innovative resource as anatomy educational tool, we conducted a preliminary study on Curtin University undergraduate students to investigate the use of 3D models for anatomy learning as a main goal, to assess the effectiveness of different specimen types during the sessions and personally preferred anatomy learning tools among students as secondary aim. The study consisted of a pre-test, exposure to test (anatomical test) and post-test survey. During pre-test, all participants (both without prior experience and experienced groups) were given a brief introduction on laboratory safety and study procedure thus participants were exposed to 3D, wet and plastinated specimens of the heart, shoulder and thigh to identify the pinned structures (anatomical test). Then, participants were provided a post-test survey containing five questions. In total, 23 participants completed the anatomical test and post-test survey. A larger number of participants (85%) achieved right answers for 3D models compared to wet and plastinated materials, 74% of population selected 3D models as the most usable tool for identification of pinned structures and 45% chose 3D models as their preferred method of anatomy learning. This preliminary small-size study affirms the feasibility of 3D-printed models as a valuable asset in anatomy learning and shows their capability to be used adjacent to cadaveric materials and other widely used tools in anatomy education. Copyright © 2018 Elsevier GmbH. All rights reserved.

  18. Antimicrobial efficacy of external fixator pins coated with a lipid stabilized hydroxyapatite/chlorhexidine complex to prevent pin tract infection in a goat model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dejong, E. Schuyler; Deberardino, T. M.; Brooks, D. E.

    Background: Pin tract infection is a common complication of external fixation. An antiinfective external fixator pin might help to reduce the incidence of pin tract infection and improve pin fixation. Methods: Stainless steel and titanium external fixator pins, with and without a lipid stabilized hydroxyapatite/chlorhexidine coating, were evaluated in a goat model. Two pins contaminated with an identifiable Staphylococcus aureus strain were inserted into each tibia of 12 goats. The pin sites were examined daily. On day 14, the animals were killed, and the pin tips cultured. Insertion and extraction torques were measured. Results: Infection developed in 100% of uncoatedmore » pins, whereas coated pins demonstrated 4.2% infected, 12.5% colonized, and the remainder, 83.3%, had no growth (p < 0.01). Pin coating decreased the percent loss of fixation torque over uncoated pins (p = 0.04). Conclusion: These results demonstrate that the lipid stabilized hydroxyapatite/chlorhexidine coating was successful in decreasing infection and improving fixation of external fixator pins.« less

  19. Characterizing Task-Based OpenMP Programs

    PubMed Central

    Muddukrishna, Ananya; Jonsson, Peter A.; Brorsson, Mats

    2015-01-01

    Programmers struggle to understand performance of task-based OpenMP programs since profiling tools only report thread-based performance. Performance tuning also requires task-based performance in order to balance per-task memory hierarchy utilization against exposed task parallelism. We provide a cost-effective method to extract detailed task-based performance information from OpenMP programs. We demonstrate the utility of our method by quickly diagnosing performance problems and characterizing exposed task parallelism and per-task instruction profiles of benchmarks in the widely-used Barcelona OpenMP Tasks Suite. Programmers can tune performance faster and understand performance tradeoffs more effectively than existing tools by using our method to characterize task-based performance. PMID:25860023

  20. Tool For Driving Many Fasteners Simultaneously

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr.

    1995-01-01

    Proposed tool tightens or loosens several bolts, screws, nuts, or other threaded fasteners arranged in circle on compressor head, automotive wheel, pipe-end flange, or similar object. Enables assembly or disassembly in fraction of time needed to tighten fasteners one at a time. Simultaneously applies same torque to all fasteners, preventing distortion and enhancing reliability. Concept not limited to circular fastener patterns. Adapted to rectangular configurations like on engine intake manifolds, by adding gears to drive train to provide proper spacing. Designed to deliver fixed or adjustable maximum torque. To ensure even seal loading, piston pressure simultaneously ramped from initial to final values to maintain relatively constant torque loading on all fasteners until final specifications limit achieved.

  1. A Modelling Method of Bolt Joints Based on Basic Characteristic Parameters of Joint Surfaces

    NASA Astrophysics Data System (ADS)

    Yuansheng, Li; Guangpeng, Zhang; Zhen, Zhang; Ping, Wang

    2018-02-01

    Bolt joints are common in machine tools and have a direct impact on the overall performance of the tools. Therefore, the understanding of bolt joint characteristics is essential for improving machine design and assembly. Firstly, According to the experimental data obtained from the experiment, the stiffness curve formula was fitted. Secondly, a finite element model of unit bolt joints such as bolt flange joints, bolt head joints, and thread joints was constructed, and lastly the stiffness parameters of joint surfaces were implemented in the model by the secondary development of ABAQUS. The finite element model of the bolt joint established by this method can simulate the contact state very well.

  2. Screw-Thread Inserts As Temporary Flow Restrictors

    NASA Technical Reports Server (NTRS)

    Trimarchi, Paul

    1992-01-01

    Coil-spring screw-thread inserts found useful as temporary flow restrictors. Inserts placed in holes through which flow restricted, effectively reducing cross sections available for flow. Friction alone holds inserts against moderate upstream pressures. Use of coil-spring thread inserts as flow restrictors conceived as inexpensive solution to problem of adjusting flow of oxygen through orifices in faceplate into hydrogen/oxygen combustion chamber. Installation and removal of threaded inserts gentle enough not to deform orifice tubes.

  3. Mapping virtual addresses to different physical addresses for value disambiguation for thread memory access requests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gala, Alan; Ohmacht, Martin

    A multiprocessor system includes nodes. Each node includes a data path that includes a core, a TLB, and a first level cache implementing disambiguation. The system also includes at least one second level cache and a main memory. For thread memory access requests, the core uses an address associated with an instruction format of the core. The first level cache uses an address format related to the size of the main memory plus an offset corresponding to hardware thread meta data. The second level cache uses a physical main memory address plus software thread meta data to store the memorymore » access request. The second level cache accesses the main memory using the physical address with neither the offset nor the thread meta data after resolving speculation. In short, this system includes mapping of a virtual address to a different physical addresses for value disambiguation for different threads.« less

  4. Asymptotic investigations into the `fluid mechanical sewing machine'

    NASA Astrophysics Data System (ADS)

    Blount, Maurice; Lister, John

    2008-11-01

    The fall of a slender viscous thread from a nozzle onto a moving horizontal belt exhibits a wide range of behaviour. Steady motion is observed above a critical belt speed. Below this speed the thread undergoes a buckling instability, and lays down on the belt a variety of stable, periodic patterns referred to as a `fluid mechanical sewing machine'. We expand on previous theoretical progress [1] by including the effects arising from the resistance of the thread to bending. While the bending resistance of a slender viscous thread is small, under certain circumstances it has a dominant effect. We work in the asymtotic limit of a slender thread, and investigate the full range of steady solutions. An asymptotic refinement to the estimate derived in [1] for the onset of buckling instability is presented, and the behaviour of the thread near onset is discussed. [1] S. Chiu-Webster & J.R. Lister, J. Fluid Mech. 569, 89-111.

  5. Tribological characterization of the drill pipe tool joints reconditioned by using welding technologies

    NASA Astrophysics Data System (ADS)

    Caltaru, M.; Badicioiu, M.; Ripeanu, R. G.; Dinita, A.; Minescu, M.; Laudacescu, E.

    2018-01-01

    Drill pipe is a seamless steel pipe with upset ends fitted with special threaded ends that are known as tool joints. During drilling operations, the wall thickness of the drill pipe and the outside diameter of the tool joints will be gradually reduced due to wear. The present research work investigate the possibility of reconditioning the drill pipe tool joints by hardbanding with a new metal-cored coppered flux cored wire, Cr-Mo alloyed, using the gas metal active welding process, taking into considerations two different hardbanding technologies, consisting in: hardbanding drill pipe tool joints after removing the old hardbanding material and surface reconstruction with a compensation material (case A), and hardbanding tool joint drill pipe, without removing the old hardbanding material (case B). The present paper brings forward the experimental researches regarding the tribological characterization of the reconditioned drill pipe tool joint by performing macroscopic analyses, metallographic analyses, Vickers hardness measurement, chemical composition measurement and wear tests conducted on ball on disk friction couples, in order to certify the quality of the hardbanding obtained by different technological approaches, to validate the optimum technology.

  6. Inchworm movement of two rings switching onto a thread by biased Brownian diffusion represent a three-body problem.

    PubMed

    Benson, Christopher R; Maffeo, Christopher; Fatila, Elisabeth M; Liu, Yun; Sheetz, Edward G; Aksimentiev, Aleksei; Singharoy, Abhishek; Flood, Amar H

    2018-05-07

    The coordinated motion of many individual components underpins the operation of all machines. However, despite generations of experience in engineering, understanding the motion of three or more coupled components remains a challenge, known since the time of Newton as the "three-body problem." Here, we describe, quantify, and simulate a molecular three-body problem of threading two molecular rings onto a linear molecular thread. Specifically, we use voltage-triggered reduction of a tetrazine-based thread to capture two cyanostar macrocycles and form a [3]pseudorotaxane product. As a consequence of the noncovalent coupling between the cyanostar rings, we find the threading occurs by an unexpected and rare inchworm-like motion where one ring follows the other. The mechanism was derived from controls, analysis of cyclic voltammetry (CV) traces, and Brownian dynamics simulations. CVs from two noncovalently interacting rings match that of two covalently linked rings designed to thread via the inchworm pathway, and they deviate considerably from the CV of a macrocycle designed to thread via a stepwise pathway. Time-dependent electrochemistry provides estimates of rate constants for threading. Experimentally derived parameters (energy wells, barriers, diffusion coefficients) helped determine likely pathways of motion with rate-kinetics and Brownian dynamics simulations. Simulations verified intercomponent coupling could be separated into ring-thread interactions for kinetics, and ring-ring interactions for thermodynamics to reduce the three-body problem to a two-body one. Our findings provide a basis for high-throughput design of molecular machinery with multiple components undergoing coupled motion.

  7. Development of Weld Inspection of the Ares I Crew Launch Vehicle Upper Stage

    NASA Technical Reports Server (NTRS)

    Russell, Sam; Ezell, David

    2010-01-01

    NASA is designing a new crewed launch vehicle called Ares I to replace the Space Shuttle after its scheduled retirement in 2010. This new launch vehicle will build on the Shuttle technology in many ways including using a first stage based upon the Space Shuttle Solid Rocket Booster, advanced aluminum alloys for the second stage tanks, and friction stir welding to assemble the second stage. Friction stir welding uses a spinning pin that is inserted in the joint between two panels that are to be welded. The pin mechanically mixes the metal together below the melting temperature to form the weld. Friction stir welding allows high strength joints in metals that would otherwise lose much of their strength as they are melted during the fusion welding process. One significant change from the Space Shuttle that impacts NDE is the implementation of self-reacting friction stir welding for non-linear welds on the primary metallic structure. The self-reacting technique differs from the conventional technique because the load of the pin tool pressing down on the metal being joined is reacted by a nut on the end of the tool rather than an anvil behind the part. No spacecraft has ever flown with a self-reacting friction stir weld, so this is a major advancement in the manufacturing process, bringing with it a whole new set of challenges for NDE to overcome. The metal microstructure and possible defects are different from other weld processes. Friction plug welds will be used to close out the hole remaining in the radial welds when friction stir welded. This plug welding also has unique challenges in inspection. The current state of development of these inspections will be presented, along with other information pertinent to NDE of the Ares I.

  8. Red Thread Found on Bermuda Grass

    Treesearch

    T. H. Filer

    1966-01-01

    Red thread fungus (Corticium fuciforme (Berk.) Wakef.) was observed in 1965 and 1966 on Bermuda grass (Cynodon dactylon) on lawns in Leland, Mississippi. Red thread is a serious disease on fescues but has not previously been reported on Bermuda grass.

  9. Thermo-Mechanical Processing in Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Schneider, J. A.; Nunes, A. C., Jr.

    2002-01-01

    In Friction Stir Welding (FSW) a rotating pin-tool inserted into a weld seam literally stirs the edges of the seam together. In this study, two flow paths are proposed that define the FWS zone. Studies using a longitudinal tungsten wire (0.0025 dia.) were used to visualize and document the material flow. The material flow path is described using a mathematical model.

  10. Using the CMS threaded framework in a production environment

    DOE PAGES

    Jones, C. D.; Contreras, L.; Gartung, P.; ...

    2015-12-23

    During 2014, the CMS Offline and Computing Organization completed the necessary changes to use the CMS threaded framework in the full production environment. We will briefly discuss the design of the CMS Threaded Framework, in particular how the design affects scaling performance. We will then cover the effort involved in getting both the CMSSW application software and the workflow management system ready for using multiple threads for production. Finally, we will present metrics on the performance of the application and workflow system as well as the difficulties which were uncovered. As a result, we will end with CMS' plans formore » using the threaded framework to do production for LHC Run 2.« less

  11. Impact of friction stir welding on the microstructure of ODS steel

    NASA Astrophysics Data System (ADS)

    Dawson, H.; Serrano, M.; Cater, S.; Iqbal, N.; Almásy, L.; Tian, Q.; Jimenez-Melero, E.

    2017-04-01

    We have assessed the impact of the welding parameters on the nano-sized oxide dispersion and the grain size in the matrix of an ODS steel after friction stir welding. Our results, based on combined small angle neutron scattering and electron microscopy, reveal a decrease in the volume fraction of the particles smaller than 80 nm in the welds, mainly due to particle agglomeration. The increase in tool rotation speed or decrease in transverse speed leads to a higher reduction in nano-sized particle fraction, and additionally to the occurrence of particle melting. The dependence of the average grain size in the matrix on the particle volume fraction follows a Zener pinning-type relationship. This result points to the principal role that the particles have in pinning grain boundary movement, and consequently in controlling the grain size during welding.

  12. Incremental Drag due to Grooves and Threads for KE (Kinetic Energy) Projectiles

    DTIC Science & Technology

    1989-03-01

    RFI • CTsB TF * - MF (3a) q L where TF1 is the Thread Factor defined as: TF 0.84 + 0.117 P - o (3b) where p is the groove pitch in inches, MF1 is...g2) MF RF CD (4) where TF11 and TF1 2 are the thread factors for the threads of pitch p, and P2, respectively. 5 One can notice the large

  13. Evaluating the use of laser radiation in cleaning of copper embroidery threads on archaeological Egyptian textiles

    NASA Astrophysics Data System (ADS)

    Abdel-Kareem, Omar; Harith, M. A.

    2008-07-01

    Cleaning of copper embroidery threads on archaeological textiles is still a complicated conservation process, as most textile conservators believe that the advantages of using traditional cleaning techniques are less than their disadvantages. In this study, the uses of laser cleaning method and two modified recipes of wet cleaning methods were evaluated for cleaning of the corroded archaeological Egyptian copper embroidery threads on an archaeological Egyptian textile fabric. Some corroded copper thread samples were cleaned using modified recipes of wet cleaning method; other corroded copper thread samples were cleaned with Q-switched Nd:YAG laser radiation of wavelength 532 nm. All tested metal thread samples before and after cleaning were investigated using a light microscope and a scanning electron microscope with an energy dispersive X-ray analysis unit. Also the laser-induced breakdown spectroscopy (LIBS) technique was used for the elemental analysis of laser-cleaned samples to follow up the laser cleaning procedure. The results show that laser cleaning is the most effective method among all tested methods in the cleaning of corroded copper threads. It can be used safely in removing the corrosion products without any damage to both metal strips and fibrous core. The tested laser cleaning technique has solved the problems caused by other traditional cleaning techniques that are commonly used in the cleaning of metal threads on museum textiles.

  14. Discovery of novel selenium derivatives as Pin1 inhibitors by high-throughput screening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subedi, Amit; Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570; Shimizu, Takeshi

    2016-06-03

    Peptidyl prolyl cis/trans isomerization by Pin1 regulates various oncogenic signals during cancer progression, and its inhibition through multiple approaches has established Pin1 as a therapeutic target. However, lack of simplified screening systems has limited the discovery of potent Pin1 inhibitors. We utilized phosphorylation-dependent binding of Pin1 to its specific substrate to develop a screening system for Pin1 inhibitors. Using this system, we screened a chemical library, and identified a novel selenium derivative as Pin1 inhibitor. Based on structure-activity guided chemical synthesis, we developed more potent Pin1 inhibitors that inhibited cancer cell proliferation. -- Highlights: •Novel screening for Pin1 inhibitors basedmore » on Pin1 binding is developed. •A novel selenium compound is discovered as Pin1 inhibitor. •Activity guided chemical synthesis of selenium derivatives resulted potent Pin1 inhibitors.« less

  15. Measuring Intracranial Pressure and Correlation with Severity of Blast Traumatic Brain Injury

    DTIC Science & Technology

    2011-10-01

    cannula was then filled with a sterile saline solution. The cannula cap was filled with petroleum jelly and a fiber optic pressure sensor (FOP-MIV, FISO...petroleum jelly and the fiber optic pressure sensor (FOP-MIV, Fiso Inc.) was inserted into the cannula and threaded onto the cannula pedestal. Figure 1b...neurological consequences of explosives. J. Neurol. Sci. 249:63–67, 2006. 9Henshall, B. Shock tube–versatile tool of aerodynamic research. J. Royal

  16. Fixture For Drilling And Tapping A Curved Workpiece

    NASA Technical Reports Server (NTRS)

    Espinosa, P. S.; Lockyer, R. T.

    1992-01-01

    Simple fixture guides drilling and tapping of holes in prescribed locations and orientations on workpiece having curved surface. Tool conceived for use in reworking complexly curved helicopter blades made of composite materials. Fixture is block of rigid foam with epoxy filler, custom-fitted to surface contour, containing bushings and sleeves at drilling and tapping sites. Bushings changed, so taps and drills of various sizes accommodated. In use, fixture secured to surface by hold-down bolts extending through sleeves and into threads in substrate.

  17. Investigation of effects of process parameters on properties of friction stir welded joints

    NASA Astrophysics Data System (ADS)

    Chauhan, Atul; Soota, Tarun; Rajput, S. K.

    2018-03-01

    This work deals with application of friction stir welding (FSW) using application of Taguchi orthogonal array. FSW procedure is used for joining the aluminium alloy AA6063-T0 plates in butt configuration with orthogonal combination of factors and their levels. The combination of factors involving tool rotation speed, tool travel speed and tool pin profile are used in three levels. Grey relational analysis (GRA) has been applied to select optimum level of factors for optimising UTS, ductility and hardness of joint. Experiments have been conducted with two different tool materials (HSS and HCHCr steel) with various factors level combinations for joining AA6063-T0. On the basis of grey relational grades at different levels of factors and analysis of variance (ANOVA) ideal combination of factors are determined. The influence of tool material is also studied.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janjusic, Tommy; Kartsaklis, Christos

    Application analysis is facilitated through a number of program profiling tools. The tools vary in their complexity, ease of deployment, design, and profiling detail. Specifically, understand- ing, analyzing, and optimizing is of particular importance for scientific applications where minor changes in code paths and data-structure layout can have profound effects. Understanding how intricate data-structures are accessed and how a given memory system responds is a complex task. In this paper we describe a trace profiling tool, Glprof, specifically aimed to lessen the burden of the programmer to pin-point heavily involved data-structures during an application's run-time, and understand data-structure run-time usage.more » Moreover, we showcase the tool's modularity using additional cache simulation components. We elaborate on the tool's design, and features. Finally we demonstrate the application of our tool in the context of Spec bench- marks using the Glprof profiler and two concurrently running cache simulators, PPC440 and AMD Interlagos.« less

  19. Adhesion enhancement of cribellate capture threads by epicuticular waxes of the insect prey sheds new light on spider web evolution

    PubMed Central

    Bott, Raya A.; Bräunig, Peter

    2017-01-01

    To survive, web-building spiders rely on their capture threads to restrain prey. Many species use special adhesives for this task, and again the majority of those species cover their threads with viscoelastic glue droplets. Cribellate spiders, by contrast, use a wool of nanofibres as adhesive. Previous studies hypothesized that prey is restrained by van der Waals' forces and entrapment in the nanofibres. A large discrepancy when comparing the adhesive force on artificial surfaces versus prey implied that the real mechanism was still elusive. We observed that insect prey's epicuticular waxes infiltrate the wool of nanofibres, probably induced by capillary forces. The fibre-reinforced composite thus formed led to an adhesion between prey and thread eight times stronger than that between thread and wax-free surfaces. Thus, cribellate spiders employ the originally protective coating of their insect prey as a fatal component of their adhesive and the insect promotes its own capture. We suggest an evolutionary arms race with prey changing the properties of their cuticular waxes to escape the cribellate capture threads that eventually favoured spider threads with viscous glue. PMID:28566485

  20. Attenuation of the tip vortex flow using a flexible thread

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Jae; Shin, Jin-Woo; Arndt, Roger E. A.; Suh, Jung-Chun

    2018-01-01

    Tip vortex cavitation (TVC) is important in a number of practical engineering applications. The onset of TVC is a critical concern for navy surface ships and submarines that aim to increase their capability to evade detection. A flexible thread attachment at blade tips was recently suggested as a new method to delay the onset of TVC. Although the occurrence of TVC can be reduced using a flexible thread, no scientific investigation focusing on its mechanisms has been undertaken. Thus, herein, we experimentally investigated the use of the flexible thread to suppress TVC from an elliptical wing. These investigations were performed in a cavitation tunnel and involved an observation of TVC using high-speed cameras, motion tracking of the thread using image-processing techniques, and near-field flow measurements performed using stereoscopic particle image velocimetry. The experimental data suggested that the flexible thread affects the axial velocity field more than the circumferential velocity field around the TVC axis. Furthermore, we observed no clear dependence of the vortex core size, circulation, and flow unsteadiness on TVC suppression. However, the presence of the thread at the wing tip led to a notable reduction in the streamwise velocity field, thereby alleviating TVC.

Top