Shih, Huan-Yu; Shiojiri, Makoto; Chen, Ching-Hsiang; Yu, Sheng-Fu; Ko, Chung-Ting; Yang, Jer-Ren; Lin, Ray-Ming; Chen, Miin-Jang
2015-09-02
High threading dislocation (TD) density in GaN-based devices is a long unresolved problem because of the large lattice mismatch between GaN and the substrate, which causes a major obstacle for the further improvement of next-generation high-efficiency solid-state lighting and high-power electronics. Here, we report InGaN/GaN LEDs with ultralow TD density and improved efficiency on a sapphire substrate, on which a near strain-free GaN compliant buffer layer was grown by remote plasma atomic layer deposition. This "compliant" buffer layer is capable of relaxing strain due to the absorption of misfit dislocations in a region within ~10 nm from the interface, leading to a high-quality overlying GaN epilayer with an unusual TD density as low as 2.2 × 10(5) cm(-2). In addition, this GaN compliant buffer layer exhibits excellent uniformity up to a 6" wafer, revealing a promising means to realize large-area GaN hetero-epitaxy for efficient LEDs and high-power transistors.
NASA Astrophysics Data System (ADS)
Yao, Y.; Ishikawa, Y.; Sugawara, Y.; Takahashi, Y.; Hirano, K.
2018-04-01
Synchrotron monochromatic-beam x-ray topography observation has been performed on high-quality ammonothermal gallium nitride single crystal to evaluate threading dislocations (TD) in a nondestructive manner. Asymmetric diffractions with six equivalent g-vectors of 11-26, in addition to a symmetric diffraction with g = 0008, were applied to determine the Burgers vectors (b) of dislocations. It was found that pure edge-type TDs with \\varvec b = < {11 - 20} > /3 did not exist in the sample. A dominant proportion of TDs were of mixed type with \\varvec b = < {11 - 20} > /3 + < {0001} > , i.e., so-called c + a dislocations. Pure 1c screw dislocations with \\varvec b = < {0001} > and TDs with c-component larger than 1c were also observed.
Effect of threading defects on InGaN /GaN multiple quantum well light emitting diodes
NASA Astrophysics Data System (ADS)
Ferdous, M. S.; Wang, X.; Fairchild, M. N.; Hersee, S. D.
2007-12-01
Photoelectrochemical etching was used to measure the threading defect (TD) density in InGaN multiple quantum well light-emitting diodes (LEDs) fabricated from commercial quality epitaxial wafers. The TD density was measured in the LED active region and then correlated with the previously measured characteristics of these LEDs. It was found that the reverse leakage current increased exponentially with TD density. The temperature dependence of this dislocation-related leakage current was consistent with a hopping mechanism at low reverse-bias voltage and Poole-Frenkel emission at higher reverse-bias voltage. The peak intensity and spectral width of the LED electroluminescence were found to be only weakly dependent on TD density for the measured TD range of 1×107-2×108cm-2.
Shih, Huan-Yu; Shiojiri, Makoto; Chen, Ching-Hsiang; Yu, Sheng-Fu; Ko, Chung-Ting; Yang, Jer-Ren; Lin, Ray-Ming; Chen, Miin-Jang
2015-01-01
High threading dislocation (TD) density in GaN-based devices is a long unresolved problem because of the large lattice mismatch between GaN and the substrate, which causes a major obstacle for the further improvement of next-generation high-efficiency solid-state lighting and high-power electronics. Here, we report InGaN/GaN LEDs with ultralow TD density and improved efficiency on a sapphire substrate, on which a near strain-free GaN compliant buffer layer was grown by remote plasma atomic layer deposition. This “compliant” buffer layer is capable of relaxing strain due to the absorption of misfit dislocations in a region within ~10 nm from the interface, leading to a high-quality overlying GaN epilayer with an unusual TD density as low as 2.2 × 105 cm−2. In addition, this GaN compliant buffer layer exhibits excellent uniformity up to a 6” wafer, revealing a promising means to realize large-area GaN hetero-epitaxy for efficient LEDs and high-power transistors. PMID:26329829
Effect of defects on the electrical/optical performance of gallium nitride based junction devices
NASA Astrophysics Data System (ADS)
Ferdous, Mohammad Shahriar
Commercial GaN based electronic and optoelectronic devices possess a high density (107-109 cm-2) of threading dislocations (TDs) because of the large mismatch in the lattice constant and the thermal expansion coefficient between the epitaxial layer structure and the substrate. In spite of these dislocations, high brightness light emitting diodes (LEDs) utilizing InGaN or AlGaN multiple quantum wells (MQWs) and with an external quantum efficiency of more than 40%, have already been achieved. This high external quantum efficiency in the presence of a high density of dislocations has been explained by carrier localization induced by indium fluctuations in the quantum well. TDs have been found to increase the reverse leakage current in InGaN based LEDs and to shorten the operating lifetime of InGaN MQW/GaN/AlGaN laser diodes. Thus it is important that the TD density is further reduced. It remains unclear how the TDs interact with the device to cause the effects mentioned above, hence the careful and precise characterization of threading defects and their effects on the electrical and optical performances of InGaN/GaN MQW LEDs is needed. This investigation will be useful not only from the point of view of device optimization but also to develop a clear understanding of the physical processes associated with TDs and especially with their effect on leakage current. We have employed photoelectrochemical (PEC) etching to accurately measure the dislocation density initially in home-grown GaN-based epitaxial structures and recently in InGaN/GaN MQW LEDs fabricated from commercial grade epitaxial structures that were supplied by our industrial collaborators. Measuring the electrical and electroluminescence (EL) characteristics of these devices has revealed correlations between some aspects of the LED behavior and the TD density, and promises to allow a deeper understanding of the role of threading dislocations to be elucidated. We observed that the LED reverse leakage current increased exponentially, and electroluminescence intensity decreased by 22%, as the TD density in the LEDs increased from 1.7 x 107 cm-2 to 2 x 108 cm-2. Forward voltage remained almost constant with the increase of TD density. A model of carrier conduction via hopping through defect related states, was found to provide an excellent fit to the experimental I-V data and provides a useful basis for understanding carrier conduction in the presence of TDs.
NASA Astrophysics Data System (ADS)
Tanikawa, Tomoyuki; Ohnishi, Kazuki; Kanoh, Masaya; Mukai, Takashi; Matsuoka, Takashi
2018-03-01
The three-dimensional imaging of threading dislocations in GaN films was demonstrated using two-photon excitation photoluminescence. The threading dislocations were shown as dark lines. The spatial resolutions near the surface were about 0.32 and 3.2 µm for the in-plane and depth directions, respectively. The threading dislocations with a density less than 108 cm-2 were resolved, although the aberration induced by the refractive index mismatch was observed. The decrease in threading dislocation density was clearly observed by increasing the GaN film thickness. This can be considered a novel method for characterizing threading dislocations in GaN films without any destructive preparations.
Model for threading dislocations in metamorphic tandem solar cells on GaAs (001) substrates
NASA Astrophysics Data System (ADS)
Song, Yifei; Kujofsa, Tedi; Ayers, John E.
2018-02-01
We present an approximate model for the threading dislocations in III-V heterostructures and have applied this model to study the defect behavior in metamorphic triple-junction solar cells. This model represents a new approach in which the coefficient for second-order threading dislocation annihilation and coalescence reactions is considered to be determined by the length of misfit dislocations, LMD, in the structure, and we therefore refer to it as the LMD model. On the basis of this model we have compared the average threading dislocation densities in the active layers of triple junction solar cells using linearly-graded buffers of varying thicknesses as well as S-graded (complementary error function) buffers with varying thicknesses and standard deviation parameters. We have shown that the threading dislocation densities in the active regions of metamorphic tandem solar cells depend not only on the thicknesses of the buffer layers but on their compositional grading profiles. The use of S-graded buffer layers instead of linear buffers resulted in lower threading dislocation densities. Moreover, the threading dislocation densities depended strongly on the standard deviation parameters used in the S-graded buffers, with smaller values providing lower threading dislocation densities.
NASA Astrophysics Data System (ADS)
Barchuk, M.; Holý, V.; Rafaja, D.
2018-04-01
X-ray diffraction is one of the most popular experimental methods employed for determination of dislocation densities, as it can recognize both the strain fields and the local lattice rotations produced by dislocations. The main challenge of the quantitative analysis of the dislocation density is the formulation of a suitable microstructure model, which describes the dislocation arrangement and the effect of the interactions between the strain fields from neighboring dislocations reliably in order to be able to determine the dislocation densities precisely. The aim of this study is to prove the capability of X-ray diffraction and two computational methods, which are frequently used for quantification of the threading dislocation densities from X-ray diffraction measurements, in the special case of partially bunched threading dislocations. The first method is based on the analysis of the dislocation-controlled crystal mosaicity, and the other one on the analysis of diffuse X-ray scattering from threading dislocations. The complementarity of both methods is discussed. Furthermore, it is shown how the complementarity of these methods can be used to improve the results of the quantitative analysis of bunched and thus inhomogeneously distributed threading dislocations and to get a better insight into the dislocation arrangement.
NASA Astrophysics Data System (ADS)
Song, Yifei; Kujofsa, Tedi; Ayers, John E.
2018-07-01
In order to evaluate various buffer layers for metamorphic devices, threading dislocation densities have been calculated for uniform composition In x Ga1- x As device layers deposited on GaAs (001) substrates with an intermediate graded buffer layer using the L MD model, where L MD is the average length of misfit dislocations. On this basis, we compare the relative effectiveness of buffer layers with linear, exponential, and S-graded compositional profiles. In the case of a 2 μm thick buffer layer linear grading results in higher threading dislocation densities in the device layer compared to either exponential or S-grading. When exponential grading is used, lower threading dislocation densities are obtained with a smaller length constant. In the S-graded case, lower threading dislocation densities result when a smaller standard deviation parameter is used. As the buffer layer thickness is decreased from 2 μm to 0.1 μm all of the above effects are diminished, and the absolute threading dislocation densities increase.
Dynamics of threading dislocations in porous heteroepitaxial GaN films
NASA Astrophysics Data System (ADS)
Gutkin, M. Yu.; Rzhavtsev, E. A.
2017-12-01
Behavior of threading dislocations in porous heteroepitaxial gallium nitride (GaN) films has been studied using computer simulation by the two-dimensional discrete dislocation dynamics approach. A computational scheme, where pores are modeled as cross sections of cylindrical cavities, elastically interacting with unidirectional parallel edge dislocations, which imitate threading dislocations, is used. Time dependences of coordinates and velocities of each dislocation from dislocation ensembles under investigation are obtained. Visualization of current structure of dislocation ensemble is performed in the form of a location map of dislocations at any time. It has been shown that the density of appearing dislocation structures significantly depends on the ratio of area of a pore cross section to area of the simulation region. In particular, increasing the portion of pores surface on the layer surface up to 2% should lead to about a 1.5-times decrease of the final density of threading dislocations, and increase of this portion up to 15% should lead to approximately a 4.5-times decrease of it.
Proposition of a model elucidating the AlN-on-Si (111) microstructure
NASA Astrophysics Data System (ADS)
Mante, N.; Rennesson, S.; Frayssinet, E.; Largeau, L.; Semond, F.; Rouvière, J. L.; Feuillet, G.; Vennéguès, P.
2018-06-01
AlN-on-Si can be considered as a model system for heteroepitaxial growth of highly mismatched materials. Indeed, AlN and Si drastically differ in terms of chemistry, crystalline structure, and lattice parameters. In this paper, we present a transmission electron microscopy and grazing incidence X-ray diffraction study of the microstructure of AlN layers epitaxially grown on Si (111) by molecular beam epitaxy. The large interfacial energy due to the dissimilarities between AlN and Si results in a 3D Volmer-Weber growth mode with the nucleation of independent and relaxed AlN islands. Despite a well-defined epitaxial relationship, these islands exhibit in-plane misorientations up to 6°-7°. We propose a model which quantitatively explains these misorientations by taking into account the relaxation of the islands through the introduction of 60° a-type misfit dislocations. Threading dislocations (TDs) are formed to compensate these misorientations when islands coalesce. TD density depends on two parameters: the islands' misorientation and density. We show that the former is related to the mismatch between AlN and Si, while the latter depends on the growth parameters. A large decrease in TD density occurs during the 3D growth stage by overlap and overgrowth of highly misoriented islands. On the other hand, the TD density does not change significantly when the growth becomes 2D. The proposed model, explaining the misorientations of 3D-grown islands, may be extended to other (0001)-oriented III-nitrides and more generally to any heteroepitaxial system exhibiting a 3D Volmer-Weber growth mode with islands relaxed thanks to the introduction of mixed-type misfit dislocations.
Interfacial dislocations in (111) oriented (Ba 0.7Sr 0.3)TiO 3 films on SrTiO 3 single crystal
Shen, Xuan; Yamada, Tomoaki; Lin, Ruoqian; ...
2015-10-08
In this study, we have investigated the interfacial structure of epitaxial (Ba,Sr)TiO 3 films grown on (111)-oriented SrTiO 3 single-crystal substrates using transmission electron microscopy (TEM) techniques. Compared with the (100) epitaxial perovskite films, we observe dominant dislocation half-loop with Burgers vectors of a<110> comprised of a misfit dislocation along <112>, and threading dislocations along <110> or <100>. The misfit dislocation with Burgers vector of a <110> can dissociate into two ½ a <110> partial dislocations and one stacking fault. We found the dislocation reactions occur not only between misfit dislocations, but also between threading dislocations. Via three-dimensional electron tomography,more » we retrieved the configurations of the threading dislocation reactions. The reactions between threading dislocations lead to a more efficient strain relaxation than do the misfit dislocations alone in the near-interface region of the (111)-oriented (Ba 0.7Sr 0.3)TiO 3 films.« less
NASA Astrophysics Data System (ADS)
Su, Xujun; Zhang, Jicai; Huang, Jun; Zhang, Jinping; Wang, Jianfeng; Xu, Ke
2017-06-01
Defect structures were investigated by transmission electron microscopy for AlN/sapphire (0 0 0 1) epilayers grown by high temperature hydride vapor phase epitaxy using a growth mode modification process. The defect structures, including threading dislocations, inversion domains, and voids, were analyzed by diffraction contrast, high-resolution imaging, and convergent beam diffraction. AlN film growth was initiated at 1450 °C with high V/III ratio for 8 min. This was followed by low V/III ratio growth for 12 min. The near-interfacial region shows a high density of threading dislocations and inversion domains. Most of these dislocations have Burgers vector b = 1/3〈1 1 2 0〉 and were reduced with the formation of dislocation loops. In the middle range 400 nm < h < 2 μm, dislocations gradually aggregated and reduced to ∼109 cm-2. The inversion domains have a shuttle-like shape with staggered boundaries that deviate by ∼ ±5° from the c axis. Above 2 μm thickness, the film consists of isolated threading dislocations with a total density of 8 × 108 cm-2. Most of threading dislocations are either pure edge or mixed dislocations. The threading dislocation reduction in these films is associated with dislocation loops formation and dislocation aggregation-interaction during island growth with high V/III ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Subhra, E-mail: subhra1109@gmail.com; Biswas, Dhrubes; Department of E and E C E, Indian Institute of Technology Kharagpur, Kharagpur 721302
2015-05-15
Plasma-assisted molecular beam epitaxy (PAMBE) growth of ultra-thin Al{sub 0.2}Ga{sub 0.8}N/GaN heterostructures on Si(111) substrate with three buffer thickness (600 nm/400 nm/200 nm) have been reported. An unique growth process has been developed that supports lower temperature epitaxy of GaN buffer which minimizes thermally generated tensile strain through appropriate nitridation and AlN initiated epitaxy for achieving high quality GaN buffer which supports such ultra-thin heterostructures in the range of 10-15Å. It is followed by investigations of role of buffer thickness on formation of ultra-thin Al{sub 0.2}Ga{sub 0.8}N/GaN heterostructure, in terms of stress-strain and threading dislocation (TD). Structural characterization were performedmore » by High-Resolution X-Ray Diffraction (HRXRD), room-temperature Photoluminescence (RT-PL), High Resolution Transmission Electron Microscopy (HRTEM) and Atomic Force Microscopy (AFM). Analysis revealed increasing biaxial tensile stress of 0.6918 ± 0.04, 1.1084, 1.1814 GPa in heterostructures with decreasing buffer thickness of 600, 400, 200 nm respectively which are summed up with residual tensile strain causing red-shift in RT-PL peak. Also, increasing buffer thickness drastically reduced TD density from the order 10{sup 10} cm{sup −2} to 10{sup 8} cm{sup −2}. Surface morphology through AFM leads to decrease of pits and root mean square value with increasing buffer thickness which are resulted due to reduction of combined effect of strain and TDs.« less
NASA Astrophysics Data System (ADS)
Russell, J. J.; Zou, J.; Moon, A. R.; Cockayne, D. J. H.
2000-08-01
Threading dislocation glide relieves strain in strained-layer heterostructures by increasing the total length of interface misfit dislocations. The blocking theory proposed by Freund [J. Appl. Phys. 68, 2073 (1990)] predicts the thickness above which gliding threading dislocations are able to overcome the resistance force produced by existing orthogonal misfit dislocations. A set of wedge-shaped samples of InxGa1-xAs/GaAs (x=0.04) strained-layer heterostructures was grown using molecular-beam epitaxy in order to test the theory of dislocation blocking over a range of thicknesses within one sample. Scanning cathodoluminescence microscopy techniques were used to image the misfit dislocations. The cathodoluminescence results confirm the model proposed by Freund.
Electronic and optical properties of GaN/AlN quantum dots with adjacent threading dislocations
NASA Astrophysics Data System (ADS)
Ye, Han; Lu, Peng-Fei; Yu, Zhong-Yuan; Yao, Wen-Jie; Chen, Zhi-Hui; Jia, Bo-Yong; Liu, Yu-Min
2010-04-01
We present a theory to simulate a coherent GaN QD with an adjacent pure edge threading dislocation by using a finite element method. The piezoelectric effects and the strain modified band edges are investigated in the framework of multi-band k · p theory to calculate the electron and the heavy hole energy levels. The linear optical absorption coefficients corresponding to the interband ground state transition are obtained via the density matrix approach and perturbation expansion method. The results indicate that the strain distribution of the threading dislocation affects the electronic structure. Moreover, the ground state transition behaviour is also influenced by the position of the adjacent threading dislocation.
Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...
2014-08-04
Electrical current transport through leakage paths in AlGaN-based deep ultraviolet (DUV) lightemitting diodes (LEDs) and their effect on LED performance are investigated. Open-core threading dislocations, or nanopipes, are found to conduct current through nominally insulating Al0.7Ga0.3N layers and limit the performance of DUV-LEDs. A defect-sensitive phosphoric acid etch reveals these opencore threading dislocations in the form of large, micron-scale hexagonal etch pits visible with optical microscopy, while closed-core screw-, edge-, and mixed-type threading dislocations are represented by smaller and more numerous nanometer-scale pits visible by atomic-force microscopy. The electrical and optical performances of DUV-LEDs fabricated on similar Si-doped Al0.7Ga0.3N templatesmore » are found to have a strong correlation to the density of these nanopipes, despite their small fraction (<0.1% in this study) of the total density of threading dislocations.« less
NASA Astrophysics Data System (ADS)
Suo, Hiromasa; Tsukimoto, Susumu; Eto, Kazuma; Osawa, Hiroshi; Kato, Tomohisa; Okumura, Hajime
2018-06-01
The increase in threading dislocation during the initial stage of physical vapor transport growth of n-type 4H-SiC crystals was evaluated by cross-sectional X-ray topography. Crystals were grown under two different temperature conditions. A significant increase in threading dislocation was observed in crystals grown at a high, not low, temperature. The local strain distribution in the vicinity of the grown/seed crystal interface was evaluated using the electron backscatter diffraction technique. The local nitrogen concentration distribution was also evaluated by time-of-flight secondary ion mass spectrometry. We discuss the relationship between the increase in threading dislocation and the local strain due to thermal stress and nitrogen concentration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Chiao-Yun; Li, Heng; Shih, Yang-Ta
2015-03-02
We systematically investigated the influence of nanoscale V-pits on the internal quantum efficiency (IQE) of InGaN multiple quantum wells (MQWs) by adjusting the underlying superlattices (SLS). The analysis indicated that high barrier energy of sidewall MQWs on V-pits and long diffusion distance between the threading dislocation (TD) center and V-pit boundary were crucial to effectively passivate the non-radiative centers of TDs. For a larger V-pit, the thicker sidewall MQW on V-pit would decrease the barrier energy. On the contrary, a shorter distance between the TD center and V-pit boundary would be observed in a smaller V-pit, which could increase themore » carrier capturing capability of TDs. An optimized V-pit size of approximately 200–250 nm in our experiment could be concluded for MQWs with 15 pairs SLS, which exhibited an IQE value of 70%.« less
Barchuk, Mykhailo; Motylenko, Mykhaylo; Lukin, Gleb; Pätzold, Olf; Rafaja, David
2017-04-01
The microstructure of polar GaN layers, grown by upgraded high-temperature vapour phase epitaxy on [001]-oriented sapphire substrates, was studied by means of high-resolution X-ray diffraction and transmission electron microscopy. Systematic differences between reciprocal-space maps measured by X-ray diffraction and those which were simulated for different densities of threading dislocations revealed that threading dislocations are not the only microstructure defect in these GaN layers. Conventional dark-field transmission electron microscopy and convergent-beam electron diffraction detected vertical inversion domains as an additional microstructure feature. On a series of polar GaN layers with different proportions of threading dislocations and inversion domain boundaries, this contribution illustrates the capability and limitations of coplanar reciprocal-space mapping by X-ray diffraction to distinguish between these microstructure features.
Density of dislocations in CdHgTe heteroepitaxial structures on GaAs(013) and Si(013) substrates
NASA Astrophysics Data System (ADS)
Sidorov, Yu. G.; Yakushev, M. V.; Varavin, V. S.; Kolesnikov, A. V.; Trukhanov, E. M.; Sabinina, I. V.; Loshkarev, I. D.
2015-11-01
Epitaxial layers of Cd x Hg1- x Te (MCT) on GaAs(013) and Si(013) substrates were grown by molecular beam epitaxy. The introduction of ZnTe and CdTe intermediate layers into the structures made it possible to retain the orientation close to that of the substrate in MCT epitaxial layers despite the large mismatch between the lattice parameters. The structures were investigated using X-ray diffraction and transmission electron microscopy. The dislocation families predominantly removing the mismatch between the lattice parameters were found. Transmission electron microscopy revealed Γ-shaped misfit dislocations (MDs), which facilitated the annihilation of threading dislocations. The angles of rotation of the lattice due to the formation of networks of misfit dislocations were measured. It was shown that the density of threading dislocations in the active region of photodiodes is primarily determined by the network of misfit dislocations formed in the MCT/CdTe heterojunction. A decrease in the density of threading dislocations in the MCT film was achieved by cyclic annealing under conditions of the maximally facilitated nonconservative motion of dislocations. The dislocation density was determined from the etch pits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Jianqiu; Yang, Yu; Wu, Fangzhen
Synchrotron X-ray Topography is a powerful technique to study defects structures particularly dislocation configurations in single crystals. Complementing this technique with geometrical and contrast analysis can enhance the efficiency of quantitatively characterizing defects. In this study, the use of Synchrotron White Beam X-ray Topography (SWBXT) to determine the line directions of threading dislocations in 4H–SiC axial slices (sample cut parallel to the growth axis from the boule) is demonstrated. This technique is based on the fact that the projected line directions of dislocations on different reflections are different. Another technique also discussed is the determination of the absolute Burgers vectorsmore » of threading mixed dislocations (TMDs) using Synchrotron Monochromatic Beam X-ray Topography (SMBXT). This technique utilizes the fact that the contrast from TMDs varies on SMBXT images as their Burgers vectors change. By comparing observed contrast with the contrast from threading dislocations provided by Ray Tracing Simulations, the Burgers vectors can be determined. Thereafter the distribution of TMDs with different Burgers vectors across the wafer is mapped and investigated.« less
NASA Astrophysics Data System (ADS)
Shi, Y.; Gosselink, D.; Gharavi, K.; Baugh, J.; Wasilewski, Z. R.
2017-11-01
The optimization of metamorphic buffers for InSb/AlInSb QWs grown on GaAs (0 0 1) substrates is presented. With increasing surface offcut angle towards [ 1 1 bar 0 ] direction, the interaction of spiral growth around threading dislocations (TDs) with the offcut-induced atomic steps leads to a gradual change in the morphology of the AlSb buffer from one dominated by hillocks to that exhibiting near-parallel steps, and finally to a surface with increasing number of localized depressions. With the growth conditions used, the smoothest AlSb surface morphology was obtained for the offcut angles range of 0.8-1.3°. On substrates with 0° offcut, subsequent 3 repeats of Al0.24In0.76 Sb/Al0.12In0.88 Sb interlayers reduces the TD density of AlSb buffer by a factor of 10, while 70 times reduction in the surface density of TD-related hillocks is observed. The remaining hillocks have rectangular footprint and small facet angles with respect to GaAs (0 0 1) surface: 0.4° towards [ 1 1 bar 0 ] direction and 0.7° towards [1 1 0] direction. Their triangular-shaped sidewalls with regularly spaced atomic steps show occasional extra step insertion sites, characteristic of TD outcrops. Many of the observed sidewalls are dislocation free and offer atomically smooth areas of up to 1 μm2, already suitable for high-quality InSb growth and subsequent top-down fabrication of InSb nanowires. It is proposed that the sidewalls of the remaining hillocks offer local vicinal surfaces with atomic step density optimal for suppression of TD-induced spiral growth, thus providing the important information on the exact substrate offcut needed to achieve large hillock-free and atomically smooth areas on AlInSb metamorphic buffers.
NASA Astrophysics Data System (ADS)
Onno, Arthur; Harder, Nils-Peter; Oberbeck, Lars; Liu, Huiyun
2016-03-01
A model, derived from the detailed balance model from Shockley and Queisser, has been adapted to monolithically grown GaAsP/Si tandem dual junction solar cells. In this architecture, due to the difference of lattice parameters between the silicon bottom cell - acting as the substrate - and the GaAsP top cell, threading dislocations (TDs) arise at the IIIV/ Si interface and propagate in the top cell. These TDs act as non-radiative recombination centers, degrading the performances of the tandem cell. Our model takes into account the impact of TDs by integrating the NTT model developed by Yamaguchi et. al.. Two surface geometries have been investigated: flat and ideally textured. Finally the model considers the luminescent coupling (LC) between the cells due to reemitted photons from the top cell cascading to the bottom cell. Without dislocations, LC allows a greater flexibility in the cell design by rebalancing the currents between the two cells when the top cell presents a higher short-circuit current. However we show that, as the TD density (TDD) increases, nonradiative recombinations take over radiative recombinations in the top cell and the LC is quenched. As a result, nonoptimized tandem cells with higher short-circuit current in the top cell experience a very fast degradation of efficiency for TDDs over 104cm-2. On the other hand optimized cells with matching currents only experience a small efficiency drop for TDDs up to 105cm-2. High TDD cells therefore need to be current-matched for optimal performances as the flexibility due to LC is lost.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sung Bo, E-mail: bolee@snu.ac.kr; Han, Heung Nam, E-mail: hnhan@snu.ac.kr; Lee, Dong Nyung
Much research has been done to reduce dislocation densities for the growth of GaN on sapphire, but has paid little attention to the elastic behavior at the GaN/sapphire interface. In this study, we have examined effects of the addition of Si to a sapphire substrate on its elastic property and on the growth of GaN deposit. Si atoms are added to a c-plane sapphire substrate by ion implantation. The ion implantation results in scratches on the surface, and concomitantly, inhomogeneous distribution of Si. The scratch regions contain a higher concentration of Si than other regions of the sapphire substrate surface,more » high-temperature GaN being poorly grown there. However, high-temperature GaN is normally grown in the other regions. The GaN overlayer in the normally-grown regions is observed to have a lower TD density than the deposit on the bare sapphire substrate (with no Si accommodated). As compared with the film on an untreated, bare sapphire, the cathodoluminescence defect density decreases by 60 % for the GaN layer normally deposited on the Si-ion implanted sapphire. As confirmed by a strain mapping technique by transmission electron microscopy (geometric phase analysis), the addition of Si in the normally deposited regions forms a surface layer in the sapphire elastically more compliant than the GaN overlayer. The results suggest that the layer can largely absorb the misfit strain at the interface, which produces the overlayer with a lower defect density. Our results highlight a direct correlation between threading-dislocation density in GaN deposits and the elastic behavior at the GaN/sapphire interface, opening up a new pathway to reduce threading-dislocation density in GaN deposits.« less
NASA Astrophysics Data System (ADS)
O'Reilly, Andrew J.; Quitoriano, Nathaniel J.
2018-02-01
Si0.973Ge0.027 epilayers were grown on a Si (0 0 1) substrate by a lateral liquid-phase epitaxy (LLPE) technique. The lateral growth mechanism favoured the glide of misfit dislocations and inhibited the nucleation of new dislocations by maintaining the thickness less than the critical thicknesses for dislocation nucleation and greater than the critical thickness for glide. This promoted the formation of an array of long misfit dislocations parallel to the [1 1 0] growth direction and reduced the threading dislocation density to 103 cm-2, two orders of magnitude lower than the seed area with an isotropic misfit dislocation network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruterana, Pierre, E-mail: pierre.ruterana@ensicaen.fr; Wang, Yi, E-mail: pierre.ruterana@ensicaen.fr; Chen, Jun, E-mail: pierre.ruterana@ensicaen.fr
A detailed investigation on the misfit and threading dislocations at GaSb/GaAs interface has been carried out using molecular dynamics simulation and quantitative electron microscopy techniques. The sources and propagation of misfit dislocations have been elucidated. The nature and formation mechanisms of the misfit dislocations as well as the role of Sb on the stability of the Lomer configuration have been explained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonhardt, Darin; Han, Sang M.
2011-09-12
We report a technique that significantly reduces threading dislocations in Ge on Si heteroepitaxy. Germanium is first grown on Si and etched to produce pits in the surface where threading dislocations terminate. Further processing leaves a layer of SiO{sub 2} only within etch pits. Subsequent selective epitaxial Ge growth results in coalescence above the SiO{sub 2}. The SiO{sub 2} blocks the threading dislocations from propagating into the upper Ge epilayer. With annealed Ge films grown on Si, the said method reduces the defect density from 2.6 x 10{sup 8} to 1.7 x 10{sup 6} cm{sup -2}, potentially making the layermore » suitable for electronic and photovoltaic devices.« less
NASA Astrophysics Data System (ADS)
Heidelberger, Christopher; Fitzgerald, Eugene A.
2018-04-01
Heterojunction bipolar transistors (HBTs) with GaAs0.825P0.175 bases and collectors and In0.40Ga0.60P emitters were integrated monolithically onto Si substrates. The HBT structures were grown epitaxially on Si via metalorganic chemical vapor deposition, using SiGe compositionally graded buffers to accommodate the lattice mismatch while maintaining threading dislocation density at an acceptable level (˜3 × 106 cm-2). GaAs0.825P0.175 is used as an active material instead of GaAs because of its higher bandgap (increased breakdown voltage) and closer lattice constant to Si. Misfit dislocation density in the active device layers, measured by electron-beam-induced current, was reduced by making iterative changes to the epitaxial structure. This optimized process culminated in a GaAs0.825P0.175/In0.40Ga0.60P HBT grown on Si with a DC current gain of 156. By considering the various GaAsP/InGaP HBTs grown on Si substrates alongside several control devices grown on GaAs substrates, a wide range of threading dislocation densities and misfit dislocation densities in the active layers could be correlated with HBT current gain. The effect of threading dislocations on current gain was moderated by the reduction in minority carrier lifetime in the base region, in agreement with existing models for GaAs light-emitting diodes and photovoltaic cells. Current gain was shown to be extremely sensitive to misfit dislocations in the active layers of the HBT—much more sensitive than to threading dislocations. We develop a model for this relationship where increased base current is mediated by Fermi level pinning near misfit dislocations.
Dislocation filtering in GaN nanostructures.
Colby, Robert; Liang, Zhiwen; Wildeson, Isaac H; Ewoldt, David A; Sands, Timothy D; García, R Edwin; Stach, Eric A
2010-05-12
Dislocation filtering in GaN by selective area growth through a nanoporous template is examined both by transmission electron microscopy and numerical modeling. These nanorods grow epitaxially from the (0001)-oriented GaN underlayer through the approximately 100 nm thick template and naturally terminate with hexagonal pyramid-shaped caps. It is demonstrated that for a certain window of geometric parameters a threading dislocation growing within a GaN nanorod is likely to be excluded by the strong image forces of the nearby free surfaces. Approximately 3000 nanorods were examined in cross-section, including growth through 50 and 80 nm diameter pores. The very few threading dislocations not filtered by the template turn toward a free surface within the nanorod, exiting less than 50 nm past the base of the template. The potential active region for light-emitting diode devices based on these nanorods would have been entirely free of threading dislocations for all samples examined. A greater than 2 orders of magnitude reduction in threading dislocation density can be surmised from a data set of this size. A finite element-based implementation of the eigenstrain model was employed to corroborate the experimentally observed data and examine a larger range of potential nanorod geometries, providing a simple map of the different regimes of dislocation filtering for this class of GaN nanorods. These results indicate that nanostructured semiconductor materials are effective at eliminating deleterious extended defects, as necessary to enhance the optoelectronic performance and device lifetimes compared to conventional planar heterostructures.
Curvature and bow of bulk GaN substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foronda, Humberto M.; Young, Erin C.; Robertson, Christian A.
2016-07-21
We investigate the bow of free standing (0001) oriented hydride vapor phase epitaxy grown GaN substrates and demonstrate that their curvature is consistent with a compressive to tensile stress gradient (bottom to top) present in the substrates. The origin of the stress gradient and the curvature is attributed to the correlated inclination of edge threading dislocation (TD) lines away from the [0001] direction. A model is proposed and a relation is derived for bulk GaN substrate curvature dependence on the inclination angle and the density of TDs. The model is used to analyze the curvature for commercially available GaN substratesmore » as determined by high resolution x-ray diffraction. The results show a close correlation between the experimentally determined parameters and those predicted from theoretical model.« less
High-power AlGaN-based near-ultraviolet light-emitting diodes grown on Si(111)
NASA Astrophysics Data System (ADS)
Li, Zengcheng; Liu, Legong; Huang, Yingnan; Sun, Qian; Feng, Meixin; Zhou, Yu; Zhao, Hanmin; Yang, Hui
2017-07-01
High-power AlGaN-based 385 nm near-ultraviolet light-emitting diodes (UVA-LEDs) grown on Si(111) substrates are reported. The threading dislocation (TD) density of AlGaN was reduced by employing an Al-composition step-graded AlN/AlGaN multilayer buffer. V-shaped pits were intentionally incorporated into the active region to screen the carriers from the nonradiative recombination centers (NRCs) around the TDs and to facilitate hole injection. The light extraction efficiency was enhanced by the surface roughening of a thin-film (TF) vertical chip structure. The as-fabricated TF-UVA-LED exhibited a light output power of 960 mW at 500 mA, corresponding to an external quantum efficiency of 59.7%.
NASA Astrophysics Data System (ADS)
Abadier, Mina; Song, Haizheng; Sudarshan, Tangali S.; Picard, Yoosuf N.; Skowronski, Marek
2015-05-01
Transmission electron microscopy (TEM) and KOH etching were used to analyze the motion of dislocations after the conversion of basal plane dislocations (BPDs) to threading edge dislocations (TEDs) during 4H-SiC epitaxy. The locations of TED etch pits on the epilayer surface were shifted compared to the original locations of BPD etch pits on the substrate surface. The shift of the TED etch pits was mostly along the BPD line directions towards the up-step direction. For converted screw type BPDs, the conversion points were located below the substrate/epilayer interface. The shift distances in the step-flow direction were proportional to the depths of the BPD-TED conversion points below the substrate/epilayer interface. For converted mixed type BPDs, the conversion points were exactly at the interface. Through TEM analysis, it was concluded that the dislocation shift is caused by a combined effect of H2 etching prior to growth and glide of the threading segments during high temperature epitaxy. The TED glide is only possible for converted pure screw type BPDs and could present a viable means for eliminating BPDs from the epilayer during growth by moving the conversion point below the substrate/epilayer interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
France, R. M.; Geisz, J. F.; Steiner, M. A.
Surface crosshatch roughness typically develops during the growth of lattice-mismatched compositionally graded buffers and can limit misfit dislocation glide. In this study, the crosshatch roughness during growth of a compressive GaInP/GaAs graded buffer is reduced by increasing the phosphine partial pressure throughout the metamorphic growth. Changes in the average misfit dislocation length are qualitatively determined by characterizing the threading defect density and residual strain. The decrease of crosshatch roughness leads to an increase in the average misfit dislocation glide length, indicating that the surface roughness is limiting dislocation glide. Growth rate is also analyzed as a method to reduce surfacemore » crosshatch roughness and increase glide length, but has a more complicated relationship with glide kinetics. Using knowledge gained from these experiments, high quality inverted GaInAs 1 eV solar cells are grown on a GaInP compositionally graded buffer with reduced roughness and threading dislocation density. The open circuit voltage is only 0.38 V lower than the bandgap potential at a short circuit current density of 15 mA/cm{sup 2}, suggesting that there is very little loss due to the lattice mismatch.« less
Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si
NASA Astrophysics Data System (ADS)
Jung, Daehwan; Herrick, Robert; Norman, Justin; Turnlund, Katherine; Jan, Catherine; Feng, Kaiyin; Gossard, Arthur C.; Bowers, John E.
2018-04-01
We investigate the impact of threading dislocation density on the reliability of 1.3 μm InAs quantum dot lasers epitaxially grown on Si. A reduction in the threading dislocation density from 2.8 × 108 cm-2 to 7.3 × 106 cm-2 has improved the laser lifetime by about five orders of magnitude when aged continuous-wave near room temperature (35 °C). We have achieved extrapolated lifetimes (time to double initial threshold) more than 10 × 106 h. An accelerated laser aging test at an elevated temperature (60 °C) reveals that p-modulation doped quantum dot lasers on Si retain superior reliability over unintentionally doped ones. These results suggest that epitaxially grown quantum dot lasers could be a viable approach to realize a reliable, scalable, and efficient light source on Si.
Kim, J H; Nam, D H
2015-10-01
Most surgeons agree that closed treatment provides the best results for condylar fractures in children. Nevertheless, treatment of the paediatric mandibular condyle fracture that is severely displaced or dislocated is controversial. The purpose of this study was to investigate the long-term clinical and radiological outcomes following the treatment of displaced or dislocated condylar fractures in children using threaded Kirschner wire and external rubber traction. This procedure can strengthen the advantage of closed reduction and make up for the shortcomings of open reduction. From March 1, 2005 to December 25, 2011, 11 children aged between 4 and 12 years with displaced or dislocated mandibular condyle fractures were treated using threaded Kirschner wire and external rubber traction under portable C-arm fluoroscopy. All patients had unilateral displaced or dislocated condylar fractures. The follow-up period ranged from 24 to 42 months (mean 29.3 months). Normal occlusion and pain-free function of the temporomandibular joint, without deviation or limitation of jaw opening, was achieved in all patients. This closed reduction technique in displaced or dislocated condylar fractures in children offers a reliable solution in preventing the unfavourable sequelae of closed treatment and the open technique, such as altered morphology, functional disturbances, and facial nerve damage. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Fernandez-Delgado, N.; Herrera, M.; Chisholm, M. F.; ...
2016-04-22
The effect of the application of a thermal annealing on the structural properties of GaSb/GaAs quantum dots (QDs) is analyzed by aberration corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and electron energy loss spectroscopy (EELS). Our results show that the GaSb/GaAs QDs are more elongated after the annealing, and that the interfaces are less abrupt due to the Sb diffusion. We have also found a strong reduction in the misfit dislocation density with the annealing. The analysis by EELS of a threading dislocation has shown that the dislocation core is rich in Sb. In addition, the region ofmore » the GaAs substrate delimited by the threading dislocation is shown to be Sb-rich as well. An enhanced diffusion of Sb due to a mechanism assisted by the dislocation movement is discussed.« less
Wang, George T.; Li, Qiming
2013-04-23
A method for growing low-dislocation-density material atop a layer of the material with an initially higher dislocation density using a monolayer of spheroidal particles to bend and redirect or directly block vertically propagating threading dislocations, thereby enabling growth and coalescence to form a very-low-dislocation-density surface of the material, and the structures made by this method.
Dislocation related droop in InGaN/GaN light emitting diodes investigated via cathodoluminescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pozina, Galia; Ciechonski, Rafal; Bi, Zhaoxia
2015-12-21
Today's energy saving solutions for general illumination rely on efficient white light emitting diodes (LEDs). However, the output efficiency droop experienced in InGaN based LEDs with increasing current injection is a serious limitation factor for future development of bright white LEDs. We show using cathodoluminescence (CL) spatial mapping at different electron beam currents that threading dislocations are active as nonradiative recombination centers only at high injection conditions. At low current, the dislocations are inactive in carrier recombination due to local potentials, but these potentials are screened by carriers at higher injection levels. In CL images, this corresponds to the increasemore » of the dark contrast around dislocations with the injection (excitation) density and can be linked with droop related to the threading dislocations. Our data indicate that reduction of droop in the future efficient white LED can be achieved via a drastic reduction of the dislocation density by using, for example, bulk native substrates.« less
NASA Astrophysics Data System (ADS)
Koshelev, O. A.; Nechaev, D. V.; Sitnikova, A. A.; Ratnikov, V. V.; Ivanov, S. V.; Jmerik, V. N.
2017-11-01
The paper describes experimental results on low temperature plasma-assisted molecular beam epitaxy of GaN/AlN heterostructures on both 6H-SiC and Si(111) substrates. We demonstrate that application of migration enhanced epitaxy and metal-modulated epitaxy for growth of AlN nucleation and buffer layers lowers the screw and edge(total)threading dislocation (TD) densities down to 1.7·108 and 2·109 cm-2, respectively, in a 2.8-μm-thick GaN buffer layer grown atop of AlN/6H-SiC. The screw and total TD densities of 1.2·109 and 7.4·109 cm-2, respectively, were achieved in a 1-μm-thickGaN/AlNheterostructure on Si(111). Stress generation and relaxation in GaN/AlN heterostructures were investigated by using multi-beam optical stress sensor (MOSS) to achieve zero substrate curvature at room temperature. It is demonstrated that a 1-μm-thick GaN/AlN buffer layer grown by PA MBE provides planar substrate morphology in the case of growth on Si substrates whereas 5-μm-thick GaN buffer layers have to be used to achieve the same when growing on 6H-SiC substrates.
2013-08-01
overwhelming nonradiative recombination losses in the antimonide active region. Furthermore, if the growth of the antimonide active region is done on a GaAs...This is important as threading dislocations would introduce a strong nonradiative recombination process in the QWs and relaxation that is not 100...These defects can act as nonradiative recombination centers. Thus, the source of the threading dislocations and their density in the active region
GaN microrod sidewall epitaxial lateral overgrowth on a close-packed microrod template
NASA Astrophysics Data System (ADS)
Duan, Xiaoling; Zhang, Jincheng; Xiao, Ming; Zhang, Jinfeng; Hao, Yue
2018-05-01
We demonstrate a GaN growth method using microrod sidewall epitaxial lateral overgrowth (MSELO) on a close-packed microrod template by a nonlithographic technique. The density and distribution of threading dislocations were determined by the density and distribution of microrods and the nucleation model. MSELO exhibited two different nucleation models determined by the direction and degree of substrate misorientation and the sidewall curvature: one-sidewall and three-sidewall nucleation, predicting the dislocation density values. As a result, the threading dislocation density was markedly decreased from 2 × 109 to 5 × 107 cm‑2 with a small coalescence thickness of ∼2 µm for the close-packed 3000 nm microrod sample.
NASA Astrophysics Data System (ADS)
Li, Lei; Liu, Lei; Wang, Lei; Li, Ding; Song, Jie; Liu, Ningyang; Chen, Weihua; Wang, Yuzhou; Yang, Zhijian; Hu, Xiaodong
2012-09-01
AlN with different thicknesses were grown as interlayers (ILs) between GaN and p-type Al0.15Ga0.85N/GaN superlattices (SLs) by metal organic vapor phase epitaxy (MOVPE). It was found that the edge-type threading dislocation density (TDD) increased gradually from the minimum of 2.5×109 cm-2 without AlN IL to the maximum of 1×1010 cm-2 at an AlN thickness of 20 nm, while the screw-type TDD remained almost unchanged due to the interface-related TD suppression and regeneration mechanism. We obtained that the edge-type dislocations acted as acceptors in p-type Al x Ga1- x N/GaN SLs, through the comparison of the edge-type TDD and hole concentration with different thicknesses of AlN IL. The Mg activation energy was significantly decreased from 153 to 70 meV with a 10-nm AlN IL, which was attributed to the strain modulation between AlGaN barrier and GaN well. The large activation efficiency, together with the TDs, led to the enhanced hole concentration. The variation trend of Hall mobility was also observed, which originated from the scattering at TDs.
Control of epitaxial defects for optimal AlGaN/GaN HEMT performance and reliability
NASA Astrophysics Data System (ADS)
Green, D. S.; Gibb, S. R.; Hosse, B.; Vetury, R.; Grider, D. E.; Smart, J. A.
2004-12-01
High-quality GaN epitaxy continues to be challenged by the lack of matched substrates. Threading dislocations that result from heteroepitaxy are responsible for leakage currents, trapping effects, and may adversely affect device reliability. We have studied the impact of AlN nucleation conditions on the density and character of threading dislocations on SiC substrates. Variation of the nucleation temperature, V/III ratio, and thickness are seen to have a dramatic effect on the balance between edge, screw and mixed character dislocation densities. Electrical and structural properties have been assessed by AFM and XRD on a material level and through DC and RF performance at the device level. The ratio between dislocation characteristics has been established primarily through comparison of symmetric and asymmetric XRD rocking curve widths. The effect of each dislocation type on leakage current, RF power and reliability at 2 GHz, the targeted band for cell phone infrastructure applications, is discussed.
Hu, Hongpo; Zhou, Shengjun; Liu, Xingtong; Gao, Yilin; Gui, Chengqun; Liu, Sheng
2017-01-01
We report on the demonstration of GaN-based ultraviolet light-emitting diodes (UV LEDs) emitting at 375 nm grown on patterned sapphire substrate (PSS) with in-situ low temperature GaN/AlGaN nucleation layers (NLs) and ex-situ sputtered AlN NL. The threading dislocation (TD) densities in GaN-based UV LEDs with GaN/AlGaN/sputtered AlN NLs were determined by high-resolution X-ray diffraction (XRD) and cross-sectional transmission electron microscopy (TEM), which revealed that the TD density in UV LED with AlGaN NL was the highest, whereas that in UV LED with sputtered AlN NL was the lowest. The light output power (LOP) of UV LED with AlGaN NL was 18.2% higher than that of UV LED with GaN NL owing to a decrease in the absorption of 375 nm UV light in the AlGaN NL with a larger bandgap. Using a sputtered AlN NL instead of the AlGaN NL, the LOP of UV LED was further enhanced by 11.3%, which is attributed to reduced TD density in InGaN/AlInGaN active region. In the sputtered AlN thickness range of 10–25 nm, the LOP of UV LED with 15-nm-thick sputtered AlN NL was the highest, revealing that optimum thickness of the sputtered AlN NL is around 15 nm. PMID:28294166
NASA Astrophysics Data System (ADS)
Kurai, Satoshi; Imura, Nobuto; Jin, Li; Miyake, Hideto; Hiramatsu, Kazumasa; Yamada, Yoichi
2018-06-01
We investigated the spatial distribution of luminescence near threading dislocations in AlGaN/AlGaN multiple quantum wells (MQWs) by cathodoluminescence mapping. Emission at the higher-energy side of the AlGaN MQW peak was locally observed near the threading dislocations, which were not accompanied by any surface V-pits. Such higher-energy emission was not observed in the AlGaN epilayers. The energy difference between the AlGaN MQW peak and the higher-energy emission peak increased with increasing barrier-layer Al composition. These results suggest that the origin of the higher-energy emission is likely local thickness fluctuation around dislocations in very thin AlGaN MQWs.
Optimized FPGA Implementation of Multi-Rate FIR Filters Through Thread Decomposition
NASA Technical Reports Server (NTRS)
Zheng, Jason Xin; Nguyen, Kayla; He, Yutao
2010-01-01
Multirate (decimation/interpolation) filters are among the essential signal processing components in spaceborne instruments where Finite Impulse Response (FIR) filters are often used to minimize nonlinear group delay and finite-precision effects. Cascaded (multi-stage) designs of Multi-Rate FIR (MRFIR) filters are further used for large rate change ratio, in order to lower the required throughput while simultaneously achieving comparable or better performance than single-stage designs. Traditional representation and implementation of MRFIR employ polyphase decomposition of the original filter structure, whose main purpose is to compute only the needed output at the lowest possible sampling rate. In this paper, an alternative representation and implementation technique, called TD-MRFIR (Thread Decomposition MRFIR), is presented. The basic idea is to decompose MRFIR into output computational threads, in contrast to a structural decomposition of the original filter as done in the polyphase decomposition. Each thread represents an instance of the finite convolution required to produce a single output of the MRFIR. The filter is thus viewed as a finite collection of concurrent threads. The technical details of TD-MRFIR will be explained, first showing its applicability to the implementation of downsampling, upsampling, and resampling FIR filters, and then describing a general strategy to optimally allocate the number of filter taps. A particular FPGA design of multi-stage TD-MRFIR for the L-band radar of NASA's SMAP (Soil Moisture Active Passive) instrument is demonstrated; and its implementation results in several targeted FPGA devices are summarized in terms of the functional (bit width, fixed-point error) and performance (time closure, resource usage, and power estimation) parameters.
NASA Astrophysics Data System (ADS)
Saroj, Rajendra K.; Dhar, S.
2016-08-01
ZnO epitaxial layers are grown on c-plane GaN (p-type)/sapphire substrates using a chemical vapor deposition technique. Structural and luminescence properties of these layers have been studied systematically as a function of various growth parameters. It has been found that high quality ZnO epitaxial layers can indeed be grown on GaN films at certain optimum conditions. It has also been observed that the growth temperature and growth time have distinctly different influences on the screw and edge dislocation densities. While the growth temperature affects the density of edge dislocations more strongly than that of screw dislocations, an increase of growth duration leads to a rapid drop in the density of screw dislocation, whereas the density of edge dislocation hardly changes. Densities of both edge and screw dislocations are found to be minimum at a growth temperature of 500 °C. Interestingly, the defect related visible luminescence intensity also shows a minimum at the same temperature. Our study indeed suggests that the luminescence feature is related to threading edge dislocation. A continuum percolation model, where the defects responsible for visible luminescence are considered to be formed under the influence of the strain field surrounding the threading edge dislocations, is proposed. The theory explains the observed variation of the visible luminescence intensity as a function of the concentration of the dislocations.
NASA Astrophysics Data System (ADS)
Chong, Haining; Wang, Zhewei; Chen, Chaonan; Xu, Zemin; Wu, Ke; Wu, Lan; Xu, Bo; Ye, Hui
2018-04-01
In order to suppress dislocation generation, we develop a "three-step growth" method to heteroepitaxy low dislocation density germanium (Ge) layers on silicon with the MBE process. The method is composed of 3 growth steps: low temperature (LT) seed layer, LT-HT intermediate layer as well as high temperature (HT) epilayer, successively. Threading dislocation density (TDD) of epitaxial Ge layers is measured as low as 1.4 × 106 cm-2 by optimizing the growth parameters. The results of Raman spectrum showed that the internal strain of heteroepitaxial Ge layers is tensile and homogeneous. During the growth of LT-HT intermediate layer, TDD reduction can be obtained by lowering the temperature ramping rate, and high rate deposition maintains smooth surface morphology in Ge epilayer. A mechanism based on thermodynamics is used to explain the TDD and surface morphological dependence on temperature ramping rate and deposition rate. Furthermore, we demonstrate that the Ge layer obtained can provide an excellent platform for III-V materials integrated on Si.
Evolution of stress and microstructure in silicon-doped aluminum gallium nitride thin films
NASA Astrophysics Data System (ADS)
Manning, Ian C.
The present work examines the effects of the Si incorporation on the stress evolution of AlxGa1-xN thin films deposited using metalorganic chemical vapor deposition. Specifically, tensile stress generation was evaluated using an in situ wafer curvature measurement technique, and correlated with the inclination of edge-type threading dislocations observed with transmission electron microscopy (TEM). This microstructural process had been theorized to relax compressive strain with increasing film thickness by expanding the missing planes of atoms associated with the dislocations. Prior work regarded dislocation bending as being the result of an effective climb mechanism. In a preliminary investigation, the accuracy of the model derived to quantify the strain induced by dislocation inclination was tested. The relevant parameters were measured to calculate a theoretical stress gradient, which was compared with the gradient as extract from experimental stress data. The predicted value was found to overestimate the measured value. It was also confirmed during the preliminary investigation that Si incorporation alone was sufficient to initiate dislocation bending. The overestimation of the stress gradient yielded by the prediction of the model was then addressed by exploring the effects of dislocation annihilation and fusion reactions occurring during film growth. Si-doped Al0.42Ga 0.58N layers exhibiting inclined threading dislocations were grown to different thicknesses. The dislocation density at the surface of each sample was then measured using plan-view TEM, and was found to be inversely proportional to the thickness. As the original model assumed a constant dislocation density, applying the correction for its reduction yielded a better prediction of the stress evolution. In an attempt to extend the predictive capabilities of the model beyond the single composition examined above, and to better understand the interaction of Si with the host AlxGa1-xN lattice, several sets of AlxGa1-xN films were grown, each with a unique composition. The Si doping level was varied within each set. It was determined that the dominant influence on tensile strain generation is in fact the initial dislocation density, which increased with increasing Al content as observed with plan-view TEM. This was expounded in a series of modeling examples. In addition, threading dislocation inclination was studied in nominally undoped and Si-doped Al xGa1-xN grown under conditions of tensile stress to isolate the influence of Si from that of compressive stress, which had also been found to induce dislocation bending. The effects due to Si and compressive stress were found not to combine as expected, based on a stochastic model of dislocation jog formation that had been developed in prior work to describe the inclination mechanism. Having confirmed the strong, direct relationship between the initial dislocation density and the degree of tensile stress generated in the Al xGa1-xN epilayers during growth, an effort was made to demonstrate the advantage that might be gained by using AlN substrates rather than SiC. In principle, AlN provides a growth surface that inhibits defect formation due to its close similarity to AlxGa1-xN lattice structure and chemistry, particularly at high Al mole fractions. Threading dislocation densities were reduced by an order of magnitude in comparison with samples grown on SiC, with a corresponding reduction in the stress gradient arising from dislocation inclination. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Fan, Zhijian; Jóni, Bertalan; Xie, Lei; Ribárik, Gábor; Ungár, Tamás
2018-04-01
Specimens of cold-rolled zirconium were tensile-deformed along the rolling (RD) and the transverse (TD) directions. The stress-strain curves revealed a strong texture dependence. High resolution X-ray line profile analysis was used to determine the prevailing active slip-systems in the specimens with different textures. The reflections in the X-ray diffraction patterns were separated into two groups. One group corresponds to the major and the other group to the random texture component, respectively. The dislocation densities, the subgrain size and the prevailing active slip-systems were evaluated by using the convolutional multiple whole profile (CMWP) procedure. These microstructure parameters were evaluated separately in the two groups of reflections corresponding to the two different texture components. Significant differences were found in both, the evolution of dislocation densities and the development of the fractions of and
Detection of edge component of threading dislocations in GaN by Raman spectroscopy
NASA Astrophysics Data System (ADS)
Kokubo, Nobuhiko; Tsunooka, Yosuke; Fujie, Fumihiro; Ohara, Junji; Hara, Kazukuni; Onda, Shoichi; Yamada, Hisashi; Shimizu, Mitsuaki; Harada, Shunta; Tagawa, Miho; Ujihara, Toru
2018-06-01
We succeeded in measuring the density and direction of the edge component of threading dislocations (TDs) in c-plane (0001) GaN by micro-Raman spectroscopy mapping. In the micro-Raman spectroscopy mapping of the E2 H peak shift between 567.85 and 567.75 cm‑1, six different contrast images are observed toward directions of < 1\\bar{1}00> . By comparing X-ray topography and etch pit images, the E2 H peak shift is observed where the edge component of TDs exists. In contrast, the E2 H peak is not observed where the screw component of TDs exists.
Characterisation of defects in p-GaN by admittance spectroscopy
NASA Astrophysics Data System (ADS)
Elsherif, O. S.; Vernon-Parry, K. D.; Evans-Freeman, J. H.; Airey, R. J.; Kappers, M.; Humphreys, C. J.
2012-08-01
Mg-doped GaN films have been grown on (0 0 0 1) sapphire using metal organic vapour phase epitaxy. Use of different buffer layer strategies caused the threading dislocation density (TDD) in the GaN to be either approximately 2×109 cm-2 or 1×1010 cm-2. Frequency-dependent capacitance and conductance measurements at temperatures up to 450 K have been used to study the electronic states associated with the Mg doping, and to determine how these are affected by the TDD. Admittance spectroscopy of the films finds a single impurity-related acceptor level with an activation energy of 160±10 meV for [Mg] of about 1×1019 cm-3, and 120±10 eV as the Mg precursor flux decreased. This level is thought to be associated with the Mg acceptor state. The TDD has no discernible effect on the trap detected by admittance spectroscopy. We compare these results with cathodoluminescence measurements reported in the literature, which reveal that most threading dislocations are non-radiative recombination centres, and discuss possible reasons why our admittance spectroscopy have not detected electrically active defects associated with threading dislocations.
NASA Astrophysics Data System (ADS)
Gallheber, B.-C.; Klein, O.; Fischer, M.; Schreck, M.
2017-06-01
In the present study, systematic correlations were revealed between the propagation direction of threading dislocations, the off-axis growth conditions, and the stress state of heteroepitaxial diamond on Ir/YSZ/Si(111). Measurements of the strain tensor ɛ ⃡ by X-ray diffraction and the subsequent calculation of the tensor of intrinsic stress σ ⃡ showed stress-free samples as well as symmetric biaxial stress states for on-axis samples. Transmission electron microscopy (TEM) lamellas were prepared for plan-view studies along the [ 1 ¯ 1 ¯ 1 ¯ ] direction and for cross-section investigations along the [11 2 ¯ ] and [1 1 ¯ 0] zone axes. For samples grown on-axis with parameters which avoid the formation of intrinsic stress, the majority of dislocations have line vectors clearly aligned along [111]. A sudden change to conditions that promote stress formation is correlated with an abrupt bending of the dislocations away from [111]. This behaviour is in nice agreement with the predictions of a model that attributes formation of intrinsic stress to an effective climb of dislocations. Further growth experiments under off-axis conditions revealed the generation of stress states with pronounced in-plane anisotropy of several Gigapascal. Their formation is attributed to the combined action of two basic processes, i.e., the step flow driven dislocation tilting and the temperature dependent effective climb of dislocations. Again, our interpretation is supported by the dislocation propagation derived from TEM observations.
Dislocation gliding and cross-hatch morphology formation in AIII-BV epitaxial heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovalskiy, V. A., E-mail: kovalva@iptm.ru; Vergeles, P. S.; Eremenko, V. G.
2014-12-08
An approach for understanding the origin of cross-hatch pattern (CHP) on the surface of lattice mismatched GaMnAs/InGaAs samples grown on GaAs (001) substrates is developed. It is argued that the motion of threading dislocations in the (111) slip planes during the relaxation of InGaAs buffer layer is more complicated process and its features are similar to the ones of dislocation half-loops gliding in plastically deformed crystals. The heterostructures were characterized by atomic force microscopy and electron beam induced current (EBIC). Detailed EBIC experiments revealed contrast features, which cannot be accounted for by the electrical activity of misfit dislocations at themore » buffer/substrate interface. We attribute these features to specific extended defects (EDs) generated by moving threading dislocations in the partially relaxed InGaAs layers. We believe that the core topology, surface reconstruction, and elastic strains from these EDs accommodated in slip planes play an important role in the CHP formation. The study of such electrically active EDs will allow further understanding of degradation and changes in characteristics of quantum devices based on strained heterostructures.« less
NASA Astrophysics Data System (ADS)
Schulte, K. L.; Zutter, B. T.; Wood, A. W.; Babcock, S. E.; Kuech, T. F.
2014-03-01
Thick InxGa1-xAs metamorphic buffer layers (MBLs) grown by hydride vapor phase epitaxy (HVPE) were studied. Relationships between MBL properties and growth parameters such as grading rate, cap layer thickness, final xInAs, and deposition temperature (TD) were explored. The MBLs were characterized by measurement of in-plane residual strain (ɛ¦¦), surface etch pit density (EPD), and surface roughness. Capping layer thickness had a strong effect on strain relaxation, with thickly capped samples exhibiting the lowest ɛ¦¦. EPD was higher in samples with thicker caps, reflecting their increased relaxation through dislocation generation. ɛ¦¦ and EPD were weakly affected by the grading rate, making capping layer thickness the primary structural parameter which controls these properties. MBLs graded in discrete steps had similar properties to MBLs with continuous grading. In samples with identical thickness and 10-step grading style, ɛ¦¦ increased almost linearly with final xInAs, while total relaxation stayed relatively constant. Relaxation as a function of xInAs could be described by an equilibrium model in which dislocation nucleation is impeded by the energy of the existing dislocation array. EPD was constant from xInAs = 0 to 0.24 then increased exponentially, which is related to the increased dislocation interaction and blocking seen at higher dislocation densities. RMS roughness increased with xInAs above a certain strain rate (0.15%/µm) samples grown below this level possessed large surface hillocks and high roughness values. The elimination of hillocks at higher values of xInAs is attributed to increased density of surface steps and is related to the out-of-plane component of the burgers vector of the dominant type of 60° dislocation. TD did not affect ɛ¦¦ for samples with a given xInAs. EPD tended to increase with TD, indicating dislocation glide likely is impeded at higher temperatures.
NASA Astrophysics Data System (ADS)
Hamachi, T.; Takeuchi, S.; Tohei, T.; Imanishi, M.; Imade, M.; Mori, Y.; Sakai, A.
2018-04-01
The mechanisms associated with electrical conduction through individual threading dislocations (TDs) in a Na-flux GaN crystal grown with a multipoint-seed-GaN technique were investigated by conductive atomic force microscopy (C-AFM). To focus on individual TDs, dislocation-related etch pits (DREPs) were formed on the Na-flux GaN surface by wet chemical etching, after which microscopic Pt electrodes were locally fabricated on the DREPs to form conformal contacts to the Na-flux GaN crystal, using electron beam assisted deposition. The C-AFM data clearly demonstrate that the leakage current flows through the individual TD sites. It is also evident that the leakage current and the electrical conduction mechanism vary significantly based on the area within the Na-flux GaN crystal where the TDs are formed. These regions include the c-growth sector (cGS) in which the GaN grows in the [0001 ] direction on top of the point-seed with a c-plane growth front, the facet-growth sector (FGS) in which the GaN grows with {10 1 ¯ 1 } facets on the side of the cGS, the boundary region between the cGS and FGS (BR), and the coalescence boundary region between FGSs (CBR). The local current-voltage (I-V) characteristics of the specimen demonstrate space charge limited current conduction and conduction related to band-like trap states associated with TDs in the FGS, BR, and CBR. A detailed analysis of the I-V data indicates that the electrical conduction through TDs in the cGS may proceed via the Poole-Frenkel emission mechanism.
Nguyen, H Q; Yu, H W; Luc, Q H; Tang, Y Z; Phan, V T H; Hsu, C H; Chang, E Y; Tseng, Y C
2014-12-05
Using a step-graded (SG) buffer structure via metal-organic chemical vapor deposition, we demonstrate a high suitability of In0.5Ga0.5As epitaxial layers on a GaAs substrate for electronic device application. Taking advantage of the technique's precise control, we were able to increase the number of SG layers to achieve a fairly low dislocation density (∼10(6) cm(-2)), while keeping each individual SG layer slightly exceeding the critical thickness (∼80 nm) for strain relaxation. This met the demanded but contradictory requirements, and even offered excellent scalability by lowering the whole buffer structure down to 2.3 μm. This scalability overwhelmingly excels the forefront studies. The effects of the SG misfit strain on the crystal quality and surface morphology of In0.5Ga0.5As epitaxial layers were carefully investigated, and were correlated to threading dislocation (TD) blocking mechanisms. From microstructural analyses, TDs can be blocked effectively through self-annihilation reactions, or hindered randomly by misfit dislocation mechanisms. Growth conditions for avoiding phase separation were also explored and identified. The buffer-improved, high-quality In0.5Ga0.5As epitaxial layers enabled a high-performance, metal-oxide-semiconductor capacitor on a GaAs substrate. The devices displayed remarkable capacitance-voltage responses with small frequency dispersion. A promising interface trap density of 3 × 10(12) eV(-1) cm(-2) in a conductance test was also obtained. These electrical performances are competitive to those using lattice-coherent but pricey InGaAs/InP systems.
NASA Astrophysics Data System (ADS)
Walde, S.; Brendel, M.; Zeimer, U.; Brunner, F.; Hagedorn, S.; Weyers, M.
2018-04-01
The influence of open-core threading dislocations on the bias-dependent external quantum efficiency (EQE) of bottom-illuminated Al0.5Ga0.5N/AlN metal-semiconductor-metal (MSM) photodetectors (PDs) is presented. These defects originate at the Al0.5Ga0.5N/AlN interface and terminate on the Al0.5Ga0.5N surface as hexagonal prisms. They work as electrically active paths bypassing the Al0.5Ga0.5N absorber layer and therefore alter the behavior of the MSM PDs under bias voltage. This effect is included in the model of carrier collection in the MSM PDs showing a good agreement with the experimental data. While such dislocations usually limit the device performance, the MSM PDs benefit by high EQE at a reduced bias voltage while maintaining a low dark current.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chowdhury, Subhra, E-mail: subhra1109@gmail.com; Biswas, Dhrubes; Department of E and E C E, Indian Institute of Technology Kharagpur, Kharagpur 721302
2015-02-23
This work reports on the detailed plasma-assisted molecular beam epitaxy (PAMBE) growth of ultra-thin In{sub 0.17}Al{sub 0.83}N/GaN heterostructures on Si(111) substrate with three different buffer thickness (600 nm, 400 nm, and 200 nm). Growth through critical optimization of growth conditions is followed by the investigation of impact of varying buffer thickness on the formation of ultra-thin 1.5 nm, In{sub 0.17}Al{sub 0.83}N–1.25 nm, GaN–1.5 nm, In{sub 0.17}Al{sub 0.83}N heterostructure, in terms of threading dislocation (TD) density. Analysis reveals a drastic reduction of TD density from the order 10{sup 10 }cm{sup −2} to 10{sup 8 }cm{sup −2} with increasing buffer thickness resulting smooth ultra-thin active region for thick buffer structure.more » Increasing strain with decreasing buffer thickness is studied through reciprocal space mapping analysis. Surface morphology through atomic force microscopy analysis also supports our study by observing an increase of pits and root mean square value (0.89 nm, 1.2 nm, and 1.45 nm) with decreasing buffer thickness which are resulted due to the internal strain and TDs.« less
Relaxation plastique d'un film mince par émission de dislocations filantes vis
NASA Astrophysics Data System (ADS)
Bonnet, Roland; Youssef, Sami; Neily, Salem; Gutakowskii, A. K.
2008-03-01
The system formed by a thin film coherent with a crystalline substrate can relax its internal energy by annealing. Threading dislocations emitted after ten minutes annealing at 350 °C of the Si 0.68Ge 0.32/Si(001) heterostructure are observed in transmission electron microscopy, and then identified by comparison to simulated images of angular dislocations placed in a semi infinite medium. They are of screw character, which explains the rapid coverage of the interface by 60° dislocations oriented <110>. To cite this article: R. Bonnet et al., C. R. Physique 9 (2008).
GaAsP solar cells on GaP/Si with low threading dislocation density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaung, Kevin Nay; Vaisman, Michelle; Lang, Jordan
2016-07-18
GaAsP on Si tandem cells represent a promising path towards achieving high efficiency while leveraging the Si solar knowledge base and low-cost infrastructure. However, dislocation densities exceeding 10{sup 8} cm{sup −2} in GaAsP cells on Si have historically hampered the efficiency of such approaches. Here, we report the achievement of low threading dislocation density values of 4.0–4.6 × 10{sup 6} cm{sup −2} in GaAsP solar cells on GaP/Si, comparable with more established metamorphic solar cells on GaAs. Our GaAsP solar cells on GaP/Si exhibit high open-circuit voltage and quantum efficiency, allowing them to significantly surpass the power conversion efficiency of previous devices. The resultsmore » in this work show a realistic path towards dual-junction GaAsP on Si cells with efficiencies exceeding 30%.« less
Defect sensitive etching of hexagonal boron nitride single crystals
NASA Astrophysics Data System (ADS)
Edgar, J. H.; Liu, S.; Hoffman, T.; Zhang, Yichao; Twigg, M. E.; Bassim, Nabil D.; Liang, Shenglong; Khan, Neelam
2017-12-01
Defect sensitive etching (DSE) was developed to estimate the density of non-basal plane dislocations in hexagonal boron nitride (hBN) single crystals. The crystals employed in this study were precipitated by slowly cooling (2-4 °C/h) a nickel-chromium flux saturated with hBN from 1500 °C under 1 bar of flowing nitrogen. On the (0001) planes, hexagonal-shaped etch pits were formed by etching the crystals in a eutectic mixture of NaOH and KOH between 450 °C and 525 °C for 1-2 min. There were three types of pits: pointed bottom, flat bottom, and mixed shape pits. Cross-sectional transmission electron microscopy revealed that the pointed bottom etch pits examined were associated with threading dislocations. All of these dislocations had an a-type burgers vector (i.e., they were edge dislocations, since the line direction is perpendicular to the [ 2 11 ¯ 0 ]-type direction). The pit widths were much wider than the pit depths as measured by atomic force microscopy, indicating the lateral etch rate was much faster than the vertical etch rate. From an Arrhenius plot of the log of the etch rate versus the inverse temperature, the activation energy was approximately 60 kJ/mol. This work demonstrates that DSE is an effective method for locating threading dislocations in hBN and estimating their densities.
Dislocation mechanisms in stressed crystals with surface effects
NASA Astrophysics Data System (ADS)
Wu, Chi-Chin; Crone, Joshua; Munday, Lynn; Discrete Dislocation Dynamics Team
2014-03-01
Understanding dislocation properties in stressed crystals is the key for important processes in materials science, including the strengthening of metals and the stress relaxation during the growth of hetero-epitaxial structures. Despite existing experimental approaches and theories, many dislocation mechanisms with surface effects still remain elusive in experiments. Even though discrete dislocation dynamics (DDD) simulations are commonly employed to study dislocations, few demonstrate sufficient computational capabilities for massive dislocations with the combined effects of surfaces and stresses. Utilizing the Army's newly developed FED3 code, a DDD computation code coupled with finite elements, this work presents several dislocation mechanisms near different types of surfaces in finite domains. Our simulation models include dislocations in a bended metallic cantilever beam, near voids in stressed metals, as well as threading and misfit dislocations in as-grown semiconductor epitaxial layers and their quantitative inter-correlations to stress relaxation and surface instability. Our studies provide not only detailed physics of individual dislocation mechanisms, but also important collective dislocation properties such as dislocation densities and strain-stress profiles and their interactions with surfaces.
Recombination properties of dislocations in GaN
NASA Astrophysics Data System (ADS)
Yakimov, Eugene B.; Polyakov, Alexander Y.; Lee, In-Hwan; Pearton, Stephen J.
2018-04-01
The recombination activity of threading dislocations in n-GaN with different dislocation densities and different doping levels was studied using electron beam induced current (EBIC). The recombination velocity on a dislocation, also known as the dislocation recombination strength, was calculated. The results suggest that dislocations in n-GaN giving contrast in EBIC are charged and surrounded by a space charge region, as evidenced by the observed dependence of dislocation recombination strength on dopant concentration. For moderate (below ˜108 cm-2) dislocation densities, these defects do not primarily determine the average diffusion length of nonequilibrium charge carriers, although locally, dislocations are efficient recombination sites. In general, it is observed that the effect of the growth method [standard metalorganic chemical vapor deposition (MOCVD), epitaxial lateral overgrowth versions of MOCVD, and hydride vapor phase epitaxy] on the recombination activity of dislocations is not very pronounced, although the average diffusion lengths can widely differ for various samples. The glide of basal plane dislocations at room temperature promoted by low energy electron irradiation does not significantly change the recombination properties of dislocations.
NASA Astrophysics Data System (ADS)
Zhou, Wei
Analytical Transmission Electron Microscopy (TEM) and High Resolution Electron Microscopy have been carried out to characterize microstructures and nanostructures in various III-V compound semiconductor devices by metalorganic chemical vapor deposition (MOCVD). The low-defect GaN nonplanar templates by lateral epitaxial overgrowth (LEO) has a trapezoidal cross-section with smooth (0001) and {112¯2} facets. Penetration of threading dislocations (TDs) beyond mask windows is observed in ordinary LEO substrates. In two-step LEO substrates, where TDs are engineered to bend 90° in the TD bending layer after the first LEO step, only perfect a-type dislocations with Burgers vector b = 1/3 <112¯0> are generated in the upper Post-bending layer with a density of ˜8 x 107cm-2. The demonstrated 3-dimensional dislocation spatial distribution in the LEO nonplanar substrate substantiates the dislocation reaction mechanism. Al0.07GaN/GaN superlattice can further decrease dislocations. InGaN QW thickness enhancement on top of GaN nonplanar templates has been verified to influence the optoelectronic properties significantly. Dense arrays of hexagonally ordered MOCVD-grown (In)(Ga)As nano-QDs by block copolymer nanolithography & selective area growth (SAG), approximately 20nm in diameter and 40nm apart with a density of 1011/cm 2, are perfect crystals by TEM. V-shaped defects and worse InAs growth uniformity have been observed in multiple layers of vertically coupled self-assembled InAs nanostructure arrays on strain-modulated GaAs substrates. TEM shows a smooth coalesced GaN surface with a thickness as thin as ˜200nm after Nano-LEO and a defect reduction of 70%-75%. The (In)GaAs 20 nm twist bonded compliant substrates have almost no compliant effect and higher dislocation density, but the 10nm compliant substrates are on the contrary. A 60nm oxygen-infiltrated crystallized transition layer is observed between the amorphous oxidized layer and the crystallized unoxidized aperture in Al xGa1-xAs wet lateral oxidation, potentially influencing the current confinement characteristic of the sub-micron oxide aperture. Almost no dislocation is aroused by the wet lateral oxidation of In0.52Al 0.48As in the InP microresonator waveguides. XTEM was performed to compare InP SAG regions with 10˜50mum masks, which shows the performance deterioration of laser threshold current densities in the case of 50mum mask results from high density of dislocations induced from the highly strained QW structures caused by the high enhancements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Dong-Dong; Department of Physics, Tsinghua University, Beijing 100084; Wang, Lian-shan, E-mail: ls-wang@semi.ac.cn
In this paper, a theory is developed to study the anisotropic scattering effect of the inclined misfit dislocation on the two-dimensional electron gas in Al(In)GaN/GaN heterostructures. The inclined misfit dislocation, which differs from the well-known vertical threading dislocation, has a remarkable tilt angle from the vertical. The predicted electron mobility shows a remarkable anisotropy. It has a maximum mobility value along the direction perpendicular to the projection of the inclined dislocation line, and a minimum mobility value along the direction parallel to the projection. The degree of the anisotropic scattering effect will be even greater with the increase of themore » tilt angle.« less
Ren, Fan; Pearton, Stephen J.; Ahn, Shihyun; ...
2017-09-26
AlGaN/GaN high electron mobility transistors (HEMTs) were demonstrated for structures grown on ZrTi metallic alloy buffer layers, which provided lattice matching of the in-plane lattice parameter (“a-parameter”) to hexagonal GaN. The quality of the GaN buffer layer and HEMT structure were confirmed with X-ray 2θ and rocking scans as well as cross-section transmission electron microscopy (TEM) images. The X-ray 2θ scans showed full widths at half maximum (FWHM) of 0.06°, 0.05° and 0.08° for ZrTi alloy, GaN buffer layer, and the entire HEMT structure, respectively. TEM of the lower section of the HEMT structure containing the GaN buffer layer andmore » the AlN/ZrTi/AlN stack on the Si substrate showed that it was important to grow AlN on the top of ZrTi prior to growing the GaN buffer layer. Finally, the estimated threading dislocation (TD) density in the GaN channel layer of the HEMT structure was in the 10 8 cm -2 range.« less
Tasi, Chi-Tsung; Wang, Wei-Kai; Tsai, Tsung-Yen; Huang, Shih-Yung; Horng, Ray-Hua; Wuu, Dong-Sing
2017-01-01
In this study, a 3-μm-thick AlGaN film with an Al mole fraction of 10% was grown on a nanoscale-patterned sapphire substrate (NPSS) using hydride vapor phase epitaxy (HVPE). The growth mechanism, crystallization, and surface morphology of the epilayers were examined using X-ray diffraction, transmission electron microscopy (TEM), and scanning electron microscopy at various times in the growth process. The screw threading dislocation (TD) density of AlGaN-on-NPSS can improve to 1–2 × 109 cm−2, which is significantly lower than that of the sample grown on a conventional planar sapphire substrate (7 × 109 cm−2). TEM analysis indicated that these TDs do not subsequently propagate to the surface of the overgrown AlGaN layer, but bend or change directions in the region above the voids within the side faces of the patterned substrates, possibly because of the internal stress-relaxed morphologies of the AlGaN film. Hence, the laterally overgrown AlGaN films were obtained by HVPE, which can serve as a template for the growth of ultraviolet III-nitride optoelectronic devices. PMID:28772961
Tasi, Chi-Tsung; Wang, Wei-Kai; Tsai, Tsung-Yen; Huang, Shih-Yung; Horng, Ray-Hua; Wuu, Dong-Sing
2017-05-31
In this study, a 3-μm-thick AlGaN film with an Al mole fraction of 10% was grown on a nanoscale-patterned sapphire substrate (NPSS) using hydride vapor phase epitaxy (HVPE). The growth mechanism, crystallization, and surface morphology of the epilayers were examined using X-ray diffraction, transmission electron microscopy (TEM), and scanning electron microscopy at various times in the growth process. The screw threading dislocation (TD) density of AlGaN-on-NPSS can improve to 1-2 × 10⁸ cm -2 , which is significantly lower than that of the sample grown on a conventional planar sapphire substrate (7 × 10⁸ cm -2 ). TEM analysis indicated that these TDs do not subsequently propagate to the surface of the overgrown AlGaN layer, but bend or change directions in the region above the voids within the side faces of the patterned substrates, possibly because of the internal stress-relaxed morphologies of the AlGaN film. Hence, the laterally overgrown AlGaN films were obtained by HVPE, which can serve as a template for the growth of ultraviolet III-nitride optoelectronic devices.
Origin analysis of expanded stacking faults by applying forward current to 4H-SiC p-i-n diodes
NASA Astrophysics Data System (ADS)
Hayashi, Shohei; Naijo, Takanori; Yamashita, Tamotsu; Miyazato, Masaki; Ryo, Mina; Fujisawa, Hiroyuki; Miyajima, Masaaki; Senzaki, Junji; Kato, Tomohisa; Yonezawa, Yoshiyuki; Kojima, Kazutoshi; Okumura, Hajime
2017-08-01
Stacking faults expanded by the application of forward current to 4H-SiC p-i-n diodes were observed using a transmission electron microscope to investigate the expansion origin. It was experimentally confirmed that long-zonal-shaped stacking faults expanded from basal-plane dislocations converted into threading edge dislocations. In addition, stacking fault expansion clearly penetrated into the substrate to a greater depth than the dislocation conversion point. This downward expansion of stacking faults strongly depends on the degree of high-density minority carrier injection.
NASA Astrophysics Data System (ADS)
Amma, Shin-ichi; Tokumoto, Yuki; Edagawa, Keiichi; Shibata, Naoya; Mizoguchi, Teruyasu; Yamamoto, Takahisa; Ikuhara, Yuichi
2010-05-01
Conductive nanowires were fabricated in GaN thin film by selectively doping of Al along threading dislocations. Electrical current flow localized at the nanowires was directly measured by a contact mode atomic force microscope. The current flow at the nanowires was considered to be Frenkel-Poole emission mode, suggesting the existence of the deep acceptor level along the nanowires as a possible cause of the current flow. The results obtained in this study show the possibility for fabricating nanowires using pipe-diffusion at dislocations in solid thin films.
NASA Astrophysics Data System (ADS)
Bardhan, Abheek; Mohan, Nagaboopathy; Chandrasekar, Hareesh; Ghosh, Priyadarshini; Sridhara Rao, D. V.; Raghavan, Srinivasan
2018-04-01
The bending and interaction of threading dislocations are essential to reduce their density for applications involving III-nitrides. Bending of dislocation lines also relaxes the compressive growth stress that is essential to prevent cracking on cooling down due to tensile thermal expansion mismatch stress while growing on Si substrates. It is shown in this work that surface roughness plays a key role in dislocation bending. Dislocations only bend and relax compressive stresses when the lines intersect a smooth surface. These films then crack. In rough films, dislocation lines which terminate at the bottom of the valleys remain straight. Compressive stresses are not relaxed and the films are relatively crack-free. The reasons for this difference are discussed in this work along with the implications on simultaneously meeting the requirements of films being smooth, crack free and having low defect density for device applications.
The Strength of Binary Junctions in Hexagonal Close-Packed Crystals
2014-03-01
equilib- rium, on either slip plane, the dislocation on that plane intersects both triple points at the same angle with the junc- tion line, regardless...electronic properties of threading dislocations in wide band-gap gallium nitride (a wurtzite crystal structure consisting of two interpenetrating hcp...yield surface was composed of individual points , it pro- vided insight on the resistance of the lock to breaking as a result of the applied stresses. Via
NASA Astrophysics Data System (ADS)
Csiszár, Gábor; Ungár, Tamás; Járó, Márta
2013-06-01
Micro-structure can talk when documentation is missing. In ancient Roman or medieval periods, kings, queens, or just rich people decorated their clothes or even their horse covers richly with miniature jewels or metal threads. The origin or the fabrication techniques of these ancient threads is often unknown. Thirteen thread samples made of gold or gilt silver manufactured during the last sixteen hundred years are investigated for the micro-structure in terms of dislocation density, crystallite size, and planar defects. In a few cases, these features are compared with sub-structure of similar metallic threads prepared in modern, twentieth century workshops. The sub-structure is determined by X-ray line profile analysis, using high resolution diffractograms with negligible instrumental broadening. On the basis of the sub-structure parameters, we attempt to assess the metal-threads manufacturing procedures on samples stemming from the fourth century A.D. until now.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotani, Junji, E-mail: kotani.junji-01@jp.fujitsu.com; Yamada, Atsushi; Ishiguro, Tetsuro
2016-04-11
This paper reports on the electrical characterization of Ni/Au Schottky diodes fabricated on InAlN high-electron-mobility transistor (HEMT) structures grown on low dislocation density free-standing GaN substrates. InAlN HEMT structures were grown on sapphire and GaN substrates by metal-organic vapor phase epitaxy, and the effects of threading dislocation density on the leakage characteristics of Ni/Au Schottky diodes were investigated. Threading dislocation densities were determined to be 1.8 × 10{sup 4 }cm{sup −2} and 1.2 × 10{sup 9 }cm{sup −2} by the cathodoluminescence measurement for the HEMT structures grown on GaN and sapphire substrates, respectively. Leakage characteristics of Ni/Au Schottky diodes were compared between the two samples, andmore » a reduction of the leakage current of about three to four orders of magnitude was observed in the forward bias region. For the high reverse bias region, however, no significant improvement was confirmed. We believe that the leakage current in the low bias region is governed by a dislocation-related Frenkel–Poole emission, and the leakage current in the high reverse bias region originates from field emission due to the large internal electric field in the InAlN barrier layer. Our results demonstrated that the reduction of dislocation density is effective in reducing leakage current in the low bias region. At the same time, it was also revealed that another approach will be needed, for instance, band modulation by impurity doping and insertion of insulating layers beneath the gate electrodes for a substantial reduction of the gate leakage current.« less
Revealing microstructure and dislocation behavior in BAlN/AlGaN heterostructures
NASA Astrophysics Data System (ADS)
Sun, Haiding; Wu, Feng; Park, Young Jae; tahtamouni, T. M. Al; Liao, Che-Hao; Guo, Wenzhe; Alfaraj, Nasir; Li, Kuang-Hui; Anjum, Dalaver H.; Detchprohm, Theeradetch; Dupuis, Russell D.; Li, Xiaohang
2018-01-01
We reveal the microstructure and dislocation behavior in 20-pair B0.14Al0.86N/Al0.70Ga0.30N multiple-stack heterostructures (MSHs) exhibiting an increasing dislocation density along the c-axis, which is attributed to the continuous generation of dislocations (edge and mixed-type) within the individual B0.14Al0.86N layers. At the MSH interfaces, the threading dislocations were accompanied by a string of V-shape pits extending to the surface, leading to interface roughening and the formation of surface columnar features. Strain maps indicated an approximately 1.5% tensile strain and 1% compressive strain in the B0.14Al0.86N and Al0.70Ga0.30N layers, respectively. Twin structures were observed, and the MSH eventually changed from monocrystalline to polycrystalline.
Etch pit investigation of free electron concentration controlled 4H-SiC
NASA Astrophysics Data System (ADS)
Kim, Hong-Yeol; Shin, Yun Ji; Kim, Jung Gon; Harima, Hiroshi; Kim, Jihyun; Bahng, Wook
2013-04-01
Etch pits were investigated using the molten KOH selective etching method to examine dependence of etch pit shape and size on free electron concentration. The free electron concentrations of highly doped 4H-silicon carbide (SiC) were controlled by proton irradiation and thermal annealing, which was confirmed by a frequency shift in the LO-phonon-plasmon-coupled (LOPC) mode on micro-Raman spectroscopy. The proton irradiated sample with 5×1015 cm-2 fluence and an intrinsic semi-insulating sample showed clearly classified etch pits but different ratios of threading screw dislocation (TSD) and threading edge dislocation (TED) sizes. Easily classified TEDs and TSDs on proton irradiated 4H-SiC were restored as highly doped 4H-SiC after thermal annealing due to the recovered carrier concentrations. The etched surface of proton irradiated 4H-SiC and boron implanted SiC showed different surface conditions after activation.
Elevated temperature deformation of TD-nickel base alloys
NASA Technical Reports Server (NTRS)
Petrovic, J. J.; Kane, R. D.; Ebert, L. J.
1972-01-01
Sensitivity of the elevated temperature deformation of TD-nickel to grain size and shape was examined in both tension and creep. Elevated temperature strength increased with increasing grain diameter and increasing L/D ratio. Measured activation enthalpies in tension and creep were not the same. In tension, the internal stress was not proportional to the shear modulus. Creep activation enthalpies increased with increasing L/D ratio and increasing grain diameter, to high values compared with that of the self diffusion enthalpy. It has been postulated that two concurrent processes contribute to the elevated temperature deformation of polycrystalline TD-nickel: (1) diffusion controlled grain boundary sliding, and (2) dislocation motion.
NASA Astrophysics Data System (ADS)
Zhou, Shengjun; Hu, Hongpo; Liu, Xingtong; Liu, Mengling; Ding, Xinghuo; Gui, Chengqun; Liu, Sheng; Guo, L. Jay
2017-11-01
GaN-based ultraviolet-light-emitting diodes (UV LEDs) with 375 nm emission were grown on different-sized patterned sapphire substrates (PSSs) with ex situ 15-nm-thick sputtered AlN nucleation layers by metal-organic chemical vapor deposition (MOCVD). It was observed through in situ optical reflectance monitoring that the transition time from a three-dimensional (3D) island to a two-dimensional (2D) coalescence was prolonged when GaN was grown on a larger PSS, owing to a much longer lateral growth time of GaN. The full widths at half-maximum (FWHMs) of symmetric GaN(002) and asymmetric GaN(102) X-ray diffraction (XRD) rocking curves decreased as the PSS size increased. By cross-sectional transmission electron microscopy (TEM) analysis, it was found that the threading dislocation (TD) density in UV LEDs decreased with increasing pattern size and fill factor of the PSS, thereby resulting in a marked improvement in internal quantum efficiency (IQE). Finite-difference time-domain (FDTD) simulations quantitatively demonstrated a progressive decrease in light extraction efficiency (LEE) as the PSS size increased. However, owing to the significantly reduced TD density in InGaN/AlInGaN multiple quantum wells (MQWs) and thus improved IQE, the light output power of the UV LED grown on a large PSS with a fill factor of 0.71 was 131.8% higher than that of the UV LED grown on a small PSS with a fill factor of 0.4, albeit the UV LED grown on a large PSS exhibited a much lower LEE.
Optimized FPGA Implementation of Multi-Rate FIR Filters Through Thread Decomposition
NASA Technical Reports Server (NTRS)
Kobayashi, Kayla N.; He, Yutao; Zheng, Jason X.
2011-01-01
Multi-rate finite impulse response (MRFIR) filters are among the essential signal-processing components in spaceborne instruments where finite impulse response filters are often used to minimize nonlinear group delay and finite precision effects. Cascaded (multistage) designs of MRFIR filters are further used for large rate change ratio in order to lower the required throughput, while simultaneously achieving comparable or better performance than single-stage designs. Traditional representation and implementation of MRFIR employ polyphase decomposition of the original filter structure, whose main purpose is to compute only the needed output at the lowest possible sampling rate. In this innovation, an alternative representation and implementation technique called TD-MRFIR (Thread Decomposition MRFIR) is presented. The basic idea is to decompose MRFIR into output computational threads, in contrast to a structural decomposition of the original filter as done in the polyphase decomposition. A naive implementation of a decimation filter consisting of a full FIR followed by a downsampling stage is very inefficient, as most of the computations performed by the FIR state are discarded through downsampling. In fact, only 1/M of the total computations are useful (M being the decimation factor). Polyphase decomposition provides an alternative view of decimation filters, where the downsampling occurs before the FIR stage, and the outputs are viewed as the sum of M sub-filters with length of N/M taps. Although this approach leads to more efficient filter designs, in general the implementation is not straightforward if the numbers of multipliers need to be minimized. In TD-MRFIR, each thread represents an instance of the finite convolution required to produce a single output of the MRFIR. The filter is thus viewed as a finite collection of concurrent threads. Each of the threads completes when a convolution result (filter output value) is computed, and activated when the first input of the convolution becomes available. Thus, the new threads get spawned at exactly the rate of N/M, where N is the total number of taps, and M is the decimation factor. Existing threads retire at the same rate of N/M. The implementation of an MRFIR is thus transformed into a problem to statically schedule the minimum number of multipliers such that all threads can be completed on time. Solving the static scheduling problem is rather straightforward if one examines the Thread Decomposition Diagram, which is a table-like diagram that has rows representing computation threads and columns representing time. The control logic of the MRFIR can be implemented using simple counters. Instead of decomposing MRFIRs into subfilters as suggested by polyphase decomposition, the thread decomposition diagrams transform the problem into a familiar one of static scheduling, which can be easily solved as the input rate is constant.
CFD Growth of 3C-SiC on 4H/6H Mesas
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Trunek, Andrew J.; Spry, David J.; Powell, J. Anthony; Du, Hui; Skowronski, Marek; Huang, XianRong; Dudley, Michael
2006-01-01
This article describes growth and characterization of the highest quality reproducible 3C-SiC heteroepitaxial films ever reported. By properly nucleating 3C-SiC growth on top of perfectly on-axis (0001) 4H-SiC mesa surfaces completely free of atomic scale steps and extended defects, growth of 3C-SiC mesa heterofilms completely free of extended crystal defects can be achieved. In contrast, nucleation and growth of 3C-SiC mesa heterofilms on top of 4H-SiC mesas with atomic-scale steps always results in numerous observable dislocations threading through the 3C-SiC epilayer. High-resolution X-ray diffraction and transmission electron microscopy measurements indicate non-trivial in-plane lattice mismatch between the 3C and 4H layers. This mismatch is somewhat relieved in the step-free mesa case via misfit dislocations confined to the 3C/4H interfacial region without dislocations threading into the overlying 3C-SiC layer. These results indicate that the presence or absence of steps at the 3C/4H heteroepitaxial interface critically impacts the quality, defect structure, and relaxation mechanisms of single-crystal heteroepitaxial 3C-SiC films.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyle, Erin C. H., E-mail: erinkyle@umail.ucsb.edu; Kaun, Stephen W.; Burke, Peter G.
2014-05-21
The dependence of electron mobility on growth conditions and threading dislocation density (TDD) was studied for n{sup −}-GaN layers grown by ammonia-based molecular beam epitaxy. Electron mobility was found to strongly depend on TDD, growth temperature, and Si-doping concentration. Temperature-dependent Hall data were fit to established transport and charge-balance equations. Dislocation scattering was analyzed over a wide range of TDDs (∼2 × 10{sup 6} cm{sup −2} to ∼2 × 10{sup 10} cm{sup −2}) on GaN films grown under similar conditions. A correlation between TDD and fitted acceptor states was observed, corresponding to an acceptor state for almost every c lattice translation along each threading dislocation. Optimizedmore » GaN growth on free-standing GaN templates with a low TDD (∼2 × 10{sup 6} cm{sup −2}) resulted in electron mobilities of 1265 cm{sup 2}/Vs at 296 K and 3327 cm{sup 2}/Vs at 113 K.« less
NASA Astrophysics Data System (ADS)
Jeschke, J.; Martens, M.; Hagedorn, S.; Knauer, A.; Mogilatenko, A.; Wenzel, H.; Zeimer, U.; Enslin, J.; Wernicke, T.; Kneissl, M.; Weyers, M.
2018-03-01
AlGaN multiple quantum well laser heterostructures for emission around 240 nm have been grown by metalorganic vapor phase epitaxy on epitaxially laterally overgrown (ELO) AlN/sapphire templates. The edge emitting laser structures showed optically pumped lasing with threshold power densities in the range of 2 MW cm-2. The offcut angle of the sapphire substrates as well as the number and the width of the quantum wells were varied while keeping the total thickness of the gain region constant. A larger offcut angle of 0.2° leads to step bunching on the surface as well as Ga accumulation at the steps, but also to an increased inclination of threading dislocations and coalescence boundaries resulting in a reduced dislocation density and thus a reduced laser threshold in comparison to lasers grown on ELO with an offcut of 0.1°. For low losses, samples with fewer QWs exhibited a lower lasing threshold due to a reduced transparency pump power density while for high losses, caused by a higher threading dislocation density, the quadruple quantum well was favorable due to its higher maximum gain.
Chang, Hung-Yu; Man, Kee-Ming; Liao, Kate Hsiurong; Chiang, Yi-Ying; Chen, Kuen-Bao
2017-09-01
Airway stenting is a well-established method that relieves symptoms and maintains airway patency in patients with airway obstruction. Serious complications caused by airway stents such as stent dislocation and airway obstruction during surgery are life-threatening. An 80-year-old man was treated with bronchial stent for left bronchus obstruction caused by metastatic esophageal cancer. During tracheostomy surgery, he suffered from acute tracheal obstruction caused by dislocated bronchial stent. Esophageal cancer, left bronchus obstruction, respiratory failure, tracheal obstruction. Threading a 5.0-sized endotracheal tube combined with an Eschmann tracheal tube introducer to prop up the collapsed stent. The bronchial stent was re-expanded and threaded into right main bronchus and ventilation restored. Patient with airway stent undergoing surgery with airway involved should be performed under the support of a backup physician and equipment that are capable of handling potentially life-threatening complications of airway stent. If not, in the emergent situation of tracheal obstruction due to tracheal/bronchial stent, protruding through the stent with a suitable, small-sized endotracheal tube with Eschmann tracheal tube introducer may be an alternative skill for saving life weighted with possible complications.
X-ray microbeam three-dimensional topography for dislocation strain-field analysis of 4H-SiC
NASA Astrophysics Data System (ADS)
Tanuma, R.; Mori, D.; Kamata, I.; Tsuchida, H.
2013-07-01
This paper describes the strain-field analysis of threading edge dislocations (TEDs) and basal-plane dislocations (BPDs) in 4H-SiC using x-ray microbeam three-dimensional (3D) topography. This 3D topography enables quantitative strain-field analysis, which measures images of effective misorientations (Δω maps) around the dislocations. A deformation-matrix-based simulation algorithm is developed to theoretically evaluate the Δω mapping. Systematic linear calculations can provide simulated Δω maps (Δωsim maps) of dislocations with different Burgers vectors, directions, and reflection vectors for the desired cross-sections. For TEDs and BPDs, Δω maps are compared with Δωsim maps, and their excellent correlation is demonstrated. Two types of asymmetric reflections, high- and low-angle incidence types, are compared. Strain analyses are also conducted to investigate BPD-TED conversion near an epilayer/substrate interface in 4H-SiC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jandl, Adam, E-mail: jandl@mit.edu; Bulsara, Mayank T.; Fitzgerald, Eugene A.
The properties of InAs{sub x}P{sub 1−x} compositionally graded buffers grown by metal organic chemical vapor deposition are investigated. We report the effects of strain gradient (ε/thickness), growth temperature, and strain initiation sequence (gradual or abrupt strain introduction) on threading dislocation density, surface roughness, epi-layer relaxation, and tilt. We find that gradual introduction of strain causes increased dislocation densities (>10{sup 6}/cm{sup 2}) and tilt of the epi-layer (>0.1°). A method of abrupt strain initiation is proposed which can result in dislocation densities as low as 1.01 × 10{sup 5} cm{sup −2} for films graded from the InP lattice constant to InAs{sub 0.15}P{sub 0.85}.more » A model for a two-energy level dislocation nucleation system is proposed based on our results.« less
Dislocation-pipe diffusion in nitride superlattices observed in direct atomic resolution.
Garbrecht, Magnus; Saha, Bivas; Schroeder, Jeremy L; Hultman, Lars; Sands, Timothy D
2017-04-06
Device failure from diffusion short circuits in microelectronic components occurs via thermally induced migration of atoms along high-diffusivity paths: dislocations, grain boundaries, and free surfaces. Even well-annealed single-grain metallic films contain dislocation densities of about 10 14 m -2 ; hence dislocation-pipe diffusion (DPD) becomes a major contribution at working temperatures. While its theoretical concept was established already in the 1950s and its contribution is commonly measured using indirect tracer, spectroscopy, or electrical methods, no direct observation of DPD at the atomic level has been reported. We present atomically-resolved electron microscopy images of the onset and progression of diffusion along threading dislocations in sequentially annealed nitride metal/semiconductor superlattices, and show that this type of diffusion can be independent of concentration gradients in the system but governed by the reduction of strain fields in the lattice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sintonen, Sakari, E-mail: sakari.sintonen@aalto.fi; Suihkonen, Sami; Jussila, Henri
2014-08-28
The crystal quality of bulk GaN crystals is continuously improving due to advances in GaN growth techniques. Defect characterization of the GaN substrates by conventional methods is impeded by the very low dislocation density and a large scale defect analysis method is needed. White beam synchrotron radiation x-ray topography (SR-XRT) is a rapid and non-destructive technique for dislocation analysis on a large scale. In this study, the defect structure of an ammonothermal c-plane GaN substrate was recorded using SR-XRT and the image contrast caused by the dislocation induced microstrain was simulated. The simulations and experimental observations agree excellently and themore » SR-XRT image contrasts of mixed and screw dislocations were determined. Apart from a few exceptions, defect selective etching measurements were shown to correspond one to one with the SR-XRT results.« less
Method of growing GaN films with a low density of structural defects using an interlayer
Bourret-Courchesne, Edith D.
2003-01-01
A dramatic reduction of the dislocation density in GaN was obtained by insertion of a single thin interlayer grown at an intermediate temperature (IT-IL) after the growth of an initial grown at high temperature. A description of the growth process is presented with characterization results aimed at understanding the mechanisms of reduction in dislocation density. A large percentage of the threading dislocations present in the first GaN epilayer are found to bend near the interlayer and do not propagate into the top layer which grows at higher temperature in a lateral growth mode. TEM studies show that the mechanisms of dislocation reduction are similar to those described for the epitaxial lateral overgrowth process, however a notable difference is the absence of coalescence boundaries.
Solooki, Saeed; Azad, Ali
2014-01-01
Simultaneous middle third clavicle fracture and acromioclavicular joint dislocation is a rare combination injury, as a result of high-energy trauma. We report a patient with a middle third clavicle fracture and ipsilateral grade three-acromioclavicular joint dislocation, which is a rare combination. The patient wanted to get back to work as soon as possible, so the fracture was fixed with reconstruction plate after open reduction and plate contouring; and acromioclavicular joint dislocation was reduced and fixed with two full threaded cancellous screws. One screw was inserted through the plate to the coracoid process. Clinical and radiographic finding revealed complete union of clavicle fracture and anatomical reduction of acromioclavicular joint with pain free full joint range of motion one year after operation. PMID:25207318
NASA Astrophysics Data System (ADS)
Hayashi, Shohei; Yamashita, Tamotsu; Senzaki, Junji; Miyazato, Masaki; Ryo, Mina; Miyajima, Masaaki; Kato, Tomohisa; Yonezawa, Yoshiyuki; Kojima, Kazutoshi; Okumura, Hajime
2018-04-01
The origin of expanded single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes was investigated by the stress-current test. At a stress-current density lower than 25 A cm-2, triangular stacking faults were formed from basal-plane dislocations in the epitaxial layer. At a stress-current density higher than 350 A cm-2, both triangular and long-zone-shaped stacking faults were formed from basal-plane dislocations that converted into threading edge dislocations near the interface between the epitaxial layer and the substrate. In addition, the conversion depth of basal-plane dislocations that expanded into the stacking fault was inside the substrate deeper than the interface. These results indicate that the conversion depth of basal-plane dislocations strongly affects the threshold stress-current density at which the expansion of stacking faults occurs.
NASA Astrophysics Data System (ADS)
Gutiérrez, M.; Lloret, F.; Jurczak, P.; Wu, J.; Liu, H. Y.; Araújo, D.
2018-05-01
The objective of this work is the integration of InGaAs/GaSb/GaAs heterostructures, with high indium content, on GaAs and Si commercial wafers. The design of an interfacial misfit dislocation array, either on GaAs or Si substrates, allowed growth of strain-free devices. The growth of purposely designed superlattices with their active region free of extended defects on both GaAs and Si substrates is demonstrated. Transmission electron microscopy technique is used for the structural characterization and plastic relaxation study. In the first case, on GaAs substrates, the presence of dopants was demonstrated to reduce several times the threading dislocation density through a strain-hardening mechanism avoiding dislocation interactions, while in the second case, on Si substrates, similar reduction of dislocation interactions is obtained using an AlSb/GaSb superlattice. The latter is shown to redistribute spatially the interfacial misfit dislocation array to reduce dislocation interactions.
Low-voltage cross-sectional EBIC for characterisation of GaN-based light emitting devices.
Moldovan, Grigore; Kazemian, Payam; Edwards, Paul R; Ong, Vincent K S; Kurniawan, Oka; Humphreys, Colin J
2007-01-01
Electron beam induced current (EBIC) characterisation can provide detailed information on the influence of crystalline defects on the diffusion and recombination of minority carriers in semiconductors. New developments are required for GaN light emitting devices, which need a cross-sectional approach to provide access to their complex multi-layered structures. A sample preparation approach based on low-voltage Ar ion milling is proposed here and shown to produce a flat cross-section with very limited surface recombination, which enables low-voltage high resolution EBIC characterisation. Dark defects are observed in EBIC images and correlation with cathodoluminescence images identify them as threading dislocations. Emphasis is placed on one-dimensional quantification which is used to show that junction delineation with very good spatial resolution can be achieved, revealing significant roughening of this GaN p-n junction. Furthermore, longer minority carrier diffusion lengths along the c-axis are found at dislocation sites, in both p-GaN and the multi-quantum well (MQW) region. This is attributed to gettering of point defects at threading dislocations in p-GaN and higher escape rate from quantum wells at dislocation sites in the MQW region, respectively. These developments show considerable promise for the use of low-voltage cross-sectional EBIC in the characterisation of point and extended defects in GaN-based devices and it is suggested that this technique will be particularly useful for degradation analysis.
Recent Results from Epitaxial Growth on Step Free 4H-SiC Mesas
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Trunek, Andrew J.; Spry, David J.; Powell, J. Anthony; Du, Hui; Skowronski, Marek; Bassim, Nabil D.; Mastro, Michael A.; Twigg, Mark E.; Holm, Ronald T.;
2006-01-01
This paper updates recent progress made in growth, characterization, and understanding of high quality homoepitaxial and heteroepitaxial films grown on step-free 4H-SiC mesas. First, we report initial achievement of step-free 4H-SiC surfaces with carbon-face surface polarity. Next, we will describe further observations of how step-free 4H-SiC thin lateral cantilever evolution is significantly impacted by crystal faceting behavior that imposes non-uniform film thickness on cantilever undersides. Finally, recent investigations of in-plane lattice constant mismatch strain relief mechanisms observed for heteroepitaxial growth of 3C-SiC as well as 2H-AlN/GaN heterofilms on step-free 4H-SiC mesas will be reviewed. In both cases, the complete elimination of atomic heterointerface steps on the mesa structure enables uniquely well-ordered misfit dislocation arrays to form near the heterointerfaces with remarkable lack of dislocations threading vertically into the heteroepilayers. In the case of 3C-SiC heterofilms, it has been proposed that dislocation half-loops nucleate at mesa edges and glide laterally along the step-free 3C/4H interfaces. In contrast, 3C-SiC and 2H-AlN/GaN heterofilms grown on 4H-SiC mesas with steps exhibit highly disordered interface misfit dislocation structure coupled with 100X greater density of dislocations threading through the thickness of the heteroepilayers. These results indicate that the presence of steps at the heteroepitaxial interface (i.e., on the initial heteroepitaxial nucleation surface) plays a highly important role in the defect structure, quality, and relaxation mechanisms of single-crystal heteroepitaxial films.
Recombination activity of threading dislocations in GaInP influenced by growth temperature
NASA Astrophysics Data System (ADS)
Mukherjee, K.; Reilly, C. H.; Callahan, P. G.; Seward, G. G. E.
2018-04-01
Room-temperature non-radiative recombination is studied at single dislocations in Ga0.5In0.5P quantum wells grown on metamorphic templates using cathodoluminescence and electron channeling contrast imaging. An analysis of the light emission intensity profiles around single dislocations reveals that the average recombination strength of a dislocation decreases by a factor of four and seven as a result of decreasing growth temperature of the GaInP quantum well from 725 to 675 and 625 °C, respectively. This reduction occurs despite little change in the diffusion length, precluding the prospect of inducing carrier localization by ordering and phase separation in GaInP at lower growth temperatures. These observations are rationalized by the premise that point defects or impurities are largely responsible for the recombination activity of dislocations, and the extent of decoration of the dislocation core decreases with temperature. Preliminary evidence for the impact of the Burgers vector is also presented. The lowest growth temperature, however, negatively impacts light emission away from dislocations. Carrier recombination in the bulk and at dislocations needs to be considered together for metamorphic devices, and this work can lead to new techniques to limit non-radiative recombination.
Elevated temperature deformation of thoria dispersed nickel-chromium
NASA Technical Reports Server (NTRS)
Kane, R. D.; Ebert, L. J.
1974-01-01
The deformation behavior of thoria nickel-chromium (TD-NiCr) was examined over the temperature range 593 C (1100 F) to 1260 C (2300 F) in tension and compression and at 1093 C (2000 F) in creep. Major emphasis was placed on: (1) the effects of the material and test related variables (grain size, temperature, stress and strain rate) on the deformation process; and (2) the evaluation of single crystal TD-NiCr material produced by a directional recrystallization process. Elevated temperature yield strength levels and creep activation enthalpies were found to increase with increasing grain size reaching maximum values for the single crystal TD-NiCr. Stress exponent of the steady state creep rate was also significantly higher for the single crystal TD-NiCr as compared to that determined for the polycrystalline materials. The elevated temperature deformation of TD-NiCr was analyzed in terms of two concurrent, parallel processes: diffusion controlled grain boundary sliding, and dislocation motion.
NASA Astrophysics Data System (ADS)
Yako, Motoki; Ishikawa, Yasuhiko; Wada, Kazumi
2018-05-01
A method for reduction of threading dislocation density (TDD) in lattice-mismatched heteroepitaxy is proposed, and the reduction is experimentally verified for Ge on Si. Flat-top epitaxial layers are formed through coalescences of non-planar selectively grown epitaxial layers, and enable the TDD reduction in terms of image force. Numerical calculations and experiments for Ge on Si verify the TDD reduction by this method. The method should be applicable to not only Ge on Si but also other lattice-mismatched heteroepitaxy such as III-V on Si.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Bo Wen; Tan, Kian Hua; Loke, Wan Khai
The relationship between growth temperature and the formation of periodic interfacial misfit (IMF) dislocations via the anion exchange process in InSb/GaAs heteroepitaxy was systematically investigated. The microstructural and electrical properties of the epitaxial layer were characterized using atomic force microscope, high-resolution x-ray diffraction, transmission electron microscopy, and Hall resistance measurement. The formation of interfacial misfit (IMF) dislocation arrays depended on growth temperature. A uniformly distributed IMF array was found in a sample grown at 310 °C, which also exhibited the lowest threading dislocation density. The analysis suggested that an incomplete As-for-Sb anion exchange process impeded the formation of IMF on samplemore » grown above 310 °C. At growth temperature below 310 °C, island coalescence led to the formation of 60° dislocations and the disruption of periodic IMF array. All samples showed higher electron mobility at 300 K than at 77 K.« less
Web Growth Used to Confine Screw Dislocations to Predetermined Lateral Positions in 4H-SiC Epilayers
NASA Technical Reports Server (NTRS)
Powell, J. Anthony; Neudeck, Philip G.; Spry, David J.; Trunek, Andrew J.; Beheim, Glenn M.
2004-01-01
Silicon-carbide- (SiC-) based power devices could enable substantial aerospace electronics benefits over today's silicon-based electronics. However, present-day SiC wafers contain electrically harmful dislocations (including micropipes) that are unpredictably distributed in high densities across all commercial 4H- and 6H-SiC wafers. The NASA Glenn Research Center recently demonstrated a crystal growth process that moves SiC wafer dislocations to predetermined lateral positions in epitaxial layers so that they can be reproducibly avoided during subsequent SiC electronic device fabrication. The process starts by reactive ion etching mesa patterns with enclosed trench regions into commercial on-axis (0001) 4H- or 6H-SiC substrates. An example of a pregrowth mesa geometry with six enclosed triangular-shaped trench regions is shown. After the etch mask is stripped, homoepitaxial growth is carried out in pure stepflow conditions that enable thin cantilevers to grow laterally from the tops of mesas whose pregrowth top surfaces are not threaded by substrate screw dislocations. The image in the bottom figure shows the postgrowth structure that forms after the lateral cantilevers expand to coalesce and completely roof over each of the six triangular trench regions. Atomic force microscope (AFM) measurements of the roof revealed that three elementary screw dislocation growth spirals, each shown in the AFM insets of the bottom image on the previous page, formed in the film roof at three respective points of cantilever film coalescence. The image above shows the structure following an etch in molten potassium hydroxide (KOH) that produced surface etch pits at the dislocation defects. The larger KOH etch pits--S1, S2, and S3--shown in this image correspond to screw dislocations relocated to the final points of cantilever coalescence. The smaller KOH etch pits are consistent with epilayer threading edge dislocations from the pregrowth substrate mesa (P1, P3, and P4) and a final cantilever coalescence point (P2). No defects (i.e., no etch pits) are observed in other cantilevered portions of the film surface. On the basis of the principle of dislocation Burgers vector conservation, we hypothesize that all vertically propagating substrate dislocations in an enclosed trench region become combined into a single dislocation in the webbed film roof at the point of final roof coalescence. The point of final roof coalescence, and therefore the lateral location of a webbed roof dislocation, can be designed into the pregrowth mesa pattern. Screw dislocations with predetermined lateral positions can then be used to provide the new growth steps necessary for growing a 4H/6H-SiC epilayer with a lower dislocation density than the substrate. Devices fabricated on top of such films can be positioned to avoid the preplaced dislocations.
Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD
NASA Astrophysics Data System (ADS)
Bryan, Isaac; Bryan, Zachary; Washiyama, Shun; Reddy, Pramod; Gaddy, Benjamin; Sarkar, Biplab; Breckenridge, M. Hayden; Guo, Qiang; Bobea, Milena; Tweedie, James; Mita, Seiji; Irving, Douglas; Collazo, Ramon; Sitar, Zlatko
2018-02-01
In order to understand the influence of dislocations on doping and compensation in Al-rich AlGaN, thin films were grown by metal organic chemical vapor deposition (MOCVD) on different templates on sapphire and low dislocation density single crystalline AlN. AlGaN grown on AlN exhibited the highest conductivity, carrier concentration, and mobility for any doping concentration due to low threading dislocation related compensation and reduced self-compensation. The onset of self-compensation, i.e., the "knee behavior" in conductivity, was found to depend only on the chemical potential of silicon, strongly indicating the cation vacancy complex with Si as the source of self-compensation. However, the magnitude of self-compensation was found to increase with an increase in dislocation density, and consequently, AlGaN grown on AlN substrates demonstrated higher conductivity over the entire doping range.
Influence of dislocation density on internal quantum efficiency of GaN-based semiconductors
NASA Astrophysics Data System (ADS)
Yu, Jiadong; Hao, Zhibiao; Li, Linsen; Wang, Lai; Luo, Yi; Wang, Jian; Sun, Changzheng; Han, Yanjun; Xiong, Bing; Li, Hongtao
2017-03-01
By considering the effects of stress fields coming from lattice distortion as well as charge fields coming from line charges at edge dislocation cores on radiative recombination of exciton, a model of carriers' radiative and non-radiative recombination has been established in GaN-based semiconductors with certain dislocation density. Using vector average of the stress fields and the charge fields, the relationship between dislocation density and the internal quantum efficiency (IQE) is deduced. Combined with related experimental results, this relationship is fitted well to the trend of IQEs of bulk GaN changing with screw and edge dislocation density, meanwhile its simplified form is fitted well to the IQEs of AlGaN multiple quantum well LEDs with varied threading dislocation densities but the same light emission wavelength. It is believed that this model, suitable for different epitaxy platforms such as MOCVD and MBE, can be used to predict to what extent the luminous efficiency of GaN-based semiconductors can still maintain when the dislocation density increases, so as to provide a reasonable rule of thumb for optimizing the epitaxial growth of GaN-based devices.
Luminescence from defects in GaN
NASA Astrophysics Data System (ADS)
Reshchikov, M. A.; Morkoç, H.
2006-04-01
We briefly review the luminescence properties of defects in GaN and focus on the most interesting defects. In particular, the blue luminescence band peaking at about 3 eV is assigned to different defects and even different types of transitions in undoped, Zn-, C-, and Mg-doped GaN. Another omnipresent luminescence band, the yellow luminescence band may have different origin in nearly dislocation-free freestanding GaN templates, undoped thin layers, and carbon-doped GaN. The Y4 and Y7 lines are caused by recombination at unidentified point defects captured by threading edge dislocations.
Dislocation confinement in the growth of Na flux GaN on metalorganic chemical vapor deposition-GaN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeuchi, S., E-mail: takeuchi@ee.es.osaka-u.ac.jp; Asazu, H.; Nakamura, Y.
2015-12-28
We have demonstrated a GaN growth technique in the Na flux method to confine c-, (a+c)-, and a-type dislocations around the interface between a Na flux GaN crystal and a GaN layer grown by metalorganic chemical vapor deposition (MOCVD) on a (0001) sapphire substrate. Transmission electron microscopy (TEM) clearly revealed detailed interface structures and dislocation behaviors that reduced the density of vertically aligned dislocations threading to the Na flux GaN surface. Submicron-scale voids were formed at the interface above the dislocations with a c component in MOCVD-GaN, while no such voids were formed above the a-type dislocations. The penetration ofmore » the dislocations with a c component into Na flux GaN was, in most cases, effectively blocked by the presence of the voids. Although some dislocations with a c component in the MOCVD-GaN penetrated into the Na flux GaN, their propagation direction changed laterally through the voids. On the other hand, the a-type dislocations propagated laterally and collectively near the interface, when these dislocations in the MOCVD-GaN penetrated into the Na flux GaN. These results indicated that the dislocation propagation behavior was highly sensitive to the type of dislocation, but all types of dislocations were confined to within several micrometers region of the Na flux GaN from the interface. The cause of void formation, the role of voids in controlling the dislocation behavior, and the mechanism of lateral and collective dislocation propagation are discussed on the basis of TEM results.« less
Molecular dynamics studies of InGaN growth on nonpolar (11 2 \\xAF0 ) GaN surfaces
NASA Astrophysics Data System (ADS)
Chu, K.; Gruber, J.; Zhou, X. W.; Jones, R. E.; Lee, S. R.; Tucker, G. J.
2018-01-01
We have performed direct molecular dynamics (MD) simulations of heteroepitaxial vapor deposition of I nxG a1 -xN films on nonpolar (11 2 ¯0 ) wurtzite-GaN surfaces to investigate strain relaxation by misfit-dislocation formation. The simulated growth is conducted on an atypically large scale by sequentially injecting nearly a million individual vapor-phase atoms towards a fixed GaN substrate. We apply time-and-position-dependent boundary constraints to affect the appropriate environments for the vapor phase, the near-surface solid phase, and the bulklike regions of the growing layer. The simulations employ a newly optimized Stillinger-Weber In-Ga-N system interatomic potential wherein multiple binary and ternary structures are included in the underlying density-functional theory and experimental training sets to improve the treatment of the In-Ga-N related interactions. To examine the effect of growth conditions, we study a matrix of 63 different MD-growth simulations spanning seven I nxG a1 -xN -alloy compositions ranging from x =0.0 to x =0.8 and nine growth temperatures above half the simulated melt temperature. We found a composition dependent temperature range where all kinetically trapped defects were eliminated, leaving only quasiequilibrium misfit and threading dislocations present in the simulated films. Based on the MD results obtained in this temperature range, we observe the formation of interfacial misfit and threading dislocation arrays with morphologies strikingly close to those seen in experiments. In addition, we compare the MD-observed thickness-dependent onset of misfit-dislocation formation to continuum-elasticity-theory models of the critical thickness and find reasonably good agreement. Finally, we use the three-dimensional atomistic details uniquely available in the MD-growth histories to directly observe the nucleation of dislocations at surface pits in the evolving free surface.
NASA Astrophysics Data System (ADS)
Lee, JaeWon; Tak, Youngjo; Kim, Jun-Youn; Hong, Hyun-Gi; Chae, Suhee; Min, Bokki; Jeong, Hyungsu; Yoo, Jinwoo; Kim, Jong-Ryeol; Park, Youngsoo
2011-01-01
GaN-based light-emitting-diodes (LEDs) on (1 1 1) Si substrates with internal quantum efficiency (IQE) exceeding 50% have been successfully grown by metal organic vapor phase epitaxy (MOVPE). 3.5 μm thick crack-free GaN epitaxial layers were grown on the Si substrates by the re-growth method on patterned templates. Series of step-graded Al xGa 1- xN epitaxial layers were used as the buffer layers to compensate thermal tensile stresses produced during the post-growth cooling process as well as to reduce the density of threading dislocations (TDs) generated due to the lattice mismatches between III-nitride layers and the silicon substrates. The light-emitting region consisted of 1.8 μm thick n-GaN, 3 periods of InGaN/GaN superlattice, InGaN/GaN multiple quantum wells (MQWs) designed for a peak wavelength of about 455 nm, an electron blocking layer (EBL), and p-GaN. The full-widths at half-maximum (FWHM) of (0 0 0 2) and (1 0 -1 2) ω-rocking curves of the GaN epitaxial layers were 410 and 560 arcsec, respectively. Cross-sectional transmission electron microscopy (TEM) investigation revealed that the propagation of the threading dislocations was mostly limited to the interface between the last Al xGa 1- xN buffer and n-GaN layers. The density of the threading dislocations induced pits of n-GaN, as estimated by atomic force microscopy (AFM), was about 5.5×10 8 cm -2. Temperature dependent photoluminescence (PL) measurements with a relative intensity integration method were carried out to estimate the internal quantum efficiency (IQE) of the light-emitting structures grown on Si, which reached up to 55%.
Defect analysis of the LED structure deposited on the sapphire substrate
NASA Astrophysics Data System (ADS)
Nie, Qichu; Jiang, Zhimin; Gan, Zhiyin; Liu, Sheng; Yan, Han; Fang, Haisheng
2018-04-01
Transmission electron microscope (TEM) and double-crystal X-ray diffraction (DCXRD) measurements have been performed to investigate dislocations of the whole structure of the LED layers deposited on both the conventional (unpatterned sapphire substrate, UPSS) and patterned sapphire substrates (PSS). TEM results show that there exists a dislocation-accumulated region near the substrate/GaN interface, where the dislocation density is much higher with the UPPS than that with the PSS. It indicates that the pattern on the substrate surface is able to block the formation and propagation of dislocations. Further analysis discloses that slope of the pattern is found to suppress the deposition of GaN, and thus to provide more spaces for the epitaxially lateral overgrowth (ELO) of high temperature GaN, which significantly reduces the number of the initial islands, and minimizes dislocation formation due to the island coalescence. V-defect incorporating the threading dislocation is detected in the InGaN/GaN multi-quantum wells (MQWs), and its propagation mechanism is determined as the decrease of the surface energy due to the incorporation of indium. In addition, temperature dependence of dislocation formation is further investigated. The results show that dislocation with the screw component decreases monotonously as temperature goes up. However, edge dislocation firstly drops, and then increases by temperature due to the enhanced thermal mismatch stress. It implies that an optimized range of the growth temperature can be obtained to improve quality of the LED layers.
Imaging the in-plane distribution of helium precipitates at a Cu/V interface
Chen, Di; Li, Nan; Yuryev, Dina; ...
2017-02-15
Here, we describe a transmission electron microscopy investigation of the distribution of helium precipitates within the plane of an interface between Cu and V. Statistical analysis of precipitate locations reveals a weak tendency for interfacial precipitates to align alongmore » $$\\langle$$110$$\\rangle$$-type crystallographic directions within the Cu layer. Comparison of these findings with helium-free Cu/V interfaces suggests that the precipitates may be aggregating preferentially along atomic-size steps in the interface created by threading dislocations in the Cu layer. Our observations also suggest that some precipitates may be aggregating along intersections between interfacial misfit dislocations.« less
Triangular defects in the low-temperature halo-carbon homoepitaxial growth of 4H-SiC
NASA Astrophysics Data System (ADS)
Das, Hrishikesh; Melnychuk, Galyna; Koshka, Yaroslav
2010-06-01
Generation of triangular defects (TDs) is a significant obstacle in the way of increasing the growth rate of the low-temperature halo-carbon homoepitaxial growth of 4H-SiC conducted at 1300 °C. In this work, the structure of the TDs and the factors influencing TD generation were investigated. It has been found that TD concentration at 1300 °C is primarily influenced by the growth rate. Higher concentrations of the TDs were typically observed at the upstream regions of the sample. With the help of KOH defect delineation technique it was established that the locations of the TDs did not coincide with any of the substrate defects. Nucleation of small polycrystalline Si islands is the main origin for the TDs nucleation during the low-temperature growth, especially at moderate-to-low values of the C/Si ratio, which have been previously shown to be favorable for avoiding generation of 3C inclusions and morphology degradation. At typical low-temperature growth conditions, small polycrystalline Si islands can form on SiC surface (predominantly at the upstream portion of the growth zone). Those islands serve as nucleation centers for TDs and subsequently get evaporated. TDs are bound by two or often multiple partial dislocations, which results in one or multiple stacking faults, respectively. When arrays of partial dislocations were present at each edge of a TD, 3C polytype inclusions were often revealed by the oxidation technique and micro-Raman spectroscopy.
Dislocations Accelerate Oxygen Ion Diffusion in La 0.8Sr 0.2MnO 3 Epitaxial Thin Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Navickas, Edvinas; Chen, Yan; Lu, Qiyang
Revealing whether dislocations accelerate oxygen ion transport is important for providing abilities in tuning the ionic conductivity of ceramic materials. In this study, we report how dislocations affect oxygen ion diffusion in Sr-doped LaMnO 3 (LSM), a model perovskite oxide that serves in energy conversion technologies. LSM epitaxial thin films with thicknesses ranging from 10 nm to more than 100 nm were prepared by pulsed laser deposition on single-crystal LaAlO 3 and SrTiO 3 substrates. The lattice mismatch between the film and substrates induces compressive or tensile in-plane strain in the LSM layers. This lattice strain is partially reduced bymore » dislocations, especially in the LSM films on LaAlO 3. Oxygen isotope exchange measured by secondary ion mass spectrometry revealed the existence of at least two very different diffusion coefficients in the LSM films on LaAlO 3. In conclusion, the diffusion profiles can be quantitatively explained by the existence of fast oxygen ion diffusion along threading dislocations that is faster by up to 3 orders of magnitude compared to that in LSM bulk.« less
Dislocations Accelerate Oxygen Ion Diffusion in La0.8Sr0.2MnO3 Epitaxial Thin Films
2017-01-01
Revealing whether dislocations accelerate oxygen ion transport is important for providing abilities in tuning the ionic conductivity of ceramic materials. In this study, we report how dislocations affect oxygen ion diffusion in Sr-doped LaMnO3 (LSM), a model perovskite oxide that serves in energy conversion technologies. LSM epitaxial thin films with thicknesses ranging from 10 nm to more than 100 nm were prepared by pulsed laser deposition on single-crystal LaAlO3 and SrTiO3 substrates. The lattice mismatch between the film and substrates induces compressive or tensile in-plane strain in the LSM layers. This lattice strain is partially reduced by dislocations, especially in the LSM films on LaAlO3. Oxygen isotope exchange measured by secondary ion mass spectrometry revealed the existence of at least two very different diffusion coefficients in the LSM films on LaAlO3. The diffusion profiles can be quantitatively explained by the existence of fast oxygen ion diffusion along threading dislocations that is faster by up to 3 orders of magnitude compared to that in LSM bulk. PMID:28981249
Use of hydrogen etching to remove existing dislocations in GaN epitaxial layers
NASA Astrophysics Data System (ADS)
Yeh, Yen-Hsien; Chu, Chung-Ming; Wu, Yin-Hao; Hsu, Ying-Chia; Yu, Tzu-Yi; Lee, Wei-I.
2015-08-01
In this paper, based on the anisotropic nature of hydrogen (H2) etching on GaN, we describe a new approach to the removal of threading dislocations in GaN layers. The top surfaces of c-plane (Ga-face) and a-plane GaNs are considered stable in H2; therefore, H2 etches only crystal imperfections such as dislocation and basal plane stacking fault (BSF) sites. We used H2 to etch undoped c-plane GaN, n-type c-plane GaN, a-plane GaN, and an InGaN/GaN multiple quantum well structure. Several examinations were performed, indicating deep cavities on the c-plane GaN samples after H2 etching; furthermore, gorge-like grooves were observed on the a-plane GaN samples. The deep cavities on the c-plane GaN were considered the etched dislocation sites, and the gorge-like grooves on the a-plane GaN were considered the etched BSF sites. Photoluminescence measurements were performed and the results indicated that the H2-etched samples demonstrate superior optoelectronic properties, probably because of the elimination of dislocations.
Dislocations Accelerate Oxygen Ion Diffusion in La 0.8Sr 0.2MnO 3 Epitaxial Thin Films
Navickas, Edvinas; Chen, Yan; Lu, Qiyang; ...
2017-10-05
Revealing whether dislocations accelerate oxygen ion transport is important for providing abilities in tuning the ionic conductivity of ceramic materials. In this study, we report how dislocations affect oxygen ion diffusion in Sr-doped LaMnO 3 (LSM), a model perovskite oxide that serves in energy conversion technologies. LSM epitaxial thin films with thicknesses ranging from 10 nm to more than 100 nm were prepared by pulsed laser deposition on single-crystal LaAlO 3 and SrTiO 3 substrates. The lattice mismatch between the film and substrates induces compressive or tensile in-plane strain in the LSM layers. This lattice strain is partially reduced bymore » dislocations, especially in the LSM films on LaAlO 3. Oxygen isotope exchange measured by secondary ion mass spectrometry revealed the existence of at least two very different diffusion coefficients in the LSM films on LaAlO 3. In conclusion, the diffusion profiles can be quantitatively explained by the existence of fast oxygen ion diffusion along threading dislocations that is faster by up to 3 orders of magnitude compared to that in LSM bulk.« less
Parallel Online Temporal Difference Learning for Motor Control.
Caarls, Wouter; Schuitema, Erik
2016-07-01
Temporal difference (TD) learning, a key concept in reinforcement learning, is a popular method for solving simulated control problems. However, in real systems, this method is often avoided in favor of policy search methods because of its long learning time. But policy search suffers from its own drawbacks, such as the necessity of informed policy parameterization and initialization. In this paper, we show that TD learning can work effectively in real robotic systems as well, using parallel model learning and planning. Using locally weighted linear regression and trajectory sampled planning with 14 concurrent threads, we can achieve a speedup of almost two orders of magnitude over regular TD control on simulated control benchmarks. For a real-world pendulum swing-up task and a two-link manipulator movement task, we report a speedup of 20× to 60× , with a real-time learning speed of less than half a minute. The results are competitive with state-of-the-art policy search.
Compositionally graded relaxed AlGaN buffers on semipolar GaN for mid-ultraviolet emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Erin C.; Wu Feng; Haeger, Daniel A.
In this Letter, we report on the growth and properties of relaxed, compositionally graded Al{sub x}Ga{sub 1-x}N buffer layers on freestanding semipolar (2021) GaN substrates. Continuous and step compositional grades with Al concentrations up to x = 0.61 have been achieved, with emission wavelengths in the mid-ultraviolet region as low as 265 nm. Coherency stresses were relaxed progressively throughout the grades by misfit dislocation generation via primary (basal) slip and secondary (non-basal) slip systems. Threading dislocation densities in the final layers of the grades were less than 10{sup 6}/cm{sup 2} as confirmed by plan-view transmission electron microscopy and cathodoluminescence studies.
Compositionally graded relaxed AlGaN buffers on semipolar GaN for mid-ultraviolet emission
NASA Astrophysics Data System (ADS)
Young, Erin C.; Wu, Feng; Romanov, Alexey E.; Haeger, Daniel A.; Nakamura, Shuji; Denbaars, Steven P.; Cohen, Daniel A.; Speck, James S.
2012-10-01
In this Letter, we report on the growth and properties of relaxed, compositionally graded AlxGa1 - xN buffer layers on freestanding semipolar (202¯1) GaN substrates. Continuous and step compositional grades with Al concentrations up to x = 0.61 have been achieved, with emission wavelengths in the mid-ultraviolet region as low as 265 nm. Coherency stresses were relaxed progressively throughout the grades by misfit dislocation generation via primary (basal) slip and secondary (non-basal) slip systems. Threading dislocation densities in the final layers of the grades were less than 106/cm2 as confirmed by plan-view transmission electron microscopy and cathodoluminescence studies.
Sato, Takahiro; Orai, Yoshihisa; Suzuki, Yuya; Ito, Hiroyuki; Isshiki, Toshiyuki; Fukui, Munetoshi; Nakamura, Kuniyasu; Schamp, C T
2017-10-01
To improve the reliability of silicon carbide (SiC) electronic power devices, the characteristics of various kinds of crystal defects should be precisely understood. Of particular importance is understanding the correlation between the surface morphology and the near surface dislocations. In order to analyze the dislocations near the surface of 4H-SiC wafers, a dislocation analysis protocol has been developed. This protocol consists of the following process: (1) inspection of surface defects using low energy scanning electron microscopy (LESEM), (2) identification of small and shallow etch pits using KOH low temperature etching, (3) classification of etch pits using LESEM, (4) specimen preparation of several hundred nanometer thick sample using the in-situ focused ion beam micro-sampling® technique, (5) crystallographic analysis using the selected diffraction mode of the scanning transmission electron microscope (STEM), and (6) determination of the Burgers vector using multi-directional STEM (MD-STEM). The results show a correlation between the triangular terrace shaped surface defects and an hexagonal etch pit arising from threading dislocations, linear shaped surface defects and elliptical shaped etch pits arising from basal plane dislocations. Through the observation of the sample from two orthogonal directions via the MD-STEM technique, a basal plane dislocation is found to dissociate into an extended dislocation bound by two partial dislocations. A protocol developed and presented in this paper enables one to correlate near surface defects of a 4H-SiC wafer with the root cause dislocations giving rise to those surface defects. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chadda, S.; Datye, A.; Dawson, L.R.
InSb/InAsSb strained layer superlattices (SLS) were grown on (001) InSb substrates by molecular beam epitaxy at 425 [degree]C. The active device consisted of an InAs[sub 0.15]Sb[sub 0.85]/InSb superlattice region embedded within a [ital p]-[ital i]-[ital n] junction. The large lattice mismatch between the active device and the substrate required the growth of a buffer. InAs[sub 0.15]Sb[sub 0.85]/InSb SLS, where the average As content was gradually increased, was used as a buffer. The buffer structure was varied to probe its microstructural effect on the capping device. Three distinct approaches (A, B, and C) were used to grow the buffer. Approach Amore » was a four-step buffer where the average content of As in the superlattice was increased in four equal composition steps. This approach led to a crystal with an extensive network of threading dislocations and microcracks. Approach B was to change the average composition in five equal composition steps, thereby decreasing the misfit at the interfaces between composition steps. This led to a decrease in the threading dislocation density but microscopic cracks were still evident. The last approach (C) was to employ migration enhanced epitaxy (MEE) for the growth of the five-step buffer. Samples grown by employing MEE revealed no microcracks but they contained a high density of unusual wiggly'' dislocations at the buffer/device interface. Detailed microstructural analysis by transmission electron microscopy is presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulte, Kevin L.; France, Ryan M.; McMahon, William E.
In this work we develop control over dislocation glide dynamics in Ga xIn 1-xP compositionally graded buffer layers (CGBs) through control of CuPt ordering on the group-III sublattice. The ordered structure is metastable in the bulk, so any glissile dislocation that disrupts the ordered pattern will release stored energy, and experience an increased glide force. Here we show how this connection between atomic ordering and dislocation glide force can be exploited to control the threading dislocation density (TDD) in Ga xIn 1-xP CGBs. When ordered Ga xIn 1-xP is graded from the GaAs lattice constant to InP, the order parametermore » ..eta.. decreases as x decreases, and dislocation glide switches from one set of glide planes to the other. This glide plane switch (GPS) is accompanied by the nucleation of dislocations on the new glide plane, which typically leads to increased TDD. We develop control of the GPS position within a Ga xIn 1-xP CGB through manipulation of deposition temperature, surfactant concentration, and strain-grading rate. We demonstrate a two-stage Ga xIn 1-xP CGB from GaAs to InP with sufficiently low TDD for high performance devices, such as the 4-junction inverted metamorphic multi-junction solar cell, achieved through careful control the GPS position. Here, experimental results are analyzed within the context of a model that considers the force balance on dislocations on the two competing glide planes as a function of the degree of ordering.« less
Ji, Qingbin; Li, Lei; Zhang, Wei; Wang, Jia; Liu, Peichi; Xie, Yahong; Yan, Tongxing; Yang, Wei; Chen, Weihua; Hu, Xiaodong
2016-08-24
The existence of high threading dislocation density (TDD) in GaN-based epilayers is a long unsolved problem, which hinders further applications of defect-sensitive GaN-based devices. Multiple-modulation of epitaxial lateral overgrowth (ELOG) is used to achieve high-quality GaN template on a novel serpentine channel patterned sapphire substrate (SCPSS). The dislocation blocking brought by the serpentine channel patterned mask, coupled with repeated dislocation bending, can reduce the dislocation density to a yet-to-be-optimized level of ∼2 × 10(5) to 2 × 10(6) cm(-2). About 80% area utilization rate of GaN with low TDD and stress relaxation is obtained. The periodical variations of dislocation density, optical properties and residual stress in GaN-based epilayers on SCPSS are analyzed. The quantum efficiency of InGaN/GaN multiple quantum wells (MQWs) on it can be increased by 52% compared with the conventional sapphire substrate. The reduced nonradiative recombination centers, the enhanced carrier localization, and the suppressed quantum confined Stark effect, are the main determinants of improved luminous performance in MQWs on SCPSS. This developed ELOG on serpentine shaped mask needs no interruption and regrowth, which can be a promising candidate for the heteroepitaxy of semipolar/nonpolar GaN and GaAs with high quality.
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Trunek, Andrew J.; Powell, J. Anthony; Picard, Yoosuf N.; Twigg, Mark E.
2009-01-01
Previous studies of (0001) homoepitaxial growth carried out on arrays of small-area mesas etched into on-axis silicon-face 4H-SiC wafers have demonstrated that spiral growth emanating from at least one screw dislocation threading the mesa is necessary in order for a mesa to grow taller in the <0001> (c-axis vertical) direction while maintaining 4H stacking sequence [1]. However, even amongst mesas containing the screw dislocation step source necessary for vertical c-axis growth, we have observed striking differences in the height and faceting that evolve during prolonged homoepitaxial growths. This paper summarizes Atomic Force Microscopy (AFM), Electron Channeling Contrast Imaging (ECCI), Scanning Electron Microscopy (SEM), and optical microscopy observations of this phenomenon. These observations support our initially proposed model [2] that the observed large variation (for mesas where 3C-SiC nucleation has not occurred) is related to the lateral positioning of a screw dislocation step source within each etched mesa. When the screw dislocation step source is located close enough to the developing edge/sidewall facet of a mesa, the c-axis growth rate and facet angle are affected by the resulting interaction. In particular, the intersection (or near intersection) of the inward-sloping mesa sidewall facet with the screw dislocation appears to impede the rate at which the spiral provides new steps required for c-axis growth. Also, the inward slope of the sidewall facet during growth (relative to other sidewalls of the same mesa not near the screw dislocation) seems to be impeded by the screw dislocation. In contrast, mesas whose screw dislocations are centrally located grow vertically, but inward sloping sidewall facets shrink the area of the top (0001) growth surface almost to the point of vanishing.
Effect of gamma-ray irradiation on the device process-induced defects in 4H-SiC epilayers
NASA Astrophysics Data System (ADS)
Miyazaki, T.; Makino, T.; Takeyama, A.; Onoda, S.; Ohshima, T.; Tanaka, Y.; Kandori, M.; Yoshie, T.; Hijikata, Y.
2016-11-01
We investigated the gamma-ray irradiation effect on 4H-SiC device process-induced defects by photoluminescence (PL) imaging and deep level transient spectroscopy (DLTS). We found that basal plane dislocations (BPDs) that were present before the irradiation were eliminated by gamma-ray irradiation of 1 MGy. The reduction mechanism of BPD was discussed in terms of BPD-threading edge dislocation (TED) transformation and shrinkage of stacking faults. In addition, the entire PL image was gradually darkened with increasing absorbed dose, which is presumably due to the point defects generated by gamma-ray irradiation. We obtained DLTS peaks that could be assigned to complex defects, termed RD series, and found that the peaks increased with absorbed dose.
Schulte, Kevin L.; France, Ryan M.; McMahon, William E.; ...
2016-11-17
In this work we develop control over dislocation glide dynamics in Ga xIn 1-xP compositionally graded buffer layers (CGBs) through control of CuPt ordering on the group-III sublattice. The ordered structure is metastable in the bulk, so any glissile dislocation that disrupts the ordered pattern will release stored energy, and experience an increased glide force. Here we show how this connection between atomic ordering and dislocation glide force can be exploited to control the threading dislocation density (TDD) in Ga xIn 1-xP CGBs. When ordered Ga xIn 1-xP is graded from the GaAs lattice constant to InP, the order parametermore » ..eta.. decreases as x decreases, and dislocation glide switches from one set of glide planes to the other. This glide plane switch (GPS) is accompanied by the nucleation of dislocations on the new glide plane, which typically leads to increased TDD. We develop control of the GPS position within a Ga xIn 1-xP CGB through manipulation of deposition temperature, surfactant concentration, and strain-grading rate. We demonstrate a two-stage Ga xIn 1-xP CGB from GaAs to InP with sufficiently low TDD for high performance devices, such as the 4-junction inverted metamorphic multi-junction solar cell, achieved through careful control the GPS position. Here, experimental results are analyzed within the context of a model that considers the force balance on dislocations on the two competing glide planes as a function of the degree of ordering.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolluri, K; Zepeda-Ruiz, L A; Murthy, C S
2005-03-22
Strained semiconductor thin films grown epitaxially on semiconductor substrates of different composition, such as Si{sub 1-x}Ge{sub x}/Si, are becoming increasingly important in modern microelectronic technologies. In this paper, we report a hierarchical computational approach for analysis of dislocation formation, glide motion, multiplication, and annihilation in Si{sub 1-x}Ge{sub x} epitaxial thin films on Si substrates. Specifically, a condition is developed for determining the critical film thickness with respect to misfit dislocation generation as a function of overall film composition, film compositional grading, and (compliant) substrate thickness. In addition, the kinetics of strain relaxation in the epitaxial film during growth or thermalmore » annealing (including post-implantation annealing) is analyzed using a properly parameterized dislocation mean-field theoretical model, which describes plastic deformation dynamics due to threading dislocation propagation. The theoretical results for Si{sub 1-x}Ge{sub x} epitaxial thin films grown on Si (100) substrates are compared with experimental measurements and are used to discuss film growth and thermal processing protocols toward optimizing the mechanical response of the epitaxial film.« less
NASA Technical Reports Server (NTRS)
Wilson, D. J.
1972-01-01
Research was carried out to determine whether an oxide dispersion hardened alloy, TD-Ni, Cr, and low volume fraction gamma prime strengthened nickel-base alloy, Modified Waspaloy, were susceptible to time-dependent edge-notch sensitivity. The results were evaluated in terms of the mechanical characteristics of the alloys and the dislocation motion mechanisms operative. As far as could be determined, the results of the investigation were consistent with the following important concepts developed for Waspaloy and Inconel 718: (1) Time-dependent edge-notch sensitivity occurs when notched specimens are loaded below the approximate 0.2 percent smooth specimen offset yield strength and when data from smooth specimens indicate that small amounts of creep consume large rupture life fractions. (2) When precipitate particles are sheared by dislocations, the deformation is localized and time-dependent notch sensitivity occurs. When dislocations by-pass precipitate particles the deformation is homogeneous. Under these conditions, no time-dependent notch sensitivity has been observed.
2006-09-01
actually seen. A. Hierro , … S. A. Ringel et al., Phys. Stat. Sol (b) 228, 937 (2001). Ohio State U. Use DLTS and DLOS (Deep Level Optical Spectroscopy...to threading dislocations. Also see A. Hierro et al., APL 76, 3064 (2000), where traps at EC-ET=0.58-0.62, 1.35, 2.57-2.64, 3.22eV are seen in GaN
Towards Resonant-State THz Laser Based on Strained p-Ge and SiGe QW Structures
2006-07-01
used. The relaxed compositionally graded Si1-xGex/Si(001) buffer layer with low threading dislocations density have been grown by chemical vapour ...observe in absorption experiments. 5. Intracenter optical transitions between hydrogenic levels in doped silicon, germanium, and gallium arsenid [P...34, b. Critical magnetic field Hc vs valence band splitting Δ. Lines show the calculated Hc(Δ) dependence. 14. The gallium -doped Ge crystals with
Comprehensive Synchronization Elimination for Java (PREPRINT)
2003-01-01
e : % thread-local % reentrant % enclosed Figure...0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 ca ss ow ar y ja va c ja va cu p ja va do c jg l jle x pi zz a ar ra y in st an td b jlo go pl as m a sl ic e Figure 6...1998. [DR98] P. Diniz and M. Rinard. Lock Coarsening: Eliminating Lock Overhead in Automatically Parallelized Object-based Programs. In Journal
NASA Astrophysics Data System (ADS)
Wu, Hualong; Wang, Hailong; Chen, Yingda; Zhang, Lingxia; Chen, Zimin; Wu, Zhisheng; Wang, Gang; Jiang, Hao
2018-05-01
The crystalline quality of AlN epitaxial layers on sapphire substrates was improved by introducing trimethylgallium (TMGa) pulse flow into the growth of AlN nucleation layers. It was found that the density of both screw- and edge-type threading dislocations could be significantly reduced by introducing the TMGa pulse flow. With increasing TMGa pulse flow times, the lateral correlation length (i.e. the grain size) increases and the strain in the AlN epilayers changes from tensile state to compressive state. Unstrained AlN with the least dislocations and a smooth surface was obtained by introducing 2-times TMGa pulse flow. The crystalline improvement is attributed to enhanced lateral growth and improved crystalline orientation by the TMGa pulse flow.
High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography.
Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo
2016-11-04
We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer.
High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography
NASA Astrophysics Data System (ADS)
Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo
2016-11-01
We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer.
High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography
Zhang, Lisheng; Xu, Fujun; Wang, Jiaming; He, Chenguang; Guo, Weiwei; Wang, Mingxing; Sheng, Bowen; Lu, Lin; Qin, Zhixin; Wang, Xinqiang; Shen, Bo
2016-01-01
We report epitaxial growth of AlN films with atomically flat surface on nano-patterned sapphire substrates (NPSS) prepared by nano-imprint lithography. The crystalline quality can be greatly improved by using the optimized 1-μm-period NPSS. The X-ray diffraction ω-scan full width at half maximum values for (0002) and (102) reflections are 171 and 205 arcsec, respectively. The optimized NPSS contribute to eliminating almost entirely the threading dislocations (TDs) originating from the AlN/sapphire interface via bending the dislocations by image force from the void sidewalls before coalescence. In addition, reducing the misorientations of the adjacent regions during coalescence adopting the low lateral growth rate is also essential for decreasing TDs in the upper AlN epilayer. PMID:27812006
Substrate structures for InP-based devices
Wanlass, Mark W.; Sheldon, Peter
1990-01-01
A substrate structure for an InP-based semiconductor device having an InP based film is disclosed. The substrate structure includes a substrate region having a lightweight bulk substrate and an upper GaAs layer. An interconnecting region is disposed between the substrate region and the InP-based device. The interconnecting region includes a compositionally graded intermediate layer substantially lattice-matched at one end to the GaAs layer and substantially lattice-matched at the opposite end to the InP-based film. The interconnecting region further includes a dislocation mechanism disposed between the GaAs layer and the InP-based film in cooperation with the graded intermediate layer, the buffer mechanism blocking and inhibiting propagation of threading dislocations between the substrate region, and the InP-based device.
NASA Astrophysics Data System (ADS)
Jacobs, R. N.; Stoltz, A. J.; Benson, J. D.; Smith, P.; Lennon, C. M.; Almeida, L. A.; Farrell, S.; Wijewarnasuriya, P. S.; Brill, G.; Chen, Y.; Salmon, M.; Zu, J.
2013-11-01
Due to its strong infrared absorption and variable band-gap, HgCdTe is the ideal detector material for high-performance infrared focal-plane arrays (IRFPAs). Next-generation IRFPAs will utilize dual-color high-definition formats on large-area substrates such as Si or GaAs. However, heteroepitaxial growth on these substrates is plagued by high densities of lattice-mismatch-induced threading dislocations (TDs) that ultimately reduce IRFPA operability. Previously we demonstrated a postgrowth technique with the potential to eliminate or move TDs such that they have less impact on detector operability. In this technique, highly reticulated mesa structures are produced in as-grown HgCdTe epilayers, and then subjected to thermal cycle annealing. To fully exploit this technique, better understanding of the inherent mechanism is required. In this work, we employ scanning transmission electron microscopy (STEM) analysis of HgCdTe/CdTe/Si(211) samples prepared by focused ion beam milling. A key factor is the use of defect-decorated samples, which allows for a correlation of etch pits observed on the surface with underlying dislocation segments viewed in cross-section STEM images. We perform an analysis of these dislocations in terms of the general distribution, density, and mobility at various locations within the mesa structures. Based on our observations, we suggest factors that contribute to the underlying mechanism for dislocation gettering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sung Bo, E-mail: bolee@snu.ac.kr; Han, Heung Nam, E-mail: hnhan@snu.ac.kr; Kim, Young-Min
In Part I, we have shown that the addition of Si into sapphire by ion implantationmakes the sapphire substrate elastically softer than for the undoped sapphire. The more compliant layer of the Si-implanted sapphire substrate can absorb the misfit stress at the GaN/sapphire interface, which produces a lower threading-dislocation density in the GaN overlayer. Here in Part II, based on experimental results by electron energy loss spectroscopy and a first-principle molecular orbital calculation in the literature, we suggest that the softening effect of Si results from a reduction of ionic bonding strength in sapphire (α-Al{sub 2}O{sub 3}) with the substitutionmore » of Si for Al.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Gordon, E-mail: Gordon.Schmidt@ovgu.de; Berger, Christoph; Veit, Peter
2015-06-22
Intense emission from GaN islands embedded in AlN resulting from GaN/AlN quantum well growth is directly resolved by performing cathodoluminescence spectroscopy in a scanning transmission electron microscope. Line widths down to 440 μeV are measured in a wavelength region between 220 and 310 nm confirming quantum dot like electronic properties in the islands. These quantum dot states can be structurally correlated to islands of slightly enlarged thicknesses of the GaN/AlN quantum well layer preferentially formed in vicinity to dislocations. The quantum dot states exhibit single photon emission in Hanbury Brown-Twiss experiments with a clear antibunching in the second order correlation function atmore » zero time delay.« less
Triangular dislocation: an analytical, artefact-free solution
NASA Astrophysics Data System (ADS)
Nikkhoo, Mehdi; Walter, Thomas R.
2015-05-01
Displacements and stress-field changes associated with earthquakes, volcanoes, landslides and human activity are often simulated using numerical models in an attempt to understand the underlying processes and their governing physics. The application of elastic dislocation theory to these problems, however, may be biased because of numerical instabilities in the calculations. Here, we present a new method that is free of artefact singularities and numerical instabilities in analytical solutions for triangular dislocations (TDs) in both full-space and half-space. We apply the method to both the displacement and the stress fields. The entire 3-D Euclidean space {R}3 is divided into two complementary subspaces, in the sense that in each one, a particular analytical formulation fulfils the requirements for the ideal, artefact-free solution for a TD. The primary advantage of the presented method is that the development of our solutions involves neither numerical approximations nor series expansion methods. As a result, the final outputs are independent of the scale of the input parameters, including the size and position of the dislocation as well as its corresponding slip vector components. Our solutions are therefore well suited for application at various scales in geoscience, physics and engineering. We validate the solutions through comparison to other well-known analytical methods and provide the MATLAB codes.
Defect reduction in Si-doped Al{sub 0.45}Ga{sub 0.55}N films by SiN{sub x} interlayer method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yang; Chen, Shengchang; Kong, Man
2014-01-28
The dislocation density in AlGaN epitaxial layers with Al content as high as 45% grown on sapphire substrates has been effectively reduced by introducing an in-situ deposited SiN{sub x} nanomask layer in this study. By closely monitoring the evolution of numerous material properties, such as surface morphology, dislocation density, photoluminescence, strain states, and electron mobility of the Si-Al{sub 0.45}Ga{sub 0.55}N layers as the functions of SiN{sub x} interlayer growth time, the surface coverage fraction of SiN{sub x} is found to be a crucial factor determining the strain states and dislocation density. The dependence of the strain states and the dislocationmore » density on the surface coverage fraction of SiN{sub x} nanomask supports the very different growth models of Al-rich AlGaN on SiN{sub x} interlayer due to the reduced nucleation selectivity compared with the GaN counterpart. Compared with GaN, which can only nucleate at open pores of SiN{sub x} nanomask, Al-rich AlGaN can simultaneously nucleate at both open pores and SiN{sub x} covered areas. Dislocations will annihilate at the openings due to the 3D growth initiated on the opening area, while 2D growth mode is preserved on SiN{sub x} and the threading dislocations are also preserved. During the following growth process, lateral overgrowth will proceed from the Al{sub 0.45}Ga{sub 0.55}N islands on the openings towards the regions covered by SiN{sub x}, relaxing the compressive strain and bending the dislocations at the same time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koynov, S.; Topf, M.; Fischer, S.
1997-08-01
GaN films grown on (0001) 6H{endash}SiC and (0001) Al{sub 2}O{sub 3} substrates using low-pressure chemical vapor deposition with GaCl{sub 3} and NH{sub 3} as precursors are comparatively explored by optical, scanning tunneling, and transmission electron microscopy. Independent of the substrate material used, the surface of the GaN layers is covered by hexagonally shaped islands. For GaN on 6H{endash}SiC, the islands are larger in diameter ({approx}50 {mu}m) and rather uniformly distributed. An atomically flat interface is observed for GaN on Al{sub 2}O{sub 3} in contrast to GaN grown on 6H{endash}SiC, where the interface is characterized by large steps. For both substrates,more » faceted holes (named as pinholes) are observed in near-surface regions of the GaN layers occurring with a density of about 7{times}10{sup 8} cm{sup {minus}2}. No unequivocal correlation between the density of pinholes and the density of threading dislocations ({approx}1.6{times}10{sup 10} cm{sup {minus}2} for GaN/Al{sub 2}O{sub 3} and {approx}4{times}10{sup 9} cm{sup {minus}2} for GaN/6H{endash}SiC) can be found. Rather, different types of defects are identified to be correlated with the pinholes, implying a dislocation-independent mechanism for the pinhole formation. Despite the small lattice mismatch between GaN and 6H{endash}SiC, the pronounced original surface roughness of this substrate material is believed to account for both the marked interfacial roughness and the still existing high density of threading dislocations. {copyright} {ital 1997 American Institute of Physics.}« less
Fischer, Andreas; Bausch, Dirk; Richter-Schrag, Hans-Juergen
2013-02-01
The use of self-expandable stents to treat postoperative leaks and fistula in the upper gastrointestinal (GI) tract is an established treatment for leaks of the upper GI tract. However, lumen-to-stent size discrepancies (i.e., after sleeve gastrectomy or esophageal resection) may lead to insufficient sealing of the leaks requiring further surgical intervention. This is mainly due to the relatively small diameter (≤30 mm) of commonly used commercial stents. To overcome this problem, we developed a novel partially covered stent with a shaft diameter of 36 mm and a flare diameter of 40 mm. From September 2008 to September 2010, 11 consecutive patients with postoperative leaks were treated with the novel large diameter stent (gastrectomy, n = 5; sleeve gastrectomy, n = 2; fundoplication after esophageal perforation, n = 2; Roux-en-Y gastric bypass, n = 1; esophageal resection, n = 1). Treatment with commercially available stents (shaft/flare: 23/28 mm and 24/30 mm) had been unsuccessful in three patients before treatment with the large diameter stent. Due to dislocation, the large diameter stent was anchored in four patients (2× intraoperatively with transmural sutures, 2× endoscopically with transnasally externalized threads). Treatment was successful in 11 of 11 patients. Stent placement and removal was easy and safe. The median residence time of the stent was 24 (range, 18-41) days. Stent dislocation occurred in four cases (36 %). It was treated by anchoring the stent. Mean follow-up was 25 (range, 14-40) months. No severe complication occurred during or after intervention and no patient was dysphagic. Using the novel large diameter, partially covered stent to seal leaks in the upper GI tract is safe and effective. The large diameter of the stent does not seem to injure the wall of the upper GI tract. However, stent dislocation sometimes requires anchoring of the stent with sutures or transnasally externalized threads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duc, Tran Thien; School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi; Pozina, Galia
2016-03-07
Development of high performance GaN-based devices is strongly dependent on the possibility to control and understand defects in material. Important information about deep level defects is obtained by deep level transient spectroscopy and minority carrier transient spectroscopy on as-grown and electron irradiated n-type bulk GaN with low threading dislocation density produced by halide vapor phase epitaxy. One hole trap labelled H1 (E{sub V} + 0.34 eV) has been detected on as-grown GaN sample. After 2 MeV electron irradiation, the concentration of H1 increases and at fluences higher than 5 × 10{sup 14 }cm{sup −2}, a second hole trap labelled H2 is observed. Simultaneously, the concentration of twomore » electron traps, labelled T1 (E{sub C} – 0.12 eV) and T2 (E{sub C} – 0.23 eV), increases. By studying the increase of the defect concentration versus electron irradiation fluence, the introduction rate of T1 and T2 using 2 MeV- electrons was determined to be 7 × 10{sup −3 }cm{sup −1} and 0.9 cm{sup −1}, respectively. Due to the low introduction rate of T1, it is suggested that the defect is associated with a complex. The high introduction rate of trap H1 and T2 suggests that the defects are associated with primary intrinsic defects or complexes. Some deep levels previously observed in irradiated GaN layers with higher threading dislocation densities are not detected in present investigation. It is therefore suggested that the absent traps may be related to primary defects segregated around dislocations.« less
Nanoepitaxy of GaAs on a Si(001) substrate using a round-hole nanopatterned SiO2 mask.
Hsu, Chao-Wei; Chen, Yung-Feng; Su, Yan-Kuin
2012-12-14
GaAs is grown by metal-organic vapor-phase epitaxy on a 55 nm round-hole patterned Si substrate with SiO(2) as a mask. The threading dislocations, which are stacked on the lowest energy facet plane, move along the SiO(2) walls, reducing the number of dislocations. The etching pit density of GaAs on the 55 nm round-hole patterned Si substrate is about 3.3 × 10(5) cm(-2). Compared with the full width at half maximum measurement from x-ray diffraction and photoluminescence spectra of GaAs on a planar Si(001) substrate, those of GaAs on the 55 nm round-hole patterned Si substrate are reduced by 39.6 and 31.4%, respectively. The improvement in material quality is verified by transmission electron microscopy, field-emission scanning electron microscopy, Hall measurements, Raman spectroscopy, photoluminescence, and x-ray diffraction studies.
Growth and characterization of an InSb infrared photoconductor on Si via an AlSb/GaSb buffer
NASA Astrophysics Data System (ADS)
Jia, Bo Wen; Tan, Kian Hua; Loke, Wan Khai; Wicaksono, Satrio; Yoon, Soon Fatt
2018-05-01
A 99.6% relaxed InSb layer is grown on a 6° offcut (1 0 0) Si substrate via an AlSb/GaSb buffer using molecular beam epitaxy (MBE). A 200 nm GaSb buffer is first grown on Si and the lattice mismatch between them is accommodated by an interfacial misfit (IMF) array consisting of uniformly distributed 90° misfit dislocations. Si delta doping is introduced during the growth of GaSb to reduce the density of threading dislocation. Subsequently, a 50 nm AlSb buffer is grown followed by a 0.8 μm InSb layer. The InSb layer exhibits a 300 K electron mobility of 22,300 cm2/Vs. An InSb photoconductor on Si is demonstrated with a photoconductive gain from 77 K to 200 K under a 700 °C maintained blackbody.
PREFERED SURGICAL TECHNIQUE USED BY ORTHOPEDISTS IN ACUTE ACROMIOCLAVICULAR DISLOCATION
NISHIMI, ALEXANDRE YUKIO; ARBEX, DEMETRIO SIMÃO; MARTINS, DIOGO LUCAS CAMPOS; GUSMÃO, CARLOS VINICIUS BUARQUE DE; BONGIOVANNI, ROBERTO RANGEL; PASCARELLI, LUCIANO
2016-01-01
ABSTRACT Objective: To determine whether training on shoulder and elbow surgery influences the orthopedist surgeons' preferred technique to address acute acromioclavicular joint dislocation (ACD). Methods: A survey was conducted with shoulder and elbow specialists and general orthopedists on their preferred technique to address acute ACD. Results: Thirty specialists and forty-five general orthopedists joined the study. Most specialists preferred the endobutton technique, while most general orthopedists preferred the modified Phemister procedure for coracoclavicular ligament repair using anchors. We found no difference between specialists and general orthopedists in the number of tunnels used to repair the coracoclavicular ligament; preferred method for wire insertion through the clavicular tunnels; buried versus unburied Kirschner wire insertion for acromioclavicular temporary fixation; and time for its removal; and regarding the suture thread used for deltotrapezoidal fascia closure. Conclusion: Training on shoulder and elbow surgery influences the surgeons' preferred technique to address acute ACD. Level of Evidence V, Expert Opinion. PMID:28149190
Laser diodes with 353 nm wavelength enabled by reduced-dislocation-density AlGaN templates
Crawford, Mary H.; Allerman, Andrew A.; Armstrong, Andrew M.; ...
2015-10-30
We fabricated optically pumped and electrically injected ultraviolet (UV) lasers on reduced-threading-dislocation-density (reduced-TDD) AlGaN templates. The overgrowth of sub-micron-wide mesas in the Al 0.32Ga 0.68N templates enabled a tenfold reduction in TDD, to (2–3) × 10 8 cm –2. Optical pumping of AlGaN hetero-structures grown on the reduced-TDD templates yielded a low lasing threshold of 34 kW/cm 2 at 346 nm. Room-temperature pulsed operation of laser diodes at 353 nm was demonstrated, with a threshold of 22.5 kA/cm 2. Furthermore, reduced-TDD templates have been developed across the entire range of AlGaN compositions, presenting a promising approach for extending laser diodesmore » into the deep UV.« less
NASA Astrophysics Data System (ADS)
Sharma, Amit; Mohan, Sangeneni; Suwas, Satyam
2018-04-01
In this work, a detailed investigation has been performed on hetero-epitaxial growth and microstructural evolution in highly oriented Ni-Mn-Ga (1 0 0) films grown on MgO (1 0 0) substrate using high-resolution X-ray diffraction and orientation imaging microscopy. Mosaicity of the films has been analysed in terms of tilt angle, twist angle, lateral and vertical coherence length and threading dislocation densities by performing rocking curve measurements and reciprocal space mapping. Density of edge dislocations is found to be an order of magnitude higher than the density of screw dislocations, irrespective of film thickness. X-ray pole figure measurements have revealed an orientation relationship of ? || (1 0 0)MgO; ? || [0 0 1]MgO between the film and substrate. Microstructure predicted by X-ray diffraction is in agreement with that obtained from electron microscopy and atomic force microscopy. The evolution of microstructure in the film with increasing thickness has been explained vis-à-vis dislocation generation and growth mechanisms. Orientation imaging microscopy observations indicate evolutionary growth of film by overgrowth mechanism. Decrease in coercivity with film thickness has been explained as an interplay between stress field developed due to crystal defects and magnetic domain pinning due to surface roughness.
The roles of buffer layer thickness on the properties of the ZnO epitaxial films
NASA Astrophysics Data System (ADS)
Tang, Kun; Huang, Shimin; Gu, Shulin; Zhu, Shunming; Ye, Jiandong; Xu, Zhonghua; Zheng, Youdou
2016-12-01
In this article, the authors have investigated the optimization of the buffer thickness for obtaining high-quality ZnO epi-films on sapphire substrates. The growth mechanism of the buffers with different thickness has been clearly revealed, including the initial nucleation and vertical growth, the subsequent lateral growth with small grain coalescence, and the final vertical growth along the existing larger grains. Overall, the quality of the buffer improves with increasing thickness except the deformed surface morphology. However, by a full-scale evaluation of the properties for the epi-layers, the quality of the epi-film is briefly determined by the surface morphology of the buffer, rather than the structural, optical, or electrical properties of it. The best quality epi-layer has been grown on the buffer with a smooth surface and well-coalescent grains. Meanwhile, due to the huge lattice mismatch between sapphire and ZnO, dislocations are inevitably formed during the growth of buffers. More importantly, as the film grows thicker, the dislocations may attracting other smaller dislocations and defects to reduce the total line energy and thus result in the formation of V-shape defects, which are connected with the bottom of the threading dislocations in the buffers. The V-defects appear as deep and large hexagonal pits from top view and they may act as electron traps which would affect the free carrier concentration of the epi-layers.
Structural and thermoelectric properties of epitaxially grown Bi2Te3 thin films and superlattices
NASA Astrophysics Data System (ADS)
Peranio, N.; Eibl, O.; Nurnus, J.
2006-12-01
Multi-quantum-well structures of Bi2Te3 are predicted to have a high thermoelectric figure of merit ZT. Bi2Te3 thin films and Bi2Te3/Bi2(Te0.88Se0.12)3 superlattices (SLs) were grown epitaxially by molecular beam epitaxy on BaF2 substrates with periods of 12 and 6nm, respectively. Reflection high-energy electron diffraction confirmed a layer-by-layer growth, x-ray diffraction yielded the lattice parameters and SL periods and proved epitaxial growth. The in-plane transport coefficients were measured and the thin films and SL had power factors between 28 and 35μW /cmK2. The lattice thermal conductivity varied between 1.60W/mK for Bi2Te3 thin films and 1.01W/mK for a 10nm SL. The best figures of merit ZT were achieved for the SL; however, the values are slightly smaller than those in bulk materials. Thin films and superlattices were investigated in plan view and cross section by transmission electron microscopy. In the Bi2Te3 thin film and SL the dislocation density was found to be 2×1010cm-2. Bending of the SL with amplitudes of 30nm (12nm SL) and 15nm (6nm SL) and a wavelength of 400nm was determined. Threading dislocations were found with a density greater than 2×109cm-2. The superlattice interfaces are strongly bent in the region of the threading dislocations, undisturbed regions have a maximum lateral sie of 500nm. Thin films and SL showed a structural modulation [natural nanostructure (nns)] with a wavelength of 10nm and a wave vector parallel to (1,0,10). This nns was also observed in Bi2Te3 bulk materials and turned out to be of general character for Bi2Te3. The effect of the microstructure on the thermoelectric properties is discussed. The microstructure is governed by the superlattice, the nns, and the dislocations that are present in the films. Our results indicate that the microstructure directly affects the lattice thermal conductivity. Thermopower and electrical conductivity were found to be negatively correlated and no clear dependence of the two quantities on the microstructure could be found.
Sherohman, John W [Livermore, CA; Coombs, III, Arthur W.; Yee, Jick Hong [Livermore, CA; Wu, Kuang Jen J [Cupertino, CA
2007-05-29
For the first time, an aluminum antimonide (AlSb) single crystal substrate is utilized to lattice-match to overlying semiconductor layers. The AlSb substrate establishes a new design and fabrication approach to construct high-speed, low-power electronic devices while establishing inter-device isolation. Such lattice matching between the substrate and overlying semiconductor layers minimizes the formation of defects, such as threaded dislocations, which can decrease the production yield and operational life-time of 6.1-.ANG. family heterostructure devices.
Diamond heteroepitaxial lateral overgrowth
Tang, Y. -H.; Bi, B.; Golding, B.
2015-02-24
A method of diamond heteroepitaxial lateral overgrowth is demonstrated which utilizes a photolithographic metal mask to pattern a thin (001) epitaxial diamond surface. Significant structural improvement was found, with a threading dislocation density reduced by two orders of magnitude at the top surface of a thick overgrown diamond layer. In the initial stage of overgrowth, a reduction of diamond Raman linewidth in the overgrown area was also realized. Thermally-induced stress and internal stress were determined by Raman spectroscopy of adhering and delaminated diamond films. As a result, the internal stress is found to decrease as sample thickness increases.
NASA Astrophysics Data System (ADS)
Wang, H.; Dudley, M.; Wu, F.; Yang, Y.; Raghothamachar, B.; Zhang, J.; Chung, G.; Thomas, B.; Sanchez, E. K.; Mueller, S. G.; Hansen, D.; Loboda, M. J.
2015-05-01
Synchrotron x-ray topography and KOH etching studies have been carried out on n-type 4H-SiC offcut substrates before and after homoepitaxial growth to study defect replication and strain relaxation processes and identify the nucleation sources of both interfacial dislocations (IDs) and half-loop arrays (HLAs), which are known to have a deleterious effect on device performance. Two cases are reported. In one, they nucleate from short segments of edge-oriented basal plane dislocations (BPDs) in the substrate which are drawn into the epilayer. In the other, they form from segments of half-loops of BPD that are attached to the substrate surface prior to growth which glide into the epilayer. The significance of these findings is: (1) It is demonstrated that it is not necessary for a BPD to intersect the substrate surface in order for it to be replicated into the homoepitaxial layer and take part in nucleation of IDs and HLAs; (2) The conversion of the surface intersections of a substrate BPD half-loop into threading edge dislocations (TEDs) does not prevent it from also becoming involved in nucleation of IDs and HLAs. This means that, while BPD to TED conversion can eliminate most of the BPD transfer into the epilayer, further mitigation may only be possible by continued efforts to reduce the BPD density in substrates by control of temperature-gradient- induced stresses during their physical vapor transport (PVT) growth.
Shklyaev, A A; Latyshev, A V
2016-12-01
We study the surface morphology and chemical composition of SiGe layers after their formation under high-temperature annealing at 800-1100 °C of 30-150 nm Ge layers deposited on Si(100) at 400-500 °C. It is found that the annealing leads to the appearance of the SiGe layers of two types, i.e., porous and continuous. The continuous layers have a smoothened surface morphology and a high concentration of threading dislocations. The porous and continuous layers can coexist. Their formation conditions and the ratio between their areas on the surface depend on the thickness of deposited Ge layers, as well as on the temperature and the annealing time. The data obtained suggest that the porous SiGe layers are formed due to melting of the strained Ge layers and their solidification in the conditions of SiGe dewetting on Si. The porous and dislocation-rich SiGe layers may have properties interesting for applications.
Impact of thermal treatment on the optical performance of InGaN/GaN light emitting diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meneghini, Matteo, E-mail: matteo.meneghini@dei.unipd.it; Meneghesso, Gaudenzio; Zanoni, Enrico
2015-10-15
This paper describes a detailed analysis of the effects of high temperatures on the optical performance and structural characteristics of GaN-based LED structures with a high threading dislocation density. Results show that, as a consequence of storage at 900 °C in N{sub 2} atmosphere, the samples exhibit: (i) an increase in the efficiency of GaN and quantum-well luminescence, well correlated to an increase in carrier lifetime; (ii) a decrease in the parasitic luminescence peaks related to Mg acceptors, which is correlated to the reduction in the concentration of Mg in the p-type region, detected by Secondary Ion Mass Spectroscopy (SIMS);more » (iii) a diffusion of acceptor (Mg) atoms to the quantum well region; (iv) a reduction in the yield of Rutherford Backscattering Spectrometry (RBS)-channeling measurements, possibly due to a partial re-arrangement of the dislocations, which is supposed to be correlated to the increase in radiative efficiency (see (i))« less
NASA Astrophysics Data System (ADS)
Solov'ev, V. A.; Chernov, M. Yu; Baidakova, M. V.; Kirilenko, D. A.; Yagovkina, M. A.; Sitnikova, A. A.; Komissarova, T. A.; Kop'ev, P. S.; Ivanov, S. V.
2018-01-01
This paper presents a study of structural properties of InGaAs/InAlAs quantum well (QW) heterostructures with convex-graded InxAl1-xAs (x = 0.05-0.79) metamorphic buffer layers (MBLs) grown by molecular beam epitaxy on GaAs substrates. Mechanisms of elastic strain relaxation in the convex-graded MBLs were studied by the X-ray reciprocal space mapping combined with the data of spatially-resolved selected area electron diffraction implemented in a transmission electron microscope. The strain relaxation degree was approximated for the structures with different values of an In step-back. Strong contribution of the strain relaxation via lattice tilt in addition to the formation of the misfit dislocations has been observed for the convex-graded InAlAs MBL, which results in a reduced threading dislocation density in the QW region as compared to a linear-graded MBL.
NASA Astrophysics Data System (ADS)
Choi, Shinhyun; Tan, Scott H.; Li, Zefan; Kim, Yunjo; Choi, Chanyeol; Chen, Pai-Yu; Yeon, Hanwool; Yu, Shimeng; Kim, Jeehwan
2018-01-01
Although several types of architecture combining memory cells and transistors have been used to demonstrate artificial synaptic arrays, they usually present limited scalability and high power consumption. Transistor-free analog switching devices may overcome these limitations, yet the typical switching process they rely on—formation of filaments in an amorphous medium—is not easily controlled and hence hampers the spatial and temporal reproducibility of the performance. Here, we demonstrate analog resistive switching devices that possess desired characteristics for neuromorphic computing networks with minimal performance variations using a single-crystalline SiGe layer epitaxially grown on Si as a switching medium. Such epitaxial random access memories utilize threading dislocations in SiGe to confine metal filaments in a defined, one-dimensional channel. This confinement results in drastically enhanced switching uniformity and long retention/high endurance with a high analog on/off ratio. Simulations using the MNIST handwritten recognition data set prove that epitaxial random access memories can operate with an online learning accuracy of 95.1%.
Defect Characterization in SiGe/SOI Epitaxial Semiconductors by Positron Annihilation
2010-01-01
The potential of positron annihilation spectroscopy (PAS) for defect characterization at the atomic scale in semiconductors has been demonstrated in thin multilayer structures of SiGe (50 nm) grown on UTB (ultra-thin body) SOI (silicon-on-insulator). A slow positron beam was used to probe the defect profile. The SiO2/Si interface in the UTB-SOI was well characterized, and a good estimation of its depth has been obtained. The chemical analysis indicates that the interface does not contain defects, but only strongly localized charged centers. In order to promote the relaxation, the samples have been submitted to a post-growth annealing treatment in vacuum. After this treatment, it was possible to observe the modifications of the defect structure of the relaxed film. Chemical analysis of the SiGe layers suggests a prevalent trapping site surrounded by germanium atoms, presumably Si vacancies associated with misfit dislocations and threading dislocations in the SiGe films. PMID:21170391
Impact of thermal treatment on the optical performance of InGaN/GaN light emitting diodes
NASA Astrophysics Data System (ADS)
Meneghini, Matteo; Zhu, Dandan; Humphreys, Colin J.; Berti, Marina; Gasparotto, Andrea; Cesca, Tiziana; Vinattieri, Anna; Bogani, Franco; Meneghesso, Gaudenzio; Zanoni, Enrico
2015-10-01
This paper describes a detailed analysis of the effects of high temperatures on the optical performance and structural characteristics of GaN-based LED structures with a high threading dislocation density. Results show that, as a consequence of storage at 900 °C in N2 atmosphere, the samples exhibit: (i) an increase in the efficiency of GaN and quantum-well luminescence, well correlated to an increase in carrier lifetime; (ii) a decrease in the parasitic luminescence peaks related to Mg acceptors, which is correlated to the reduction in the concentration of Mg in the p-type region, detected by Secondary Ion Mass Spectroscopy (SIMS); (iii) a diffusion of acceptor (Mg) atoms to the quantum well region; (iv) a reduction in the yield of Rutherford Backscattering Spectrometry (RBS)-channeling measurements, possibly due to a partial re-arrangement of the dislocations, which is supposed to be correlated to the increase in radiative efficiency (see (i)).
NASA Astrophysics Data System (ADS)
Kyutt, R. T.
2017-04-01
The shape of X-ray diffraction epitaxial layers with high dislocation densities has been studied experimentally. Measurements with an X-ray diffractometer were performed in double- and triple-crystal setups with both Cu K α and Mo K α radiation. Epitaxial layers (GaN, AlN, AlGaN, ZnO, etc.) with different degrees of structural perfection grown by various methods on sapphire, silicon, and silicon carbide substrates have been examined. The layer thickness varied in the range of 0.5-30 μm. It has been found that the center part of peaks is well approximated by the Voigt function with different Lorentz fractions, while the wing intensity drops faster and may be represented by a power function (with the index that varies from one structure to another). A well-marked dependence on the ordering of dislocations was observed. The drop in intensity in the majority of structures with a regular system and regular threading dislocations was close to the theoretically predicted law Δθ-3; the intensity in films with a chaotic distribution decreased much faster. The dependence of the peak shape on the order of reflection, the diffraction geometry, and the epitaxial layer thickness was also examined.
NASA Astrophysics Data System (ADS)
Zhao, Xiaomeng; Zhang, Yang; Guan, Min; Cui, Lijie; Wang, Baoqiang; Zhu, Zhanping; Zeng, Yiping
2017-07-01
The effect of InSb/In0.9Al0.1Sb buffer layers on InSb thin films grown on GaAs (0 0 1) substrate by molecular beam epitaxy (MBE) is investigated. The crystal quality and the surface morphology of InSb are characterized by XRD and AFM. The carrier transport property is researched through variable temperature hall test. The sharp interface between InSb/In0.9Al0.1Sb is demonstrated important for the high quality InSb thin film. We try different superlattice buffer layers by changing ratios, 2-0.5, thickness, 300-450 nm, and periods, 20-50. According to the function of the dislocation density to the absolute temperature below 150 K with different periods of SL buffers, we can find that the number of periods of superlattice is a major factor to decrease the density of threading dislocations. With the 50 periods SL buffer layer, the electron mobility of InSb at the room temperature and liquid nitrogen cooling temperature is ∼63,000 and ∼4600 cm2/V s, respectively. We deduce that the interface in the SL structure works as a filter layer to prevent the dislocation propagating to the upper InSb thin films.
1994-03-31
Selective Area Growth, GaAs on Si3 1.SE Q.SWICATIQU10 IL. SEOJUFTY ISICTO 9 SEICUTY TUI& UNTATIM OF ABSTRACT OP SEP03 OF THIS PAGEI OF ABSTRACT...sides were produced by etching in a solution of 30 wt .% KOH in H20 at a temperature of -800 C using an Si0 2 pattern on the substrate to define the...energy which we associate with a bond between atoms i and j. The ni are the number of atoms of type i and the nij are the numbers of each type of bond
NASA Astrophysics Data System (ADS)
Tchekhovskoy, Alexander; Metzger, Brian D.; Giannios, Dimitrios; Kelley, Luke Z.
2014-01-01
The unusual transient Swift J1644+57 likely resulted from a collimated relativistic jet, powered by the sudden onset of accretion on to a massive black hole (BH) following the tidal disruption (TD) of a star. However, several mysteries cloud the interpretation of this event, including (1) the extreme flaring and `plateau' shape of the X-ray/γ-ray light curve during the first t - ttrig ˜ 10 d after the γ-ray trigger; (2) unexpected rebrightening of the forward shock radio emission at t - ttrig ˜ months; (3) lack of obvious evidence for jet precession, despite the misalignment typically expected between the angular momentum of the accretion disc and BH; (4) recent abrupt shut-off in the jet X-ray emission at t - ttrig ˜ 1.5 yr. Here, we show that all of these seemingly disparate mysteries are naturally resolved by one assumption: the presence of strong magnetic flux Φ• threading the BH. Just after the TD event, Φ• is dynamically weak relative to the high rate of fall-back accretion dot{M}, such that the accretion disc (jet) freely precesses about the BH axis = our line of sight. As dot{M} decreases, however, Φ• becomes dynamically important, leading to a state of `magnetically arrested disk' (MAD). MAD naturally aligns the jet with the BH spin, but only after an extended phase of violent rearrangement (jet wobbling), which in Swift J1644+57 starts a few days before the γ-ray trigger and explains the erratic early light curve. Indeed, the entire X-ray light curve can be fitted to the predicted power-law decay dot{M} ∝ t^{-α } (α ≃ 5/3 - 2.2) if the TD occurred a few weeks prior to the γ-ray trigger. Jet energy directed away from the line of sight, either prior to the trigger or during the jet alignment process, eventually manifests as the observed radio rebrightening, similar to an off-axis (orphan) γ-ray burst afterglow. As suggested recently, the late X-ray shut-off occurs when the disc transitions to a geometrically thin (jetless) state once dot{M} drops below ˜the Eddington rate. We predict that, in several years, a transition to a low/hard state will mark a revival of the jet and its associated X-ray emission. We use our model for Swift J1644+57 to constrain the properties of the BH and disrupted star, finding that a solar mass main-sequence star disrupted by a relatively low-mass M• ˜ 105-106 M⊙ BH is consistent with the data, while a white dwarf disruption (though still possible) is disfavoured. The magnetic flux required to power Swift J1644+57 is much too large to be supplied by the star itself, but it could be collected from a quiescent `fossil' accretion disc that was present in the galactic nucleus prior to the TD. The presence (lack of) of such a fossil disc could be a deciding factor in what TD events are accompanied by powerful jets.
Natural substrate lift-off technique for vertical light-emitting diodes
NASA Astrophysics Data System (ADS)
Lee, Chia-Yu; Lan, Yu-Pin; Tu, Po-Min; Hsu, Shih-Chieh; Lin, Chien-Chung; Kuo, Hao-Chung; Chi, Gou-Chung; Chang, Chun-Yen
2014-04-01
Hexagonal inverted pyramid (HIP) structures and the natural substrate lift-off (NSLO) technique were demonstrated on a GaN-based vertical light-emitting diode (VLED). The HIP structures were formed at the interface between GaN and the sapphire substrate by molten KOH wet etching. The threading dislocation density (TDD) estimated by transmission electron microscopy (TEM) was reduced to 1 × 108 cm-2. Raman spectroscopy indicated that the compressive strain from the bottom GaN/sapphire was effectively released through the HIP structure. With the adoption of the HIP structure and NSLO, the light output power and yield performance of leakage current could be further improved.
Growth and characterization of high current density, high-speed InAs/AlSb resonant tunneling diodes
NASA Technical Reports Server (NTRS)
Soderstrom, J. R.; Brown, E. R.; Parker, C. D.; Mahoney, L. J.; Yao, J. Y.
1991-01-01
InAs/AlSb double-barrier resonant tunneling diodes with peak current densities up to 370,000 A/sq cm and high peak-to-valley current ratios of 3.2 at room temperature have been fabricated. The peak current density is well-explained by a stationary-state transport model with the two-band envelope function approximation. The valley current density predicted by this model is less than the experimental value by a factor that is typical of the discrepancy found in other double-barrier structures. It is concluded that threading dislocations are largely inactive in the resonant tunneling process.
A versatile digitally-graded buffer structure for metamorphic device applications
NASA Astrophysics Data System (ADS)
Ma, Yingjie; Zhang, Yonggang; Chen, Xingyou; Gu, Yi; Shi, Yanhui; Ji, Wanyan; Du, Ben
2018-04-01
Exploring more effective buffer schemes for mitigating dislocation deficiencies is the key technology towards higher performance metamorphic devices. Here we demonstrate a versatile metamorphic grading structure consisting of 38-period alternated multilayers of In0.52Al0.48As and In0.82Al0.18As on InP substrate, thicknesses of which in each period were gradually varied in opposite directions from 48.7 and 1.3 nm to 1.3 and 48.7 nm, respectively, akin to a digital alloy. Both preferentially dislocation nucleation and blocking of threading dislocation transmission are observed near the In0.82Al0.18As/In0.52Al0.48As interfaces, which help relax the strain and lower the residual defect density. A 2.6 μm In0.83Ga0.17As pin photodetector is fabricated on this pseudo-substrate, attaining a low dark current density of 2.9 × 10‑6 A cm‑2 and a high detectivity of 1.8 × 1010 cmHz1/2W‑1 at room temperature, comparable with the states of the art that on linearly-graded buffer layers. These results indicate such digitally-graded buffer structures are promising for enhancing performances of metamorphic devices, and can be easily generalized to other lattice-mismatched material systems.
NASA Astrophysics Data System (ADS)
Calciati, Marco; Goano, Michele; Bertazzi, Francesco; Vallone, Marco; Zhou, Xiangyu; Ghione, Giovanni; Meneghini, Matteo; Meneghesso, Gaudenzio; Zanoni, Enrico; Bellotti, Enrico; Verzellesi, Giovanni; Zhu, Dandan; Humphreys, Colin
2014-06-01
Electroluminescence (EL) characterization of InGaN/GaN light-emitting diodes (LEDs), coupled with numerical device models of different sophistication, is routinely adopted not only to establish correlations between device efficiency and structural features, but also to make inferences about the loss mechanisms responsible for LED efficiency droop at high driving currents. The limits of this investigative approach are discussed here in a case study based on a comprehensive set of current- and temperature-dependent EL data from blue LEDs with low and high densities of threading dislocations (TDs). First, the effects limiting the applicability of simpler (closed-form and/or one-dimensional) classes of models are addressed, like lateral current crowding, vertical carrier distribution nonuniformity, and interband transition broadening. Then, the major sources of uncertainty affecting state-of-the-art numerical device simulation are reviewed and discussed, including (i) the approximations in the transport description through the multi-quantum-well active region, (ii) the alternative valence band parametrizations proposed to calculate the spontaneous emission rate, (iii) the difficulties in defining the Auger coefficients due to inadequacies in the microscopic quantum well description and the possible presence of extra, non-Auger high-current-density recombination mechanisms and/or Auger-induced leakage. In the case of the present LED structures, the application of three-dimensional numerical-simulation-based analysis to the EL data leads to an explanation of efficiency droop in terms of TD-related and Auger-like nonradiative losses, with a C coefficient in the 10-30 cm6/s range at room temperature, close to the larger theoretical calculations reported so far. However, a study of the combined effects of structural and model uncertainties suggests that the C values thus determined could be overestimated by about an order of magnitude. This preliminary attempt at uncertainty quantification confirms, beyond the present case, the need for an improved description of carrier transport and microscopic radiative and nonradiative recombination mechanisms in device-level LED numerical models.
Electrical properties of dislocations in III-Nitrides
NASA Astrophysics Data System (ADS)
Cavalcoli, D.; Minj, A.; Pandey, S.; Cavallini, A.
2014-02-01
Research on GaN, AlN, InN (III-N) and their alloys is achieving new heights due their high potential applications in photonics and electronics. III-N semiconductors are mostly grown epitaxially on sapphire, and due to the large lattice mismatch and the differences in the thermal expansion coefficients, the structures usually contain many threading dislocations (TDs). While their structural properties have been widely investigated, their electrical characteristics and their role in the transport properties of the devices are still debated. In the present contribution we will show conductive AFM studies of TDs in GaN and Al/In GaN ternary alloys to evidence the role of strain, different surface polarity and composition on their electrical properties. Local I-V curves measured at TDs allowed us to clarify their role in the macroscopic electrical properties (leakage current, mobilities) of III-N based devices. Samples obtained by different growers (AIXTRON, III-V Lab) were studied. The comparison between the results obtained in the different alloys allowed us to understand the role of In and Al on the TDs electrical properties.
Vertical III-V nanowire device integration on Si(100).
Borg, Mattias; Schmid, Heinz; Moselund, Kirsten E; Signorello, Giorgio; Gignac, Lynne; Bruley, John; Breslin, Chris; Das Kanungo, Pratyush; Werner, Peter; Riel, Heike
2014-01-01
We report complementary metal-oxide-semiconductor (CMOS)-compatible integration of compound semiconductors on Si substrates. InAs and GaAs nanowires are selectively grown in vertical SiO2 nanotube templates fabricated on Si substrates of varying crystallographic orientations, including nanocrystalline Si. The nanowires investigated are epitaxially grown, single-crystalline, free from threading dislocations, and with an orientation and dimension directly given by the shape of the template. GaAs nanowires exhibit stable photoluminescence at room temperature, with a higher measured intensity when still surrounded by the template. Si-InAs heterojunction nanowire tunnel diodes were fabricated on Si(100) and are electrically characterized. The results indicate a high uniformity and scalability in the fabrication process.
Positive temperature coefficient of photovoltaic efficiency in solar cells based on InGaN/GaN MQWs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhaoying; Zheng, Xiantong; Li, Zhilong
2016-08-08
We report a 23.4% improvement of conversion efficiency in solar cells based on InGaN/GaN multiple quantum wells by using a patterned sapphire substrate in the fabrication process. The efficiency enhancement is due to the improvement of the crystalline quality, as proven by the reduction of the threading dislocation density. More importantly, the better crystalline quality leads to a positive photovoltaic efficiency temperature coefficient up to 423 K, which shows the property and advantage of wide gap semiconductors like InGaN, signifying the potential of III-nitride based solar cells for high temperature and concentrating solar power applications.
Very thin, high Ge content Si 0.3Ge 0.7 relaxed buffer grown by MBE on SOI(0 0 1) substrate
NASA Astrophysics Data System (ADS)
Myronov, M.; Shiraki, Y.
2007-04-01
Growth procedure and excellent properties of very thin 240 nm thick, 95% relaxed, high Ge content Si 0.3Ge 0.7 buffer grown on SOI(0 0 1) substrate are demonstrated. All epilayers of the newly developed Si 0.3Ge 0.7/SOI(0 0 1) variable-temperature virtual substrate were grown in a single process by solid-source molecular beam epitaxy. Surface analysis of grown samples revealed smooth, cross-hatch free surface with low root mean square surface roughness of 0.9 nm and low threading dislocations density of 5×10 4 cm -2.
In vacancies in InN grown by plasma-assisted molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Reurings, Floris; Tuomisto, Filip; Gallinat, Chad S.; Koblmüller, Gregor; Speck, James S.
2010-12-01
The authors have applied positron annihilation spectroscopy to study the effect of different growth conditions on vacancy formation in In- and N-polar InN grown by plasma-assisted molecular beam epitaxy. The results suggest that the structural quality of the material and limited diffusion of surface adatoms during growth dictate the In vacancy formation in low electron-density undoped epitaxial InN, while growth conditions and thermodynamics have a less important role, contrary to what is observed in, e.g., GaN. Furthermore, the results imply that in high quality InN, the electron mobility is likely limited not by ionized point defect scattering, but rather by threading dislocations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, James; Loitsch, Bernhard; Stettner, Thomas
We elucidate the role of growth parameters (III/N flux ratio, temperature T{sub G}) on the morphological and structural properties, as well as compositional homogeneity and carrier localization effects of high In-content (x(In) > 0.75) In–polar InGaN films grown by plasma–assisted molecular beam epitaxy (PAMBE). Variations in III/N flux ratio evidence that higher excess of In yields higher threading dislocation densities as well as larger compositional inhomogeneity as measured by x-ray diffraction. Most interestingly, by variation of growth temperature T{sub G} we find a significant trade-off between improved morphological quality and compositional homogeneity at low–T{sub G} (∼450–550 °C) versus improved threading dislocation densities atmore » high–T{sub G} (∼600–630 °C), as exemplified for InGaN films with x(In) = 0.9. The enhanced compositional homogeneity mediated by low–T{sub G} growth is confirmed by systematic temperature-dependent photoluminescence (PL) spectroscopy data, such as lower PL peakwidths, >5× higher PL efficiency (less temperature-induced quenching) and a distinctly different temperature-dependent S-shape behavior of the PL peak energy. From these, we find that the carrier localization energy is as low as ∼20 meV for low–T{sub G} grown films (T{sub G} = 550 °C), while it rises to ∼70 meV for high–T{sub G} grown films (T{sub G} = 630 °C) right below the onset of In–N dissociation. These findings point out that for the kinetically limited metal-rich PAMBE growth of high In-content InGaN a III/N flux ratio of ∼1 and low-to-intermediate T{sub G} are required to realize optically more efficient materials.« less
NASA Astrophysics Data System (ADS)
Lee, Fang-Wei; Ke, Wen-Cheng; Cheng, Chun-Hong; Liao, Bo-Wei; Chen, Wei-Kuo
2016-07-01
This study presents GaN thin films grown on nanoscale-patterned sapphire substrates (NPSSs) with different aspect ratios (ARs) using a homemade metal-organic chemical vapor deposition system. The anodic aluminum oxide (AAO) technique is used to prepare the dry etching mask. The cross-sectional view of the scanning electron microscope image shows that voids exist between the interface of the GaN thin film and the high-AR (i.e. ∼2) NPSS. In contrast, patterns on the low-AR (∼0.7) NPSS are filled full of GaN. The formation of voids on the high-AR NPSS is believed to be due to the enhancement of the lateral growth in the initial growth stage, and the quick-merging GaN thin film blocks the precursors from continuing to supply the bottom of the pattern. The atomic force microscopy images of GaN on bare sapphire show a layer-by-layer surface morphology, which becomes a step-flow surface morphology for GaN on a high-AR NPSS. The edge-type threading dislocation density can be reduced from 7.1 × 108 cm-2 for GaN on bare sapphire to 4.9 × 108 cm-2 for GaN on a high-AR NPSS. In addition, the carrier mobility increases from 85 cm2/Vs for GaN on bare sapphire to 199 cm2/Vs for GaN on a high-AR NPSS. However, the increased screw-type threading dislocation density for GaN on a low-AR NPSS is due to the competition of lateral growth on the flat-top patterns and vertical growth on the bottom of the patterns that causes the material quality of the GaN thin film to degenerate. Thus, the experimental results indicate that the AR of the particular patterning of a NPSS plays a crucial role in achieving GaN thin film with a high crystalline quality.
Defect characterization of MOCVD grown AlN/AlGaN films on sapphire substrates by TEM and TKD
NASA Astrophysics Data System (ADS)
O'Connell, J. H.; Lee, M. E.; Westraadt, J.; Engelbrecht, J. A. A.
2018-04-01
High resolution transmission electron microscopy (TEM) has been used to characterize defects structures in AlN/AlGaN epilayers grown by metal-organic chemical vapour deposition (MOCVD) on c-plane sapphire (Al2O3) substrates. The AlN buffer layer was shown to be epitaxially grown on the sapphire substrate with the two lattices rotated relatively through 30°. The AlN layer had a measured thickness of 20-30 nm and was also shown to contain nano-sized voids. The misfit dislocations in the buffer layer have been shown to be pure edge with a spacing of 1.5 nm. TEM characterization of the AlGaN epilayers was shown to contain a higher than expected threading dislocation density of the order 1010 cm-2 as well as the existence of "nanopipes". TEM analysis of the planar lamella for AlGaN has presented evidence for the possibility of columnar growth. The strain and misorientation mapping in the AlGaN epilayer by transmission Kikuchi diffraction (TKD) using the FIB lamella has also been demonstrated to be complimentary to data obtained by TEM imaging.
Germanium photodetectors fabricated on 300 mm silicon wafers for near-infrared focal plane arrays
NASA Astrophysics Data System (ADS)
Zeller, John W.; Rouse, Caitlin; Efstathiadis, Harry; Dhar, Nibir K.; Wijewarnasuriya, Priyalal; Sood, Ashok K.
2017-09-01
SiGe p-i-n photodetectors have been fabricated on 300 mm (12") diameter silicon (Si) wafers utilizing high throughput, large-area complementary metal-oxide semiconductor (CMOS) technologies. These Ge photodetectors are designed to operate in room temperature environments without cooling, and thus have potential size and cost advantages over conventional cooled infrared detectors. The two-step fabrication process for the p-i-n photodetector devices, designed to minimize the formation of defects and threading dislocations, involves low temperature epitaxial growth of a thin p+ (boron) Ge seed/buffer layer, followed by higher temperature deposition of a thicker Ge intrinsic layer. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) demonstrated uniform layer compositions with well defined layer interfaces and reduced dislocation density. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) was likewise employed to analyze the doping levels of the p+ and n+ layers. Current-voltage (I-V) measurements demonstrated that these SiGe photodetectors, when exposed to incident visible-NIR radiation, exhibited dark currents down below 1 μA and significant enhancement in photocurrent at -1 V. The zero-bias photocurrent was also relatively high, showing a minimal drop compared to that at -1 V bias.
Raman and photoluminescence spectroscopy of SiGe layer evolution on Si(100) induced by dewetting
NASA Astrophysics Data System (ADS)
Shklyaev, A. A.; Volodin, V. A.; Stoffel, M.; Rinnert, H.; Vergnat, M.
2018-01-01
High temperature annealing of thick (40-100 nm) Ge layers deposited on Si(100) at ˜400 °C leads to the formation of continuous films prior to their transformation into porous-like films due to dewetting. The evolution of Si-Ge composition, lattice strain, and surface morphology caused by dewetting is analyzed using scanning electron microscopy, Raman, and photoluminescence (PL) spectroscopies. The Raman data reveal that the transformation from the continuous to porous film proceeds through strong Si-Ge interdiffusion, reducing the Ge content from 60% to about 20%, and changing the stress from compressive to tensile. We expect that Ge atoms migrate into the Si substrate occupying interstitial sites and providing thereby the compensation of the lattice mismatch. Annealing generates only one type of radiative recombination centers in SiGe resulting in a PL peak located at about 0.7 and 0.8 eV for continuous and porous film areas, respectively. Since annealing leads to the propagation of threading dislocations through the SiGe/Si interface, we can tentatively associate the observed PL peak to the well-known dislocation-related D1 band.
Formation, Migration, and Reactivity of Au CO Complexes on Gold Surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jun; McEntee, Monica; Tang, Wenjie
2016-01-12
Here, we report experimental as well as theoretical evidence that suggests Au CO complex formation upon the exposure of CO to active sites (step edges and threading dislocations) on a Au(111) surface. Room-temperature scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy, transmission infrared spectroscopy, and density functional theory calculations point to Au CO complex formation and migration. Room-temperature STM of the Au(111) surface at CO pressures in the range from 10^ 8 to 10^ 4 Torr (dosage up to 10^6 langmuir) indicates Au atom extraction from dislocation sites of the herringbone reconstruction, mobile Au CO complex formation and diffusion, and Aumore » adatom cluster formation on both elbows and step edges on the Au surface. The formation and mobility of the Au CO complex result from the reduced Au Au bonding at elbows and step edges leading to stronger Au CO bonding and to the formation of a more positively charged CO (CO +) on Au. These studies indicate that the mobile Au CO complex is involved in the Au nanoparticle formation and reactivity, and that the positive charge on CO increases due to the stronger adsorption of CO at Au sites with lower coordination numbers.« less
Park, Jung Sik; Yang, Jun-Mo; Park, Kyung Jin; Park, Yun Chang; Yoo, Jung Ho; Jeong, Chil Seong; Park, Jucheol; He, Yinsheng; Shin, Keesam
2014-02-01
Growing a GaN film on a patterned Al2O3 substrate is one of the methods of reducing threading dislocations (TDs), which can significantly deteriorate the performance of GaN-based LEDs. In this study, the microstructural details of the GaN film grown on a cone-shaped patterned Al2O3 substrate were investigated using high-resolution transmission electron microscopy and weak-beam dark-field techniques. Various defects such as misfit dislocations (MDs), recrystallized GaN (R-GaN) islands and nano-voids were observed on the patterned Al2O3 surfaces, i.e. the flat surface (FS), the inclined surface (IS) and the top surface (TS), respectively. Especially, the crystallographic orientation of R-GaN between the GaN film and the inclined Al2O3 substrate was identified as $[\\overline 1 2\\overline 1 0]_{{\\rm GaN}} \\hbox{//}[\\overline 1 101]_{{\\rm R - GaN} \\,{\\rm on}\\,{\\rm IS}} \\hbox{//}[\\overline 1 100]_{ {{\\rm Al}} _{\\rm 2} {\\rm O}_{\\rm 3}} $, $(\\overline 1 012)_{{\\rm GaN}} \\hbox{//}(1\\overline 1 02)_{{\\rm R - Ga}\\,{\\rm Non}\\,{\\rm IS}} \\hbox{//}(\\overline {11} 26)_{ {{\\rm Al}} _{\\rm 2} {\\rm O}_{\\rm 3}} $. In addition, a rotation by 9° between $(10\\overline 1 1)_{{\\rm R - GaN}} $ and $(0002)_{{\\rm GaN}} $ and between $(10\\overline 1 1)_{{\\rm R - GaN}} $ and $(0006)_{ {{\\rm Al}} _{\\rm 2} {\\rm O}_{\\rm 3}} $ was found to reduce the lattice mismatch between the GaN film and the Al2O3 substrate. Many TDs in the GaN film were observed on the FS and TS of Al2O3. However, few TDs were observed on the IS. Most of the TDs generated from the FS of Al2O3 were bent to the inclined facet rather than propagating to the GaN surface, resulting in a reduction in the dislocation density. Most of the TDs generated from the TS of Al2O3 were characterized as edge dislocations.
High-quality vertical light emitting diodes fabrication by mechanical lift-off technique
NASA Astrophysics Data System (ADS)
Tu, Po-Min; Hsu, Shih-Chieh; Chang, Chun-Yen
2011-10-01
We report the fabrication of mechanical lift-off high quality thin GaN with Hexagonal Inversed Pyramid (HIP) structures for vertical light emitting diodes (V-LEDs). The HIP structures were formed at the GaN/sapphire substrate interface under high temperature during KOH wet etching process. The average threading dislocation density (TDD) was estimated by transmission electron microscopy (TEM) and found the reduction from 2×109 to 1×108 cm-2. Raman spectroscopy analysis revealed that the compressive stress of GaN epilayer was effectively relieved in the thin-GaN LED with HIP structures. Finally, the mechanical lift-off process is claimed to be successful by using the HIP structures as a sacrificial layer during wafer bonding process.
MOCVD growth of gallium nitride with indium surfactant
NASA Astrophysics Data System (ADS)
Won, Dong Jin
In this thesis research, the effect of indium surfactant on Ga-polar and N-polar GaN films grown at 950 °C by MOCVD on various substrates such as Si-face SiC, bulk GaN, Si(111), and C-face SiC was studied to investigate the stress relaxation mechanism, structural, and optical properties of GaN films which were modified by the indium surfactant. The effect of indium surfactant on GaN films grown on SiC was studied first. In the 1.8 microm thick Ga-polar GaN films grown on lattice-mismatched Si-face SiC substrates utilizing indium surfactant at 950 °C, inverted hexagonal pyramid surface defects, so-called V-defects which consist of six (1011) planes, formed at threading dislocations on the GaN surface, which gave rise to the relaxation of compressive misfit stress in an elastic way. Simultaneously, enhanced surface mobility of Ga and N adatoms with indium surfactant lead to improved 2D growth, which may be contradictory to the formation of surface defects like V-defects. In order to find the driving force for V-defect formation in the presence of indium, a nucleation and growth model was developed, taking into consideration the strain, surface, and dislocation energies modified by indium surfactant. This model found that the V-defect formation can be energetically preferred since indium reduces the surface energy of the (1011) plane, which gives rise to the V-defect formation and growth that can overcome the energy barrier at the critical radius of the V-defect. These Ga-polar GaN films were found to be unintentionally doped with Si. Thus, an investigation into the effect of intentional Si doping at a constant TMIn flow rate on GaN films was also performed. Si turned out to be another important factor in the generation of V-defects because Si may be captured at the threading dislocation cores by forming Si -- N bonds, acting as a mask to locally prevent GaN growth. This behavior appeared to assist the initiation of the V-defect which enables V-defects to easily grow beyond the critical radius. Thus, introduction of indium surfactant and Si doping was found to be the most favorable conditions for V-defect formation in Ga-polar GaN films grown on Si-face SiC substrates. The nucleation and growth model predicted that V-defects may not form in homoepitaxy because the energy barrier for V-defect formation approaches infinity due to zero misfit stress. When indium surfactant and Si dopant were introduced simultaneously during the homoepitaxial growth, V-defects did not form in 1.8 microm thick Ga-polar GaN films grown at 950 °C on bulk GaN that had very low threading dislocation density, as predicted by the nucleation and growth model. Ga-polar GaN films grown on Si(111) substrates using indium surfactant showed that additional tensile stress was induced by indium with respect to the reference GaN. Since cracking is known to be a stress relaxation mechanism for tension, the In-induced additional tensile stress is thus detrimental to the GaN films which experience the tensile thermal stress associated with the difference in coefficient of thermal expansion between GaN and the substrate during cooling after growth. The generation of tensile stress by indium seemed correlated with a reduction of V-defects since a high density of V-defects formed under the initial compressive stress at the GaN nucleation stage and then V-defect density decreased as the film grew. Even though the initial misfit stress of the GaN film grown on Si(111) was lower than that of GaN grown on SiC, a high density of V-defects were created under the initial compressive stress. Therefore, the high density of threading dislocations was believed to strongly drive the V-defect formation under In-rich conditions. Consequently, without using high quality bulk GaN substrates, V-defects could not be avoided in Ga-polar GaN films grown on foreign substrates such as Si-face SiC and Si(111) in the presence of indium surfactant and Si dopants during growth. Thus, N-polar GaN films were investigated using vicinal C-face SiC substrates because a theoretical study utilizing first-principles calculations predicted that V-defects are not energetically favored on the N-face GaN. When indium surfactant and Si doping were used during N-polar GaN growth, V-defects did not form, as predicted by theory. This observation suggests that V-defect free N-polar InGaN alloys also can be achieved, which may enable stable green laser diodes with long lifetime to be fabricated using the high indium composition N-polar InGaN films. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Ha, Minh Thien Huu; Hoang Huynh, Sa; Binh Do, Huy; Nguyen, Tuan Anh; Luc, Quang Ho; Chang, Edward Yi
2017-08-01
High quality 40 nm GaSb thin film was grown on the zero off-cut Si (0 0 1)-oriented substrate using metalorganic chemical vapor deposition with the temperature-graded GaAs buffer layer. The growth time of the GaAs nucleation layer, which was deposited at a low temperature of 490 °C, is systematically investigated in this paper. Cross-sections of the high resolution transmission electron microscopy images indicate that the GaAs compound formed 3D-islands first before to quasi-2D islands, and finally formed uniform GaAs layer. The optimum thickness of the 490 °C-GaAs layer was found to be 10 nm to suppress the formation of antiphase domain boundaries (APDs). The thin GaAs nucleation layer had a root-mean-square surface roughness of 0.483 nm. This allows the continued high temperature GaAs buffer layer to be achieved with low threading dislocation density of around 7.1 × 106 cm-2 and almost invisible APDs. Finally, a fully relaxed GaSb film was grown on the top of the GaAs/Si heterostructure using interfacial misfit dislocation growth mode. These results indicate that the GaSb epitaxial layer can be grown on Si substrate with GaAs buffer layer for future p-channel metal-oxide-semiconductor field effect transistors (MOSFETs) applications.
[In situ suture repair procedure of knee dislocation with multiple-ligament injury at acute stage].
Ye, Jingbing; Luo, Dahui; Fu, Weili; He, Xin; Li, Jian
2009-09-01
To investigate the method and the short term clinical effectiveness of in situ suture repair procedure of knee dislocation with multiple-ligament injury at acute stage. From February 2006 to November 2007, 9 patients suffering from single knee closed dislocation with multiple-ligament injury underwent open in situ suture repair procedure with non-absorbable thread and managements of other combined injuries simultaneously. Nine patients included 6 males and 3 females, aged 34-52 years old. The injured knees were left side in 4 cases and right side in 5 cases. Injuries were caused by traffic accident in 8 cases and heavy-weight crushing in 1 case. EMRI and arthroscopic examination showed that all patients suffered from the avulsion injuries of anterior cruciate ligament and posterior cruciate ligament. The time from injury to operation was 4 to 7 days with an average of 5.1 days. No bacterial arthritis occurred after operation. Subcutaneous ligated fat occurred and cured after symptomatic treatment in 2 cases, other incisions healed by first intension. All patients were followed up 12 months. At 12 months postoperatively, 2 patients' flexion range of the suffering knees lost 10 degrees when to compared with normal knees, and the range of motion was from 0 to 125 degrees. The Lysholm knee scores were 83-92 (average 86.3), the results were excellent in 3 cases and good in 6 cases. The posterior drawer test and anterior drawer test were one-degree positive in 3 cases respectively; the Lachman tests were one-degree positive in 5 cases, lateral stress tests were negative in all cases. In situ suture repair procedure of knee dislocation with multiple-ligament injury at acute stage has the advantages such as reliable fixation, simultaneous management of other combined injuries and satisfactory short term effect.
Creep of oxide dispersion strengthened materials /with special reference to T-D nichrome/
NASA Technical Reports Server (NTRS)
Lin, J.; Sherby, O. D.
1981-01-01
Analyses of oxide dispersion strengthened (ODS) alloys shows that their characteristics are mainly due to the creep behavior of the matrix material. Diffusion-controlled slip creep is established as the rate-controlling process in the alloys investigated, with the glide and climb of edge dislocations associated with the subgrain structure as barriers being the specific rate-controlling step. It is found that the stable subgrain size in ODS alloys is usually associated with the spacing between particles 500-1000 A in size, and that their creep behavior is distinguished from that of the matrix material by the existence of a threshold stress that is not well defined microscopically but appears to be related to particles of less than 500 A size.
NASA Astrophysics Data System (ADS)
Tchekhovskoy, Alexander; Metzger, B.; Giannios, D.; Kelley, L. Z.
2013-04-01
It is likely that the unusual gamma-ray/X-ray/radio transient Swift J1644+57 was produced by a collimated relativistic jet formed in the aftermath of a tidal disruption (TD) of a star by a massive black hole (BH). Some of the properties of the event are, however, difficult to explain within the TD scenario: (1) extreme flaring and `plateau' shape of the gamma-ray/X-ray light curve during the first 10 days after the gamma-ray trigger; (2) unexpected rebrightening of the forward shock radio emission months after trigger; (3) no obvious evidence for jet precession, despite misalignment typically expected between the angular momentum of the accretion disk and BH; (4) recent abrupt shut-off in jet X-ray emission after 1.5 years. Here we show that all of these seemingly disparate mysteries are naturally resolved by one assumption: the presence of strong magnetic flux Phi threading the BH. Initially, Phi is weak relative to high fall-back mass accretion rate, Mdot, and the disk and jets precess about the BH axis = our line of sight. As Mdot drops, Phi becomes dynamically important and leads to a magnetically-arrested disk (MAD). MAD naturally aligns disk and jet axis along the BH spin axis, but only after a violent rearrangement phase (jet wobbling). This explains the erratic light curve at early times and the lack of precession at later times. We use our model for Swift J1644+57 to constrain BH and disrupted star properties, finding that a solar-mass main sequence star disrupted by a relatively low mass, 10^5-10^6 Msun, BH is consistent with the data, while a WD disruption (though still possible) is disfavored. The magnetic flux required to power Swift J1644+57 is too large to be supplied by the star itself, but it could be collected from a quiescent `fossil' accretion disk present in the galactic nucleus prior to the TD. The presence (lack of) of such a fossil disk could be a deciding factor in what TD events are accompanied by powerful jets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armstrong, Andrew M.; Aubry, Sylvie; Shaner, Eric Arthur
2010-09-01
We present the results of a three year LDRD project that focused on understanding the impact of defects on the electrical, optical and thermal properties of GaN-based nanowires (NWs). We describe the development and application of a host of experimental techniques to quantify and understand the physics of defects and thermal transport in GaN NWs. We also present the development of analytical models and computational studies of thermal conductivity in GaN NWs. Finally, we present an atomistic model for GaN NW electrical breakdown supported with experimental evidence. GaN-based nanowires are attractive for applications requiring compact, high-current density devices such asmore » ultraviolet laser arrays. Understanding GaN nanowire failure at high-current density is crucial to developing nanowire (NW) devices. Nanowire device failure is likely more complex than thin film due to the prominence of surface effects and enhanced interaction among point defects. Understanding the impact of surfaces and point defects on nanowire thermal and electrical transport is the first step toward rational control and mitigation of device failure mechanisms. However, investigating defects in GaN NWs is extremely challenging because conventional defect spectroscopy techniques are unsuitable for wide-bandgap nanostructures. To understand NW breakdown, the influence of pre-existing and emergent defects during high current stress on NW properties will be investigated. Acute sensitivity of NW thermal conductivity to point-defect density is expected due to the lack of threading dislocation (TD) gettering sites, and enhanced phonon-surface scattering further inhibits thermal transport. Excess defect creation during Joule heating could further degrade thermal conductivity, producing a viscous cycle culminating in catastrophic breakdown. To investigate these issues, a unique combination of electron microscopy, scanning luminescence and photoconductivity implemented at the nanoscale will be used in concert with sophisticated molecular-dynamics calculations of surface and defect-mediated NW thermal transport. This proposal seeks to elucidate long standing material science questions for GaN while addressing issues critical to realizing reliable GaN NW devices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calciati, Marco; Vallone, Marco; Zhou, Xiangyu
2014-06-15
Electroluminescence (EL) characterization of InGaN/GaN light-emitting diodes (LEDs), coupled with numerical device models of different sophistication, is routinely adopted not only to establish correlations between device efficiency and structural features, but also to make inferences about the loss mechanisms responsible for LED efficiency droop at high driving currents. The limits of this investigative approach are discussed here in a case study based on a comprehensive set of current- and temperature-dependent EL data from blue LEDs with low and high densities of threading dislocations (TDs). First, the effects limiting the applicability of simpler (closed-form and/or one-dimensional) classes of models are addressed,more » like lateral current crowding, vertical carrier distribution nonuniformity, and interband transition broadening. Then, the major sources of uncertainty affecting state-of-the-art numerical device simulation are reviewed and discussed, including (i) the approximations in the transport description through the multi-quantum-well active region, (ii) the alternative valence band parametrizations proposed to calculate the spontaneous emission rate, (iii) the difficulties in defining the Auger coefficients due to inadequacies in the microscopic quantum well description and the possible presence of extra, non-Auger high-current-density recombination mechanisms and/or Auger-induced leakage. In the case of the present LED structures, the application of three-dimensional numerical-simulation-based analysis to the EL data leads to an explanation of efficiency droop in terms of TD-related and Auger-like nonradiative losses, with a C coefficient in the 10{sup −30} cm{sup 6}/s range at room temperature, close to the larger theoretical calculations reported so far. However, a study of the combined effects of structural and model uncertainties suggests that the C values thus determined could be overestimated by about an order of magnitude. This preliminary attempt at uncertainty quantification confirms, beyond the present case, the need for an improved description of carrier transport and microscopic radiative and nonradiative recombination mechanisms in device-level LED numerical models.« less
NASA Astrophysics Data System (ADS)
Jinno, Daiki; Otsuki, Shunya; Sugimori, Shogo; Daicho, Hisayoshi; Iwaya, Motoaki; Takeuchi, Tetsuya; Kamiyama, Satoshi; Akasaki, Isamu
2018-02-01
To reduce the number of threading dislocations (TDs) in nonpolar a-plane GaN (a-GaN) epi-layers grown on flat r-plane sapphire substrates (r-FSS), we investigated the effects on the crystalline quality of the a-GaN epi-layers of high-density patterned r-plane sapphire substrates (r-HPSS), the patterns of which were placed at intervals of several hundred nanometers. Two types of r-HPSS, the patterns of which had diameters and heights on the order of several hundred nanometers (r-NHPSS) or several micrometers (r-MHPSS), were prepared with conventional r-FSS. The effect of these r-HPSS on the a-GaN epi-layers was demonstrated by evaluating the surface morphology and the crystalline quality of the epi-layers. The surfaces of the a-GaN epi-layer grown on r-FSS and r-NHPSS were pit-free and mirror-like, whereas the surface of the a-GaN epi-layer grown on r-MHPSS was very rough due to the large, irregular GaN islands that grew on the patterns, mainly at the initial growth stage. The crystalline quality of the a-GaN epi-layer grown on r-NHPSS was better than that of the a-GaN epi-layer grown on r-FSS. We confirmed that there were fewer TDs in the a-GaN epi-layer grown on r-NHPSS than there were in the a-GaN epi-layer grown on r-FSS. The TDs propagating to the surface in a-GaN epi-layer grown on r-NHPSS were mainly generated on the flat sapphire regions between the patterns. Interestingly, it was also found that the TDs that propagated to the surface concentrated with a periodic pitch along the c-axis direction. The TD densities of a-GaN epi-layers grown on r-FSS and r-NHPSS were estimated to be approximately 5.0 × 1010 and 1.5 × 109 cm-2, respectively. This knowledge will contribute to the further development of a-GaN epi-layers for high-performance devices.
InGaN-Based Light-Emitting Diodes Grown on a Micro/Nanoscale Hybrid Patterned Sapphire Substrate.
Ke, Wen-Cheng; Lee, Fang-Wei; Chiang, Chih-Yung; Liang, Zhong-Yi; Chen, Wei-Kuo; Seong, Tae-Yeon
2016-12-21
A hybrid patterned sapphire substrate (hybrid-PSS) was prepared using an anodic aluminum oxide etching mask to transfer nanopatterns onto a conventional patterned sapphire substrate with microscale patterns (bare-PSS). The threading dislocation (TD) suppression of light-emitting diodes (LEDs) grown on a hybrid-PSS (HP-LED) exhibits a smaller reverse leakage current compared with that of LEDs grown on a bare-PSS (BP-LED). The strain-free GaN buffer layer and fully strained InGaN active layer were evidenced by cross-sectional Raman spectra and reciprocal space mapping of the X-ray diffraction intensity for both samples. The calculated piezoelectric fields for both samples are close, implying that the quantum-confined Stark effect was not a dominant mechanism influencing the electroluminescence (EL) peak wavelength under a high injection current. The bandgap shrinkage effect of the InGaN well layer was considered to explain the large red-shifted EL peak wavelength under high injection currents. The estimated LED chip temperatures rise from room temperature to 150 °C and 75 °C for BP-LED and HP-LED, respectively, at a 600-mA injection current. This smaller temperature rise of the LED chip is attributed to the increased contact area between the sapphire and the LED structural layer because of the embedded nanopattern. Although the chip generates more heat at high injection currents, the accumulated heat can be removed to outside the chip effectively. The high diffuse reflection (DR) rate of hybrid-PSS increases the escape probability of photons, resulting in an increase in the viewing angle of the LEDs from 130° to 145°. The efficiency droop was reduced from 46% to 35%, effects which can be attributed to the elimination of TDs and strain relaxation by embedded nanopatterns. In addition, the light output power of HP-LED at 360-mA injection currents exhibits a ∼ 22.3% enhancement, demonstrating that hybrid-PSSs are beneficial to apply in high-power LEDs.
NASA Astrophysics Data System (ADS)
Fini, P.; Wu, X.; Tarsa, E.; Golan, Y.; Srikant, V.; Keller, S.; Denbaars, S.; Speck, J.
1998-08-01
The evolution of morphology and associated extended defects in GaN thin films grown on sapphire by metalorganic chemical vapor deposition (MOCVD) are shown to depend strongly on the growth environment. For the commonly used two-step growth process, a change in growth parameter such as reactor pressure influences the initial high temperature (HT) GaN growth mechanism. By means of transmission electron microscopy (TEM), atomic force microscopy (AFM), and high resolution X-ray diffraction (HRXRD) measurements, it is shown that the initial density of HT islands on the nucleation layer (NL) and subsequently the threading dislocation density in the HT GaN film may be directly controlled by tailoring the initial HT GaN growth conditions.
NASA Astrophysics Data System (ADS)
Yoo, Hyobin; Yoon, Sangmoon; Chung, Kunook; Kang, Seoung-Hun; Kwon, Young-Kyun; Yi, Gyu-Chul; Kim, Miyoung
2018-03-01
We report our findings on the optical properties of grain boundaries in GaN films grown on graphene layers and discuss their atomistic origin. We combine electron backscatter diffraction with cathodoluminescence to directly correlate the structural defects with their optical properties, enabling the high-precision local luminescence measurement of the grain boundaries in GaN films. To further understand the atomistic origin of the luminescence properties, we carefully probed atomic core structures of the grain boundaries by exploiting aberration-corrected scanning transmission electron microscopy. The atomic core structures of grain boundaries show different ordering behaviors compared with those observed previously in threading dislocations. Energetics of the grain boundary core structures and their correlation with electronic structures were studied by first principles calculation.
NASA Astrophysics Data System (ADS)
Huang, Hung-Wen; Huang, Jhi-Kai; Kuo, Shou-Yi; Lee, Kang-Yuan; Kuo, Hao-Chung
2010-06-01
In this paper, GaN-based LEDs with a nanoscale patterned sapphire substrate (NPSS) and a SiO2 photonic quasicrystal (PQC) structure on an n-GaN layer using nanoimprint lithography are fabricated and investigated. The light output power of LED with a NPSS and a SiO2 PQC structure on an n-GaN layer was 48% greater than that of conventional LED. Strong enhancement in output power is attributed to better epitaxial quality and higher reflectance resulted from NPSS and PQC structures. Transmission electron microscopy images reveal that threading dislocations are blocked or bended in the vicinities of NPSS layer. These results provide promising potential to increase output power for commercial light emitting devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazioti, C.; Kehagias, Th.; Pavlidou, E.
2015-10-21
We investigate the structural properties of a series of high alloy content InGaN epilayers grown by plasma-assisted molecular beam epitaxy, employing the deposition temperature as variable under invariant element fluxes. Using transmission electron microscopy methods, distinct strain relaxation modes were observed, depending on the indium content attained through temperature adjustment. At lower indium contents, strain relaxation by V-pit formation dominated, with concurrent formation of an indium-rich interfacial zone. With increasing indium content, this mechanism was gradually substituted by the introduction of a self-formed strained interfacial InGaN layer of lower indium content, as well as multiple intrinsic basal stacking faults andmore » threading dislocations in the rest of the film. We show that this interfacial layer is not chemically abrupt and that major plastic strain relaxation through defect introduction commences upon reaching a critical indium concentration as a result of compositional pulling. Upon further increase of the indium content, this relaxation mode was again gradually succeeded by the increase in the density of misfit dislocations at the InGaN/GaN interface, leading eventually to the suppression of the strained InGaN layer and basal stacking faults.« less
The three-pin modified 'Harrington' procedure for advanced metastatic destruction of the acetabulum.
Tillman, R M; Myers, G J C; Abudu, A T; Carter, S R; Grimer, R J
2008-01-01
Pathological fractures due to metastasis with destruction of the acetabulum and central dislocation of the hip present a difficult surgical challenge. We describe a series using a single technique in which a stable and long-lasting reconstruction was obtained using standard primary hip replacement implants augmented by strong, fully-threaded steel rods with cement and steel mesh, where required. Between 1997 and 2006, 19 patients with a mean age of 66 years (48 to 83) were treated using a modified Harrington technique. Acetabular destruction was graded as Harrington class II in six cases and class III in 13. Reconstruction was achieved using three 6.5 mm rods inserted through a separate incision in the iliac crest followed by augmentation with cement and a conventional cemented Charnley or Exeter primary hip replacement. There were no peri-operative deaths. At the final follow-up (mean 25 months (5 to 110)) one rod had fractured and one construct required revision. Of the 18 patients who did not require revision, 13 had died. The mean time to death was 16 months (5 to 55). The mean follow-up of the five survivors was 31 months (18 to 47). There were no cases of dislocation, deep infection or injury to a nerve, the blood vessels or the bladder.
NASA Astrophysics Data System (ADS)
Hwang, E. S.; Che, S. B.; Saito, H.; Wang, X.; Ishitani, Y.; Yoshikawa, A.
2008-05-01
Spatially resolved luminescence properties of InN/GaN multiple quantum wells (MQWs) consisting of nominally one monolayer (1-ML)-thick InN QWs embedded in a GaN matrix are studied by cross-sectional and plan-view cathodoluminescence measurements. First it is confirmed that the dominant emission peaks observed at around 390 nm to 430 nm in the MQWs samples are attributed to the effects of inserting ˜1-ML-thick InN wells in the GaN matrix, resulting in efficient localization of GaN excitons at InN QWs. Furthermore, it is revealed that the detailed structure of the MQWs, such as the thickness distribution and interface sharpness, is very sensitive to the presence of surface defects such as hillocks around screw-component threading dislocations, resulting in different emission wavelengths/energies. This is because the epitaxy process for depositing such thin InN wells is seriously affected by the atomic-level surface structures/properties of the growth front. It will be concluded that it is necessary to use lower dislocation density GaN bulk templates to obtain much higher structural quality InN/GaN MQWs good enough for characterizing their optical properties.
NASA Astrophysics Data System (ADS)
Song, Keun Man; Kim, Jong Min; Kang, Bong Kyun; Shin, Chan Soo; Ko, Chul Gi; Kong, Bo Hyun; Cho, Hyung Koun; Yoon, Dae Ho; Kim, Hogyoung; Hwang, Sung Min
2012-02-01
Nonpolar a-plane GaN layers grown on r-plane sapphire substrates were examined by using a two-step growth process. The higher initial growth pressure for the nucleation layer resulted in the improved crystalline quality with lower density of both threading dislocations and basal stacking faults. This was attributed to the higher degree of initial roughening and recovery time via a growth mode transition from three-dimensional (3D) to quasi two-dimensional (2D) lateral growth. Using Hall-effect measurements, the overgrown Si doped GaN layers grown with higher initial growth pressure were found to have higher mobility. The scattering mechanism due to the dislocations was dominant especially at low temperature (<200 K) for the lower initial growth pressure, which was insignificant for the higher initial growth pressure. The temperature-dependent Hall-effect measurements for the Mg doped GaN with a higher initial growth pressure yielded the activation energy and the acceptor concentration to be 128 meV and 1.2 × 1019 cm-3, respectively, corresponding to about 3.6% of activation at room temperature. Two-step growth scheme with a higher initial growth pressure is suggested as a potential method to improve the performance of nonpolar a-plane GaN based devices.
High mobility La-doped BaSnO3 on non-perovskite MgO substrate
NASA Astrophysics Data System (ADS)
Kim, Youjung; Shin, Juyeon; Kim, Young Mo; Char, Kookrin
(Ba,La)SnO3 is a transparent perovskite oxide with high electron mobility and excellent oxygen stability. Field effect device with (Ba,La)SnO3 channel was reported to show good output characteristics on STO substrate. Here, we fabricated (Ba,La)SnO3\\ films and field effect devices with (Ba,La)SnO3 channel on non-perovskite MgO substrates, which are available in large size wafers. X-ray diffraction and transmission electron microscope (TEM) images of (Ba,La)SnO3\\ films on MgO substrates show that the films are epitaxial with many threading dislocations. (Ba,La)SnO3 exhibits the high mobility with 97.2 cm2/Vs at 2 % La doping on top of 150 nm thick BaSnO3 buffer layer. Excellent carrier modulation was observed in field effect devices. FET performances on MgO substrates are slightly better than those on SrTiO3 substrates in spite of the higher dislocation density on MgO than on SrTiO3 substrates. These high mobility BaSnO3 thin films and transistors on MgO substrates will accelerate development for applications in high temperature and high power electronics. Samsung Science and Technology Foundation.
Effect of antibiotics on in vitro and in vivo avian cartilage degradation.
Peters, T L; Fulton, R M; Roberson, K D; Orth, M W
2002-01-01
Antibiotics are used in the livestock industry not only to treat disease but also to promote growth and increase feed efficiency in less than ideal sanitary conditions. However, certain antibiotic families utilized in the poultry industry have recently been found to adversely affect bone formation and cartilage metabolism in dogs, rats, and humans. Therefore, the first objective of this study was to determine if certain antibiotics used in the poultry industry would inhibit in vitro cartilage degradation. The second objective was to determine if the antibiotics found to inhibit in vitro cartilage degradation also induced tibial dyschondroplasia in growing broilers. Ten antibiotics were studied by an avian explant culture system that is designed to completely degrade tibiae over 16 days. Lincomycin, tylosin tartrate, gentamicin, erythromycin, and neomycin sulfate did not inhibit degradation at any concentration tested. Doxycycline (200 microg/ml), oxytetracycline (200 microg/ml), enrofloxacin (200 and 400 microg/ml), ceftiofur (400 microg/ml), and salinomycin (10 microg/ml) prevented complete cartilage degradation for up to 30 days in culture. Thus, some of the antibiotics did inhibit cartilage degradation in developing bone. Day-old chicks were then administered the five antibiotics at 25%, 100%, or 400% above their recommended dose levels and raised until 21 days of age. Thiram, a fungicide known to induce experimental tibial dyschondroplasia (TD), was given at 20 ppm. Birds were then killed by cervical dislocation, and each proximal tibiotarsus was visually examined for TD lesions. The results showed that none of these antibiotics significantly induced TD in growing boilers at any concentration tested, whereas birds given 20 ppm thiram had a 92% incidence rate.
He, Chenguang; Zhao, Wei; Zhang, Kang; He, Longfei; Wu, Hualong; Liu, Ningyang; Zhang, Shan; Liu, Xiaoyan; Chen, Zhitao
2017-12-13
It is widely believed that the lack of high-quality GaN wafers severely hinders the progress in GaN-based devices, especially for defect-sensitive devices. Here, low-cost AlN buffer layers were sputtered on cone-shaped patterned sapphire substrates (PSSs) to obtain high-quality GaN epilayers. Without any mask or regrowth, facet-controlled epitaxial lateral overgrowth was realized by metal-organic chemical vapor deposition. The uniform coating of the sputtered AlN buffer layer and the optimized multiple modulation guaranteed high growth selectivity and uniformity of the GaN epilayer. As a result, an extremely smooth surface was achieved with an average roughness of 0.17 nm over 3 × 3 μm 2 . It was found that the sputtered AlN buffer layer could significantly suppress dislocations on the cones. Moreover, the optimized three-dimensional growth process could effectively promote dislocation bending. Therefore, the threading dislocation density (TDD) of the GaN epilayer was reduced to 4.6 × 10 7 cm -2 , which is about an order of magnitude lower than the case of two-step GaN on the PSS. In addition, contamination and crack in the light-emitting diode fabricated on the obtained GaN were also effectively suppressed by using the sputtered AlN buffer layer. All of these advantages led to a high output power of 116 mW at 500 mA with an emission wavelength of 375 nm. This simple, yet effective growth technique is believed to have great application prospects in high-performance TDD-sensitive optoelectronic and electronic devices.
NASA Technical Reports Server (NTRS)
Neudeck, P. G.; Du, H.; Skowronski, M.; Spry, D. J.; Trunek, A. J.
2007-01-01
While previously published experimental results have shown that the step-free (0 0 0 1) 4H-SiC mesa growth surface uniquely enables radical improvement of 3C-SiC and 2H-AlN/GaN heteroepitaxial film quality (greater than 100-fold reduction in extended defect densities), important aspects of the step-free mesa heterofilm growth processes and resulting electronic device benefits remain to be more fully elucidated. This paper reviews and updates recent ongoing studies of 3C-SiC and 2H-AlN/GaN heteroepilayers grown on top of 4H-SiC mesas. For both 3C-SiC and AlN/GaN films nucleated on 4H-SiC mesas rendered completely free of atomic-scale surface steps, TEM studies reveal that relaxation of heterofilm strain arising from in-plane film/substrate lattice constant mismatch occurs in a remarkably benign manner that avoids formation of threading dislocations in the heteroepilayer. In particular, relaxation appears to occur via nucleation and inward lateral glide of near-interfacial dislocation half-loops from the mesa sidewalls. Preliminary studies of homojunction diodes implemented in 3C-SiC and AlN/GaN heterolayers demonstrate improved electrical performance compared with much more defective heterofilms grown on neighbouring stepped 4H-SiC mesas. Recombination-enhanced dislocation motion known to degrade forward-biased 4H-SiC bipolar diodes has been completely absent from our initial studies of 3C-SiC diodes, including diodes implemented on defective 3C-SiC heterolayers grown on stepped 4H-SiC mesas.
Evaluation of electron mobility in InSb quantum wells by means of percentage-impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishima, T. D.; Edirisooriya, M.; Santos, M. B.
2014-05-15
In order to quantitatively analyze the contribution of each scattering factor toward the total carrier mobility, we use a new convenient figure-of-merit, named a percentage impact. The mobility limit due to a scattering factor, which is widely used to summarize a scattering analysis, has its own advantage. However, a mobility limit is not quite appropriate for the above purpose. A comprehensive understanding of the difference in contribution among many scattering factors toward the total carrier mobility can be obtained by evaluating percentage impacts of scattering factors, which can be straightforwardly calculated from their mobility limits and the total mobility. Ourmore » percentage impact analysis shows that threading dislocation is one of the dominant scattering factors for the electron transport in InSb quantum wells at room temperature.« less
Traps in AlGaN /GaN/SiC heterostructures studied by deep level transient spectroscopy
NASA Astrophysics Data System (ADS)
Fang, Z.-Q.; Look, D. C.; Kim, D. H.; Adesida, I.
2005-10-01
AlGaN /GaN/SiC Schottky barrier diodes (SBDs), with and without Si3N4 passivation, have been characterized by temperature-dependent current-voltage and capacitance-voltage measurements, and deep level transient spectroscopy (DLTS). A dominant trap A1, with activation energy of 1.0 eV and apparent capture cross section of 2×10-12cm2, has been observed in both unpassivated and passivated SBDs. Based on the well-known logarithmic dependence of DLTS peak height with filling pulse width for a line-defect related trap, A1, which is commonly observed in thin GaN layers grown by various techniques, is believed to be associated with threading dislocations. At high temperatures, the DLTS signal sometimes becomes negative, likely due to an artificial surface-state effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Daehwan; Song, Yuncheng; Larry Lee, Minjoo
We report 2.8 {mu}m emission from compressively strained type-I quantum wells (QWs) grown on InP-based metamorphic InAs{sub x}P{sub 1-x} step-graded buffers. High quality metamorphic graded buffers showed smooth surface morphology and low threading dislocation densities of approximately 2.5 Multiplication-Sign 10{sup 6} cm{sup -2}. High-resolution x-ray diffraction scans showed strong satellites from multiple quantum wells grown on metamorphic buffers, and cross-sectional transmission electron microscopy revealed smooth and coherent quantum well interfaces. Room-temperature photoluminescence emission at 2.8 {mu}m with a narrow linewidth ({approx}50 meV) shows the promise of metamorphic growth for mid-infrared laser diodes on InP.
Jo, Min Sung; Sadasivam, Karthikeyan Giri; Tawfik, Wael Z; Yang, Seung Bea; Lee, Jung Ju; Ha, Jun Seok; Moon, Young Boo; Ryu, Sang Wan; Lee, June Key
2013-01-01
n-type GaN epitaxial layers were regrown on the patterned n-type GaN substrate (PNS) with different size of silicon dioxide (SiO2) nano dots to improve the crystal quality and optical properties. PNS with SiO2 nano dots promotes epitaxial lateral overgrowth (ELOG) for defect reduction and also acts as a light scattering point. Transmission electron microscopy (TEM) analysis suggested that PNS with SiO2 nano dots have superior crystalline properties. Hall measurements indicated that incrementing values in electron mobility were clear indication of reduction in threading dislocation and it was confirmed by TEM analysis. Photoluminescence (PL) intensity was enhanced by 2.0 times and 3.1 times for 1-step and 2-step PNS, respectively.
Fast growth of n-type 4H-SiC bulk crystal by gas-source method
NASA Astrophysics Data System (ADS)
Hoshino, Norihiro; Kamata, Isaho; Tokuda, Yuichiro; Makino, Emi; Kanda, Takahiro; Sugiyama, Naohiro; Kuno, Hironari; Kojima, Jun; Tsuchida, Hidekazu
2017-11-01
Fast growth of n-type 4H-SiC crystals was attempted using a high-temperature gas-source method. High growth rates exceeding 9 mm/h were archived at a seed temperature of 2550 °C, although the formation of macro-step bunching caused doping fluctuation and voids in the grown crystal. We investigated a trade-off between growth-rate enhancement and macro-step formation and how to improve the trade-off. By controlling the growth conditions, the growth of highly nitrogen-doped 4H-SiC crystals without the doping fluctuation and void formation were accomplished under a high growth rate exceeding 3 mm/h, maintaining the density of threading screw dislocations in the same level with the seed crystal. The influence of growth parameters on nitrogen incorporations into grown crystals was also surveyed.
NASA Astrophysics Data System (ADS)
Yu, Haijiang
This dissertation is focused on three fields: ultra-high temperature annealing of GaN, activation of implanted GaN and the implantation incorporation into AlGaN/GaN HEMT processing, with an aim to increase the performance, manufacturability and reliability of AlGaN/GaN HEMTs. First, the ultra high temperature (around 1500°C) annealing of MOCVD grown GaN on sapphire has been studied, and a thermally induced threading dislocation (TD) motion and reaction are reported. Using a rapid thermal annealing (RTA) approach capable of heating 2 inch wafers to around 1500°C with 100 bar N2 over-pressure, evidence of dislocation motion was first observed in transmission electron microscopy (TEM) micrographs of both planar and patterned GaN films protected by an AIN capping layer. An associated decrease in x-ray rocking curve (XRC) full-width-half-maximum (FWHM) was also observed for both the symmetric and asymmetric scans. After annealing, the AIN capping layer remained intact, and optical measurements showed no degradation of the opto-electronic properties of the films. Then activation annealing of Si implants in MOCVD grown GaN has been studied for use in ohmic contacts. Si was implanted in semi-insulating GaN at 100 keV with doses from 5 x 1014 cm-2 to 1.5 x 1016 cm-2. Rapid thermal annealing at 1500°C with 100 bar N2 over-pressure was used for dopant activation, resulting in a minimum sheet resistance of 13.9 O/square for a dose of 7 x 1015 cm-2. Secondary ion mass spectroscopy measurements showed a post-activation broadening of the dopant concentration peak by 20 nm (at half the maximum), while X-Ray triple axis o-2theta scans indicated nearly complete implant damage recovery. Transfer length method measurements of the resistance of Ti/Al/Ni/Au contacts to activated GaN:Si (5 x 1015 cm-2 at 100 keV) indicated lowest contact resistances of 0.07 Omm and 0.02 Omm for as-deposited and subsequently annealed contacts, respectively. Finally, the incorporation of Si implantation into AlGaN/GaN high electron mobility transistor processing has been first demonstrated. An ultra-high temperature (1500°C) rapid thermal annealing technique was developed for the activation of Si dopants implanted in the source and drain. In comparison to control devices processed by conventional fabrication, the implanted device with nonalloyed ohmic contact showed comparable device performance with a contact resistance of 0.4 Omm Imax 730 mA/mm ft/f max; 26/62 GHz and power 3.4 W/mm on sapphire. These early results demonstrate the feasibility of implantation incorporation into GaN based device processing as well as the potential to increase yield, reproducibility and reliability in AlGaN/GaN HEMTs.
Homoepitaxial and Heteroepitaxial Growth on Step-Free SiC Mesas
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Powell, J. Anthony
2004-01-01
This article describes the initial discovery and development of new approaches to SiC homoepitaxial and heteroepitaxial growth. These approaches are based upon the previously unanticipated ability to effectively supress two-dimensional nucleation of 3C-SiC on large basal plane terraces that form between growth steps when epitaxy is carried out on 4H- and 6H-SiC nearly on-axis substrates. After subdividing the growth surface into mesa regions, pure stepflow homoeptixay with no terrace nucleation was then used to grow all existing surface steps off the edges of screw-dislocation-free mesas, leaving behind perfectly on-axis (0001) basal plane mesa surfaces completely free of atomic-scale steps. Step-free mesa surfaces as large as 0.4 mm x 0.4 mm were experimentally realized, with the yield and size of step-free mesas being initally limited by substrate screw dislocations. Continued epitaxial growth following step-free surface formation leads to the formation of thin lateral cantilevers that extend the step-free surface area from the top edge of the mesa sidewalls. By selecting a proper pre-growth mesa shape and crystallographic orientation, the rate of cantilever growth can be greatly enhanced in a web growth process that has been used to (1) enlarge step-free surface areas and (2) overgrow and laterally relocate micropipes and screw dislocations. A new growth process, named step-free surface heteroepitaxy, has been developed to achieve 3C-SiC films on 4H- and 6H-SiC substrate mesas completely free of double positioning boundary and stacking fault defects. The process is based upon the controlled terrace nucleation and lateral expansion of a single island of 3C-SiC across a step-free mesa surface. Experimental results indicate that substrateepilayer lattice mismatch is at least partially relieved parallel to the interface without dislocations that undesirably thread through the thickness of the epilayer. These results should enable realization of improved SiC homojunction and heterojunction devices. In addition, these experiments offer important insights into the nature of polytypism during SiC crystal growth.
NASA Astrophysics Data System (ADS)
Joelsson, T.; Hultman, L.; Hugosson, H. W.; Molina-Aldareguia, J. M.
2005-03-01
The phase stability of hexagonal WC-structure and cubic NaCl-structure 4d transition metal nitrides was calculated using first-principles density functional theory. It is predicted that there is a multiphase or polytypic region for the 4d transition metal nitrides with a valence electron concentration around 9.5 to 9.7 per formula unit. For verification, epitaxial NbxZr1-xN (0⩽x⩽1) was grown by reactive magnetron sputter deposition on MgO(001) substrates and analyzed with transmission electron microscopy (TEM) and x-ray diffraction. The defects observed in the films were threading dislocations due to nucleation and growth on the lattice-mismatched substrate and planar defects (stacking faults) parallel to the substrate surface. The highest defect density was found at the x =0.5 composition. The nanoindentation hardness of the films varied between 21GPa for the binary nitrides, and 26GPa for Nb0.5Zr0.5N. Unlike the cubic binary nitrides, no slip on the preferred ⟨11¯0⟩{110} slip system was observed. The increase in hardness is attributed to the increase in defect density at x =0.5, as the defects act as obstacles for dislocation glide during deformation. The findings present routes for the design of wear-resistant nitride coatings by phase stability tuning.
Haghighi, Kayvon; Manolakakis, Manolis G; Balog, Connor
2017-06-01
The aim of this study was to determine the feasibility of direct transcortical stabilization of fracture dislocations of the mandibular condyle (FDMCs) using narrow-diameter non-threaded Kirschner wire (K-wire). This retrospective review reports on the treatment outcomes for 12 patients (15 fractures) with FDMCs treated with open reduction using transcortical 0.027-inch K-wire stabilization. Postoperative parameters of relevance included infection, facial nerve function, hardware removal, mandibular range of motion, and radiographic determination of fracture union. Three patients had bilateral FDMCs and 9 had unilateral FDMCs (age range at time of injury, 14 to 72 yr; mean age, 32 yr). Postoperative follow-up ranged from 6 weeks to 2 years. Four patients required removal of K-wire hardware for different reasons. K-wires were removed because of infection in 1 patient. Another patient required removal because of migration of the pin into the joint space. One pin was removed electively and another was removed for nonspecific postoperative symptoms that resolved after pin removal. Persistent facial nerve deficit was observed in 1 patient. Open reduction with transcortical K-wire stabilization can achieve satisfactory outcomes for the treatment of FDMC. Further investigation is needed in determining the efficacy of this fixation technique in the management of FDMC. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Hayashi, Hiroaki; Konno, Yuta; Kishino, Katsumi
2016-02-05
We demonstrated the self-organization of high-density GaN nanocolumns on multilayer graphene (MLG)/SiO2 covered with a thin AlN buffer layer by RF-plasma-assisted molecular beam epitaxy. MLG/SiO2 substrates were prepared by the transfer of CVD graphene onto thermally oxidized SiO2/Si [100] substrates. Employing the MLG with an AlN buffer layer enabled the self-organization of high-density and vertically aligned nanocolumns. Transmission electron microscopy observation revealed that no threading dislocations, stacking faults, or twinning defects were included in the self-organized nanocolumns. The photoluminescence (PL) peak intensities of the self-organized GaN nanocolumns were 2.0-2.6 times higher than those of a GaN substrate grown by hydride vapor phase epitaxy. Moreover, no yellow luminescence or ZB-phase GaN emission was observed from the nanocolumns. An InGaN/GaN MQW and p-type GaN were integrated into GaN nanocolumns grown on MLG, displaying a single-peak PL emission at a wavelength of 533 nm. Thus, high-density nitride p-i-n nanocolumns were fabricated on SiO2/Si using the transferred MLG interlayer, indicating the possibility of developing visible nanocolumn LEDs on graphene/SiO2.
Effects of oxygen vacancy on the photoconductivity in BaSnO3
NASA Astrophysics Data System (ADS)
Park, Jisung; Char, Kookrin; Institute of Applied Physics, Department of Physics; Astronomy, Seoul National University Team
We have found the photoconductive behavior of BaSnO3, especially their magnitude and time dependence, is very sensitive to the oxygen vacancy concentration. We made epitaxial BaSnO3 film with BaHfO3 buffer layer by pulsed laser deposition. As we had reported before, MgO substrate with its large band gap size about 7.8 eV was used to exclude any photoconductance from the substrate. BaHfO3 layer was used to reduce the threading dislocation density in BaSnO3 film. To control the oxygen vacancy concentration in the BaSnO3 film, we annealed the sample in Ar or O2 atmosphere with varying annealing conditions. After each annealing process, photoconductivity of BaSnO3 was measured during illumination of UV light. The result showed that the magnitude of photoconductivity of BaSnO3 increased after annealing at higher temperature in Ar atmosphere, while the changes in the dark current remains minimal. The result can be explained by a hole trap mechanism. Higher Fermi level due to the increased oxygen vacancy concentration can cause occupation of deep acceptor levels in dislocations of the BaSnO3 film. These occupied deep acceptor levels in turn trap photo-generated holes so that the recombination of electron-hole pair is deterred. Samsung Science and Technology Foundation.
Studies of molecular-beam epitaxy growth of GaAs on porous Si substrates
NASA Technical Reports Server (NTRS)
Mii, Y. J.; Kao, Y. C.; Wu, B. J.; Wang, K. L.; Lin, T. L.; Liu, J. K.
1988-01-01
GaAs has been grown on porous Si directly and on Si buffer layer-porous Si substrates by molecular-beam epitaxy. In the case of GaAs growth on porous Si, transmission electron microscopy (TEM) reveals that the dominant defects in GaAs layers grown on porous Si are microtwins and stacking faults, which originate from the GaAs/porous Si interface. GaAs is found to penetrate into the porous Si layers. By using a thin Si buffer layer (50 nm), GaAs penetration diminishes and the density of microtwins and stacking faults is largely reduced and localized at the GaAs/Si buffer interface. However, there is a high density of threading dislocations remaining. Both Si (100) aligned and four degree tilted substrates have been examined in this study. TEM results show no observable effect of the tilted substrates on the quality of the GaAs epitaxial layer.
NASA Astrophysics Data System (ADS)
Wei, Tongbo; Yang, Jiankun; Wei, Yang; Huo, Ziqiang; Ji, Xiaoli; Zhang, Yun; Wang, Junxi; Li, Jinmin; Fan, Shoushan
2016-06-01
We report a novel method to fabricate high quality 2-inch freestanding GaN substrate grown on cross-stacked carbon nanotubes (CSCNTs) coated sapphire by hydride vapor phase epitaxy (HVPE). As nanoscale masks, these CSCNTs can help weaken the interface connection and release the compressive stress by forming voids during fast coalescence and also block the propagation of threading dislocations (TDs). During the cool-down process, thermal stress-induced cracks are initiated at the CSCNTs interface with the help of air voids and propagated all over the films which leads to full self-separation of FS-GaN substrate. Raman and photoluminescence spectra further reveal the stress relief and crystalline improvement of GaN with CSCNTs. It is expected that the efficient, low cost and mass-producible technique may enable new applications for CNTs in nitride optoelectronic fields.
NASA Astrophysics Data System (ADS)
Liudi Mulyo, Andreas; Konno, Yuta; Nilsen, Julie S.; van Helvoort, Antonius T. J.; Fimland, Bjørn-Ove; Weman, Helge; Kishino, Katsumi
2017-12-01
We demonstrate GaN nanocolumn growth on fused silica glass by plasma-assisted molecular beam epitaxy. The effect of the substrate temperature, Ga flux and N2 flow rate on the structural and optical properties are studied. At optimum growth conditions, GaN nanocolumns are vertically aligned and well separated with an average diameter, height and density of 72 nm, 1.2 μm and 1.6 × 109 cm-2, respectively. The nanocolumns exhibit wurtzite crystal structure with no threading dislocations, stacking faults or twinning and grow in the [0 0 0 1] direction. At the interface adjacent to the glass, there is a few atom layers thick intermediate phase with ABC stacking order (zinc blende). Photoluminescence measurements evidence intense and narrow excitonic emissions, along with the absence of any defect-related zinc blende and yellow luminescence emission.
Elimination of trench defects and V-pits from InGaN/GaN structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smalc-Koziorowska, Julita; Grzanka, Ewa; Czernecki, Robert
2015-03-09
The microstructural evolution of InGaN/GaN multiple quantum wells grown by metalorganic chemical vapor phase epitaxy was studied as a function of the growth temperature of the GaN quantum barriers (QBs). We observed the formation of basal stacking faults (BSFs) in GaN QBs grown at low temperature. The presence of BSFs terminated by stacking mismatch boundaries (SMBs) leads to the opening of the structure at the surface into a V-shaped trench loop. This trench may form above an SMB, thereby terminating the BSF, or above a junction between the SMB and a subsequent BSF. Fewer BSFs and thus fewer trench defectsmore » were observed in GaN QBs grown at temperatures higher than 830 °C. Further increase in the growth temperature of the GaN QBs led to the suppression of the threading dislocation opening into V-pits.« less
Huang, Yinggang; Kim, Tae Wan; Xiong, Shisheng; Mawst, Luke J; Kuech, Thomas F; Nealey, Paul F; Dai, Yushuai; Wang, Zihao; Guo, Wei; Forbes, David; Hubbard, Seth M; Nesnidal, Michael
2013-01-01
Dense arrays of indium arsenide (InAs) nanowire materials have been grown by selective-area metal-organic vapor-phase epitaxy (SA-MOVPE) using polystyrene-b-poly(methyl methacrylate) (PS/PMMA) diblock copolymer (DBC) nanopatterning technique, which is a catalyst-free approach. Nanoscale openings were defined in a thin (~10 nm) SiNx layer deposited on a (111)B-oriented GaAs substrate using the DBC process and CF4 reactive ion etching (RIE), which served as a hard mask for the nanowire growth. InAs nanowires with diameters down to ~ 20 nm and micrometer-scale lengths were achieved with a density of ~ 5 × 10(10) cm(2). The nanowire structures were characterized by scanning electron microscopy and transmission electron microscopy, which indicate twin defects in a primary zincblende crystal structure and the absence of threading dislocation within the imaged regions.
Kuchuk, Andrian V; Kryvyi, Serhii; Lytvyn, Petro M; Li, Shibin; Kladko, Vasyl P; Ware, Morgan E; Mazur, Yuriy I; Safryuk, Nadiia V; Stanchu, Hryhorii V; Belyaev, Alexander E; Salamo, Gregory J
2016-12-01
Superlattices (SLs) consisting of symmetric layers of GaN and AlN have been investigated. Detailed X-ray diffraction and reflectivity measurements demonstrate that the relaxation of built-up strain in the films generally increases with an increasing number of repetitions; however, an apparent relaxation for subcritical thickness SLs is explained through the accumulation of Nagai tilt at each interface of the SL. Additional atomic force microscopy measurements reveal surface pit densities which appear to correlate with the amount of residual strain in the films along with the appearance of cracks for SLs which have exceeded the critical thickness for plastic relaxation. These results indicate a total SL thickness beyond which growth may be limited for the formation of high-quality coherent crystal structures; however, they may indicate a growth window for the reduction of threading dislocations by controlled relaxation of the epilayers.
Lee, Kwang Jae; Chun, Jaeyi; Kim, Sang-Jo; Oh, Semi; Ha, Chang-Soo; Park, Jung-Won; Lee, Seung-Jae; Song, Jae-Chul; Baek, Jong Hyeob; Park, Seong-Ju
2016-03-07
We report the growth of InGaN/GaN multiple quantum wells blue light-emitting diodes (LEDs) on a silicon (111) substrate with an embedded nanoporous (NP) GaN layer. The NP GaN layer is fabricated by electrochemical etching of n-type GaN on the silicon substrate. The crystalline quality of crack-free GaN grown on the NP GaN layer is remarkably improved and the residual tensile stress is also decreased. The optical output power is increased by 120% at an injection current of 20 mA compared with that of conventional LEDs without a NP GaN layer. The large enhancement of optical output power is attributed to the reduction of threading dislocation, effective scattering of light in the LED, and the suppression of light propagation into the silicon substrate by the NP GaN layer.
Wei, Tongbo; Yang, Jiankun; Wei, Yang; Huo, Ziqiang; Ji, Xiaoli; Zhang, Yun; Wang, Junxi; Li, Jinmin; Fan, Shoushan
2016-06-24
We report a novel method to fabricate high quality 2-inch freestanding GaN substrate grown on cross-stacked carbon nanotubes (CSCNTs) coated sapphire by hydride vapor phase epitaxy (HVPE). As nanoscale masks, these CSCNTs can help weaken the interface connection and release the compressive stress by forming voids during fast coalescence and also block the propagation of threading dislocations (TDs). During the cool-down process, thermal stress-induced cracks are initiated at the CSCNTs interface with the help of air voids and propagated all over the films which leads to full self-separation of FS-GaN substrate. Raman and photoluminescence spectra further reveal the stress relief and crystalline improvement of GaN with CSCNTs. It is expected that the efficient, low cost and mass-producible technique may enable new applications for CNTs in nitride optoelectronic fields.
Wei, Tongbo; Yang, Jiankun; Wei, Yang; Huo, Ziqiang; Ji, Xiaoli; Zhang, Yun; Wang, Junxi; Li, Jinmin; Fan, Shoushan
2016-01-01
We report a novel method to fabricate high quality 2-inch freestanding GaN substrate grown on cross-stacked carbon nanotubes (CSCNTs) coated sapphire by hydride vapor phase epitaxy (HVPE). As nanoscale masks, these CSCNTs can help weaken the interface connection and release the compressive stress by forming voids during fast coalescence and also block the propagation of threading dislocations (TDs). During the cool-down process, thermal stress-induced cracks are initiated at the CSCNTs interface with the help of air voids and propagated all over the films which leads to full self-separation of FS-GaN substrate. Raman and photoluminescence spectra further reveal the stress relief and crystalline improvement of GaN with CSCNTs. It is expected that the efficient, low cost and mass-producible technique may enable new applications for CNTs in nitride optoelectronic fields. PMID:27340030
Evolution and characteristics of GaN nanowires produced via maskless reactive ion etching.
Haab, Anna; Mikulics, Martin; Sutter, Eli; Jin, Jiehong; Stoica, Toma; Kardynal, Beata; Rieger, Torsten; Grützmacher, Detlev; Hardtdegen, Hilde
2014-06-27
The formation of nanowires (NWs) by reactive ion etching (RIE) of maskless GaN layers was investigated. The morphological, structural and optical characteristics of the NWs were studied and compared to those of the layer they evolve from. It is shown that the NWs are the result of a defect selective etching process. The evolution of density and length with etching time is discussed. Densely packed NWs with a length of more than 1 μm and a diameter of ∼60 nm were obtained by RIE of a ∼2.5 μm thick GaN layer. The NWs are predominantly free of threading dislocations and show an improvement of optical properties compared to their layer counterpart. The production of NWs via a top down process on non-masked group III-nitride layers is assessed to be very promising for photovoltaic applications.
Epitaxial Ge Solar Cells Directly Grown on Si (001) by MOCVD Using Isobutylgermane
NASA Astrophysics Data System (ADS)
Kim, Youngjo; Kim, Kangho; Lee, Jaejin; Kim, Chang Zoo; Kang, Ho Kwan; Park, Won-Kyu
2018-03-01
Epitaxial Ge layers have been grown on Si (001) substrates by metalorganic chemical vapor deposition (MOCVD) using an isobutylgermane (IBuGe) metalorganic source. Low and high temperature two-step growth and post annealing techniques are employed to overcome the lattice mismatch problem between Ge and Si. It is demonstrated that high quality Ge epitaxial layers can be grown on Si (001) by using IBuGe with surface RMS roughness of 2 nm and an estimated threading dislocation density of 4.9 × 107 cm -2. Furthermore, single-junction Ge solar cells have been directly grown on Si substrates with an in situ MOCVD growth. The epitaxial Ge p- n junction structures are investigated with transmission electron microscopy and electrochemical C- V measurements. As a result, a power conversion efficiency of 1.69% was achieved for the Ge solar cell directly grown on Si substrate under AM1.5G condition.
Detection and modeling of leakage current in AlGaN-based deep ultraviolet light-emitting diodes
Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; ...
2015-03-01
Current-voltage (IV) characteristics of two AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) with differing densities of open-core threading dislocations (nanopipes) are analyzed. A three-diode circuit is simulated to emulate the IV characteristics of the DUV-LEDs, but is only able to accurately model the lower leakage current, lower nanopipe density DUV-LED. It was found that current leakage through the nanopipes in these structures is rectifying, despite nanopipes being previously established as inherently n-type. Using defect-sensitive etching, the nanopipes are revealed to terminate within the p-type GaN capping layer of the DUV-LEDs. The circuit model is modified to account for another p-nmore » junction between the n-type nanopipes and the p-type GaN, and an excellent fit to the IV characteristics of the leaky DUV-LED is achieved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Daehwan, E-mail: daehwan.jung@yale.edu; Larry Lee, Minjoo; Yu, Lan
We report room-temperature (RT) electroluminescence (EL) from InAs/InAs{sub x}P{sub 1−x} quantum well (QW) light-emitting diodes (LEDs) over a wide wavelength range of 2.50–2.94 μm. We demonstrate the ability to accurately design strained InAs QW emission wavelengths while maintaining low threading dislocation density, coherent QW interfaces, and high EL intensity. Investigation of the optical properties of the LEDs grown on different InAs{sub x}P{sub 1−x} metamorphic buffers showed higher EL intensity and lower thermal quenching for QWs with higher barriers and stronger carrier confinement. Strong RT EL intensity from LEDs with narrow full-width at half-maximum shows future potential for InAs QW mid-infrared lasermore » diodes on InAsP/InP.« less
NASA Astrophysics Data System (ADS)
Andre, C. L.; Wilt, D. M.; Pitera, A. J.; Lee, M. L.; Fitzgerald, E. A.; Ringel, S. A.
2005-07-01
Recent experimental measurements have shown that in GaAs with elevated threading dislocation densities (TDDs) the electron lifetime is much lower than the hole lifetime [C. L. Andre, J. J. Boeckl, D. M. Wilt, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, B. M. Keyes, and S. A. Ringel, Appl. Phys. Lett. 84, 3884 (2004)]. This lower electron lifetime suggests an increase in depletion region recombination and thus in the reverse saturation current (J0 for an n+/p diode compared with a p+/n diode at a given TDD. To confirm this, GaAs diodes of both polarities were grown on compositionally graded Ge /Si1-xGex/Si (SiGe) substrates with a TDD of 1×106cm-2. It is shown that the ratio of measured J0 values is consistent with the inverse ratio of the expected lifetimes. Using a TDD-dependent lifetime in solar cell current-voltage models we found that the Voc, for a given short-circuit current, also exhibits a poorer TDD tolerance for GaAs n+/p solar cells compared with GaAs p+/n solar cells. Experimentally, the open-circuit voltage (Voc) for the n+/p GaAs solar cell grown on a SiGe substrate with a TDD of ˜1×106cm-2 was ˜880mV which was significantly lower than the ˜980mV measured for a p+/n GaAs solar cell grown on SiGe at the same TDD and was consistent with the solar cell modeling results reported in this paper. We conclude that p+/n polarity GaAs junctions demonstrate superior dislocation tolerance than n+/p configured GaAs junctions, which is important for optimization of lattice-mismatched III-V devices.
PREFACE: ARENA 2006—Acoustic and Radio EeV Neutrino detection Activities
NASA Astrophysics Data System (ADS)
Thompson, Lee
2007-06-01
The International Conference on Acoustic and Radio EeV Neutrino Activities, ARENA 2006 was jointly hosted by the Universities of Northumbria and Sheffield at the City of Newcastle Campus of the University of Northumbria in June 2006. ARENA 2006 was the latest in a series of meetings which have addressed, either separately or jointly, the use of radio and acoustic sensors for the detection of highly relativistic particles. Previous successful meetings have taken place in Los Angeles (RADHEP, 2000), Stanford (2003) and DESY Zeuthen (ARENA 2005). A total of 50 scientists from across Europe, the US and Japan attended the conference presenting status reports and results from a number of projects and initiatives spread as far afield as the Sweden and the South Pole. The talks presented at the meeting and the proceedings contained herein represent a `snapshot' of the status of the fields of acoustic and radio detection at the time of the conference. The three day meeting also included two invited talks by Dr Paula Chadwick and Dr Johannes Knapp who gave excellent summaries of the related astroparticle physics fields of high energy gamma ray detection and high energy cosmic ray detection respectively. As well as a full academic agenda there were social events including a Medieval themed conference banquet at Lumley Castle and a civic reception kindly provided by the Lord Mayor of Newcastle and hosted at the Mansion House. Thanks must go to the International Advisory Board members for their input and guidance, the Local Organising Committee for their hard work in bringing everything together and finally the delegates for the stimulating, enthusiastic and enjoyable spirit in which ARENA 2006 took place. Lee Thompson
| G. Anton, Erlangen | D. Besson, Kansas |
| J. Blümer, Karlsruhe | A. Capone, Rome |
| H. Falcke, Bonn | P. Gorham, Hawaii |
| G. Gratta, Stanford | F. Halzen, Madison |
| J. Learned, Hawaii | R. Nahnhauer, Zeuthen |
| A. Rostovtzev, Moscow | D. Saltzberg, Los Angeles |
| L. Thompson, Sheffield | F. Vannucci, Paris |
| S. Danaher, Northumbria | C. Rhodes, Imperial College London |
| J. Perkin, Sheffield | T. Sloan, Lancaster |
| L. Thompson, Sheffield | D. Waters, University College London |
| Joseph Allen, Northumbria University, UK | Miguel Ardid, Univ. Polit. de Valencia, Spain |
| Thomas Asch, IPE, FZKa, Germany | Karl-Heinz Becker, BU Wuppertal, Germany |
| Dave Besson, U. of Kansas, USA | Simon Bevan, University College London, UK |
| Manuel Bou Cabo, Politecnic University Valencia, Spain | Sebastian Böser, DESY Zeuthen, Germany |
| Antonio Capone, University La Sapienza and INFN, Italy | Paula Chadwick, University of Durham, UK |
| Masami Chiba, Tokyo Metropolitan University, Japan | Amy Connolly, UCLA, USA |
| Sean Danaher, Northumbria University, UK | Giulia De Bonis, Univ. Rome `La Sapienza', Italy |
| Freija Descamps, University of Gent, Belgium | Kay Graf, University of Erlangen, Germany |
| Andreas Haungs, Forschungszentrum Karlsruhe, Germany | Kara Hoffman, University of Maryland, USA |
| Stephen Hoover, UCLA, USA | Tim Huege, Forschungszentrum Karlsruhe, Germany |
| Paula Gina Isar, Forschungszentrum Karlsruhe, Germany | Timo Karg, BU Wuppertal, Germany |
| Johannes Knapp, University of Leeds, UK | Robert Lahmann, University of Erlangen, Germany |
| Mark Lancaster, University College London, UK | Vladimir Lyashuk, ITEP, Russia |
| Radovan Milincic, University of Hawaii at Manoa, USA | Rolf Nahnhauer, DESY, Zeuthen, Germany |
| Christopher Naumann, University of Erlangen, Germany | Valentin Niess, CPPM |
| Jonathan Perkin, University of Sheffield, UK | Steve Ralph, University of Sheffield, UK |
| Christopher Rhodes, Imperial College London, UK | Carsten Richardt, University of Erlangen, Germany |
| Karsten Salomon, University of Erlangen, Germany | Olaf Scholten, KVI/University of Groningen, Netherlands |
| Terry Sloan, University of Lancaster, UK | Pierre Sokolsky, University of Utah, USA |
| Lee Thompson, University of Sheffield, UK | Omar Veledar, Northumbria University, UK |
| David Waters, UCL, USA | Dawn Williams, Pennsylvania State University, USA |
| Igor Zheleznykh, Institute for Nuclear Research, Russia |
Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth
Tang, Y. -H.; Golding, B.
2016-02-02
Here, we describe a method for lateral overgrowth of low-stress single crystal diamond by chemical vapor deposition (CVD). The process is initiated by deposition of a thin (550 nm) (001) diamond layer on Ir-buffered a-plane sapphire. The diamond is partially masked by periodic thermally evaporated Au stripes using photolithography. Lateral overgrowth of the Au occurs with extremely effective filtering of threading dislocations. Thermal stress resulting from mismatch of the low thermal expansion diamond and the sapphire substrate is largely accommodated by the ductile Au layer. The stress state of the diamond is investigated by Raman spectroscopy for two thicknesses: atmore » 10 μm where the film has just overgrown the Au mask and at 180 μm where the film thickness greatly exceeds the scale of the masking. For the 10-μm film, the Raman linewidth shows spatial oscillations with the period of the Au stripes with a factor of 2 to 3 reduction relative to the unmasked region. In a 180-μm thick diamond film, the overall surface stress was extremely low, 0.00 ± 0.16 GPa, obtained from the Raman shift averaged over the 7.5mm diameter of the crystal at its surface. We conclude that the metal mask protects the overgrown diamond layer from substrate-induced thermal stress and cracking. Lastly, it is also responsible for low internal stress by reducing dislocation density by several orders of magnitude.« less
PREFACE: Particles and Fields: Classical and Quantum
NASA Astrophysics Data System (ADS)
Asorey, M.; Clemente-Gallardo, J.; Marmo, G.
2007-07-01
This volume contains some of the contributions to the Conference Particles and Fields: Classical and Quantum, which was held at Jaca (Spain) in September 2006 to honour George Sudarshan on his 75th birthday. Former and current students, associates and friends came to Jaca to share a few wonderful days with George and his family and to present some contributions of their present work as influenced by George's impressive achievements. This book summarizes those scientific contributions which are presented as a modest homage to the master, collaborator and friend. At the social ceremonies various speakers were able to recall instances of his life-long activity in India, the United States and Europe, adding colourful remarks on the friendly and intense atmosphere which surrounded those collaborations, some of which continued for several decades. This meeting would not have been possible without the financial support of several institutions. We are deeply indebted to Universidad de Zaragoza, Ministerio de Educación y Ciencia de España (CICYT), Departamento de Ciencia, Tecnología y Universidad del Gobierno de Aragón, Universitá di Napoli 'Federico II' and Istituto Nazionale di Fisica Nucleare. Finally, we would like to thank the participants, and particularly George's family, for their contribution to the wonderful atmosphere achieved during the Conference. We would like also to acknowledge the authors of the papers collected in the present volume, the members of the Scientific Committee for their guidance and support and the referees for their generous work. M Asorey, J Clemente-Gallardo and G Marmo The Local Organizing Committee
George Sudarshan
| A. Ashtekhar (Pennsylvania State University, USA) |
| L. J. Boya (Universidad de Zaragoza, Spain) |
| I. Cirac (Max Planck Institute, Garching, Germany) |
| G. F. Dell Antonio (Universitá di Roma La Sapienza, Italy) |
| A. Galindo (Universidad Complutense de Madrid, Spain) |
| S. L. Glashow (Boston University, USA) |
| A. M. Gleeson (University of Texas, Austin, USA) |
| C. R. Hagen (Rochester University, NY, USA) |
| J. Klauder (University of Florida, Gainesville, USA) |
| A. Kossakowski (University of Torun, Poland) |
| V.I. Manko (Lebedev Physical Institute, Moscow, Russia) |
| G. Marmo (Universitá Federico II di Napoli e INFN Sezione di Napoli, Italy) |
| N. Mukunda (Indian Institute of Science, Bangalore, India) |
| J. V. Narlikar (Inter-University Centre for Astronomy and Astrophysics, Pune, India) |
| J. Nilsson (University of Goteborg, Sweden) |
| S. Okubo (Rochester University, NY, USA) |
| T. Regge (Politecnico di Torino, Italy) |
| W. Schleich (University of Ulm, Germany) |
| M. Scully (Texas A& M University, USA) |
| S. Weinberg (University of Texas, Austin, USA) |
| M. Asorey (Universidad de Zaragoza, Spain) |
| L. J. Boya (Universidad de Zaragoza, Spain). Co-Chair |
| J. F. Cariñena (Universidad de Zaragoza, Spain) |
| J. Clemente-Gallardo (Universidad de Zaragoza, Spain) |
| F. Falceto (Universidad de Zaragoza, Spain) |
| G. Marmo (Universitá Federico II di Napoli e INFN Sezione di Napoli, Italy) Co-Chair |
| G. Morandi (Universitá di Bologna, Italy) |
| ACHARYA, Raghunath: Arizona State University, USA |
| AGUADO, Miguel M.: Max-Planck-Institut für Quantenoptik, Garching, Germany |
| ASOREY, Manuel: Universidad de Zaragoza, Spain |
| BERETTA, Gian Paolo: Università di Brescia, Italy |
| BHAMATHI, Gopalakrishnan: University of Texas at Austin, USA |
| BOYA, Luis Joaquín: Universidad de Zaragoza, Spain |
| CARIÑENA, José F.: Universidad de Zaragoza, Spain |
| CELEGHINI, Enrico: Università di Firenze & INFN, Italy |
| CHRUSCINSKI, Dariusz: Nicolaus Copernicus University, Torun, Poland |
| CIRILO-LOMBARDO, Diego: Bogoliubov Laboratory of Theoretical Physics (JINR-Dubna), Russia |
| CLEMENTE-GALLARDO, Jesus: BIFI-Universidad de Zaragoza, Spain |
| DE LUCAS, Javier: Universidad de Zaragoza, Spain |
| FALCETO, Fernando: Universidad de Zaragoza, Spain |
| GINOCCHIO, Joseph: Los Alamos National Laboratory, USA |
| GORINI, Vittorio: Universitá' dell' Insubria, Como, Italy |
| INDURAIN, Javier: Universidad de Zaragoza, Spain |
| KLAUDER, John: University of Florida, USA |
| KOSSAKOWSKI, Andrzej: Nicolaus Copernicus University, Torun, Poland |
| MARMO, Giuseppe: Università di Napoli Federico II, Italy |
| MORANDI, Giuseppe: Universitá di Bologna-Italy |
| MUKUNDA, Narasimhaiengar: Indian Institute of Science, Bangalore, India |
| MUÑOZ-CASTAÑEDA, Jose M.: University of Zaragoza, Spain |
| NAIR, RANJIT: Centre for Philosophy & Foundations of Science, New Delhi, India |
| NILSSON, Jan S: University of Gothenburg, Sweden |
| OKUBO, Susumu: University of Rochester, USA |
| PASCAZIO, Saverio: Universitá di Bari, Italy |
| RIVERA HERNÁNDEZ, Rayito: Université Pierre et Marie Curie, Paris, France |
| RODRIGUEZ, Cesar: University of Texas - Austin, USA |
| SCOLARICI, Giuseppe: Universitá del Salento, Lecce, Italy |
| SEGUI, Antonio: Universidad de Zaragoza, Spain |
| SHAPIRO, Ilya: Universidade Federal de Juiz de Fora, Brasil |
| SIMONI, Alberto: Università di Napoli Federico II, Italy |
| SOLOMON, Allan: Open University/ University of Paris VI, UK/France |
| SUDARSHAN, Ashok: |
| SUDARSHAN, George: University of Texas at Austin, USA |
| TULCZYJEW, Wlodzimierz: Universitá di Camerino, Italy |
| UCHIYAMA, Chikako: University of Yamanashi, Japan |
| VENTRIGLIA, Franco: Università di Napoli Federico II, Italy |
| VILASI, Gaetano: Universitá di Salerno, Italy |
| ZACCARIA, Francesco: Universitá di Napoli Federico II, Italy |
Constant time worker thread allocation via configuration caching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichenberger, Alexandre E; O'Brien, John K. P.
Mechanisms are provided for allocating threads for execution of a parallel region of code. A request for allocation of worker threads to execute the parallel region of code is received from a master thread. Cached thread allocation information identifying prior thread allocations that have been performed for the master thread are accessed. Worker threads are allocated to the master thread based on the cached thread allocation information. The parallel region of code is executed using the allocated worker threads.
Screw-Thread Standards for Federal Services, 1957. Handbook H28 (1957), Part 3
1957-09-01
MOUNTING THREADS PHOTOGRAPHIC EQUIPMENT THREADS ISO METRIC THREADS; MISCELLANEOUS THREADS CLASS 5 INTERFERENCE-FIT THREADS, TRIAL STANDARD WRENCH...Bibliography on measurement of pitch diameter by means of wires 60 Appendix 14. Metric screw-thread standards 61 1. ISO thread profiles...61 2. Standard series for ISO metric threads 62 3. Designations for ISO metric threads 62 Tables Page Table XII. 1.—Basic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, George L.; Eichenberger, Alexandre E.; O'Brien, John K. P.
The present disclosure relates generally to a dedicated memory structure (that is, hardware device) holding data for detecting available worker thread(s) and informing available worker thread(s) of task(s) to execute.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chi-Kang; Wu, Chen-Kuo; Hsu, Chung-Cheng
2016-05-15
In this paper, influence of a V-pit embedded inside the multiple quantum wells (MQWs) LED was studied. A fully three-dimensional stress-strain solver and Poisson-drift-diffusion solver are employed to study the current path, where the quantum efficiency and turn-on voltage will be discussed. Our results show that the hole current is not only from top into lateral quantum wells (QWs) but flowing through shallow sidewall QWs and then injecting into the deeper lateral QWs in V-pit structures, where the V-pit geometry provides more percolation length for holes to make the distribution uniform along lateral MQWs. The IQE behavior with different V-pitmore » sizes, threading dislocation densities, and current densities were analyzed. Substantially, the variation of the quantum efficiency for different V-pit sizes is due to the trap-assisted nonradiative recombination, effective QW ratio, and ability of hole injections.« less
Growth of Defect-Free 3C-SiC on 4H- and 6H-SiC Mesas Using Step-Free Surface Heteroepitaxy
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Powell, J. Anthony; Trunek, Andrew J.; Huang, Xianrong R.; Dudley, Michael
2001-01-01
A new growth process, herein named step-free surface heteroepitaxy, has achieved 3CSiC films completely free of double positioning boundaries and stacking faults on 4H-SiC and 6H-SiC substrate mesas. The process is based upon the initial 2-dimensional nucleation and lateral expansion of a single island of 3C-SiC on a 4H- or 6H-SiC mesa surface that is completely free of bilayer surface steps. Our experimental results indicate that substrate-epilayer in-plane lattice mismatch (delta a/a = 0.0854% for 3C/4H) is at least partially relieved parallel to the interface in the initial bilayers of the heterofilm, producing an at least partially relaxed 3C-SiC film without dislocations that undesirably thread through the thickness of the epilayer. This result should enable realization of improved 3C-SiC devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shengurov, V. G.; Chalkov, V. Yu.; Denisov, S. A.
The conditions of the epitaxial growth of high-quality relaxed Si{sub 1–x}Ge{sub x} layers by the combined method of the sublimation molecular-beam epitaxy and vapor-phase decomposition of monogermane on a hot wire are considered. The combined growth procedure proposed provides a means for growing Si{sub 1–x}Ge{sub x} layers with a thickness of up to 2 µm and larger. At reduced growth temperatures (T{sub S} = 325–350°C), the procedure allows the growth of Si{sub 1–x}Ge{sub x} layers with a small surface roughness (rms ≈ 2 nm) and a low density of threading dislocations. The photoluminescence intensity of Si{sub 1–x}Ge{sub x}:Er layers ismore » significantly (more than five times) higher than the photoluminescence intensity of layers produced under standard growth conditions (T{sub S} ≈ 500°C) and possess an external quantum efficiency estimated at a level of ~0.4%.« less
Kim, Dong Rip; Lee, Chi Hwan; Cho, In Sun; Jang, Hanmin; Jeon, Min Soo; Zheng, Xiaolin
2017-07-25
An important pathway for cost-effective light energy conversion devices, such as solar cells and light emitting diodes, is to integrate III-V (e.g., GaN) materials on Si substrates. Such integration first necessitates growth of high crystalline III-V materials on Si, which has been the focus of many studies. However, the integration also requires that the final III-V/Si structure has a high light energy conversion efficiency. To accomplish these twin goals, we use single-crystalline microsized Si pillars as a seed layer to first grow faceted Si structures, which are then used for the heteroepitaxial growth of faceted GaN films. These faceted GaN films on Si have high crystallinity, and their threading dislocation density is similar to that of GaN grown on sapphire. In addition, the final faceted GaN/Si structure has great light absorption and extraction characteristics, leading to improved performance for GaN-on-Si light energy conversion devices.
Leakage current transport mechanism under reverse bias in Au/Ni/GaN Schottky barrier diode
NASA Astrophysics Data System (ADS)
Peta, Koteswara Rao; Kim, Moon Deock
2018-01-01
The leakage current transport mechanism under reverse bias of Au/Ni/GaN Schottky diode is studied using temperature dependent current-voltage (I-V-T) and capacitance-voltage (C-V) characteristics. I-V measurement in this study is in the range of 140 K-420 K in steps of 10 K. A reduction in voltage dependent barrier height and a strong internal electric field in depletion region under reverse bias suggested electric field enhanced thermionic emission in carrier transport via defect states in Au/Ni/GaN SBD. A detailed analysis of reverse leakage current revealed two different predominant transport mechanisms namely variable-range hopping (VRH) and Poole-Frenkel (PF) emission conduction at low (<260 K) and high (>260 K) temperatures respectively. The estimated thermal activation energies (0.20-0.39 eV) from Arrhenius plot indicates a trap assisted tunneling of thermally activated electrons from a deep trap state into a continuum of states associated with each conductive threading dislocation.
NASA Astrophysics Data System (ADS)
Kasu, Makoto; Oshima, Takayoshi; Hanada, Kenji; Moribayashi, Tomoya; Hashiguchi, Akihiro; Oishi, Toshiyuki; Koshi, Kimiyoshi; Sasaki, Kohei; Kuramata, Akito; Ueda, Osamu
2017-09-01
A pixel array of vertical Schottky-barrier diodes (SBDs) was fabricated and measured on the surface of a (\\bar{2}01) β-Ga2O3 single crystal. Subsequently, etch pits and patterns were observed on the same surface. Three types of etch pits were discovered: (1) a line-shaped etch pattern originating from a void and extending toward the [010] direction, (2) an arrow-shaped etch pit whose arrow’s head faces toward the [102] direction and, (3) a gourd-shaped etch pit whose point head faces toward the [102] direction. Their average densities were estimated to be 5 × 102, 7 × 104, and 9 × 104 cm-2, respectively. We confirmed no clear relationship between the leakage current in SBDs and these crystalline defects. Such results are obtained because threading dislocations run mainly in the [010] growth direction and do not go through the (\\bar{2}01) sample plate.
Tansu, Nelson; Chan, Helen M; Vinci, Richard P; Ee, Yik-Khoon; Biser, Jeffrey
2013-09-24
The use of an abbreviated GaN growth mode on nano-patterned AGOG sapphire substrates, which utilizes a process of using 15 nm low temperature GaN buffer and bypassing etch-back and recovery processes during epitaxy, enables the growth of high-quality GaN template on nano-patterned AGOG sapphire. The GaN template grown on nano-patterned AGOG sapphire by employing abbreviated growth mode has two orders of magnitude lower threading dislocation density than that of conventional GaN template grown on planar sapphire. The use of abbreviated growth mode also leads to significant reduction in cost of the epitaxy. The growths and characteristics of InGaN quantum wells (QWs) light emitting diodes (LEDs) on both templates were compared. The InGaN QWs LEDs grown on the nano-patterned AGOG sapphire demonstrated at least a 24% enhancement of output power enhancement over that of LEDs grown on conventional GaN templates.
NASA Astrophysics Data System (ADS)
Dong, Peng; Yan, Jianchang; Zhang, Yun; Wang, Junxi; Zeng, Jianping; Geng, Chong; Cong, Peipei; Sun, Lili; Wei, Tongbo; Zhao, Lixia; Yan, Qingfeng; He, Chenguang; Qin, Zhixin; Li, Jinmin
2014-06-01
We report high-performance AlGaN-based deep ultraviolet light-emitting diodes grown on nano-patterned sapphire substrates (NPSS) using metal-organic chemical vapor deposition. By nanoscale epitaxial lateral overgrowth on NPSS, 4-μm AlN buffer layer has shown strain relaxation and a coalescence thickness of only 2.5 μm. The full widths at half-maximum of X-ray diffraction (002) and (102) ω-scan rocking curves of AlN on NPSS are only 69.4 and 319.1 arcsec. The threading dislocation density in AlGaN-based multi-quantum wells, which are grown on this AlN/NPSS template with a light-emitting wavelength at 283 nm at room temperature, is reduced by 33% compared with that on flat sapphire substrate indicated by atomic force microscopy measurements, and the internal quantum efficiency increases from 30% to 43% revealed by temperature-dependent photoluminescent measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohen, David, E-mail: david.kohen@asm.com; Nguyen, Xuan Sang; Made, Riko I
We report on the growth of an In{sub 0.30}Ga{sub 0.70}As channel high-electron mobility transistor (HEMT) on a 200 mm silicon wafer by metal organic vapor phase epitaxy. By using a 3 μm thick buffer comprising a Ge layer, a GaAs layer and an InAlAs compositionally graded strain relaxing buffer, we achieve threading dislocation density of (1.0 ± 0.3) × 10{sup 7} cm{sup −2} with a surface roughness of 10 nm RMS. No phase separation was observed during the InAlAs compositionally graded buffer layer growth. 1.4 μm long channel length transistors are fabricated from the wafer with I{sub DS} of 70more » μA/μm and g{sub m} of above 60 μS/μm, demonstrating the high quality of the grown materials.« less
NASA Astrophysics Data System (ADS)
Chiu, Ching-Hsueh; Lin, Chien-Chung; Deng, Dongmei; Kuo, Hao-Chung; Lau, Kei-May
2011-10-01
We investigate the optical and electrical characteristics of the GaN-based light emitting diodes (LEDs) grown on Micro and Nano-scale Patterned silicon substrate (MPLEDs and NPLEDs). The transmission electron microscopy (TEM) images reveal the suppression of threading dislocation density in InGaN/GaN structure on nano-pattern substrate due to nanoscale epitaxial lateral overgrowth (NELOG). The plan-view and cross-section cathodoluminescence (CL) mappings show less defective and more homogeneous active quantum well region growth on nano-porous substrates. From temperature dependent photoluminescence (PL) and low temperature time-resolved photoluminescence (TRPL) measurement, NPLEDs has better carrier confinement and higher radiative recombination rate than MPLEDs. In terms of device performance, NPLEDs exhibits smaller electroluminescence (EL) peak wavelength blue shift, lower reverse leakage current and decreases efficiency droop compared with the MPLEDs. These results suggest the feasibility of using NPSi for the growth of high quality and power LEDs on Si substrates.
Current Status of the Quality of 4H-SiC Substrates and Epilayers for Power Device Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudley, M.; Wang, H.; Guo, Jianqiu
ABSTRACT Interfacial dislocations (IDs) and half-loop arrays (HLAs) present in the epilayers of 4H-SiC crystal are known to have a deleterious effect on device performance. Synchrotron X-ray Topography studies carried out on n-type 4H-SiC offcut wafers before and after epitaxial growth show that in many cases BPD segments in the substrate are responsible for creating IDs and HLAs during CVD growth. This paper reviews the behaviors of BPDs in the substrate during the epitaxial growth in different cases: (1) screw-oriented BPD segments intersecting the surface replicate directly through the interface during the epitaxial growth and take part in stress relaxationmore » process by creating IDs and HLAs (Matthews-Blakeslee model [1] ); (2) non-screw oriented BPD half loop intersecting the surface glides towards and replicates through the interface, while the intersection points convert to threading edge dislocations (TEDs) and pin the half loop, leaving straight screw segments in the epilayer and then create IDs and HLAs; (3) edge oriented short BPD segments well below the surface get dragged towards the interface during epitaxial growth, leaving two long screw segments in their wake, some of which replicate through the interface and create IDs and HLAs. The driving force for the BPDs to glide toward the interface is thermal stress and driving force for the relaxation process to occur is the lattice parameter difference at growth temperature which results from the doping concentration difference between the substrate and epilayer.« less
Continuum elastic theory for dynamics of surfaces and interfaces
NASA Astrophysics Data System (ADS)
Pykhtin, Michael V.
This thesis is divided into three parts, different by problems they deal with, but similar by underlying assumptions (crystals are treated as classical elastic anisotropic media) and methods of solving (vibrational Green's functions). (i) In the first part we compute the density of vibrational modes for a vicinal Ni(977) surface. In the spectrum we find new step induced modes which are compared with recently reported experimental data for Ni(977) surface obtained by inelastic atom scattering. (ii) In the second part we study damping of low-frequency adsorbate vibrations via resonant coupling to the substrate phonons. Our theory provides a general expression for the vibrational damping rate which can be applied to widely varying coverages and arbitrary overlayer structures. The damping rates predicted by our theory for CO on Cu(100) are in excellent quantitative agreement with available experimental data. (iii) In the third part we develop a theory for the density of vibrational modes at the surface of a thin film of one anisotropic solid an on top of the other. We compute the density of modes for a GaN film on a sapphire substrate for a wide range of wavevector and frequency, and obtain dispersion maps which contain waves trapped between the surface of the film and the interface. Two families of the trapped modes were observed: Love waves and generalized Lamb waves. We also study the effect of threading edge dislocations (majority of defects in the GaN film) on the trapped modes. At the experimental dislocation density the effect is negligible.
Thread selection according to power characteristics during context switching on compute nodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archer, Charles J.; Blocksome, Michael A.; Randles, Amanda E.
Methods, apparatus, and products are disclosed for thread selection during context switching on a plurality of compute nodes that includes: executing, by a compute node, an application using a plurality of threads of execution, including executing one or more of the threads of execution; selecting, by the compute node from a plurality of available threads of execution for the application, a next thread of execution in dependence upon power characteristics for each of the available threads; determining, by the compute node, whether criteria for a thread context switch are satisfied; and performing, by the compute node, the thread context switchmore » if the criteria for a thread context switch are satisfied, including executing the next thread of execution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Methods, apparatus, and products are disclosed for thread selection during context switching on a plurality of compute nodes that includes: executing, by a compute node, an application using a plurality of threads of execution, including executing one or more of the threads of execution; selecting, by the compute node from a plurality of available threads of execution for the application, a next thread of execution in dependence upon power characteristics for each of the available threads; determining, by the compute node, whether criteria for a thread context switch are satisfied; and performing, by the compute node, the thread context switchmore » if the criteria for a thread context switch are satisfied, including executing the next thread of execution.« less
Advanced Chemistry Collection, 2nd Edition
NASA Astrophysics Data System (ADS)
2001-11-01
Software requirements are given in Table 3. Some programs have additional special requirements. Please see the individual program abstracts at JCE Online or the documentation included on the CD-ROM for more specific information. Table 3. General software requirements for the Advanced Chemistry Collection.
| Computer | System | Other Software(Required by one or more programs) |
| Mac OS compatible | System 7.6.1 or higher | Acrobat Reader (included)Mathcad; Mathematica;MacMolecule2; QuickTime 4; HyperCard Player |
| Windows Compatible | Windows 2000, 98, 95, NT 4 | Acrobat Reader (included)Mathcad; Mathematica;PCMolecule2; QuickTime 4;HyperChem; Excel |
Modified locking thread form for fastener
NASA Technical Reports Server (NTRS)
Roopnarine, (Inventor); Vranish, John D. (Inventor)
1998-01-01
A threaded fastener has a standard part with a standard thread form characterized by thread walls with a standard included angle, and a modified part complementary to the standard part having a modified thread form characterized by thread walls which are symmetrically inclined with a modified included angle that is different from the standard included angle of the standard part's thread walls, such that the threads of one part make pre-loaded edge contact with the thread walls of the other part. The thread form of the modified part can have an included angle that is greater, less, or compound as compared to the included angle of the standard part. The standard part may be a bolt and the modified part a nut, or vice versa. The modified thread form holds securely even under large vibrational forces, it permits bi-directional use of standard mating threads, is impervious to the build up of tolerances and can be manufactured with a wider range of tolerances without loss of functionality, and distributes loading stresses (per thread) in a manner that decreases the possibility of single thread failure.
2007 Tactical Wheeled Vehicles Conference (TWV)
2007-02-06
Reception and Super Bowl Party The DeAnza Ballroom I and II Monday, February 5, 2007 7:00 a.m. - 8:00 a.m. Continental Breakfast Serra... Reception The DeAnza Ballroom I and II The Portola Plaza Hotel at Monterey Bay Evening on Own - Enjoy Monterey! Tuesday, February 6, 2007 7:00...M967, M969, M870) 2006 2008 | 2007 | 2009 | Tech Insertion HMMWV FMTV HEMTT 915 Trailers 2010 | TD TD TD TD TD TD TD TD TD TD TD Expedited
Astrochemistry with the Mid-InfraRed Instrument on JWST
NASA Astrophysics Data System (ADS)
van Dishoeck, E. F.; Merín, B.; Brandl, B.; Böker, T.; Greene, T.; Meixner, M.; Ressler, M.; Rieke, G.; Waelkens, C.; Wright, G.; Miri Team
JWST-MIRI will have imaging and medium resolution (λ/Δλ ≍ 2000-3000) integral field spectroscopy with orders of magnitude improvements in sensitivity and/or spatial resolution compared with existing facilities. It will be a prime facility for astrochemical studies of gases and solids in a wide variety of objects in the next decade. 1. Introduction Mid-infrared spectroscopy is becoming a powerful tool in astrochemistry, with studies of molecules and sources that are highly complementary to those at millimeter wavelengths. Molecules without permanent dipole moments such CH4, C2H2 and CO2 can only be observed through their vibration-rotation transitions. Space-based missions open up the possibility to study molecules which are abundant in ouw own atmosphere, in particular H2O. Polycyclic Aromatic Hydrocarbons have their most prominent features at mid-infrared wavelengths, and the pure rotational transitions of the dominant molecule in the universe, H2, also occur in this band. Solid-state material is uniquely probed in the mid-infrared, including characteric bands of ices, silicates, oxides, carbides, carbonates and sulfides. The wealth of mid-infrared spectroscopy has been demonstrated by results from the ISO satellite (see van Dishoeck & Tielens 2001, van Dishoeck 2004 for reviews), by pioneering ground-based studies (Lacy et al. 1989, Evans et al. 1990) and most recently by the Spitzer Space Telescope. Targets include molecular clouds, PDRs, shocks, deeply embedded young stellar objects, UC HII regions, protoplanetary disks, planetary atmospheres, comets, evolved stars and even entire galaxies. In addition to an inventory of gaseous and solid-state material, the lines and line ratios provide powerful diagnostics of temperatures, densities, UV field, elemental abundances, etc. Systematic variations in features from region to region allow the physical and chemical processes to be traced. The MidInfraRed Instrument (MIRI) on board the 6m James Webb Space Telescope (JWST) provides the first opportunity after Spitzer for mid-infrared spectroscopy from space. The instrument will have orders of magnitude improvements in sensitivity, spatial and/or spectral resolution compared with other facilities and will be a unique facility for astrochemistry in the next decade. The combination of medium resolution spectroscopy and subarcsec spatial resolution is particularly well suited for studying gases and solids in disks around young stars and in the nuclei of (starburst) galaxies. 2. The MIRI instrument The MIRI instrument consists of an imager and a spectrometer operating in the 5-28μm wavelength range and cooled to 7 K (Wright et al. 2003, Rieke et al. 2005). The imager has a 1024×1024 pixel Si:As array with a 1.8' × 1.3' FOV with diffraction-limited image widths of 0.2" at 5.6 μm up to 0.9" at 25.5 μm. It includes low resolution (R ≍ 100) slit spectroscopy and coronography in four filter bands using fixed masks. The spectrometer has two 1024×1024 Si:As arrays and can obtain simultaneous spectral and spatial data on a few arcsec region by using four integral field units (IFUs) constructed of image slicers (see Table 1). A full 5-28.5 μm spectrum requires 3 exposures, with the dichroic/grating wheels moved between each exposure. MIRI will be at least three orders of magnitude more sensitive than any 8-m class ground-based telescope in the 5-30 μm range, a large part of which (>50 %) will be completely blocked by atmospheric features from the ground. Compared with Spitzer, MIRI will have more than an order of magnitude increase in sensitivity and spatial resolution, and a significant increase in spectral resolution. MIRI is being constructed as a joint effort between US and European institutions. It has passed its preliminary design review in March 2005. The structural and mechanical models have undergone vibration testing, and the verification models are being built. The first engineering arrays from Raytheon have been delivered. MIRI will have its critical design review in 2006 and be launched on JWST around 2013. Table 1.
| Channel | Wavelength range | FOV | slice width | λ/Δλ |
| (μm) | " | " | ||
| 1 | 4.9-7.7 | 3.7 × 3.7 | 0.18 | 2500-3700 |
| 2 | 7.4-11.8 | 4.5 × 4.5 | 0.28 | 2500-3700 |
| 3 | 11.4-18.2 | 6.1 × 6.1 | 0.39 | 2500-3700 |
| 4 | 17.5-28.8 | 7.7 × 7.7 | 0.65 | 2000-2500 |
General Chemistry Collection for Students, 6th Edition
NASA Astrophysics Data System (ADS)
2002-05-01
System requirements are given in Tables 2a and b. Some programs have additional special requirements. Please see the individual program abstracts at JCE Online or the documentation included on the CD-ROM for more specific information.
Table 2a. Hardware Required| Computer | CPU | RAM | Drives | Graphics |
|---|---|---|---|---|
| Mac OS | Power Macintosh | ≥ 64 MB | CD-ROMHard Drive | ≥ 256 colors;≥ 800x600 |
| Windows | Pentium | ≥ 64 MB | CD-ROMHard Drive | SVGA;≥ 256 colors;≥ 800x600 |
| Computer | Operating System | Other(required by one or more programs) |
|---|---|---|
| Mac OS | System 8.6 or higher | Acrobat Reader (included); Internet Browser such as Netscape Navigator or Internet Explorer; MacMolecule2; QuickTime 4 or higher; HyperCard Player |
| Windows | Windows XP, ME, 2000, 98, 95, NT 4 | Acrobat Reader (included); Internet Browser such as Netscape Navigator or Internet Explorer; PCMolecule2; QuickTime 4 or higher |