SU-E-T-279: Realization of Three-Dimensional Conformal Dose Planning in Prostate Brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Z; Jiang, S; Yang, Z
2014-06-01
Purpose: Successful clinical treatment in prostate brachytherapy is largely dependent on the effectiveness of pre-surgery dose planning. Conventional dose planning method could hardly arrive at a satisfy result. In this abstract, a three-dimensional conformal localized dose planning method is put forward to ensure the accuracy and effectiveness of pre-implantation dose planning. Methods: Using Monte Carlo method, the pre-calculated 3-D dose map for single source is obtained. As for multiple seeds dose distribution, the maps are combined linearly to acquire the 3-D distribution. The 3-D dose distribution is exhibited in the form of isodose surface together with reconstructed 3-D organs groupmore » real-timely. Then it is possible to observe the dose exposure to target volume and normal tissues intuitively, thus achieving maximum dose irradiation to treatment target and minimum healthy tissues damage. In addition, the exfoliation display of different isodose surfaces can be realized applying multi-values contour extraction algorithm based on voxels. The needles could be displayed in the system by tracking the position of the implanted seeds in real time to conduct block research in optimizing insertion trajectory. Results: This study extends dose planning from two-dimensional to three-dimensional, realizing the three-dimensional conformal irradiation, which could eliminate the limitations of 2-D images and two-dimensional dose planning. A software platform is developed using VC++ and Visualization Toolkit (VTK) to perform dose planning. The 3-D model reconstruction time is within three seconds (on a Intel Core i5 PC). Block research could be conducted to avoid inaccurate insertion into sensitive organs or internal obstructions. Experiments on eight prostate cancer cases prove that this study could make the dose planning results more reasonable. Conclusion: The three-dimensional conformal dose planning method could improve the rationality of dose planning by safely reducing the large target margin and avoiding dose dead zones for prostate cancer treatment. 1) National Natural Science Foundation of People's Republic of China (No. 51175373); 2) New Century Educational Talents Plan of Chinese Education Ministry (NCET-10-0625); 3) Scientific and Technological Major Project, Tianjin (No. 12ZCDZSY10600)« less
Madan, Renu; Pathy, Sushmita; Subramani, Vellaiyan; Sharma, Seema; Mohanti, Bidhu Kalyan; Chander, Subhash; Thulkar, Sanjay; Kumar, Lalit; Dadhwal, Vatsla
2014-01-01
Dosimetric comparison of two dimensional (2D) radiography and three-dimensional computed tomography (3D-CT) based dose distributions with high-dose-rate (HDR) intracavitry radiotherapy (ICRT) for carcinoma cervix, in terms of target coverage and doses to bladder and rectum. Sixty four sessions of HDR ICRT were performed in 22 patients. External beam radiotherapy to pelvis at a dose of 50 Gray in 27 fractions followed by HDR ICRT, 21 Grays to point A in 3 sessions, one week apart was planned . All patients underwent 2D-orthogonal and 3D-CT simulation for each session. Treatment plans were generated using 2D-orthogonal images and dose prescription was made at point A. 3D plans were generated using 3D-CT images after delineating target volume and organs at risk. Comparative evaluation of 2D and 3D treatment planning was made for each session in terms of target coverage (dose received by 90%, 95% and 100% of the target volume: D90, D95 and D100 respectively) and doses to bladder and rectum: ICRU-38 bladder and rectum point dose in 2D planning and dose to 0.1cc, 1cc, 2cc, 5cc, and 10cc of bladder and rectum in 3D planning. Mean doses received by 100% and 90% of the target volume were 4.24 ± 0.63 and 4.9 ± 0.56 Gy respectively. Doses received by 0.1cc, 1cc and 2cc volume of bladder were 2.88 ± 0.72, 2.5 ± 0.65 and 2.2 ± 0.57 times more than the ICRU bladder reference point. Similarly, doses received by 0.1cc, 1cc and 2cc of rectum were 1.80 ± 0.5, 1.48 ± 0.41 and 1.35 ± 0.37 times higher than ICRU rectal reference point. Dosimetric comparative evaluation of 2D and 3D CT based treatment planning for the same brachytherapy session demonstrates underestimation of OAR doses and overestimation of target coverage in 2D treatment planning.
Nakamura, Mitsuhiro; Ishihara, Yoshitomo; Matsuo, Yukinori; Iizuka, Yusuke; Ueki, Nami; Iramina, Hiraku; Hirashima, Hideaki; Mizowaki, Takashi
2018-03-01
Knowledge of the imaging doses delivered to patients and accurate dosimetry of the radiation to organs from various imaging procedures is becoming increasingly important for clinicians. The purposes of this study were to calculate imaging doses delivered to the organs of lung cancer patients during real-time tumor tracking (RTTT) with three-dimensional (3D), and four-dimensional (4D) cone-beam computed tomography (CBCT), using Monte Carlo techniques to simulate kV X-ray dose distributions delivered using the Vero4DRT. Imaging doses from RTTT, 3D-CBCT and 4D-CBCT were calculated with the planning CT images for nine lung cancer patients who underwent stereotactic body radiotherapy (SBRT) with RTTT. With RTTT, imaging doses from correlation modeling and from monitoring of imaging during beam delivery were calculated. With CBCT, doses from 3D-CBCT and 4D-CBCT were also simulated. The doses covering 2-cc volumes (D2cc) in correlation modeling were up to 9.3 cGy for soft tissues and 48.4 cGy for bone. The values from correlation modeling and monitoring were up to 11.0 cGy for soft tissues and 59.8 cGy for bone. Imaging doses in correlation modeling were larger with RTTT. On a single 4D-CBCT, the skin and bone D2cc values were in the ranges of 7.4-10.5 cGy and 33.5-58.1 cGy, respectively. The D2cc from 4D-CBCT was approximately double that from 3D-CBCT. Clinicians should Figure that the imaging dose increases the cumulative doses to organs.
Nakamura, Mitsuhiro; Ishihara, Yoshitomo; Matsuo, Yukinori; Iizuka, Yusuke; Ueki, Nami; Iramina, Hiraku; Hirashima, Hideaki; Mizowaki, Takashi
2018-01-01
Abstract Knowledge of the imaging doses delivered to patients and accurate dosimetry of the radiation to organs from various imaging procedures is becoming increasingly important for clinicians. The purposes of this study were to calculate imaging doses delivered to the organs of lung cancer patients during real-time tumor tracking (RTTT) with three-dimensional (3D), and four-dimensional (4D) cone-beam computed tomography (CBCT), using Monte Carlo techniques to simulate kV X-ray dose distributions delivered using the Vero4DRT. Imaging doses from RTTT, 3D-CBCT and 4D-CBCT were calculated with the planning CT images for nine lung cancer patients who underwent stereotactic body radiotherapy (SBRT) with RTTT. With RTTT, imaging doses from correlation modeling and from monitoring of imaging during beam delivery were calculated. With CBCT, doses from 3D-CBCT and 4D-CBCT were also simulated. The doses covering 2-cc volumes (D2cc) in correlation modeling were up to 9.3 cGy for soft tissues and 48.4 cGy for bone. The values from correlation modeling and monitoring were up to 11.0 cGy for soft tissues and 59.8 cGy for bone. Imaging doses in correlation modeling were larger with RTTT. On a single 4D-CBCT, the skin and bone D2cc values were in the ranges of 7.4–10.5 cGy and 33.5–58.1 cGy, respectively. The D2cc from 4D-CBCT was approximately double that from 3D-CBCT. Clinicians should Figure that the imaging dose increases the cumulative doses to organs. PMID:29385514
Olszewski, R; Frison, L; Wisniewski, M; Denis, J M; Vynckier, S; Cosnard, G; Zech, F; Reychler, H
2013-01-01
The purpose of this study is to compare the reproducibility of three-dimensional cephalometric landmarks on three-dimensional computed tomography (3D-CT) surface rendering using clinical protocols based on low-dose (35-mAs) spiral CT and cone-beam CT (I-CAT). The absorbed dose levels for radiosensitive organs in the maxillofacial region during exposure in both 3D-CT protocols were also assessed. The study population consisted of ten human dry skulls examined with low-dose CT and cone-beam CT. Two independent observers identified 24 cephalometric anatomic landmarks at 13 sites on the 3D-CT surface renderings using both protocols, with each observer repeating the identification 1 month later. A total of 1,920 imaging measurements were performed. Thermoluminescent dosimeters were placed at six sites around the thyroid gland, the submandibular glands, and the eyes in an Alderson phantom to measure the absorbed dose levels. When comparing low-dose CT and cone-beam CT protocols, the cone-beam CT protocol proved to be significantly more reproducible for four of the 13 anatomical sites. There was no significant difference between the protocols for the other nine anatomical sites. Both low-dose and cone-beam CT protocols were equivalent in dose absorption to the eyes and submandibular glands. However, thyroid glands were more irradiated with low-dose CT. Cone-beam CT was more reproducible and procured less irradiation to the thyroid gland than low-dose CT. Cone-beam CT should be preferred over low-dose CT for developing three-dimensional bony cephalometric analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Poonam; Service of Radiation Therapy, University of Wisconsin Aspirus Cancer Center, Wisconsin Rapids, WI; Yan, Yue, E-mail: yyan5@mdanderson.org
In this work, we investigated the dosimetric differences between the intensity-modulated radiotherapy (IMRT) plans and the three-dimensional (3D) helical plans based on the TomoTherapy system. A total of 15 patients with supine setup were randomly selected from the data base. For patients with lumpectomy planning target volume (PTV), regional lymph nodes were also included as part of the target. For dose sparing, the significant differences between the helical IMRT and helical 3D were only found in the heart and contralateral breast. For the dose to the heart, helical IMRT reduced the maximum point dose by 6.98 Gy compared to themore » helical 3D plan (p = 0.01). For contralateral breast, the helical IMRT plans significantly reduced the maximum point dose by 5.6 Gy compared to the helical 3D plan. However, compared to the helical 3D plan, the helical IMRT plan increased the volume for lower dose (13.08% increase in V{sub 5} {sub Gy}, p = 0.01). In general, there are no significant differences in dose sparing between helical IMRT and helical 3D plans.« less
NASA Astrophysics Data System (ADS)
Arif Wibowo, R.; Haris, Bambang; Inganatul Islamiyah, dan
2017-05-01
Brachytherapy is one way to cure cervical cancer. It works by placing a radioactive source near the tumor. However, there are some healthy tissues or organs at risk (OAR) such as bladder and rectum which received radiation also. This study aims to evaluate the radiation dose of the bladder and rectum. There were 12 total radiation dose data of the bladder and rectum obtained from patients’ brachytherapy. The dose of cervix for all patients was 6 Gy. Two-dimensional calculation of the radiation dose was based on the International Commission on Radiation Units and Measurements (ICRU) points or called DICRU while the 3-dimensional calculation derived from Dose Volume Histogram (DVH) on a volume of 2 cc (D2cc). The radiation dose of bladder and rectum from both methods were analysed using independent t test. The mean DICRU of bladder was 4.33730 Gy and its D2cc was4.78090 Gy. DICRU and D2cc bladder did not differ significantly (p = 0.144). The mean DICRU of rectum was 3.57980 Gy and 4.58670 Gy for D2cc. The mean DICRU of rectum differed significantly from D2cc of rectum (p = 0.000). The three-dimensional method radiation dose of the bladder and rectum was higher than the two-dimensional method with ratios 1.10227 for bladder and 1.28127 for rectum. The radiation dose of the bladder and rectum was still below the tolerance dose. Two-dimensional calculation of the bladder and rectum dose was lower than three-dimension which was more accurate due to its calculation at the whole volume of the organs.
Nguyen, Nam P; Krafft, Shane P; Vinh-Hung, Vincent; Vos, Paul; Almeida, Fabio; Jang, Siyoung; Ceizyk, Misty; Desai, Anand; Davis, Rick; Hamilton, Russ; Modarresifar, Homayoun; Abraham, Dave; Smith-Raymond, Lexie
2011-12-01
To compare the effectiveness of tomotherapy and three-dimensional (3D) conformal radiotherapy to spare normal critical structures (spinal cord, lungs, and ventricles) from excessive radiation in patients with distal esophageal cancers. A retrospective dosimetric study of nine patients who had advanced gastro-esophageal (GE) junction cancer (7) or thoracic esophageal cancer (2) extending into the distal esophagus. Two plans were created for each of the patients. A three-dimensional plan was constructed with either three (anteroposterior, right posterior oblique, and left posterior oblique) or four (right anterior oblique, left anterior oblique, right posterior oblique, and left posterior oblique) fields. The second plan was for tomotherapy. Doses were 45 Gy to the PTV with an integrated boost of 5 Gy for tomotherapy. Mean lung dose was respectively 7.4 and 11.8 Gy (p=0.004) for tomotherapy and 3D plans. Corresponding values were 12.4 and 18.3 Gy (p=0.006) for cardiac ventricles. Maximum spinal cord dose was respectively 31.3 and 37.4 Gy (p < 0.007) for tomotherapy and 3D plans. Homogeneity index was two for both groups. Compared to 3D conformal radiotherapy, tomotherapy decreased significantly the amount of normal tissue irradiated and may reduce treatment toxicity for possible dose escalation in future prospective studies. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Kamian, S; Kazemian, A; Esfahani, M; Mohammadi, E; Aghili, M
2010-01-01
To assess the possibility of delivering a homogeneous irradiation with respect to maximal tolerated dose to the optic pathway for paranasal sinus (PNS) tumors. Treatment planning with conformal three-dimensional (3D) and conventional two-dimensional (2D) was done on CT scans of 20 patients who had early or advanced PNS tumors. Four cases had been previously irradiated. Dose-volume histograms (DVH) for the planning target volume (PTV) and the visual pathway including globes, chiasma and optic nerves were compared between the 2 treatment plannings. The area under curve (AUC) in the DVH of the globes on the same side and contralateral side of tumor involvement was significantly higher in 2D planning (p <0.05), which caused higher integral dose to both globes. Also, the AUC in the DVH of chiasma was higher in 2D treatment planning (p=0.002). The integral dose to the contralateral optic nerve was significantly lower with 3D planning (p=0.007), but there was no significant difference for the optic nerve which was on the same side of tumor involvement (p >0.05). The AUC in the DVH of PTV was not significant (201.1 + or - 16.23 mm(3) in 2D planning vs. 201.15 + or - 15.09 mm(3) in 3D planning). The volume of PTV which received 90% of the prescribed dose was 96.9 + or - 4.41 cm(3) in 2D planning and 97.2 + or - 2.61 cm(3) in 3D planning (p >0.05). 3D conformal radiotherapy (RT) for PNS tumors enables the delivery of radiation to the tumor with respect to critical organs with a lower toxicity to the optic pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudoltz, Marc S.; Ayyangar, Komanduri; Mohiuddin, Mohammed
Radiotherapy for lymphoma of the orbit must be individualized for each patient and clinical setting. Most techniques focus on optimizing the dose to the tumor while sparing the lens. This study describes a technique utilizing magnetic resonance imaging (MRI) and three dimensional (3D) planning in the treatment of orbital lymphoma. A patient presented with an intermediate grade lymphoma of the right orbit. The prescribed tumor dose was 4050 cGy in 18 fractions. Three D planning was carried out and tumor volumes, retina, and lens were subsequently outlined. Dose calculations including dose volume histograms of the target, retina, and lens weremore » then performed. Part of the retina was outside of the treatment volume while 50% of the retina received 90% or more of the prescribed dose. The patient was clinically NED when last seen 2 years following therapy with no treatment-related morbidity. Patients with lymphomas of the orbit can be optimally treated using MRI based 3D treatment planning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, J; Xu, Z; Baker, J
Purpose: To compare three-dimensional conformal radiotherapy (3D CRT) and volumetric-modulated arc therapy (VMAT) in lung stereotactic body radiation therapy (SBRT) Methods: A retrospective study of clinically treated lung SBRT cases treated between 2010 and 2015 at our hospital was performed. All treatment modalities were included in this evaluation (VMAT, 3D CRT, static IMRT, and dynamic conformal arc therapy). However, the majority of treatment modalities were either VMAT or 3D CRT. Treatment times of patients and dosimetric plan quality metrics were compared. Treatment times were calculated based on the time the therapist opened and closed the patient’s treatment plan. This treatmentmore » time closely approximates the utilization time of the treatment room. The dosimetric plan quality metrics evaluated include ICRU conformity index, the volume of 105% prescribed dose outside PTV, the ratio of volume of 50% prescribed dose to the volume of PTV, the percentage of maximum dose at 2 cm away from PTV to the prescribed dose, and the V20 (percentage of lung volume receiving 20 Gy or more). Results: Treatment time comparisons show that on average VMAT has shorter treatment times than 3D CRT. Dose conformity, defined by the ICRU conformity index, and high dose spillage, defined by the volume of 105% dose outside the PTV, is reduced when using VMAT compared to 3D CRT. V20 and intermediate dose spillage/fall-off metrics of VMAT and 3D are not significantly different. Conclusion: Clinically treated lung SBRT cases indicate VMAT is superior to 3D with regard to shorter treatment times, plan dose conformity, and plan high dose spillage.« less
Yamashiro, Tsuneo; Miyara, Tetsuhiro; Honda, Osamu; Kamiya, Hisashi; Murata, Kiyoshi; Ohno, Yoshiharu; Tomiyama, Noriyuki; Moriya, Hiroshi; Koyama, Mitsuhiro; Noma, Satoshi; Kamiya, Ayano; Tanaka, Yuko; Murayama, Sadayuki
2014-01-01
To assess the advantages of Adaptive Iterative Dose Reduction using Three Dimensional Processing (AIDR3D) for image quality improvement and dose reduction for chest computed tomography (CT). Institutional Review Boards approved this study and informed consent was obtained. Eighty-eight subjects underwent chest CT at five institutions using identical scanners and protocols. During a single visit, each subject was scanned using different tube currents: 240, 120, and 60 mA. Scan data were converted to images using AIDR3D and a conventional reconstruction mode (without AIDR3D). Using a 5-point scale from 1 (non-diagnostic) to 5 (excellent), three blinded observers independently evaluated image quality for three lung zones, four patterns of lung disease (nodule/mass, emphysema, bronchiolitis, and diffuse lung disease), and three mediastinal measurements (small structure visibility, streak artifacts, and shoulder artifacts). Differences in these scores were assessed by Scheffe's test. At each tube current, scans using AIDR3D had higher scores than those without AIDR3D, which were significant for lung zones (p<0.0001) and all mediastinal measurements (p<0.01). For lung diseases, significant improvements with AIDR3D were frequently observed at 120 and 60 mA. Scans with AIDR3D at 120 mA had significantly higher scores than those without AIDR3D at 240 mA for lung zones and mediastinal streak artifacts (p<0.0001), and slightly higher or equal scores for all other measurements. Scans with AIDR3D at 60 mA were also judged superior or equivalent to those without AIDR3D at 120 mA. For chest CT, AIDR3D provides better image quality and can reduce radiation exposure by 50%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, J; Kong, V; Zhang, H
Purpose: Three dimensional (3D) Grid Therapy using MLC-based inverse-planning has been proposed to achieve the features of both conformal radiotherapy and spatially fractionated radiotherapy, which may deliver very high dose in a single fraction to portions of a large tumor with relatively low normal tissue dose. However, the technique requires relatively long delivery time. This study aims to develop a collimator-based 3D grid therapy technique. Here we report the development of the technique in a small animal radiation research platform. Methods: Similar as in the MLC-based technique, 9 non-coplanar beams in special channeling directions were used for the 3D gridmore » therapy technique. Two specially designed grid collimators were fabricated, and one of them was selectively used to match the corresponding gantry/couch angles so that the grid opening of all 9 beams are met in the 3D space in the target. A stack of EBT3 films were used as 3D dosimetry to demonstrate the 3D grid-like dose distribution in the target. Three 1-mm beams were delivered to the stack of films in the area outside the target for alignment when all the films were scanned to reconstruct the 3D dosimtric image. Results: 3D film dosimetry showed a lattice-like dose distribution in the 3D target as well as in the axial, sagittal and coronal planes. The dose outside the target also showed a grid like dose distribution, and the average dose gradually decreased with the distance to the target. The peak to valley ratio was approximately 5:1. The delivery time was 7 minutes for 18 Gy peak dose, comparing to 6 minutes to deliver a 18-Gy 3D conformal plan. Conclusion: We have demonstrated the feasibility of the collimator-based 3D grid therapy technique which can significantly reduce delivery time comparing to MLC-based inverse planning technique.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bozlar, Ugur; Edmunds, J. Stewart; Turba, Ulku C.
The objective of this study was to explore the role of three-dimensional (3-D) rotational angiography (RA) of the inferior vena cava (IVC; 3-D CV) before filter retrieval and its impact on treatment planning compared with standard anteroposterior cavography (sCV). Thirty patients underwent sCV and 3-D CV before IVC filter retrieval. Parameters assessed were: projection of filter arms or legs beyond the caval lumen, thrombus burden within the filter and IVC, and orientation of the filter within IVC. Skin and effective radiation doses were calculated. Statistical analysis was performed using paired Student t test and nonparametric McNemar's test. Standard anteroposterior cavographymore » detected 49 filter arms or legs projecting beyond the caval lumen in 25 patients. Three-dimensional CV demonstrated 89 filter arms or legs projecting beyond the caval lumen in 28 patients. Twenty-two patients had additional filter arms or legs projecting beyond the caval lumen detected on 3-D CV that were not detected on sCV (p < 0.001). Filter apex tilt detection differed significantly (p < 0.001) between sCV and 3-D CV, with 3-D CV being more accurate. The filter apex abutted the IVC wall in 10 patients (33%) on 3-D CV, but this was diagnosed in only 3 patients (10%) with sCV. Thrombus was detected in 8 patients (27%), 1 thrombus of which was seen only on 3-D CV, and treatment was changed in this patient because of thrombus size. Mean effective radiation doses for 3-D CV were approximately two times higher than for sCV (1.68 vs. 0.86 mSv), whereas skin doses were three times lower (12.87 vs. 35.86 mGy). Compared with sCV, performing 3-D CV before optional IVC filter retrieval has the potential to improve assessment of filter arms or legs projecting beyond the caval lumen, filter orientation, and thrombus burden.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, William; Filion, Edith; Roberge, David
2007-09-01
Purpose: To report the results of an analysis of dose received to tissues and organs outside the target volume, in the setting of spinal axis irradiation for the treatment of medulloblastoma, using three treatment techniques. Methods and Materials: Treatment plans (total dose, 23.4 Gy) for a standard two-dimensional (2D) technique, a three-dimensional (3D) technique using a 3D imaging-based target volume, and an intensity-modulated radiotherapy (IMRT) technique, were compared for 3 patients in terms of dose-volume statistics for target coverage, as well as organ at risk (OAR) and overall tissue sparing. Results: Planning target volume coverage and dose homogeneity was superiormore » for the IMRT plans for V{sub 95%} (IMRT, 100%; 3D, 96%; 2D, 98%) and V{sub 107%} (IMRT, 3%; 3D, 38%; 2D, 37%). In terms of OAR sparing, the IMRT plan was better for all organs and whole-body contour when comparing V{sub 10Gy}, V{sub 15Gy}, and V{sub 20Gy}. The 3D plan was superior for V{sub 5Gy} and below. For the heart and liver in particular, the IMRT plans provided considerable sparing in terms of V{sub 10Gy} and above. In terms of the integral dose, the IMRT plans were superior for liver (IMRT, 21.9 J; 3D, 28.6 J; 2D, 38.6 J) and heart (IMRT, 9 J; 3D, 14.1J; 2D, 19.4 J), the 3D plan for the body contour (IMRT, 349 J; 3D, 337 J; 2D, 555 J). Conclusions: Intensity-modulated radiotherapy is a valid treatment option for spinal axis irradiation. We have shown that IMRT results in sparing of organs at risk without a significant increase in integral dose.« less
Liang, Yun; Kim, Gwe-Ya; Pawlicki, Todd; Mundt, Arno J; Mell, Loren K
2013-03-04
The purpose of this study was to develop dosimetry verification procedures for volumetric-modulated arc therapy (VMAT)-based total marrow irradiation (TMI). The VMAT based TMI plans were generated for three patients: one child and two adults. The planning target volume (PTV) was defined as bony skeleton, from head to mid-femur, with a 3 mm margin. The plan strategy similar to published studies was adopted. The PTV was divided into head and neck, chest, and pelvic regions, with separate plans each of which is composed of 2-3 arcs/fields. Multiple isocenters were evenly distributed along the patient's axial direction. The focus of this study is to establish a dosimetry quality assurance procedure involving both two-dimensional (2D) and three-dimensional (3D) volumetric verifications, which is desirable for a large PTV treated with multiple isocenters. The 2D dose verification was performed with film for gamma evaluation and absolute point dose was measured with ion chamber, with attention to the junction between neighboring plans regarding hot/cold spots. The 3D volumetric dose verification used commercial dose reconstruction software to reconstruct dose from electronic portal imaging devices (EPID) images. The gamma evaluation criteria in both 2D and 3D verification were 5% absolute point dose difference and 3 mm of distance to agreement. With film dosimetry, the overall average gamma passing rate was 98.2% and absolute dose difference was 3.9% in junction areas among the test patients; with volumetric portal dosimetry, the corresponding numbers were 90.7% and 2.4%. A dosimetry verification procedure involving both 2D and 3D was developed for VMAT-based TMI. The initial results are encouraging and warrant further investigation in clinical trials.
Three-dimensional radiation dosimetry based on optically-stimulated luminescence
NASA Astrophysics Data System (ADS)
Sadel, M.; Høye, E. M.; Skyt, P. S.; Muren, L. P.; Petersen, J. B. B.; Balling, P.
2017-05-01
A new approach to three-dimensional (3D) dosimetry based on optically-stimulated luminescence (OSL) is presented. By embedding OSL-active particles into a transparent silicone matrix (PDMS), the well-established dosimetric properties of an OSL material are exploited in a 3D-OSL dosimeter. By investigating prototype dosimeters in standard cuvettes in combination with small test samples for OSL readers, it is shown that a sufficient transparency of the 3D-OSL material can be combined with an OSL response giving an estimated >10.000 detected photons in 1 second per 1mm3 voxel of the dosimeter at a dose of 1 Gy. The dose distribution in the 3D-OSL dosimeters can be directly read out optically without the need for subsequent reconstruction by computational inversion algorithms. The dosimeters carry the advantages known from personal-dosimetry use of OSL: the dose distribution following irradiation can be stored with minimal fading for extended periods of time, and dosimeters are reusable as they can be reset, e.g. by an intense (bleaching) light field.
Fujimoto, Koya; Shiinoki, Takehiro; Yuasa, Yuki; Hanazawa, Hideki; Shibuya, Keiko
2017-06-01
A commercially available bolus ("commercial-bolus") does not make complete contact with the irregularly shaped patient skin. This study aims to customise a patient-specific three-dimensional (3D) bolus using a 3D printing technique ("3D-bolus") and to evaluate its clinical feasibility for photon radiotherapy. The 3D-bolus was designed using a treatment planning system (TPS) in Digital Imaging and Communications in Medicine-Radiotherapy (DICOM-RT) format, and converted to stereolithographic format for printing. To evaluate its physical characteristics, treatment plans were created for water-equivalent phantoms that were bolus-free, or had a flat-form printed 3D-bolus, a TPS-designed bolus ("virtual-bolus"), or a commercial-bolus. These plans were compared based on the percentage depth dose (PDD) and target-volume dose volume histogram (DVH) measurements. To evaluate the clinical feasibility, treatment plans were created for head phantoms that were bolus-free or had a 3D-bolus, a virtual-bolus, or a commercial-bolus. These plans were compared based on the target volume DVH. In the physical evaluation, the 3D-bolus provided effective dose coverage in the build-up region, which was equivalent to the commercial-bolus. With regard to the clinical feasibility, the air gaps were lesser with the 3D-bolus when compared to the commercial-bolus. Furthermore, the prescription dose could be delivered appropriately to the target volume. The 3D-bolus has potential use for air-gap reduction compared to the commercial-bolus and facilitates target-volume dose coverage and homogeneity improvement. A 3D-bolus produced using a 3D printing technique is comparable to a commercial-bolus applied to an irregular-shaped skin surface. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Zhang, Xiaodong; Zhao, Kuai-le; Guerrero, Thomas M; McGuire, Sean E; Yaremko, Brian; Komaki, Ritsuko; Cox, James D; Hui, Zhouguang; Li, Yupeng; Newhauser, Wayne D; Mohan, Radhe; Liao, Zhongxing
2008-09-01
To compare three-dimensional (3D) and four-dimensional (4D) computed tomography (CT)-based treatment plans for proton therapy or intensity-modulated radiation therapy (IMRT) for esophageal cancer in terms of doses to the lung, heart, and spinal cord and variations in target coverage and normal tissue sparing. The IMRT and proton plans for 15 patients with distal esophageal cancer were designed from the 3D average CT scans and then recalculated on 10 4D CT data sets. Dosimetric data were compared for tumor coverage and normal tissue sparing. Compared with IMRT, median lung volumes exposed to 5, 10, and 20 Gy and mean lung dose were reduced by 35.6%, 20.5%, 5.8%, and 5.1 Gy for a two-beam proton plan and by 17.4%, 8.4%, 5%, and 2.9 Gy for a three-beam proton plan. The greater lung sparing in the two-beam proton plan was achieved at the expense of less conformity to the target (conformity index [CI], 1.99) and greater irradiation of the heart (heart-V40, 41.8%) compared with the IMRT plan(CI, 1.55, heart-V40, 35.7%) or the three-beam proton plan (CI, 1.46, heart-V40, 27.7%). Target coverage differed by more than 2% between the 3D and 4D plans for patients with substantial diaphragm motion in the three-beam proton and IMRT plans. The difference in spinal cord maximum dose between 3D and 4D plans could exceed 5 Gy for the proton plans partly owing to variations in stomach gas filling. Proton therapy provided significantly better sparing of lung than did IMRT. Diaphragm motion and stomach gas-filling must be considered in evaluating target coverage and cord doses.
Glaser, Adam K; Andreozzi, Jacqueline M; Zhang, Rongxiao; Pogue, Brian W; Gladstone, David J
2015-07-01
To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp-Davis-Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm(3) volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%-99% pass fraction depending on the chosen threshold dose. The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.
Keyerleber, M A; Gieger, T L; Erb, H N; Thompson, M S; McEntee, M C
2012-12-01
Differences in dose homogeneity and irradiated volumes of target and surrounding normal tissues between 3D conformal radiation treatment planning and simulated non-graphic manual treatment planning were evaluated in 18 dogs with apocrine gland adenocarcinoma of the anal sac. Overall, 3D conformal treatment planning resulted in more homogenous dose distribution to target tissues with lower hot spots and dose ranges. Dose homogeneity and guarantee of not under-dosing target tissues with 3D conformal planning came at the cost, however, of delivering greater mean doses of radiation and of irradiating greater volumes of surrounding normal tissue structures. © 2011 Blackwell Publishing Ltd.
Shikama, Naoto; Kumazaki, Y U; Miyazawa, Kazunari; Miyaura, Kazunori; Kato, Shingo; Nakamura, Naoki; Kawamori, Jiro; Shimizuguchi, Takuya; Saito, Naoko; Saeki, Toshiaki
2016-05-01
To examine the relationship between symptomatic radiation pneumonitis and lung dose-volume parameters for patients receiving accelerated partial breast irradiation (APBI) using three dimensional-conformal radiotherapy (3D-CRT). The prescribed radiation dose was 30 Gy in 5 fractions over 10 days. Toxicity was graded according to the Common Terminology Criteria for Adverse Events (version 4.0). Fifty-five patients were enrolled from August 2010 to October 2013 and the median follow-up time was 30 months (range=18-46 months). Three patients (5%) developed grade 2 symptomatic radiation pneumonitis after 3D-CRT APBI. Among 16 patients with ILV10Gy (% ipsilateral lung receiving ≥10 Gy) of 10% or higher, three patients (19%) developed symptomatic radiation pneumonitis. This trend was not observed in any of the patients with ILV10Gy less than 10% (p=0.005). High ILV10Gy might be associated with symptomatic radiation pneumonitis after 3D-CRT APBI. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xin; Li, Guangjun; Zhang, Yingjie
2013-01-01
To compare the dosimetric differences between the single-arc volumetric-modulated arc therapy (sVMAT), 3-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for gastric cancer as adjuvant radiotherapy. Twelve patients were retrospectively analyzed. In each patient's case, the parameters were compared based on the dose-volume histogram (DVH) of the sVMAT, 3D-CRT, and IMRT plans, respectively. Three techniques showed similar target dose coverage. The maximum and mean doses of the target were significantly higher in the sVMAT plans than that in 3D-CRT plans and in the 3D-CRT/IMRT plans, respectively, but these differences were clinically acceptable. The IMRT and sVMATmore » plans successfully achieved better target dose conformity, reduced the V{sub 20/30}, and mean dose of the left kidney, as well as the V{sub 20/30} of the liver, compared with the 3D-CRT plans. And the sVMAT technique reduced the V{sub 20} of the liver much significantly. Although the maximum dose of the spinal cord were much higher in the IMRT and sVMAT plans, respectively (mean 36.4 vs 39.5 and 40.6 Gy), these data were still under the constraints. Not much difference was found in the analysis of the parameters of the right kidney, intestine, and heart. The IMRT and sVMAT plans achieved similar dose distribution to the target, but superior to the 3D-CRT plans, in adjuvant radiotherapy for gastric cancer. The sVMAT technique improved the dose sparings of the left kidney and liver, compared with the 3D-CRT technique, but showed few dosimetric advantages over the IMRT technique. Studies are warranted to evaluate the clinical benefits of the VMAT treatment for patients with gastric cancer after surgery in the future.« less
Creation of three-dimensional craniofacial standards from CBCT images
NASA Astrophysics Data System (ADS)
Subramanyan, Krishna; Palomo, Martin; Hans, Mark
2006-03-01
Low-dose three-dimensional Cone Beam Computed Tomography (CBCT) is becoming increasingly popular in the clinical practice of dental medicine. Two-dimensional Bolton Standards of dentofacial development are routinely used to identify deviations from normal craniofacial anatomy. With the advent of CBCT three dimensional imaging, we propose a set of methods to extend these 2D Bolton Standards to anatomically correct surface based 3D standards to allow analysis of morphometric changes seen in craniofacial complex. To create 3D surface standards, we have implemented series of steps. 1) Converting bi-plane 2D tracings into set of splines 2) Converting the 2D splines curves from bi-plane projection into 3D space curves 3) Creating labeled template of facial and skeletal shapes and 4) Creating 3D average surface Bolton standards. We have used datasets from patients scanned with Hitachi MercuRay CBCT scanner providing high resolution and isotropic CT volume images, digitized Bolton Standards from age 3 to 18 years of lateral and frontal male, female and average tracings and converted them into facial and skeletal 3D space curves. This new 3D standard will help in assessing shape variations due to aging in young population and provide reference to correct facial anomalies in dental medicine.
Impact of temporal probability in 4D dose calculation for lung tumors.
Rouabhi, Ouided; Ma, Mingyu; Bayouth, John; Xia, Junyi
2015-11-08
The purpose of this study was to evaluate the dosimetric uncertainty in 4D dose calculation using three temporal probability distributions: uniform distribution, sinusoidal distribution, and patient-specific distribution derived from the patient respiratory trace. Temporal probability, defined as the fraction of time a patient spends in each respiratory amplitude, was evaluated in nine lung cancer patients. Four-dimensional computed tomography (4D CT), along with deformable image registration, was used to compute 4D dose incorporating the patient's respiratory motion. First, the dose of each of 10 phase CTs was computed using the same planning parameters as those used in 3D treatment planning based on the breath-hold CT. Next, deformable image registration was used to deform the dose of each phase CT to the breath-hold CT using the deformation map between the phase CT and the breath-hold CT. Finally, the 4D dose was computed by summing the deformed phase doses using their corresponding temporal probabilities. In this study, 4D dose calculated from the patient-specific temporal probability distribution was used as the ground truth. The dosimetric evaluation matrix included: 1) 3D gamma analysis, 2) mean tumor dose (MTD), 3) mean lung dose (MLD), and 4) lung V20. For seven out of nine patients, both uniform and sinusoidal temporal probability dose distributions were found to have an average gamma passing rate > 95% for both the lung and PTV regions. Compared with 4D dose calculated using the patient respiratory trace, doses using uniform and sinusoidal distribution showed a percentage difference on average of -0.1% ± 0.6% and -0.2% ± 0.4% in MTD, -0.2% ± 1.9% and -0.2% ± 1.3% in MLD, 0.09% ± 2.8% and -0.07% ± 1.8% in lung V20, -0.1% ± 2.0% and 0.08% ± 1.34% in lung V10, 0.47% ± 1.8% and 0.19% ± 1.3% in lung V5, respectively. We concluded that four-dimensional dose computed using either a uniform or sinusoidal temporal probability distribution can approximate four-dimensional dose computed using the patient-specific respiratory trace.
Rault, Erwann; Lacornerie, Thomas; Dang, Hong-Phuong; Crop, Frederik; Lartigau, Eric; Reynaert, Nick; Pasquier, David
2016-02-27
Accelerated partial breast irradiation (APBI) is a new breast treatment modality aiming to reduce treatment time using hypo fractionation. Compared to conventional whole breast irradiation that takes 5 to 6 weeks, APBI is reported to induce worse cosmetic outcomes both when using three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT). These late normal tissue effects may be attributed to the dose volume effect because a large portion of the non-target breast tissue volume (NTBTV) receives a high dose. In the context of APBI, non-coplanar beams could spare the NTBTV more efficiently. This study evaluates the dosimetric benefit of using the Cyberknife (CK) for APBI in comparison to IMRT (Tomotherapy) and three dimensional conformal radiotherapy (3D-CRT). The possibility of using surgical clips, implanted during surgery, to track target movements is investigated first. A phantom of a female thorax was designed in-house using the measurements of 20 patients. Surgical clips of different sizes were inserted inside the breast. A treatment plan was delivered to the mobile and immobile phantom. The motion compensation accuracy was evaluated using three radiochromic films inserted inside the breast. Three dimensional conformal radiotherapy (3D-CRT), Tomotherapy (TOMO) and CK treatment plans were calculated for 10 consecutive patients who received APBI in Lille. To ensure a fair comparison of the three techniques, margins applied to the CTV were set to 10 mm. However, a second CK plan was prepared using 3 mm margins to evaluate the benefits of motion compensation. Only the larger clips (VITALITEC Medium-Large) could be tracked inside the larger breast (all gamma indices below 1 for 1 % of the maximum dose and 1 mm). All techniques meet the guidelines defined in the NSABP/RTOG and SHARE protocols. As the applied dose volume constraints are very strong, insignificant dosimetric differences exist between techniques regarding the PTV coverage and the sparing of the lung and heart. However, the CK may be used to reduce high doses received by the NTBTV more efficiently. Robotic stereotactic radiotherapy may be used for APBI to more efficiently spare the NTBTV and improve cosmetic results of APBI.
Hayashi, Shin-Ichiro
2017-01-01
With rapid advances being made in radiotherapy treatment, three-dimensional (3D) dose measurement techniques of great precision are required more than ever before. It is expected that 3D polymer gel dosimeters will satisfy clinical needs for an effective detector that can measure the complex 3D dose distributions. Polymer gel dosimeters are devices that utilize the radiation-induced polymerization reactions of vinyl monomers in a gel to store information about radiation dose. The 3D absorbed dose distribution can be deduced from the resulting polymer distribution using several imaging modalities, such as MRI, X-ray and optical CTs. In this article, the fundamental characteristics of polymer gel dosimeter are reviewed and some challenging keys are also suggested for the widely spread in clinical use.
SU-E-T-20: A Correlation Study of 2D and 3D Gamma Passing Rates for Prostate IMRT Plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, D; Sun Yat-sen University Cancer Center, Guangzhou, Guangdong; Wang, B
2015-06-15
Purpose: To investigate the correlation between the two-dimensional gamma passing rate (2D %GP) and three-dimensional gamma passing rate (3D %GP) in prostate IMRT quality assurance. Methods: Eleven prostate IMRT plans were randomly selected from the clinical database and were used to obtain dose distributions in the phantom and patient. Three types of delivery errors (MLC bank sag errors, central MLC errors and monitor unit errors) were intentionally introduced to modify the clinical plans through an in-house Matlab program. This resulted in 187 modified plans. The 2D %GP and 3D %GP were analyzed using different dose-difference and distance-toagreement (1%-1mm, 2%-2mm andmore » 3%-3mm) and 20% dose threshold. The 2D %GP and 3D %GP were then compared not only for the whole region, but also for the PTVs and critical structures using the statistical Pearson’s correlation coefficient (γ). Results: For different delivery errors, the average comparison of 2D %GP and 3D %GP showed different conclusions. The statistical correlation coefficients between 2D %GP and 3D %GP for the whole dose distribution showed that except for 3%/3mm criterion, 2D %GP and 3D %GP of 1%/1mm criterion and 2%/2mm criterion had strong correlations (Pearson’s γ value >0.8). Compared with the whole region, the correlations of 2D %GP and 3D %GP for PTV were better (the γ value for 1%/1mm, 2%/2mm and 3%/3mm criterion was 0.959, 0.931 and 0.855, respectively). However for the rectum, there was no correlation between 2D %GP and 3D %GP. Conclusion: For prostate IMRT, the correlation between 2D %GP and 3D %GP for the PTV is better than that for normal structures. The lower dose-difference and DTA criterion shows less difference between 2D %GP and 3D %GP. Other factors such as the dosimeter characteristics and TPS algorithm bias may also influence the correlation between 2D %GP and 3D %GP.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, D; Kang, S; Kim, D
Purpose: The dose difference between three-dimensional dose (3D dose) and 4D dose which considers motion due to respiratory can be varied according to geometrical relationship between planning target volume (PTV) and organ at risk (OAR). The purpose of the study is to investigate the dose difference between 3D and 4D dose using overlap volume histogram (OVH) which is an indicator that quantify geometrical relationship between a PTV and an OAR. Methods: Five liver cancer patients who previously treated stereotactic body radiotherapy (SBRT) were investigated. Four-dimensional computed tomography (4DCT) images were acquired for all patients. ITV-based treatment planning was performed. 3Dmore » dose was calculated on the end-exhale phase image as a reference phase image. 4D dose accumulation was implemented from all phase images using dose warping technique used deformable image registration (DIR) algorithm (Horn and Schunck optical flow) in DIRART. In this study OVH was used to quantify geometrical relationship between a PTV and an OAR. OVH between a PTV and a selected OAR was generated for each patient case and compared for all cases. The dose difference between 3D and 4D dose for normal organ was calculated and compared for all cases according to OVH. Results: The 3D and 4D dose difference for OAR was analyzed using dose-volume histogram (DVH). On the basis of a specific point which corresponds to 10% of OAR volume overlapped with expanded PTV, mean dose difference was 34.56% in minimum OVH distance case and 13.36% in maximum OVH distance case. As the OVH distance increased, mean dose difference between 4D and 3D dose was decreased. Conclusion: The tendency of dose difference variation was verified according to OVH. OVH is seems to be indicator that has a potential to predict the dose difference between 4D and 3D dose. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oumano, M; University of Massachusetts Lowell, Lowell, MA; Ngwa, W
Purpose: To measure the increase in in vitro radiosensitivity for A549 lung carcinoma cells due to gold nanoparticle (GNP) radiation dose enhancement in both traditional monolayer and three dimensional (3D) cell culture models. Methods: A γH2AX immunofluorescence assay is performed on monolayer A549 cell culture and quantitatively analyzed to measure the increase in double strand breaks (DSBs) resulting from GNP dose enhancement. A clonogenic survival assay (CSA) is then performed on monolayer A549 cell culture to assess true viability after treatment. And lastly, another γH2AX assay is performed on 3D A549 multicellular nodules overlaid on a bed of growth factormore » reduced matrigel to measure dose response in a model that better recapitulates treatment response to actual tumors in vivo. Results: The first γH2AX assay performed on the monolayer cell culture shows a significant increase in DSBs due to GNP dose enhancement. The maximum average observed increase in normalized fluorescent intensity for monolayer cell culture is 171% for the 6Gy-treatment groups incubated in 0.556 mg Au/ml solution. The CSA performed on monolayer cell culture also shows considerable GNP dose enhancement. The maximum decrease in the normalized surviving fraction is 12% for the 4Gy-treatment group incubated in 0.556 mg Au/ml. And lastly, the GNP dose enhancement is confirmed to be mitigated in three dimensional cell culture models as compared to the traditional monolayer model. The maximum average observed dose enhancement for 3D cell culture is 19% for the 6Gy-treatment groups and incubated in 0.556 mg Au/ml. Conclusion: A marked increase in radiosensitivity is observed for A549 lung carcinoma cells when treated with GNPs plus radiation as opposed to radiation alone. Traditional monolayer cell culture also shows a much more pronounced radiation dose enhancement than 3D cell culture.« less
Hsieh, Ling-Ling; Shieh, Jiunn-I; Wei, Li-Ju; Wang, Yi-Chun; Cheng, Kai-Yuan; Shih, Cheng-Ting
2017-05-01
Polymer gel dosimeters (PGDs) have been widely studied for use in the pretreatment verification of clinical radiation therapy. However, the readability of PGDs in three-dimensional (3D) dosimetry remain unclear. In this study, the pretreatment verifications of clinical radiation therapy were performed using an N-isopropyl-acrylamide (NIPAM) PGD, and the results were used to evaluate the performance of the NIPAM PGD on 3D dose measurement. A gel phantom was used to measure the dose distribution of a clinical case of intensity-modulated radiation therapy. Magnetic resonance imaging scans were performed for dose readouts. The measured dose volumes were compared with the planned dose volume. The relative volume histograms showed that relative volumes with a negative percent dose difference decreased as time elapsed. Furthermore, the histograms revealed few changes after 24h postirradiation. For the 3%/3mm and 2%/2mm criteria, the pass rates of the 12- and 24-h dose volumes were higher than 95%, respectively. This study thus concludes that the pass rate map can be used to evaluate the dose-temporal readability of PGDs and that the NIPAM PGD can be used for clinical pretreatment verifications. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Ishihara, Yoshitomo; Nakamura, Mitsuhiro; Miyabe, Yuki; Mukumoto, Nobutaka; Matsuo, Yukinori; Sawada, Akira; Kokubo, Masaki; Mizowaki, Takashi; Hiraoka, Masahiro
2017-03-01
To develop a four-dimensional (4D) dose calculation system for real-time tumor tracking (RTTT) irradiation by the Vero4DRT. First, a 6-MV photon beam delivered by the Vero4DRT was simulated using EGSnrc. A moving phantom position was directly measured by a laser displacement gauge. The pan and tilt angles, monitor units, and the indexing time indicating the phantom position were also extracted from a log file. Next, phase space data at any angle were created from both the log file and particle data under the dynamic multileaf collimator. Irradiation both with and without RTTT, with the phantom moving, were simulated using several treatment field sizes. Each was compared with the corresponding measurement using films. Finally, dose calculation for each computed tomography dataset of 10 respiratory phases with the X-ray head rotated was performed to simulate the RTTT irradiation (4D plan) for lung, liver, and pancreatic cancer patients. Dose-volume histograms of the 4D plan were compared with those calculated on the single reference respiratory phase without the gimbal rotation [three-dimensional (3D) plan]. Differences between the simulated and measured doses were less than 3% for RTTT irradiation in most areas, except the high-dose gradient. For clinical cases, the target coverage in 4D plans was almost identical to that of the 3D plans. However, the doses to organs at risk in the 4D plans varied at intermediate- and low-dose levels. Our proposed system has acceptable accuracy for RTTT irradiation in the Vero4DRT and is capable of simulating clinical RTTT plans. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Anwar, Shafkat; Rockefeller, Toby; Raptis, Demetrios A; Woodard, Pamela K; Eghtesady, Pirooz
2018-02-03
Patients with tetralogy of Fallot, pulmonary atresia, and multiple aortopulmonary collateral arteries (Tet PA MAPCAs) have a wide spectrum of anatomy and disease severity. Management of these patients can be challenging and often require multiple high-risk surgical and interventional catheterization procedures. These interventions are made challenging by complex anatomy that require the proceduralist to mentally reconstruct three-dimensional anatomic relationships from two-dimensional images. Three-dimensional (3D) printing is an emerging medical technology that provides added benefits in the management of patients with Tet PA MAPCAs. When used in combination with current diagnostic modalities and procedures, 3D printing provides a precise approach to the management of these challenging, high-risk patients. Specifically, 3D printing enables detailed surgical and interventional planning prior to the procedure, which may improve procedural outcomes, decrease complications, and reduce procedure-related radiation dose and contrast load.
Putha, Suman Kumar; Saxena, P U; Banerjee, S; Srinivas, Challapalli; Vadhiraja, B M; Ravichandran, Ramamoorthy; Joan, Mary; Pai, K Dinesh
2016-01-01
Transmission of radiation fluence through patient's body has a correlation to the planned target dose. A method to estimate the delivered dose to target volumes was standardized using a beam level 0.6 cc ionization chamber (IC) positioned at electronic portal imaging device (EPID) plane from the measured transit signal (S t ) in patients with cancer of uterine cervix treated with three-dimensional conformal radiotherapy (3DCRT). The IC with buildup cap was mounted on linear accelerator EPID frame with fixed source to chamber distance of 146.3 cm, using a locally fabricated mount. S t s were obtained for different water phantom thicknesses and radiation field sizes which were then used to generate a calibration table against calculated midplane doses at isocenter (D iso,TPS ), derived from the treatment planning system. A code was developed using MATLAB software which was used to estimate the in vivo dose at isocenter (D iso,Transit ) from the measured S t s. A locally fabricated pelvic phantom validated the estimations of D iso,Transit before implementing this method on actual patients. On-line dose estimations were made (3 times during treatment for each patient) in 24 patients. The D iso,Transit agreement with D iso,TPS in phantom was within 1.7% and the mean percentage deviation with standard deviation is -1.37% ±2.03% ( n = 72) observed in patients. Estimated in vivo dose at isocenter with this method provides a good agreement with planned ones which can be implemented as part of quality assurance in pelvic sites treated with simple techniques, for example, 3DCRT where there is a need for documentation of planned dose delivery.
Kepka, Lucyna; Tyc-Szczepaniak, Dobromira; Bujko, Krzysztof
2009-07-01
To determine the efficacy of accelerated hypofractionated three-dimensional conformal radiotherapy (3D-CRT) with dose-per-fraction escalation for treatment of stage III non-small cell lung cancer (NSCLC). Between 2001 and 2007, 173 patients with stage III NSCLC were treated using accelerated 3D-CRT and the simultaneous boost technique. Initially, the total dose of 56.7 Gy (including 39.9 Gy to the elective area) was delivered over 4 weeks in fractions of 2.7 Gy (1.9 Gy to the elective area). The dose-per-fraction escalation study commenced after the outcomes of 70 patients had been evaluated. The dose per fraction was increased from 2.7 through 2.8 Gy (level 1 escalation) to 2.9 Gy (level 2 escalation); the total dose increased, respectively, from 56.7 Gy through 58.8 Gy to 60.9 Gy. The dose to the elective area and the overall treatment time remained unchanged. Fit patients received two to three courses of chemotherapy before radiotherapy. The 2- and 3-year overall survival rates were 32 and 19%, respectively (median survival = 17 months). Of the patients, 7% had grade III acute esophageal toxicity and 6% had grade III or greater late pulmonary toxicity. Two of the nine patients who received the level 2 escalation (60.9 Gy) died of pulmonary toxicity. The study was terminated at a dose of 58.8 Gy and this schema was adopted as the institutional policy for treatment of stage III NSCLC. Although dose escalation with accelerated hypofractionated 3D-CRT was limited, the results and toxicity profiles obtained using this technique are promising.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Jihyung; Jung, Jae Won, E-mail: jungj@ecu.ed
Purpose: A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). Methods: (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume ofmore » the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as “reference” images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the time of planning CT was considered by utilizing the same reduced amplitude when the phantom was irradiated. To examine the phase matching in a humanoid environment, the matching was also performed in a digital phantom (4D XCAT phantom). Results: For the static, the theoretical, and the planning-optimized dynamic beams, the 4D reconstructed doses showed agreement with the forwardly calculated 4D doses within the gamma pass rates of 92.7%, 100%, and 98.1%, respectively, at the isocenter plane given by 3%/3 mm criteria. Excellent agreement in dose volume histogram of PTV and lung-PTV was also found between the two 4D doses, while substantial differences were found between the 3D and the 4D doses. The significant breathing irregularities modeled in this study were found not to be noticeably affecting the reconstructed dose. The phase matching was performed equally well in a digital phantom. Conclusions: The method of retrospective phase determination of a moving object under irradiation provided successful 4D dose reconstruction. This method will provide accurate quality assurance and facilitate adaptive therapy when distinguishable objects such as well-defined tumors, diaphragm, and organs with markers (pancreas and liver) are covered by treatment beam apertures.« less
Yoon, Jihyung; Jung, Jae Won; Kim, Jong Oh; Yi, Byong Yong; Yeo, Inhwan
2016-07-01
A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume of the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as "reference" images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the time of planning CT was considered by utilizing the same reduced amplitude when the phantom was irradiated. To examine the phase matching in a humanoid environment, the matching was also performed in a digital phantom (4D XCAT phantom). For the static, the theoretical, and the planning-optimized dynamic beams, the 4D reconstructed doses showed agreement with the forwardly calculated 4D doses within the gamma pass rates of 92.7%, 100%, and 98.1%, respectively, at the isocenter plane given by 3%/3 mm criteria. Excellent agreement in dose volume histogram of PTV and lung-PTV was also found between the two 4D doses, while substantial differences were found between the 3D and the 4D doses. The significant breathing irregularities modeled in this study were found not to be noticeably affecting the reconstructed dose. The phase matching was performed equally well in a digital phantom. The method of retrospective phase determination of a moving object under irradiation provided successful 4D dose reconstruction. This method will provide accurate quality assurance and facilitate adaptive therapy when distinguishable objects such as well-defined tumors, diaphragm, and organs with markers (pancreas and liver) are covered by treatment beam apertures.
NASA Astrophysics Data System (ADS)
Svalkvist, Angelica; Hansson, Jonny; Bâth, Magnus
2014-03-01
Three-dimensional (3D) imaging with interventional fluoroscopy systems is today a common examination. The examination includes acquisition of two-dimensional projection images, used to reconstruct section images of the patient. The aim of the present study was to investigate the difference in resulting effective dose obtained using different levels of complexity in calculations of effective doses from these examinations. In the study the Siemens Artis Zeego interventional fluoroscopy system (Siemens Medical Solutions, Erlangen, Germany) was used. Images of anthropomorphic chest and pelvis phantoms were acquired. The exposure values obtained were used to calculate the resulting effective doses from the examinations, using the computer software PCXMC (STUK, Helsinki, Finland). The dose calculations were performed using three different methods: 1. using individual exposure values for each projection image, 2. using the mean tube voltage and the total DAP value, evenly distributed over the projection images, and 3. using the mean kV and the total DAP value, evenly distributed over smaller selection of projection images. The results revealed that the difference in resulting effective dose between the first two methods was smaller than 5%. When only a selection of projection images were used in the dose calculations the difference increased to over 10%. Given the uncertainties associated with the effective dose concept, the results indicate that dose calculations based on average exposure values distributed over a smaller selection of projection angles can provide reasonably accurate estimations of the radiation doses from 3D imaging using interventional fluoroscopy systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogelius, Ivan S.; Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI; Department of Radiation Oncology, Rigshospitalet
2011-07-01
Purpose: To model the possible interaction between cytotoxic chemotherapy and the radiation dose distribution with respect to the risk of radiation pneumonitis. Methods and Materials: A total of 18 non-small-cell lung cancer patients previously treated with helical tomotherapy at the University of Wisconsin were selected for the present modeling study. Three treatment plans were considered: the delivered tomotherapy plans; a three-dimensional conformal radiotherapy (3D-CRT) plan; and a fixed-field intensity-modulated radiotherapy (IMRT) plan. The IMRT and 3D-CRT plans were generated specifically for the present study. The plans were optimized without adjusting for the chemotherapy effect. The effect of chemotherapy was modeledmore » as an independent cell killing process by considering a uniform chemotherapy equivalent radiation dose added to all voxels of the organ at risk. The risk of radiation pneumonitis was estimated for all plans using the Lyman and the critical volume models. Results: For radiotherapy alone, the critical volume model predicts that the two IMRT plans are associated with a lower risk of radiation pneumonitis than the 3D-CRT plan. However, when the chemotherapy equivalent radiation dose exceeds a certain threshold, the radiation pneumonitis risk after IMRT is greater than after 3D-CRT. This threshold dose is in the range estimated from clinical chemoradiotherapy data sets. Conclusions: Cytotoxic chemotherapy might affect the relative merit of competing radiotherapy plans. More work is needed to improve our understanding of the interaction between chemotherapy and the radiation dose distribution in clinical settings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Si Young; Liu, H. Helen; Mohan, Radhe
Because of complex dose distributions and dose gradients that are created in three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiation therapy (IMRT), photon- and electron-energy spectra might change significantly with spatial locations and doses. This study examined variations in photon- and electron-energy spectra in 3D-CRT and IMRT photon fields. The effects of spectral variations on water-to-material stopping-power ratios used in Monte Carlo treatment planning systems and the responses of energy-dependent dosimeters, such as thermoluminescent dosimeters (TLDs) and radiographic films were further studied. The EGSnrc Monte Carlo code was used to simulate megavoltage 3D-CRT and IMRT photon fields. The photon- and electron-energymore » spectra were calculated in 3D water phantoms and anthropomorphic phantoms based on the fluence scored in voxel grids. We then obtained the water-to-material stopping-power ratios in the local voxels using the Spencer-Attix cavity theory. Changes in the responses of films and TLDs were estimated based on the calculated local energy spectra and published data on the dosimeter energy dependency. Results showed that the photon-energy spectra strongly depended on spatial positions and doses in both the 3D-CRT and IMRT fields. The relative fraction of low-energy photons (<100 keV) increased inversely with the photon dose in low-dose regions of the fields. A similar but smaller effect was observed for electrons in the phantoms. The maximum variation of the water-to-material stopping-power ratio over the range of calculated dose for both 3D-CRT and IMRT was negligible (<1.0%) for ICRU tissue, cortical bone, and soft bone and less than 3.6% for dry air and lung. Because of spectral softening at low doses, radiographic films in the phantoms could over-respond to dose by more than 30%, whereas the over-response of TLDs was less than 10%. Thus, spatial variations of the photon- and electron-energy spectra should be considered as important factors in 3D-CRT and IMRT dosimetry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parhar, Preeti K.; Duckworth, Tamara; Shah, Parinda
2010-10-01
Purpose: To compare temporal lobe dose delivered by three pituitary macroadenoma irradiation techniques: three-field three-dimensional conformal radiotherapy (3D-CRT), three-field intensity-modulated radiotherapy (3F IMRT), and a proposed novel alternative of five-field IMRT (5F IMRT). Methods and Materials: Computed tomography-based external beam radiotherapy planning was performed for 15 pituitary macroadenoma patients treated at New York University between 2002 and 2007 using: 3D-CRT (two lateral, one midline superior anterior oblique [SAO] beams), 3F IMRT (same beam angles), and 5F IMRT (same beam angles with additional right SAO and left SAO beams). Prescription dose was 45 Gy. Target volumes were: gross tumor volume (GTV)more » = macroadenoma, clinical target volume (CTV) = GTV, and planning target volume = CTV + 0.5 cm. Structure contouring was performed by two radiation oncologists guided by an expert neuroradiologist. Results: Five-field IMRT yielded significantly decreased temporal lobe dose delivery compared with 3D-CRT and 3F IMRT. Temporal lobe sparing with 5F IMRT was most pronounced at intermediate doses: mean V25Gy (% of total temporal lobe volume receiving {>=}25 Gy) of 13% vs. 28% vs. 29% for right temporal lobe and 14% vs. 29% vs. 30% for left temporal lobe for 5F IMRT, 3D-CRT, and 3F IMRT, respectively (p < 10{sup -7} for 5F IMRT vs. 3D-CRT and 5F IMRT vs. 3F IMRT). Five-field IMRT plans did not compromise target coverage, exceed normal tissue dose constraints, or increase estimated brain integral dose. Conclusions: Five-field IMRT irradiation technique results in a statistically significant decrease in the dose to the temporal lobes and may thus help prevent neurocognitive sequelae in irradiated pituitary macroadenoma patients.« less
NASA Astrophysics Data System (ADS)
Rahman, Ahmad Taufek Abdul; Farah Rosli, Nurul; Zain, Shafirah Mohd; Zin, Hafiz M.
2018-01-01
Radiotherapy delivery techniques for cancer treatment are becoming more complex and highly focused, to enable accurate radiation dose delivery to the cancerous tissue and minimum dose to the healthy tissue adjacent to tumour. Instrument to verify the complex dose delivery in radiotherapy such as optical computed tomography (OCT) measures the dose from a three-dimensional (3D) radiochromic dosimeter to ensure the accuracy of the radiotherapy beam delivery to the patient. OCT measures the optical density in radiochromic material that changes predictably upon exposure to radiotherapy beams. OCT systems have been developed using a photodiode and charged coupled device (CCD) as the detector. The existing OCT imaging systems have limitation in terms of the accuracy and the speed of the measurement. Advances in on-pixel intelligence CMOS image sensor (CIS) will be exploited in this work to replace current detector in OCT imaging systems. CIS is capable of on-pixel signal processing at a very fast imaging speed (over several hundred images per second) that will allow improvement in the 3D measurement of the optical density. The paper will review 3D radiochromic dosimeters and OCT systems developed and discuss how CMOS based OCT imaging will provide accurate and fast optical density measurements in 3D. The paper will also discuss the configuration of the CMOS based OCT developed in this work and how it may improve the existing OCT system.
Lim, Hyeon Woo; Kim, Tae Hyun; Choi, Il Ju; Kim, Chan Gyoo; Lee, Jong Yeul; Cho, Soo Jeong; Eom, Hyeon Seok; Moon, Sung Ho; Kim, Dae Yong
2016-01-01
Purpose To assess the clinical outcomes of radiotherapy (RT) using two-dimensional (2D) and three-dimensional conformal RT (3D-CRT) for patients with gastric mucosa-associated lymphoid tissue (MALT) lymphoma to evaluate the effectiveness of involved field RT with moderate-dose and to evaluate the benefit of 3D-CRT comparing with 2D-RT. Materials and Methods Between July 2003 and March 2015, 33 patients with stage IE and IIE gastric MALT lymphoma received RT were analyzed. Of 33 patients, 17 patients (51.5%) were Helicobacter pylori (HP) negative and 16 patients (48.5%) were HP positive but refractory to HP eradication (HPE). The 2D-RT (n = 14) and 3D-CRT (n = 19) were performed and total dose was 30.6 Gy/17 fractions. Of 11 patients who RT planning data were available, dose-volumetric parameters between 2D-RT and 3D-CRT plans was compared. Results All patients reached complete remission (CR) eventually and median time to CR was 3 months (range, 1 to 15 months). No local relapse occurred and one patient died with second primary malignancy. Tumor response, survival, and toxicity were not significantly different between 2D-RT and 3D-CRT (p > 0.05, each). In analysis for dose-volumetric parameters, Dmax and CI for PTV were significantly lower in 3D-CRT plans than 2D-RT plans (p < 0.05, each) and Dmean and V15 for right kidney and Dmean for left kidney were significantly lower in 3D-CRT than 2D-RT (p < 0.05, each). Conclusion Our data suggested that involved field RT with moderate-dose for gastric MALT lymphoma could be promising and 3D-CRT could be considered to improve the target coverage and reduce radiation dose to the both kidneys. PMID:27730803
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, D; Kang, S; Kim, D
2016-06-15
Purpose: The difference between three-dimensional (3D) and four-dimensional (4D) dose is affected by factors such as tumor size and motion. To quantitatively analyze the effects of these factors, a phantom that can independently control for each factor is required. The purpose of this study is to develop a deformable lung phantom with the above attributes and evaluate characteristics. Methods: A phantom was designed to simulate diaphragm motion with amplitude in the range 1 to 7 cm and various periods of regular breathing. To simulate different size tumors, tumors were produced by pouring liquid silicone into custom molds created by amore » 3D printer. The accuracy of phantom diaphragm motion was assessed using calipers and protractor. To control tumor motion, tumor trajectories were evaluated using 4D computed tomography (CT), and diaphragm-tumor correlation curve was calculated by curve fitting method. Three-dimensional dose and 4D dose were calculated and compared according to tumor motion. Results: The accuracy of phantom diaphragm motion was less than 1 mm. Maximum tumor motion amplitudes in the left-right and anterior-posterior directions were 0.08 and 0.12 cm, respectively, in a 10 cm{sup 3} tumor, and 0.06 and 0.27 cm, respectively, in a 90 cm{sup 3} tumor. The diaphragm-tumor correlation curve showed that tumor motion in the superior-inferior direction was increased with increasing diaphragm motion. In the 10 cm{sup 3} tumor, the tumor motion was larger than the 90 cm{sup 3} tumor. According to tumor motion, variation of dose difference between 3D and 4D was identified. Conclusion: The developed phantom can independently control factors such as tumor size and motion. In potentially, this phantom can be used to quantitatively analyze the dosimetric impact of respiratory motion according to the factors that influence the difference between 3D and 4D dose. This research was supported by the Mid-career Researcher Program through NRF funded by the Ministry of Science, ICT & Future Planning of Korea (NRF-2014R1A2A1A10050270) and by the Radiation Technology R&D program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No. 2013M2A2A7038291)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andolino, David L., E-mail: dandolin@iupui.edu; Hoene, Ted; Xiao, Lu
2011-11-15
Purpose: To assess the potential reduction in breast dose for young girls with Hodgkin's lymphoma (HL) treated with breast-sparing proton therapy (BS-PT) as compared with three-dimensional conformal involved-field photon radiotherapy (3D-CRT). Methods and Materials: The Clarian Health Cancer Registry was queried for female pediatric patients with the diagnosis of HL who received radiotherapy at the Indiana University Simon Cancer Center during 2006-2009. The original CT simulation images were obtained, and 3D-CRT and BS-PT plans delivering 21 Gy or cobalt gray equivalent (CGE) in 14 fractions were created for each patient. Dose-volume histogram data were collected for both 3D-CRT and BS-PTmore » plans and compared by paired t test for correlated samples. Results: The cancer registry provided 10 female patients with Ann Arbor Stage II HL, aged 10-18 years at the time of treatment. Both mean and maximum breast dose were significantly less with BS-PT compared with 3D-CRT: 0.95 CGE vs. 4.70 Gy (p < 0.001) and 21.07 CGE vs. 23.11 Gy (p < 0.001), respectively. The volume of breast receiving 1.0 Gy/CGE and 5.0 Gy/CGE was also significantly less with BS-PT, 194 cm{sup 3} and 93 cm{sup 3}, respectively, compared with 790 cm{sup 3} and 360 cm{sup 3} with 3D-CRT (p = 0.009, 0.013). Conclusion: Breast-sparing proton therapy has the potential to reduce unnecessary breast dose in young girls with HL by as much as 80% relative to involved-field 3D-CRT.« less
3D Dose reconstruction: Banding artefacts in cine mode EPID images during VMAT delivery
NASA Astrophysics Data System (ADS)
Woodruff, H. C.; Greer, P. B.
2013-06-01
Cine (continuous) mode images obtained during VMAT delivery are heavily degraded by banding artefacts. We have developed a method to reconstruct the pulse sequence (and hence dose deposited) from open field images. For clinical VMAT fields we have devised a frame averaging strategy that greatly improves image quality and dosimetric information for three-dimensional dose reconstruction.
CBCT-based 3D MRA and angiographic image fusion and MRA image navigation for neuro interventions.
Zhang, Qiang; Zhang, Zhiqiang; Yang, Jiakang; Sun, Qi; Luo, Yongchun; Shan, Tonghui; Zhang, Hao; Han, Jingfeng; Liang, Chunyang; Pan, Wenlong; Gu, Chuanqi; Mao, Gengsheng; Xu, Ruxiang
2016-08-01
Digital subtracted angiography (DSA) remains the gold standard for diagnosis of cerebral vascular diseases and provides intraprocedural guidance. This practice involves extensive usage of x-ray and iodinated contrast medium, which can induce side effects. In this study, we examined the accuracy of 3-dimensional (3D) registration of magnetic resonance angiography (MRA) and DSA imaging for cerebral vessels, and tested the feasibility of using preprocedural MRA for real-time guidance during endovascular procedures.Twenty-three patients with suspected intracranial arterial lesions were enrolled. The contrast medium-enhanced 3D DSA of target vessels were acquired in 19 patients during endovascular procedures, and the images were registered with preprocedural MRA for fusion accuracy evaluation. Low-dose noncontrasted 3D angiography of the skull was performed in the other 4 patients, and registered with the MRA. The MRA was overlaid afterwards with 2D live fluoroscopy to guide endovascular procedures.The 3D registration of the MRA and angiography demonstrated a high accuracy for vessel lesion visualization in all 19 patients examined. Moreover, MRA of the intracranial vessels, registered to the noncontrasted 3D angiography in the 4 patients, provided real-time 3D roadmap to successfully guide the endovascular procedures. Radiation dose to patients and contrast medium usage were shown to be significantly reduced.Three-dimensional MRA and angiography fusion can accurately generate cerebral vasculature images to guide endovascular procedures. The use of the fusion technology could enhance clinical workflow while minimizing contrast medium usage and radiation dose, and hence lowering procedure risks and increasing treatment safety.
CBCT-based 3D MRA and angiographic image fusion and MRA image navigation for neuro interventions
Zhang, Qiang; Zhang, Zhiqiang; Yang, Jiakang; Sun, Qi; Luo, Yongchun; Shan, Tonghui; Zhang, Hao; Han, Jingfeng; Liang, Chunyang; Pan, Wenlong; Gu, Chuanqi; Mao, Gengsheng; Xu, Ruxiang
2016-01-01
Abstract Digital subtracted angiography (DSA) remains the gold standard for diagnosis of cerebral vascular diseases and provides intraprocedural guidance. This practice involves extensive usage of x-ray and iodinated contrast medium, which can induce side effects. In this study, we examined the accuracy of 3-dimensional (3D) registration of magnetic resonance angiography (MRA) and DSA imaging for cerebral vessels, and tested the feasibility of using preprocedural MRA for real-time guidance during endovascular procedures. Twenty-three patients with suspected intracranial arterial lesions were enrolled. The contrast medium-enhanced 3D DSA of target vessels were acquired in 19 patients during endovascular procedures, and the images were registered with preprocedural MRA for fusion accuracy evaluation. Low-dose noncontrasted 3D angiography of the skull was performed in the other 4 patients, and registered with the MRA. The MRA was overlaid afterwards with 2D live fluoroscopy to guide endovascular procedures. The 3D registration of the MRA and angiography demonstrated a high accuracy for vessel lesion visualization in all 19 patients examined. Moreover, MRA of the intracranial vessels, registered to the noncontrasted 3D angiography in the 4 patients, provided real-time 3D roadmap to successfully guide the endovascular procedures. Radiation dose to patients and contrast medium usage were shown to be significantly reduced. Three-dimensional MRA and angiography fusion can accurately generate cerebral vasculature images to guide endovascular procedures. The use of the fusion technology could enhance clinical workflow while minimizing contrast medium usage and radiation dose, and hence lowering procedure risks and increasing treatment safety. PMID:27512846
Hsieh, Jiang; Nilsen, Roy A.; McOlash, Scott M.
2006-01-01
A three-dimensional (3D) weighted helical cone beam filtered backprojection (CB-FBP) algorithm (namely, original 3D weighted helical CB-FBP algorithm) has already been proposed to reconstruct images from the projection data acquired along a helical trajectory in angular ranges up to [0, 2 π]. However, an overscan is usually employed in the clinic to reconstruct tomographic images with superior noise characteristics at the most challenging anatomic structures, such as head and spine, extremity imaging, and CT angiography as well. To obtain the most achievable noise characteristics or dose efficiency in a helical overscan, we extended the 3D weighted helical CB-FBP algorithm to handle helical pitches that are smaller than 1: 1 (namely extended 3D weighted helical CB-FBP algorithm). By decomposing a helical over scan with an angular range of [0, 2π + Δβ] into a union of full scans corresponding to an angular range of [0, 2π], the extended 3D weighted function is a summation of all 3D weighting functions corresponding to each full scan. An experimental evaluation shows that the extended 3D weighted helical CB-FBP algorithm can improve noise characteristics or dose efficiency of the 3D weighted helical CB-FBP algorithm at a helical pitch smaller than 1: 1, while its reconstruction accuracy and computational efficiency are maintained. It is believed that, such an efficient CB reconstruction algorithm that can provide superior noise characteristics or dose efficiency at low helical pitches may find its extensive applications in CT medical imaging. PMID:23165031
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, Daniel R., E-mail: dgomez@mdanderson.org; Tucker, Susan L.; Martel, Mary K.
2012-11-15
Introduction: We analyzed the ability of various patient- and treatment-related factors to predict radiation-induced esophagitis (RE) in patients with non-small cell lung cancer (NSCLC) treated with three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or proton beam therapy (PBT). Methods and Materials: Patients were treated for NSCLC with 3D-CRT, IMRT, or PBT at MD Anderson from 2000 to 2008 and had full dose-volume histogram (DVH) data available. The endpoint was severe (grade {>=}3) RE. The Lyman-Kutcher-Burman (LKB) model was used to analyze RE as a function of the fractional esophageal DVH, with clinical variables included as dose-modifying factors. Results:more » Overall, 652 patients were included: 405 patients were treated with 3D-CRT, 139 with IMRT, and 108 with PBT; corresponding rates of grade {>=}3 RE were 8%, 28%, and 6%, respectively, with a median time to onset of 42 days (range, 11-93 days). A fit of the fractional DVH LKB model demonstrated that the fractional effective dose was significantly different (P=.046) than 1 (fractional mean dose) indicating that high doses to small volumes are more predictive than mean esophageal dose. The model fit was better for 3D-CRT and PBT than for IMRT. Including receipt of concurrent chemotherapy as a dose-modifying factor significantly improved the LKB model (P=.005), and the model was further improved by including a variable representing treatment with >30 fractions. Examining individual types of chemotherapy agents revealed a trend toward receipt of concurrent taxanes and increased risk of RE (P=.105). Conclusions: Fractional dose (dose rate) and number of fractions (total dose) distinctly affect the risk of severe RE, estimated using the LKB model, and concurrent chemotherapy improves the model fit. This risk of severe RE is underestimated by this model in patients receiving IMRT.« less
Gomez, Daniel R; Tucker, Susan L; Martel, Mary K; Mohan, Radhe; Balter, Peter A; Lopez Guerra, Jose Luis; Liu, Hongmei; Komaki, Ritsuko; Cox, James D; Liao, Zhongxing
2012-11-15
We analyzed the ability of various patient- and treatment-related factors to predict radiation-induced esophagitis (RE) in patients with non-small cell lung cancer (NSCLC) treated with three-dimensional conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or proton beam therapy (PBT). Patients were treated for NSCLC with 3D-CRT, IMRT, or PBT at MD Anderson from 2000 to 2008 and had full dose-volume histogram (DVH) data available. The endpoint was severe (grade≥3) RE. The Lyman-Kutcher-Burman (LKB) model was used to analyze RE as a function of the fractional esophageal DVH, with clinical variables included as dose-modifying factors. Overall, 652 patients were included: 405 patients were treated with 3D-CRT, 139 with IMRT, and 108 with PBT; corresponding rates of grade≥3 RE were 8%, 28%, and 6%, respectively, with a median time to onset of 42 days (range, 11-93 days). A fit of the fractional DVH LKB model demonstrated that the fractional effective dose was significantly different (P=.046) than 1 (fractional mean dose) indicating that high doses to small volumes are more predictive than mean esophageal dose. The model fit was better for 3D-CRT and PBT than for IMRT. Including receipt of concurrent chemotherapy as a dose-modifying factor significantly improved the LKB model (P=.005), and the model was further improved by including a variable representing treatment with >30 fractions. Examining individual types of chemotherapy agents revealed a trend toward receipt of concurrent taxanes and increased risk of RE (P=.105). Fractional dose (dose rate) and number of fractions (total dose) distinctly affect the risk of severe RE, estimated using the LKB model, and concurrent chemotherapy improves the model fit. This risk of severe RE is underestimated by this model in patients receiving IMRT. Copyright © 2012 Elsevier Inc. All rights reserved.
2012-01-01
Background To quantitatively evaluate the safety and related-toxicities of intensity modulated radiotherapy (IMRT) dose–volume histograms (DVHs), as compared to the conventional three-dimensional conformal radiotherapy (3D-CRT), in gynecologic malignancy patients by systematic review of the related publications and meta-analysis. Methods Relevant articles were retrieved from the PubMed, Embase, and Cochrane Library databases up to August 2011. Two independent reviewers assessed the included studies and extracted data. Pooled average percent irradiated volumes of adjacent non-cancerous tissues were calculated and compared between IMRT and 3D-CRT for a range of common radiation doses (5-45Gy). Results In total, 13 articles comprised of 222 IMRT-treated and 233 3D-CRT-treated patients were included. For rectum receiving doses ≥30 Gy, the IMRT pooled average irradiated volumes were less than those from 3D-CRT by 26.40% (30 Gy, p = 0.004), 27.00% (35 Gy, p = 0.040), 37.30% (40 Gy, p = 0.006), and 39.50% (45 Gy, p = 0.002). Reduction in irradiated small bowel was also observed for IMRT-delivered 40 Gy and 45 Gy (by 17.80% (p = 0.043) and 17.30% (p = 0.012), respectively), as compared with 3D-CRT. However, there were no significant differences in the IMRT and 3D-CRT pooled average percent volumes of irradiated small bowel or rectum from lower doses, or in the bladder or bone marrow from any of the doses. IMRT-treated patients did not experience more severe acute or chronic toxicities than 3D-CRT-treated patients. Conclusions IMRT-delivered high radiation dose produced significantly less average percent volumes of irradiated rectum and small bowel than 3D-CRT, but did not differentially affect the average percent volumes in the bladder and bone marrow. PMID:23176540
Ren, Juan; Yuan, Wei; Wang, Ruihua; Wang, Qiuping; Li, Yi; Xue, Chaofan; Yan, Yanli; Ma, Xiaowei; Tan, Li; Liu, Zi
2016-01-01
Objective The purpose of this study was to comprehensively compare the 3-dimensional (3D) magnetic resonance imaging (MRI)-guided and conventional 2-dimensional (2D) point A-based intracavitary brachytherapy (BT) planning for cervical cancer with regard to target dose coverage and dosages to adjacent organs-at risk (OARs). Methods A total of 79 patients with cervical cancer were enrolled to receive 2D point A-based BT planning and then immediately to receive 3D planning between October 2011 and April 2013 at the First Hospital Affiliated to Xi’an Jiao Tong University (Xi’an, China). The dose-volume histogram (DVH) parameters for gross tumor volume (GTV), high-risk clinical target volume (HR-CTV), intermediate-risk clinical target volume (IR-CTV) and OARs were compared between the 2D and 3D planning. Results In small tumors, there was no significant difference in most of the DVHs between 2D and 3D planning (all p>0.05). While in big tumors, 3D BT planning significantly increased the DVHs for most of the GTV, HR-CTV and IR-CTV, and some OARs compared with 2D planning (all P<0.05). In 3D planning, DVHs for GTV, HR-CTV, IR-CTV and some OARs were significantly higher in big tumors than in small tumors (all p<0.05). In contrast, in 2D planning, DVHs for almost all of the HR-CTV and IR-CTV were significantly lower in big tumors (all p<0.05). In eccentric tumors, 3D planning significantly increased dose coverage but decreased dosages to OARs compared with 2D planning (p<0.05). In tumors invading adjacent tissues, the target dose coverage in 3D planning was generally significantly higher than in 2D planning (P<0.05); the dosages to the adjacent rectum and bladder were significantly higher but those to sigmoid colon were lower in 3D planning (all P<0.05). Conclusions 3D MRI image-guided BT planning exhibits advantages over 2D planning in a complex way, generally showing advantages for the treatment of cervical cancer except small tumors. PMID:27611853
Watanabe, Yoichi; Warmington, Leighton; Gopishankar, N
2017-01-01
Accurate dose measurement tools are needed to evaluate the radiation dose delivered to patients by using modern and sophisticated radiation therapy techniques. However, the adequate tools which enable us to directly measure the dose distributions in three-dimensional (3D) space are not commonly available. One such 3D dose measurement device is the polymer-based dosimeter, which changes the material property in response to radiation. These are available in the gel form as polymer gel dosimeter (PGD) and ferrous gel dosimeter (FGD) and in the solid form as solid plastic dosimeter (SPD). Those are made of a continuous uniform medium which polymerizes upon irradiation. Hence, the intrinsic spatial resolution of those dosimeters is very high, and it is only limited by the method by which one converts the dose information recorded by the medium to the absorbed dose. The current standard methods of the dose quantification are magnetic resonance imaging, optical computed tomography, and X-ray computed tomography. In particular, magnetic resonance imaging is well established as a method for obtaining clinically relevant dosimetric data by PGD and FGD. Despite the likely possibility of doing 3D dosimetry by PGD, FGD or SPD, the tools are still lacking wider usages for clinical applications. In this review article, we summarize the current status of PGD, FGD, and SPD and discuss the issue faced by these for wider acceptance in radiation oncology clinic and propose some directions for future development. PMID:28396725
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jeeyong; Kim, Hyun-Ji; Yi, Jae Youn, E-mail: yjy_71@kcch.re.kr
Studies have shown that γ-irradiation induces various biological responses, including oxidative stress and apoptosis, as well as cellular repair and immune system responses. However, most such studies have been performed using traditional two-dimensional cell culture systems, which are limited in their ability to faithfully represent in vivo conditions. A three-dimensional (3D) environment composed of properly interconnected and differentiated cells that allow communication and cooperation among cells via secreted molecules would be expected to more accurately reflect cellular responses. Here, we investigated γ-irradiation–induced changes in the secretome of 3D-cultured keratinocytes. An analysis of keratinocyte secretome profiles following fractionated-dose γ-irradiation revealed changes inmore » genes involved in cell adhesion, angiogenesis, and the immune system. Notably, peroxisome proliferator-activated receptor-α (PPARα) was upregulated in response to fractionated-dose γ-irradiation. This upregulation was associated with an increase in the transcription of known PPARα target genes in secretome, including angiopoietin-like protein 4, dermokine and kallikrein-related peptide 12, which were differentially regulated by fractionated-dose γ-irradiation. Collectively, our data imply a mechanism linking γ-irradiation and secretome changes, and suggest that these changes could play a significant role in the coordinated cellular responses to harmful ionizing radiation, such as those associated with radiation therapy. This extension of our understanding of γ-irradiation-induced secretome changes has the potential to improve radiation therapy strategies. - Highlights: • γ-irradiation induced changes of cell adhesion, angiogenesis, and immune system in secretome of 3D-cultured keratinocytes. • Peroxisome proliferator-activated receptor-α (PPARα) was upregulated in response to fractionated-dose γ-irradiation. • The known PPARα target genes were differentially regulated by fractionated-dose γ-irradiation.« less
Design Analysis of SNS Target StationBiological Shielding Monoligh with Proton Power Uprate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bekar, Kursat B.; Ibrahim, Ahmad M.
2017-05-01
This report documents the analysis of the dose rate in the experiment area outside the Spallation Neutron Source (SNS) target station shielding monolith with proton beam energy of 1.3 GeV. The analysis implemented a coupled three dimensional (3D)/two dimensional (2D) approach that used both the Monte Carlo N-Particle Extended (MCNPX) 3D Monte Carlo code and the Discrete Ordinates Transport (DORT) two dimensional deterministic code. The analysis with proton beam energy of 1.3 GeV showed that the dose rate in continuously occupied areas on the lateral surface outside the SNS target station shielding monolith is less than 0.25 mrem/h, which compliesmore » with the SNS facility design objective. However, the methods and codes used in this analysis are out of date and unsupported, and the 2D approximation of the target shielding monolith does not accurately represent the geometry. We recommend that this analysis is updated with modern codes and libraries such as ADVANTG or SHIFT. These codes have demonstrated very high efficiency in performing full 3D radiation shielding analyses of similar and even more difficult problems.« less
Zhang, Ji-Bin; Zhao, Li-Rong; Cui, Tian-Xiang; Chen, Xie-Wan; Yang, Qiao; Zhou, Yi-Bing; Chen, Zheng-Tang; Zhang, Shao-Xiang; Sun, Jian-Guo
2018-01-01
The aim of the present study was to investigate the optimal strategy and dosimetric measurement of thoracic radiotherapy based on three-dimensional (3D) modeling of mediastinal lymph nodes (MLNs). A 3D model of MLNs was constructed from a Chinese Visible Human female dataset. Image registration and fusion between reconstructed MLNs and original chest computed tomography (CT) images was conducted in the Eclipse™ treatment planning system (TPS). There were three plans, including 3D conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT) and volumetric-modulated arc therapy (VMAT), which were designed based on 10 cases of simulated lung lesions (SLLs) and MLNs. The quality of these plans was evaluated via examining indexes, including conformity index (CI), homogeneity index and clinical target volume (CTV) coverage. Dose-volume histogram analysis was performed on SLL, MLNs and organs at risk (OARs). A Chengdu Dosimetric Phantom (CDP) was then drilled at specific MLNs according to 20 patients with thoracic tumors and of a medium-build. These plans were repeated on fused MLNs and CDP CT images in the Eclipse™ TPS. Radiation doses at the SLLs and MLNs of the CDP were measured and compared with calculated doses. The established 3D MLN model demonstrated the spatial location of MLNs and adjacent structures. Precise image registration and fusion were conducted between reconstructed MLNs and the original chest CT or CDP CT images. IMRT demonstrated greater values in CI, CTV coverage and OAR (lungs and spinal cord) protection, compared with 3D-CRT and VMAT (P<0.05). The deviation between the measured and calculated doses was within ± 10% at SLL, and at the 2R and 7th MLN stations. In conclusion, the 3D MLN model can benefit plan optimization and dosimetric measurement of thoracic radiotherapy, and when combined with CDP, it may provide a tool for clinical dosimetric monitoring. PMID:29556300
Development of a patient-specific 3D dose evaluation program for QA in radiation therapy
NASA Astrophysics Data System (ADS)
Lee, Suk; Chang, Kyung Hwan; Cao, Yuan Jie; Shim, Jang Bo; Yang, Dae Sik; Park, Young Je; Yoon, Won Sup; Kim, Chul Yong
2015-03-01
We present preliminary results for a 3-dimensional dose evaluation software system ( P DRESS, patient-specific 3-dimensional dose real evaluation system). Scanned computed tomography (CT) images obtained by using dosimetry were transferred to the radiation treatment planning system (ECLIPSE, VARIAN, Palo Alto, CA) where the intensity modulated radiation therapy (IMRT) nasopharynx plan was designed. We used a 10 MV photon beam (CLiX, VARIAN, Palo Alto, CA) to deliver the nasopharynx treatment plan. After irradiation, the TENOMAG dosimeter was scanned using a VISTA ™ scanner. The scanned data were reconstructed using VistaRecon software to obtain a 3D dose distribution of the optical density. An optical-CT scanner was used to readout the dose distribution in the gel dosimeter. Moreover, we developed the P DRESS by using Flatform, which were developed by our group, to display the 3D dose distribution by loading the DICOM RT data which are exported from the radiotherapy treatment plan (RTP) and the optical-CT reconstructed VFF file, into the independent P DRESS with an ioniz ation chamber and EBT film was used to compare the dose distribution calculated from the RTP with that measured by using a gel dosimeter. The agreement between the normalized EBT, the gel dosimeter and RTP data was evaluated using both qualitative and quantitative methods, such as the isodose distribution, dose difference, point value, and profile. The profiles showed good agreement between the RTP data and the gel dosimeter data, and the precision of the dose distribution was within ±3%. The results from this study showed significantly discrepancies between the dose distribution calculated from the treatment plan and the dose distribution measured by a TENOMAG gel and by scanning with an optical CT scanner. The 3D dose evaluation software system ( P DRESS, patient specific dose real evaluation system), which were developed in this study evaluates the accuracies of the three-dimensional dose distributions. Further applications of the system utility are expected to result from future studies.
NASA Astrophysics Data System (ADS)
Gorjiara, Tina; Hill, Robin; Kuncic, Zdenka; Baldock, Clive
2010-11-01
A major challenge in brachytherapy dosimetry is the measurement of steep dose gradients. This can be achieved with a high spatial resolution three dimensional (3D) dosimeter. PRESAGE® is a polyurethane based dosimeter which is suitable for 3D dosimetry. Since an ideal dosimeter is radiologically water equivalent, we have investigated the relative dose response of three different PRESAGE® formulations, two with a lower chloride and bromide content than original one, for Cs-137 and Ir-192 brachytherapy sources. Doses were calculated using the EGSnrc Monte Carlo package. Our results indicate that PRESAGE® dosimeters are suitable for relative dose measurement of Cs-137 and Ir-192 brachytherapy sources and the lower halogen content PRESAGE® dosimeters are more water equivalent than the original formulation.
Topical Review: Polymer gel dosimetry
Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J
2010-01-01
Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinha, N; Cifter, G; Ngwa, W
Purpose: Brachytherapy Application with in-situ Dose-painting Administered via Gold-Nanoparticle Eluters (BANDAGE) has been proposed as a new therapeutic strategy for radiation boosting of high-risk prostate tumor subvolume while minimizing dose to neighboring organs-at-risk. In a previous study the one-dimensional dose-painting with gold nanoparticles (GNP) released from GNP-loaded brachytherapy spacers was investigated. The current study investigates BANDAGE in three-dimensions. Methods: To simulate GNPs transport in prostrate tumors, a three dimensional, cylindrically symmetric transport model was generated using a finite element method (FEM). A mathematical model of Gold nanoparticle (GNPs) transport provides a useful strategy to optimize potential treatment planning for BANDAGE.more » Here, treatment of tumors with a radius of 2.5 cm was simulated in 3-D. This simulation phase considered one gold based cylindrical spacer (GBS of size 5mm × 0.8 mm) introduced at the center of the spherical tumor with initial concentration of 100 mg/g or 508 mol/m3 of GNP. Finite element mesh is used to stimulate the GNP transport. Gold concentrations within the tumor were obtained using a 3-D FEM solution implemented by COMSOL. Results: The analysis shows the spread of the GNPs through-out the tumor with the increase of concentration towards the periphery with time. The analysis also shows the concentration profiles and corresponding dose enhancement factors (dose boost factor) as a function of GNP size. Conclusion: This study demonstrates the use of computational modeling and optimal parameter estimation to predict local GNPs from central implant as a function of x, y and z axis . Such a study provides a useful reference for ongoing translational studies for the BANDAGE approach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoon Jung, Sang; Min Yoon, Sang; Ho Park, Sung
2013-01-15
Purpose: In order to evaluate the dosimetric impact of respiratory motion on the dose delivered to the target volume and critical organs during free-breathing radiotherapy, a four-dimensional dose was evaluated using deformable image registration (DIR). Methods: Four-dimensional computed tomography (4DCT) images were acquired for 11 patients who were treated for liver cancer. Internal target volume-based treatment planning and dose calculation (3D dose) were performed using the end-exhalation phase images. The four-dimensional dose (4D dose) was calculated based on DIR of all phase images from 4DCT to the planned image. Dosimetric parameters from the 4D dose, were calculated and compared withmore » those from the 3D dose. Results: There was no significant change of the dosimetric parameters for gross tumor volume (p > 0.05). The increase D{sub mean} and generalized equivalent uniform dose (gEUD) for liver were by 3.1%{+-} 3.3% (p= 0.003) and 2.8%{+-} 3.3% (p= 0.008), respectively, and for duodenum, they were decreased by 15.7%{+-} 11.2% (p= 0.003) and 15.1%{+-} 11.0% (p= 0.003), respectively. The D{sub max} and gEUD for stomach was decreased by 5.3%{+-} 5.8% (p= 0.003) and 9.7%{+-} 8.7% (p= 0.003), respectively. The D{sub max} and gEUD for right kidney was decreased by 11.2%{+-} 16.2% (p= 0.003) and 14.9%{+-} 16.8% (p= 0.005), respectively. For left kidney, D{sub max} and gEUD were decreased by 11.4%{+-} 11.0% (p= 0.003) and 12.8%{+-} 12.1% (p= 0.005), respectively. The NTCP values for duodenum and stomach were decreased by 8.4%{+-} 5.8% (p= 0.003) and 17.2%{+-} 13.7% (p= 0.003), respectively. Conclusions: The four-dimensional dose with a more realistic dose calculation accounting for respiratory motion revealed no significant difference in target coverage and potentially significant change in the physical and biological dosimetric parameters in normal organs during free-breathing treatment.« less
Brodén, Cyrus; Olivecrona, Henrik; Maguire, Gerald Q; Noz, Marilyn E; Zeleznik, Michael P; Sköldenberg, Olof
2016-01-01
Background and Purpose. The gold standard for detection of implant wear and migration is currently radiostereometry (RSA). The purpose of this study is to compare a three-dimensional computed tomography technique (3D CT) to standard RSA as an alternative technique for measuring migration of acetabular cups in total hip arthroplasty. Materials and Methods. With tantalum beads, we marked one cemented and one uncemented cup and mounted these on a similarly marked pelvic model. A comparison was made between 3D CT and standard RSA for measuring migration. Twelve repeated stereoradiographs and CT scans with double examinations in each position and gradual migration of the implants were made. Precision and accuracy of the 3D CT were calculated. Results. The accuracy of the 3D CT ranged between 0.07 and 0.32 mm for translations and 0.21 and 0.82° for rotation. The precision ranged between 0.01 and 0.09 mm for translations and 0.06 and 0.29° for rotations, respectively. For standard RSA, the precision ranged between 0.04 and 0.09 mm for translations and 0.08 and 0.32° for rotations, respectively. There was no significant difference in precision between 3D CT and standard RSA. The effective radiation dose of the 3D CT method, comparable to RSA, was estimated to be 0.33 mSv. Interpretation. Low dose 3D CT is a comparable method to standard RSA in an experimental setting.
FlexyDos3D: a deformable anthropomorphic 3D radiation dosimeter: radiation properties
NASA Astrophysics Data System (ADS)
De Deene, Y.; Skyt, P. S.; Hil, R.; Booth, J. T.
2015-02-01
Three dimensional radiation dosimetry has received growing interest with the implementation of highly conformal radiotherapy treatments. The radiotherapy community faces new challenges with the commissioning of image guided and image gated radiotherapy treatments (IGRT) and deformable image registration software. A new three dimensional anthropomorphically shaped flexible dosimeter, further called ‘FlexyDos3D’, has been constructed and a new fast optical scanning method has been implemented that enables scanning of irregular shaped dosimeters. The FlexyDos3D phantom can be actuated and deformed during the actual treatment. FlexyDos3D offers the additional advantage that it is easy to fabricate, is non-toxic and can be molded in an arbitrary shape with high geometrical precision. The dosimeter formulation has been optimized in terms of dose sensitivity. The influence of the casting material and oxygen concentration has also been investigated. The radiophysical properties of this new dosimeter are discussed including stability, spatial integrity, temperature dependence of the dosimeter during radiation, readout and storage, dose rate dependence and tissue equivalence. The first authors Y De Deene and P S Skyt made an equivalent contribution to the experimental work presented in this paper.
Woliner-van der Weg, Wietske; Schoffelen, Rafke; Hobbs, Robert F; Gotthardt, Martin; Goldenberg, David M; Sharkey, Robert M; Slump, Cornelis H; van der Graaf, Winette Ta; Oyen, Wim Jg; Boerman, Otto C; Sgouros, George; Visser, Eric P
2015-12-01
Red bone marrow (RBM) toxicity is dose-limiting in (pretargeted) radioimmunotherapy (RIT). Previous blood-based and two-dimensional (2D) image-based methods have failed to show a clear dose-response relationship. We developed a three-dimensional (3D) image-based RBM dosimetry approach using the Monte Carlo-based 3D radiobiological dosimetry (3D-RD) software and determined its additional value for predicting RBM toxicity. RBM doses were calculated for 13 colorectal cancer patients after pretargeted RIT with the two-step administration of an anti-CEA × anti-HSG bispecific monoclonal antibody and a (177)Lu-labeled di-HSG-peptide. 3D-RD RBM dosimetry was based on the lumbar vertebrae, delineated on single photon emission computed tomography (SPECT) scans acquired directly, 3, 24, and 72 h after (177)Lu administration. RBM doses were correlated to hematologic effects, according to NCI-CTC v3 and compared with conventional 2D cranium-based and blood-based dosimetry results. Tumor doses were calculated with 3D-RD, which has not been possible with 2D dosimetry. Tumor-to-RBM dose ratios were calculated and compared for (177)Lu-based pretargeted RIT and simulated pretargeted RIT with (90)Y. 3D-RD RBM doses of all seven patients who developed thrombocytopenia were higher (range 0.43 to 0.97 Gy) than that of the six patients without thrombocytopenia (range 0.12 to 0.39 Gy), except in one patient (0.47 Gy) without thrombocytopenia but with grade 2 leucopenia. Blood and 2D image-based RBM doses for patients with grade 1 to 2 thrombocytopenia were in the same range as in patients without thrombocytopenia (0.14 to 0.29 and 0.11 to 0.26 Gy, respectively). Blood-based RBM doses for two grade 3 to 4 patients were higher (0.66 and 0.51 Gy, respectively) than the others, and the cranium-based dose of only the grade 4 patient was higher (0.34 Gy). Tumor-to-RBM dose ratios would increase by 25% on average when treating with (90)Y instead of (177)Lu. 3D dosimetry identifies patients at risk of developing any grade of RBM toxicity more accurately than blood- or 2D image-based methods. It has the added value to enable calculation of tumor-to-RBM dose ratios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujimoto, K; Yuasa, Y; Shiinoki, T
Purpose: A commercially available bolus (commercial-bolus) would not completely contact with the irregular shape of a patient’s skin. The purposes of this study were to customize a patient specific three-dimensional (3D) bolus using a 3D printer (3D-bolus) and to evaluate its clinical feasibility for photon radiotherapy. Methods: The 3D-bolus was designed using a treatment planning system (TPS) in DICOM-RT format. To print the 3D bolus, the file was converted into stereolithography format. To evaluate its physical characteristics, plans were created for water equivalent phantoms without the bolus, with the 3D-bolus printed in a flat form, and with the virtual bolusmore » which supposed a commercial-bolus. These plans were compared with the percent depth dose (PDD) measured from the TPS. Furthermore, to evaluate its clinical feasibility, the treatment plans were created for RANDO phantoms without the bolus and with the 3D-bolus which was customized for contacting with the surface of the phantom. Both plans were compared with the dose volume histogram (DVH) of the target volume. Results: In the physical evaluation, dmax of the plan without the bolus, with the 3D-bolus, and with the virtual bolus were 2.2 cm, 1.6 cm, and 1.7 cm, respectively. In the evaluation of clinical feasibility, for the plan without the bolus, Dmax, Dmin, Dmean, D90%, and V90% of the target volume were 102.6 %, 1.6 %, 88.8 %, 57.2 %, and 69.3 %, respectively. By using the 3D-bolus, the prescription dose could be delivered to at least 90 % of the target volume, Dmax, Dmin, Dmean, D90%, and V90% of the target volume were 104.3 %, 91.6 %, 92.1 %, 91.7 %, and 98.0 %, respectively. The 3D-bolus has the potential to be useful for providing effective dose coverage in the buildup region. Conclusion: A 3D-bolus produced using 3D printing technique is comparable to a commercially available bolus.« less
Keall, Paul J; Nguyen, Doan Trang; O'Brien, Ricky; Zhang, Pengpeng; Happersett, Laura; Bertholet, Jenny; Poulsen, Per R
2018-04-14
To review real-time 3-dimensional (3D) image guided radiation therapy (IGRT) on standard-equipped cancer radiation therapy systems, focusing on clinically implemented solutions. Three groups in 3 continents have clinically implemented novel real-time 3D IGRT solutions on standard-equipped linear accelerators. These technologies encompass kilovoltage, combined megavoltage-kilovoltage, and combined kilovoltage-optical imaging. The cancer sites treated span pelvic and abdominal tumors for which respiratory motion is present. For each method the 3D-measured motion during treatment is reported. After treatment, dose reconstruction was used to assess the treatment quality in the presence of motion with and without real-time 3D IGRT. The geometric accuracy was quantified through phantom experiments. A literature search was conducted to identify additional real-time 3D IGRT methods that could be clinically implemented in the near future. The real-time 3D IGRT methods were successfully clinically implemented and have been used to treat more than 200 patients. Systematic target position shifts were observed using all 3 methods. Dose reconstruction demonstrated that the delivered dose is closer to the planned dose with real-time 3D IGRT than without real-time 3D IGRT. In addition, compromised target dose coverage and variable normal tissue doses were found without real-time 3D IGRT. The geometric accuracy results with real-time 3D IGRT had a mean error of <0.5 mm and a standard deviation of <1.1 mm. Numerous additional articles exist that describe real-time 3D IGRT methods using standard-equipped radiation therapy systems that could also be clinically implemented. Multiple clinical implementations of real-time 3D IGRT on standard-equipped cancer radiation therapy systems have been demonstrated. Many more approaches that could be implemented were identified. These solutions provide a pathway for the broader adoption of methods to make radiation therapy more accurate, impacting tumor and normal tissue dose, margins, and ultimately patient outcomes. Copyright © 2018 Elsevier Inc. All rights reserved.
Three-dimensional volumetric analysis of irradiated lung with adjuvant breast irradiation.
Teh, Amy Yuen Meei; Park, Eileen J H; Shen, Liang; Chung, Hans T
2009-12-01
To retrospectively evaluate the dose-volume histogram data of irradiated lung in adjuvant breast radiotherapy (ABR) using a three-dimensional computed tomography (3D-CT)-guided planning technique; and to investigate the relationship between lung dose-volume data and traditionally used two-dimensional (2D) parameters, as well as their correlation with the incidence of steroid-requiring radiation pneumonitis (SRRP). Patients beginning ABR between January 2005 and February 2006 were retrospectively reviewed. Patients included were women aged >or=18 years with ductal carcinoma in situ or Stage I-III invasive carcinoma, who received radiotherapy using a 3D-CT technique to the breast or chest wall (two-field radiotherapy [2FRT]) with or without supraclavicular irradiation (three-field radiotherapy [3FRT]), to 50 Gy in 25 fractions. A 10-Gy tumor-bed boost was allowed. Lung dose-volume histogram parameters (V(10), V(20), V(30), V(40)), 2D parameters (central lung depth [CLD], maximum lung depth [MLD], and lung length [LL]), and incidence of SRRP were reported. A total of 89 patients met the inclusion criteria: 51 had 2FRT, and 38 had 3FRT. With 2FRT, mean ipsilateral V(10), V(20), V(30), V(40) and CLD, MLD, LL were 20%, 14%, 11%, and 8% and 2.0 cm, 2.1 cm, and 14.6 cm, respectively, with strong correlation between CLD and ipsilateral V(10-V40) (R(2) = 0.73-0.83, p < 0.0005). With 3FRT, mean ipsilateral V(10), V(20), V(30), and V(40) were 30%, 22%, 17%, and 11%, but its correlation with 2D parameters was poor. With a median follow-up of 14.5 months, 1 case of SRRP was identified. With only 1 case of SRRP observed, our study is limited in its ability to provide definitive guidance, but it does provide a starting point for acceptable lung irradiation during ABR. Further prospective studies are warranted.
Stevens, S; Dvorak, P; Spevacek, V; Pilarova, K; Bray-Parry, M; Gesner, J; Richmond, A
2018-01-01
To provide a 3D dosimetric evaluation of a commercial portal dosimetry system using 2D/3D detectors under ideal conditions using VMAT. A 2D ion chamber array, radiochromic film and gel dosimeter were utilised to provide a dosimetric evaluation of transit phantom and pre-treatment 'fluence' EPID back-projected dose distributions for a standard VMAT plan. In-house 2D and 3D gamma methods compared pass statistics relative to each dosimeter and TPS dose distributions. Fluence mode and transit EPID dose distributions back-projected onto phantom geometry produced 2D gamma pass rates in excess of 97% relative to other tested detectors and exported TPS dose planes when a 3%, 3 mm global gamma criterion was applied. Use of a gel dosimeter within a glass vial allowed comparison of measured 3D dose distributions versus EPID 3D dose and TPS calculated distributions. 3D gamma comparisons between modalities at 3%, 3 mm gave pass rates in excess of 92%. Use of fluence mode was indicative of transit results under ideal conditions with slightly reduced dose definition. 3D EPID back projected dose distributions were validated against detectors in both 2D and 3D. Cross validation of transit dose delivered to a patient is limited due to reasons of practicality and the tests presented are recommended as a guideline for 3D EPID dosimetry commissioning; allowing direct comparison between detector, TPS, fluence and transit modes. The results indicate achievable gamma scores for a complex VMAT plan in a homogenous phantom geometry and contributes to growing experience of 3D EPID dosimetry. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Rosenzweig, K E; Mychalczak, B; Fuks, Z; Hanley, J; Burman, C; Ling, C C; Armstrong, J; Ginsberg, R; Kris, M G; Raben, A; Leibel, S
2000-01-01
Three-dimensional conformal radiotherapy (3D-CRT) is a mode of high-precision radiotherapy designed to increase the tumor dose and decrease the dose to normal tissues. This study reports the final results of the first two dose levels (70.2 Gy and 75.6 Gy) of a phase I dose-escalation study using 3D-CRT for the treatment of non-small cell lung cancer. Fifty-two patients were treated with 3D-CRT without chemotherapy. The median age was 67 years (range, 39-82 years). The majority of patients had locally advanced cancer. Tumor was staged as I/II in 10%, IIIA in 40%, and IIIB in 50%. Radiation was delivered in daily fractions of 1.8 Gy, 5 days a week. A radiation dose level was considered complete when 10 patients received the intended dose without unacceptable acute morbidity. Toxicity was scored according to the Radiation Therapy Oncology Group grading scheme. Twenty patients were initially assigned to the 70.2-Gy level; 14 of them received the intended dose. Three patients experienced severe acute toxicity, two with grade 3 (requiring steroids or oxygen) and a third with grade 5 (fatal) acute radiation pneumonitis. Because of the grade 5 pulmonary toxicity, the protocol was modified, and only patients with a calculated risk of normal tissue complication of less than 25% were eligible for dose escalation. Patients who had a normal tissue complication probability (NTCP) of greater than 25% received a lower dose of radiation. An additional 18 patients were entered on the modified study; 11 of them received 70.2 Gy. One patient experienced grade 3 acute pneumonitis. Despite dose reduction in four patients because of an unacceptably high NTCP, two additional patients developed grade 3 pulmonary toxicity. Fourteen patients were accrued to the 75.6-Gy dose level, and 10 received the intended dose. One of the 10 patients experienced grade 3 pulmonary toxicity and one developed grade 3 esophageal toxicity. Three patients were treated to lower doses as a result of their calculated NTCP without toxicity, and one patient refused treatment. The 2-year local control, disease-free survival, and overall survival rates were 37%, 12%, and 24%, respectively. The median survival time was 11 months. Treatment to 70.2 Gy and 75.6 Gy using 3D-CRT was delivered with acceptable morbidity when NTCP constraints were observed. Local control was encouraging in these patients with locally advanced disease. Patients are currently being accrued to the 81-Gy level of the study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sekine, Ikuo, E-mail: isekine@ncc.go.jp; Sumi, Minako; Ito, Yoshinori
Purpose: To determine the maximum tolerated dose in concurrent three-dimensional conformal radiotherapy (3D-CRT) with chemotherapy for unresectable Stage III non-small-cell lung cancer (NSCLC). Patients and Methods: Eligible patients with unresectable Stage III NSCLC, age {>=}20 years, performance status 0-1, percent of volume of normal lung receiving 20 GY or more (V{sub 20}) {<=}30% received three to four cycles of cisplatin (80 mg/m{sup 2} Day 1) and vinorelbine (20 mg/m{sup 2} Days 1 and 8) repeated every 4 weeks. The doses of 3D-CRT were 66 Gy, 72 Gy, and 78 Gy at dose levels 1 to 3, respectively. Results: Of themore » 17, 16, and 24 patients assessed for eligibility, 13 (76%), 12 (75%), and 6 (25%) were enrolled at dose levels 1 to 3, respectively. The main reasons for exclusion were V{sub 20} >30% (n = 10) and overdose to the esophagus (n = 8) and brachial plexus (n = 2). There were 26 men and 5 women, with a median age of 60 years (range, 41-75). The full planned dose of radiotherapy could be administered to all the patients. Grade 3-4 neutropenia and febrile neutropenia were noted in 24 (77%) and 5 (16%) of the 31 patients, respectively. Grade 4 infection, Grade 3 esophagitis, and Grade 3 pulmonary toxicity were noted in 1 patient, 2 patients, and 1 patient, respectively. The dose-limiting toxicity was noted in 17% of the patients at each dose level. The median survival and 3-year and 4-year survival rates were 41.9 months, 72.3%, and 49.2%, respectively. Conclusions: 72 Gy was the maximum dose that could be achieved in most patients, given the predetermined normal tissue constraints.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopatiuk-Tirpak, O.; Langen, K. M.; Meeks, S. L.
2008-09-15
The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly amore » factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated.« less
Ahmad, M; Nath, R
2001-02-20
The specific aim of three-dimensional conformal radiotherapy is to deliver adequate therapeutic radiation dose to the target volume while concomitantly keeping the dose to surrounding and intervening normal tissues to a minimum. The objective of this study is to examine dose distributions produced by various radiotherapy techniques used in managing head and neck tumors when the upper part of the esophagus is also involved. Treatment planning was performed with a three-dimensional (3-D) treatment planning system. Computerized tomographic (CT) scans used by this system to generate isodose distributions and dose-volume histograms were obtained directly from the CT scanner, which is connected via ethernet cabling to the 3-D planning system. These are useful clinical tools for evaluating the dose distribution to the treatment volume, clinical target volume, gross tumor volume, and certain critical organs. Using 6 and 18 MV photon beams, different configurations of standard treatment techniques for head and neck and esophageal carcinoma were studied and the resulting dose distributions were analyzed. Film validation dosimetry in solid-water phantom was performed to assess the magnitude of dose inhomogeneity at the field junction. Real-time dose measurements on patients using diode dosimetry were made and compared with computed dose values. With regard to minimizing radiation dose to surrounding structures (i.e., lung, spinal cord, etc.), the monoisocentric technique gave the best isodose distributions in terms of dose uniformity. The mini-mantle anterior-posterior/posterior-anterior (AP/PA) technique produced grossly non-uniform dose distribution with excessive hot spots. The dose measured on the patient during the treatment agrees to within +/- 5 % with the computed dose. The protocols presented in this work for simulation, immobilization and treatment planning of patients with head and neck and esophageal tumors provide the optimum dose distributions in the target volume with reduced irradiation of surrounding non-target tissues, and can be routinely implemented in a radiation oncology department. The presence of a real-time dose-measuring system plays an important role in verifying the actual delivery of radiation dose.
Kole, Thomas P; Aghayere, Osarhieme; Kwah, Jason; Yorke, Ellen D; Goodman, Karyn A
2012-08-01
To compare heart and coronary artery radiation exposure using intensity-modulated radiotherapy (IMRT) vs. four-field three-dimensional conformal radiotherapy (3D-CRT) treatment plans for patients with distal esophageal cancer undergoing chemoradiation. Nineteen patients with distal esophageal cancers treated with IMRT from March 2007 to May 2008 were identified. All patients were treated to 50.4 Gy with five-field IMRT plans. Theoretical 3D-CRT plans with four-field beam arrangements were generated. Dose-volume histograms of the planning target volume, heart, right coronary artery, left coronary artery, and other critical normal tissues were compared between the IMRT and 3D-CRT plans, and selected parameters were statistically evaluated using the Wilcoxon rank-sum test. Intensity-modulated radiotherapy treatment planning showed significant reduction (p < 0.05) in heart dose over 3D-CRT as assessed by average mean dose (22.9 vs. 28.2 Gy) and V30 (24.8% vs. 61.0%). There was also significant sparing of the right coronary artery (average mean dose, 23.8 Gy vs. 35.5 Gy), whereas the left coronary artery showed no significant improvement (mean dose, 11.2 Gy vs. 9.2 Gy), p = 0.11. There was no significant difference in percentage of total lung volume receiving at least 10, 15, or 20 Gy or in the mean lung dose between the planning methods. There were also no significant differences observed for the kidneys, liver, stomach, or spinal cord. Intensity-modulated radiotherapy achieved a significant improvement in target conformity as measured by the conformality index (ratio of total volume receiving 95% of prescription dose to planning target volume receiving 95% of prescription dose), with the mean conformality index reduced from 1.56 to 1.30 using IMRT. Treatment of patients with distal esophageal cancer using IMRT significantly decreases the exposure of the heart and right coronary artery when compared with 3D-CRT. Long-term studies are necessary to determine how this will impact on development of coronary artery disease and other cardiac complications. Copyright © 2012 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katsuta, Y; Tohoku University Graduate School of Medicine, Sendal, Miyagi; Kadoya, N
Purpose: In this study, we developed a system to calculate three dimensional (3D) dose that reflects dosimetric error caused by leaf miscalibration for head and neck and prostate volumetric modulated arc therapy (VMAT) without additional treatment planning system calculation on real time. Methods: An original system called clarkson dose calculation based dosimetric error calculation to calculate dosimetric error caused by leaf miscalibration was developed by MATLAB (Math Works, Natick, MA). Our program, first, calculates point doses at isocenter for baseline and modified VMAT plan, which generated by inducing MLC errors that enlarged aperture size of 1.0 mm with clarkson dosemore » calculation. Second, error incuced 3D dose was generated with transforming TPS baseline 3D dose using calculated point doses. Results: Mean computing time was less than 5 seconds. For seven head and neck and prostate plans, between our method and TPS calculated error incuced 3D dose, the 3D gamma passing rates (0.5%/2 mm, global) are 97.6±0.6% and 98.0±0.4%. The dose percentage change with dose volume histogram parameter of mean dose on target volume were 0.1±0.5% and 0.4±0.3%, and with generalized equivalent uniform dose on target volume were −0.2±0.5% and 0.2±0.3%. Conclusion: The erroneous 3D dose calculated by our method is useful to check dosimetric error caused by leaf miscalibration before pre treatment patient QA dosimetry checks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Yin, Y
2015-06-15
Purpose: A method using four-dimensional(4D) PET/CT in design of radiation treatment planning was proposed and the target volume and radiation dose distribution changes relative to standard three-dimensional (3D) PET/CT were examined. Methods: A target deformable registration method was used by which the whole patient’s respiration process was considered and the effect of respiration motion was minimized when designing radiotherapy planning. The gross tumor volume of a non-small-cell lung cancer was contoured on the 4D FDG-PET/CT and 3D PET/CT scans by use of two different techniques: manual contouring by an experienced radiation oncologist using a predetermined protocol; another technique using amore » constant threshold of standardized uptake value (SUV) greater than 2.5. The target volume and radiotherapy dose distribution between VOL3D and VOL4D were analyzed. Results: For all phases, the average automatic and manually GTV volume was 18.61 cm3 (range, 16.39–22.03 cm3) and 31.29 cm3 (range, 30.11–35.55 cm3), respectively. The automatic and manually volume of merged IGTV were 27.82 cm3 and 49.37 cm3, respectively. For the manual contour, compared to 3D plan the mean dose for the left, right, and total lung of 4D plan have an average decrease 21.55%, 15.17% and 15.86%, respectively. The maximum dose of spinal cord has an average decrease 2.35%. For the automatic contour, the mean dose for the left, right, and total lung have an average decrease 23.48%, 16.84% and 17.44%, respectively. The maximum dose of spinal cord has an average decrease 1.68%. Conclusion: In comparison to 3D PET/CT, 4D PET/CT may better define the extent of moving tumors and reduce the contouring tumor volume thereby optimize radiation treatment planning for lung tumors.« less
NASA Astrophysics Data System (ADS)
Rodgers, Jessica R.; Surry, Kathleen; D'Souza, David; Leung, Eric; Fenster, Aaron
2017-03-01
Treatment for gynaecological cancers often includes brachytherapy; in particular, in high-dose-rate (HDR) interstitial brachytherapy, hollow needles are inserted into the tumour and surrounding area through a template in order to deliver the radiation dose. Currently, there is no standard modality for visualizing needles intra-operatively, despite the need for precise needle placement in order to deliver the optimal dose and avoid nearby organs, including the bladder and rectum. While three-dimensional (3D) transrectal ultrasound (TRUS) imaging has been proposed for 3D intra-operative needle guidance, anterior needles tend to be obscured by shadowing created by the template's vaginal cylinder. We have developed a 360-degree 3D transvaginal ultrasound (TVUS) system that uses a conventional two-dimensional side-fire TRUS probe rotated inside a hollow vaginal cylinder made from a sonolucent plastic (TPX). The system was validated using grid and sphere phantoms in order to test the geometric accuracy of the distance and volumetric measurements in the reconstructed image. To test the potential for visualizing needles, an agar phantom mimicking the geometry of the female pelvis was used. Needles were inserted into the phantom and then imaged using the 3D TVUS system. The needle trajectories and tip positions in the 3D TVUS scan were compared to their expected values and the needle tracks visualized in magnetic resonance images. Based on this initial study, 360-degree 3D TVUS imaging through a sonolucent vaginal cylinder is a feasible technique for intra-operatively visualizing needles during HDR interstitial gynaecological brachytherapy.
Song, Y-P; Ma, J-B; Hu, L-K; Zhou, W; Chen, E-C; Zhang, W
2011-02-01
Compared to conventional fractionated-dose radiotherapy, high hypofractionated-dose radiotherapy could yield tumoricidal effects. However, few clinical trials of hypofractionated radiotherapy in loco-regionally advanced incurable esophageal cancer at present have yet been performed. The purpose of the current study was to evaluate the efficacy and toxicity of hypofractioned radiation with three-dimensional conformal radiotherapy for clinical T3-4N0-1M0 stage esophageal carcinoma. From September 2003 to December 2005, 45 patients with locally advanced esophageal carcinoma were grouped and received three-dimensional conformal hypofractioned radiotherapy (3D-CRT) whose fractionated dose was gradually increase per group. Radiotherapy was administered to a total dose of from 50 to 54 Gy (fractionated dose of from 3.0 to 6.0 Gy, 3 times weekly), over a 3-4 week period. And patients received 4 cycles chemotherapy. The median follow-up period for survivors was 38 months. Treatment tolerance rate was 78.8% with daily dose of from 3 to 5 Gy. There are 21.2% patients occurring Grade ≥ 3 acute toxicities. But patients couldn't tolerate daily dose of 6 Gy (55.6%). The 1-year, 2-year and 3-year local control rates were 62%, 49% and 39% respectively. And the 1-year, 2-year and 3-year overall survival rates were 34%, 21% and 9% respectively. The median overall survival time was 17 months. At the time of following up, 13 patients (31.0%) had occurred esophageal late complications, with mainly esophageal perforation, hemorrhage or stenosis, including initial stenosis aggravation. Therefore hypofractionated irradiation was thought to be feasible for clinical T3-4N0-1M0 stage esophageal carcinoma. And daily dose of ≤5 Gy was comparatively suitable in hypofractionated irradiation for esophageal carcinoma, and the patients tolerated well. But further research was in need also.
Biodynamic profiling of three-dimensional tissue growth techniques
NASA Astrophysics Data System (ADS)
Sun, Hao; Merrill, Dan; Turek, John; Nolte, David
2016-03-01
Three-dimensional tissue culture presents a more biologically relevant environment in which to perform drug development than conventional two-dimensional cell culture. However, obtaining high-content information from inside three dimensional tissue has presented an obstacle to rapid adoption of 3D tissue culture for pharmaceutical applications. Biodynamic imaging is a high-content three-dimensional optical imaging technology based on low-coherence interferometry and digital holography that uses intracellular dynamics as high-content image contrast. In this paper, we use biodynamic imaging to compare pharmaceutical responses to Taxol of three-dimensional multicellular spheroids grown by three different growth techniques: rotating bioreactor, hanging-drop and plate-grown spheroids. The three growth techniques have systematic variations among tissue cohesiveness and intracellular activity and consequently display different pharmacodynamics under identical drug dose conditions. The in vitro tissue cultures are also compared to ex vivo living biopsies. These results demonstrate that three-dimensional tissue cultures are not equivalent, and that drug-response studies must take into account the growth method.
Xu, Su-Jun; Shi, Yu-Sheng; Song, Hai-Chun; Chen, Long-Hua
2002-10-01
To improve the therapeutic effect of radiotherapy without increasing the risk of radiation injury in patients with non-small cell lung cancer (NSCLC). From August 1998 to August 1999, 135 patients with NSCLC received radiotherapy, of whom 62 were treated with high-dose three-dimensional conformal radiotherapy (3D-CRT) at the total dose of 48 to 64 Gy in 6 to 8 fractions implemented in a course of 2 to 3 weeks, 6 to 8 Gy for each fraction. The other 73 patients underwent conventional radiotherapy (CR) at the total dose of 60 to 70 Gy in 30 to 35 fractions completed in 6 to 7 weeks. Follow-up study was conducted in all the cases, and CT-scan or magnetic resonance imaging was performed once every 3 months after the therapy to assess the local control rate, survival rate, radiation-induced lung and esophageal injuries. Three months after radiation therapy, complete remission of the lesions was achieved in 44.9% (CR group) and 77.8% (3D-CRT group) of the cases with the efficacy rates of 94.4% and 100% respectively, showing significant differences between the 2 groups (P<0.01). The 1- and 2-year survival rate of the patients in the 2 groups were 42.5% vs 77.8% and 30.1% vs 48.6% respectively, also with significant differences between the 2 groups (P<0.01). Significant difference also occurred in the 1- and 2-year local control rates between the 2 groups, but not in the incidences of radiation-induced lung and esophageal injuries. 3D-CRT may yield better therapeutic effect than CR does and has comparable safety with the latter.
Design and optimization of a novel 3D detector: The 3D-open-shell-electrode detector
NASA Astrophysics Data System (ADS)
Liu, Manwen; Tan, Jian; Li, Zheng
2018-04-01
A new type of three-dimensional (3D) detector, namely 3D-Open-Shell-Electrode Detector (3DOSED), is proposed in this study. In a 3DOSED, the trench electrode can be etched all the way through the detector thickness, totally eliminating the low electric field region existed in the conventional 3D-Trench-Electrode detector. Full 3D technology computer-aided design (TCAD) simulations have been done on this novel silicon detector structure. Through comparing of the simulation results of the detector, we can obtain the best design of the 3SOSED. In addition, simulation results show that, as compared to the conventional 3D detector, the proposed 3DOSED can improve not only detector charge collection efficiency but also its radiation hardness with regard to solving the trapping problem in the detector bulk. What is more, it has been shown that detector full depletion voltage is also slightly reduced, which can improve the utility aspects of the detector. When compared to the conventional 3D detector, we find that the proposed novel 3DOSED structure has better electric potential and electric field distributions, and better electrical properties such as detector full depletion voltage. In 3DOSED array, each pixel cell is isolated from each other by highly doped trenches, but also electrically and physically connected with each other through the remaining silicon bulk between broken electrodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wielen, Gerard J. van der; Putten, Wim van; Incrocci, Luca
Purpose: The purpose of this study is to provide information about sexual function (SF) after three-dimensional conformal radiotherapy (3D-CRT) for prostate cancer while taking important factors into account that influence SF. Methods and Materials: Between June 1997 and February 2003, a total of 268 patients from a randomized dose-escalation trial comparing 68 Gy and 78 Gy agreed to participate in an additional part of the trial that evaluated SF. Results: At baseline 28% of patients had erectile dysfunction (ED). After 1 year, 27% of the pretreatment potent patients had developed ED. After 2 years this percentage had increased to 36%.more » After 3 years it almost stabilized at 38%. Satisfaction with sexual life was significantly correlated with ED. After 2 years one third of the pre-treatment potent patients still had considerable to very much sexual desire and found sex (very) important. No significant differences were found between the two dose-arms. Potency aids were used on a regular base by 14% of the patients. Conclusion: By taking adjuvant hormonal therapy (HT), HT during follow-up and potency aids into account, we found a lower percentage of ED after 3D-CRT than reported in previous prospective studies. A large group of patients still had sexual desire, considered sex important and 14% used potency aids after 3D-CRT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarkar, B; GLA University, Mathura, UP; Manikandan, A
2016-06-15
Purpose: Six dimensional positional shifts (translational and rotational) determined by a volumetric imaging system were mathematically combined and incorporated as simple translational shifts and the resultant impact on dose characteristics was studied. Methods: Thirty patients who underwent either single fraction (12 Gy) or five fractions (5 Gy per fraction) stereotactic treatments were included in this study. They were immobilized using a double layered thermoplastic mask from BrainLAB. Isocenter matching was done using infrared marker of ExacTrac. An initial cone beam CT (CBCT) gave positional shifts in 6-dimensions that were applied through 6-D motion enabled couch. A verification CBCT was donemore » following corrections before treatment. These 6-D positional shifts determined at each imaging session from the first CBCT were mathematically combined to give three simple translational shifts. Doses were recalculated in the patient matrix with these positional errors present by moving the whole image dataset. Doses were also recalculated after second CBCT with only residual errors present. PTV dose statistics were compared. Results: For the approved plans V100%(PTV), V100%(GTV), D95%(PTV), D95%(GTV), D1%(PTV) and D1%(GTV) were 96.2±3.0%, 98.2±1.4%, 102%±1.7%, 103±1.2%, 107.9±8.9% and 109.3±7.5% of prescription dose respectively. With the positional errors present (after 1st CBCT) the corresponding values were 86.7±4.9%, 91.3±2.9%, 89.6±4.2%, 95.9±3.7%, 108.3±9.9% and 108.6±4.5%. Post-correction (after 2nd CBCT) with only residual errors present, values were 94.5±5.7%, 97.3±2.9%, 99.3%±3.2%, 102%±2.1%, 107.6±8.5% and 109.0±7.6% respectively. Significant and nominal OAR dose variation was observed between pre- and post-table corrections. Conclusion: Positional errors significantly affect PTV dose statistics. They need to be corrected before delivery of stereotactic treatments although the magnitude of dose changes can vary from patient-to-patient depending on the tumor location. As expected after the table corrections, residual errors result in insignificant dose deviations. For frameless stereotactic treatments having a six-dimensional motion enabled couch is highly recommended to reduce quantum of dose deviations.« less
MO-B-BRB-00: Three Dimensional Dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less
Carreau, Joseph H; Bastrom, Tracey; Petcharaporn, Maty; Schulte, Caitlin; Marks, Michelle; Illés, Tamás; Somoskeöy, Szabolcs; Newton, Peter O
2014-03-01
Reproducibility study of SterEOS 3-dimensional (3D) software in large, idiopathic scoliosis (IS) spinal curves. To determine the accuracy and reproducibility of various 3D, software-generated radiographic measurements acquired from a 2-dimensional (2D) imaging system. SterEOS software allows a user to reconstruct a 3D spinal model from an upright, biplanar, low-dose, X-ray system. The validity and internal consistency of this system have not been tested in large IS curves. EOS images from 30 IS patients with curves greater than 50° were collected for analysis. Three observers blinded to the study protocol conducted repeated, randomized, manual 2D measurements, and 3D software generated measurements from biplanar images acquired from an EOS Imaging system. Three-dimensional measurements were repeated using both the Full 3D and Fast 3D guided processes. A total of 180 (120 3D and 60 2D) sets of measurements were obtained of coronal (Cobb angle) and sagittal (T1-T12 and T4-T12 kyphosis; L1-S1 and L1-L5; and pelvic tilt, pelvic incidence, and sacral slope) parameters. Intra-class correlation coefficients were compared, as were the calculated differences in values generated by SterEOS 3D software and manual 2D measurements. The 95% confidence intervals of the mean differences in measures were calculated as an estimate of reproducibility. Average intra-class correlation coefficients were excellent: 0.97, 0.97, and 0.93 for Full 3D, Fast 3D, and 2D measures, respectively (p = .11). Measurement errors for some sagittal measures were significantly lower with the 3D techniques. Both the Full 3D and Fast 3D techniques provided consistent measurements of axial plane vertebral rotation. SterEOS 3D reconstruction spine software creates reproducible measurements in all 3 planes of deformity in curves greater than 50°. Advancements in 3D scoliosis imaging are expected to improve our understanding and treatment of idiopathic scoliosis. Copyright © 2014 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.
Hashimoto, Masayuki; Nagatani, Yukihiro; Oshio, Yasuhiko; Nitta, Norihisa; Yamashiro, Tsuneo; Tsukagoshi, Shinsuke; Ushio, Noritoshi; Mayumi, Masayuki; Kimoto, Tatsuya; Igarashi, Tomoyuki; Yoshigoe, Makoto; Iwai, Kyohei; Tanaka, Koki; Sato, Shigetaka; Sonoda, Akinaga; Otani, Hideji; Murata, Kiyoshi; Hanaoka, Jun
2018-01-01
To assess the feasibility of Four-Dimensional Ultra-Low-Dose Computed Tomography (4D-ULDCT) for distinguishing pleural aspects with localized pleural adhesion (LPA) from those without. Twenty-seven patients underwent 4D-ULDCT during a single respiration with a 16cm-coverage of the body axis. The presence and severity of LPA was confirmed by their intraoperative thoracoscopic findings. A point on the pleura and a corresponding point on the outer edge of the costal bone were placed in identical axial planes at end-inspiration. The distance of the two points (PCD), traced by automatic tracking functions respectively, was calculated at each respiratory phase. The maximal and average change amounts in PCD (PCD MCA and PCD ACA ) were compared among 110 measurement points (MPs) without LPA, 16MPs with mild LPA and 10MPs with severe LPA in upper lung field cranial to the bronchial bifurcation (ULF), and 150MPs without LPA, 17MPs with mild LPA and 9MPs with severe LPA in lower lung field caudal to the bronchial bifurcation (LLF) using the Mann-Whitney U test. In the LLF, PCD ACA as well as PCD MCA demonstrated a significant difference among non-LPA, mild LPA and severe LPA (18.1±9.2, 12.3±6.2 and 5.0±3.3mm) (p<0.05). Also in the ULF, PCD ACA showed a significant difference among three conditions (9.2±5.5, 5.7±2.8 and 2.2±0.4mm, respectively) (p<0.05), whereas PCD MCA for mild LPA was similar to that for non-LPA (12.3±5.9 and 17.5±11.0mm). Four D-ULDCT could be a useful non-invasive preoperative assessment modality for the detection of the presence or severity of LPA. Copyright © 2017 Elsevier B.V. All rights reserved.
Kim, Robert Y; Dragovic, Alek F; Whitley, Alexander C; Shen, Sui
2014-01-01
To analyze the D2 cc hot spot in three-dimensional CT and anatomic factors affecting the D2 cc hot spot in organs at risk (OARs). Thirty-one patients underwent pelvic CT scan after insertion of the applicator. High-dose-rate treatment planning was performed with standard loading patterns. The D2 cc structures in OARs were generated in three dimensional if the total equivalent dose in 2 Gy exceeded our defined dose limits (hot spot). The location of D2 cc hot spot was defined as the center of the largest D2 cc fragment. The relationship between the hot spot and the applicator position was reported in Digital Imaging and Communication in Medicine coordinates. The location of sigmoid, small bowel, and bladder D2 cc hot spots was around the endocervix: The mean location of sigmoid hot spot for lateral view was 1.6 cm posteriorly and 2.3 cm superiorly (Y, 1.6 and Z, 2.3), small bowel was 1.6 cm anteriorly and 2.7 cm superiorly (Y, -1.6 and Z, 2.7). The mean location of bladder hot spot was 1.6 cm anteriorly and 1.6 cm superiorly (Y, -1.6 and Z, 1.6). These hot spots were near the plane of Point A (X, 2.0 or -2.0; Y, 0; and Z, 2.0). The mean location of rectal hot spot was 1.6 cm posteriorly and 1.9 cm inferiorly (Y, 1.6 and Z, -1.9). D2 cc hot spot was affected by uterine wall thickness, uterine tandem position, fibroids, bladder fullness, bowel gas, and vaginal packing. Because of the location of the D2 cc hot spots, larger tumors present a challenge for adequate tumor coverage with a conventional brachytherapy applicator without an interstitial implant. Additionally, anatomic factors were identified which affect the D2 cc hot spot in OARs. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Li, H. Harold; Rodriguez, Vivian L.; Green, Olga L.; Hu, Yanle; Kashani, Rojano; Wooten, H. Omar; Yang, Deshan; Mutic, Sasa
2014-01-01
Purpose This work describes a patient-specific dosimetry quality assurance (QA) program for intensity modulated radiation therapy (IMRT) using ViewRay, the first commercial magnetic resonance imaging guided radiation therapy device. Methods and materials The program consisted of the following components: 1) one-dimensional multipoint ionization chamber measurement using a customized 15 cm3 cubic phantom, 2) two-dimensional (2D) radiographic film measurement using a 30×30×20 cm3 phantom with multiple inserted ionization chambers, 3) quasi- three-dimensional (3D) diode array (ArcCHECK) measurement with a centrally inserted ionization chamber, 4) 2D fluence verification using machine delivery log files, and 5) 3D Monte-Carlo (MC) dose reconstruction with machine delivery files and phantom CT. Results The ionization chamber measurements agreed well with treatment planning system (TPS) computed doses in all phantom geometries where the mean difference (mean ± SD) was 0.0% ± 1.3% (n=102, range, −3.0 % to 2.9%). The film measurements also showed excellent agreement with the TPS computed 2D dose distributions where the mean passing rate using 3% relative/3 mm gamma criteria was 94.6% ± 3.4% (n=30, range, 87.4% to 100%). For ArcCHECK measurements, the mean passing rate using 3% relative/3 mm gamma criteria was 98.9% ± 1.1% (n=34, range, 95.8% to 100%). 2D fluence maps with a resolution of 1×1 mm2 showed 100% passing rates for all plan deliveries (n=34). The MC reconstructed doses to the phantom agreed well with planned 3D doses where the mean passing rate using 3% absolute/3 mm gamma criteria was 99.0% ± 1.0% (n=18, range, 97.0% to100%), demonstrating the feasibility of evaluating the QA results in the patient geometry. Conclusions We have developed a dosimetry program for ViewRay’s patient-specific IMRT QA. The methodology will be useful for other ViewRay users. The QA results presented here can assist the RT community to establish appropriate tolerance and action limits for ViewRay’s IMRT QA. PMID:25442343
SU-E-T-154: Establishment and Implement of 3D Image Guided Brachytherapy Planning System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, S; Zhao, S; Chen, Y
2014-06-01
Purpose: Cannot observe the dose intuitionally is a limitation of the existing 2D pre-implantation dose planning. Meanwhile, a navigation module is essential to improve the accuracy and efficiency of the implantation. Hence a 3D Image Guided Brachytherapy Planning System conducting dose planning and intra-operative navigation based on 3D multi-organs reconstruction is developed. Methods: Multi-organs including the tumor are reconstructed in one sweep of all the segmented images using the multiorgans reconstruction method. The reconstructed organs group establishs a three-dimensional visualized operative environment. The 3D dose maps of the three-dimentional conformal localized dose planning are calculated with Monte Carlo method whilemore » the corresponding isodose lines and isodose surfaces are displayed in a stereo view. The real-time intra-operative navigation is based on an electromagnetic tracking system (ETS) and the fusion between MRI and ultrasound images. Applying Least Square Method, the coordinate registration between 3D models and patient is realized by the ETS which is calibrated by a laser tracker. The system is validated by working on eight patients with prostate cancer. The navigation has passed the precision measurement in the laboratory. Results: The traditional marching cubes (MC) method reconstructs one organ at one time and assembles them together. Compared to MC, presented multi-organs reconstruction method has superiorities in reserving the integrality and connectivity of reconstructed organs. The 3D conformal localized dose planning, realizing the 'exfoliation display' of different isodose surfaces, helps make sure the dose distribution has encompassed the nidus and avoid the injury of healthy tissues. During the navigation, surgeons could observe the coordinate of instruments real-timely employing the ETS. After the calibration, accuracy error of the needle position is less than 2.5mm according to the experiments. Conclusion: The speed and quality of 3D reconstruction, the efficiency in dose planning and accuracy in navigation all can be improved simultaneously.« less
Liu, Haisong; Li, Jun; Pappas, Evangelos; Andrews, David; Evans, James; Werner-Wasik, Maria; Yu, Yan; Dicker, Adam; Shi, Wenyin
2016-09-08
An automatic brain-metastases planning (ABMP) software has been installed in our institution. It is dedicated for treating multiple brain metastases with radiosurgery on linear accelerators (linacs) using a single-setup isocenter with noncoplanar dynamic conformal arcs. This study is to validate the calculated absolute dose and dose distribution of ABMP. Three types of measurements were performed to validate the planning software: 1, dual micro ion chambers were used with an acrylic phantom to measure the absolute dose; 2, a 3D cylindrical phantom with dual diode array was used to evaluate 2D dose distribution and point dose for smaller targets; and 3, a 3D pseudo-in vivo patient-specific phantom filled with polymer gels was used to evaluate the accuracy of 3D dose distribution and radia-tion delivery. Micro chamber measurement of two targets (volumes of 1.2 cc and 0.9 cc, respectively) showed that the percentage differences of the absolute dose at both targets were less than 1%. Averaged GI passing rate of five different plans measured with the diode array phantom was above 98%, using criteria of 3% dose difference, 1 mm distance to agreement (DTA), and 10% low-dose threshold. 3D gel phantom measurement results demonstrated a 3D displacement of nine targets of 0.7 ± 0.4 mm (range 0.2 ~ 1.1 mm). The averaged two-dimensional (2D) GI passing rate for several region of interests (ROI) on axial slices that encompass each one of the nine targets was above 98% (5% dose difference, 2 mm DTA, and 10% low-dose threshold). Measured D95, the minimum dose that covers 95% of the target volume, of the nine targets was 0.7% less than the calculated D95. Three different types of dosimetric verification methods were used and proved the dose calculation of the new automatic brain metastases planning (ABMP) software was clinical acceptable. The 3D pseudo-in vivo patient-specific gel phantom test also served as an end-to-end test for validating not only the dose calculation, but the treatment delivery accuracy as well. © 2016 The Authors.
He, Jianming; Liang, Xi; Luo, Fen; Chen, Xuedan; Xu, Xueqing; Wang, Fengchao; Zhang, Zhenping
2016-01-01
Three-dimensional (3D) culture models represent a better approximation of solid tumor tissue architecture, especially cell adhesion, in vivo than two-dimensional (2D) cultures do. Here, we explored the role of architecture in chemosensitivity to platinum in colon cancer. Under the 3D culture condition, colon cancer cells formed multicellular spheroids, consisting of layers of cells. 3D cultures displayed significantly decreased sensitivity to platinum compared with 2D cultures. Platinum increased p53 in a dose-dependent and time-dependent manner. There was no detectable difference in basal p53 levels between 3D cultures and 2D cultures but cisplatin induced less p53 in both HCT116 3D cultures and LoVo 3D cultures. It was not due to cisplatin concentration because cisplatin induced similar γ-H2AX in 3D vs 2D. Knockdown of p53 significantly decreased sensitivity to platinum in 3D cultures. Knockdown of p53 decreased cleaved caspase 3 and apoptosis induced by cisplatin. These findings indicate that 3D architecture confers decreased chemosensitivity to platinum and p53 is involved in the mechanism. Knockdown of p53 decreased cisplatin's induction of c-Jun N-terminal kinase 1/2 (JNK1/2) activation, whereas inhibition of JNK1/2 activation increased chemosensitivity. Inhibition of p38 activation decreased cisplatin's induction of p53, but no difference in p38 activation by cisplatin was observed between 2D cultures and 3D cultures. Taken together, our results suggest that p53 is involved in a 3D architecture-mediated decrease in chemosensitivity to platinum in colon cancer. Mitogen-activated protein kinases (JNK1/2 and p38) do not play a dominant role in the mechanism.
Chung, Heeteak; Li, Jonathan; Samant, Sanjiv
2011-04-08
Two-dimensional array dosimeters are commonly used to perform pretreatment quality assurance procedures, which makes them highly desirable for measuring transit fluences for in vivo dose reconstruction. The purpose of this study was to determine if an in vivo dose reconstruction via transit dosimetry using a 2D array dosimeter was possible. To test the accuracy of measuring transit dose distribution using a 2D array dosimeter, we evaluated it against the measurements made using ionization chamber and radiochromic film (RCF) profiles for various air gap distances (distance from the exit side of the solid water slabs to the detector distance; 0 cm, 30 cm, 40 cm, 50 cm, and 60 cm) and solid water slab thicknesses (10 cm and 20 cm). The backprojection dose reconstruction algorithm was described and evaluated. The agreement between the ionization chamber and RCF profiles for the transit dose distribution measurements ranged from -0.2% ~ 4.0% (average 1.79%). Using the backprojection dose reconstruction algorithm, we found that, of the six conformal fields, four had a 100% gamma index passing rate (3%/3 mm gamma index criteria), and two had gamma index passing rates of 99.4% and 99.6%. Of the five IMRT fields, three had a 100% gamma index passing rate, and two had gamma index passing rates of 99.6% and 98.8%. It was found that a 2D array dosimeter could be used for backprojection dose reconstruction for in vivo dosimetry.
Modeling late rectal toxicities based on a parameterized representation of the 3D dose distribution
NASA Astrophysics Data System (ADS)
Buettner, Florian; Gulliford, Sarah L.; Webb, Steve; Partridge, Mike
2011-04-01
Many models exist for predicting toxicities based on dose-volume histograms (DVHs) or dose-surface histograms (DSHs). This approach has several drawbacks as firstly the reduction of the dose distribution to a histogram results in the loss of spatial information and secondly the bins of the histograms are highly correlated with each other. Furthermore, some of the complex nonlinear models proposed in the past lack a direct physical interpretation and the ability to predict probabilities rather than binary outcomes. We propose a parameterized representation of the 3D distribution of the dose to the rectal wall which explicitly includes geometrical information in the form of the eccentricity of the dose distribution as well as its lateral and longitudinal extent. We use a nonlinear kernel-based probabilistic model to predict late rectal toxicity based on the parameterized dose distribution and assessed its predictive power using data from the MRC RT01 trial (ISCTRN 47772397). The endpoints under consideration were rectal bleeding, loose stools, and a global toxicity score. We extract simple rules identifying 3D dose patterns related to a specifically low risk of complication. Normal tissue complication probability (NTCP) models based on parameterized representations of geometrical and volumetric measures resulted in areas under the curve (AUCs) of 0.66, 0.63 and 0.67 for predicting rectal bleeding, loose stools and global toxicity, respectively. In comparison, NTCP models based on standard DVHs performed worse and resulted in AUCs of 0.59 for all three endpoints. In conclusion, we have presented low-dimensional, interpretable and nonlinear NTCP models based on the parameterized representation of the dose to the rectal wall. These models had a higher predictive power than models based on standard DVHs and their low dimensionality allowed for the identification of 3D dose patterns related to a low risk of complication.
A Comparison of Four Indices for Combining Distance and Dose Differences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Simon J., E-mail: simon.thomas@addenbrookes.nhs.uk; Cowley, Ian R.
2012-04-01
Purpose: When one is comparing two dose distributions, a number of methods have been published to combine dose difference and distance to agreement into a single measure. Some have been defined as pass/fail indices and some as numeric indices. We show that the pass/fail indices can all be used to derive numeric indices, and we compare the results of using these indices to evaluate one-dimensional (1D) and three-dimensional (3D) dose distributions, with the aim of selecting the most appropriate index for use in different circumstances. Methods and Materials: The indices compared are the gamma index, the kappa index, the indexmore » in International Commission on Radiation Units and Measurements Report 83, and a box index. Comparisons are made for 1D and 3D distributions. The 1D distribution is chosen to have a variety of dose gradients. The 3D distribution is taken from a clinical treatment plan. The effect of offsetting distributions by known distances and doses is studied. Results: The International Commission on Radiation Units and Measurements Report 83 index causes large discontinuities unless the dose gradient cutoff is set to equal the ratio of the dose tolerance to the distance tolerance. If it is so set, it returns identical results to the kappa index. Where the gradient is very high or very low, all the indices studied in this article give similar results for the same tolerance values. For moderate gradients, they differ, with the box index being the least strict, followed by the gamma index, and with the kappa index being the most strict. Conclusions: If the clinical tolerances are much greater than the uncertainties of the measuring system, the kappa index should be used, with tolerance values determined by the clinical tolerances. In cases where the uncertainties of the measuring system dominate, the box index will be best able to determine errors in the delivery system.« less
Russo, Mario S; Drago, Fabrizio; Silvetti, Massimo S; Righi, Daniela; Di Mambro, Corrado; Placidi, Silvia; Prosperi, Monica; Ciani, Michele; Naso Onofrio, Maria T; Cannatà, Vittorio
2016-06-01
Aim Transcatheter cryoablation is a well-established technique for the treatment of atrioventricular nodal re-entry tachycardia and atrioventricular re-entry tachycardia in children. Fluoroscopy or three-dimensional mapping systems can be used to perform the ablation procedure. The aim of this study was to compare the success rate of cryoablation procedures for the treatment of right septal accessory pathways and atrioventricular nodal re-entry circuits in children using conventional or three-dimensional mapping and to evaluate whether three-dimensional mapping was associated with reduced patient radiation dose compared with traditional mapping. In 2013, 81 children underwent transcatheter cryoablation at our institution, using conventional mapping in 41 children - 32 atrioventricular nodal re-entry tachycardia and nine atrioventricular re-entry tachycardia - and three-dimensional mapping in 40 children - 24 atrioventricular nodal re-entry tachycardia and 16 atrioventricular re-entry tachycardia. Using conventional mapping, the overall success rate was 78.1 and 66.7% in patients with atrioventricular nodal re-entry tachycardia or atrioventricular re-entry tachycardia, respectively. Using three-dimensional mapping, the overall success rate was 91.6 and 75%, respectively (p=ns). The use of three-dimensional mapping was associated with a reduction in cumulative air kerma and cumulative air kerma-area product of 76.4 and 67.3%, respectively (p<0.05). The use of three-dimensional mapping compared with the conventional fluoroscopy-guided method for cryoablation of right septal accessory pathways and atrioventricular nodal re-entry circuits in children was associated with a significant reduction in patient radiation dose without an increase in success rate.
Wang, Wei-Hua; Bao, Yong; Chen, Ming; Zhang, Li; Li, Kai-Xin; Xu, Guang-Chuan; Deng, Xiao-Wu; Lu, Tai-Xiang; Cui, Nian-Ji
2006-10-01
The efficacy of radiotherapy alone on locally advanced non-small cell lung cancer (NSCLC) is poor. Although the combined modality of chemoradiotherapy and dose-escalation of radiotherapy have been the main trends, the optimal modality still remains unknown. This study was to evaluate the toxicity and efficacy of induction chemotherapy (ICT) followed by three-dimensional conformal radiotherapy (3D CRT) and concurrent weekly paclitaxel on unresectable NSCLC. Stage III NSCLC patients with favorable conditions were treated with 2 to 4 cycles of carboplatin (AUC=5-6, d1) combined with paclitaxel (175 mg/m(2), d1), then followed by weekly paclitaxel (40 mg/m(2)) and concurrent 3D CRT within 3-4 weeks. The prescription dose was given as high as possible under the condition that V20 < or =31% and spinal cord dose < or =50 Gy. Thirty-one patients were enrolled. ICT was well tolerated. During the concurrent chemoradiotherapy, the treatment of 3 patients was ended ahead of the schedule because of severe pulmonary and heart toxicities; the treatment of 2 patients was delayed for 7 and 12 days because of fatigue. Myelosuppression was mild (16/31): all were grade 1-2 except 1 was grade 3. Lymphocytopenia was more obvious (29/31, grade 3 in 21). Three patients developed grade 3 radiation-induced esophagitis, and 2 developed grade 3-4 radiation-induced pneumonitis. Two developed grade 3 esophageal stricture. No grade 3-4 pulmonary fibrosis was observed. The overall response rate was 74.1%. The 1-, 2-, 3-year overall survival rates were 74.2%, 41.9%, and 34.6%, respectively, with the median survival time of 18.5 months. The 1-, 2-, 3-year local progression-freely survival rates were 64.5%, 32.3%, and 20.5%, respectively, with the median local progression-freely survival time of 14.3 months. The program of ICT followed by weekly paclitaxel and 3D CRT is accomplished in most of the favorable stage III NSCLC patients. The toxicity is tolerable, and the response rate is inspiriting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, S; Kim, D; Kim, T
2015-06-15
Purpose: Respiratory motion in thoracic and abdominal region could lead to significant underdosing of target and increased dose to healthy tissues. The aim of this study is to evaluate the dosimetric effect of respiratory motion in conventional 3D dose by comparing 4D deformable dose in liver stereotactic body radiotherapy (SBRT). Methods: Five patients who had previously treated liver SBRT were included in this study. Four-dimensional computed tomography (4DCT) images with 10 phases for all patients were acquired on multi-slice CT scanner (Siemens, Somatom definition). Conventional 3D planning was performed using the average intensity projection (AIP) images. 4D dose accumulation wasmore » calculated by summation of dose distribution for all phase images of 4DCT using deformable image registration (DIR) . The target volume and normal organs dose were evaluated with the 4D dose and compared with those from 3D dose. And also, Index of achievement (IOA) which assesses the consistency between planned dose and prescription dose was used to compare target dose distribution between 3D and 4D dose. Results: Although the 3D dose calculation considered the moving target coverage, significant differences of various dosimetric parameters between 4D and 3D dose were observed in normal organs and PTV. The conventional 3D dose overestimated dose to PTV, however, there was no significant difference for GTV. The average difference of IOA which become ‘1’ in an ideal case was 3.2% in PTV. The average difference of liver and duodenum was 5% and 16% respectively. Conclusion: 4D dose accumulation which can provide dosimetric effect of respiratory motion has a possibility to predict the more accurate delivered dose to target and normal organs and improve treatment accuracy. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning (MSIP) of Korea.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Tran Thi Thao; Nakamoto, Takahiro; Shibayama, Yusuke
Purpose: The aim of this study was to investigate the impacts of tissue inhomogeneity on dose distributions using a three-dimensional (3D) gamma analysis in cervical intracavitary brachytherapy using Monte Carlo (MC) simulations. Methods: MC simulations for comparison of dose calculations were performed in a water phantom and a series of CT images of a cervical cancer patient (stage: Ib; age: 27) by employing a MC code, Particle and Heavy Ion Transport Code System (PHIT) version 2.73. The {sup 192}Ir source was set at fifteen dwell positions, according to clinical practice, in an applicator consisting of a tandem and two ovoids.more » Dosimetric comparisons were performed for the dose distributions in the water phantom and CT images by using gamma index image and gamma pass rate (%). The gamma index is the minimum Euclidean distance between two 3D spatial dose distributions of the water phantom and CT images in a same space. The gamma pass rates (%) indicate the percentage of agreement points, which mean that two dose distributions are similar, within an acceptance criteria (3 mm/3%). The volumes of physical and clinical interests for the gamma analysis were a whole calculated volume and a region larger than t% of a dose (close to a target), respectively. Results: The gamma pass rates were 77.1% for a whole calculated volume and 92.1% for a region within 1% dose region. The differences of 7.7% to 22.9 % between two dose distributions in the water phantom and CT images were found around the applicator region and near the target. Conclusion: This work revealed the large difference on the dose distributions near the target in the presence of the tissue inhomogeneity. Therefore, the tissue inhomogeneity should be corrected in the dose calculation for clinical treatment.« less
NASA Astrophysics Data System (ADS)
Schreiner, L. J.
2017-05-01
For seventeen years a community of basic and clinical scientists and researchers has been meeting bi-annually to promote the clinical advance of techniques to measure radiation dose in three dimensions. The interest in this dosimetry was motivated by its promise as an effective methodology for 3D measurement of the complex conformal dose distributions achieved by modern techniques such as Intensity Modulated and Volumetric Arc Radiation Therapy. Each of the International Conferences on 3D Radiation Dosimetry resulted in the publication of informative proceedings [1-8], the majority openly available on the internet. The proceedings included papers that: i) reviewed the basic science of the radiation sensitive materials used to accumulate the dose information, ii) introduced the science and engineering of the imaging systems required to read the information out, iii) described the work flows and systems required for efficient dosimetry, iv) reported the protocols required for reproducible dosimetry, and v) showed examples of clinical use illustrating advantage and limitations of the dosimetry. This paper is intended to use the framework provided by these proceedings to review the current 3D chemical dosimeters available and to discuss the requirements for their use. The paper describes how 3D dosimetry can complement other dose delivery validation approaches available in the clinic. It closes with some personal reflections of how the motivation for, and practice of, 3D dosimetry have changed (or not) over the years.
A practical three-dimensional dosimetry system for radiation therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo Pengyi; Adamovics, John; Oldham, Mark
2006-10-15
There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE trade mark sign ) and a commercial optical computed tomography (CT) scanning system (OCTOPUS trade mark sign ). PRESAGE trade mark sign is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need formore » an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE trade mark sign /OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of {<=}1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R{sup 2} value of 0.9979 and a standard error of estimation of {approx}1%) relative to independent measurement. The overall performance of the PRESAGE trade mark sign /OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC[reg] EBT film and the calculated dose from a commissioned planning system. The 'measured' dose distribution in a cylindrical PRESAGE trade mark sign dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE trade mark sign , EBT and calculated dose distributions, showed full agreement in measurable region of PRESAGE trade mark sign dosimeter ({approx}90% of radius). The EBT and PRESAGE trade mark sign distributions agreed more closely with each other than with the calculated plan, consistent with penumbral blurring in the planning data which was acquired with an ion chamber. In summary, our results support the conclusion that the PRESAGE trade mark sign optical-CT combination represents a significant step forward in 3D dosimetry, and provides a robust, clinically effective and viable high-resolution relative 3D dosimetry system for radiation therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rankine, Leith J., E-mail: Leith_Rankine@med.unc.edu; Department of Radiation Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Mein, Stewart
Purpose: To validate the dosimetric accuracy of a commercially available magnetic resonance guided intensity modulated radiation therapy (MRgIMRT) system using a hybrid approach: 3-dimensional (3D) measurements and Monte Carlo calculations. Methods and Materials: We used PRESAGE radiochromic plastic dosimeters with remote optical computed tomography readout to perform 3D high-resolution measurements, following a novel remote dosimetry protocol. We followed the intensity modulated radiation therapy commissioning recommendations of American Association of Physicists in Medicine Task Group 119, adapted to incorporate 3D data. Preliminary tests (“AP” and “3D-Bands”) were delivered to 9.5-cm usable diameter cylindrical PRESAGE dosimeters to validate the treatment planning systemmore » (TPS) for nonmodulated deliveries; assess the sensitivity, uniformity, and rotational symmetry of the PRESAGE dosimeters; and test the robustness of the remote dosimetry protocol. Following this, 4 clinical MRgIMRT plans (“MultiTarget,” “Prostate,” “Head/Neck,” and “C-Shape”) were measured using 13-cm usable diameter PRESAGE dosimeters. For all plans, 3D-γ (3% or 3 mm global, 10% threshold) passing rates were calculated and 3D-γ maps were examined. Point doses were measured with an IBA-CC01 ionization chamber for validation of absolute dose. Finally, by use of an in-house-developed, GPU-accelerated Monte Carlo algorithm (gPENELOPE), we independently calculated dose for all 6 Task Group 119 plans and compared against the TPS. Results: For PRESAGE measurements, 3D-γ analysis yielded passing rates of 98.7%, 99.2%, 98.5%, 98.0%, 99.2%, and 90.7% for AP, 3D-Bands, MultiTarget, Prostate, Head/Neck, and C-Shape, respectively. Ion chamber measurements were within an average of 0.5% (±1.1%) from the TPS dose. Monte Carlo calculations demonstrated good agreement with the TPS, with a mean 3D-γ passing rate of 98.5% ± 1.9% using a stricter 2%/2-mm criterion. Conclusions: We have validated the dosimetric accuracy of a commercial MRgIMRT system using high-resolution 3D techniques. We have demonstrated for the first time that hybrid 3D remote dosimetry is a comprehensive and feasible approach to commissioning MRgIMRT. This may provide better sensitivity in error detection compared with standard 2-dimensional measurements and could be used when implementing complex new magnetic resonance guided radiation therapy technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Öğretici, Akın, E-mail: akinogretici@gmail.com; Akbaş, Uğur; Köksal, Canan
The aim of this research was to investigate the fetal doses of pregnant patients undergoing conformal radiotherapy or intensity-modulated radiation therapy (IMRT) for breast cancers. An Alderson Rando phantom was chosen to simulate a pregnant patient with breast cancer who is receiving radiation therapy. This phantom was irradiated using the Varian Clinac DBX 600 system (Varian Medical System, Palo Alto, CA) linear accelerator, according to the standard treatment plans of both three-dimensional conformal radiation therapy (3-D CRT) and IMRT techniques. Thermoluminescent dosimeters were used to measure the irradiated phantom's virtually designated uterus area. Thermoluminescent dosimeter measurements (in the phantom) revealedmore » that the mean cumulative fetal dose for 3-D CRT is 1.39 cGy and for IMRT it is 8.48 cGy, for a pregnant breast cancer woman who received radiation treatment of 50 Gy. The fetal dose was confirmed to increase by 70% for 3-D CRT and 40% for IMRT, if it is closer to the irradiated field by 5 cm. The mean fetal dose from 3-D CRT is 1.39 cGy and IMRT is 8.48 cGy, consistent with theoretic calculations. The IMRT technique causes the fetal dose to be 5 times more than that of 3-D CRT. Theoretic knowledge concerning the increase in the peripheral doses as the measurements approached the beam was also practically proven.« less
Contrast-enhanced MR Angiography of the Abdomen with Highly Accelerated Acquisition Techniques
Mostardi, Petrice M.; Glockner, James F.; Young, Phillip M.
2011-01-01
Purpose: To demonstrate that highly accelerated (net acceleration factor [Rnet] ≥ 10) acquisition techniques can be used to generate three-dimensional (3D) subsecond timing images, as well as diagnostic-quality high-spatial-resolution contrast material–enhanced (CE) renal magnetic resonance (MR) angiograms with a single split dose of contrast material. Materials and Methods: All studies were approved by the institutional review board and were HIPAA compliant; written consent was obtained from all participants. Twenty-two studies were performed in 10 female volunteers (average age, 47 years; range, 27–62 years) and six patients with renovascular disease (three women; average age, 48 years; range, 37–68 years; three men; average age, 60 years; range, 50–67 years; composite average age, 54 years; range, 38–68 years). The two-part protocol consisted of a low-dose (2 mL contrast material) 3D timing image with approximate 1-second frame time, followed by a high-spatial-resolution (1.0–1.6-mm isotropic voxels) breath-hold 3D renal MR angiogram (18 mL) over the full abdominal field of view. Both acquisitions used two-dimensional (2D) sensitivity encoding acceleration factor (R) of eight and 2D homodyne (HD) acceleration (RHD) of 1.4–1.8 for Rnet = R · RHD of 10 or higher. Statistical analysis included determination of mean values and standard deviations of image quality scores performed by two experienced reviewers with use of eight evaluation criteria. Results: The 2-mL 3D time-resolved image successfully portrayed progressive arterial filling in all 22 studies and provided an anatomic overview of the vasculature. Successful timing was also demonstrated in that the renal MR angiogram showed adequate or excellent portrayal of the main renal arteries in 21 of 22 studies. Conclusion: Two-dimensional acceleration techniques with Rnet of 10 or higher can be used in CE MR angiography to acquire (a) a 3D image series with 1-second frame time, allowing accurate bolus timing, and (b) a high-spatial-resolution renal angiogram. © RSNA, 2011 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11110242/-/DC1 PMID:21900616
Wang, W; Meng, Y T; Song, Y F; Sun, T; Xu, M; Shao, Q; Zhang, Y J; Li, J B
2018-05-23
Objective: To evaluated the unplanned coverage dose to the internal mammary chain (IMC) in patient treated with postmastectomy radiotherapy (PMRT). Methods: One hundred and thirty eight patients with breast cancer receiving radiotherapy (RT) in our hospital were retrospectively analyzed. Patients were divided into three groups: three-dimensional conformal radiotherapy (3D-CRT) group, forward intensity-modulated radiotherapy (F-IMRT) group and inverse IMRT (I-IMRT) group. The IMC were contoured according to Radiation Therapy Oncology Group (RTOG) consensus, and were not include into the planning target volume (PTV). The incidental irradiation dose to IMC among the three groups and the first three intercostal spaces IMC (ICS-IMC 1-3) were all compared, and explored the relationship between the mean doses (Dmean) of IMC and the OARs (ipsilateral lung and heart). Results: The dose delivered to IMC showed no difference in CRT, F-IMRT and I-IMRT(33.80 Gy, 29.65 Gy and 32.95 Gy). And 10.42%, 2.04%, and 9.76% patients achieved ≥45 Gy when treated with CRT, F-IMRT and I-IMRT. For the IMC dose in the first three intercostal spaces (ICS1-3), there was no difference to the three treatment plannings. The Dmean, V(20), V(30), V(40) and V(50) of the ICS-IMC2 and ICS-IMC3 were all obviously superior than ICS-IMC1 for all these three plannings. Moderate positive correlation was founded between Dmean for IMC and Dmean for heart for left breast cancer patients underwent CRT ( r =0.338, P =0.01). Whereas for F-IMRT and I-IMRT groups, positive correlation were founded between Dmean for IMC and Dmean and V(20) for ipsilateral lung for all patients (F-IMRT: r =0.366, P =0.010; r =0.318, P =0.026; I-IMRT: r =0.427, P =0.005; r =0.411, P =0.008). Conclusions: In 3D-CRT, F-IMRT and I-IMRT planning methods, partial patients get IMC irradiated doses that could achieve therapeutic doses. Compared with 3D-CRT, F-IMRT and I-IMRT further reduced the dose of irradiated organs. However, there is no difference in the dose coverage of IMC for the three planned approaches when the IMC made an unplanned target.
Zhang, Xiaodong; Zhao, Kuai-Le; Guerrero, Thomas M.; McGuire, Sean E.; Yaremko, Brian; Komaki, Ritsuko; Cox, James D.; Hui, Zhouguang; Li, Yupeng; Newhauser, Wayne D.; Mohan, Radhe; Liao, Zhongxing
2008-01-01
Purpose To compare three-dimensional (3D) and 4D computed tomography (CT)– based treatment plans for proton therapy or intensity-modulated radiation therapy (IMRT) for esophageal cancer in terms of doses to the lung, heart, and spinal cord and variations in target coverage and normal tissue sparing. Materials and Methods IMRT and proton plans for 15 patients with distal esophageal cancer were designed from the 3D average CT scans and then recalculated on 10 4D CT data sets. Dosimetric data were compared for tumor coverage and normal tissue sparing. Results Compared with IMRT, median lung volumes exposed to 5,10, and 20 Gy and mean lung dose were reduced by 35.6%, 20.5%,5.8%, and 5.1 Gy for a two-beam proton plan and by 17.4%,8.4%,5%, and 2.9 Gy for a three-beam proton plan. The greater lung sparing in the two-beam proton plan was achieved at the expense of less conformity to the target (conformity index CI=1.99) and greater irradiation of the heart (heart-V40=41.8%) compared with the IMRT plan(CI=1.55, heart-V40=35.7%) or the three-beam proton plan (CI=1.46, heart-V40=27.7%). Target coverage differed by more than 2% between the 3D and 4D plans for patients with substantial diaphragm motion in the three-beam proton and IMRT plans. The difference in spinal cord maximum dose between 3D and 4D plans could exceed 5 Gy for the proton plans partly owing to variations in stomach gas-filling. Conclusions Proton therapy provided significantly better sparing of lung than did IMRT. Diaphragm motion and stomach gas-filling must be considered in evaluating target coverage and cord doses. PMID:18722278
Technical Note: PRESAGE three-dimensional dosimetry accurately measures Gamma Knife output factors
Klawikowski, Slade J.; Yang, James N.; Adamovics, John; Ibbott, Geoffrey S.
2014-01-01
Small-field output factor measurements are traditionally very difficult because of steep dose gradients, loss of lateral electronic equilibrium, and dose volume averaging in finitely sized detectors. Three-dimensional (3D) dosimetry is ideal for measuring small output factors and avoids many of these potential challenges of point and two-dimensional detectors. PRESAGE 3D polymer dosimeters were used to measure the output factors for the 4 mm and 8 mm collimators of the Leksell Perfexion Gamma Knife radiosurgery treatment system. Discrepancies between the planned and measured distance between shot centers were also investigated. A Gamma Knife head frame was mounted onto an anthropomorphic head phantom. Special inserts were machined to hold 60 mm diameter, 70 mm tall cylindrical PRESAGE dosimeters. The phantom was irradiated with one 16 mm shot and either one 4 mm or one 8 mm shot, to a prescribed dose of either 3 Gy or 4 Gy to the 50% isodose line. The two shots were spaced between 30 mm and 60 mm apart and aligned along the central axis of the cylinder. The Presage dosimeters were measured using the DMOS-RPC optical CT scanning system. Five independent 4 mm output factor measurements fell within 2% of the manufacturer’s Monte Carlo simulation-derived nominal value, as did two independent 8 mm output factor measurements. The measured distances between shot centers varied by ± 0.8 mm with respect to the planned shot displacements. On the basis of these results, we conclude that PRESAGE dosimetry is excellently suited to quantify the difficult-to-measure Gamma Knife output factors. PMID:25368961
Van Uytven, Eric; Pistorius, Stephen; Gordon, Richard
2007-01-01
X-ray film-screen mammography is currently the gold standard for detecting breast cancer. However, one disadvantage is that it projects a three-dimensional (3D) object onto a two-dimensional (2D) image, reducing contrast between small lesions and layers of normal tissue. Another limitation is its reduced sensitivity in women with mammographically dense breasts. Computed tomography (CT) produces a 3D image yet has had a limited role in mammography due to its relatively high dose, low resolution, and low contrast. As a first step towards implementing quantitative 3D mammography, which may improve the ability to detect and specify breast tumors, we have developed an analytical technique that can use Compton scatter to obtain 3D information of an object from a single projection. Imaging material with a pencil beam of polychromatic x rays produces a characteristic scattered photon spectrum at each point on the detector plane. A comparable distribution may be calculated using a known incident x-ray energy spectrum, beam shape, and an initial estimate of the object's 3D mass attenuation and electron density. Our iterative minimization algorithm changes the initially arbitrary electron density voxel matrix to reduce regular differences between the analytically predicted and experimentally measured spectra at each point on the detector plane. The simulated electron density converges to that of the object as the differences are minimized. The reconstruction algorithm has been validated using simulated data produced by the EGSnrc Monte Carlo code system. We applied the imaging algorithm to a cylindrically symmetric breast tissue phantom containing multiple inhomogeneities. A preliminary ROC analysis scores greater than 0.96, which indicate that under the described simplifying conditions, this approach shows promise in identifying and localizing inhomogeneities which simulate 0.5 mm calcifications with an image voxel resolution of 0.25 cm and at a dose comparable to mammography.
Li, Jonathan; Samant, Sanjiv
2011-01-01
Two‐dimensional array dosimeters are commonly used to perform pretreatment quality assurance procedures, which makes them highly desirable for measuring transit fluences for in vivo dose reconstruction. The purpose of this study was to determine if an in vivo dose reconstruction via transit dosimetry using a 2D array dosimeter was possible. To test the accuracy of measuring transit dose distribution using a 2D array dosimeter, we evaluated it against the measurements made using ionization chamber and radiochromic film (RCF) profiles for various air gap distances (distance from the exit side of the solid water slabs to the detector distance; 0 cm, 30 cm, 40 cm, 50 cm, and 60 cm) and solid water slab thicknesses (10 cm and 20 cm). The backprojection dose reconstruction algorithm was described and evaluated. The agreement between the ionization chamber and RCF profiles for the transit dose distribution measurements ranged from ‐0.2%~ 4.0% (average 1.79%). Using the backprojection dose reconstruction algorithm, we found that, of the six conformal fields, four had a 100% gamma index passing rate (3%/3 mm gamma index criteria), and two had gamma index passing rates of 99.4% and 99.6%. Of the five IMRT fields, three had a 100% gamma index passing rate, and two had gamma index passing rates of 99.6% and 98.8%. It was found that a 2D array dosimeter could be used for backprojection dose reconstruction for in vivo dosimetry. PACS number: 87.55.N‐
Effect of patient setup errors on simultaneously integrated boost head and neck IMRT treatment plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siebers, Jeffrey V.; Keall, Paul J.; Wu Qiuwen
2005-10-01
Purpose: The purpose of this study is to determine dose delivery errors that could result from random and systematic setup errors for head-and-neck patients treated using the simultaneous integrated boost (SIB)-intensity-modulated radiation therapy (IMRT) technique. Methods and Materials: Twenty-four patients who participated in an intramural Phase I/II parotid-sparing IMRT dose-escalation protocol using the SIB treatment technique had their dose distributions reevaluated to assess the impact of random and systematic setup errors. The dosimetric effect of random setup error was simulated by convolving the two-dimensional fluence distribution of each beam with the random setup error probability density distribution. Random setup errorsmore » of {sigma} = 1, 3, and 5 mm were simulated. Systematic setup errors were simulated by randomly shifting the patient isocenter along each of the three Cartesian axes, with each shift selected from a normal distribution. Systematic setup error distributions with {sigma} = 1.5 and 3.0 mm along each axis were simulated. Combined systematic and random setup errors were simulated for {sigma} = {sigma} = 1.5 and 3.0 mm along each axis. For each dose calculation, the gross tumor volume (GTV) received by 98% of the volume (D{sub 98}), clinical target volume (CTV) D{sub 90}, nodes D{sub 90}, cord D{sub 2}, and parotid D{sub 50} and parotid mean dose were evaluated with respect to the plan used for treatment for the structure dose and for an effective planning target volume (PTV) with a 3-mm margin. Results: Simultaneous integrated boost-IMRT head-and-neck treatment plans were found to be less sensitive to random setup errors than to systematic setup errors. For random-only errors, errors exceeded 3% only when the random setup error {sigma} exceeded 3 mm. Simulated systematic setup errors with {sigma} = 1.5 mm resulted in approximately 10% of plan having more than a 3% dose error, whereas a {sigma} = 3.0 mm resulted in half of the plans having more than a 3% dose error and 28% with a 5% dose error. Combined random and systematic dose errors with {sigma} = {sigma} = 3.0 mm resulted in more than 50% of plans having at least a 3% dose error and 38% of the plans having at least a 5% dose error. Evaluation with respect to a 3-mm expanded PTV reduced the observed dose deviations greater than 5% for the {sigma} = {sigma} = 3.0 mm simulations to 5.4% of the plans simulated. Conclusions: Head-and-neck SIB-IMRT dosimetric accuracy would benefit from methods to reduce patient systematic setup errors. When GTV, CTV, or nodal volumes are used for dose evaluation, plans simulated including the effects of random and systematic errors deviate substantially from the nominal plan. The use of PTVs for dose evaluation in the nominal plan improves agreement with evaluated GTV, CTV, and nodal dose values under simulated setup errors. PTV concepts should be used for SIB-IMRT head-and-neck squamous cell carcinoma patients, although the size of the margins may be less than those used with three-dimensional conformal radiation therapy.« less
Olszewski, R; Tranduy, K; Reychler, H
2010-07-01
The authors present a new procedure of computer-assisted genioplasty. They determined the anterior, posterior and inferior limits of the chin in relation to the skull and face with the newly developed and validated three-dimensional cephalometric planar analysis (ACRO 3D). Virtual planning of the osteotomy lines was carried out with Mimics (Materialize) software. The authors built a three-dimensional rapid-prototyping multi-position model of the chin area from a medical low-dose CT scan. The transfer of virtual information to the operating room consisted of two elements. First, the titanium plates on the 3D RP model were pre-bent. Second, a surgical guide for the transfer of the osteotomy lines and the positions of the screws to the operating room was manufactured. The authors present the first case of the use of this model on a patient. The postoperative results are promising, and the technique is fast and easy-to-use. More patients are needed for a definitive clinical validation of this procedure. Copyright 2010 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Synergies Between ' and Cavity Formation in HT-9 Following High Dose Neutron Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Parish, Chad M.; Saleh, Tarik A.
Candidate cladding materials for advanced nuclear power reactors including fast reactor designs require materials capable of withstanding high dose neutron irradiation at elevated temperatures. One candidate material, HT-9, through various research programs have demonstrated the ability to withstand significant swelling and other radiation-induced degradation mechanisms in the high dose regime (>50 displacements per atom, dpa) at elevated temperatures (>300 C). Here, high efficiency multi-dimensional scanning transmission electron microscopy (STEM) acquisition with the aid of a three-dimensional (3D) reconstruction and modeling technique is used to probe the microstructural features that contribute to the exceptional swelling resistance of HT-9. In particular, themore » synergies between ' and fine-scale and moderate-scale cavity formation is investigated.« less
Cao, Ying J; Caffo, Brian S; Fuchs, Edward J; Lee, Linda A; Du, Yong; Li, Liye; Bakshi, Rahul P; Macura, Katarzyna; Khan, Wasif A; Wahl, Richard L; Grohskopf, Lisa A; Hendrix, Craig W
2012-12-01
We sought to describe quantitatively the distribution of rectally administered gels and seminal fluid surrogates using novel concentration-distance parameters that could be repeated over time. These methods are needed to develop rationally rectal microbicides to target and prevent HIV infection. Eight subjects were dosed rectally with radiolabelled and gadolinium-labelled gels to simulate microbicide gel and seminal fluid. Rectal doses were given with and without simulated receptive anal intercourse. Twenty-four hour distribution was assessed with indirect single photon emission computed tomography (SPECT)/computed tomography (CT) and magnetic resonance imaging (MRI), and direct assessment via sigmoidoscopic brushes. Concentration-distance curves were generated using an algorithm for fitting SPECT data in three dimensions. Three novel concentration-distance parameters were defined to describe quantitatively the distribution of radiolabels: maximal distance (D(max) ), distance at maximal concentration (D(Cmax) ) and mean residence distance (D(ave) ). The SPECT/CT distribution of microbicide and semen surrogates was similar. Between 1 h and 24 h post dose, the surrogates migrated retrograde in all three parameters (relative to coccygeal level; geometric mean [95% confidence interval]): maximal distance (D(max) ), 10 cm (8.6-12) to 18 cm (13-26), distance at maximal concentration (D(Cmax) ), 3.8 cm (2.7-5.3) to 4.2 cm (2.8-6.3) and mean residence distance (D(ave) ), 4.3 cm (3.5-5.1) to 7.6 cm (5.3-11). Sigmoidoscopy and MRI correlated only roughly with SPECT/CT. Rectal microbicide surrogates migrated retrograde during the 24 h following dosing. Spatial kinetic parameters estimated using three dimensional curve fitting of distribution data should prove useful for evaluating rectal formulations of drugs for HIV prevention and other indications. © 2012 The Authors. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.
Peyraga, Guillaume; Caron, Delphine; Lizee, Thibaut; Metayer, Yann; Septans, Anne-Lise; Pointreau, Yoann; Denis, Fabrice; Ganem, Gerard; Lafond, Cedrik; Roche, Sophie; Dupuis, Olivier
2018-06-01
The palliative treatment for cervico-thoracic spinal metastases is based on a three-dimensional conformal radiation therapy (3D-CRT). Digestive toxicities are common and cause a clinical impact frequently underestimated in patients. We performed a retrospective study of digestive side effects occurring after palliative 3D-CRT for cervico-thoracic spinal metastases. All patients receiving palliative 3D-CRT at Jean Bernard Center from January 2013 to December 2014 for spinal metastases between the 5th cervical vertebra (C5) and the 12th thoracic vertebra (T12) were eligible. Three-dimensional conformal RT was delivered by a linear accelerator (CLINAC, Varian). Premedication to prevent digestive toxicities was not used. Adverse events ("esophagitis" and "nausea and/or vomiting") were evaluated according to the NCI-CTCae (version 4). From January 2013 to December 2014, 128 patients met the study criteria. The median age was 68.6 years [31.8; 88.6]. Most patients (84.4%) received 30 Gy in 10 fractions. The median overall time of treatment was 13 days [3-33]. Forty patients (31.3%) suffered from grade ≥ 2 of "esophagitis" (35 grade 2 (27.4%) and 5 grade 3 (3.9%)). Eight patients (6.3%) suffered from grade ≥ 2 of "nausea and/or vomiting" (6 grade 2 (4.7%), 1 grade 3 (0.8%), and 1 grade 4 (0.8%)). The high incidence of moderate to severe digestive toxicities after palliative 3D-CRT for cervico-thoracic spinal metastases led to consider static or dynamic intensity-modulated radiation therapy (IMRT) to reduce the dose to organ at risk (the esophagus and stomach). Dosimetric studies and implementation in the clinic should be the next steps.
NASA Astrophysics Data System (ADS)
Giap, Huan Bosco
Accurate calculation of absorbed dose to target tumors and normal tissues in the body is an important requirement for establishing fundamental dose-response relationships for radioimmunotherapy. Two major obstacles have been the difficulty in obtaining an accurate patient-specific 3-D activity map in-vivo and calculating the resulting absorbed dose. This study investigated a methodology for 3-D internal dosimetry, which integrates the 3-D biodistribution of the radionuclide acquired from SPECT with a dose-point kernel convolution technique to provide the 3-D distribution of absorbed dose. Accurate SPECT images were reconstructed with appropriate methods for noise filtering, attenuation correction, and Compton scatter correction. The SPECT images were converted into activity maps using a calibration phantom. The activity map was convolved with an ^{131}I dose-point kernel using a 3-D fast Fourier transform to yield a 3-D distribution of absorbed dose. The 3-D absorbed dose map was then processed to provide the absorbed dose distribution in regions of interest. This methodology can provide heterogeneous distributions of absorbed dose in volumes of any size and shape with nonuniform distributions of activity. Comparison of the activities quantitated by our SPECT methodology to true activities in an Alderson abdominal phantom (with spleen, liver, and spherical tumor) yielded errors of -16.3% to 4.4%. Volume quantitation errors ranged from -4.0 to 5.9% for volumes greater than 88 ml. The percentage differences of the average absorbed dose rates calculated by this methodology and the MIRD S-values were 9.1% for liver, 13.7% for spleen, and 0.9% for the tumor. Good agreement (percent differences were less than 8%) was found between the absorbed dose due to penetrating radiation calculated from this methodology and TLD measurement. More accurate estimates of the 3 -D distribution of absorbed dose can be used as a guide in specifying the minimum activity to be administered to patients to deliver a prescribed absorbed dose to tumor without exceeding the toxicity limits of normal tissues.
Shin, H-J; Song, J H; Jung, J-Y; Kwak, Y-K; Kay, C S; Kang, Y-N; Choi, B O; Jang, H S
2013-01-01
Objective: To evaluate the accuracy of pencil beam calculation (PBC) and Monte Carlo calculation (MCC) for dynamic arc therapy (DAT) in a cylindrically shaped homogenous phantom, by comparing the two plans with an ion chamber, a film and a three-dimensional (3D) volumetric dosemeter. Methods: For this study, an in-house phantom was constructed, and the PBC and MCC plans for DAT were performed using iPlan® RT (BrainLAB®, Heimstetten, Germany). The A16 micro ion chamber (Standard Imaging, Middleton, WI), Gafchromic® EBT2 film (International Specialty Products, Wayne, NJ) and ArcCHECK™ (Sun Nuclear, Melbourne, FL) were used for measurements. For comparison with each plan, two-dimensional (2D) and 3D gamma analyses were performed using 3%/3 mm and 2%/2 mm criteria. Results: The difference between the PBC and MCC plans using 2D and 3D gamma analyses was found to be 7.85% and 28.8%, respectively. The ion chamber and 2D dose distribution measurements did not exhibit this difference revealed by the comparison between the PBC and MCC plans. However, the 3D assessment showed a significant difference between the PBC and MCC (62.7% for PBC vs 93.4% for MCC, p = 0.034). Conclusion: Evaluation using a 3D volumetric dosemeter can be clinically useful for delivery quality assurance (QA), and the MCC should be used to achieve the most reliable dose calculation for DAT. Advances in knowledge: (1) The DAT plan calculated using the PBC has a limitation in the calculation methods, and a 3D volumetric dosemeter was found to be an adequate tool for delivery QA of DAT. (2) The MCC was superior to PBC in terms of the accuracy in dose calculation for DAT even in the homogenous condition. PMID:24234583
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matney, Jason; Park, Peter C.; The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
Purpose: To quantify and compare the effects of respiratory motion on paired passively scattered proton therapy (PSPT) and intensity modulated photon therapy (IMRT) plans; and to establish the relationship between the magnitude of tumor motion and the respiratory-induced dose difference for both modalities. Methods and Materials: In a randomized clinical trial comparing PSPT and IMRT, radiation therapy plans have been designed according to common planning protocols. Four-dimensional (4D) dose was computed for PSPT and IMRT plans for a patient cohort with respiratory motion ranging from 3 to 17 mm. Image registration and dose accumulation were performed using grayscale-based deformable imagemore » registration algorithms. The dose–volume histogram (DVH) differences (4D-3D [3D = 3-dimensional]) were compared for PSPT and IMRT. Changes in 4D-3D dose were correlated to the magnitude of tumor respiratory motion. Results: The average 4D-3D dose to 95% of the internal target volume was close to zero, with 19 of 20 patients within 1% of prescribed dose for both modalities. The mean 4D-3D between the 2 modalities was not statistically significant (P<.05) for all dose–volume histogram indices (mean ± SD) except the lung V5 (PSPT: +1.1% ± 0.9%; IMRT: +0.4% ± 1.2%) and maximum cord dose (PSPT: +1.5 ± 2.9 Gy; IMRT: 0.0 ± 0.2 Gy). Changes in 4D-3D dose were correlated to tumor motion for only 2 indices: dose to 95% planning target volume, and heterogeneity index. Conclusions: With our current margin formalisms, target coverage was maintained in the presence of respiratory motion up to 17 mm for both PSPT and IMRT. Only 2 of 11 4D-3D indices (lung V5 and spinal cord maximum) were statistically distinguishable between PSPT and IMRT, contrary to the notion that proton therapy will be more susceptible to respiratory motion. Because of the lack of strong correlations with 4D-3D dose differences in PSPT and IMRT, the extent of tumor motion was not an adequate predictor of potential dosimetric error caused by breathing motion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poder, Joel; Corde, Stéphanie
Purpose: The purpose of this study was to measure the dose distributions for different Radiation Oncology Physics and Engineering Services, Australia (ROPES) type eye plaques loaded with I-125 (model 6711) seeds using GafChromic{sup ®} EBT3 films, in order to verify the dose distributions in the Plaque Simulator™ (PS) ophthalmic 3D treatment planning system. The brachytherapy module of RADCALC{sup ®} was used to independently check the dose distributions calculated by PS. Correction factors were derived from the measured data to be used in PS to account for the effect of the stainless steel ROPES plaque backing on the 3D dose distribution.Methods:more » Using GafChromic{sup ®} EBT3 films inserted in a specially designed Solid Water™ eye ball phantom, dose distributions were measured three-dimensionally both along and perpendicular to I-125 (model 6711) loaded ROPES eye plaque's central axis (CAX) with 2 mm depth increments. Each measurement was performed in full scatter conditions both with and without the stainless steel plaque backing attached to the eye plaque, to assess its effect on the dose distributions. Results were compared to the dose distributions calculated by Plaque Simulator™ and checked independently with RADCALC{sup ®}.Results: The EBT3 film measurements without the stainless steel backing were found to agree with PS and RADCALC{sup ®} to within 2% and 4%, respectively, on the plaque CAX. Also, RADCALC{sup ®} was found to agree with PS to within 2%. The CAX depth doses measured using EBT3 film with the stainless steel backing were observed to result in a 4% decrease relative to when the backing was not present. Within experimental uncertainty, the 4% decrease was found to be constant with depth and independent of plaque size. Using a constant dose correction factor of T= 0.96 in PS, where the calculated dose for the full water scattering medium is reduced by 4% in every voxel in the dose grid, the effect of the plaque backing was accurately modeled in the planning system. Off-axis profiles were also modeled in PS by taking into account the three-dimensional model of the plaque backing.Conclusions: The doses calculated by PS and RADCALC{sup ®} for uniformly loaded ROPES plaques in full and uniform scattering conditions were validated by the EBT3 film measurements. The stainless steel plaque backing was observed to decrease the measured dose by 4%. Through the introduction of a scalar correction factor (0.96) in PS, the dose homogeneity effect of the stainless steel plaque backing was found to agree with the measured EBT3 film measurements.« less
Poder, Joel; Corde, Stéphanie
2013-12-01
The purpose of this study was to measure the dose distributions for different Radiation Oncology Physics and Engineering Services, Australia (ROPES) type eye plaques loaded with I-125 (model 6711) seeds using GafChromic(®) EBT3 films, in order to verify the dose distributions in the Plaque Simulator™ (PS) ophthalmic 3D treatment planning system. The brachytherapy module of RADCALC(®) was used to independently check the dose distributions calculated by PS. Correction factors were derived from the measured data to be used in PS to account for the effect of the stainless steel ROPES plaque backing on the 3D dose distribution. Using GafChromic(®) EBT3 films inserted in a specially designed Solid Water™ eye ball phantom, dose distributions were measured three-dimensionally both along and perpendicular to I-125 (model 6711) loaded ROPES eye plaque's central axis (CAX) with 2 mm depth increments. Each measurement was performed in full scatter conditions both with and without the stainless steel plaque backing attached to the eye plaque, to assess its effect on the dose distributions. Results were compared to the dose distributions calculated by Plaque Simulator™ and checked independently with RADCALC(®). The EBT3 film measurements without the stainless steel backing were found to agree with PS and RADCALC(®) to within 2% and 4%, respectively, on the plaque CAX. Also, RADCALC(®) was found to agree with PS to within 2%. The CAX depth doses measured using EBT3 film with the stainless steel backing were observed to result in a 4% decrease relative to when the backing was not present. Within experimental uncertainty, the 4% decrease was found to be constant with depth and independent of plaque size. Using a constant dose correction factor of T = 0.96 in PS, where the calculated dose for the full water scattering medium is reduced by 4% in every voxel in the dose grid, the effect of the plaque backing was accurately modeled in the planning system. Off-axis profiles were also modeled in PS by taking into account the three-dimensional model of the plaque backing. The doses calculated by PS and RADCALC(®) for uniformly loaded ROPES plaques in full and uniform scattering conditions were validated by the EBT3 film measurements. The stainless steel plaque backing was observed to decrease the measured dose by 4%. Through the introduction of a scalar correction factor (0.96) in PS, the dose homogeneity effect of the stainless steel plaque backing was found to agree with the measured EBT3 film measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krayenbuehl, Jerome Dipl.Phys. E.T.H.; Oertel, Susanne; Davis, J. Bernard
Purpose: The optimal technique for postoperative radiotherapy (RT) after extrapleural pleuropneumonectomy (EPP) of malignant pleural mesothelioma (MPM) remains debated. Methods and Materials: The data from 8 right-sided and 9 left-sided consecutive cases of MPM treated with RT after radical EPP were reviewed. Of the 17 patients, 8 had been treated with three-dimensional (3D) conformal RT (3D-CRT) and 9 with intensity-modulated RT (IMRT) with 6-MV photons. The clinical outcome and adverse events were assessed. For comparative planning, each case was replanned with 3D-CRT using photons and electrons or with IMRT. Homogeneity, doses to the organs at risk, and target volume coveragemore » were analyzed. Results: Both techniques yielded acceptable plans. The dose coverage and homogeneity of IMRT increased by 7.7% for the first planning target volume and 9.7% for the second planning target volume, ensuring {>=}95% of the prescribed dose compared with 3D-CRT (p < 0.01). Compared with 3D-CRT, IMRT increased the dose to the contralateral lung, with an increase in the mean lung dose of 7.8 Gy and an increase in the volume receiving 13 Gy and 20 Gy by 20.5% and 7.2%, respectively (p < 0.01). A negligible dose increase to the contralateral kidney and liver was observed. No differences were seen for the spinal cord and ipsilateral kidney. Two adverse events of clinical relevant lung toxicity were observed with IMRT. Conclusion: Intensity-modulated RT and 3D-CRT are both suitable for adjuvant RT. IMRT improves the planning target volume coverage but delivered greater doses to the organs at risk. Rigid dose constraints for the lung should be respected.« less
Wang, Bu-Hai; Hua, Wei; Gu, Xiang; Wang, Xiao-Lei; Li, Jun; Liu, Li-Qin; Huang, Yu-Xiang
2015-12-01
The purpose of this study was to compare the dosimetric characteristics for hippocampal avoidance (HA) between the treatment plans based on fused CT and MRI imaging during whole brain radiotherapy (WBRT) pertaining to: (1) 3-dimensional conformal radiotherapy (3D-CRT), (2) dynamic intensity modulated radiation therapy (dIMRT), and (3) RapidArc for patients with brain metastases. In our study, HA was defined as hippocampus beyond 5 mm, and planning target volume (PTV) was obtained subtracting HA volume from the volume of whole brain. There were 10 selected patients diagnosed with brain metastases receiving WBRT. These patients received plans for 3D-CRT (two fields), dIMRT (seven non-coplanar fields) and RapidArc (dual arc). The prescribed dose 30 Gy in 10 fractions was delivered to the whole-brain clinical target volume of patients. On the premise of meeting the clinical requirements, we compared target dose distribution, target coverage (TC), homogeneity index (HI), dose of organs at risk (OARs), monitor units (MU) and treatment time between the above three radiotherapy plans. V90 %, V95 % and TC of PTV for 3D-CRT plan were lowest of the three plans. V90 %, V95 % and HI of PTV in RapidArc plan were superior to the other two plans. TC of PTV in RapidArc plan was similar with dIMRT plan (P > 0.05). 3D-CRT was the optimal plan in the three plans for hippocampal protection. The median dose (Dmedian) and the maximum doses (Dmax) of hippocampus in 3D-CRT were 4.95, 10.87 Gy, which were lowest among the three planning approaches (P < 0.05). Dmedian and Dmax of hippocampus in dIMRT were 10.68, 14.11 Gy. Dmedian and Dmax of hippocampus in RapidArc were 10.30 gGy, 13.92 Gy. These parameters of the last two plans pertain to no significant difference (P > 0.05). When WBRT (30 Gy,10F) was equivalent to single dose 2 Gy,NTDmean of hippocampus in 3D-CRT, dIMRT and RapidArc were reduced to 3.60, 8.47, 8.20 Gy2, respectively. In addition, compared with dIMRT, MU of RapidArc was reduced and the treatment time was shortened by nearly 25 %. All three radiotherapy planning approaches in our study can meet the clinical requirements of HA. Although TC in 3D-CRT was lowest, hippocampus was protected best by this plan. So many radiation fields and the design of non-coplanar fields lead to the complication of dIMRT. TC and HI in RapidArc were superior to the other two plans with the precise of meeting the clinical requirements. The difference in protection for hippocampus between dIMRT and RapidArc was statistically significant. In addition, RapidArc can remarkably reduce MU and the treatment time.
NASA Astrophysics Data System (ADS)
Keall, Paul; Arief, Isti; Shamas, Sofia; Weiss, Elisabeth; Castle, Steven
2008-05-01
Whole brain radiation therapy (WBRT) is the standard treatment for patients with brain metastases, and is often used in conjunction with stereotactic radiotherapy for patients with a limited number of brain metastases, as well as prophylactic cranial irradiation. The use of open fields (conventionally used for WBRT) leads to higher doses to the brain periphery if dose is prescribed to the brain center at the largest lateral radius. These dose variations potentially compromise treatment efficacy and translate to increased side effects. The goal of this research was to design and construct a 3D 'brain wedge' to compensate dose heterogeneities in WBRT. Radiation transport theory was invoked to calculate the desired shape of a wedge to achieve a uniform dose distribution at the sagittal plane for an ellipsoid irradiated medium. The calculations yielded a smooth 3D wedge design to account for the missing tissue at the peripheral areas of the brain. A wedge was machined based on the calculation results. Three ellipsoid phantoms, spanning the mean and ± two standard deviations from the mean cranial dimensions were constructed, representing 95% of the adult population. Film was placed at the sagittal plane for each of the three phantoms and irradiated with 6 MV photons, with the wedge in place. Sagittal plane isodose plots for the three phantoms demonstrated the feasibility of this wedge to create a homogeneous distribution with similar results observed for the three phantom sizes, indicating that a single wedge may be sufficient to cover 95% of the adult population. The sagittal dose is a reasonable estimate of the off-axis dose for whole brain radiation therapy. Comparing the dose with and without the wedge the average minimum dose was higher (90% versus 86%), the maximum dose was lower (107% versus 113%) and the dose variation was lower (one standard deviation 2.7% versus 4.6%). In summary, a simple and effective 3D wedge for whole brain radiotherapy has been developed. The wedge gives a more uniform dose distribution than commonly used techniques. Further development and shape optimization may be necessary prior to clinical implementation.
Ma, Liang; Barker, Jeremy; Zhou, Changchun; Li, Wei; Zhang, Jing; Lin, Biaoyang; Foltz, Gregory; Küblbeck, Jenni; Honkakoski, Paavo
2013-01-01
A three-dimensional micro-scale perfusion-based two-chamber (3D-μPTC) tissue model system was developed to test the cytotoxicity of anticancer drugs in conjunction with liver metabolism. Liver cells with different cytochrome P450 (CYP) subtypes and glioblastoma multiforme (GBM) brain cancer cells were cultured in two separate chambers connected in tandem. Both chambers contained a 3D tissue engineering scaffold fabricated with biodegradable poly(lactic acid) (PLA) using a solvent-free approach. We used this model system to test the cytotoxicity of anticancer drugs, including temozolomide (TMZ) and ifosfamide (IFO). With the liver cells, TMZ showed a much lower toxicity to GBM cells under both 2D and 3D cell culture conditions. Comparing 2D, GBM cells cultured in 3D had much high viability under TMZ treatment. IFO was used to test the CYP-related metabolic effects. Cells with different expression levels of CYP3A4 differed dramatically in their ability to activate IFO, which led to strong metabolism-dependent cytotoxicity to GBM cells. These results demonstrate that our 3D-μPTC system could provide a more physiologically realistic in vitro environment than the current 2D monolayers for testing metabolism-dependent toxicity of anticancer drugs. It could therefore be used as an important platform for better prediction of drug dosing and schedule towards personalized medicine. PMID:22429982
Thomas, Kimberly M; Maquilan, Genevieve; Stojadinovic, Strahinja; Medin, Paul; Folkert, Michael R; Albuquerque, Kevin
Brachytherapy (BT) techniques have historically used a two-dimensional nonvolumetric (NV) system involving dose prescribed to a point fixed in space. We compared dosimetric, toxicity, and oncologic outcomes for volumetric planning (3DV) versus CT point-based planning. Patients treated with external beam radiation therapy and high dose rate (HDR) intracavitary BT were included (n = 71). Patients planned with NV BT treated from 2009 to 2011 (n = 37) were compared to patients planned with 3DV BT treated from 2012 to 2014 (n = 34). Investigators delineated volumes for organs at risk clinical target volumes for the 2009-2011 NV cohort. Acute and chronic toxicity data were graded. The mean HDR clinical target volume D90 received in the NV and 3DV cohorts were significantly different (p < 0.001). The mean dose to point A was significantly higher in the NV cohort than in the 3DV cohort (p < 0.001). There were significantly more Grade 3 or higher gastrointestinal toxicities in the NV cohort (p = 0.048). There was a nonsignificant trend toward improved oncologic outcomes for patients undergoing CT-based planning. 3DV BT allows for a significant reduction of dose to critical structures, resulting in decreased gastrointestinal toxicity, while delivering noninferior doses to the high-risk clinical target volume. Outcomes were improved in the 3D cohort trending toward statistical significance. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Min-Joo; Park, So-Hyun; Research Institute of Biomedical Engineering, The Catholic University of Korea, Seoul
2013-10-01
The partial-breast irradiation (PBI) technique, an alternative to whole-breast irradiation, is a beam delivery method that uses a limited range of treatment volume. The present study was designed to determine the optimal PBI treatment modalities for 8 different tumor locations. Treatment planning was performed on computed tomography (CT) data sets of 6 patients who had received lumpectomy treatments. Tumor locations were classified into 8 subsections according to breast quadrant and depth. Three-dimensional conformal radiation therapy (3D-CRT), electron beam therapy (ET), and helical tomotherapy (H-TOMO) were utilized to evaluate the dosimetric effect for each tumor location. Conformation number (CN), radical dosemore » homogeneity index (rDHI), and dose delivered to healthy tissue were estimated. The Kruskal-Wallis, Mann-Whitney U, and Bonferroni tests were used for statistical analysis. The ET approach showed good sparing effects and acceptable target coverage for the lower inner quadrant—superficial (LIQ-S) and lower inner quadrant—deep (LIQ-D) locations. The H-TOMO method was the least effective technique as no evaluation index achieved superiority for all tumor locations except CN. The ET method is advisable for treating LIQ-S and LIQ-D tumors, as opposed to 3D-CRT or H-TOMO, because of acceptable target coverage and much lower dose applied to surrounding tissue.« less
Luszczki, Jarogniew J; Czuczwar, Stanislaw J
2004-11-01
The anticonvulsant effects of lamotrigine (LTG) and clonazepam (CZP) and combinations thereof against maximal electroshock (MES)-induced seizures in mice were investigated using three-dimensional (3D) isobolographic analysis. With this method, the doses of fixed-ratio combinations of the drugs (1:3, 1:1 and 3:1) that elicited 16, 50 and 84% of the maximum anticonvulsant effect were determined. Additionally, to evaluate the characteristics of interactions observed with 3D isobolography, the brain concentrations of both drugs were verified pharmacokinetically. The 3D isobolographic analysis showed that LTG and CZP combined at the fixed ratios of 3:1 and 1:1 interacted synergistically in the MES test for all anticonvulsant effects between 16% and 84% of maximum. In contrast, the combination of LTG and CZP at the fixed ratio of 1:3 showed only pure additivity for all estimated effects in 3D isobolography. Moreover, none of the examined antiepileptic drugs altered the brain concentrations of the coadministered drug, so the observed interactions in the MES test are of a pharmacodynamic nature. The 3D isobolographic findings suggest that in epilepsy therapy, increased efficacy of seizure control (synergistic interaction) might be achieved by using LTG and CZP in combination. In this study, some important problems and assumptions related to statistical analysis of data in 3D isobolography are discussed.
Mavroidis, P; Shi, C; Plataniotis, G A; Delichas, M G; Costa Ferreira, B; Rodriguez, S; Lind, B K; Papanikolaou, N
2011-01-01
Objectives The aim of this study was to compare three-dimensional (3D) conformal radiotherapy and the two different forms of IMRT in lung cancer radiotherapy. Methods Cases of four lung cancer patients were investigated by developing a 3D conformal treatment plan, a linac MLC-based step-and-shoot IMRT plan and an HT plan for each case. With the use of the complication-free tumour control probability (P+) index and the uniform dose concept as the common prescription point of the plans, the different treatment plans were compared based on radiobiological measures. Results The applied plan evaluation method shows the MLC-based IMRT and the HT treatment plans are almost equivalent over the clinically useful dose prescription range; however, the 3D conformal plan inferior. At the optimal dose levels, the 3D conformal treatment plans give an average P+ of 48.1% for a effective uniform dose to the internal target volume (ITV) of 62.4 Gy, whereas the corresponding MLC-based IMRT treatment plans are more effective by an average ΔP+ of 27.0% for a Δ effective uniform dose of 16.3 Gy. Similarly, the HT treatment plans are more effective than the 3D-conformal plans by an average ΔP+ of 23.8% for a Δ effective uniform dose of 11.6 Gy. Conclusion A radiobiological treatment plan evaluation can provide a closer association of the delivered treatment with the clinical outcome by taking into account the dose–response relations of the irradiated tumours and normal tissues. The use of P – effective uniform dose diagrams can complement the traditional tools of evaluation to compare and effectively evaluate different treatment plans. PMID:20858664
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroll, Florian; Karsch, Leonhard; Pawelke, Jörg
2013-08-15
Purpose: Clinical QA in teletherapy as well as the characterization of experimental radiation sources for future medical applications requires effective methods for measuring three-dimensional (3D) dose distributions generated in a water-equivalent medium. Current dosimeters based on ionization chambers, diodes, thermoluminescence detectors, radiochromic films, or polymer gels exhibit various drawbacks: High quality 3D dose determination is either very sophisticated and expensive or requires high amounts of effort and time for the preparation or read out. New detectors based on scintillator blocks in combination with optical tomography are studied, since they have the potential to facilitate the desired cost-effective, transportable, and long-termmore » stable dosimetry system that is able to determine 3D dose distributions with high spatial resolution in a short time.Methods: A portable detector prototype was set up based on a plastic scintillator block and four digital cameras. During irradiation the scintillator emits light, which is detected by the fixed cameras. The light distribution is then reconstructed by optical tomography, using maximum-likelihood expectation maximization. The result of the reconstruction approximates the 3D dose distribution. First performance tests of the prototype using laser light were carried out. Irradiation experiments were performed with ionizing radiation, i.e., bremsstrahlung (6 to 21 MV), electrons (6 to 21 MeV), and protons (68 MeV), provided by clinical and research accelerators.Results: Laser experiments show that the current imaging properties differ from the design specifications: The imaging scale of the optical systems is position dependent, ranging from 0.185 mm/pixel to 0.225 mm/pixel. Nevertheless, the developed dosimetry method is proven to be functional for electron and proton beams. Induced radiation doses of 50 mGy or more made 3D dose reconstructions possible. Taking the imaging properties into account, determined dose profiles are in agreement with reference measurements. An inherent drawback of the scintillator is the nonlinear light output for high stopping-power radiation due to the quenching effect. It impacts the depth dose curves measured with the dosimeter. For single Bragg peak distributions this leads to a peak to plateau ratio of 2.8 instead of 4.5 for the reference ionization chamber measurement. Furthermore, the transmission of the clinical bremsstrahlung beams through the scintillator leads to the saturation of one camera, making dose reconstructions in that case presently not feasible.Conclusions: It is shown that distributions of scintillation light generated by proton or electron beams can be reconstructed by the dosimetry system within minutes. The quenching apparent for proton irradiation, and the yet not precisely determined position dependency of the imaging scale, require further investigation and corrections. Upgrading the prototype with larger or inorganic scintillators would increase the detectable proton and electron energy range. The presented results show that the determination of 3D dose distributions using scintillator blocks and optical tomography is a promising dosimetry method.« less
Kroll, Florian; Pawelke, Jörg; Karsch, Leonhard
2013-08-01
Clinical QA in teletherapy as well as the characterization of experimental radiation sources for future medical applications requires effective methods for measuring three-dimensional (3D) dose distributions generated in a water-equivalent medium. Current dosimeters based on ionization chambers, diodes, thermoluminescence detectors, radiochromic films, or polymer gels exhibit various drawbacks: High quality 3D dose determination is either very sophisticated and expensive or requires high amounts of effort and time for the preparation or read out. New detectors based on scintillator blocks in combination with optical tomography are studied, since they have the potential to facilitate the desired cost-effective, transportable, and long-term stable dosimetry system that is able to determine 3D dose distributions with high spatial resolution in a short time. A portable detector prototype was set up based on a plastic scintillator block and four digital cameras. During irradiation the scintillator emits light, which is detected by the fixed cameras. The light distribution is then reconstructed by optical tomography, using maximum-likelihood expectation maximization. The result of the reconstruction approximates the 3D dose distribution. First performance tests of the prototype using laser light were carried out. Irradiation experiments were performed with ionizing radiation, i.e., bremsstrahlung (6 to 21 MV), electrons (6 to 21 MeV), and protons (68 MeV), provided by clinical and research accelerators. Laser experiments show that the current imaging properties differ from the design specifications: The imaging scale of the optical systems is position dependent, ranging from 0.185 mm/pixel to 0.225 mm/pixel. Nevertheless, the developed dosimetry method is proven to be functional for electron and proton beams. Induced radiation doses of 50 mGy or more made 3D dose reconstructions possible. Taking the imaging properties into account, determined dose profiles are in agreement with reference measurements. An inherent drawback of the scintillator is the nonlinear light output for high stopping-power radiation due to the quenching effect. It impacts the depth dose curves measured with the dosimeter. For single Bragg peak distributions this leads to a peak to plateau ratio of 2.8 instead of 4.5 for the reference ionization chamber measurement. Furthermore, the transmission of the clinical bremsstrahlung beams through the scintillator leads to the saturation of one camera, making dose reconstructions in that case presently not feasible. It is shown that distributions of scintillation light generated by proton or electron beams can be reconstructed by the dosimetry system within minutes. The quenching apparent for proton irradiation, and the yet not precisely determined position dependency of the imaging scale, require further investigation and corrections. Upgrading the prototype with larger or inorganic scintillators would increase the detectable proton and electron energy range. The presented results show that the determination of 3D dose distributions using scintillator blocks and optical tomography is a promising dosimetry method.
Stroom, J C; Korevaar, G A; Koper, P C; Visser, A G; Heijmen, B J
1998-06-01
To demonstrate the need for a fully three-dimensional (3D) computerized expansion of the gross tumour volume (GTV) or clinical target volume (CTV), as delineated by the radiation oncologist on CT slices, to obtain the proper planning target volume (PTV) for treatment planning according to the ICRU-50 recommendations. For 10 prostate cancer patients two PTVs have been determined by expansion of the GTV with a 1.5 cm margin, i.e. a 3D PTV and a multiple 2D PTV. The former was obtained by automatically adding the margin while accounting in 3D for GTV contour differences in neighbouring slices. The latter was generated by automatically adding the 1.5 cm margin to the GTV in each CT slice separately; the resulting PTV is a computer simulation of the PTV that a radiation oncologist would obtain with (the still common) manual contouring in CT slices. For each patient the two PTVs were compared to assess the deviations of the multiple 2D PTV from the 3D PTV. For both PTVs conformal plans were designed using a three-field technique with fixed block margins. For each patient dose-volume histograms and tumour control probabilities (TCPs) of the (correct) 3D PTV were calculated, both for the plan designed for this PTV and for the treatment plan based on the (deviating) 2D PTV. Depending on the shape of the GTV, multiple 2D PTV generation could locally result in a 1 cm underestimation of the GTV-to-PTV margin. The deviations occurred predominantly in the cranio-caudal direction at locations where the GTV contour shape varies significantly from slice to slice. This could lead to serious underdosage and to a TCP decrease of up to 15%. A full 3D GTV-to-PTV expansion should be applied in conformal radiotherapy to avoid underdosage.
Development of three-dimensional memory (3D-M)
NASA Astrophysics Data System (ADS)
Yu, Hong-Yu; Shen, Chen; Jiang, Lingli; Dong, Bin; Zhang, Guobiao
2016-10-01
Since the invention of 3-D ROM in 1996, three-dimensional memory (3D-M) has been under development for nearly two decades. In this presentation, we'll review the 3D-M history and compare different 3D-Ms (including 3D-OTP from Matrix Semiconductor, 3D-NAND from Samsung and 3D-XPoint from Intel/Micron).
The three-dimensional Event-Driven Graphics Environment (3D-EDGE)
NASA Technical Reports Server (NTRS)
Freedman, Jeffrey; Hahn, Roger; Schwartz, David M.
1993-01-01
Stanford Telecom developed the Three-Dimensional Event-Driven Graphics Environment (3D-EDGE) for NASA GSFC's (GSFC) Communications Link Analysis and Simulation System (CLASS). 3D-EDGE consists of a library of object-oriented subroutines which allow engineers with little or no computer graphics experience to programmatically manipulate, render, animate, and access complex three-dimensional objects.
Computer aided detection system for Osteoporosis using low dose thoracic 3D CT images
NASA Astrophysics Data System (ADS)
Tsuji, Daisuke; Matsuhiro, Mikio; Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Harada, Masafumi; Kusumoto, Masahiko; Tsuchida, Takaaki; Eguchi, Kenji; Kaneko, Masahiro
2018-02-01
The patient of osteoporosis is about 13 million people in Japan and it is one of healthy life problems in the aging society. It is necessary to do early stage detection and treatment in order to prevent the osteoporosis. Multi-slice CT technology has been improving the three dimensional (3D) image analysis with higher resolution and shorter scan time. The 3D image analysis of thoracic vertebra can be used for supporting to diagnosis of osteoporosis. This analysis can be used for lung cancer detection at the same time. We develop method of shape analysis and CT values of spongy bone for the detection osteoporosis. Osteoporosis and lung cancer screening show high extraction rate by the thoracic vertebral evaluation CT images. In addition, we created standard pattern of CT value per thoracic vertebra for male age group using 298 low dose data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenthal, David I.; Chambers, Mark S.; Fuller, Clifton D.
2008-11-01
Background: Intensity-modulated radiation therapy (IMRT) beams traverse nontarget normal structures not irradiated during three-dimensional conformal RT (3D-CRT) for head and neck cancer (HNC). This study estimates the doses and toxicities to nontarget structures during IMRT. Materials and Methods: Oropharyngeal cancer IMRT and 3D-CRT cases were reviewed. Dose-volume histograms (DVH) were used to evaluate radiation dose to the lip, cochlea, brainstem, occipital scalp, and segments of the mandible. Toxicity rates were compared for 3D-CRT, IMRT alone, or IMRT with concurrent cisplatin. Descriptive statistics and exploratory recursive partitioning analysis were used to estimate dose 'breakpoints' associated with observed toxicities. Results: A totalmore » of 160 patients were evaluated for toxicity; 60 had detailed DVH evaluation and 15 had 3D-CRT plan comparison. Comparing IMRT with 3D-CRT, there was significant (p {<=} 0.002) nonparametric differential dose to all clinically significant structures of interest. Thirty percent of IMRT patients had headaches and 40% had occipital scalp alopecia. A total of 76% and 38% of patients treated with IMRT alone had nausea and vomiting, compared with 99% and 68%, respectively, of those with concurrent cisplatin. IMRT had a markedly distinct toxicity profile than 3D-CRT. In recursive partitioning analysis, National Cancer Institute's Common Toxicity Criteria adverse effects 3.0 nausea and vomiting, scalp alopecia and anterior mucositis were associated with reconstructed mean brainstem dose >36 Gy, occipital scalp dose >30 Gy, and anterior mandible dose >34 Gy, respectively. Conclusions: Dose reduction to specified structures during IMRT implies an increased beam path dose to alternate nontarget structures that may result in clinical toxicities that were uncommon with previous, less conformal approaches. These findings have implications for IMRT treatment planning and research, toxicity assessment, and multidisciplinary patient management.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malcolm, J; Mein, S; McNiven, A
2015-06-15
Purpose: To design, construct and commission a prototype in-house three dimensional (3D) dose verification system for stereotatic body radiotherapy (SBRT) verification at an off-site partner institution. To investigate the potential of this system to achieve sufficient performance (1mm resolution, 3% noise, within 3% of true dose reading) for SBRT verification. Methods: The system was designed utilizing a parallel ray geometry instigated by precision telecentric lenses and an LED 630nm light source. Using a radiochromic dosimeter, a 3D dosimetric comparison with our gold-standard system and treatment planning software (Eclipse) was done for a four-field box treatment, under gamma passing criteria ofmore » 3%/3mm/10% dose threshold. Post off-site installation, deviations in the system’s dose readout performance was assessed by rescanning the four-field box irradiated dosimeter and using line-profiles to compare on-site and off-site mean and noise levels in four distinct dose regions. As a final step, an end-to-end test of the system was completed at the off-site location, including CT-simulation, irradiation of the dosimeter and a 3D dosimetric comparison of the planned (Pinnacle{sup 3}) to delivered dose for a spinal SBRT treatment(12 Gy per fraction). Results: The noise level in the high and medium dose regions of the four field box treatment was relatively 5% pre and post installation. This reflects the reduction in positional uncertainty through the new design. This At 1mm dose voxels, the gamma pass rates(3%,3mm) for our in-house gold standard system and the off-site system were comparable at 95.8% and 93.2% respectively. Conclusion: This work will describe the end-to-end process and results of designing, installing, and commissioning a state-of-the-art 3D dosimetry system created for verification of advanced radiation treatments including spinal radiosurgery.« less
HosseiniAliabadi, S J; Hosseini Pooya, S M; Afarideh, H; Mianji, F
2015-06-01
The angular dependency of response for TLD cards may cause deviation from its true value on the results of environmental dosimetry, since TLDs may be exposed to radiation at different angles of incidence from the surrounding area. A 3D setting of TLD cards has been calibrated isotropically in a standard radiation field to evaluate the improvement of the accuracy of measurement for environmental dosimetry. Three personal TLD cards were rectangularly placed in a cylindrical holder, and calibrated using 1D and 3D calibration methods. Then, the dosimeter has been used simultaneously with a reference instrument in a real radiation field measuring the accumulated dose within a time interval. The results show that the accuracy of measurement has been improved by 6.5% using 3D calibration factor in comparison with that of normal 1D calibration method. This system can be utilized in large scale environmental monitoring with a higher accuracy.
Kim, Sung Eun; Yun, Young-Pil; Shim, Kyu-Sik; Kim, Hak-Jun; Park, Kyeongsoon; Song, Hae-Ryong
2016-09-29
The aim of this study was to evaluate the in vitro osteogenic effects and in vivo new bone formation of three-dimensional (3D) printed alendronate (Aln)-releasing poly(caprolactone) (PCL) (Aln/PCL) scaffolds in rat tibial defect models. 3D printed Aln/PCL scaffolds were fabricated via layer-by-layer deposition. The fabricated Aln/PCL scaffolds had high porosity and an interconnected pore structure and showed sustained Aln release. In vitro studies showed that MG-63 cells seeded on the Aln/PCL scaffolds displayed increased alkaline phosphatase (ALP) activity and calcium content in a dose-dependent manner when compared with cell cultures in PCL scaffolds. In addition, in vivo animal studies and histologic evaluation showed that Aln/PCL scaffolds implanted in a rat tibial defect model markedly increased new bone formation and mineralized bone tissues in a dose-dependent manner compared to PCL-only scaffolds. Our results show that 3D printed Aln/PCL scaffolds are promising templates for bone tissue engineering applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hung, Jennifer; Shen Sui; De Los Santos, Jennifer F.
2012-07-01
Purpose: To investigate the dosimetric effects of bladder filling on organs at risk (OARs) using three-dimensional image-based treatment planning for vaginal cylinder brachytherapy. Methods and Materials: Twelve patients with endometrial or cervical cancer underwent postoperative high-dose rate vaginal cylinder brachytherapy. For three-dimensional planning, patients were simulated by computed tomography with an indwelling catheter in place (empty bladder) and with 180 mL of sterile water instilled into the bladder (full bladder). The bladder, rectum, sigmoid, and small bowel (OARs) were contoured, and a prescription dose was generated for 10 to 35 Gy in 2 to 5 fractions at the surface ormore » at 5 mm depth. For each OAR, the volume dose was defined by use of two different criteria: the minimum dose value in a 2.0-cc volume receiving the highest dose (D{sub 2cc}) and the dose received by 50% of the OAR volume (D{sub 50%}). International Commission on Radiation Units and Measurements (ICRU) bladder and rectum point doses were calculated for comparison. The cylinder-to-bowel distance was measured using the shortest distance from the cylinder apex to the contoured sigmoid or small bowel. Statistical analyses were performed with paired t tests. Results: Mean bladder and rectum D{sub 2cc} values were lower than their respective ICRU doses. However, differences between D{sub 2cc} and ICRU doses were small. Empty vs. full bladder did not significantly affect the mean cylinder-to-bowel distance (0.72 vs. 0.92 cm, p = 0.08). In contrast, bladder distention had appreciable effects on bladder and small bowel volume dosimetry. With a full bladder, the mean small bowel D{sub 2cc} significantly decreased from 677 to 408 cGy (p = 0.004); the mean bladder D{sub 2cc} did not increase significantly (1,179 cGy vs. 1,246 cGy, p = 0.11). Bladder distention decreased the mean D{sub 50%} for both the bladder (441 vs. 279 cGy, p = 0.001) and the small bowel (168 vs. 132 cGy, p = 0.001). Rectum and sigmoid volume doses were not affected by bladder filling. Conclusions: In high-dose rate vaginal cylinder brachytherapy, treatment with a distended bladder preferentially reduces high dose to the small bowel around the vaginal cuff without a significant change in dose to the bladder, rectum, or sigmoid.« less
NASA Astrophysics Data System (ADS)
Jodda, Agata; Urbański, Bartosz; Piotrowski, Tomasz; Malicki, Julian
2016-03-01
Background: The paper shows the methodology of an in-phantom study of the protection level of the bone marrow in patients with cervical or endometrial cancer for three radiotherapy techniques: three-dimensional conformal radiotherapy, intensity modulated radiotherapy, and volumetric modulated arc therapy, preceded by the procedures of image guidance. Methods/Design: The dosimetric evaluation of the doses will be performed in an in-house multi-element anthropomorphic phantom of the female pelvic area created by three-dimensional printing technology. The volume and position of the structures will be regulated according to the guidelines from the Bayesian network. The input data for the learning procedure of the model will be obtained from the retrospective analysis of imaging data obtained for 96 patients with endometrial cancer or cervical cancer treated with radiotherapy in our centre in 2008-2013. Three anatomical representations of the phantom simulating three independent clinical cases will be chosen. Five alternative treatment plans (1 × three-dimensional conformal radiotherapy, 2 × intensity modulated radiotherapy and 2 × volumetric modulated arc therapy) will be created for each representation. To simulate image-guided radiotherapy, ten specific recombinations will be designated, for each anatomical representation separately, reflecting possible changes in the volume and position of the phantom components. Discussion: The comparative analysis of planned measurements will identify discrepancies between calculated doses and doses that were measured in the phantom. Finally, differences between the doses cumulated in the hip plates performed by different techniques simulating the gynaecological patients' irradiation of dose delivery will be established. The results of this study will form the basis of the prospective clinical trial that will be designed for the assessment of hematologic toxicity and its correlation with the doses cumulated in the hip plates, for gynaecologic patients undergoing radiation therapy.
Li, Ke; Tang, Jie; Chen, Guang-Hong
2014-04-01
To reduce radiation dose in CT imaging, the statistical model based iterative reconstruction (MBIR) method has been introduced for clinical use. Based on the principle of MBIR and its nonlinear nature, the noise performance of MBIR is expected to be different from that of the well-understood filtered backprojection (FBP) reconstruction method. The purpose of this work is to experimentally assess the unique noise characteristics of MBIR using a state-of-the-art clinical CT system. Three physical phantoms, including a water cylinder and two pediatric head phantoms, were scanned in axial scanning mode using a 64-slice CT scanner (Discovery CT750 HD, GE Healthcare, Waukesha, WI) at seven different mAs levels (5, 12.5, 25, 50, 100, 200, 300). At each mAs level, each phantom was repeatedly scanned 50 times to generate an image ensemble for noise analysis. Both the FBP method with a standard kernel and the MBIR method (Veo(®), GE Healthcare, Waukesha, WI) were used for CT image reconstruction. Three-dimensional (3D) noise power spectrum (NPS), two-dimensional (2D) NPS, and zero-dimensional NPS (noise variance) were assessed both globally and locally. Noise magnitude, noise spatial correlation, noise spatial uniformity and their dose dependence were examined for the two reconstruction methods. (1) At each dose level and at each frequency, the magnitude of the NPS of MBIR was smaller than that of FBP. (2) While the shape of the NPS of FBP was dose-independent, the shape of the NPS of MBIR was strongly dose-dependent; lower dose lead to a "redder" NPS with a lower mean frequency value. (3) The noise standard deviation (σ) of MBIR and dose were found to be related through a power law of σ ∝ (dose)(-β) with the component β ≈ 0.25, which violated the classical σ ∝ (dose)(-0.5) power law in FBP. (4) With MBIR, noise reduction was most prominent for thin image slices. (5) MBIR lead to better noise spatial uniformity when compared with FBP. (6) A composite image generated from two MBIR images acquired at two different dose levels (D1 and D2) demonstrated lower noise than that of an image acquired at a dose level of D1+D2. The noise characteristics of the MBIR method are significantly different from those of the FBP method. The well known tradeoff relationship between CT image noise and radiation dose has been modified by MBIR to establish a more gradual dependence of noise on dose. Additionally, some other CT noise properties that had been well understood based on the linear system theory have also been altered by MBIR. Clinical CT scan protocols that had been optimized based on the classical CT noise properties need to be carefully re-evaluated for systems equipped with MBIR in order to maximize the method's potential clinical benefits in dose reduction and/or in CT image quality improvement. © 2014 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ke; Tang, Jie; Chen, Guang-Hong, E-mail: gchen7@wisc.edu
Purpose: To reduce radiation dose in CT imaging, the statistical model based iterative reconstruction (MBIR) method has been introduced for clinical use. Based on the principle of MBIR and its nonlinear nature, the noise performance of MBIR is expected to be different from that of the well-understood filtered backprojection (FBP) reconstruction method. The purpose of this work is to experimentally assess the unique noise characteristics of MBIR using a state-of-the-art clinical CT system. Methods: Three physical phantoms, including a water cylinder and two pediatric head phantoms, were scanned in axial scanning mode using a 64-slice CT scanner (Discovery CT750 HD,more » GE Healthcare, Waukesha, WI) at seven different mAs levels (5, 12.5, 25, 50, 100, 200, 300). At each mAs level, each phantom was repeatedly scanned 50 times to generate an image ensemble for noise analysis. Both the FBP method with a standard kernel and the MBIR method (Veo{sup ®}, GE Healthcare, Waukesha, WI) were used for CT image reconstruction. Three-dimensional (3D) noise power spectrum (NPS), two-dimensional (2D) NPS, and zero-dimensional NPS (noise variance) were assessed both globally and locally. Noise magnitude, noise spatial correlation, noise spatial uniformity and their dose dependence were examined for the two reconstruction methods. Results: (1) At each dose level and at each frequency, the magnitude of the NPS of MBIR was smaller than that of FBP. (2) While the shape of the NPS of FBP was dose-independent, the shape of the NPS of MBIR was strongly dose-dependent; lower dose lead to a “redder” NPS with a lower mean frequency value. (3) The noise standard deviation (σ) of MBIR and dose were found to be related through a power law of σ ∝ (dose){sup −β} with the component β ≈ 0.25, which violated the classical σ ∝ (dose){sup −0.5} power law in FBP. (4) With MBIR, noise reduction was most prominent for thin image slices. (5) MBIR lead to better noise spatial uniformity when compared with FBP. (6) A composite image generated from two MBIR images acquired at two different dose levels (D1 and D2) demonstrated lower noise than that of an image acquired at a dose level of D1+D2. Conclusions: The noise characteristics of the MBIR method are significantly different from those of the FBP method. The well known tradeoff relationship between CT image noise and radiation dose has been modified by MBIR to establish a more gradual dependence of noise on dose. Additionally, some other CT noise properties that had been well understood based on the linear system theory have also been altered by MBIR. Clinical CT scan protocols that had been optimized based on the classical CT noise properties need to be carefully re-evaluated for systems equipped with MBIR in order to maximize the method's potential clinical benefits in dose reduction and/or in CT image quality improvement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei Xiong; Liu, H. Helen; Tucker, Susan L.
2006-09-01
Purpose: To determine the risk factors for acute esophagitis (AE) in non-small-cell lung cancer (NSCLC) patients treated with concurrent chemotherapy (CCT) and three-dimensional conformal radiotherapy (3D-CRT). Methods and Materials: Clinical data were retrospectively analyzed for 215 NSCLC patients treated with CCT and 3D-CRT during 2000-2003, 127 of whom also had induction chemotherapy (ICT). Carboplatin and paclitaxel were the most commonly used agents for both ICT and CCT. The median prescription dose of radiotherapy was 63.5 Gy in 35 fractions. AE was graded during each treatment week and 1-month follow-up visits. The factors related to clinical and disease characteristics, CCT andmore » 3D-CRT treatments, and treatment planning were reviewed and analyzed for their association with Grade {>=}3 AE using univariate and multivariate logistic tests. Results: The rate of any grade AE was 93.0% and of Grade {>=}3 was 20.5%. Univariate analyses showed that none of the clinical factors was significantly associated with Grade {>=}3 AE. However, the mean radiation dose to the esophagus, the absolute esophageal volume treated above 15 Gy (aV15) through aV45 Gy, and the relative esophagus volume treated above 10 Gy (rV10) through rV45 Gy were significant risk factors for Grade {>=}3 AE. Only rV20 was retained as the single risk factor in multivariate analyses. Conclusions: The risk of AE in the NSCLC patients treated with CCT and 3D-CRT was primarily determined by dosimetric factors. These factors should be carefully considered during treatment planning to minimize the incidence of AE.« less
Wei, Xiong; Liu, H Helen; Tucker, Susan L; Liao, Zhongxing; Hu, Chaosu; Mohan, Radhe; Cox, James D; Komaki, Ritsuko
2006-09-01
To determine the risk factors for acute esophagitis (AE) in non-small-cell lung cancer (NSCLC) patients treated with concurrent chemotherapy (CCT) and three-dimensional conformal radiotherapy (3D-CRT). Clinical data were retrospectively analyzed for 215 NSCLC patients treated with CCT and 3D-CRT during 2000-2003, 127 of whom also had induction chemotherapy (ICT). Carboplatin and paclitaxel were the most commonly used agents for both ICT and CCT. The median prescription dose of radiotherapy was 63.5 Gy in 35 fractions. AE was graded during each treatment week and 1-month follow-up visits. The factors related to clinical and disease characteristics, CCT and 3D-CRT treatments, and treatment planning were reviewed and analyzed for their association with Grade > or =3 AE using univariate and multivariate logistic tests. The rate of any grade AE was 93.0% and of Grade > or =3 was 20.5%. Univariate analyses showed that none of the clinical factors was significantly associated with Grade > or =3 AE. However, the mean radiation dose to the esophagus, the absolute esophageal volume treated above 15 Gy (aV15) through aV45 Gy, and the relative esophagus volume treated above 10 Gy (rV10) through rV45 Gy were significant risk factors for Grade > or =3 AE. Only rV20 was retained as the single risk factor in multivariate analyses. The risk of AE in the NSCLC patients treated with CCT and 3D-CRT was primarily determined by dosimetric factors. These factors should be carefully considered during treatment planning to minimize the incidence of AE.
Study of the IMRT interplay effect using a 4DCT Monte Carlo dose calculation.
Jensen, Michael D; Abdellatif, Ady; Chen, Jeff; Wong, Eugene
2012-04-21
Respiratory motion may lead to dose errors when treating thoracic and abdominal tumours with radiotherapy. The interplay between complex multileaf collimator patterns and patient respiratory motion could result in unintuitive dose changes. We have developed a treatment reconstruction simulation computer code that accounts for interplay effects by combining multileaf collimator controller log files, respiratory trace log files, 4DCT images and a Monte Carlo dose calculator. Two three-dimensional (3D) IMRT step-and-shoot plans, a concave target and integrated boost were delivered to a 1D rigid motion phantom. Three sets of experiments were performed with 100%, 50% and 25% duty cycle gating. The log files were collected, and five simulation types were performed on each data set: continuous isocentre shift, discrete isocentre shift, 4DCT, 4DCT delivery average and 4DCT plan average. Analysis was performed using 3D gamma analysis with passing criteria of 2%, 2 mm. The simulation framework was able to demonstrate that a single fraction of the integrated boost plan was more sensitive to interplay effects than the concave target. Gating was shown to reduce the interplay effects. We have developed a 4DCT Monte Carlo simulation method that accounts for IMRT interplay effects with respiratory motion by utilizing delivery log files.
Burning invariant manifolds for reaction fronts in three-dimensional fluid flows
NASA Astrophysics Data System (ADS)
Mitchell, Kevin; Solomon, Tom
2017-11-01
The geometry of reaction fronts that propagate in fully three-dimensional (3D) fluid flows is studied using the tools of dynamical systems theory. The evolution of an infinitesimal front element is modeled as a six-dimensional ODE-three dimensions for the position of the front element and three for the orientation of its unit normal. This generalizes an earlier approach to understanding front propagation in two-dimensional (2D) fluid flows. As in 2D, the 3D system exhibits prominent burning invariant manifolds (BIMs). In 3D, BIMs are two-dimensional dynamically defined surfaces that form one-way barriers to the propagation of reaction fronts within the fluid. Due to the third dimension, BIMs in 3D exhibit a richer topology than their cousins in 2D. In particular, whereas BIMs in both 2D and 3D can originate from fixed points of the dynamics, BIMs in 3D can also originate from limit cycles. Such BIMs form robust tube-like channels that guide and constrain the evolution of the front within the bulk of the fluid. Supported by NSF Grant CMMI-1201236.
Fey, Stephen J; Wrzesinski, Krzysztof
2012-06-01
Numerous publications have documented that the immortal cells grown in three-dimensional (3D) cultures possess physiological behavior, which is more reminiscent of their parental organ than when the same cells are cultivated using classical two-dimensional (2D) culture techniques. The goal of this study was to investigate whether this observation could be extended to the determination of LD(50) values and whether 3D data could be correlated to in vivo observations. We developed a noninvasive means to estimate the amount of protein present in a 3D spheroid from it is planar area (± 21%) so that a precise dose can be provided in a manner similar to in vivo studies. This avoided correction of the actual dose given based on a protein determination after treatment (when some cells may have lysed). Conversion of published in vitro LC(50) data (mM) for six common drugs (acetaminophen, amiodarone, diclofenac, metformin, phenformin, and valproic acid) to LD(50) data (mg compound/mg cellular protein) showed that the variation in LD(50) values was generally less than that suggested by the original LC(50) data. Toxicological analysis of these six compounds in 3D spheroid culture (either published or presented here) demonstrated similar LD(50) values. Although in vitro 2D HepG2 data showed a poor correlation, the primary hepatocyte and 3D spheroid data resulted in a much higher degree of correlation with in vivo lethal blood plasma levels. These results corroborate that 3D hepatocyte cultures are significantly different from 2D cultures and are more representative of the liver in vivo.
Fey, Stephen J.; Wrzesinski, Krzysztof
2012-01-01
Numerous publications have documented that the immortal cells grown in three-dimensional (3D) cultures possess physiological behavior, which is more reminiscent of their parental organ than when the same cells are cultivated using classical two-dimensional (2D) culture techniques. The goal of this study was to investigate whether this observation could be extended to the determination of LD50 values and whether 3D data could be correlated to in vivo observations. We developed a noninvasive means to estimate the amount of protein present in a 3D spheroid from it is planar area (± 21%) so that a precise dose can be provided in a manner similar to in vivo studies. This avoided correction of the actual dose given based on a protein determination after treatment (when some cells may have lysed). Conversion of published in vitro LC50 data (mM) for six common drugs (acetaminophen, amiodarone, diclofenac, metformin, phenformin, and valproic acid) to LD50 data (mg compound/mg cellular protein) showed that the variation in LD50 values was generally less than that suggested by the original LC50 data. Toxicological analysis of these six compounds in 3D spheroid culture (either published or presented here) demonstrated similar LD50 values. Although in vitro 2D HepG2 data showed a poor correlation, the primary hepatocyte and 3D spheroid data resulted in a much higher degree of correlation with in vivo lethal blood plasma levels. These results corroborate that 3D hepatocyte cultures are significantly different from 2D cultures and are more representative of the liver in vivo. PMID:22454432
NASA Astrophysics Data System (ADS)
Yongzhi, WANG; hui, WANG; Lixia, LIAO; Dongsen, LI
2017-02-01
In order to analyse the geological characteristics of salt rock and stability of salt caverns, rough three-dimensional (3D) models of salt rock stratum and the 3D models of salt caverns on study areas are built by 3D GIS spatial modeling technique. During implementing, multi-source data, such as basic geographic data, DEM, geological plane map, geological section map, engineering geological data, and sonar data are used. In this study, the 3D spatial analyzing and calculation methods, such as 3D GIS intersection detection method in three-dimensional space, Boolean operations between three-dimensional space entities, three-dimensional space grid discretization, are used to build 3D models on wall rock of salt caverns. Our methods can provide effective calculation models for numerical simulation and analysis of the creep characteristics of wall rock in salt caverns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takam, Rungdham; Bezak, Eva; Yeoh, Eric E.
2010-09-15
Purpose: Normal tissue complication probability (NTCP) of the rectum, bladder, urethra, and femoral heads following several techniques for radiation treatment of prostate cancer were evaluated applying the relative seriality and Lyman models. Methods: Model parameters from literature were used in this evaluation. The treatment techniques included external (standard fractionated, hypofractionated, and dose-escalated) three-dimensional conformal radiotherapy (3D-CRT), low-dose-rate (LDR) brachytherapy (I-125 seeds), and high-dose-rate (HDR) brachytherapy (Ir-192 source). Dose-volume histograms (DVHs) of the rectum, bladder, and urethra retrieved from corresponding treatment planning systems were converted to biological effective dose-based and equivalent dose-based DVHs, respectively, in order to account for differences inmore » radiation treatment modality and fractionation schedule. Results: Results indicated that with hypofractionated 3D-CRT (20 fractions of 2.75 Gy/fraction delivered five times/week to total dose of 55 Gy), NTCP of the rectum, bladder, and urethra were less than those for standard fractionated 3D-CRT using a four-field technique (32 fractions of 2 Gy/fraction delivered five times/week to total dose of 64 Gy) and dose-escalated 3D-CRT. Rectal and bladder NTCPs (5.2% and 6.6%, respectively) following the dose-escalated four-field 3D-CRT (2 Gy/fraction to total dose of 74 Gy) were the highest among analyzed treatment techniques. The average NTCP for the rectum and urethra were 0.6% and 24.7% for LDR-BT and 0.5% and 11.2% for HDR-BT. Conclusions: Although brachytherapy techniques resulted in delivering larger equivalent doses to normal tissues, the corresponding NTCPs were lower than those of external beam techniques other than the urethra because of much smaller volumes irradiated to higher doses. Among analyzed normal tissues, the femoral heads were found to have the lowest probability of complications as most of their volume was irradiated to lower equivalent doses compared to other tissues.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Q; Cao, R; Pei, X
2015-06-15
Purpose: Three-dimensional dose verification can detect errors introduced by the treatment planning system (TPS) or differences between planned and delivered dose distribution during the treatment. The aim of the study is to extend a previous in-house developed three-dimensional dose reconstructed model in homogeneous phantom to situtions in which tissue inhomogeneities are present. Methods: The method was based on the portal grey images from an electronic portal imaging device (EPID) and the relationship between beamlets and grey-scoring voxels at the position of the EPID. The relationship was expressed in the form of grey response matrix that was quantified using thickness-dependence scattermore » kernels determined by series of experiments. From the portal grey-value distribution information measured by the EPID the two-dimensional incident fluence distribution was reconstructed based on the grey response matrix using a fast iterative algorithm. The accuracy of this approach was verified using a four-field intensity-modulated radiotherapy (IMRT) plan for the treatment of lung cancer in anthopomorphic phantom. Each field had between twenty and twenty-eight segments and was evaluated by comparing the reconstructed dose distribution with the measured dose. Results: The gamma-evaluation method was used with various evaluation criteria of dose difference and distance-to-agreement: 3%/3mm and 2%/2 mm. The dose comparison for all irradiated fields showed a pass rate of 100% with the criterion of 3%/3mm, and a pass rate of higher than 92% with the criterion of 2%/2mm. Conclusion: Our experimental results demonstrate that our method is capable of accurately reconstructing three-dimensional dose distribution in the presence of inhomogeneities. Using the method, the combined planning and treatment delivery process is verified, offing an easy-to-use tool for the verification of complex treatments.« less
Jin, X; Yan, H; Han, C; Zhou, Y; Yi, J; Xie, C
2015-03-01
To investigate comparatively the percentage gamma passing rate (%GP) of two-dimensional (2D) and three-dimensional (3D) pre-treatment volumetric modulated arc therapy (VMAT) dosimetric verification and their correlation and sensitivity with percentage dosimetric errors (%DE). %GP of 2D and 3D pre-treatment VMAT quality assurance (QA) with different acceptance criteria was obtained by ArcCHECK® (Sun Nuclear Corporation, Melbourne, FL) for 20 patients with nasopharyngeal cancer (NPC) and 20 patients with oesophageal cancer. %DE were calculated from planned dose-volume histogram (DVH) and patients' predicted DVH calculated by 3DVH® software (Sun Nuclear Corporation). Correlation and sensitivity between %GP and %DE were investigated using Pearson's correlation coefficient (r) and receiver operating characteristics (ROCs). Relatively higher %DE on some DVH-based metrics were observed for both patients with NPC and oesophageal cancer. Except for 2%/2 mm criterion, the average %GPs for all patients undergoing VMAT were acceptable with average rates of 97.11% ± 1.54% and 97.39% ± 1.37% for 2D and 3D 3%/3 mm criteria, respectively. The number of correlations for 3D was higher than that for 2D (21 vs 8). However, the general correlation was still poor for all the analysed metrics (9 out of 26 for 3D 3%/3 mm criterion). The average area under the curve (AUC) of ROCs was 0.66 ± 0.12 and 0.71 ± 0.21 for 2D and 3D evaluations, respectively. There is a lack of correlation between %GP and %DE for both 2D and 3D pre-treatment VMAT dosimetric evaluation. DVH-based dose metrics evaluation obtained from 3DVH will provide more useful analysis. Correlation and sensitivity of %GP with %DE for VMAT QA were studied for the first time.
Mahmoud, Amr; Bennett, Michael
2015-08-01
Three-dimensional (3D) printing, a rapidly advancing technology, is widely applied in fields such as mechanical engineering and architecture. Three-dimensional printing has been introduced recently into medical practice in areas such as reconstructive surgery, as well as in clinical research. Three-dimensionally printed models of anatomic and autopsy pathology specimens can be used for demonstrating pathology entities to undergraduate medical, dental, and biomedical students, as well as for postgraduate training in examination of gross specimens for anatomic pathology residents and pathology assistants, aiding clinicopathological correlation at multidisciplinary team meetings, and guiding reconstructive surgical procedures. To apply 3D printing in anatomic pathology for teaching, training, and clinical correlation purposes. Multicolored 3D printing of human anatomic pathology specimens was achieved using a ZCorp 510 3D printer (3D Systems, Rock Hill, South Carolina) following creation of a 3D model using Autodesk 123D Catch software (Autodesk, Inc, San Francisco, California). Three-dimensionally printed models of anatomic pathology specimens created included pancreatoduodenectomy (Whipple operation) and radical nephrectomy specimens. The models accurately depicted the topographic anatomy of selected specimens and illustrated the anatomic relation of excised lesions to adjacent normal tissues. Three-dimensional printing of human anatomic pathology specimens is achievable. Advances in 3D printing technology may further improve the quality of 3D printable anatomic pathology specimens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capelle, Lisa; Warkentin, Heather; MacKenzie, Marc
Purpose: We investigated whether treatment-planning system (TPS)-calculated dose accurately reflects skin dose received for patients receiving adjuvant breast radiotherapy (RT) with standard three-dimensional conformal RT (3D-CRT) or skin-sparing helical tomotherapy (HT). Methods and Materials: Fifty patients enrolled in a randomized controlled trial investigating acute skin toxicity from adjuvant breast RT with 3D-CRT compared to skin-sparing HT, where a 5-mm strip of ipsilateral breast skin was spared. Thermoluminescent dosimetry or optically stimulated luminescence measurements were made in multiple locations and were compared to TPS-calculated doses. Skin dosimetric parameters and acute skin toxicity were recorded in these patients. Results: With HT theremore » was a significant correlation between calculated and measured dose in the medial and lateral ipsilateral breast (r = 0.67, P<.001; r = 0.44, P=.03, respectively) and the medial and central contralateral breast (r = 0.73, P<.001; r = 0.88, P<.001, respectively). With 3D-CRT there was a significant correlation in the medial and lateral ipsilateral breast (r = 0.45, P=.03; r = 0.68, P<.001, respectively); the medial and central contralateral breast (r = 0.62, P=.001; r = 0.86, P<.001, respectively); and the mid neck (r = 0.42, P=.04, respectively). On average, HT-calculated dose overestimated the measured dose by 14%; 3D-CRT underestimated the dose by 0.4%. There was a borderline association between highest measured skin dose and moist desquamation (P=.05). Skin-sparing HT had greater skin homogeneity (homogeneity index of 1.39 vs 1.65, respectively; P=.005) than 3D-CRT plans. HT plans had a lower skin{sub V50} (1.4% vs 5.9%, respectively; P=.001) but higher skin{sub V40} and skin{sub V30} (71.7% vs 64.0%, P=.02; and 99.0% vs 93.8%, P=.001, respectively) than 3D-CRT plans. Conclusion: The 3D-CRT TPS more accurately reflected skin dose than the HT TPS, which tended to overestimate dose received by 14% in patients receiving adjuvant breast RT.« less
Sripathi, Lalitha Kameshwari; Ahlawat, Parveen; Simson, David K; Khadanga, Chira Ranjan; Kamarsu, Lakshmipathi; Surana, Shital Kumar; Arasu, Kavi; Singh, Harpreet
2017-01-01
Different techniques of radiation therapy have been studied to reduce the cardiac dose in left breast cancer. In this prospective dosimetric study, the doses to heart as well as other organs at risk (OAR) were compared between free-breathing (FB) and deep inspiratory breath hold (DIBH) techniques in intensity modulated radiotherapy (IMRT) and opposed-tangent three-dimensional radiotherapy (3DCRT) plans. Fifteen patients with left-sided breast cancer underwent computed tomography simulation and images were obtained in both FB and DIBH. Radiotherapy plans were generated with 3DCRT and IMRT techniques in FB and DIBH images in each patient. Target coverage, conformity index, homogeneity index, and mean dose to heart (Heart D mean ), left lung, left anterior descending artery (LAD) and right breast were compared between the four plans using the Wilcoxon signed rank test. Target coverage was adequate with both 3DCRT and IMRT plans, but IMRT plans showed better conformity and homogeneity. A statistically significant dose reduction of all OARs was found with DIBH. 3DCRT DIBH decreased the Heart D mean by 53.5% (7.1 vs. 3.3 Gy) and mean dose to LAD by 28% compared to 3DCRT FB . IMRT further lowered mean LAD dose by 18%. Heart D mean was lower with 3DCRT DIBH over IMRT DIBH (3.3 vs. 10.2 Gy). Mean dose to the contralateral breast was also lower with 3DCRT over IMRT (0.32 vs. 3.35 Gy). Mean dose and the V 20 of ipsilateral lung were lower with 3DCRT DIBH over IMRT DIBH (13.78 vs. 18.9 Gy) and (25.16 vs. 32.95%), respectively. 3DCRT DIBH provided excellent dosimetric results in patients with left-sided breast cancer without the need for IMRT.
Xiao, Kai; Chen, Danny Z; Hu, X Sharon; Zhou, Bo
2012-12-01
The three-dimensional digital differential analyzer (3D-DDA) algorithm is a widely used ray traversal method, which is also at the core of many convolution∕superposition (C∕S) dose calculation approaches. However, porting existing C∕S dose calculation methods onto graphics processing unit (GPU) has brought challenges to retaining the efficiency of this algorithm. In particular, straightforward implementation of the original 3D-DDA algorithm inflicts a lot of branch divergence which conflicts with the GPU programming model and leads to suboptimal performance. In this paper, an efficient GPU implementation of the 3D-DDA algorithm is proposed, which effectively reduces such branch divergence and improves performance of the C∕S dose calculation programs running on GPU. The main idea of the proposed method is to convert a number of conditional statements in the original 3D-DDA algorithm into a set of simple operations (e.g., arithmetic, comparison, and logic) which are better supported by the GPU architecture. To verify and demonstrate the performance improvement, this ray traversal method was integrated into a GPU-based collapsed cone convolution∕superposition (CCCS) dose calculation program. The proposed method has been tested using a water phantom and various clinical cases on an NVIDIA GTX570 GPU. The CCCS dose calculation program based on the efficient 3D-DDA ray traversal implementation runs 1.42 ∼ 2.67× faster than the one based on the original 3D-DDA implementation, without losing any accuracy. The results show that the proposed method can effectively reduce branch divergence in the original 3D-DDA ray traversal algorithm and improve the performance of the CCCS program running on GPU. Considering the wide utilization of the 3D-DDA algorithm, various applications can benefit from this implementation method.
3D annotation and manipulation of medical anatomical structures
NASA Astrophysics Data System (ADS)
Vitanovski, Dime; Schaller, Christian; Hahn, Dieter; Daum, Volker; Hornegger, Joachim
2009-02-01
Although the medical scanners are rapidly moving towards a three-dimensional paradigm, the manipulation and annotation/labeling of the acquired data is still performed in a standard 2D environment. Editing and annotation of three-dimensional medical structures is currently a complex task and rather time-consuming, as it is carried out in 2D projections of the original object. A major problem in 2D annotation is the depth ambiguity, which requires 3D landmarks to be identified and localized in at least two of the cutting planes. Operating directly in a three-dimensional space enables the implicit consideration of the full 3D local context, which significantly increases accuracy and speed. A three-dimensional environment is as well more natural optimizing the user's comfort and acceptance. The 3D annotation environment requires the three-dimensional manipulation device and display. By means of two novel and advanced technologies, Wii Nintendo Controller and Philips 3D WoWvx display, we define an appropriate 3D annotation tool and a suitable 3D visualization monitor. We define non-coplanar setting of four Infrared LEDs with a known and exact position, which are tracked by the Wii and from which we compute the pose of the device by applying a standard pose estimation algorithm. The novel 3D renderer developed by Philips uses either the Z-value of a 3D volume, or it computes the depth information out of a 2D image, to provide a real 3D experience without having some special glasses. Within this paper we present a new framework for manipulation and annotation of medical landmarks directly in three-dimensional volume.
3D-PDR: Three-dimensional photodissociation region code
NASA Astrophysics Data System (ADS)
Bisbas, T. G.; Bell, T. A.; Viti, S.; Yates, J.; Barlow, M. J.
2018-03-01
3D-PDR is a three-dimensional photodissociation region code written in Fortran. It uses the Sundials package (written in C) to solve the set of ordinary differential equations and it is the successor of the one-dimensional PDR code UCL_PDR (ascl:1303.004). Using the HEALpix ray-tracing scheme (ascl:1107.018), 3D-PDR solves a three-dimensional escape probability routine and evaluates the attenuation of the far-ultraviolet radiation in the PDR and the propagation of FIR/submm emission lines out of the PDR. The code is parallelized (OpenMP) and can be applied to 1D and 3D problems.
Differential pencil beam dose computation model for photons.
Mohan, R; Chui, C; Lidofsky, L
1986-01-01
Differential pencil beam (DPB) is defined as the dose distribution relative to the position of the first collision, per unit collision density, for a monoenergetic pencil beam of photons in an infinite homogeneous medium of unit density. We have generated DPB dose distribution tables for a number of photon energies in water using the Monte Carlo method. The three-dimensional (3D) nature of the transport of photons and electrons is automatically incorporated in DPB dose distributions. Dose is computed by evaluating 3D integrals of DPB dose. The DPB dose computation model has been applied to calculate dose distributions for 60Co and accelerator beams. Calculations for the latter are performed using energy spectra generated with the Monte Carlo program. To predict dose distributions near the beam boundaries defined by the collimation system as well as blocks, we utilize the angular distribution of incident photons. Inhomogeneities are taken into account by attenuating the primary photon fluence exponentially utilizing the average total linear attenuation coefficient of intervening tissue, by multiplying photon fluence by the linear attenuation coefficient to yield the number of collisions in the scattering volume, and by scaling the path between the scattering volume element and the computation point by an effective density.
3D treatment planning systems.
Saw, Cheng B; Li, Sicong
2018-01-01
Three-dimensional (3D) treatment planning systems have evolved and become crucial components of modern radiation therapy. The systems are computer-aided designing or planning softwares that speed up the treatment planning processes to arrive at the best dose plans for the patients undergoing radiation therapy. Furthermore, the systems provide new technology to solve problems that would not have been considered without the use of computers such as conformal radiation therapy (CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT). The 3D treatment planning systems vary amongst the vendors and also the dose delivery systems they are designed to support. As such these systems have different planning tools to generate the treatment plans and convert the treatment plans into executable instructions that can be implemented by the dose delivery systems. The rapid advancements in computer technology and accelerators have facilitated constant upgrades and the introduction of different and unique dose delivery systems than the traditional C-arm type medical linear accelerators. The focus of this special issue is to gather relevant 3D treatment planning systems for the radiation oncology community to keep abreast of technology advancement by assess the planning tools available as well as those unique "tricks or tips" used to support the different dose delivery systems. Copyright © 2018 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Yang, Ren; Feeback, Daniel L.; Wang, Wan-Jun
2005-01-01
This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was microfabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, microfabricated, and tested. Three-dimensional hydrofocusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily microfabricated and integrated with other polymer microfluidic structures. Keywords: SU-8, three-dimensional hydro-focusing, microfluidic, microchannel, cytometer
Gomez, Daniel R.; Tucker, Susan L.; Martel, Mary K.; Mohan, Radhe; Balter, Peter A.; Guerra, Jose Luis Lopez; Liu, Hongmei; Komaki, Ritsuko; Cox, James D.; Liao, Zhongxing
2014-01-01
Introduction We analyzed the ability of various patient- and treatment-related factors to predict radiation-induced esophagitis (RE) in patients with non-small cell lung cancer (NSCLC) treated with three-dimensional (3D) conformal radiation therapy (3D-CRT), intensity-modulated radiation therapy (IMRT), or proton beam therapy (PBT). Methods and Materials Patients were treated for NSCLC with 3D-CRT, IMRT, or PBT at MD Anderson from 2000 to 2008 and had full dose-volume histogram (DVH) data available. The endpoint was severe (grade ≥3) RE. The Lyman-Kutcher-Burman (LKB) model was used to analyze RE as a function of the fractional esophageal DVH, with clinical variables included as dose-modifying factors. Results Overall, 652 patients were included: 405 treated with 3D-CRT, 139 with IMRT, and 108 with PBT; corresponding rates of grade ≥3 RE were 8%, 28%, and 6%, with a median time to onset of 42 days (range 11–93 days). A fit of the fractional-DVH LKB model demonstrated that the volume parameter n was significantly different (p=0.046) than 1, indicating that high doses to small volumes are more predictive than mean esophageal dose. The model fit was better for 3D-CRT and PBT than for IMRT. Including receipt of concurrent chemotherapy as a dose-modifying factor significantly improved the LKB model (p=0.005), and the model was further improved by including a variable representing treatment with >30 fractions. Examining individual types of chemotherapy agents revealed a trend toward receipt of concurrent taxanes and increased risk of RE (p=0.105). Conclusions The fractional dose (dose rate) and number of fractions (total dose) distinctly affect the risk of severe RE estimated using the LKB model, and concurrent chemotherapy improves the model fit. This risk of severe RE is underestimated by this model in patients receiving IMRT. PMID:22920974
A system of three-dimensional complex variables
NASA Technical Reports Server (NTRS)
Martin, E. Dale
1986-01-01
Some results of a new theory of multidimensional complex variables are reported, including analytic functions of a three-dimensional (3-D) complex variable. Three-dimensional complex numbers are defined, including vector properties and rules of multiplication. The necessary conditions for a function of a 3-D variable to be analytic are given and shown to be analogous to the 2-D Cauchy-Riemann equations. A simple example also demonstrates the analogy between the newly defined 3-D complex velocity and 3-D complex potential and the corresponding ordinary complex velocity and complex potential in two dimensions.
Hassouna, Ashraf H; Bahadur, Yasir A; Constantinescu, Camelia; El Sayed, Mohamed E; Naseem, Hussain; Naga, Adly F
2011-01-01
To investigate the correlation between the dose predicted by the treatment planning system using digitally reconstructed radiographs or three-dimensional (3D)-reconstructed CT images and the dose measured by semiconductor detectors, under clinical conditions of high-dose-rate brachytherapy of the cervix uteri. Thirty-two intracavitary brachytherapy applications were performed for 12 patients with cancer of the cervix uteri. The prescribed dose to Point A was 7 Gy. Dose was calculated for both International Commissioning on Radiation Units and Measurements (ICRU) bladder and rectal points based on digitally reconstructed radiographs and for 3D CT images-based volumetric calculation of the bladder and rectum. In vivo diode dosimetry was performed for the bladder and rectum. The ICRU reference point and the volumes of 1, 2, and 5cm(3) received 3.6±0.9, 5.6±2.0, 5.1±1.7, 4.3±1.4 and 5.0±1.2, 5.3±1.3, 4.9±1.1, and 4.2±0.9 Gy for the bladder and rectum, respectively. The ratio of the 1cm(3) and the ICRU reference point dose to the diode dose was 1.8±0.7 and 1.2±0.5 for the bladder and 1.9±0.6 and 1.7±0.5 for the rectum, respectively. 3D image-based dose calculation is the most accurate and reliable method to evaluate the dose given to critical organs. In vivo diode dosimetry is an important method of quality assurance, but clinical decisions should be made based on 3D-reconstructed CT image calculations. Copyright © 2011 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Li, Guichao; Wang, Jiazhou; Hu, Weigang; Zhang, Zhen
2015-01-01
This study examined the status of radiation-induced liver injury in adjuvant or palliative gastric cancer radiation therapy (RT), identified risk factors of radiation-induced liver injury in gastric cancer RT, analysed the dose-volume effects of liver injury, and developed a liver dose limitation reference for gastric cancer RT. Data for 56 post-operative gastric cancer patients and 6 locoregional recurrent gastric cancer patients treated with three-dimensional conformal radiation therapy (3D-CRT) or intensity-modulated radiation therapy (IMRT) from Sep 2007 to Sep 2009 were analysed. Forty patients (65%) were administered concurrent chemotherapy. Pre- and post-radiation chemotherapy were given to 61 patients and 43 patients, respectively. The radiation dose was 45-50.4 Gy in 25-28 fractions. Clinical parameters, including gender, age, hepatic B virus status, concurrent chemotherapy, and the total number of chemotherapy cycles, were included in the analysis. Univariate analyses with a non-parametric rank test (Mann-Whitney test) and logistic regression test and a multivariate analysis using a logistic regression test were completed. We also analysed the correlation between RT and the changes in serum chemistry parameters [including total bilirubin, (TB), direct bilirubin (D-TB), alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and serum albumin (ALB)] after RT. The Child-Pugh grade progressed from grade A to grade B after radiotherapy in 10 patients. A total of 16 cases of classic radiation-induced liver disease (RILD) were observed, and 2 patients had both Child-Pugh grade progression and classic RILD. No cases of non-classic radiation liver injury occurred in the study population. Among the tested clinical parameters, the total number of chemotherapy cycles correlated with liver function injury. V35 and ALP levels were significant predictive factors for radiation liver injury. In 3D-CRT for gastric cancer patients, radiation-induced liver injury may occur and affect the overall treatment plan. The total number of chemotherapy cycles correlated with liver function injury, and V35 and ALP are significant predictive factors for radiation-induced liver injury. Our dose limitation reference for liver protection is feasible.
NASA Astrophysics Data System (ADS)
Yao, Shengkun; Fan, Jiadong; Zong, Yunbing; He, You; Zhou, Guangzhao; Sun, Zhibin; Zhang, Jianhua; Huang, Qingjie; Xiao, Tiqiao; Jiang, Huaidong
2016-03-01
Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique over conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ˜1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yao, Shengkun; Fan, Jiadong; Zong, Yunbing
Three-dimensional X-ray imaging of living specimens is challenging due to the limited resolution of conventional absorption contrast X-ray imaging and potential irradiation damage of biological specimens. In this letter, we present microtomography of a living specimen combining phase-contrast imaging and a Fourier-based iterative algorithm termed equally sloped tomography. Non-destructive 3D imaging of an anesthetized living yellow mealworm Tenebrio molitor was demonstrated with a relatively low dose using synchrotron generated X-rays. Based on the high-quality 3D images, branching tracheoles and different tissues of the insect in a natural state were identified and analyzed, demonstrating a significant advantage of the technique overmore » conventional X-ray radiography or histotomy. Additionally, the insect survived without problem after a 1.92-s X-ray exposure and subsequent absorbed radiation dose of ∼1.2 Gy. No notable physiological effects were observed after reviving the insect from anesthesia. The improved static tomographic method demonstrated in this letter shows advantage in the non-destructive structural investigation of living insects in three dimensions due to the low radiation dose and high resolution capability, and offers many potential applications in biological science.« less
Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid
Bache, Steven; Malcolm, Javian; Adamovics, John; Oldham, Mark
2016-01-01
Telecentric optical computed tomography (optical-CT) is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS—Duke Fresnel Optical-CT Scanner) is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K) and the use of a ‘solid tank’ (which reduces noise, and the volume of refractively matched fluid from 1ltr to 10cc). The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS). Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm). DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system. PMID:27019460
Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid.
Bache, Steven; Malcolm, Javian; Adamovics, John; Oldham, Mark
2016-01-01
Telecentric optical computed tomography (optical-CT) is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS-Duke Fresnel Optical-CT Scanner) is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K) and the use of a 'solid tank' (which reduces noise, and the volume of refractively matched fluid from 1 ltr to 10 cc). The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS). Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2 h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm). DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system.
NASA Astrophysics Data System (ADS)
Liang, Liying; Xu, Yimeng; Lei, Yong; Liu, Haimei
2014-03-01
Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability.Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability. Electronic supplementary information (ESI) available: Preparation, characterization, SEM images, XRD patterns, and XPS of AgVO3/GAs. See DOI: 10.1039/c3nr06899d
NASA Astrophysics Data System (ADS)
Bishay, A. G.; El-Gamal, S.
2011-05-01
Three sets (A, B and C) of two-dimensional island platinum films (2D-I(Pt)Fs) were prepared via the thermal evaporation technique, where the substrates are corning 7059 glass slides. The mass thickness ( d m) of the films of different sets is 5, 10 and 20 Å, respectively. The Pt films were exposed to γ-rays from 137Cs (0.662 MeV) radiation source of dose rate 0.5 Gy/min. and the different doses are 100, 200, 300, 500 and 700 Gy. The dependence of the surface resistivity ( ρ) on temperature over the range of 100-300 K was undertaken at different d m and doses then the temperature coefficient of surface resistivity ( α) was deduced. It was found that; (i) for particular d m and T, the absolute value of α decreases as the dose increases (ii) for particular dose and T, the absolute value of α decreases as d m increases (iii) for particular dose and d m, the absolute value of α decreases as T increases. Qualitative interpretation for the results was offered on the ground that the electrons transfer among islands takes place by the activated tunneling mechanism and the γ-irradiation has changed the shape of islands from spherical to prolate spheroid.
NASA Astrophysics Data System (ADS)
Lee, Hannah J.; Choi, Gye Won; Alqathami, Mamdooh; Kadbi, Mo; Ibbott, Geoffrey
2017-05-01
Image-guided radiation therapy (IGRT) using computed tomography (CT), cone-beam CT, MV on-board imager (OBI), and kV OBI systems have allowed for more accurate patient positioning prior to each treatment fraction. While these imaging modalities provide excellent bony anatomy image quality, MRI surpasses them in soft tissue image contrast for better visualization and tracking of soft tissue tumors with no additional radiation dose to the patient. A pre-clinical integrated 1.5 T magnetic resonance imaging and 7 MV linear accelerator system (MR-linac) allows for real-time tracking of soft tissues and adaptive treatment planning prior to each treatment fraction. However, due to the presence of a strong magnetic field from the MR component, there is a three dimensional (3D) change in dose deposited by the secondary electrons. Especially at nonhomogeneous anatomical sites with tissues of very different densities, dose enhancements and reductions can occur due to the Lorentz force influencing the trajectories of secondary electrons. These dose changes at tissue interfaces are called the electron return effect or ERE. This study investigated the ERE using 3D dosimeters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, J; Jung, J; Yi, B
2015-06-15
Purpose: To test a method to reconstruct a four-dimensional (4D) dose distribution using the correlation of pre-calculated 4D electronic portal imaging device (EPID) images and measured cine-EPID images. Methods: 1. A phantom designed to simulate a tumor in lung (a polystyrene block with 3.0 cm diameter embedded in cork) was placed on a sinusoidally moving platform with 2 cm amplitude and 4 sec/cycle. Ten-phase 4D CT images were acquired for treatment planning and dose reconstruction. A 6MV photon beam was irradiated on the phantom with static (field size=5×8.5 cm{sup 2}) and dynamic fields (sliding windows, 10×10 cm{sup 2}, X1 MLCmore » closing in parallel with the tumor movement). 2. 4D and 3D doses were calculated forwardly on PTV (1 cm margin). 3. Dose images on EPID under the fields were calculated for 10 phases. 4. Cine EPID images were acquired during irradiation. 5. Their acquisition times were correlated to the phases of the phantom at which irradiation occurred by inter-comparing calculated “reference” EPID images with measured images (2D gamma comparison). For the dynamic beam, the tumor was hidden under MLCs during a portion of irradiation time; the correlation performed when the tumor was visible was extrapolated. 6. Dose for each phase was reconstructed on the 4D CT images and summed over all phases. The summation was compared with forwardly calculated 4D and 3D dose distributions. Monte Carlo methods were used for all calculations. Results: For the open and dynamic beams, the 4D reconstructed doses showed the pass rates of 92.7 % and 100 %, respectively, at the isocenter plane given 3% / 3 mm criteria. The better agreement of the dynamic beam was from its dose gradient which blurred the otherwise sharp difference between forward and reconstructed doses. This also contributed slightly better agreement in DVH of PTV. Conclusion: The feasibility of 4D reconstruction was demonstrated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Larissa J.; Viswanathan, Akila N., E-mail: aviswanathan@lroc.harvard.edu
2012-12-01
Purpose: To identify predictors of grade 3-4 complications and grade 2-4 rectal toxicity after three-dimensional image-guided high-dose-rate (HDR) interstitial brachytherapy for gynecologic cancer. Methods and Materials: Records were reviewed for 51 women (22 with primary disease and 29 with recurrence) treated with HDR interstitial brachytherapy. A single interstitial insertion was performed with image guidance by computed tomography (n = 43) or magnetic resonance imaging (n = 8). The median delivered dose in equivalent 2-Gy fractions was 72.0 Gy (45 Gy for external-beam radiation therapy and 24 Gy for brachytherapy). Toxicity was reported according to the Common Toxicity Criteria for Adversemore » Events. Actuarial toxicity estimates were calculated by the Kaplan-Meier method. Results: At diagnosis, the median patient age was 62 years and the median tumor size was 3.8 cm. The median D90 and V100 were 71.4 Gy and 89.5%; the median D2cc for the bladder, rectum, and sigmoid were 64.6 Gy, 61.0 Gy, and 52.7 Gy, respectively. The actuarial rates of all grade 3-4 complications at 2 years were 20% gastrointestinal, 9% vaginal, 6% skin, 3% musculoskeletal, and 2% lymphatic. There were no grade 3-4 genitourinary complications and no grade 5 toxicities. Grade 2-4 rectal toxicity was observed in 10 patients, and grade 3-4 complications in 4; all cases were proctitis with the exception of 1 rectal fistula. D2cc for rectum was higher for patients with grade 2-4 (68 Gy vs 57 Gy for grade 0-1, P=.03) and grade 3-4 (73 Gy vs 58 Gy for grade 0-2, P=.02) rectal toxicity. The estimated dose that resulted in a 10% risk of grade 2-4 rectal toxicity was 61.8 Gy (95% confidence interval, 51.5-72.2 Gy). Discussion: Image-guided HDR interstitial brachytherapy results in acceptable toxicity for women with primary or recurrent gynecologic cancer. D2cc for the rectum is a reliable predictor of late rectal complications. Three-dimensional-based treatment planning should be performed to ensure adequate tumor coverage while minimizing the D2cc to the rectum.« less
Shah, Jainil P.; Mann, Steve D.; McKinley, Randolph L.; Tornai, Martin P.
2015-01-01
Purpose: A novel breast CT system capable of arbitrary 3D trajectories has been developed to address cone beam sampling insufficiency as well as to image further into the patient’s chest wall. The purpose of this study was to characterize any trajectory-related differences in 3D x-ray dose distribution in a pendant target when imaged with different orbits. Methods: Two acquisition trajectories were evaluated: circular azimuthal (no-tilt) and sinusoidal (saddle) orbit with ±15° tilts around a pendant breast, using Monte Carlo simulations as well as physical measurements. Simulations were performed with tungsten (W) filtration of a W-anode source; the simulated source flux was normalized to the measured exposure of a W-anode source. A water-filled cylindrical phantom was divided into 1 cm3 voxels, and the cumulative energy deposited was tracked in each voxel. Energy deposited per voxel was converted to dose, yielding the 3D distributed dose volumes. Additionally, three cylindrical phantoms of different diameters (10, 12.5, and 15 cm) and an anthropomorphic breast phantom, initially filled with water (mimicking pure fibroglandular tissue) and then with a 75% methanol-25% water mixture (mimicking 50–50 fibroglandular-adipose tissues), were used to simulate the pendant breast geometry and scanned on the physical system. Ionization chamber calibrated radiochromic film was used to determine the dose delivered in a 2D plane through the center of the volume for a fully 3D CT scan using the different orbits. Results: Measured experimental results for the same exposure indicated that the mean dose measured throughout the central slice for different diameters ranged from 3.93 to 5.28 mGy, with the lowest average dose measured on the largest cylinder with water mimicking a homogeneously fibroglandular breast. These results align well with the cylinder phantom Monte Carlo studies which also showed a marginal difference in dose delivered by a saddle trajectory in the central slice. Regardless of phantom material or filled fluid density, dose delivered by the saddle scan was negligibly different than the simple circular, no-tilt scans. The average dose measured in the breast phantom was marginally higher for saddle than the circular no tilt scan at 3.82 and 3.87 mGy, respectively. Conclusions: Not only does nontraditional 3D-trajectory CT scanning yield more complete sampling of the breast volume but also has comparable dose deposition throughout the breast and anterior chest volume, as verified by Monte Carlo simulation and physical measurements. PMID:26233179
Clinical applications of cone beam computed tomography in endodontics: A comprehensive review.
Cohenca, Nestor; Shemesh, Hagay
2015-06-01
Cone beam computed tomography (CBCT) is a new technology that produces three-dimensional (3D) digital imaging at reduced cost and less radiation for the patient than traditional CT scans. It also delivers faster and easier image acquisition. By providing a 3D representation of the maxillofacial tissues in a cost- and dose-efficient manner, a better preoperative assessment can be obtained for diagnosis and treatment. This comprehensive review presents current applications of CBCT in endodontics. Specific case examples illustrate the difference in treatment planning with traditional periapical radiography versus CBCT technology.
Hormonal regulation of epithelial organization in a three-dimensional breast tissue culture model.
Speroni, Lucia; Whitt, Gregory S; Xylas, Joanna; Quinn, Kyle P; Jondeau-Cabaton, Adeline; Barnes, Clifford; Georgakoudi, Irene; Sonnenschein, Carlos; Soto, Ana M
2014-01-01
The establishment of hormone target breast cells in the 1970's resulted in suitable models for the study of hormone control of cell proliferation and gene expression using two-dimensional (2D) cultures. However, to study mammogenesis and breast tumor development in vitro, cells must be able to organize in three-dimensional (3D) structures like in the tissue. We now report the development of a hormone-sensitive 3D culture model for the study of mammogenesis and neoplastic development. Hormone-sensitive T47D breast cancer cells respond to estradiol in a dose-dependent manner by forming complex epithelial structures. Treatment with the synthetic progestagen promegestone, in the presence of estradiol, results in flat epithelial structures that display cytoplasmic projections, a phenomenon reported to precede side-branching. Additionally, as in the mammary gland, treatment with prolactin in the presence of estradiol induces budding structures. These changes in epithelial organization are accompanied by collagen remodeling. Collagen is the major acellular component of the breast stroma and an important player in tumor development and progression. Quantitative analysis of second harmonic generation of collagen fibers revealed that collagen density was more variable surrounding budding and irregularly shaped structures when compared to more regular structures; suggesting that fiber organization in the former is more anisotropic than in the latter. In sum, this new 3D model recapitulates morphogenetic events modulated by mammogenic hormones in the breast, and is suitable for the evaluation of therapeutic agents.
A Quality Assurance Method that Utilizes 3D Dosimetry and Facilitates Clinical Interpretation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldham, Mark, E-mail: mark.oldham@duke.edu; Thomas, Andrew; O'Daniel, Jennifer
2012-10-01
Purpose: To demonstrate a new three-dimensional (3D) quality assurance (QA) method that provides comprehensive dosimetry verification and facilitates evaluation of the clinical significance of QA data acquired in a phantom. Also to apply the method to investigate the dosimetric efficacy of base-of-skull (BOS) intensity-modulated radiotherapy (IMRT) treatment. Methods and Materials: Two types of IMRT QA verification plans were created for 6 patients who received BOS IMRT. The first plan enabled conventional 2D planar IMRT QA using the Varian portal dosimetry system. The second plan enabled 3D verification using an anthropomorphic head phantom. In the latter, the 3D dose distribution wasmore » measured using the DLOS/Presage dosimetry system (DLOS = Duke Large-field-of-view Optical-CT System, Presage Heuris Pharma, Skillman, NJ), which yielded isotropic 2-mm data throughout the treated volume. In a novel step, measured 3D dose distributions were transformed back to the patient's CT to enable calculation of dose-volume histograms (DVH) and dose overlays. Measured and planned patient DVHs were compared to investigate clinical significance. Results: Close agreement between measured and calculated dose distributions was observed for all 6 cases. For gamma criteria of 3%, 2 mm, the mean passing rate for portal dosimetry was 96.8% (range, 92.0%-98.9%), compared to 94.9% (range, 90.1%-98.9%) for 3D. There was no clear correlation between 2D and 3D passing rates. Planned and measured dose distributions were evaluated on the patient's anatomy, using DVH and dose overlays. Minor deviations were detected, and the clinical significance of these are presented and discussed. Conclusions: Two advantages accrue to the methods presented here. First, treatment accuracy is evaluated throughout the whole treated volume, yielding comprehensive verification. Second, the clinical significance of any deviations can be assessed through the generation of DVH curves and dose overlays on the patient's anatomy. The latter step represents an important development that advances the clinical relevance of complex treatment QA.« less
Three-dimensional imaging technology offers promise in medicine.
Karako, Kenji; Wu, Qiong; Gao, Jianjun
2014-04-01
Medical imaging plays an increasingly important role in the diagnosis and treatment of disease. Currently, medical equipment mainly has two-dimensional (2D) imaging systems. Although this conventional imaging largely satisfies clinical requirements, it cannot depict pathologic changes in 3 dimensions. The development of three-dimensional (3D) imaging technology has encouraged advances in medical imaging. Three-dimensional imaging technology offers doctors much more information on a pathology than 2D imaging, thus significantly improving diagnostic capability and the quality of treatment. Moreover, the combination of 3D imaging with augmented reality significantly improves surgical navigation process. The advantages of 3D imaging technology have made it an important component of technological progress in the field of medical imaging.
Kraniak, Janice M; Chalasani, Anita; Wallace, Margaret R; Mattingly, Raymond R
2018-01-01
Plexiform neurofibromas (PNs), which may be present at birth in up to half of children with type 1 neurofibromatosis (NF1), can cause serious loss of function, such as quadriparesis, and can undergo malignant transformation. Surgery is the first line treatment although the invasive nature of these tumors often prevents complete resection. Recent clinical trials have shown promising success for some drugs, notably selumetinib, an inhibitor of MAP kinase kinase (MEK). We have developed three-dimensional (3D) cell culture models of immortalized cells from NF1 PNs and of control Schwann cells (SCs) that we believe mimic more closely the in vivo condition than conventional two-dimensional (2D) cell culture. Our goal is to facilitate pre-clinical identification of potential targeted therapeutics for these tumors. Three drugs, selumetinib (a MEK inhibitor), picropodophyllin (an IGF-1R inhibitor) and LDN-193189 (a BMP2 inhibitor) were tested with dose-response design in both 2D and 3D cultures for their abilities to block net cell growth. Cell lines grown in 3D conditions showed varying degrees of resistance to the inhibitory actions of all three drugs. For example, control SCs became resistant to growth inhibition by selumetinib in 3D culture. LDN-193189 was the most effective drug in 3D cultures, with only slightly reduced potency compared to the 2D cultures. Characterization of these models also demonstrated increased proteolysis of collagen IV in the matrix by the PN driver cells as compared to wild-type SCs. The proteolytic capacity of the PN cells in the model may be a clinically significant property that can be used for testing the ability of drugs to inhibit their invasive phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.
Freytag, Svend O; Stricker, Hans; Pegg, Jan; Paielli, Dell; Pradhan, Deepak G; Peabody, James; DePeralta-Venturina, Mariza; Xia, Xueqing; Brown, Steve; Lu, Mei; Kim, Jae Ho
2003-11-01
The primary study objective was to determine the safety of intraprostatic administration of a replication-competent, oncolytic adenovirus containing a cytosine deaminase (CD)/herpes simplex virus thymidine kinase (HSV-1 TK) fusion gene concomitant with increasing durations of 5-fluorocytosine and valganciclovir prodrug therapy and conventional-dose three-dimensional conformal radiation therapy (3D-CRT) in patients with newly diagnosed, intermediate- to high-risk prostate cancer. Secondary objectives were to determine the persistence of therapeutic transgene expression in the prostate and to examine early posttreatment response. Fifteen patients in five cohorts received a single intraprostatic injection of 10(12) viral particles of the replication-competent Ad5-CD/TKrep adenovirus on day 1. Two days later, patients were administered 5-fluorocytosine and valganciclovir prodrug therapy for 1 (cohorts 1-3), 2 (cohort 4), or 3 (cohort 5) weeks along with 70-74 Gy 3D-CRT. Sextant needle biopsy of the prostate was obtained at 2 (cohort 1), 3 (cohort 2), and 4 (cohort 3) weeks for determination of the persistence of transgene expression. There were no dose-limiting toxicities and no significant treatment-related adverse events. Ninety-four percent of the adverse events observed were mild to moderate and self-limiting. Acute urinary and gastrointestinal toxicities were similar to those expected for conventional-dose 3D-CRT. Therapeutic transgene expression was found to persist in the prostate for up to 3 weeks after the adenovirus injection. As expected for patients receiving definitive radiation therapy, all patients experienced significant declines in prostate-specific antigen (PSA). The mean PSA half-life in patients administered more than 1 week of prodrug therapy was significantly shorter than that of patients receiving prodrugs for only 1 week (0.6 versus 2.0 months; P < 0.02) and markedly shorter than that reported previously for patients treated with conventional-dose 3D-CRT alone (2.4 months). With a median follow-up of only 9 months, 5 of 10 (50%) patients not treated with androgen-deprivation therapy achieved a serum PSA < or = 0.5 ng/ml. The results demonstrate that replication-competent adenovirus-mediated double-suicide gene therapy can be combined safely with conventional-dose 3D-CRT in patients with intermediate- to high-risk prostate cancer. The shorter than expected PSA half-life in patients receiving more than 1 week of prodrug therapy may suggest a possible interaction between the oncolytic adenovirus and/or double-suicide gene therapies and radiation therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wernicke, A. Gabriella; Valicenti, Richard; DiEva, Kelly
2004-12-01
Purpose/objective: In this study, we evaluated in a serial manner whether radiation dose to the bulb of the penis is predictive of erectile dysfunction, ejaculatory difficulty (EJ), and overall satisfaction with sex life (quality of life) by using serial validated self-administered questionnaires. Methods and materials: Twenty-nine potent men with AJCC Stage II prostate cancer treated with three-dimensional conformal radiation therapy alone to a median dose 72.0 Gy (range: 66.6-79.2 Gy) were evaluated by determining the doses received by the penile bulb. The penile bulb was delineated volumetrically, and the dose-volume histogram was obtained on each patient. Results: The median follow-upmore » time was 35 months (range, 16-43 months). We found that for D{sub 30}, D{sub 45}, D{sub 60}, and D{sub 75} (doses to a percent volume of PB: 30%, 45%, 60%, and 75%), higher than the corresponding median dose (defined as high-dose group) correlated with an increased risk of impotence (erectile dysfunction firmness score = 0) (odds ratio [OR] = 7.5, p = 0.02; OR = 7.5, p = 0.02; OR = 8.6, p = 0.008; and OR = 6.9, p = 0.015, respectively). Similarly, for EJD D{sub 30}, D{sub 45}, D{sub 60}, and D{sub 75}, doses higher than the corresponding median ones correlated with worsening ejaculatory function score (EJ = 0 or 1) (OR = 8, p = 0.013; OR = 8, p 0.013; OR = 9.2, p = 0.015; and OR = 8, p = 0.026, respectively). For quality of life, low ({<=}median dose) dose groups of patients improve over time, whereas high-dose groups of patients worsen. Conclusions: This study supports the existence of a penile bulb dose-volume relationship underlying the development of radiation-induced erectile dysfunction. Our data may guide the use of inverse treatment planning to maximize the probability of maintaining sexual potency after radiation therapy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Michael Jenwei, E-mail: michaelchen@einstein.b; Silva Santos, Adriana da; Sakuraba, Roberto Kenji
Purpose: To compare the sparing potential of cerebral hemispheres with intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT) for whole-ventricular irradiation (WVI) and conventional whole-brain irradiation (WBI) in the management of localized central nervous system germ cell tumors (CNSGCTs). Methods and Materials: Ten cases of patients with localized CNSGCTs and submitted to WVI by use of IMRT with or without a 'boost' to the primary lesion were selected. For comparison purposes, similar treatment plans were produced by use of 3D-CRT (WVI with or without boost) and WBI (opposed lateral fields with or without boost), and cerebral hemisphere sparing was evaluatedmore » at dose levels ranging from 2 Gy to 40 Gy. Results: The median prescription dose for WVI was 30.6 Gy (range, 25.2-37.5 Gy), and that for the boost was 16.5 Gy (range, 0-23.4 Gy). Mean irradiated cerebral hemisphere volumes were lower for WVI with IMRT than for 3D-CRT and were lower for WVI with 3D-CRT than for WBI. Intensity-modulated radiotherapy was associated with the lowest irradiated volumes, with reductions of 7.5%, 12.2%, and 9.0% at dose levels of 20, 30, and 40 Gy, respectively, compared with 3D-CRT. Intensity-modulated radiotherapy provided statistically significant reductions of median irradiated volumes at all dose levels (p = 0.002 or less). However, estimated radiation doses to peripheral areas of the body were 1.9 times higher with IMRT than with 3D-CRT. Conclusions: Although IMRT is associated with increased radiation doses to peripheral areas of the body, its use can spare a significant amount of normal central nervous system tissue compared with 3D-CRT or WBI in the setting of CNSGCT treatment.« less
3D He-3 diffusion MRI as a local in vivo morphometric tool to evaluate emphysematous rat lungs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacob, Rick E.; Minard, Kevin R.; Laicher, Gernot J.
2008-08-21
In this work, we validate 3He magnetic resonance imaging as a non-invasive morphometric tool to assess emphysematous disease state on a local level. Emphysema was induced intratracheally in rats with 25U/100g body weight of porcine pancreatic elastase dissolved in 200 μL saline. Rats were then paired with saline-dosed controls. Nine three-dimensional 3He diffusion-weighted images were acquired at one-, two-, or three-weeks post-dose, after which the lungs were harvested and prepared for histological analysis. Recently introduced indices sensitive to the heterogeneity of the airspace size distribution were calculated. These indices, D1 and D2, were derived from the moments of the meanmore » equivalent airway diameters. Averaged over the entire lung, it is shown that the 3He diffusivity (Dave) and anisotropy (Dan) both correlate with histology (R = 0.85, p < 0.0001 and R = 0.88, p < 0.0001, respectively). By matching small (0.046 cm2) regions in 3He images with corresponding regions in histological slices, Dave and Dan each correlate significantly with both D1 and D2 (R = 0.93, p < 0.0001). It is concluded that 3He MRI is a viable non-invasive morphometric tool for localized in vivo emphysema assessment.« less
Singh, Anurag K; Lockett, Mary Ann; Bradley, Jeffrey D
2003-02-01
To evaluate the incidence and clinical/dosimetric predictors of acute and late Radiation Therapy Oncology Group Grade 3-5 esophageal toxicity in patients with non-small-cell lung cancer (NSCLC) treated with definitive three-dimensional conformal radiotherapy (3D-CRT). We retrospectively reviewed the charts of 207 consecutive patients with NSCLC who were treated with high-dose, definitive 3D-CRT between March 1991 and December 1998. This population consisted of 107 men and 100 women. The median age was 67 years (range 31-90). The following patient and treatment parameters were studied: age, gender, race, performance status, sequential chemotherapy, concurrent chemotherapy, presence of subcarinal nodes, pretreatment weight loss, mean dose to the entire esophagus, maximal point dose to the esophagus, and percentage of volume of esophagus receiving >55 Gy. All doses are reported without heterogeneity corrections. The median prescription dose to the isocenter in this population was 70 Gy (range 60-74) delivered in 2-Gy daily fractions. All patients were treated once daily. Acute and late esophageal toxicities were graded by Radiation Therapy Oncology Group criteria. Patient and clinical/dosimetric factors were coded and correlated with acute and late Grade 3-5 esophageal toxicity using univariate and multivariate regression analyses. Of 207 patients, 16 (8%) developed acute (10 patients) or late (13 patients) Grade 3-5 esophageal toxicity. Seven patients had both acute and late Grade 3-5 esophageal toxicity. One patient died (Grade 5 esophageal toxicity) of late esophageal perforation. Concurrent chemotherapy, maximal point dose to the esophagus >58 Gy, and a mean dose to the entire esophagus >34 Gy were significantly associated with a risk of Grade 3-5 esophageal toxicity on univariate analysis. Concurrent chemotherapy and maximal point dose to the esophagus >58 Gy retained significance on multivariate analysis. Of 207 patients, 53 (26%) received concurrent chemotherapy. Fourteen (88%) of the 16 patients who developed Grade 3-5 esophageal toxicity had received concurrent chemotherapy (p = 0.0001, Pearson's chi-square test). No case of Grade 3-5 esophageal toxicity occurred in patients who received a maximal point dose to the esophagus of <58 Gy (p = 0.0001, Fisher's exact test, two-tail). Only 2 patients developed Grade 3-5 esophageal toxicity in the absence of concurrent chemotherapy; both received a maximal esophageal point dose >69 Gy. All assessable patients who developed Grade 3-5 esophageal toxicity had a mean dose to the entire esophagus >34 Gy (p = 0.0351, Pearson's chi-square test). However, the mean dose was not predictive on multivariate analysis. Concurrent chemotherapy and the maximal esophageal point dose were significantly associated with a risk of Grade 3-5 esophageal toxicity in patients with NSCLC treated with high-dose 3D-CRT. In patients who received concurrent chemotherapy, the threshold maximal esophageal point dose for Grade 3-5 esophageal toxicity was 58 Gy. An insufficient number of patients developed Grade 3-5 esophageal toxicity in the absence of chemotherapy to allow a valid statistical analysis of the relationship between the maximal esophageal point dose and esophagitis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Uytven, Eric, E-mail: eric.vanuytven@cancercare.mb.ca; Van Beek, Timothy; McCowan, Peter M.
2015-12-15
Purpose: Radiation treatments are trending toward delivering higher doses per fraction under stereotactic radiosurgery and hypofractionated treatment regimens. There is a need for accurate 3D in vivo patient dose verification using electronic portal imaging device (EPID) measurements. This work presents a model-based technique to compute full three-dimensional patient dose reconstructed from on-treatment EPID portal images (i.e., transmission images). Methods: EPID dose is converted to incident fluence entering the patient using a series of steps which include converting measured EPID dose to fluence at the detector plane and then back-projecting the primary source component of the EPID fluence upstream of themore » patient. Incident fluence is then recombined with predicted extra-focal fluence and used to calculate 3D patient dose via a collapsed-cone convolution method. This method is implemented in an iterative manner, although in practice it provides accurate results in a single iteration. The robustness of the dose reconstruction technique is demonstrated with several simple slab phantom and nine anthropomorphic phantom cases. Prostate, head and neck, and lung treatments are all included as well as a range of delivery techniques including VMAT and dynamic intensity modulated radiation therapy (IMRT). Results: Results indicate that the patient dose reconstruction algorithm compares well with treatment planning system computed doses for controlled test situations. For simple phantom and square field tests, agreement was excellent with a 2%/2 mm 3D chi pass rate ≥98.9%. On anthropomorphic phantoms, the 2%/2 mm 3D chi pass rates ranged from 79.9% to 99.9% in the planning target volume (PTV) region and 96.5% to 100% in the low dose region (>20% of prescription, excluding PTV and skin build-up region). Conclusions: An algorithm to reconstruct delivered patient 3D doses from EPID exit dosimetry measurements was presented. The method was applied to phantom and patient data sets, as well as for dynamic IMRT and VMAT delivery techniques. Results indicate that the EPID dose reconstruction algorithm presented in this work is suitable for clinical implementation.« less
Verification on the Dose Profile Variation of a 3-D—NIPAM Polymer Gel Dosimeter
NASA Astrophysics Data System (ADS)
Hsieh, Bor-Tsung; Wu, Jay; Chang, Yuan-Jen
2013-04-01
A gel dosimeter is a three-dimensional (3-D) device that is used in radiotherapy. It is more efficient than traditional one-dimensional and two-dimensional dosimeters because it can be used in complicated radiation therapy applications. However, the achievement of temporal and spatial stabilities for gel dosimeters remains challenging in clinical applications because the fabrication process affects the polymerization reaction during irradiation. This study investigated the dose profile variation of an N-isopropyl acrylamide (NIPAM) polymer gel dosimeter by using the 3-D optical computed tomography scanner OCTOPUSTM 10X (MGS Research Inc.). Two acrylic containers (diameter=10, height=10, and diameter=15, height=15cm ) filled with polymer gel (gelatin: 5%, NIPAM: 5%, Bis: 3%, THPC: 5 mM) were irradiated by using intensity-modulated radiotherapy (SIEMENS Oncor Impression, 6 MV Photo beam). The treatment field was a 3 cm 3 cm square field, and the prescribed dose was 5 Gy. The results of the reconstruction line profile showed that the uncertainty of non-irradiated gel is less than 1.3% when a container with 10 cm diameters cooled in a refrigerator with a water bath. The maximum uncertainties of the irradiated gel at 24 h, 48 h, and 72 h post-irradiation were 2.9%, 2.9%, and 3.1%, respectively. However, the maximum uncertainty of the non-irradiated gel dosimeter increased to 3% when a container with 15 cm diameter was cooled in the same refrigerator. After irradiation, the maximum uncertainties of the irradiated gel at 24 h, 48 h, and 72 h post-irradiation were 13.1%, 13.7%, and 12.95%, respectively. The uncertainty differences for gels at different container sizes were attributed to the different cooling rates that were applied to the gels. The time required for large gel containers to cool in the refrigerator was more than 10 h, whereas the cooling process only took 4.2 h for gels in a small container. The time difference produced different temperature histories for gels and may result in changes in gel sensitivity. Given the thermally induced pre-radiation polymerization, the time difference resulted in a deviation in dose profiles. This study reports that thermal control during gel preparation should be carefully performed for clinical applications to achieve a more accurate dose distribution in 3-D image reconstruction.
Application of Fused Deposition Modelling (FDM) Method of 3D Printing in Drug Delivery.
Long, Jingjunjiao; Gholizadeh, Hamideh; Lu, Jun; Bunt, Craig; Seyfoddin, Ali
2017-01-01
Three-dimensional (3D) printing is an emerging manufacturing technology for biomedical and pharmaceutical applications. Fused deposition modelling (FDM) is a low cost extrusion-based 3D printing technique that can deposit materials layer-by-layer to create solid geometries. This review article aims to provide an overview of FDM based 3D printing application in developing new drug delivery systems. The principle methodology, suitable polymers and important parameters in FDM technology and its applications in fabrication of personalised tablets and drug delivery devices are discussed in this review. FDM based 3D printing is a novel and versatile manufacturing technique for creating customised drug delivery devices that contain accurate dose of medicine( s) and provide controlled drug released profiles. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
McCaw, Travis J; Micka, John A; DeWerd, Larry A
2014-05-01
Three-dimensional (3D) dosimeters are particularly useful for verifying the commissioning of treatment planning and delivery systems, especially with the ever-increasing implementation of complex and conformal radiotherapy techniques such as volumetric modulated arc therapy. However, currently available 3D dosimeters require extensive experience to prepare and analyze, and are subject to large measurement uncertainties. This work aims to provide a more readily implementable 3D dosimeter with the development and characterization of a radiochromic film stack dosimeter for megavoltage photon beam dosimetry. A film stack dosimeter was developed using Gafchromic(®) EBT2 films. The dosimeter consists of 22 films separated by 1 mm-thick spacers. A Virtual Water™ phantom was created that maintains the radial film alignment within a maximum uncertainty of 0.3 mm. The film stack dosimeter was characterized using simulations and measurements of 6 MV fields. The absorbed-dose energy dependence and orientation dependence of the film stack dosimeter were investigated using Monte Carlo simulations. The water equivalence of the dosimeter was determined by comparing percentage-depth-dose (PDD) profiles measured with the film stack dosimeter and simulated using Monte Carlo methods. Film stack dosimeter measurements were verified with thermoluminescent dosimeter (TLD) microcube measurements. The film stack dosimeter was also used to verify the delivery of an intensity-modulated radiation therapy (IMRT) procedure. The absorbed-dose energy response of EBT2 film differs less than 1.5% between the calibration and film stack dosimeter geometries for a 6 MV spectrum. Over a series of beam angles ranging from normal incidence to parallel incidence, the overall variation in the response of the film stack dosimeter is within a range of 2.5%. Relative to the response to a normally incident beam, the film stack dosimeter exhibits a 1% under-response when the beam axis is parallel to the film planes. Measured and simulated PDD profiles agree within a root-mean-square difference of 1.3%. In-field film stack dosimeter and TLD measurements agree within 5%, and measurements in the field penumbra agree within 0.5 mm. Film stack dosimeter and TLD measurements have expanded (k = 2) overall measurement uncertainties of 6.2% and 5.8%, respectively. Film stack dosimeter measurements of an IMRT dose distribution have 98% agreement with the treatment planning system dose calculation, using gamma criteria of 3% and 2 mm. The film stack dosimeter is capable of high-resolution, low-uncertainty 3D dose measurements, and can be readily incorporated into an existing film dosimetry program.
Zhu, S; Yang, Y; Khambay, B
2017-03-01
Clinicians are accustomed to viewing conventional two-dimensional (2D) photographs and assume that viewing three-dimensional (3D) images is similar. Facial images captured in 3D are not viewed in true 3D; this may alter clinical judgement. The aim of this study was to evaluate the reliability of using conventional photographs, 3D images, and stereoscopic projected 3D images to rate the severity of the deformity in pre-surgical class III patients. Forty adult patients were recruited. Eight raters assessed facial height, symmetry, and profile using the three different viewing media and a 100-mm visual analogue scale (VAS), and appraised the most informative viewing medium. Inter-rater consistency was above good for all three media. Intra-rater reliability was not significantly different for rating facial height using 2D (P=0.704), symmetry using 3D (P=0.056), and profile using projected 3D (P=0.749). Using projected 3D for rating profile and symmetry resulted in significantly lower median VAS scores than either 3D or 2D images (all P<0.05). For 75% of the raters, stereoscopic 3D projection was the preferred method for rating. The reliability of assessing specific characteristics was dependent on the viewing medium. Clinicians should be aware that the visual information provided when viewing 3D images is not the same as when viewing 2D photographs, especially for facial depth, and this may change the clinical impression. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
JADA: a graphical user interface for comprehensive internal dose assessment in nuclear medicine.
Grimes, Joshua; Uribe, Carlos; Celler, Anna
2013-07-01
The main objective of this work was to design a comprehensive dosimetry package that would keep all aspects of internal dose calculation within the framework of a single software environment and that would be applicable for a variety of dose calculation approaches. Our MATLAB-based graphical user interface (GUI) can be used for processing data obtained using pure planar, pure SPECT, or hybrid planar/SPECT imaging. Time-activity data for source regions are obtained using a set of tools that allow the user to reconstruct SPECT images, load images, coregister a series of planar images, and to perform two-dimensional and three-dimensional image segmentation. Curve fits are applied to the acquired time-activity data to construct time-activity curves, which are then integrated to obtain time-integrated activity coefficients. Subsequently, dose estimates are made using one of three methods. The organ level dose calculation subGUI calculates mean organ doses that are equivalent to dose assessment performed by OLINDA/EXM. Voxelized dose calculation options, which include the voxel S value approach and Monte Carlo simulation using the EGSnrc user code DOSXYZnrc, are available within the process 3D image data subGUI. The developed internal dosimetry software package provides an assortment of tools for every step in the dose calculation process, eliminating the need for manual data transfer between programs. This saves times and minimizes user errors, while offering a versatility that can be used to efficiently perform patient-specific internal dose calculations in a variety of clinical situations.
NASA Astrophysics Data System (ADS)
Rodgers, J.; Tessier, D.; D'Souza, D.; Leung, E.; Hajdok, G.; Fenster, A.
2016-04-01
High-dose-rate (HDR) interstitial brachytherapy is often included in standard-of-care for gynaecological cancers. Needles are currently inserted through a perineal template without any standard real-time imaging modality to assist needle guidance, causing physicians to rely on pre-operative imaging, clinical examination, and experience. While two-dimensional (2D) ultrasound (US) is sometimes used for real-time guidance, visualization of needle placement and depth is difficult and subject to variability and inaccuracy in 2D images. The close proximity to critical organs, in particular the rectum and bladder, can lead to serious complications. We have developed a three-dimensional (3D) transrectal US system and are investigating its use for intra-operative visualization of needle positions used in HDR gynaecological brachytherapy. As a proof-of-concept, four patients were imaged with post-insertion 3D US and x-ray CT. Using software developed in our laboratory, manual rigid registration of the two modalities was performed based on the perineal template's vaginal cylinder. The needle tip and a second point along the needle path were identified for each needle visible in US. The difference between modalities in the needle trajectory and needle tip position was calculated for each identified needle. For the 60 needles placed, the mean trajectory difference was 3.23 +/- 1.65° across the 53 visible needle paths and the mean difference in needle tip position was 3.89 +/- 1.92 mm across the 48 visible needles tips. Based on the preliminary results, 3D transrectal US shows potential for the development of a 3D US-based needle guidance system for interstitial gynaecological brachytherapy.
Dosimetry study of diagnostic X-ray using doped iodide normoxic polymer gels
NASA Astrophysics Data System (ADS)
Huang, Y. R.; Chang, Y. J.; Hsieh, L. L.; Liu, M. H.; Liu, J. S.; Chu, C. H.; Hsieh, B. T.
2014-11-01
In radiotherapy, polymer gel dosimeters are used for three-dimensional (3D) dose distribution. However, the doses are within the Gy range. In this study, we attempted to develop a low-dose 3D dosimeter within the mGy range for diagnostic radiology. The effect of the iodinated compound was used as a dose enhancement sensitizer to enhance the dose sensitivity of normoxic polymer gel dosimeters. This study aims to use N-isopropylacrylamide(NIPAM)-based and methacrylic acid (MAGAT)-based gels to evaluate the potential dose enhancement sensitizer, as well as to compare two gels that may be suitable for measuring diagnostic radiation doses. The suitable formulation of NIPAM gel [5% (w/w) gelatin, 5% (w/w) NIPAM, 3% (w/w) N,N‧-methylenebisacrylamide (BIS), 5 mM tetrakis (hydroxymethyl) phosphonium chloride (THPC), and 87% (w/w) deionized distilled water] and MAGAT gel (4% MAA, 9% gelatin, 87% deionized water, and 10 mM THPC) were used and loaded with clinical iodinated contrast medium agent (Iobitridol, Xenetix® 350). Irradiation was conducted using X-ray computed tomography. The irradiation doses ranged from 0 mGy to 80 mGy. Optical computed tomography was the employed gel measurement system. The results indicate that the iodinated contrast agent yields a quantifiable dose enhancement ratio. The dose enhancement ratios of NIPAM and MAGAT gels are 3.35±0.6 and 1.36±0.3, respectively. The developed NIPAM gel in this study could be suitable for measuring diagnostic radiation doses.
Iridium-Knife: Another knife in radiation oncology.
Milickovic, Natasa; Tselis, Nikolaos; Karagiannis, Efstratios; Ferentinos, Konstantinos; Zamboglou, Nikolaos
Intratarget dose escalation with superior conformity is a defining feature of three-dimensional (3D) iridium-192 ( 192 Ir) high-dose-rate (HDR) brachytherapy (BRT). In this study, we analyzed the dosimetric characteristics of interstitial 192 Ir HDR BRT for intrathoracic and cerebral malignancies. We examined the dose gradient sharpness of HDR BRT compared with that of linear accelerator-based stereotactic radiosurgery and stereotactic body radiation therapy, usually called X-Knife, to demonstrate that it may as well be called a Knife. Treatment plans for 10 patients with recurrent glioblastoma multiforme or intrathoracic malignancies, five of each entity, treated with X-Knife (stereotactic radiosurgery for glioblastoma multiforme and stereotactic body radiation therapy for intrathoracic malignancies) were replanned for simulated HDR BRT. For 3D BRT planning, we used identical structure sets and dose prescription as for the X-Knife planning. The indices for qualitative treatment plan analysis encompassed planning target volume coverage, conformity, dose falloff gradient, and the maximum dose-volume limits to different organs at risk. Volume coverage in HDR plans was comparable to that calculated for X-Knife plans with no statistically significant difference in terms of conformity. The dose falloff gradient-sharpness-of the HDR plans was considerably steeper compared with the X-Knife plans. Both 3D 192 Ir HDR BRT and X-Knife are effective means for intratarget dose escalation with HDR BRT achieving at least equal conformity and a steeper dose falloff at the target volume margin. In this sense, it can reasonably be argued that 3D 192 Ir HDR BRT deserves also to be called a Knife, namely Iridium-Knife. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Performance of a commercial optical CT scanner and polymer gel dosimeters for 3-D dose verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Y.; Wuu, C.-S.; Maryanski, Marek J.
2004-11-01
Performance analysis of a commercial three-dimensional (3-D) dose mapping system based on optical CT scanning of polymer gels is presented. The system consists of BANG{sup reg}3 polymer gels (MGS Research, Inc., Madison, CT), OCTOPUS{sup TM} laser CT scanner (MGS Research, Inc., Madison, CT), and an in-house developed software for optical CT image reconstruction and 3-D dose distribution comparison between the gel, film measurements and the radiation therapy treatment plans. Various sources of image noise (digitization, electronic, optical, and mechanical) generated by the scanner as well as optical uniformity of the polymer gel are analyzed. The performance of the scanner ismore » further evaluated in terms of the reproducibility of the data acquisition process, the uncertainties at different levels of reconstructed optical density per unit length and the effects of scanning parameters. It is demonstrated that for BANG{sup registered}3 gel phantoms held in cylindrical plastic containers, the relative dose distribution can be reproduced by the scanner with an overall uncertainty of about 3% within approximately 75% of the radius of the container. In regions located closer to the container wall, however, the scanner generates erroneous optical density values that arise from the reflection and refraction of the laser rays at the interface between the gel and the container. The analysis of the accuracy of the polymer gel dosimeter is exemplified by the comparison of the gel/OCT-derived dose distributions with those from film measurements and a commercial treatment planning system (Cadplan, Varian Corporation, Palo Alto, CA) for a 6 cmx6 cm single field of 6 MV x rays and a 3-D conformal radiotherapy (3DCRT) plan. The gel measurements agree with the treatment plans and the film measurements within the '3%-or-2 mm' criterion throughout the usable, artifact-free central region of the gel volume. Discrepancies among the three data sets are analyzed.« less
Three-dimensional photography for the evaluation of facial profiles in obstructive sleep apnoea.
Lin, Shih-Wei; Sutherland, Kate; Liao, Yu-Fang; Cistulli, Peter A; Chuang, Li-Pang; Chou, Yu-Ting; Chang, Chih-Hao; Lee, Chung-Shu; Li, Li-Fu; Chen, Ning-Hung
2018-06-01
Craniofacial structure is an important determinant of obstructive sleep apnoea (OSA) syndrome risk. Three-dimensional stereo-photogrammetry (3dMD) is a novel technique which allows quantification of the craniofacial profile. This study compares the facial images of OSA patients captured by 3dMD to three-dimensional computed tomography (3-D CT) and two-dimensional (2-D) digital photogrammetry. Measurements were correlated with indices of OSA severity. Thirty-eight patients diagnosed with OSA were included, and digital photogrammetry, 3dMD and 3-D CT were performed. Distances, areas, angles and volumes from the images captured by three methods were analysed. Almost all measurements captured by 3dMD showed strong agreement with 3-D CT measurements. Results from 2-D digital photogrammetry showed poor agreement with 3-D CT. Mandibular width, neck perimeter size and maxillary volume measurements correlated well with the severity of OSA using all three imaging methods. Mandibular length, facial width, binocular width, neck width, cranial base triangle area, cranial base area 1 and middle cranial fossa volume correlated well with OSA severity using 3dMD and 3-D CT, but not with 2-D digital photogrammetry. 3dMD provided accurate craniofacial measurements of OSA patients, which were highly concordant with those obtained by CT, while avoiding the radiation associated with CT. © 2018 Asian Pacific Society of Respirology.
Chen, Tien-En; Kwon, Susan H; Enriquez-Sarano, Maurice; Wong, Benjamin F; Mankad, Sunil V
2013-10-01
Three-dimensional (3D) color Doppler echocardiography (CDE) provides directly measured vena contracta area (VCA). However, a large comprehensive 3D color Doppler echocardiographic study with sufficiently severe tricuspid regurgitation (TR) to verify its value in determining TR severity in comparison with conventional quantitative and semiquantitative two-dimensional (2D) parameters has not been previously conducted. The aim of this study was to examine the utility and feasibility of directly measured VCA by 3D transthoracic CDE, its correlation with 2D echocardiographic measurements of TR, and its ability to determine severe TR. Ninety-two patients with mild or greater TR prospectively underwent 2D and 3D transthoracic echocardiography. Two-dimensional evaluation of TR severity included the ratio of jet area to right atrial area, vena contracta width, and quantification of effective regurgitant orifice area using the flow convergence method. Full-volume breath-hold 3D color data sets of TR were obtained using a real-time 3D echocardiography system. VCA was directly measured by 3D-guided direct planimetry of the color jet. Subgroup analysis included the presence of a pacemaker, eccentricity of the TR jet, ellipticity of the orifice shape, underlying TR mechanism, and baseline rhythm. Three-dimensional VCA correlated well with effective regurgitant orifice area (r = 0.62, P < .0001), moderately with vena contracta width (r = 0.42, P < .0001), and weakly with jet area/right atrial area ratio. Subgroup analysis comparing 3D VCA with 2D effective regurgitant orifice area demonstrated excellent correlation for organic TR (r = 0.86, P < .0001), regular rhythm (r = 0.78, P < .0001), and circular orifice (r = 0.72, P < .0001) but poor correlation in atrial fibrillation rhythm (r = 0.23, P = .0033). Receiver operating characteristic curve analysis for 3D VCA demonstrated good accuracy for severe TR determination. Three-dimensional VCA measurement is feasible and obtainable in the majority of patients with mild or greater TR. Three-dimensional VCA measurement is also feasible in patients with atrial fibrillation but performed poorly even with <20% cycle length variation. Three-dimensional VCA has good cutoff accuracy in determining severe TR. This simple, straightforward 3D color Doppler measurement shows promise as an alternative for the quantification of TR. Copyright © 2013 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.
Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, R.; Aluie, H.; Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14627
The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.
Fleckenstein, Jochen; Kremp, Katharina; Kremp, Stephanie; Palm, Jan; Rübe, Christian
2016-02-01
The potential of intensity-modulated radiation therapy (IMRT) as opposed to three-dimensional conformal radiotherapy (3D-CRT) is analyzed for two different concepts of fluorodeoxyglucose positron emission tomography (FDG PET)-based target volume delineation in locally advanced non-small cell lung cancer (LA-NSCLC): involved-field radiotherapy (IF-RT) vs. elective nodal irradiation (ENI). Treatment planning was performed for 41 patients with LA-NSCLC, using four different planning approaches (3D-CRT-IF, 3D-CRT-ENI, IMRT-IF, IMRT-ENI). ENI included a boost irradiation after 50 Gy. For each plan, maximum dose escalation was calculated based on prespecified normal tissue constraints. The maximum prescription dose (PD), tumor control probability (TCP), conformal indices (CI), and normal tissue complication probabilities (NTCP) were analyzed. IMRT resulted in statistically significant higher prescription doses for both target volume concepts as compared with 3D-CRT (ENI: 68.4 vs. 60.9 Gy, p < 0.001; IF: 74.3 vs. 70.1 Gy, p < 0.03). With IMRT-IF, a PD of at least 66 Gy was achieved for 95 % of all plans. For IF as compared with ENI, there was a considerable theoretical increase in TCP (IMRT: 27.3 vs. 17.7 %, p < 0.00001; 3D-CRT: 20.2 vs. 9.9 %, p < 0.00001). The esophageal NTCP showed a particularly good sparing with IMRT vs. 3D-CRT (ENI: 12.3 vs. 30.9 % p < 0.0001; IF: 15.9 vs. 24.1 %; p < 0.001). The IMRT technique and IF target volume delineation allow a significant dose escalation and an increase in TCP. IMRT results in an improved sparing of OARs as compared with 3D-CRT at equivalent dose levels.
Jaremko, Jacob L; Mabee, Myles; Swami, Vimarsha G; Jamieson, Lucy; Chow, Kelvin; Thompson, Richard B
2014-12-01
To use three-dimensional ( 3D three-dimensional ) ultrasonography (US) to quantify the alpha-angle variability due to changing probe orientation during two-dimensional ( 2D two-dimensional ) US of the infant hip and its effect on the diagnostic classification of developmental dysplasia of the hip ( DDH developmental dysplasia of the hip ). In this institutional research ethics board-approved prospective study, with parental written informed consent, 13-MHz 3D three-dimensional US was added to initial 2D two-dimensional US for 56 hips in 35 infants (mean age, 41.7 days; range, 4-112 days), 26 of whom were female (mean age, 38.7 days; range, 6-112 days) and nine of whom were male (mean age, 50.2 days; range, 4-111 days). Findings in 20 hips were normal at the initial visit and were initially inconclusive but normalized spontaneously at follow-up in 23 hips; 13 hips were treated for dysplasia. With the computer algorithm, 3D three-dimensional US data were resectioned in planes tilted in 5° increments away from a central plane, as if slowly rotating a 2D two-dimensional US probe, until resulting images no longer met Graf quality criteria. On each acceptable 2D two-dimensional image, two observers measured alpha angles, and descriptive statistics, including mean, standard deviation, and limits of agreement, were computed. Acceptable 2D two-dimensional images were produced over a range of probe orientations averaging 24° (maximum, 45°) from the central plane. Over this range, alpha-angle variation was 19° (upper limit of agreement), leading to alteration of the diagnostic category of hip dysplasia in 54% of hips scanned. Use of 3D three-dimensional US showed that alpha angles measured at routine 2D two-dimensional US of the hip can vary substantially between 2D two-dimensional scans solely because of changes in probe positioning. Not only could normal hips appear dysplastic, but dysplastic hips also could have normal alpha angles. Three-dimensional US can display the full acetabular shape, which might improve DDH developmental dysplasia of the hip assessment accuracy. © RSNA, 2014.
NASA Astrophysics Data System (ADS)
Sarkar, Biplab; Ray, Jyotirmoy; Ganesh, Tharmarnadar; Manikandan, Arjunan; Munshi, Anusheel; Rathinamuthu, Sasikumar; Kaur, Harpreet; Anbazhagan, Satheeshkumar; Giri, Upendra K.; Roy, Soumya; Jassal, Kanan; Kalyan Mohanti, Bidhu
2018-04-01
The aim of this article is to derive and verify a mathematical formulation for the reduction of the six-dimensional (6D) positional inaccuracies of patients (lateral, longitudinal, vertical, pitch, roll and yaw) to three-dimensional (3D) linear shifts. The formulation was mathematically and experimentally tested and verified for 169 stereotactic radiotherapy patients. The mathematical verification involves the comparison of any (one) of the calculated rotational coordinates with the corresponding value from the 6D shifts obtained by cone beam computed tomography (CBCT). The experimental verification involves three sets of measurements using an ArcCHECK phantom, when (i) the phantom was not moved (neutral position: 0MES), (ii) the position of the phantom shifted by 6D shifts obtained from CBCT (6DMES) from neutral position and (iii) the phantom shifted from its neutral position by 3D shifts reduced from 6D shifts (3DMES). Dose volume histogram and statistical comparisons were made between ≤ft< TPSCAL{\\text -}0MES \\right> and ≤ft< 3DMES{\\text -6DMES} \\right> . The mathematical verification was performed by a comparison of the calculated and measured yaw (γ°) rotation values, which gave a straight line, Y = 1X with a goodness of fit as R 2 = 0.9982. The verification, based on measurements, gave a planning target volume receiving 100% of the dose (V100%) as 99.1 ± 1.9%, 96.3 ± 1.8%, 74.3 ± 1.9% and 72.6 ± 2.8% for the calculated treatment planning system values TPSCAL, 0MES, 3DMES and 6DMES, respectively. The statistical significance (p-values: paired sample t-test) of V100% were found to be 0.03 for the paired sample ≤ft< 3DMES{\\text -6DMES} \\right> and 0.01 for ≤ft< 0MES{\\text -TPSCAL} \\right> . In this paper, a mathematical method to reduce 6D shifts to 3D shifts is presented. The mathematical method is verified by using well-matched values between the measured and calculated γ°. Measurements done on the ArcCHECK phantom also proved that the proposed methodology is correct. The post-correction of the table position condition introduces a minimal spatial dose delivery error in the frameless stereotactic system, using a 6D motion enabled robotic couch. This formulation enables the reduction of 6D positional inaccuracies to 3D linear shifts, and hence allows the treatment of patients with frameless stereotactic radiosurgery by using only a 3D linear motion enabled couch.
WE-G-16A-01: Evolution of Radiation Treatment Planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rothenberg, L; Mohan, R; Van Dyk, J
Welcome and Introduction - Lawrence N. Rothenberg This symposium is one a continuing series of presentations at AAPM Annual Meetings on the historical aspects of medical physics, radiology, and radiation oncology that have been organized by the AAPM History Committee. Information on previous presentations including “Early Developments in Teletherapy” (Indianapolis 2013), “Historical Aspects of Cross-Sectional Imaging” (Charlotte 2012), “Historical Aspects of Brachytherapy” (Vancouver 2011), “50 Years of Women in Medical Physics” (Houston 2008), and “Roentgen's Early Investigations” (Minneapolis 2007) can be found in the Education Section of the AAPM Website. The Austin 2014 History Symposium will be on “Evolution ofmore » Radiation Treatment Planning.” Overview - Radhe Mohan Treatment planning is one of the most critical components in the chain of radiation therapy of cancers. Treatment plans of today contain a wide variety of sophisticated information conveying the potential clinical effectiveness of the designed treatment to practitioners. Examples of such information include dose distributions superimposed on three- or even four-dimensional anatomic images; dose volume histograms, dose, dose-volume and dose-response indices for anatomic structures of interest; etc. These data are used for evaluating treatment plans and for making treatment decisions. The current state-of-the-art has evolved from the 1940s era when the dose to the tumor and normal tissues was estimated approximately by manual means. However, the symposium will cover the history of the field from the late-1950's, when computers were first introduced for treatment planning, to the present state involving the use of high performance computing and advanced multi-dimensional anatomic, functional and biological imaging, focusing only on external beam treatment planning. The symposium will start with a general overview of the treatment planning process including imaging, structure delineation, assignment of dose requirements, consideration of uncertainties, selection of beam configurations and shaping of beams, and calculations, optimization and evaluation of dose distributions. This will be followed by three presentations covering the evolution of treatment planning, which parallels the evolution of computers, availability of advanced volumetric imaging and the development of novel technologies such as dynamic multi-leaf collimators and online image guidance. This evolution will be divided over three distinct periods - prior to 1970's, the 2D era; from 1980 to the mid-1990's, the 3D era; and from the mid 1990's to today, the IMRT era. When the World was Flat: The Two-Dimensional Radiation Therapy Era” - Jacob Van Dyk In the 2D era, anatomy was defined with the aid of solder wires, special contouring devices and projection x-rays. Dose distributions were calculated manually from single field, flat surface isodoses on transparencies. Precalculated atlases of generic dose distributions were produced by the International Atomic Energy Agency. Massive time-shared main frames and mini-computers were used to compute doses at individual points or dose distributions in a single plane. Beam shapes were generally rectangular, with wedges, missing tissue compensators and occasional blocks to shield critical structures. Dose calculations were measurement-based or they used primary and scatter calculations based on scatter-air ratio methodologies. Dose distributions were displayed on line printers as alpha-numeric character maps or isodose patterns made with pen plotters. More than Pretty Pictures: 3D Treatment Planning and Conformal Therapy - Benedick A. Fraass The introduction of computed tomography allowed the delineation of anatomy three-dimensionally and, supported partly by contracts from the National Cancer Institute, made possible the introduction and clinical use of 3D treatment planning, leading to development and use of 3D conformal therapy in the 1980's. 3D computer graphics and 3D anatomical structure definitions made possible Beam's Eye View (BEV) displays, making conformal beam shaping and much more sophisticated beam arrangements possible. These conformal plans significantly improved target dose coverage as well as normal tissue sparing. The use of dose volume histograms, gross/clinical/planning target volumes, MRI and PET imaging, multileaf collimators, and computer-controlled treatment delivery made sophisticated planning approaches practical. The significant improvements in dose distributions and analysis achievable with 3D conformal therapy made possible formal dose escalation and normal tissue tolerance clinical studies that set new and improved expectations for improved local control and decreasing complications in many clinical sites. From the Art to the State of the Art: Inverse Planning and IMRT - Thomas R. Bortfeld While the potential of intensity modulation was recognized in the mid- 1980's, intensity-modulated radiotherapy (IMRT) did not become a reality until the mid-1990's. Broad beams of photons could be sub-divided into narrow beamlets whose intensities could be determined using sophisticated optimization algorithms to appropriately balance tumor dose with normal tissue sparing. The development of dynamic multi-leaf collimators (on conventional linear accelerators as well as in helical delivery devices) enabled the efficient delivery of IMRT. The evolution of IMRT planning is continuing in the form of Volumetric Modulated Arc Therapy (VMAT) and through advanced optimization tools, such as multi-criteria optimization, automated IMRT planning, and robust optimization to protect dose distributions against uncertainties. IMRT also facilitates “dose painting” in which different sub-volumes of the target are prescribed different doses. Clearly, these advancements are being made possible by the increasing power and lower cost of computers and developments in other fields such as imaging and operations research. Summary - Radhe Mohan The history does not end here. The advancement of treatment planning is expected to continue, leading to further automation and improvements in conformality and robustness of dose distributions, particularly in the area of particle therapy. Radiobiological modeling will gain emphasis as part of the planning process. Learning Objectives: The scope of changes in technology and the capabilities of radiation treatment planning The impact of these changes in the quality of treatment plans and optimality of dose distributions The impact of development in other fields (imaging, computers, operations research, etc.) on the evolution of radiation treatment planning.« less
Nasrollah, Jabbari; Mikaeil, Molazadeh; Omid, Esnaashari; Mojtaba, Seyed Siahi; Ahad, Zeinali
2014-01-01
The impact of intravenous (IV) contrast media (CM) on radiation dose calculations must be taken into account in treatment planning. The aim of this study is to evaluate the effect of an intravenous contrast media on dose calculations in three-dimensional conformal radiation therapy (3D-CRT) for lower esophageal and rectal cancers. Seventeen patients with lower esophageal tumors and 12 patients with rectal cancers were analyzed. At the outset, all patients were planned for 3D-CRT based on the computed tomography (CT) scans with IV contrast media. Subsequently, all the plans were copied and replaced on the scans without intravenous CM. The radiation doses calculated from the two sets of CTs were compared. The dose differences between the planning image set using intravenous contrast and the image set without contrast showed an average increase in Monitor Units (MUs) in the lower esophageal region that was 1.28 and 0.75% for 6 and 15 MV photon beams, respectively. There was no statistical significant difference in the rectal region between the two sets of scans in the 3D-CRT plans. The results showed that the dose differences between the plans for the CT scans with and without CM were small and clinically tolerable. However, the differences in the lower esophageal region were significant in the statistical analysis.
Three dimensional fabrication at small size scales
Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.
2010-01-01
Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446
Ji, Kai; Zhao, Lujun; Yang, Chengwen; Meng, Maobin; Wang, Ping
2012-11-27
To quantify the incidental irradiation dose to esophageal lymph node stations when irradiating T1-4N0M0 thoracic esophageal squamous cell carcinoma (ESCC) patients with a dose of 60 Gy/30f. Thirty-nine patients with medically inoperable T1-4N0M0 thoracic ESCC were treated with three-dimensional conformal radiation (3DCRT) with involved-field radiation (IFI). The conformal clinical target volume (CTV) was re-created using a 3-cm margin in the proximal and distal direction beyond the barium esophagogram, endoscopic examination and CT scan defined the gross tumor volume (GTV) and a 0.5-cm margin in the lateral and anteroposterior directions of the CT scan-defined GTV. The PTV encompassed 1-cm proximal and distal margins and 0.5-cm radial margin based on the CTV. Nodal regions were delineated using the Japanese Society for Esophageal Diseases (JSED) guidelines and an EORTC-ROG expert opinion. The equivalent uniform dose (EUD) and other dosimetric parameters were calculated for each nodal station. Nodal regions with a metastasis rate greater than 5% were considered a high-risk lymph node subgroup. Under a 60 Gy dosage, the median D mean and EUD was greater than 40 Gy in most high-risk nodal regions except for regions of 104, 106tb-R in upper-thoracic ESCC and 101, 104-R, 105, 106rec-L, 2, 3&7 in middle-thoracic ESCC and 107, 3&7 in lower-thoracic ESCC. In the regions with an EUD less than 40 Gy, most incidental irradiation doses were significantly associated with esophageal tumor length and location. Lymph node stations near ESCC receive considerable incidental irradiation doses with involved-field irradiation that may contribute to the elimination of subclinical lesions.
Coherent backscattering enhancement in cavities. Highlights of the role of symmetry.
Gallot, Thomas; Catheline, Stefan; Roux, Philippe
2011-04-01
Through experiments and simulations, the consequences of symmetry on coherent backscattering enhancement (CBE) are studied in cavities. Three main results are highlighted. First, the CBE outside the source is observed: (a) on a single symmetric point in a one-dimensional (1-D) cavity, in a disk and in a symmetric chaotic plate; (b) on three symmetric points in a two-dimensional (2-D) rectangle; and (c) on seven symmetric points in a three-dimensional (3-D) parallelepiped cavity. Second, the existence of enhanced intensity lines and planes in 2-D and 3-D simple-shape cavities is demonstrated. Third, it is shown how the anti-symmetry caused by the special boundary conditions is responsible for the existence of a coherent backscattering decrement with a dimensional dependence of R = (½)(d), with d = 1,2,3 as the dimensionality of the cavity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui
With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as wellmore » as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V{sub 18} {sub Gy}), stomach (mean and V{sub 20} {sub Gy}), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V{sub 18} {sub Gy}), liver (mean dose), total bowel (V{sub 20} {sub Gy} and mean dose), and small bowel (V{sub 15} {sub Gy} absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose escalation and combining with radiosensitizing chemotherapy.« less
HosseiniAliabadi, S. J.; Hosseini Pooya, S. M.; Afarideh, H.; Mianji, F.
2015-01-01
Introduction The angular dependency of response for TLD cards may cause deviation from its true value on the results of environmental dosimetry, since TLDs may be exposed to radiation at different angles of incidence from the surrounding area. Objective A 3D setting of TLD cards has been calibrated isotropically in a standard radiation field to evaluate the improvement of the accuracy of measurement for environmental dosimetry. Method Three personal TLD cards were rectangularly placed in a cylindrical holder, and calibrated using 1D and 3D calibration methods. Then, the dosimeter has been used simultaneously with a reference instrument in a real radiation field measuring the accumulated dose within a time interval. Result The results show that the accuracy of measurement has been improved by 6.5% using 3D calibration factor in comparison with that of normal 1D calibration method. Conclusion This system can be utilized in large scale environmental monitoring with a higher accuracy. PMID:26157729
Morimoto, Takuma; Mizokami, Yoko; Yaguchi, Hirohisa; Buck, Steven L
2017-01-01
There has been debate about how and why color constancy may be better in three-dimensional (3-D) scenes than in two-dimensional (2-D) scenes. Although some studies have shown better color constancy for 3-D conditions, the role of specific cues remains unclear. In this study, we compared color constancy for a 3-D miniature room (a real scene consisting of actual objects) and 2-D still images of that room presented on a monitor using three viewing methods: binocular viewing, monocular viewing, and head movement. We found that color constancy was better for the 3-D room; however, color constancy for the 2-D image improved when the viewing method caused the scene to be perceived more like a 3-D scene. Separate measurements of the perceptual 3-D effect of each viewing method also supported these results. An additional experiment comparing a miniature room and its image with and without texture suggested that surface texture of scene objects contributes to color constancy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moignier, Alexandra, E-mail: alexandra.moignier@gmail.com; Broggio, David; Derreumaux, Sylvie
2014-05-01
Purpose: In left-side breast radiation therapy (RT), doses to the left main (LM) and left anterior descending (LAD) coronary arteries are usually assessed after delineation by prior anatomic knowledge on the treatment planning computed tomography (CT) scan. In this study, dose sensitivity due to interindividual coronary topology variation was assessed, and hot spots were located. Methods and Materials: Twenty-two detailed heart models, created from heart computed tomography angiographies, were fitted into a single representative female thorax. Two breast RT protocols were then simulated into a treatment planning system: the first protocol comprised tangential and tumoral bed beams (TGs{sub T}B) atmore » 50 + 16 Gy, the second protocol added internal mammary chain beams at 50 Gy to TGs{sub T}B (TGs{sub T}B{sub I}MC). For the heart, the LAD, and the LM, several dose indicators were calculated: dose-volume histograms, mean dose (D{sub mean}), minimal dose received by the most irradiated 2% of the volume (D{sub 2%}), and 3-dimensional (3D) dose maps. Variations of these indicators with anatomies were studied. Results: For the LM, the intermodel dispersion of D{sub mean} and D{sub 2%} was 10% and 11%, respectively, with TGs{sub T}B and 40% and 80%, respectively, with TGs{sub T}B{sub I}MC. For the LAD, these dispersions were 19% (D{sub mean}) and 49% (D{sub 2%}) with TGs{sub T}B and 35% (D{sub mean}) and 76% (D{sub 2%}) with TGs{sub T}B{sub I}MC. The 3D dose maps revealed that the internal mammary chain beams induced hot spots between 20 and 30 Gy on the LM and the proximal LAD for some coronary topologies. Without IMC beams, hot spots between 5 and 26 Gy are located on the middle and distal LAD. Conclusions: Coronary dose distributions with hot spot location and dose level can change significantly depending on coronary topology, as highlighted by 3D coronary dose maps. In clinical practice, coronary imaging may be required for a relevant coronary dose assessment, especially in cases of internal mammary chain irradiation.« less
Noise reduction for low-dose helical CT by 3D penalized weighted least-squares sinogram smoothing
NASA Astrophysics Data System (ADS)
Wang, Jing; Li, Tianfang; Lu, Hongbing; Liang, Zhengrong
2006-03-01
Helical computed tomography (HCT) has several advantages over conventional step-and-shoot CT for imaging a relatively large object, especially for dynamic studies. However, HCT may increase X-ray exposure significantly to the patient. This work aims to reduce the radiation by lowering the X-ray tube current (mA) and filtering the low-mA (or dose) sinogram noise. Based on the noise properties of HCT sinogram, a three-dimensional (3D) penalized weighted least-squares (PWLS) objective function was constructed and an optimal sinogram was estimated by minimizing the objective function. To consider the difference of signal correlation among different direction of the HCT sinogram, an anisotropic Markov random filed (MRF) Gibbs function was designed as the penalty. The minimization of the objection function was performed by iterative Gauss-Seidel updating strategy. The effectiveness of the 3D-PWLS sinogram smoothing for low-dose HCT was demonstrated by a 3D Shepp-Logan head phantom study. Comparison studies with our previously developed KL domain PWLS sinogram smoothing algorithm indicate that the KL+2D-PWLS algorithm shows better performance on in-plane noise-resolution trade-off while the 3D-PLWS shows better performance on z-axis noise-resolution trade-off. Receiver operating characteristic (ROC) studies by using channelized Hotelling observer (CHO) shows that 3D-PWLS and KL+2DPWLS algorithms have similar performance on detectability in low-contrast environment.
Hsieh, K S; Lin, C C; Liu, W S; Chen, F L
1996-01-01
Two-dimensional echocardiography had long been a standard diagnostic modality for congenital heart disease. Further attempts of three-dimensional reconstruction using two-dimensional echocardiographic images to visualize stereotypic structure of cardiac lesions have been successful only recently. So far only very few studies have been done to display three-dimensional anatomy of the heart through two-dimensional image acquisition because such complex procedures were involved. This study introduced a recently developed image acquisition and processing system for dynamic three-dimensional visualization of various congenital cardiac lesions. From December 1994 to April 1995, 35 cases were selected in the Echo Laboratory here from about 3000 Echo examinations completed. Each image was acquired on-line with specially designed high resolution image grazmber with EKG and respiratory gating technique. Off-line image processing using a window-architectured interactive software package includes construction of 2-D ehcocardiographic pixel to 3-D "voxel" with conversion of orthogonal to rotatory axial system, interpolation, extraction of region of interest, segmentation, shading and, finally, 3D rendering. Three-dimensional anatomy of various congenital cardiac defects was shown, including four cases with ventricular septal defects, two cases with atrial septal defects, and two cases with aortic stenosis. Dynamic reconstruction of a "beating heart" is recorded as vedio tape with video interface. The potential application of 3D display of the reconstruction from 2D echocardiographic images for the diagnosis of various congenital heart defects has been shown. The 3D display was able to improve the diagnostic ability of echocardiography, and clear-cut display of the various congenital cardiac defects and vavular stenosis could be demonstrated. Reinforcement of current techniques will expand future application of 3D display of conventional 2D images.
Levin, S G; Young, R W; Stohler, R L
1992-11-01
This paper presents an estimate of the median lethal dose for humans exposed to total-body irradiation and not subsequently treated for radiation sickness. The median lethal dose was estimated from calculated doses to young adults who were inside two reinforced concrete buildings that remained standing in Nagasaki after the atomic detonation. The individuals in this study, none of whom have previously had calculated doses, were identified from a detailed survey done previously. Radiation dose to the bone marrow, which was taken as the critical radiation site, was calculated for each individual by the Engineering Physics and Mathematics Division of the Oak Ridge National Laboratory using a new three-dimensional discrete-ordinates radiation transport code that was developed and validated for this study using the latest site geometry, radiation yield, and spectra data. The study cohort consisted of 75 individuals who either survived > 60 d or died between the second and 60th d postirradiation due to radiation injury, without burns or other serious injury. Median lethal dose estimates were calculated using both logarithmic (2.9 Gy) and linear (3.4 Gy) dose scales. Both calculations, which met statistical validity tests, support previous estimates of the median lethal dose based solely on human data, which cluster around 3 Gy.
Gosnell, Jordan; Pietila, Todd; Samuel, Bennett P; Kurup, Harikrishnan K N; Haw, Marcus P; Vettukattil, Joseph J
2016-12-01
Three-dimensional (3D) printing is an emerging technology aiding diagnostics, education, and interventional, and surgical planning in congenital heart disease (CHD). Three-dimensional printing has been derived from computed tomography, cardiac magnetic resonance, and 3D echocardiography. However, individually the imaging modalities may not provide adequate visualization of complex CHD. The integration of the strengths of two or more imaging modalities has the potential to enhance visualization of cardiac pathomorphology. We describe the feasibility of hybrid 3D printing from two imaging modalities in a patient with congenitally corrected transposition of the great arteries (L-TGA). Hybrid 3D printing may be useful as an additional tool for cardiologists and cardiothoracic surgeons in planning interventions in children and adults with CHD.
Young Infants' Perception of the Trajectories of Two- and Three-Dimensional Objects
ERIC Educational Resources Information Center
Johnson, Scott P.; Bremner, J. Gavin; Slater, Alan M.; Shuwairi, Sarah M.; Mason, Uschi; Spring, Jo; Usherwood, Barrie
2012-01-01
We investigated oculomotor anticipations in 4-month-old infants as they viewed center-occluded object trajectories. In two experiments, we examined performance in two-dimensional (2D) and three-dimensional (3D) dynamic occlusion displays and in an additional 3D condition with a smiley face as the moving target stimulus. Rates of anticipatory eye…
Sarkar, Biplab; Ray, Jyotirmoy; Ganesh, Tharmarnadar; Manikandan, Arjunan; Munshi, Anusheel; Rathinamuthu, Sasikumar; Kaur, Harpreet; Anbazhagan, Satheeshkumar; Giri, Upendra K; Roy, Soumya; Jassal, Kanan; Mohanti, Bidhu Kalyan
2018-03-22
The aim of this article is to derive and verify a mathematical formulation for the reduction of the six-dimensional (6D) positional inaccuracies of patients (lateral, longitudinal, vertical, pitch, roll and yaw) to three-dimensional (3D) linear shifts. The formulation was mathematically and experimentally tested and verified for 169 stereotactic radiotherapy patients. The mathematical verification involves the comparison of any (one) of the calculated rotational coordinates with the corresponding value from the 6D shifts obtained by cone beam computed tomography (CBCT). The experimental verification involves three sets of measurements using an ArcCHECK phantom, when (i) the phantom was not moved (neutral position: 0MES), (ii) the position of the phantom shifted by 6D shifts obtained from CBCT (6DMES) from neutral position and (iii) the phantom shifted from its neutral position by 3D shifts reduced from 6D shifts (3DMES). Dose volume histogram and statistical comparisons were made between [Formula: see text] and [Formula: see text]. The mathematical verification was performed by a comparison of the calculated and measured yaw (γ°) rotation values, which gave a straight line, Y = 1X with a goodness of fit as R 2 = 0.9982. The verification, based on measurements, gave a planning target volume receiving 100% of the dose (V100%) as 99.1 ± 1.9%, 96.3 ± 1.8%, 74.3 ± 1.9% and 72.6 ± 2.8% for the calculated treatment planning system values TPSCAL, 0MES, 3DMES and 6DMES, respectively. The statistical significance (p-values: paired sample t-test) of V100% were found to be 0.03 for the paired sample [Formula: see text] and 0.01 for [Formula: see text]. In this paper, a mathematical method to reduce 6D shifts to 3D shifts is presented. The mathematical method is verified by using well-matched values between the measured and calculated γ°. Measurements done on the ArcCHECK phantom also proved that the proposed methodology is correct. The post-correction of the table position condition introduces a minimal spatial dose delivery error in the frameless stereotactic system, using a 6D motion enabled robotic couch. This formulation enables the reduction of 6D positional inaccuracies to 3D linear shifts, and hence allows the treatment of patients with frameless stereotactic radiosurgery by using only a 3D linear motion enabled couch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, C; Yin, Y
Purpose: The purpose of this work was to determine the dosimetric benefit to normal tissues by tracking liver tumor dose in four dimensional radiation therapy (4DRT) on ten phases of four dimensional computer tomagraphy(4DCT) images. Methods: Target tracking each phase with the beam aperture for ten liver cancer patients were converted to cumulative plan and compared to the 3D plan with a merged target volume based on 4DCT image in radiation treatment planning system (TPS). The change in normal tissue dose was evaluated in the plan by using the parameters V5, V10, V15, V20,V25, V30, V35 and V40 (volumes receivingmore » 5, 10, 15, 20, 25, 30, 35 and 40Gy, respectively) in the dose-volume histogram for the liver; mean dose for the following structures: liver, left kidney and right kidney; and maximum dose for the following structures: bowel, duodenum, esophagus, stomach and heart. Results: There was significant difference between 4D PTV(average 115.71cm3 )and ITV(169.86 cm3). When the planning objective is 95% volume of PTV covered by the prescription dose, the mean dose for the liver, left kidney and right kidney have an average decrease 23.13%, 49.51%, and 54.38%, respectively. The maximum dose for bowel, duodenum,esophagus, stomach and heart have an average decrease 16.77%, 28.07%, 24.28%, 4.89%, and 4.45%, respectively. Compared to 3D RT, radiation volume for the liver V5, V10, V15, V20, V25, V30, V35 and V40 by using the 4D plans have a significant decrease(P≤0.05). Conclusion: The 4D plan method creates plans that permit better sparing of the normal structures than the commonly used ITV method, which delivers the same dosimetric effects to the target.« less
Recognition Of Complex Three Dimensional Objects Using Three Dimensional Moment Invariants
NASA Astrophysics Data System (ADS)
Sadjadi, Firooz A.
1985-01-01
A technique for the recognition of complex three dimensional objects is presented. The complex 3-D objects are represented in terms of their 3-D moment invariants, algebraic expressions that remain invariant independent of the 3-D objects' orientations and locations in the field of view. The technique of 3-D moment invariants has been used successfully for simple 3-D object recognition in the past. In this work we have extended this method for the representation of more complex objects. Two complex objects are represented digitally; their 3-D moment invariants have been calculated, and then the invariancy of these 3-D invariant moment expressions is verified by changing the orientation and the location of the objects in the field of view. The results of this study have significant impact on 3-D robotic vision, 3-D target recognition, scene analysis and artificial intelligence.
Belderbos, José S A; De Jaeger, Katrien; Heemsbergen, Wilma D; Seppenwoolde, Yvette; Baas, Paul; Boersma, Liesbeth J; Lebesque, Joos V
2003-02-01
To evaluate the feasibility of dose escalation in non-small cell lung cancer (NSCLC) using three-dimensional conformal radiation therapy. The main eligibility criteria of the trial were: pathologically proven inoperable NSCLC, ECOG performance status
Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, R.; Betti, R.; Sanz, J.
The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. As a result, the vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.
NASA Technical Reports Server (NTRS)
Yang, Ren; Feeback, Daniel L.; Wang, Wanjun
2004-01-01
This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was microfabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, microfabricated, and tested. Three-dimensional hydro-focusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily microfabricated and integrated with other polymer microfluidic structures.
NASA Technical Reports Server (NTRS)
Yang, Ren; Feedback, Daniel L.; Wang, Wanjun
2004-01-01
This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was micro-fabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, micro-fabricated, and tested. Three-dimensional hydrofocusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily micro-fabricated and integrated with other polymer microfluidic structures.
Use of Cone Beam Computed Tomography in Endodontics
Scarfe, William C.; Levin, Martin D.; Gane, David; Farman, Allan G.
2009-01-01
Cone Beam Computed Tomography (CBCT) is a diagnostic imaging modality that provides high-quality, accurate three-dimensional (3D) representations of the osseous elements of the maxillofacial skeleton. CBCT systems are available that provide small field of view images at low dose with sufficient spatial resolution for applications in endodontic diagnosis, treatment guidance, and posttreatment evaluation. This article provides a literature review and pictorial demonstration of CBCT as an imaging adjunct for endodontics. PMID:20379362
Introduction of novel 3D-printed superficial applicators for high-dose-rate skin brachytherapy.
Jones, Emma-Louise; Tonino Baldion, Anna; Thomas, Christopher; Burrows, Tom; Byrne, Nick; Newton, Victoria; Aldridge, Sarah
Custom-made surface mold applicators often allow more flexibility when carrying out skin brachytherapy, particularly for small treatment areas with high surface obliquity. They can, however, be difficult to manufacture, particularly if there is a lack of experience in superficial high-dose-rate brachytherapy techniques or with limited resources. We present a novel method of manufacturing superficial brachytherapy applicators utilizing three-dimensional (3D)-printing techniques. We describe the treatment planning process and the process of applicator manufacture. The treatment planning process, with the introduction of a pre-plan, allows for an "ideal" catheter arrangement within an applicator to be determined, exploiting varying catheter orientations, heights, and curvatures if required. The pre-plan arrangement is then 3D printed to the exact specifications of the pre-plan applicator design. This results in improved target volume coverage and improved sparing of organs at risk. Using a pre-plan technique for ideal catheter placement followed by automated 3D-printed applicator manufacture has greatly improved the entire process of superficial high-dose-rate brachytherapy treatment. We are able to design and manufacture flexible, well-fitting, superior quality applicators resulting in a more efficient and improved patient pathway and patient experience. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Mainard, D; Barbier, O; Knafo, Y; Belleville, R; Mainard-Simard, L; Gross, J-B
2017-06-01
In total hip arthroplasty (THA), the acetabular cup and femoral stem must be correctly sized and positioned to avoid intraoperative and postoperative complications, achieve good functional outcomes and ensure long-term survival. Current two-dimensional (2D) techniques do not provide sufficient accuracy, while low-dose biplanar X-rays (EOS) had not been assessed in this indication. Therefore, we performed a case-control study to : (1) evaluate the prediction of stem and cup size for a new 3D planning technique (stereoradiographic imaging plus 3D modeling) in comparison to 2D templating on film radiographs and (2) evaluate the accuracy and reproducibility of this 3D technique for preoperative THA planning. Accuracy and reproducibility are better with the 3D vs. 2D method. Stem and cup sizes were retrospectively determined by two senior surgeons, twice, for a total of 31 unilateral primary THA patients in this pilot study, using 3D preplanning software on low-dose biplanar X-rays and with 2D templating on conventional anteroposterior (AP) film radiographs. Patients with a modular neck or dual-mobility prosthesis were excluded. All patients but one had primary osteoarthritis; one following trauma did not have a cup implanted. The retrospectively planned sizes were compared to the sizes selected during surgery, and intraclass coefficients (ICC) calculated. 3D planning predicted stem size more accurately than 2D templating: stem sizes were planned within one size in 26/31 (84%) of cases in 3D versus 21/31 (68%) in 2D (P=0.04). 3D and 2D planning accuracies were not significantly different for cup size: cup sizes were planned within one size in 28/30 (92%) of cases in 3D versus 26/30 (87%) in 2D (P=0.30). ICC for stem size were 0.88 vs. 0.91 for 3D and 2D, respectively. Inter-operator ICCs for cup size were 0.84 vs. 0.71, respectively. Repetitions of the 3D planning were within one size (except one stem), with the majority predicting the same size. Increased accuracy in 3D may be due to the use of actual size (non-magnified) images, and judging fit on AP and lateral images simultaneously. Results for other implant components may differ from those presented. Size selection may improve further with planning experience, based on a feedback loop between planning and surgical execution. Level III. Retrospective case-control study. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakhalkar, H. S.; Oldham, M.
2008-01-15
This study introduces a charge coupled device (CCD) area detector based optical-computed tomography (optical-CT) scanner for comprehensive verification of radiation dose distributions recorded in nonscattering radiochromic dosimeters. Defining characteristics include: (i) a very fast scanning time of {approx}5 min to acquire a complete three-dimensional (3D) dataset, (ii) improved image formation through the use of custom telecentric optics, which ensures accurate projection images and minimizes artifacts from scattered and stray-light sources, and (iii) high resolution (potentially 50 {mu}m) isotropic 3D dose readout. The performance of the CCD scanner for 3D dose readout was evaluated by comparison with independent 3D readout frommore » the single laser beam OCTOPUS-scanner for the same PRESAGE dosimeters. The OCTOPUS scanner was considered the 'gold standard' technique in light of prior studies demonstrating its accuracy. Additional comparisons were made against calculated dose distributions from the ECLIPSE treatment-planning system. Dose readout for the following treatments were investigated: (i) a single rectangular beam irradiation to investigate small field and very steep dose gradient dosimetry away from edge effects, (ii) a 2-field open beam parallel-opposed irradiation to investigate dosimetry along steep dose gradients, and (iii) a 7-field intensity modulated radiation therapy (IMRT) irradiation to investigate dosimetry for complex treatment delivery involving modulation of fluence and for dosimetry along moderate dose gradients. Dose profiles, dose-difference plots, and gamma maps were employed to evaluate quantitative estimates of agreement between independently measured and calculated dose distributions. Results indicated that dose readout from the CCD scanner was in agreement with independent gold-standard readout from the OCTOPUS-scanner as well as the calculated ECLIPSE dose distribution for all treatments, except in regions within a few millimeters of the edge of the dosimeter, where edge artifact is predominant. Agreement of line profiles was observed, even along steep dose gradients. Dose difference plots indicated that the CCD scanner dose readout differed from the OCTOPUSscanner readout and ECLIPSE calculations by {approx}10% along steep dose gradients and by {approx}5% along moderate dose gradients. Gamma maps (3% dose-difference and 3 mm distance-to-agreement acceptance criteria) revealed agreement, except for regions within 5 mm of the edge of the dosimeter where the edge artifact occurs. In summary, the data demonstrate feasibility of using the fast, high-resolution CCD scanner for comprehensive 3D dosimetry in all applications, except where dose readout is required close to the edges of the dosimeter. Further work is ongoing to reduce this artifact.« less
NASA Astrophysics Data System (ADS)
Mann, P.; Witte, M.; Moser, T.; Lang, C.; Runz, A.; Johnen, W.; Berger, M.; Biederer, J.; Karger, C. P.
2017-01-01
In this study, we developed a new setup for the validation of clinical workflows in adaptive radiation therapy, which combines a dynamic ex vivo porcine lung phantom and three-dimensional (3D) polymer gel dosimetry. The phantom consists of an artificial PMMA-thorax and contains a post mortem explanted porcine lung to which arbitrary breathing patterns can be applied. A lung tumor was simulated using the PAGAT (polyacrylamide gelatin gel fabricated at atmospheric conditions) dosimetry gel, which was evaluated in three dimensions by magnetic resonance imaging (MRI). To avoid bias by reaction with oxygen and other materials, the gel was collocated inside a BAREX™ container. For calibration purposes, the same containers with eight gel samples were irradiated with doses from 0 to 7 Gy. To test the technical feasibility of the system, a small spherical dose distribution located completely within the gel volume was planned. Dose delivery was performed under static and dynamic conditions of the phantom with and without motion compensation by beam gating. To verify clinical target definition and motion compensation concepts, the entire gel volume was homogeneously irradiated applying adequate margins in case of the static phantom and an additional internal target volume in case of dynamically operated phantom without and with gated beam delivery. MR-evaluation of the gel samples and comparison of the resulting 3D dose distribution with the planned dose distribution revealed a good agreement for the static phantom. In case of the dynamically operated phantom without motion compensation, agreement was very poor while additional application of motion compensation techniques restored the good agreement between measured and planned dose. From these experiments it was concluded that the set up with the dynamic and anthropomorphic lung phantom together with 3D-gel dosimetry provides a valuable and versatile tool for geometrical and dosimetrical validation of motion compensated treatment concepts in adaptive radiotherapy.
Levy, Gary; Malik, Minnie; Britten, Joy; Gilden, Melissa; Segars, James; Catherino, William H.
2014-01-01
Objective To investigate the impact of liarozole on transforming growth factor-β3 (TGF-β3) expression, TGF-β3 controlled profibrotic cytokines, and extracellular matrix formation in a three-dimensional (3D) leiomyoma model system. Design Molecular and immunohistochemical analysis in a cell line evaluated in a three-dimensional culture. Setting Laboratory study. Patient(s) None. Intervention(s) Treatment of leiomyoma and myometrial cells with liarozole and TGF-β3 in a three-dimensional culture system. Main Outcome Measure(s) Quantitative real-time reverse-transcriptase polymerase chain reaction and Western blotting to assess fold gene and protein expression of TGF-β3 and TGF-β3 regulated fibrotic cytokines: collagen 1A1 (COL1A1), fibronectin, and versican before and after treatment with liarozole, and confirmatory immunohistochemical stains of treated three-dimensional cultures. Result(s) Both TGF-β3 gene and protein expression were elevated in leiomyoma cells compared with myometrium in two-dimensional and 3D cultures. Treatment with liarozole decreased TGF-β3 gene and protein expression. Extracellular matrix components versican, COL1A1, and fibronectin were also decreased by liarozole treatment in 3D cultures. Treatment of 3D cultures with TGF-β3 increased gene expression and protein production of COL1A1, fibronectin, and versican. Conclusion(s) Liarozole decreased TGF-β3 and TGF-β3–mediated extracellular matrix expression in a 3D uterine leiomyoma culture system. PMID:24825427
NASA Technical Reports Server (NTRS)
Behravesh, E.; Emami, K.; Wu, H.; Gonda, S.
2004-01-01
Assessing the biological risks associated with exposure to the high-energy charged particles encountered in space is essential for the success of long-term space exploration. Although prokaryotic and eukaryotic cell models developed in our laboratory and others have advanced our understanding of many aspects of genotoxicity, in vitro models are needed to assess the risk to humans from space radiation insults. Such models must be representative of the cellular interactions present in tissues and capable of quantifying I genotoxic damage. Toward this overall goal, the objectives of this study were to examine the effect of the localized microenvironment of cells, cultured as either 2-dimensional (2D) monolayers or 3-dimensional (3D) aggregates, on the rate and type of genotoxic damage resulting from exposure to iron charged particles, a significant portion of space radiation. We used rodent transgenic cell lines containing 50-70 copies of a LacI transgene to provide the enhanced sensitivity required to quantify mutational frequency and type in the 1,100-bp LacI target as well as assessment of DNA,damage to the entire 45-kbp construct. Cultured cells were exposed to high-enerir on charged particles at Brookhaven National Laboratory s Alternating Gradient Synchrotron facility for a total dose of 0, 0.1, 0.25,0.5, 1.0, or 2.0 Gy and allowed to recover for 0, 1, or 7 days, after which mutational type and frequency were evaluated. The mutational frequency was found to be higher in 3D samples than in 2D samples at all radiation doses. Mutational frequency also was higher at 7 days after irradiation than immediately after exposure. DNA sequencing of the mutant targets revealed that deletional mutations contributed an increasingly high percentage (up to 27%) of all mutations in cells as the dose was increased from 0.5 to 2 Gy. Several mutants also showed large and complex deletions in multiple locations within the Lac1 target. However, no differences in mutational type were found between the 2D and the 3D samples. These 3D tissue-like model systems can reduce the uncertainty involved in extrapolating risk between in vitro cellular and in vivo models.
Wang, Dongwen; Zhang, Bin; Yuan, Xiaobin; Zhang, Xuhui; Liu, Chen
2015-09-01
To evaluate the feasibility and effectiveness of preoperative planning and real-time assisted surgical navigation for three-dimensional laparoscopic partial nephrectomy under the guidance of three-dimensional individual digital model (3D-IDM) created using three-dimensional medical image reconstructing and guiding system (3D-MIRGS). Between May 2012 and February 2014, 44 patients with cT1 renal tumors underwent retroperitoneal laparoscopic partial nephrectomy (LPN) using a three-dimensional laparoscopic system. The 3D-IDMs were created using the 3D-MIRGS in 21 patients (3D-MIRGS group) between February 2013 and February 2014. After preoperative planning, operations were real-time assisted using composite 3D-IDMs, which were fused with two-dimensional retrolaparoscopic images. The remaining 23 patients underwent surgery without 3D-MIRGS between May 2012 and February 2013; 14 of these patients were selected as a control group. Preoperative aspects and dimensions used for an anatomical score, "radius; exophytic/endophytic; nearness; anterior/posterior; location" nephrometry score, tumor size, operative time (OT), segmental renal artery clamping (SRAC) time, estimated blood loss (EBL), postoperative hospitalization, the preoperative serum creatinine level and ipsilateral glomerular filtration rate (GFR), as well as postoperative 6-month data were compared between groups. All the SRAC procedures were technically successful, and each targeted tumor was excised completely; final pathological margin results were negative. The OT was shorter (159.0 vs. 193.2 min; p < 0.001), and EBL (148.1 vs. 176.1 mL; p < 0.001) was reduced in the 3D-MIRGS group compared with controls. No statistically significant differences in SRAC time or postoperative hospitalization were found between the groups. Neither group showed any statistically significant increases in serum creatinine level or decreases in ipsilateral GFR postoperatively. Preoperative planning and real-time assisted surgical navigation using the 3D-IDM reconstructed from 3D-MIRGS and combined with the 3D laparoscopic system can facilitate LPN and result in precise SRAC and accurate excision of tumor that is both effective and safe.
NASA-VOF3D: A three-dimensional computer program for incompressible flows with free surfaces
NASA Astrophysics Data System (ADS)
Torrey, M. D.; Mjolsness, R. C.; Stein, L. R.
1987-07-01
Presented is the NASA-VOF3D three-dimensional, transient, free-surface hydrodynamics program. This three-dimensional extension of NASA-VOF2D will, in principle, permit treatment in full three-dimensional generality of the wide variety of applications that could be treated by NASA-VOF2D only within the two-dimensional idealization. In particular, it, like NASA-VOF2D, is specifically designed to calculate confined flows in a low g environment. The code is presently restricted to cylindrical geometry. The code is based on the fractional volume-of-fluid method and allows multiple free surfaces with surface tension and wall adhesion. It also has a partial cell treatment that allows curved boundaries and internal obstacles. This report provides a brief discussion of the numerical method, a code listing, and some sample problems.
NASA Astrophysics Data System (ADS)
Hara, Y.; Furukawa, T.; Mizushima, K.; Inaniwa, T.; Saotome, N.; Tansho, R.; Saraya, Y.; Shirai, T.; Noda, K.
2017-09-01
Since 2011, a three-dimensional (3D) scanning irradiation system has been utilized for treatments at the National Institute of Radiological Sciences-Heavy Ion Medical Accelerator in Chiba (NIRS-HIMAC). In 2012, a hybrid depth scanning method was introduced for the depth direction, in which 11 discrete beam energies are used in conjunction with the range shifter. To suppress beam spread due to multiple scattering and nuclear reactions, we then developed a full energy scanning method. Accelerator tuning and beam commissioning tests prior to a treatment with this method are time-consuming, however. We therefore devised a new approach to obtain the pencil beam dataset, including consideration of the contribution of large-angle scattered (LAS) particles, which reduces the time spent on beam data preparation. The accuracy of 3D dose delivery using this new approach was verified by measuring the dose distributions for different target volumes. Results confirmed that the measured dose distributions agreed well with calculated doses. Following this evaluation, treatments using the full energy scanning method were commenced in September 2015.
Real three-dimensional objects: effects on mental rotation.
Felix, Michael C; Parker, Joshua D; Lee, Charles; Gabriel, Kara I
2011-08-01
The current experiment investigated real three-dimensional (3D) objects with regard to performance on a mental rotation task and whether the appearance of sex differences may be mediated by experiences with spatially related activities. 40 men and 40 women were presented with alternating timed trials consisting of real-3D objects or two-dimensional illustrations of 3D objects. Sex differences in spatially related activities did not significantly influence the finding that men outperformed women on mental rotation of either stimulus type. However, on measures related to spatial activities, self-reported proficiency using maps correlated positively with performance only on trials with illustrations whereas self-reported proficiency using GPS correlated negatively with performance regardless of stimulus dimensionality. Findings may be interpreted as suggesting that rotating real-3D objects utilizes distinct but overlapping spatial skills compared to rotating two-dimensional representations of 3D objects, and real-3D objects can enhance mental rotation performance.
Mashari, Azad; Montealegre-Gallegos, Mario; Knio, Ziyad; Yeh, Lu; Jeganathan, Jelliffe; Matyal, Robina; Khabbaz, Kamal R; Mahmood, Feroze
2016-12-01
Three-dimensional (3D) printing is a rapidly evolving technology with several potential applications in the diagnosis and management of cardiac disease. Recently, 3D printing (i.e. rapid prototyping) derived from 3D transesophageal echocardiography (TEE) has become possible. Due to the multiple steps involved and the specific equipment required for each step, it might be difficult to start implementing echocardiography-derived 3D printing in a clinical setting. In this review, we provide an overview of this process, including its logistics and organization of tools and materials, 3D TEE image acquisition strategies, data export, format conversion, segmentation, and printing. Generation of patient-specific models of cardiac anatomy from echocardiographic data is a feasible, practical application of 3D printing technology. © 2016 The authors.
Comparing conformal, arc radiotherapy and helical tomotherapy in craniospinal irradiation planning.
Myers, Pamela A; Mavroidis, Panayiotis; Papanikolaou, Nikos; Stathakis, Sotirios
2014-09-08
Currently, radiotherapy treatment plan acceptance is based primarily on dosimetric performance measures. However, use of radiobiological analysis to assess benefit in terms of tumor control and harm in terms of injury to normal tissues can be advantageous. For pediatric craniospinal axis irradiation (CSI) patients, in particular, knowing the technique that will optimize the probabilities of benefit versus injury can lead to better long-term outcomes. Twenty-four CSI pediatric patients (median age 10) were retrospectively planned with three techniques: three-dimensional conformal radiation therapy (3D CRT), volumetric-modulated arc therapy (VMAT), and helical tomotherapy (HT). VMAT plans consisted of one superior and one inferior full arc, and tomotherapy plans were created using a 5.02cm field width and helical pitch of 0.287. Each plan was normalized to 95% of target volume (whole brain and spinal cord) receiving prescription dose 23.4Gy in 13 fractions. Using an in-house MATLAB code and DVH data from each plan, the three techniques were evaluated based on biologically effective uniform dose (D=), the complication-free tumor control probability (P+), and the width of the therapeutically beneficial range. Overall, 3D CRT and VMAT plans had similar values of D= (24.1 and 24.2 Gy), while HT had a D= slightly lower (23.6 Gy). The average values of the P+ index were 64.6, 67.4, and 56.6% for 3D CRT, VMAT, and HT plans, respectively, with the VMAT plans having a statistically significant increase in P+. Optimal values of D= were 28.4, 33.0, and 31.9 Gy for 3D CRT, VMAT, and HT plans, respectively. Although P+ values that correspond to the initial dose prescription were lower for HT, after optimizing the D= prescription level, the optimal P+ became 94.1, 99.5, and 99.6% for 3D CRT, VMAT, and HT, respectively, with the VMAT and HT plans having statistically significant increases in P+. If the optimal dose level is prescribed using a radiobiological evaluation method, as opposed to a purely dosimetric one, the two IMRT techniques, VMAT and HT, will yield largest overall benefit to CSI patients by maximizing tumor control and limiting normal tissue injury. Using VMAT or HT may provide these pediatric patients with better long-term outcomes after radiotherapy.
Vijayakumar, S; Chen, G T
1995-12-01
To briefly review scientific rationale of 3D conformal radiation therapy (3DCRT) and discuss the prospects, opportunities, and challenges in the implementation of 3DCRT. Some of these ideas were discussed during a workshop on "Implementation of Three-Dimensional Conformal Radiation Therapy" in April 1994 at Bethesda, MD, and others have been discussed elsewhere in the literature. Local-regional control of cancer is an important component in the overall treatment strategy in any patient with cancer. It has been shown that failure to achieve local-regional control can lead to (a) an increase in chances of distant metastases, and (b) a decrease in the survival. In many disease sites, the doses delivered currently are inadequate to achieve satisfactory local tumor control rates; this is because in many sites, only limited doses of radiotherapy can be delivered due to the proximity of cancer to radiosensitive normal tissues. By conforming the radiotherapy beams to the tumor, doses to the tumors can be enhanced and doses to the normal tissues can be reduced. With the advances in 3DCRT, such conformation is possible now and is the rationale for using 3DCRT. However, a number of questions do remain that are not limited to the following: (a) What are the implications in terms of target volume definitions when implementing 3DCRT? (b) Are there some sites where research efforts can be focused to document the efficacy and cost effectiveness of 3DCRT? (c) How do we implement day-to-day 3DCRT treatment efficiently? (d) How do we transfer the technology from the university centers to the community without compromising quality? (e) What are all the quality assurance/quality improvement questions that need to be addressed and how do we ascertain quality assurance of 3DCRT? (f) Have we looked at cost-benefit ratios and quality of life (QOL) issues closely? There is a need for defining multiple target volumes: gross tumor volume, clinical target volume(s), and planning target volume(s). Such definitions should make implementation of 3DCRT more complex, yet will make high-dose delivery a possibility. There are many sites in which single and multiinstitutional studies are ongoing that include prostate, lung, head and neck, and brain. In other areas, cooperative group trials are required because of the inability of single institutions to accrue enough patients to answer clinically relevant questions with statistical validity. Although implementation of 3DCRT will require multiple steps, these multiple steps can be brought into clinical practice gradually and one does not have to wait until all steps required for implementation of 3DCRT are available. In this respect, "3DCRT" should be used in a very broad sense, from beam's eye view blocking, use of multibeam dose distribution, use of dose-volume histograms in choosing alternative plans, noncoplanar beam arrangements, intensity modulation, inverse planning, to totally automated implementation of 3DCRT. To transfer the 3DCRT capabilities to the community from the University Centers, there is a necessity to develop quality assurance programs. RTOG and the Three-Dimensional Oncology Group are spearheading these efforts. Three-dimensional conformal radiation therapy has potential not only to improve local control and decrease toxicity, but also to improve the cost benefit ratio in the use of radiotherapy as well as in improving quality of life in patients with cancer. Achieving many potential benefits of 3DCRT (improvement in local control, decreasing toxicity, organs-function preservation, improvement in cost effectiveness) will require further physics-related and clinical research in carefully conceived and successfully completed future clinical trials.
Study of optical design of three-dimensional digital ophthalmoscopes.
Fang, Yi-Chin; Yen, Chih-Ta; Chu, Chin-Hsien
2015-10-01
This study primarily involves using optical zoom structures to design a three-dimensional (3D) human-eye optical sensory system with infrared and visible light. According to experimental data on two-dimensional (2D) and 3D images, human-eye recognition of 3D images is substantially higher (approximately 13.182%) than that of 2D images. Thus, 3D images are more effective than 2D images when they are used at work or in high-recognition devices. In the optical system design, infrared and visible light wavebands were incorporated as light sources to perform simulations. The results can be used to facilitate the design of optical systems suitable for 3D digital ophthalmoscopes.
Rotary culture enhances pre-osteoblast aggregation and mineralization.
Facer, S R; Zaharias, R S; Andracki, M E; Lafoon, J; Hunter, S K; Schneider, G B
2005-06-01
Three-dimensional environments have been shown to enhance cell aggregation and osteoblast differentiation. Thus, we hypothesized that three-dimensional (3D) growth environments would enhance the mineralization rate of human embryonic palatal mesenchymal (HEPM) pre-osteoblasts. The objective of this study was to investigate the potential use of rotary cell culture systems (RCCS) as a means to enhance the osteogenic potential of pre-osteoblast cells. HEPM cells were cultured in a RCCS to create 3D enviroments. Tissue culture plastic (2D) cultures served as our control. 3D environments promoted three-dimensional aggregate formations. Increased calcium and phosphorus deposition was significantly enhanced three- to 18-fold (P < 0.001) in 3D cultures as compared with 2D environments. 3D cultures mineralized in 1 wk as compared with the 2D cultures, which took 4 wks, a decrease in time of nearly 75%. In conclusion, our studies demonstrated that 3D environments enhanced osteoblast cell aggregation and mineralization.
An Interactive Preprocessor Program with Graphics for a Three-Dimensional Finite Element Code.
ERIC Educational Resources Information Center
Hamilton, Claude Hayden, III
The development and capabilities of an interactive preprocessor program with graphics for an existing three-dimensional finite element code is presented. This preprocessor program, EDGAP3D, is designed to be used in conjunction with the Texas Three Dimensional Grain Analysis Program (TXCAP3D). The code presented in this research is capable of the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavoni, J; Silveira, M; Filho, O Baffa
Purpose: This work presents an end-to-end test using a Gel-Alanine phantom to validate the three-dimensional (3D) dose distribution (DD) delivered by a single isocenter VMAT technique on the simultaneous treatment of multiple brain metastases. Methods: Three cylindrical phantons containing MAGIC-f gel dosimeter were used to measure the 3D DD of a VMAT treatment, the first two were filled with the gel dosimeter (Gel 1 and 2) and the third one was filled with gel and 12 alanine dosimeters distributed along it (Gel 3). Gels 1 and 3 were irradiated and gel 2 was used to map the magnetic resonance imagemore » (MRI) scanner field inomogeneities. A CT scan of gel 3 was used for the VMAT treatment planning and 5 alanine pellets were chosen as lesions, around them a PTV was grown and different dose prescriptions were assigned for each one, varying from 5 to 9Gy. Before treatment, the plan was approved in a QA based on an ionization chamber absolute dose measurement, a radiochromic film planar dose measurement and a portal dosimetry per field verification; and also the phantons positioning were verified by ExacTrac 6D correction and OBI kV Cone Beam CT. The gels were irradiated, the MRIs were acquired 24 hours after irradiation and finally, the alanine dosimeters were analysed in a X-band Electron Spin Resonance spectrometer. Results: The association of the two detectors enabled the 3D dose evaluation by gel and punctually inside target volumes by alanine. In the gamma analyses (3%/3mm) comparing the 5 PTVs’ central images DD with TPS expected DD more than 95% of the points were approved. The alanine absolute dose measurements were in agreement with TPS by less than 5%. Conclusion: The gel-alanine phantom enabled the dosimetric validation of multiple brain metastases treatment using VMAT, being an almost ideal tool for this application. This work is partially supported by FAPESP.« less
Shi, Chengyu; Guo, Bingqi; Cheng, Chih-Yao; Esquivel, Carlos; Eng, Tony; Papanikolaou, Niko
2010-07-01
The feasibility of intensity modulated brachytherapy (IMBT) to improve dose conformity for irregularly shaped targets has been previously investigated by researchers by means of using partially shielded sources. However, partial shielding does not fully explore the potential of IMBT. The goal of this study is to introduce the concept of three dimensional (3D) intensity modulated brachytherapy and solve two fundamental issues regarding the application of 3D IMBT treatment planning: The dose calculation algorithm and the inverse treatment planning method. A 3D IMBT treatment planning system prototype was developed using the MATLAB platform. This system consists of three major components: (1) A comprehensive IMBT source calibration method with dosimetric inputs from Monte Carlo (EGSnrc) simulations; (2) a "modified TG-43" (mTG-43) dose calculation formalism for IMBT dosimetry; and (3) a physical constraint based inverse IMBT treatment planning platform utilizing a simulated annealing optimization algorithm. The model S700 Axxent electronic brachytherapy source developed by Xoft, Inc. (Fremont, CA), was simulated in this application. Ten intracavitary accelerated partial breast irradiation (APBI) cases were studied. For each case, an "isotropic plan" with only optimized source dwell time and a fully optimized IMBT plan were generated and compared to the original plan in various dosimetric aspects, such as the plan quality, planning, and delivery time. The issue of the mechanical complexity of the IMBT applicator is not addressed in this study. IMBT approaches showed superior plan quality compared to the original plans and tht isotropic plans to different extents in all studied cases. An extremely difficult case with a small breast and a small distance to the ribs and skin, the IMBT plan minimized the high dose volume V200 by 16.1% and 4.8%, respectively, compared to the original and the isotropic plans. The conformity index for the target was increased by 0.13 and 0.04, respectively. The maximum dose to the skin was reduced by 56 and 28 cGy, respectively, per fraction. Also, the maximum dose to the ribs was reduced by 104 and 96 cGy, respectively, per fraction. The mean dose to the ipsilateral and contralateral breasts and lungs were also slightly reduced by the IMBT plan. The limitations of IMBT are the longer planning and delivery time. The IMBT plan took around 2 h to optimize, while the isotropic plan optimization could reach the global minimum within 5 min. The delivery time for the IMBT plan is typically four to six times longer than the corresponding isotropic plan. In this study, a dosimetry method for IMBT sources was proposed and an inverse treatment planning system prototype for IMBT was developed. The improvement of plan quality by 3D IMBT was demonstrated using ten APBI case studies. Faster computers and higher output of the source can further reduce plan optimization and delivery time, respectively.
NASA Astrophysics Data System (ADS)
Heizler, Shay I.; Kessler, David A.
2017-06-01
Mode-I fracture exhibits microbranching in the high velocity regime where the simple straight crack is unstable. For velocities below the instability, classic modeling using linear elasticity is valid. However, showing the existence of the instability and calculating the dynamics postinstability within the linear elastic framework is difficult and controversial. The experimental results give several indications that the microbranching phenomenon is basically a three-dimensional (3D) phenomenon. Nevertheless, the theoretical effort has been focused mostly on two-dimensional (2D) modeling. In this paper we study the microbranching instability using three-dimensional atomistic simulations, exploring the difference between the 2D and the 3D models. We find that the basic 3D fracture pattern shares similar behavior with the 2D case. Nevertheless, we exhibit a clear 3D-2D transition as the crack velocity increases, whereas as long as the microbranches are sufficiently small, the behavior is pure 3D behavior, whereas at large driving, as the size of the microbranches increases, more 2D-like behavior is exhibited. In addition, in 3D simulations, the quantitative features of the microbranches, separating the regimes of steady-state cracks (mirror) and postinstability (mist-hackle) are reproduced clearly, consistent with the experimental findings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakanaka, Katsuyuki; Mizowaki, Takashi, E-mail: mizo@kuhp.kyoto-u.ac.jp; Hiraoka, Masahiro
Purpose: To investigate the dosimetric advantage of intensity-modulated radiotherapy (IMRT) for whole ventricles (WV) in patients with a localized intracranial germinoma receiving induction chemotherapy. Methods and Materials: Data from 12 consecutive patients with localized intracranial germinomas who received induction chemotherapy and radiotherapy were used. Four-field coplanar three-dimensional conformal radiotherapy (3D-CRT) and seven-field coplanar IMRT plans were created. In both plans, 24 Gy was prescribed in 12 fractions for the planning target volume (PTV) involving WV and tumor bed. In IMRT planning, optimization was conducted to reduce the doses to the organs at risk (OARs) as much as possible, keeping themore » minimum dose equivalent to that of 3D-CRT. The 3D-CRT and IMRT plans were compared in terms of the dose-volume statistics for target coverage and the OARs. Results: IMRT significantly increased the percentage volume of the PTV receiving 24 Gy compared with 3D-CRT (93.5% vs. 84.8%; p = 0.007), while keeping target homogeneity equivalent to 3D-CRT (p = 0.869). The absolute percentage reduction in the irradiated volume of the normal brain receiving 100%, 75%, 50%, and 25% of 24 Gy ranged from 0.7% to 16.0% in IMRT compared with 3D-CRT (p < 0.001). No significant difference was observed in the volume of the normal brain receiving 10% and 5% of 24 Gy between IMRT and 3D-CRT. Conformation number was significantly improved in IMRT (p < 0.001). For other OARs, the mean dose to the cochlea was reduced significantly in IMRT by 22.3% of 24 Gy compared with 3D-CRT (p < 0.001). Conclusions: Compared with 3D-CRT, IMRT for WV improved the target coverage and reduced the irradiated volume of the normal brain in patients with intracranial germinomas receiving induction chemotherapy. IMRT for WV with induction chemotherapy could reduce the late side effects from cranial irradiation without compromising control of the tumor.« less
Xu, Dandan; Li, Guowen; Li, Hongfei; Jia, Fei
2017-08-01
Esophageal cancer (EC) is a common cancer with high mortality because of its rapid progression and poor prognosis. Radiotherapy is one of the most effective treatments for EC. Three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) are 2 recently developed radiotherapy techniques. IMRT is believed to be more effective than 3D-CRT in target coverage, dose homogeneity, and reducing toxicity to normal organs. However, these advantages have not been demonstrated in the treatment of EC. This meta-analysis was performed to compare IMRT and 3D-CRT in the treatment of EC in terms of dose-volume histograms and outcomes including survival and toxicity. A literature search was performed in PubMed, Embase, and the Cochrane library databases from their inceptions to Dec 30, 2016. Two authors independently assessed the included studies and extracted data. The average percent irradiated volumes of adjacent noncancerous organs were calculated and compared between IMRT and 3D-CRT. The odds ratio of overall survival (OS), and radiation pneumonitis and radiation esophagitis was also evaluated. Totally 7 studies were included. Of them, 5 studies (80 patients) were included in the dosimetric comparison, 3 studies (871 patients) were included in the OS analysis, and 2 studies (205 patients) were included in the irradiation toxicity analysis. For lung in patients receiving doses ≥20 Gy and heart in patients receiving dose = 50 Gy, the average irradiated volumes of IMRT were less than those from 3D-CRT. IMRT resulted in a higher OS than 3D-CRT. However, no significant difference was observed in the incidence of radiation pneumonitis and radiation esophagitis between 2 radiotherapy techniques. Our data suggest that IMRT-delivered high radiation dose produces significantly less average percent volumes of irradiated lung and heart than 3D-CRT. IMRT is superior to 3D-CRT in the OS of EC while shows no benefit on radiation toxicity.
A novel four-dimensional radiotherapy planning strategy from a tumor-tracking beam's eye view
NASA Astrophysics Data System (ADS)
Li, Guang; Cohen, Patrice; Xie, Huchen; Low, Daniel; Li, Diana; Rimner, Andreas
2012-11-01
To investigate the feasibility of four-dimensional radiotherapy (4DRT) planning from a tumor-tracking beam's eye view (ttBEV) with reliable gross tumor volume (GTV) delineation, realistic normal tissue representation, high planning accuracy and low clinical workload, we propose and validate a novel 4D conformal planning strategy based on a synthesized 3.5D computed tomographic (3.5DCT) image with a motion-compensated tumor. To recreate patient anatomy from a ttBEV in the moving tumor coordinate system for 4DRT planning (or 4D planning), the centers of delineated GTVs in all phase CT images of 4DCT were aligned, and then the aligned CTs were averaged to produce a new 3.5DCT image. This GTV-motion-compensated CT contains a motionless target (with motion artifacts minimized) and motion-blurred normal tissues (with a realistic temporal density average). Semi-automatic threshold-based segmentation of the tumor, lung and body was applied, while manual delineation was used for other organs at risk (OARs). To validate this 3.5DCT-based 4D planning strategy, five patients with peripheral lung lesions of small size (<5 cm3) and large motion range (1.2-3.5 cm) were retrospectively studied for stereotactic body radiotherapy (SBRT) using 3D conformal radiotherapy planning tools. The 3.5DCT-based 4D plan (3.5DCT plan) with 9-10 conformal beams was compared with the 4DCT-based 4D plan (4DCT plan). The 4DCT plan was derived from multiple 3D plans based on all phase CT images, each of which used the same conformal beam configuration but with an isocenter shift to aim at the moving tumor and a minor beam aperture and weighting adjustment to maintain plan conformality. The dose-volume histogram (DVH) of the 4DCT plan was created with two methods: one is an integrated DVH (iDVH4D), which is defined as the temporal average of all 3D-phase-plan DVHs, and the other (DVH4D) is based on the dose distribution in a reference phase CT image by dose warping from all phase plans using the displacement vector field (DVF) from a free-form deformable image registration (DIR). The DVH3.5D (for the 3.5DCT plan) was compared with both iDVH4D and DVH4D. To quantify the DVH difference between the 3.5DCT plan and the 4DCT plan, two methods were used: relative difference (%) of the areas underneath the DVH curves and the volumes receiving more than 20% (V20) and 50% (V50) of prescribed dose of these 4D plans. The volume of the delineated GTV from different phase CTs varied dramatically from 24% to 112% among the five patients, whereas the GTV from 3.5DCT deviated from the averaged GTV in 4DCT by only -6%±6%. For planning tumor volume (PTV) coverage, the difference between the DVH3.5D and iDVH4D was negligible (<1% area), whereas the DVH3.5D and DVH4D were quite different, due to DIR uncertainty (˜2 mm), which propagates to PTV dose coverage with a pronounced uncertainty for small tumors (0.3-4.0 cm3) in stereotactic plans with sharp dose falloff around PTV. For OARs, such as the lung, heart, cord and esophagus, the three DVH curves (DVH3.5D, DVH4D and iDVH4D) were found to be almost identical for the same patients, especially in high-dose regions. For the tumor-containing lung, the relative difference of the areas underneath the DVH curves was found to be small (5.3% area on average), of which 65% resulted from the low-dose region (D < 20%). The averaged V20 difference between the two 4D plans was 1.2% ± 0.8%. For the mean lung dose (MLD), the 3.5DCT plan differed from the 4DCT plan by -1.1%±1.3%. GTV-motion-compensated CT (3.5DCT) produces an accurate and reliable GTV delineation, which is close to the mean GTV from 4DCT. The 3.5DCT plan is equivalent to the 4DCT plan with <1% dose difference to the PTV and negligible dose difference in OARs. The 3.5DCT approach simplifies 4D planning and provides accurate dose calculation without a substantial increase of clinical workload for motion-tracking delivery to treat small peripheral lung tumors with large motion.
Morimoto, Takuma; Mizokami, Yoko; Yaguchi, Hirohisa; Buck, Steven L.
2017-01-01
There has been debate about how and why color constancy may be better in three-dimensional (3-D) scenes than in two-dimensional (2-D) scenes. Although some studies have shown better color constancy for 3-D conditions, the role of specific cues remains unclear. In this study, we compared color constancy for a 3-D miniature room (a real scene consisting of actual objects) and 2-D still images of that room presented on a monitor using three viewing methods: binocular viewing, monocular viewing, and head movement. We found that color constancy was better for the 3-D room; however, color constancy for the 2-D image improved when the viewing method caused the scene to be perceived more like a 3-D scene. Separate measurements of the perceptual 3-D effect of each viewing method also supported these results. An additional experiment comparing a miniature room and its image with and without texture suggested that surface texture of scene objects contributes to color constancy. PMID:29238513
Four-Dimensional Patient Dose Reconstruction for Scanned Ion Beam Therapy of Moving Liver Tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Daniel; TU Darmstadt, Darmstadt; Saito, Nami
2014-05-01
Purpose: Estimation of the actual delivered 4-dimensional (4D) dose in treatments of patients with mobile hepatocellular cancer with scanned carbon ion beam therapy. Methods and Materials: Six patients were treated with 4 fractions to a total relative biological effectiveness (RBE)–weighted dose of 40 Gy (RBE) using a single field. Respiratory motion was addressed by dedicated margins and abdominal compression (5 patients) or gating (1 patient). 4D treatment dose reconstructions based on the treatment records and the measured motion monitoring data were performed for the single-fraction dose and a total of 17 fractions. To assess the impact of uncertainties in the temporalmore » correlation between motion trajectory and beam delivery sequence, 3 dose distributions for varying temporal correlation were calculated per fraction. For 3 patients, the total treatment dose was formed from the fractional distributions using all possible combinations. Clinical target volume (CTV) coverage was analyzed using the volumes receiving at least 95% (V{sub 95}) and 107% (V{sub 107}) of the planned doses. Results: 4D dose reconstruction based on daily measured data is possible in a clinical setting. V{sub 95} and V{sub 107} values for the single fractions ranged between 72% and 100%, and 0% and 32%, respectively. The estimated total treatment dose to the CTV exhibited improved and more robust dose coverage (mean V{sub 95} > 87%, SD < 3%) and overdose (mean V{sub 107} < 4%, SD < 3%) with respect to the single-fraction dose for all analyzed patients. Conclusions: A considerable impact of interplay effects on the single-fraction CTV dose was found for most of the analyzed patients. However, due to the fractionated treatment, dose heterogeneities were substantially reduced for the total treatment dose. 4D treatment dose reconstruction for scanned ion beam therapy is technically feasible and may evolve into a valuable tool for dose assessment.« less
NASA Astrophysics Data System (ADS)
Damayanti, Ista; Lilies, Latief, Benny S.
2017-02-01
Three-dimensional (3-D) printing has been identified as an innovative manufacturing technology of functional parts. The 3-D model was produced based on CT-Scan using Osyrix software, where automatic segmentation was performed and convert into STL format. This STL format was then ready to be produced physically, layer-by-layer to create 3-D model.
Munroe, Jeffrey S.; Doolittle, James A.; Kanevskiy, Mikhail; Hinkel, Kenneth M.; Nelson, Frederick E.; Jones, Benjamin M.; Shur, Yuri; Kimble, John M.
2007-01-01
Three-dimensional ground-penetrating radar (3D GPR) was used to investigate the subsurface structure of ice-wedge polygons and other features of the frozen active layer and near-surface permafrost near Barrow, Alaska. Surveys were conducted at three sites located on landscapes of different geomorphic age. At each site, sediment cores were collected and characterised to aid interpretation of GPR data. At two sites, 3D GPR was able to delineate subsurface ice-wedge networks with high fidelity. Three-dimensional GPR data also revealed a fundamental difference in ice-wedge morphology between these two sites that is consistent with differences in landscape age. At a third site, the combination of two-dimensional and 3D GPR revealed the location of an active frost boil with ataxitic cryostructure. When supplemented by analysis of soil cores, 3D GPR offers considerable potential for imaging, interpreting and 3D mapping of near-surface soil and ice structures in permafrost environments.
Development of Three-Dimensional Completion of Complex Objects
ERIC Educational Resources Information Center
Soska, Kasey C.; Johnson, Scott P.
2013-01-01
Three-dimensional (3D) object completion, the ability to perceive the backs of objects seen from a single viewpoint, emerges at around 6 months of age. Yet, only relatively simple 3D objects have been used in assessing its development. This study examined infants' 3D object completion when presented with more complex stimuli. Infants…
ERIC Educational Resources Information Center
Ruisoto, Pablo; Juanes, Juan Antonio; Contador, Israel; Mayoral, Paula; Prats-Galino, Alberto
2012-01-01
Three-dimensional (3D) or volumetric visualization is a useful resource for learning about the anatomy of the human brain. However, the effectiveness of 3D spatial visualization has not yet been assessed systematically. This report analyzes whether 3D volumetric visualization helps learners to identify and locate subcortical structures more…
Matrix-Assisted Three-Dimensional Printing of Cellulose Nanofibers for Paper Microfluidics.
Shin, Sungchul; Hyun, Jinho
2017-08-09
A cellulose nanofiber (CNF), one of the most attractive green bioresources, was adopted for construction of microfluidic devices using matrix-assisted three-dimensional (3D) printing. CNF hydrogels can support structures printed using CAD design in a 3D hydrogel environment with the appropriate combination of rheological properties between the CNF hydrogel and ink materials. Amazingly, the structure printed freely in the bulky CNF hydrogels was able to retain its highly resolved 3D features in an ultrathin two-dimensional (2D) paper using a simple drying process. The dimensional change in the CNF hydrogels from 3D to 2D resulted from simple dehydration of the CNFs and provided transparent, stackable paper-based 3D channel devices. As a proof of principle, the rheological properties of the CNF hydrogels, the 3D structure of the ink, the formation of channels by evacuation of the ink, and the highly localized selectivity of the devices are described.
Yang, Yi; Qian, Ke-Yuan; Luo, Yi
2006-07-20
A compensation process has been developed to design rotational three-dimensional (3D) nonimaging devices. By compensating the desired light distribution during a two-dimensional (2D) design process for an extended Lambertian source using a compensation coefficient, the meridian plane of a 3D device with good performance can be obtained. This method is suitable in many cases with fast calculation speed. Solutions to two kinds of optical design problems have been proposed, and the limitation of this compensated 2D design method is discussed.
X-ray-induced acoustic computed tomography for 3D breast imaging: A simulation study.
Tang, Shanshan; Yang, Kai; Chen, Yong; Xiang, Liangzhong
2018-04-01
The objective of this study is to demonstrate the feasibility of x-ray-induced acoustic computed tomography (XACT) for early breast un-palpable microcalcification (μCa) detection in three dimensions (3D). The proposed technique provides the true 3D imaging for breast volume which overcomes the disadvantage of the tissue superposition in mammography. A 3D breast digital phantom was rendered from two-dimensional (2D) breast CT slices. Three different tissue types, including the skin, adipose tissue, and glandular tissue, were labeled in the 3D breast phantom. μCas were manually embedded in different locations inside the breast phantom. For each tissue type, the initial pressure rise caused by the x-ray-induced acoustic (XA) effect was calculated according to its themoacoustic properties. The XA wave's propagation from the point of generation and its detection by ultrasound detector array were simulated by Matlab K-Wave toolbox. The 3D breast XACT volume with μCa was acquired without tissue superposition, and the system was characterized by μCas placed at different locations. The simulation results illustrated that the proposed breast XACT system has the ability to show the μCa cluster in 3D without any tissue superposition. Meanwhile, μCa as small as 100 μm in size can be detected with high imaging contrast, high signal to noise ratio (SNR), and high contrast to noise ratio (CNR). The dose required by the proposed XACT configuration was calculated to be 0.4 mGy for a 4.5 cm-thick compressed breast. This is one-tenth of the dose level of a typical two-view mammography for a breast with the same compression thickness. The initial exploration for the feasibility of 3D breast XACT has been conducted in this study. The system feasibility and characterization were illustrated through a 3D breast phantom and simulation works. The 3D breast XACT with the proposed system configuration has great potential to be applied as a low-dose screening and diagnostic technique for early un-palpable lesion in the breast. © 2018 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Mano, Tomohiro; Ohtsuki, Tomi
2017-11-01
The three-dimensional Anderson model is a well-studied model of disordered electron systems that shows the delocalization-localization transition. As in our previous papers on two- and three-dimensional (2D, 3D) quantum phase transitions [
Fujisaki, K; Yokota, H; Nakatsuchi, H; Yamagata, Y; Nishikawa, T; Udagawa, T; Makinouchi, A
2010-01-01
A three-dimensional (3D) internal structure observation system based on serial sectioning was developed from an ultrasonic elliptical vibration cutting device and an optical microscope combined with a high-precision positioning device. For bearing steel samples, the cutting device created mirrored surfaces suitable for optical metallography, even for long-cutting distances during serial sectioning of these ferrous materials. Serial sectioning progressed automatically by means of numerical control. The system was used to observe inclusions in steel materials on a scale of several tens of micrometers. Three specimens containing inclusions were prepared from bearing steels. These inclusions could be detected as two-dimensional (2D) sectional images with resolution better than 1 mum. A three-dimensional (3D) model of each inclusion was reconstructed from the 2D serial images. The microscopic 3D models had sharp edges and complicated surfaces.
Choi, Kyu Hye; Kim, Jina; Lee, Sea-Won; Kang, Young-Nam; Jang, HongSeok
2018-03-01
The objective of this study was to compare dosimetric characteristics of three-dimensional conformal radiotherapy (3D-CRT) and two types of intensity-modulated radiotherapy (IMRT) which are step-and-shoot intensity modulated radiotherapy (s-IMRT) and modulated arc therapy (mARC) for thoracic esophageal cancer and analyze whether IMRT could reduce organ-at-risk (OAR) dose. We performed 3D-CRT, s-IMRT, and mARC planning for ten patients with thoracic esophageal cancer. The dose-volume histogram for each plan was extracted and the mean dose and clinically significant parameters were analyzed. Analysis of target coverage showed that the conformity index (CI) and conformation number (CN) in mARC were superior to the other two plans (CI, p = 0.050; CN, p = 0.042). For the comparison of OAR, lung V 5 was lowest in s-IMRT, followed by 3D-CRT, and mARC (p = 0.033). s-IMRT and mARC had lower values than 3D-CRT for heart V 30 (p = 0.039), V 40 (p = 0.040), and V 50 (p = 0.032). Effective conservation of the lung and heart in thoracic esophageal cancer could be expected when using s-IMRT. The mARC was lower in lung V 10 , V 20 , and V 30 than in 3D-CRT, but could not be proven superior in lung V 5 . In conclusion, low-dose exposure to the lung and heart were expected to be lower in s-IMRT, reducing complications such as radiation pneumonitis or heart-related toxicities.
Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells
Li, Ning; Zhang, Qi; Gao, Song; Song, Qin; Huang, Rong; Wang, Long; Liu, Liwei; Dai, Jianwu; Tang, Mingliang; Cheng, Guosheng
2013-01-01
Neural stem cell (NSC) based therapy provides a promising approach for neural regeneration. For the success of NSC clinical application, a scaffold is required to provide three-dimensional (3D) cell growth microenvironments and appropriate synergistic cell guidance cues. Here, we report the first utilization of graphene foam, a 3D porous structure, as a novel scaffold for NSCs in vitro. It was found that three-dimensional graphene foams (3D-GFs) can not only support NSC growth, but also keep cell at an active proliferation state with upregulation of Ki67 expression than that of two-dimensional graphene films. Meanwhile, phenotypic analysis indicated that 3D-GFs can enhance the NSC differentiation towards astrocytes and especially neurons. Furthermore, a good electrical coupling of 3D-GFs with differentiated NSCs for efficient electrical stimulation was observed. Our findings implicate 3D-GFs could offer a powerful platform for NSC research, neural tissue engineering and neural prostheses. PMID:23549373
Comparison of 3D CRT and IMRT Tratment Plans
Bakiu, Erjona; Telhaj, Ervis; Kozma, Elvisa; Ruçi, Ferdinand; Malkaj, Partizan
2013-01-01
Plans of patients with prostate tumor have been studied. These patients have been scanned in the CT simulator and the images have been sent to the Focal, the system where the doctor delineates the tumor and the organs at risk. After that in the treatment planning system XiO there are created for the same patients three dimensional conformal and intensity modulated radiotherapy treatment plans. The planes are compared according to the dose volume histograms. It is observed that the plans with IMRT technique conform better the isodoses to the planning target volume and protect more the organs at risk, but the time needed to create such plans and to control it is higher than 3D CRT. So it necessary to decide in which patients to do one or the other technique depending on the full dose given to PTV and time consuming in genereral. PMID:24167395
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.
2011-11-15
Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-raymore » views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold speed-up of the processing (from 1336 to 150 s). Conclusions: Adaptive anisotropic filtering has the potential to substantially improve image quality and/or reduce the radiation dose required for obtaining 3D image data using cone beam CT.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manem, V; Paganetti, H
Purpose: Evaluate the excess relative risk (ERR) induced by photons and protons in each voxel of the lung, and display it as a three-dimensional map, known as the ERRM (i.e. excess relative risk map) along with the dose distribution map. In addition, we also study the effect of variations in the linear energy transfer (LET) distribution on ERRM for a given proton plan. Methods: The excess relative risk due to radiation is estimated using the initiation-inactivation-proliferation formalism. This framework accounts for three biological phenomenon: mutation induction, cell kill and proliferation. Cell kill and mutation induction are taken as a functionmore » of LET using experimental data. LET distributions are calculated using a Monte Carlo algorithm. ERR is then estimated for each voxel in the organ, and displayed as a three dimensional carcinogenic map. Results: The differences in the ERR’s between photons and protons is seen from the three-dimensional ERR map. In addition, we also varied the LET of a proton plan and observed the differences in the corresponding ERR maps demonstrating variations in the ERR maps depend on features of a proton plan. Additionally, our results suggest that any two proton plans that have the same integral dose does not necessarily imply identical ERR maps, and these changes are due to the variations in the LET distribution map. Conclusion: Clinically, it is important to have a three dimensional display of biological end points. This study is an effort to introduce 3D ERR maps into the treatment planning workflow for certain sites such as pediatric head and neck tumors.« less
Who Needs 3D When the Universe Is Flat?
ERIC Educational Resources Information Center
Eriksson, Urban; Linder, Cedric; Airey, John; Redfors, Andreas
2014-01-01
An overlooked feature in astronomy education is the need for students to learn to extrapolate three-dimensionality and the challenges that this may involve. Discerning critical features in the night sky that are embedded in dimensionality is a long-term learning process. Several articles have addressed the usefulness of three-dimensional (3D)…
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaw, Travis J., E-mail: mccaw@wisc.edu; Micka, John A.; DeWerd, Larry A.
Purpose: Three-dimensional (3D) dosimeters are particularly useful for verifying the commissioning of treatment planning and delivery systems, especially with the ever-increasing implementation of complex and conformal radiotherapy techniques such as volumetric modulated arc therapy. However, currently available 3D dosimeters require extensive experience to prepare and analyze, and are subject to large measurement uncertainties. This work aims to provide a more readily implementable 3D dosimeter with the development and characterization of a radiochromic film stack dosimeter for megavoltage photon beam dosimetry. Methods: A film stack dosimeter was developed using Gafchromic{sup ®} EBT2 films. The dosimeter consists of 22 films separated bymore » 1 mm-thick spacers. A Virtual Water™ phantom was created that maintains the radial film alignment within a maximum uncertainty of 0.3 mm. The film stack dosimeter was characterized using simulations and measurements of 6 MV fields. The absorbed-dose energy dependence and orientation dependence of the film stack dosimeter were investigated using Monte Carlo simulations. The water equivalence of the dosimeter was determined by comparing percentage-depth-dose (PDD) profiles measured with the film stack dosimeter and simulated using Monte Carlo methods. Film stack dosimeter measurements were verified with thermoluminescent dosimeter (TLD) microcube measurements. The film stack dosimeter was also used to verify the delivery of an intensity-modulated radiation therapy (IMRT) procedure. Results: The absorbed-dose energy response of EBT2 film differs less than 1.5% between the calibration and film stack dosimeter geometries for a 6 MV spectrum. Over a series of beam angles ranging from normal incidence to parallel incidence, the overall variation in the response of the film stack dosimeter is within a range of 2.5%. Relative to the response to a normally incident beam, the film stack dosimeter exhibits a 1% under-response when the beam axis is parallel to the film planes. Measured and simulated PDD profiles agree within a root-mean-square difference of 1.3%. In-field film stack dosimeter and TLD measurements agree within 5%, and measurements in the field penumbra agree within 0.5 mm. Film stack dosimeter and TLD measurements have expanded (k = 2) overall measurement uncertainties of 6.2% and 5.8%, respectively. Film stack dosimeter measurements of an IMRT dose distribution have 98% agreement with the treatment planning system dose calculation, using gamma criteria of 3% and 2 mm. Conclusions: The film stack dosimeter is capable of high-resolution, low-uncertainty 3D dose measurements, and can be readily incorporated into an existing film dosimetry program.« less
Zernike phase contrast cryo-electron tomography of whole bacterial cells
Guerrero-Ferreira, Ricardo C.; Wright, Elizabeth R.
2014-01-01
Cryo-electron tomography (cryo-ET) provides three-dimensional (3D) structural information of bacteria preserved in a native, frozen-hydrated state. The typical low contrast of tilt-series images, a result of both the need for a low electron dose and the use of conventional defocus phase-contrast imaging, is a challenge for high-quality tomograms. We show that Zernike phase-contrast imaging allows the electron dose to be reduced. This limits movement of gold fiducials during the tilt series, which leads to better alignment and a higher-resolution reconstruction. Contrast is also enhanced, improving visibility of weak features. The reduced electron dose also means that more images at more tilt angles could be recorded, further increasing resolution. PMID:24075950
Comparison of 3DCRT,VMAT and IMRT techniques in metastatic vertebra radiotherapy: A phantom Study
NASA Astrophysics Data System (ADS)
Gedik, Sonay; Tunc, Sema; Kahraman, Arda; Kahraman Cetintas, Sibel; Kurt, Meral
2017-09-01
Vertebra metastases can be seen during the prognosis of cancer patients. Treatment ways of the metastasis are radiotherapy, chemotherapy and surgery. Three-dimensional conformal therapy (3D-CRT) is widely used in the treatment of vertebra metastases. Also, Intensity Modulated Radiotherapy (IMRT) and Volumetric Arc Therapy (VMAT) are used too. The aim of this study is to examine the advantages and disadvantages of the different radiotherapy techniques. In the aspect of this goal, it is studied with a randophantom in Uludag University Medicine Faculty, Radiation Oncology Department. By using a computerized tomography image of the phantom, one 3DCRT plan, two VMAT and three IMRT plans for servical vertebra and three different 3DCRT plans, two VMAT and two IMRT plans for lomber vertebra are calculated. To calculate 3DCRT plans, CMS XiO Treatment System is used and to calculate VMAT and IMRT plans Monaco Treatment Planning System is used in the department. The study concludes with the dosimetric comparison of the treatment plans in the spect of critical organ doses, homogeneity and conformity index. As a result of this study, all critical organ doses are suitable for QUANTEC Dose Limit Report and critical organ doses depend on the techniques which used in radiotherapy. According to homogeneity and conformity indices, VMAT and IMRT plans are better than one in 3DCRT plans in servical and lomber vertebra radiotherapy plans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Roberto; Jaboin, Jerry J.; Morales-Paliza, Manuel
Purpose: To conduct a retrospective review of 168 consecutively treated locally advanced head-and-neck cancer (LAHNC) patients treated with intensity-modulated radiotherapy (IMRT)/chemotherapy, to determine the rate and risk factors for developing hypothyroidism. Methods and Materials: Intensity-modulated radiotherapy was delivered in 33 daily fractions to 69.3 Gy to gross disease and 56.1 Gy to clinically normal cervical nodes. Dose-volume histograms (DVHs) of IMRT plans were used to determine radiation dose to thyroid and were compared with DVHs using conventional three-dimensional radiotherapy (3D-RT) in 10 of these same patients randomly selected for replanning and with DVHs of 16 patients in whom the thyroidmore » was intentionally avoided during IMRT. Weekly paclitaxel (30 mg/m{sup 2}) and carboplatin area under the curve-1 were given concurrently with IMRT. Results: Sixty-one of 128 evaluable patients (47.7%) developed hypothyroidism after a median of 1.08 years after IMRT (range, 2.4 months to 3.9 years). Age and volume of irradiated thyroid were associated with hypothyroidism development after IMRT. Compared with 3D-RT, IMRT with no thyroid dose constraints resulted in significantly higher minimum, maximum, and median dose (p < 0.0001) and percentage thyroid volume receiving 10, 20, and 60 Gy (p < 0.05). Compared with 3D-RT, IMRT with thyroid dose constraints resulted in lower median dose and percentage thyroid volume receiving 30, 40, and 50 Gy (p < 0.005) but higher minimum and maximum dose (p < 0.005). Conclusions: If not protected, IMRT for LAHNC can result in higher radiation to the thyroid than with conventional 3D-RT. Techniques to reduce dose and volume of radiation to thyroid tissue with IMRT are achievable and recommended.« less
Three-dimensional bio-printing.
Gu, Qi; Hao, Jie; Lu, YangJie; Wang, Liu; Wallace, Gordon G; Zhou, Qi
2015-05-01
Three-dimensional (3D) printing technology has been widely used in various manufacturing operations including automotive, defence and space industries. 3D printing has the advantages of personalization, flexibility and high resolution, and is therefore becoming increasingly visible in the high-tech fields. Three-dimensional bio-printing technology also holds promise for future use in medical applications. At present 3D bio-printing is mainly used for simulating and reconstructing some hard tissues or for preparing drug-delivery systems in the medical area. The fabrication of 3D structures with living cells and bioactive moieties spatially distributed throughout will be realisable. Fabrication of complex tissues and organs is still at the exploratory stage. This review summarize the development of 3D bio-printing and its potential in medical applications, as well as discussing the current challenges faced by 3D bio-printing.
Localized volume effects for late rectal and anal toxicity after radiotherapy for prostate cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peeters, Stephanie T.H.; Lebesque, Joos V.; Heemsbergen, Wilma D.
2006-03-15
Purpose: To identify dosimetric parameters derived from anorectal, rectal, and anal wall dose distributions that correlate with different late gastrointestinal (GI) complications after three-dimensional conformal radiotherapy for prostate cancer. Methods and Materials: In this analysis, 641 patients from a randomized trial (68 Gy vs. 78 Gy) were included. Toxicity was scored with adapted Radiation Therapy Oncology Group/European Organization for the Research and Treatment of Cancer (RTOG/EORTC) criteria and five specific complications. The variables derived from dose-volume histogram of anorectal, rectal, and anal wall were as follows: % receiving {>=}5-70 Gy (V5-V70), maximum dose (D{sub max}), and mean dose (D{sub mean}).more » The anus was defined as the most caudal 3 cm of the anorectum. Statistics were done with multivariate Cox regression models. Median follow-up was 44 months. Results: Anal dosimetric variables were associated with RTOG/EORTC Grade {>=}2 (V5-V40, D{sub mean}) and incontinence (V5-V70, D{sub mean}). Bleeding correlated most strongly with anorectal V55-V65, and stool frequency with anorectal V40 and D{sub mean}. Use of steroids was weakly related to anal variables. No volume effect was seen for RTOG/EORTC Grade {>=}3 and pain/cramps/tenesmus. Conclusion: Different volume effects were found for various late GI complications. Therefore, to evaluate the risk of late GI toxicity, not only intermediate and high doses to the anorectal wall volume should be taken into account, but also the dose to the anal wall.« less
Three-dimensional scene reconstruction from a two-dimensional image
NASA Astrophysics Data System (ADS)
Parkins, Franz; Jacobs, Eddie
2017-05-01
We propose and simulate a method of reconstructing a three-dimensional scene from a two-dimensional image for developing and augmenting world models for autonomous navigation. This is an extension of the Perspective-n-Point (PnP) method which uses a sampling of the 3D scene, 2D image point parings, and Random Sampling Consensus (RANSAC) to infer the pose of the object and produce a 3D mesh of the original scene. Using object recognition and segmentation, we simulate the implementation on a scene of 3D objects with an eye to implementation on embeddable hardware. The final solution will be deployed on the NVIDIA Tegra platform.
AdS3 to dS3 transition in the near horizon of asymptotically de Sitter solutions
NASA Astrophysics Data System (ADS)
Sadeghian, S.; Vahidinia, M. H.
2017-08-01
We consider two solutions of Einstein-Λ theory which admit the extremal vanishing horizon (EVH) limit, odd-dimensional multispinning Kerr black hole (in the presence of cosmological constant) and cosmological soliton. We show that the near horizon EVH geometry of Kerr has a three-dimensional maximally symmetric subspace whose curvature depends on rotational parameters and the cosmological constant. In the Kerr-dS case, this subspace interpolates between AdS3 , three-dimensional flat and dS3 by varying rotational parameters, while the near horizon of the EVH cosmological soliton always has a dS3 . The feature of the EVH cosmological soliton is that it is regular everywhere on the horizon. In the near EVH case, these three-dimensional parts turn into the corresponding locally maximally symmetric spacetimes with a horizon: Kerr-dS3 , flat space cosmology or BTZ black hole. We show that their thermodynamics match with the thermodynamics of the original near EVH black holes. We also briefly discuss the holographic two-dimensional CFT dual to the near horizon of EVH solutions.
Three-Dimensional (3D) Printers in Libraries: Perspective and Preliminary Safety Analysis
ERIC Educational Resources Information Center
Bharti, Neelam; Singh, Shailendra
2017-01-01
As an emerging technology, three-dimensional (3D) printing has gained much attention as a rapid prototyping and small-scale manufacturing technology around the world. In the changing scenario of library inclusion, Makerspaces are becoming a part of most public and academic libraries, and 3D printing is one of the technologies included in…
ERIC Educational Resources Information Center
Saorin, José Luis; Carbonell-Carrera, Carlos; Cantero, Jorge de la Torre; Meier, Cecile; Aleman, Drago Diaz
2017-01-01
Spatial interpretation features as a skill to acquire in the educational curricula. The visualization and interpretation of three-dimensional objects in tactile devices and the possibility of digital manufacturing with 3D printers, offers an opportunity to include replicas of sculptures in teaching and, thus, facilitate the 3D interpretation of…
NASA Astrophysics Data System (ADS)
Savitri, I. T.; Badri, C.; Sulistyani, L. D.
2017-08-01
Presurgical treatment planning plays an important role in the reconstruction and correction of defects in the craniomaxillofacial region. The advance of solid freeform fabrication techniques has significantly improved the process of preparing a biomodel using computer-aided design and data from medical imaging. Many factors are implicated in the accuracy of the 3D model. To determine the accuracy of three-dimensional fused deposition modeling (FDM) models compared with three-dimensional CT scans in the measurement of the mandibular ramus vertical length, gonion-menton length, and gonial angle. Eight 3D models were produced from the CT scan data (DICOM file) of eight patients at the Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Indonesia, Cipto Mangunkusumo Hospital. Three measurements were done three times by two examiners. The measurements of the 3D CT scans were made using OsiriX software, while the measurements of the 3D models were made using a digital caliper and goniometry. The measurement results were then compared. There is no significant difference between the measurements of the mandibular ramus vertical length, gonion-menton length, and gonial angle using 3D CT scans and FDM 3D models. FDM 3D models are considered accurate and are acceptable for clinical applications in dental and craniomaxillofacial surgery.
Tanooka, Masao; Doi, Hiroshi; Miura, Hideharu; Inoue, Hiroyuki; Niwa, Yasue; Takada, Yasuhiro; Fujiwara, Masayuki; Sakai, Toshiyuki; Sakamoto, Kiyoshi; Kamikonya, Norihiko; Hirota, Shozo
2013-11-01
We validated 3D radiochromic film dosimetry for volumetric modulated arc therapy (VMAT) using a newly developed spiral water phantom. The phantom consists of a main body and an insert box, each of which has an acrylic wall thickness of 3 mm and is filled with water. The insert box includes a spiral film box used for dose-distribution measurement, and a film holder for positioning a radiochromic film. The film holder has two parallel walls whose facing inner surfaces are equipped with spiral grooves in a mirrored configuration. The film is inserted into the spiral grooves by its side edges and runs along them to be positioned on a spiral plane. Dose calculation was performed by applying clinical VMAT plans to the spiral water phantom using a commercial Monte Carlo-based treatment-planning system, Monaco, whereas dose was measured by delivering the VMAT beams to the phantom. The calculated dose distributions were resampled on the spiral plane, and the dose distributions recorded on the film were scanned. Comparisons between the calculated and measured dose distributions yielded an average gamma-index pass rate of 87.0% (range, 91.2-84.6%) in nine prostate VMAT plans under 3 mm/3% criteria with a dose-calculation grid size of 2 mm. The pass rates were increased beyond 90% (average, 91.1%; range, 90.1-92.0%) when the dose-calculation grid size was decreased to 1 mm. We have confirmed that 3D radiochromic film dosimetry using the spiral water phantom is a simple and cost-effective approach to VMAT dose verification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koeck, Julia, E-mail: Julia_Koeck@gmx.net; Abo-Madyan, Yasser; Department of Radiation Oncology, Faculty of Medicine, Cairo University, Cairo
2012-05-01
Purpose: Cure rates of early Hodgkin lymphoma (HL) are high, and avoidance of late complications and second malignancies have become increasingly important. This comparative treatment planning study analyzes to what extent target volume reduction to involved-node (IN) and intensity-modulated (IM) radiotherapy (RT), compared with involved-field (IF) and three-dimensional (3D) RT, can reduce doses to organs at risk (OAR). Methods and Materials: Based on 20 computed tomography (CT) datasets of patients with early unfavorable mediastinal HL, we created treatment plans for 3D-RT and IMRT for both the IF and IN according to the guidelines of the German Hodgkin Study Group (GHSG).more » As OAR, we defined heart, lung, breasts, and spinal cord. Dose-volume histograms (DVHs) were evaluated for planning target volumes (PTVs) and OAR. Results: Average IF-PTV and IN-PTV were 1705 cm{sup 3} and 1015 cm{sup 3}, respectively. Mean doses to the PTVs were almost identical for all plans. For IF-PTV/IN-PTV, conformity was better with IMRT and homogeneity was better with 3D-RT. Mean doses to the heart (17.94/9.19 Gy for 3D-RT and 13.76/7.42 Gy for IMRT) and spinal cord (23.93/13.78 Gy for 3D-RT and 19.16/11.55 Gy for IMRT) were reduced by IMRT, whereas mean doses to lung (10.62/8.57 Gy for 3D-RT and 12.77/9.64 Gy for IMRT) and breasts (left 4.37/3.42 Gy for 3D-RT and 6.04/4.59 Gy for IMRT, and right 2.30/1.63 Gy for 3D-RT and 5.37/3.53 Gy for IMRT) were increased. Volume exposed to high doses was smaller for IMRT, whereas volume exposed to low doses was smaller for 3D-RT. Pronounced benefits of IMRT were observed for patients with lymph nodes anterior to the heart. IN-RT achieved substantially better values than IF-RT for almost all OAR parameters, i.e., dose reduction of 20% to 50%, regardless of radiation technique. Conclusions: Reduction of target volume to IN most effectively improves OAR sparing, but is still considered investigational. For the time being, IMRT should be considered for large PTVs especially when the anterior mediastinum is involved.« less
Chi, A; Gao, M; Nguyen, N P; Albuquerque, K
2009-06-01
This study investigates the technical feasibility of pre-implant image-based treatment planning for LDR GYN interstitial brachytherapy(IB) based on the GEC-ESTRO guidelines. Initially, a virtual plan is generated based on the prescription dose and GEC-ESTRO defined OAR dose constraints with a pre-implant CT. After the actual implant, a regular diagnostic CT was obtained and fused with our pre-implant scan/initial treatment plan in our planning software. The Flexi-needle position changes, and treatment plan modifications were made if needed. Dose values were normalized to equivalent doses in 2 Gy fractions (LQED 2 Gy) derived from the linear-quadratic model with alpha/beta of 3 for late responding tissues and alpha/beta of 10 for early responding tissues. D(90) to the CTV, which was gross tumor (GTV) at the time of brachytherapy with a margin to count for microscopic disease, was 84.7 +/- 4.9% of the prescribed dose. The OAR doses were evaluated by D(2cc) (EBRT+IB). Mean D(2cc) values (LQED(2Gy)) for the rectum, bladder, sigmoid, and small bowel were the following: 63.7 +/- 8.4 Gy, 61.2 +/- 6.9 Gy, 48.0 +/- 3.5 Gy, and 49.9 +/- 4.2 Gy. This study confirms the feasibility of applying the GEC-ESTRO recommended dose parameters in pre-implant CT-based treatment planning in GYN IB. In the process, this pre-implant technique also demonstrates a good approximation of the target volume dose coverage, and doses to the OARs.
Echocardiography Comparison Between Two and Three Dimensional Echocardiograms
NASA Technical Reports Server (NTRS)
2003-01-01
Echocardiography uses sound waves to image the heart and other organs. Developing a compact version of the latest technology improved the ease of monitoring crew member health, a critical task during long space flights. NASA researchers plan to adapt the three-dimensional (3-D) echocardiogram for space flight. The two-dimensional (2-D) echocardiogram utilized in orbit on the International Space Station (ISS) was effective, but difficult to use with precision. A heart image from a 2-D echocardiogram (left) is of a better quality than that from a 3-D device (right), but the 3-D imaging procedure is more user-friendly.
PREFACE: 8th International Conference on 3D Radiation Dosimetry (IC3DDose)
NASA Astrophysics Data System (ADS)
Olsson, Lars E.; Bäck, S.; Ceberg, Sofie
2015-01-01
IC3DDose 2014, the 8th International Conference on 3D Radiation Dosimetry was held in Ystad, Sweden, from 4-7 September 2014. This grew out of the DosGel series, which began as DosGel99, the 1st International Workshop on Radiation Therapy Gel Dosimetry in Lexington, Kentucky. Since 1999 subsequent DoSGel conferences were held in Brisbane, Australia (2001), Ghent, Belgium (2004), Sherbrooke, Canada (2006) and Crete, Greece (2008). In 2010 the conference was held on Hilton Head Island, South Carolina and underwent a name-change to IC3DDose. The 7th and last meeting was held in Sydney, Australia from 4-8 November 2012. It is worth remembering that the conference series started at the very beginning of the intensity modulated radiotherapy era and that the dosimeters being developed then were, to some extent, ahead of the clinical need of radiotherapy. However, since then the technical developments in radiation therapy have been dramatic, with dynamic treatments, including tracking, gating and volumetric modulated arc therapy, widely introduced in the clinic with the need for 3D dosimetry thus endless. This was also reflected by the contributions at the meeting in Ystad. Accordingly the scope of the meeting has also broadened to IC3DDOSE - I See Three-Dimensional Dose. A multitude of dosimetry techniques and radiation detectors are now represented, all with the common denominator: three-dimensional or 3D. Additionally, quality assurance (QA) procedures and other aspects of clinical dosimetry are represented. The implementation of new dosimetric techniques in radiotherapy is a process that needs every kind of caution, carefulness and thorough validation. Therefore, the clinical needs, reformulated as the aims for IC3DDOSE - I See Three-Dimensional Dose, are: • Enhance the quality and accuracy of radiation therapy treatments through improved clinical dosimetry. • Investigate and understand the dosimetric challenges of modern radiation treatment techniques. • Provide a forum to discuss the latest research and developments in 3D and advanced radiation dosimetry. • Energize and diversify dosimetry research and clinical practice by encouraging interaction and synergy between advanced, 3D, and semi-3D dosimetry techniques. We commend these IC3Dose 2014 conference proceedings to you and strongly believe they include significant contributions to scientific progress in this field. We would like to express our sincere gratitude to everybody involved in making the conference possible, the Scientific committee for their work on the general planning, paper review and program formulation, the distinguished invited speakers for their contributions and the local organizing committee members for all their hard work on the practical preparation for the meeting. Lars E. Olsson, Sven Bäck and Sofie Ceberg Lund University and Skåne University Hospital, Sweden International Scientific Committee Sven Bäck, Sweden (chair) Clive Baldock, Australia Sam Beddar, USA Crister Ceberg, Sweden Yves de Deene, Belgium/Australia Simon Doran, UK Geoffrey Ibbott, USA Andrew Jirasek, Canada Kevin Jordan, Canada Martin Lepage, Canada Daniel Low, USA Mark Oldham, USA Tony Popescu, Canada John Schreiner, Canada Cheng-Shie Wuu, USA David Thwaites, Australia Local Organizing Committee Sofie Ceberg (chair) Lars E. Olsson (conference chair) Fredrik Nordstrom Anneli Edvardsson Anna Karlsson Hauer Anna Bäck
Virtual three-dimensional blackboard: three-dimensional finger tracking with a single camera
NASA Astrophysics Data System (ADS)
Wu, Andrew; Hassan-Shafique, Khurram; Shah, Mubarak; da Vitoria Lobo, N.
2004-01-01
We present a method for three-dimensional (3D) tracking of a human finger from a monocular sequence of images. To recover the third dimension from the two-dimensional images, we use the fact that the motion of the human arm is highly constrained owing to the dependencies between elbow and forearm and the physical constraints on joint angles. We use these anthropometric constraints to derive a 3D trajectory of a gesticulating arm. The system is fully automated and does not require human intervention. The system presented can be used as a visualization tool, as a user-input interface, or as part of some gesture-analysis system in which 3D information is important.
Three-dimensional macro-structures of two-dimensional nanomaterials.
Shehzad, Khurram; Xu, Yang; Gao, Chao; Duan, Xiangfeng
2016-10-21
If two-dimensional (2D) nanomaterials are ever to be utilized as components of practical, macroscopic devices on a large scale, there is a complementary need to controllably assemble these 2D building blocks into more sophisticated and hierarchical three-dimensional (3D) architectures. Such a capability is key to design and build complex, functional devices with tailored properties. This review provides a comprehensive overview of the various experimental strategies currently used to fabricate the 3D macro-structures of 2D nanomaterials. Additionally, various approaches for the decoration of the 3D macro-structures with organic molecules, polymers, and inorganic materials are reviewed. Finally, we discuss the applications of 3D macro-structures, especially in the areas of energy, environment, sensing, and electronics, and describe the existing challenges and the outlook for this fast emerging field.
Two-dimensional vocal tracts with three-dimensional behavior in the numerical generation of vowels.
Arnela, Marc; Guasch, Oriol
2014-01-01
Two-dimensional (2D) numerical simulations of vocal tract acoustics may provide a good balance between the high quality of three-dimensional (3D) finite element approaches and the low computational cost of one-dimensional (1D) techniques. However, 2D models are usually generated by considering the 2D vocal tract as a midsagittal cut of a 3D version, i.e., using the same radius function, wall impedance, glottal flow, and radiation losses as in 3D, which leads to strong discrepancies in the resulting vocal tract transfer functions. In this work, a four step methodology is proposed to match the behavior of 2D simulations with that of 3D vocal tracts with circular cross-sections. First, the 2D vocal tract profile becomes modified to tune the formant locations. Second, the 2D wall impedance is adjusted to fit the formant bandwidths. Third, the 2D glottal flow gets scaled to recover 3D pressure levels. Fourth and last, the 2D radiation model is tuned to match the 3D model following an optimization process. The procedure is tested for vowels /a/, /i/, and /u/ and the obtained results are compared with those of a full 3D simulation, a conventional 2D approach, and a 1D chain matrix model.
Radiation dosimetry using three-dimensional optical random access memories
NASA Technical Reports Server (NTRS)
Moscovitch, M.; Phillips, G. W.
2001-01-01
Three-dimensional optical random access memories (3D ORAMs) are a new generation of high-density data storage devices. Binary information is stored and retrieved via a light induced reversible transformation of an ensemble of bistable photochromic molecules embedded in a polymer matrix. This paper describes the application of 3D ORAM materials to radiation dosimetry. It is shown both theoretically and experimentally, that ionizing radiation in the form of heavy charged particles is capable of changing the information originally stored on the ORAM material. The magnitude and spatial distribution of these changes are used as a measure of the absorbed dose, particle type and energy. The effects of exposure on 3D ORAM materials have been investigated for a variety of particle types and energies, including protons, alpha particles and 12C ions. The exposed materials are observed to fluoresce when exposed to laser light. The intensity and the depth of the fluorescence is dependent on the type and energy of the particle to which the materials were exposed. It is shown that these effects can be modeled using Monte Carlo calculations. The model provides a better understanding of the properties of these materials. which should prove useful for developing systems for charged particle and neutron dosimetry/detector applications. c2001 Published by Elsevier Science B.V.
Parallelized Bayesian inversion for three-dimensional dental X-ray imaging.
Kolehmainen, Ville; Vanne, Antti; Siltanen, Samuli; Järvenpää, Seppo; Kaipio, Jari P; Lassas, Matti; Kalke, Martti
2006-02-01
Diagnostic and operational tasks based on dental radiology often require three-dimensional (3-D) information that is not available in a single X-ray projection image. Comprehensive 3-D information about tissues can be obtained by computerized tomography (CT) imaging. However, in dental imaging a conventional CT scan may not be available or practical because of high radiation dose, low-resolution or the cost of the CT scanner equipment. In this paper, we consider a novel type of 3-D imaging modality for dental radiology. We consider situations in which projection images of the teeth are taken from a few sparsely distributed projection directions using the dentist's regular (digital) X-ray equipment and the 3-D X-ray attenuation function is reconstructed. A complication in these experiments is that the reconstruction of the 3-D structure based on a few projection images becomes an ill-posed inverse problem. Bayesian inversion is a well suited framework for reconstruction from such incomplete data. In Bayesian inversion, the ill-posed reconstruction problem is formulated in a well-posed probabilistic form in which a priori information is used to compensate for the incomplete information of the projection data. In this paper we propose a Bayesian method for 3-D reconstruction in dental radiology. The method is partially based on Kolehmainen et al. 2003. The prior model for dental structures consist of a weighted l1 and total variation (TV)-prior together with the positivity prior. The inverse problem is stated as finding the maximum a posteriori (MAP) estimate. To make the 3-D reconstruction computationally feasible, a parallelized version of an optimization algorithm is implemented for a Beowulf cluster computer. The method is tested with projection data from dental specimens and patient data. Tomosynthetic reconstructions are given as reference for the proposed method.
NASA Astrophysics Data System (ADS)
Garrett, John; Li, Yinsheng; Li, Ke; Chen, Guang-Hong
2017-03-01
Digital breast tomosynthesis (DBT) is a three dimensional (3D) breast imaging modality in which projections are acquired over a limited angular span around the compressed breast and reconstructed into image slices parallel to the detector. DBT has been shown to help alleviate the breast tissue overlapping issues of two dimensional (2D) mammography. Since the overlapping tissues may simulate cancer masses or obscure true cancers, this improvement is critically important for improved breast cancer screening and diagnosis. In this work, a model-based image reconstruction method is presented to show that spatial resolution in DBT volumes can be maintained while dose is reduced using the presented method when compared to that of a state-of-the-art commercial reconstruction technique. Spatial resolution was measured in phantom images and subjectively in a clinical dataset. Noise characteristics were explored in a cadaver study. In both the quantitative and subjective results the image sharpness was maintained and overall image quality was maintained at reduced doses when the model-based iterative reconstruction was used to reconstruct the volumes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X; Penagaricano, J; Narayanasamy, G
Purpose: Hippocampus avoidance whole brain radiotherapy (HA-WBRT) has been shown to reduce the risk of neurocognitive dysfunction. This type of treatment has the potential of insurance company payment denial due to increased cost of intensity modulated radiotherapy (IMRT), while the accepted modality for WBRT is three-dimensional conformal radiotherapy (3DCRT). The purpose of this study is to assess HA-WBRT treatment plans using 3DCRT and multi-criteria optimization (MCO) that meets the RTOG 0933 criteria. Methods: Ten patients with brain metastases at least 0.5cm away from the hippocampal avoidance region as defined in RTOG 0933 were selected in this study. HA-WBRT treatment plansmore » with MCO 3DCRT technique (MCO-3D) was generated with beam arrangements and dose constraints following the RTOG 0933 guidelines. MCO-3D plans were compared with plans using MCO IMRT techniques (MCO-IMRT) with same beam arrangements and dose constraints. Evaluation parameters included D98% D2% and dose homogeneity index of PTV, and Dmax and D100% of the hippocampi. The OAR doses were also evaluated. Results: For MCO-IMRT plans, PTV D2% and hippocampi Dmax and D100% met RTOG 0933 objectives in all ten patients (PTV D2%<37.5Gy; Hippocampi Dmax<16Gy and D100%<9Gy). One patient met the RTOG 0933 PTV D98% objective (PTV D98%>25Gy) and 9/10 patients met acceptable variation (PTV D98%<25Gy). For MCO-3D plans, PTV D2% met RTOG 0933 objective for all patients; 1/10 patient for PTV D98% and 6/10 patients for Hippocampi Dmax and 7/10 patients for hippocampi D100% met RTOG 0933 objective. All the other patients met the RTOG 0933 acceptable variation requirement. (PTV D98%<25Gy; Hippocampi Dmax<17Gy and D100%<10Gy). Conclusion: All dosimetric parameters of MCO-3D plans met the criteria of at least acceptable variation per RTOG 0933. This may be helpful in cases where there is denial of patient’s medical insurance coverage due to the use of IMRT for HA-WBRT.« less
Yeo, Inhwan Jason; Jung, Jae Won; Yi, Byong Yong; Kim, Jong Oh
2013-01-01
Purpose: When an intensity-modulated radiation beam is delivered to a moving target, the interplay effect between dynamic beam delivery and the target motion due to miss-synchronization can cause unpredictable dose delivery. The portal dose image in electronic portal imaging device (EPID) represents radiation attenuated and scattered through target media. Thus, it may possess information about delivered radiation to the target. Using a continuous scan (cine) mode of EPID, which provides temporal dose images related to target and beam movements, the authors’ goal is to perform four-dimensional (4D) dose reconstruction. Methods: To evaluate this hypothesis, first, the authors have derived and subsequently validated a fast method of dose reconstruction based on virtual beamlet calculations of dose responses using a test intensity-modulated beam. This method was necessary for processing a large number of EPID images pertinent for four-dimensional reconstruction. Second, cine mode acquisition after summation over all images was validated through comparison with integration mode acquisition on EPID (IAS3 and aS1000) for the test beam. This was to confirm the agreement of the cine mode with the integrated mode, specifically for the test beam, which is an accepted mode of image acquisition for dosimetry with EPID. Third, in-phantom film and exit EPID dosimetry was performed on a moving platform using the same beam. Heterogeneous as well as homogeneous phantoms were used. The cine images were temporally sorted at 10% interval. The authors have performed dose reconstruction to the in-phantom plane from the sorted cine images using the above validated method of dose reconstruction. The reconstructed dose from each cine image was summed to compose a total reconstructed dose from the test beam delivery, and was compared with film measurements. Results: The new method of dose reconstruction was validated showing greater than 95.3% pass rates of the gamma test with the criteria of dose difference of 3% and distance to agreement of 3 mm. The dose comparison of the reconstructed dose with the measured dose for the two phantoms showed pass rates higher than 96.4% given the same criteria. Conclusions: Feasibility of 4D dose reconstruction was successfully demonstrated in this study. The 4D dose reconstruction demonstrated in this study can be a promising dose validation method for radiation delivery on moving organs. PMID:23635250
Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham
2013-12-01
Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147-53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose-volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.
Second cancer risk after 3D-CRT, IMRT and VMAT for breast cancer.
Abo-Madyan, Yasser; Aziz, Muhammad Hammad; Aly, Moamen M O M; Schneider, Frank; Sperk, Elena; Clausen, Sven; Giordano, Frank A; Herskind, Carsten; Steil, Volker; Wenz, Frederik; Glatting, Gerhard
2014-03-01
Second cancer risk after breast conserving therapy is becoming more important due to improved long term survival rates. In this study, we estimate the risks for developing a solid second cancer after radiotherapy of breast cancer using the concept of organ equivalent dose (OED). Computer-tomography scans of 10 representative breast cancer patients were selected for this study. Three-dimensional conformal radiotherapy (3D-CRT), tangential intensity modulated radiotherapy (t-IMRT), multibeam intensity modulated radiotherapy (m-IMRT), and volumetric modulated arc therapy (VMAT) were planned to deliver a total dose of 50 Gy in 2 Gy fractions. Differential dose volume histograms (dDVHs) were created and the OEDs calculated. Second cancer risks of ipsilateral, contralateral lung and contralateral breast cancer were estimated using linear, linear-exponential and plateau models for second cancer risk. Compared to 3D-CRT, cumulative excess absolute risks (EAR) for t-IMRT, m-IMRT and VMAT were increased by 2 ± 15%, 131 ± 85%, 123 ± 66% for the linear-exponential risk model, 9 ± 22%, 82 ± 96%, 71 ± 82% for the linear and 3 ± 14%, 123 ± 78%, 113 ± 61% for the plateau model, respectively. Second cancer risk after 3D-CRT or t-IMRT is lower than for m-IMRT or VMAT by about 34% for the linear model and 50% for the linear-exponential and plateau models, respectively. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Inoue, Daisuke; Yoshimoto, Koji; Uemura, Munenori; Yoshida, Masaki; Ohuchida, Kenoki; Kenmotsu, Hajime; Tomikawa, Morimasa; Sasaki, Tomio; Hashizume, Makoto
2013-11-01
The purpose of this research was to investigate the usefulness of three-dimensional (3D) endoscopy compared with two-dimensional (2D) endoscopy in neuroendoscopic surgeries in a comparative study and to test the clinical applications. Forty-three examinees were divided into three groups according to their endoscopic experience: novice, beginner, or expert. Examinees performed three separate tasks using 3D and 2D endoscopy. A recently developed 3D high-definition (HD) neuroendoscope, 4.7 mm in diameter (Shinko Optical Co., Ltd., Tokyo, Japan) was used. In one of the three tasks, we developed a full-sized skull model of acrylic-based plastic using a 3D printer and a patient's thin slice computed tomography data, and evaluated the execution time and total path length of the tip of the pointer using an optical tracking system. Sixteen patients underwent endoscopic transnasal transsphenoidal pituitary surgery using both 3D and 2D endoscopy. Horizontal motion was evaluated using task 1, and anteroposterior motion was evaluated with task 3. Execution time and total path length in task 3 using the 3D system in both novice and beginner groups were significantly shorter than with the 2D system (p < 0.05), although no significant difference between 2D and 3D systems in task 1 was seen. In both the novice and beginner groups, the 3D system was better for depth perception than horizontal motion. No difference was seen in the expert group in this regard. The 3D HD endoscope was used for the pituitary surgery and was found very useful to identify the spatial relationship of carotid arteries and bony structures. The use of a 3D neuroendoscope improved depth perception and task performance. Our results suggest that 3D endoscopes could shorten the learning curve of young neurosurgeons and play an important role in both general surgery and neurosurgery. Georg Thieme Verlag KG Stuttgart · New York.
Nicolini, Giorgia; Ghosh-Laskar, Sarbani; Shrivastava, Shyam Kishore; Banerjee, Sushovan; Chaudhary, Suresh; Agarwal, Jai Prakash; Munshi, Anusheel; Clivio, Alessandro; Fogliata, Antonella; Mancosu, Pietro; Vanetti, Eugenio; Cozzi, Luca
2012-10-01
A feasibility study was performed to evaluate RapidArc (RA), and the potential benefit of flattening filter-free beams, on advanced esophageal cancer against intensity-modulated radiotherapy (IMRT) and three-dimensional conformal radiotherapy (3D-CRT). The plans for 3D-CRT and IMRT with three to seven and five to seven fixed beams were compared against double-modulated arcs with avoidance sectors to spare the lungs for 10 patients. All plans were optimized for 6-MV photon beams. The RA plans were studied for conventional and flattening filter-free (FFF) beams. The objectives for the planning target volume were the volume receiving ≥ 95% or at most 107% of the prescribed dose of <1% with a dose prescription of 59.4 Gy. For the organs at risk, the lung volume (minus the planning target volume) receiving ≥ 5 Gy was <60%, that receiving 20 Gy was <20%-30%, and the mean lung dose was <15.0 Gy. The heart volume receiving 45 Gy was <20%, volume receiving 30 Gy was <50%. The spinal dose received by 1% was <45 Gy. The technical delivery parameters for RA were assessed to compare the normal and FFF beam characteristics. RA and IMRT provided equivalent coverage and homogeneity, slightly superior to 3D-CRT. The conformity index was 1.2 ± 0.1 for RA and IMRT and 1.5 ± 0.2 for 3D-CRT. The mean lung dose was 12.2 ± 4.5 for IMRT, 11.3 ± 4.6 for RA, and 10.8 ± 4.4 for RA with FFF beams, 18.2 ± 8.5 for 3D-CRT. The percentage of volume receiving ≥ 20 Gy ranged from 23.6% ± 9.1% to 21.1% ± 9.7% for IMRT and RA (FFF beams) and 39.2% ± 17.0% for 3D-CRT. The heart and spine objectives were met by all techniques. The monitor units for IMRT and RA were 457 ± 139, 322 ± 20, and 387 ± 40, respectively. RA with FFF beams showed, compared with RA with normal beams, a ∼20% increase in monitor units per Gray, a 90% increase in the average dose rate, and 20% reduction in beam on time (owing to different gantry speeds). RA demonstrated, compared with conventional IMRT, a similar target coverage and some better dose sparing to the organs at risk; the advantage against conventional 3D-CRT was more evident. RA with FFF beams resulted in minor improvements in plan quality but with the potential for additional useful reduction in the treatment time. Copyright © 2012 Elsevier Inc. All rights reserved.
Three-Dimensional Anatomic Evaluation of the Anterior Cruciate Ligament for Planning Reconstruction
Hoshino, Yuichi; Kim, Donghwi; Fu, Freddie H.
2012-01-01
Anatomic study related to the anterior cruciate ligament (ACL) reconstruction surgery has been developed in accordance with the progress of imaging technology. Advances in imaging techniques, especially the move from two-dimensional (2D) to three-dimensional (3D) image analysis, substantially contribute to anatomic understanding and its application to advanced ACL reconstruction surgery. This paper introduces previous research about image analysis of the ACL anatomy and its application to ACL reconstruction surgery. Crucial bony landmarks for the accurate placement of the ACL graft can be identified by 3D imaging technique. Additionally, 3D-CT analysis of the ACL insertion site anatomy provides better and more consistent evaluation than conventional “clock-face” reference and roentgenologic quadrant method. Since the human anatomy has a complex three-dimensional structure, further anatomic research using three-dimensional imaging analysis and its clinical application by navigation system or other technologies is warranted for the improvement of the ACL reconstruction. PMID:22567310
Mendenhall, William M; Amdur, Robert J; Palta, Jatinder R
2006-06-10
The purpose of this article is to review the role of intensity-modulated radiotherapy (IMRT) in the standard management of patients with head and neck cancer through a critical review of the pertinent literature. IMRT may result in a dose distribution that is more conformal than that achieved with three-dimensional conformal radiotherapy (3D CRT), allowing dose reduction to normal structures and thus decreasing toxicity and possibly enhancing locoregional control through dose escalation. Disadvantages associated with IMRT include increased risk of a marginal miss, decreased dose homogeneity, increased total body dose, and increased labor and expense. Outcomes data after IMRT are limited, and follow-up is relatively short. Locoregional control rates appear to be comparable to those achieved with 3D CRT and, depending on the location and extent of the tumor, late toxicity may be lower. Despite limited data on clinical outcomes, IMRT has been widely adopted as a standard technique in routine practice and clinical trials. The use of IMRT involves a learning curve for the practitioner and will continue to evolve, requiring continuing education and monitoring of outcomes from routine practice. Additional standards pertaining to a variety of issues, including target definitions and dose specification, need to be developed. Phase III trials will better define the role of IMRT in coming years.
Three-dimensional compound comparison methods and their application in drug discovery.
Shin, Woong-Hee; Zhu, Xiaolei; Bures, Mark Gregory; Kihara, Daisuke
2015-07-16
Virtual screening has been widely used in the drug discovery process. Ligand-based virtual screening (LBVS) methods compare a library of compounds with a known active ligand. Two notable advantages of LBVS methods are that they do not require structural information of a target receptor and that they are faster than structure-based methods. LBVS methods can be classified based on the complexity of ligand structure information utilized: one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D). Unlike 1D and 2D methods, 3D methods can have enhanced performance since they treat the conformational flexibility of compounds. In this paper, a number of 3D methods will be reviewed. In addition, four representative 3D methods were benchmarked to understand their performance in virtual screening. Specifically, we tested overall performance in key aspects including the ability to find dissimilar active compounds, and computational speed.
Three-dimensional display technologies
Geng, Jason
2014-01-01
The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies. PMID:25530827
Monte Carlo MCNP-4B-based absorbed dose distribution estimates for patient-specific dosimetry.
Yoriyaz, H; Stabin, M G; dos Santos, A
2001-04-01
This study was intended to verify the capability of the Monte Carlo MCNP-4B code to evaluate spatial dose distribution based on information gathered from CT or SPECT. A new three-dimensional (3D) dose calculation approach for internal emitter use in radioimmunotherapy (RIT) was developed using the Monte Carlo MCNP-4B code as the photon and electron transport engine. It was shown that the MCNP-4B computer code can be used with voxel-based anatomic and physiologic data to provide 3D dose distributions. This study showed that the MCNP-4B code can be used to develop a treatment planning system that will provide such information in a time manner, if dose reporting is suitably optimized. If each organ is divided into small regions where the average energy deposition is calculated with a typical volume of 0.4 cm(3), regional dose distributions can be provided with reasonable central processing unit times (on the order of 12-24 h on a 200-MHz personal computer or modest workstation). Further efforts to provide semiautomated region identification (segmentation) and improvement of marrow dose calculations are needed to supply a complete system for RIT. It is envisioned that all such efforts will continue to develop and that internal dose calculations may soon be brought to a similar level of accuracy, detail, and robustness as is commonly expected in external dose treatment planning. For this study we developed a code with a user-friendly interface that works on several nuclear medicine imaging platforms and provides timely patient-specific dose information to the physician and medical physicist. Future therapy with internal emitters should use a 3D dose calculation approach, which represents a significant advance over dose information provided by the standard geometric phantoms used for more than 20 y (which permit reporting of only average organ doses for certain standardized individuals)
Shen, Wen-bin; Zhu, Shu-chai; Gao, Hong-mei; Li, You-mei; Liu, Zhi-kun; Li, Juan; Su, Jing-wei; Wan, Jun
2013-01-01
To investigate the predictive value of low dose volume of the lung on acute radiation pneumonitis (RP) in patients with esophageal cancer treated with three-dimensional conformal radiotherapy (3D-CRT) only, and to analyze the relation of comprehensive parameters of the dose-volume V5, V20 and mean lung dose (MLD) with acute RP. Two hundred and twenty-two patients with esophageal cancer treated by 3D-CRT have been followed up. The V5-V30 and MLD were calculated from the dose-volume histogram system. The clinical factors and treatment parameters were collected and analyzed. The acute RP was evaluated according to the RTOG toxicity criteria. The acute RP of grade 1, 2, 3 and 4 were observed in 68 (30.6%), 40 (18.0%), 8 (3.6%) and 1 (0.5%) cases, respectively. The univariate analysis of measurement data:The primary tumor length, radiation fields, MLD and lung V5-V30 had a significant relationship with the acute RP. The magnitude of the number of radiation fields, the volume of GTV, MLD and Lung V5-V30 had a significant difference in whether the ≥ grade 1 and ≥ grade 2 acute RP developed or not. Binary logistic regression analysis showed that MLD, Lung V5, V20 and V25 were independent risk factors of ≥ grade 1 acute RP, and the radiation fields, MLD and Lung V5 were independent risk factors of ≥ grade 2 acute RP. The ≥ grade 1 and ≥ grade 2 acute RP were significantly decreased when MLD less than 14 Gy, V5 and V20 were less than 60% and 28%,respectively. When the V20 ≤ 28%, the acute RP was significantly decreased in V5 ≤ 60% group. When the MLD was ≤ 14 Gy, the ≥ 1 grade acute RP was significantly decreased in the V5 ≤ 60% group. When the MLD was >14 Gy, the ≥ grade 2 acute RP was significantly decreased in the V5 ≤ 60% group. The low dose volume of the lung is effective in predicting radiation pneumonitis in patients with esophageal cancer treated with 3D-CRT only. The comprehensive parameters combined with V5, V20 and MLD may increase the effect in predicting radiation pneumonitis.
Schmuck, Eric G; Koch, Jill M; Centanni, John M; Hacker, Timothy A; Braun, Rudolf K; Eldridge, Marlowe; Hei, Derek J; Hematti, Peiman; Raval, Amish N
2016-12-01
: Cell tracking is a critical component of the safety and efficacy evaluation of therapeutic cell products. To date, cell-tracking modalities have been hampered by poor resolution, low sensitivity, and inability to track cells beyond the shortterm. Three-dimensional (3D) cryo-imaging coregisters fluorescent and bright-field microcopy images and allows for single-cell quantification within a 3D organ volume. We hypothesized that 3D cryo-imaging could be used to measure cell biodistribution and clearance after intravenous infusion in a rat lung injury model compared with normal rats. A bleomycin lung injury model was established in Sprague-Dawley rats (n = 12). Human mesenchymal stem cells (hMSCs) labeled with QTracker655 were infused via jugular vein. After 2, 4, or 8 days, a second dose of hMSCs labeled with QTracker605 was infused, and animals were euthanized after 60, 120, or 240 minutes. Lungs, liver, spleen, heart, kidney, testis, and intestine were cryopreserved, followed by 3D cryo-imaging of each organ. At 60 minutes, 82% ± 9.7% of cells were detected; detection decreased to 60% ± 17% and 66% ± 22% at 120 and 240 minutes, respectively. At day 2, 0.06% of cells were detected, and this level remained constant at days 4 and 8 postinfusion. At 60, 120, and 240 minutes, 99.7% of detected cells were found in the liver, lungs, and spleen, with cells primarily retained in the liver. This is the first study using 3D cryo-imaging to track hMSCs in a rat lung injury model. hMSCs were retained primarily in the liver, with fewer detected in lungs and spleen. Effective bench-to-bedside clinical translation of cellular therapies requires careful understanding of cell fate through tracking. Tracking cells is important to measure cell retention so that delivery methods and cell dose can be optimized and so that biodistribution and clearance can be defined to better understand potential off-target toxicity and redosing strategies. This article demonstrates, for the first time, the use of three-dimensional cryo-imaging for single-cell quantitative tracking of intravenous infused clinical-grade mesenchymal stem cells in a clinically relevant model of lung injury. The important information learned in this study will help guide future clinical and translational stem cell therapies for lung injuries. ©AlphaMed Press.
Three-dimensional unstructured grid refinement and optimization using edge-swapping
NASA Technical Reports Server (NTRS)
Gandhi, Amar; Barth, Timothy
1993-01-01
This paper presents a three-dimensional (3-D) 'edge-swapping method based on local transformations. This method extends Lawson's edge-swapping algorithm into 3-D. The 3-D edge-swapping algorithm is employed for the purpose of refining and optimizing unstructured meshes according to arbitrary mesh-quality measures. Several criteria including Delaunay triangulations are examined. Extensions from two to three dimensions of several known properties of Delaunay triangulations are also discussed.
SU-E-T-120: Analytic Dose Verification for Patient-Specific Proton Pencil Beam Scanning Plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, C; Mah, D
2015-06-15
Purpose: To independently verify the QA dose of proton pencil beam scanning (PBS) plans using an analytic dose calculation model. Methods: An independent proton dose calculation engine is created using the same commissioning measurements as those employed to build our commercially available treatment planning system (TPS). Each proton PBS plan is exported from the TPS in DICOM format and calculated by this independent dose engine in a standard 40 x 40 x 40 cm water tank. This three-dimensional dose grid is then compared with the QA dose calculated by the commercial TPS, using standard Gamma criterion. A total of 18more » measured pristine Bragg peaks, ranging from 100 to 226 MeV, are used in the model. Intermediate proton energies are interpolated. Similarly, optical properties of the spots are measured in air over 15 cm upstream and downstream, and fitted to a second-order polynomial. Multiple Coulomb scattering in water is approximated analytically using Preston and Kohler formula for faster calculation. The effect of range shifters on spot size is modeled with generalized Highland formula. Note that the above formulation approximates multiple Coulomb scattering in water and we therefore chose not use the full Moliere/Hanson form. Results: Initial examination of 3 patient-specific prostate PBS plans shows that agreement exists between 3D dose distributions calculated by the TPS and the independent proton PBS dose calculation engine. Both calculated dose distributions are compared with actual measurements at three different depths per beam and good agreements are again observed. Conclusion: Results here showed that 3D dose distributions calculated by this independent proton PBS dose engine are in good agreement with both TPS calculations and actual measurements. This tool can potentially be used to reduce the amount of different measurement depths required for patient-specific proton PBS QA.« less
Animation and radiobiological analysis of 3D motion in conformal radiotherapy.
MacKay, R I; Graham, P A; Moore, C J; Logue, J P; Sharrock, P J
1999-07-01
To allow treatment plans to be evaluated against the range of expected organ motion and set up error anticipated during treatment. Planning tools have been developed to allow concurrent animation and radiobiological analysis of three dimensional (3D) target and organ motion in conformal radiotherapy. Surfaces fitted to structures outlined on CT studies are projected onto pre-treatment images or onto megavoltage images collected during the patient treatment. Visual simulation of tumour and normal tissue movement is then performed by the application of three dimensional affine transformations, to the selected surface. Concurrent registration of the surface motion with the 3D dose distribution allows calculation of the change in dose to the volume. Realistic patterns of motion can be applied to the structure to simulate inter-fraction motion and set-up error. The biologically effective dose for the structure is calculated for each fraction as the surface moves over the course of the treatment and is used to calculate the normal tissue complication probability (NTCP) or tumour control probability (TCP) for the moving structure. The tool has been used to evaluate conformal therapy plans against set up measurements recorded during patient treatments. NTCP and TCP were calculated for a patient whose set up had been corrected after systematic deviations from plan geometry were measured during treatment, the effect of not making the correction were also assessed. TCP for the moving tumour was reduced if inadequate margins were set for the treatment. Modelling suggests that smaller margins could have been set for the set up corrected during the course of the treatment. The NTCP for the rectum was also higher for the uncorrected set up due to a more rectal tissue falling in the high dose region. This approach provides a simple way for clinical users to utilise information incrementally collected throughout the whole of a patient's treatment. In particular it is possible to test the robustness of a patient plan against a range of possible motion patterns. The methods described represent a move from the inspection of static pre-treatment plans to a review of the dynamic treatment.
3D Imaging with Structured Illumination for Advanced Security Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birch, Gabriel Carisle; Dagel, Amber Lynn; Kast, Brian A.
2015-09-01
Three-dimensional (3D) information in a physical security system is a highly useful dis- criminator. The two-dimensional data from an imaging systems fails to provide target dis- tance and three-dimensional motion vector, which can be used to reduce nuisance alarm rates and increase system effectiveness. However, 3D imaging devices designed primarily for use in physical security systems are uncommon. This report discusses an architecture favorable to physical security systems; an inexpensive snapshot 3D imaging system utilizing a simple illumination system. The method of acquiring 3D data, tests to understand illumination de- sign, and software modifications possible to maximize information gathering capabilitymore » are discussed.« less
Proton Radiotherapy for Pediatric Central Nervous System Germ Cell Tumors: Early Clinical Outcomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, Shannon M., E-mail: smacdonald@partners.or; Trofimov, Alexei; Safai, Sairos
Purpose: To report early clinical outcomes for children with central nervous system (CNS) germ cell tumors treated with protons; to compare dose distributions for intensity-modulated photon radiotherapy (IMRT), three-dimensional conformal proton radiation (3D-CPT), and intensity-modulated proton therapy with pencil beam scanning (IMPT) for whole-ventricular irradiation with and without an involved-field boost. Methods and Materials: All children with CNS germinoma or nongerminomatous germ cell tumor who received treatment at the Massachusetts General Hospital between 1998 and 2007 were included in this study. The IMRT, 3D-CPT, and IMPT plans were generated and compared for a representative case. Results: Twenty-two patients were treatedmore » with 3D-CPT. At a median follow-up of 28 months, there were no CNS recurrences; 1 patient had a recurrence outside the CNS. Local control, progression-free survival, and overall survival rates were 100%, 95%, and 100%, respectively. Comparable tumor volume coverage was achieved with IMRT, 3D-CPT, and IMPT. Substantial normal tissue sparing was seen with any form of proton therapy as compared with IMRT. The use of IMPT may yield additional sparing of the brain and temporal lobes. Conclusions: Preliminary disease control with proton therapy compares favorably to the literature. Dosimetric comparisons demonstrate the advantage of proton radiation over IMRT for whole-ventricle radiation. Superior dose distributions were accomplished with fewer beam angles utilizing 3D-CPT and scanned protons. Intensity-modulated proton therapy with pencil beam scanning may improve dose distribution as compared with 3D-CPT for this treatment.« less
NASA Astrophysics Data System (ADS)
Daimon, Hiroshi
2018-06-01
Local three-dimensional (3D) atomic arrangements without periodicity have not been able to be studied until recently. Recently, several holographies and related techniques have been developed to reveal the 3D atomic arrangement around specific atoms with no translational symmetry. This review gives an overview of these new local 3D atomic imaging techniques.
Foo, Jung-Leng; Martinez-Escobar, Marisol; Juhnke, Bethany; Cassidy, Keely; Hisley, Kenneth; Lobe, Thom; Winer, Eliot
2013-01-01
Visualization of medical data in three-dimensional (3D) or two-dimensional (2D) views is a complex area of research. In many fields 3D views are used to understand the shape of an object, and 2D views are used to understand spatial relationships. It is unclear how 2D/3D views play a role in the medical field. Using 3D views can potentially decrease the learning curve experienced with traditional 2D views by providing a whole representation of the patient's anatomy. However, there are challenges with 3D views compared with 2D. This current study expands on a previous study to evaluate the mental workload associated with both 2D and 3D views. Twenty-five first-year medical students were asked to localize three anatomical structures--gallbladder, celiac trunk, and superior mesenteric artery--in either 2D or 3D environments. Accuracy and time were taken as the objective measures for mental workload. The NASA Task Load Index (NASA-TLX) was used as a subjective measure for mental workload. Results showed that participants viewing in 3D had higher localization accuracy and a lower subjective measure of mental workload, specifically, the mental demand component of the NASA-TLX. Results from this study may prove useful for designing curricula in anatomy education and improving training procedures for surgeons.
Binary Colloidal Alloy Test-5: Three-Dimensional Melt
NASA Technical Reports Server (NTRS)
Yodh, Arjun G.
2008-01-01
Binary Colloidal Alloy Test - 5: Three-Dimensional Melt (BCAT-5-3DMelt) photographs initially randomized colloidal samples in microgravity to determine their resulting structure over time. BCAT-5-3D-Melt will allow the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-3D-Melt will look at the mechanisms of melting using three-dimensional temperature sensitive colloidal crystals. Results will help scientists develop fundamental physics concepts previously shadowed by the effects of gravity.
NASA Technical Reports Server (NTRS)
Swanson, R. Charles; Radespiel, Rolf; Mccormick, V. Edward
1989-01-01
The two-dimensional (2-D) and three-dimensional Navier-Stokes equations are solved for flow over a NAE CAST-10 airfoil model. Recently developed finite-volume codes that apply a multistage time stepping scheme in conjunction with steady state acceleration techniques are used to solve the equations. Two-dimensional results are shown for flow conditions uncorrected and corrected for wind tunnel wall interference effects. Predicted surface pressures from 3-D simulations are compared with those from 2-D calculations. The focus of the 3-D computations is the influence of the sidewall boundary layers. Topological features of the 3-D flow fields are indicated. Lift and drag results are compared with experimental measurements.
Computational techniques to enable visualizing shapes of objects of extra spatial dimensions
NASA Astrophysics Data System (ADS)
Black, Don Vaughn, II
Envisioning extra dimensions beyond the three of common experience is a daunting challenge for three dimensional observers. Intuition relies on experience gained in a three dimensional environment. Gaining experience with virtual four dimensional objects and virtual three manifolds in four-space on a personal computer may provide the basis for an intuitive grasp of four dimensions. In order to enable such a capability for ourselves, it is first necessary to devise and implement a computationally tractable method to visualize, explore, and manipulate objects of dimension beyond three on the personal computer. A technology is described in this dissertation to convert a representation of higher dimensional models into a format that may be displayed in realtime on graphics cards available on many off-the-shelf personal computers. As a result, an opportunity has been created to experience the shape of four dimensional objects on the desktop computer. The ultimate goal has been to provide the user a tangible and memorable experience with mathematical models of four dimensional objects such that the user can see the model from any user selected vantage point. By use of a 4D GUI, an arbitrary convex hull or 3D silhouette of the 4D model can be rotated, panned, scrolled, and zoomed until a suitable dimensionally reduced view or Aspect is obtained. The 4D GUI then allows the user to manipulate a 3-flat hyperplane cutting tool to slice the model at an arbitrary orientation and position to extract or "pluck" an embedded 3D slice or "aspect" from the embedding four-space. This plucked 3D aspect can be viewed from all angles via a conventional 3D viewer using three multiple POV viewports, and optionally exported to a third party CAD viewer for further manipulation. Plucking and Manipulating the Aspect provides a tangible experience for the end-user in the same manner as any 3D Computer Aided Design viewing and manipulation tool does for the engineer or a 3D video game provides for the nascent student.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, A; Han, B; Bush, K
Purpose: Dosimetric verification of VMAT/SBRT is currently performed on one or two planes in a phantom with either film or array detectors. A robust and easy-to-use 3D dosimetric tool has been sought since the advent of conformal radiation therapy. Here we present such a strategy for independent 3D VMAT/SBRT plan verification system by a combined use of EPID and cloud-based Monte Carlo (MC) dose calculation. Methods: The 3D dosimetric verification proceeds in two steps. First, the plan was delivered with a high resolution portable EPID mounted on the gantry, and the EPID-captured gantry-angle-resolved VMAT/SBRT field images were converted into fluencemore » by using the EPID pixel response function derived from MC simulations. The fluence was resampled and used as the input for an in-house developed Amazon cloud-based MC software to reconstruct the 3D dose distribution. The accuracy of the developed 3D dosimetric tool was assessed using a Delta4 phantom with various field sizes (square, circular, rectangular, and irregular MLC fields) and different patient cases. The method was applied to validate VMAT/SBRT plans using WFF and FFF photon beams (Varian TrueBeam STX). Results: It was found that the proposed method yielded results consistent with the Delta4 measurements. For points on the two detector planes, a good agreement within 1.5% were found for all the testing fields. Patient VMAT/SBRT plan studies revealed similar level of accuracy: an average γ-index passing rate of 99.2± 0.6% (3mm/3%), 97.4± 2.4% (2mm/2%), and 72.6± 8.4 % ( 1mm/1%). Conclusion: A valuable 3D dosimetric verification strategy has been developed for VMAT/SBRT plan validation. The technique provides a viable solution for a number of intractable dosimetry problems, such as small fields and plans with high dose gradient.« less
Qiao, Wen-Bo; Zhao, Yan-Hui; Zhao, Yan-Bin; Wang, Rui-Zhi
2005-05-07
To analyze the clinical and dosimetric predictive factors for radiation-induced esophageal injury in patients with non-small-cell lung cancer (NSCLC) during three-dimensional conformal radiotherapy (3D-CRT). We retrospectively analyzed 208 consecutive patients (146 men and 62 women) with NSCLC treated with 3D-CRT. The median age of the patients was 64 years (range 35-87 years). The clinical and treatment parameters including gender, age, performance status, sequential chemotherapy, concurrent chemotherapy, presence of carinal or subcarinal lymph nodes, pretreatment weight loss, mean dose to the entire esophagus, maximal point dose to the esophagus, and percentage of volume of esophagus receiving >55 Gy were studied. Clinical and dosimetric factors for radiation-induced acute and late grade 3-5 esophageal injury were analyzed according to Radiation Therapy Oncology Group (RTOG) criteria. Twenty-five (12%) of the two hundred and eight patients developed acute or late grade 3-5 esophageal injury. Among them, nine patients had both acute and late grade 3-5 esophageal injury, two died of late esophageal perforation. Concurrent chemotherapy and maximal point dose to the esophagus > or =60 Gy were significantly associated with the risk of grade 3-5 esophageal injury. Fifty-four (26%) of the two hundred and eight patients received concurrent chemotherapy. Among them, 25 (46%) developed grade 3-5 esophageal injury (P = 0.0001<0.01). However, no grade 3-5 esophageal injury occurred in patients who received a maximal point dose to the esophagus <60 Gy (P = 0.0001<0.01). Concurrent chemotherapy and the maximal esophageal point dose > or =60 Gy are significantly associated with the risk of grade 3-5 esophageal injury in patients with NSCLC treated with 3D-CRT.
[3D Virtual Reality Laparoscopic Simulation in Surgical Education - Results of a Pilot Study].
Kneist, W; Huber, T; Paschold, M; Lang, H
2016-06-01
The use of three-dimensional imaging in laparoscopy is a growing issue and has led to 3D systems in laparoscopic simulation. Studies on box trainers have shown differing results concerning the benefit of 3D imaging. There are currently no studies analysing 3D imaging in virtual reality laparoscopy (VRL). Five surgical fellows, 10 surgical residents and 29 undergraduate medical students performed abstract and procedural tasks on a VRL simulator using conventional 2D and 3D imaging in a randomised order. No significant differences between the two imaging systems were shown for students or medical professionals. Participants who preferred three-dimensional imaging showed significantly better results in 2D as wells as in 3D imaging. First results on three-dimensional imaging on box trainers showed different results. Some studies resulted in an advantage of 3D imaging for laparoscopic novices. This study did not confirm the superiority of 3D imaging over conventional 2D imaging in a VRL simulator. In the present study on 3D imaging on a VRL simulator there was no significant advantage for 3D imaging compared to conventional 2D imaging. Georg Thieme Verlag KG Stuttgart · New York.
Yang, Xiaoli; Hofmann, Ralf; Dapp, Robin; van de Kamp, Thomas; dos Santos Rolo, Tomy; Xiao, Xianghui; Moosmann, Julian; Kashef, Jubin; Stotzka, Rainer
2015-03-09
High-resolution, three-dimensional (3D) imaging of soft tissues requires the solution of two inverse problems: phase retrieval and the reconstruction of the 3D image from a tomographic stack of two-dimensional (2D) projections. The number of projections per stack should be small to accommodate fast tomography of rapid processes and to constrain X-ray radiation dose to optimal levels to either increase the duration of in vivo time-lapse series at a given goal for spatial resolution and/or the conservation of structure under X-ray irradiation. In pursuing the 3D reconstruction problem in the sense of compressive sampling theory, we propose to reduce the number of projections by applying an advanced algebraic technique subject to the minimisation of the total variation (TV) in the reconstructed slice. This problem is formulated in a Lagrangian multiplier fashion with the parameter value determined by appealing to a discrete L-curve in conjunction with a conjugate gradient method. The usefulness of this reconstruction modality is demonstrated for simulated and in vivo data, the latter acquired in parallel-beam imaging experiments using synchrotron radiation.
Yang, Xiaoli; Hofmann, Ralf; Dapp, Robin; ...
2015-01-01
High-resolution, three-dimensional (3D) imaging of soft tissues requires the solution of two inverse problems: phase retrieval and the reconstruction of the 3D image from a tomographic stack of two-dimensional (2D) projections. The number of projections per stack should be small to accommodate fast tomography of rapid processes and to constrain X-ray radiation dose to optimal levels to either increase the duration o f in vivo time-lapse series at a given goal for spatial resolution and/or the conservation of structure under X-ray irradiation. In pursuing the 3D reconstruction problem in the sense of compressive sampling theory, we propose to reduce themore » number of projections by applying an advanced algebraic technique subject to the minimisation of the total variation (TV) in the reconstructed slice. This problem is formulated in a Lagrangian multiplier fashion with the parameter value determined by appealing to a discrete L-curve in conjunction with a conjugate gradient method. The usefulness of this reconstruction modality is demonstrated for simulated and in vivo data, the latter acquired in parallel-beam imaging experiments using synchrotron radiation.« less
Three-dimensional magnetophotonic crystals based on artificial opals
NASA Astrophysics Data System (ADS)
Baryshev, A. V.; Kodama, T.; Nishimura, K.; Uchida, H.; Inoue, M.
2004-06-01
We fabricated and experimentally investigated three-dimensional magnetophotonic crystals (3D MPCs) based on artificial opals. Opal samples with three-dimensional dielectric lattices were impregnated with different types of magnetic material. Magnetic and structural properties of 3D MPCs were studied by field emission scanning electron microscopy, x-ray diffraction analysis, and vibrating sample magnetometer. We have shown that magnetic materials synthesized in voids of opal lattices and the composites obtained have typical magnetic properties.
Ikeda, Hiroko; Souda, Hikaru; Puspitasari, Anggraeini; Held, Kathryn D; Hidema, Jun; Nikawa, Takeshi; Yoshida, Yukari; Kanai, Tatsuaki; Takahashi, Akihisa
2017-02-01
Outer space is an environment characterized by microgravity and space radiation, including high-energy charged particles. Astronauts are constantly exposed to both microgravity and radiation during long-term stays in space. However, many aspects of the biological effects of combined microgravity and space radiation remain unclear. We developed a new three-dimensional (3D) clinostat synchronized heavy-ion irradiation system for use in ground-based studies of the combined exposures. Our new system uses a particle accelerator and a respiratory gating system from heavy-ion radiotherapy to irradiate samples being rotated in the 3D clinostat with carbon-ion beams only when the samples are in the horizontal position. A Peltier module and special sample holder were loaded on a static stage (standing condition) and the 3D clinostat (rotation condition) to maintain a suitable temperature under atmospheric conditions. The performance of the new device was investigated with normal human fibroblasts 1BR-hTERT in a disposable closed cell culture chamber. Live imaging revealed that cellular adhesion and growth were almost the same for the standing control sample and rotation sample over 48h. Dose flatness and symmetry were judged according to the relative density of Gafchromic films along the X-axis and Y-axis of the positions of the irradiated sample to confirm irradiation accuracy. Doses calculated using the carbon-ion calibration curve were almost the same for standing and rotation conditions, with the difference being less than 5% at 1Gy carbon-ion irradiation. Our new device can accurately synchronize carbon-ion irradiation and simulated microgravity while maintaining the temperature under atmospheric conditions at ground level. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Steinthorsson, E.; Shih, T. I-P.; Roelke, R. J.
1991-01-01
In order to generate good quality systems for complicated three-dimensional spatial domains, the grid-generation method used must be able to exert rather precise controls over grid-point distributions. Several techniques are presented that enhance control of grid-point distribution for a class of algebraic grid-generation methods known as the two-, four-, and six-boundary methods. These techniques include variable stretching functions from bilinear interpolation, interpolating functions based on tension splines, and normalized K-factors. The techniques developed in this study were incorporated into a new version of GRID3D called GRID3D-v2. The usefulness of GRID3D-v2 was demonstrated by using it to generate a three-dimensional grid system in the coolent passage of a radial turbine blade with serpentine channels and pin fins.
Fukugawa, Yoshiyuki; Namimoto, Tomohiro; Toya, Ryo; Saito, Tetsuo; Yuki, Hideaki; Matsuyama, Tomohiko; Ikeda, Osamu; Yamashita, Yasuyuki; Oya, Natsuo
2017-02-01
Focal liver reaction (FLR) appears in the hepatobiliary-phase images of gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (Gd-EOB-DTPA-enhanced MRI) following radiotherapy (RT). We investigated the threshold dose (TD) for FLR development in 13 patients with hepatocellular carcinoma (HCC) who underwent three-dimensional conformal radiotherapy (3D-CRT) with 45 Gy in 15 fractions. FLR volumes (FLRVs) were calculated based on planning CT images by referring to fused hepatobiliary- phase images. We also calculated the TD and the irradiated volumes (IVs) of the liver parenchyma at a given dose of every 5 Gy (IVdose) based on a dose-volume histogram (DVH). The median TD was 35.2 Gy. The median IV20, IV25, IV30, IV35, IV40, and IV45 values were 371.1, 274.8, 233.4, 188.6, 145.8, and 31.0 ml, respectively. The median FLRV was 144.9 ml. There was a significant difference between the FLRV and IV20, IV25, and IV45 (p<0.05), but no significant differences between the FLRV and IV30, IV35, or IV40. These results suggest that the threshold dose of the FLR is approx. 35 Gy in HCC patients who undergo 3D-CRT in 15 fractions. The percentage of the whole liver volume receiving a dose of more than 30-40 Gy (V30-40) is a potential candidate optimal DVH parameter for this fractionation schedule.
Wieringa, Fokko P.; Bouma, Henri; Eendebak, Pieter T.; van Basten, Jean-Paul A.; Beerlage, Harrie P.; Smits, Geert A. H. J.; Bos, Jelte E.
2014-01-01
Abstract. In comparison to open surgery, endoscopic surgery offers impaired depth perception and narrower field-of-view. To improve depth perception, the Da Vinci robot offers three-dimensional (3-D) video on the console for the surgeon but not for assistants, although both must collaborate. We improved the shared perception of the whole surgical team by connecting live 3-D monitors to all three available Da Vinci generations, probed user experience after two years by questionnaire, and compared time measurements of a predefined complex interaction task performed with a 3-D monitor versus two-dimensional. Additionally, we investigated whether the complex mental task of reconstructing a 3-D overview from an endoscopic video can be performed by a computer and shared among users. During the study, 925 robot-assisted laparoscopic procedures were performed in three hospitals, including prostatectomies, cystectomies, and nephrectomies. Thirty-one users participated in our questionnaire. Eighty-four percent preferred 3-D monitors and 100% reported spatial-perception improvement. All participating urologists indicated quicker performance of tasks requiring delicate collaboration (e.g., clip placement) when assistants used 3-D monitors. Eighteen users participated in a timing experiment during a delicate cooperation task in vitro. Teamwork was significantly (40%) faster with the 3-D monitor. Computer-generated 3-D reconstructions from recordings offered very wide interactive panoramas with educational value, although the present embodiment is vulnerable to movement artifacts. PMID:26158026
Schure, Mark R; Davis, Joe M
2017-11-10
Orthogonality metrics (OMs) for three and higher dimensional separations are proposed as extensions of previously developed OMs, which were used to evaluate the zone utilization of two-dimensional (2D) separations. These OMs include correlation coefficients, dimensionality, information theory metrics and convex-hull metrics. In a number of these cases, lower dimensional subspace metrics exist and can be readily calculated. The metrics are used to interpret previously generated experimental data. The experimental datasets are derived from Gilar's peptide data, now modified to be three dimensional (3D), and a comprehensive 3D chromatogram from Moore and Jorgenson. The Moore and Jorgenson chromatogram, which has 25 identifiable 3D volume elements or peaks, displayed good orthogonality values over all dimensions. However, OMs based on discretization of the 3D space changed substantially with changes in binning parameters. This example highlights the importance in higher dimensions of having an abundant number of retention times as data points, especially for methods that use discretization. The Gilar data, which in a previous study produced 21 2D datasets by the pairing of 7 one-dimensional separations, was reinterpreted to produce 35 3D datasets. These datasets show a number of interesting properties, one of which is that geometric and harmonic means of lower dimensional subspace (i.e., 2D) OMs correlate well with the higher dimensional (i.e., 3D) OMs. The space utilization of the Gilar 3D datasets was ranked using OMs, with the retention times of the datasets having the largest and smallest OMs presented as graphs. A discussion concerning the orthogonality of higher dimensional techniques is given with emphasis on molecular diversity in chromatographic separations. In the information theory work, an inconsistency is found in previous studies of orthogonality using the 2D metric often identified as %O. A new choice of metric is proposed, extended to higher dimensions, characterized by mixes of ordered and random retention times, and applied to the experimental datasets. In 2D, the new metric always equals or exceeds the original one. However, results from both the original and new methods are given. Copyright © 2017 Elsevier B.V. All rights reserved.
Akiba, Tadashi; Marushima, Hideki; Harada, Junta; Kobayashi, Susumu; Morikawa, Toshiaki
2009-01-01
Video-assisted thoracic surgery (VATS) has recently been adopted for complicated anatomical lung resections. During these thoracoscopic procedures, surgeons view the operative field on a two-dimensional (2-D) video monitor and cannot palpate the organ directly, thus frequently encountering anatomical difficulties. This study aimed to estimate the usefulness of preoperative three-dimensional (3-D) imaging of thoracic organs. We compared the preoperative 64-row three-dimensional multidetector computed tomography (3DMDCT) findings of lung cancer-affected thoracic organs to the operative findings. In comparison to the operative findings, the branches of pulmonary arteries, veins, and bronchi were well defined in the 3D-MDCT images of 27 patients. 3D-MDCT imaging is useful for preoperatively understanding the individual thoracic anatomy in lung cancer surgery. This modality can therefore contribute to safer anatomical pulmonary operations, especially in VATS.
NASA Astrophysics Data System (ADS)
Edwards, Warren S.; Ritchie, Cameron J.; Kim, Yongmin; Mack, Laurence A.
1995-04-01
We have developed a three-dimensional (3D) imaging system using power Doppler (PD) ultrasound (US). This system can be used for visualizing and analyzing the vascular anatomy of parenchymal organs. To create the 3D PD images, we acquired a series of two-dimensional PD images from a commercial US scanner and recorded the position and orientation of each image using a 3D magnetic position sensor. Three-dimensional volumes were reconstructed using specially designed software and then volume rendered for display. We assessed the feasibility and geometric accuracy of our system with various flow phantoms. The system was then tested on a volunteer by scanning a transplanted kidney. The reconstructed volumes of the flow phantom contained less than 1 mm of geometric distortion and the 3D images of the transplanted kidney depicted the segmental, arcuate, and interlobar vessels.
[Application of three-dimensional printing technique in orthopaedics].
Luo, Qiang; Lau, Tak Wing; Fang, Xinshuo; Leung, Frankie
2014-03-01
To review the current progress of three-dimensional (3-D) printing technique in the clinical practice, its limitations and prospects. The recent publications associated with the clinical application of 3-D printing technique in the field of surgery, especially in orthopaedics were extensively reviewed. Currently, 3-D printing technique has been applied in orthopaedic surgery to aid diagnosis, make operative plans, and produce personalized prosthesis or implants. 3-D printing technique is a promising technique in clinical application.
An update on intraoperative three-dimensional transesophageal echocardiography
2017-01-01
Transesophageal echocardiography (TEE) was first used routinely in the operating rooms in the 1980s to facilitate surgical decision-making. Since then, TEE has evolved from the standard two-dimensional (2D) exam to include focused real-time three-dimensional (RT-3D) imaging both inside and outside the operating rooms. Improved spatial and temporal resolution due to technological advances has expedited surgical interventions in diseased valves. 3D imaging has also emerged as a crucial adjunct in percutaneous interventions for structural heart disease. With continued advancement in software, RT-3D TEE will continue to impact perioperative decisions. PMID:28540070
Bioprinting of 3D Convoluted Renal Proximal Tubules on Perfusable Chips
NASA Astrophysics Data System (ADS)
Homan, Kimberly A.; Kolesky, David B.; Skylar-Scott, Mark A.; Herrmann, Jessica; Obuobi, Humphrey; Moisan, Annie; Lewis, Jennifer A.
2016-10-01
Three-dimensional models of kidney tissue that recapitulate human responses are needed for drug screening, disease modeling, and, ultimately, kidney organ engineering. Here, we report a bioprinting method for creating 3D human renal proximal tubules in vitro that are fully embedded within an extracellular matrix and housed in perfusable tissue chips, allowing them to be maintained for greater than two months. Their convoluted tubular architecture is circumscribed by proximal tubule epithelial cells and actively perfused through the open lumen. These engineered 3D proximal tubules on chip exhibit significantly enhanced epithelial morphology and functional properties relative to the same cells grown on 2D controls with or without perfusion. Upon introducing the nephrotoxin, Cyclosporine A, the epithelial barrier is disrupted in a dose-dependent manner. Our bioprinting method provides a new route for programmably fabricating advanced human kidney tissue models on demand.
Bioprinting of 3D Convoluted Renal Proximal Tubules on Perfusable Chips
Homan, Kimberly A.; Kolesky, David B.; Skylar-Scott, Mark A.; Herrmann, Jessica; Obuobi, Humphrey; Moisan, Annie; Lewis, Jennifer A.
2016-01-01
Three-dimensional models of kidney tissue that recapitulate human responses are needed for drug screening, disease modeling, and, ultimately, kidney organ engineering. Here, we report a bioprinting method for creating 3D human renal proximal tubules in vitro that are fully embedded within an extracellular matrix and housed in perfusable tissue chips, allowing them to be maintained for greater than two months. Their convoluted tubular architecture is circumscribed by proximal tubule epithelial cells and actively perfused through the open lumen. These engineered 3D proximal tubules on chip exhibit significantly enhanced epithelial morphology and functional properties relative to the same cells grown on 2D controls with or without perfusion. Upon introducing the nephrotoxin, Cyclosporine A, the epithelial barrier is disrupted in a dose-dependent manner. Our bioprinting method provides a new route for programmably fabricating advanced human kidney tissue models on demand. PMID:27725720
NASA Astrophysics Data System (ADS)
Li, Da; Cheung, Chifai; Zhao, Xing; Ren, Mingjun; Zhang, Juan; Zhou, Liqiu
2016-10-01
Autostereoscopy based three-dimensional (3D) digital reconstruction has been widely applied in the field of medical science, entertainment, design, industrial manufacture, precision measurement and many other areas. The 3D digital model of the target can be reconstructed based on the series of two-dimensional (2D) information acquired by the autostereoscopic system, which consists multiple lens and can provide information of the target from multiple angles. This paper presents a generalized and precise autostereoscopic three-dimensional (3D) digital reconstruction method based on Direct Extraction of Disparity Information (DEDI) which can be used to any transform autostereoscopic systems and provides accurate 3D reconstruction results through error elimination process based on statistical analysis. The feasibility of DEDI method has been successfully verified through a series of optical 3D digital reconstruction experiments on different autostereoscopic systems which is highly efficient to perform the direct full 3D digital model construction based on tomography-like operation upon every depth plane with the exclusion of the defocused information. With the absolute focused information processed by DEDI method, the 3D digital model of the target can be directly and precisely formed along the axial direction with the depth information.
The evaluation and planning of light dose in photodynamic therapy for port wine stains
NASA Astrophysics Data System (ADS)
Zhang, Feng-juan; Hu, Xiaoming; Zhang, Qi-shen
2014-11-01
Photodynamic therapy (PDT) is one of the best available treatment for dermatology, especially for port wine stains (PWS), in which the efficacy is associated with the light dose, the photosensitizer concentration, the oxygen concentration and so on. Accurate control of the light dose will help doctors develop more effective treatment protocols, and reduce the treatment cost. Considering the characters of PWS, a binocular vision system composed of a camera, a digital projector and a computing unit is designed. An accurate 3D modeling of patients was achieved using a gray coding structured light, and then the lesions were segmented based on HSV space. Subsequently, each 3D point is fit on the surface by a nearest neighbor algorithm and the surface normal can be obtained. Three dimensional localization of lesion provide digital objective basis for automatic control of light device. The irradiance on the surface at a given angle can be assessed, and the optimum angle for the treatment can be solved and optimized by the doctor to improve irradiation areas.
Personalised 3D Printed Medicines: Which Techniques and Polymers Are More Successful?
Konta, Andrea Alice; García-Piña, Marta; Serrano, Dolores R
2017-09-22
The interindividual variability is an increasingly global problem when treating patients from different backgrounds with diverse customs, metabolism, and necessities. Dose adjustment is frequently based on empirical methods, and therefore, the chance of undesirable side effects to occur is high. Three-dimensional (3D) Printed medicines are revolutionsing the pharmaceutical market as potential tools to achieve personalised treatments adapted to the specific requirements of each patient, taking into account their age, weight, comorbidities, pharmacogenetic, and pharmacokinetic characteristics. Additive manufacturing or 3D printing consists of a wide range of techniques classified in many categories but only three of them are mostly used in the 3D printing of medicines: printing-based inkjet systems, nozzle-based deposition systems, and laser-based writing systems. There are several drawbacks when using each technique and also the type of polymers readily available do not always possess the optimal properties for every drug. The aim of this review is to give an overview about the current techniques employed in 3D printing medicines, highlighting their advantages, disadvantages, along with the polymer and drug requirements for a successful printing. The major application of these techniques will be also discussed.
Personalised 3D Printed Medicines: Which Techniques and Polymers Are More Successful?
Konta, Andrea Alice; García-Piña, Marta
2017-01-01
The interindividual variability is an increasingly global problem when treating patients from different backgrounds with diverse customs, metabolism, and necessities. Dose adjustment is frequently based on empirical methods, and therefore, the chance of undesirable side effects to occur is high. Three-dimensional (3D) Printed medicines are revolutionsing the pharmaceutical market as potential tools to achieve personalised treatments adapted to the specific requirements of each patient, taking into account their age, weight, comorbidities, pharmacogenetic, and pharmacokinetic characteristics. Additive manufacturing or 3D printing consists of a wide range of techniques classified in many categories but only three of them are mostly used in the 3D printing of medicines: printing-based inkjet systems, nozzle-based deposition systems, and laser-based writing systems. There are several drawbacks when using each technique and also the type of polymers readily available do not always possess the optimal properties for every drug. The aim of this review is to give an overview about the current techniques employed in 3D printing medicines, highlighting their advantages, disadvantages, along with the polymer and drug requirements for a successful printing. The major application of these techniques will be also discussed. PMID:28952558
Xia, J. J.; Gateno, J.; Teichgraeber, J. F.; Yuan, P.; Li, J.; Chen, K.-C.; Jajoo, A.; Nicol, M.; Alfi, D. M.
2015-01-01
Three-dimensional (3D) cephalometry is not as simple as just adding a ‘third’ dimension to a traditional two-dimensional cephalometric analysis. There are more complex issues in 3D analysis. These include how reference frames are created, how size, position, orientation and shape are measured, and how symmetry is assessed. The main purpose of this article is to present the geometric principles of 3D cephalometry. In addition, the Gateno–Xia cephalometric analysis is presented; this is the first 3D cephalometric analysis to observe these principles. PMID:26573563
NASA Technical Reports Server (NTRS)
Colborn, B. L.; Armstrong, T. W.
1992-01-01
A computer model of the three dimensional geometry and material distributions for the LDEF spacecraft, experiment trays, and, for selected trays, the components of experiments within a tray was developed for use in ionizing radiation assessments. The model is being applied to provide 3-D shielding distributions around radiation dosimeters to aid in data interpretation, particularly in assessing the directional properties of the radiation exposure. Also, the model has been interfaced with radiation transport codes for 3-D dosimetry response predictions and for calculations related to determining the accuracy of trapped proton and cosmic ray environment models. The methodology is described used in developing the 3-D LDEF model and the level of detail incorporated. Currently, the trays modeled in detail are F2, F8, and H12 and H3. Applications of the model which are discussed include the 3-D shielding distributions around various dosimeters, the influence of shielding on dosimetry responses, and comparisons of dose predictions based on the present 3-D model vs those from 1-D geometry model approximations used in initial estimates.
Zernike phase contrast cryo-electron tomography of whole bacterial cells.
Guerrero-Ferreira, Ricardo C; Wright, Elizabeth R
2014-01-01
Cryo-electron tomography (cryo-ET) provides three-dimensional (3D) structural information of bacteria preserved in a native, frozen-hydrated state. The typical low contrast of tilt-series images, a result of both the need for a low electron dose and the use of conventional defocus phase-contrast imaging, is a challenge for high-quality tomograms. We show that Zernike phase-contrast imaging allows the electron dose to be reduced. This limits movement of gold fiducials during the tilt series, which leads to better alignment and a higher-resolution reconstruction. Contrast is also enhanced, improving visibility of weak features. The reduced electron dose also means that more images at more tilt angles could be recorded, further increasing resolution. Copyright © 2013 Elsevier Inc. All rights reserved.
Bai, Y X
2016-06-01
Three-dimensional(3D)digital technology has been widely used in the field of orthodontics in clinical examination, diagnosis, treatment and curative effect evaluation. 3D digital technology greatly improves the accuracy of diagnosis and treatment, and provides effective means for personalized orthodontic treatment. This review focuses on the application of 3D digital technology in the field of orthodontics.
Kauweloa, Kevin I; Gutierrez, Alonso N; Stathakis, Sotirios; Papanikolaou, Niko; Mavroidis, Panayiotis
2016-07-01
A toolkit has been developed for calculating the 3-dimensional biological effective dose (BED) distributions in multi-phase, external beam radiotherapy treatments such as those applied in liver stereotactic body radiation therapy (SBRT) and in multi-prescription treatments. This toolkit also provides a wide range of statistical results related to dose and BED distributions. MATLAB 2010a, version 7.10 was used to create this GUI toolkit. The input data consist of the dose distribution matrices, organ contour coordinates, and treatment planning parameters from the treatment planning system (TPS). The toolkit has the capability of calculating the multi-phase BED distributions using different formulas (denoted as true and approximate). Following the calculations of the BED distributions, the dose and BED distributions can be viewed in different projections (e.g. coronal, sagittal and transverse). The different elements of this toolkit are presented and the important steps for the execution of its calculations are illustrated. The toolkit is applied on brain, head & neck and prostate cancer patients, who received primary and boost phases in order to demonstrate its capability in calculating BED distributions, as well as measuring the inaccuracy and imprecision of the approximate BED distributions. Finally, the clinical situations in which the use of the present toolkit would have a significant clinical impact are indicated. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Jin, Peng; van Wieringen, Niek; Hulshof, Maarten C C M; Bel, Arjan; Alderliesten, Tanja
2018-04-01
Use of four-dimensional cone-beam CT (4D-CBCT) and fiducial markers for image guidance during radiation therapy (RT) of mobile tumors is challenging due to the trade-off among image quality, imaging dose, and scanning time. This study aimed to investigate different 4D-CBCT acquisition settings for good visibility of fiducial markers in 4D-CBCT. Using these 4D-CBCTs, the feasibility of marker-based 4D registration for RT setup verification and manual respiration-induced motion quantification was investigated. For this, we applied a dynamic phantom with three different breathing motion amplitudes and included two patients with implanted markers. Irrespective of the motion amplitude, for a medium field of view (FOV), marker visibility was improved by reducing the imaging dose per projection and increasing the number of projection images; however, the scanning time was 4 to 8 min. For a small FOV, the total imaging dose and the scanning time were reduced (62.5% of the dose using a medium FOV, 2.5 min) without losing marker visibility. However, the body contour could be missing for a small FOV, which is not preferred in RT. The marker-based 4D setup verification was feasible for both the phantom and patient data. Moreover, manual marker motion quantification can achieve a high accuracy with a mean error of [Formula: see text].
Image volume analysis of omnidirectional parallax regular-polyhedron three-dimensional displays.
Kim, Hwi; Hahn, Joonku; Lee, Byoungho
2009-04-13
Three-dimensional (3D) displays having regular-polyhedron structures are proposed and their imaging characteristics are analyzed. Four types of conceptual regular-polyhedron 3D displays, i.e., hexahedron, octahedron, dodecahedron, and icosahedrons, are considered. In principle, regular-polyhedron 3D display can present omnidirectional full parallax 3D images. Design conditions of structural factors such as viewing angle of facet panel and observation distance for 3D display with omnidirectional full parallax are studied. As a main issue, image volumes containing virtual 3D objects represented by the four types of regular-polyhedron displays are comparatively analyzed.
Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shi-Jie; Li, Yan, E-mail: li@pku.edu.cn; Liu, Zhao-Pei
The focus of a beam with orbital angular momentum exhibits internal structure instead of an elliptical intensity distribution of a Gaussian beam, and the superposition of Gauss-Laguerre beams realized by two-dimensional phase modulation can generate a complex three-dimensional (3D) focus. By taking advantage of the flexibility of this 3D focus tailoring, we have fabricated a 3D microstructure with high resolution by two-photon polymerization with a single exposure. Furthermore, we have polymerized an array of double-helix structures that demonstrates optical chirality.
Principles of three-dimensional printing and clinical applications within the abdomen and pelvis.
Bastawrous, Sarah; Wake, Nicole; Levin, Dmitry; Ripley, Beth
2018-04-04
Improvements in technology and reduction in costs have led to widespread interest in three-dimensional (3D) printing. 3D-printed anatomical models contribute to personalized medicine, surgical planning, and education across medical specialties, and these models are rapidly changing the landscape of clinical practice. A physical object that can be held in one's hands allows for significant advantages over standard two-dimensional (2D) or even 3D computer-based virtual models. Radiologists have the potential to play a significant role as consultants and educators across all specialties by providing 3D-printed models that enhance clinical care. This article reviews the basics of 3D printing, including how models are created from imaging data, clinical applications of 3D printing within the abdomen and pelvis, implications for education and training, limitations, and future directions.
Advantages of intermediate X-ray energies in Zernike phase contrast X-ray microscopy.
Wang, Zhili; Gao, Kun; Chen, Jian; Hong, Youli; Ge, Xin; Wang, Dajiang; Pan, Zhiyun; Zhu, Peiping; Yun, Wenbing; Jacobsen, Chris; Wu, Ziyu
2013-01-01
Understanding the hierarchical organizations of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. Light microscopy is a powerful tool for observations of the dynamics of live cells, its resolution attainable is limited and insufficient. While electron microscopy can produce images with astonishing resolution and clarity of ultra-thin (<1 μm thick) sections of biological specimens, many questions involve the three-dimensional organization of a cell or the interconnectivity of cells. X-ray microscopy offers superior imaging resolution compared to light microscopy, and unique capability of nondestructive three-dimensional imaging of hydrated unstained biological cells, complementary to existing light and electron microscopy. Until now, X-ray microscopes operating in the "water window" energy range between carbon and oxygen k-shell absorption edges have produced outstanding 3D images of cryo-preserved cells. The relatively low X-ray energy (<540 eV) of the water window imposes two important limitations: limited penetration (<10 μm) not suitable for imaging larger cells or tissues, and small depth of focus (DoF) for high resolution 3D imaging (e.g., ~1 μm DoF for 20 nm resolution). An X-ray microscope operating at intermediate energy around 2.5 keV using Zernike phase contrast can overcome the above limitations and reduces radiation dose to the specimen. Using a hydrated model cell with an average chemical composition reported in literature, we calculated the image contrast and the radiation dose for absorption and Zernike phase contrast, respectively. The results show that an X-ray microscope operating at ~2.5 keV using Zernike phase contrast offers substantial advantages in terms of specimen size, radiation dose and depth-of-focus. Copyright © 2012 Elsevier Inc. All rights reserved.
Accelerated Partial Breast Irradiation: What is Dosimetric Effect of Advanced Technology Approaches?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moran, Jean M.; Ben-David, Merav A.; Marsh, Robin B.
2009-09-01
Purpose: The present treatment planning study compared whole breast radiotherapy (WBRT) to accelerated partial breast irradiation (APBI) for different external beam techniques and geometries (e.g., free breathing [FB] and deep inspiration breath hold [DIBH]). Methods and Materials: After approval by our institutional review board, a treatment planning study was performed of 10 patients with left-sided Stage 0-I breast cancer enrolled in a Phase I-II study of APBI using intensity-modulated radiotherapy (IMRT). After lumpectomy, patients underwent planning computed tomography scans during FB and using an active breathing control device at DIBH. For the FB geometry, standard WBRT and three-dimensional conformal radiotherapymore » (3D-CRT) APBI plans were created. For the DIBH geometry with active breathing control, WBRT, 3D-CRT, and IMRT APBI plans were created. Results: All APBI techniques had excellent planning target volume coverage. The maximal planning target volume dose was reduced from 116% of the prescription dose to 108% with the IMRT(DIBH) APBI plan. The maximal heart dose was >30 Gy for the WBRT techniques, 8.2 Gy for 3D-CRT(FB), and <5.0 Gy for 3D-CRT(DIBH) and IMRT(DIBH) techniques. The mean left anterior descending artery dose was significantly reduced from 11.4 Gy with WBRT(FB) to 4.2 with WBRT(DIBH) and <2.0 Gy with all APBI techniques. Conclusion: Although planning target volume coverage was acceptable with all techniques, the plans using the DIBH geometry resulted in a marked reduction in the normal tissue dose compared with WBRT planned in the absence of cardiac blocking. Additional study is needed to determine whether these techniques result in clinical benefits.« less
Jia, Pengfei; Xu, Jun; Zhou, Xiaoxi; Chen, Jian; Tang, Lemin
2017-12-01
The aim of this study is to compare the planning quality and delivery efficiency between dynamic intensity modulated radiation therapy (d-IMRT) and dual arc volumetric modulated arc therapy (VMAT) systematically for nasopharyngeal carcinoma (NPC) patients with multi-prescribed dose levels, and to analyze the correlations between target volumes and plan qualities. A total of 20 patients of NPC with 4-5 prescribed dose levels to achieve simultaneous integrated boost (SIB) treated by sliding window d-IMRT in our department from 2014 to 2015 were re-planned with dual arc VMAT. All optimization objectives for each VMAT plan were as the same as the corresponding d-IMRT plan. The dose parameters for targets and organ at risk (OAR), the delivery time and monitor units (MU) in two sets of plans were compared respectively. The treatment accuracy was tested by three dimensional dose validation system. Finally, the correlations between the difference of planning quality and the volume of targets were discussed. The conform indexes (CIs) of planning target volumes (PTVs) in VMAT plans were obviously high than those in d-IMRT plans ( P < 0.05), but no significant correlations between the difference of CIs and the volume of targets were discovered ( P > 0.05). The target coverage and heterogeneity indexes (HIs) of PTV 1 and PGTV nd and PTV 3 in two sets of plans were consistent. The doses of PTV 2 decreased and HIs were worse in VMAT plans. VMAT could provide better spinal cord and brainstem sparing, but increase mean dose of parotids. The average number of MUs and delivery time for d-IMRT were 3.32 and 2.19 times of that for VMAT. The γ-index (3 mm, 3%) analysis for each plans was more than 97% in COMPASS ® measurement for quality assurance (QA). The results show that target dose coverages in d-IMRT and VMAT plans are similar for NPC with multi-prescribed dose levels. VMAT could improve the the CIs of targets, but reduce the dose to the target volume in neck except for PGTV nd . The biggest advantages of VMAT over d-IMRT are delivery efficiency and QA.
SU-C-201-04: Noise and Temporal Resolution in a Near Real-Time 3D Dosimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rilling, M; Centre de recherche sur le cancer, Universite Laval, Quebec City, QC; Radiation oncology department, CHU de Quebec, Quebec City, QC
Purpose: To characterize the performance of a real-time three-dimensional scintillation dosimeter in terms of signal-to-noise ratio (SNR) and temporal resolution of 3D dose measurements. This study quantifies its efficiency in measuring low dose levels characteristic of EBRT dynamic treatments, and in reproducing field profiles for varying multileaf collimator (MLC) speeds. Methods: The dosimeter prototype uses a plenoptic camera to acquire continuous images of the light field emitted by a 10×10×10 cm{sup 3} plastic scintillator. Using EPID acquisitions, ray tracing-based iterative tomographic algorithms allow millimeter-sized reconstruction of relative 3D dose distributions. Measurements were taken at 6MV, 400 MU/min with the scintillatormore » centered at the isocenter, first receiving doses from 1.4 to 30.6 cGy. Dynamic measurements were then performed by closing half of the MLCs at speeds of 0.67 to 2.5 cm/s, at 0° and 90° collimator angles. A reference static half-field was obtained for measured profile comparison. Results: The SNR steadily increases as a function of dose and reaches a clinically adequate plateau of 80 at 10 cGy. Below this, the decrease in light collected and increase in pixel noise diminishes the SNR; nonetheless, the EPID acquisitions and the voxel correlation employed in the reconstruction algorithms result in suitable SNR values (>75) even at low doses. For dynamic measurements at varying MLC speeds, central relative dose profiles are characterized by gradients at %D{sub 50} of 8.48 to 22.7 %/mm. These values converge towards the 32.8 %/mm-gradient measured for the static reference field profile, but are limited by the dosimeter’s current acquisition rate of 1Hz. Conclusion: This study emphasizes the efficiency of the 3D dose distribution reconstructions, while identifying limits of the current prototype’s temporal resolution in terms of dynamic EBRT parameters. This work paves the way for providing an optimized, second-generational real-time 3D scintillation dosimeter capable of highly efficient and precise dose measurements. The presenting author is financially supported by an Alexander-Graham Bell doctoral scholarship from the Natural Sciences and Engineering Research Council of Canada (NSERC).« less
A new Gamma Knife registered radiosurgery paradigm: Tomosurgery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, X.; Maciunas, R. J.; Dean, D.
This study proposes and simulates an inverse treatment planning and a continuous dose delivery approach for the Leksell Gamma Knife registered (LGK, Elekta, Stockholm, Sweden) which we refer to as 'Tomosurgery'. Tomosurgery uses an isocenter that moves within the irradiation field to continuously deliver the prescribed radiation dose in a raster-scanning format, slice by slice, within an intracranial lesion. Our Tomosurgery automated (inverse) treatment planning algorithm utilizes a two-stage optimization strategy. The first stage reduces the current three-dimensional (3D) treatment planning problem to a series of more easily solved 2D treatment planning subproblems. In the second stage, those 2D treatmentmore » plans are assembled to obtain a final 3D treatment plan for the entire lesion. We created Tomosurgery treatment plans for 11 patients who had already received manually-generated LGK treatment plans to treat brain tumors. For the seven cases without critical structures (CS), the Tomosurgery treatment plans showed borderline to significant improvement in within-tumor dose standard deviation (STD) (p<0.058, or p<0.011 excluding case 2) and conformality (p<0.042), respectively. In three of the four cases that presented CS, the Tomosurgery treatment plans showed no statistically significant improvements in dose conformality (p<0.184), and borderline significance in improving within-tumor dose homogeneity (p<0.054); CS damage measured by V{sub 20} or V{sub 30} (i.e., irradiated CS volume that receives {>=}20% or {>=}30% of the maximum dose) showed no significant improvement in the Tomosurgery treatment plans (p<0.345 and p<0.423, respectively). However, the overall CS dose volume histograms were improved in the Tomosurgery treatment plans. In addition, the LGK Tomosurgery inverse treatment planning required less time than standard of care, forward (manual) LGK treatment planning (i.e., 5-35 min vs 1-3 h) for all 11 cases. We expect that LGK Tomosurgery will speed treatment planning and improve treatment quality, especially for large and/or geometrically complex lesions. However, using only 4 mm collimators could greatly increase treatment plan delivery time for a large brain lesion. This issue is subject to further investigation.« less
A novel method to acquire 3D data from serial 2D images of a dental cast
NASA Astrophysics Data System (ADS)
Yi, Yaxing; Li, Zhongke; Chen, Qi; Shao, Jun; Li, Xinshe; Liu, Zhiqin
2007-05-01
This paper introduced a newly developed method to acquire three-dimensional data from serial two-dimensional images of a dental cast. The system consists of a computer and a set of data acquiring device. The data acquiring device is used to take serial pictures of the a dental cast; an artificial neural network works to translate two-dimensional pictures to three-dimensional data; then three-dimensional image can reconstruct by the computer. The three-dimensional data acquiring of dental casts is the foundation of computer-aided diagnosis and treatment planning in orthodontics.
MO-B-BRB-03: 3D Dosimetry in the Clinic: Validating Special Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juang, T.
Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less
MO-B-BRB-01: 3D Dosimetry in the Clinic: Background and Motivation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schreiner, L.
Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less
MO-B-BRB-04: 3D Dosimetry in End-To-End Dosimetry QA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibbott, G.
Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less
MO-B-BRB-02: 3D Dosimetry in the Clinic: IMRT Technique Validation in Sweden
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceberg, S.
Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less
A simple three dimensional wide-angle beam propagation method
NASA Astrophysics Data System (ADS)
Ma, Changbao; van Keuren, Edward
2006-05-01
The development of three dimensional (3-D) waveguide structures for chip scale planar lightwave circuits (PLCs) is hampered by the lack of effective 3-D wide-angle (WA) beam propagation methods (BPMs). We present a simple 3-D wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme along with a new 3-D wave equation splitting method. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation and comparing them with analytical solutions.
A simple three dimensional wide-angle beam propagation method.
Ma, Changbao; Van Keuren, Edward
2006-05-29
The development of three dimensional (3-D) waveguide structures for chip scale planar lightwave circuits (PLCs) is hampered by the lack of effective 3-D wide-angle (WA) beam propagation methods (BPMs). We present a simple 3-D wide-angle beam propagation method (WA-BPM) using Hoekstra's scheme along with a new 3-D wave equation splitting method. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation and comparing them with analytical solutions.
Three-dimensional cell culture models for investigating human viruses.
He, Bing; Chen, Guomin; Zeng, Yi
2016-10-01
Three-dimensional (3D) culture models are physiologically relevant, as they provide reproducible results, experimental flexibility and can be adapted for high-throughput experiments. Moreover, these models bridge the gap between traditional two-dimensional (2D) monolayer cultures and animal models. 3D culture systems have significantly advanced basic cell science and tissue engineering, especially in the fields of cell biology and physiology, stem cell research, regenerative medicine, cancer research, drug discovery, and gene and protein expression studies. In addition, 3D models can provide unique insight into bacteriology, virology, parasitology and host-pathogen interactions. This review summarizes and analyzes recent progress in human virological research with 3D cell culture models. We discuss viral growth, replication, proliferation, infection, virus-host interactions and antiviral drugs in 3D culture models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kole, Thomas P.; Aghayere, Osarhieme; Kwah, Jason
Purpose: To compare heart and coronary artery radiation exposure using intensity-modulated radiotherapy (IMRT) vs. four-field three-dimensional conformal radiotherapy (3D-CRT) treatment plans for patients with distal esophageal cancer undergoing chemoradiation. Methods and Materials: Nineteen patients with distal esophageal cancers treated with IMRT from March 2007 to May 2008 were identified. All patients were treated to 50.4 Gy with five-field IMRT plans. Theoretical 3D-CRT plans with four-field beam arrangements were generated. Dose-volume histograms of the planning target volume, heart, right coronary artery, left coronary artery, and other critical normal tissues were compared between the IMRT and 3D-CRT plans, and selected parameters weremore » statistically evaluated using the Wilcoxon rank-sum test. Results: Intensity-modulated radiotherapy treatment planning showed significant reduction (p < 0.05) in heart dose over 3D-CRT as assessed by average mean dose (22.9 vs. 28.2 Gy) and V30 (24.8% vs. 61.0%). There was also significant sparing of the right coronary artery (average mean dose, 23.8 Gy vs. 35.5 Gy), whereas the left coronary artery showed no significant improvement (mean dose, 11.2 Gy vs. 9.2 Gy), p = 0.11. There was no significant difference in percentage of total lung volume receiving at least 10, 15, or 20 Gy or in the mean lung dose between the planning methods. There were also no significant differences observed for the kidneys, liver, stomach, or spinal cord. Intensity-modulated radiotherapy achieved a significant improvement in target conformity as measured by the conformality index (ratio of total volume receiving 95% of prescription dose to planning target volume receiving 95% of prescription dose), with the mean conformality index reduced from 1.56 to 1.30 using IMRT. Conclusions: Treatment of patients with distal esophageal cancer using IMRT significantly decreases the exposure of the heart and right coronary artery when compared with 3D-CRT. Long-term studies are necessary to determine how this will impact on development of coronary artery disease and other cardiac complications.« less
Three-dimensional interpretation of TEM soundings
NASA Astrophysics Data System (ADS)
Barsukov, P. O.; Fainberg, E. B.
2013-07-01
We describe the approach to the interpretation of electromagnetic (EM) sounding data which iteratively adjusts the three-dimensional (3D) model of the environment by local one-dimensional (1D) transformations and inversions and reconstructs the geometrical skeleton of the model. The final 3D inversion is carried out with the minimal number of the sought parameters. At each step of the interpretation, the model of the medium is corrected according to the geological information. The practical examples of the suggested method are presented.
4D Optimization of Scanned Ion Beam Tracking Therapy for Moving Tumors
Eley, John Gordon; Newhauser, Wayne David; Lüchtenborg, Robert; Graeff, Christian; Bert, Christoph
2014-01-01
Motion mitigation strategies are needed to fully realize the theoretical advantages of scanned ion beam therapy for patients with moving tumors. The purpose of this study was to determine whether a new four-dimensional (4D) optimization approach for scanned-ion-beam tracking could reduce dose to avoidance volumes near a moving target while maintaining target dose coverage, compared to an existing 3D-optimized beam tracking approach. We tested these approaches computationally using a simple 4D geometrical phantom and a complex anatomic phantom, that is, a 4D computed tomogram of the thorax of a lung cancer patient. We also validated our findings using measurements of carbon-ion beams with a motorized film phantom. Relative to 3D-optimized beam tracking, 4D-optimized beam tracking reduced the maximum predicted dose to avoidance volumes by 53% in the simple phantom and by 13% in the thorax phantom. 4D-optimized beam tracking provided similar target dose homogeneity in the simple phantom (standard deviation of target dose was 0.4% versus 0.3%) and dramatically superior homogeneity in the thorax phantom (D5-D95 was 1.9% versus 38.7%). Measurements demonstrated that delivery of 4D-optimized beam tracking was technically feasible and confirmed a 42% decrease in maximum film exposure in the avoidance region compared with 3D-optimized beam tracking. In conclusion, we found that 4D-optimized beam tracking can reduce the maximum dose to avoidance volumes near a moving target while maintaining target dose coverage, compared with 3D-optimized beam tracking. PMID:24889215
4D optimization of scanned ion beam tracking therapy for moving tumors
NASA Astrophysics Data System (ADS)
Eley, John Gordon; Newhauser, Wayne David; Lüchtenborg, Robert; Graeff, Christian; Bert, Christoph
2014-07-01
Motion mitigation strategies are needed to fully realize the theoretical advantages of scanned ion beam therapy for patients with moving tumors. The purpose of this study was to determine whether a new four-dimensional (4D) optimization approach for scanned-ion-beam tracking could reduce dose to avoidance volumes near a moving target while maintaining target dose coverage, compared to an existing 3D-optimized beam tracking approach. We tested these approaches computationally using a simple 4D geometrical phantom and a complex anatomic phantom, that is, a 4D computed tomogram of the thorax of a lung cancer patient. We also validated our findings using measurements of carbon-ion beams with a motorized film phantom. Relative to 3D-optimized beam tracking, 4D-optimized beam tracking reduced the maximum predicted dose to avoidance volumes by 53% in the simple phantom and by 13% in the thorax phantom. 4D-optimized beam tracking provided similar target dose homogeneity in the simple phantom (standard deviation of target dose was 0.4% versus 0.3%) and dramatically superior homogeneity in the thorax phantom (D5-D95 was 1.9% versus 38.7%). Measurements demonstrated that delivery of 4D-optimized beam tracking was technically feasible and confirmed a 42% decrease in maximum film exposure in the avoidance region compared with 3D-optimized beam tracking. In conclusion, we found that 4D-optimized beam tracking can reduce the maximum dose to avoidance volumes near a moving target while maintaining target dose coverage, compared with 3D-optimized beam tracking.
Muniandy, Kalaivani; Sankar, Prabu Siva; Xiang, Benedict Lian Shi; Soo-Beng, Alan Khoo; Balakrishnan, Venugopal; Mohana-Kumaran, Nethia
2016-11-01
Spheroids have been shown to recapitulate the tumour in vivo with properties such as the tumour microenvironment, concentration gradients, and tumour phenotype. As such, it can serve as a platform for determining the growth and invasion behaviour pattern of the cancer cells as well as be utilised for drug sensitivity assays; capable of exhibiting results that are closer to what is observed in vivo compared to two-dimensional (2D) cell culture assays. This study focused on establishing a three-dimensional (3D) cell culture model using the Nasopharyngeal Carcinoma (NPC) cell line, HK1 and analysing its growth and invasion phenotypes. The spheroids will also serve as a model to elucidate their sensitivity to the chemotherapeutic drug, Flavopiridol. The liquid overlay method was employed to generate the spheroids which was embedded in bovine collagen I matrix for growth and invasion phenotypes observation. The HK1 cells formed compact spheroids within 72 hours. Our observation from the 3 days experiments revealed that the spheroids gradually grew and invaded into the collagen matrix, showing that the HK1 spheroids are capable of growth and invasion. Progressing from these experiments, the HK1 spheroids were employed to perform a drug sensitivity assay using the chemotherapeutic drug, Flavopiridol. The drug had a dose-dependent inhibition on spheroid growth and invasion.
NASA Astrophysics Data System (ADS)
Acosta, Oscar; Drean, Gael; Ospina, Juan D.; Simon, Antoine; Haigron, Pascal; Lafond, Caroline; de Crevoisier, Renaud
2013-04-01
The majority of current models utilized for predicting toxicity in prostate cancer radiotherapy are based on dose-volume histograms. One of their main drawbacks is the lack of spatial accuracy, since they consider the organs as a whole volume and thus ignore the heterogeneous intra-organ radio-sensitivity. In this paper, we propose a dose-image-based framework to reveal the relationships between local dose and toxicity. In this approach, the three-dimensional (3D) planned dose distributions across a population are non-rigidly registered into a common coordinate system and compared at a voxel level, therefore enabling the identification of 3D anatomical patterns, which may be responsible for toxicity, at least to some extent. Additionally, different metrics were employed in order to assess the quality of the dose mapping. The value of this approach was demonstrated by prospectively analyzing rectal bleeding (⩾Grade 1 at 2 years) according to the CTCAE v3.0 classification in a series of 105 patients receiving 80 Gy to the prostate by intensity modulated radiation therapy (IMRT). Within the patients presenting bleeding, a significant dose excess (6 Gy on average, p < 0.01) was found in a region of the anterior rectal wall. This region, close to the prostate (1 cm), represented less than 10% of the rectum. This promising voxel-wise approach allowed subregions to be defined within the organ that may be involved in toxicity and, as such, must be considered during the inverse IMRT planning step.
3D printing functional materials and devices (Conference Presentation)
NASA Astrophysics Data System (ADS)
McAlpine, Michael C.
2017-05-01
The development of methods for interfacing high performance functional devices with biology could impact regenerative medicine, smart prosthetics, and human-machine interfaces. Indeed, the ability to three-dimensionally interweave biological and functional materials could enable the creation of devices possessing unique geometries, properties, and functionalities. Yet, most high quality functional materials are two dimensional, hard and brittle, and require high crystallization temperatures for maximal performance. These properties render the corresponding devices incompatible with biology, which is three-dimensional, soft, stretchable, and temperature sensitive. We overcome these dichotomies by: 1) using 3D printing and scanning for customized, interwoven, anatomically accurate device architectures; 2) employing nanotechnology as an enabling route for overcoming mechanical discrepancies while retaining high performance; and 3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This three-dimensional blending of functional materials and `living' platforms may enable next-generation 3D printed devices.
NASA Astrophysics Data System (ADS)
Wang, Yongzhi; Ma, Yuqing; Zhu, A.-xing; Zhao, Hui; Liao, Lixia
2018-05-01
Facade features represent segmentations of building surfaces and can serve as a building framework. Extracting facade features from three-dimensional (3D) point cloud data (3D PCD) is an efficient method for 3D building modeling. By combining the advantages of 3D PCD and two-dimensional optical images, this study describes the creation of a highly accurate building facade feature extraction method from 3D PCD with a focus on structural information. The new extraction method involves three major steps: image feature extraction, exploration of the mapping method between the image features and 3D PCD, and optimization of the initial 3D PCD facade features considering structural information. Results show that the new method can extract the 3D PCD facade features of buildings more accurately and continuously. The new method is validated using a case study. In addition, the effectiveness of the new method is demonstrated by comparing it with the range image-extraction method and the optical image-extraction method in the absence of structural information. The 3D PCD facade features extracted by the new method can be applied in many fields, such as 3D building modeling and building information modeling.
Tanooka, Masao; Doi, Hiroshi; Miura, Hideharu; Inoue, Hiroyuki; Niwa, Yasue; Takada, Yasuhiro; Fujiwara, Masayuki; Sakai, Toshiyuki; Sakamoto, Kiyoshi; Kamikonya, Norihiko; Hirota, Shozo
2013-01-01
We validated 3D radiochromic film dosimetry for volumetric modulated arc therapy (VMAT) using a newly developed spiral water phantom. The phantom consists of a main body and an insert box, each of which has an acrylic wall thickness of 3 mm and is filled with water. The insert box includes a spiral film box used for dose-distribution measurement, and a film holder for positioning a radiochromic film. The film holder has two parallel walls whose facing inner surfaces are equipped with spiral grooves in a mirrored configuration. The film is inserted into the spiral grooves by its side edges and runs along them to be positioned on a spiral plane. Dose calculation was performed by applying clinical VMAT plans to the spiral water phantom using a commercial Monte Carlo-based treatment-planning system, Monaco, whereas dose was measured by delivering the VMAT beams to the phantom. The calculated dose distributions were resampled on the spiral plane, and the dose distributions recorded on the film were scanned. Comparisons between the calculated and measured dose distributions yielded an average gamma-index pass rate of 87.0% (range, 91.2–84.6%) in nine prostate VMAT plans under 3 mm/3% criteria with a dose-calculation grid size of 2 mm. The pass rates were increased beyond 90% (average, 91.1%; range, 90.1–92.0%) when the dose-calculation grid size was decreased to 1 mm. We have confirmed that 3D radiochromic film dosimetry using the spiral water phantom is a simple and cost-effective approach to VMAT dose verification. PMID:23685667
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paudel, N; Han, E; Liang, X
Purpose: Three-dimensional conformal therapy remains a valid and widely used modality for pancreatic radiotherapy treatment. It usually meets dose constraints on critical structures. However, careful positioning of collimation jaws can reduce dose to the critical structures. Here we investigate the dosimetric effect of jaw position in MLC-based 3-D conformal treatment planning on critical structures. Methods: We retrospectively selected seven pancreatic cancer patients treated with 3-D conformal radiotherapy. We started with treatment plans (Varian Truebeam LINAC, Eclipse TPS, AAA, 18MV) having both x and y jaws aligned with the farthest extent of the block outline (8mm around PTV). Then we subsequentlymore » moved either both x-jaws or all x and y jaws outwards upto 3 cm in 1 cm increments and investigated their effect on average and maximum dose to neighboring critical structures keeping the same coverage to treatment volume. Results: Lateral displacement of both x-jaws by 1cm each increased kidney and spleen mean dose by as much as 1.7% and 1.3% respectively and superior inferior displacement increased liver, right kidney, stomach and spleen dose by as much as 2.1%, 2%, 5.2% and 1.6% respectively. Displacement of all x and y-jaws away by 1cm increased the mean dose to liver, right kidney, left kidney, bowels, cord, stomach and spleen by as much as 4.9%, 5.9%, 2.1%, 2.8%, 7.4%, 10.4% and 4.2% respectively. Percentage increase in mean dose due to 2 and 3cm jaw displacement increased almost linearly with the displaced distance. Changes in maximum dose were much smaller (mostly negligible) than the changes in mean dose. Conclusion: Collimation jaw position affects dose mostly to critical structures adjacent to it. Though treatment plans with MLCs conforming the block margin usually meet dose constraints to critical structures, keeping jaws all the way in, to the edge of the block reduces dose to the critical structures during radiation treatment.« less
A three-dimensional in vitro HepG2 cells liver spheroid model for genotoxicity studies.
Shah, Ume-Kulsoom; Mallia, Jefferson de Oliveira; Singh, Neenu; Chapman, Katherine E; Doak, Shareen H; Jenkins, Gareth J S
2018-01-01
The liver's role in metabolism of chemicals makes it an appropriate tissue for toxicity testing. Current testing protocols, such as animal testing and two-dimensional liver cell systems, offer limited resemblance to in vivo liver cell behaviour, in terms of gene expression profiles and metabolic competence; thus, they do not always accurately predict human toxicology. In vitro three-dimensional liver cell models offer an attractive alternative. This study reports on the development of a 3D liver model, using HepG2 cells, by a hanging-drop technique, with a focus on evaluating spheroid growth characteristics and suitability for genotoxicity testing. The cytokinesis-blocked micronucleus assay protocol was adapted to enable micronucleus (MN) detection in the 3D spheroid models. This involved evaluating the difference between hanging vs non-hanging drop positions for dosing of the test agents and comparison of automated Metafer scoring with manual scoring for MN detection in HepG2 spheroids. The initial seeding density, used for all experiments, was 5000 cells/20 μl drop hanging spheroids, harvested on day 4, with >75% cell viability. Albumin secretion (7.8 g/l) and both CYP1A1 and CYP1A2 gene expression were highest in the 3D environment at day 4. Exposure to metabolically activated genotoxicants for 24 h resulted in a 6-fold increase in CYP1A1 enzyme activity (3 μM B[a]P) and a 30-fold increase in CYP1A2 enzyme activity (5 μM PhIP) in 3D hanging spheroids. MN inductions in response to B[a]P or PhIP were 2-fold and 3-fold, respectively, and were greater in 3D hanging spheroids than in 2D format, showing that hanging spheroids are more sensitive to genotoxic agents. HepG2 hanging-drop spheroids are an exciting new alternative system for genotoxicity studies, due to their improved structural and physiological properties, relative to 2D cultures. Copyright © 2017 Elsevier B.V. All rights reserved.
Three-Dimensional Display Technologies for Anatomical Education: A Literature Review
ERIC Educational Resources Information Center
Hackett, Matthew; Proctor, Michael
2016-01-01
Anatomy is a foundational component of biological sciences and medical education and is important for a variety of clinical tasks. To augment current curriculum and improve students' spatial knowledge of anatomy, many educators, anatomists, and researchers use three-dimensional (3D) visualization technologies. This article reviews 3D display…
Nondestructive analysis of three-dimensional objects using a fluid displacement method
USDA-ARS?s Scientific Manuscript database
Quantification of three-dimensional (3-D) objects has been a real challenge in agricultural, hydrological and environmental studies. We designed and tested a method that is capable of quantifying 3-D objects using measurements of fluid displacement. The device consists of a stand that supports a mov...
GEO3D - Three-Dimensional Computer Model of a Ground Source Heat Pump System
James Menart
2013-06-07
This file is the setup file for the computer program GEO3D. GEO3D is a computer program written by Jim Menart to simulate vertical wells in conjunction with a heat pump for ground source heat pump (GSHP) systems. This is a very detailed three-dimensional computer model. This program produces detailed heat transfer and temperature field information for a vertical GSHP system.
Three-Dimensional Reflectance Traction Microscopy
Jones, Christopher A. R.; Groves, Nicholas Scott; Sun, Bo
2016-01-01
Cells in three-dimensional (3D) environments exhibit very different biochemical and biophysical phenotypes compared to the behavior of cells in two-dimensional (2D) environments. As an important biomechanical measurement, 2D traction force microscopy can not be directly extended into 3D cases. In order to quantitatively characterize the contraction field, we have developed 3D reflectance traction microscopy which combines confocal reflection imaging and partial volume correlation postprocessing. We have measured the deformation field of collagen gel under controlled mechanical stress. We have also characterized the deformation field generated by invasive breast cancer cells of different morphologies in 3D collagen matrix. In contrast to employ dispersed tracing particles or fluorescently-tagged matrix proteins, our methods provide a label-free, computationally effective strategy to study the cell mechanics in native 3D extracellular matrix. PMID:27304456
Engineering three-dimensional cell mechanical microenvironment with hydrogels.
Huang, Guoyou; Wang, Lin; Wang, Shuqi; Han, Yulong; Wu, Jinhui; Zhang, Qiancheng; Xu, Feng; Lu, Tian Jian
2012-12-01
Cell mechanical microenvironment (CMM) significantly affects cell behaviors such as spreading, migration, proliferation and differentiation. However, most studies on cell response to mechanical stimulation are based on two-dimensional (2D) planar substrates, which cannot mimic native three-dimensional (3D) CMM. Accumulating evidence has shown that there is a significant difference in cell behavior in 2D and 3D microenvironments. Among the materials used for engineering 3D CMM, hydrogels have gained increasing attention due to their tunable properties (e.g. chemical and mechanical properties). In this paper, we provide an overview of recent advances in engineering hydrogel-based 3D CMM. Effects of mechanical cues (e.g. hydrogel stiffness and externally induced stress/strain in hydrogels) on cell behaviors are described. A variety of approaches to load mechanical stimuli in 3D hydrogel-based constructs are also discussed.
Numerical modelling techniques of soft soil improvement via stone columns: A brief review
NASA Astrophysics Data System (ADS)
Zukri, Azhani; Nazir, Ramli
2018-04-01
There are a number of numerical studies on stone column systems in the literature. Most of the studies found were involved with two-dimensional analysis of the stone column behaviour, while only a few studies used three-dimensional analysis. The most popular software utilised in those studies was Plaxis 2D and 3D. Other types of software that used for numerical analysis are DIANA, EXAMINE, ZSoil, ABAQUS, ANSYS, NISA, GEOSTUDIO, CRISP, TOCHNOG, CESAR, GEOFEM (2D & 3D), FLAC, and FLAC 3. This paper will review the methodological approaches to model stone column numerically, both in two-dimensional and three-dimensional analyses. The numerical techniques and suitable constitutive model used in the studies will also be discussed. In addition, the validation methods conducted were to verify the numerical analysis conducted will be presented. This review paper also serves as a guide for junior engineers through the applicable procedures and considerations when constructing and running a two or three-dimensional numerical analysis while also citing numerous relevant references.
Li, H Harold; Rodriguez, Vivian L; Green, Olga L; Hu, Yanle; Kashani, Rojano; Wooten, H Omar; Yang, Deshan; Mutic, Sasa
2015-01-01
This work describes a patient-specific dosimetry quality assurance (QA) program for intensity modulated radiation therapy (IMRT) using ViewRay, the first commercial magnetic resonance imaging-guided RT device. The program consisted of: (1) a 1-dimensional multipoint ionization chamber measurement using a customized 15-cm(3) cube-shaped phantom; (2) 2-dimensional (2D) radiographic film measurement using a 30- × 30- × 20-cm(3) phantom with multiple inserted ionization chambers; (3) quasi-3D diode array (ArcCHECK) measurement with a centrally inserted ionization chamber; (4) 2D fluence verification using machine delivery log files; and (5) 3D Monte Carlo (MC) dose reconstruction with machine delivery files and phantom CT. Ionization chamber measurements agreed well with treatment planning system (TPS)-computed doses in all phantom geometries where the mean ± SD difference was 0.0% ± 1.3% (n=102; range, -3.0%-2.9%). Film measurements also showed excellent agreement with the TPS-computed 2D dose distributions where the mean passing rate using 3% relative/3 mm gamma criteria was 94.6% ± 3.4% (n=30; range, 87.4%-100%). For ArcCHECK measurements, the mean ± SD passing rate using 3% relative/3 mm gamma criteria was 98.9% ± 1.1% (n=34; range, 95.8%-100%). 2D fluence maps with a resolution of 1 × 1 mm(2) showed 100% passing rates for all plan deliveries (n=34). The MC reconstructed doses to the phantom agreed well with planned 3D doses where the mean passing rate using 3% absolute/3 mm gamma criteria was 99.0% ± 1.0% (n=18; range, 97.0%-100%), demonstrating the feasibility of evaluating the QA results in the patient geometry. We developed a dosimetry program for ViewRay's patient-specific IMRT QA. The methodology will be useful for other ViewRay users. The QA results presented here can assist the RT community to establish appropriate tolerance and action limits for ViewRay's IMRT QA. Copyright © 2015 Elsevier Inc. All rights reserved.
Wu, Chen-Ta; Motegi, Atsushi; Motegi, Kana; Hotta, Kenji; Kohno, Ryosuke; Tachibana, Hidenobu; Kumagai, Motoki; Nakamura, Naoki; Hojo, Hidehiro; Niho, Seiji; Goto, Koichi; Akimoto, Tetsuo
2016-08-10
To assess the feasibility of proton beam therapy for the patients with locally advanced non-small lung cancer. The dosimetry was analyzed retrospectively to calculate the doses to organs at risk, such as the lung, heart, esophagus and spinal cord. A dosimetric comparison between proton beam therapy and dummy photon radiotherapy (three-dimensional conformal radiotherapy) plans was performed. Dummy intensity-modulated radiotherapy plans were also generated for the patients for whom curative three-dimensional conformal radiotherapy plans could not be generated. Overall, 33 patients with stage III non-small cell lung cancer were treated with proton beam therapy between December 2011 and August 2014. The median age of the eligible patients was 67 years (range: 44-87 years). All the patients were treated with chemotherapy consisting of cisplatin/vinorelbine or carboplatin. The median prescribed dose was 60 GyE (range: 60-66 GyE). The mean normal lung V20 GyE was 23.6% (range: 14.9-32%), and the mean normal lung dose was 11.9 GyE (range: 6.0-19 GyE). The mean esophageal V50 GyE was 25.5% (range: 0.01-63.6%), the mean heart V40 GyE was 13.4% (range: 1.4-29.3%) and the mean maximum spinal cord dose was 40.7 GyE (range: 22.9-48 GyE). Based on dummy three-dimensional conformal radiotherapy planning, 12 patients were regarded as not being suitable for radical thoracic three-dimensional conformal radiotherapy. All the dose parameters of proton beam therapy, except for the esophageal dose, were lower than those for the dummy three-dimensional conformal radiotherapy plans. In comparison to the intensity-modulated radiotherapy plan, proton beam therapy also achieved dose reduction in the normal lung. None of the patients experienced grade 4 or worse non-hematological toxicities. Proton beam therapy for patients with stage III non-small cell lung cancer was feasible and was superior to three-dimensional conformal radiotherapy for several dosimetric parameters. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Planning 4D intensity-modulated arc therapy for tumor tracking with a multileaf collimator
NASA Astrophysics Data System (ADS)
Niu, Ying; Betzel, Gregory T.; Yang, Xiaocheng; Gui, Minzhi; Parke, William C.; Yi, Byongyong; Yu, Cedric X.
2017-02-01
This study introduces a practical four-dimensional (4D) planning scheme of IMAT using 4D computed tomography (4D CT) for planning tumor tracking with dynamic multileaf beam collimation. We assume that patients can breathe regularly, i.e. the same way as during 4D CT with an unchanged period and amplitude, and that the start of 4D-IMAT delivery can be synchronized with a designated respiratory phase. Each control point of the IMAT-delivery process can be associated with an image set of 4D CT at a specified respiratory phase. Target is contoured at each respiratory phase without a motion-induced margin. A 3D-IMAT plan is first optimized on a reference-phase image set of 4D CT. Then, based on the projections of the planning target volume in the beam’s eye view at different respiratory phases, a 4D-IMAT plan is generated by transforming the segments of the optimized 3D plan by using a direct aperture deformation method. Compensation for both translational and deformable tumor motion is accomplished, and the smooth delivery of the transformed plan is ensured by forcing connectivity between adjacent angles (control points). It is envisioned that the resultant plans can be delivered accurately using the dose rate regulated tracking method which handles breathing irregularities (Yi et al 2008 Med. Phys. 35 3955-62).This planning process is straightforward and only adds a small step to current clinical 3D planning practice. Our 4D planning scheme was tested on three cases to evaluate dosimetric benefits. The created 4D-IMAT plans showed similar dose distributions as compared with the 3D-IMAT plans on a single static phase, indicating that our method is capable of eliminating the dosimetric effects of breathing induced target motion. Compared to the 3D-IMAT plans with large treatment margins encompassing respiratory motion, our 4D-IMAT plans reduced radiation doses to surrounding normal organs and tissues.
Three-Dimensional Transgenic Cell Models to Quantify Space Genotoxic Effects
NASA Technical Reports Server (NTRS)
Gonda, S.; Wu, H.; Pingerelli, P.; Glickman, B.
2000-01-01
In this paper we describe a three-dimensional, multicellular tissue-equivalent model, produced in NASA-designed, rotating wall bioreactors using mammalian cells engineered for genomic containment of mUltiple copies of defined target genes for genotoxic assessment. The Rat 2(lambda) fibroblasts (Stratagene, Inc.) were genetically engineered to contain high-density target genes for mutagenesis. Stable three-dimensional, multicellular spheroids were formed when human mammary epithelial cells and Rat 2(lambda) fibroblasts were cocultured on Cytodex 3 Beads in a rotating wall bioreactor. The utility of this spheroidal model for genotoxic assessment was indicated by a linear dose response curve and by results of gene sequence analysis of mutant clones from 400micron diameter spheroids following low-dose, high-energy, neon radiation exposure
3D reconstruction techniques made easy: know-how and pictures.
Luccichenti, Giacomo; Cademartiri, Filippo; Pezzella, Francesca Romana; Runza, Giuseppe; Belgrano, Manuel; Midiri, Massimo; Sabatini, Umberto; Bastianello, Stefano; Krestin, Gabriel P
2005-10-01
Three-dimensional reconstructions represent a visual-based tool for illustrating the basis of three-dimensional post-processing such as interpolation, ray-casting, segmentation, percentage classification, gradient calculation, shading and illumination. The knowledge of the optimal scanning and reconstruction parameters facilitates the use of three-dimensional reconstruction techniques in clinical practise. The aim of this article is to explain the principles of multidimensional image processing in a pictorial way and the advantages and limitations of the different possibilities of 3D visualisation.
Three-dimensional imaging of the craniofacial complex.
Nguyen, Can X.; Nissanov, Jonathan; Öztürk, Cengizhan; Nuveen, Michiel J.; Tuncay, Orhan C.
2000-02-01
Orthodontic treatment requires the rearrangement of craniofacial complex elements in three planes of space, but oddly the diagnosis is done with two-dimensional images. Here we report on a three-dimensional (3D) imaging system that employs the stereoimaging method of structured light to capture the facial image. The images can be subsequently integrated with 3D cephalometric tracings derived from lateral and PA films (www.clinorthodres.com/cor-c-070). The accuracy of the reconstruction obtained with this inexpensive system is about 400 µ.
Three-Dimensional Optical Coherence Tomography
NASA Technical Reports Server (NTRS)
Gutin, Mikhail; Wang, Xu-Ming; Gutin, Olga
2009-01-01
Three-dimensional (3D) optical coherence tomography (OCT) is an advanced method of noninvasive infrared imaging of tissues in depth. Heretofore, commercial OCT systems for 3D imaging have been designed principally for external ophthalmological examination. As explained below, such systems have been based on a one-dimensional OCT principle, and in the operation of such a system, 3D imaging is accomplished partly by means of a combination of electronic scanning along the optical (Z) axis and mechanical scanning along the two axes (X and Y) orthogonal to the optical axis. In 3D OCT, 3D imaging involves a form of electronic scanning (without mechanical scanning) along all three axes. Consequently, the need for mechanical adjustment is minimal and the mechanism used to position the OCT probe can be correspondingly more compact. A 3D OCT system also includes a probe of improved design and utilizes advanced signal- processing techniques. Improvements in performance over prior OCT systems include finer resolution, greater speed, and greater depth of field.
Chen, Hanchi; Abhayapala, Thushara D; Zhang, Wen
2015-11-01
Soundfield analysis based on spherical harmonic decomposition has been widely used in various applications; however, a drawback is the three-dimensional geometry of the microphone arrays. In this paper, a method to design two-dimensional planar microphone arrays that are capable of capturing three-dimensional (3D) spatial soundfields is proposed. Through the utilization of both omni-directional and first order microphones, the proposed microphone array is capable of measuring soundfield components that are undetectable to conventional planar omni-directional microphone arrays, thus providing the same functionality as 3D arrays designed for the same purpose. Simulations show that the accuracy of the planar microphone array is comparable to traditional spherical microphone arrays. Due to its compact shape, the proposed microphone array greatly increases the feasibility of 3D soundfield analysis techniques in real-world applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, X. Sharon, E-mail: xqi@mednet.ucla.edu; Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado; Stinauer, Michelle
Purpose: To compare volumetric modulated arc therapy (VMAT) with 3-dimensional conformal radiation therapy (3D-CRT) in the treatment of localized intracranial germinoma. We modeled the effect of the dosimetric differences on intelligence quotient (IQ). Method and Materials: Ten children with intracranial germinomas were used for planning. The prescription doses were 23.4 Gy to the ventricles followed by 21.6 Gy to the tumor located in the pineal region. For each child, a 3D-CRT and full arc VMAT was generated. Coverage of the target was assessed by computing a conformity index and heterogeneity index. We also generated VMAT plans with explicit temporal lobemore » sparing and with smaller ventricular margin expansions. Mean dose to the temporal lobe was used to estimate IQ 5 years after completion of radiation, using a patient age of 10 years. Results: Compared with the 3D-CRT plan, VMAT improved conformality (conformity index 1.10 vs 1.85), with slightly higher heterogeneity (heterogeneity index 1.09 vs 1.06). The averaged mean doses for left and right temporal lobes were 31.3 and 31.7 Gy, respectively, for VMAT plans and 37.7 and 37.6 Gy for 3D-CRT plans. This difference in mean temporal lobe dose resulted in an estimated IQ difference of 3.1 points at 5 years after radiation therapy. When the temporal lobes were explicitly included in the VMAT optimization, the mean temporal lobe dose was reduced 5.6-5.7 Gy, resulting in an estimated IQ difference of an additional 3 points. Reducing the ventricular margin from 1.5 cm to 0.5 cm decreased mean temporal lobe dose 11.4-13.1 Gy, corresponding to an estimated increase in IQ of 7 points. Conclusion: For treatment of children with intracranial pure germinomas, VMAT compared with 3D-CRT provides increased conformality and reduces doses to normal tissue. This may result in improvements in IQ in these children.« less
Fourier optics of constant-thickness three-dimensional objects on the basis of diffraction models
NASA Astrophysics Data System (ADS)
Chugui, Yu. V.
2017-09-01
Results of investigations of diffraction phenomena on constant-thickness three-dimensional objects with flat inner surfaces (thick plates) are summarized on the basis of our constructive theory of their calculation as applied to dimensional inspection. It is based on diffraction models of 3D objects with the use of equivalent diaphragms (distributions), which allow the Kirchhoff-Fresnel approximation to be effectively used. In contrast to available rigorous and approximate methods, the present approach does not require cumbersome calculations; it is a clearly arranged method, which ensures sufficient accuracy for engineering applications. It is found that the fundamental diffraction parameter for 3D objects of constant thickness d is the critical diffraction angle {θ _{cr}} = √ {λ /d} at which the effect of three-dimensionality on the spectrum of the 3D object becomes appreciable. Calculated Fraunhofer diffraction patterns (spectra) and images of constant-thickness 3D objects with absolutely absorbing, absolutely reflecting, and gray internal faces are presented. It is demonstrated that selection of 3D object fragments can be performed by choosing an appropriate configuration of the wave illuminating the object (plane normal or inclined waves, spherical waves).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Yahya, Khalid; Schwartz, Matthew; Shenouda, George
2005-09-15
Energy modulated electron therapy (EMET) based on Monte Carlo dose calculation is a promising technique that enhances the treatment planning and delivery of superficially located tumors. This study investigated the application of EMET using a novel few-leaf electron collimator (FLEC) in head and neck and breast sites in comparison with three-dimensional conventional radiation therapy (3D-CRT) and intensity modulated radiation therapy (IMRT) techniques. Treatment planning was performed for two parotid cases and one breast case. Four plans were compared for each case: 3D-CRT, IMRT, 3D-CRT in conjunction with EMET (EMET-CRT), and IMRT in conjunction with EMET (EMET-IMRT), all of which weremore » performed and calculated with Monte Carlo techniques. For all patients, dose volume histograms (DVHs) were obtained for all organs of interest and the DVHs were used as a means of comparing the plans. Homogeneity and conformity of dose distributions were calculated, as well as a sparing index that compares the effect of the low isodose lines. In addition, the whole-body dose equivalent (WBDE) was estimated for each plan. Adding EMET delivered with the FLEC to 3D-CRT improves sparing of normal tissues. For the two head and neck cases, the mean dose to the contralateral parotid and brain stem was reduced relative to IMRT by 43% and 84%, and by 57% and 71%, respectively. Improved normal tissue sparing was quantified as an increase in sparing index of 47% and 30% for the head and neck and the breast cases, respectively. Adding EMET to either 3D-CRT or IMRT results in preservation of target conformity and dose homogeneity. When adding EMET to the treatment plan, the WBDE was reduced by between 6% and 19% for 3D-CRT and by between 21% and 33% for IMRT, while WBDE for EMET-CRT was reduced by up to 72% when compared with IMRT. FLEC offers a practical means of delivering modulated electron therapy. Although adding EMET delivered using the FLEC results in perturbation of target conformity when compared to IMRT, it significantly improves normal tissue sparing while offering enhanced target conformity to the 3D-CRT planning. The addition of EMET systematically leads to a reduction in WBDE especially when compared with IMRT.« less
NASA Astrophysics Data System (ADS)
Wang, Juven C.; Wen, Xiao-Gang
2015-01-01
String and particle braiding statistics are examined in a class of topological orders described by discrete gauge theories with a gauge group G and a 4-cocycle twist ω4 of G 's cohomology group H4(G ,R /Z ) in three-dimensional space and one-dimensional time (3 +1 D ) . We establish the topological spin and the spin-statistics relation for the closed strings and their multistring braiding statistics. The 3 +1 D twisted gauge theory can be characterized by a representation of a modular transformation group, SL (3 ,Z ) . We express the SL (3 ,Z ) generators Sx y z and Tx y in terms of the gauge group G and the 4-cocycle ω4. As we compactify one of the spatial directions z into a compact circle with a gauge flux b inserted, we can use the generators Sx y and Tx y of an SL (2 ,Z ) subgroup to study the dimensional reduction of the 3D topological order C3 D to a direct sum of degenerate states of 2D topological orders Cb2 D in different flux b sectors: C3 D=⊕bCb2 D . The 2D topological orders Cb2 D are described by 2D gauge theories of the group G twisted by the 3-cocycle ω3 (b ), dimensionally reduced from the 4-cocycle ω4. We show that the SL (2 ,Z ) generators, Sx y and Tx y, fully encode a particular type of three-string braiding statistics with a pattern that is the connected sum of two Hopf links. With certain 4-cocycle twists, we discover that, by threading a third string through two-string unlink into a three-string Hopf-link configuration, Abelian two-string braiding statistics is promoted to non-Abelian three-string braiding statistics.
Augmented reality glass-free three-dimensional display with the stereo camera
NASA Astrophysics Data System (ADS)
Pang, Bo; Sang, Xinzhu; Chen, Duo; Xing, Shujun; Yu, Xunbo; Yan, Binbin; Wang, Kuiru; Yu, Chongxiu
2017-10-01
An improved method for Augmented Reality (AR) glass-free three-dimensional (3D) display based on stereo camera used for presenting parallax contents from different angle with lenticular lens array is proposed. Compared with the previous implementation method of AR techniques based on two-dimensional (2D) panel display with only one viewpoint, the proposed method can realize glass-free 3D display of virtual objects and real scene with 32 virtual viewpoints. Accordingly, viewers can get abundant 3D stereo information from different viewing angles based on binocular parallax. Experimental results show that this improved method based on stereo camera can realize AR glass-free 3D display, and both of virtual objects and real scene have realistic and obvious stereo performance.
A revision of the gamma-evaluation concept for the comparison of dose distributions.
Bakai, Annemarie; Alber, Markus; Nüsslin, Fridtjof
2003-11-07
A method for the quantitative four-dimensional (4D) evaluation of discrete dose data based on gradient-dependent local acceptance thresholds is presented. The method takes into account the local dose gradients of a reference distribution for critical appraisal of misalignment and collimation errors. These contribute to the maximum tolerable dose error at each evaluation point to which the local dose differences between comparison and reference data are compared. As shown, the presented concept is analogous to the gamma-concept of Low et al (1998a Med. Phys. 25 656-61) if extended to (3+1) dimensions. The pointwise dose comparisons of the reformulated concept are easier to perform and speed up the evaluation process considerably, especially for fine-grid evaluations of 3D dose distributions. The occurrences of false negative indications due to the discrete nature of the data are reduced with the method. The presented method was applied to film-measured, clinical data and compared with gamma-evaluations. 4D and 3D evaluations were performed. Comparisons prove that 4D evaluations have to be given priority, especially if complex treatment situations are verified, e.g., non-coplanar beam configurations.
Comparison of IMRT versus 3D-CRT in the treatment of esophagus cancer
Xu, Dandan; Li, Guowen; Li, Hongfei; Jia, Fei
2017-01-01
Abstract Background: Esophageal cancer (EC) is a common cancer with high mortality because of its rapid progression and poor prognosis. Radiotherapy is one of the most effective treatments for EC. Three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) are 2 recently developed radiotherapy techniques. IMRT is believed to be more effective than 3D-CRT in target coverage, dose homogeneity, and reducing toxicity to normal organs. However, these advantages have not been demonstrated in the treatment of EC. This meta-analysis was performed to compare IMRT and 3D-CRT in the treatment of EC in terms of dose–volume histograms and outcomes including survival and toxicity. Methods: A literature search was performed in PubMed, Embase, and the Cochrane library databases from their inceptions to Dec 30, 2016. Two authors independently assessed the included studies and extracted data. The average percent irradiated volumes of adjacent noncancerous organs were calculated and compared between IMRT and 3D-CRT. The odds ratio of overall survival (OS), and radiation pneumonitis and radiation esophagitis was also evaluated. Results: Totally 7 studies were included. Of them, 5 studies (80 patients) were included in the dosimetric comparison, 3 studies (871 patients) were included in the OS analysis, and 2 studies (205 patients) were included in the irradiation toxicity analysis. For lung in patients receiving doses ≥20 Gy and heart in patients receiving dose = 50 Gy, the average irradiated volumes of IMRT were less than those from 3D-CRT. IMRT resulted in a higher OS than 3D-CRT. However, no significant difference was observed in the incidence of radiation pneumonitis and radiation esophagitis between 2 radiotherapy techniques. Conclusion: Our data suggest that IMRT-delivered high radiation dose produces significantly less average percent volumes of irradiated lung and heart than 3D-CRT. IMRT is superior to 3D-CRT in the OS of EC while shows no benefit on radiation toxicity. PMID:28767597
NASA Astrophysics Data System (ADS)
Kurobori, Toshio; Kada, Wataru; Shirao, Taichi; Satoh, Takahiro
2018-02-01
We report a demonstration of microscale patterns in Ag-activated phosphate glass fabricated using a focused proton beam with an energy range of 1-3 MeV. Various microscale patterns are based on blue and orange radiophotoluminescent (RPL) centres. Two- and three-dimensional (2D and 3D) microstructures are visualised by combining two-photon confocal microscopy with femtosecond (fs) laser pulses generated from a mode-locked Ti:sapphire laser operating at 700 nm. The reconstructed images are analytically evaluated using lateral/axial dose mapping and RPL spectra. In addition, the advantages of two-photon excitation applied to Ag-activated phosphate glass are discussed, and this method is compared with single-photon excitation.
Sim, GS; Ng, KH
2013-01-01
Radiochromic and radiographic films are widely used for radiation dosimetry due to the advantage of high spatial resolution and two‐dimensional dose measurement. Different types of scanners, including various models of flatbed scanners, have been used as part of the dosimetry readout procedure. This paper focuses on the characterization of the EBT2 film response in combination with a Microtek ScanMaker 9800XL scanner and the subsequent use in the dosimetric verification of a 3D conformal radiotherapy treatment. The film reproducibility and scanner uniformity of the Microtek ScanMaker 9800XL was studied. A three‐field 3D conformal radiotherapy treatment was planned on an anthropomorphic phantom and EBT2 film measurements were carried out to verify the treatment. The interfilm reproducibility was found to be 0.25%. Over a period of three months, the films darkened by 1%. The scanner reproducibility was ± 2% and a nonuniformity was ±1.9% along the direction perpendicular to the scan direction. EBT2 measurements showed an underdose of 6.2% at high‐dose region compared to TPS predicted dose. This may be due to the inability of the treatment planning system to predict the correct dose distribution in the presence of tissue inhomogeneities and the uncertainty of the scanner reproducibility and uniformity. The use of EBT2 film in conjunction with the axial CT image of the anthropomorphic phantom allows the evaluation of the anatomical location of dose discrepancies between the EBT2 measured dose distribution and TPS predicted dose distribution. PACS number: 87.55.Qr PMID:23835383
Liu, Yue-E; Lin, Qiang; Meng, Fan-Jie; Chen, Xue-Ji; Ren, Xiao-Cang; Cao, Bin; Wang, Na; Zong, Jie; Peng, Yu; Ku, Ya-Jun; Chen, Yan
2013-08-11
Increasing the radiotherapy dose can result in improved local control for non-small-cell lung cancer (NSCLC) and can thereby improve survival. Accelerated hypofractionated radiotherapy can expose tumors to a high dose of radiation in a short period of time, but the optimal treatment regimen remains unclear. The purpose of this study was to evaluate the feasibility of utilizing high-dose accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine (NVB) and carboplatin (CBP) chemotherapy for the treatment of local advanced NSCLC. Untreated patients with unresectable stage IIIA/IIIB NSCLC or patients with a recurrence of NSCLC received accelerated hypofractionated three-dimensional conformal radiotherapy. The total dose was greater than or equal to 60 Gy. The accelerated hypofractionated radiotherapy was conducted once daily at 3 Gy/fraction with 5 fractions per week, and the radiotherapy was completed in 5 weeks. In addition to radiotherapy, the patients also received at least 1 cycle of a concurrent two-drug chemotherapy regimen of NVB and CBP. A total of 26 patients (19 previously untreated cases and 7 cases of recurrent disease) received 60Gy-75Gy radiotherapy with concurrent chemotherapy. All of the patients underwent evaluations for toxicity and preliminary therapeutic efficacy. There were no treatment-related deaths within the entire patient group. The major acute adverse reactions were radiation esophagitis (88.5%) and radiation pneumonitis (42.3%). The percentages of grade III acute radiation esophagitis and grade III radiation pneumonitis were 15.4% and 7.7%, respectively. Hematological toxicities were common and did not significantly affect the implementation of chemoradiotherapy after supportive treatment. Two patients received high dose of 75 Gy had grade III late esophageal toxicity, and none had grade IV and above. Grade III and above late lung toxicity did not occur. High-dose accelerated hypofractionated three-dimensional conformal radiotherapy with a dose of 60 Gy or greater with concurrent NVB and CBP chemotherapy might be feasible. However esophagus toxicity needs special attention. A phase I trial is recommended to obtain the maximum tolerated radiation dose of accelerated hypofractionated radiotherapy with concurrent chemotherapy.
2013-01-01
Background Increasing the radiotherapy dose can result in improved local control for non-small-cell lung cancer (NSCLC) and can thereby improve survival. Accelerated hypofractionated radiotherapy can expose tumors to a high dose of radiation in a short period of time, but the optimal treatment regimen remains unclear. The purpose of this study was to evaluate the feasibility of utilizing high-dose accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine (NVB) and carboplatin (CBP) chemotherapy for the treatment of local advanced NSCLC. Methods Untreated patients with unresectable stage IIIA/IIIB NSCLC or patients with a recurrence of NSCLC received accelerated hypofractionated three-dimensional conformal radiotherapy. The total dose was greater than or equal to 60 Gy. The accelerated hypofractionated radiotherapy was conducted once daily at 3 Gy/fraction with 5 fractions per week, and the radiotherapy was completed in 5 weeks. In addition to radiotherapy, the patients also received at least 1 cycle of a concurrent two-drug chemotherapy regimen of NVB and CBP. Results A total of 26 patients (19 previously untreated cases and 7 cases of recurrent disease) received 60Gy-75Gy radiotherapy with concurrent chemotherapy. All of the patients underwent evaluations for toxicity and preliminary therapeutic efficacy. There were no treatment-related deaths within the entire patient group. The major acute adverse reactions were radiation esophagitis (88.5%) and radiation pneumonitis (42.3%). The percentages of grade III acute radiation esophagitis and grade III radiation pneumonitis were 15.4% and 7.7%, respectively. Hematological toxicities were common and did not significantly affect the implementation of chemoradiotherapy after supportive treatment. Two patients received high dose of 75 Gy had grade III late esophageal toxicity, and none had grade IV and above. Grade III and above late lung toxicity did not occur. Conclusion High-dose accelerated hypofractionated three-dimensional conformal radiotherapy with a dose of 60 Gy or greater with concurrent NVB and CBP chemotherapy might be feasible. However esophagus toxicity needs special attention. A phase I trial is recommended to obtain the maximum tolerated radiation dose of accelerated hypofractionated radiotherapy with concurrent chemotherapy. PMID:23937855
Hu, Ben; Kuang, Zheng-Kun; Feng, Shi-Yu; Wang, Dong; He, Song-Bing; Kong, De-Xin
2016-11-17
The crystallized ligands in the Protein Data Bank (PDB) can be treated as the inverse shapes of the active sites of corresponding proteins. Therefore, the shape similarity between a molecule and PDB ligands indicated the possibility of the molecule to bind with the targets. In this paper, we proposed a shape similarity profile that can be used as a molecular descriptor for ligand-based virtual screening. First, through three-dimensional (3D) structural clustering, 300 diverse ligands were extracted from the druggable protein-ligand database, sc-PDB. Then, each of the molecules under scrutiny was flexibly superimposed onto the 300 ligands. Superimpositions were scored by shape overlap and property similarity, producing a 300 dimensional similarity array termed the "Three-Dimensional Biologically Relevant Spectrum (BRS-3D)". Finally, quantitative or discriminant models were developed with the 300 dimensional descriptor using machine learning methods (support vector machine). The effectiveness of this approach was evaluated using 42 benchmark data sets from the G protein-coupled receptor (GPCR) ligand library and the GPCR decoy database (GLL/GDD). We compared the performance of BRS-3D with other 2D and 3D state-of-the-art molecular descriptors. The results showed that models built with BRS-3D performed best for most GLL/GDD data sets. We also applied BRS-3D in histone deacetylase 1 inhibitors screening and GPCR subtype selectivity prediction. The advantages and disadvantages of this approach are discussed.
Danz, Jan C; Katsaros, Christos
2011-08-01
Three-dimensional (3D) models of teeth and soft and hard tissues are tessellated surfaces used for diagnosis, treatment planning, appliance fabrication, outcome evaluation, and research. In scientific publications or communications with colleagues, these 3D data are often reduced to 2-dimensional pictures or need special software for visualization. The portable document format (PDF) offers a simple way to interactively display 3D surface data without additional software other than a recent version of Adobe Reader (Adobe, San Jose, Calif). The purposes of this article were to give an example of how 3D data and their analyses can be interactively displayed in 3 dimensions in electronic publications, and to show how they can be exported from any software for diagnostic reports and communications among colleagues. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reardon, Kelli A.; Read, Paul W.; Morris, Monica M.
2013-07-01
Patients undergoing radiation for left-sided breast cancer have increased rates of coronary artery disease. Free-breathing intensity-modulated radiation therapy (FB-IMRT) and 3-dimensional conformal deep inspiratory–breath hold (3D-DIBH) reduce cardiac irradiation. The purpose of this study is to compare the dose to organs at risk in FB-IMRT vs 3D-DIBH for patients with left-sided breast cancer. Ten patients with left-sided breast cancer had 2 computed tomography scans: free breathing and voluntary DIBH. Optimization of the IMRT plan was performed on the free-breathing scan using 6 noncoplanar tangential beams. The 3D-DIBH plan was optimized on the DIBH scan and used standard tangents. Mean volumesmore » of the heart, the left anterior descending coronary artery (LAD), the total lung, and the right breast receiving 5% to 95% (5% increments) of the prescription dose were calculated. Mean volumes of the heart and the LAD were lower (p<0.05) in 3D-DIBH for volumes receiving 5% to 80% of the prescription dose for the heart and 5% for the LAD. Mean dose to the LAD and heart were lower in 3D-DIBH (p≤0.01). Mean volumes of the total lung were lower in FB-IMRT for dose levels 20% to 75% (p<0.05), but mean dose was not different. Mean volumes of the right breast were not different for any dose; however, mean dose was lower for 3D-DIBH (p = 0.04). 3D-DIBH is an alternative approach to FB-IMRT that provides a clinically equivalent treatment for patients with left-sided breast cancer while sparing organs at risk with increased ease of implementation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Streitparth, Florian; Pech, Maciej; Boehmig, Michael
2006-08-01
Purpose: The aim of this study was to assess the tolerance dose of gastric mucosa for single-fraction computed tomography (CT)-guided, high-dose-rate (HDR) brachytherapy of liver malignancies. Methods and Materials: A total of 33 patients treated by CT-guided HDR brachytherapy of liver malignancies in segments II and/or III were included. Dose planning was performed upon a three-dimensional CT data set acquired after percutaneous applicator positioning. All patients received gastric protection post-treatment. For further analysis, the contours of the gastric wall were defined in every CT slice using Brachyvision Software. Dose-volume histograms were calculated for each treatment and correlated with clinical datamore » derived from questionnaires assessing Common Toxicity Criteria (CTC). All patients presenting symptoms of upper GI toxicity were examined endoscopically. Results: Summarizing all patients the minimum dose applied to 1 ml of the gastric wall (D{sub 1ml}) ranged from 6.3 to 34.2 Gy; median, 14.3 Gy. Toxicity was present in 18 patients (55%). We found nausea in 16 (69%), emesis in 9 (27%), cramping in 13 (39%), weight loss in 12 (36%), gastritis in 4 (12%), and ulceration in 5 patients (15%). We found a threshold dose D{sub 1ml} of 11 Gy for general gastric toxicity and 15.5 Gy for gastric ulceration verified by an univariate analysis (p = 0.01). Conclusions: For a single fraction, small volume irradiation we found in the upper abdomen a threshold dose D{sub 1ml} of 15.5 Gy for the clinical endpoint ulceration of the gastric mucosa. This in vivo assessment is in accordance with previously published tolerance data.« less
Computer-Generated, Three-Dimensional Character Animation.
ERIC Educational Resources Information Center
Van Baerle, Susan Lynn
This master's thesis begins by discussing the differences between 3-D computer animation of solid three-dimensional, or monolithic, objects, and the animation of characters, i.e., collections of movable parts with soft pliable surfaces. Principles from two-dimensional character animation that can be transferred to three-dimensional character…
Development of Three-Dimensional Dental Scanning Apparatus Using Structured Illumination
Park, Anjin; Lee, Byeong Ha; Eom, Joo Beom
2017-01-01
We demonstrated a three-dimensional (3D) dental scanning apparatus based on structured illumination. A liquid lens was used for tuning focus and a piezomotor stage was used for the shift of structured light. A simple algorithm, which detects intensity modulation, was used to perform optical sectioning with structured illumination. We reconstructed a 3D point cloud, which represents the 3D coordinates of the digitized surface of a dental gypsum cast by piling up sectioned images. We performed 3D registration of an individual 3D point cloud, which includes alignment and merging the 3D point clouds to exhibit a 3D model of the dental cast. PMID:28714897
Three-Dimensional Analysis and Surgical Planning in Craniomaxillofacial Surgery.
Steinbacher, Derek M
2015-12-01
Three-dimensional (3D) analysis and planning are powerful tools in craniofacial and reconstructive surgery. The elements include 1) analysis, 2) planning, 3) virtual surgery, 4) 3D printouts of guides or implants, and 5) verification of actual to planned results. The purpose of this article is to review different applications of 3D planning in craniomaxillofacial surgery. Case examples involving 3D analysis and planning were reviewed. Common threads pertaining to all types of reconstruction are highlighted and contrasted with unique aspects specific to new applications in craniomaxillofacial surgery. Six examples of 3D planning are described: 1) cranial reconstruction, 2) craniosynostosis, 3) midface advancement, 4) mandibular distraction, 5) mandibular reconstruction, and 6) orthognathic surgery. Planning in craniomaxillofacial surgery is useful and has applicability across different procedures and reconstructions. Three-dimensional planning and virtual surgery enhance efficiency, accuracy, creativity, and reproducibility in craniomaxillofacial surgery. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Lopez-Rendon, Xochitl; Zhang, Guozhi; Coudyzer, Walter; Develter, Wim; Bosmans, Hilde; Zanca, Federica
2017-11-01
To compare the lung and breast dose associated with three chest protocols: standard, organ-based tube current modulation (OBTCM) and fast-speed scanning; and to estimate the error associated with organ dose when modelling the longitudinal (z-) TCM versus the 3D-TCM in Monte Carlo simulations (MC) for these three protocols. Five adult and three paediatric cadavers with different BMI were scanned. The CTDI vol of the OBTCM and the fast-speed protocols were matched to the patient-specific CTDI vol of the standard protocol. Lung and breast doses were estimated using MC with both z- and 3D-TCM simulated and compared between protocols. The fast-speed scanning protocol delivered the highest doses. A slight reduction for breast dose (up to 5.1%) was observed for two of the three female cadavers with the OBTCM in comparison to the standard. For both adult and paediatric, the implementation of the z-TCM data only for organ dose estimation resulted in 10.0% accuracy for the standard and fast-speed protocols, while relative dose differences were up to 15.3% for the OBTCM protocol. At identical CTDI vol values, the standard protocol delivered the lowest overall doses. Only for the OBTCM protocol is the 3D-TCM needed if an accurate (<10.0%) organ dosimetry is desired. • The z-TCM information is sufficient for accurate dosimetry for standard protocols. • The z-TCM information is sufficient for accurate dosimetry for fast-speed scanning protocols. • For organ-based TCM schemes, the 3D-TCM information is necessary for accurate dosimetry. • At identical CTDI vol , the fast-speed scanning protocol delivered the highest doses. • Lung dose was higher in XCare than standard protocol at identical CTDI vol .
Three-dimensional assessment of facial asymmetry: A systematic review.
Akhil, Gopi; Senthil Kumar, Kullampalayam Palanisamy; Raja, Subramani; Janardhanan, Kumaresan
2015-08-01
For patients with facial asymmetry, complete and precise diagnosis, and surgical treatments to correct the underlying cause of the asymmetry are significant. Conventional diagnostic radiographs (submento-vertex projections, posteroanterior radiography) have limitations in asymmetry diagnosis due to two-dimensional assessments of three-dimensional (3D) images. The advent of 3D images has greatly reduced the magnification and projection errors that are common in conventional radiographs making it as a precise diagnostic aid for assessment of facial asymmetry. Thus, this article attempts to review the newly introduced 3D tools in the diagnosis of more complex facial asymmetries.
Stambaugh, Cassandra; Nelms, Benjamin E; Dilling, Thomas; Stevens, Craig; Latifi, Kujtim; Zhang, Geoffrey; Moros, Eduardo; Feygelman, Vladimir
2013-09-01
The effects of respiratory motion on the tumor dose can be divided into the gradient and interplay effects. While the interplay effect is likely to average out over a large number of fractions, it may play a role in hypofractionated [stereotactic body radiation therapy (SBRT)] treatments. This subject has been extensively studied for intensity modulated radiation therapy but less so for volumetric modulated arc therapy (VMAT), particularly in application to hypofractionated regimens. Also, no experimental study has provided full four-dimensional (4D) dose reconstruction in this scenario. The authors demonstrate how a recently described motion perturbation method, with full 4D dose reconstruction, is applied to describe the gradient and interplay effects during VMAT lung SBRT treatments. VMAT dose delivered to a moving target in a patient can be reconstructed by applying perturbations to the treatment planning system-calculated static 3D dose. Ten SBRT patients treated with 6 MV VMAT beams in five fractions were selected. The target motion (motion kernel) was approximated by 3D rigid body translation, with the tumor centroids defined on the ten phases of the 4DCT. The motion was assumed to be periodic, with the period T being an average from the empirical 4DCT respiratory trace. The real observed tumor motion (total displacement ≤ 8 mm) was evaluated first. Then, the motion range was artificially increased to 2 or 3 cm. Finally, T was increased to 60 s. While not realistic, making T comparable to the delivery time elucidates if the interplay effect can be observed. For a single fraction, the authors quantified the interplay effect as the maximum difference in the target dosimetric indices, most importantly the near-minimum dose (D99%), between all possible starting phases. For the three- and five-fractions, statistical simulations were performed when substantial interplay was found. For the motion amplitudes and periods obtained from the 4DCT, the interplay effect is negligible (<0.2%). It is also small (0.9% average, 2.2% maximum) when the target excursion increased to 2-3 cm. Only with large motion and increased period (60 s) was a significant interplay effect observed, with D99% ranging from 16% low to 17% high. The interplay effect was statistically significantly lower for the three- and five-fraction statistical simulations. Overall, the gradient effect dominates the clinical situation. A novel method was used to reconstruct the volumetric dose to a moving tumor during lung SBRT VMAT deliveries. With the studied planning and treatment technique for realistic motion periods, regardless of the amplitude, the interplay has nearly no impact on the near-minimum dose. The interplay effect was observed, for study purposes only, with the period comparable to the VMAT delivery time.
Radiation-induced second cancers: the impact of 3D-CRT and IMRT
NASA Technical Reports Server (NTRS)
Hall, Eric J.; Wuu, Cheng-Shie
2003-01-01
Information concerning radiation-induced malignancies comes from the A-bomb survivors and from medically exposed individuals, including second cancers in radiation therapy patients. The A-bomb survivors show an excess incidence of carcinomas in tissues such as the gastrointestinal tract, breast, thyroid, and bladder, which is linear with dose up to about 2.5 Sv. There is great uncertainty concerning the dose-response relationship for radiation-induced carcinogenesis at higher doses. Some animal and human data suggest a decrease at higher doses, usually attributed to cell killing; other data suggest a plateau in dose. Radiotherapy patients also show an excess incidence of carcinomas, often in sites remote from the treatment fields; in addition there is an excess incidence of sarcomas in the heavily irradiated in-field tissues. The transition from conventional radiotherapy to three-dimensional conformal radiation therapy (3D-CRT) involves a reduction in the volume of normal tissues receiving a high dose, with an increase in dose to the target volume that includes the tumor and a limited amount of normal tissue. One might expect a decrease in the number of sarcomas induced and also (less certain) a small decrease in the number of carcinomas. All around, a good thing. By contrast, the move from 3D-CRT to intensity-modulated radiation therapy (IMRT) involves more fields, and the dose-volume histograms show that, as a consequence, a larger volume of normal tissue is exposed to lower doses. In addition, the number of monitor units is increased by a factor of 2 to 3, increasing the total body exposure, due to leakage radiation. Both factors will tend to increase the risk of second cancers. Altogether, IMRT is likely to almost double the incidence of second malignancies compared with conventional radiotherapy from about 1% to 1.75% for patients surviving 10 years. The numbers may be larger for longer survival (or for younger patients), but the ratio should remain the same.
NASA Astrophysics Data System (ADS)
Juhnke, Bethany; Berron, Monica; Philip, Adriana; Williams, Jordan; Holub, Joseph; Winer, Eliot
2013-03-01
Advancements in medical image visualization in recent years have enabled three-dimensional (3D) medical images to be volume-rendered from magnetic resonance imaging (MRI) and computed tomography (CT) scans. Medical data is crucial for patient diagnosis and medical education, and analyzing these three-dimensional models rather than two-dimensional (2D) slices would enable more efficient analysis by surgeons and physicians, especially non-radiologists. An interaction device that is intuitive, robust, and easily learned is necessary to integrate 3D modeling software into the medical community. The keyboard and mouse configuration does not readily manipulate 3D models because these traditional interface devices function within two degrees of freedom, not the six degrees of freedom presented in three dimensions. Using a familiar, commercial-off-the-shelf (COTS) device for interaction would minimize training time and enable maximum usability with 3D medical images. Multiple techniques are available to manipulate 3D medical images and provide doctors more innovative ways of visualizing patient data. One such example is windowing. Windowing is used to adjust the viewed tissue density of digital medical data. A software platform available at the Virtual Reality Applications Center (VRAC), named Isis, was used to visualize and interact with the 3D representations of medical data. In this paper, we present the methodology and results of a user study that examined the usability of windowing 3D medical imaging using a Kinect™ device compared to a traditional mouse.
NASA Astrophysics Data System (ADS)
Damayanti, Latifah Adelina; Ikhsan, Jaslin
2017-05-01
Integration of information technology in education more rapidly performed in a medium of learning. Three-dimensional (3D) molecular modeling was performed in Augmented Reality as a tangible manifestation of increasingly modern technology utilization. Based on augmented reality, three-dimensional virtual object is projected in real time and the exact environment. This paper reviewed the uses of chemical learning supplement book of aldehydes and ketones which are equipped with three-dimensional molecular modeling by which students can inspect molecules from various viewpoints. To plays the 3D illustration printed on the book, smartphones with the open-source software of the technology based integrated Augmented Reality can be used. The aims of this research were to develop the monograph of aldehydes and ketones with 3 dimensional (3D) illustrations, to determine the specification of the monograph, and to determine the quality of the monograph. The quality of the monograph is evaluated by experiencing chemistry teachers on the five aspects of contents/materials, presentations, language and images, graphs, and software engineering, resulted in the result that the book has a very good quality to be used as a chemistry learning supplement book.
ERIC Educational Resources Information Center
Allen, Lauren K.; Eagleson, Roy; de Ribaupierre, Sandrine
2016-01-01
Neuroanatomy is one of the most challenging subjects in anatomy, and novice students often experience difficulty grasping the complex three-dimensional (3D) spatial relationships. This study evaluated a 3D neuroanatomy e-learning module, as well as the relationship between spatial abilities and students' knowledge in neuroanatomy. The study's…
A simplified hardwood log-sawing program for three-dimensional profile data
R. Edward Thomas
2011-01-01
Current laser scanning systems in sawmills collect low-resolution three-dimensional (3D) profiles of logs. However, these scanners are capable of much more. As a demonstration, the U.S. Forest Service, Forestry Sciences Laboratory in Princeton, WV, constructed a 3D laser log scanner using off -the-shelf industrial scanning components.
Social Presence and Motivation in a Three-Dimensional Virtual World: An Explanatory Study
ERIC Educational Resources Information Center
Yilmaz, Rabia M.; Topu, F. Burcu; Goktas, Yuksel; Coban, Murat
2013-01-01
Three-dimensional (3-D) virtual worlds differ from other learning environments in their similarity to real life, providing opportunities for more effective communication and interaction. With these features, 3-D virtual worlds possess considerable potential to enhance learning opportunities. For effective learning, the users' motivation levels and…
Stabile, L; Scungio, M; Buonanno, G; Arpino, F; Ficco, G
2017-03-01
The knowledge of exposure to the airborne particle emitted from three-dimensional (3D) printing activities is becoming a crucial issue due to the relevant spreading of such devices in recent years. To this end, a low-cost desktop 3D printer based on fused deposition modeling (FDM) principle was used. Particle number, alveolar-deposited surface area, and mass concentrations were measured continuously during printing processes to evaluate particle emission rates (ERs) and factors. Particle number distribution measurements were also performed to characterize the size of the emitted particles. Ten different materials and different extrusion temperatures were considered in the survey. Results showed that all the investigated materials emit particles in the ultrafine range (with a mode in the 10-30-nm range), whereas no emission of super-micron particles was detected for all the materials under investigation. The emission was affected strongly by the extrusion temperature. In fact, the ERs increase as the extrusion temperature increases. Emission rates up to 1×10 12 particles min -1 were calculated. Such high ERs were estimated to cause large alveolar surface area dose in workers when 3D activities run. In fact, a 40-min-long 3D printing was found to cause doses up to 200 mm 2 . © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaitelman, Simona F.; Kim, Leonard H.; Grills, Inga S.
Purpose: We analyzed variables associated with long-term toxicity using three-dimensional conformal external beam radiation therapy (3D-CRT) to deliver accelerated partial breast irradiation. Methods and Materials: One hundred patients treated with 3D-CRT accelerated partial breast irradiation were evaluated using Common Terminology Criteria for Adverse Events version 4.0 scale. Cosmesis was scored using Harvard criteria. Multiple dosimetric and volumetric parameters were analyzed for their association with worst and last (W/L) toxicity outcomes. Results: Sixty-two patients had a minimum of 36 months of toxicity follow-up (median follow-up, 4.8 years). The W/L incidence of poor-fair cosmesis, any telangiectasia, and grade {>=}2 induration, volume reduction,more » and pain were 16.4%/11.5%, 24.2%/14.5%, 16.1%/9.7%, 17.7%/12.9%, and 11.3%/3.2%, respectively. Only the incidence of any telangiectasia was found to be predicted by any dosimetric parameter, with the absolute breast volume receiving 5% to 50% of the prescription dose (192.5 cGy-1925 cGy) being significant. No associations with maximum dose, volumes of lumpectomy cavity, breast, modified planning target volume, and PTV, dose homogeneity index, number of fields, and photon energy used were identified with any of the aforementioned toxicities. Non-upper outer quadrant location was associated with grade {>=}2 volume reduction (p = 0.02 W/p = 0.04 L). A small cavity-to-skin distance was associated with a grade {>=}2 induration (p = 0.03 W/p = 0.01 L), a borderline significant association with grade {>=}2 volume reduction (p = 0.06 W/p = 0.06 L) and poor-fair cosmesis (p = 0.08 W/p = 0.09 L), with threshold distances ranging from 5 to 8 mm. Conclusions: No dose--volume relationships associated with long-term toxicity were identified in this large patient cohort with extended follow-up. Cosmetic results were good-to-excellent in 88% of patients at 5 years.« less
Edmondson, Rasheena; Broglie, Jessica Jenkins; Adcock, Audrey F.
2014-01-01
Abstract Three-dimensional (3D) cell culture systems have gained increasing interest in drug discovery and tissue engineering due to their evident advantages in providing more physiologically relevant information and more predictive data for in vivo tests. In this review, we discuss the characteristics of 3D cell culture systems in comparison to the two-dimensional (2D) monolayer culture, focusing on cell growth conditions, cell proliferation, population, and gene and protein expression profiles. The innovations and development in 3D culture systems for drug discovery over the past 5 years are also reviewed in the article, emphasizing the cellular response to different classes of anticancer drugs, focusing particularly on similarities and differences between 3D and 2D models across the field. The progression and advancement in the application of 3D cell cultures in cell-based biosensors is another focal point of this review. PMID:24831787
Nakaguchi, Yuji; Oono, Takeshi; Maruyama, Masato; Shimohigashi, Yoshinobu; Kai, Yudai; Nakamura, Yuya
2018-06-01
In this study, we evaluated the basic performance of the three-dimensional dose verification system COMPASS (IBA Dosimetry). This system is capable of reconstructing 3D dose distributions on the patient anatomy based on the fluence measured using a new transmission detector (Dolphin, IBA Dosimetry) during treatment. The stability of the absolute dose and geometric calibrations of the COMPASS system with the Dolphin detector were investigated for fundamental validation. Furthermore, multileaf collimator (MLC) test patterns and a complicated volumetric modulated arc therapy (VMAT) plan were used to evaluate the accuracy of the reconstructed dose distributions determined by the COMPASS. The results from the COMPASS were compared with those of a Monte Carlo simulation (MC), EDR2 film measurement, and a treatment planning system (TPS). The maximum errors for the absolute dose and geometrical position were - 0.28% and 1.0 mm for 3 months, respectively. The Dolphin detector, which consists of ionization chamber detectors, was firmly mounted on the linear accelerator and was very stable. For the MLC test patterns, the TPS showed a > 5% difference at small fields, while the COMPASS showed good agreement with the MC simulation at small fields. However, the COMPASS produced a large error for complex small fields. For a clinical VMAT plan, COMPASS was more accurate than TPS. COMPASS showed real delivered-dose distributions because it uses the measured fluence, a high-resolution detector, and accurate beam modeling. We confirm here that the accuracy and detectability of the delivered dose of the COMPASS system are sufficient for clinical practice.
Computer-aided diagnosis for osteoporosis using chest 3D CT images
NASA Astrophysics Data System (ADS)
Yoneda, K.; Matsuhiro, M.; Suzuki, H.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.
2016-03-01
The patients of osteoporosis comprised of about 13 million people in Japan and it is one of the problems the aging society has. In order to prevent the osteoporosis, it is necessary to do early detection and treatment. Multi-slice CT technology has been improving the three dimensional (3-D) image analysis with higher body axis resolution and shorter scan time. The 3-D image analysis using multi-slice CT images of thoracic vertebra can be used as a support to diagnose osteoporosis and at the same time can be used for lung cancer diagnosis which may lead to early detection. We develop automatic extraction and partitioning algorithm for spinal column by analyzing vertebral body structure, and the analysis algorithm of the vertebral body using shape analysis and a bone density measurement for the diagnosis of osteoporosis. Osteoporosis diagnosis support system obtained high extraction rate of the thoracic vertebral in both normal and low doses.
Wang, S F; Cheng, H C; Chang, C Y
1999-01-01
Fast fat-suppressed (FS) three-dimensional (3D) spoiled gradient-recalled echo (SPGR) imaging of 64 articular cartilage regions in 16 patellofemoral joints was evaluated to assess its feasibility in diagnosing patellofemoral chondromalacia. It demonstrated good correlation with arthroscopic reports and took about half of the examination time that FS 3D SPGR did. This modified, faster technique has the potential to diagnose patellofemoral chondromalacia with shorter examination time than FS 3D SPGR did.
ERIC Educational Resources Information Center
Zacharis, Georgios K.; Mikropoulos, Tassos Anastasios; Kalyvioti, Katerina
2016-01-01
Studies showed that two-dimensional (2D) and three-dimensional (3D) educational content contributes to learning. Although there were many studies with 3D stereoscopic learning environments, only a few studies reported on the differences between real, 2D, and 3D scenes, as far as cognitive load and attentional demands were concerned. We used…
Peptide hydrogelation and cell encapsulation for 3D culture of MCF-7 breast cancer cells.
Huang, Hongzhou; Ding, Ying; Sun, Xiuzhi S; Nguyen, Thu A
2013-01-01
Three-dimensional (3D) cell culture plays an invaluable role in tumor biology by providing in vivo like microenviroment and responses to therapeutic agents. Among many established 3D scaffolds, hydrogels demonstrate a distinct property as matrics for 3D cell culture. Most of the existing pre-gel solutions are limited under physiological conditions such as undesirable pH or temperature. Here, we report a peptide hydrogel that shows superior physiological properties as an in vitro matrix for 3D cell culture. The 3D matrix can be accomplished by mixing a self-assembling peptide directly with a cell culture medium without any pH or temperature adjustment. Results of dynamic rheological studies showed that this hydrogel can be delivered multiple times via pipetting without permanently destroying the hydrogel architecture, indicating the deformability and remodeling ability of the hydrogel. Human epithelial cancer cells, MCF-7, are encapsulated homogeneously in the hydrogel matrix during hydrogelation. Compared with two-dimensional (2D) monolayer culture, cells residing in the hydrogel matrix grow as tumor-like clusters in 3D formation. Relevant parameters related to cell morphology, survival, proliferation, and apoptosis were analyzed using MCF-7 cells in 3D hydrogels. Interestingly, treatment of cisplatin, an anti-cancer drug, can cause a significant decrease of cell viability of MCF-7 clusters in hydrogels. The responses to cisplatin were dose- and time-dependent, indicating the potential usage of hydrogels for drug testing. Results of confocal microscopy and Western blotting showed that cells isolated from hydrogels are suitable for downstream proteomic analysis. The results provided evidence that this peptide hydrogel is a promising 3D cell culture material for drug testing.
Peptide Hydrogelation and Cell Encapsulation for 3D Culture of MCF-7 Breast Cancer Cells
Sun, Xiuzhi S.; Nguyen, Thu A.
2013-01-01
Three-dimensional (3D) cell culture plays an invaluable role in tumor biology by providing in vivo like microenviroment and responses to therapeutic agents. Among many established 3D scaffolds, hydrogels demonstrate a distinct property as matrics for 3D cell culture. Most of the existing pre-gel solutions are limited under physiological conditions such as undesirable pH or temperature. Here, we report a peptide hydrogel that shows superior physiological properties as an in vitro matrix for 3D cell culture. The 3D matrix can be accomplished by mixing a self-assembling peptide directly with a cell culture medium without any pH or temperature adjustment. Results of dynamic rheological studies showed that this hydrogel can be delivered multiple times via pipetting without permanently destroying the hydrogel architecture, indicating the deformability and remodeling ability of the hydrogel. Human epithelial cancer cells, MCF-7, are encapsulated homogeneously in the hydrogel matrix during hydrogelation. Compared with two-dimensional (2D) monolayer culture, cells residing in the hydrogel matrix grow as tumor-like clusters in 3D formation. Relevant parameters related to cell morphology, survival, proliferation, and apoptosis were analyzed using MCF-7 cells in 3D hydrogels. Interestingly, treatment of cisplatin, an anti-cancer drug, can cause a significant decrease of cell viability of MCF-7 clusters in hydrogels. The responses to cisplatin were dose- and time-dependent, indicating the potential usage of hydrogels for drug testing. Results of confocal microscopy and Western blotting showed that cells isolated from hydrogels are suitable for downstream proteomic analysis. The results provided evidence that this peptide hydrogel is a promising 3D cell culture material for drug testing. PMID:23527204
3D laparoscopic surgery: a prospective clinical trial.
Agrusa, Antonino; Di Buono, Giuseppe; Buscemi, Salvatore; Cucinella, Gaspare; Romano, Giorgio; Gulotta, Gaspare
2018-04-03
Since it's introduction, laparoscopic surgery represented a real revolution in clinical practice. The use of a new generation three-dimensional (3D) HD laparoscopic system can be considered a favorable "hybrid" made by combining two different elements: feasibility and diffusion of laparoscopy and improved quality of vision. In this study we report our clinical experience with use of three-dimensional (3D) HD vision system for laparoscopic surgery. Between 2013 and 2017 a prospective cohort study was conducted at the University Hospital of Palermo. We considered 163 patients underwent to laparoscopic three-dimensional (3D) HD surgery for various indications. This 3D-group was compared to a retrospective-prospective control group of patients who underwent the same surgical procedures. Considerating specific surgical procedures there is no significant difference in term of age and gender. The analysis of all the groups of diseases shows that the laparoscopic procedures performed with 3D technology have a shorter mean operative time than comparable 2D procedures when we consider surgery that require complex tasks. The use of 3D laparoscopic technology is an extraordinary innovation in clinical practice, but the instrumentation is still not widespread. Precisely for this reason the studies in literature are few and mainly limited to the evaluation of the surgical skills to the simulator. This study aims to evaluate the actual benefits of the 3D laparoscopic system integrating it in clinical practice. The three-dimensional view allows advanced performance in particular conditions, such as small and deep spaces and promotes performing complex surgical laparoscopic procedures.
Yuasa, Toshinori; Takasaki, Kunitsugu; Mizukami, Naoko; Ueya, Nami; Kubota, Kayoko; Horizoe, Yoshihisa; Chaen, Hideto; Kuwahara, Eiji; Kisanuki, Akira; Hamasaki, Shuichi
2013-09-01
A 39-year-old male who had undergone tricuspid valve replacement for severe tricuspid regurgitation was admitted with palpitation and general edema. Two-dimensional (2D) echocardiography showed tricuspid prosthetic valve dysfunction. Additional three-dimensional (3D) transthoracic and transesophageal echocardiography (TEE) could clearly demonstrate the disabilities of the mechanical tricuspid valve. Particularly, 3D TEE demonstrated a mass located on the right ventricular side of the tricuspid prosthesis, which may have caused the stuck disk. This observation was confirmed by intra-operative findings.
Nkiwane, Karen S; Pötter, Richard; Tanderup, Kari; Federico, Mario; Lindegaard, Jacob C; Kirisits, Christian
2013-01-01
Three-dimensional evaluation and comparison of target and organs at risk (OARs) doses from two traditional standard source loading patterns in the frame of MRI-guided cervical cancer brachytherapy for various clinical scenarios based on patient data collected in a multicenter trial setting. Two nonoptimized three-dimensional MRI-based treatment plans, Plan 1 (tandem and vaginal loading) and Plan 2 (tandem loading only), were generated for 134 patients from seven centers participating in the EMBRACE study. Both plans were normalized to point A (Pt. A). Target and OAR doses were evaluated in terms of minimum dose to 90% of the high-risk clinical target volume (HRCTV D90) grouped by tumor stage and minimum dose to the most exposed 2cm³ of the OARs volume. An HRCTV D90 ≥ Pt. A was achieved in 82% and 44% of the patients with Plans 1 and 2, respectively. Median HRCTV D90 with Plans 1 and 2 was 120% and 90% of Pt. A dose, respectively. Both plans had optimal dose coverage in 88% of Stage IB tumors; however, the tandem-only plan resulted in about 50% of dose reduction to the vagina and rectum. For Stages IIB and IIIB, Plan 1 had on average 35% better target coverage but with significant doses to OARs. Standard tandem loading alone results in good target coverage in most Stage IB tumors without violating OAR dose constraints. For Stage IIB tumors, standard vaginal loading improves the therapeutic window, however needs optimization to fulfill the dose prescription for target and OAR. In Stage IIIB, even optimized vaginal loading often does not fulfill the needs for dose prescription. The significant dose variation across various clinical scenarios for both target and OARs indicates the need for image-guided brachytherapy for optimal dose adaptation both for limited and advanced diseases. Copyright © 2013 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Small-Field Measurements of 3D Polymer Gel Dosimeters through Optical Computed Tomography.
Shih, Tian-Yu; Wu, Jay; Shih, Cheng-Ting; Lee, Yao-Ting; Wu, Shin-Hua; Yao, Chun-Hsu; Hsieh, Bor-Tsung
2016-01-01
With advances in therapeutic instruments and techniques, three-dimensional dose delivery has been widely used in radiotherapy. The verification of dose distribution in a small field becomes critical because of the obvious dose gradient within the field. The study investigates the dose distributions of various field sizes by using NIPAM polymer gel dosimeter. The dosimeter consists of 5% gelatin, 5% monomers, 3% cross linkers, and 5 mM THPC. After irradiation, a 24 to 96 hour delay was applied, and the gel dosimeters were read by a cone beam optical computed tomography (optical CT) scanner. The dose distributions measured by the NIPAM gel dosimeter were compared to the outputs of the treatment planning system using gamma evaluation. For the criteria of 3%/3 mm, the pass rates for 5 × 5, 3 × 3, 2 × 2, 1 × 1, and 0.5 × 0.5 cm2 were as high as 91.7%, 90.7%, 88.2%, 74.8%, and 37.3%, respectively. For the criteria of 5%/5 mm, the gamma pass rates of the 5 × 5, 3 × 3, and 2 × 2 cm2 fields were over 99%. The NIPAM gel dosimeter provides high chemical stability. With cone-beam optical CT readouts, the NIPAM polymer gel dosimeter has potential for clinical dose verification of small-field irradiation.
Jo, Hong Li; Song, Yo Han; Park, Jinho; Jo, Eun-Jung; Goh, Yeongchang; Shin, Kyujin; Kim, Min-Gon; Lee, Kang Taek
2015-12-14
We report on the development of a three-dimensional (3D) live-cell imaging technique with high spatiotemporal resolution using lanthanide-doped upconverting nanoparticles (UCNPs). It employs the sectioning capability of confocal microscopy except that the two-dimensional (2D) section images are acquired by wide-field epi-fluorescence microscopy. Although epi-fluorescence images are contaminated with the out-of-focus background in general, the near-infrared (NIR) excitation used for the excitation of UCNPs does not generate any autofluorescence, which helps to lower the background. Moreover, the image blurring due to defocusing was naturally eliminated in the image reconstruction process. The 3D images were used to investigate the cellular dynamics such as nuclear uptake and single-particle tracking that require 3D description.
Goldstein, D; Spry, N; Cummins, M M; Brown, C; van Hazel, G A; Carroll, S; Selva-Nayagam, S; Borg, M; Ackland, S P; Wratten, C; Shapiro, J; Porter, I W T; Hruby, G; Horvath, L; Bydder, S; Underhill, C; Harvey, J; Gebski, V J
2012-01-01
Background: Locally advanced inoperable pancreatic cancer (LAPC) has a poor prognosis. By increasing intensity of systemic therapy combined with an established safe chemoradiation technique, our intention was to enhance the outcomes of LAPC. In preparation for phase III evaluation, the feasibility and efficacy of our candidate regimen gemcitabine–oxaliplatin chemotherapy with sandwich 5-fluorouracil (5FU) and three-dimensional conformal radiotherapy (3DCRT) needs to be established. Methods: A total of 48 patients with inoperable LAPC without metastases were given gemcitabine (1000 mg m−2 d1 + d15 q28) and oxaliplatin (100 mg m−2 d2 + d16 q28) in induction (one cycle) and consolidation (three cycles), and 5FU 200 mg m−2 per day over 6 weeks during 3DCRT 54 Gy. Results: Median duration of sustained local control (LC) was 15.8 months, progression-free survival (PFS) was 11.0 months, and overall survival was 15.7 months. Survival rates for 1, 2, and 3 years were 70.2%, 21.3%, and 12.8%, respectively. Global quality of life did not significantly decline from baseline during treatment, which was associated with modest treatment-related toxicity. Conclusion: Fixed-dose gemcitabine and oxaliplatin, combined with an effective and safe regimen of 5FU and 3DCRT radiotherapy, was feasible and reasonably tolerated. The observed improved duration of LC and PFS with more intensive therapy over previous trials may be due to patient selection, but suggest that further evaluation in phase III trials is warranted. PMID:22134511
BEST3D user's manual: Boundary Element Solution Technology, 3-Dimensional Version 3.0
NASA Technical Reports Server (NTRS)
1991-01-01
The theoretical basis and programming strategy utilized in the construction of the computer program BEST3D (boundary element solution technology - three dimensional) and detailed input instructions are provided for the use of the program. An extensive set of test cases and sample problems is included in the manual and is also available for distribution with the program. The BEST3D program was developed under the 3-D Inelastic Analysis Methods for Hot Section Components contract (NAS3-23697). The overall objective of this program was the development of new computer programs allowing more accurate and efficient three-dimensional thermal and stress analysis of hot section components, i.e., combustor liners, turbine blades, and turbine vanes. The BEST3D program allows both linear and nonlinear analysis of static and quasi-static elastic problems and transient dynamic analysis for elastic problems. Calculation of elastic natural frequencies and mode shapes is also provided.
Ruben, Jeremy D; Smith, Ryan; Lancaster, Craig M; Haynes, Matthew; Jones, Phillip; Panettieri, Vanessa
2014-11-01
To characterize and compare the components of out-of-field dose for 18-MV intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3D-CRT) and their 6-MV counterparts and consider implications for second cancer induction. Comparable plans for each technique/energy were delivered to a water phantom with a sloping wall; under full scatter conditions; with field edge abutting but outside the bath to prevent internal/phantom scatter; and with shielding below the linear accelerator head to attenuate head leakage. Neutron measurements were obtained from published studies. Eighteen-megavolt IMRT produces 1.7 times more out-of-field scatter than 18-MV 3D-CRT. In absolute terms, however, differences are just approximately 0.1% of central axis dose. Eighteen-megavolt IMRT reduces internal/patient scatter by 13%, but collimator scatter (C) is 2.6 times greater than 18-MV 3D-CRT. Head leakage (L) is minimal. Increased out-of-field photon scatter from 18-MV IMRT carries out-of-field second cancer risks of approximately 0.2% over and above the 0.4% from 18-MV 3D-CRT. Greater photoneutron dose from 18-MV IMRT may result in further maximal, absolute increased risk to peripheral tissue of approximately 1.2% over 18-MV 3D-CRT. Out-of-field photon scatter remains comparable for the same modality irrespective of beam energy. Machine scatter (C+L) from 18 versus 6 MV is 1.2 times higher for IMRT and 1.8 times for 3D-CRT. It is 4 times higher for 6-MV IMRT versus 3D-CRT. Reduction in internal scatter with 18 MV versus 6 MV is 27% for 3D-CRT and 29% for IMRT. Compared with 6-MV 3D-CRT, 18-MV IMRT increases out-of-field second cancer risk by 0.2% from photons and adds 0.28-2.2% from neutrons. Out-of-field photon dose seems to be independent of beam energy for both techniques. Eighteen-megavolt IMRT increases out-of-field scatter 1.7-fold over 3D-CRT because of greater collimator scatter despite reducing internal/patient scatter. Out-of-field carcinogenic risk is thus increased (but improved in-field dose conformity may offset this). Potentially increased carcinogenic risk should be weighed against any benefit 18-MV IMRT may provide. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruben, Jeremy D., E-mail: jeremy.ruben@wbrc.org.au; Department of Surgery, Monash University, Melbourne; Smith, Ryan
Purpose: To characterize and compare the components of out-of-field dose for 18-MV intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3D-CRT) and their 6-MV counterparts and consider implications for second cancer induction. Methods and Materials: Comparable plans for each technique/energy were delivered to a water phantom with a sloping wall; under full scatter conditions; with field edge abutting but outside the bath to prevent internal/phantom scatter; and with shielding below the linear accelerator head to attenuate head leakage. Neutron measurements were obtained from published studies. Results: Eighteen-megavolt IMRT produces 1.7 times more out-of-field scatter than 18-MV 3D-CRT. Inmore » absolute terms, however, differences are just approximately 0.1% of central axis dose. Eighteen-megavolt IMRT reduces internal/patient scatter by 13%, but collimator scatter (C) is 2.6 times greater than 18-MV 3D-CRT. Head leakage (L) is minimal. Increased out-of-field photon scatter from 18-MV IMRT carries out-of-field second cancer risks of approximately 0.2% over and above the 0.4% from 18-MV 3D-CRT. Greater photoneutron dose from 18-MV IMRT may result in further maximal, absolute increased risk to peripheral tissue of approximately 1.2% over 18-MV 3D-CRT. Out-of-field photon scatter remains comparable for the same modality irrespective of beam energy. Machine scatter (C+L) from 18 versus 6 MV is 1.2 times higher for IMRT and 1.8 times for 3D-CRT. It is 4 times higher for 6-MV IMRT versus 3D-CRT. Reduction in internal scatter with 18 MV versus 6 MV is 27% for 3D-CRT and 29% for IMRT. Compared with 6-MV 3D-CRT, 18-MV IMRT increases out-of-field second cancer risk by 0.2% from photons and adds 0.28-2.2% from neutrons. Conclusions: Out-of-field photon dose seems to be independent of beam energy for both techniques. Eighteen-megavolt IMRT increases out-of-field scatter 1.7-fold over 3D-CRT because of greater collimator scatter despite reducing internal/patient scatter. Out-of-field carcinogenic risk is thus increased (but improved in-field dose conformity may offset this). Potentially increased carcinogenic risk should be weighed against any benefit 18-MV IMRT may provide.« less
[Three-dimensional display simulation of lung surgery using "active shutter glasses"].
Onuki, Takamasa; Kanzaki, Masato; Sakamoto, Kei; Kikkawa, Takuma; Isaka, Tamami; Shimizu, Toshihide; Oyama, Kunihiro; Murasugi, Masahide
2011-08-01
We have reported preoperative 3-dimensional (3D) simulation of thoracoscopic lung surgery using self-made software and internet shareware of 3D-modeler. Using "active shutter glasses", we have tried the "3D display simulation" of lung surgery. 3D display was more effective to grasp clear 3D interrelation between the bronchii and pulmonary vascular system than those in images of currently in use with the same information volume.
Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham
2013-01-01
Introduction Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. Methods A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. Results The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. Conclusion The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques. PMID:26229623
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham
Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRTmore » plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.« less
Shi, Wei-Bin; Le, Van-Minh; Gu, Chun-Hua; Zheng, Yuan-Hong; Lang, Mei-Dong; Lu, Yan-Hua; Liu, Jian-Wen
2014-04-01
The principal limitations of chemotherapy are dose-limiting systemic toxicity and the development of multidrug-resistant phenotypes. The aim of this study was to investigate the efficiency of a new sustained drug delivery system based on chitosan and ε-caprolactone to overcome multidrug resistance in monolayer and drug resistance associated with the three-dimensional (3D) tumor microenvironment in our established 3D models. The 5-fluorouracil (5-FU)-loaded nanoparticles (NPs) were characterized by transmission electron microscope and dynamic light scattering, and its released property was determined at different pH values. 5-FU/NPs exhibited well-sustained release properties and markedly enhanced the cytotoxicity of 5-FU against HCT116/L-OHP or HCT8/VCR MDR cells in two-dimensional (2D) and its parental cells in 3D collagen gel culture with twofold to threefold decrease in the IC50 values, as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Hoechst/propidium iodide staining and flow cytometry analysis. Furthermore, the possible mechanism was explored by high-performance liquid chromatography and rhodamine 123 accumulation experiment. Overall, the results demonstrated that 5-FU/NPs increase intracellular concentration of 5-FU and enhance its anticancer efficiency by inducing apoptosis. It was suggested that this novel NPs are a promising carrier to decrease toxic of 5-FU and has the potential to reverse the forms of both intrinsic and acquired drug resistance in 2D and 3D cultures. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russo, James K.; Armeson, Kent E.; Richardson, Susan, E-mail: srichardson@radonc.wustl.edu
2012-05-01
Purpose: To evaluate bladder and rectal doses using two-dimensional (2D) and 3D treatment planning for vaginal cuff high-dose rate (HDR) in endometrial cancer. Methods and Materials: Ninety-one consecutive patients treated between 2000 and 2007 were evaluated. Seventy-one and 20 patients underwent 2D and 3D planning, respectively. Each patient received six fractions prescribed at 0.5 cm to the superior 3 cm of the vagina. International Commission on Radiation Units and Measurements (ICRU) doses were calculated for 2D patients. Maximum and 2-cc doses were calculated for 3D patients. Organ doses were normalized to prescription dose. Results: Bladder maximum doses were 178% ofmore » ICRU doses (p < 0.0001). Two-cubic centimeter doses were no different than ICRU doses (p = 0.22). Two-cubic centimeter doses were 59% of maximum doses (p < 0.0001). Rectal maximum doses were 137% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were 87% of ICRU doses (p < 0.0001). Two-cubic centimeter doses were 64% of maximum doses (p < 0.0001). Using the first 1, 2, 3, 4 or 5 fractions, we predicted the final bladder dose to within 10% for 44%, 59%, 83%, 82%, and 89% of patients by using the ICRU dose, and for 45%, 55%, 80%, 85%, and 85% of patients by using the maximum dose, and for 37%, 68%, 79%, 79%, and 84% of patients by using the 2-cc dose. Using the first 1, 2, 3, 4 or 5 fractions, we predicted the final rectal dose to within 10% for 100%, 100%, 100%, 100%, and 100% of patients by using the ICRU dose, and for 60%, 65%, 70%, 75%, and 75% of patients by using the maximum dose, and for 68%, 95%, 84%, 84%, and 84% of patients by using the 2-cc dose. Conclusions: Doses to organs at risk vary depending on the calculation method. In some cases, final dose accuracy appears to plateau after the third fraction, indicating that simulation and planning may not be necessary in all fractions. A clinically relevant level of accuracy should be determined and further research conducted to address this issue.« less
Evaluation of radiochromic gel dosimetry and polymer gel dosimetry in a clinical dose verification
NASA Astrophysics Data System (ADS)
Vandecasteele, Jan; De Deene, Yves
2013-09-01
A quantitative comparison of two full three-dimensional (3D) gel dosimetry techniques was assessed in a clinical setting: radiochromic gel dosimetry with an in-house developed optical laser CT scanner and polymer gel dosimetry with magnetic resonance imaging (MRI). To benchmark both gel dosimeters, they were exposed to a 6 MV photon beam and the depth dose was compared against a diamond detector measurement that served as golden standard. Both gel dosimeters were found accurate within 4% accuracy. In the 3D dose matrix of the radiochromic gel, hotspot dose deviations up to 8% were observed which are attributed to the fabrication procedure. The polymer gel readout was shown to be sensitive to B0 field and B1 field non-uniformities as well as temperature variations during scanning. The performance of the two gel dosimeters was also evaluated for a brain tumour IMRT treatment. Both gel measured dose distributions were compared against treatment planning system predicted dose maps which were validated independently with ion chamber measurements and portal dosimetry. In the radiochromic gel measurement, two sources of deviations could be identified. Firstly, the dose in a cluster of voxels near the edge of the phantom deviated from the planned dose. Secondly, the presence of dose hotspots in the order of 10% related to inhomogeneities in the gel limit the clinical acceptance of this dosimetry technique. Based on the results of the micelle gel dosimeter prototype presented here, chemical optimization will be subject of future work. Polymer gel dosimetry is capable of measuring the absolute dose in the whole 3D volume within 5% accuracy. A temperature stabilization technique is incorporated to increase the accuracy during short measurements, however keeping the temperature stable during long measurement times in both calibration phantoms and the volumetric phantom is more challenging. The sensitivity of MRI readout to minimal temperature fluctuations is demonstrated which proves the need for adequate compensation strategies.
Beran, Jiri; Kervyn, Diane; Wertzova, Veronika; Hobzova, Lenka; Tichy, Petr; Kuriyakose, Sherine; Leyssen, Maarten; Jacquet, Jeanne-Marie
2010-08-23
300 adolescents aged 12-15 years were randomised (1:1) into two groups to compare the long-term (10 years) immunogenicity profile of two doses of an Adult formulation [Group HAB_2D: 150; 0-6 months] vs. three doses of a Paediatric formulation [Group HAB_3D: 150; 0-1-6 months] of a combined hepatitis A and B (HAB) vaccine. At Year 10, anti-HAV seropositivity rate was 100% in both groups, while 85.9% and 85.1% subjects in the HAB_2D and HAB_3D groups, respectively, had anti-HBs antibody concentrations > or =10 mIU/mL. The anti-HAV antibody GMCs (HAB_2D: 429.3 mIU/mL; HAB_3D: 335.5 mIU/mL) and anti-HBs antibody GMCs (HAB_2D: 50.6 mIU/mL; HAB_3D: 60.1 mIU/mL) were similar in both groups. No vaccine-related serious adverse events were reported. Hence, with respect to long-term antibody persistence, the two-dose schedule of the combined HAB vaccine Adult formulation is an effective alternative to the conventional three-dose schedule of the Paediatric formulation in adolescents. Copyright 2010 Elsevier Ltd. All rights reserved.
Golab, Adam; Slojewski, Marcin; Brykczynski, Miroslaw; Lukowiak, Magdalena; Boehlke, Marek; Matias, Daniel; Smektala, Tomasz
2016-08-22
Three-dimensional (3D) printing involves preparing 3D objects from a digital model. These models can be used to plan and practice surgery. We used 3D printing to plan for a rare complicated surgery involving the removal of a renal tumor and neoplastic mass, which reached the heart atrium. A printed kidney model was an essential element of communication for physicians with different specializations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaoli; Hofmann, Ralf; Dapp, Robin
2015-01-01
High-resolution, three-dimensional (3D) imaging of soft tissues requires the solution of two inverse problems: phase retrieval and the reconstruction of the 3D image from a tomographic stack of two-dimensional (2D) projections. The number of projections per stack should be small to accommodate fast tomography of rapid processes and to constrain X-ray radiation dose to optimal levels to either increase the duration of in vivo time-lapse series at a given goal for spatial resolution and/or the conservation of structure under X-ray irradiation. In pursuing the 3D reconstruction problem in the sense of compressive sampling theory, we propose to reduce the numbermore » of projections by applying an advanced algebraic technique subject to the minimisation of the total variation (TV) in the reconstructed slice. This problem is formulated in a Lagrangian multiplier fashion with the parameter value determined by appealing to a discrete L-curve in conjunction with a conjugate gradient method. The usefulness of this reconstruction modality is demonstrated for simulated and in vivo data, the latter acquired in parallel-beam imaging experiments using synchrotron radiation. (C) 2015 Optical Society of America« less
Lee, Su Hyun; Chang, Jung Min; Kim, Won Hwa; Bae, Min Sun; Cho, Nariya; Yi, Ann; Koo, Hye Ryoung; Kim, Seung Ja; Kim, Jin You; Moon, Woo Kyung
2013-04-01
To prospectively compare the diagnostic performances of two-dimensional (2D) and three-dimensional (3D) shear-wave elastography (SWE) for differentiating benign from malignant breast masses. B-mode ultrasound and SWE were performed for 134 consecutive women with 144 breast masses before biopsy. Quantitative elasticity values (maximum and mean elasticity in the stiffest portion of mass, Emax and Emean; lesion-to-fat elasticity ratio, Erat) were measured with both 2D and 3D SWE. The area under the receiver operating characteristic curve (AUC), sensitivity and specificity of B-mode, 2D, 3D SWE and combined data of B-mode and SWE were compared. Sixty-seven of the 144 breast masses (47 %) were malignant. Overall, higher elasticity values of 3D SWE than 2D SWE were noted for both benign and malignant masses. The AUC for 2D and 3D SWE were not significantly different: Emean, 0.938 vs 0.928; Emax, 0.939 vs 0.930; Erat, 0.907 vs 0.871. Either 2D or 3D SWE significantly improved the specificity of B-mode ultrasound from 29.9 % (23 of 77) up to 71.4 % (55 of 77) and 63.6 % (49 of 77) without a significant change in sensitivity. Two-dimensional and 3D SWE performed equally in distinguishing benign from malignant masses and both techniques improved the specificity of B-mode ultrasound.
Clark, Anna D; Guilfoyle, Mathew R; Candy, Nicholas G; Budohoski, Karol P; Hofmann, Riikka; Barone, Damiano G; Santarius, Thomas; Kirollos, Ramez W; Trivedi, Rikin A
2017-12-01
Stereoscopic three-dimensional (3D) imaging is increasingly used in the teaching of neuroanatomy and although this is mainly aimed at undergraduate medical students, it has enormous potential for enhancing the training of neurosurgeons. This study aims to assess whether 3D lecturing is an effective method of enhancing the knowledge and confidence of neurosurgeons and how it compares with traditional two-dimensional (2D) lecturing and cadaveric training. Three separate teaching sessions for neurosurgical trainees were organized: 1) 2D course (2D lecture + cadaveric session), 2) 3D lecture alone, and 3) 3D course (3D lecture + cadaveric session). Before and after each session, delegates were asked to complete questionnaires containing questions relating to surgical experience, anatomic knowledge, confidence in performing procedures, and perceived value of 3D, 2D, and cadaveric teaching. Although both 2D and 3D lectures and courses were similarly effective at improving self-rated knowledge and understanding, the 3D lecture and course were associated with significantly greater gains in confidence reported by the delegates for performing a subfrontal approach and sylvian fissure dissection. Stereoscopic 3D lectures provide neurosurgical trainees with greater confidence for performing standard operative approaches and enhances the benefit of subsequent practical experience in developing technical skills in cadaveric dissection. Copyright © 2017. Published by Elsevier Inc.
Prideaux, Andrew R.; Song, Hong; Hobbs, Robert F.; He, Bin; Frey, Eric C.; Ladenson, Paul W.; Wahl, Richard L.; Sgouros, George
2010-01-01
Phantom-based and patient-specific imaging-based dosimetry methodologies have traditionally yielded mean organ-absorbed doses or spatial dose distributions over tumors and normal organs. In this work, radiobiologic modeling is introduced to convert the spatial distribution of absorbed dose into biologically effective dose and equivalent uniform dose parameters. The methodology is illustrated using data from a thyroid cancer patient treated with radioiodine. Methods Three registered SPECT/CT scans were used to generate 3-dimensional images of radionuclide kinetics (clearance rate) and cumulated activity. The cumulated activity image and corresponding CT scan were provided as input into an EGSnrc-based Monte Carlo calculation: The cumulated activity image was used to define the distribution of decays, and an attenuation image derived from CT was used to define the corresponding spatial tissue density and composition distribution. The rate images were used to convert the spatial absorbed dose distribution to a biologically effective dose distribution, which was then used to estimate a single equivalent uniform dose for segmented volumes of interest. Equivalent uniform dose was also calculated from the absorbed dose distribution directly. Results We validate the method using simple models; compare the dose-volume histogram with a previously analyzed clinical case; and give the mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for an illustrative case of a pediatric thyroid cancer patient with diffuse lung metastases. The mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for the tumor were 57.7, 58.5, and 25.0 Gy, respectively. Corresponding values for normal lung tissue were 9.5, 9.8, and 8.3 Gy, respectively. Conclusion The analysis demonstrates the impact of radiobiologic modeling on response prediction. The 57% reduction in the equivalent dose value for the tumor reflects a high level of dose nonuniformity in the tumor and a corresponding reduced likelihood of achieving a tumor response. Such analyses are expected to be useful in treatment planning for radionuclide therapy. PMID:17504874
Kanehira, Takahiro; Matsuura, Taeko; Takao, Seishin; Matsuzaki, Yuka; Fujii, Yusuke; Fujii, Takaaki; Ito, Yoichi M; Miyamoto, Naoki; Inoue, Tetsuya; Katoh, Norio; Shimizu, Shinichi; Umegaki, Kikuo; Shirato, Hiroki
2017-01-01
To investigate the effectiveness of real-time-image gated proton beam therapy for lung tumors and to establish a suitable size for the gating window (GW). A proton beam gated by a fiducial marker entering a preassigned GW (as monitored by 2 fluoroscopy units) was used with 7 lung cancer patients. Seven treatment plans were generated: real-time-image gated proton beam therapy with GW sizes of ±1, 2, 3, 4, 5, and 8 mm and free-breathing proton therapy. The prescribed dose was 70 Gy (relative biological effectiveness)/10 fractions to 99% of the target. Each of the 3-dimensional marker positions in the time series was associated with the appropriate 4-dimensional computed tomography phase. The 4-dimensional dose calculations were performed. The dose distribution in each respiratory phase was deformed into the end-exhale computed tomography image. The D99 and D5 to D95 of the clinical target volume scaled by the prescribed dose with criteria of D99 >95% and D5 to D95 <5%, V20 for the normal lung, and treatment times were evaluated. Gating windows ≤ ±2 mm fulfilled the CTV criteria for all patients (whereas the criteria were not always met for GWs ≥ ±3 mm) and gave an average reduction in V20 of more than 17.2% relative to free-breathing proton therapy (whereas GWs ≥ ±4 mm resulted in similar or increased V20). The average (maximum) irradiation times were 384 seconds (818 seconds) for the ±1-mm GW, but less than 226 seconds (292 seconds) for the ±2-mm GW. The maximum increased considerably at ±1-mm GW. Real-time-image gated proton beam therapy with a GW of ±2 mm was demonstrated to be suitable, providing good dose distribution without greatly extending treatment time. Copyright © 2016 Elsevier Inc. All rights reserved.
Impact of Real-Time Image Gating on Spot Scanning Proton Therapy for Lung Tumors: A Simulation Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanehira, Takahiro; Matsuura, Taeko, E-mail: matsuura@med.hokudai.ac.jp; Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo
Purpose: To investigate the effectiveness of real-time-image gated proton beam therapy for lung tumors and to establish a suitable size for the gating window (GW). Methods and Materials: A proton beam gated by a fiducial marker entering a preassigned GW (as monitored by 2 fluoroscopy units) was used with 7 lung cancer patients. Seven treatment plans were generated: real-time-image gated proton beam therapy with GW sizes of ±1, 2, 3, 4, 5, and 8 mm and free-breathing proton therapy. The prescribed dose was 70 Gy (relative biological effectiveness)/10 fractions to 99% of the target. Each of the 3-dimensional marker positions in themore » time series was associated with the appropriate 4-dimensional computed tomography phase. The 4-dimensional dose calculations were performed. The dose distribution in each respiratory phase was deformed into the end-exhale computed tomography image. The D99 and D5 to D95 of the clinical target volume scaled by the prescribed dose with criteria of D99 >95% and D5 to D95 <5%, V20 for the normal lung, and treatment times were evaluated. Results: Gating windows ≤ ±2 mm fulfilled the CTV criteria for all patients (whereas the criteria were not always met for GWs ≥ ±3 mm) and gave an average reduction in V20 of more than 17.2% relative to free-breathing proton therapy (whereas GWs ≥ ±4 mm resulted in similar or increased V20). The average (maximum) irradiation times were 384 seconds (818 seconds) for the ±1-mm GW, but less than 226 seconds (292 seconds) for the ±2-mm GW. The maximum increased considerably at ±1-mm GW. Conclusion: Real-time-image gated proton beam therapy with a GW of ±2 mm was demonstrated to be suitable, providing good dose distribution without greatly extending treatment time.« less
Fabrication of 2D and 3D photonic structures using laser lithography
NASA Astrophysics Data System (ADS)
Gaso, P.; Jandura, D.; Pudis, D.
2016-12-01
In this paper we demonstrate possibilities of three-dimensional (3D) printing technology based on two photon polymerization. We used three-dimensional dip-in direct-laser-writing (DLW) optical lithography to fabricate 2D and 3D optical structures for optoelectronics and for optical sensing applications. DLW lithography allows us use a non conventional way how to couple light into the waveguide structure. We prepared ring resonator and we investigated its transmission spectral characteristic. We present 3D inverse opal structure from its design to printing and scanning electron microscope (SEM) imaging. Finally, SEM images of some prepared photonic crystal structures were performed.
TIPdb-3D: the three-dimensional structure database of phytochemicals from Taiwan indigenous plants
Tung, Chun-Wei; Lin, Ying-Chi; Chang, Hsun-Shuo; Wang, Chia-Chi; Chen, Ih-Sheng; Jheng, Jhao-Liang; Li, Jih-Heng
2014-01-01
The rich indigenous and endemic plants in Taiwan serve as a resourceful bank for biologically active phytochemicals. Based on our TIPdb database curating bioactive phytochemicals from Taiwan indigenous plants, this study presents a three-dimensional (3D) chemical structure database named TIPdb-3D to support the discovery of novel pharmacologically active compounds. The Merck Molecular Force Field (MMFF94) was used to generate 3D structures of phytochemicals in TIPdb. The 3D structures could facilitate the analysis of 3D quantitative structure–activity relationship, the exploration of chemical space and the identification of potential pharmacologically active compounds using protein–ligand docking. Database URL: http://cwtung.kmu.edu.tw/tipdb. PMID:24930145
Processing And Display Of Medical Three Dimensional Arrays Of Numerical Data Using Octree Encoding
NASA Astrophysics Data System (ADS)
Amans, Jean-Louis; Darier, Pierre
1986-05-01
imaging modalities such as X-Ray computerized Tomography (CT), Nuclear Medecine and Nuclear Magnetic Resonance can produce three-dimensional (3-D) arrays of numerical data of medical object internal structures. The analysis of 3-D data by synthetic generation of realistic images is an important area of computer graphics and imaging.
A three-dimensional optimal sawing system for small sawmills in central Appalachia
Wenshu Lin; Jingxin Wang; R. Edward. Thomas
2011-01-01
A three-dimensional (3D) log sawing optimization system was developed to perform 3D log generation, opening face determination, sawing simulation, and lumber grading. Superficial characteristics of logs such as length, large-end and small-end diameters, and external defects were collected from local sawmills. Internal log defect positions and shapes were predicted...
Ray-tracing in three dimensions for calculation of radiation-dose calculations. Master's thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, D.R.
1986-05-27
This thesis addresses several methods of calculating the radiation-dose distribution for use by technicians or clinicians in radiation-therapy treatment planning. It specifically covers the calculation of the effective pathlength of the radiation beam for use in beam models representing the dose distribution. A two-dimensional method by Bentley and Milan is compared to the method of Strip Trees developed by Duda and Hart and then a three-dimensional algorithm built to perform the calculations in three dimensions. The use of PRISMS conforms easily to the obtained CT Scans and provides a means of only doing two-dimensional ray-tracing while performing three-dimensional dose calculations.more » This method is already being applied and used in actual calculations.« less
Engineering Three-Dimensional Collagen-IKVAV Matrix to Mimic Neural Microenvironment
2013-01-01
Engineering the cellular microenvironment has great potential to create a platform technology toward engineering of tissue and organs. This study aims to engineer a neural microenvironment through fabrication of three-dimensional (3D) engineered collagen matrixes mimicking in-vivo-like conditions. Collagen was chemically modified with a pentapeptide epitope consisting of isoleucine-lysine-valine-alanine-valine (IKVAV) to mimic laminin structure supports of the neural extracellular matrix (ECM). Three-dimensional collagen matrixes with and without IKVAV peptide modification were fabricated by freeze-drying technology and chemical cross-linking with glutaraldehyde. Structural information of 3D collagen matrixes indicated interconnected pores structure with an average pore size of 180 μm. Our results indicated that culture of dorsal root ganglion (DRG) cells in 3D collagen matrix was greatly influenced by 3D culture method and significantly enhanced with engineered collagen matrix conjugated with IKVAV peptide. It may be concluded that an appropriate 3D culture of neurons enables DRG to positively improve the cellular fate toward further acceleration in tissue regeneration. PMID:23705903
Parallel phase-sensitive three-dimensional imaging camera
Smithpeter, Colin L.; Hoover, Eddie R.; Pain, Bedabrata; Hancock, Bruce R.; Nellums, Robert O.
2007-09-25
An apparatus is disclosed for generating a three-dimensional (3-D) image of a scene illuminated by a pulsed light source (e.g. a laser or light-emitting diode). The apparatus, referred to as a phase-sensitive 3-D imaging camera utilizes a two-dimensional (2-D) array of photodetectors to receive light that is reflected or scattered from the scene and processes an electrical output signal from each photodetector in the 2-D array in parallel using multiple modulators, each having inputs of the photodetector output signal and a reference signal, with the reference signal provided to each modulator having a different phase delay. The output from each modulator is provided to a computational unit which can be used to generate intensity and range information for use in generating a 3-D image of the scene. The 3-D camera is capable of generating a 3-D image using a single pulse of light, or alternately can be used to generate subsequent 3-D images with each additional pulse of light.
A synchrotron radiation microtomography system for the analysis of trabecular bone samples.
Salomé, M; Peyrin, F; Cloetens, P; Odet, C; Laval-Jeantet, A M; Baruchel, J; Spanne, P
1999-10-01
X-ray computed microtomography is particularly well suited for studying trabecular bone architecture, which requires three-dimensional (3-D) images with high spatial resolution. For this purpose, we describe a three-dimensional computed microtomography (microCT) system using synchrotron radiation, developed at ESRF. Since synchrotron radiation provides a monochromatic and high photon flux x-ray beam, it allows high resolution and a high signal-to-noise ratio imaging. The principle of the system is based on truly three-dimensional parallel tomographic acquisition. It uses a two-dimensional (2-D) CCD-based detector to record 2-D radiographs of the transmitted beam through the sample under different angles of view. The 3-D tomographic reconstruction, performed by an exact 3-D filtered backprojection algorithm, yields 3-D images with cubic voxels. The spatial resolution of the detector was experimentally measured. For the application to bone investigation, the voxel size was set to 6.65 microm, and the experimental spatial resolution was found to be 11 microm. The reconstructed linear attenuation coefficient was calibrated from hydroxyapatite phantoms. Image processing tools are being developed to extract structural parameters quantifying trabecular bone architecture from the 3-D microCT images. First results on human trabecular bone samples are presented.
Customised 3D Printing: An Innovative Training Tool for the Next Generation of Orbital Surgeons.
Scawn, Richard L; Foster, Alex; Lee, Bradford W; Kikkawa, Don O; Korn, Bobby S
2015-01-01
Additive manufacturing or 3D printing is the process by which three dimensional data fields are translated into real-life physical representations. 3D printers create physical printouts using heated plastics in a layered fashion resulting in a three-dimensional object. We present a technique for creating customised, inexpensive 3D orbit models for use in orbital surgical training using 3D printing technology. These models allow trainee surgeons to perform 'wet-lab' orbital decompressions and simulate upcoming surgeries on orbital models that replicate a patient's bony anatomy. We believe this represents an innovative training tool for the next generation of orbital surgeons.
ERIC Educational Resources Information Center
Ip, Horace H. S.; Lai, Candy Hoi-Yan; Wong, Simpson W. L.; Tsui, Jenny K. Y.; Li, Richard Chen; Lau, Kate Shuk-Ying; Chan, Dorothy F. Y.
2017-01-01
Previous research has illustrated the unique benefits of three-dimensional (3-D) Virtual Reality (VR) technology in Autism Spectrum Disorder (ASD) children. This study examined the use of 3-D VR technology as an assessment tool in ASD children, and further compared its use to two-dimensional (2-D) tasks. Additionally, we aimed to examine…
Three-dimensional ghost imaging lidar via sparsity constraint
NASA Astrophysics Data System (ADS)
Gong, Wenlin; Zhao, Chengqiang; Yu, Hong; Chen, Mingliang; Xu, Wendong; Han, Shensheng
2016-05-01
Three-dimensional (3D) remote imaging attracts increasing attentions in capturing a target’s characteristics. Although great progress for 3D remote imaging has been made with methods such as scanning imaging lidar and pulsed floodlight-illumination imaging lidar, either the detection range or application mode are limited by present methods. Ghost imaging via sparsity constraint (GISC), enables the reconstruction of a two-dimensional N-pixel image from much fewer than N measurements. By GISC technique and the depth information of targets captured with time-resolved measurements, we report a 3D GISC lidar system and experimentally show that a 3D scene at about 1.0 km range can be stably reconstructed with global measurements even below the Nyquist limit. Compared with existing 3D optical imaging methods, 3D GISC has the capability of both high efficiency in information extraction and high sensitivity in detection. This approach can be generalized in nonvisible wavebands and applied to other 3D imaging areas.
Origin of chaos near three-dimensional quantum vortices: A general Bohmian theory
NASA Astrophysics Data System (ADS)
Tzemos, Athanasios C.; Efthymiopoulos, Christos; Contopoulos, George
2018-04-01
We provide a general theory for the structure of the quantum flow near three-dimensional (3D) nodal lines, i.e., one-dimensional loci where the 3D wave function becomes equal to zero. In suitably defined coordinates (comoving with the nodal line) the generic structure of the flow implies the formation of 3D quantum vortices. We show that such vortices are accompanied by nearby invariant lines of the comoving quantum flow, called X lines, which are normally hyperbolic. Furthermore, the stable and unstable manifolds of the X lines produce chaotic scatterings of nearby quantum (Bohmian) trajectories, thus inducing an intricate form of the quantum current in the neighborhood of each 3D quantum vortex. Generic formulas describing the structure around 3D quantum vortices are provided, applicable to an arbitrary choice of 3D wave function. We also give specific numerical examples as well as a discussion of the physical consequences of chaos near 3D quantum vortices.
Origin of chaos near three-dimensional quantum vortices: A general Bohmian theory.
Tzemos, Athanasios C; Efthymiopoulos, Christos; Contopoulos, George
2018-04-01
We provide a general theory for the structure of the quantum flow near three-dimensional (3D) nodal lines, i.e., one-dimensional loci where the 3D wave function becomes equal to zero. In suitably defined coordinates (comoving with the nodal line) the generic structure of the flow implies the formation of 3D quantum vortices. We show that such vortices are accompanied by nearby invariant lines of the comoving quantum flow, called X lines, which are normally hyperbolic. Furthermore, the stable and unstable manifolds of the X lines produce chaotic scatterings of nearby quantum (Bohmian) trajectories, thus inducing an intricate form of the quantum current in the neighborhood of each 3D quantum vortex. Generic formulas describing the structure around 3D quantum vortices are provided, applicable to an arbitrary choice of 3D wave function. We also give specific numerical examples as well as a discussion of the physical consequences of chaos near 3D quantum vortices.
ERIC Educational Resources Information Center
Cody, Jeremy A.; Craig, Paul A.; Loudermilk, Adam D.; Yacci, Paul M.; Frisco, Sarah L.; Milillo, Jennifer R.
2012-01-01
A novel stereochemistry lesson was prepared that incorporated both handheld molecular models and embedded virtual three-dimensional (3D) images. The images are fully interactive and eye-catching for the students; methods for preparing 3D molecular images in Adobe Acrobat are included. The lesson was designed and implemented to showcase the 3D…
Jin, X; Yan, H; Han, C; Zhou, Y; Yi, J
2015-01-01
Objective: To investigate comparatively the percentage gamma passing rate (%GP) of two-dimensional (2D) and three-dimensional (3D) pre-treatment volumetric modulated arc therapy (VMAT) dosimetric verification and their correlation and sensitivity with percentage dosimetric errors (%DE). Methods: %GP of 2D and 3D pre-treatment VMAT quality assurance (QA) with different acceptance criteria was obtained by ArcCHECK® (Sun Nuclear Corporation, Melbourne, FL) for 20 patients with nasopharyngeal cancer (NPC) and 20 patients with oesophageal cancer. %DE were calculated from planned dose–volume histogram (DVH) and patients' predicted DVH calculated by 3DVH® software (Sun Nuclear Corporation). Correlation and sensitivity between %GP and %DE were investigated using Pearson's correlation coefficient (r) and receiver operating characteristics (ROCs). Results: Relatively higher %DE on some DVH-based metrics were observed for both patients with NPC and oesophageal cancer. Except for 2%/2 mm criterion, the average %GPs for all patients undergoing VMAT were acceptable with average rates of 97.11% ± 1.54% and 97.39% ± 1.37% for 2D and 3D 3%/3 mm criteria, respectively. The number of correlations for 3D was higher than that for 2D (21 vs 8). However, the general correlation was still poor for all the analysed metrics (9 out of 26 for 3D 3%/3 mm criterion). The average area under the curve (AUC) of ROCs was 0.66 ± 0.12 and 0.71 ± 0.21 for 2D and 3D evaluations, respectively. Conclusions: There is a lack of correlation between %GP and %DE for both 2D and 3D pre-treatment VMAT dosimetric evaluation. DVH-based dose metrics evaluation obtained from 3DVH will provide more useful analysis. Advances in knowledge: Correlation and sensitivity of %GP with %DE for VMAT QA were studied for the first time. PMID:25494412
Yoshida, Ken; Yamazaki, Hideya; Kotsuma, Tadayuki; Akiyama, Hironori; Takenaka, Tadashi; Masui, Koji; Yoshioka, Yasuo; Uesugi, Yasuo; Shimbo, Taiju; Yoshikawa, Nobuhiko; Yoshioka, Hiroto; Arika, Takumi; Tanaka, Eiichi; Narumi, Yoshifumi
2017-02-01
We report our study on two patients to highlight the risk of underdosage of the clinical target volume (CTV) due to edema during high-dose-rate interstitial brachytherapy (HDR-ISBT) of mobile tongue cancer. To treat the lateral side of the CTV, flexible applicator tubes were implanted on the mouth floor. Two-dimensional planning was performed using X-ray images for Case 1, and three-dimensional (3D) planning was performed using computed tomography (CT) for Case 2. Prescribed doses for both cases were 54 Gy in nine fractions. Case 1 was treated for cancer of the right lateral border of the tongue in 2005. Tongue edema occurred after implantation, and part of the lateral border of the tongue protruded between the applicator tubes. Acute mucosal reaction abated in the protruded area earlier than in the other parts of the CTV. In this case, the tumor recurred in this area 5 months after the treatment. Case 2 was treated for cancer of the left lateral border of the tongue. Because tongue edema occurred in this case also, plastic splints were inserted between the applicator tubes to push the edematous region into the irradiated area. The mucosal surface of the CTV was covered by the 70% isodose, and 100% isodose line for before and after splint insertion. Local control of the tumor was achieved 4 years after treatment. To ensure sufficient target coverage, 3D image-based planning using CT should be performed, followed by re-planning using repeated CT as needed. Also, the development of devices to prevent protrusion of the edematous tissue outside the target area will help to ensure the full dosing of CTV.
NASA Astrophysics Data System (ADS)
Gillet, Jean-Numa; Degorce, Jean-Yves; Belisle, Jonathan; Meunier, Michel
2004-03-01
Three-dimensional modeling of n^+-ν -n^+ and p^+-π -p^+ semiconducting devices for analog ULSI microelectronics Jean-Numa Gillet,^a,b Jean-Yves Degorce,^a Jonathan Bélisle^a and Michel Meunier.^a,c ^a École Polytechnique de Montréal, Dept. of Engineering Physics, CP 6079, Succ. Centre-vile, Montréal, Québec H3C 3A7, Canada. ^b Corresponding author. Email: Jean-Numa.Gillet@polymtl.ca ^c Also with LTRIM Technologies, 140-440, boul. A.-Frappier, Laval, Québec H7V 4B4, Canada. We present for the first time three-dimensional (3-D) modeling of n^+-ν -n^+ and p^+-π -p^+ semiconducting resistors, which are fabricated by laser-induced doping in a gateless MOSFET and present significant applications for analog ULSI microelectronics. Our modeling software is made up of three steps. The two first concerns modeling of a new laser-trimming fabrication process. With the molten-silicon temperature distribution obtained from the first, we compute in the second the 3-D dopant distribution, which creates the electrical link through the device gap. In this paper the emphasis is on the third step, which concerns 3-D modeling of the resistor electronic behavior with a new tube multiplexing algorithm (TMA). The device current-voltage (I-V) curve is usually obtained by solving three coupled partial differential equations with a finite-element method. A 3-D device as our resistor cannot be modeled with this classical method owing to its prohibitive computational cost in three dimensions. This problem is however avoided by our TMA, which divides the 3-D device into one-dimensional (1-D) multiplexed tubes. In our TMA 1-D systems of three ordinary differential equations are solved to determine the 3-D device I-V curve, which substantially increases computation speed compared with the classical method. Numerical results show a good agreement with experiments.
Programming standards for effective S-3D game development
NASA Astrophysics Data System (ADS)
Schneider, Neil; Matveev, Alexander
2008-02-01
When a video game is in development, more often than not it is being rendered in three dimensions - complete with volumetric depth. It's the PC monitor that is taking this three-dimensional information, and artificially displaying it in a flat, two-dimensional format. Stereoscopic drivers take the three-dimensional information captured from DirectX and OpenGL calls and properly display it with a unique left and right sided view for each eye so a proper stereoscopic 3D image can be seen by the gamer. The two-dimensional limitation of how information is displayed on screen has encouraged programming short-cuts and work-arounds that stifle this stereoscopic 3D effect, and the purpose of this guide is to outline techniques to get the best of both worlds. While the programming requirements do not significantly add to the game development time, following these guidelines will greatly enhance your customer's stereoscopic 3D experience, increase your likelihood of earning Meant to be Seen certification, and give you instant cost-free access to the industry's most valued consumer base. While this outline is mostly based on NVIDIA's programming guide and iZ3D resources, it is designed to work with all stereoscopic 3D hardware solutions and is not proprietary in any way.
ERIC Educational Resources Information Center
Rowe, Jeremy; Razdan, Anshuman
The Partnership for Research in Spatial Modeling (PRISM) project at Arizona State University (ASU) developed modeling and analytic tools to respond to the limitations of two-dimensional (2D) data representations perceived by affiliated discipline scientists, and to take advantage of the enhanced capabilities of three-dimensional (3D) data that…
Development and Assessment of a New 3D Neuroanatomy Teaching Tool for MRI Training
ERIC Educational Resources Information Center
Drapkin, Zachary A.; Lindgren, Kristen A.; Lopez, Michael J.; Stabio, Maureen E.
2015-01-01
A computerized three-dimensional (3D) neuroanatomy teaching tool was developed for training medical students to identify subcortical structures on a magnetic resonance imaging (MRI) series of the human brain. This program allows the user to transition rapidly between two-dimensional (2D) MRI slices, 3D object composites, and a combined model in…
Bernstein-Greene-Kruskal Modes in a Three-Dimensional Plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ng, C.S.; Bhattacharjee, A.
2005-12-09
Bernstein-Greene-Kruskal modes in a three-dimensional (3D) unmagnetized plasma are constructed. It is shown that 3D solutions that depend only on energy do not exist. However, 3D solutions that depend on energy and additional constants of motion (such as angular momentum) do exist. Exact analytical as well as numerical solutions are constructed assuming spherical symmetry, and their properties are contrasted with those of 1D solutions. Possible extensions to solutions with cylindrical symmetry with or without a finite magnetic guide field are discussed.
Absolute quantification of myocardial blood flow with 13N-ammonia and 3-dimensional PET.
Schepis, Tiziano; Gaemperli, Oliver; Treyer, Valerie; Valenta, Ines; Burger, Cyrill; Koepfli, Pascal; Namdar, Mehdi; Adachi, Itaru; Alkadhi, Hatem; Kaufmann, Philipp A
2007-11-01
The aim of this study was to compare 2-dimensional (2D) and 3-dimensional (3D) dynamic PET for the absolute quantification of myocardial blood flow (MBF) with (13)N-ammonia ((13)N-NH(3)). 2D and 3D MBF measurements were collected from 21 patients undergoing cardiac evaluation at rest (n = 14) and during standard adenosine stress (n = 7). A lutetium yttrium oxyorthosilicate-based PET/CT system with retractable septa, enabling the sequential acquisition of 2D and 3D images within the same patient and study, was used. All 2D studies were performed by injecting 700-900 MBq of (13)N-NH(3). For 14 patients, 3D studies were performed with the same injected (13)N-NH(3) dose as that used in 2D studies. For the remaining 7 patients, 3D images were acquired with a lower dose of (13)N-NH(3), that is, 500 MBq. 2D images reconstructed by use of filtered backprojection (FBP) provided the reference standard for MBF measurements. 3D images were reconstructed by use of Fourier rebinning (FORE) with FBP (FORE-FBP), FORE with ordered-subsets expectation maximization (FORE-OSEM), and a reprojection algorithm (RP). Global MBF measurements derived from 3D PET with FORE-FBP (r = 0.97), FORE-OSEM (r = 0.97), and RP (r = 0.97) were well correlated with those derived from 2D FBP (all Ps < 0.0001). The mean +/- SD differences in global MBF measurements between 3D FORE-FBP and 2D FBP and between 3D FORE-OSEM and 2D FBP were 0.01 +/- 0.14 and 0.01 +/- 0.15 mL/min/g, respectively. The mean +/- SD difference in global MBF measurements between 3D RP and 2D FBP was 0.00 +/- 0.16 mL/min/g. The best correlation between 2D PET and 3D PET performed with the lower injected activity was found for the 3D FORE-FBP reconstruction algorithm (r = 0.95, P < 0.001). For this scanner type, quantitative measurements of MBF with 3D PET and (13)N-NH(3) were in excellent agreement with those obtained with the 2D technique, even when a lower activity was injected.
Teleportation of a 3-dimensional GHZ State
NASA Astrophysics Data System (ADS)
Cao, Hai-Jing; Wang, Huai-Sheng; Li, Peng-Fei; Song, He-Shan
2012-05-01
The process of teleportation of a completely unknown 3-dimensional GHZ state is considered. Three maximally entangled 3-dimensional Bell states function as quantum channel in the scheme. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional GHZ state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Feng-Ming, E-mail: fengkong@med.umich.edu; Ritter, Timothy; Quint, Douglas J.
2011-12-01
Purpose: To review the dose limits and standardize the three-dimenional (3D) radiographic definition for the organs at risk (OARs) for thoracic radiotherapy (RT), including the lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus. Methods and Materials: The present study was performed by representatives from the Radiation Therapy Oncology Group, European Organization for Research and Treatment of Cancer, and Soutwestern Oncology Group lung cancer committees. The dosimetric constraints of major multicenter trials of 3D-conformal RT and stereotactic body RT were reviewed and the challenges of 3D delineation of these OARs described. Using knowledge of the human anatomy andmore » 3D radiographic correlation, draft atlases were generated by a radiation oncologist, medical physicist, dosimetrist, and radiologist from the United States and reviewed by a radiation oncologist and medical physicist from Europe. The atlases were then critically reviewed, discussed, and edited by another 10 radiation oncologists. Results: Three-dimensional descriptions of the lung, proximal bronchial tree, esophagus, spinal cord, ribs, and brachial plexus are presented. Two computed tomography atlases were developed: one for the middle and lower thoracic OARs (except for the heart) and one focusing on the brachial plexus for a patient positioned supine with their arms up for thoracic RT. The dosimetric limits of the key OARs are discussed. Conclusions: We believe these atlases will allow us to define OARs with less variation and generate dosimetric data in a more consistent manner. This could help us study the effect of radiation on these OARs and guide high-quality clinical trials and individualized practice in 3D-conformal RT and stereotactic body RT.« less
Optimizing random searches on three-dimensional lattices
NASA Astrophysics Data System (ADS)
Yang, Benhao; Yang, Shunkun; Zhang, Jiaquan; Li, Daqing
2018-07-01
Search is a universal behavior related to many types of intelligent individuals. While most studies have focused on search in two or infinite-dimensional space, it is still missing how search can be optimized in three-dimensional space. Here we study random searches on three-dimensional (3d) square lattices with periodic boundary conditions, and explore the optimal search strategy with a power-law step length distribution, p(l) ∼l-μ, known as Lévy flights. We find that compared to random searches on two-dimensional (2d) lattices, the optimal exponent μopt on 3d lattices is relatively smaller in non-destructive case and remains similar in destructive case. We also find μopt decreases as the lattice length in z direction increases under high target density. Our findings may help us to understand the role of spatial dimension in search behaviors.
"Ten-point" 3D cephalometric analysis using low-dosage cone beam computed tomography.
Farronato, Giampietro; Garagiola, Umberto; Dominici, Aldo; Periti, Giulia; de Nardi, Sandro; Carletti, Vera; Farronato, Davide
2010-01-01
The aim of this study was to combine the huge amount of information of low dose Cone Beam CT with a cephalometric simplified protocol thanks to the latest informatics aids. Lateral cephalograms are two-dimensional (2-D) radiographs that are used to represent three-dimensional (3-D) structures. Cephalograms have inherent limitations as a result of distortion, super imposition and differential magnification of the craniofacial complex. This may lead to errors of identification and reduced measurement accuracy. The advantages of CBCT over conventional CT include low radiation exposure, imaging quality improvement, potentially better access, high spatial resolution and lower cost. This study assessed cephalometric 2D and 3D measurements and the analysis of CBCT cephalograms of the volume and centroid of the maxilla and mandible, in 10 clinical cases. With a few exceptions the linear and angular cephalometric measurements obtained from CBCT and from conventional cephalograms did not differ statistically (p>0.01). There was a correlation between the variation in the skeletal malocclusion and growth direction of the jaws, and the variation in the spatial position (x, y, z) of the centroids and their volumes (p<0.01). The 3D cephalometric analysis is easier to interpret than 2D cephalometric analysis. In contrast to those made on projective radiographies, the angular and linear measurements detected on 3D become real, moreover the fewest points to select and the automatic measurements made by the computer drastically reduced human error, for a much more reliable reproducible and repeatable diagnosis. Copyright © 2010 Società Italiana di Ortodonzia SIDO. Published by Elsevier Srl. All rights reserved.
Somoskeöy, Szabolcs; Tunyogi-Csapó, Miklós; Bogyó, Csaba; Illés, Tamás
2012-11-01
Three-dimensional (3D) deformations of the spine are predominantly characterized by two-dimensional (2D) angulation measurements in coronal and sagittal planes, using anteroposterior and lateral X-ray images. For coronal curves, a method originally described by Cobb and for sagittal curves a modified Cobb method are most widely used in practice, and these methods have been shown to exhibit good-to-excellent reliability and reproducibility, carried out either manually or by computer-based tools. Recently, an ultralow radiation dose-integrated radioimaging solution was introduced with special software for realistic 3D visualization and parametric characterization of the spinal column. Comparison of accuracy, correlation of measurement values, intraobserver and interrater reliability of methods by conventional manual 2D and sterEOS 3D measurements in a routine clinical setting. Retrospective nonrandomized study of diagnostic X-ray images created as part of a routine clinical protocol of eligible patients examined at our clinic during a 30-month period between July 2007 and December 2009. In total, 201 individuals (170 females, 31 males; mean age, 19.88 years) including 10 healthy athletes with normal spine and patients with adolescent idiopathic scoliosis (175 cases), adult degenerative scoliosis (11 cases), and Scheuermann hyperkyphosis (5 cases). Overall range of coronal curves was between 2.4° and 117.5°. Analysis of accuracy and reliability of measurements were carried out on a group of all patients and in subgroups based on coronal plane deviation: 0° to 10° (Group 1, n=36), 10° to 25° (Group 2, n=25), 25° to 50° (Group 3, n=69), 50° to 75° (Group 4, n=49), and more than 75° (Group 5, n=22). Coronal and sagittal curvature measurements were determined by three experienced examiners, using either traditional 2D methods or automatic measurements based on sterEOS 3D reconstructions. Manual measurements were performed three times, and sterEOS 3D reconstructions and automatic measurements were performed two times by each examiner. Means comparison t test, Pearson bivariate correlation analysis, reliability analysis by intraclass correlation coefficients for intraobserver reproducibility and interrater reliability were performed using SPSS v16.0 software (IBM Corp., Armonk, NY, USA). No funds were received in support of this work. No benefits in any form have been or will be received from a commercial party related directly or indirectly to the subject of this article. In comparison with manual 2D methods, only small and nonsignificant differences were detectable in sterEOS 3D-based curvature data. Intraobserver reliability was excellent for both methods, and interrater reproducibility was consistently higher for sterEOS 3D methods that was found to be unaffected by the magnitude of coronal curves or sagittal plane deviations. This is the first clinical report on EOS 2D/3D system (EOS Imaging, Paris, France) and its sterEOS 3D software, documenting an excellent capability for accurate, reliable, and reproducible spinal curvature measurements. Copyright © 2012 Elsevier Inc. All rights reserved.
Three-Dimensional Printing in Orthopedic Surgery.
Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H
2015-11-01
Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions. Copyright 2015, SLACK Incorporated.
Ghost imaging for three-dimensional optical security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wen, E-mail: elechenw@nus.edu.sg; Chen, Xudong
2013-11-25
Ghost imaging has become increasingly popular in quantum and optical application fields. Here, we report three-dimensional (3D) optical security using ghost imaging. The series of random phase-only masks are sparsified, which are further converted into particle-like distributions placed in 3D space. We show that either an optical or digital approach can be employed for the encoding. The results illustrate that a larger key space can be generated due to the application of 3D space compared with previous works.
NASA Technical Reports Server (NTRS)
1998-01-01
Crystal River Engineering was originally featured in Spinoff 1992 with the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. The Convolvotron was developed for Ames' research on virtual acoustic displays. Crystal River is a now a subsidiary of Aureal Semiconductor, Inc. and they together develop and market the technology, which is a 3-D (three dimensional) audio technology known commercially today as Aureal 3D (A-3D). The technology has been incorporated into video games, surround sound systems, and sound cards.
Zhao, Dan; Liu, Wei; Cai, Ailu; Li, Jingyu; Chen, Lizhu; Wang, Bing
2013-02-01
The purpose of this study was to investigate the effectiveness for quantitative evaluation of cerebellar vermis using three-dimensional (3D) ultrasound and to establish a nomogram for Chinese fetal vermis measurements during gestation. Sonographic examinations were performed in normal fetuses and in cases suspected of the diagnosis of vermian rotation. 3D median planes were obtained with both OMNIVIEW and tomographic ultrasound imaging. Measurements of the cerebellar vermis were highly correlated between two-dimensional and 3D median planes. The diameter of the cerebellar vermis follows growth approximately predicted by the quadratic regression equation. The normal vermis was almost parallel to the brain stem, with the average angle degree to be <2° in normal fetuses. The average angle degree of the 9 cases of vermian rotation was >5°. Three-dimensional median planes are obtained more easily than two-dimensional ones, and allow accurate measurements of the cerebellar vermis. The 3D approach may enable rapid assessment of fetal cerebral anatomy in standard examination. Measurements of cerebellar vermis may provide a quantitative index for prenatal diagnosis of posterior fossa malformations. © 2012 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deloar, Hossain M.; Kunieda, Etsuo; Kawase, Takatsugu
2006-12-15
We are investigating three-dimensional converging stereotactic radiotherapy (3DCSRT) with suitable medium-energy x rays as treatment for small lung tumors with better dose homogeneity at the target. A computed tomography (CT) system dedicated for non-coplanar converging radiotherapy was simulated with BEAMnrc (EGS4) Monte-Carlo code for x-ray energy of 147.5, 200, 300, and 500 kilovoltage (kVp). The system was validated by comparing calculated and measured percentage of depth dose in a water phantom for the energy of 120 and 147.5 kVp. A thorax phantom and CT data from lung tumors (<20 cm{sup 3}) were used to compare dose homogeneities of kVp energiesmore » with MV energies of 4, 6, and 10 MV. Three non-coplanar arcs (0 deg. and {+-}25 deg. ) around the center of the target were employed. The Monte Carlo dose data format was converted to the XiO RTP format to compare dose homogeneity, differential, and integral dose volume histograms of kVp and MV energies. In terms of dose homogeneity and DVHs, dose distributions at the target of all kVp energies with the thorax phantom were better than MV energies, with mean dose absorption at the ribs (human data) of 100%, 85%, 50%, 30% for 147.5, 200, 300, and 500 kVp, respectively. Considering dose distributions and reduction of the enhanced dose absorption at the ribs, a minimum of 500 kVp is suitable for the lung kVp 3DCSRT system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boehling, Nicholas S.; Grosshans, David R., E-mail: dgrossha@mdanderson.org; Bluett, Jaques B.
Purpose: Cranial irradiation in pediatric patients is associated with serious long-term adverse effects. We sought to determine whether both three-dimensional conformal proton radiotherapy (3D-PRT) and intensity-modulated proton therapy (IMPT) compared with intensity-modulated radiotherapy (IMRT) decrease integral dose to brain areas known to harbor neuronal stem cells, major blood vessels, and other normal brain structures for pediatric patients with craniopharyngiomas. Methods and Materials: IMRT, forward planned, passive scattering proton, and IMPT plans were generated and optimized for 10 pediatric patients. The dose was 50.4 Gy (or cobalt Gy equivalent) delivered in 28 fractions with the requirement for planning target volume (PTV)more » coverage of 95% or better. Integral dose data were calculated from differential dose-volume histograms. Results: The PTV target coverage was adequate for all modalities. IMRT and IMPT yielded the most conformal plans in comparison to 3D-PRT. Compared with IMRT, 3D-PRT and IMPT plans had a relative reduction of integral dose to the hippocampus (3D-PRT, 20.4; IMPT, 51.3%{sup Asterisk-Operator }), dentate gyrus (27.3, 75.0%{sup Asterisk-Operator }), and subventricular zone (4.5, 57.8%{sup Asterisk-Operator }). Vascular organs at risk also had reduced integral dose with the use of proton therapy (anterior cerebral arteries, 33.3{sup Asterisk-Operator }, 100.0%{sup Asterisk-Operator }; middle cerebral arteries, 25.9%{sup Asterisk-Operator }, 100%{sup Asterisk-Operator }; anterior communicating arteries, 30.8{sup Asterisk-Operator }, 41.7%{sup Asterisk-Operator }; and carotid arteries, 51.5{sup Asterisk-Operator }, 77.6{sup Asterisk-Operator }). Relative reduction of integral dose to the infratentorial brain (190.7{sup Asterisk-Operator }, 109.7%{sup Asterisk-Operator }), supratentorial brain without PTV (9.6, 26.8%{sup Asterisk-Operator }), brainstem (45.6, 22.4%{sup Asterisk-Operator }), and whole brain without PTV (19.4{sup Asterisk-Operator }, 34.4%{sup Asterisk-Operator }) were recorded with the use of proton therapy. ({sup Asterisk-Operator }Differences were significant based on Friedman's test with Bonferroni-Dunn correction, {alpha} = 0.05) Conclusions: The current study found that proton therapy was able to avoid excess integral radiation dose to a variety of normal structures at all dose levels while maintaining equal target coverage. Future studies will examine the clinical benefits of these dosimetric advantages.« less
A system for extracting 3-dimensional measurements from a stereo pair of TV cameras
NASA Technical Reports Server (NTRS)
Yakimovsky, Y.; Cunningham, R.
1976-01-01
Obtaining accurate three-dimensional (3-D) measurement from a stereo pair of TV cameras is a task requiring camera modeling, calibration, and the matching of the two images of a real 3-D point on the two TV pictures. A system which models and calibrates the cameras and pairs the two images of a real-world point in the two pictures, either manually or automatically, was implemented. This system is operating and provides three-dimensional measurements resolution of + or - mm at distances of about 2 m.
Three-dimensional printing in cardiology: Current applications and future challenges.
Luo, Hongxing; Meyer-Szary, Jarosław; Wang, Zhongmin; Sabiniewicz, Robert; Liu, Yuhao
2017-01-01
Three-dimensional (3D) printing has attracted a huge interest in recent years. Broadly speaking, it refers to the technology which converts a predesigned virtual model to a touchable object. In clinical medicine, it usually converts a series of two-dimensional medical images acquired through computed tomography, magnetic resonance imaging or 3D echocardiography into a physical model. Medical 3D printing consists of three main steps: image acquisition, virtual reconstruction and 3D manufacturing. It is a promising tool for preoperative evaluation, medical device design, hemodynamic simulation and medical education, it is also likely to reduce operative risk and increase operative success. However, the most relevant studies are case reports or series which are underpowered in testing its actual effect on patient outcomes. The decision of making a 3D cardiac model may seem arbitrary since it is mostly based on a cardiologist's perceived difficulty in performing an interventional procedure. A uniform consensus is urgently necessary to standardize the key steps of 3D printing from imaging acquisition to final production. In the future, more clinical trials of rigorous design are possible to further validate the effect of 3D printing on the treatment of cardiovascular diseases. (Cardiol J 2017; 24, 4: 436-444).
Lanzavecchia, S; Bellon, P L; Tosoni, L
1993-12-01
FT3D is a self-contained package of tools for three-dimensional Fourier analysis, written in the C language for Unix workstations. It can evaluate direct transforms of three-dimensional real functions, inverse transforms, auto- and cross-correlations and spectra. The library has been developed to support three-dimensional reconstructions of biological structures from projections obtained in the electron microscope. This paper discusses some features of the library, which has been implemented in such a way as to profit from the resources of modern workstations. A table of elapsed times for jobs of different dimensions with different RAM buffers is reported for the particular hardware used in the authors' laboratory.
Producing a Linear Laser System for 3d Modelimg of Small Objects
NASA Astrophysics Data System (ADS)
Amini, A. Sh.; Mozaffar, M. H.
2012-07-01
Today, three dimensional modeling of objects is considered in many applications such as documentation of ancient heritage, quality control, reverse engineering and animation In this regard, there are a variety of methods for producing three-dimensional models. In this paper, a 3D modeling system is developed based on photogrammetry method using image processing and laser line extraction from images. In this method the laser beam profile is radiated on the body of the object and with video image acquisition, and extraction of laser line from the frames, three-dimensional coordinates of the objects can be achieved. In this regard, first the design and implementation of hardware, including cameras and laser systems was conducted. Afterwards, the system was calibrated. Finally, the software of the system was implemented for three dimensional data extraction. The system was investigated for modeling a number of objects. The results showed that the system can provide benefits such as low cost, appropriate speed and acceptable accuracy in 3D modeling of objects.
Faulting of Rocks in a Three-Dimensional Stress Field by Micro-Anticracks
Ghaffari, H. O.; Nasseri, M. H. B.; Young, R. Paul
2014-01-01
Nucleation and propagation of a shear fault is known to be the result of interaction and coalescence of many microcracks. Yet the character and rate of the microcracks' interactions, and their dependence on the three-dimensional stress state are poorly understood. Here we investigate formation of microcracks during sandstone faulting under 3D-polyaxial stress fields by analyzing multi-stationary acoustic waveforms. We show that in a true three-dimensional stress state (a) faulting forms in a orthorhombic pattern, and (b) the emitted acoustic waveforms from microcracking carry a shorter rapid slip phase. The later is associated with microcracking that dominantly develops parallel to the minimum stress direction. Our results imply that due to inducing the micro-anticracks, the three-dimensional (3D) stress state can quicken dynamic weakening and rupture propagation by a factor of two relatively to simpler stress states. The results suggest a new nucleation mechanism of 3D-faulting with implications for earthquakes' instabilities, as well as the understanding of avalanches associated with dislocations. PMID:24862447
Three-dimensional echocardiographic assessment of the repaired mitral valve.
Maslow, Andrew; Mahmood, Feroze; Poppas, Athena; Singh, Arun
2014-02-01
This study examined the geometric changes of the mitral valve (MV) after repair using conventional and three-dimensional echocardiography. Prospective evaluation of consecutive patients undergoing mitral valve repair. Tertiary care university hospital. Fifty consecutive patients scheduled for elective repair of the mitral valve for regurgitant disease. Intraoperative transesophageal echocardiography. Assessments of valve area (MVA) were performed using two-dimensional planimetry (2D-Plan), pressure half-time (PHT), and three-dimensional planimetry (3D-Plan). In addition, the direction of ventricular inflow was assessed from the three-dimensional imaging. Good correlations (r = 0.83) and agreement (-0.08 +/- 0.43 cm(2)) were seen between the MVA measured with 3D-Plan and PHT, and were better than either compared to 2D-Plan. MVAs were smaller after repair of functional disease repaired with an annuloplasty ring. After repair, ventricular inflow was directed toward the lateral ventricular wall. Subgroup analysis showed that the change in inflow angle was not different after repair of functional disease (168 to 171 degrees) as compared to those presenting with degenerative disease (168 to 148 degrees; p<0.0001). Three-dimensional imaging provides caregivers with a unique ability to assess changes in valve function after mitral valve repair. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheng, Lishui; Hobbs, Robert F.; Segars, Paul W.; Sgouros, George; Frey, Eric C.
2013-06-01
In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less smoothing at early time points post-radiopharmaceutical administration but more smoothing and fewer iterations at later time points when the total organ activity was lower. The results of this study demonstrate the importance of using optimal reconstruction and regularization parameters. Optimal results were obtained with different parameters at each time point, but using a single set of parameters for all time points produced near-optimal dose-volume histograms.
Epi-Two-Dimensional Fluid Flow: A New Topological Paradigm for Dimensionality
NASA Astrophysics Data System (ADS)
Yoshida, Z.; Morrison, P. J.
2017-12-01
While a variety of fundamental differences are known to separate two-dimensional (2D) and three-dimensional (3D) fluid flows, it is not well understood how they are related. Conventionally, dimensional reduction is justified by an a priori geometrical framework; i.e., 2D flows occur under some geometrical constraint such as shallowness. However, deeper inquiry into 3D flow often finds the presence of local 2D-like structures without such a constraint, where 2D-like behavior may be identified by the integrability of vortex lines or vanishing local helicity. Here we propose a new paradigm of flow structure by introducing an intermediate class, termed epi-two-dimensional flow, and thereby build a topological bridge between 2D and 3D flows. The epi-2D property is local and is preserved in fluid elements obeying ideal (inviscid and barotropic) mechanics; a local epi-2D flow may be regarded as a "particle" carrying a generalized enstrophy as its charge. A finite viscosity may cause "fusion" of two epi-2D particles, generating helicity from their charges giving rise to 3D flow.
Chandran, Deepa T; Jagger, Daryll C; Jagger, Robert G; Barbour, Michele E
2010-01-01
Dental impression materials are used to create an inverse replica of the dental hard and soft tissues, and are used in processes such as the fabrication of crowns and bridges. The accuracy and dimensional stability of impression materials are of paramount importance to the accuracy of fit of the resultant prosthesis. Conventional methods for assessing the dimensional stability of impression materials are two-dimensional (2D), and assess shrinkage or expansion between selected fixed points on the impression. In this study, dimensional changes in four impression materials were assessed using an established 2D and an experimental three-dimensional (3D) technique. The former involved measurement of the distance between reference points on the impression; the latter a contact scanning method for producing a computer map of the impression surface showing localised expansion, contraction and warpage. Dimensional changes were assessed as a function of storage times and moisture contamination comparable to that found in clinical situations. It was evident that dimensional changes observed using the 3D technique were not always apparent using the 2D technique, and that the former offers certain advantages in terms of assessing dimensional accuracy and predictability of impression methods. There are, however, drawbacks associated with 3D techniques such as the more time-consuming nature of the data acquisition and difficulty in statistically analysing the data.
Wang, Qiao
2018-05-25
To prospectively evaluate the diagnostic performance of three-dimensional (3D) shear wave elastography (SWE) for breast lesions with quantitative stiffness information from transverse, sagittal and coronal planes. Conventional ultrasound (US), two-dimensional (2D)-SWE and 3D-SWE were performed for 122 consecutive patients with 122 breast lesions before biopsy or surgical excision. Maximum elasticity values of Young's modulus (Emax) were recorded on 2D-SWE and three planes of 3D-SWE. Area under the receiver operating characteristic curve (AUC), sensitivity and specificity of US, 2D-SWE and 3D-SWE were evaluated. Two combined sets (i.e., BI-RADS and 2D-SWE; BI-RADS and 3D-SWE) were compared in AUC. Observer consistency was also evaluated. On 3D-SWE, the AUC and sensitivity of sagittal plane were significantly higher than those of transverse and coronal planes (both P < 0.05). Compared with BI-RADS alone, both combined sets had significantly (P < 0.05) higher AUCs and specificities, whereas, the two combined sets showed no significant difference in AUC (P > 0.05). However, the combined set of BI-RADS and sagittal plane of 3D-SWE had significantly higher sensitivity than the combined set of BI-RADS and 2D-SWE. The sagittal plane shows the best diagnostic performance among 3D-SWE. The combination of BI-RADS and 3D-SWE is a useful tool for predicting breast malignant lesions in comparison with BI-RADS alone.
From tissue to silicon to plastic: three-dimensional printing in comparative anatomy and physiology
Lauridsen, Henrik; Hansen, Kasper; Nørgård, Mathias Ørum; Wang, Tobias; Pedersen, Michael
2016-01-01
Comparative anatomy and physiology are disciplines related to structures and mechanisms in three-dimensional (3D) space. For the past centuries, scientific reports in these fields have relied on written descriptions and two-dimensional (2D) illustrations, but in recent years 3D virtual modelling has entered the scene. However, comprehending complex anatomical structures is hampered by reproduction on flat inherently 2D screens. One way to circumvent this problem is in the production of 3D-printed scale models. We have applied computed tomography and magnetic resonance imaging to produce digital models of animal anatomy well suited to be printed on low-cost 3D printers. In this communication, we report how to apply such technology in comparative anatomy and physiology to aid discovery, description, comprehension and communication, and we seek to inspire fellow researchers in these fields to embrace this emerging technology. PMID:27069653
Nakada, Takeo; Inagaki, Takuya
2014-01-01
Preoperative three-dimensional (3D) imaging of a mediastinal tumor using two-dimensional (2D) axial computed tomography is sometimes difficult, and an unexpected appearance of the tumor may be encountered during surgery. In order to evaluate the preoperative feasibility of a 3D mediastinal model that used the rapid prototyping technique, we created a model and report its results. The 2D image showed some of the relationship between the tumor and the pericardium, but the 3D mediastinal model that was created using the rapid prototyping technique showed the 3D lesion in the outer side of the extrapericardium. The patient underwent a thoracoscopic resection of the tumor, and the pathological examination showed a rare middle mediastinal ectopic thymoma. We believe that the construction of mediastinal models is useful for thoracoscopic surgery and other complicated surgeries of the chest diseases. PMID:24633133
Akiba, Tadashi; Nakada, Takeo; Inagaki, Takuya
2015-01-01
Preoperative three-dimensional (3D) imaging of a mediastinal tumor using two-dimensional (2D) axial computed tomography is sometimes difficult, and an unexpected appearance of the tumor may be encountered during surgery. In order to evaluate the preoperative feasibility of a 3D mediastinal model that used the rapid prototyping technique, we created a model and report its results. The 2D image showed some of the relationship between the tumor and the pericardium, but the 3D mediastinal model that was created using the rapid prototyping technique showed the 3D lesion in the outer side of the extrapericardium. The patient underwent a thoracoscopic resection of the tumor, and the pathological examination showed a rare middle mediastinal ectopic thymoma. We believe that the construction of mediastinal models is useful for thoracoscopic surgery and other complicated surgeries of the chest diseases.
Three-dimensional ghost imaging using acoustic transducer
NASA Astrophysics Data System (ADS)
Zhang, Chi; Guo, Shuxu; Guan, Jian; Cao, Junsheng; Gao, Fengli
2016-06-01
We propose a novel three-dimensional (3D) ghost imaging method using unfocused ultrasonic transducer, where the transducer is used as the bucket detector to collect the total photoacoustic signal intensity from spherical surfaces with different radius circling the transducer. This collected signal is a time sequence corresponding to the optic absorption information on the spherical surfaces, and the values at the same moments in all the sequences are used as the bucket signals to restore the corresponding spherical images, which are assembled as the object 3D reconstruction. Numerical experiments show this method can effectively accomplish the 3D reconstruction and by adding up each sequence on time domain as a bucket signal it can also realize two dimensional (2D) ghost imaging. The influence of the measurement times on the 3D and 2D reconstruction is analyzed with Peak Signal to Noise Ratio (PSNR) as the yardstick, and the transducer as a bucket detector is also discussed.
USDA-ARS?s Scientific Manuscript database
The surface area of the leaf mesophyll exposed to intercellular airspace per leaf area (Sm) is closely associated with CO2 diffusion and photosynthetic rates. Sm is typically estimated from two-dimensional (2D) leaf sections and corrected for the three-dimensional (3D) geometry of mesophyll cells, l...
Pseudo-invariants contributing to inverse energy cascades in three-dimensional turbulence
NASA Astrophysics Data System (ADS)
Rathmann, Nicholas M.; Ditlevsen, Peter D.
2017-05-01
Three-dimensional (3D) turbulence is characterized by a dual forward cascade of both kinetic energy and helicity, a second inviscid flow invariant besides energy, from the integral scale of motion to the viscous dissipative scale. In helical flows, however, such as strongly rotating flows with broken mirror symmetry, an inverse (reversed) energy cascade can be observed analogous to that of two-dimensional turbulence (2D) where enstrophy, a second positive-definite flow invariant, unlike helicity in 3D, effectively blocks the forward cascade of energy. In the spectral-helical decomposition of the Navier-Stokes equation, it has previously been shown that a subset of three-wave (triad) interactions conserve helicity in 3D in a fashion similar to enstrophy in 2D, thus leading to a 2D-like inverse energy cascade in 3D. In this work, we show, both theoretically and numerically, that an additional subset of interactions exist, conserving a new pseudo-invariant in addition to energy and helicity, which contributes either to a forward or an inverse energy cascade depending on the specific triad interaction geometry.
Grills, Inga S; Yan, Di; Martinez, Alvaro A; Vicini, Frank A; Wong, John W; Kestin, Larry L
2003-11-01
To systematically evaluate four different techniques of radiation therapy (RT) used to treat non-small-cell lung cancer and to determine their efficacy in meeting multiple normal-tissue constraints while maximizing tumor coverage and achieving dose escalation. Treatment planning was performed for 18 patients with Stage I to IIIB inoperable non-small-cell lung cancer using four different RT techniques to treat the primary lung tumor +/- the hilar/mediastinal lymph nodes: (1) Intensity-modulated radiation therapy (IMRT), (2) Optimized three-dimensional conformal RT (3D-CRT) using multiple beam angles, (3) Limited 3D-CRT using only 2 to 3 beams, and (4) Traditional RT using elective nodal irradiation (ENI) to treat the mediastinum. All patients underwent virtual simulation, including a CT scan and (18)fluorodeoxyglucose positron emission tomography scan, fused to the CT to create a composite tumor volume. For IMRT and 3D-CRT, the target included the primary tumor and regional nodes either > or =1.0 cm in short-axis dimension on CT or with increased uptake on PET. For ENI, the target included the primary tumor plus the ipsilateral hilum and mediastinum from the inferior head of the clavicle to at least 5.0 cm below the carina. The goal was to deliver 70 Gy to > or =99% of the planning target volume (PTV) in 35 daily fractions (46 Gy to electively treated mediastinum) while meeting multiple normal-tissue dose constraints. Heterogeneity correction was applied to all dose calculations (maximum allowable heterogeneity within PTV 30%). Pulmonary and esophageal constraints were as follows: lung V(20) < or =25%, mean lung dose < or =15 Gy, esophagus V(50) < or =25%, mean esophageal dose < or =25 Gy. At the completion of all planning, the four techniques were contrasted for their ability to achieve the set dose constraints and deliver tumoricidal RT doses. Requiring a minimum dose of 70 Gy within the PTV, we found that IMRT was associated with a greater degree of heterogeneity within the target and, correspondingly, higher mean doses and tumor control probabilities (TCPs), 7%-8% greater than 3D-CRT and 14%-16% greater than ENI. Comparing the treatment techniques in this manner, we found only minor differences between 3D-CRT and IMRT, but clearly greater risks of pulmonary and esophageal toxicity with ENI. The mean lung V(20) was 36% with ENI vs. 23%-25% with the three other techniques, whereas the average mean lung dose was approximately 21.5 Gy (ENI) vs. 15.5 Gy (others). Similarly, the mean esophagus V(50) was doubled with ENI, to 34% rather than 15%-18%. To account for differences in heterogeneity, we also compared the techniques giving each plan a tumor control probability equivalent to that of the optimized 3D-CRT plan delivering 70 Gy. Using this method, IMRT and 3D-CRT offered similar results in node-negative cases (mean lung and esophageal normal-tissue complication probability [NTCP] of approximately 10% and 2%-7%, respectively), but ENI was distinctly worse (mean NTCPs of 29% and 20%). In node-positive cases, however, IMRT reduced the lung V(20) and mean dose by approximately 15% and lung NTCP by 30%, compared to 3D-CRT. Compared to ENI, the reductions were 50% and >100%. Again, for node-positive cases, especially where the gross tumor volume was close to the esophagus, IMRT reduced the mean esophagus V(50) by 40% (vs. 3D-CRT) to 145% (vs. ENI). The esophageal NTCP was at least doubled converting from IMRT to 3D-CRT and tripled converting from IMRT to ENI. Finally, the total number of fractions for each plan was increased or decreased until all outlined normal-tissue constraints were reached/satisfied. While meeting all constraints, IMRT or 3D-CRT increased the deliverable dose in node-negative patients by >200% over ENI. In node-positive patients, IMRT increased the deliverable dose 25%-30% over 3D-CRT and 130%-140% over ENI. The use of 3D-CRT without IMRT increased the deliverable RT dose >80% over ENI. Using a limited number of 3D-CRT beams decreased the lung V(20), mean dose, and NTCP in node-positive patients. The use of 3D-CRT, particul mean dose, and NTCP in node-positive patients. The use of 3D-CRT, particularly with only 3 to 4 beam angles, has the ability to reduce normal-tissue toxicity, but has limited potential for dose escalation beyond the current standard in node-positive patients. IMRT is of limited additional value (compared to 3D-CRT) in node-negative cases, but is beneficial in node-positive cases and in cases with target volumes close to the esophagus. When meeting all normal-tissue constraints in node-positive patients, IMRT can deliver RT doses 25%-30% greater than 3D-CRT and 130%-140% greater than ENI. Whereas the possibility of dose escalation is severely limited with ENI, the potential for pulmonary and esophageal toxicity is clearly increased.
Optical 3D surface digitizing in forensic medicine: 3D documentation of skin and bone injuries.
Thali, Michael J; Braun, Marcel; Dirnhofer, Richard
2003-11-26
Photography process reduces a three-dimensional (3D) wound to a two-dimensional level. If there is a need for a high-resolution 3D dataset of an object, it needs to be three-dimensionally scanned. No-contact optical 3D digitizing surface scanners can be used as a powerful tool for wound and injury-causing instrument analysis in trauma cases. The 3D skin wound and a bone injury documentation using the optical scanner Advanced TOpometric Sensor (ATOS II, GOM International, Switzerland) will be demonstrated using two illustrative cases. Using this 3D optical digitizing method the wounds (the virtual 3D computer model of the skin and the bone injuries) and the virtual 3D model of the injury-causing tool are graphically documented in 3D in real-life size and shape and can be rotated in the CAD program on the computer screen. In addition, the virtual 3D models of the bone injuries and tool can now be compared in a 3D CAD program against one another in virtual space, to see if there are matching areas. Further steps in forensic medicine will be a full 3D surface documentation of the human body and all the forensic relevant injuries using optical 3D scanners.
Viability of Cross-Flow Fan with Helical Blades for Vertical Take-off and Landing Aircraft
2012-09-01
fluid dynamics (CFD) software, ANSYS - CFX , a three-dimensional (3-D) straight-bladed model was validated against previous study’s experimental results...computational fluid dynamics software (CFD), ANSYS - CFX , a three-dimensional (3-D) straight-bladed model was validated against previous study’s experimental...37 B. SIZING PARAMETERS AND ILLUSTRATION ................................. 37 APPENDIX B. ANSYS CFX PARAMETERS
Three-dimensional simulation of free-electron laser harmonics with FRED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharp, W.M.; Scharlemann, E.T.; Fawley, W.M.
1989-11-20
FRED3D, a single-mode three-dimensional version of the FEL simulation code FRED, has been modified to follow the growth of signal components at the fundamental frequency and at even and odd harmonics. The Wiggle-averaged particle and field equations for this multi-mode formulation are derived here, and their implementation in FRED3D is discussed. 12 refs.
ERIC Educational Resources Information Center
Sander, Ian M.; McGoldrick, Matthew T.; Helms, My N.; Betts, Aislinn; van Avermaete, Anthony; Owers, Elizabeth; Doney, Evan; Liepert, Taimi; Niebur, Glen; Liepert, Douglas; Leevy, W. Matthew
2017-01-01
Advances in three-dimensional (3D) printing allow for digital files to be turned into a "printed" physical product. For example, complex anatomical models derived from clinical or pre-clinical X-ray computed tomography (CT) data of patients or research specimens can be constructed using various printable materials. Although 3D printing…
NASA Technical Reports Server (NTRS)
Meyer, Harold D.
1999-01-01
This second volume of Acoustic Scattering by Three-Dimensional Stators and Rotors Using the SOURCE3D Code provides the scattering plots referenced by Volume 1. There are 648 plots. Half are for the 8750 rpm "high speed" operating condition and the other half are for the 7031 rpm "mid speed" operating condition.
Engineering three-dimensional cardiac microtissues for potential drug screening applications.
Wang, L; Huang, G; Sha, B; Wang, S; Han, Y L; Wu, J; Li, Y; Du, Y; Lu, T J; Xu, F
2014-01-01
Heart disease is one of the major global health issues. Despite rapid advances in cardiac tissue engineering, limited successful strategies have been achieved to cure cardiovascular diseases. This situation is mainly due to poor understanding of the mechanism of diverse heart diseases and unavailability of effective in vitro heart tissue models for cardiovascular drug screening. With the development of microengineering technologies, three-dimensional (3D) cardiac microtissue (CMT) models, mimicking 3D architectural microenvironment of native heart tissues, have been developed. The engineered 3D CMT models hold greater potential to be used for assessing effective drugs candidates than traditional two-dimensional cardiomyocyte culture models. This review discusses the development of 3D CMT models and highlights their potential applications for high-throughput screening of cardiovascular drug candidates.
Wang, Jing; Qiao, Chunxia; Xiao, He; Lin, Zhou; Li, Yan; Zhang, Jiyan; Shen, Beifen; Fu, Tinghuan; Feng, Jiannan
2016-01-01
According to the three-dimensional (3D) complex structure of (hIL-6⋅hIL-6R⋅gp 130) 2 and the binding orientation of hIL-6, three compounds with high affinity to hIL-6R and bioactivity to block hIL-6 in vitro were screened theoretically from the chemical databases, including 3D-Available Chemicals Directory (ACD) and MDL Drug Data Report (MDDR), by means of the computer-guided virtual screening method. Using distance geometry, molecular modeling and molecular dynamics trajectory analysis methods, the binding mode and binding energy of the three compounds were evaluated theoretically. Enzyme-linked immunosorbent assay analysis demonstrated that all the three compounds could block IL-6 binding to IL-6R specifically. However, only compound 1 could effectively antagonize the function of hIL-6 and inhibit the proliferation of XG-7 cells in a dose-dependent manner, whereas it showed no cytotoxicity to SP2/0 or L929 cells. These data demonstrated that the compound 1 could be a promising candidate of hIL-6 antagonist.
Three-dimensional Imaging and Scanning: Current and Future Applications for Pathology
Farahani, Navid; Braun, Alex; Jutt, Dylan; Huffman, Todd; Reder, Nick; Liu, Zheng; Yagi, Yukako; Pantanowitz, Liron
2017-01-01
Imaging is vital for the assessment of physiologic and phenotypic details. In the past, biomedical imaging was heavily reliant on analog, low-throughput methods, which would produce two-dimensional images. However, newer, digital, and high-throughput three-dimensional (3D) imaging methods, which rely on computer vision and computer graphics, are transforming the way biomedical professionals practice. 3D imaging has been useful in diagnostic, prognostic, and therapeutic decision-making for the medical and biomedical professions. Herein, we summarize current imaging methods that enable optimal 3D histopathologic reconstruction: Scanning, 3D scanning, and whole slide imaging. Briefly mentioned are emerging platforms, which combine robotics, sectioning, and imaging in their pursuit to digitize and automate the entire microscopy workflow. Finally, both current and emerging 3D imaging methods are discussed in relation to current and future applications within the context of pathology. PMID:28966836
Wang, Qiushuang; Huang, Dangsheng; Zhang, Liwei; Shen, Dong; Ouyang, Qiaohong; Duan, Zhongxiang; An, Xiuzhi; Zhang, Meiqing; Zhang, Chunhong; Yang, Feifei; Zhi, Guang
2015-10-01
To compare three-dimensional (3D) and two-dimensional (2D) speckle tracking echocardiography (STE) techniques in the assessment of left ventricular function and myocardial infarct size (MIS). Thirty-two patients diagnosed with ST elevation myocardial infarction and 18 healthy control patients underwent 2D echocardiography, 3D echocardiography, and single photon emission computed tomography (SPECT). 3D left ventricular global area strain (GAS), 2D and 3D global longitudinal strain (GLS), global radial strain (GRS) as well as global circumferential strain (GCS) were analyzed to correlate with myocardial infarct size detected by SPECT. 2D and 3D left ventricular ejection fraction (LVEF) as well as 2D and 3D wall motion score index (WMSI) also were measured using conventional echocardiography. The 2D-GLS values were significantly higher than that of 3D-GLS, while 2D-GCS and GRS were significantly lower than 3D-GCS and GRS, respectively. However, no significant differences in LVEF and WMSI could be observed between 2D and 3D echocardiography. Myocardial strain indices, LVEF, and WMSI using 2D and 3D echocardiography also had good correlations with MIS as measured by SPECT. ROC curve analysis showed that the 3D and 2D myocardial indices, LVEF, and WMSI could distinguish between small and large MIS, while 2D-GLS had the highest AUC. The 2D and 3D myocardial strain indices correlated well with MIS by SPECT. Among them, the 2D-GLS showed the highest diagnostic value, while 3D-GRS and GCS had better diagnostic value than 2D-GRS and GCS. © 2015, Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Liu, Zexi; Cohen, Fernand
2017-11-01
We describe an approach for synthesizing a three-dimensional (3-D) face structure from an image or images of a human face taken at a priori unknown poses using gender and ethnicity specific 3-D generic models. The synthesis process starts with a generic model, which is personalized as images of the person become available using preselected landmark points that are tessellated to form a high-resolution triangular mesh. From a single image, two of the three coordinates of the model are reconstructed in accordance with the given image of the person, while the third coordinate is sampled from the generic model, and the appearance is made in accordance with the image. With multiple images, all coordinates and appearance are reconstructed in accordance with the observed images. This method allows for accurate pose estimation as well as face identification in 3-D rendering of a difficult two-dimensional (2-D) face recognition problem into a much simpler 3-D surface matching problem. The estimation of the unknown pose is achieved using the Levenberg-Marquardt optimization process. Encouraging experimental results are obtained in a controlled environment with high-resolution images under a good illumination condition, as well as for images taken in an uncontrolled environment under arbitrary illumination with low-resolution cameras.
Jarrahy, Reza; Huang, Weibiao; Rudkin, George H; Lee, Jane M; Ishida, Kenji; Berry, Micah D; Sukkarieh, Modar; Wu, Benjamin M; Yamaguchi, Dean T; Miller, Timothy A
2005-08-01
Osteogenic differentiation of osteoprogenitor cells in three-dimensional (3D) in vitro culture remains poorly understood. Using quantitative real-time RT-PCR techniques, we examined mRNA expression of alkaline phosphatase, osteocalcin, and vascular endothelial growth factor (VEGF) in murine preosteoblastic MC3T3-E1 cells cultured for 48 h and 14 days on conventional two-dimensional (2D) poly(l-lactide-co-glycolide) (PLGA) films and 3D PLGA scaffolds. Differences in VEGF secretion and function between 2D and 3D culture systems were examined using Western blots and an in vitro Matrigel-based angiogenesis assay. Expression of both alkaline phosphatase and osteocalcin in cells cultured on 3D scaffolds was significantly downregulated relative to 2D controls in 48 h and 14 day cultures. In contrast, elevated levels of VEGF expression in 3D culture were noted at every time point in short- and long-term culture. VEGF protein secretion in 3D cultures was triple the amount of secretion observed in 2D controls. Conditioned medium from 3D cultures induced an enhanced level of angiogenic activity, as evidenced by increases in branch points observed in in vitro angiogenesis assays. These results collectively indicate that MC3T3-E1 cells commit to osteogenic differentiation at a slower rate when cultured on 3D PLGA scaffolds and that VEGF is preferentially expressed by these cells when they are cultured in three dimensions.
Helical tomotherapy to LINAC plan conversion utilizing RayStation Fallback planning.
Zhang, Xin; Penagaricano, Jose; Narayanasamy, Ganesh; Corry, Peter; Liu, TianXiao; Sanjay, Maraboyina; Paudel, Nava; Morrill, Steven
2017-01-01
RaySearch RayStation Fallback (FB) planning module can generate an equivalent backup radiotherapy treatment plan facilitating treatment on other linear accelerators. FB plans were generated from the RayStation FB module by simulating the original plan target and organ at risk (OAR) dose distribution and delivered in various backup linear accelerators. In this study, helical tomotherapy (HT) backup plans used in Varian TrueBeam linear accelerator were generated with the RayStation FB module. About 30 patients, 10 with lung cancer, 10 with head and neck (HN) cancer, and 10 with prostate cancer, who were treated with HT, were included in this study. Intensity-modulated radiotherapy Fallback plans (FB-IMRT) were generated for all patients, and three-dimensional conformal radiotherapy Fallback plans (FB-3D) were only generated for lung cancer patients. Dosimetric comparison study evaluated FB plans based on dose coverage to 95% of the PTV volume (R 95 ), PTV mean dose (D mean ), Paddick's conformity index (CI), and dose homogeneity index (HI). The evaluation results showed that all IMRT plans were statistically comparable between HT and FB-IMRT plans except that PTV HI was worse in prostate, and PTV R 95 and HI were worse in HN multitarget plans for FB-IMRT plans. For 3D lung cancer plans, only the PTV R 95 was statistically comparable between HT and FB-3D plans, PTV D mean was higher, and CI and HI were worse compared to HT plans. The FB plans using a TrueBeam linear accelerator generally offer better OAR sparing compared to HT plans for all the patients. In this study, all cases of FB-IMRT plans and 9/10 cases of FB-3D plans were clinically acceptable without further modification and optimization once the FB plans were generated. However, the statistical differences between HT and FB-IMRT/3D plans might not be of any clinically significant. One FB-3D plan failed to simulate the original plan without further optimization. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
3D Nanofabrication Using AFM-Based Ultrasonic Vibration Assisted Nanomachining
NASA Astrophysics Data System (ADS)
Deng, Jia
Nanolithography and nanofabrication processes have significant impact on the recent development of fundamental research areas such as physics, chemistry and biology, as well as the modern electronic devices that have reached nanoscale domain such as optoelectronic devices. Many advanced nanofabrication techniques have been developed and reported to satisfy different requirements in both research areas and applications such as electron-beam lithography. However, it is expensive to use and maintain the equipment. Atomic Force Microscope (AFM) based nanolithography processes provide an alternative approach to nanopatterning with significantly lower cost. Recently, three dimensional nanostructures have attracted a lot of attention, motivated by many applications in various fields including optics, plasmonics and nanoelectromechanical systems. AFM nanolithography processes are able to create not only two dimensional nanopatterns but also have the great potential to fabricate three dimensional nanostructures. The objectives of this research proposal are to investigate the capability of AFM-based three dimensional nanofabrication processes, to transfer the three dimensional nanostructures from resists to silicon surfaces and to use the three dimensional nanostructures on silicon in applications. Based on the understanding of literature, a novel AFM-based ultrasonic vibration assisted nanomachining system is utilized to develop three dimensional nanofabrication processes. In the system, high-frequency in plane circular xy-vibration was introduced to create a virtual tool, whose diameter is controlled by the amplitude of xy-vibration and is larger than that of a regular AFM tip. Therefore, the feature width of a single trench is tunable. Ultrasonic vibration of sample in z-direction was introduced to control the depth of single trenches, creating a high-rate 3D nanomachining process. Complicated 3D nanostructures on PMMA are fabricated under both the setpoint force and z-height control modes. Complex contours and both discrete and continuous height changes are able to be fabricated by the novel 3D nanofabrication processes. Results are imaged clearly after cleaning the debris covering on the 3D nanostructures after nanomachining process. The process is validated by fabricating various 3D nanostructures. The advantages and disadvantages are compared between these two control modes. Furthermore, the 3D nanostructures were further transferred from PMMA surfaces onto silicon surfaces using reactive ion etching (RIE) process. Recipes are developed based on the functionality of the etching gas in the transfer process. Tunable selectivity and controllable surface finishes are achieved by varying the flow rate of oxygen. The developed 3D nanofabrication process is used as a novel technique in two applications, master fabrication for soft lithography and SERS substrates fabrication. 3D nanostructures were reversely molded on PDMS and then duplicated on new PMMA substrates. 3D nanostructures are fabricated, which can be either directly used or transferred on silicon as SERS substrates after coating 80 nm gold layers. They greatly enhanced the intensity of Raman scattering with the enhancement factor of 3.11x103. These applications demonstrate the capability of the novel process of AFM-based 3D nanomachining.
ERIC Educational Resources Information Center
Roth, Jeremy A.; Wilson, Timothy D.; Sandig, Martin
2015-01-01
Histology is a core subject in the anatomical sciences where learners are challenged to interpret two-dimensional (2D) information (gained from histological sections) to extrapolate and understand the three-dimensional (3D) morphology of cells, tissues, and organs. In gross anatomical education 3D models and learning tools have been associated…
Ecological connectivity in the three-dimensional urban green volume using waveform airborne lidar
Casalegno, Stefano; Anderson, Karen; Cox, Daniel T. C.; Hancock, Steven; Gaston, Kevin J.
2017-01-01
The movements of organisms and the resultant flows of ecosystem services are strongly shaped by landscape connectivity. Studies of urban ecosystems have relied on two-dimensional (2D) measures of greenspace structure to calculate connectivity. It is now possible to explore three-dimensional (3D) connectivity in urban vegetation using waveform lidar technology that measures the full 3D structure of the canopy. Making use of this technology, here we evaluate urban greenspace 3D connectivity, taking into account the full vertical stratification of the vegetation. Using three towns in southern England, UK, all with varying greenspace structures, we describe and compare the structural and functional connectivity using both traditional 2D greenspace models and waveform lidar-generated vegetation strata (namely, grass, shrubs and trees). Measures of connectivity derived from 3D greenspace are lower than those derived from 2D models, as the latter assumes that all vertical vegetation strata are connected, which is rarely true. Fragmented landscapes that have more complex 3D vegetation showed greater functional connectivity and we found highest 2D to 3D functional connectivity biases for short dispersal capacities of organisms (6 m to 16 m). These findings are particularly pertinent in urban systems where the distribution of greenspace is critical for delivery of ecosystem services. PMID:28382936
Ecological connectivity in the three-dimensional urban green volume using waveform airborne lidar
NASA Astrophysics Data System (ADS)
Casalegno, Stefano; Anderson, Karen; Cox, Daniel T. C.; Hancock, Steven; Gaston, Kevin J.
2017-04-01
The movements of organisms and the resultant flows of ecosystem services are strongly shaped by landscape connectivity. Studies of urban ecosystems have relied on two-dimensional (2D) measures of greenspace structure to calculate connectivity. It is now possible to explore three-dimensional (3D) connectivity in urban vegetation using waveform lidar technology that measures the full 3D structure of the canopy. Making use of this technology, here we evaluate urban greenspace 3D connectivity, taking into account the full vertical stratification of the vegetation. Using three towns in southern England, UK, all with varying greenspace structures, we describe and compare the structural and functional connectivity using both traditional 2D greenspace models and waveform lidar-generated vegetation strata (namely, grass, shrubs and trees). Measures of connectivity derived from 3D greenspace are lower than those derived from 2D models, as the latter assumes that all vertical vegetation strata are connected, which is rarely true. Fragmented landscapes that have more complex 3D vegetation showed greater functional connectivity and we found highest 2D to 3D functional connectivity biases for short dispersal capacities of organisms (6 m to 16 m). These findings are particularly pertinent in urban systems where the distribution of greenspace is critical for delivery of ecosystem services.
Spin wave steering in three-dimensional magnonic networks
NASA Astrophysics Data System (ADS)
Beginin, E. N.; Sadovnikov, A. V.; Sharaevskaya, A. Yu.; Stognij, A. I.; Nikitov, S. A.
2018-03-01
We report the concept of three-dimensional (3D) magnonic structures which are especially promising for controlling and manipulating magnon currents. The approach for fabrication of 3D magnonic crystals (MCs) and 3D magnonic networks is presented. A meander type ferromagnetic film grown at the top of the initially structured substrate can be a candidate for such 3D crystals. Using the finite element method, transfer matrix method, and micromagnetic simulations, we study spin-wave propagation in both isolated and coupled 3D MCs and reconstruct spin-wave dispersion and transmission response to elucidate the mechanism of magnonic bandgap formation. Our results show the possibility of the utilization of proposed structures for fabrication of a 3D magnonic network.
A Novel Approach For Ankle Foot Orthosis Developed By Three Dimensional Technologies
NASA Astrophysics Data System (ADS)
Belokar, R. M.; Banga, H. K.; Kumar, R.
2017-12-01
This study presents a novel approach for testing mechanical properties of medical orthosis developed by three dimensional (3D) technologies. A hand-held type 3D laser scanner is used for generating 3D mesh geometry directly from patient’s limb. Subsequently 3D printable orthotic design is produced from crude input model by means of Computer Aided Design (CAD) software. Fused Deposition Modelling (FDM) method in Additive Manufacturing (AM) technologies is used to fabricate the 3D printable Ankle Foot Orthosis (AFO) prototype in order to test the mechanical properties on printout. According to test results, printed Acrylonitrile Butadiene Styrene (ABS) AFO prototype has sufficient elasticity modulus and durability for patient-specific medical device manufactured by the 3D technologies.