Burning invariant manifolds for reaction fronts in three-dimensional fluid flows
NASA Astrophysics Data System (ADS)
Mitchell, Kevin; Solomon, Tom
2017-11-01
The geometry of reaction fronts that propagate in fully three-dimensional (3D) fluid flows is studied using the tools of dynamical systems theory. The evolution of an infinitesimal front element is modeled as a six-dimensional ODE-three dimensions for the position of the front element and three for the orientation of its unit normal. This generalizes an earlier approach to understanding front propagation in two-dimensional (2D) fluid flows. As in 2D, the 3D system exhibits prominent burning invariant manifolds (BIMs). In 3D, BIMs are two-dimensional dynamically defined surfaces that form one-way barriers to the propagation of reaction fronts within the fluid. Due to the third dimension, BIMs in 3D exhibit a richer topology than their cousins in 2D. In particular, whereas BIMs in both 2D and 3D can originate from fixed points of the dynamics, BIMs in 3D can also originate from limit cycles. Such BIMs form robust tube-like channels that guide and constrain the evolution of the front within the bulk of the fluid. Supported by NSF Grant CMMI-1201236.
NASA Technical Reports Server (NTRS)
Yang, Ren; Feeback, Daniel L.; Wang, Wan-Jun
2005-01-01
This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was microfabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, microfabricated, and tested. Three-dimensional hydrofocusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily microfabricated and integrated with other polymer microfluidic structures. Keywords: SU-8, three-dimensional hydro-focusing, microfluidic, microchannel, cytometer
Epi-Two-Dimensional Fluid Flow: A New Topological Paradigm for Dimensionality
NASA Astrophysics Data System (ADS)
Yoshida, Z.; Morrison, P. J.
2017-12-01
While a variety of fundamental differences are known to separate two-dimensional (2D) and three-dimensional (3D) fluid flows, it is not well understood how they are related. Conventionally, dimensional reduction is justified by an a priori geometrical framework; i.e., 2D flows occur under some geometrical constraint such as shallowness. However, deeper inquiry into 3D flow often finds the presence of local 2D-like structures without such a constraint, where 2D-like behavior may be identified by the integrability of vortex lines or vanishing local helicity. Here we propose a new paradigm of flow structure by introducing an intermediate class, termed epi-two-dimensional flow, and thereby build a topological bridge between 2D and 3D flows. The epi-2D property is local and is preserved in fluid elements obeying ideal (inviscid and barotropic) mechanics; a local epi-2D flow may be regarded as a "particle" carrying a generalized enstrophy as its charge. A finite viscosity may cause "fusion" of two epi-2D particles, generating helicity from their charges giving rise to 3D flow.
NASA Technical Reports Server (NTRS)
Yang, Ren; Feeback, Daniel L.; Wang, Wanjun
2004-01-01
This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was microfabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, microfabricated, and tested. Three-dimensional hydro-focusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily microfabricated and integrated with other polymer microfluidic structures.
NASA Technical Reports Server (NTRS)
Yang, Ren; Feedback, Daniel L.; Wang, Wanjun
2004-01-01
This paper details a novel three-dimensional (3D) hydro-focusing micro cell sorter for micro flow cytometry applications. The unit was micro-fabricated by means of SU-8 3D lithography. The 3D microstructure for coaxial sheathing was designed, micro-fabricated, and tested. Three-dimensional hydrofocusing capability was demonstrated with an experiment to sort labeled tanned sheep erythrocytes (red blood cells). This polymer hydro-focusing microstructure is easily micro-fabricated and integrated with other polymer microfluidic structures.
NASA Technical Reports Server (NTRS)
Swanson, R. Charles; Radespiel, Rolf; Mccormick, V. Edward
1989-01-01
The two-dimensional (2-D) and three-dimensional Navier-Stokes equations are solved for flow over a NAE CAST-10 airfoil model. Recently developed finite-volume codes that apply a multistage time stepping scheme in conjunction with steady state acceleration techniques are used to solve the equations. Two-dimensional results are shown for flow conditions uncorrected and corrected for wind tunnel wall interference effects. Predicted surface pressures from 3-D simulations are compared with those from 2-D calculations. The focus of the 3-D computations is the influence of the sidewall boundary layers. Topological features of the 3-D flow fields are indicated. Lift and drag results are compared with experimental measurements.
Barriers to front propagation in laminar, three-dimensional fluid flows
NASA Astrophysics Data System (ADS)
Doan, Minh; Simons, J. J.; Lilienthal, Katherine; Solomon, Tom; Mitchell, Kevin A.
2018-03-01
We present experiments on one-way barriers that block reaction fronts in a fully three-dimensional (3D) fluid flow. Fluorescent Belousov-Zhabotinsky reaction fronts are imaged with laser-scanning in a laminar, overlapping vortex flow. The barriers are analyzed with a 3D extension to burning invariant manifold (BIM) theory that was previously applied to two-dimensional advection-reaction-diffusion processes. We discover tube and sheet barriers that guide the front evolution. The experimentally determined barriers are explained by BIMs calculated from a model of the flow.
NASA-VOF3D: A three-dimensional computer program for incompressible flows with free surfaces
NASA Astrophysics Data System (ADS)
Torrey, M. D.; Mjolsness, R. C.; Stein, L. R.
1987-07-01
Presented is the NASA-VOF3D three-dimensional, transient, free-surface hydrodynamics program. This three-dimensional extension of NASA-VOF2D will, in principle, permit treatment in full three-dimensional generality of the wide variety of applications that could be treated by NASA-VOF2D only within the two-dimensional idealization. In particular, it, like NASA-VOF2D, is specifically designed to calculate confined flows in a low g environment. The code is presently restricted to cylindrical geometry. The code is based on the fractional volume-of-fluid method and allows multiple free surfaces with surface tension and wall adhesion. It also has a partial cell treatment that allows curved boundaries and internal obstacles. This report provides a brief discussion of the numerical method, a code listing, and some sample problems.
On the three-dimensional instability of strained vortices
NASA Technical Reports Server (NTRS)
Waleffe, Fabian
1990-01-01
The three-dimensional (3-D) instability of a two-dimensional (2-D) flow with elliptical streamlines has been proposed as a generic mechanism for the breakdown of many 2-D flows. A physical interpretation for the mechanism is presented together with an analytical treatment of the problem. It is shown that the stability of an elliptical flow is governed by an Ince equation. An analytical representation for a localized solution is given and establishes a direct link with previous computations and experiments.
Extension of a three-dimensional viscous wing flow analysis
NASA Technical Reports Server (NTRS)
Weinberg, Bernard C.; Chen, Shyi-Yaung; Thoren, Stephen J.; Shamroth, Stephen J.
1990-01-01
Three-dimensional unsteady viscous effects can significantly influence the performance of fixed and rotary wing aircraft. These effects are important in both flows about helicopter rotors in forward flight and flows about 3-D (swept and tapered) supercritical wings. A computational procedure for calculating such flow field is developed, and therefore would be of great value in the design process as well as in understanding the corresponding flow phenomena. The procedure is based upon an alternating direction technique employing the Linearized Block Implicit method for solving 3-D viscous flow problems. In order to demonstrate the viability of this method, 2-D and 3-D problems are computed. These include the flow over a 2-D NACA 0012 airfoil under steady and oscillating conditions, and the steady, skewed, 3-D flow on a flat plate. Although actual 3-D flows over wings were not obtained, the ground work was laid for considering such flows. The description of the computational procedure and results are given.
Modeling Intrajunction Dispersion at a Well-Mixed Tidal River Junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfram, Phillip J.; Fringer, Oliver B.; Monsen, Nancy E.
In this paper, the relative importance of small-scale, intrajunction flow features such as shear layers, separation zones, and secondary flows on dispersion in a well-mixed tidal river junction is explored. A fully nonlinear, nonhydrostatic, and unstructured three-dimensional (3D) model is used to resolve supertidal dispersion via scalar transport at a well-mixed tidal river junction. Mass transport simulated in the junction is compared against predictions using a simple node-channel model to quantify the effects of small-scale, 3D intrajunction flow features on mixing and dispersion. The effects of three-dimensionality are demonstrated by quantifying the difference between two-dimensional (2D) and 3D model results.more » An intermediate 3D model that does not resolve the secondary circulation or the recirculating flow at the junction is also compared to the 3D model to quantify the relative sensitivity of mixing on intrajunction flow features. Resolution of complex flow features simulated by the full 3D model is not always necessary because mixing is primarily governed by bulk flow splitting due to the confluence–diffluence cycle. Finally, results in 3D are comparable to the 2D case for many flow pathways simulated, suggesting that 2D modeling may be reasonable for nonstratified and predominantly hydrostatic flows through relatively straight junctions, but not necessarily for the full junction network.« less
Modeling Intrajunction Dispersion at a Well-Mixed Tidal River Junction
Wolfram, Phillip J.; Fringer, Oliver B.; Monsen, Nancy E.; ...
2016-08-01
In this paper, the relative importance of small-scale, intrajunction flow features such as shear layers, separation zones, and secondary flows on dispersion in a well-mixed tidal river junction is explored. A fully nonlinear, nonhydrostatic, and unstructured three-dimensional (3D) model is used to resolve supertidal dispersion via scalar transport at a well-mixed tidal river junction. Mass transport simulated in the junction is compared against predictions using a simple node-channel model to quantify the effects of small-scale, 3D intrajunction flow features on mixing and dispersion. The effects of three-dimensionality are demonstrated by quantifying the difference between two-dimensional (2D) and 3D model results.more » An intermediate 3D model that does not resolve the secondary circulation or the recirculating flow at the junction is also compared to the 3D model to quantify the relative sensitivity of mixing on intrajunction flow features. Resolution of complex flow features simulated by the full 3D model is not always necessary because mixing is primarily governed by bulk flow splitting due to the confluence–diffluence cycle. Finally, results in 3D are comparable to the 2D case for many flow pathways simulated, suggesting that 2D modeling may be reasonable for nonstratified and predominantly hydrostatic flows through relatively straight junctions, but not necessarily for the full junction network.« less
Pseudo-invariants contributing to inverse energy cascades in three-dimensional turbulence
NASA Astrophysics Data System (ADS)
Rathmann, Nicholas M.; Ditlevsen, Peter D.
2017-05-01
Three-dimensional (3D) turbulence is characterized by a dual forward cascade of both kinetic energy and helicity, a second inviscid flow invariant besides energy, from the integral scale of motion to the viscous dissipative scale. In helical flows, however, such as strongly rotating flows with broken mirror symmetry, an inverse (reversed) energy cascade can be observed analogous to that of two-dimensional turbulence (2D) where enstrophy, a second positive-definite flow invariant, unlike helicity in 3D, effectively blocks the forward cascade of energy. In the spectral-helical decomposition of the Navier-Stokes equation, it has previously been shown that a subset of three-wave (triad) interactions conserve helicity in 3D in a fashion similar to enstrophy in 2D, thus leading to a 2D-like inverse energy cascade in 3D. In this work, we show, both theoretically and numerically, that an additional subset of interactions exist, conserving a new pseudo-invariant in addition to energy and helicity, which contributes either to a forward or an inverse energy cascade depending on the specific triad interaction geometry.
Origin of chaos near three-dimensional quantum vortices: A general Bohmian theory
NASA Astrophysics Data System (ADS)
Tzemos, Athanasios C.; Efthymiopoulos, Christos; Contopoulos, George
2018-04-01
We provide a general theory for the structure of the quantum flow near three-dimensional (3D) nodal lines, i.e., one-dimensional loci where the 3D wave function becomes equal to zero. In suitably defined coordinates (comoving with the nodal line) the generic structure of the flow implies the formation of 3D quantum vortices. We show that such vortices are accompanied by nearby invariant lines of the comoving quantum flow, called X lines, which are normally hyperbolic. Furthermore, the stable and unstable manifolds of the X lines produce chaotic scatterings of nearby quantum (Bohmian) trajectories, thus inducing an intricate form of the quantum current in the neighborhood of each 3D quantum vortex. Generic formulas describing the structure around 3D quantum vortices are provided, applicable to an arbitrary choice of 3D wave function. We also give specific numerical examples as well as a discussion of the physical consequences of chaos near 3D quantum vortices.
Origin of chaos near three-dimensional quantum vortices: A general Bohmian theory.
Tzemos, Athanasios C; Efthymiopoulos, Christos; Contopoulos, George
2018-04-01
We provide a general theory for the structure of the quantum flow near three-dimensional (3D) nodal lines, i.e., one-dimensional loci where the 3D wave function becomes equal to zero. In suitably defined coordinates (comoving with the nodal line) the generic structure of the flow implies the formation of 3D quantum vortices. We show that such vortices are accompanied by nearby invariant lines of the comoving quantum flow, called X lines, which are normally hyperbolic. Furthermore, the stable and unstable manifolds of the X lines produce chaotic scatterings of nearby quantum (Bohmian) trajectories, thus inducing an intricate form of the quantum current in the neighborhood of each 3D quantum vortex. Generic formulas describing the structure around 3D quantum vortices are provided, applicable to an arbitrary choice of 3D wave function. We also give specific numerical examples as well as a discussion of the physical consequences of chaos near 3D quantum vortices.
Documentation for the “XT3D” option in the Node Property Flow (NPF) Package of MODFLOW 6
Provost, Alden M.; Langevin, Christian D.; Hughes, Joseph D.
2017-08-10
This report describes the “XT3D” option in the Node Property Flow (NPF) Package of MODFLOW 6. The XT3D option extends the capabilities of MODFLOW by enabling simulation of fully three-dimensional anisotropy on regular or irregular grids in a way that properly takes into account the full, three-dimensional conductivity tensor. It can also improve the accuracy of groundwater-flow simulations in cases in which the model grid violates certain geometric requirements. Three example problems demonstrate the use of the XT3D option to simulate groundwater flow on irregular grids and through three-dimensional porous media with anisotropic hydraulic conductivity.Conceptually, the XT3D method of estimating flow between two MODFLOW 6 model cells can be viewed in terms of three main mathematical steps: construction of head-gradient estimates by interpolation; construction of fluid-flux estimates by application of the full, three-dimensional form of Darcy’s Law, in which the conductivity tensor can be heterogeneous and anisotropic; and construction of the flow expression by enforcement of continuity of flow across the cell interface. The resulting XT3D flow expression, which relates the flow across the cell interface to the values of heads computed at neighboring nodes, is the sum of terms in which conductance-like coefficients multiply head differences, as in the conductance-based flow expression the NPF Package uses by default. However, the XT3D flow expression contains terms that involve “neighbors of neighbors” of the two cells for which the flow is being calculated. These additional terms have no analog in the conductance-based formulation. When assembled into matrix form, the XT3D formulation results in a larger stencil than the conductance-based formulation; that is, each row of the coefficient matrix generally contains more nonzero elements. The “RHS” suboption can be used to avoid expanding the stencil by placing the additional terms on the right-hand side of the matrix equation and evaluating them at the previous iteration or time step.The XT3D option can be an alternative to the Ghost-Node Correction (GNC) Package. However, the XT3D formulation is typically more computationally intensive than the conductance-based formulation the NPF Package uses by default, either with or without ghost nodes. Before deciding whether to use the GNC Package or XT3D option for production runs, the user should consider whether the conductance-based formulation alone can provide acceptable accuracy for the particular problem being solved.
NASA Astrophysics Data System (ADS)
Edwards, Warren S.; Ritchie, Cameron J.; Kim, Yongmin; Mack, Laurence A.
1995-04-01
We have developed a three-dimensional (3D) imaging system using power Doppler (PD) ultrasound (US). This system can be used for visualizing and analyzing the vascular anatomy of parenchymal organs. To create the 3D PD images, we acquired a series of two-dimensional PD images from a commercial US scanner and recorded the position and orientation of each image using a 3D magnetic position sensor. Three-dimensional volumes were reconstructed using specially designed software and then volume rendered for display. We assessed the feasibility and geometric accuracy of our system with various flow phantoms. The system was then tested on a volunteer by scanning a transplanted kidney. The reconstructed volumes of the flow phantom contained less than 1 mm of geometric distortion and the 3D images of the transplanted kidney depicted the segmental, arcuate, and interlobar vessels.
Three-Dimensional Flow Generated by a Partially Penetrating Well in a Two-Aquifer System
NASA Astrophysics Data System (ADS)
Sepulveda, N.
2007-12-01
An analytical solution is presented for three-dimensional (3D) flow in a confined aquifer and the overlying storative semiconfining layer and unconfined aquifer. The equation describing flow caused by a partially penetrating production well is solved analytically to provide a method to accurately determine the hydraulic parameters in the confined aquifer, semiconfining layer, and unconfined aquifer from aquifer-test data. Previous solutions for a partially penetrating well did not account for 3D flow or storativity in the semiconfining unit. The 3D and two- dimensional (2D) flow solutions in the semiconfining layer are compared for various hydraulic conductivity ratios between the aquifer and the semiconfining layer. Analysis of the drawdown data from an aquifer test in central Florida showed that the 3D solution in the semiconfining layer provides a more unique identification of the hydraulic parameters than the 2D solution. The analytical solution could be used to analyze, with higher accuracy, the effect that pumping water from the lower aquifer in a two-aquifer system has on wetlands.
A Numerical Model of Exchange Chromatography Through 3D Lattice Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salloum, Maher; Robinson, David B.
Rapid progress in the development of additive manufacturing technologies is opening new opportunities to fabricate structures that control mass transport in three dimensions across a broad range of length scales. We describe a structure that can be fabricated by newly available commercial 3D printers. It contains an array of regular three-dimensional flow paths that are in intimate contact with a solid phase, and thoroughly shuffle material among the paths. We implement a chemically reacting flow model to study its behavior as an exchange chromatography column, and compare it to an array of one-dimensional flow paths that resemble more traditional honeycombmore » monoliths. A reaction front moves through the columns and then elutes. Here, the front is sharper at all flow rates for the structure with three-dimensional flow paths, and this structure is more robust to channel width defects than the one-dimensional array.« less
A Numerical Model of Exchange Chromatography Through 3D Lattice Structures
Salloum, Maher; Robinson, David B.
2018-01-30
Rapid progress in the development of additive manufacturing technologies is opening new opportunities to fabricate structures that control mass transport in three dimensions across a broad range of length scales. We describe a structure that can be fabricated by newly available commercial 3D printers. It contains an array of regular three-dimensional flow paths that are in intimate contact with a solid phase, and thoroughly shuffle material among the paths. We implement a chemically reacting flow model to study its behavior as an exchange chromatography column, and compare it to an array of one-dimensional flow paths that resemble more traditional honeycombmore » monoliths. A reaction front moves through the columns and then elutes. Here, the front is sharper at all flow rates for the structure with three-dimensional flow paths, and this structure is more robust to channel width defects than the one-dimensional array.« less
Approximate analytic solutions to 3D unconfined groundwater flow within regional 2D models
NASA Astrophysics Data System (ADS)
Luther, K.; Haitjema, H. M.
2000-04-01
We present methods for finding approximate analytic solutions to three-dimensional (3D) unconfined steady state groundwater flow near partially penetrating and horizontal wells, and for combining those solutions with regional two-dimensional (2D) models. The 3D solutions use distributed singularities (analytic elements) to enforce boundary conditions on the phreatic surface and seepage faces at vertical wells, and to maintain fixed-head boundary conditions, obtained from the 2D model, at the perimeter of the 3D model. The approximate 3D solutions are analytic (continuous and differentiable) everywhere, including on the phreatic surface itself. While continuity of flow is satisfied exactly in the infinite 3D flow domain, water balance errors can occur across the phreatic surface.
NASA Technical Reports Server (NTRS)
Przekwas, A. J.; Singhal, A. K.; Tam, L. T.
1984-01-01
The capability of simulating three dimensional two phase reactive flows with combustion in the liquid fuelled rocket engines is demonstrated. This was accomplished by modifying an existing three dimensional computer program (REFLAN3D) with Eulerian Lagrangian approach to simulate two phase spray flow, evaporation and combustion. The modified code is referred as REFLAN3D-SPRAY. The mathematical formulation of the fluid flow, heat transfer, combustion and two phase flow interaction of the numerical solution procedure, boundary conditions and their treatment are described.
De Sterck H; Poedts
2000-06-12
Simulation results of three-dimensional (3D) stationary magnetohydrodynamic (MHD) bow-shock flows around perfectly conducting spheres are presented. For strong upstream magnetic field a new complex bow-shock flow topology arises consisting of two consecutive interacting shock fronts. It is shown that the leading shock front contains a segment of intermediate 1-3 shock type. This is the first confirmation in 3D that intermediate shocks, which were believed to be unphysical for a long time, can be formed and can persist for small-dissipation MHD in a realistic flow configuration.
The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications
NASA Technical Reports Server (NTRS)
Bravo, Ramiro H.; Chen, Ching-Jen
1992-01-01
In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified.
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.
1990-01-01
The development and applications of multiblock/multizone and adaptive grid methodologies for solving the three-dimensional simplified Navier-Stokes equations are described. Adaptive grid and multiblock/multizone approaches are introduced and applied to external and internal flow problems. These new implementations increase the capabilities and flexibility of the PAB3D code in solving flow problems associated with complex geometry.
Laser velocimetry in highly three-dimensional and vortical flows
NASA Technical Reports Server (NTRS)
Novak, C. J.; Huie, C. R.; Cornelius, K. C.
1986-01-01
The need for experimentally determined 3-D velocity information is crucial to the understanding of highly 3-dimensional and vortical flow fields. In addition to gaining an understanding of the physics of flow fields, a correlation of velocity data is needed for advanced computational modelling. A double pass method for acquiring 3-D flow field information using a 2-D laser velocimeter (LV) is described. The design and implementation of a 3-D LV with expanded capabilities to acquire real-time 3-D flow field information are also described. Finally, the use of such an instrument in a wind tunnel study of a generic fighter configuration is described. The results of the wind tunnel study highlight the complexities of 3-D flow fields, particularly when the vortex behavior is examined over a range of angles of attack.
Two-dimensional vocal tracts with three-dimensional behavior in the numerical generation of vowels.
Arnela, Marc; Guasch, Oriol
2014-01-01
Two-dimensional (2D) numerical simulations of vocal tract acoustics may provide a good balance between the high quality of three-dimensional (3D) finite element approaches and the low computational cost of one-dimensional (1D) techniques. However, 2D models are usually generated by considering the 2D vocal tract as a midsagittal cut of a 3D version, i.e., using the same radius function, wall impedance, glottal flow, and radiation losses as in 3D, which leads to strong discrepancies in the resulting vocal tract transfer functions. In this work, a four step methodology is proposed to match the behavior of 2D simulations with that of 3D vocal tracts with circular cross-sections. First, the 2D vocal tract profile becomes modified to tune the formant locations. Second, the 2D wall impedance is adjusted to fit the formant bandwidths. Third, the 2D glottal flow gets scaled to recover 3D pressure levels. Fourth and last, the 2D radiation model is tuned to match the 3D model following an optimization process. The procedure is tested for vowels /a/, /i/, and /u/ and the obtained results are compared with those of a full 3D simulation, a conventional 2D approach, and a 1D chain matrix model.
Laser direct-write for fabrication of three-dimensional paper-based devices.
He, P J W; Katis, I N; Eason, R W; Sones, C L
2016-08-16
We report the use of a laser-based direct-write (LDW) technique that allows the design and fabrication of three-dimensional (3D) structures within a paper substrate that enables implementation of multi-step analytical assays via a 3D protocol. The technique is based on laser-induced photo-polymerisation, and through adjustment of the laser writing parameters such as the laser power and scan speed we can control the depths of hydrophobic barriers that are formed within a substrate which, when carefully designed and integrated, produce 3D flow paths. So far, we have successfully used this depth-variable patterning protocol for stacking and sealing of multi-layer substrates, for assembly of backing layers for two-dimensional (2D) lateral flow devices and finally for fabrication of 3D devices. Since the 3D flow paths can also be formed via a single laser-writing process by controlling the patterning parameters, this is a distinct improvement over other methods that require multiple complicated and repetitive assembly procedures. This technique is therefore suitable for cheap, rapid and large-scale fabrication of 3D paper-based microfluidic devices.
Commercial turbofan engine exhaust nozzle flow analyses using PAB3D
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Uenishi, K.; Carlson, John R.; Keith, B. D.
1992-01-01
Recent developments of a three-dimensional (PAB3D) code have paved the way for a computational investigation of complex aircraft aerodynamic components. The PAB3D code was developed for solving the simplified Reynolds Averaged Navier-Stokes equations in a three-dimensional multiblock/multizone structured mesh domain. The present analysis was applied to commercial turbofan exhaust flow systems. Solution sensitivity to grid density is presented. Laminar flow solutions were developed for all grids and two-equation k-epsilon solutions were developed for selected grids. Static pressure distributions, mass flow and thrust quantities were calculated for on-design engine operating conditions. Good agreement between predicted surface static pressures and experimental data was observed at different locations. Mass flow was predicted within 0.2 percent of experimental data. Thrust forces were typically within 0.4 percent of experimental data.
User's guide to the NOZL3D and NOZLIC computer programs
NASA Technical Reports Server (NTRS)
Thomas, P. D.
1980-01-01
Complete FORTRAN listings and running instructions are given for a set of computer programs that perform an implicit numerical solution to the unsteady Navier-Stokes equations to predict the flow characteristics and performance of nonaxisymmetric nozzles. The set includes the NOZL3D program, which performs the flow computations; the NOZLIC program, which sets up the flow field initial conditions for general nozzle configurations, and also generates the computational grid for simple two dimensional and axisymmetric configurations; and the RGRIDD program, which generates the computational grid for complicated three dimensional configurations. The programs are designed specifically for the NASA-Langley CYBER 175 computer, and employ auxiliary disk files for primary data storage. Input instructions and computed results are given for four test cases that include two dimensional, three dimensional, and axisymmetric configurations.
Numerical investigations in three-dimensional internal flows
NASA Technical Reports Server (NTRS)
Rose, William C.
1991-01-01
In previous efforts, a two-dimensional full Navier-Stokes (FNS) code (SCRAM2D) was used in a design process that involved parametric modifications of the inlet geometry to arrive at what appeared to be an optimum inlet flowfield that produced a uniform flow at the exit in a very short distance. In these previous studies, the technologies for determining the contours with a 'man-in-the-loop' approach for both the ramp and cowl of the inlet were demonstrated, and nearly shock-free exiting flowfields were shown to be obtainable. The resulting two-dimensional compression contours were then used with swept sidewalls to form a three-dimensional inlet. Then the three-dimensional Navier-Stokes code (SCRAM3D) was used to investigate the inlet's three-dimensional flow. One of the major difficulties encountered in the previous studies was that associated with the relatively long time required to obtain a solution using even the 2D FNS code in the design process. Since one of the goals of high-speed inlet design is to produce inputs to the overall aircraft design in a timely manner, it was proposed for this year's research to examine 2D and 3D viscous flow solver techniques alternative to the NFS codes used to date. Areas of the inlet particularly identified for code speed up are those associated with the forebody and external flow ramp systems of the inlet. In these areas, parabolized, or space-marched, Navier-Stokes codes were proposed to be investigated for their applicability in the design process developed previously. This report describes the results of an investigation into the use of two other codes for analyzing the forebody and inlet ramp systems of high-speed inlets.
3D Heart Model and 4D Flow MRI 20 Years after Spiral Arterial Switch Operation.
Sievers, Hans-Hinrich; Kheradvar, Arash; Kramer, Hans-Heiner; Rickers, Carsten
2016-12-01
Case of a patient is presented here 20 years after spiral direct anastomosis of the great arteries in an arterial switch operation. Three-dimensional model of the heart combined with four-dimensional flow magnetic resonance imaging presents a novel comprehensive way to assess surgical results.
NASA Astrophysics Data System (ADS)
Chen, Huai; Li, Danxun; Bai, Ruonan; Wang, Xingkui
2018-05-01
Swirling strength is an effective vortex indicator in wall turbulence, and it can be determined based on either two-dimensional (2D) or three-dimensional (3D) velocity fields, written as λci2D and λci3D, respectively. A comparison between λci2D and λci3D has been made in this paper in sliced XY, YZ, and XZ planes by using 3D DNS data of channel flow. The magnitude of λci2D in three orthogonal planes differs in the inner region, but the difference tends to diminish in the outer flow. The magnitude of λci3D exceeds each λci2D, and the square of λci3D is greater than the summation of squares of three λci2D. Extraction with λci2D in XY, YZ, and XZ planes yields different population densities and vortex sizes, i.e., in XZ plane, the vortices display the largest population density and the smallest size, and in XY and YZ planes the vortices are similar in size but fewer vortices are extracted in the XY plane in the inner layer. Vortex size increases inversely with the threshold used for growing the vortex region from background turbulence. When identical thresholds are used, the λci3D approach leads to a slightly smaller population density and a greater vortex radius than the λci2D approach. A threshold of 0.8 for the λci3D approach is approximately equivalent to a threshold of 1.5 for the λci2D approach.
An Approximate Axisymmetric Viscous Shock Layer Aeroheating Method for Three-Dimensional Bodies
NASA Technical Reports Server (NTRS)
Brykina, Irina G.; Scott, Carl D.
1998-01-01
A technique is implemented for computing hypersonic aeroheating, shear stress, and other flow properties on the windward side of a three-dimensional (3D) blunt body. The technique uses a 2D/axisymmetric flow solver modified by scale factors for a, corresponding equivalent axisymmetric body. Examples are given in which a 2D solver is used to calculate the flow at selected meridional planes on elliptic paraboloids in reentry flight. The report describes the equations and the codes used to convert the body surface parameters into input used to scale the 2D viscous shock layer equations in the axisymmetric viscous shock layer code. Very good agreement is obtained with solutions to finite rate chemistry 3D thin viscous shock layer equations for a finite rate catalytic body.
Little, Stephen H.; Igo, Stephen R.; Pirat, Bahar; McCulloch, Marti; Hartley, Craig J.; Nosé, Yukihiko; Zoghbi, William A.
2012-01-01
The 2-dimensional (2D) color Doppler (2D-CD) proximal isovelocity surface area (PISA) method assumes a hemispheric flow convergence zone to estimate transvalvular flow. Recently developed 3-dimensional (3D)-CD can directly visualize PISA shape and surface area without geometric assumptions. To validate a novel method to directly measure PISA using real-time 3D-CD echocardiography, a circulatory loop with an ultrasound imaging chamber was created to model mitral regurgitation (MR). Thirty-two different regurgitant flow conditions were tested using symmetric and asymmetric flow orifices. Three-dimensional–PISA was reconstructed from a hand-held real-time 3D-CD data set. Regurgitant volume was derived using both 2D-CD and 3D-CD PISA methods, and each was compared against a flowmeter standard. The circulatory loop achieved regurgitant volume within the clinical range of MR (11 to 84 ml). Three-dimensional–PISA geometry reflected the 2D geometry of the regurgitant orifice. Correlation between the 2D-PISA method regurgitant volume and actual regurgitant volume was significant (r2 = 0.47, p <0.001). Mean 2D-PISA regurgitant volume underestimate was 19.1 ± 25 ml (2 SDs). For the 3D-PISA method, correlation with actual regurgitant volume was significant (r2 = 0.92, p <0.001), with a mean regurgitant volume underestimate of 2.7 ± 10 ml (2 SDs). The 3D-PISA method showed less regurgitant volume underestimation for all orifice shapes and regurgitant volumes tested. In conclusion, in an in vitro model of MR, 3D-CD was used to directly measure PISA without geometric assumption. Compared with conventional 2D-PISA, regurgitant volume was more accurate when derived from 3D-PISA across symmetric and asymmetric orifices within a broad range of hemodynamic flow conditions. PMID:17493476
Three-dimensional Cascaded Lattice Boltzmann Model for Thermal Convective Flows
NASA Astrophysics Data System (ADS)
Hajabdollahi, Farzaneh; Premnath, Kannan
2017-11-01
Fluid motion driven by thermal effects, such as due to buoyancy in differentially heated enclosures arise in several natural and industrial settings, whose understanding can be achieved via numerical simulations. Lattice Boltzmann (LB) methods are efficient kinetic computational approaches for coupled flow physics problems. In this study, we develop three-dimensional (3D) LB models based on central moments and multiple relaxation times for D3Q7 and D3Q15 lattices to solve the energy transport equations in a double distribution function approach. Their collision operators lead to a cascaded structure involving higher order terms resulting in improved stability. This is coupled to a central moment based LB flow solver with source terms. The new 3D cascaded LB models for the convective flows are first validated for natural convection of air driven thermally on two vertically opposite faces in a cubic cavity at different Rayleigh numbers against prior numerical and experimental data, which show good quantitative agreement. Then, the detailed structure of the 3D flow and thermal fields and the heat transfer rates at different Rayleigh numbers are analyzed and interpreted.
NASA Technical Reports Server (NTRS)
Tsujino, H.; Jones, M.; Shiota, T.; Qin, J. X.; Greenberg, N. L.; Cardon, L. A.; Morehead, A. J.; Zetts, A. D.; Travaglini, A.; Bauer, F.;
2001-01-01
Quantification of flow with pulsed-wave Doppler assumes a "flat" velocity profile in the left ventricular outflow tract (LVOT), which observation refutes. Recent development of real-time, three-dimensional (3-D) color Doppler allows one to obtain an entire cross-sectional velocity distribution of the LVOT, which is not possible using conventional 2-D echo. In an animal experiment, the cross-sectional color Doppler images of the LVOT at peak systole were derived and digitally transferred to a computer to visualize and quantify spatial velocity distributions and peak flow rates. Markedly skewed profiles, with higher velocities toward the septum, were consistently observed. Reference peak flow rates by electromagnetic flow meter correlated well with 3-D peak flow rates (r = 0.94), but with an anticipated underestimation. Real-time 3-D color Doppler echocardiography was capable of determining cross-sectional velocity distributions and peak flow rates, demonstrating the utility of this new method for better understanding and quantifying blood flow phenomena.
Viability of Cross-Flow Fan with Helical Blades for Vertical Take-off and Landing Aircraft
2012-09-01
fluid dynamics (CFD) software, ANSYS - CFX , a three-dimensional (3-D) straight-bladed model was validated against previous study’s experimental results...computational fluid dynamics software (CFD), ANSYS - CFX , a three-dimensional (3-D) straight-bladed model was validated against previous study’s experimental...37 B. SIZING PARAMETERS AND ILLUSTRATION ................................. 37 APPENDIX B. ANSYS CFX PARAMETERS
Spanwise effects on instabilities of compressible flow over a long rectangular cavity
NASA Astrophysics Data System (ADS)
Sun, Y.; Taira, K.; Cattafesta, L. N.; Ukeiley, L. S.
2017-12-01
The stability properties of two-dimensional (2D) and three-dimensional (3D) compressible flows over a rectangular cavity with length-to-depth ratio of L/D=6 are analyzed at a free-stream Mach number of M_∞ =0.6 and depth-based Reynolds number of Re_D=502. In this study, we closely examine the influence of three-dimensionality on the wake mode that has been reported to exhibit high-amplitude fluctuations from the formation and ejection of large-scale spanwise vortices. Direct numerical simulation (DNS) and bi-global stability analysis are utilized to study the stability characteristics of the wake mode. Using the bi-global stability analysis with the time-averaged flow as the base state, we capture the global stability properties of the wake mode at a spanwise wavenumber of β =0. To uncover spanwise effects on the 2D wake mode, 3D DNS are performed with cavity width-to-depth ratio of W/D=1 and 2. We find that the 2D wake mode is not present in the 3D cavity flow with W/D=2, in which spanwise structures are observed near the rear region of the cavity. These 3D instabilities are further investigated via bi-global stability analysis for spanwise wavelengths of λ /D=0.5{-}2.0 to reveal the eigenspectra of the 3D eigenmodes. Based on the findings of 2D and 3D global stability analysis, we conclude that the absence of the wake mode in 3D rectangular cavity flows is due to the release of kinetic energy from the spanwise vortices to the streamwise vortical structures that develops from the spanwise instabilities.
NASA Technical Reports Server (NTRS)
Stremel, Paul M.
1995-01-01
A method has been developed to accurately compute the viscous flow in three-dimensional (3-D) enclosures. This method is the 3-D extension of a two-dimensional (2-D) method developed for the calculation of flow over airfoils. The 2-D method has been tested extensively and has been shown to accurately reproduce experimental results. As in the 2-D method, the 3-D method provides for the non-iterative solution of the incompressible Navier-Stokes equations by means of a fully coupled implicit technique. The solution is calculated on a body fitted computational mesh incorporating a staggered grid methodology. In the staggered grid method, the three components of vorticity are defined at the centers of the computational cell sides, while the velocity components are defined as normal vectors at the centers of the computational cell faces. The staggered grid orientation provides for the accurate definition of the vorticity components at the vorticity locations, the divergence of vorticity at the mesh cell nodes and the conservation of mass at the mesh cell centers. The solution is obtained by utilizing a fractional step solution technique in the three coordinate directions. The boundary conditions for the vorticity and velocity are calculated implicitly as part of the solution. The method provides for the non-iterative solution of the flow field and satisfies the conservation of mass and divergence of vorticity to machine zero at each time step. To test the method, the calculation of simple driven cavity flows have been computed. The driven cavity flow is defined as the flow in an enclosure driven by a moving upper plate at the top of the enclosure. To demonstrate the ability of the method to predict the flow in arbitrary cavities, results will he shown for both cubic and curved cavities.
Inverse energy cascade in three-dimensional isotropic turbulence.
Biferale, Luca; Musacchio, Stefano; Toschi, Federico
2012-04-20
We study the statistical properties of homogeneous and isotropic three-dimensional (3D) turbulent flows. By introducing a novel way to make numerical investigations of Navier-Stokes equations, we show that all 3D flows in nature possess a subset of nonlinear evolution leading to a reverse energy transfer: from small to large scales. Up to now, such an inverse cascade was only observed in flows under strong rotation and in quasi-two-dimensional geometries under strong confinement. We show here that energy flux is always reversed when mirror symmetry is broken, leading to a distribution of helicity in the system with a well-defined sign at all wave numbers. Our findings broaden the range of flows where the inverse energy cascade may be detected and rationalize the role played by helicity in the energy transfer process, showing that both 2D and 3D properties naturally coexist in all flows in nature. The unconventional numerical methodology here proposed, based on a Galerkin decimation of helical Fourier modes, paves the road for future studies on the influence of helicity on small-scale intermittency and the nature of the nonlinear interaction in magnetohydrodynamics.
Effects of planar shear on the three-dimensional instability in flow past a circular cylinder
NASA Astrophysics Data System (ADS)
Park, Doohyun; Yang, Kyung-Soo
2018-03-01
A Floquet stability analysis has been carried out in order to investigate how a planar shear in wake flow affects the three-dimensional (3D) instability in the near-wake region. We consider a circular cylinder immersed in a freestream with planar shear. The cylinder was implemented in a Cartesian grid system by means of an immersed boundary method. Planar shear tends to promote the primary instability, known as Hopf bifurcation where steady flow bifurcates into time-periodic flow, in the sense that its critical Reynolds number decreases with increasing planar shear. The effects of planar shear on the 3D instability are different depending on the type of 3D instability. The flow asymmetry caused by the planar shear suppresses a QP-type mode but generates a C-type mode. The conventional A and B modes are stabilized by the planar shear, whereas mode C is intensified with increasing shear. The criticality of each 3D mode is discussed, and the neutral stability curves for each 3D mode are presented. The current Floquet results have been validated by using direct numerical simulation for some selected cases of flow parameters.
A numerical study of incompressible juncture flows
NASA Technical Reports Server (NTRS)
Kwak, D.; Rogers, S. E.; Kaul, U. K.; Chang, J. L. C.
1986-01-01
The laminar, steady juncture flow around single or multiple posts mounted between two flat plates is simulated using the three dimensional incompressible Navier-Stokes code, INS3D. The three dimensional separation of the boundary layer and subsequent formation and development of the horseshoe vortex is computed. The computed flow compares favorably with the experimental observation. The recent numerical study to understand and quantify the juncture flow relevant to the Space Shuttle main engine power head is summarized.
Numerical Validation of the N3S-NATUR Code for Supersonic Nozzles and Afterbody Flows
NASA Astrophysics Data System (ADS)
Perrot, Y.; Hadjadj, A.
2005-02-01
A numerical investigation was conducted to assess the ability of the three-dimensional Navier-Stokes solver, N3S-Natur [1], using the k-ω SST turbulence model when computing nozzle-afterbody flows with propulsive jets. Three nozzle configurations were selected as test cases for the computational method: the first is the ONERA TIC nozzle, the second is an axisymmetric boat-tailed afterbody configuration and the third is a fully 3D transonic nozzle. In most situations, internal and external flow-field regions are modeled. The obtained results are carefully analyzed and compared to the experimental data. A three-dimensional computation was done to make evidence of 3D phenomena which are not negligible. A particular attention was payed to the appearance of a recirculation zone on the afterbody.
Intermittent Lagrangian velocities and accelerations in three-dimensional porous medium flow.
Holzner, M; Morales, V L; Willmann, M; Dentz, M
2015-07-01
Intermittency of Lagrangian velocity and acceleration is a key to understanding transport in complex systems ranging from fluid turbulence to flow in porous media. High-resolution optical particle tracking in a three-dimensional (3D) porous medium provides detailed 3D information on Lagrangian velocities and accelerations. We find sharp transitions close to pore throats, and low flow variability in the pore bodies, which gives rise to stretched exponential Lagrangian velocity and acceleration distributions characterized by a sharp peak at low velocity, superlinear evolution of particle dispersion, and double-peak behavior in the propagators. The velocity distribution is quantified in terms of pore geometry and flow connectivity, which forms the basis for a continuous-time random-walk model that sheds light on the observed Lagrangian flow and transport behaviors.
Users manual for the NASA Lewis three-dimensional ice accretion code (LEWICE 3D)
NASA Technical Reports Server (NTRS)
Bidwell, Colin S.; Potapczuk, Mark G.
1993-01-01
A description of the methodology, the algorithms, and the input and output data along with an example case for the NASA Lewis 3D ice accretion code (LEWICE3D) has been produced. The manual has been designed to help the user understand the capabilities, the methodologies, and the use of the code. The LEWICE3D code is a conglomeration of several codes for the purpose of calculating ice shapes on three-dimensional external surfaces. A three-dimensional external flow panel code is incorporated which has the capability of calculating flow about arbitrary 3D lifting and nonlifting bodies with external flow. A fourth order Runge-Kutta integration scheme is used to calculate arbitrary streamlines. An Adams type predictor-corrector trajectory integration scheme has been included to calculate arbitrary trajectories. Schemes for calculating tangent trajectories, collection efficiencies, and concentration factors for arbitrary regions of interest for single droplets or droplet distributions have been incorporated. A LEWICE 2D based heat transfer algorithm can be used to calculate ice accretions along surface streamlines. A geometry modification scheme is incorporated which calculates the new geometry based on the ice accretions generated at each section of interest. The three-dimensional ice accretion calculation is based on the LEWICE 2D calculation. Both codes calculate the flow, pressure distribution, and collection efficiency distribution along surface streamlines. For both codes the heat transfer calculation is divided into two regions, one above the stagnation point and one below the stagnation point, and solved for each region assuming a flat plate with pressure distribution. Water is assumed to follow the surface streamlines, hence starting at the stagnation zone any water that is not frozen out at a control volume is assumed to run back into the next control volume. After the amount of frozen water at each control volume has been calculated the geometry is modified by adding the ice at each control volume in the surface normal direction.
Convection Effects in Three-dimensional Dendritic Growth
NASA Technical Reports Server (NTRS)
Lu, Yili; Beckermann, C.; Karma, A.
2003-01-01
A phase-field model is developed to simulate free dendritic growth coupled with fluid flow for a pure material in three dimensions. The preliminary results presented here illustrate the strong influence of convection on the three-dimensional (3D) dendrite growth morphology. The detailed knowledge of the flow and temperature fields in the melt around the dendrite from the simulations allows for a detailed understanding of the convection effects on dendritic growth.
Immiscible three-dimensional fingering in porous media: A weakly nonlinear analysis
NASA Astrophysics Data System (ADS)
Brandão, Rodolfo; Dias, Eduardo O.; Miranda, José A.
2018-03-01
We present a weakly nonlinear theory for the development of fingering instabilities that arise at the interface between two immiscible viscous fluids flowing radially outward in a uniform three-dimensional (3D) porous medium. By employing a perturbative second-order mode-coupling scheme, we investigate the linear stability of the system as well as the emergence of intrinsically nonlinear finger branching events in this 3D environment. At the linear stage, we find several differences between the 3D radial fingering and its 2D counterpart (usual Saffman-Taylor flow in radial Hele-Shaw cells). These include the algebraic growth of disturbances and the existence of regions of absolute stability for finite values of viscosity contrast and capillary number in the 3D system. On the nonlinear level, our main focus is to get analytical insight into the physical mechanism resulting in the occurrence of finger tip-splitting phenomena. In this context, we show that the underlying mechanism leading to 3D tip splitting relies on the coupling between the fundamental interface modes and their first harmonics. However, we find that in three dimensions, in contrast to the usual 2D fingering structures normally encountered in radial Hele-Shaw flows, tip splitting into three branches can also be observed.
NASA Astrophysics Data System (ADS)
Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo
2018-05-01
Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.
Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo
2018-05-01
Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.
Lu, Gui-Min; Yu, Jian-Guo
2018-01-01
Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study. PMID:29892347
Design principle for improved three-dimensional ac electro-osmotic pumps
NASA Astrophysics Data System (ADS)
Burch, Damian; Bazant, Martin Z.
2008-05-01
Three-dimensional (3D) ac electro-osmotic (ACEO) pumps have recently been developed that are much faster and more robust than previous planar designs. The basic idea is to create a “fluid conveyor belt” by placing opposing ACEO slip velocities at different heights. Current designs involve electrodes with electroplated steps, whose heights have been optimized in simulations and experiments. Here, we consider changing the boundary conditions—rather than the geometry—and predict that flow rates can be further doubled by fabricating 3D features with nonpolarizable materials. This amplifies the fluid conveyor belt by removing opposing flows on the vertical surfaces, and it increases the slip velocities that drive the flow.
Design principle for improved three-dimensional ac electro-osmotic pumps.
Burch, Damian; Bazant, Martin Z
2008-05-01
Three-dimensional (3D) ac electro-osmotic (ACEO) pumps have recently been developed that are much faster and more robust than previous planar designs. The basic idea is to create a "fluid conveyor belt" by placing opposing ACEO slip velocities at different heights. Current designs involve electrodes with electroplated steps, whose heights have been optimized in simulations and experiments. Here, we consider changing the boundary conditions-rather than the geometry-and predict that flow rates can be further doubled by fabricating 3D features with nonpolarizable materials. This amplifies the fluid conveyor belt by removing opposing flows on the vertical surfaces, and it increases the slip velocities that drive the flow.
Three-Dimensional Effects in Multi-Element High Lift Computations
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.; LeeReusch, Elizabeth M.; Watson, Ralph D.
2003-01-01
In an effort to discover the causes for disagreement between previous two-dimensional (2-D) computations and nominally 2-D experiment for flow over the three-element McDonnell Douglas 30P-30N airfoil configuration at high lift, a combined experimental/CFD investigation is described. The experiment explores several different side-wall boundary layer control venting patterns, documents venting mass flow rates, and looks at corner surface flow patterns. The experimental angle of attack at maximum lift is found to be sensitive to the side-wall venting pattern: a particular pattern increases the angle of attack at maximum lift by at least 2 deg. A significant amount of spanwise pressure variation is present at angles of attack near maximum lift. A CFD study using three-dimensional (3-D) structured-grid computations, which includes the modeling of side-wall venting, is employed to investigate 3-D effects on the flow. Side-wall suction strength is found to affect the angle at which maximum lift is predicted. Maximum lift in the CFD is shown to be limited by the growth of an off-body corner flow vortex and consequent increase in spanwise pressure variation and decrease in circulation. The 3-D computations with and without wall venting predict similar trends to experiment at low angles of attack, but either stall too early or else overpredict lift levels near maximum lift by as much as 5%. Unstructured-grid computations demonstrate that mounting brackets lower the lift levels near maximum lift conditions.
Identifying three-dimensional nested groundwater flow systems in a Tóthian basin
NASA Astrophysics Data System (ADS)
Wang, Xu-Sheng; Wan, Li; Jiang, Xiao-Wei; Li, Hailong; Zhou, Yangxiao; Wang, Junzhi; Ji, Xiaohui
2017-10-01
Nested groundwater flow systems have been revealed in Tóth's theory as the structural property of basin-scale groundwater circulation but were only well known with two-dimensional (2D) profile models. The method of searching special streamlines across stagnation points for partitioning flow systems, which has been successfully applied in the 2D models, has never been implemented for three-dimensional (3D) Tóthian basins because of the difficulty in solving the dual stream functions. Alternatively, a new method is developed to investigate 3D nested groundwater flow systems without determination of stagnation points. Connective indices are defined to quantify the connection between individual recharge and discharge zones along streamlines. Groundwater circulation cells (GWCCs) are identified according to the distribution of the connective indices and then grouped into local, intermediate and regional flow systems. This method requires existing solution of the flow velocity vector and is implemented via particle tracking technique. It is applied in a hypothetical 3D Tóthian basin with an analytical solution of the flow field and in a real-world basin with a numerical modeling approach. Different spatial patterns of flow systems compared to 2D profile models are found. The outcrops boundaries of GWCCs on water table may significantly deviate from and are not parallel to the nearby water table divides. Topological network is proposed to represent the linked recharge-discharge zones through closed and open GWCCs. Sensitivity analysis indicates that the development of GWCCs depends on the basin geometry, hydraulic parameters and water table shape.
Theoretical Analysis of Novel Quasi-3D Microscopy of Cell Deformation
Qiu, Jun; Baik, Andrew D.; Lu, X. Lucas; Hillman, Elizabeth M. C.; Zhuang, Zhuo; Guo, X. Edward
2012-01-01
A novel quasi-three-dimensional (quasi-3D) microscopy technique has been developed to enable visualization of a cell under dynamic loading in two orthogonal planes simultaneously. The three-dimensional (3D) dynamics of the mechanical behavior of a cell under fluid flow can be examined at a high temporal resolution. In this study, a numerical model of a fluorescently dyed cell was created in 3D space, and the cell was subjected to uniaxial deformation or unidirectional fluid shear flow via finite element analysis (FEA). Therefore, the intracellular deformation in the simulated cells was exactly prescribed. Two-dimensional fluorescent images simulating the quasi-3D technique were created from the cell and its deformed states in 3D space using a point-spread function (PSF) and a convolution operation. These simulated original and deformed images were processed by a digital image correlation technique to calculate quasi-3D-based intracellular strains. The calculated strains were compared to the prescribed strains, thus providing a theoretical basis for the measurement of the accuracy of quasi-3D and wide-field microscopy-based intracellular strain measurements against the true 3D strains. The signal-to-noise ratio (SNR) of the simulated quasi-3D images was also modulated using additive Gaussian noise, and a minimum SNR of 12 was needed to recover the prescribed strains using digital image correlation. Our computational study demonstrated that quasi-3D strain measurements closely recovered the true 3D strains in uniform and fluid flow cellular strain states to within 5% strain error. PMID:22707985
Performance and analysis of a three-dimensional nonorthogonal laser Doppler anemometer
NASA Technical Reports Server (NTRS)
Snyder, P. K.; Orloff, K. L.; Aoyagi, K.
1981-01-01
A three dimensional laser Doppler anemometer with a nonorthogonal third axis coupled by 14 deg was designed and tested. A highly three dimensional flow field of a jet in a crossflow was surveyed to test the three dimensional capability of the instrument. Sample data are presented demonstrating the ability of the 3D LDA to resolve three orthogonal velocity components. Modifications to the optics, signal processing electronics, and data reduction methods are suggested.
Petersson, Sven; Dyverfeldt, Petter; Sigfridsson, Andreas; Lantz, Jonas; Carlhäll, Carl-Johan; Ebbers, Tino
2016-03-01
Evaluate spiral three-dimensional (3D) phase contrast MRI for the assessment of turbulence and velocity in stenotic flow. A-stack-of-spirals 3D phase contrast MRI sequence was evaluated in vitro against a conventional Cartesian sequence. Measurements were made in a flow phantom with a 75% stenosis. Both spiral and Cartesian imaging were performed using different scan orientations and flow rates. Volume flow rate, maximum velocity and turbulent kinetic energy (TKE) were computed for both methods. Moreover, the estimated TKE was compared with computational fluid dynamics (CFD) data. There was good agreement between the turbulent kinetic energy from the spiral, Cartesian and CFD data. Flow rate and maximum velocity from the spiral data agreed well with Cartesian data. As expected, the short echo time of the spiral sequence resulted in less prominent displacement artifacts compared with the Cartesian sequence. However, both spiral and Cartesian flow rate estimates were sensitive to displacement when the flow was oblique to the encoding directions. Spiral 3D phase contrast MRI appears favorable for the assessment of stenotic flow. The spiral sequence was more than three times faster and less sensitive to displacement artifacts when compared with a conventional Cartesian sequence. © 2015 Wiley Periodicals, Inc.
Duct flow nonuniformities: Effect of struts in SSME HGM II(+)
NASA Technical Reports Server (NTRS)
Burke, Roger
1988-01-01
A numerical study, using the INS3D flow solver, of laminar and turbulent flow around a two dimensional strut, and three dimensional flow around a strut in an annulus is presented. A multi-block procedure was used to calculate two dimensional laminar flow around two struts in parallel, with each strut represented by one computational block. Single block calculations were performed for turbulent flow around a two dimensional strut, using a Baldwin-Lomax turbulence model to parameterize the turbulent shear stresses. A modified Baldwin-Lomax model was applied to the case of a three dimensional strut in an annulus. The results displayed the essential features of wing-body flows, including the presence of a horseshoe vortex system at the junction of the strut and the lower annulus surface. A similar system was observed at the upper annulus surface. The test geometries discussed were useful in developing the capability to perform multiblock calculations, and to simulate turbulent flow around obstructions located between curved walls. Both of these skills will be necessary to model the three dimensional flow in the strut assembly of the SSME. Work is now in progress on performing a three dimensional two block turbulent calculation of the flow in the turnaround duct (TAD) and strut/fuel bowl juncture region.
Leading edge film cooling effects on turbine blade heat transfer
NASA Technical Reports Server (NTRS)
Garg, Vijay K.; Gaugler, Raymond E.
1995-01-01
An existing three dimensional Navier-Stokes code, modified to include film cooling considerations, has been used to study the effect of spanwise pitch of shower-head holes and coolant to mainstream mass flow ratio on the adiabatic effectiveness and heat transfer coefficient on a film-cooled turbine vane. The mainstream is akin to that under real engine conditions with stagnation temperature = 1900 K and stagnation pressure = 3 MPa. It is found that with the coolant to mainstream mass flow ratio fixed, reducing P, the spanwise pitch for shower-head holes, from 7.5 d to 3.0 d, where d is the hole diameter, increases the average effectiveness considerably over the blade surface. However, when P/d= 7.5, increasing the coolant mass flow increases the effectiveness on the pressure surface but reduces it on the suction surface due to coolant jet lift-off. For P/d = 4.5 or 3.0, such an anomaly does not occur within the range of coolant to mainstream mass flow ratios analyzed. In all cases, adiabatic effectiveness and heat transfer coefficient are highly three-dimensional.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui
2017-09-03
Mixing, thermal-stratification, and mass transport phenomena in large pools or enclosures play major roles for the safety of reactor systems. Depending on the fidelity requirement and computational resources, various modeling methods, from the 0-D perfect mixing model to 3-D Computational Fluid Dynamics (CFD) models, are available. Each is associated with its own advantages and shortcomings. It is very desirable to develop an advanced and efficient thermal mixing and stratification modeling capability embedded in a modern system analysis code to improve the accuracy of reactor safety analyses and to reduce modeling uncertainties. An advanced system analysis tool, SAM, is being developedmore » at Argonne National Laboratory for advanced non-LWR reactor safety analysis. While SAM is being developed as a system-level modeling and simulation tool, a reduced-order three-dimensional module is under development to model the multi-dimensional flow and thermal mixing and stratification in large enclosures of reactor systems. This paper provides an overview of the three-dimensional finite element flow model in SAM, including the governing equations, stabilization scheme, and solution methods. Additionally, several verification and validation tests are presented, including lid-driven cavity flow, natural convection inside a cavity, laminar flow in a channel of parallel plates. Based on the comparisons with the analytical solutions and experimental results, it is demonstrated that the developed 3-D fluid model can perform very well for a wide range of flow problems.« less
Del Junco, Michael; Yoon, Renai; Okhunov, Zhamshid; Abedi, Garen; Hwang, Christina; Dolan, Benjamin; Landman, Jaime
2015-09-01
We compared the flow characteristics of novel three-dimensional (3D) printed ureteral stents with four conventional double-pigtail stents in an ex vivo porcine model. In six ex vivo porcine urinary systems with kidneys and ureters intact, we deployed a 5F occlusion catheter in an interpolar calix. We tested each system with antegrade irrigation with a 0.9% saline bag placed 35 cm above the renal pelvis. We evaluated four standard stents (6F Universa® Soft, 7F Percuflex,™ 7/10F Applied Endopyelotomy, 8.5F Filiform Double Pigtail) and compared them with a 9F 3D printed prototype stent. For each stent, we measured the total, extraluminal, and intraluminal flow rates. The mean total flow rates for 3D printed stents were significantly higher than the 6F, 7F, and 7/10F stents (P<0.05). No significant difference was seen in the total flow rate for the 3D printed stent and the 8.5F stent. The mean extraluminal flow rates for the 3D stents were similar to those of 7F stents, but significantly lower than 6F stents (P<0.001) and 8.5F stents (P<0.05) and higher than 7/10F stents (P<0.001). The mean intraluminal flow rates for the 3D printed stents were significantly higher than the 6F, 7F, 7/10F, and 8.5F stents (P<0.05). In this pilot study, 3D printed stents manifested a mean total flow rate comparable to the flow rates of contemporary stents. Continued advances in technology and material may permit functionally feasible 3D printed ureteral stents.
Vorticity and helicity decompositions and dynamics with real Schur form of the velocity gradient
NASA Astrophysics Data System (ADS)
Zhu, Jian-Zhou
2018-03-01
The real Schur form (RSF) of a generic velocity gradient field ∇u is exploited to expose the structures of flows, in particular, our field decomposition resulting in two vorticities with only mutual linkage as the topological content of the global helicity (accordingly decomposed into two equal parts). The local transformation to the RSF may indicate alternative (co)rotating frame(s) for specifying the objective argument(s) of the constitutive equation. When ∇u is uniformly of RSF in a fixed Cartesian coordinate frame, i.e., ux = ux(x, y) and uy = uy(x, y), but uz = uz(x, y, z), the model, with the decomposed vorticities both frozen-in to u, is for two-component-two-dimensional-coupled-with-one-component-three-dimensional flows in between two-dimensional-three-component (2D3C) and fully three-dimensional-three-component ones and may help curing the pathology in the helical 2D3C absolute equilibrium, making the latter effectively work in more realistic situations.
3D Flow visualization in virtual reality
NASA Astrophysics Data System (ADS)
Pietraszewski, Noah; Dhillon, Ranbir; Green, Melissa
2017-11-01
By viewing fluid dynamic isosurfaces in virtual reality (VR), many of the issues associated with the rendering of three-dimensional objects on a two-dimensional screen can be addressed. In addition, viewing a variety of unsteady 3D data sets in VR opens up novel opportunities for education and community outreach. In this work, the vortex wake of a bio-inspired pitching panel was visualized using a three-dimensional structural model of Q-criterion isosurfaces rendered in virtual reality using the HTC Vive. Utilizing the Unity cross-platform gaming engine, a program was developed to allow the user to control and change this model's position and orientation in three-dimensional space. In addition to controlling the model's position and orientation, the user can ``scroll'' forward and backward in time to analyze the formation and shedding of vortices in the wake. Finally, the user can toggle between different quantities, while keeping the time step constant, to analyze flow parameter relationships at specific times during flow development. The information, data, or work presented herein was funded in part by an award from NYS Department of Economic Development (DED) through the Syracuse Center of Excellence.
Computation of Reacting Flows in Combustion Processes
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Chen, Kuo-Huey
1997-01-01
The main objective of this research was to develop an efficient three-dimensional computer code for chemically reacting flows. The main computer code developed is ALLSPD-3D. The ALLSPD-3D computer program is developed for the calculation of three-dimensional, chemically reacting flows with sprays. The ALL-SPD code employs a coupled, strongly implicit solution procedure for turbulent spray combustion flows. A stochastic droplet model and an efficient method for treatment of the spray source terms in the gas-phase equations are used to calculate the evaporating liquid sprays. The chemistry treatment in the code is general enough that an arbitrary number of reaction and species can be defined by the users. Also, it is written in generalized curvilinear coordinates with both multi-block and flexible internal blockage capabilities to handle complex geometries. In addition, for general industrial combustion applications, the code provides both dilution and transpiration cooling capabilities. The ALLSPD algorithm, which employs the preconditioning and eigenvalue rescaling techniques, is capable of providing efficient solution for flows with a wide range of Mach numbers. Although written for three-dimensional flows in general, the code can be used for two-dimensional and axisymmetric flow computations as well. The code is written in such a way that it can be run in various computer platforms (supercomputers, workstations and parallel processors) and the GUI (Graphical User Interface) should provide a user-friendly tool in setting up and running the code.
NASA Astrophysics Data System (ADS)
Shen, Yi; Diplas, Panayiotis
2008-01-01
SummaryComplex flow patterns generated by irregular channel topography, such as boulders, submerged large woody debris, riprap and spur dikes, provide unique habitat for many aquatic organisms. Numerical modeling of the flow structures surrounding these obstructions is challenging, yet it represents an important tool for aquatic habitat assessment. In this study, the ability of two- (2-D) and three-dimensional (3-D) computational fluid dynamics models to reproduce these localized complex flow features is examined. The 3-D model is validated with laboratory data obtained from the literature for the case of a flow around a hemisphere under emergent and submerged conditions. The performance of the 2-D and 3-D models is then evaluated by comparing the numerical results with field measurements of flow around several boulders located at a reach of the Smith River, a regulated mountainous stream, obtained at base and peak flows. Close agreement between measured values and the velocity profiles predicted by the two models is obtained outside the wakes behind the hemisphere and boulders. However, the results suggest that in the vicinity of these obstructions the 3-D model is better suited for reproducing the circulation flow behavior at both low and high discharges. Application of the 2-D and 3-D models to meso-scale stream flows of ecological significance is furthermore demonstrated by using a recently developed spatial hydraulic metric to quantify flow complexity surrounding a number of brown trout spawning sites. It is concluded that the 3-D model can provide a much more accurate description of the heterogeneous velocity patterns favored by many aquatic species over a broad range of flows, especially under deep flow conditions when the various obstructions are submerged. Issues pertaining to selection of appropriate models for a variety of flow regimes and potential implication of the 3-D model on the development of better habitat suitability criteria are discussed. The research suggests ways of improving the modeling practices for ecosystem management studies.
2D and 3D impellers of centrifugal compressors - advantages, shortcomings and fields of application
NASA Astrophysics Data System (ADS)
Galerkin, Y.; Reksrin, A.; Drozdov, A.
2017-08-01
The simplified equations are presented for calculation of inlet dimensions and velocity values for impellers with three-dimensional blades located in axial and radial part of an impeller (3D impeller) and with two-dimensional blades in radial part (2D). Considerations concerning loss coefficients of 3D and 2D impellers at different design flow rate coefficients are given. The tendency of reduction of potential advantages of 3D impellers at medium and small design flow rate coefficients is shown. The data on high-efficiency compressors and stages with 2D impellers coefficients designed by the authors are presented. The reached efficiency level of 88 - 90% makes further increase of efficiency by the application of 3D impellers doubtful. CFD-analysis of stage candidates with medium flow rate coefficient with 3D and 2D impellers revealed specific problems. In some cases the constructive advantage of a 2D impeller is smaller hub ratio. It makes possible the reaching of higher efficiency. From other side, there is a positive tendency of gas turbine drive RPM increase. 3D impellers have no alternative for stages with high flow rate coefficients matching high-speed drive.
Voss, Clifford I.; Simmons, Craig T.; Robinson, Neville I.
2010-01-01
This benchmark for three-dimensional (3D) numerical simulators of variable-density groundwater flow and solute or energy transport consists of matching simulation results with the semi-analytical solution for the transition from one steady-state convective mode to another in a porous box. Previous experimental and analytical studies of natural convective flow in an inclined porous layer have shown that there are a variety of convective modes possible depending on system parameters, geometry and inclination. In particular, there is a well-defined transition from the helicoidal mode consisting of downslope longitudinal rolls superimposed upon an upslope unicellular roll to a mode consisting of purely an upslope unicellular roll. Three-dimensional benchmarks for variable-density simulators are currently (2009) lacking and comparison of simulation results with this transition locus provides an unambiguous means to test the ability of such simulators to represent steady-state unstable 3D variable-density physics.
Generalized thick strip modelling for vortex-induced vibration of long flexible cylinders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, Y., E-mail: ybao@sjtu.edu.cn; Department of Aeronautics, Imperial College London, South Kensington Campus, London; Palacios, R., E-mail: r.palacios@imperial.ac.uk
2016-09-15
We propose a generalized strip modelling method that is computationally efficient for the VIV prediction of long flexible cylinders in three-dimensional incompressible flow. In order to overcome the shortcomings of conventional strip-theory-based 2D models, the fluid domain is divided into “thick” strips, which are sufficiently thick to locally resolve the small scale turbulence effects and three dimensionality of the flow around the cylinder. An attractive feature of the model is that we independently construct a three-dimensional scale resolving model for individual strips, which have local spanwise scale along the cylinder's axial direction and are only coupled through the structural modelmore » of the cylinder. Therefore, this approach is able to cover the full spectrum for fully resolved 3D modelling to 2D strip theory. The connection between these strips is achieved through the calculation of a tensioned beam equation, which is used to represent the dynamics of the flexible body. In the limit, however, a single “thick” strip would fill the full 3D domain. A parallel Fourier spectral/hp element method is employed to solve the 3D flow dynamics in the strip-domain, and then the VIV response prediction is achieved through the strip–structure interactions. Numerical tests on both laminar and turbulent flows as well as the comparison against the fully resolved DNS are presented to demonstrate the applicability of this approach.« less
4D Magnetic Resonance Velocimetry in a 3D printed brain aneurysm
NASA Astrophysics Data System (ADS)
Amili, Omid; Schiavazzi, Daniele; Coletti, Filippo
2016-11-01
Cerebral aneurysms are of great clinical importance. It is believed that hemodynamics play a critical role in the development, growth, and rupture of brain arteries with such condition. The flow structure in the aneurysm sac is complex, unsteady, and three-dimensional. Therefore the time-resolved measurement of the three-dimensional three-component velocity field is crucial to predict the clinical outcome. In this study magnetic resonance velocimetry is used to assess the fluid dynamics inside a 3D printed model of a giant intracranial aneurysm. We reach sub-millimeter resolution while resolving sixteen instances within the cardiac cycle. The physiological flow waveform is imposed using an in-house built pump in a flow circuit where the cardiovascular impedance is matched. The flow evolution over time is reconstructed in detail. The complex flow structure is characterized by vortical and helical motions that reside in the aneurysm for most part of the cycle. The 4D pressured distribution is also reconstructed from the velocity field. The present case study was used in a previous CFD challenge, therefore these results may provide useful experimental comparison for simulations performed by other research groups.
Estimating Aeroheating of a 3D Body Using a 2D Flow Solver
NASA Technical Reports Server (NTRS)
Scott, Carl D.; Brykina, Irina G.
2005-01-01
A method for rapidly estimating the aeroheating, shear stress, and other properties of hypersonic flow about a three-dimensional (3D) blunt body has been devised. First, the geometry of the body is specified in Cartesian coordinates. The surface of the body is then described by its derivatives, coordinates, and principal curvatures. Next, previously relatively simple equations are used to find, for each desired combination of angle of attack and meridional angle, a scaling factor and the shape of an equivalent axisymmetric body. These factors and equivalent shapes are entered as inputs into a previously developed computer program that solves the two-dimensional (2D) equations of flow in a non-equilibrium viscous shock layer (VSL) about an axisymmetric body. The coordinates in the output of the VSL code are transformed back to the Cartesian coordinates of the 3D body, so that computed flow quantities can be registered with locations in the 3D flow field of interest. In tests in which the 3D bodies were elliptic paraboloids, the estimates obtained by use of this method were found to agree well with solutions of 3D, finite-rate-chemistry, thin-VSL equations for a catalytic body.
Lagrangian transport near perturbed periodic lines in three-dimensional unsteady flows
NASA Astrophysics Data System (ADS)
Speetjens, Michel
2015-11-01
Periodic lines formed by continuous strings of periodic points are key organizing entities in the Lagrangian flow topology of certain three-dimensional (3D) time-periodic flows. Such lines generically consist of elliptic and/or hyperbolic points and thus give rise to 3D flow topologies made up of families of concentric closed trajectories embedded in chaotic regions. Weak perturbation destroys the periodic lines and causes said trajectories to coalesce into families of concentric tubes. However, emergence of isolated periodic points near the disintegrating periodic lines and/or partitioning of the original lines into elliptic and hyperbolic segments interrupt the tube formation. This yields incomplete tubes that interact with the (chaotic) environment through their open ends, resulting in intricate and essentially 3D flow topologies These phenomena have been observed in various realistic flows yet the underlying mechanisms are to date only partially understood. This study deepens insight into the (perturbed) Lagrangian dynamics of these flows by way of a linearized representation of the equations of motion near the periodic lines. Predictions on the basis of this investigation are in full (qualitative) agreement with observed behavior in the actual flows
NASA Technical Reports Server (NTRS)
Usab, William J., Jr.; Jiang, Yi-Tsann
1991-01-01
The objective of the present research is to develop a general solution adaptive scheme for the accurate prediction of inviscid quasi-three-dimensional flow in advanced compressor and turbine designs. The adaptive solution scheme combines an explicit finite-volume time-marching scheme for unstructured triangular meshes and an advancing front triangular mesh scheme with a remeshing procedure for adapting the mesh as the solution evolves. The unstructured flow solver has been tested on a series of two-dimensional airfoil configurations including a three-element analytic test case presented here. Mesh adapted quasi-three-dimensional Euler solutions are presented for three spanwise stations of the NASA rotor 67 transonic fan. Computed solutions are compared with available experimental data.
NASA Technical Reports Server (NTRS)
Hudy, Laura M.; Naguib, Ahmed M.; Humphreys, William M.; Bartram, Scott M.
2005-01-01
Planar Particle Image Velocimetry measurements were obtained in the separating/reattaching flow region downstream of an axisymmetric backward-facing step. Data were acquired for a two-dimensional (2D) separating boundary layer at five different Reynolds numbers based on step height (Re(sub h)), spanning 5900-33000, and for a three-dimensional (3D) separating boundary layer at Re(sub h) = 5980 and 8081. Reynolds number effects were investigated in the 2D cases using mean-velocity field, streamwise and wall-normal turbulent velocity, and Reynolds stress statistics. Results show that both the reattachment length (x(sub r)) and the secondary separation point are Reynolds number dependent. The reattachment length increased with rising Re(sub h) while the secondary recirculation region decreased in size. These and other Re(sub h) effects were interpreted in terms of changes in the separating boundary layer thickness and wall-shear stress. On the other hand, in the 3D case, it was found that the imposed cross-flow component was relatively weak in comparison to the streamwise component. As a result, the primary influences of three dimensionality only affected the near-separation region rather than the entire separation bubble.
A novel potential/viscous flow coupling technique for computing helicopter flow fields
NASA Technical Reports Server (NTRS)
Summa, J. Michael; Strash, Daniel J.; Yoo, Sungyul
1993-01-01
The primary objective of this work was to demonstrate the feasibility of a new potential/viscous flow coupling procedure for reducing computational effort while maintaining solution accuracy. This closed-loop, overlapped velocity-coupling concept has been developed in a new two-dimensional code, ZAP2D (Zonal Aerodynamics Program - 2D), a three-dimensional code for wing analysis, ZAP3D (Zonal Aerodynamics Program - 3D), and a three-dimensional code for isolated helicopter rotors in hover, ZAPR3D (Zonal Aerodynamics Program for Rotors - 3D). Comparisons with large domain ARC3D solutions and with experimental data for a NACA 0012 airfoil have shown that the required domain size can be reduced to a few tenths of a percent chord for the low Mach and low angle of attack cases and to less than 2-5 chords for the high Mach and high angle of attack cases while maintaining solution accuracies to within a few percent. This represents CPU time reductions by a factor of 2-4 compared with ARC2D. The current ZAP3D calculation for a rectangular plan-form wing of aspect ratio 5 with an outer domain radius of about 1.2 chords represents a speed-up in CPU time over the ARC3D large domain calculation by about a factor of 2.5 while maintaining solution accuracies to within a few percent. A ZAPR3D simulation for a two-bladed rotor in hover with a reduced grid domain of about two chord lengths was able to capture the wake effects and compared accurately with the experimental pressure data. Further development is required in order to substantiate the promise of computational improvements due to the ZAPR3D coupling concept.
Pirat, Bahar; Little, Stephen H; Igo, Stephen R; McCulloch, Marti; Nosé, Yukihiko; Hartley, Craig J; Zoghbi, William A
2009-03-01
The proximal isovelocity surface area (PISA) method is useful in the quantitation of aortic regurgitation (AR). We hypothesized that actual measurement of PISA provided with real-time 3-dimensional (3D) color Doppler yields more accurate regurgitant volumes than those estimated by 2-dimensional (2D) color Doppler PISA. We developed a pulsatile flow model for AR with an imaging chamber in which interchangeable regurgitant orifices with defined shapes and areas were incorporated. An ultrasonic flow meter was used to calculate the reference regurgitant volumes. A total of 29 different flow conditions for 5 orifices with different shapes were tested at a rate of 72 beats/min. 2D PISA was calculated as 2pi r(2), and 3D PISA was measured from 8 equidistant radial planes of the 3D PISA. Regurgitant volume was derived as PISA x aliasing velocity x time velocity integral of AR/peak AR velocity. Regurgitant volumes by flow meter ranged between 12.6 and 30.6 mL/beat (mean 21.4 +/- 5.5 mL/beat). Regurgitant volumes estimated by 2D PISA correlated well with volumes measured by flow meter (r = 0.69); however, a significant underestimation was observed (y = 0.5x + 0.6). Correlation with flow meter volumes was stronger for 3D PISA-derived regurgitant volumes (r = 0.83); significantly less underestimation of regurgitant volumes was seen, with a regression line close to identity (y = 0.9x + 3.9). Direct measurement of PISA is feasible, without geometric assumptions, using real-time 3D color Doppler. Calculation of aortic regurgitant volumes with 3D color Doppler using this methodology is more accurate than conventional 2D method with hemispheric PISA assumption.
CFD-DEM study of effect of bed thickness for bubbling fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tingwen, Li; Gopalakrishnan, Pradeep; Garg, Rahul
2011-10-01
The effect of bed thickness in rectangular fluidized beds is investigated through the CFD–DEM simulations of small-scale systems. Numerical results are compared for bubbling fluidized beds of various bed thicknesses with respect to particle packing, bed expansion, bubble behavior, solids velocities, and particle kinetic energy. Good two-dimensional (2D) flow behavior is observed in the bed having a thickness of up to 20 particle diameters. However, a strong three-dimensional (3D) flow behavior is observed in beds with a thickness of 40 particle diameters, indicating the transition from 2D flow to 3D flow within the range of 20–40 particle diameters. Comparison ofmore » velocity profiles near the walls and at the center of the bed shows significant impact of the front and back walls on the flow hydrodynamics of pseudo-2D fluidized beds. Hence, for quantitative comparison with experiments in pseudo-2D columns, the effect of walls has to be accounted for in numerical simulations.« less
Perfusion flow bioreactor for 3D in situ imaging: investigating cell/biomaterials interactions.
Stephens, J S; Cooper, J A; Phelan, F R; Dunkers, J P
2007-07-01
The capability to image real time cell/material interactions in a three-dimensional (3D) culture environment will aid in the advancement of tissue engineering. This paper describes a perfusion flow bioreactor designed to hold tissue engineering scaffolds and allow for in situ imaging using an upright microscope. The bioreactor can hold a scaffold of desirable thickness for implantation (>2 mm). Coupling 3D culture and perfusion flow leads to the creation of a more biomimetic environment. We examined the ability of the bioreactor to maintain cell viability outside of an incubator environment (temperature and pH stability), investigated the flow features of the system (flow induced shear stress), and determined the image quality in order to perform time-lapsed imaging of two-dimensional (2D) and 3D cell culture. In situ imaging was performed on 2D and 3D, culture samples and cell viability was measured under perfusion flow (2.5 mL/min, 0.016 Pa). The visualization of cell response to their environment, in real time, will help to further elucidate the influences of biomaterial surface features, scaffold architectures, and the influence of flow induced shear on cell response and growth of new tissue. (c) 2006 Wiley Periodicals, Inc.
Three-Dimensional Modeling of Flow and Thermochemical Behavior in a Blast Furnace
NASA Astrophysics Data System (ADS)
Shen, Yansong; Guo, Baoyu; Chew, Sheng; Austin, Peter; Yu, Aibing
2015-02-01
An ironmaking blast furnace (BF) is a complex high-temperature moving bed reactor involving counter-, co- and cross-current flows of gas, liquid and solid, coupled with heat and mass exchange and chemical reactions. Two-dimensional (2D) models were widely used for understanding its internal state in the past. In this paper, a three-dimensional (3D) CFX-based mathematical model is developed for describing the internal state of a BF in terms of multiphase flow and the related thermochemical behavior, as well as process indicators. This model considers the intense interactions between gas, solid and liquid phases, and also their competition for the space. The model is applied to a BF covering from the burden surface at the top to the liquid surface in the hearth, where the raceway cavity is considered explicitly. The results show that the key in-furnace phenomena such as flow/temperature patterns and component distributions of solid, gas and liquid phases can be described and characterized in different regions inside the BF, including the gas and liquids flow circumferentially over the 3D raceway surface. The in-furnace distributions of key performance indicators such as reduction degree and gas utilization can also be predicted. This model offers a cost-effective tool to understand and control the complex BF flow and performance.
Impact of local diffusion on macroscopic dispersion in three-dimensional porous media
NASA Astrophysics Data System (ADS)
Dartois, Arthur; Beaudoin, Anthony; Huberson, Serge
2018-02-01
While macroscopic longitudinal and transverse dispersion in three-dimensional porous media has been simulated previously mostly under purely advective conditions, the impact of diffusion on macroscopic dispersion in 3D remains an open question. Furthermore, both in 2D and 3D, recurring difficulties have been encountered due to computer limitation or analytical approximation. In this work, we use the Lagrangian velocity covariance function and the temporal derivative of second-order moments to study the influence of diffusion on dispersion in highly heterogeneous 2D and 3D porous media. The first approach characterizes the correlation between the values of Eulerian velocity components sampled by particles undergoing diffusion at two times. The second approach allows the estimation of dispersion coefficients and the analysis of their behaviours as functions of diffusion. These two approaches allowed us to reach new results. The influence of diffusion on dispersion seems to be globally similar between highly heterogeneous 2D and 3D porous media. Diffusion induces a decrease in the dispersion in the direction parallel to the flow direction and an increase in the dispersion in the direction perpendicular to the flow direction. However, the amplification of these two effects with the permeability variance is clearly different between 2D and 3D. For the direction parallel to the flow direction, the amplification is more important in 3D than in 2D. It is reversed in the direction perpendicular to the flow direction.
Lombardero, Martin; Henquin, Ruth; Perea, Gabriel; Corneli, Mariana; Izurieta, Carlos
2017-01-01
Quantification of mitral regurgitation (MR) by two-dimensional (2D) transthoracic echocardiography (TTE) is based on the analysis of the proximal flow convergence (PFC) and the "vena contracta" (VC). This method assumes geometries and can be misleading. In contrast, three-dimensional (3D) echocardiography directly measures flow volumes and does not assume geometries, which allows for more accurate MR evaluation. To report the 3D transesophageal echocardiography (3DTEE) feasibility for MR quantification and evaluate its concordance with 2D echo. Twenty-seven consecutive patients undergoing 2D and 3DTEE for presurgical MR evaluation were studied prospectively. MR quantification was performed by classical 2D methods based on PFC. Diameters of the VC in orthogonal planes by 3DTEE were estimated, establishing the VC sphericity index as well as VC area (VCA) by direct planimetry. In case of multiple jets, we calculated the sum of the VCA. MR assessment by 3DTEE was feasible. An adequate concordance between VC measurements by 2D methods (TTE and TEE) was observed; however, there was a poor correlation when compared with 3DTEE. The sphericity index of the VC was: 2.08 (±0. 72), reflecting a noncircular VC. 3DTEE is a feasible method for the assessment of the MR true morphology, allowing a better quantification of MR without assuming any geometry. This method revealed the presence of multiple jets, potentially improving MR evaluation and leading to changes in medical decision when compared to 2D echo assessment. © 2016, Wiley Periodicals, Inc.
Software Aids In Graphical Depiction Of Flow Data
NASA Technical Reports Server (NTRS)
Stegeman, J. D.
1995-01-01
Interactive Data Display System (IDDS) computer program is graphical-display program designed to assist in visualization of three-dimensional flow in turbomachinery. Grid and simulation data files in PLOT3D format required for input. Able to unwrap volumetric data cone associated with centrifugal compressor and display results in easy-to-understand two- or three-dimensional plots. IDDS provides majority of visualization and analysis capability for Integrated Computational Fluid Dynamics and Experiment (ICE) system. IDDS invoked from any subsystem, or used as stand-alone package of display software. Generates contour, vector, shaded, x-y, and carpet plots. Written in C language. Input file format used by IDDS is that of PLOT3D (COSMIC item ARC-12782).
Three-dimensional low Reynolds number flows with a free surface
NASA Technical Reports Server (NTRS)
Degani, D.; Gutfinger, C.
1977-01-01
The two-dimensional leveling problem (Degani, Gutfinger, 1976) is extended to three dimensions in the case where the flow Re number is very low and attention is paid to the free surface boundary condition with surface tension effects included. The no-slip boundary condition on the wall is observed. The numerical solution falls back on the Marker and Cell (MAC) method (Harlow and Welch, 1965) with the computation region divided into a finite number of stationary rectangular cells (or boxes in the 3-D case) and fluid flow traverses the cells (or boxes).
Chen, Tien-En; Kwon, Susan H; Enriquez-Sarano, Maurice; Wong, Benjamin F; Mankad, Sunil V
2013-10-01
Three-dimensional (3D) color Doppler echocardiography (CDE) provides directly measured vena contracta area (VCA). However, a large comprehensive 3D color Doppler echocardiographic study with sufficiently severe tricuspid regurgitation (TR) to verify its value in determining TR severity in comparison with conventional quantitative and semiquantitative two-dimensional (2D) parameters has not been previously conducted. The aim of this study was to examine the utility and feasibility of directly measured VCA by 3D transthoracic CDE, its correlation with 2D echocardiographic measurements of TR, and its ability to determine severe TR. Ninety-two patients with mild or greater TR prospectively underwent 2D and 3D transthoracic echocardiography. Two-dimensional evaluation of TR severity included the ratio of jet area to right atrial area, vena contracta width, and quantification of effective regurgitant orifice area using the flow convergence method. Full-volume breath-hold 3D color data sets of TR were obtained using a real-time 3D echocardiography system. VCA was directly measured by 3D-guided direct planimetry of the color jet. Subgroup analysis included the presence of a pacemaker, eccentricity of the TR jet, ellipticity of the orifice shape, underlying TR mechanism, and baseline rhythm. Three-dimensional VCA correlated well with effective regurgitant orifice area (r = 0.62, P < .0001), moderately with vena contracta width (r = 0.42, P < .0001), and weakly with jet area/right atrial area ratio. Subgroup analysis comparing 3D VCA with 2D effective regurgitant orifice area demonstrated excellent correlation for organic TR (r = 0.86, P < .0001), regular rhythm (r = 0.78, P < .0001), and circular orifice (r = 0.72, P < .0001) but poor correlation in atrial fibrillation rhythm (r = 0.23, P = .0033). Receiver operating characteristic curve analysis for 3D VCA demonstrated good accuracy for severe TR determination. Three-dimensional VCA measurement is feasible and obtainable in the majority of patients with mild or greater TR. Three-dimensional VCA measurement is also feasible in patients with atrial fibrillation but performed poorly even with <20% cycle length variation. Three-dimensional VCA has good cutoff accuracy in determining severe TR. This simple, straightforward 3D color Doppler measurement shows promise as an alternative for the quantification of TR. Copyright © 2013 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.
Forte, A.M.; Woodward, R.L.
1997-01-01
Joint inversions of seismic and geodynamic data are carried out in which we simultaneously constrain global-scale seismic heterogeneity in the mantle as well as the amplitude of vertical mantle flow across the 670 km seismic discontinuity. These inversions reveal the existence of a family of three-dimensional (3-D) mantle models that satisfy the data while at the same time yielding predictions of layered mantle flow. The new 3-D mantle models we obtain demonstrate that the buoyancy forces due to the undulations of the 670 km phase-change boundary strongly inhibit the vertical flow between the upper and lower mantle. The strong stabilizing effect of the 670 km topography also has an important impact on the predicted dynamic topography of the Earth's solid surface and on the surface gravity anomalies. The new 3-D models that predict strongly or partially layered mantle flow provide essentially identical fits to the global seismic data as previous models that have, until now, predicted only whole-mantle flow. The convective vertical transport of heat across the mantle predicted on the basis of the new 3-D models shows that the heat flow is a minimum at 1000 km depth. This suggests the presence at this depth of a globally defined horizon across which the pattern of lateral heterogeneity changes rapidly. Copyright 1997 by the American Geophysical Union.
A Flow Solver for Three-Dimensional DRAGON Grids
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Zheng, Yao
2002-01-01
DRAGONFLOW code has been developed to solve three-dimensional Navier-Stokes equations over a complex geometry whose flow domain is discretized with the DRAGON grid-a combination of Chimera grid and a collection of unstructured grids. In the DRAGONFLOW suite, both OVERFLOW and USM3D are presented in form of module libraries, and a master module controls the invoking of these individual modules. This report includes essential aspects, programming structures, benchmark tests and numerical simulations.
Skin-Friction Measurements in a 3-D, Supersonic Shock-Wave/Boundary-Layer Interaction
NASA Technical Reports Server (NTRS)
Wideman, J. K.; Brown, J. L.; Miles, J. B.; Ozcan, O.
1994-01-01
The experimental documentation of a three-dimensional shock-wave/boundary-layer interaction in a nominal Mach 3 cylinder, aligned with the free-stream flow, and 20 deg. half-angle conical flare offset 1.27 cm from the cylinder centerline. Surface oil flow, laser light sheet illumination, and schlieren were used to document the flow topology. The data includes surface-pressure and skin-friction measurements. A laser interferometric skin friction data. Included in the skin-friction data are measurements within separated regions and three-dimensional measurements in highly-swept regions. The skin-friction data will be particularly valuable in turbulence modeling and computational fluid dynamics validation.
A finite element approach for solution of the 3D Euler equations
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Ramakrishnan, R.; Dechaumphai, P.
1986-01-01
Prediction of thermal deformations and stresses has prime importance in the design of the next generation of high speed flight vehicles. Aerothermal load computations for complex three-dimensional shapes necessitate development of procedures to solve the full Navier-Stokes equations. This paper details the development of a three-dimensional inviscid flow approach which can be extended for three-dimensional viscous flows. A finite element formulation, based on a Taylor series expansion in time, is employed to solve the compressible Euler equations. Model generation and results display are done using a commercially available program, PATRAN, and vectorizing strategies are incorporated to ensure computational efficiency. Sample problems are presented to demonstrate the validity of the approach for analyzing high speed compressible flows.
Hu, Yandong; Werner, Carsten; Li, Dongqing
2004-12-15
Surface roughness has been considered as a passive means of enhancing species mixing in electroosmotic flow through microfluidic systems. It is highly desirable to understand the synergetic effect of three-dimensional (3D) roughness and surface heterogeneity on the electrokinetic flow through microchannels. In this study, we developed a three-dimensional finite-volume-based numerical model to simulate electroosmotic transport in a slit microchannel (formed between two parallel plates) with numerous heterogeneous prismatic roughness elements arranged symmetrically and asymmetrically on the microchannel walls. We consider that all 3D prismatic rough elements have the same surface charge or zeta potential, the substrate (the microchannel wall) surface has a different zeta potential. The results showed that the rough channel's geometry and the electroosmotic mobility ratio of the roughness elements' surface to that of the substrate, epsilon(mu), have a dramatic influence on the induced-pressure field, the electroosmotic flow patterns, and the electroosmotic flow rate in the heterogeneous rough microchannels. The associated sample-species transport presents a tidal-wave-like concentration field at the intersection between four neighboring rough elements under low epsilon(mu) values and has a concentration field similar to that of the smooth channels under high epsilon(mu) values.
NASA Technical Reports Server (NTRS)
Kandula, M.; Pearce, D. G.
1991-01-01
A steady incompressible three-dimensional viscous flow analysis has been conducted for the Space Shuttle external tank/orbiter propellant feed line disconnect flapper valves with upstream elbows. The Navier-Stokes code, INS3D, is modified to handle interior obstacles and a simple turbulence model. The flow solver is tested for stability and convergence in the presence of interior flappers. An under-relaxation scheme has been incorporated to improve the solution stability. Important flow characteristics such as secondary flows, recirculation, vortex and wake regions, and separated flows are observed. Computed values for forces, moments, and pressure drop are in satisfactory agreement with water flow test data covering a maximum tube Reynolds number of 3.5 million. The predicted hydrodynamical stability of the flappers correlates well with the measurements.
PNS calculations for 3-D hypersonic corner flow with two turbulence models
NASA Technical Reports Server (NTRS)
Smith, Gregory E.; Liou, May-Fun; Benson, Thomas J.
1988-01-01
A three-dimensional parabolized Navier-Stokes code has been used as a testbed to investigate two turbulence models, the McDonald Camarata and Bushnell Beckwith model, in the hypersonic regime. The Bushnell Beckwith form factor correction to the McDonald Camarata mixing length model has been extended to three-dimensional flow by use of an inverse averaging of the resultant length scale contributions from each wall. Two-dimensional calculations are compared with experiment for Mach 18 helium flow over a 4-deg wedge. Corner flow calculations have been performed at Mach 11.8 for a Reynolds number of .67 x 10 to the 6th, based on the duct half-width, and a freestream stagnation temperature of 1750-deg Rankine.
A 3-D turbulent flow analysis using finite elements with k-ɛ model
NASA Astrophysics Data System (ADS)
Okuda, H.; Yagawa, G.; Eguchi, Y.
1989-03-01
This paper describes the finite element turbulent flow analysis, which is suitable for three-dimensional large scale problems. The k-ɛ turbulence model as well as the conservation equations of mass and momentum are discretized in space using rather low order elements. Resulting coefficient matrices are evaluated by one-point quadrature in order to reduce the computational storage and the CPU cost. The time integration scheme based on the velocity correction method is employed to obtain steady state solutions. For the verification of this FEM program, two-dimensional plenum flow is simulated and compared with experiment. As the application to three-dimensional practical problems, the turbulent flows in the upper plenum of the fast breeder reactor are calculated for various boundary conditions.
3-D flow and scour near a submerged wing dike: ADCP measurements on the Missouri River
Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.
2011-01-01
Detailed mapping of bathymetry and three-dimensional water velocities using a boat-mounted single-beam sonar and acoustic Doppler current profiler (ADCP) was carried out in the vicinity of two submerged wing dikes located in the Lower Missouri River near Columbia, Missouri. During high spring flows the wing dikes become submerged, creating a unique combination of vertical flow separation and overtopping (plunging) flow conditions, causing large-scale three-dimensional turbulent flow structures to form. On three different days and for a range of discharges, sampling transects at 5 and 20 m spacing were completed, covering the area adjacent to and upstream and downstream from two different wing dikes. The objectives of this research are to evaluate whether an ADCP can identify and measure large-scale flow features such as recirculating flow and vortex shedding that develop in the vicinity of a submerged wing dike; and whether or not moving-boat (single-transect) data are sufficient for resolving complex three-dimensional flow fields. Results indicate that spatial averaging from multiple nearby single transects may be more representative of an inherently complex (temporally and spatially variable) three-dimensional flow field than repeated single transects. Results also indicate a correspondence between the location of calculated vortex cores (resolved from the interpolated three-dimensional flow field) and the nearby scour holes, providing new insight into the connections between vertically oriented coherent structures and local scour, with the unique perspective of flow and morphology in a large river.
Three-Dimensional High-Resolution Optical/X-Ray Stereoscopic Tracking Velocimetry
NASA Technical Reports Server (NTRS)
Cha, Soyoung S.; Ramachandran, Narayanan
2004-01-01
Measurement of three-dimensional (3-D) three-component velocity fields is of great importance in a variety of research and industrial applications for understanding materials processing, fluid physics, and strain/displacement measurements. The 3-D experiments in these fields most likely inhibit the use of conventional techniques, which are based only on planar and optically-transparent-field observation. Here, we briefly review the current status of 3-D diagnostics for motion/velocity detection, for both optical and x-ray systems. As an initial step for providing 3-D capabilities, we nave developed stereoscopic tracking velocimetry (STV) to measure 3-D flow/deformation through optical observation. The STV is advantageous in system simplicity, for continually observing 3- D phenomena in near real-time. In an effort to enhance the data processing through automation and to avoid the confusion in tracking numerous markers or particles, artificial neural networks are employed to incorporate human intelligence. Our initial optical investigations have proven the STV to be a very viable candidate for reliably measuring 3-D flow motions. With previous activities are focused on improving the processing efficiency, overall accuracy, and automation based on the optical system, the current efforts is directed to the concurrent expansion to the x-ray system for broader experimental applications.
Three-Dimensional High-Resolution Optical/X-Ray Stereoscopic Tracking Velocimetry
NASA Technical Reports Server (NTRS)
Cha, Soyoung S.; Ramachandran, Naryanan
2005-01-01
Measurement of three-dimensional (3-D) three-component velocity fields is of great importance in a variety of research and industrial applications for understanding materials processing, fluid physics, and strain/displacement measurements. The 3-D experiments in these fields most likely inhibit the use of conventional techniques, which are based only on planar and optically-transparent-field observation. Here, we briefly review the current status of 3-D diagnostics for motion/velocity detection, for both optical and x-ray systems. As an initial step for providing 3-D capabilities, we have developed stereoscopic tracking velocimetry (STV) to measure 3-D flow/deformation through optical observation. The STV is advantageous in system simplicity, for continually observing 3-D phenomena in near real-time. In an effort to enhance the data processing through automation and to avoid the confusion in tracking numerous markers or particles, artificial neural networks are employed to incorporate human intelligence. Our initial optical investigations have proven the STV to be a very viable candidate for reliably measuring 3-D flow motions. With previous activities focused on improving the processing efficiency, overall accuracy, and automation based on the optical system, the current efforts is directed to the concurrent expansion to the x-ray system for broader experimental applications.
Real-time three-dimensional ultrasound-assisted axillary plexus block defines soft tissue planes.
Clendenen, Steven R; Riutort, Kevin; Ladlie, Beth L; Robards, Christopher; Franco, Carlo D; Greengrass, Roy A
2009-04-01
Two-dimensional (2D) ultrasound is commonly used for regional block of the axillary brachial plexus. In this technical case report, we described a real-time three-dimensional (3D) ultrasound-guided axillary block. The difference between 2D and 3D ultrasound is similar to the difference between plain radiograph and computer tomography. Unlike 2D ultrasound that captures a planar image, 3D ultrasound technology acquires a 3D volume of information that enables multiple planes of view by manipulating the image without movement of the ultrasound probe. Observation of the brachial plexus in cross-section demonstrated distinct linear hyperechoic tissue structures (loose connective tissue) that initially inhibited the flow of the local anesthesia. After completion of the injection, we were able to visualize the influence of arterial pulsation on the spread of the local anesthesia. Possible advantages of this novel technology over current 2D methods are wider image volume and the capability to manipulate the planes of the image without moving the probe.
Performance of a reduced-order FSI model for flow-induced vocal fold vibration
NASA Astrophysics Data System (ADS)
Chang, Siyuan; Luo, Haoxiang; Luo's lab Team
2016-11-01
Vocal fold vibration during speech production involves a three-dimensional unsteady glottal jet flow and three-dimensional nonlinear tissue mechanics. A full 3D fluid-structure interaction (FSI) model is computationally expensive even though it provides most accurate information about the system. On the other hand, an efficient reduced-order FSI model is useful for fast simulation and analysis of the vocal fold dynamics, which is often needed in procedures such as optimization and parameter estimation. In this work, we study the performance of a reduced-order model as compared with the corresponding full 3D model in terms of its accuracy in predicting the vibration frequency and deformation mode. In the reduced-order model, we use a 1D flow model coupled with a 3D tissue model. Two different hyperelastic tissue behaviors are assumed. In addition, the vocal fold thickness and subglottal pressure are varied for systematic comparison. The result shows that the reduced-order model provides consistent predictions as the full 3D model across different tissue material assumptions and subglottal pressures. However, the vocal fold thickness has most effect on the model accuracy, especially when the vocal fold is thin. Supported by the NSF.
NASA Astrophysics Data System (ADS)
Leclaire, Sébastien; Parmigiani, Andrea; Malaspinas, Orestis; Chopard, Bastien; Latt, Jonas
2017-03-01
This article presents a three-dimensional numerical framework for the simulation of fluid-fluid immiscible compounds in complex geometries, based on the multiple-relaxation-time lattice Boltzmann method to model the fluid dynamics and the color-gradient approach to model multicomponent flow interaction. New lattice weights for the lattices D3Q15, D3Q19, and D3Q27 that improve the Galilean invariance of the color-gradient model as well as for modeling the interfacial tension are derived and provided in the Appendix. The presented method proposes in particular an approach to model the interaction between the fluid compound and the solid, and to maintain a precise contact angle between the two-component interface and the wall. Contrarily to previous approaches proposed in the literature, this method yields accurate solutions even in complex geometries and does not suffer from numerical artifacts like nonphysical mass transfer along the solid wall, which is crucial for modeling imbibition-type problems. The article also proposes an approach to model inflow and outflow boundaries with the color-gradient method by generalizing the regularized boundary conditions. The numerical framework is first validated for three-dimensional (3D) stationary state (Jurin's law) and time-dependent (Washburn's law and capillary waves) problems. Then, the usefulness of the method for practical problems of pore-scale flow imbibition and drainage in porous media is demonstrated. Through the simulation of nonwetting displacement in two-dimensional random porous media networks, we show that the model properly reproduces three main invasion regimes (stable displacement, capillary fingering, and viscous fingering) as well as the saturating zone transition between these regimes. Finally, the ability to simulate immiscible two-component flow imbibition and drainage is validated, with excellent results, by numerical simulations in a Berea sandstone, a frequently used benchmark case used in this field, using a complex geometry that originates from a 3D scan of a porous sandstone. The methods presented in this article were implemented in the open-source PALABOS library, a general C++ matrix-based library well adapted for massive fluid flow parallel computation.
Flow transition with 2-D roughness elements in a 3-D channel
NASA Technical Reports Server (NTRS)
Liu, Zhining; Liu, Chaoquin; Mccormick, Stephen F.
1993-01-01
We develop a new numerical approach to study the spatially evolving instability of the streamwise dominant flow in the presence of roughness elements. The difficulty in handling the flow over the boundary surface with general geometry is removed by using a new conservative form of the governing equations and an analytical mapping. The numerical scheme uses second-order backward Euler in time, fourth-order central differences in all three spatial directions, and boundary-fitted staggered grids. A three-dimensional channel with multiple two-dimensional-type roughness elements is employed as the test case. Fourier analysis is used to decompose different Fourier modes of the disturbance. The results show that surface roughness leads to transition at lower Reynolds number than for smooth channels.
The Evolution of Oblique Impact Flow Fields Using Maxwell's Z Model
NASA Technical Reports Server (NTRS)
Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.
2003-01-01
Oblique impacts are the norm rather than the exception for impact craters on planetary surfaces. This work focuses on the excavation of experimental oblique impact craters using the NASA Ames Vertical Gun Range (AVGR). Three-dimensional particle image velocimetry (3D PIV) is used to obtain quantitative data on ejection positions, three dimensional velocities and angles. These data are then used to constrain Maxwell's Z Model and follow the subsurface evolution of the excavation-stage flow-field center during oblique impacts.
NASA Astrophysics Data System (ADS)
Zhou, Chao; Yu, Guoqiang; Furuya, Daisuke; Greenberg, Joel; Yodh, Arjun; Durduran, Turgut
2006-02-01
Diffuse optical correlation methods were adapted for three-dimensional (3D) tomography of cerebral blood flow (CBF) in small animal models. The image reconstruction was optimized using a noise model for diffuse correlation tomography which enabled better data selection and regularization. The tomographic approach was demonstrated with simulated data and during in-vivo cortical spreading depression (CSD) in rat brain. Three-dimensional images of CBF were obtained through intact skull in tissues(~4mm) deep below the cortex.
Cross Flow Effects on Glaze Ice Roughness Formation
NASA Technical Reports Server (NTRS)
Tsao, Jen-Ching
2004-01-01
The present study examines the impact of large-scale cross flow on the creation of ice roughness elements on the leading edge of a swept wing under glaze icing conditions. A three-dimensional triple-deck structure is developed to describe the local interaction of a 3 D air boundary layer with ice sheets and liquid films. A linear stability analysis is presented here. It is found that, as the sweep angle increases, the local icing instabilities enhance and the most linearly unstable modes are strictly three dimensional.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christov, Ivan C.; Lueptow, Richard M.; Ottino, Julio M.
We study three-dimensional (3D) chaotic dynamics through an analysis of transport in a granular flow in a half-full spherical tumbler rotated sequentially about two orthogonal axes (a bi-axial “blinking” tumbler). The flow is essentially quasi-two-dimensional in any vertical slice of the sphere during rotation about a single axis, and we provide an explicit exact solution to the model in this case. Hence, the cross-sectional flow can be represented by a twist map, allowing us to express the 3D flow as a linked twist map (LTM). We prove that if the rates of rotation about each axis are equal, then (inmore » the absence of stochasticity) particle trajectories are restricted to two-dimensional (2D) surfaces consisting of a portion of a hemispherical shell closed by a “cap''; if the rotation rates are unequal, then particles can leave the surface they start on and traverse a volume of the tumbler. The period-one structures of the governing LTM are examined in detail: analytical expressions are provided for the location of period-one curves, their extent into the bulk of the granular material, and their dependence on the protocol parameters (rates and durations of rotations). Exploiting the restriction of trajectories to 2D surfaces in the case of equal rotation rates about the axes, a method is proposed for identifying and constructing 3D Kolmogorov--Arnold--Moser (KAM) tubes around the normally elliptic period-one curves. The invariant manifold structure arising from the normally hyperbolic period-one curves is also examined. When the motion is restricted to 2D surfaces, the structure of manifolds of the hyperbolic points in the bulk differs from that corresponding to hyperbolic points in the flowing layer. Each is reminiscent of a template provided by a non-integrable perturbation to a Hamiltonian system, though the governing LTM is not. This highlights the novel 3D chaotic behaviors observed in this model dynamical system.« less
Christov, Ivan C.; Lueptow, Richard M.; Ottino, Julio M.; ...
2014-05-22
We study three-dimensional (3D) chaotic dynamics through an analysis of transport in a granular flow in a half-full spherical tumbler rotated sequentially about two orthogonal axes (a bi-axial “blinking” tumbler). The flow is essentially quasi-two-dimensional in any vertical slice of the sphere during rotation about a single axis, and we provide an explicit exact solution to the model in this case. Hence, the cross-sectional flow can be represented by a twist map, allowing us to express the 3D flow as a linked twist map (LTM). We prove that if the rates of rotation about each axis are equal, then (inmore » the absence of stochasticity) particle trajectories are restricted to two-dimensional (2D) surfaces consisting of a portion of a hemispherical shell closed by a “cap''; if the rotation rates are unequal, then particles can leave the surface they start on and traverse a volume of the tumbler. The period-one structures of the governing LTM are examined in detail: analytical expressions are provided for the location of period-one curves, their extent into the bulk of the granular material, and their dependence on the protocol parameters (rates and durations of rotations). Exploiting the restriction of trajectories to 2D surfaces in the case of equal rotation rates about the axes, a method is proposed for identifying and constructing 3D Kolmogorov--Arnold--Moser (KAM) tubes around the normally elliptic period-one curves. The invariant manifold structure arising from the normally hyperbolic period-one curves is also examined. When the motion is restricted to 2D surfaces, the structure of manifolds of the hyperbolic points in the bulk differs from that corresponding to hyperbolic points in the flowing layer. Each is reminiscent of a template provided by a non-integrable perturbation to a Hamiltonian system, though the governing LTM is not. This highlights the novel 3D chaotic behaviors observed in this model dynamical system.« less
NASA Technical Reports Server (NTRS)
Biyabani, S. R.
1994-01-01
INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far-field boundaries. Three machine versions of INS3D are available. INS3D for the CRAY is written in CRAY FORTRAN for execution on a CRAY X-MP under COS, INS3D for the IBM is written in FORTRAN 77 for execution on an IBM 3090 under the VM or MVS operating system, and INS3D for DEC RISC-based systems is written in RISC FORTRAN for execution on a DEC workstation running RISC ULTRIX 3.1 or later. The CRAY version has a central memory requirement of 730279 words. The central memory requirement for the IBM is 150Mb. The memory requirement for the DEC RISC ULTRIX version is 3Mb of main memory. INS3D was developed in 1987. The port to the IBM was done in 1990. The port to the DECstation 3100 was done in 1991. CRAY is a registered trademark of Cray Research Inc. IBM is a registered trademark of International Business Machines. DEC, DECstation, and ULTRIX are trademarks of the Digital Equipment Corporation.
NASA Technical Reports Server (NTRS)
Rogers, S. E.
1994-01-01
INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far-field boundaries. Three machine versions of INS3D are available. INS3D for the CRAY is written in CRAY FORTRAN for execution on a CRAY X-MP under COS, INS3D for the IBM is written in FORTRAN 77 for execution on an IBM 3090 under the VM or MVS operating system, and INS3D for DEC RISC-based systems is written in RISC FORTRAN for execution on a DEC workstation running RISC ULTRIX 3.1 or later. The CRAY version has a central memory requirement of 730279 words. The central memory requirement for the IBM is 150Mb. The memory requirement for the DEC RISC ULTRIX version is 3Mb of main memory. INS3D was developed in 1987. The port to the IBM was done in 1990. The port to the DECstation 3100 was done in 1991. CRAY is a registered trademark of Cray Research Inc. IBM is a registered trademark of International Business Machines. DEC, DECstation, and ULTRIX are trademarks of the Digital Equipment Corporation.
Stadlbauer, Andreas; van der Riet, Wilma; Crelier, Gerard; Salomonowitz, Erich
2010-07-01
To assess the feasibility and potential limitations of the acceleration techniques SENSE and k-t BLAST for time-resolved three-dimensional (3D) velocity mapping of aortic blood flow. Furthermore, to quantify differences in peak velocity versus heart phase curves. Time-resolved 3D blood flow patterns were investigated in eleven volunteers and two patients suffering from aortic diseases with accelerated PC-MR sequences either in combination with SENSE (R=2) or k-t BLAST (6-fold). Both sequences showed similar data acquisition times and hence acceleration efficiency. Flow-field streamlines were calculated and visualized using the GTFlow software tool in order to reconstruct 3D aortic blood flow patterns. Differences between the peak velocities from single-slice PC-MRI experiments using SENSE 2 and k-t BLAST 6 were calculated for the whole cardiac cycle and averaged for all volunteers. Reconstruction of 3D flow patterns in volunteers revealed attenuations in blood flow dynamics for k-t BLAST 6 compared to SENSE 2 in terms of 3D streamlines showing fewer and less distinct vortices and reduction in peak velocity, which is caused by temporal blurring. Solely by time-resolved 3D MR velocity mapping in combination with SENSE detected pathologic blood flow patterns in patients with aortic diseases. For volunteers, we found a broadening and flattering of the peak velocity versus heart phase diagram between the two acceleration techniques, which is an evidence for the temporal blurring of the k-t BLAST approach. We demonstrated the feasibility of SENSE and detected potential limitations of k-t BLAST when used for time-resolved 3D velocity mapping. The effects of higher k-t BLAST acceleration factors have to be considered for application in 3D velocity mapping. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Performance of a reduced-order FSI model for flow-induced vocal fold vibration
NASA Astrophysics Data System (ADS)
Luo, Haoxiang; Chang, Siyuan; Chen, Ye; Rousseau, Bernard; PhonoSim Team
2017-11-01
Vocal fold vibration during speech production involves a three-dimensional unsteady glottal jet flow and three-dimensional nonlinear tissue mechanics. A full 3D fluid-structure interaction (FSI) model is computationally expensive even though it provides most accurate information about the system. On the other hand, an efficient reduced-order FSI model is useful for fast simulation and analysis of the vocal fold dynamics, which can be applied in procedures such as optimization and parameter estimation. In this work, we study performance of a reduced-order model as compared with the corresponding full 3D model in terms of its accuracy in predicting the vibration frequency and deformation mode. In the reduced-order model, we use a 1D flow model coupled with a 3D tissue model that is the same as in the full 3D model. Two different hyperelastic tissue behaviors are assumed. In addition, the vocal fold thickness and subglottal pressure are varied for systematic comparison. The result shows that the reduced-order model provides consistent predictions as the full 3D model across different tissue material assumptions and subglottal pressures. However, the vocal fold thickness has most effect on the model accuracy, especially when the vocal fold is thin.
Statistical conservation law in two- and three-dimensional turbulent flows.
Frishman, Anna; Boffetta, Guido; De Lillo, Filippo; Liberzon, Alex
2015-03-01
Particles in turbulence live complicated lives. It is nonetheless sometimes possible to find order in this complexity. It was proposed in Falkovich et al. [Phys. Rev. Lett. 110, 214502 (2013)] that pairs of Lagrangian tracers at small scales, in an incompressible isotropic turbulent flow, have a statistical conservation law. More specifically, in a d-dimensional flow the distance R(t) between two neutrally buoyant particles, raised to the power -d and averaged over velocity realizations, remains at all times equal to the initial, fixed, separation raised to the same power. In this work we present evidence from direct numerical simulations of two- and three-dimensional turbulence for this conservation. In both cases the conservation is lost when particles exit the linear flow regime. In two dimensions we show that, as an extension of the conservation law, an Evans-Cohen-Morriss or Gallavotti-Cohen type fluctuation relation exists. We also analyze data from a 3D laboratory experiment [Liberzon et al., Physica D 241, 208 (2012)], finding that although it probes small scales they are not in the smooth regime. Thus instead of 〈R-3〉, we look for a similar, power-law-in-separation conservation law. We show that the existence of an initially slowly varying function of this form can be predicted but that it does not turn into a conservation law. We suggest that the conservation of 〈R-d〉, demonstrated here, can be used as a check of isotropy, incompressibility, and flow dimensionality in numerical and laboratory experiments that focus on small scales.
Rafeie, Mehdi; Welleweerd, Marcel; Hassanzadeh-Barforoushi, Amin; Asadnia, Mohsen; Olthuis, Wouter; Ebrahimi Warkiani, Majid
2017-01-01
Mixing fluid samples or reactants is a paramount function in the fields of micro total analysis system (μTAS) and microchemical processing. However, rapid and efficient fluid mixing is difficult to achieve inside microchannels because of the difficulty of diffusive mass transfer in the laminar regime of the typical microfluidic flows. It has been well recorded that the mixing efficiency can be boosted by migrating from two-dimensional (2D) to three-dimensional (3D) geometries. Although several 3D chaotic mixers have been designed, most of them offer a high mixing efficiency only in a very limited range of Reynolds numbers (Re). In this work, we developed a 3D fine-threaded lemniscate-shaped micromixer whose maximum numerical and empirical efficiency is around 97% and 93%, respectively, and maintains its high performance (i.e., >90%) over a wide range of 1 < Re < 1000 which meets the requirements of both the μTAS and microchemical process applications. The 3D micromixer was designed based on two distinct mixing strategies, namely, the inducing of chaotic advection by the presence of Dean flow and diffusive mixing through thread-like grooves around the curved body of the mixers. First, a set of numerical simulations was performed to study the physics of the flow and to determine the essential geometrical parameters of the mixers. Second, a simple and cost-effective method was exploited to fabricate the convoluted structure of the micromixers through the removal of a 3D-printed wax structure from a block of cured polydimethylsiloxane. Finally, the fabricated mixers with different threads were tested using a fluorescent microscope demonstrating a good agreement with the results of the numerical simulation. We envisage that the strategy used in this work would expand the scope of the micromixer technology by broadening the range of efficient working flow rate and providing an easy way to the fabrication of 3D convoluted microstructures. PMID:28798843
Rafeie, Mehdi; Welleweerd, Marcel; Hassanzadeh-Barforoushi, Amin; Asadnia, Mohsen; Olthuis, Wouter; Ebrahimi Warkiani, Majid
2017-01-01
Mixing fluid samples or reactants is a paramount function in the fields of micro total analysis system (μTAS) and microchemical processing. However, rapid and efficient fluid mixing is difficult to achieve inside microchannels because of the difficulty of diffusive mass transfer in the laminar regime of the typical microfluidic flows. It has been well recorded that the mixing efficiency can be boosted by migrating from two-dimensional (2D) to three-dimensional (3D) geometries. Although several 3D chaotic mixers have been designed, most of them offer a high mixing efficiency only in a very limited range of Reynolds numbers ( Re ). In this work, we developed a 3D fine-threaded lemniscate-shaped micromixer whose maximum numerical and empirical efficiency is around 97% and 93%, respectively, and maintains its high performance (i.e., >90%) over a wide range of 1 < Re < 1000 which meets the requirements of both the μTAS and microchemical process applications. The 3D micromixer was designed based on two distinct mixing strategies, namely, the inducing of chaotic advection by the presence of Dean flow and diffusive mixing through thread-like grooves around the curved body of the mixers. First, a set of numerical simulations was performed to study the physics of the flow and to determine the essential geometrical parameters of the mixers. Second, a simple and cost-effective method was exploited to fabricate the convoluted structure of the micromixers through the removal of a 3D-printed wax structure from a block of cured polydimethylsiloxane. Finally, the fabricated mixers with different threads were tested using a fluorescent microscope demonstrating a good agreement with the results of the numerical simulation. We envisage that the strategy used in this work would expand the scope of the micromixer technology by broadening the range of efficient working flow rate and providing an easy way to the fabrication of 3D convoluted microstructures.
NASA Astrophysics Data System (ADS)
Guan, Ben; Zhai, Zhigang; Si, Ting; Lu, Xiyun; Luo, Xisheng
2017-03-01
The characteristics of three-dimensional (3D) Richtmyer-Meshkov instability (RMI) in the early stages are studied numerically. By designing 3D interfaces that initially possess various identical and opposite principal curvature combinations, the growth rate of perturbations can be effectively manipulated. The weighted essentially nonoscillatory scheme and the level set method combined with the real ghost fluid method are used to simulate the flow. The results indicate that the interface development and the shock propagation in 3D cases are much more complicated than those in 2D case, and the evolution of 3D interfaces is heavily dependent on the initial interfacial principal curvatures. The 3D structure of wave patterns induces high pressure zones in the flow field, and the pressure oscillations change the local instabilities of interfaces. In the linear stages, the perturbation growth rate follows regularity as the interfacial principal curvatures vary, which is further predicted by the stability theory of 2D and 3D interfaces. It is also found that hysteresis effects exist at the onset of the linear stages in the 3D case for the same initial perturbations as the 2D case, resulting in different evolutions of 3D RMI in the nonlinear stages.
Morel, O; Pachy, F; Chavatte-Palmer, P; Bonneau, M; Gayat, E; Laigre, P; Evain-Brion, D; Tsatsaris, V
2010-11-01
Three-dimensional (3D) Doppler quantification within the uteroplacental unit could be of great help in understanding and screening for pre-eclampsia and intrauterine growth restriction. Yet the correlation between 3D Doppler indices and true blood flow has not been confirmed in vivo. The aim of this study was to evaluate this correlation in a pregnant sheep model. A blood flow quantitative sensor and a controllable vascular occlusion system were placed around the common uterine artery in seven sheep in late pregnancy, while all the other arterial supplies were ligated. Several occlusion levels were applied, from 0 to 100%, simultaneously with 3D Doppler acquisitions of several placentomes, using standardized settings. Each placentome was analyzed using VOCAL™ (Virtual Organ Computer-aided AnaLysis) software. The correlation between true blood flow and Doppler indices (vascularization index (VI), flow index (FI) and vascularization flow index (VFI)) was evaluated, together with measurement reproducibility. Forty-eight acquisitions were analyzed. All 3D Doppler indices were significantly correlated with true blood flow. Higher correlations were observed for VI and VFI (r = 0.81 (0.74-0.87), P < 0.0001 and r = 0.75 (0.67-0.82), P < 0.0001) compared with FI (r = 0.53 (0.38-0.64) P < 0.0001). Both intra- and interobserver reproducibility were high, with intraclass correlation coefficients of at least 0.799. This is the first in-vivo experimental study confirming a significant correlation between true blood perfusion and quantitative 3D Doppler indices measured within the uteroplacental unit. These results confirm the potential usefulness of 3D Doppler ultrasound for the assessment of placental vascular insufficiency both in clinical cases and in a research setting. Copyright © 2010 ISUOG. Published by John Wiley & Sons, Ltd.
A Hermite-based lattice Boltzmann model with artificial viscosity for compressible viscous flows
NASA Astrophysics Data System (ADS)
Qiu, Ruofan; Chen, Rongqian; Zhu, Chenxiang; You, Yancheng
2018-05-01
A lattice Boltzmann model on Hermite basis for compressible viscous flows is presented in this paper. The model is developed in the framework of double-distribution-function approach, which has adjustable specific-heat ratio and Prandtl number. It contains a density distribution function for the flow field and a total energy distribution function for the temperature field. The equilibrium distribution function is determined by Hermite expansion, and the D3Q27 and D3Q39 three-dimensional (3D) discrete velocity models are used, in which the discrete velocity model can be replaced easily. Moreover, an artificial viscosity is introduced to enhance the model for capturing shock waves. The model is tested through several cases of compressible flows, including 3D supersonic viscous flows with boundary layer. The effect of artificial viscosity is estimated. Besides, D3Q27 and D3Q39 models are further compared in the present platform.
A geometry package for generation of input data for a three-dimensional potential-flow program
NASA Technical Reports Server (NTRS)
Halsey, N. D.; Hess, J. L.
1978-01-01
The preparation of geometric data for input to three-dimensional potential flow programs was automated and simplified by a geometry package incorporated into the NASA Langley version of the 3-D lifting potential flow program. Input to the computer program for the geometry package consists of a very sparse set of coordinate data, often with an order of magnitude of fewer points than required for the actual potential flow calculations. Isolated components, such as wings, fuselages, etc. are paneled automatically, using one of several possible element distribution algorithms. Curves of intersection between components are calculated, using a hybrid curve-fit/surface-fit approach. Intersecting components are repaneled so that adjacent elements on either side of the intersection curves line up in a satisfactory manner for the potential-flow calculations. Many cases may be run completely (from input, through the geometry package, and through the flow calculations) without interruption. Use of the package significantly reduces the time and expense involved in making three-dimensional potential flow calculations.
Simulation of Fluid Flow and Collection Efficiency for an SEA Multi-element Probe
NASA Technical Reports Server (NTRS)
Rigby, David L.; Struk, Peter M.; Bidwell, Colin
2014-01-01
Numerical simulations of fluid flow and collection efficiency for a Science Engineering Associates (SEA) multi-element probe are presented. Simulation of the flow field was produced using the Glenn-HT Navier-Stokes solver. Three dimensional unsteady results were produced and then time averaged for the collection efficiency results. Three grid densities were investigated to enable an assessment of grid dependence. Collection efficiencies were generated for three spherical particle sizes, 100, 20, and 5 micron in diameter, using the codes LEWICE3D and LEWICE2D. The free stream Mach number was 0.27, representing a velocity of approximately 86 ms. It was observed that a reduction in velocity of about 15-20 occurred as the flow entered the shroud of the probe.Collection efficiency results indicate a reduction in collection efficiency as particle size is reduced. The reduction with particle size is expected, however, the results tended to be lower than previous results generated for isolated two-dimensional elements. The deviation from the two-dimensional results is more pronounced for the smaller particles and is likely due to the effect of the protective shroud.
Martins, W P; Raine-Fenning, N J; Ferriani, R A; Nastri, C O
2010-03-01
To evaluate the presence of false flow three-dimensional (3D) power Doppler signals in 'flow-free' models. 3D power Doppler datasets were acquired from three different flow-free phantoms (muscle, air and water) with two different transducers and Virtual Organ Computer-aided AnaLysis was used to generate a sphere that was serially applied through the 3D dataset. The vascularization flow index was used to compare artifactual signals at different depths (from 0 to 6 cm) within the different phantoms and at different gain and pulse repetition frequency (PRF) settings. Artifactual Doppler signals were seen in all phantoms despite these being flow-free. The pattern was very similar and the degree of artifact appeared to be dependent on the gain and distance from the transducer. False signals were more evident in the far field and increased as the gain was increased, with false signals first appearing with a gain of 1 dB in the air and muscle phantoms. False signals were seen at a lower gain with the water phantom (-15 dB) and these were associated with vertical lines of Doppler artifact that were related to PRF, and disappeared when reflections were attenuated. Artifactual Doppler signals are seen in flow-free phantoms and are related to the gain settings and the distance from the transducer. In the in-vivo situation, the lowest gain settings that allow the detection of blood flow and adequate definition of vessel architecture should be used, which invariably means using a setting near or below the middle of the range available. Additionally, observers should be aware of vertical lines when evaluating cystic or liquid-containing structures. (c) 2010 ISUOG. Published by John Wiley & Sons, Ltd.
Three-Dimensional Unsteady Separation at Low Reynolds Numbers
1990-07-01
novel, robust adaptive- grid technique for incompressible flow (Shen & Reed 1990a "Shepard’s Interpolation for Solution-Adaptive Methods" submitted to...3-D adaptive- grid schemes developed for flat plate for full, unsteady, incompressible Navier Stokes. 4. 2-D and 3-D unsteady, vortex-lattice code...perforated to tailor suction through wall. Honeycomb and contractiong uide flow uniformly crons "a dn muwet a m Fiur32 c ic R n R ev lving -disc seals
Experimental studies of one-way reaction front barriers in three-dimensional vortex flows
NASA Astrophysics Data System (ADS)
Gannon, Joanie; Doan, Minh; Simons, Jj; Mitchell, Kevin; Solomon, Tom
2017-11-01
We present results of experimental studies of the evolution of the excitable, Ruthenium (Ru)-catalyzed, Belousov-Zhabotinsky (BZ) reaction in a three-dimensional (3D) flow composed of the superposition of horizontal and vertical vortex chains. The reaction fronts are imaged in 3D with a scanning, laser-induced fluorescence technique that takes advantage of the differential fluoresence of the Ruthenium indicated at the front. When the horizontal and vertical vortex chains are lined up, a dominant scroll structure is observed that acts as a one-way barrier blocking fronts propagating across vortex boundaries and into vortex centers. A second, quarter-tube barrier is observed along the edges of the unit cell. When the vortices are shifted relative to each other, tube-like barriers are observed in the interior. All of these barriers are compared with burning invariant manifolds predicted from a 6D set of differential equations describing the evolution of front elements in the flow. Supported by NSF Grants DMR-1361881 and DUE-1317446.
NASA Astrophysics Data System (ADS)
Takiwaki, Tomoya; Kotake, Kei; Suwa, Yudai
2016-09-01
We report results from a series of three-dimensional (3D) rotational core-collapse simulations for 11.2 and 27 M⊙ stars employing neutrino transport scheme by the isotropic diffusion source approximation. By changing the initial strength of rotation systematically, we find a rotation-assisted explosion for the 27 M⊙ progenitor , which fails in the absence of rotation. The unique feature was not captured in previous two-dimensional (2D) self-consistent rotating models because the growing non-axisymmetric instabilities play a key role. In the rapidly rotating case, strong spiral flows generated by the so-called low T/|W| instability enhance the energy transport from the proto-neutron star (PNS) to the gain region, which makes the shock expansion more energetic. The explosion occurs more strongly in the direction perpendicular to the rotational axis, which is different from previous 2D predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waltz, J., E-mail: jwaltz@lanl.gov; Canfield, T.R.; Morgan, N.R.
2014-06-15
We present a set of manufactured solutions for the three-dimensional (3D) Euler equations. The purpose of these solutions is to allow for code verification against true 3D flows with physical relevance, as opposed to 3D simulations of lower-dimensional problems or manufactured solutions that lack physical relevance. Of particular interest are solutions with relevance to Inertial Confinement Fusion (ICF) capsules. While ICF capsules are designed for spherical symmetry, they are hypothesized to become highly 3D at late time due to phenomena such as Rayleigh–Taylor instability, drive asymmetry, and vortex decay. ICF capsules also involve highly nonlinear coupling between the fluid dynamicsmore » and other physics, such as radiation transport and thermonuclear fusion. The manufactured solutions we present are specifically designed to test the terms and couplings in the Euler equations that are relevant to these phenomena. Example numerical results generated with a 3D Finite Element hydrodynamics code are presented, including mesh convergence studies.« less
The performance & flow visualization studies of three-dimensional (3-D) wind turbine blade models
NASA Astrophysics Data System (ADS)
Sutrisno, Prajitno, Purnomo, W., Setyawan B.
2016-06-01
Recently, studies on the design of 3-D wind turbine blades have a less attention even though 3-D blade products are widely sold. In contrary, advanced studies in 3-D helicopter blade tip have been studied rigorously. Studies in wind turbine blade modeling are mostly assumed that blade spanwise sections behave as independent two-dimensional airfoils, implying that there is no exchange of momentum in the spanwise direction. Moreover, flow visualization experiments are infrequently conducted. Therefore, a modeling study of wind turbine blade with visualization experiment is needed to be improved to obtain a better understanding. The purpose of this study is to investigate the performance of 3-D wind turbine blade models with backward-forward swept and verify the flow patterns using flow visualization. In this research, the blade models are constructed based on the twist and chord distributions following Schmitz's formula. Forward and backward swept are added to the rotating blades. Based on this, the additional swept would enhance or diminish outward flow disturbance or stall development propagation on the spanwise blade surfaces to give better blade design. Some combinations, i. e., b lades with backward swept, provide a better 3-D favorable rotational force of the rotor system. The performance of the 3-D wind turbine system model is measured by a torque meter, employing Prony's braking system. Furthermore, the 3-D flow patterns around the rotating blade models are investigated by applying "tuft-visualization technique", to study the appearance of laminar, separated, and boundary layer flow patterns surrounding the 3-dimentional blade system.
NASA Astrophysics Data System (ADS)
van de Moortele, Tristan; Nemes, Andras; Wendt, Christine; Coletti, Filippo
2016-11-01
The morphological features of the airway tree directly affect the air flow features during breathing, which determines the gas exchange and inhaled particle transport. Lung disease, Chronic Obstructive Pulmonary Disease (COPD) in this study, affects the structural features of the lungs, which in turn negatively affects the air flow through the airways. Here bronchial tree air volume geometries are segmented from Computed Tomography (CT) scans of healthy and diseased subjects. Geometrical analysis of the airway centerlines and corresponding cross-sectional areas provide insight into the specific effects of COPD on the airway structure. These geometries are also used to 3D print anatomically accurate, patient specific flow models. Three-component, three-dimensional velocity fields within these models are acquired using Magnetic Resonance Imaging (MRI). The three-dimensional flow fields provide insight into the change in flow patterns and features. Additionally, particle trajectories are determined using the velocity fields, to identify the fate of therapeutic and harmful inhaled aerosols. Correlation between disease-specific and patient-specific anatomical features with dysfunctional airflow patterns can be achieved by combining geometrical and flow analysis.
Pirat, Bahar; Little, Stephen H.; Igo, Stephen R.; McCulloch, Marti; Nosé, Yukihiko; Hartley, Craig J.; Zoghbi, William A.
2012-01-01
Objective The proximal isovelocity surface area (PISA) method is useful in the quantitation of aortic regurgitation (AR). We hypothesized that actual measurement of PISA provided with real-time 3-dimensional (3D) color Doppler yields more accurate regurgitant volumes than those estimated by 2-dimensional (2D) color Doppler PISA. Methods We developed a pulsatile flow model for AR with an imaging chamber in which interchangeable regurgitant orifices with defined shapes and areas were incorporated. An ultrasonic flow meter was used to calculate the reference regurgitant volumes. A total of 29 different flow conditions for 5 orifices with different shapes were tested at a rate of 72 beats/min. 2D PISA was calculated as 2π r2, and 3D PISA was measured from 8 equidistant radial planes of the 3D PISA. Regurgitant volume was derived as PISA × aliasing velocity × time velocity integral of AR/peak AR velocity. Results Regurgitant volumes by flow meter ranged between 12.6 and 30.6 mL/beat (mean 21.4 ± 5.5 mL/beat). Regurgitant volumes estimated by 2D PISA correlated well with volumes measured by flow meter (r = 0.69); however, a significant underestimation was observed (y = 0.5x + 0.6). Correlation with flow meter volumes was stronger for 3D PISA-derived regurgitant volumes (r = 0.83); significantly less underestimation of regurgitant volumes was seen, with a regression line close to identity (y = 0.9x + 3.9). Conclusion Direct measurement of PISA is feasible, without geometric assumptions, using real-time 3D color Doppler. Calculation of aortic regurgitant volumes with 3D color Doppler using this methodology is more accurate than conventional 2D method with hemispheric PISA assumption. PMID:19168322
3-D High-Lift Flow-Physics Experiment - Transition Measurements
NASA Technical Reports Server (NTRS)
McGinley, Catherine B.; Jenkins, Luther N.; Watson, Ralph D.; Bertelrud, Arild
2005-01-01
An analysis of the flow state on a trapezoidal wing model from the NASA 3-D High Lift Flow Physics Experiment is presented. The objective of the experiment was to characterize the flow over a non-proprietary semi-span three-element high-lift configuration to aid in assessing the state of the art in the computation of three-dimensional high-lift flows. Surface pressures and hot-film sensors are used to determine the flow conditions on the slat, main, and flap. The locations of the attachments lines and the values of the attachment line Reynolds number are estimated based on the model surface pressures. Data from the hot-films are used to determine if the flow is laminar, transitional, or turbulent by examining the hot-film time histories, statistics, and frequency spectra.
Hausken, T; Li, X N; Goldman, B; Leotta, D; Ødegaard, S; Martin, R W
2001-07-01
To develop a non-invasive method for evaluating gastric emptying and duodenogastric reflux stroke volumes using three-dimensional (3D) guided digital color Doppler imaging. The technique involved color Doppler digital images of transpyloric flow in which the 3D position and orientation of the images were known by using a magnetic location system. In vitro, the system was found to slightly underestimate the reference flow (by average 8.8%). In vivo (five volunteers), stroke volume of gastric emptying episodes lasted on average only 0.69 s with a volume on average of 4.3 ml (range 1.1-7.4 ml), and duodenogastric reflux episodes on average 1.4 s with a volume of 8.3 ml (range 1.3-14.1 ml). With the appropriate instrument settings, orientation determined color Doppler can be used for stroke volume quantification of gastric emptying and duodenogastric reflux episodes.
Experience with 3-D composite grids
NASA Technical Reports Server (NTRS)
Benek, J. A.; Donegan, T. L.; Suhs, N. E.
1987-01-01
Experience with the three-dimensional (3-D), chimera grid embedding scheme is described. Applications of the inviscid version to a multiple-body configuration, a wind/body/tail configuration, and an estimate of wind tunnel wall interference are described. Applications to viscous flows include a 3-D cavity and another multi-body configuration. A variety of grid generators is used, and several embedding strategies are described.
Application of an unstructured grid flow solver to planes, trains and automobiles
NASA Technical Reports Server (NTRS)
Spragle, Gregory S.; Smith, Wayne A.; Yadlin, Yoram
1993-01-01
Rampant, an unstructured flow solver developed at Fluent Inc., is used to compute three-dimensional, viscous, turbulent, compressible flow fields within complex solution domains. Rampant is an explicit, finite-volume flow solver capable of computing flow fields using either triangular (2d) or tetrahedral (3d) unstructured grids. Local time stepping, implicit residual smoothing, and multigrid techniques are used to accelerate the convergence of the explicit scheme. The paper describes the Rampant flow solver and presents flow field solutions about a plane, train, and automobile.
3D Numerical Simulation of Turbulent Buoyant Flow and Heat Transport in a Curved Open Channel
USDA-ARS?s Scientific Manuscript database
A three-dimensional buoyancy-extended version of kappa-epsilon turbulence model was developed for simulating the turbulent flow and heat transport in a curved open channel. The density- induced buoyant force was included in the model, and the influence of temperature stratification on flow field was...
Wu, Wenming; Trinh, Kieu The Loan; Lee, Nae Yoon
2015-03-07
We introduce a new strategy for fabricating a seamless three-dimensional (3D) helical microreactor utilizing a silicone tube and a paraffin mold. With this method, various shapes and sizes of 3D helical microreactors were fabricated, and a complicated and laborious photolithographic process, or 3D printing, was eliminated. With dramatically enhanced portability at a significantly reduced fabrication cost, such a device can be considered to be the simplest microreactor, developed to date, for performing the flow-through polymerase chain reaction (PCR).
Ecological connectivity in the three-dimensional urban green volume using waveform airborne lidar
Casalegno, Stefano; Anderson, Karen; Cox, Daniel T. C.; Hancock, Steven; Gaston, Kevin J.
2017-01-01
The movements of organisms and the resultant flows of ecosystem services are strongly shaped by landscape connectivity. Studies of urban ecosystems have relied on two-dimensional (2D) measures of greenspace structure to calculate connectivity. It is now possible to explore three-dimensional (3D) connectivity in urban vegetation using waveform lidar technology that measures the full 3D structure of the canopy. Making use of this technology, here we evaluate urban greenspace 3D connectivity, taking into account the full vertical stratification of the vegetation. Using three towns in southern England, UK, all with varying greenspace structures, we describe and compare the structural and functional connectivity using both traditional 2D greenspace models and waveform lidar-generated vegetation strata (namely, grass, shrubs and trees). Measures of connectivity derived from 3D greenspace are lower than those derived from 2D models, as the latter assumes that all vertical vegetation strata are connected, which is rarely true. Fragmented landscapes that have more complex 3D vegetation showed greater functional connectivity and we found highest 2D to 3D functional connectivity biases for short dispersal capacities of organisms (6 m to 16 m). These findings are particularly pertinent in urban systems where the distribution of greenspace is critical for delivery of ecosystem services. PMID:28382936
Ecological connectivity in the three-dimensional urban green volume using waveform airborne lidar
NASA Astrophysics Data System (ADS)
Casalegno, Stefano; Anderson, Karen; Cox, Daniel T. C.; Hancock, Steven; Gaston, Kevin J.
2017-04-01
The movements of organisms and the resultant flows of ecosystem services are strongly shaped by landscape connectivity. Studies of urban ecosystems have relied on two-dimensional (2D) measures of greenspace structure to calculate connectivity. It is now possible to explore three-dimensional (3D) connectivity in urban vegetation using waveform lidar technology that measures the full 3D structure of the canopy. Making use of this technology, here we evaluate urban greenspace 3D connectivity, taking into account the full vertical stratification of the vegetation. Using three towns in southern England, UK, all with varying greenspace structures, we describe and compare the structural and functional connectivity using both traditional 2D greenspace models and waveform lidar-generated vegetation strata (namely, grass, shrubs and trees). Measures of connectivity derived from 3D greenspace are lower than those derived from 2D models, as the latter assumes that all vertical vegetation strata are connected, which is rarely true. Fragmented landscapes that have more complex 3D vegetation showed greater functional connectivity and we found highest 2D to 3D functional connectivity biases for short dispersal capacities of organisms (6 m to 16 m). These findings are particularly pertinent in urban systems where the distribution of greenspace is critical for delivery of ecosystem services.
Numerical simulation of a combined oxidation ditch flow using 3D k-epsilon turbulence model.
Luo, Lin; Li, Wei-min; Deng, Yong-sen; Wang, Tao
2005-01-01
The standard three dimensional(3D) k-epsilon turbulence model was applied to simulate the flow field of a small scale combined oxidation ditch. The moving mesh approach was used to model the rotor of the ditch. Comparison of the computed and the measured data is acceptable. A vertical reverse flow zone in the ditch was found, and it played a very important role in the ditch flow behavior. The flow pattern in the ditch is discussed in detail, and approaches are suggested to improve the hydrodynamic performance in the ditch.
Construction and comparison of parallel implicit kinetic solvers in three spatial dimensions
NASA Astrophysics Data System (ADS)
Titarev, Vladimir; Dumbser, Michael; Utyuzhnikov, Sergey
2014-01-01
The paper is devoted to the further development and systematic performance evaluation of a recent deterministic framework Nesvetay-3D for modelling three-dimensional rarefied gas flows. Firstly, a review of the existing discretization and parallelization strategies for solving numerically the Boltzmann kinetic equation with various model collision integrals is carried out. Secondly, a new parallelization strategy for the implicit time evolution method is implemented which improves scaling on large CPU clusters. Accuracy and scalability of the methods are demonstrated on a pressure-driven rarefied gas flow through a finite-length circular pipe as well as an external supersonic flow over a three-dimensional re-entry geometry of complicated aerodynamic shape.
Stankovic, Zoran; Allen, Bradley D.; Garcia, Julio; Jarvis, Kelly B.
2014-01-01
Magnetic resonance imaging (MRI) has become an important tool for the clinical evaluation of patients with cardiovascular disease. Since its introduction in the late 1980s, 2-dimensional phase contrast MRI (2D PC-MRI) has become a routine part of standard-of-care cardiac MRI for the assessment of regional blood flow in the heart and great vessels. More recently, time-resolved PC-MRI with velocity encoding along all three flow directions and three-dimensional (3D) anatomic coverage (also termed ‘4D flow MRI’) has been developed and applied for the evaluation of cardiovascular hemodynamics in multiple regions of the human body. 4D flow MRI allows for the comprehensive evaluation of complex blood flow patterns by 3D blood flow visualization and flexible retrospective quantification of flow parameters. Recent technical developments, including the utilization of advanced parallel imaging techniques such as k-t GRAPPA, have resulted in reasonable overall scan times, e.g., 8-12 minutes for 4D flow MRI of the aorta and 10-20 minutes for whole heart coverage. As a result, the application of 4D flow MRI in a clinical setting has become more feasible, as documented by an increased number of recent reports on the utility of the technique for the assessment of cardiac and vascular hemodynamics in patient studies. A number of studies have demonstrated the potential of 4D flow MRI to provide an improved assessment of hemodynamics which might aid in the diagnosis and therapeutic management of cardiovascular diseases. The purpose of this review is to describe the methods used for 4D flow MRI acquisition, post-processing and data analysis. In addition, the article provides an overview of the clinical applications of 4D flow MRI and includes a review of applications in the heart, thoracic aorta and hepatic system. PMID:24834414
Three-dimensional shape perception from chromatic orientation flows
Zaidi, Qasim; Li, Andrea
2010-01-01
The role of chromatic information in 3-D shape perception is controversial. We resolve this controversy by showing that chromatic orientation flows are sufficient for accurate perception of 3-D shape. Chromatic flows required less cone contrast to convey shape than did achromatic flows, thus ruling out luminance artifacts as a problem. Luminance artifacts were also ruled out by a protanope’s inability to see 3-D shape from chromatic flows. Since chromatic orientation flows can only be extracted from retinal images by neurons that are responsive to color modulations and selective for orientation, the psychophysical results also resolve the controversy over the existence of such neurons. In addition, we show that identification of 3-D shapes from chromatic flows can be masked by luminance modulations, indicating that it is subserved by orientation-tuned neurons sensitive to both chromatic and luminance modulations. PMID:16961963
Energy transfer in turbulence under rotation
NASA Astrophysics Data System (ADS)
Buzzicotti, Michele; Aluie, Hussein; Biferale, Luca; Linkmann, Moritz
2018-03-01
It is known that rapidly rotating turbulent flows are characterized by the emergence of simultaneous upscale and downscale energy transfer. Indeed, both numerics and experiments show the formation of large-scale anisotropic vortices together with the development of small-scale dissipative structures. However the organization of interactions leading to this complex dynamics remains unclear. Two different mechanisms are known to be able to transfer energy upscale in a turbulent flow. The first is characterized by two-dimensional interactions among triads lying on the two-dimensional, three-component (2D3C)/slow manifold, namely on the Fourier plane perpendicular to the rotation axis. The second mechanism is three-dimensional and consists of interactions between triads with the same sign of helicity (homochiral). Here, we present a detailed numerical study of rotating flows using a suite of high-Reynolds-number direct numerical simulations (DNS) within different parameter regimes to analyze both upscale and downscale cascade ranges. We find that the upscale cascade at wave numbers close to the forcing scale is generated by increasingly dominant homochiral interactions which couple the three-dimensional bulk and the 2D3C plane. This coupling produces an accumulation of energy in the 2D3C plane, which then transfers energy to smaller wave numbers thanks to the two-dimensional mechanism. In the forward cascade range, we find that the energy transfer is dominated by heterochiral triads and is dominated primarily by interaction within the fast manifold where kz≠0 . We further analyze the energy transfer in different regions in the real-space domain. In particular, we distinguish high-strain from high-vorticity regions and we uncover that while the mean transfer is produced inside regions of strain, the rare but extreme events of energy transfer occur primarily inside the large-scale column vortices.
Polyaxial stress-dependent permeability of a three-dimensional fractured rock layer
NASA Astrophysics Data System (ADS)
Lei, Qinghua; Wang, Xiaoguang; Xiang, Jiansheng; Latham, John-Paul
2017-12-01
A study about the influence of polyaxial (true-triaxial) stresses on the permeability of a three-dimensional (3D) fractured rock layer is presented. The 3D fracture system is constructed by extruding a two-dimensional (2D) outcrop pattern of a limestone bed that exhibits a ladder structure consisting of a "through-going" joint set abutted by later-stage short fractures. Geomechanical behaviour of the 3D fractured rock in response to in-situ stresses is modelled by the finite-discrete element method, which can capture the deformation of matrix blocks, variation of stress fields, reactivation of pre-existing rough fractures and propagation of new cracks. A series of numerical simulations is designed to load the fractured rock using various polyaxial in-situ stresses and the stress-dependent flow properties are further calculated. The fractured layer tends to exhibit stronger flow localisation and higher equivalent permeability as the far-field stress ratio is increased and the stress field is rotated such that fractures are preferentially oriented for shearing. The shear dilation of pre-existing fractures has dominant effects on flow localisation in the system, while the propagation of new fractures has minor impacts. The role of the overburden stress suggests that the conventional 2D analysis that neglects the effect of the out-of-plane stress (perpendicular to the bedding interface) may provide indicative approximations but not fully capture the polyaxial stress-dependent fracture network behaviour. The results of this study have important implications for understanding the heterogeneous flow of geological fluids (e.g. groundwater, petroleum) in subsurface and upscaling permeability for large-scale assessments.
The Evolution of Oblique Impact Flow Fields Using Maxwell's Z Model
NASA Technical Reports Server (NTRS)
Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.
2003-01-01
Oblique impacts are the norm rather than the exception for impact craters on planetary surfaces. This work focuses on the excavation of experimental oblique impact craters using the NASA Ames Vertical Gun Range (AVGR). Three-dimensional particle image velocimetry (3D PIV) is used to obtain quantitative data on ejection positions, three-dimensional velocities and angles. These data are then used to test the applicability and limitations of Maxwell's Z Model in representing the subsurface evolution of the excavation-stage flow-field center during vertical and oblique impacts.
The NASA Ames Hypersonic Combustor-Model Inlet CFD Simulations and Experimental Comparisons
NASA Technical Reports Server (NTRS)
Venkatapathy, E.; Tokarcik-Polsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)
1995-01-01
Computations have been performed on a three-dimensional inlet associated with the NASA Ames combustor model for the hypersonic propulsion experiment in the 16-inch shock tunnel. The 3-dimensional inlet was designed to have the combustor inlet flow nearly two-dimensional and of sufficient mass flow necessary for combustion. The 16-inch shock tunnel experiment is a short duration test with test time of the order of milliseconds. The flow through the inlet is in chemical non-equilibrium. Two test entries have been completed and limited experimental results for the inlet region of the combustor-model are available. A number of CFD simulations, with various levels of simplifications such as 2-D simulations, 3-D simulations with and without chemical reactions, simulations with and without turbulent conditions, etc., have been performed. These simulations have helped determine the model inlet flow characteristics and the important factors that affect the combustor inlet flow and the sensitivity of the flow field to these simplifications. In the proposed paper, CFD modeling of the hypersonic inlet, results from the simulations and comparison with available experimental results will be presented.
NASA Astrophysics Data System (ADS)
Hopp, L.; Ivanov, V. Y.
2010-12-01
There is still a debate in rainfall-runoff modeling over the advantage of using three-dimensional models based on partial differential equations describing variably saturated flow vs. models with simpler infiltration and flow routing algorithms. Fully explicit 3D models are computationally demanding but allow the representation of spatially complex domains, heterogeneous soils, conditions of ponded infiltration, and solute transport, among others. Models with simpler infiltration and flow routing algorithms provide faster run times and are likely to be more versatile in the treatment of extreme conditions such as soil drying but suffer from underlying assumptions and ad-hoc parameterizations. In this numerical study, we explore the question of whether these two model strategies are competing approaches or if they complement each other. As a 3D physics-based model we use HYDRUS-3D, a finite element model that numerically solves the Richards equation for variably-saturated water flow. As an example of a simpler model, we use tRIBS+VEGGIE that solves the 1D Richards equation for vertical flow and applies Dupuit-Forchheimer approximation for saturated lateral exchange and gravity-driven flow for unsaturated lateral exchange. The flow can be routed using either the D-8 (steepest descent) or D-infinity flow routing algorithms. We study lateral subsurface stormflow and moisture dynamics at the hillslope-scale, using a zero-order basin topography, as a function of storm size, antecedent moisture conditions and slope angle. The domain and soil characteristics are representative of a forested hillslope with conductive soils in a humid environment, where the major runoff generating process is lateral subsurface stormflow. We compare spatially integrated lateral subsurface flow at the downslope boundary as well as spatial patterns of soil moisture. We illustrate situations where both model approaches perform equally well and identify conditions under which the application of a fully-explicit 3D model may be required for a realistic description of the hydrologic response.
He, Yue; Zhu, Han Guang; Zhang, Zhi Yuan; He, Jie; Sader, Robert
2009-12-01
A total maxillectomy always causes composite defects of maxilla, zygomatic bone, orbital floor or rim, and palatal and nasal mucosa lining. This leads to significant functional and cosmetic consequences after ablative surgery. The purpose of this clinical study was to preliminarily 3-dimensionally reconstruct the defect of total maxillectomy with sufficient bone support and soft tissue lining. Three-dimensional model simulation technique and free fibula osteomyocutaneous flap flow-through from radial forearm flap were used to reconstruct a total maxillectomy defect for a 21-year-old female patient. Preoperatively, the 3-dimensional (3D) simulated resin models of skeleton and fibula were used to design the osteotomies and bone segment replacement. At surgery, a 22-cm-length free fibula was divided into 4 segments to make 1 maxilla skeletal framework in the schedule of the preoperative model surgical planning with a radial forearm flap flow-through for the free fibula flap with skin paddle to repair the palatal and nasal region. Free fibula and radial forearm flap were alive, and the patient was satisfied with the results both esthetically and functionally after dental rehabilitation which was carried out 6 months after surgery. This preliminarily clinical study and case demonstrated that: the fibula osteomyocutaneous flap is an ideal donor site in 3D total maxillectomy defect reconstruction, because of its thickness, length, and bone uniformity which makes ideal support for dental rehabilitation; the flow-through forearm radial flap not only serves as the vascular bridge to midface reconstruction, but also provides sufficient soft tissue cover for the intraoral defect; and the 3D model simulation and preoperative surgical planning are effective methods to refine reconstruction surgery, shorten the surgical time, and predict the outcome after operation.
NASA Astrophysics Data System (ADS)
Saaid, Hicham; Segers, Patrick; Novara, Matteo; Claessens, Tom; Verdonck, Pascal
2018-03-01
The characterization of flow patterns in the left ventricle may help the development and interpretation of flow-based parameters of cardiac function and (patho-)physiology. Yet, in vivo visualization of highly dynamic three-dimensional flow patterns in an opaque and moving chamber is a challenging task. This has been shown in several recent multidisciplinary studies where in vivo imaging methods are often complemented by in silico solutions, or by in vitro methods. Because of its distinctive features, particle image velocimetry (PIV) has been extensively used to investigate flow dynamics in the cardiovascular field. However, full volumetric PIV data in a dynamically changing geometry such as the left ventricle remain extremely scarce, which justifies the present study. An investigation of the left ventricle flow making use of a customized cardiovascular simulator is presented; a multiplane scanning-stereoscopic PIV setup is used, which allows for the measurement of independent planes across the measurement volume. Due to the accuracy in traversing the illumination and imaging systems, the present setup allows to reconstruct the flow in a 3D volume performing only one single calibration. The effects of the orientation of a prosthetic mitral valve in anatomical and anti-anatomical configurations have been investigated during the diastolic filling time. The measurement is performed in a phase-locked manner; the mean velocity components are presented together with the vorticity and turbulent kinetic energy maps. The reconstructed 3D flow structures downstream the bileaflet mitral valve are shown, which provides additional insight of the highly three-dimensional flow.
NASA Astrophysics Data System (ADS)
Kosovic, B.; Jimenez, P. A.; Haupt, S. E.; Martilli, A.; Olson, J.; Bao, J. W.
2017-12-01
At present, the planetary boundary layer (PBL) parameterizations available in most numerical weather prediction (NWP) models are one-dimensional. One-dimensional parameterizations are based on the assumption of horizontal homogeneity. This homogeneity assumption is appropriate for grid cell sizes greater than 10 km. However, for mesoscale simulations of flows in complex terrain with grid cell sizes below 1 km, the assumption of horizontal homogeneity is violated. Applying a one-dimensional PBL parameterization to high-resolution mesoscale simulations in complex terrain could result in significant error. For high-resolution mesoscale simulations of flows in complex terrain, we have therefore developed and implemented a three-dimensional (3D) PBL parameterization in the Weather Research and Forecasting (WRF) model. The implementation of the 3D PBL scheme is based on the developments outlined by Mellor and Yamada (1974, 1982). Our implementation in the Weather Research and Forecasting (WRF) model uses a pure algebraic model (level 2) to diagnose the turbulent fluxes. To evaluate the performance of the 3D PBL model, we use observations from the Wind Forecast Improvement Project 2 (WFIP2). The WFIP2 field study took place in the Columbia River Gorge area from 2015-2017. We focus on selected cases when physical phenomena of significance for wind energy applications such as mountain waves, topographic wakes, and gap flows were observed. Our assessment of the 3D PBL parameterization also considers a large-eddy simulation (LES). We carried out a nested LES with grid cell sizes of 30 m and 10 m covering a large fraction of the WFIP2 study area. Both LES domains were discretized using 6000 x 3000 x 200 grid cells in zonal, meridional, and vertical direction, respectively. The LES results are used to assess the relative magnitude of horizontal gradients of turbulent stresses and fluxes in comparison to vertical gradients. The presentation will highlight the advantages of the 3D PBL scheme in regions of complex terrain.
Inertia-dependent dynamics of three-dimensional vesicles and red blood cells in shear flow.
Luo, Zheng Yuan; Wang, Shu Qi; He, Long; Xu, Feng; Bai, Bo Feng
2013-10-28
A three-dimensional (3D) simulation study of the effect of inertia on the dynamics of vesicles and red blood cells (RBCs) has not been reported. Here, we developed a 3D model based on the front tracking method to investigate how inertia affects the dynamics of spherical/non-spherical vesicles and biconcave-shaped RBCs with the Reynolds number ranging from 0.1 to 10. The results showed that inertia induced non-spherical vesicles transitioned from tumbling to swinging, which was not observed in previous 2D models. The critical viscosity ratio of inner/outer fluids for the tumbling–swinging transition remarkably increased with an increasing Reynolds number. The deformation of vesicles was greatly enhanced by inertia, and the frequency of tumbling and tank-treading was significantly decreased by inertia. We also found that RBCs can transit from tumbling to steady tank-treading through the swinging regime when the Reynolds number increased from 0.1 to 10. These results indicate that inertia needs to be considered at moderate Reynolds number (Re ~ 1) in the study of blood flow in the human body and the flow of deformable particle suspension in inertial microfluidic devices. The developed 3D model provided new insights into the dynamics of RBCs under shear flow, thus holding great potential to better understand blood flow behaviors under normal/disease conditions.
NASA Astrophysics Data System (ADS)
Fuchsluger, Martin; Götzl, Gregor
2014-05-01
In general most aquifers have a much larger lateral extent than vertical. This fact leads to the application of the Dupuit-Forchheimer assumptions to many groundwater problems, whereas a two dimensional simulation is considered sufficient. By coupling transient fluid flow modeling with heat transport the 2D aquifer approximation is in many cases insufficient as it does not consider effects of the subjacent and overlying aquitards on heat propagation as well as the impact of surface climatic effects on shallow aquifers. A shallow Holocene aquifer in Vienna served as a case study to compare different modeling approaches in two and three dimensions in order to predict the performance and impact of a thermal aquifer utilization for heating (1.3 GWh) and cooling (1.4 GWh) of a communal building. With the assumption of a 6 doublets well field, the comparison was realized in three steps: At first a two dimensional model for unconfined flow was set up, assuming a varying hydraulic conductivity as well as a varying top and bottom elevation of the aquifer (gross - thickness). The model area was chosen along constant hydraulic head at steady state conditions. A second model was made by mapping solely the aquifer in three dimensions using the same subdomain and boundary conditions as defined in step one. The third model consists of a complete three dimensional geological build-up including the aquifer as well as the overlying and subjacent layers and additionally an annually variable climatic boundary condition at the surface. The latter was calibrated with measured water temperature at a nearby water gauge. For all three models the same annual operating mode of the 6 hydraulic doublets was assumed. Furthermore a limited maximal groundwater temperature at a range between 8 and 18 °C as well as a constrained well flow rate has been given. Finally a descriptive comparison of the three models concerning the extracted thermal power, drawdown, temperature distribution and Darcy flow has been realized. In addition the effects of the basement of the building to the groundwater flow have been analyzed. The results of the 2D model show an underestimation of more than 10 % of the performance of the groundwater utilization facility and a considerable smaller groundwater table drawdown compared to the 3D simulations. This is due to the possibility of 3D modeling to consider (i) the heat distribution and storage in the adjacent layers, (ii) the climatic surface effect and (iii) vertical groundwater flow.
Chandra, Sonal; Salgo, Ivan S; Sugeng, Lissa; Weinert, Lynn; Settlemier, Scott H; Mor-Avi, Victor; Lang, Roberto M
2011-09-01
Mitral effective regurgitant orifice area (EROA) using the flow convergence (FC) method is used to quantify the severity of mitral regurgitation (MR). However, it is challenging and prone to interobserver variability in complex valvular pathology. We hypothesized that real-time three-dimensional (3D) transesophageal echocardiography (RT3D TEE) derived anatomic regurgitant orifice area (AROA) can be a reasonable adjunct, irrespective of valvular geometry. Our goals were to 1) to determine the regurgitant orifice morphology and distance suitable for FC measurement using 3D computational flow dynamics and finite element analysis (FEA), and (2) to measure AROA from RT3D TEE and compare it with 2D FC derived EROA measurements. We studied 61 patients. EROA was calculated from 2D TEE images using the 2D-FC technique, and AROA was obtained from zoomed RT3DE TEE acquisitions using prototype software. 3D computational fluid dynamics by FEA were applied to 3D TEE images to determine the effects of mitral valve (MV) orifice geometry on FC pattern. 3D FEA analysis revealed that a central regurgitant orifice is suitable for FC measurements at an optimal distance from the orifice but complex MV orifice resulting in eccentric jets yielded nonaxisymmetric isovelocity contours close to the orifice where the assumptions underlying FC are problematic. EROA and AROA measurements correlated well (r = 0.81) with a nonsignificant bias. However, in patients with eccentric MR, the bias was larger than in central MR. Intermeasurement variability was higher for the 2D FC technique than for RT3DE-based measurements. With its superior reproducibility, 3D analysis of the AROA is a useful alternative to quantify MR when 2D FC measurements are challenging.
Three-dimensional features on oscillating microbubbles streaming flows
NASA Astrophysics Data System (ADS)
Rossi, Massimiliano; Marin, Alvaro G.; Wang, Cheng; Hilgenfeldt, Sascha; Kähler, Christian J.
2013-11-01
Ultrasound-driven oscillating micro-bubbles have been used as active actuators in microfluidic devices to perform manifold tasks such as mixing, sorting and manipulation of microparticles. A common configuration consists in side-bubbles, created by trapping air pockets in blind channels perpendicular to the main channel direction. This configuration results in bubbles with a semi-cylindrical shape that creates a streaming flow generally considered quasi two-dimensional. However, recent experiments performed with three-dimensional velocimetry methods have shown how microparticles can present significant three-dimensional trajectories, especially in regions close to the bubble interface. Several reasons will be discussed such as boundary effects of the bottom/top wall, deformation of the bubble interface leading to more complex vibrational modes, or bubble-particle interactions. In the present investigation, precise measurements of particle trajectories close to the bubble interface will be performed by means of 3D Astigmatic Particle Tracking Velocimetry. The results will allow us to characterize quantitatively the three-dimensional features of the streaming flow and to estimate its implications in practical applications as particle trapping, sorting or mixing.
NASA Technical Reports Server (NTRS)
Wie, Yong-Sun
1990-01-01
This user's manual contains a complete description of the computer programs developed to calculate three-dimensional, compressible, laminar boundary layers for perfect gas flow on general fuselage shapes. These programs include the 3-D boundary layer program (3DBLC), the body-oriented coordinate program (BCC), and the streamline coordinate program (SCC). Subroutine description, input, output and sample case are discussed. The complete FORTRAN listings of the computer programs are given.
Baghaie, Ahmadreza; Pahlavan Tafti, Ahmad; Owen, Heather A; D'Souza, Roshan M; Yu, Zeyun
2017-01-01
Scanning Electron Microscope (SEM) as one of the major research and industrial equipment for imaging of micro-scale samples and surfaces has gained extensive attention from its emerge. However, the acquired micrographs still remain two-dimensional (2D). In the current work a novel and highly accurate approach is proposed to recover the hidden third-dimension by use of multi-view image acquisition of the microscopic samples combined with pre/post-processing steps including sparse feature-based stereo rectification, nonlocal-based optical flow estimation for dense matching and finally depth estimation. Employing the proposed approach, three-dimensional (3D) reconstructions of highly complex microscopic samples were achieved to facilitate the interpretation of topology and geometry of surface/shape attributes of the samples. As a byproduct of the proposed approach, high-definition 3D printed models of the samples can be generated as a tangible means of physical understanding. Extensive comparisons with the state-of-the-art reveal the strength and superiority of the proposed method in uncovering the details of the highly complex microscopic samples.
Lagrangian transport in a class of three-dimensional buoyancy-driven flows
NASA Astrophysics Data System (ADS)
Contreras, Sebastian; Speetjens, Michel; Clercx, Herman
2017-11-01
The study concerns the Lagrangian dynamics of three-dimensional (3D) buoyancy-driven cavity flows under steady and laminar conditions due to a global temperature gradient imposed via an opposite hot and cold sidewall. This serves as archetypal configuration for natural-convection flows in which gravity is perpendicular to the global temperature gradient. Limited insight into the Lagrangian properties of this class of flows motivates this study. The 3D Lagrangian dynamics are investigated in terms of the generic structure of the Lagrangian flow topology that is described in terms of the Grashof number (Gr) and the Prandtl number (Pr). Gr is the principal control parameter for the flow topology: vanishing Gr yields a state of closed streamlines (integrable state); increasing Gr causes the formation of toroidal coherent structures embedded in chaotic streamlines governed by Hamiltonian mechanisms. Fluid inertia prevails for ``smaller'' Gr. A buoyancy-induced bifurcation of the flow topology occurs for ``larger'' Gr and underlies the emergence of ``secondary rolls'' and secondary tori for ``larger'' Pr. Stagnation points and corresponding manifold interactions are key to the dynamics. S.C. acknowledges financial support from Consejo Nacional de Ciencia y Tecnología (CONACYT).
An Improved Treatment of External Boundary for Three-Dimensional Flow Computations
NASA Technical Reports Server (NTRS)
Tsynkov, Semyon V.; Vatsa, Veer N.
1997-01-01
We present an innovative numerical approach for setting highly accurate nonlocal boundary conditions at the external computational boundaries when calculating three-dimensional compressible viscous flows over finite bodies. The approach is based on application of the difference potentials method by V. S. Ryaben'kii and extends our previous technique developed for the two-dimensional case. The new boundary conditions methodology has been successfully combined with the NASA-developed code TLNS3D and used for the analysis of wing-shaped configurations in subsonic and transonic flow regimes. As demonstrated by the computational experiments, the improved external boundary conditions allow one to greatly reduce the size of the computational domain while still maintaining high accuracy of the numerical solution. Moreover, they may provide for a noticeable speedup of convergence of the multigrid iterations.
NASA Astrophysics Data System (ADS)
Carlsohn, Matthias F.; Kemmling, André; Petersen, Arne; Wietzke, Lennart
2016-04-01
Cerebral aneurysms require endovascular treatment to eliminate potentially lethal hemorrhagic rupture by hemostasis of blood flow within the aneurysm. Devices (e.g. coils and flow diverters) promote homeostasis, however, measurement of blood flow within an aneurysm or cerebral vessel before and after device placement on a microscopic level has not been possible so far. This would allow better individualized treatment planning and improve manufacture design of devices. For experimental analysis, direct measurement of real-time microscopic cerebrovascular flow in micro-structures may be an alternative to computed flow simulations. An application of microscopic aneurysm flow measurement on a regular basis to empirically assess a high number of different anatomic shapes and the corresponding effect of different devices would require a fast and reliable method at low cost with high throughout assessment. Transparent three dimensional 3D models of brain vessels and aneurysms may be used for microscopic flow measurements by particle image velocimetry (PIV), however, up to now the size of structures has set the limits for conventional 3D-imaging camera set-ups. On line flow assessment requires additional computational power to cope with the processing large amounts of data generated by sequences of multi-view stereo images, e.g. generated by a light field camera capturing the 3D information by plenoptic imaging of complex flow processes. Recently, a fast and low cost workflow for producing patient specific three dimensional models of cerebral arteries has been established by stereo-lithographic (SLA) 3D printing. These 3D arterial models are transparent an exhibit a replication precision within a submillimeter range required for accurate flow measurements under physiological conditions. We therefore test the feasibility of microscopic flow measurements by PIV analysis using a plenoptic camera system capturing light field image sequences. Averaging across a sequence of single double or triple shots of flashed images enables reconstruction of the real-time corpuscular flow through the vessel system before and after device placement. This approach could enable 3D-insight of microscopic flow within blood vessels and aneurysms at submillimeter resolution. We present an approach that allows real-time assessment of 3D particle flow by high-speed light field image analysis including a solution that addresses high computational load by image processing. The imaging set-up accomplishes fast and reliable PIV analysis in transparent 3D models of brain aneurysms at low cost. High throughput microscopic flow assessment of different shapes of brain aneurysms may therefore be possibly required for patient specific device designs.
Micro-Macro Simulation of Viscoelastic Fluids in Three Dimensions
NASA Astrophysics Data System (ADS)
Rüttgers, Alexander; Griebel, Michael
2012-11-01
The development of the chemical industry resulted in various complex fluids that cannot be correctly described by classical fluid mechanics. For instance, this includes paint, engine oils with polymeric additives and toothpaste. We currently perform multiscale viscoelastic flow simulations for which we have coupled our three-dimensional Navier-Stokes solver NaSt3dGPF with the stochastic Brownian configuration field method on the micro-scale. In this method, we represent a viscoelastic fluid as a dumbbell system immersed in a three-dimensional Newtonian liquid which leads to a six-dimensional problem in space. The approach requires large computational resources and therefore depends on an efficient parallelisation strategy. Our flow solver is parallelised with a domain decomposition approach using MPI. It shows excellent scale-up results for up to 128 processors. In this talk, we present simulation results for viscoelastic fluids in square-square contractions due to their relevance for many engineering applications such as extrusion. Another aspect of the talk is the parallel implementation in NaSt3dGPF and the parallel scale-up and speed-up behaviour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griebel, M., E-mail: griebel@ins.uni-bonn.de, E-mail: ruettgers@ins.uni-bonn.de; Rüttgers, A., E-mail: griebel@ins.uni-bonn.de, E-mail: ruettgers@ins.uni-bonn.de
The multiscale FENE model is applied to a 3D square-square contraction flow problem. For this purpose, the stochastic Brownian configuration field method (BCF) has been coupled with our fully parallelized three-dimensional Navier-Stokes solver NaSt3DGPF. The robustness of the BCF method enables the numerical simulation of high Deborah number flows for which most macroscopic methods suffer from stability issues. The results of our simulations are compared with that of experimental measurements from literature and show a very good agreement. In particular, flow phenomena such as a strong vortex enhancement, streamline divergence and a flow inversion for highly elastic flows are reproduced.more » Due to their computational complexity, our simulations require massively parallel computations. Using a domain decomposition approach with MPI, the implementation achieves excellent scale-up results for up to 128 processors.« less
Viscous Incompressible Flow Computations for 3-D Steady and Unsteady Flows
NASA Technical Reports Server (NTRS)
Kwak, Dochan
2001-01-01
This viewgraph presentation gives an overview of viscous incompressible flow computations for three-dimensional steady and unsteady flows. Details are given on the use of computational fluid dynamics (CFD) as an engineering tool, solution methods for incompressible Navier-Stokes equations, numerical and physical characteristics of the primitive variable approach, and the role of CFD in the past and in current engineering and research applications.
Three-dimensional numerical study of heat transfer enhancement in separated flows
NASA Astrophysics Data System (ADS)
Kumar, Saurav; Vengadesan, S.
2017-11-01
The flow separation appears in a wide range of heat transfer applications and causes poor heat transfer performance. It motivates the study of heat transfer enhancement in laminar as well as turbulent flows over a backward facing step by means of an adiabatic fin mounted on the top wall. Recently, we have studied steady, 2-D numerical simulations in laminar flow and investigated the effect of fin length, location, and orientation. It revealed that the addition of fin causes enhancement of heat transfer and it is very effective to control the flow and thermal behavior. The fin is most effective and sensitive when it is placed exactly above the step. A slight displacement of the fin in upstream of the step causes the complete change of flow and thermal behavior. Based on the obtained 2-D results it is interesting to investigate the side wall effect in three-dimensional simulations. The comparison of two-dimensional and three-dimensional numerical simulations with the available experimental results will be presented. Special attention has to be given to capture unsteadiness in the flow and thermal field.
Turbulent mixing of a critical fluid: The non-perturbative renormalization
NASA Astrophysics Data System (ADS)
Hnatič, M.; Kalagov, G.; Nalimov, M.
2018-01-01
Non-perturbative Renormalization Group (NPRG) technique is applied to a stochastical model of a non-conserved scalar order parameter near its critical point, subject to turbulent advection. The compressible advecting flow is modeled by a random Gaussian velocity field with zero mean and correlation function 〈υjυi 〉 ∼ (Pji⊥ + αPji∥) /k d + ζ. Depending on the relations between the parameters ζ, α and the space dimensionality d, the model reveals several types of scaling regimes. Some of them are well known (model A of equilibrium critical dynamics and linear passive scalar field advected by a random turbulent flow), but there is a new nonequilibrium regime (universality class) associated with new nontrivial fixed points of the renormalization group equations. We have obtained the phase diagram (d, ζ) of possible scaling regimes in the system. The physical point d = 3, ζ = 4 / 3 corresponding to three-dimensional fully developed Kolmogorov's turbulence, where critical fluctuations are irrelevant, is stable for α ≲ 2.26. Otherwise, in the case of "strong compressibility" α ≳ 2.26, the critical fluctuations of the order parameter become relevant for three-dimensional turbulence. Estimations of critical exponents for each scaling regime are presented.
Bailey, Ryan T.; Morway, Eric D.; Niswonger, Richard G.; Gates, Timothy K.
2013-01-01
A numerical model was developed that is capable of simulating multispecies reactive solute transport in variably saturated porous media. This model consists of a modified version of the reactive transport model RT3D (Reactive Transport in 3 Dimensions) that is linked to the Unsaturated-Zone Flow (UZF1) package and MODFLOW. Referred to as UZF-RT3D, the model is tested against published analytical benchmarks as well as other published contaminant transport models, including HYDRUS-1D, VS2DT, and SUTRA, and the coupled flow and transport modeling system of CATHY and TRAN3D. Comparisons in one-dimensional, two-dimensional, and three-dimensional variably saturated systems are explored. While several test cases are included to verify the correct implementation of variably saturated transport in UZF-RT3D, other cases are included to demonstrate the usefulness of the code in terms of model run-time and handling the reaction kinetics of multiple interacting species in variably saturated subsurface systems. As UZF1 relies on a kinematic-wave approximation for unsaturated flow that neglects the diffusive terms in Richards equation, UZF-RT3D can be used for large-scale aquifer systems for which the UZF1 formulation is reasonable, that is, capillary-pressure gradients can be neglected and soil parameters can be treated as homogeneous. Decreased model run-time and the ability to include site-specific chemical species and chemical reactions make UZF-RT3D an attractive model for efficient simulation of multispecies reactive transport in variably saturated large-scale subsurface systems.
Foundations of chaotic mixing.
Wiggins, Stephen; Ottino, Julio M
2004-05-15
The simplest mixing problem corresponds to the mixing of a fluid with itself; this case provides a foundation on which the subject rests. The objective here is to study mixing independently of the mechanisms used to create the motion and review elements of theory focusing mostly on mathematical foundations and minimal models. The flows under consideration will be of two types: two-dimensional (2D) 'blinking flows', or three-dimensional (3D) duct flows. Given that mixing in continuous 3D duct flows depends critically on cross-sectional mixing, and that many microfluidic applications involve continuous flows, we focus on the essential aspects of mixing in 2D flows, as they provide a foundation from which to base our understanding of more complex cases. The baker's transformation is taken as the centrepiece for describing the dynamical systems framework. In particular, a hierarchy of characterizations of mixing exist, Bernoulli --> mixing --> ergodic, ordered according to the quality of mixing (the strongest first). Most importantly for the design process, we show how the so-called linked twist maps function as a minimal picture of mixing, provide a mathematical structure for understanding the type of 2D flows that arise in many micromixers already built, and give conditions guaranteeing the best quality mixing. Extensions of these concepts lead to first-principle-based designs without resorting to lengthy computations.
A review on noise suppression and aberration compensation in holographic particle image velocimetry
NASA Astrophysics Data System (ADS)
Tamrin, K. F.; Rahmatullah, B.
2016-12-01
Understanding three-dimensional (3D) fluid flow behaviour is undeniably crucial in improving performance and efficiency in a wide range of applications in engineering and medical fields. Holographic particle image velocimetry (HPIV) is a potential tool to probe and characterize complex flow dynamics since it is a truly three-dimensional three-component measurement technique. The technique relies on the coherent light scattered by small seeding particles that are assumed to faithfully follow the flow for subsequent reconstruction of the same the event afterward. However, extraction of useful 3D displacement data from these particle images is usually aggravated by noise and aberration which are inherent within the optical system. Noise and aberration have been considered as major hurdles in HPIV in obtaining accurate particle image identification and its corresponding 3D position. Major contributions to noise include zero-order diffraction, out-of-focus particles, virtual image and emulsion grain scattering. Noise suppression is crucial to ensure that particle image can be distinctly differentiated from background noise while aberration compensation forms particle image with high integrity. This paper reviews a number of HPIV configurations that have been proposed to address these issues, summarizes the key findings and outlines a basis for follow-on research.
Three-dimensional finite amplitude electroconvection in dielectric liquids
NASA Astrophysics Data System (ADS)
Luo, Kang; Wu, Jian; Yi, Hong-Liang; Tan, He-Ping
2018-02-01
Charge injection induced electroconvection in a dielectric liquid lying between two parallel plates is numerically simulated in three dimensions (3D) using a unified lattice Boltzmann method (LBM). Cellular flow patterns and their subcritical bifurcation phenomena of 3D electroconvection are numerically investigated for the first time. A unit conversion is also derived to connect the LBM system to the real physical system. The 3D LBM codes are validated by three carefully chosen cases and all results are found to be highly consistent with the analytical solutions or other numerical studies. For strong injection, the steady state roll, polygon, and square flow patterns are observed under different initial disturbances. Numerical results show that the hexagonal cell with the central region being empty of charge and centrally downward flow is preferred in symmetric systems under random initial disturbance. For weak injection, the numerical results show that the flow directly passes from the motionless state to turbulence once the system loses its linear stability. In addition, the numerically predicted linear and finite amplitude stability criteria of different flow patterns are discussed.
Attali, Jonathan; Benaissa, Azzedine; Soize, Sébastien; Kadziolka, Krzysztof; Portefaix, Christophe; Pierot, Laurent
2016-01-01
Follow-up of intracranial aneurysms treated by flow diverter with MRI is complicated by imaging artifacts produced by these devices. This study compares the diagnostic accuracy of three-dimensional time-of-flight MR angiography (3D-TOF-MRA) and contrast-enhanced MRA (CE-MRA) at 3 T for the evaluation of aneurysm occlusion and parent artery patency after flow diversion treatment, with digital subtraction angiography (DSA) as the gold standard. Patients treated with flow diverters between January 2009 and January 2013 followed by MRA at 3 T (3D-TOF-MRA and CE-MRA) and DSA within a 48 h period were included in a prospective single-center study. Aneurysm occlusion was assessed with full and simplified Montreal scales and parent artery patency with three-grade and two-grade scales. Twenty-two patients harboring 23 treated aneurysms were included. Interobserver agreement using simplified scales for occlusion (Montreal) and parent artery patency were higher for DSA (0.88 and 0.61) and CE-MRA (0.74 and 0.55) than for 3D-TOF-MRA (0.51 and 0.02). Intermodality agreement was higher for CE-MRA (0.88 and 0.32) than for 3D-TOF-MRA (0.59 and 0.11). CE-MRA yielded better accuracy than 3D-TOF-MRA for aneurysm remnant detection (sensitivity 83% vs 50%; specificity 100% vs 100%) and for the status of the parent artery (specificity 63% vs 32%; sensitivity 100% vs 100%). At 3 T, CE-MRA is superior to 3D-TOF-MRA for the evaluation of aneurysm occlusion and parent artery patency after flow diversion treatment. However, intraluminal evaluation remains difficult with MRA regardless of the sequence used. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Nadgorny, Milena; Xiao, Zeyun; Chen, Chao; Connal, Luke A
2016-10-26
In this work we describe the synthesis, thermal and rheological characterization, hot-melt extrusion, and three-dimensional printing (3DP) of poly(2-vinylpyridine) (P2VP). We investigate the effect of thermal processing conditions on physical properties of produced filaments in order to achieve high quality, 3D-printable filaments for material extrusion 3DP (ME3DP). Mechanical properties and processing performances of P2VP were enhanced by addition of 12 wt % acrylonitrile-butadiene-styrene (ABS), which reinforced P2VP fibers. We 3D-print P2VP filaments using an affordable 3D printer. The pyridine moieties are cross-linked and quaternized postprinting to form 3D-printed pH-responsive hydrogels. The printed objects exhibited dynamic and reversible pH-dependent swelling. These hydrogels act as flow-regulating valves, controlling the flow rate with pH. Additionally, a macroporous P2VP membrane was 3D-printed and the coordinating ability of the pyridyl groups was employed to immobilize silver precursors on its surface. After the reduction of silver ions, the structure was used to catalyze the reduction of 4-nitrophenol to 4-aminophenol with a high efficiency. This is a facile technique to print recyclable catalytic objects.
NASA Technical Reports Server (NTRS)
Wang, Qun-Zhen; Massey, Steven J.; Abdol-Hamid, Khaled S.; Frink, Neal T.
1999-01-01
USM3D is a widely-used unstructured flow solver for simulating inviscid and viscous flows over complex geometries. The current version (version 5.0) of USM3D, however, does not have advanced turbulence models to accurately simulate complicated flows. We have implemented two modified versions of the original Jones and Launder k-epsilon two-equation turbulence model and the Girimaji algebraic Reynolds stress model in USM3D. Tests have been conducted for two flat plate boundary layer cases, a RAE2822 airfoil and an ONERA M6 wing. The results are compared with those of empirical formulae, theoretical results and the existing Spalart-Allmaras one-equation model.
NASA Astrophysics Data System (ADS)
Wang, Yanxing; Brasseur, James G.
2017-06-01
We evaluate the potential for physiological control of intestinal absorption by the generation of "micromixing layers" (MMLs) induced by coordinated motions of mucosal villi coupled with lumen-scale "macro" eddying motions generated by gut motility. To this end, we apply a three-dimensional (3D) multigrid lattice-Boltzmann model of a lid-driven macroscale cavity flow with microscale fingerlike protuberances at the lower surface. Integrated with a previous 2D study of leaflike villi, we generalize to 3D the 2D mechanisms found there to enhance nutrient absorption by controlled villi motility. In three dimensions, increased lateral spacing within villi within groups that move axially with the macroeddy reduces MML strength and absorptive enhancement relative to two dimensions. However, lateral villi motions create helical 3D particle trajectories that enhance absorption rate to the level of axially moving 2D leaflike villi. The 3D enhancements are associated with interesting fundamental adjustments to 2D micro-macro-motility coordination mechanisms and imply a refined potential for physiological or pharmaceutical control of intestinal absorption.
The study of integration about measurable image and 4D production
NASA Astrophysics Data System (ADS)
Zhang, Chunsen; Hu, Pingbo; Niu, Weiyun
2008-12-01
In this paper, we create the geospatial data of three-dimensional (3D) modeling by the combination of digital photogrammetry and digital close-range photogrammetry. For large-scale geographical background, we make the establishment of DEM and DOM combination of three-dimensional landscape model based on the digital photogrammetry which uses aerial image data to make "4D" (DOM: Digital Orthophoto Map, DEM: Digital Elevation Model, DLG: Digital Line Graphic and DRG: Digital Raster Graphic) production. For the range of building and other artificial features which the users are interested in, we realize that the real features of the three-dimensional reconstruction adopting the method of the digital close-range photogrammetry can come true on the basis of following steps : non-metric cameras for data collection, the camera calibration, feature extraction, image matching, and other steps. At last, we combine three-dimensional background and local measurements real images of these large geographic data and realize the integration of measurable real image and the 4D production.The article discussed the way of the whole flow and technology, achieved the three-dimensional reconstruction and the integration of the large-scale threedimensional landscape and the metric building.
NASA Technical Reports Server (NTRS)
Iyer, Venkit
1993-01-01
The theory, formulation, and solution of three-dimensional, compressible attached laminar flows, applied to swept wings in subsonic or supersonic flow are discussed. Several new features and modifications to an earlier general procedure described in NASA CR 4269, Jan. 1990 are incorporated. Details of interfacing the boundary-layer computation with solution of the inviscid Euler equations are discussed. A description of the computer program, complete with user's manual and example cases, is also included. Comparison of solutions with Navier-Stokes computations with or without boundary-layer suction is given. Output of solution profiles and derivatives required in boundary-layer stability analysis is provided.
A comparative study of Rayleigh-Taylor and Richtmyer-Meshkov instabilities in 2D and 3D in tantalum
NASA Astrophysics Data System (ADS)
Sternberger, Z.; Maddox, B. R.; Opachich, Y. P.; Wehrenberg, C. E.; Kraus, R. G.; Remington, B. A.; Randall, G. C.; Farrell, M.; Ravichandran, G.
2017-01-01
Driving a shock wave through the interface between two materials with different densities can result in the Richtmyer-Meshkov or Rayleigh-Taylor instability and initial perturbations at the interface will grow. If the shock wave is sufficiently strong, the instability will lead to plastic flow at the interface. Material strength will reduce the amount of plastic flow and suppress growth. While such instabilities have been investigated in 2D, no studies of this phenomena have been performed in 3D on materials with strength. Initial perturbations to seed the hydrodynamic instability were coined into tantalum recovery targets. Two types of perturbations were used, two dimensional (2D) perturbations (hill and valley) and three-dimensional (3D) perturbations (egg crate pattern). The targets were subjected to dynamic loading using the Janus laser at the Jupiter Laser Facility. Shock pressures ranged from 50 GPa up to 150 GPa and were calibrated using VISAR drive targets.
Markl, Michael; Harloff, Andreas; Bley, Thorsten A; Zaitsev, Maxim; Jung, Bernd; Weigang, Ernst; Langer, Mathias; Hennig, Jürgen; Frydrychowicz, Alex
2007-04-01
To evaluate an improved image acquisition and data-processing strategy for assessing aortic vascular geometry and 3D blood flow at 3T. In a study with five normal volunteers and seven patients with known aortic pathology, prospectively ECG-gated cine three-dimensional (3D) MR velocity mapping with improved navigator gating, real-time adaptive k-space ordering and dynamic adjustment of the navigator acceptance criteria was performed. In addition to morphological information and three-directional blood flow velocities, phase-contrast (PC)-MRA images were derived from the same data set, which permitted 3D isosurface rendering of vascular boundaries in combination with visualization of blood-flow patterns. Analysis of navigator performance and image quality revealed improved scan efficiencies of 63.6%+/-10.5% and temporal resolution (<50 msec) compared to previous implementations. Semiquantitative evaluation of image quality by three independent observers demonstrated excellent general image appearance with moderate blurring and minor ghosting artifacts. Results from volunteer and patient examinations illustrate the potential of the improved image acquisition and data-processing strategy for identifying normal and pathological blood-flow characteristics. Navigator-gated time-resolved 3D MR velocity mapping at 3T in combination with advanced data processing is a powerful tool for performing detailed assessments of global and local blood-flow characteristics in the aorta to describe or exclude vascular alterations. Copyright (c) 2007 Wiley-Liss, Inc.
NASA Technical Reports Server (NTRS)
Sitges, Marta; Jones, Michael; Shiota, Takahiro; Qin, Jian Xin; Tsujino, Hiroyuki; Bauer, Fabrice; Kim, Yong Jin; Agler, Deborah A.; Cardon, Lisa A.; Zetts, Arthur D.;
2003-01-01
BACKGROUND: Pitfalls of the flow convergence (FC) method, including 2-dimensional imaging of the 3-dimensional (3D) geometry of the FC surface, can lead to erroneous quantification of mitral regurgitation (MR). This limitation may be mitigated by the use of real-time 3D color Doppler echocardiography (CE). Our objective was to validate a real-time 3D navigation method for MR quantification. METHODS: In 12 sheep with surgically induced chronic MR, 37 different hemodynamic conditions were studied with real-time 3DCE. Using real-time 3D navigation, the radius of the largest hemispherical FC zone was located and measured. MR volume was quantified according to the FC method after observing the shape of FC in 3D space. Aortic and mitral electromagnetic flow probes and meters were balanced against each other to determine reference MR volume. As an initial clinical application study, 22 patients with chronic MR were also studied with this real-time 3DCE-FC method. Left ventricular (LV) outflow tract automated cardiac flow measurement (Toshiba Corp, Tokyo, Japan) and real-time 3D LV stroke volume were used to quantify the reference MR volume (MR volume = 3DLV stroke volume - automated cardiac flow measurement). RESULTS: In the sheep model, a good correlation and agreement was seen between MR volume by real-time 3DCE and electromagnetic (y = 0.77x + 1.48, r = 0.87, P <.001, delta = -0.91 +/- 2.65 mL). In patients, real-time 3DCE-derived MR volume also showed a good correlation and agreement with the reference method (y = 0.89x - 0.38, r = 0.93, P <.001, delta = -4.8 +/- 7.6 mL). CONCLUSIONS: real-time 3DCE can capture the entire FC image, permitting geometrical recognition of the FC zone geometry and reliable MR quantification.
Li, Xiaokui; Wanitkun, Suthep; Li, Xiang-Ning; Hashimoto, Ikuo; Mori, Yoshiki; Rusk, Rosemary A; Hicks, Shannon E; Sahn, David J
2002-10-01
Our study was intended to test the accuracy of a 3-dimensional (3D) digital color Doppler flow convergence (FC) method for assessing the effective orifice area (EOA) in a new dynamic orifice model mimicking a variety of mitral regurgitation. FC surface area methods for detecting EOA have been reported to be useful for quantifying the severity of valvular regurgitation. With our new 3D digital direct FC method, all raw velocity data are available and variable Nyquist limits can be selected for computation of direct FC surface area for computing instantaneous flow rate and temporal change of EOA. A 7.0-MHz multiplane transesophageal probe from an ultrasound system (ATL HDI 5000) was linked and controlled by a computer workstation to provide 3D images. Three differently shaped latex orifices (zigzag, arc, and straight slit, each with cutting-edge length of 1 cm) were used to mimic the dynamic orifice of mitral regurgitation. 3D FC surface computation was performed on parallel slices through the 3D data set at aliasing velocities (14-48 cm/s) selected to maximize the regularity and minimize lateral dropout of the visualized 3D FC at 5 points per cardiac cycle. Using continuous wave velocity for each, 3D-calculated EOA was compared with EOA determined by using continuous wave Doppler and the flow rate from a reference ultrasonic flow meter. Simultaneous digital video images were also recorded to define the actual orifice size for 9 stroke volumes (15-55 mL/beat with maximum flow rates 45-182 mL/s). Over the 9 pulsatile flow states and 3 orifices, 3D FC EOAs (0.05-0.63 cm(2)) from different phases of the cardiac cycle in each pump setting correlated well with reference EOA (r = 0.89-0.92, SEE = 0.027-0.055cm(2)) and they also correlated well with digital video images of the actual orifice peak (r = 0.97-0.98, SEE = 0.016-0.019 cm(2)), although they were consistently smaller, as expected by the contraction coefficient. The digital 3D FC method can accurately predict flow rate, and, thus, EOA (in conjunction with continuous wave Doppler), because it allows direct FC surface measurement despite temporal variability of FC shape.
Lagrangians for generalized Argyres-Douglas theories
NASA Astrophysics Data System (ADS)
Benvenuti, Sergio; Giacomelli, Simone
2017-10-01
We continue the study of Lagrangian descriptions of N=2 Argyres-Douglas theories. We use our recent interpretation in terms of sequential confinement to guess the Lagrangians of all the Argyres-Douglas models with Abelian three dimensional mirror. We find classes of four dimensional N=1 quivers that flow in the infrared to generalized Argyres-Douglas theories, such as the ( A k , A kN + N -1) models. We study in detail how the N=1 chiral rings map to the Coulomb and Higgs Branches of the N=2 CFT's. The three dimensional mirror RG flows are shown to land on the N=4 complete graph quivers. We also compactify to three dimensions the gauge theory dual to ( A 1, D 4), and find the expected Abelianization duality with N=4 SQED with 3 flavors.
Three-dimensional Diffusive Strip Method
NASA Astrophysics Data System (ADS)
Martinez-Ruiz, Daniel; Meunier, Patrice; Duchemin, Laurent; Villermaux, Emmanuel
2016-11-01
The Diffusive Strip Method (DSM) is a near-exact numerical method developed for mixing computations at large Péclet number in two-dimensions. The method consists in following stretched material lines to compute a-posteriori the resulting scalar field is extended here to three-dimensional flows, following surfaces. We describe its 3D peculiarities, and show how it applies to a simple Taylor-Couette configuration with non-rotating boundary conditions at the top end, bottom and outer cylinder. This flow produces an elaborate, although controlled, steady 3D flow which relies on the Ekman pumping arising from the rotation of the inner cylinder is both studied experimentally, and numerically modeled. A recurrent two-cells structure appears formed by stream tubes shaped as nested tori. A scalar blob in the flow experiences a Lagrangian oscillating dynamics with stretchings and compressions, driving the mixing process, and yielding both rapidly-mixed and nearly pure-diffusive regions. A triangulated-surface method is developed to calculate the blob elongation and scalar concentration PDFs through a single variable computation along the advected blob surface, capturing the rich evolution observed in the experiments.
Three-dimensional simulation of the free shear layer using the vortex-in-cell method
NASA Technical Reports Server (NTRS)
Couet, B.; Buneman, O.; Leonard, A.
1979-01-01
We present numerical simulations of the evolution of a mixing layer from an initial state of uniform vorticity with simple two- and three-dimensional small perturbations. A new method for tracing a large number of three-dimensional vortex filaments is used in the simulations. Vortex tracing by Biot-Savart interaction originally implied ideal (non-viscous) flow, but we use a 3-d mesh, Fourier transforms and filtering for vortex tracing, which implies 'modeling' of subgrid scale motion and hence some viscosity. Streamwise perturbations lead to the usual roll-up of vortex patterns with spanwise uniformity maintained. Remarkably, spanwise perturbations generate streamwise distortions of the vortex filaments and the combination of both perturbations leads to patterns with interesting features discernable in the movies and in the records of enstrophy and energy for the three components of the flow.
3D visualization of unsteady 2D airplane wake vortices
NASA Technical Reports Server (NTRS)
Ma, Kwan-Liu; Zheng, Z. C.
1994-01-01
Air flowing around the wing tips of an airplane forms horizontal tornado-like vortices that can be dangerous to following aircraft. The dynamics of such vortices, including ground and atmospheric effects, can be predicted by numerical simulation, allowing the safety and capacity of airports to be improved. In this paper, we introduce three-dimensional techniques for visualizing time-dependent, two-dimensional wake vortex computations, and the hazard strength of such vortices near the ground. We describe a vortex core tracing algorithm and a local tiling method to visualize the vortex evolution. The tiling method converts time-dependent, two-dimensional vortex cores into three-dimensional vortex tubes. Finally, a novel approach calculates the induced rolling moment on the following airplane at each grid point within a region near the vortex tubes and thus allows three-dimensional visualization of the hazard strength of the vortices. We also suggest ways of combining multiple visualization methods to present more information simultaneously.
Three dimensional empirical mode decomposition analysis apparatus, method and article manufacture
NASA Technical Reports Server (NTRS)
Gloersen, Per (Inventor)
2004-01-01
An apparatus and method of analysis for three-dimensional (3D) physical phenomena. The physical phenomena may include any varying 3D phenomena such as time varying polar ice flows. A repesentation of the 3D phenomena is passed through a Hilbert transform to convert the data into complex form. A spatial variable is separated from the complex representation by producing a time based covariance matrix. The temporal parts of the principal components are produced by applying Singular Value Decomposition (SVD). Based on the rapidity with which the eigenvalues decay, the first 3-10 complex principal components (CPC) are selected for Empirical Mode Decomposition into intrinsic modes. The intrinsic modes produced are filtered in order to reconstruct the spatial part of the CPC. Finally, a filtered time series may be reconstructed from the first 3-10 filtered complex principal components.
Graphics and Flow Visualization of Computer Generated Flow Fields
NASA Technical Reports Server (NTRS)
Kathong, M.; Tiwari, S. N.
1987-01-01
Flow field variables are visualized using color representations described on surfaces that are interpolated from computational grids and transformed to digital images. Techniques for displaying two and three dimensional flow field solutions are addressed. The transformations and the use of an interactive graphics program for CFD flow field solutions, called PLOT3D, which runs on the color graphics IRIS workstation are described. An overview of the IRIS workstation is also described.
NASA Technical Reports Server (NTRS)
Forkey, Joseph N.; Lempert, Walter R.; Bogdonoff, Seymour M.; Miles, Richard B.; Russell, G.
1995-01-01
We demonstrate the use of Filtererd Rayleigh Scattering and a 3D reconstruction technique to interrogate the highly three dimensional flow field inside of a supersonic inlet model. A 3 inch by 3 inch by 2.5 inch volume is reconstructed yielding 3D visualizations of the crossing shock waves and of the boundary layer. In this paper we discuss the details of the techniques used, and present the reconstructured 3D images.
Sampaio, Francisco; Ladeiras-Lopes, Ricardo; Almeida, João; Fonseca, Paulo; Fontes-Carvalho, Ricardo; Ribeiro, José; Gama, Vasco
2017-07-01
Management of patients with mitral stenosis (MS) depends heavily on the accurate quantification of mitral valve area (MVA) using echocardiography. All currently used two-dimensional (2D) methods have limitations. Estimation of MVA using the proximal isovelocity surface area (PISA) method with real time three-dimensional (3D) echocardiography may circumvent those limitations. We aimed to evaluate the accuracy of 3D direct measurement of PISA in the estimation of MVA. Twenty-seven consecutive patients (median age of 63 years; 77.8% females) with rheumatic MS were prospectively studied. Transthoracic and transesophageal echocardiography with 2D and 3D acquisitions were performed on the same day. The reference method for MVA quantification was valve planimetry after 3D-volume multiplanar reconstruction. A semi-automated software was used to calculate the 3D flow convergence volume. Compared to MVA estimation using 3D planimetry, 3D PISA showed the best correlation (rho=0.78, P<.0001), followed by pressure half-time (PHT: rho=0.66, P<.001), continuity equation (CE: rho=0.61, P=.003), and 2D PISA (rho=0.26, P=.203). Bland-Altman analysis revealed a good agreement for MVA estimation with 3D PISA (mean difference -0.03 cm 2 ; limits of agreement (LOA) -0.40-0.35), in contrast to wider LOA for 2D methods: CE (mean difference 0.02 cm 2 , LOA -0.56-0.60); PHT (mean difference 0.31 cm 2 , LOA -0.32-0.95); 2D PISA (mean difference -0.03 cm 2 , LOA -0.92-0.86). MVA estimation using 3D PISA was feasible and more accurate than 2D methods. Its introduction in daily clinical practice seems possible and may overcome technical limitations of 2D methods. © 2017, Wiley Periodicals, Inc.
A three-dimensional method-of-characteristics solute-transport model (MOC3D)
Konikow, Leonard F.; Goode, D.J.; Hornberger, G.Z.
1996-01-01
This report presents a model, MOC3D, that simulates three-dimensional solute transport in flowing ground water. The model computes changes in concentration of a single dissolved chemical constituent over time that are caused by advective transport, hydrodynamic dispersion (including both mechanical dispersion and diffusion), mixing (or dilution) from fluid sources, and mathematically simple chemical reactions (including linear sorption, which is represented by a retardation factor, and decay). The transport model is integrated with MODFLOW, a three-dimensional ground-water flow model that uses implicit finite-difference methods to solve the transient flow equation. MOC3D uses the method of characteristics to solve the transport equation on the basis of the hydraulic gradients computed with MODFLOW for a given time step. This implementation of the method of characteristics uses particle tracking to represent advective transport and explicit finite-difference methods to calculate the effects of other processes. However, the explicit procedure has several stability criteria that may limit the size of time increments for solving the transport equation; these are automatically determined by the program. For improved efficiency, the user can apply MOC3D to a subgrid of the primary MODFLOW grid that is used to solve the flow equation. However, the transport subgrid must have uniform grid spacing along rows and columns. The report includes a description of the theoretical basis of the model, a detailed description of input requirements and output options, and the results of model testing and evaluation. The model was evaluated for several problems for which exact analytical solutions are available and by benchmarking against other numerical codes for selected complex problems for which no exact solutions are available. These test results indicate that the model is very accurate for a wide range of conditions and yields minimal numerical dispersion for advection-dominated problems. Mass-balance errors are generally less than 10 percent, and tend to decrease and stabilize with time.
A 2.5D Computational Method to Simulate Cylindrical Fluidized Beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingwen; Benyahia, Sofiane; Dietiker, Jeff
2015-02-17
In this paper, the limitations of axisymmetric and Cartesian two-dimensional (2D) simulations of cylindrical gas-solid fluidized beds are discussed. A new method has been proposed to carry out pseudo-two-dimensional (2.5D) simulations of a cylindrical fluidized bed by appropriately combining computational domains of Cartesian 2D and axisymmetric simulations. The proposed method was implemented in the open-source code MFIX and applied to the simulation of a lab-scale bubbling fluidized bed with necessary sensitivity study. After a careful grid study to ensure the numerical results are grid independent, detailed comparisons of the flow hydrodynamics were presented against axisymmetric and Cartesian 2D simulations. Furthermore,more » the 2.5D simulation results have been compared to the three-dimensional (3D) simulation for evaluation. This new approach yields better agreement with the 3D simulation results than with axisymmetric and Cartesian 2D simulations.« less
Finite-difference model for 3-D flow in bays and estuaries
Smith, Peter E.; Larock, Bruce E.; ,
1993-01-01
This paper describes a semi-implicit finite-difference model for the numerical solution of three-dimensional flow in bays and estuaries. The model treats the gravity wave and vertical diffusion terms in the governing equations implicitly, and other terms explicitly. The model achieves essentially second-order accurate and stable solutions in strongly nonlinear problems by using a three-time-level leapfrog-trapezoidal scheme for the time integration.
Refraction of high frequency noise in an arbitrary jet flow
NASA Technical Reports Server (NTRS)
Khavaran, Abbas; Krejsa, Eugene A.
1994-01-01
Refraction of high frequency noise by mean flow gradients in a jet is studied using the ray-tracing methods of geometrical acoustics. Both the two-dimensional (2D) and three-dimensional (3D) formulations are considered. In the former case, the mean flow is assumed parallel and the governing propagation equations are described by a system of four first order ordinary differential equations. The 3D formulation, on the other hand, accounts for the jet spreading as well as the axial flow development. In this case, a system of six first order differential equations are solved to trace a ray from its source location to an observer in the far field. For subsonic jets with a small spreading angle both methods lead to similar results outside the zone of silence. However, with increasing jet speed the two prediction models diverge to the point where the parallel flow assumption is no longer justified. The Doppler factor of supersonic jets as influenced by the refraction effects is discussed and compared with the conventional modified Doppler factor.
3D SAPIV particle field reconstruction method based on adaptive threshold.
Qu, Xiangju; Song, Yang; Jin, Ying; Li, Zhenhua; Wang, Xuezhen; Guo, ZhenYan; Ji, Yunjing; He, Anzhi
2018-03-01
Particle image velocimetry (PIV) is a necessary flow field diagnostic technique that provides instantaneous velocimetry information non-intrusively. Three-dimensional (3D) PIV methods can supply the full understanding of a 3D structure, the complete stress tensor, and the vorticity vector in the complex flows. In synthetic aperture particle image velocimetry (SAPIV), the flow field can be measured with large particle intensities from the same direction by different cameras. During SAPIV particle reconstruction, particles are commonly reconstructed by manually setting a threshold to filter out unfocused particles in the refocused images. In this paper, the particle intensity distribution in refocused images is analyzed, and a SAPIV particle field reconstruction method based on an adaptive threshold is presented. By using the adaptive threshold to filter the 3D measurement volume integrally, the three-dimensional location information of the focused particles can be reconstructed. The cross correlations between images captured from cameras and images projected by the reconstructed particle field are calculated for different threshold values. The optimal threshold is determined by cubic curve fitting and is defined as the threshold value that causes the correlation coefficient to reach its maximum. The numerical simulation of a 16-camera array and a particle field at two adjacent time events quantitatively evaluates the performance of the proposed method. An experimental system consisting of a camera array of 16 cameras was used to reconstruct the four adjacent frames in a vortex flow field. The results show that the proposed reconstruction method can effectively reconstruct the 3D particle fields.
3D power Doppler ultrasound in early diagnosis of preeclampsia.
Neto, R Moreira; Ramos, J G L
2016-01-01
Preeclampsia is a known cause of maternal, fetal and neonatal morbidity and mortality. Thus, evaluation of the predicting value of comparing 3D power Doppler indices (3DPD) of uteroplacental circulation (UPC) in the first and second trimester in patients who developed preeclampsia (PE) and those who did not and testing the hypothesis that the parameters of vascularization and placenta flow intensity, as determined by three-dimensional ultrasound (3D), are different in normal pregnancies compared with preeclampsia, could be a suitable screening method. A prospective observational study using 3D power Doppler were performed to evaluate the placental perfusion in 96 pregnant women who came to do the ultrasound routine between 11 and 14 weeks. The placental vascular index (VI), flow index (FI), blood vessels and blood flow index (VFI) by three-dimensional Doppler histogram were calculated. All patients repeated the exam between 16 and 20 weeks. The outcome was scored as normal or preeclamptic. Placental vascular indices including VI, FI and VFI were significantly lower in preeclamptic placentas compared with controls in the study performed in the second trimester (p<0.001). There was not any statistical difference in the patients examined in the first trimester. Our findings suggest that 3D-power Doppler assessment of placental vascular indices in the second trimester has the potential to detect women at risk for subsequent development of PE. Copyright © 2015 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.
Three-dimensional flow measurements in a tesla turbine rotor
NASA Astrophysics Data System (ADS)
Fuchs, Thomas; Schosser, Constantin; Hain, Rainer; Kaehler, Christian
2015-11-01
Tesla turbines are fluid mechanical devices converting flow energy into rotation energy by two physical effects: friction and adhesion. The advantages of the tesla turbine are its simple and robust design, as well as its scalability, which makes it suitable for custom power supply solutions, and renewable energy applications. To this day, there is a lack of experimental data to validate theoretical studies, and CFD simulations of these turbines. This work presents a comprehensive analysis of the flow through a tesla turbine rotor gap, with a gap height of only 0.5 mm, by means of three-dimensional Particle Tracking Velocimetry (3D-PTV). For laminar flows, the experimental results match the theory very well, since the measured flow profiles show the predicted second order parabolic shape in radial direction and a fourth order behavior in circumferential direction. In addition to these laminar measurements, turbulent flows at higher mass flow rates were investigated.
Development of axisymmetric lattice Boltzmann flux solver for complex multiphase flows
NASA Astrophysics Data System (ADS)
Wang, Yan; Shu, Chang; Yang, Li-Ming; Yuan, Hai-Zhuan
2018-05-01
This paper presents an axisymmetric lattice Boltzmann flux solver (LBFS) for simulating axisymmetric multiphase flows. In the solver, the two-dimensional (2D) multiphase LBFS is applied to reconstruct macroscopic fluxes excluding axisymmetric effects. Source terms accounting for axisymmetric effects are introduced directly into the governing equations. As compared to conventional axisymmetric multiphase lattice Boltzmann (LB) method, the present solver has the kinetic feature for flux evaluation and avoids complex derivations of external forcing terms. In addition, the present solver also saves considerable computational efforts in comparison with three-dimensional (3D) computations. The capability of the proposed solver in simulating complex multiphase flows is demonstrated by studying single bubble rising in a circular tube. The obtained results compare well with the published data.
Turner, Kenzie J.; Hudson, Mark R.; Murray, Kyle E.; Mott, David N.
2007-01-01
Understanding ground-water flow in a karst aquifer benefits from a detailed conception of the three-dimensional (3D) geologic framework. Traditional two-dimensional products, such as geologic maps, cross-sections, and structure contour maps, convey a mental picture of the area but a stronger conceptualization can be achieved by constructing a digital 3D representation of the stratigraphic and structural geologic features. In this study, a 3D geologic model was created to better understand a karst aquifer system in the Buffalo National River watershed in northern Arkansas. The model was constructed based on data obtained from recent, detailed geologic mapping for the Hasty and Western Grove 7.5-minute quadrangles. The resulting model represents 11 stratigraphic zones of Ordovician, Mississippian, and Pennsylvanian age. As a result of the highly dissected topography, stratigraphic and structural control from geologic contacts and interpreted structure contours were sufficient for effectively modeling the faults and folds in the model area. Combined with recent dye-tracing studies, the 3D framework model is useful for visualizing the various geologic features and for analyzing the potential control they exert on the ground-water flow regime. Evaluation of the model, by comparison to published maps and cross-sections, indicates that the model accurately reproduces both the surface geology and subsurface geologic features of the area.
Fornarelli, Francesco; Dadduzio, Ruggiero; Torresi, Marco; Camporeale, Sergio Mario; Fortunato, Bernardo
2018-02-01
A fully 3D unsteady Computational Fluid Dynamics (CFD) approach coupled with heterogeneous reaction chemistry is presented in order to study the behavior of a single square channel as part of a Lean [Formula: see text] Traps. The reliability of the numerical tool has been validated against literature data considering only active BaO site. Even though the input/output performance of such catalyst has been well known, here the spatial distribution within a single channel is investigated in details. The square channel geometry influences the flow field and the catalyst performance being the flow velocity distribution on the cross section non homogeneous. The mutual interaction between the flow and the active catalyst walls influences the spatial distribution of the volumetric species. Low velocity regions near the square corners and transversal secondary flows are shown in several cross-sections along the streamwise direction at different instants. The results shed light on the three-dimensional characteristic of both the flow field and species distribution within a single square channel of the catalyst with respect to 0-1D approaches.
Three dimensional viscous analysis of a hypersonic inlet
NASA Technical Reports Server (NTRS)
Reddy, D. R.; Smith, G. E.; Liou, M.-F.; Benson, Thomas J.
1989-01-01
The flow fields in supersonic/hypersonic inlets are currently being studied at NASA Lewis Research Center using 2- and 3-D full Navier-Stokes and Parabolized Navier-Stokes solvers. These tools have been used to analyze the flow through the McDonnell Douglas Option 2 inlet which has been tested at Calspan in support of the National Aerospace Plane Program. Comparisons between the computational and experimental results are presented. These comparisons lead to better overall understanding of the complex flows present in this class of inlets. The aspects of the flow field emphasized in this work are the 3-D effects, the transition from laminar to turbulent flow, and the strong nonuniformities generated within the inlet.
Theoretical prediction of fast 3D AC electro-osmotic pumps.
Bazant, Martin Z; Ben, Yuxing
2006-11-01
AC electro-osmotic (ACEO) pumps in microfluidics currently involve planar electrode arrays, but recent work on the underlying phenomenon of induced-charge electro-osmosis (ICEO) suggests that three-dimensional (3D) geometries may be exploited to achieve faster flows. In this paper, we present some new design principles for periodic 3D ACEO pumps, such as the "fluid conveyor belt" of ICEO flow over a stepped electrode array. Numerical simulations of these designs (using the standard low-voltage model) predict flow rates almost twenty times faster than existing planar ACEO pumps, for the same applied voltage and minimum feature size. These pumps may enable new portable or implantable lab-on-a-chip devices, since rather fast (mm s(-1)), tuneable flows should be attainable with battery voltages (<10 V).
NASA Astrophysics Data System (ADS)
McClure, J. E.; Prins, J. F.; Miller, C. T.
2014-07-01
Multiphase flow implementations of the lattice Boltzmann method (LBM) are widely applied to the study of porous medium systems. In this work, we construct a new variant of the popular "color" LBM for two-phase flow in which a three-dimensional, 19-velocity (D3Q19) lattice is used to compute the momentum transport solution while a three-dimensional, seven velocity (D3Q7) lattice is used to compute the mass transport solution. Based on this formulation, we implement a novel heterogeneous GPU-accelerated algorithm in which the mass transport solution is computed by multiple shared memory CPU cores programmed using OpenMP while a concurrent solution of the momentum transport is performed using a GPU. The heterogeneous solution is demonstrated to provide speedup of 2.6 × as compared to multi-core CPU solution and 1.8 × compared to GPU solution due to concurrent utilization of both CPU and GPU bandwidths. Furthermore, we verify that the proposed formulation provides an accurate physical representation of multiphase flow processes and demonstrate that the approach can be applied to perform heterogeneous simulations of two-phase flow in porous media using a typical GPU-accelerated workstation.
Garg, Nitasha; Khaira, Harkiran Kaur; Kaur, Manjot; Sinha, Smita
2018-04-01
To compare the quantitative assessment of blood flow and vascularization of ovaries in polycystic ovary syndrome patients and normal women using three-dimensional power Doppler ultrasonography. This cross-sectional quantitative study was conducted on women of reproductive age group (15-45 years) attending Gynaecology OPD AIMSR, Bathinda, Punjab. Thirty women were enrolled in polycystic ovarian syndrome (PCOS) group and 30 healthy women in control group. Women were categorized as polycystic ovary syndrome according to Rotterdam's criteria. The women with PCOS underwent transvaginal USG Doppler on day 6 of the cycle using 3D power Doppler USG equipment (GE Voluson E8), and vascularization index (VI), flow index (FI) and vascularization flow index (VFI) were measured. The mean values of VI, FI and VFI measured by power Doppler ultrasonography were significantly increased ( P value = 0.000) in women with PCOS when compared with healthy women. This study suggests that blood flow and vascularization measured by 3D power Doppler ultrasonography in ovaries of polycystic ovary syndrome patients were significantly more than the ovaries of normal women.
Scalar transport in inline mixers with spatially periodic flows
NASA Astrophysics Data System (ADS)
Baskan, Ozge; Rajaei, Hadi; Speetjens, Michel F. M.; Clercx, Herman J. H.
2017-01-01
Spatially persisting patterns form during the downstream evolution of passive scalars in three-dimensional (3D) spatially periodic flows due to the coupled effect of stretching and folding mechanisms of the flow field. This has been investigated in many computational and theoretical studies of 2D time-periodic and 3D spatially periodic flow fields. However, experimental studies, to date, have mainly focused on flow visualization with streaks of dye rather than fully 3D scalar field measurements. Our study employs 3D particle tracking velocimetry and 3D laser-induced fluorescence to analyze the evolution of 3D flow and scalar fields and the correlation between the coherent flow/scalar field structures in a representative inline mixer, the Quatro static mixer. For this purpose an experimental setup that consists of an optically accessible test section with transparent internal elements accommodating a pressure-driven pipe flow has been built. The flow and scalar fields clearly underline the complementarity of the experimental results with numerical simulations and provide validation of the periodicity assumption needed in numerical studies. The experimental procedure employed in this investigation, which allows studying the scalar transport in the advective limit, demonstrates the suitability of the present method for exploratory mixing studies of a variety of mixing devices, beyond the Quatro static mixer.
Cesewski, Ellen; Haring, Alexander P; Tong, Yuxin; Singh, Manjot; Thakur, Rajan; Laheri, Sahil; Read, Kaitlin A; Powell, Michael D; Oestreich, Kenneth J; Johnson, Blake N
2018-06-13
Three-dimensional (3D) printing now enables the fabrication of 3D structural electronics and microfluidics. Further, conventional subtractive manufacturing processes for microelectromechanical systems (MEMS) relatively limit device structure to two dimensions and require post-processing steps for interface with microfluidics. Thus, the objective of this work is to create an additive manufacturing approach for fabrication of 3D microfluidic-based MEMS devices that enables 3D configurations of electromechanical systems and simultaneous integration of microfluidics. Here, we demonstrate the ability to fabricate microfluidic-based acoustofluidic devices that contain orthogonal out-of-plane piezoelectric sensors and actuators using additive manufacturing. The devices were fabricated using a microextrusion 3D printing system that contained integrated pick-and-place functionality. Additively assembled materials and components included 3D printed epoxy, polydimethylsiloxane (PDMS), silver nanoparticles, and eutectic gallium-indium as well as robotically embedded piezoelectric chips (lead zirconate titanate (PZT)). Electrical impedance spectroscopy and finite element modeling studies showed the embedded PZT chips exhibited multiple resonant modes of varying mode shape over the 0-20 MHz frequency range. Flow visualization studies using neutrally buoyant particles (diameter = 0.8-70 μm) confirmed the 3D printed devices generated bulk acoustic waves (BAWs) capable of size-selective manipulation, trapping, and separation of suspended particles in droplets and microchannels. Flow visualization studies in a continuous flow format showed suspended particles could be moved toward or away from the walls of microfluidic channels based on selective actuation of in-plane or out-of-plane PZT chips. This work suggests additive manufacturing potentially provides new opportunities for the design and fabrication of acoustofluidic and microfluidic devices.
NASA Astrophysics Data System (ADS)
Ibrahim, Ahmad; Steffler, Peter; She, Yuntong
2018-02-01
The interaction between surface water and groundwater through the hyporheic zone is recognized to be important as it impacts the water quantity and quality in both flow systems. Three-dimensional (3D) modeling is the most complete representation of a real-world hyporheic zone. However, 3D modeling requires extreme computational power and efforts; the sophistication is often significantly compromised by not being able to obtain the required input data accurately. Simplifications are therefore often needed. The objective of this study was to assess the accuracy of the vertically-averaged approximation compared to a more complete vertically-resolved model of the hyporheic zone. The groundwater flow was modeled by either a simple one-dimensional (1D) Dupuit approach or a two-dimensional (2D) horizontal/vertical model in boundary fitted coordinates, with the latter considered as a reference model. Both groundwater models were coupled with a 1D surface water model via the surface water depth. Applying the two models to an idealized pool-riffle sequence showed that the 1D Dupuit approximation gave comparable results in determining the characteristics of the hyporheic zone to the reference model when the stratum thickness is not very large compared to the surface water depth. Conditions under which the 1D model can provide reliable estimate of the seepage discharge, upwelling/downwelling discharges and locations, the hyporheic flow, and the residence time were determined.
Three dimensional investigation of the shock train structure in a convergent-divergent nozzle
NASA Astrophysics Data System (ADS)
Mousavi, Seyed Mahmood; Roohi, Ehsan
2014-12-01
Three-dimensional computational fluid dynamics analyses have been employed to study the compressible and turbulent flow of the shock train in a convergent-divergent nozzle. The primary goal is to determine the behavior, location, and number of shocks. In this context, full multi-grid initialization, Reynolds stress turbulence model (RSM), and the grid adaption techniques in the Fluent software are utilized under the 3D investigation. The results showed that RSM solution matches with the experimental data suitably. The effects of applying heat generation sources and changing inlet flow total temperature have been investigated. Our simulations showed that changes in the heat generation rate and total temperature of the intake flow influence on the starting point of shock, shock strength, minimum pressure, as well as the maximum flow Mach number.
NASA Astrophysics Data System (ADS)
Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Yang, Wuqiang
2016-09-01
The hydrodynamics of gas-solids flow in the bottom of a circulating fluidized bed (CFB) are complicated. Three-dimensional (3D) electrical capacitance tomography (ECT) has been used to investigate the hydrodynamics in risers of different shapes. Four different ECT sensors with 12 electrodes each are designed according to the dimension of risers, including two circular ECT sensors, a square ECT sensor and a rectangular ECT sensor. The electrodes are evenly arranged in three planes to obtain capacitance in different heights and to reconstruct the 3D images by linear back projection (LBP) algorithm. Experiments were carried out on the four risers using sands as the solids material. The capacitance and differential pressure are measured under the gas superficial velocity from 0.6 m s-1 to 3.0 m s-1 with a step of 0.2 m s-1. The flow regime is investigated according to the solids concentration and differential pressure. The dynamic property of bubbling flows is analyzed theoretically and the performance of the 3D ECT sensors is evaluated. The experimental results show that 3D ECT can be used in the CFB with different risers to predict the hydrodynamics of gas-solids bubbling flows.
Ding, Ting; Hu, Hong; Bai, Chen; Guo, Shifang; Yang, Miao; Wang, Supin; Wan, Mingxi
2016-07-01
Cavitation plays important roles in almost all high-intensity focused ultrasound (HIFU) applications. However, current two-dimensional (2D) cavitation mapping could only provide cavitation activity in one plane. This study proposed a three-dimensional (3D) ultrasound plane-by-plane active cavitation mapping (3D-UPACM) for HIFU in free field and pulsatile flow. The acquisition of channel-domain raw radio-frequency (RF) data in 3D space was performed by sequential plane-by-plane 2D ultrafast active cavitation mapping. Between two adjacent unit locations, there was a waiting time to make cavitation nuclei distribution of the liquid back to the original state. The 3D cavitation map equivalent to the one detected at one time and over the entire volume could be reconstructed by Marching Cube algorithm. Minimum variance (MV) adaptive beamforming was combined with coherence factor (CF) weighting (MVCF) or compressive sensing (CS) method (MVCS) to process the raw RF data for improved beamforming or more rapid data processing. The feasibility of 3D-UPACM was demonstrated in tap-water and a phantom vessel with pulsatile flow. The time interval between temporal evolutions of cavitation bubble cloud could be several microseconds. MVCF beamformer had a signal-to-noise ratio (SNR) at 14.17dB higher, lateral and axial resolution at 2.88times and 1.88times, respectively, which were compared with those of B-mode active cavitation mapping. MVCS beamformer had only 14.94% time penalty of that of MVCF beamformer. This 3D-UPACM technique employs the linear array of a current ultrasound diagnosis system rather than a 2D array transducer to decrease the cost of the instrument. Moreover, although the application is limited by the requirement for a gassy fluid medium or a constant supply of new cavitation nuclei that allows replenishment of nuclei between HIFU exposures, this technique may exhibit a useful tool in 3D cavitation mapping for HIFU with high speed, precision and resolution, especially in a laboratory environment where more careful analysis may be required under controlled conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
3D motion picture of transparent gas flow by parallel phase-shifting digital holography
NASA Astrophysics Data System (ADS)
Awatsuji, Yasuhiro; Fukuda, Takahito; Wang, Yexin; Xia, Peng; Kakue, Takashi; Nishio, Kenzo; Matoba, Osamu
2018-03-01
Parallel phase-shifting digital holography is a technique capable of recording three-dimensional (3D) motion picture of dynamic object, quantitatively. This technique can record single hologram of an object with an image sensor having a phase-shift array device and reconstructs the instantaneous 3D image of the object with a computer. In this technique, a single hologram in which the multiple holograms required for phase-shifting digital holography are multiplexed by using space-division multiplexing technique pixel by pixel. We demonstrate 3D motion picture of dynamic and transparent gas flow recorded and reconstructed by the technique. A compressed air duster was used to generate the gas flow. A motion picture of the hologram of the gas flow was recorded at 180,000 frames/s by parallel phase-shifting digital holography. The phase motion picture of the gas flow was reconstructed from the motion picture of the hologram. The Abel inversion was applied to the phase motion picture and then the 3D motion picture of the gas flow was obtained.
Three-dimensional intraoperative ultrasound of vascular malformations and supratentorial tumors.
Woydt, Michael; Horowski, Anja; Krauss, Juergen; Krone, Andreas; Soerensen, Niels; Roosen, Klaus
2002-01-01
The benefits and limits of a magnetic sensor-based 3-dimensional (3D) intraoperative ultrasound technique during surgery of vascular malformations and supratentorial tumors were evaluated. Twenty patients with 11 vascular malformations and 9 supratentorial tumors undergoing microsurgical resection or clipping were investigated with an interactive magnetic sensor data acquisition system allowing freehand scanning. An ultrasound probe with a mounted sensor was used after craniotomies to localize lesions, outline tumors or malformation margins, and identify supplying vessels. A 3D data set was obtained allowing reformation of multiple slices in all 3 planes and comparison to 2-dimensional (2D) intraoperative ultrasound images. Off-line gray-scale segmentation analysis allowed differentiation between tissue with different echogenicities. Color-coded information about blood flow was extracted from the images with a reconstruction algorithm. This allowed photorealistic surface displays of perfused tissue, tumor, and surrounding vessels. Three-dimensional intraoperative ultrasound data acquisition was obtained within 5 minutes. Off-line analysis and reconstruction time depends on the type of imaging display and can take up to 30 minutes. The spatial relation between aneurysm sac and surrounding vessels or the skull base could be enhanced in 3 out of 6 aneurysms with 3D intraoperative ultrasound. Perforating arteries were visible in 3 cases only by using 3D imaging. 3D ultrasound provides a promising imaging technique, offering the neurosurgeon an intraoperative spatial orientation of the lesion and its vascular relationships. Thereby, it may improve safety of surgery and understanding of 2D ultrasound images.
NASA Technical Reports Server (NTRS)
Liu, N. S.; Shamroth, S. J.; Mcdonald, H.
1983-01-01
The multidimensional ensemble averaged compressible time dependent Navier Stokes equations in conjunction with mixing length turbulence model and shock capturing technique were used to study the terminal shock type of flows in various flight regimes occurring in a diffuser/inlet model. The numerical scheme for solving the governing equations is based on a linearized block implicit approach and the following high Reynolds number calculations were carried out: (1) 2 D, steady, subsonic; (2) 2 D, steady, transonic with normal shock; (3) 2 D, steady, supersonic with terminal shock; (4) 2 D, transient process of shock development and (5) 3 D, steady, transonic with normal shock. The numerical results obtained for the 2 D and 3 D transonic shocked flows were compared with corresponding experimental data; the calculated wall static pressure distributions agree well with the measured data.
Numerical, analytical, experimental study of fluid dynamic forces in seals
NASA Technical Reports Server (NTRS)
Shapiro, William; Artiles, Antonio; Aggarwal, Bharat; Walowit, Jed; Athavale, Mahesh M.; Preskwas, Andrzej J.
1992-01-01
NASA/Lewis Research Center is sponsoring a program for providing computer codes for analyzing and designing turbomachinery seals for future aerospace and engine systems. The program is made up of three principal components: (1) the development of advanced three dimensional (3-D) computational fluid dynamics codes, (2) the production of simpler two dimensional (2-D) industrial codes, and (3) the development of a knowledge based system (KBS) that contains an expert system to assist in seal selection and design. The first task has been to concentrate on cylindrical geometries with straight, tapered, and stepped bores. Improvements have been made by adoption of a colocated grid formulation, incorporation of higher order, time accurate schemes for transient analysis and high order discretization schemes for spatial derivatives. This report describes the mathematical formulations and presents a variety of 2-D results, including labyrinth and brush seal flows. Extensions of 3-D are presently in progress.
Semaan, Edouard; Markl, Michael; Chris Malaisrie, S.; Barker, Alex; Allen, Bradley; McCarthy, Patrick; Carr, James C.; Collins, Jeremy D.
2014-01-01
OBJECTIVE To provide a more complete characterization of aortic blood flow in patients following valve-sparing aortic root replacement (VSARR) compared with presurgical cohorts matched by tricuspid and bicuspid valve morphology, age and presurgical aorta size. METHODS Four-dimensional (4D) flow magnetic resonance imaging (MRI) was performed to analyse three-dimensional (3D) blood flow in the thoracic aorta of n = 13 patients after VSARR with reimplantation of native tricuspid aortic valve (TAV, n = 6) and bicuspid aortic valve (BAV, n = 7). Results were compared with presurgical age and aortic size-matched control cohorts with TAV (n = 10) and BAV (n = 10). Pre- and post-surgical aortic flow was evaluated using time-resolved 3D pathlines using a blinded grading system (0–2, 0 = small, 1 = moderate and 2 = prominent) analysing ascending aortic (AAo) helical flow. Systolic flow profile uniformity in the aortic root, proximal and mid-AAo was evaluated using a four-quadrant model. Further analysis in nine analysis planes distributed along the thoracic aorta quantified peak systolic velocity, retrograde fraction and peak systolic flow acceleration. RESULTS Pronounced AAo helical flow in presurgical control subjects (both BAV and TAV: helix grading = 1.8 ± 0.4) was significantly reduced (0.2 ± 0.4, P < 0.001) in cohorts after VSARR independent of aortic valve morphology. Presurgical AAo flow was highly eccentric for BAV patients but more uniform for TAV. VSARR resulted in less eccentric flow profiles. Systolic peak velocities were significantly (P < 0.05) increased in post-root repair BAV patients throughout the aorta (six of nine analysis planes) and to a lesser extent in TAV patients (three of nine analysis planes). BAV reimplantation resulted in significantly increased peak velocities in the proximal AAo compared with root repair with TAV (2.3 ± 0.6 vs 1.6 ± 0.4 m/s, P = 0.017). Post-surgical patients showed a non-significant trend towards higher systolic flow acceleration as a surrogate measure of reduced aortic compliance. CONCLUSIONS VSARR restored a cohesive flow pattern independent of native valve morphology but resulted in increased peak velocities throughout the aorta. 4D flow MRI methods can assess the clinical implications of altered aortic flow dynamics in patients undergoing VSARR. PMID:24317086
Chen, Xiaoyan; Saravelos, Sotirios H; Liu, Yingyu; Huang, Jin; Wang, Chi Chiu; Li, Tin Chiu
2017-06-01
Power Doppler in combination with three-dimensional (3D-PD) ultrasonography has been used as a noninvasive tool to evaluate the vascularity. However, it is unclear whether 3D-PD can accurately reflect endometrial vascularization and replace the invasive endometrial biopsy. This study aims to investigate the correlation between 3D-PD and micro vessel morphometric measurement of endometrial vascularity. Twenty-five women with unexplained recurrent miscarriage were recruited for 3D-PD and endometrial biopsy on precisely day LH + 7. Immunohistochemistry using vWF was employed to identify micro vessels in endometrial biopsy specimens followed by the use of morphometric technique to measure the mean vessel diameter and volume fractions. The vascularization index (VI), flow index (FI) and vascularization flow index (VFI) assessed by 3D-PD were calculated for both the endometrial and sub-endometrial regions. There were no significant correlations between any of the ultrasonographic measurements (endometrial thickness, endometrial volume, endometrial VI/FI/VFI, sub-endometrial volume, sub-endometrial VI/FI/VFI) and morphometric features (number of micro vessel, mean diameter of micro vessel and volume fraction measurement of vessel). This study indicates that endometrial vascularity assessed by 3D-PD could not be used to reflect changes in micro vessels of the endometrium at the time of embryo implantation in women with unexplained recurrent miscarriage.
2-D and 3-D oscillating wing aerodynamics for a range of angles of attack including stall
NASA Technical Reports Server (NTRS)
Piziali, R. A.
1994-01-01
A comprehensive experimental investigation of the pressure distribution over a semispan wing undergoing pitching motions representative of a helicopter rotor blade was conducted. Testing the wing in the nonrotating condition isolates the three-dimensional (3-D) blade aerodynamic and dynamic stall characteristics from the complications of the rotor blade environment. The test has generated a very complete, detailed, and accurate body of data. These data include static and dynamic pressure distributions, surface flow visualizations, two-dimensional (2-D) airfoil data from the same model and installation, and important supporting blockage and wall pressure distributions. This body of data is sufficiently comprehensive and accurate that it can be used for the validation of rotor blade aerodynamic models over a broad range of the important parameters including 3-D dynamic stall. This data report presents all the cycle-averaged lift, drag, and pitching moment coefficient data versus angle of attack obtained from the instantaneous pressure data for the 3-D wing and the 2-D airfoil. Also presented are examples of the following: cycle-to-cycle variations occurring for incipient or lightly stalled conditions; 3-D surface flow visualizations; supporting blockage and wall pressure distributions; and underlying detailed pressure results.
Three-dimensional turbulent near-wall flows in streamwise corners: Current state and questions
NASA Astrophysics Data System (ADS)
Kornilov, V. I.
2017-10-01
Current advances in experimental and computational studies of three-dimensional (3-D) near-wall turbulent flows in streamwise corners (SC) including the boundary-layer transition are reviewed. The focus is the structure, properties and main regularities of such flows in a wide range of variable conditions and basic parameters. A variety of different kinds of near-wall streamwise corner flows is displayed. Analysis of approaches for modeling of the near-wall corner flow in laboratory experiment is given. The problem of simulation of such flows where some ambiguities remain is discussed. The main factors on the structure of the flow in streamwise corners are analyzed. Also, the effectiveness of flow control by streamwise vortices in the junction regions of aerodynamic surfaces is shown. Finally, some important properties of the modified near-wall turbulent corner flows which have been revealed experimentally, in particular, for the flow near the wing/body junction (WBJ), can be used as an attractive alternative for real applications.
NASA Astrophysics Data System (ADS)
Johnson, Kyle; Thurow, Brian; Kim, Taehoon; Blois, Gianluca; Christensen, Kenneth
2016-11-01
Three-dimensional, three-component (3D-3C) measurements were made using a plenoptic camera on the flow around a roughness element immersed in a turbulent boundary layer. A refractive index matched approach allowed whole-field optical access from a single camera to a measurement volume that includes transparent solid geometries. In particular, this experiment measures the flow over a single hemispherical roughness element made of acrylic and immersed in a working fluid consisting of Sodium Iodide solution. Our results demonstrate that plenoptic particle image velocimetry (PIV) is a viable technique to obtaining statistically-significant volumetric velocity measurements even in a complex separated flow. The boundary layer to roughness height-ratio of the flow was 4.97 and the Reynolds number (based on roughness height) was 4.57×103. Our measurements reveal key flow features such as spiraling legs of the shear layer, a recirculation region, and shed arch vortices. Proper orthogonal decomposition (POD) analysis was applied to the instantaneous velocity and vorticity data to extract these features. Supported by the National Science Foundation Grant No. 1235726.
Brien, Dianne L.; Reid, Mark E.
2008-01-01
In Seattle, Washington, deep-seated landslides on bluffs along Puget Sound have historically caused extensive damage to land and structures. These large failures are controlled by three-dimensional (3-D) variations in strength and pore-water pressures. We assess the slope stability of part of southwestern Seattle using a 3-D limit-equilibrium analysis coupled with a 3-D groundwater flow model. Our analyses use a high-resolution digital elevation model (DEM) combined with assignment of strength and hydraulic properties based on geologic units. The hydrogeology of the Seattle area consists of a layer of permeable glacial outwash sand that overlies less permeable glacial lacustrine silty clay. Using a 3-D groundwater model, MODFLOW-2000, we simulate a water table above the less permeable units and calibrate the model to observed conditions. The simulated pore-pressure distribution is then used in a 3-D slope-stability analysis, SCOOPS, to quantify the stability of the coastal bluffs. For wet winter conditions, our analyses predict that the least stable areas are steep hillslopes above Puget Sound, where pore pressures are elevated in the outwash sand. Groundwater flow converges in coastal reentrants, resulting in elevated pore pressures and destabilization of slopes. Regions predicted to be least stable include the areas in or adjacent to three mapped historically active deep-seated landslides. The results of our 3-D analyses differ significantly from a slope map or results from one-dimensional (1-D) analyses.
Transition from Direct to Inverse Cascade in Three-Dimensional Turbulence
NASA Astrophysics Data System (ADS)
Sahoo, G.; Biferale, L.; Alexakis, A.
2017-12-01
Direction of energy transfer among the scales in a turbulent flow has asignificant role in the macroscopic properties of the flow. It has been arguedthat the dimensionality and the ideal invariants of the flow determine thedirection of the cascade of energy. Because of two sign definite invariants,energy and enstrophy, of two-dimensional turbulence, energy is transferredbackwards from small scales to larger scales and enstrophy is transferred tosmaller scales. However in three-dimensions, while energy is sign-definite, theother invariant helicity does not have a definite sign and therefore there isno constraint on the direction of transfer. It is merely an empiricalobservation that the energy and helicity cascade to the smaller scales in athree-dimensional turbulent flow. Many systems, however, show bidirectionalsplit energy transfer, e.g., flows under strong rotation and stratification, inthin layers or under external magnetic field. The appearance of inverse energyflux in such systems are often considered as a result of enhancement ofquasi-2D Fourier interactions in a 3D background. We designed a model system[1] where the triadic interactions in Navier-Stokes equations are enhanced orsuppressed in a controlled manner without affecting the degrees of freedom,ideal invariants or breaking any of the symmetries of NSE. In our numericalsimulations that uses the tool of helical decomposition of velocity Fouriermodes, we introduced a parameter (0 ≤ λ ≤ 1) that controls therelative weight among homochiral triads and all the others in the nonlinearevolution. We show that by using this weighting protocol the turbulentevolution displays a sharp transition, for a critical value of the controlparameter, from forward to backward energy transfer but still keeping thedynamics fully three dimensional, isotropic, and parity invariant. [1] G Sahoo, A Alexakis and L Biferale, Phys. Rev. Lett. 118, 164501 (2017).
3D pulsed laser-triggered high-speed microfluidic fluorescence-activated cell sorter
Chen, Yue; Wu, Ting-Hsiang; Kung, Yu-Chun; Teitell, Michael A.; Chiou, Pei-Yu
2014-01-01
We report a 3D microfluidic pulsed laser-triggered fluorescence-activated cell sorter capable of sorting at a throughput of 23,000 cells sec−1 with 90% purity in high-purity mode and at a throughput of 45,000 cells sec−1 with 45% purity in enrichment mode in one stage and in a single channel. This performance is realized by exciting laser-induced cavitation bubbles in a 3D PDMS microfluidic channel to generate high-speed liquid jets that deflect detected fluorescent cells and particles focused by 3D sheath flows. The ultrafast switching mechanism (20 μsec complete on-off cycle), small liquid jet perturbation volume, and three-dimensional sheath flow focusing for accurate timing control of fast (1.5 m sec−1) passing cells and particles are three critical factors enabling high-purity sorting at high-throughput in this sorter. PMID:23844418
NASA Astrophysics Data System (ADS)
Vogt, Tobias; Ishimi, Wataru; Yanagisawa, Takatoshi; Tasaka, Yuji; Sakuraba, Ataru; Eckert, Sven
2018-01-01
Magnetohydrodynamic Rayleigh-Bénard convection was studied experimentally and numerically using a liquid metal inside a box with a square horizontal cross section and an aspect ratio of 5. Applying a sufficiently strong horizontal magnetic field converts the convective motion into a flow pattern of quasi-two-dimensional (quasi-2D) rolls arranged parallel to the magnetic field. The aim of this paper is to provide a detailed description of the flow field, which is often considered as quasi-2D. In this paper, we focus on the transition from a quasi-two-dimensional state toward a three-dimensional flow occurring with decreasing magnetic-field strength. We present systematic flow measurements that were performed by means of ultrasound Doppler velocimetry. The measured data provide insight into the dynamics of the primary convection rolls, the secondary flow induced by Ekman pumping, and they reveal the existence of small vortices that develop around the convection rolls. New flow regimes have been identified by the velocity measurements, which show a pronounced manifestation of three-dimensional flow structures as the ratio Ra /Q increases. The interaction between the primary swirling motion of the convection rolls and the secondary flow becomes increasingly strong. Significant bulging of the convection rolls causes a breakdown of the original recirculation loop driven by Ekman pumping into several smaller cells. The flow measurements are completed by direct numerical simulations. The numerical simulations have proven to be able to qualitatively reproduce the newly discovered flow regimes in the experiment.
Tools for 3D scientific visualization in computational aerodynamics at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val
1989-01-01
Hardware, software, and techniques used by the Fluid Dynamics Division (NASA) for performing visualization of computational aerodynamics, which can be applied to the visualization of flow fields from computer simulations of fluid dynamics about the Space Shuttle, are discussed. Three visualization techniques applied, post-processing, tracking, and steering, are described, as well as the post-processing software packages used, PLOT3D, SURF (Surface Modeller), GAS (Graphical Animation System), and FAST (Flow Analysis software Toolkit). Using post-processing methods a flow simulation was executed on a supercomputer and, after the simulation was complete, the results were processed for viewing. It is shown that the high-resolution, high-performance three-dimensional workstation combined with specially developed display and animation software provides a good tool for analyzing flow field solutions obtained from supercomputers.
NASA Astrophysics Data System (ADS)
Kim, Soo Jeong; Lee, Dong Hyuk; Song, Inchang; Kim, Nam Gook; Park, Jae-Hyeung; Kim, JongHyo; Han, Man Chung; Min, Byong Goo
1998-07-01
Phase-contrast (PC) method of magnetic resonance imaging (MRI) has bee used for quantitative measurements of flow velocity and volume flow rate. It is a noninvasive technique which provides an accurate two-dimensional velocity image. Moreover, Phase Contrast Cine magnetic resonance imaging combines the flow dependent contrast of PC-MRI with the ability of cardiac cine imaging to produce images throughout the cardiac cycle. However, the accuracy of the data acquired from the single through-plane velocity encoding can be reduced by the effect of flow direction, because in many practical cases flow directions are not uniform throughout the whole region of interest. In this study, we present dynamic three-dimensional velocity vector mapping method using PC-MRI which can visualize the complex flow pattern through 3D volume rendered images displayed dynamically. The direction of velocity mapping can be selected along any three orthogonal axes. By vector summation, the three maps can be combined to form a velocity vector map that determines the velocity regardless of the flow direction. At the same time, Cine method is used to observe the dynamic change of flow. We performed a phantom study to evaluate the accuracy of the suggested PC-MRI in continuous and pulsatile flow measurement. Pulsatile flow wave form is generated by the ventricular assistant device (VAD), HEMO-PULSA (Biomedlab, Seoul, Korea). We varied flow velocity, pulsatile flow wave form, and pulsing rate. The PC-MRI-derived velocities were compared with Doppler-derived results. The velocities of the two measurements showed a significant linear correlation. Dynamic three-dimensional velocity vector mapping was carried out for two cases. First, we applied to the flow analysis around the artificial heart valve in a flat phantom. We could observe the flow pattern around the valve through the 3-dimensional cine image. Next, it is applied to the complex flow inside the polymer sac that is used as ventricle in totally implantable artificial heart (TAH). As a result we could observe the flow pattern around the valves of the sac, though complex flow can not be detected correctly in the conventional phase contrast method. In addition, we could calculate the cardiac output from TAH sac by quantitative measurement of the volume of flow across the outlet valve.
Three-dimensional ultrasound features of the polycystic ovary in Chinese women.
Lam, P; Raine-Fenning, N; Cheung, L; Haines, C
2009-08-01
To quantify the three-dimensional (3D) ultrasound characteristics of ovaries in Chinese women with polycystic ovarian syndrome (PCOS) and to compare these with previous data on a Caucasian cohort with PCOS. 3D pelvic ultrasound was performed in 40 Chinese women with PCOS and 40 controls. Ovarian volume, stromal volume and echogenicity, and antral follicle count (AFC) were measured and ovarian blood flow was quantified using both 3D power Doppler and two-dimensional (2D) pulsed wave Doppler. These data were compared with previously published data on a Caucasian cohort with PCOS. Compared with controls, women with PCOS had a higher AFC (median (range), 15 (11-30) vs. 5.5 (1-10) per ovary, P < 0.01), ovarian volume (12.32 (8.10-16.16) mL vs. 5.64 (2.62-8.81) mL, P < 0.01) and stromal volume (9.74 (6.44-13.56) mL vs. 4.07 (1.52-6.67) mL, P < 0.01) but were comparable in stromal echogenicity and ovarian blood flow as measured by 3D power Doppler or 2D pulsed wave Doppler indices. However, in comparison with a previously reported Caucasian cohort with PCOS, the ovaries of Chinese women with PCOS had a significantly smaller stromal volume (median (range), 9.74 (6.44-13.56) mL vs. 10.79 (5.65-17.12) mL, P < 0.05), were less echogenic as reflected in a lower mean gray value (22.43 (13.13-35.50) vs. 32.36 (19.35-53.71), P < 0.01), and had reduced ovarian blood flow as reflected in a lower flow index (30.19 (23.32-44.88) vs. 33.54 (21.88-51.65), P < 0.05). Based on 3D ultrasound measurements, Chinese women with PCOS have an increased stromal volume compared with controls. However, their stromal volume, echogenicity and vascularity is significantly lower than that in Caucasian women with PCOS. The possible etiology for these differences is discussed.
User's guide to the Variably Saturated Flow (VSF) process to MODFLOW
Thoms, R. Brad; Johnson, Richard L.; Healy, Richard W.
2006-01-01
A new process for simulating three-dimensional (3-D) variably saturated flow (VSF) using Richards' equation has been added to the 3-D modular finite-difference ground-water model MODFLOW. Five new packages are presented here as part of the VSF Process--the Richards' Equation Flow (REF1) Package, the Seepage Face (SPF1) Package, the Surface Ponding (PND1) Package, the Surface Evaporation (SEV1) Package, and the Root Zone Evapotranspiration (RZE1) Package. Additionally, a new Adaptive Time-Stepping (ATS1) Package is presented for use by both the Ground-Water Flow (GWF) Process and VSF. The VSF Process allows simulation of flow in unsaturated media above the ground-water zone and facilitates modeling of ground-water/surface-water interactions. Model performance is evaluated by comparison to an analytical solution for one-dimensional (1-D) constant-head infiltration (Dirichlet boundary condition), field experimental data for a 1-D constant-head infiltration, laboratory experimental data for two-dimensional (2-D) constant-flux infiltration (Neumann boundary condition), laboratory experimental data for 2-D transient drainage through a seepage face, and numerical model results (VS2DT) of a 2-D flow-path simulation using realistic surface boundary conditions. A hypothetical 3-D example case also is presented to demonstrate the new capability using periodic boundary conditions (for example, daily precipitation) and varied surface topography over a larger spatial scale (0.133 square kilometer). The new model capabilities retain the modular structure of the MODFLOW code and preserve MODFLOW's existing capabilities as well as compatibility with commercial pre-/post-processors. The overall success of the VSF Process in simulating mixed boundary conditions and variable soil types demonstrates its utility for future hydrologic investigations. This report presents a new flow package implementing the governing equations for variably saturated ground-water flow, four new boundary condition packages unique to unsaturated flow, the Adaptive Time-Stepping Package for use with both the GWF Process and the new VSF Process, detailed descriptions of the input and output files for each package, and six simulation examples verifying model performance.
Bioclogging in Porous Media: Preferential Flow Paths and Anomalous Transport
NASA Astrophysics Data System (ADS)
Holzner, M.; Carrel, M.; Morales, V.; Derlon, N.; Beltran, M. A.; Morgenroth, E.; Kaufmann, R.
2016-12-01
Biofilms are sessile communities of microorganisms held together by an extracellular polymeric substance that enables surface colonization. In porous media (e.g. soils, trickling filters etc.) biofilm growth has been shown to affect the hydrodynamics in a complex fashion at the pore-scale by clogging individual pores and enhancing preferential flow pathways and anomalous transport. These phenomena are a direct consequence of microbial growth and metabolism, mass transfer processes and complex flow velocity fields possibly exhibiting pronounced three-dimensional features. Despite considerable past work, however, it is not fully understood how bioclogging interacts with flow and mass transport processes in porous media. In this work we use imaging techniques to determine the flow velocities and the distribution of biofilm in a porous medium. Three-dimensional millimodels are packed with a transparent porous medium and a glucose solution to match the optical refractive index. The models are inoculated with planktonic wildtype bacteria and biofilm cultivated for 60 h under a constant flow and nutrient conditions. The pore flow velocities in the increasingly bioclogged medium are measured using 3D particle tracking velocimetry (3D-PTV). The three-dimensional spatial distribution of the biofilm within the pore space is assessed by imaging the model with X-Ray microtomography. We find that biofilm growth increases the complexity of the pore space, leading to the formation of preferential flow pathways and "dead" pore zones. The probability of persistent high and low velocity regions (within preferential paths resp. stagnant flow regions) thus increases upon biofilm growth, leading to an enhancement of anomalous transport. The structural data seems to indicate that the largest pores are not getting clogged and carry the preferential flow, whereas intricated structures develop in the smallest pores, where the flow becomes almost stagnant. These findings may be relevant for applications such as bioremediation of contaminated aquifers, groundwater injection wells for geothermal or drinking water purposes, tertiary oil recovery.
NASA Astrophysics Data System (ADS)
Kunz, Robert; Haworth, Daniel; Dogan, Gulkiz; Kriete, Andres
2006-11-01
Three-dimensional, unsteady simulations of multiphase flow, gas exchange, and particle/aerosol deposition in the human lung are reported. Surface data for human tracheo-bronchial trees are derived from CT scans, and are used to generate three- dimensional CFD meshes for the first several generations of branching. One-dimensional meshes for the remaining generations down to the respiratory units are generated using branching algorithms based on those that have been proposed in the literature, and a zero-dimensional respiratory unit (pulmonary acinus) model is attached at the end of each terminal bronchiole. The process is automated to facilitate rapid model generation. The model is exercised through multiple breathing cycles to compute the spatial and temporal variations in flow, gas exchange, and particle/aerosol deposition. The depth of the 3D/1D transition (at branching generation n) is a key parameter, and can be varied. High-fidelity models (large n) are run on massively parallel distributed-memory clusters, and are used to generate physical insight and to calibrate/validate the 1D and 0D models. Suitably validated lower-order models (small n) can be run on single-processor PC’s with run times that allow model-based clinical intervention for individual patients.
NASA Astrophysics Data System (ADS)
Brenner, Konstantin; Hennicker, Julian; Masson, Roland; Samier, Pierre
2018-03-01
In this work, we extend, to two-phase flow, the single-phase Darcy flow model proposed in [26], [12] in which the (d - 1)-dimensional flow in the fractures is coupled with the d-dimensional flow in the matrix. Three types of so called hybrid-dimensional two-phase Darcy flow models are proposed. They all account for fractures acting either as drains or as barriers, since they allow pressure jumps at the matrix-fracture interfaces. The models also permit to treat gravity dominated flow as well as discontinuous capillary pressure at the material interfaces. The three models differ by their transmission conditions at matrix fracture interfaces: while the first model accounts for the nonlinear two-phase Darcy flux conservations, the second and third ones are based on the linear single phase Darcy flux conservations combined with different approximations of the mobilities. We adapt the Vertex Approximate Gradient (VAG) scheme to this problem, in order to account for anisotropy and heterogeneity aspects as well as for applicability on general meshes. Several test cases are presented to compare our hybrid-dimensional models to the generic equi-dimensional model, in which fractures have the same dimension as the matrix, leading to deep insight about the quality of the proposed reduced models.
Silvestre, Liliane; Martins, Wellington P; Candido-Dos-Reis, Francisco J
2015-07-29
This study describes the accuracy of three-dimensional power Doppler (3D-PD) angiography as secondary method for differential diagnosis of ovarian tumors. Seventy-five women scheduled for surgical removal of adnexal masses were assessed by transvaginal ultrasound. Ovarian tumors were classified by IOTA simple rules and two three-dimensional blocks were recorded. In a second step analyses, a 4 cm(3) spherical sample was obtained from the highest vascularized solid area of each stored block. Vascularization index (VI), flow index (FI) and vascularization-flow index (VFI) were calculated. The repeatability was assessed by concordance correlation coefficient (CCC) and limits of agreement (LoA), and diagnostic accuracy by area under ROC curve. IOTA simple rules classified 26 cases as benign, nine as inconclusive and 40 as malignant. There were eight false positive and no false negative. Among the masses classified as inconclusive or malignant by IOTA simple rules, the CCCs were 0.91 for VI, 0.70 for FI, and 0.86 for VFI. The areas under ROC curve were 0.82 for VI, 0.67 for FI and 0.81 for VFI. 3D-PD angiography presented considerable intraobserver variability and low accuracy for identifying false positive results of IOTA simple rules.
Roszelle, Breigh N.; Deutsch, Steven; Manning, Keefe B.
2010-01-01
In order to aid the ongoing concern of limited organ availability for pediatric heart transplants, Penn State has continued development of a pulsatile Pediatric Ventricular Assist Device (PVAD). Initial studies of the PVAD observed an increase in thrombus formation due to differences in flow field physics when compared to adult sized devices, which included a higher degree of three-dimensionality. This unique flow field brings into question the use of 2D planar particle image velocimetry (PIV) as a flow visualization technique, however the small size and high curvature of the PVAD make other tools such as stereoscopic PIV impractical. In order to test the reliability of the 2D results, we perform a pseudo-3D PIV study using planes both parallel and normal to the diaphragm employing a mock circulatory loop containing a viscoelastic fluid that mimics 40% hematocrit blood. We find that while the third component of velocity is extremely helpful to a physical understanding of the flow, particularly of the diastolic jet and the development of a desired rotational pattern, the flow data taken parallel to the diaphragm is sufficient to describe the wall shear rates, a critical aspect to the study of thrombosis and design of such pumps. PMID:19936926
NASA Technical Reports Server (NTRS)
Bardina, J. E.
1994-01-01
A new computational efficient 3-D compressible Reynolds-averaged implicit Navier-Stokes method with advanced two equation turbulence models for high speed flows is presented. All convective terms are modeled using an entropy satisfying higher-order Total Variation Diminishing (TVD) scheme based on implicit upwind flux-difference split approximations and arithmetic averaging procedure of primitive variables. This method combines the best features of data management and computational efficiency of space marching procedures with the generality and stability of time dependent Navier-Stokes procedures to solve flows with mixed supersonic and subsonic zones, including streamwise separated flows. Its robust stability derives from a combination of conservative implicit upwind flux-difference splitting with Roe's property U to provide accurate shock capturing capability that non-conservative schemes do not guarantee, alternating symmetric Gauss-Seidel 'method of planes' relaxation procedure coupled with a three-dimensional two-factor diagonal-dominant approximate factorization scheme, TVD flux limiters of higher-order flux differences satisfying realizability, and well-posed characteristic-based implicit boundary-point a'pproximations consistent with the local characteristics domain of dependence. The efficiency of the method is highly increased with Newton Raphson acceleration which allows convergence in essentially one forward sweep for supersonic flows. The method is verified by comparing with experiment and other Navier-Stokes methods. Here, results of adiabatic and cooled flat plate flows, compression corner flow, and 3-D hypersonic shock-wave/turbulent boundary layer interaction flows are presented. The robust 3-D method achieves a better computational efficiency of at least one order of magnitude over the CNS Navier-Stokes code. It provides cost-effective aerodynamic predictions in agreement with experiment, and the capability of predicting complex flow structures in complex geometries with good accuracy.
A comparison of upwind schemes for computation of three-dimensional hypersonic real-gas flows
NASA Technical Reports Server (NTRS)
Gerbsch, R. A.; Agarwal, R. K.
1992-01-01
The method of Suresh and Liou (1992) is extended, and the resulting explicit noniterative upwind finite-volume algorithm is applied to the integration of 3D parabolized Navier-Stokes equations to model 3D hypersonic real-gas flowfields. The solver is second-order accurate in the marching direction and employs flux-limiters to make the algorithm second-order accurate, with total variation diminishing in the cross-flow direction. The algorithm is used to compute hypersonic flow over a yawed cone and over the Ames All-Body Hypersonic Vehicle. The solutions obtained agree well with other computational results and with experimental data.
Zheng, Chunmiao; Hill, Mary Catherine; Hsieh, Paul A.
2001-01-01
MODFLOW-2000, the newest version of MODFLOW, is a computer program that numerically solves the three-dimensional ground-water flow equation for a porous medium using a finite-difference method. MT3DMS, the successor to MT3D, is a computer program for modeling multi-species solute transport in three-dimensional ground-water systems using multiple solution techniques, including the finite-difference method, the method of characteristics (MOC), and the total-variation-diminishing (TVD) method. This report documents a new version of the Link-MT3DMS Package, which enables MODFLOW-2000 to produce the information needed by MT3DMS, and also discusses new visualization software for MT3DMS. Unlike the Link-MT3D Packages that coordinated previous versions of MODFLOW and MT3D, the new Link-MT3DMS Package requires an input file that, among other things, provides enhanced support for additional MODFLOW sink/source packages and allows list-directed (free) format for the flow model produced flow-transport link file. The report contains four parts: (a) documentation of the Link-MT3DMS Package Version 6 for MODFLOW-2000; (b) discussion of several issues related to simulation setup and input data preparation for running MT3DMS with MODFLOW-2000; (c) description of two test example problems, with comparison to results obtained using another MODFLOW-based transport program; and (d) overview of post-simulation visualization and animation using the U.S. Geological Survey?s Model Viewer.
Shape-Controlled Synthesis of Hybrid Nanomaterials via Three-Dimensional Hydrodynamic Focusing
2015-01-01
Shape-controlled synthesis of nanomaterials through a simple, continuous, and low-cost method is essential to nanomaterials research toward practical applications. Hydrodynamic focusing, with its advantages of simplicity, low-cost, and precise control over reaction conditions, has been used for nanomaterial synthesis. While most studies have focused on improving the uniformity and size control, few have addressed the potential of tuning the shape of the synthesized nanomaterials. Here we demonstrate a facile method to synthesize hybrid materials by three-dimensional hydrodynamic focusing (3D-HF). While keeping the flow rates of the reagents constant and changing only the flow rate of the buffer solution, the molar ratio of two reactants (i.e., tetrathiafulvalene (TTF) and HAuCl4) within the reaction zone varies. The synthesized TTF–Au hybrid materials possess very different and predictable morphologies. The reaction conditions at different buffer flow rates are studied through computational simulation, and the formation mechanisms of different structures are discussed. This simple one-step method to achieve continuous shape-tunable synthesis highlights the potential of 3D-HF in nanomaterials research. PMID:25268035
Shape-controlled synthesis of hybrid nanomaterials via three-dimensional hydrodynamic focusing.
Lu, Mengqian; Yang, Shikuan; Ho, Yi-Ping; Grigsby, Christopher L; Leong, Kam W; Huang, Tony Jun
2014-10-28
Shape-controlled synthesis of nanomaterials through a simple, continuous, and low-cost method is essential to nanomaterials research toward practical applications. Hydrodynamic focusing, with its advantages of simplicity, low-cost, and precise control over reaction conditions, has been used for nanomaterial synthesis. While most studies have focused on improving the uniformity and size control, few have addressed the potential of tuning the shape of the synthesized nanomaterials. Here we demonstrate a facile method to synthesize hybrid materials by three-dimensional hydrodynamic focusing (3D-HF). While keeping the flow rates of the reagents constant and changing only the flow rate of the buffer solution, the molar ratio of two reactants (i.e., tetrathiafulvalene (TTF) and HAuCl4) within the reaction zone varies. The synthesized TTF-Au hybrid materials possess very different and predictable morphologies. The reaction conditions at different buffer flow rates are studied through computational simulation, and the formation mechanisms of different structures are discussed. This simple one-step method to achieve continuous shape-tunable synthesis highlights the potential of 3D-HF in nanomaterials research.
Development of an Aeroelastic Analysis Including a Viscous Flow Model
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Bakhle, Milind A.
2001-01-01
Under this grant, Version 4 of the three-dimensional Navier-Stokes aeroelastic code (TURBO-AE) has been developed and verified. The TURBO-AE Version 4 aeroelastic code allows flutter calculations for a fan, compressor, or turbine blade row. This code models a vibrating three-dimensional bladed disk configuration and the associated unsteady flow (including shocks, and viscous effects) to calculate the aeroelastic instability using a work-per-cycle approach. Phase-lagged (time-shift) periodic boundary conditions are used to model the phase lag between adjacent vibrating blades. The direct-store approach is used for this purpose to reduce the computational domain to a single interblade passage. A disk storage option, implemented using direct access files, is available to reduce the large memory requirements of the direct-store approach. Other researchers have implemented 3D inlet/exit boundary conditions based on eigen-analysis. Appendix A: Aeroelastic calculations based on three-dimensional euler analysis. Appendix B: Unsteady aerodynamic modeling of blade vibration using the turbo-V3.1 code.
Computational fluid dynamics (CFD) study on the fetal aortic coarctation
NASA Astrophysics Data System (ADS)
Zhou, Yue; Zhang, Yutao; Wang, Jingying
2018-03-01
Blood flows in normal and coarctate fetal aortas are simulated by the CFD technique using T-rex grids. The three-dimensional (3-D) digital model of the fetal arota is reconstructed by the computer-aided design (CAD) software based on two-dimensional (2-D) ultrasono tomographic images. Simulation results displays the development and enhancement of the secondary flow structure in the coarctate fetal arota. As the diameter narrow ratio rises greater than 45%, the pressure and wall shear stress (WSS) of the aorta arch increase exponentially, which is consistent with the conventional clinical concept. The present study also demonstrates that CFD is a very promising assistant technique to investigate human cardiovascular diseases.
NASA Astrophysics Data System (ADS)
He, Liping; Lu, Gang; Chen, Dachuan; Li, Wenjun; Lu, Chunsheng
2017-07-01
This paper investigates the three-dimensional (3D) injection molding flow of short fiber-reinforced polymer composites using a smoothed particle hydrodynamics (SPH) simulation method. The polymer melt was modeled as a power law fluid and the fibers were considered as rigid cylindrical bodies. The filling details and fiber orientation in the injection-molding process were studied. The results indicated that the SPH method could effectively predict the order of filling, fiber accumulation, and heterogeneous distribution of fibers. The SPH simulation also showed that fibers were mainly aligned to the flow direction in the skin layer and inclined to the flow direction in the core layer. Additionally, the fiber-orientation state in the simulation was quantitatively analyzed and found to be consistent with the results calculated by conventional tensor methods.
Computation of Sound Generated by Flow Over a Circular Cylinder: An Acoustic Analogy Approach
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.; Cox, Jared S.; Rumsey, Christopher L.; Younis, Bassam A.
1997-01-01
The sound generated by viscous flow past a circular cylinder is predicted via the Lighthill acoustic analogy approach. The two dimensional flow field is predicted using two unsteady Reynolds-averaged Navier-Stokes solvers. Flow field computations are made for laminar flow at three Reynolds numbers (Re = 1000, Re = 10,000, and Re = 90,000) and two different turbulent models at Re = 90,000. The unsteady surface pressures are utilized by an acoustics code that implements Farassat's formulation 1A to predict the acoustic field. The acoustic code is a 3-D code - 2-D results are found by using a long cylinder length. The 2-D predictions overpredict the acoustic amplitude; however, if correlation lengths in the range of 3 to 10 cylinder diameters are used, the predicted acoustic amplitude agrees well with experiment.
Hard Copy to Digital Transfer: 3D Models that Match 2D Maps
ERIC Educational Resources Information Center
Kellie, Andrew C.
2011-01-01
This research describes technical drawing techniques applied in a project involving digitizing of existing hard copy subsurface mapping for the preparation of three dimensional graphic and mathematical models. The intent of this research was to identify work flows that would support the project, ensure the accuracy of the digital data obtained,…
3D analysis of vortical structures in an abdominal aortic aneurysm by stereoscopic PIV
NASA Astrophysics Data System (ADS)
Deplano, Valérie; Guivier-Curien, Carine; Bertrand, Eric
2016-11-01
The present work presents an experimental in vitro three-dimensional analysis of the flow dynamics in an abdominal aortic aneurysm (AAA) through stereoscopic particle image velocimetry (SPIV) measurements. The experimental set-up mimics the pathophysiological context involving a shear thinning blood analogue fluid, compliant AAA and aorto-iliac bifurcation walls and controlled inlet and outlet flow rate and pressure waveforms as well as working fluid temperature. SPIV was carefully calibrated and conducted to assess the three velocity components in the AAA volume. For the first time in the literature, the 3D vortex ring genesis, propagation, and vanishing in the AAA bulge are experimentally described and quantified. In comparison with classical 2-component PIV measurements (2C PIV), the third component of the velocity vector was shown to be of importance in such a geometry, especially, during the deceleration phase of the flow rate. The 3D velocity magnitude reached up more than 20 % of the 2D one showing that 2C PIV are definitively not accurate enough to provide a complete description of flow behaviour in an AAA. In addition to potential clinical implications of a full 3D vortex ring description in AAA evolution, the 3D in vitro experimental quantification of the flow dynamics carried out in the present study offers an interesting tool for the validation of fluid-structure interaction numerical studies dealing with AAA.
The NCOREL computer program for 3D nonlinear supersonic potential flow computations
NASA Technical Reports Server (NTRS)
Siclari, M. J.
1983-01-01
An innovative computational technique (NCOREL) was established for the treatment of three dimensional supersonic flows. The method is nonlinear in that it solves the nonconservative finite difference analog of the full potential equation and can predict the formation of supercritical cross flow regions, embedded and bow shocks. The method implicitly computes a conical flow at the apex (R = 0) of a spherical coordinate system and uses a fully implicit marching technique to obtain three dimensional cross flow solutions. This implies that the radial Mach number must remain supersonic. The cross flow solutions are obtained by using type dependent transonic relaxation techniques with the type dependency linked to the character of the cross flow velocity (i.e., subsonic/supersonic). The spherical coordinate system and marching on spherical surfaces is ideally suited to the computation of wing flows at low supersonic Mach numbers due to the elimination of the subsonic axial Mach number problems that exist in other marching codes that utilize Cartesian transverse marching planes.
Diagnostic utility of three-dimensional power Doppler ultrasound for postmenopausal bleeding.
Kim, Ari; Lee, Ji Young; Chun, Sungwook; Kim, Heung Yeol
2015-06-01
We evaluated the role of three-dimensional power Doppler ultrasound (3D PD-US) to detect endometrial lesions in women with postmenopausal endometrial bleeding. In this prospective observational study, from January 2009 to November 2012, we recruited 225 postmenopausal women with postmenopausal uterine bleeding who met the study criteria. Women who had hematologic disease, chronic medical diseases, or nonuterine pelvic diseases were excluded. Prior to endometrial biopsy, the patients underwent a baseline transvaginal ultrasound screening. The vascular indices and endometrial volumes were calculated with 3D PD-US and compared with the endometrial histopathology. Among the endometrial histopathologic findings of 174 women, atrophic endometrium was the most common finding (30.5%). Endometrial malignancy was confirmed in 28 cases (16.1%), and endometrial hyperplasia was diagnosed in 17 cases (9.8%). The prevalence of endometrial cancer was high in patients who had endometrial thickness >9.5 mm (p < 0.001) and volume greater than 4.05 mL (p < 0.001). For the endometrial carcinoma only, the cutoff values of vascular index, flow index, and vascular flow index for predicting malignancy were 13.070, 12.610, and 3.764, respectively. For endometrial hyperplasia, endometrial thickness and vascular flow index were significant findings. Endometrial vasculature and volume can be obtained using 3D PD-US. The diagnostic usefulness of 3D PD-US for endometrial diseases is promising in women with postmenopausal endometrial bleeding. Copyright © 2015. Published by Elsevier B.V.
Higher spin realization of the DS/CFT correspondence
NASA Astrophysics Data System (ADS)
Anninos, Dionysios; Hartman, Thomas; Strominger, Andrew
2017-01-01
We conjecture that Vasiliev’s theory of higher spin gravity in four-dimensional de Sitter space (dS4) is holographically dual to a three-dimensional conformal field theory (CFT3) living on the spacelike boundary of dS4 at future timelike infinity. The CFT3 is the Euclidean Sp(N) vector model with anticommuting scalars. The free CFT3 flows under a double-trace deformation to an interacting CFT3 in the IR. We argue that both CFTs are dual to Vasiliev dS4 gravity but with different future boundary conditions on the bulk scalar field. Our analysis rests heavily on analytic continuations of bulk and boundary correlators in the proposed duality relating the O(N) model with Vasiliev gravity in AdS4.
SutraPrep, a pre-processor for SUTRA, a model for ground-water flow with solute or energy transport
Provost, Alden M.
2002-01-01
SutraPrep facilitates the creation of three-dimensional (3D) input datasets for the USGS ground-water flow and transport model SUTRA Version 2D3D.1. It is most useful for applications in which the geometry of the 3D model domain and the spatial distribution of physical properties and boundary conditions is relatively simple. SutraPrep can be used to create a SUTRA main input (?.inp?) file, an initial conditions (?.ics?) file, and a 3D plot of the finite-element mesh in Virtual Reality Modeling Language (VRML) format. Input and output are text-based. The code can be run on any platform that has a standard FORTRAN-90 compiler. Executable code is available for Microsoft Windows.
Passive micromixers with dual helical channels
NASA Astrophysics Data System (ADS)
Liu, Keyin; Yang, Qing; Chen, Feng; Zhao, Yulong; Meng, Xiangwei; Shan, Chao; Li, Yanyang
2015-02-01
In this study, a three-dimensional (3D) micromixer with cross-linked double helical microchannels is studied to achieve rapid mixing of fluids at low Reynolds numbers (Re). The 3D micromixer takes full advantages of the chaotic advection model with helical microchannels; meanwhile, the proposed crossing structure of double helical microchannels enables two flow patterns of repelling flow and straight flow in the fluids to promote the agitation effect. The complex 3D micromixer is realized by an improved femtosecond laser wet etching (FLWE) technology embedded in fused silica. The mixing results show that cross-linked double helical microchannels can achieve excellent mixing within 3 cycles (300 μm) over a wide range of low Re (1.5×10-3~600), which compare well with the conventional passive micromixers. This highly-effective micromixer is hoped to contribute to the integration of microfluidic systems.
Fluid Physics of Foam Evolution and Flow
NASA Technical Reports Server (NTRS)
Aref, H.; Thoroddsen, S. T.; Sullivan, J. M.
2003-01-01
The grant supported theoretical, numerical and experimental work focused on the elucidation of the fluid physics of foam structure, evolution and flow. The experimental work concentrated on these subject areas: (a) Measurements of the speed of reconnections within a foam; (b) statistics of bubble rearrangements; and (c) three-dimensional reconstruction of the foam structure. On the numerical simulation and theory side our efforts concentrated on the subjects: (a) simulation techniques for 2D and 3D foams; (b) phase transition in a compressible foam; and (c) TCP structures.
Piotrowski-Daspit, Alexandra S; Simi, Allison K; Pang, Mei-Fong; Tien, Joe; Nelson, Celeste M
2017-01-01
Cells are surrounded by mechanical stimuli in their microenvironment. It is important to determine how cells respond to the mechanical information that surrounds them in order to understand both development and disease progression, as well as to be able to predict cell behavior in response to physical stimuli. Here we describe a protocol to determine the effects of interstitial fluid flow on the migratory behavior of an aggregate of epithelial cells in a three-dimensional (3D) culture model. This protocol includes detailed methods for the fabrication of a 3D cell culture chamber with hydrostatic pressure control, the culture of epithelial cells as an aggregate in a collagen gel, and the analysis of collective cell behavior in response to pressure-driven flow.
Application of digital interferogram evaluation techniques to the measurement of 3-D flow fields
NASA Technical Reports Server (NTRS)
Becker, Friedhelm; Yu, Yung H.
1987-01-01
A system for digitally evaluating interferograms, based on an image processing system connected to a host computer, was implemented. The system supports one- and two-dimensional interferogram evaluations. Interferograms are digitized, enhanced, and then segmented. The fringe coordinates are extracted, and the fringes are represented as polygonal data structures. Fringe numbering and fringe interpolation modules are implemented. The system supports editing and interactive features, as well as graphic visualization. An application of the system to the evaluation of double exposure interferograms from the transonic flow field around a helicopter blade and the reconstruction of the three dimensional flow field is given.
Development of computational methods for heavy lift launch vehicles
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Ryan, James S.
1993-01-01
The research effort has been focused on the development of an advanced flow solver for complex viscous turbulent flows with shock waves. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. A new computer program named CENS3D has been developed for viscous turbulent flows with discontinuities. Details of the code are described in Appendix A and Appendix B. With the developments of the numerical algorithm and dissipation model, the simulation of three-dimensional viscous compressible flows has become more efficient and accurate. The results of the research are expected to yield a direct impact on the design process of future liquid fueled launch systems.
Natural convection in a cubical cavity with a coaxial heated cylinder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aithal, S. M.
High-resolution three-dimensional simulations were conducted to investigate the velocity and temperature fields in a cold cubical cavity due to natural convection induced by a centrally placed hot cylinder. Unsteady, incompressible Navier-Stokes equations were solved by using a spectral- element method for Rayleigh numbers ranging from 103 to 109. The effect of spanwise thermal boundary conditions, aspect ratio (radius of the cylinder to the side of the cavity), and spanwise temperature distribution of the inner cylinder on the velocity and thermal fields were investigated for each Rayleigh number. Results from two-dimensional calculations were compared with three-dimensional simulations. The 3D results indicatemore » a complex flow structure in the vicinity of the spanwise walls. The results also show that the imposed thermal wall boundary condition impacts the flow and temperature fields strongly near the spanwise walls. The variation of the local Nusselt number on the cylinder surface and enclosure walls at various spanwise locations was also investigated. The local Nusselt number on the cylinder surface and enclosure walls at the cavity mid-plane (Z = 0) is close to 2D simulations for 103 ≤ Ra ≤ 108. Simulations also show a variation in the local Nusselt number, on both the cylinder surface and the enclosure walls, in the spanwise direction, for all Rayleigh numbers studied in this work. The results also indicate that if the enclosure walls are insulated in the spanwise direction (as opposed to a constant temperature), the peak Nusselt number on the enclosure surface occurs near the spanwise walls and is about 20% higher than the peak Nusselt number at the cavity mid-plane. The temporal characteristics of 3D flows are also different from 2D results for Ra > 108. These results suggest that 3D simulations would be more appropriate for flows with Ra > 108.« less
SubductionGenerator: A program to build three-dimensional plate configurations
NASA Astrophysics Data System (ADS)
Jadamec, M. A.; Kreylos, O.; Billen, M. I.; Turcotte, D. L.; Knepley, M.
2016-12-01
Geologic, geochemical, and geophysical data from subduction zones indicate that a two-dimensional paradigm for plate tectonic boundaries is no longer adequate to explain the observations. Many open source software packages exist to simulate the viscous flow of the Earth, such as the dynamics of subduction. However, there are few open source programs that generate the three-dimensional model input. We present an open source software program, SubductionGenerator, that constructs the three-dimensional initial thermal structure and plate boundary structure. A 3D model mesh and tectonic configuration are constructed based on a user specified model domain, slab surface, seafloor age grid file, and shear zone surface. The initial 3D thermal structure for the plates and mantle within the model domain is then constructed using a series of libraries within the code that use a half-space cooling model, plate cooling model, and smoothing functions. The code maps the initial 3D thermal structure and the 3D plate interface onto the mesh nodes using a series of libraries including a k-d tree to increase efficiency. In this way, complicated geometries and multiple plates with variable thickness can be built onto a multi-resolution finite element mesh with a 3D thermal structure and 3D isotropic shear zones oriented at any angle with respect to the grid. SubductionGenerator is aimed at model set-ups more representative of the earth, which can be particularly challenging to construct. Examples include subduction zones where the physical attributes vary in space, such as slab dip and temperature, and overriding plate temperature and thickness. Thus, the program can been used to construct initial tectonic configurations for triple junctions and plate boundary corners.
NASA Technical Reports Server (NTRS)
Chriss, R. M.; Hingst, W. R.; Strazisar, A. J.; Keith, T. G., Jr.
1989-01-01
Nonintrusive measurements were made of a normal shock wave/boundary layer interaction. Two dimensional measurements were made throughout the interaction region while 3-D measurements were made in the vicinity of the shock wave. The measurements were made in the corner of the test section of a continuous supersonic wind tunnel in which a normal shock wave had been stabilized. Laser Doppler Anemometry, surface pressure measurement and flow visualization techniques were employed for two freestream Mach number test cases: 1.6 and 1.3. The former contained separated flow regions and a system of shock waves. The latter was found to be far less complicated. The results define the flow field structure in detail for each case.
User's manual for three dimensional boundary layer (BL3-D) code
NASA Technical Reports Server (NTRS)
Anderson, O. L.; Caplin, B.
1985-01-01
An assessment has been made of the applicability of a 3-D boundary layer analysis to the calculation of heat transfer, total pressure losses, and streamline flow patterns on the surface of both stationary and rotating turbine passages. In support of this effort, an analysis has been developed to calculate a general nonorthogonal surface coordinate system for arbitrary 3-D surfaces and also to calculate the boundary layer edge conditions for compressible flow using the surface Euler equations and experimental data to calibrate the method, calculations are presented for the pressure endwall, and suction surfaces of a stationary cascade and for the pressure surface of a rotating turbine blade. The results strongly indicate that the 3-D boundary layer analysis can give good predictions of the flow field, loss, and heat transfer on the pressure, suction, and endwall surface of a gas turbine passage.
Modeling Three-Dimensional Shock Initiation of PBX 9501 in ALE3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leininger, L; Springer, H K; Mace, J
A recent SMIS (Specific Munitions Impact Scenario) experimental series performed at Los Alamos National Laboratory has provided 3-dimensional shock initiation behavior of the HMX-based heterogeneous high explosive, PBX 9501. A series of finite element impact calculations have been performed in the ALE3D [1] hydrodynamic code and compared to the SMIS results to validate and study code predictions. These SMIS tests used a powder gun to shoot scaled NATO standard fragments into a cylinder of PBX 9501, which has a PMMA case and a steel impact cover. This SMIS real-world shot scenario creates a unique test-bed because (1) SMIS tests facilitatemore » the investigation of 3D Shock to Detonation Transition (SDT) within the context of a considerable suite of diagnostics, and (2) many of the fragments arrive at the impact plate off-center and at an angle of impact. A particular goal of these model validation experiments is to demonstrate the predictive capability of the ALE3D implementation of the Tarver-Lee Ignition and Growth reactive flow model [2] within a fully 3-dimensional regime of SDT. The 3-dimensional Arbitrary Lagrange Eulerian (ALE) hydrodynamic model in ALE3D applies the Ignition and Growth (I&G) reactive flow model with PBX 9501 parameters derived from historical 1-dimensional experimental data. The model includes the off-center and angle of impact variations seen in the experiments. Qualitatively, the ALE3D I&G calculations reproduce observed 'Go/No-Go' 3D Shock to Detonation Transition (SDT) reaction in the explosive, as well as the case expansion recorded by a high-speed optical camera. Quantitatively, the calculations show good agreement with the shock time of arrival at internal and external diagnostic pins. This exercise demonstrates the utility of the Ignition and Growth model applied for the response of heterogeneous high explosives in the SDT regime.« less
Numerical Simulation of Plume Transport in Channel Bend with Different Sediment Diameters
NASA Astrophysics Data System (ADS)
Kim, H. S.; Chen, H. C.
2017-12-01
The flow and transport of suspended sediment particles, in the form of plume, were simulated using an in-house Computational Fluid Dynamics (CFD) solver FANS3D (Finite Analytic Navier-Stokes code for 3D flow). The motivation for this investigation is to provide a means to simulate and visualize dispersal systems in a complex flow environment. The physical domain considered is a 90-degrees channel bend with wingwall abutments, which induces complex, three-dimensional flow characteristics. At the inlet of the channel, a sediment plume with the volumetric concentration of 1,000 parts per million (ppm) was constantly supplied. For simplicity, it was assumed that neither deposition nor erosion takes place inside the channel and settling sediment was made to pass through the bed surface. The effect of the sediment particle size was also analyzed using two different median diameters: 0.10 mm and 0.20 mm. It was shown that flow acceleration and vortices cause strong mixing inside the channel. The three-dimensional time series from the simulation captured increasing suspended sediment concentration downstream of the abutments, along the outer bank. When the median diameter was varied, the sediment concentration at certain locations differed by orders of magnitude, indicating that the settling velocity dominates the transport process for larger diameters.
ALGE3D: A Three-Dimensional Transport Model
NASA Astrophysics Data System (ADS)
Maze, G. M.
2017-12-01
Of the top 10 most populated US cities from a 2015 US Census Bureau estimate, 7 of the cities are situated near the ocean, a bay, or on one of the Great Lakes. A contamination of the water ways in the United States could be devastating to the economy (through tourism and industries such as fishing), public health (from direct contact, or contaminated drinking water), and in some cases even infrastructure (water treatment plants). Current national response models employed by emergency response agencies have well developed models to simulate the effects of hazardous contaminants in riverine systems that are primarily driven by one-dimensional flows; however in more complex systems, such as tidal estuaries, bays, or lakes, a more complex model is needed. While many models exist, none are capable of quick deployment in emergency situations that could contain a variety of release situations including a mixture of both particulate and dissolved chemicals in a complex flow area. ALGE3D, developed at the Department of Energy's (DOE) Savannah River National Laboratory (SRNL), is a three-dimensional hydrodynamic code which solves the momentum, mass, and energy conservation equations to predict the movement and dissipation of thermal or dissolved chemical plumes discharged into cooling lakes, rivers, and estuaries. ALGE3D is capable of modeling very complex flows, including areas with tidal flows which include wetting and drying of land. Recent upgrades have increased the capabilities including the transport of particulate tracers, allowing for more complete modeling of the transport of pollutants. In addition the model is capable of coupling with a one-dimension riverine transport model or a two-dimension atmospheric deposition model in the event that a contamination event occurs upstream or upwind of the water body.
Three-dimensional micro-electrode array for recording dissociated neuronal cultures.
Musick, Katherine; Khatami, David; Wheeler, Bruce C
2009-07-21
This work demonstrates the design, fabrication, packaging, characterization, and functionality of an electrically and fluidically active three-dimensional micro-electrode array (3D MEA) for use with neuronal cell cultures. The successful function of the device implies that this basic concept-construction of a 3D array with a layered approach-can be utilized as the basis for a new family of neural electrode arrays. The 3D MEA prototype consists of a stack of individually patterned thin films that form a cell chamber conducive to maintaining and recording the electrical activity of a long-term three-dimensional network of rat cortical neurons. Silicon electrode layers contain a polymer grid for neural branching, growth, and network formation. Along the walls of these electrode layers lie exposed gold electrodes which permit recording and stimulation of the neuronal electrical activity. Silicone elastomer micro-fluidic layers provide a means for loading dissociated neurons into the structure and serve as the artificial vasculature for nutrient supply and aeration. The fluidic layers also serve as insulation for the micro-electrodes. Cells have been shown to survive in the 3D MEA for up to 28 days, with spontaneous and evoked electrical recordings performed in that time. The micro-fluidic capability was demonstrated by flowing in the drug tetrotodoxin to influence the activity of the culture.
Daryadel, Soheil; Behroozfar, Ali; Morsali, S Reza; Moreno, Salvador; Baniasadi, Mahmoud; Bykova, Julia; Bernal, Rodrigo A; Minary-Jolandan, Majid
2018-01-10
Nanotwinned-metals (nt-metals) offer superior mechanical (high ductility and strength) and electrical (low electromigration) properties compared to their nanocrystalline (nc) counterparts. These properties are advantageous in particular for applications in nanoscale devices. However, fabrication of nt-metals has been limited to films (two-dimensional) or template-based (one-dimensional) geometries, using various chemical and physical processes. In this Letter, we demonstrate the ambient environment localized pulsed electrodeposition process for direct printing of three-dimensional (3D) freestanding nanotwinned-Copper (nt-Cu) nanostructures. 3D nt-Cu structures were additively manufactured using pulsed electrodeposition at the tip of an electrolyte-containing nozzle. Focused ion beam (FIB) and transmission electron microscopy (TEM) analysis revealed that the printed metal was fully dense, and was mostly devoid of impurities and microstructural defects. FIB and TEM images also revealed nanocrystalline-nanotwinned-microstructure (nc-nt-microstructure), and confirmed the formation of coherent twin boundaries in the 3D-printed Cu. Mechanical properties of the 3D-printed nc-nt-Cu were characterized by direct printing (FIB-less) of micropillars for in situ SEM microcompression experiments. The 3D-printed nc-nt-Cu exhibited a flow stress of over 960 MPa, among the highest ever reported, which is remarkable for a 3D-printed material. The microstructure and mechanical properties of the nc-nt-Cu were compared to those of nc-Cu printed using the same process under direct current (DC) voltage.
3D Measurements of coupled freestream turbulence and secondary flow effects on film cooling
NASA Astrophysics Data System (ADS)
Ching, David S.; Xu, Haosen H. A.; Elkins, Christopher J.; Eaton, John K.
2018-06-01
The effect of freestream turbulence on a single round film cooling hole is examined at two turbulence levels of 5 and 8% and compared to a baseline low freestream turbulence case. The hole is inclined at 30° and has length to diameter ratio L/D=4 and unity blowing ratio. Turbulence is generated with grid upstream of the hole in the main channel. The three-dimensional, three-component mean velocity field is acquired with magnetic resonance velocimetry (MRV) and the three-dimensional temperature field is acquired with magnetic resonance thermometry (MRT). The 8% turbulence grid produces weak mean secondary flows in the mainstream (peak crossflow velocities are 7% of U_bulk) which push the jet close to the wall and significantly change the adiabatic effectiveness distribution. By contrast, the 5% grid has a simpler structure and does not produce a measurable secondary flow structure. The grid turbulence causes little change to the temperature field, indicating that the turbulence generated in the shear layers around the jet dominates the freestream turbulence. The results suggest that secondary flows induced by complex turbulence generators may have caused some of the contradictory results in previous works.
Calculations of separated 3-D flows with a pressure-staggered Navier-Stokes equations solver
NASA Technical Reports Server (NTRS)
Kim, S.-W.
1991-01-01
A Navier-Stokes equations solver based on a pressure correction method with a pressure-staggered mesh and calculations of separated three-dimensional flows are presented. It is shown that the velocity pressure decoupling, which occurs when various pressure correction algorithms are used for pressure-staggered meshes, is caused by the ill-conditioned discrete pressure correction equation. The use of a partial differential equation for the incremental pressure eliminates the velocity pressure decoupling mechanism by itself and yields accurate numerical results. Example flows considered are a three-dimensional lid driven cavity flow and a laminar flow through a 90 degree bend square duct. For the lid driven cavity flow, the present numerical results compare more favorably with the measured data than those obtained using a formally third order accurate quadratic upwind interpolation scheme. For the curved duct flow, the present numerical method yields a grid independent solution with a very small number of grid points. The calculated velocity profiles are in good agreement with the measured data.
Voss, Clifford I.; Provost, A.M.
2002-01-01
SUTRA (Saturated-Unsaturated Transport) is a computer program that simulates fluid movement and the transport of either energy or dissolved substances in a subsurface environment. This upgraded version of SUTRA adds the capability for three-dimensional simulation to the former code (Voss, 1984), which allowed only two-dimensional simulation. The code employs a two- or three-dimensional finite-element and finite-difference method to approximate the governing equations that describe the two interdependent processes that are simulated: 1) fluid density-dependent saturated or unsaturated ground-water flow; and 2) either (a) transport of a solute in the ground water, in which the solute may be subject to: equilibrium adsorption on the porous matrix, and both first-order and zero-order production or decay; or (b) transport of thermal energy in the ground water and solid matrix of the aquifer. SUTRA may also be used to simulate simpler subsets of the above processes. A flow-direction-dependent dispersion process for anisotropic media is also provided by the code and is introduced in this report. As the primary calculated result, SUTRA provides fluid pressures and either solute concentrations or temperatures, as they vary with time, everywhere in the simulated subsurface system. SUTRA flow simulation may be employed for two-dimensional (2D) areal, cross sectional and three-dimensional (3D) modeling of saturated ground-water flow systems, and for cross sectional and 3D modeling of unsaturated zone flow. Solute-transport simulation using SUTRA may be employed to model natural or man-induced chemical-species transport including processes of solute sorption, production, and decay. For example, it may be applied to analyze ground-water contaminant transport problems and aquifer restoration designs. In addition, solute-transport simulation with SUTRA may be used for modeling of variable-density leachate movement, and for cross sectional modeling of saltwater intrusion in aquifers at near-well or regional scales, with either dispersed or relatively sharp transition zones between freshwater and saltwater. SUTRA energy-transport simulation may be employed to model thermal regimes in aquifers, subsurface heat conduction, aquifer thermal-energy storage systems, geothermal reservoirs, thermal pollution of aquifers, and natural hydrogeologic convection systems. Mesh construction, which is quite flexible for arbitrary geometries, employs quadrilateral finite elements in 2D Cartesian or radial-cylindrical coordinate systems, and hexahedral finite elements in 3D systems. 3D meshes are currently restricted to be logically rectangular; in other words, they are similar to deformable finite-difference-style grids. Permeabilities may be anisotropic and may vary in both direction and magnitude throughout the system, as may most other aquifer and fluid properties. Boundary conditions, sources and sinks may be time dependent. A number of input data checks are made to verify the input data set. An option is available for storing intermediate results and restarting a simulation at the intermediate time. Output options include fluid velocities, fluid mass and solute mass or energy budgets, and time-varying observations at points in the system. Both the mathematical basis for SUTRA and the program structure are highly general, and are modularized to allow for straightforward addition of new methods or processes to the simulation. The FORTRAN-90 coding stresses clarity and modularity rather than efficiency, providing easy access for later modifications.
NASA Technical Reports Server (NTRS)
Lakshmanan, Balakrishnan; Tiwari, Surendra N.
1992-01-01
A robust, discontinuity-resolving TVD MacCormack scheme containing no dependent parameters requiring adjustment is presently used to investigate the 3D separation of wing/body junction flows at supersonic speeds. Many production codes employing MacCormack schemes can be adapted to use this method. A numerical simulation of laminar supersonic junction flow is found to yield improved separation location predictions, as well as the axial velocity profiles in the separated flow region.
Virtual Environment for Surgical Room of the Future.
1995-10-01
Design; 1. wire frame Dynamic Interaction 2. surface B. Acoustic Three-Dimensional Modeling; 3. solid based on radiosity modeling B. Dynamic...infection control of people and E. Rendering and Shadowing equipment 1. ray tracing D. Fluid Flow 2. radiosity F. Animation OBJECT RECOGNITION COMMUNICATION
Assembly of hydrogel units for 3D microenvironment in a poly(dimethylsiloxane) channel
NASA Astrophysics Data System (ADS)
Cho, Chang Hyun; Kwon, Seyong; Park, Je-Kyun
2017-12-01
Construction of three-dimensional (3D) microenvironment become an important issue in recent biological studies due to their biological relevance compared to conventional two-dimensional (2D) microenvironment. Various fabrication techniques have been employed to construct a 3D microenvironment, however, it is difficult to fully satisfy the biological and mechanical properties required for the 3D cell culture system, such as heterogeneous tissue structures generated from the functional differences or diseases. We propose here an assembly method for facile construction of 3D microenvironment in a poly(dimethylsiloxane) (PDMS) channel using hydrogel units. The high-aspect-ratio of hydrogel units was achieved by fabricating these units using a 2D mold. With this approach, 3D heterogeneous hydrogel units were produced and assembled in a PDMS channel by structural hookup. In vivo-like 3D heterogeneous microenvironment in a precisely controllable fluidic system was also demonstrated using a controlled assembly of different types of hydrogel units, which was difficult to obtain from previous methods. By regulating the flow condition, the mechanical stability of the assembled hydrogel units was verified by the flow-induced deformation of hydrogel units. In addition, in vivo-like cell culture environment was demonstrated using an assembly of cell-coated hydrogel units in the fluidic channel. Based on these features, our method expects to provide a beneficial tool for the 3D cell culture module and biomimetic engineering.
A Numerical Study of Heat and Water Vapor Transfer in MDCT-Based Human Airway Models
Wu, Dan; Tawhai, Merryn H.; Hoffman, Eric A.; Lin, Ching-Long
2014-01-01
A three-dimensional (3D) thermo-fluid model is developed to study regional distributions of temperature and water vapor in three multi-detector row computed-tomography (MDCT)-basedhuman airwayswith minute ventilations of 6, 15 and 30 L/min. A one-dimensional (1D) model is also solved to provide necessary initial and boundary conditionsforthe 3D model. Both 3D and 1D predicted temperature distributions agree well with available in vivo measurement data. On inspiration, the 3D cold high-speed air stream is split at the bifurcation to form secondary flows, with its cold regions biased toward the inner wall. The cold air flowing along the wall is warmed up more rapidly than the air in the lumen center. The repeated splitting pattern of air streams caused by bifurcations acts as an effective mechanism for rapid heat and mass transfer in 3D. This provides a key difference from the 1D model, where heating relies largely on diffusion in the radial direction, thus significantly affecting gradient-dependent variables, such as energy flux and water loss rate. We then propose the correlations for respective heat and mass transfer in the airways of up to 6 generations: Nu=3.504(ReDaDt)0.277, R = 0.841 and Sh=3.652(ReDaDt)0.268, R = 0.825, where Nu is the Nusselt number, Sh is the Sherwood number, Re is the branch Reynolds number, Da is the airway equivalent diameter, and Dt is the tracheal equivalentdiameter. PMID:25081386
Linear instability in the wake of an elliptic wing
NASA Astrophysics Data System (ADS)
He, Wei; Tendero, Juan Ángel; Paredes, Pedro; Theofilis, Vassilis
2017-12-01
Linear global instability analysis has been performed in the wake of a low aspect ratio three-dimensional wing of elliptic cross section, constructed with appropriately scaled Eppler E387 airfoils. The flow field over the airfoil and in its wake has been computed by full three-dimensional direct numerical simulation at a chord Reynolds number of Rec=1750 and two angles of attack, {AoA}=0° and 5°. Point-vortex methods have been employed to predict the inviscid counterpart of this flow. The spatial BiGlobal eigenvalue problem governing linear small-amplitude perturbations superposed upon the viscous three-dimensional wake has been solved at several axial locations, and results were used to initialize linear PSE-3D analyses without any simplifying assumptions regarding the form of the trailing vortex system, other than weak dependence of all flow quantities on the axial spatial direction. Two classes of linearly unstable perturbations were identified, namely stronger-amplified symmetric modes and weaker-amplified antisymmetric disturbances, both peaking at the vortex sheet which connects the trailing vortices. The amplitude functions of both classes of modes were documented, and their characteristics were compared with those delivered by local linear stability analysis in the wake near the symmetry plane and in the vicinity of the vortex core. While all linear instability analysis approaches employed have delivered qualitatively consistent predictions, only PSE-3D is free from assumptions regarding the underlying base flow and should thus be employed to obtain quantitative information on amplification rates and amplitude functions in this class of configurations.
3D automatic Cartesian grid generation for Euler flows
NASA Technical Reports Server (NTRS)
Melton, John E.; Enomoto, Francis Y.; Berger, Marsha J.
1993-01-01
We describe a Cartesian grid strategy for the study of three dimensional inviscid flows about arbitrary geometries that uses both conventional and CAD/CAM surface geometry databases. Initial applications of the technique are presented. The elimination of the body-fitted constraint allows the grid generation process to be automated, significantly reducing the time and effort required to develop suitable computational grids for inviscid flowfield simulations.
NASA Technical Reports Server (NTRS)
Zhang, Zeng-Chan; Yu, S. T. John; Chang, Sin-Chung; Jorgenson, Philip (Technical Monitor)
2001-01-01
In this paper, we report a version of the Space-Time Conservation Element and Solution Element (CE/SE) Method in which the 2D and 3D unsteady Euler equations are simulated using structured or unstructured quadrilateral and hexahedral meshes, respectively. In the present method, mesh values of flow variables and their spatial derivatives are treated as independent unknowns to be solved for. At each mesh point, the value of a flow variable is obtained by imposing a flux conservation condition. On the other hand, the spatial derivatives are evaluated using a finite-difference/weighted-average procedure. Note that the present extension retains many key advantages of the original CE/SE method which uses triangular and tetrahedral meshes, respectively, for its 2D and 3D applications. These advantages include efficient parallel computing ease of implementing non-reflecting boundary conditions, high-fidelity resolution of shocks and waves, and a genuinely multidimensional formulation without using a dimensional-splitting approach. In particular, because Riemann solvers, the cornerstones of the Godunov-type upwind schemes, are not needed to capture shocks, the computational logic of the present method is considerably simpler. To demonstrate the capability of the present method, numerical results are presented for several benchmark problems including oblique shock reflection, supersonic flow over a wedge, and a 3D detonation flow.
Measuring and modeling of a three-dimensional tracer transport in a planted soil column
NASA Astrophysics Data System (ADS)
Schroeder, N.; Javaux, M.; Haber-Pohlmeier, S.; Pohlmeier, A. J.; Huber, K.; Vereecken, H.; Vanderborght, J.
2013-12-01
Water flow from soil to root is driven by the plant transpiration and an important component of the hydrological cycle. The model R-SWMS combines three-dimensional (3D) water flow and solute transport in soil with a detailed description of root structure in three dimensions [1,2]. This model offers the possibility to calculate root water and solute uptake and flow within the roots, which enables explicit studies with respect to the distribution of water and solutes around the roots as well as local processes at the root-soil interface. In this study, we compared measured data from a tracer experiment using Magnetic Resonance Imaging (MRI) with simulations in order to assess the distribution and magnitude of the water uptake of a young lupine plant. An aqueous solution of the Gadolinium-complex (Gd-DTPA2-) was chosen as a tracer, as it behaves conservatively and is ideally suited for MRI. Water flow in the soil towards the roots can thus be visualized by following the change in tracer concentrations over time. The data were obtained by MRI, providing high resolution 3D images of the tracer distribution and root architecture structures by using a spin echo pulse sequence, which is strongly T1- weighted to be tracer sensitive [3], and T2 -weighted for root imaging [4]. This experimental setup was simulated using the 3D high-resolution numerical model R-SWMS. The comparison between MRI data and the simulations showed extensive effects of root architecture parameters on solute spreading. Although the results of our study showed the strength of combining non-invasive measurements and 3D modeling of solute and water flow in soil-root systems, where the derivation of plant hydraulic parameters such as axial and radial root conductivities is possible, current limitations were found with respect to MRI measurements and process description. [1] Javaux, M., T. Schröder, J. Vanderborght, and H. Vereecken (2008), Use of a Three-Dimensional Detailed Modeling Approach for Predicting Root Water Uptake, Vadose Zone Journal, 7(3), 1079-1079. [2] Schröder, N., M. Javaux, J. Vanderborght, B. Steffen, and H. Vereecken (2012), Effect of Root Water and Solute Uptake on Apparent Soil Dispersivity: A Simulation Study, Vadose Zone Journal, 11(3). [3 ]Haber-Pohlmeier, S., Bechtold, M., Stapf, S., and Pohlmeier, A. (2010). Water Flow Monitored by Tracer Transport in Natural Porous Media Using Magnetic Resonance Imaging. Vadose Zone Journal (9),835-845. [4] Stingaciu, L. R., Schulz, H., Pohlmeier, A., Behnke, S., Zilken, H., Vereecken, H., and Javaux, M. (2013). In Situ Root System Architecture Extraction from Magnetic Resonance Imaging for Application to Water Uptake Modeling. Vadose Zone Journal.
3D Nanofabrication Using AFM-Based Ultrasonic Vibration Assisted Nanomachining
NASA Astrophysics Data System (ADS)
Deng, Jia
Nanolithography and nanofabrication processes have significant impact on the recent development of fundamental research areas such as physics, chemistry and biology, as well as the modern electronic devices that have reached nanoscale domain such as optoelectronic devices. Many advanced nanofabrication techniques have been developed and reported to satisfy different requirements in both research areas and applications such as electron-beam lithography. However, it is expensive to use and maintain the equipment. Atomic Force Microscope (AFM) based nanolithography processes provide an alternative approach to nanopatterning with significantly lower cost. Recently, three dimensional nanostructures have attracted a lot of attention, motivated by many applications in various fields including optics, plasmonics and nanoelectromechanical systems. AFM nanolithography processes are able to create not only two dimensional nanopatterns but also have the great potential to fabricate three dimensional nanostructures. The objectives of this research proposal are to investigate the capability of AFM-based three dimensional nanofabrication processes, to transfer the three dimensional nanostructures from resists to silicon surfaces and to use the three dimensional nanostructures on silicon in applications. Based on the understanding of literature, a novel AFM-based ultrasonic vibration assisted nanomachining system is utilized to develop three dimensional nanofabrication processes. In the system, high-frequency in plane circular xy-vibration was introduced to create a virtual tool, whose diameter is controlled by the amplitude of xy-vibration and is larger than that of a regular AFM tip. Therefore, the feature width of a single trench is tunable. Ultrasonic vibration of sample in z-direction was introduced to control the depth of single trenches, creating a high-rate 3D nanomachining process. Complicated 3D nanostructures on PMMA are fabricated under both the setpoint force and z-height control modes. Complex contours and both discrete and continuous height changes are able to be fabricated by the novel 3D nanofabrication processes. Results are imaged clearly after cleaning the debris covering on the 3D nanostructures after nanomachining process. The process is validated by fabricating various 3D nanostructures. The advantages and disadvantages are compared between these two control modes. Furthermore, the 3D nanostructures were further transferred from PMMA surfaces onto silicon surfaces using reactive ion etching (RIE) process. Recipes are developed based on the functionality of the etching gas in the transfer process. Tunable selectivity and controllable surface finishes are achieved by varying the flow rate of oxygen. The developed 3D nanofabrication process is used as a novel technique in two applications, master fabrication for soft lithography and SERS substrates fabrication. 3D nanostructures were reversely molded on PDMS and then duplicated on new PMMA substrates. 3D nanostructures are fabricated, which can be either directly used or transferred on silicon as SERS substrates after coating 80 nm gold layers. They greatly enhanced the intensity of Raman scattering with the enhancement factor of 3.11x103. These applications demonstrate the capability of the novel process of AFM-based 3D nanomachining.
Experimental investigation of bubbling in particle beds with high solid holdup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Songbai; Hirahara, Daisuke; Tanaka, Youhei
2011-02-15
A series of experiments on bubbling behavior in particle beds was performed to clarify three-phase flow dynamics in debris beds formed after core-disruptive accident (CDA) in sodium-cooled fast breeder reactors (FBRs). Although in the past, several experiments have been performed in packed beds to investigate flow patterns, most of these were under comparatively higher gas flow rate, which may be not expected during an early sodium boiling period in debris beds. The current experiments were conducted under two dimensional (2D) and three dimensional (3D) conditions separately, in which water was used as liquid phase, and bubbles were generated by injectingmore » nitrogen gas from the bottom of the viewing tank. Various particle-bed parameters were varied, including particle-bed height (from 30 mm to 200 mm), particle diameter (from 0.4 mm to 6 mm) and particle type (beads made of acrylic, glass, alumina and zirconia). Under these experimental conditions, three kinds of bubbling behavior were observed for the first time using digital image analysis methods that were further verified by quantitative detailed analysis of bubbling properties including surface bubbling frequency and surface bubble size under both 2D and 3D conditions. This investigation, which hopefully provides fundamental data for a better understanding and an improved estimation of CDAs in FBRs, is expected to benefit future analysis and verification of computer models developed in advanced fast reactor safety analysis codes. (author)« less
NASA Astrophysics Data System (ADS)
Panday, S.; Wu, Y. S.; Huyakorn, P. S.; Springer, E. P.
1994-06-01
This paper discusses the verification and application of the three-dimensional (3-D) multiphase flow model presented by Huyakorn et al. (Part 1 in this issue) for assessing contamination due to subsurface releases of non-aqueous-phase liquids (NAPL's). Attention is focussed on situations involving one-, two- and three-dimensional flow through porous media. The model formulations and numerical schemes are tested for highly nonlinear field conditions. The utility and accuracy of various simplifications to certain simulation scenarios are assessed. Five simulation examples are included for demonstrative purposes. The first example verifies the model for vertical flow and compares the performance of the fully three-phase and the passive-air-phase formulations. Air-phase boundary conditions are noted to have considerable effects on simulation results. The second example verifies the model for cross-sectional analyses involving LNAPL and DNAPL migration. Finite-difference (5-point) and finite-element (9-point) spatial approximations are compared for different grid aspect ratios. Unless corrected, negative-transmissivity conditions were found to have undesirable impact on the finite-element solutions. The third example provides a model validation against laboratory experimental data on 5-spot water-flood treatment of oil reservoirs. The sensitivity to grid orientation is noted for the finite-difference schemes. The fourth example demonstrates model utility in characterizing the 3-D migration of LNAPL and DNAPL from surface sources. The final example present a modeling study of air sparging. Critical parameters affecting the performance of air-sparging system are examined. In general, the modeling results indicate sparging is more effective in water-retentive soils, and larger values of sparge influence radius may be achieved for certain anisotropic conditions.
Customizable 3D Printed ‘Plug and Play’ Millifluidic Devices for Programmable Fluidics
Tsuda, Soichiro; Jaffery, Hussain; Doran, David; Hezwani, Mohammad; Robbins, Phillip J.; Yoshida, Mari; Cronin, Leroy
2015-01-01
Three dimensional (3D) printing is actively sought after in recent years as a promising novel technology to construct complex objects, which scope spans from nano- to over millimeter scale. Previously we utilized Fused deposition modeling (FDM)-based 3D printer to construct complex 3D chemical fluidic systems, and here we demonstrate the construction of 3D milli-fluidic structures for programmable liquid handling and control of biological samples. Basic fluidic operation devices, such as water-in-oil (W/O) droplet generators for producing compartmentalized mono-disperse droplets, sensor-integrated chamber for online monitoring of cellular growth, are presented. In addition, chemical surface treatment techniques are used to construct valve-based flow selector for liquid flow control and inter-connectable modular devices for networking fluidic parts. As such this work paves the way for complex operations, such as mixing, flow control, and monitoring of reaction / cell culture progress can be carried out by constructing both passive and active components in 3D printed structures, which designs can be shared online so that anyone with 3D printers can reproduce them by themselves. PMID:26558389
Zhang, Bin; Seong, Baekhoon; Lee, Jaehyun; Nguyen, VuDat; Cho, Daehyun; Byun, Doyoung
2017-09-06
A one-step sub-micrometer-scale electrohydrodynamic (EHD) inkjet three-dimensional (3D)-printing technique that is based on the drop-on-demand (DOD) operation for which an additional postsintering process is not required is proposed. Both the numerical simulation and the experimental observations proved that nanoscale Joule heating occurs at the interface between the charged silver nanoparticles (Ag-NPs) because of the high electrical contact resistance during the printing process; this is the reason why an additional postsintering process is not required. Sub-micrometer-scale 3D structures were printed with an above-35 aspect ratio via the use of the proposed printing technique; furthermore, it is evident that the designed 3D structures such as a bridge-like shape can be printed with the use of the proposed printing technique, allowing for the cost-effective fabrication of a 3D touch sensor and an ultrasensitive air flow-rate sensor. It is believed that the proposed one-step printing technique may replace the conventional 3D conductive-structure printing techniques for which a postsintering process is used because of its economic efficiency.
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Qian; Liu, G. R.; Khoo, Boo Cheong
2013-02-01
A three-dimensional immersed smoothed finite element method (3D IS-FEM) using four-node tetrahedral element is proposed to solve 3D fluid-structure interaction (FSI) problems. The 3D IS-FEM is able to determine accurately the physical deformation of the nonlinear solids placed within the incompressible viscous fluid governed by Navier-Stokes equations. The method employs the semi-implicit characteristic-based split scheme to solve the fluid flows and smoothed finite element methods to calculate the transient dynamics responses of the nonlinear solids based on explicit time integration. To impose the FSI conditions, a novel, effective and sufficiently general technique via simple linear interpolation is presented based on Lagrangian fictitious fluid meshes coinciding with the moving and deforming solid meshes. In the comparisons to the referenced works including experiments, it is clear that the proposed 3D IS-FEM ensures stability of the scheme with the second order spatial convergence property; and the IS-FEM is fairly independent of a wide range of mesh size ratio.
Yu, Huidan; Chen, Xi; Wang, Zhiqiang; Deep, Debanjan; Lima, Everton; Zhao, Ye; Teague, Shawn D
2014-06-01
In this paper, we develop a mass-conserved volumetric lattice Boltzmann method (MCVLBM) for numerically solving fluid dynamics with willfully moving arbitrary boundaries. In MCVLBM, fluid particles are uniformly distributed in lattice cells and the lattice Boltzmann equations deal with the time evolution of the particle distribution function. By introducing a volumetric parameter P(x,y,z,t) defined as the occupation of solid volume in the cell, we distinguish three types of lattice cells in the simulation domain: solid cell (pure solid occupation, P=1), fluid cell (pure fluid occupation, P=0), and boundary cell (partial solid and partial fluid, 0
A 3-D chimera grid embedding technique
NASA Technical Reports Server (NTRS)
Benek, J. A.; Buning, P. G.; Steger, J. L.
1985-01-01
A three-dimensional (3-D) chimera grid-embedding technique is described. The technique simplifies the construction of computational grids about complex geometries. The method subdivides the physical domain into regions which can accommodate easily generated grids. Communication among the grids is accomplished by interpolation of the dependent variables at grid boundaries. The procedures for constructing the composite mesh and the associated data structures are described. The method is demonstrated by solution of the Euler equations for the transonic flow about a wing/body, wing/body/tail, and a configuration of three ellipsoidal bodies.
Wang, Ping; Zhou, Ye; MacLaren, Stephan A.; ...
2015-11-06
Three- and two-dimensional numerical studies have been carried out to simulate recent counter-propagating shear flow experiments on the National Ignition Facility. A multi-physics three-dimensional, time-dependent radiation hydrodynamics simulation code is used. Using a Reynolds Averaging Navier-Stokes model, we show that the evolution of the mixing layer width obtained from the simulations agrees well with that measured from the experiments. A sensitivity study is conducted to illustrate a 3D geometrical effect that could confuse the measurement at late times, if the energy drives from the two ends of the shock tube are asymmetric. Implications for future experiments are discussed.
Intracranial MRA: single volume vs. multiple thin slab 3D time-of-flight acquisition.
Davis, W L; Warnock, S H; Harnsberger, H R; Parker, D L; Chen, C X
1993-01-01
Single volume three-dimensional (3D) time-of-flight (TOF) MR angiography is the most commonly used noninvasive method for evaluating the intracranial vasculature. The sensitivity of this technique to signal loss from flow saturation limits its utility. A recently developed multislab 3D TOF technique, MOTSA, is less affected by flow saturation and would therefore be expected to yield improved vessel visualization. To study this hypothesis, intracranial MR angiograms were obtained on 10 volunteers using three techniques: MOTSA, single volume 3D TOF using a standard 4.9 ms TE (3D TOFA), and single volume 3D TOF using a 6.8 ms TE (3D TOFB). All three sets of axial source images and maximum intensity projection (MIP) images were reviewed. Each exam was evaluated for the number of intracranial vessels visualized. A total of 502 vessel segments were studied with each technique. With use of the MIP images, 86% of selected vessels were visualized with MOTSA, 64% with 3D TOFA (TE = 4.9 ms), and 67% with TOFB (TE = 6.8 ms). Similarly, with the axial source images, 91% of selected vessels were visualized with MOTSA, 77% with 3D TOFA (TE = 4.9 ms), and 82% with 3D TOFB (TE = 6.8 ms). There is improved visualization of selected intracranial vessels in normal volunteers with MOTSA as compared with single volume 3D TOF. These improvements are believed to be primarily a result of decreased sensitivity to flow saturation seen with the MOTSA technique. No difference in overall vessel visualization was noted for the two single volume 3D TOF techniques.
Fukuyama, Atsushi; Isoda, Haruo; Morita, Kento; Mori, Marika; Watanabe, Tomoya; Ishiguro, Kenta; Komori, Yoshiaki; Kosugi, Takafumi
2017-01-01
Introduction: We aim to elucidate the effect of spatial resolution of three-dimensional cine phase contrast magnetic resonance (3D cine PC MR) imaging on the accuracy of the blood flow analysis, and examine the optimal setting for spatial resolution using flow phantoms. Materials and Methods: The flow phantom has five types of acrylic pipes that represent human blood vessels (inner diameters: 15, 12, 9, 6, and 3 mm). The pipes were fixed with 1% agarose containing 0.025 mol/L gadolinium contrast agent. A blood-mimicking fluid with human blood property values was circulated through the pipes at a steady flow. Magnetic resonance (MR) images (three-directional phase images with speed information and magnitude images for information of shape) were acquired using the 3-Tesla MR system and receiving coil. Temporal changes in spatially-averaged velocity and maximum velocity were calculated using hemodynamic analysis software. We calculated the error rates of the flow velocities based on the volume flow rates measured with a flowmeter and examined measurement accuracy. Results: When the acrylic pipe was the size of the thoracicoabdominal or cervical artery and the ratio of pixel size for the pipe was set at 30% or lower, spatially-averaged velocity measurements were highly accurate. When the pixel size ratio was set at 10% or lower, maximum velocity could be measured with high accuracy. It was difficult to accurately measure maximum velocity of the 3-mm pipe, which was the size of an intracranial major artery, but the error for spatially-averaged velocity was 20% or less. Conclusions: Flow velocity measurement accuracy of 3D cine PC MR imaging for pipes with inner sizes equivalent to vessels in the cervical and thoracicoabdominal arteries is good. The flow velocity accuracy for the pipe with a 3-mm-diameter that is equivalent to major intracranial arteries is poor for maximum velocity, but it is relatively good for spatially-averaged velocity. PMID:28132996
NASA Astrophysics Data System (ADS)
Kim, Jinyong; Luo, Gang; Wang, Chao-Yang
2017-10-01
3D fine-mesh flow-fields recently developed by Toyota Mirai improved water management and mass transport in proton exchange membrane (PEM) fuel cell stacks, suggesting their potential value for robust and high-power PEM fuel cell stack performance. In such complex flow-fields, Forchheimer's inertial effect is dominant at high current density. In this work, a two-phase flow model of 3D complex flow-fields of PEMFCs is developed by accounting for Forchheimer's inertial effect, for the first time, to elucidate the underlying mechanism of liquid water behavior and mass transport inside 3D complex flow-fields and their adjacent gas diffusion layers (GDL). It is found that Forchheimer's inertial effect enhances liquid water removal from flow-fields and adds additional flow resistance around baffles, which improves interfacial liquid water and mass transport. As a result, substantial improvements in high current density cell performance and operational stability are expected in PEMFCs with 3D complex flow-fields, compared to PEMFCs with conventional flow-fields. Higher current density operation required to further reduce PEMFC stack cost per kW in the future will necessitate optimizing complex flow-field designs using the present model, in order to efficiently remove a large amount of product water and hence minimize the mass transport voltage loss.
Three-dimensional Printing of Silver Microarchitectures Using Newtonian Nanoparticle Inks.
Lee, Sanghyeon; Kim, Jung Hyun; Wajahat, Muhammad; Jeong, Hwakyung; Chang, Won Suk; Cho, Sung Ho; Kim, Ji Tae; Seol, Seung Kwon
2017-06-07
Although three-dimensional (3D) printing has recently emerged as a technology to potentially bring about the next industrial revolution, the limited selection of usable materials restricts its use to simple prototyping. In particular, metallic 3D printing with submicrometer spatial resolution is essential for the realization of 3D-printed electronics. Herein, a meniscus-guided 3D printing method that exploits a low-viscosity (∼7 mPa·s) silver nanoparticle (AgNP) ink meniscus with Newtonian fluid characteristics (which is compatible with conventional inkjet printers) to fabricate 3D silver microarchitectures is reported. Poly(acrylic acid)-capped AgNP ink that exhibits a continuous ink flow through a confined nozzle without aggregation is designed in this study. Guiding the ink meniscus with controlled direction and speed enables both vertical pulling and layer-by-layer processing, resulting in the creation of 3D microobjects with designed shapes other than those for simple wiring. Various highly conductive (>10 4 S·cm -1 ) 3D metallic patterns are demonstrated for applications in electronic devices. This research is expected to widen the range of materials that can be employed in 3D printing technology, with the aim of moving 3D printing beyond prototyping and into real manufacturing platforms for future electronics.
Aerodynamics of a finite wing with simulated ice
NASA Technical Reports Server (NTRS)
Bragg, M. B.; Khodadoust, A.; Kerho, M.
1992-01-01
The effect of a simulated glaze ice accretion on the aerodynamic performance of a three-dimensional wing is studied experimentally. Results are reviewed from earlier two-dimensional tests which show the character of the large leading-edge separation bubbles caused by the simulated ice accretion. The 2-D bubbles are found to closely resemble well known airfoil laminar separation bubbles. For the 3-D experiments a semispan wing of effective aspect ratio five was mounted from the sidewall of the UIUC subsonic wind tunnel. The model uses a NACA 0012 airfoil section on a rectangular planform with interchangeable tip and root sections to allow for 0- and 30-degree sweep. A three-component sidewall balance was used to measure lift, drag and pitching moment on the clean and iced model. Fluorescent oil flow visualization has been performed on the iced model and reveals extensive spanwise and vortical flow in the separation bubble aft of the upper surface horn. Sidewall interaction and spanwise nonuniformity are also seen on the unswept model. Comparisons to the computed flow fields are shown. Results are also shown for roughness effects on the straight wing. Sand grain roughness on the ice shape is seen to have a different effect than isolated 3-D roughness elements.
Factors influencing perceived angular velocity.
Kaiser, M K; Calderone, J B
1991-11-01
The assumption that humans are able to perceive and process angular kinematics is critical to many structure-from-motion and optical flow models. The current studies investigate this sensitivity, and examine several factors likely to influence angular velocity perception. In particular, three factors are considered: (1) the extent to which perceived angular velocity is determined by edge transitions of surface elements, (2) the extent to which angular velocity estimates are influenced by instantaneous linear velocities of surface elements, and (3) whether element-velocity effects are related to three-dimensional (3-D) tangential velocities or to two-dimensional (2-D) image velocities. Edge-transition rate biased angular velocity estimates only when edges were highly salient. Element velocities influenced perceived angular velocity; this bias was related to 2-D image velocity rather than 3-D tangential velocity. Despite these biases, however, judgments were most strongly determined by the true angular velocity. Sensitivity to this higher order motion parameter was surprisingly good, for rotations both in depth (y-axis) and parallel to the line of sight (z-axis).
Modeling and Reconstruction of Micro-structured 3D Chitosan/Gelatin Porous Scaffolds Using Micro-CT
NASA Astrophysics Data System (ADS)
Gong, Haibo; Li, Dichen; He, Jiankang; Liu, Yaxiong; Lian, Qin; Zhao, Jinna
2008-09-01
Three dimensional (3D) channel networks are the key to promise the uniform distribution of nutrients inside 3D hepatic tissue engineering scaffolds and prompt elimination of metabolic products out of the scaffolds. 3D chitosan/gelatin porous scaffolds with predefined internal channels were fabricated and a combination of light microscope, laser confocal microscopy and micro-CT were employed to characterize the structure of porous scaffolds. In order to evaluate the flow field distribution inside the micro-structured 3D scaffolds, a computer reconstructing method based on Micro-CT was proposed. According to this evaluating method, a contrast between 3D porous scaffolds with and without predefined internal channels was also performed to assess scaffolds' fluid characters. Results showed that the internal channel of the 3D scaffolds formed the 3D fluid channel network; the uniformity of flow field distribution of the scaffolds fabricated in this paper was better than the simple porous scaffold without micro-fluid channels.
Experimental Investigation of Spatially-Periodic Scalar Patterns in an Inline Mixer
NASA Astrophysics Data System (ADS)
Baskan, Ozge; Speetjens, Michel F. M.; Clercx, Herman J. H.
2015-11-01
Spatially persisting patterns with exponentially decaying intensities form during the downstream evolution of passive scalars in three-dimensional (3D) spatially periodic flows due to the coupled effect of the chaotic nature of the flow and the diffusivity of the material. This has been investigated in many computational and theoretical studies on 3D spatially-periodic flow fields. However, in the limit of zero-diffusivity, the evolution of the scalar fields results in more detailed structures that can only be captured by experiments due to limitations in the computational tools. Our study employs the-state-of-the-art experimental methods to analyze the evolution of 3D advective scalar field in a representative inline mixer, called Quatro static mixer. The experimental setup consists of an optically accessible test section with transparent internal elements, accommodating a pressure-driven pipe flow and equipped with 3D Laser-Induced Fluorescence. The results reveal that the continuous process of stretching and folding of material creates finer structures as the flow progresses, which is an indicator of chaotic advection and the experiments outperform the simulations by revealing far greater level of detail.
A novel flow-perfusion bioreactor supports 3D dynamic cell culture.
Sailon, Alexander M; Allori, Alexander C; Davidson, Edward H; Reformat, Derek D; Allen, Robert J; Warren, Stephen M
2009-01-01
Bone engineering requires thicker three-dimensional constructs than the maximum thickness supported by standard cell-culture techniques (2 mm). A flow-perfusion bioreactor was developed to provide chemotransportation to thick (6 mm) scaffolds. Polyurethane scaffolds, seeded with murine preosteoblasts, were loaded into a novel bioreactor. Control scaffolds remained in static culture. Samples were harvested at days 2, 4, 6, and 8 and analyzed for cellular distribution, viability, metabolic activity, and density at the periphery and core. By day 8, static scaffolds had a periphery cell density of 67% +/- 5.0%, while in the core it was 0.3% +/- 0.3%. Flow-perfused scaffolds demonstrated peripheral cell density of 94% +/- 8.3% and core density of 76% +/- 3.1% at day 8. Flow perfusion provides chemotransportation to thick scaffolds. This system may permit high throughput study of 3D tissues in vitro and enable prefabrication of biological constructs large enough to solve clinical problems.
NASA Technical Reports Server (NTRS)
Kandula, M.; Haddad, G. F.; Chen, R.-H.
2006-01-01
Three-dimensional Navier-Stokes computational fluid dynamics (CFD) analysis has been performed in an effort to determine thermal boundary layer correction factors for circular convective heat flux gauges (such as Schmidt-Boelter and plug type)mounted flush in a flat plate subjected to a stepwise surface temperature discontinuity. Turbulent flow solutions with temperature-dependent properties are obtained for a free stream Reynolds number of 1E6, and freestream Mach numbers of 2 and 4. The effect of gauge diameter and the plate surface temperature have been investigated. The 3-D CFD results for the heat flux correction factors are compared to quasi-21) results deduced from constant property integral solutions and also 2-D CFD analysis with both constant and variable properties. The role of three-dimensionality and of property variations on the heat flux correction factors has been demonstrated.
Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices.
Alapan, Yunus; Hasan, Muhammad Noman; Shen, Richang; Gurkan, Umut A
2015-05-01
Microfluidic platforms offer revolutionary and practical solutions to challenging problems in biology and medicine. Even though traditional micro/nanofabrication technologies expedited the emergence of the microfluidics field, recent advances in advanced additive manufacturing hold significant potential for single-step, stand-alone microfluidic device fabrication. One such technology, which holds a significant promise for next generation microsystem fabrication is three-dimensional (3D) printing. Presently, building 3D printed stand-alone microfluidic devices with fully embedded microchannels for applications in biology and medicine has the following challenges: (i) limitations in achievable design complexity, (ii) need for a wider variety of transparent materials, (iii) limited z-resolution, (iv) absence of extremely smooth surface finish, and (v) limitations in precision fabrication of hollow and void sections with extremely high surface area to volume ratio. We developed a new way to fabricate stand-alone microfluidic devices with integrated manifolds and embedded microchannels by utilizing a 3D printing and laser micromachined lamination based hybrid manufacturing approach. In this new fabrication method, we exploit the minimized fabrication steps enabled by 3D printing, and reduced assembly complexities facilitated by laser micromachined lamination method. The new hybrid fabrication method enables key features for advanced microfluidic system architecture: (i) increased design complexity in 3D, (ii) improved control over microflow behavior in all three directions and in multiple layers, (iii) transverse multilayer flow and precisely integrated flow distribution, and (iv) enhanced transparency for high resolution imaging and analysis. Hybrid manufacturing approaches hold great potential in advancing microfluidic device fabrication in terms of standardization, fast production, and user-independent manufacturing.
Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices
Shen, Richang; Gurkan, Umut A.
2016-01-01
Microfluidic platforms offer revolutionary and practical solutions to challenging problems in biology and medicine. Even though traditional micro/nanofabrication technologies expedited the emergence of the microfluidics field, recent advances in advanced additive manufacturing hold significant potential for single-step, stand-alone microfluidic device fabrication. One such technology, which holds a significant promise for next generation microsystem fabrication is three-dimensional (3D) printing. Presently, building 3D printed stand-alone microfluidic devices with fully embedded microchannels for applications in biology and medicine has the following challenges: (i) limitations in achievable design complexity, (ii) need for a wider variety of transparent materials, (iii) limited z-resolution, (iv) absence of extremely smooth surface finish, and (v) limitations in precision fabrication of hollow and void sections with extremely high surface area to volume ratio. We developed a new way to fabricate stand-alone microfluidic devices with integrated manifolds and embedded microchannels by utilizing a 3D printing and laser micromachined lamination based hybrid manufacturing approach. In this new fabrication method, we exploit the minimized fabrication steps enabled by 3D printing, and reduced assembly complexities facilitated by laser micromachined lamination method. The new hybrid fabrication method enables key features for advanced microfluidic system architecture: (i) increased design complexity in 3D, (ii) improved control over microflow behavior in all three directions and in multiple layers, (iii) transverse multilayer flow and precisely integrated flow distribution, and (iv) enhanced transparency for high resolution imaging and analysis. Hybrid manufacturing approaches hold great potential in advancing microfluidic device fabrication in terms of standardization, fast production, and user-independent manufacturing. PMID:27512530
NASA Astrophysics Data System (ADS)
Zhang, Yulong; Liu, Zaobao; Shi, Chong; Shao, Jianfu
2018-04-01
This study is devoted to three-dimensional modeling of small falling rocks in block impact analysis in energy view using the particle flow method. The restitution coefficient of rockfall collision is introduced from the energy consumption mechanism to describe rockfall-impacting properties. Three-dimensional reconstruction of falling block is conducted with the help of spherical harmonic functions that have satisfactory mathematical properties such as orthogonality and rotation invariance. Numerical modeling of the block impact to the bedrock is analyzed with both the sphere-simplified model and the 3D reconstructed model. Comparisons of the obtained results suggest that the 3D reconstructed model is advantageous in considering the combination effects of rockfall velocity and rotations during colliding process. Verification of the modeling is carried out with the results obtained from other experiments. In addition, the effects of rockfall morphology, surface characteristics, velocity, and volume, colliding damping and relative angle are investigated. A three-dimensional reconstruction modulus of falling blocks is to be developed and incorporated into the rockfall simulation tools in order to extend the modeling results at block scale to slope scale.
Space shuttle main engine numerical modeling code modifications and analysis
NASA Technical Reports Server (NTRS)
Ziebarth, John P.
1988-01-01
The user of computational fluid dynamics (CFD) codes must be concerned with the accuracy and efficiency of the codes if they are to be used for timely design and analysis of complicated three-dimensional fluid flow configurations. A brief discussion of how accuracy and efficiency effect the CFD solution process is given. A more detailed discussion of how efficiency can be enhanced by using a few Cray Research Inc. utilities to address vectorization is presented and these utilities are applied to a three-dimensional Navier-Stokes CFD code (INS3D).
NASA Astrophysics Data System (ADS)
Zhang, X. X.; Cheng, Y. G.; Xia, L. S.; Yang, J. D.
2014-03-01
The runaway process in a model pumped-storage system was simulated for analyzing the dynamic characteristics of a pump-turbine. The simulation was adopted by coupling 1D (One Dimensional) pipeline MOC (Method of Characteristics) equations with a 3D (Three Dimensional) pump-turbine CFD (Computational Fluid Dynamics) model, in which the water hammer wave in the 3D zone was defined by giving a pressure dependent density. We found from the results that the dynamic performances of the pump-turbine do not coincide with the static operating points, especially in the S-shaped characteristics region, where the dynamic trajectories follow ring-shaped curves. Specifically, the transient operating points with the same Q11 and M11 in different moving directions of the dynamic trajectories give different n11. The main reason of this phenomenon is that the transient flow patterns inside the pump-turbine are influenced by the ones in the previous time step, which leads to different flow patterns between the points with the same Q11 and M11 in different moving directions of the dynamic trajectories.
Computational Fluid Dynamics Modeling of the John Day Dam Tailrace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakowski, Cynthia L.; Perkins, William A.; Richmond, Marshall C.
US Army Corps of Engineers - Portland District required that a two-dimensional (2D) depth-averaged and a three-dimensional (3D) free-surface numerical models to be developed and validated for the John Day tailrace. These models were used to assess potential impact of a select group of structural and operational alternatives to tailrace flows aimed at improving fish survival at John Day Dam. The 2D model was used for the initial assessment of the alternatives in conjunction with a reduced-scale physical model of the John Day Project. A finer resolution 3D model was used to more accurately model the details of flow inmore » the stilling basin and near-project tailrace hydraulics. Three-dimensional model results were used as input to the Pacific Northwest National Laboratory particle tracking software, and particle paths and times to pass a downstream cross section were used to assess the relative differences in travel times resulting from project operations and structural scenarios for multiple total river flows. Streamlines and neutrally-buoyant particles were seeded in all turbine and spill bays with flows. For a Total River of 250 kcfs running with the Fish Passage Plan spill pattern and a spillwall, the mean residence times for all particles were little changed; however the tails of the distribution were truncated for both spillway and powerhouse release points, and, for the powerhouse releases, reduced the residence time for 75% of the particles to pass a downstream cross section from 45.5 minutes to 41.3 minutes. For a total river of 125 kcfs configured with the operations from the Fish Passage Plan for the temporary spillway weirs and for a proposed spillwall, the neutrally-buoyant particle tracking data showed that the river with a spillwall in place had the overall mean residence time increase; however, the residence time for 75% of the powerhouse-released particles to pass a downstream cross section was reduced from 102.4 min to 89 minutes.« less
Local invariants in non-ideal flows of neutral fluids and two-fluid plasmas
NASA Astrophysics Data System (ADS)
Zhu, Jian-Zhou
2018-03-01
The main objective is the locally invariant geometric object of any (magneto-)fluid dynamics with forcing and damping (nonideal), while more attention is paid to the untouched dynamical properties of two-fluid fashion. Specifically, local structures, beyond the well-known "frozen-in" to the barotropic flows of the generalized vorticities, of the two-fluid model of plasma flows are presented. More general non-barotropic situations are also considered. A modified Euler equation [T. Tao, "Finite time blowup for Lagrangian modifications of the three-dimensional Euler equation," Ann. PDE 2, 9 (2016)] is also accordingly analyzed and remarked from the angle of view of the two-fluid model, with emphasis on the local structures. The local constraints of high-order differential forms such as helicity, among others, find simple formulation for possible practices in modeling the dynamics. Thus, the Cauchy invariants equation [N. Besse and U. Frisch, "Geometric formulation of the Cauchy invariants for incompressible Euler flow in flat and curved spaces," J. Fluid Mech. 825, 412 (2017)] may be enabled to find applications in non-ideal flows. Some formal examples are offered to demonstrate the calculations, and particularly interestingly the two-dimensional-three-component (2D3C) or the 2D passive scalar problem presents that a locally invariant Θ = 2θζ, with θ and ζ being, respectively, the scalar value of the "vertical velocity" (or the passive scalar) and the "vertical vorticity," may be used as if it were the spatial density of the globally invariant helicity, providing a Lagrangian prescription to control the latter in some situations of studying its physical effects in rapidly rotating flows (ubiquitous in atmosphere of astrophysical objects) with marked 2D3C vortical modes or in purely 2D passive scalars.
NASA Astrophysics Data System (ADS)
Yang, Hui; Li, Zhenhuan; Huang, Minsheng
2014-12-01
Unlike common single crystals, the nickel-based single crystal superalloy shows surprisingly anomalous flow strength (i.e. with the increase of temperature, the yield strength first increases to a peak value and then decreases) and tension-compression (TC) asymmetry. A comprehensive three-dimensional discrete dislocation dynamics (3D-DDD) procedure was developed to model these abnormal mechanical properties. For this purpose, a series of complicated dynamic evolution details of Kear-Wilsdorf (KW) locks, which are closely related to the flow strength anomaly and TC asymmetry, were incorporated into this 3D-DDD framework. Moreover, the activation of the cubic slip system, which is the origin of the decrease in yield strength with increasing temperature at relatively high temperatures, was especially taken into account by introducing a competition criterion between the unlocking of the KW locks and the activation of the cubic slip system. To test our framework, a series of 3D-DDD simulations were performed on a representative volume cell model with a cuboidal Ni3Al precipitate phase embedded in a nickel matrix. Results show that the present 3D-DDD procedure can successfully capture the dynamic evolution of KW locks, the flow strength anomaly and TC asymmetry. Then, the underlying dislocation mechanisms leading to these abnormal mechanical responses were investigated and discussed in detail. Finally, a cyclic deformation of the nickel-based single crystal superalloy was modeled by using the present DDD model, with a special focus on the influence of KW locks on the Bauschinger effect and cyclic softening.
Numerical simulation of jet aerodynamics using the three-dimensional Navier-Stokes code PAB3D
NASA Technical Reports Server (NTRS)
Pao, S. Paul; Abdol-Hamid, Khaled S.
1996-01-01
This report presents a unified method for subsonic and supersonic jet analysis using the three-dimensional Navier-Stokes code PAB3D. The Navier-Stokes code was used to obtain solutions for axisymmetric jets with on-design operating conditions at Mach numbers ranging from 0.6 to 3.0, supersonic jets containing weak shocks and Mach disks, and supersonic jets with nonaxisymmetric nozzle exit geometries. This report discusses computational methods, code implementation, computed results, and comparisons with available experimental data. Very good agreement is shown between the numerical solutions and available experimental data over a wide range of operating conditions. The Navier-Stokes method using the standard Jones-Launder two-equation kappa-epsilon turbulence model can accurately predict jet flow, and such predictions are made without any modification to the published constants for the turbulence model.
NASA Astrophysics Data System (ADS)
Hirano, Soichiro; Kohma, Masashi; Sato, Kaoru
2016-07-01
Stratospheric final warming (SFW) in the Southern Hemisphere is examined in terms of their interannual variability and climatology using reanalysis data from January 1979 to March 2014. First, it is shown from a two-dimensional transformed Eulerian mean (TEM) analysis that a time-integrated vertical component of Eliassen-Palm flux during the spring is significantly related with SFW date. To clarify the role of residual mean flow in the interannual variability of the SFW date, SFWs are categorized into early and late groups according to the SFW date and their differences are examined. Significant difference in potential temperature tendency is observed in the middle and lower stratosphere in early October. Their structure in the meridional cross section accords well with that of vertical potential temperature advection by the residual mean flow. Difference in heating rate by shortwave radiation is minor. These results suggest that the adiabatic heating associated with the residual mean flow largely affects polar stratospheric temperature during austral spring and SFW date. The analysis is extended to investigate the longitudinal structure by using a three-dimensional (3-D) TEM theory. The significant difference in potential temperature tendency is mainly observed around the Weddell Sea at 10 hPa. Next, climatological 3-D structure of a vertical component of the residual mean flow in association with SFW is examined in terms of the effect on the troposphere. The results suggest that a downward residual mean flow from the stratosphere penetrates into underlying troposphere over East Antarctica and partly influences tropospheric temperature there.
1980-03-01
distributions could be obtained. The pressure tappings were sampled using two computer controlled 48 port Model 48J4 Scanivalves equipped with Druck ...the boundary layer becomes turbulent, the upstream in- fluence drops to between 2 and 3D . 3.2 Pressure Distributions Off the Plane of Symmetry 3.2.1...upstream influence varies between 0.3 cm (0.12") and 7.6 cm (3.0"), a ratio of about 25, yet in terms of D , Iu lies between 2 and 3D . The figure shows
Computation of Coupled Thermal-Fluid Problems in Distributed Memory Environment
NASA Technical Reports Server (NTRS)
Wei, H.; Shang, H. M.; Chen, Y. S.
2001-01-01
The thermal-fluid coupling problems are very important to aerospace and engineering applications. Instead of analyzing heat transfer and fluid flow separately, this study merged two well-accepted engineering solution methods, SINDA for thermal analysis and FDNS for fluid flow simulation, into a unified multi-disciplinary thermal fluid prediction method. A fully conservative patched grid interface algorithm for arbitrary two-dimensional and three-dimensional geometry has been developed. The state-of-the-art parallel computing concept was used to couple SINDA and FDNS for the communication of boundary conditions through PVM (Parallel Virtual Machine) libraries. Therefore, the thermal analysis performed by SINDA and the fluid flow calculated by FDNS are fully coupled to obtain steady state or transient solutions. The natural convection between two thick-walled eccentric tubes was calculated and the predicted results match the experiment data perfectly. A 3-D rocket engine model and a real 3-D SSME geometry were used to test the current model, and the reasonable temperature field was obtained.
Laleian, Artin; Valocchi, Albert J.; Werth, Charles J.
2015-11-24
Two-dimensional (2D) pore-scale models have successfully simulated microfluidic experiments of aqueous-phase flow with mixing-controlled reactions in devices with small aperture. A standard 2D model is not generally appropriate when the presence of mineral precipitate or biomass creates complex and irregular three-dimensional (3D) pore geometries. We modify the 2D lattice Boltzmann method (LBM) to incorporate viscous drag from the top and bottom microfluidic device (micromodel) surfaces, typically excluded in a 2D model. Viscous drag from these surfaces can be approximated by uniformly scaling a steady-state 2D velocity field at low Reynolds number. We demonstrate increased accuracy by approximating the viscous dragmore » with an analytically-derived body force which assumes a local parabolic velocity profile across the micromodel depth. Accuracy of the generated 2D velocity field and simulation permeability have not been evaluated in geometries with variable aperture. We obtain permeabilities within approximately 10% error and accurate streamlines from the proposed 2D method relative to results obtained from 3D simulations. Additionally, the proposed method requires a CPU run time approximately 40 times less than a standard 3D method, representing a significant computational benefit for permeability calculations.« less
Ma, Hui-li; Jiang, Qiao; Han, Siyuan; Wu, Yan; Cui Tomshine, Jin; Wang, Dongliang; Gan, Yaling; Zou, Guozhang; Liang, Xing-Jie
2012-01-01
We present a flexible and highly reproducible method using three-dimensional (3D) multicellular tumor spheroids to quantify chemotherapeutic and nanoparticle penetration properties in vitro. We generated HeLa cell-derived spheroids using the liquid overlay method. To properly characterize HeLa spheroids, scanning electron microscopy, transmission electron microscopy, and multiphoton microscopy were used to obtain high-resolution 3D images of HeLa spheroids. Next, pairing high-resolution optical characterization techniques with flow cytometry, we quantitatively compared the penetration of doxorubicin, quantum dots, and synthetic micelles into 3D HeLa spheroid versus HeLa cells grown in a traditional two-dimensional culturing system. Our data revealed that 3D cultured HeLa cells acquired several clinically relevant morphologic and cellular characteristics (such as resistance to chemotherapeutics) often found in human solid tumors. These characteristic, however, could not be captured using conventional two-dimensional cell culture techniques. This study demonstrated the remarkable versatility of HeLa spheroid 3D imaging. In addition, our results revealed the capability of HeLa spheroids to function as a screening tool for nanoparticles or synthetic micelles that, due to their inherent size, charge, and hydrophobicity, can penetrate into solid tumors and act as delivery vehicles for chemotherapeutics. The development of this image-based, reproducible, and quantifiable in vitro HeLa spheroid screening tool will greatly aid future exploration of chemotherapeutics and nanoparticle delivery into solid tumors.
Fracture network created by 3D printer and its validation using CT images
NASA Astrophysics Data System (ADS)
Suzuki, A.; Watanabe, N.; Li, K.; Horne, R. N.
2017-12-01
Understanding flow mechanisms in fractured media is essential for geoscientific research and geological development industries. This study used 3D printed fracture networks in order to control the properties of fracture distributions inside the sample. The accuracy and appropriateness of creating samples by the 3D printer was investigated by using a X-ray CT scanner. The CT scan images suggest that the 3D printer is able to reproduce complex three-dimensional spatial distributions of fracture networks. Use of hexane after printing was found to be an effective way to remove wax for the post-treatment. Local permeability was obtained by the cubic law and used to calculate the global mean. The experimental value of the permeability was between the arithmetic and geometric means of the numerical results, which is consistent with conventional studies. This methodology based on 3D printed fracture networks can help validate existing flow modeling and numerical methods.
NASA Astrophysics Data System (ADS)
Buchmann, N. A.; Cierpka, C.; Kähler, C. J.; Soria, J.
2014-11-01
The paper demonstrates ultra-high-speed three-component, three-dimensional (3C3D) velocity measurements of micron-sized particles suspended in a supersonic impinging jet flow. Understanding the dynamics of individual particles in such flows is important for the design of particle impactors for drug delivery or cold gas dynamic spray processing. The underexpanded jet flow is produced via a converging nozzle, and micron-sized particles ( d p = 110 μm) are introduced into the gas flow. The supersonic jet impinges onto a flat surface, and the particle impact velocity and particle impact angle are studied for a range of flow conditions and impingement distances. The imaging system consists of an ultra-high-speed digital camera (Shimadzu HPV-1) capable of recording rates of up to 1 Mfps. Astigmatism particle tracking velocimetry (APTV) is used to measure the 3D particle position (Cierpka et al., Meas Sci Technol 21(045401):13, 2010) by coding the particle depth location in the 2D images by adding a cylindrical lens to the high-speed imaging system. Based on the reconstructed 3D particle positions, the particle trajectories are obtained via a higher-order tracking scheme that takes advantage of the high temporal resolution to increase robustness and accuracy of the measurement. It is shown that the particle velocity and impingement angle are affected by the gas flow in a manner depending on the nozzle pressure ratio and stand-off distance where higher pressure ratios and stand-off distances lead to higher impact velocities and larger impact angles.
Object Recognition in Flight: How Do Bees Distinguish between 3D Shapes?
Werner, Annette; Stürzl, Wolfgang; Zanker, Johannes
2016-01-01
Honeybees (Apis mellifera) discriminate multiple object features such as colour, pattern and 2D shape, but it remains unknown whether and how bees recover three-dimensional shape. Here we show that bees can recognize objects by their three-dimensional form, whereby they employ an active strategy to uncover the depth profiles. We trained individual, free flying honeybees to collect sugar water from small three-dimensional objects made of styrofoam (sphere, cylinder, cuboids) or folded paper (convex, concave, planar) and found that bees can easily discriminate between these stimuli. We also tested possible strategies employed by the bees to uncover the depth profiles. For the card stimuli, we excluded overall shape and pictorial features (shading, texture gradients) as cues for discrimination. Lacking sufficient stereo vision, bees are known to use speed gradients in optic flow to detect edges; could the bees apply this strategy also to recover the fine details of a surface depth profile? Analysing the bees’ flight tracks in front of the stimuli revealed specific combinations of flight maneuvers (lateral translations in combination with yaw rotations), which are particularly suitable to extract depth cues from motion parallax. We modelled the generated optic flow and found characteristic patterns of angular displacement corresponding to the depth profiles of our stimuli: optic flow patterns from pure translations successfully recovered depth relations from the magnitude of angular displacements, additional rotation provided robust depth information based on the direction of the displacements; thus, the bees flight maneuvers may reflect an optimized visuo-motor strategy to extract depth structure from motion signals. The robustness and simplicity of this strategy offers an efficient solution for 3D-object-recognition without stereo vision, and could be employed by other flying insects, or mobile robots. PMID:26886006
Object Recognition in Flight: How Do Bees Distinguish between 3D Shapes?
Werner, Annette; Stürzl, Wolfgang; Zanker, Johannes
2016-01-01
Honeybees (Apis mellifera) discriminate multiple object features such as colour, pattern and 2D shape, but it remains unknown whether and how bees recover three-dimensional shape. Here we show that bees can recognize objects by their three-dimensional form, whereby they employ an active strategy to uncover the depth profiles. We trained individual, free flying honeybees to collect sugar water from small three-dimensional objects made of styrofoam (sphere, cylinder, cuboids) or folded paper (convex, concave, planar) and found that bees can easily discriminate between these stimuli. We also tested possible strategies employed by the bees to uncover the depth profiles. For the card stimuli, we excluded overall shape and pictorial features (shading, texture gradients) as cues for discrimination. Lacking sufficient stereo vision, bees are known to use speed gradients in optic flow to detect edges; could the bees apply this strategy also to recover the fine details of a surface depth profile? Analysing the bees' flight tracks in front of the stimuli revealed specific combinations of flight maneuvers (lateral translations in combination with yaw rotations), which are particularly suitable to extract depth cues from motion parallax. We modelled the generated optic flow and found characteristic patterns of angular displacement corresponding to the depth profiles of our stimuli: optic flow patterns from pure translations successfully recovered depth relations from the magnitude of angular displacements, additional rotation provided robust depth information based on the direction of the displacements; thus, the bees flight maneuvers may reflect an optimized visuo-motor strategy to extract depth structure from motion signals. The robustness and simplicity of this strategy offers an efficient solution for 3D-object-recognition without stereo vision, and could be employed by other flying insects, or mobile robots.
Three dimensional Lagrangian structures in the Antarctic Polar Vortex.
NASA Astrophysics Data System (ADS)
Mancho, Ana M.; Garcia-Garrido, Victor J.; Curbelo, Jezabel; Niang, Coumba; Mechoso, Carlos R.; Wiggins, Stephen
2017-04-01
Dynamical systems theory has supported the description of transport processes in fluid dynamics. For understanding trajectory patterns in chaotic advection the geometrical approach by Poincaré seeks for spatial structures that separate regions corresponding to qualitatively different types of trajectories. These structures have been referred to as Lagrangian Coherent Structures (LCS), which typically in geophysical flows are well described under the approach of incompressible 2D flows. Different tools have been used to visualize LCS. In this presentation we use Lagrangian Descriptors [1,2,3,4] (function M) for visualizing 3D Lagrangian structures in the atmosphere, in particular in the Antarctic Polar Vortex. The function M is computed in a fully 3D incompressible flow obtained from data provided by the European Centre for Medium-Range Weather Forecast and it is represented in 2D surfaces. We discuss the findings during the final warming that took place in the spring of 1979 [5]. This research is supported by MINECO grant MTM2014-56392-R. Support is acknowledged also from CSIC grant COOPB20265, U.S. NSF grant AGS-1245069 and ONR grant No. N00014- 01-1-0769. C. Niang acknowledges Fundacion Mujeres por Africa and ICMAT Severo Ochoa project SEV-2011-0087 for financial support. [1] C. Mendoza, A. M. Mancho. The hidden geometry of ocean flows. Physical Review Letters 105 (2010), 3, 038501-1-038501-4. [2] A. M. Mancho, S. Wiggins, J. Curbelo, C. Mendoza. Lagrangian Descriptors: A Method for Revealing Phase Space Structures of General Time Dependent Dynamical Systems. Communications in Nonlinear Science and Numerical Simulation. 18 (2013) 3530-3557. [3] C. Lopesino, F. Balibrea-Iniesta, S. Wiggins and A. M. Mancho. Lagrangian descriptors for two dimensional, area preserving autonomous and nonautonomous maps. Communications in Nonlinear Science and Numerical Simulations, 27 (2015) (1-3), 40-51. [4] C. Lopesino, F. Balibrea-Iniesta, V. J. García-Garrido, S. Wiggins, and A. M. Mancho, A. M. A theoretical framework for lagrangian descriptors. International Journal of Bifurcation and Chaos (2017) to appear. [5] The three-dimensional Lagrangian geometry of the Antarctic Polar Vortex circulation. Preprint.
The Three Dimensional Flow Field at the Exit of an Axial-Flow Turbine Rotor
NASA Technical Reports Server (NTRS)
Lakshminarayana, B.; Ristic, D.; Chu, S.
1998-01-01
A systematic and comprehensive investigation was performed to provide detailed data on the three dimensional viscous flow phenomena downstream of a modem turbine rotor and to understand the flow physics such as origin, nature, development of wakes, secondary flow, and leakage flow. The experiment was carried out in the Axial Flow Turbine Research Facility (AFTRF) at Penn State, with velocity measurements taken with a 3-D LDV System. Two radial traverses at 1% and 10% of chord downstream of the rotor have been performed to identify the three-dimensional flow features at the exit of the rotor blade row. Sufficient spatial resolution was maintained to resolve blade wake, secondary flow, and tip leakage flow. The wake deficit is found to be substantial, especially at 1% of chord downstream of the rotor. At this location, negative axial velocity occurs near the tip, suggesting flow separation in the tip clearance region. Turbulence intensities peak in the wake region, and cross- correlations are mainly associated with the velocity gradient of the wake deficit. The radial velocities, both in the wake and in the endwall region, are found to be substantial. Two counter-rotating secondary flows are identified in the blade passage, with one occupying the half span close to the casino and the other occupying the half span close to the hub. The tip leakage flow is well restricted to 10% immersion from the blade tip. There are strong vorticity distributions associated with these secondary flows and tip leakage flow. The passage averaged data are in good agreement with design values.
Three-dimensional supersonic flow around double compression ramp with finite span
NASA Astrophysics Data System (ADS)
Lee, H. S.; Lee, J. H.; Park, G.; Park, S. H.; Byun, Y. H.
2017-01-01
Three-dimensional flows of Mach number 3 around a double-compression ramp with finite span have been investigated numerically. Shadowgraph visualisation images obtained in a supersonic wind tunnel are used for comparison. A three-dimensional Reynolds-averaged Navier-Stokes solver was used to obtain steady numerical solutions. Two-dimensional numerical results are also compared. Four different cases were studied: two different second ramp angles of 30° and 45° in configurations with and without sidewalls, respectively. Results showed that there is a leakage of mass and momentum fluxes heading outwards in the spanwise direction for three-dimensional cases without sidewalls. The leakage changed the flow characteristics of the shock-induced boundary layer and resulted in the discrepancy between the experimental data and two-dimensional numerical results. It is found that suppressing the flow leakage by attaching the sidewalls enhances the two-dimensionality of the experimental data for the double-compression ramp flow.
The 3D Navier-Stokes analysis of a Mach 2.68 bifurcated rectangular mixed-compression inlet
NASA Technical Reports Server (NTRS)
Mizukami, M.; Saunders, J. D.
1995-01-01
The supersonic diffuser of a Mach 2.68 bifurcated, rectangular, mixed-compression inlet was analyzed using a three-dimensional (3D) Navier-Stokes flow solver. A two-equation turbulence model, and a porous bleed model based on unchoked bleed hole discharge coefficients were used. Comparisons were made with experimental data, inviscid theory, and two-dimensional Navier-Stokes analyses. The main objective was to gain insight into the inlet fluid dynamics. Examination of the computational results along with the experimental data suggest that the cowl shock-sidewall boundary layer interaction near the leading edge caused a substantial separation in the wind tunnel inlet model. As a result, the inlet performance may have been compromised by increased spillage and higher bleed mass flow requirements. The internal flow contained substantial waves that were not in the original inviscid design. 3D effects were fairly minor for this inlet at on-design conditions. Navier-Stokes analysis appears to be an useful tool for gaining insight into the inlet fluid dynamics. It provides a higher fidelity simulation of the flowfield than the original inviscid design, by taking into account boundary layers, porous bleed, and their interactions with shock waves.
NASA Technical Reports Server (NTRS)
Weed, Richard Allen; Sankar, L. N.
1994-01-01
An increasing amount of research activity in computational fluid dynamics has been devoted to the development of efficient algorithms for parallel computing systems. The increasing performance to price ratio of engineering workstations has led to research to development procedures for implementing a parallel computing system composed of distributed workstations. This thesis proposal outlines an ongoing research program to develop efficient strategies for performing three-dimensional flow analysis on distributed computing systems. The PVM parallel programming interface was used to modify an existing three-dimensional flow solver, the TEAM code developed by Lockheed for the Air Force, to function as a parallel flow solver on clusters of workstations. Steady flow solutions were generated for three different wing and body geometries to validate the code and evaluate code performance. The proposed research will extend the parallel code development to determine the most efficient strategies for unsteady flow simulations.
The application of CFD to the modelling of fires in complex geometries
NASA Astrophysics Data System (ADS)
Burns, A. D.; Clarke, D. S.; Guilbert, P.; Jones, I. P.; Simcox, S.; Wilkes, N. S.
The application of Computational Fluid Dynamics (CFD) to industrial safety is a challenging activity. In particular it involves the interaction of several different physical processes, including turbulence, combustion, radiation, buoyancy, compressible flow and shock waves in complex three-dimensional geometries. In addition, there may be multi-phase effects arising, for example, from sprinkler systems for extinguishing fires. The FLOW3D software (1-3) from Computational Fluid Dynamics Services (CFDS) is in widespread use in industrial safety problems, both within AEA Technology, and also by CFDS's commercial customers, for example references (4-13). This paper discusses some other applications of FLOW3D to safety problems. These applications illustrate the coupling of the gas flows with radiation models and combustion models, particularly for complex geometries where simpler radiation models are not applicable.
Optofluidic fabrication for 3D-shaped particles
NASA Astrophysics Data System (ADS)
Paulsen, Kevin S.; di Carlo, Dino; Chung, Aram J.
2015-04-01
Complex three-dimensional (3D)-shaped particles could play unique roles in biotechnology, structural mechanics and self-assembly. Current methods of fabricating 3D-shaped particles such as 3D printing, injection moulding or photolithography are limited because of low-resolution, low-throughput or complicated/expensive procedures. Here, we present a novel method called optofluidic fabrication for the generation of complex 3D-shaped polymer particles based on two coupled processes: inertial flow shaping and ultraviolet (UV) light polymerization. Pillars within fluidic platforms are used to deterministically deform photosensitive precursor fluid streams. The channels are then illuminated with patterned UV light to polymerize the photosensitive fluid, creating particles with multi-scale 3D geometries. The fundamental advantages of optofluidic fabrication include high-resolution, multi-scalability, dynamic tunability, simple operation and great potential for bulk fabrication with full automation. Through different combinations of pillar configurations, flow rates and UV light patterns, an infinite set of 3D-shaped particles is available, and a variety are demonstrated.
A Numerical Simulator for Three-Dimensional Flows Through Vibrating Blade Rows
NASA Technical Reports Server (NTRS)
Chuang, H. Andrew; Verdon, Joseph M.
1998-01-01
The three-dimensional, multi-stage, unsteady, turbomachinery analysis, TURBO, has been extended to predict the aeroelastic and aeroacoustic response behaviors of a single blade row operating within a cylindrical annular duct. In particular, a blade vibration capability has been incorporated so that the TURBO analysis can be applied over a solution domain that deforms with a vibratory blade motion. Also, unsteady far-field conditions have been implemented to render the computational boundaries at inlet and exit transparent to outgoing unsteady disturbances. The modified TURBO analysis is applied herein to predict unsteady subsonic and transonic flows. The intent is to partially validate this nonlinear analysis for blade flutter applications, via numerical results for benchmark unsteady flows, and to demonstrate the analysis for a realistic fan rotor. For these purposes, we have considered unsteady subsonic flows through a 3D version of the 10th Standard Cascade, and unsteady transonic flows through the first stage rotor of the NASA Lewis, Rotor 67, two-stage fan.
NASA Astrophysics Data System (ADS)
Ur Rehman, Fiaz; Nadeem, Sohail; Ur Rehman, Hafeez; Ul Haq, Rizwan
2018-03-01
In the present paper a theoretical investigation is performed to analyze heat and mass transport enhancement of water-based nanofluid for three dimensional (3D) MHD stagnation-point flow caused by an exponentially stretched surface. Water is considered as a base fluid. There are three (3) types of nanoparticles considered in this study namely, CuO (Copper oxide), Fe3O4 (Magnetite), and Al2O3 (Alumina) are considered along with water. In this problem we invoked the boundary layer phenomena and suitable similarity transformation, as a result our three dimensional non-linear equations of describing current problem are transmuted into nonlinear and non-homogeneous differential equations involving ordinary derivatives. We solved the final equations by applying homotopy analysis technique. Influential outcomes of aggressing parameters involved in this study, effecting profiles of temperature field and velocity are explained in detail. Graphical results of involved parameters appearing in considered nanofluid are presented separately. It is worth mentioning that Skin-friction along x and y-direction is maximum for Copper oxide-water nanofluid and minimum for Alumina-water nanofluid. Result for local Nusselt number is maximum for Copper oxide-water nanofluid and is minimum for magnetite-water nanofluid.
Assessment of inlet efficiency through a 3D simulation: numerical and experimental comparison.
Gómez, Manuel; Recasens, Joan; Russo, Beniamino; Martínez-Gomariz, Eduardo
2016-10-01
Inlet efficiency is a requirement for characterizing the flow transfers between surface and sewer flow during rain events. The dual drainage approach is based on the joint analysis of both upper and lower drainage levels, and the flow transfer is one of the relevant elements to define properly this joint behaviour. This paper presents the results of an experimental and numerical investigation about the inlet efficiency definition. A full scale (1:1) test platform located in the Technical University of Catalonia (UPC) reproduces both the runoff process in streets and the water entering the inlet. Data from tests performed on this platform allow the inlet efficiency to be estimated as a function of significant hydraulic and geometrical parameters. A reproduction of these tests through a numerical three-dimensional code (Flow-3D) has been carried out simulating this type of flow by solving the RANS equations. The aim of the work was to reproduce the hydraulic performance of a previously tested grated inlet under several flow and geometric conditions using Flow-3D as a virtual laboratory. This will allow inlet efficiencies to be obtained without previous experimental tests. Moreover, the 3D model allows a better understanding of the hydraulics of the flow interception and the flow patterns approaching the inlet.
NASA Technical Reports Server (NTRS)
Iyer, Venkit
1990-01-01
A solution method, fourth-order accurate in the body-normal direction and second-order accurate in the stream surface directions, to solve the compressible 3-D boundary layer equations is presented. The transformation used, the discretization details, and the solution procedure are described. Ten validation cases of varying complexity are presented and results of calculation given. The results range from subsonic flow to supersonic flow and involve 2-D or 3-D geometries. Applications to laminar flow past wing and fuselage-type bodies are discussed. An interface procedure is used to solve the surface Euler equations with the inviscid flow pressure field as the input to assure accurate boundary conditions at the boundary layer edge. Complete details of the computer program used and information necessary to run each of the test cases are given in the Appendix.
CFD Code Calibration and Inlet-Fairing Effects On a 3D Hypersonic Powered-Simulation Model
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Tatum, Kenneth E.
1993-01-01
A three-dimensional (3D) computational study has been performed addressing issues related to the wind tunnel testing of a hypersonic powered-simulation model. The study consisted of three objectives. The first objective was to calibrate a state-of-the-art computational fluid dynamics (CFD) code in its ability to predict hypersonic powered-simulation flows by comparing CFD solutions with experimental surface pressure data. Aftbody lower surface pressures were well predicted, but lower surface wing pressures were less accurately predicted. The second objective was to determine the 3D effects on the aftbody created by fairing over the inlet; this was accomplished by comparing the CFD solutions of two closed-inlet powered configurations with a flowing- inlet powered configuration. Although results at four freestream Mach numbers indicate that the exhaust plume tends to isolate the aftbody surface from most forebody flow- field differences, a smooth inlet fairing provides the least aftbody force and moment variation compared to a flowing inlet. The final objective was to predict and understand the 3D characteristics of exhaust plume development at selected points on a representative flight path. Results showed a dramatic effect of plume expansion onto the wings as the freestream Mach number and corresponding nozzle pressure ratio are increased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bena, Iosif; Bobev, Nikolay; Warner, Nicholas P.
We discuss 'spectral-flow' coordinate transformations that take asymptotically four-dimensional solutions into other asymptotically four-dimensional solutions. We find that spectral flow can relate smooth three-charge solutions with a multicenter Taub-NUT base to solutions where one or several Taub-NUT centers are replaced by two-charge supertubes, and vice versa. We further show that multiparameter spectral flows can map such Taub-NUT centers to more singular centers that are either D2-D0 or pure D0-brane sources. Since supertubes can depend on arbitrary functions, we establish that the moduli space of smooth horizonless black-hole microstate solutions is classically of infinite dimension. We also use the physics ofmore » supertubes to argue that some multicenter solutions that appear to be bound states from a four-dimensional perspective are in fact not bound states when considered from a five- or six-dimensional perspective.« less
Dyvorne, Hadrien; Knight-Greenfield, Ashley; Jajamovich, Guido; Besa, Cecilia; Cui, Yong; Stalder, Aurélien; Markl, Michael; Taouli, Bachir
2015-04-01
To develop a highly accelerated phase-contrast cardiac-gated volume flow measurement (four-dimensional [4D] flow) magnetic resonance (MR) imaging technique based on spiral sampling and dynamic compressed sensing and to compare this technique with established phase-contrast imaging techniques for the quantification of blood flow in abdominal vessels. This single-center prospective study was compliant with HIPAA and approved by the institutional review board. Ten subjects (nine men, one woman; mean age, 51 years; age range, 30-70 years) were enrolled. Seven patients had liver disease. Written informed consent was obtained from all participants. Two 4D flow acquisitions were performed in each subject, one with use of Cartesian sampling with respiratory tracking and the other with use of spiral sampling and a breath hold. Cartesian two-dimensional (2D) cine phase-contrast images were also acquired in the portal vein. Two observers independently assessed vessel conspicuity on phase-contrast three-dimensional angiograms. Quantitative flow parameters were measured by two independent observers in major abdominal vessels. Intertechnique concordance was quantified by using Bland-Altman and logistic regression analyses. There was moderate to substantial agreement in vessel conspicuity between 4D flow acquisitions in arteries and veins (κ = 0.71 and 0.61, respectively, for observer 1; κ = 0.71 and 0.44 for observer 2), whereas more artifacts were observed with spiral 4D flow (κ = 0.30 and 0.20). Quantitative measurements in abdominal vessels showed good equivalence between spiral and Cartesian 4D flow techniques (lower bound of the 95% confidence interval: 63%, 77%, 60%, and 64% for flow, area, average velocity, and peak velocity, respectively). For portal venous flow, spiral 4D flow was in better agreement with 2D cine phase-contrast flow (95% limits of agreement: -8.8 and 9.3 mL/sec, respectively) than was Cartesian 4D flow (95% limits of agreement: -10.6 and 14.6 mL/sec). The combination of highly efficient spiral sampling with dynamic compressed sensing results in major acceleration for 4D flow MR imaging, which allows comprehensive assessment of abdominal vessel hemodynamics in a single breath hold.
Zeng, S; Zhou, J; Peng, Q; Tian, L; Xu, G; Zhao, Y; Wang, T; Zhou, Q
2015-06-01
To use three-dimensional (3D) power Doppler ultrasound to investigate cerebral blood flow perfusion in fetuses with congenital heart disease (CHD). The vascularization index (VI), flow index (FI) and vascularization flow index (VFI) in the total intracranial volume and the main arterial territories (middle cerebral artery (MCA), anterior cerebral artery (ACA) and posterior cerebral artery (PCA)) were evaluated prospectively and compared in 112 fetuses with CHD and 112 normal fetuses using 3D power Doppler. Correlations between the 3D power Doppler indices and neurodevelopment scores at 12 months of age were assessed in a subset of the CHD group, and values were compared with those of controls. Compared with the controls, the VI, FI and VFI of the total intracranial volume and the three main arteries were significantly higher in fetuses with hypoplastic left heart syndrome and left-sided obstructive lesions (P < 0.001), and the 3D power Doppler values in the ACA territory were significantly higher in fetuses with transposition of the great arteries (P < 0.01). The largest proportional increase in the blood flow perfusion indices in the fetuses with CHD relative to controls was observed in the ACA territory (P < 0.05). Among 41 cases with CHD that underwent testing, the mean Psychomotor Development Index (PDI) and Mental Development Index (MDI) scores were significantly lower than in 94 of the controls that were tested (P < 0.001). Among these CHD cases, total intracranial FI was positively correlated with PDI (r = 0.342, P = 0.029) and MDI (r = 0.339, P = 0.030), and ACA-VI and ACA-VFI were positively correlated with PDI (r = 0.377 and 0.389, P = 0.015 and 0.012, respectively) but were not correlated with MDI (r = 0.243 and 0.203, P = 0.126 and 0.204, respectively). Cerebral blood flow perfusion was increased relative to controls in most fetuses with CHD and was associated with neurodevelopment scores at 12 months. Prenatal 3D power Doppler ultrasound might help to identify cases of brain vasodilatation earlier and inform parental counseling. Copyright © 2015 ISUOG. Published by John Wiley & Sons Ltd.
Reconfiguration of broad leaves into cones
NASA Astrophysics Data System (ADS)
Miller, Laura
2013-11-01
Flexible plants, fungi, and sessile animals are thought to reconfigure in the wind and water to reduce the drag forces that act upon them. Simple mathematical models of a flexible beam immersed in a two-dimensional flow will also exhibit this behavior. What is less understood is how the mechanical properties of a leaf in a three-dimensional flow will passively allow roll up and reduce drag. This presentation will begin by examining how leaves roll up into drag reducing shapes in strong flow. The dynamics of the flow around the leaf of the wild ginger Hexastylis arifolia are described using particle image velocimetry. The flows around the leaves are compared with those of simplified sheets using 3D numerical simulations and physical models. For some reconfiguration shapes, large forces and oscillations due to strong vortex shedding are produced. In the actual leaf, a stable recirculation zone is formed within the wake of the reconfigured cone. In physical and numerical models that reconfigure into cones, a similar recirculation zone is observed with both rigid and flexible tethers. These results suggest that the three-dimensional cone structure in addition to flexibility is significant to both the reduction of vortex-induced vibrations and the forces experienced by the leaf.
NASA Astrophysics Data System (ADS)
Labbé, D. F. L.; Wilson, P. A.
2007-11-01
The numerical prediction of vortex-induced vibrations has been the focus of numerous investigations to date using tools such as computational fluid dynamics. In particular, the flow around a circular cylinder has raised much attention as it is present in critical engineering problems such as marine cables or risers. Limitations due to the computational cost imposed by the solution of a large number of equations have resulted in the study of mostly 2-D flows with only a few exceptions. The discrepancies found between experimental data and 2-D numerical simulations suggested that 3-D instabilities occurred in the wake of the cylinder that affect substantially the characteristics of the flow. The few 3-D numerical solutions available in the literature confirmed such a hypothesis. In the present investigation the effect of the spanwise extension of the solution domain on the 3-D wake of a circular cylinder is investigated for various Reynolds numbers between 40 and 1000. By assessing the minimum spanwise extension required to predict accurately the flow around a circular cylinder, the infinitely long cylinder is reduced to a finite length cylinder, thus making numerical solution an effective way of investigating flows around circular cylinders. Results are presented for three different spanwise extensions, namely πD/2, πD and 2πD. The analysis of the force coefficients obtained for the various Reynolds numbers together with a visualization of the three-dimensionalities in the wake of the cylinder allowed for a comparison between the effects of the three spanwise extensions. Furthermore, by showing the different modes of vortex shedding present in the wake and by analysing the streamwise components of the vorticity, it was possible to estimate the spanwise wavelengths at the various Reynolds numbers and to demonstrate that a finite spanwise extension is sufficient to accurately predict the flow past an infinitely long circular cylinder.
NASA Technical Reports Server (NTRS)
Holland, Scott Douglas
1991-01-01
A combined computational and experimental parametric study of the internal aerodynamics of a generic three dimensional sidewall compression scramjet inlet configuration was performed. The study was designed to demonstrate the utility of computational fluid dynamics as a design tool in hypersonic inlet flow fields, to provide a detailed account of the nature and structure of the internal flow interactions, and to provide a comprehensive surface property and flow field database to determine the effects of contraction ratio, cowl position, and Reynolds number on the performance of a hypersonic scramjet inlet configuration.
NASA Astrophysics Data System (ADS)
Deeb, R.; Kulasegaram, S.; Karihaloo, B. L.
2014-12-01
In part I of this two-part paper, a three-dimensional Lagrangian smooth particle hydrodynamics method has been used to model the flow of self-compacting concrete (SCC) with or without short steel fibres in the slump cone test. The constitutive behaviour of this non-Newtonian viscous fluid is described by a Bingham-type model. The 3D simulation of SCC without fibres is focused on the distribution of large aggregates (larger than or equal to 8 mm) during the flow. The simulation of self-compacting high- and ultra-high- performance concrete containing short steel fibres is focused on the distribution of fibres and their orientation during the flow. The simulation results show that the fibres and/or heavier aggregates do not precipitate but remain homogeneously distributed in the mix throughout the flow.
NASA Technical Reports Server (NTRS)
Kreskovsky, J. P.; Briley, W. R.; Mcdonald, H.
1982-01-01
A finite difference method is developed for making detailed predictions of three dimensional subsonic turbulent flow in turbofan lobe mixers. The governing equations are solved by a forward-marching solution procedure which corrects an inviscid potential flow solution for viscous and thermal effects, secondary flows, total pressure distortion and losses, internal flow blockage and pressure drop. Test calculations for a turbulent coaxial jet flow verify that the turbulence model performs satisfactorily for this relatively simple flow. Lobe mixer flows are presented for two geometries typical of current mixer design. These calculations included both hot and cold flow conditions, and both matched and mismatched Mach number and total pressure in the fan and turbine streams.
Computing Flows Using Chimera and Unstructured Grids
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Zheng, Yao
2006-01-01
DRAGONFLOW is a computer program that solves the Navier-Stokes equations of flows in complexly shaped three-dimensional regions discretized by use of a direct replacement of arbitrary grid overlapping by nonstructured (DRAGON) grid. A DRAGON grid (see figure) is a combination of a chimera grid (a composite of structured subgrids) and a collection of unstructured subgrids. DRAGONFLOW incorporates modified versions of two prior Navier-Stokes-equation-solving programs: OVERFLOW, which is designed to solve on chimera grids; and USM3D, which is used to solve on unstructured grids. A master module controls the invocation of individual modules in the libraries. At each time step of a simulated flow, DRAGONFLOW is invoked on the chimera portion of the DRAGON grid in alternation with USM3D, which is invoked on the unstructured subgrids of the DRAGON grid. The USM3D and OVERFLOW modules then immediately exchange their solutions and other data. As a result, USM3D and OVERFLOW are coupled seamlessly.
An experimental study of multiple jet mixing
NASA Technical Reports Server (NTRS)
Krothapalli, D.; Baganoff, D.; Karamcheti, K.
1979-01-01
Measurements of an incompressible jet issuing from an array of rectangular lobes, equally spaced with their small dimensions in a line, both as a free jet, and as a confined jet, are carried out in three parts: (1) on a single rectangular free jet, (2) on the same jet in a multiple free jet configuration, and (3) on the same jet in a multiple jet configuration with confining surfaces (two parallel plates are symmetrically placed perpendicular to the long dimension of each lobe covering the entire flow field under consideration). In the case of a single rectangular free jet, the flow field of the jet is characterized by the presence of three distinct regions in the axial mean velocity decay and are referred to as: potential core region, two dimensional type region, and axisymmetric type region. In the case of a multiple free jet, the flow field for downstream distance X greater than 60D (D = width of a lobe) resembles that of a jet exiting from a two dimensional nozzle with its short dimension being the long dimension of the lobe.
Toward Verification of USM3D Extensions for Mixed Element Grids
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Frink, Neal T.; Ding, Ejiang; Parlette, Edward B.
2013-01-01
The unstructured tetrahedral grid cell-centered finite volume flow solver USM3D has been recently extended to handle mixed element grids composed of hexahedral, prismatic, pyramidal, and tetrahedral cells. Presently, two turbulence models, namely, baseline Spalart-Allmaras (SA) and Menter Shear Stress Transport (SST), support mixed element grids. This paper provides an overview of the various numerical discretization options available in the newly enhanced USM3D. Using the SA model, the flow solver extensions are verified on three two-dimensional test cases available on the Turbulence Modeling Resource website at the NASA Langley Research Center. The test cases are zero pressure gradient flat plate, planar shear, and bump-inchannel. The effect of cell topologies on the flow solution is also investigated using the planar shear case. Finally, the assessment of various cell and face gradient options is performed on the zero pressure gradient flat plate case.
Ishida, Go; Oishi, Makoto; Jinguji, Shinya; Yoneoka, Yuichiro; Sato, Mitsuya; Fujii, Yukihiko
2011-10-01
To evaluate the anatomy of cranial nerves running in and around the cavernous sinus, we employed three-dimensional reversed fast imaging with steady-state precession (FISP) with diffusion weighted imaging (3D PSIF-DWI) on 3-T magnetic resonance (MR) system. After determining the proper parameters to obtain sufficient resolution of 3D PSIF-DWI, we collected imaging data of 20-side cavernous regions in 10 normal subjects. 3D PSIF-DWI provided high contrast between the cranial nerves and other soft tissues, fluid, and blood in all subjects. We also created volume-rendered images of 3D PSIF-DWI and anatomically evaluated the reliability of visualizing optic, oculomotor, trochlear, trigeminal, and abducens nerves on 3D PSIF-DWI. All 20 sets of cranial nerves were visualized and 12 trochlear nerves and 6 abducens nerves were partially identified. We also presented preliminary clinical experiences in two cases with pituitary adenomas. The anatomical relationship between the tumor and cranial nerves running in and around the cavernous sinus could be three-dimensionally comprehended by 3D PSIF-DWI and the volume-rendered images. In conclusion, 3D PSIF-DWI has great potential to provide high resolution "cranial nerve imaging", which visualizes the whole length of the cranial nerves including the parts in the blood flow as in the cavernous sinus region.
The three-dimensional structure of swirl-switching in bent pipe flow
Hufnagel, Lorenz; Canton, Jacopo; Örlü, Ramis; ...
2017-11-27
Swirl-switching is a low-frequency oscillatory phenomenon which affects the Dean vortices in bent pipes and may cause fatigue in piping systems. Despite thirty years worth of research, the mechanism that causes these oscillations and the frequencies that characterise them remain unclear. In this paper, we show that a three-dimensional wave-like structure is responsible for the low-frequency switching of the dominant Dean vortex. The present study, performed via direct numerical simulation, focuses on the turbulent flow through amore » $$90^{\\circ }$$pipe bend preceded and followed by straight pipe segments. A pipe with curvature 0.3 (defined as ratio between pipe radius and bend radius) is studied for a bulk Reynolds number $$Re=11\\,700$$, corresponding to a friction Reynolds number $$Re_{\\unicode[STIX]{x1D70F}}\\approx 360$$. Synthetic turbulence is generated at the inflow section and used instead of the classical recycling method in order to avoid the interference between recycling and swirl-switching frequencies. The flow field is analysed by three-dimensional proper orthogonal decomposition (POD) which for the first time allows the identification of the source of swirl-switching: a wave-like structure that originates in the pipe bend. Contrary to some previous studies, the flow in the upstream pipe does not show any direct influence on the swirl-switching modes. Finally, our analysis further shows that a three-dimensional characterisation of the modes is crucial to understand the mechanism, and that reconstructions based on two-dimensional POD modes are incomplete.« less
The three-dimensional structure of swirl-switching in bent pipe flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hufnagel, Lorenz; Canton, Jacopo; Örlü, Ramis
Swirl-switching is a low-frequency oscillatory phenomenon which affects the Dean vortices in bent pipes and may cause fatigue in piping systems. Despite thirty years worth of research, the mechanism that causes these oscillations and the frequencies that characterise them remain unclear. In this paper, we show that a three-dimensional wave-like structure is responsible for the low-frequency switching of the dominant Dean vortex. The present study, performed via direct numerical simulation, focuses on the turbulent flow through amore » $$90^{\\circ }$$pipe bend preceded and followed by straight pipe segments. A pipe with curvature 0.3 (defined as ratio between pipe radius and bend radius) is studied for a bulk Reynolds number $$Re=11\\,700$$, corresponding to a friction Reynolds number $$Re_{\\unicode[STIX]{x1D70F}}\\approx 360$$. Synthetic turbulence is generated at the inflow section and used instead of the classical recycling method in order to avoid the interference between recycling and swirl-switching frequencies. The flow field is analysed by three-dimensional proper orthogonal decomposition (POD) which for the first time allows the identification of the source of swirl-switching: a wave-like structure that originates in the pipe bend. Contrary to some previous studies, the flow in the upstream pipe does not show any direct influence on the swirl-switching modes. Finally, our analysis further shows that a three-dimensional characterisation of the modes is crucial to understand the mechanism, and that reconstructions based on two-dimensional POD modes are incomplete.« less
A novel in vitro three-dimensional retinoblastoma model for evaluating chemotherapeutic drugs
Mitra, Moutushy; Mohanty, Chandana; Harilal, Anju; Maheswari, Uma K.; Sahoo, Sanjeeb Kumar
2012-01-01
Purpose Novel strategies are being applied for creating better in vitro models that simulate in vivo conditions for testing the efficacy of anticancer drugs. In the present study we developed surface-engineered, large and porous, biodegradable, polymeric microparticles as a scaffold for three dimensional (3-D) growth of a Y79 retinoblastoma (RB) cell line. We evaluated the effect of three anticancer drugs in naïve and nanoparticle-loaded forms on a 3-D versus a two-dimensional (2-D) model. We also studied the influence of microparticles on extracellular matrix (ECM) synthesis and whole genome miRNA-gene expression profiling to identify 3D-responsive genes that are implicated in oncogenesis in RB cells. Methods Poly(D,L)-lactide-co-glycolide (PLGA) microparticles were prepared by the solvent evaporation method. RB cell line Y79 was grown alone or with PLGA–gelatin microparticles. Antiproliferative activity, drug diffusion, and cellular uptake were studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a yellow tetrazole (MTT) assay, fluorescent microscope, and flow cytometry. Extra cellular matrix (ECM) synthesis was observed by collagenase assay and whole genome miRNA-microarray profiling by using an Agilent chip. Results With optimized composition of microparticles and cell culture conditions, an eightfold increase from the seeding density was achieved in 5 days of culture. The antiproliferative effect of the drugs in the 3-D model was significantly lower than in the 2-D suspension, which was evident from the 4.5 to 21.8 fold differences in their IC50 values. Using doxorubicin, the flow cytometry data demonstrated a 4.4 fold lower drug accumulation in the cells grown in the 3-D model at 4 h. The collagen content of the cells grown in the 3-D model was 2.3 fold greater than that of the cells grown in the 2-D model, suggesting greater synthesis of the extracellular matrix in the 3-D model as the extracellular matrix acted as a barrier to drug diffusion. The microarray and miRNA analysis showed changes in several genes and miRNA expression in cells grown in the 3-D model, which could also influence the environment and drug effects. Conclusions Our 3-D retinoblastoma model could be used in developing effective drugs based on a better understanding of the role of chemical, biologic, and physical parameters in the process of drug diffusion through the tumor mass, drug retention, and therapeutic outcome. PMID:22690114
CFD Study of NACA 0018 Airfoil with Flow Control
NASA Technical Reports Server (NTRS)
Eggert, Christopher A.; Rumsey, Christopher L.
2017-01-01
The abilities of two different Reynolds-Averaged Navier-Stokes codes to predict the effects of an active flow control device are evaluated. The flow control device consists of a blowing slot located on the upper surface of an NACA 0018 airfoil, near the leading edge. A second blowing slot present on the airfoil near mid-chord is not evaluated here. Experimental results from a wind tunnel test show that a slot blowing with high momentum coefficient will increase the lift of the airfoil (compared to no blowing) and delay flow separation. A slot with low momentum coefficient will decrease the lift and induce separation even at low angles of attack. Two codes, CFL3D and FUN3D, are used in two-dimensional computations along with several different turbulence models. Two of these produced reasonable results for this flow, when run fully turbulent. A more advanced transition model failed to predict reasonable results, but warrants further study using different inputs. Including inviscid upper and lower tunnel walls in the simulations was found to be important in obtaining pressure distributions and lift coefficients that best matched experimental data. A limited number of three-dimensional computations were also performed.
Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model
NASA Astrophysics Data System (ADS)
Markowich, Peter A.; Titi, Edriss S.; Trabelsi, Saber
2016-04-01
In this paper we introduce and analyze an algorithm for continuous data assimilation for a three-dimensional Brinkman-Forchheimer-extended Darcy (3D BFeD) model of porous media. This model is believed to be accurate when the flow velocity is too large for Darcy’s law to be valid, and additionally the porosity is not too small. The algorithm is inspired by ideas developed for designing finite-parameters feedback control for dissipative systems. It aims to obtain improved estimates of the state of the physical system by incorporating deterministic or noisy measurements and observations. Specifically, the algorithm involves a feedback control that nudges the large scales of the approximate solution toward those of the reference solution associated with the spatial measurements. In the first part of the paper, we present a few results of existence and uniqueness of weak and strong solutions of the 3D BFeD system. The second part is devoted to the convergence analysis of the data assimilation algorithm.
Study of Three Dimensional Transonic Flow Separations.
1988-04-01
22222222222222222222222222222222222222 CD22 2 NN 22 0 2 2 C 22 .2 2 .2 .2 .2 .’ 22 . . . cD( C) DC)C DC D CC 222 2 22 2 2- C 2 22 22 22 - 22 02 N NT NL z...In1.0 INco (N -.- L’ c3 107 :-I--cnr -! - - N N 1 f;CC-7 cD c, 222 c222 cN -) H22 o cc -- -4 0,2222222" (D2 C22 22 D2 220 CD22 CD 2 CD CD N22 22D2
Song, Seung-Joon; Choi, Jaesoon; Park, Yong-Doo; Lee, Jung-Joo; Hong, So Young; Sun, Kyung
2010-11-01
Bioprinting is an emerging technology for constructing tissue or bioartificial organs with complex three-dimensional (3D) structures. It provides high-precision spatial shape forming ability on a larger scale than conventional tissue engineering methods, and simultaneous multiple components composition ability. Bioprinting utilizes a computer-controlled 3D printer mechanism for 3D biological structure construction. To implement minimal pattern width in a hydrogel-based bioprinting system, a study on printing characteristics was performed by varying printer control parameters. The experimental results showed that printing pattern width depends on associated printer control parameters such as printing flow rate, nozzle diameter, and nozzle velocity. The system under development showed acceptable feasibility of potential use for accurate printing pattern implementation in tissue engineering applications and is another example of novel techniques for regenerative medicine based on computer-aided biofabrication system. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Su, Jen-Min; Huang, Yu-Fang; Chen, Helen H W; Cheng, Ya-Min; Chou, Cheng-Yang
2006-05-01
To date, this is the first report to monitor changes of intratumor vascularization and the response to radiation and Cyberknife therapy in a patient with recurrent primary papillary serous carcinoma of the peritoneum by three dimensional (3D) power Doppler ultrasonography (PDUS). Transvaginal 3D PDUS detected a recurrent presacral tumor with abundant intratumor vascularity. Serial examinations of the tumor volume and serum CA-125 level were studied before, during, and 6 mo after therapy. Meanwhile, the intratumor blood flow was measured and expressed as vascularity indices. All of the tumor volume, intratumor vascularity indices and serum CA-125 level decreased progressively following therapy. A remaining lesion with nearly absent intratumor power Doppler signals suggested a scarring lesion posttreatment. Indeed, CT-guided tissue biopsy confirmed fibrotic change. 3D PDUS is useful to monitor the response to treatments and to differentiate residual tumors from lesions of scarring change posttreatment. It provides more accurate posttreatment information than pelvic computed tomography.
Stability of hypersonic boundary-layer flows with chemistry
NASA Technical Reports Server (NTRS)
Reed, Helen L.; Stuckert, Gregory K.; Haynes, Timothy S.
1993-01-01
The effects of nonequilibrium chemistry and three dimensionality on the stability characteristics of hypersonic flows are discussed. In two-dimensional (2-D) and axisymmetric flows, the inclusion of chemistry causes a shift of the second mode of Mack to lower frequencies. This is found to be due to the increase in size of the region of relative supersonic flow because of the lower speeds of sound in the relatively cooler boundary layers. Although this shift in frequency is present in both the equilibrium and nonequilibrium air results, the equilibrium approximation predicts modes which are not observed in the nonequilibrium calculations (for the flight conditions considered). These modes are superpositions of incoming and outgoing unstable disturbances which travel supersonically relative to the boundary-layer edge velocity. Such solutions are possible because of the finite shock stand-off distance. Their corresponding wall-normal profiles exhibit an oscillatory behavior in the inviscid region between the boundary-layer edge and the bow shock. For the examination of three-dimensional (3-D) effects, a rotating cone is used as a model of a swept wing. An increase of stagnation temperature is found to be only slightly stabilizing. The correlation of transition location (N = 9) with parameters describing the crossflow profile is discussed. Transition location does not correlate with the traditional crossflow Reynolds number. A new parameter that appears to correlate for boundary-layer flow was found. A verification with experiments on a yawed cone is provided.
NASA Technical Reports Server (NTRS)
Jones, M. G.; Watson, W. R.; Nark, D. M.; Schiller, N. H.
2017-01-01
Three perforate-over-honeycomb liner configurations, one uniform and two with spanwise variable impedance, are evaluated based on tests conducted in the NASA Grazing Flow Impedance Tube (GFIT) with a plane-wave source. Although the GFIT is only 2" wide, spanwise impedance variability clearly affects the measured acoustic pressure field, such that three-dimensional (3D) propagation codes are required to properly predict this acoustic pressure field. Three 3D propagation codes (CHE3D, COMSOL, and CDL) are used to predict the sound pressure level and phase at eighty-seven microphones flush-mounted in the GFIT (distributed along all four walls). The CHE3D and COMSOL codes compare favorably with the measured data, regardless of whether an exit acoustic pressure or anechoic boundary condition is employed. Except for those frequencies where the attenuation is large, the CDL code also provides acceptable estimates of the measured acoustic pressure profile. The CHE3D and COMSOL predictions diverge slightly from the measured data for frequencies away from resonance, where the attenuation is noticeably reduced, particularly when an exit acoustic pressure boundary condition is used. For these conditions, the CDL code actually provides slightly more favorable comparison with the measured data. Overall, the comparisons of predicted and measured data suggest that any of these codes can be used to understand data trends associated with spanwise variable-impedance liners.
NASA Technical Reports Server (NTRS)
Cho, Soo-Yong; Greber, Isaac
1994-01-01
Numerical investigations on a diffusing S-duct with/without vortex generators and a straight duct with vortex generators are presented. The investigation consists of solving the full three-dimensional unsteady compressible mass averaged Navier-Stokes equations. An implicit finite volume lower-upper time marching code (RPLUS3D) has been employed and modified. A three-dimensional Baldwin-Lomax turbulence model has been modified in conjunction with the flow physics. A model for the analysis of vortex generators in a fully viscous subsonic internal flow is evaluated. A vortical structure for modeling the shed vortex is used as a source term in the computation domain. The injected vortex paths in the straight duct are compared with the analysis by two kinds of prediction models. The flow structure by the vortex generators are investigated along the duct. Computed results of the flow in a circular diffusing S-duct provide an understanding of the flow structure within a typical engine inlet system. These are compared with the experimental wall static-pressure, static- and total-pressure field, and secondary velocity profiles. Additionally, boundary layer thickness, skin friction values, and velocity profiles in wall coordinates are presented. In order to investigate the effect of vortex generators, various vortex strengths are examined in this study. The total-pressure recovery and distortion coefficients are obtained at the exit of the S-duct. The numerical results clearly depict the interaction between the low velocity flow by the flow separation and the injected vortices.
Gim, Yeonghyeon; Ko, Han Seo
2016-04-15
In this Letter, a three-dimensional (3D) optical correction method, which was verified by simulation, was developed to reconstruct droplet-based flow fields. In the simulation, a synthetic phantom was reconstructed using a simultaneous multiplicative algebraic reconstruction technique with three detectors positioned at the synthetic object (represented by the phantom), with offset angles of 30° relative to each other. Additionally, a projection matrix was developed using the ray tracing method. If the phantom is in liquid, the image of the phantom can be distorted since the light passes through a convex liquid-vapor interface. Because of the optical distortion effect, the projection matrix used to reconstruct a 3D field should be supplemented by the revision ray, instead of the original projection ray. The revision ray can be obtained from the refraction ray occurring on the surface of the liquid. As a result, the error on the reconstruction field of the phantom could be reduced using the developed optical correction method. In addition, the developed optical method was applied to a Taylor cone which was caused by the high voltage between the droplet and the substrate.
Thermal convection in three-dimensional fractured porous media
NASA Astrophysics Data System (ADS)
Mezon, C.; Mourzenko, V. V.; Thovert, J.-F.; Antoine, R.; Fontaine, F.; Finizola, A.; Adler, P. M.
2018-01-01
Thermal convection is numerically computed in three-dimensional (3D) fluid saturated isotropically fractured porous media. Fractures are randomly inserted as two-dimensional (2D) convex polygons. Flow is governed by Darcy's 2D and 3D laws in the fractures and in the porous medium, respectively; exchanges take place between these two structures. Results for unfractured porous media are in agreement with known theoretical predictions. The influence of parameters such as the fracture aperture (or fracture transmissivity) and the fracture density on the heat released by the whole system is studied for Rayleigh numbers up to 150 in cubic boxes with closed-top conditions. Then, fractured media are compared to homogeneous porous media with the same macroscopic properties. Three major results could be derived from this study. The behavior of the system, in terms of heat release, is determined as a function of fracture density and fracture transmissivity. First, the increase in the output flux with fracture density is linear over the range of fracture density tested. Second, the increase in output flux as a function of fracture transmissivity shows the importance of percolation. Third, results show that the effective approach is not always valid, and that the mismatch between the full calculations and the effective medium approach depends on the fracture density in a crucial way.
Development Of A Navier-Stokes Computer Code
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Kwak, Dochan
1993-01-01
Report discusses aspects of development of CENS3D computer code, solving three-dimensional Navier-Stokes equations of compressible, viscous, unsteady flow. Implements implicit finite-difference or finite-volume numerical-integration scheme, called "lower-upper symmetric-Gauss-Seidel" (LU-SGS), offering potential for very low computer time per iteration and for fast convergence.
a Numerical Study of Basic Coastal Upwelling Processes.
NASA Astrophysics Data System (ADS)
Li, Zhihong
Available from UMI in association with The British Library. Two-dimensional (2-D) and three-dimensional (3 -D) numerical models with a second order turbulence closure are developed for the study of coastal upwelling processes. A logarithmic coordinate system is introduced to obtain increased resolution in the regions near the surface and bottom where high velocity shear occurs and in the upwelling zone where its width is confined to the coast. In the experiments performed in the 2-D model an ocean initially at rest is driven by a spatially uniform alongshore wind-stress. There is a development of an offshore flow in the surface layer and an onshore flow below the surface layer. In the wind-stress direction there is a development of a coastal surface jet. The neglect of the alongshore pressure gradient leads to the intensification of the jet, and the concentration of the onshore flow in an over-developed Ekman layer yielding an unrealistic deepening of a bottom mixed layer. When bathymetric variations are introduced, some modifications in the dynamics of upwelling are observed. On the shelf region there is another upwelling zone and isotherms are interested with the bottom topography. When an alongshore pressure gradient is added externally into the model, the strength of the coastal jet decreases and a coastal undercurrent exists at greater depth. In addition the return onshore flow is largely independent of depth and the deepening of the bottom mixed layer disappears. In the experiments performed in the 3-D model a wind-stress with limited domain is used. Coastally trapped waves are generated and propagate along the coastline leading to a development of an alongshore pressure gradient, which has a significant effect on upwelling. The evolution of the alongshore flow, vertical velocity and the temperature is determined by both remote and local wind due to the propagation of waves. As the integration proceeds, the flow pattern becomes remarkably 3-dimensional. Finally the influence of bathymetric variations on upwelling processes is examined.
Three-dimensional fit-to-flow microfluidic assembly.
Chen, Arnold; Pan, Tingrui
2011-12-01
Three-dimensional microfluidics holds great promise for large-scale integration of versatile, digitalized, and multitasking fluidic manipulations for biological and clinical applications. Successful translation of microfluidic toolsets to these purposes faces persistent technical challenges, such as reliable system-level packaging, device assembly and alignment, and world-to-chip interface. In this paper, we extended our previously established fit-to-flow (F2F) world-to-chip interconnection scheme to a complete system-level assembly strategy that addresses the three-dimensional microfluidic integration on demand. The modular F2F assembly consists of an interfacial chip, pluggable alignment modules, and multiple monolithic layers of microfluidic channels, through which convoluted three-dimensional microfluidic networks can be easily assembled and readily sealed with the capability of reconfigurable fluid flow. The monolithic laser-micromachining process simplifies and standardizes the fabrication of single-layer pluggable polymeric modules, which can be mass-produced as the renowned Lego(®) building blocks. In addition, interlocking features are implemented between the plug-and-play microfluidic chips and the complementary alignment modules through the F2F assembly, resulting in facile and secure alignment with average misalignment of 45 μm. Importantly, the 3D multilayer microfluidic assembly has a comparable sealing performance as the conventional single-layer devices, providing an average leakage pressure of 38.47 kPa. The modular reconfigurability of the system-level reversible packaging concept has been demonstrated by re-routing microfluidic flows through interchangeable modular microchannel layers.
Experimental, Theoretical, and Computational Investigation of Separated Nozzle Flows
NASA Technical Reports Server (NTRS)
Hunter, Craig A.
2004-01-01
A detailed experimental, theoretical, and computational study of separated nozzle flows has been conducted. Experimental testing was performed at the NASA Langley 16-Foot Transonic Tunnel Complex. As part of a comprehensive static performance investigation, force, moment, and pressure measurements were made and schlieren flow visualization was obtained for a sub-scale, non-axisymmetric, two-dimensional, convergent- divergent nozzle. In addition, two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and algebraic Reynolds stress modeling. For reference, experimental and computational results were compared with theoretical predictions based on one-dimensional gas dynamics and an approximate integral momentum boundary layer method. Experimental results from this study indicate that off-design overexpanded nozzle flow was dominated by shock induced boundary layer separation, which was divided into two distinct flow regimes; three- dimensional separation with partial reattachment, and fully detached two-dimensional separation. The test nozzle was observed to go through a marked transition in passing from one regime to the other. In all cases, separation provided a significant increase in static thrust efficiency compared to the ideal prediction. Results indicate that with controlled separation, the entire overexpanded range of nozzle performance would be within 10% of the peak thrust efficiency. By offering savings in weight and complexity over a conventional mechanical exhaust system, this may allow a fixed geometry nozzle to cover an entire flight envelope. The computational simulation was in excellent agreement with experimental data over most of the test range, and did a good job of modeling internal flow and thrust performance. An exception occurred at low nozzle pressure ratios, where the two-dimensional computational model was inconsistent with the three-dimensional separation observed in the experiment. In general, the computation captured the physics of the shock boundary layer interaction and shock induced boundary layer separation in the nozzle, though there were some differences in shock structure compared to experiment. Though minor, these differences could be important for studies involving flow control or thrust vectoring of separated nozzles. Combined with other observations, this indicates that more detailed, three-dimensional computational modeling needs to be conducted to more realistically simulate shock-separated nozzle flows.
NASA Astrophysics Data System (ADS)
Quan, Guo-zheng; Zhan, Zong-yang; Wang, Tong; Xia, Yu-feng
2017-01-01
The response of true stress to strain rate, temperature and strain is a complex three-dimensional (3D) issue, and the accurate description of such constitutive relationships significantly contributes to the optimum process design. To obtain the true stress-strain data of ultra-high-strength steel, BR1500HS, a series of isothermal hot tensile tests were conducted in a wide temperature range of 973-1,123 K and a strain rate range of 0.01-10 s-1 on a Gleeble 3800 testing machine. Then the constitutive relationships were modeled by an optimally constructed and well-trained backpropagation artificial neural network (BP-ANN). The evaluation of BP-ANN model revealed that it has admirable performance in characterizing and predicting the flow behaviors of BR1500HS. A comparison on improved Arrhenius-type constitutive equation and BP-ANN model shows that the latter has higher accuracy. Consequently, the developed BP-ANN model was used to predict abundant stress-strain data beyond the limited experimental conditions. Then a 3D continuous interaction space for temperature, strain rate, strain and stress was constructed based on these predicted data. The developed 3D continuous interaction space for hot working parameters contributes to fully revealing the intrinsic relationships of BR1500HS steel.
Development of three-dimensional memory (3D-M)
NASA Astrophysics Data System (ADS)
Yu, Hong-Yu; Shen, Chen; Jiang, Lingli; Dong, Bin; Zhang, Guobiao
2016-10-01
Since the invention of 3-D ROM in 1996, three-dimensional memory (3D-M) has been under development for nearly two decades. In this presentation, we'll review the 3D-M history and compare different 3D-Ms (including 3D-OTP from Matrix Semiconductor, 3D-NAND from Samsung and 3D-XPoint from Intel/Micron).
Quantification of collagen contraction in three-dimensional cell culture.
Kopanska, Katarzyna S; Bussonnier, Matthias; Geraldo, Sara; Simon, Anthony; Vignjevic, Danijela; Betz, Timo
2015-01-01
Many different cell types including fibroblasts, smooth muscle cells, endothelial cells, and cancer cells exert traction forces on the fibrous components of the extracellular matrix. This can be observed as matrix contraction both macro- and microscopically in three-dimensional (3D) tissues models such as collagen type I gels. The quantification of local contraction at the micron scale, including its directionality and speed, in correlation with other parameters such as cell invasion, local protein or gene expression, can provide useful information to study wound healing, organism development, and cancer metastasis. In this article, we present a set of tools to quantify the flow dynamics of collagen contraction, induced by cells migrating out of a multicellular cancer spheroid into a three-dimensional (3D) collagen matrix. We adapted a pseudo-speckle technique that can be applied to bright-field and fluorescent microscopy time series. The image analysis presented here is based on an in-house written software developed in the Matlab (Mathworks) programming environment. The analysis program is freely available from GitHub following the link: http://dx.doi.org/10.5281/zenodo.10116. This tool provides an automatized technique to measure collagen contraction that can be utilized in different 3D cellular systems. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ivan, L.; De Sterck, H.; Susanto, A.; Groth, C. P. T.
2015-02-01
A fourth-order accurate finite-volume scheme for hyperbolic conservation laws on three-dimensional (3D) cubed-sphere grids is described. The approach is based on a central essentially non-oscillatory (CENO) finite-volume method that was recently introduced for two-dimensional compressible flows and is extended to 3D geometries with structured hexahedral grids. Cubed-sphere grids feature hexahedral cells with nonplanar cell surfaces, which are handled with high-order accuracy using trilinear geometry representations in the proposed approach. Varying stencil sizes and slope discontinuities in grid lines occur at the boundaries and corners of the six sectors of the cubed-sphere grid where the grid topology is unstructured, and these difficulties are handled naturally with high-order accuracy by the multidimensional least-squares based 3D CENO reconstruction with overdetermined stencils. A rotation-based mechanism is introduced to automatically select appropriate smaller stencils at degenerate block boundaries, where fewer ghost cells are available and the grid topology changes, requiring stencils to be modified. Combining these building blocks results in a finite-volume discretization for conservation laws on 3D cubed-sphere grids that is uniformly high-order accurate in all three grid directions. While solution-adaptivity is natural in the multi-block setting of our code, high-order accurate adaptive refinement on cubed-sphere grids is not pursued in this paper. The 3D CENO scheme is an accurate and robust solution method for hyperbolic conservation laws on general hexahedral grids that is attractive because it is inherently multidimensional by employing a K-exact overdetermined reconstruction scheme, and it avoids the complexity of considering multiple non-central stencil configurations that characterizes traditional ENO schemes. Extensive numerical tests demonstrate fourth-order convergence for stationary and time-dependent Euler and magnetohydrodynamic flows on cubed-sphere grids, and robustness against spurious oscillations at 3D shocks. Performance tests illustrate efficiency gains that can be potentially achieved using fourth-order schemes as compared to second-order methods for the same error level. Applications on extended cubed-sphere grids incorporating a seventh root block that discretizes the interior of the inner sphere demonstrate the versatility of the spatial discretization method.
Simulation of Fluid Flow and Collection Efficiency for an SEA Multi-element Probe
NASA Technical Reports Server (NTRS)
Rigby, David L.; Struk, Peter M.; Bidwell, Colin
2014-01-01
Numerical simulations of fluid flow and collection efficiency for a Science Engineering Associates (SEA) multi-element probe are presented. Simulation of the flow field was produced using the Glenn-HT Navier-Stokes solver. Three-dimensional unsteady results were produced and then time averaged for the heat transfer and collection efficiency results. Three grid densities were investigated to enable an assessment of grid dependence. Simulations were completed for free stream velocities ranging from 85-135 meters per second, and free stream total pressure of 44.8 and 93.1 kilopascals (6.5 and 13.5 pounds per square inch absolute). In addition, the effect of angle of attack and yaw were investigated by including 5 degree deviations from straight for one of the flow conditions. All but one of the cases simulated a probe in isolation (i.e. in a very large domain without any support strut). One case is included which represents a probe mounted on a support strut within a finite sized wind tunnel. Collection efficiencies were generated, using the LEWICE3D code, for four spherical particle sizes, 100, 50, 20, and 5 micron in diameter. It was observed that a reduction in velocity of about 20% occurred, for all cases, as the flow entered the shroud of the probe. The reduction in velocity within the shroud is not indicative of any error in the probe measurement accuracy. Heat transfer results are presented which agree quite well with a correlation for the circular cross section heated elements. Collection efficiency results indicate a reduction in collection efficiency as particle size is reduced. The reduction with particle size is expected, however, the results tended to be lower than the previous results generated for isolated two-dimensional elements. The deviation from the two-dimensional results is more pronounced for the smaller particles and is likely due to the reduced flow within the protective shroud. As particle size increases differences between the two-dimensional and three dimensional results become negligible. Taken as a group, the total collection efficiency of the elements including the effects of the shroud has been shown to be in the range of 0.93 to 0.99 for particles above 20 microns. The 3D model has improved the estimated collection efficiency for smaller particles where errors in previous estimates were more significant.
The three-dimensional Event-Driven Graphics Environment (3D-EDGE)
NASA Technical Reports Server (NTRS)
Freedman, Jeffrey; Hahn, Roger; Schwartz, David M.
1993-01-01
Stanford Telecom developed the Three-Dimensional Event-Driven Graphics Environment (3D-EDGE) for NASA GSFC's (GSFC) Communications Link Analysis and Simulation System (CLASS). 3D-EDGE consists of a library of object-oriented subroutines which allow engineers with little or no computer graphics experience to programmatically manipulate, render, animate, and access complex three-dimensional objects.
On the statistical mechanics of the 2D stochastic Euler equation
NASA Astrophysics Data System (ADS)
Bouchet, Freddy; Laurie, Jason; Zaboronski, Oleg
2011-12-01
The dynamics of vortices and large scale structures is qualitatively very different in two dimensional flows compared to its three dimensional counterparts, due to the presence of multiple integrals of motion. These are believed to be responsible for a variety of phenomena observed in Euler flow such as the formation of large scale coherent structures, the existence of meta-stable states and random abrupt changes in the topology of the flow. In this paper we study stochastic dynamics of the finite dimensional approximation of the 2D Euler flow based on Lie algebra su(N) which preserves all integrals of motion. In particular, we exploit rich algebraic structure responsible for the existence of Euler's conservation laws to calculate the invariant measures and explore their properties and also study the approach to equilibrium. Unexpectedly, we find deep connections between equilibrium measures of finite dimensional su(N) truncations of the stochastic Euler equations and random matrix models. Our work can be regarded as a preparation for addressing the questions of large scale structures, meta-stability and the dynamics of random transitions between different flow topologies in stochastic 2D Euler flows.
NASA Astrophysics Data System (ADS)
Patra, Bishnubrata; Peng, Chien-Chung; Liao, Wei-Hao; Lee, Chau-Hwang; Tung, Yi-Chung
2016-02-01
Three-dimensional (3D) tumor spheroid possesses great potential as an in vitro model to improve predictive capacity for pre-clinical drug testing. In this paper, we combine advantages of flow cytometry and microfluidics to perform drug testing and analysis on a large number (5000) of uniform sized tumor spheroids. The spheroids are formed, cultured, and treated with drugs inside a microfluidic device. The spheroids can then be harvested from the device without tedious operation. Due to the ample cell numbers, the spheroids can be dissociated into single cells for flow cytometry analysis. Flow cytometry provides statistical information in single cell resolution that makes it feasible to better investigate drug functions on the cells in more in vivo-like 3D formation. In the experiments, human hepatocellular carcinoma cells (HepG2) are exploited to form tumor spheroids within the microfluidic device, and three anti-cancer drugs: Cisplatin, Resveratrol, and Tirapazamine (TPZ), and their combinations are tested on the tumor spheroids with two different sizes. The experimental results suggest the cell culture format (2D monolayer vs. 3D spheroid) and spheroid size play critical roles in drug responses, and also demonstrate the advantages of bridging the two techniques in pharmaceutical drug screening applications.
MODELING THREE-DIMENSIONAL SUBSURFACE FLOW, FATE AND TRANSPORT OF MICROBES AND CHEMICALS (3DFATMIC)
A three-dimensional model simulating the subsurface flow, microbial growth and degradation, microbial-chemical reaction, and transport of microbes and chemicals has been developed. he model is designed to solve the coupled flow and transport equations. asically, the saturated-uns...
SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport
NASA Astrophysics Data System (ADS)
Chauchat, Julien; Cheng, Zhen; Nagel, Tim; Bonamy, Cyrille; Hsu, Tian-Jian
2017-11-01
In this paper, a three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended from twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD (computational fluid dynamics) toolbox OpenFOAM. In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different intergranular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I). For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only), a k - ɛ, and a k - ω model. The numerical implementation is demonstrated on four test cases: sedimentation of suspended particles, laminar bed load, sheet flow, and scour at an apron. These test cases illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems with different combinations of intergranular stress and turbulence models.
Gravitational instantons, self-duality, and geometric flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourliot, F.; Estes, J.; Petropoulos, P. M.
2010-05-15
We discuss four-dimensional 'spatially homogeneous' gravitational instantons. These are self-dual solutions of Euclidean vacuum Einstein equations. They are endowed with a product structure RxM{sub 3} leading to a foliation into three-dimensional subspaces evolving in Euclidean time. For a large class of homogeneous subspaces, the dynamics coincides with a geometric flow on the three-dimensional slice, driven by the Ricci tensor plus an so(3) gauge connection. The flowing metric is related to the vielbein of the subspace, while the gauge field is inherited from the anti-self-dual component of the four-dimensional Levi-Civita connection.
NASA Technical Reports Server (NTRS)
Anderson, B. H.; Reddy, D. R.; Kapoor, K.
1993-01-01
A three-dimensional implicit Full Navier-Stokes (FNS) analysis and a 3D Reduced Navier-Stokes (RNS) initial value space marching solution technique has been applied to a class of separate flow problems within a diffusing S-duct configuration characterized as vortex-liftoff. Both Full Navier-Stokes and Reduced Navier-Stokes solution techniques were able to capture the overall flow physics of vortex lift-off, however more consideration must be given to the development of turbulence models for the prediction of the locations of separation and reattachment. This accounts for some of the discrepancies in the prediction of the relevant inlet distortion descriptors, particularly circumferential distortion. The 3D RNS solution technique adequately described the topological structure of flow separation associated with vortex lift-off.
Three-dimensional investigations of the threading regime in a microfluidic flow-focusing channel
NASA Astrophysics Data System (ADS)
Gowda, Krishne; Brouzet, Christophe; Lefranc, Thibault; Soderberg, L. Daniel; Lundell, Fredrik
2017-11-01
We study the flow dynamics of the threading regime in a microfluidic flow-focusing channel through 3D numerical simulations and experiments. Making strong filaments from cellulose nano-fibrils (CNF) could potentially steer to new high-performance bio-based composites competing with conventional glass fibre composites. CNF filaments can be obtained through hydrodynamic alignment of dispersed CNF by using the concept of flow-focusing. The aligned structure is locked by diffusion of ions resulting in a dispersion-gel transition. Flow-focusing typically refers to a microfluidic channel system where the core fluid is focused by the two sheath fluids, thereby creating an extensional flow at the intersection. In this study, threading regime corresponds to an extensional flow field generated by the water sheath fluid stretching the dispersed CNF core fluid and leading to formation of long threads. The experimental measurements are performed using optical coherence tomography (OCT) and 3D numerical simulations with OpenFOAM. The prime focus is laid on the 3D characteristics of thread formation such as wetting length of core fluid, shape, aspect ratio of the thread and velocity flow-field in the microfluidic channel.
NASA Technical Reports Server (NTRS)
Roache, P. J.
1979-01-01
A summary is given of the attempts made to apply semidirect methods to the calculation of three-dimensional viscous flows over suction holes in laminar flow control surfaces. The attempts were all unsuccessful, due to either (1) lack of resolution capability, (2) lack of computer efficiency, or (3) instability.
NASA Astrophysics Data System (ADS)
Tian, Fang-Bao; Dai, Hu; Luo, Haoxiang; Doyle, James F.; Rousseau, Bernard
2014-02-01
Three-dimensional fluid-structure interaction (FSI) involving large deformations of flexible bodies is common in biological systems, but accurate and efficient numerical approaches for modeling such systems are still scarce. In this work, we report a successful case of combining an existing immersed-boundary flow solver with a nonlinear finite-element solid-mechanics solver specifically for three-dimensional FSI simulations. This method represents a significant enhancement from the similar methods that are previously available. Based on the Cartesian grid, the viscous incompressible flow solver can handle boundaries of large displacements with simple mesh generation. The solid-mechanics solver has separate subroutines for analyzing general three-dimensional bodies and thin-walled structures composed of frames, membranes, and plates. Both geometric nonlinearity associated with large displacements and material nonlinearity associated with large strains are incorporated in the solver. The FSI is achieved through a strong coupling and partitioned approach. We perform several validation cases, and the results may be used to expand the currently limited database of FSI benchmark study. Finally, we demonstrate the versatility of the present method by applying it to the aerodynamics of elastic wings of insects and the flow-induced vocal fold vibration.
Tian, Fang-Bao; Dai, Hu; Luo, Haoxiang; Doyle, James F.; Rousseau, Bernard
2013-01-01
Three-dimensional fluid–structure interaction (FSI) involving large deformations of flexible bodies is common in biological systems, but accurate and efficient numerical approaches for modeling such systems are still scarce. In this work, we report a successful case of combining an existing immersed-boundary flow solver with a nonlinear finite-element solid-mechanics solver specifically for three-dimensional FSI simulations. This method represents a significant enhancement from the similar methods that are previously available. Based on the Cartesian grid, the viscous incompressible flow solver can handle boundaries of large displacements with simple mesh generation. The solid-mechanics solver has separate subroutines for analyzing general three-dimensional bodies and thin-walled structures composed of frames, membranes, and plates. Both geometric nonlinearity associated with large displacements and material nonlinearity associated with large strains are incorporated in the solver. The FSI is achieved through a strong coupling and partitioned approach. We perform several validation cases, and the results may be used to expand the currently limited database of FSI benchmark study. Finally, we demonstrate the versatility of the present method by applying it to the aerodynamics of elastic wings of insects and the flow-induced vocal fold vibration. PMID:24415796
Liu, Jing; Koskas, Louise; Faraji, Farshid; Kao, Evan; Wang, Yan; Haraldsson, Henrik; Kefayati, Sarah; Zhu, Chengcheng; Ahn, Sinyeob; Laub, Gerhard; Saloner, David
2018-04-01
To evaluate an accelerated 4D flow MRI method that provides high temporal resolution in a clinically feasible acquisition time for intracranial velocity imaging. Accelerated 4D flow MRI was developed by using a pseudo-random variable-density Cartesian undersampling strategy (CIRCUS) with the combination of k-t, parallel imaging and compressed sensing image reconstruction techniques (k-t SPARSE-SENSE). Four-dimensional flow data were acquired on five healthy volunteers and eight patients with intracranial aneurysms using CIRCUS (acceleration factor of R = 4, termed CIRCUS4) and GRAPPA (R = 2, termed GRAPPA2) as the reference method. Images with three times higher temporal resolution (R = 12, CIRCUS12) were also reconstructed from the same acquisition as CIRCUS4. Qualitative and quantitative image assessment was performed on the images acquired with different methods, and complex flow patterns in the aneurysms were identified and compared. Four-dimensional flow MRI with CIRCUS was achieved in 5 min and allowed further improved temporal resolution of <30 ms. Volunteer studies showed similar qualitative and quantitative evaluation obtained with the proposed approach compared to the reference (overall image scores: GRAPPA2 3.2 ± 0.6; CIRCUS4 3.1 ± 0.7; CIRCUS12 3.3 ± 0.4; difference of the peak velocities: -3.83 ± 7.72 cm/s between CIRCUS4 and GRAPPA2, -1.72 ± 8.41 cm/s between CIRCUS12 and GRAPPA2). In patients with intracranial aneurysms, the higher temporal resolution improved capturing of the flow features in intracranial aneurysms (pathline visualization scores: GRAPPA2 2.2 ± 0.2; CIRCUS4 2.5 ± 0.5; CIRCUS12 2.7 ± 0.6). The proposed rapid 4D flow MRI with a high temporal resolution is a promising tool for evaluating intracranial aneurysms in a clinically feasible acquisition time.
Visualizing Three-dimensional Slab Geometries with ShowEarthModel
NASA Astrophysics Data System (ADS)
Chang, B.; Jadamec, M. A.; Fischer, K. M.; Kreylos, O.; Yikilmaz, M. B.
2017-12-01
Seismic data that characterize the morphology of modern subducted slabs on Earth suggest that a two-dimensional paradigm is no longer adequate to describe the subduction process. Here we demonstrate the effect of data exploration of three-dimensional (3D) global slab geometries with the open source program ShowEarthModel. ShowEarthModel was designed specifically to support data exploration, by focusing on interactivity and real-time response using the Vrui toolkit. Sixteen movies are presented that explore the 3D complexity of modern subduction zones on Earth. The first movie provides a guided tour through the Earth's major subduction zones, comparing the global slab geometry data sets of Gudmundsson and Sambridge (1998), Syracuse and Abers (2006), and Hayes et al. (2012). Fifteen regional movies explore the individual subduction zones and regions intersecting slabs, using the Hayes et al. (2012) slab geometry models where available and the Engdahl and Villasenor (2002) global earthquake data set. Viewing the subduction zones in this way provides an improved conceptualization of the 3D morphology within a given subduction zone as well as the 3D spatial relations between the intersecting slabs. This approach provides a powerful tool for rendering earth properties and broadening capabilities in both Earth Science research and education by allowing for whole earth visualization. The 3D characterization of global slab geometries is placed in the context of 3D slab-driven mantle flow and observations of shear wave splitting in subduction zones. These visualizations contribute to the paradigm shift from a 2D to 3D subduction framework by facilitating the conceptualization of the modern subduction system on Earth in 3D space.
Low, R; Pothérat, A
2015-05-01
We investigate aspects of low-magnetic-Reynolds-number flow between two parallel, perfectly insulating walls in the presence of an imposed magnetic field parallel to the bounding walls. We find a functional basis to describe the flow, well adapted to the problem of finding the attractor dimension and which is also used in subsequent direct numerical simulation of these flows. For given Reynolds and Hartmann numbers, we obtain an upper bound for the dimension of the attractor by means of known bounds on the nonlinear inertial term and this functional basis for the flow. Three distinct flow regimes emerge: a quasi-isotropic three-dimensional (3D) flow, a nonisotropic 3D flow, and a 2D flow. We find the transition curves between these regimes in the space parametrized by Hartmann number Ha and attractor dimension d(att). We find how the attractor dimension scales as a function of Reynolds and Hartmann numbers (Re and Ha) in each regime. We also investigate the thickness of the boundary layer along the bounding wall and find that in all regimes this scales as 1/Re, independently of the value of Ha, unlike Hartmann boundary layers found when the field is normal to the channel. The structure of the set of least dissipative modes is indeed quite different between these two cases but the properties of turbulence far from the walls (smallest scales and number of degrees of freedom) are found to be very similar.
NASA Astrophysics Data System (ADS)
Yongzhi, WANG; hui, WANG; Lixia, LIAO; Dongsen, LI
2017-02-01
In order to analyse the geological characteristics of salt rock and stability of salt caverns, rough three-dimensional (3D) models of salt rock stratum and the 3D models of salt caverns on study areas are built by 3D GIS spatial modeling technique. During implementing, multi-source data, such as basic geographic data, DEM, geological plane map, geological section map, engineering geological data, and sonar data are used. In this study, the 3D spatial analyzing and calculation methods, such as 3D GIS intersection detection method in three-dimensional space, Boolean operations between three-dimensional space entities, three-dimensional space grid discretization, are used to build 3D models on wall rock of salt caverns. Our methods can provide effective calculation models for numerical simulation and analysis of the creep characteristics of wall rock in salt caverns.
Hemodynamics in a giant intracranial aneurysm characterized by in vitro 4D flow MRI
Schiavazzi, Daniele; Moen, Sean; Jagadeesan, Bharathi; Van de Moortele, Pierre-François; Coletti, Filippo
2018-01-01
Experimental and computational data suggest that hemodynamics play a critical role in the development, growth, and rupture of cerebral aneurysms. The flow structure, especially in aneurysms with a large sac, is highly complex and three-dimensional. Therefore, volumetric and time-resolved measurements of the flow properties are crucial to fully characterize the hemodynamics. In this study, phase-contrast Magnetic Resonance Imaging is used to assess the fluid dynamics inside a 3D-printed replica of a giant intracranial aneurysm, whose hemodynamics was previously simulated by multiple research groups. The physiological inflow waveform is imposed in a flow circuit with realistic cardiovascular impedance. Measurements are acquired with sub-millimeter spatial resolution for 16 time steps over a cardiac cycle, allowing for the detailed reconstruction of the flow evolution. Moreover, the three-dimensional and time-resolved pressure distribution is calculated from the velocity field by integrating the fluid dynamics equations, and is validated against differential pressure measurements using precision transducers. The flow structure is characterized by vortical motions that persist within the aneurysm sac for most of the cardiac cycle. All the main flow statistics including velocity, vorticity, pressure, and wall shear stress suggest that the flow pattern is dictated by the aneurysm morphology and is largely independent of the pulsatility of the inflow, at least for the flow regimes investigated here. Comparisons are carried out with previous computational simulations that used the same geometry and inflow conditions, both in terms of cycle-averaged and systolic quantities. PMID:29300738
Abudiab, Muaz M; Chao, Chieh-Ju; Liu, Shuang; Naqvi, Tasneem Z
2017-07-01
Quantitation of regurgitation severity using the proximal isovelocity acceleration (PISA) method to calculate effective regurgitant orifice (ERO) area has limitations. Measurement of three-dimensional (3D) vena contracta area (VCA) accurately grades mitral regurgitation (MR) severity on transthoracic echocardiography (TTE). We evaluated 3D VCA quantitation of regurgitant jet severity using 3D transesophageal echocardiography (TEE) in 110 native mitral, aortic, and tricuspid valves and six prosthetic valves in patients with at least mild valvular regurgitation. The ASE-recommended integrative method comprising semiquantitative and quantitative assessment of valvular regurgitation was used as a reference method, including ERO area by 2D PISA for assigning severity of regurgitation grade. Mean age was 62.2±14.4 years; 3D VCA quantitation was feasible in 91% regurgitant valves compared to 78% by the PISA method. When both methods were feasible and in the presence of a single regurgitant jet, 3D VCA and 2D PISA were similar in differentiating assigned severity (ANOVAP<.001). In valves with multiple jets, however, 3D VCA had a better correlation to assigned severity (ANOVAP<.0001). The agreement of 2D PISA and 3D VCA with the integrative method was 47% and 58% for moderate and 65% and 88% for severe regurgitation, respectively. Measurement of 3D VCA by TEE is superior to the 2D PISA method in determination of regurgitation severity in multiple native and prosthetic valves. © 2017, Wiley Periodicals, Inc.
Mahmoud, Amr; Bennett, Michael
2015-08-01
Three-dimensional (3D) printing, a rapidly advancing technology, is widely applied in fields such as mechanical engineering and architecture. Three-dimensional printing has been introduced recently into medical practice in areas such as reconstructive surgery, as well as in clinical research. Three-dimensionally printed models of anatomic and autopsy pathology specimens can be used for demonstrating pathology entities to undergraduate medical, dental, and biomedical students, as well as for postgraduate training in examination of gross specimens for anatomic pathology residents and pathology assistants, aiding clinicopathological correlation at multidisciplinary team meetings, and guiding reconstructive surgical procedures. To apply 3D printing in anatomic pathology for teaching, training, and clinical correlation purposes. Multicolored 3D printing of human anatomic pathology specimens was achieved using a ZCorp 510 3D printer (3D Systems, Rock Hill, South Carolina) following creation of a 3D model using Autodesk 123D Catch software (Autodesk, Inc, San Francisco, California). Three-dimensionally printed models of anatomic pathology specimens created included pancreatoduodenectomy (Whipple operation) and radical nephrectomy specimens. The models accurately depicted the topographic anatomy of selected specimens and illustrated the anatomic relation of excised lesions to adjacent normal tissues. Three-dimensional printing of human anatomic pathology specimens is achievable. Advances in 3D printing technology may further improve the quality of 3D printable anatomic pathology specimens.
Unsteady three-dimensional flow separation
NASA Technical Reports Server (NTRS)
Hui, W. H.
1988-01-01
A concise mathematical framework is constructed to study the topology of steady 3-D separated flows of an incompressible, or a compressible viscous fluid. Flow separation is defined by the existence of a stream surface which intersects with the body surface. The line of separation is itself a skin-friction line. Flow separation is classified as being either regular or singular, depending respectively on whether the line of separation contains only a finite number of singular points or is a singular line of the skin-friction field. The special cases of 2-D and axisymmetric flow separation are shown to be of singular type. In regular separation it is shown that a line of separation originates from a saddle point of separation of the skin-friction field and ends at nodal points of separation. Unsteady flow separation is defined relative to a coordinate system fixed to the body surface. It is shown that separation of an unsteady 3-D incompressible viscous flow at time t, when viewed from such a frame of reference, is topologically the same as that of the fictitious steady flow obtained by freezing the unsteady flow at the instant t. Examples are given showing effects of various forms of flow unsteadiness on flow separation.
Near-blade flow structure modification
NASA Astrophysics Data System (ADS)
Kura, T.; Fornalik-Wajs, E.
2016-10-01
In this paper, the importance of near-blade flow structure influence on the performance of a centrifugal compressor was discussed. The negative effects of eddies and secondary flows appearance were described, together with the proposal of their reduction. Three-dimensional analyses were performed for the rotors. Focus was placed on the blade's 3D curvature impact on the efficiency of compression, and the influence of blade-shroud tip existence. A few design proposals were investigated - their performance maps were the basis of further analysis. Proposed modification of blade shape changed the near-blade flow structure and improved the compressor performance.
Assessment of Preconditioner for a USM3D Hierarchical Adaptive Nonlinear Method (HANIM) (Invited)
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Diskin, Boris; Thomas, James L.; Frink, Neal T.
2016-01-01
Enhancements to the previously reported mixed-element USM3D Hierarchical Adaptive Nonlinear Iteration Method (HANIM) framework have been made to further improve robustness, efficiency, and accuracy of computational fluid dynamic simulations. The key enhancements include a multi-color line-implicit preconditioner, a discretely consistent symmetry boundary condition, and a line-mapping method for the turbulence source term discretization. The USM3D iterative convergence for the turbulent flows is assessed on four configurations. The configurations include a two-dimensional (2D) bump-in-channel, the 2D NACA 0012 airfoil, a three-dimensional (3D) bump-in-channel, and a 3D hemisphere cylinder. The Reynolds Averaged Navier Stokes (RANS) solutions have been obtained using a Spalart-Allmaras turbulence model and families of uniformly refined nested grids. Two types of HANIM solutions using line- and point-implicit preconditioners have been computed. Additional solutions using the point-implicit preconditioner alone (PA) method that broadly represents the baseline solver technology have also been computed. The line-implicit HANIM shows superior iterative convergence in most cases with progressively increasing benefits on finer grids.
Three-Dimensional Effects of Artificial Mixing in a Shallow Drinking-Water Reservoir
NASA Astrophysics Data System (ADS)
Chen, Shengyang; Little, John C.; Carey, Cayelan C.; McClure, Ryan P.; Lofton, Mary E.; Lei, Chengwang
2018-01-01
Studies that examine the effects of artificial mixing for water-quality mitigation in lakes and reservoirs often view a water column with a one-dimensional (1-D) perspective (e.g., homogenized epilimnetic and hypolimnetic layers). Artificial mixing in natural water bodies, however, is inherently three dimensional (3-D). Using a 3-D approach experimentally and numerically, the present study visualizes thermal structure and analyzes constituent transport under the influence of artificial mixing in a shallow drinking-water reservoir. The purpose is to improve the understanding of artificial mixing, which may help to better design and operate mixing systems. In this reservoir, a side-stream supersaturation (SSS) hypolimnetic oxygenation system and an epilimnetic bubble-plume mixing (EM) system were concurrently deployed in the deep region. The present study found that, while the mixing induced by the SSS system does not have a distinct 3-D effect on the thermal structure, epilimnetic mixing by the EM system causes 3-D heterogeneity. In the experiments, epilimnetic mixing deepened the lower metalimnetic boundary near the diffuser by about 1 m, with 55% reduction of the deepening rate at 120 m upstream of the diffuser. In a tracer study using a 3-D hydrodynamic model, the operational flow rate of the EM system is found to be an important short-term driver of constituent transport in the reservoir, whereas the duration of the EM system operation is the dominant long-term driver. The results suggest that artificial mixing substantially alters both 3-D thermal structure and constituent transport, and thus needs to be taken into account for reservoir management.
Peng, Shu-Hui; Shen, Chao-Yu; Wu, Ming-Chi; Lin, Yue-Der; Huang, Chun-Huang; Kang, Ruei-Jin; Tyan, Yeu-Sheng; Tsao, Teng-Fu
2013-08-01
Time-of-flight (TOF) magnetic resonance (MR) angiography is based on flow-related enhancement using the T1-weighted spoiled gradient echo, or the fast low-angle shot gradient echo sequence. However, materials with short T1 relaxation times may show hyperintensity signals and contaminate the TOF images. The objective of our study was to determine whether subtraction three-dimensional (3D) TOF MR angiography improves image quality in brain and temporal bone diseases with unwanted contaminations with short T1 relaxation times. During the 12-month study period, patients who had masses with short T1 relaxation times noted on precontrast T1-weighted brain MR images and 24 healthy volunteers were scanned using conventional and subtraction 3D TOF MR angiography. The qualitative evaluation of each MR angiogram was based on signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and scores in three categories, namely, (1) presence of misregistration artifacts, (2) ability to display arterial anatomy selectively (without contamination by materials with short T1 relaxation times), and (3) arterial flow-related enhancement. We included 12 patients with intracranial hematomas, brain tumors, or middle-ear cholesterol granulomas. Subtraction 3D TOF MR angiography yielded higher CNRs between the area of the basilar artery (BA) and normal-appearing parenchyma of the brain and lower SNRs in the area of the BA compared with the conventional technique (147.7 ± 77.6 vs. 130.6 ± 54.2, p < 0.003 and 162.5 ± 79.9 vs. 194.3 ± 62.3, p < 0.001, respectively) in all 36 cases. The 3D subtraction angiography did not deteriorate image quality with misregistration artifacts and showed a better selective display of arteries (p < 0.0001) and arterial flow-related enhancement (p < 0.044) than the conventional method. Subtraction 3D TOF MR angiography is more appropriate than the conventional method in improving the image quality in brain and temporal bone diseases with unwanted contaminations with short T1 relaxation times. Copyright © 2013. Published by Elsevier B.V.
3D annotation and manipulation of medical anatomical structures
NASA Astrophysics Data System (ADS)
Vitanovski, Dime; Schaller, Christian; Hahn, Dieter; Daum, Volker; Hornegger, Joachim
2009-02-01
Although the medical scanners are rapidly moving towards a three-dimensional paradigm, the manipulation and annotation/labeling of the acquired data is still performed in a standard 2D environment. Editing and annotation of three-dimensional medical structures is currently a complex task and rather time-consuming, as it is carried out in 2D projections of the original object. A major problem in 2D annotation is the depth ambiguity, which requires 3D landmarks to be identified and localized in at least two of the cutting planes. Operating directly in a three-dimensional space enables the implicit consideration of the full 3D local context, which significantly increases accuracy and speed. A three-dimensional environment is as well more natural optimizing the user's comfort and acceptance. The 3D annotation environment requires the three-dimensional manipulation device and display. By means of two novel and advanced technologies, Wii Nintendo Controller and Philips 3D WoWvx display, we define an appropriate 3D annotation tool and a suitable 3D visualization monitor. We define non-coplanar setting of four Infrared LEDs with a known and exact position, which are tracked by the Wii and from which we compute the pose of the device by applying a standard pose estimation algorithm. The novel 3D renderer developed by Philips uses either the Z-value of a 3D volume, or it computes the depth information out of a 2D image, to provide a real 3D experience without having some special glasses. Within this paper we present a new framework for manipulation and annotation of medical landmarks directly in three-dimensional volume.
3D-PDR: Three-dimensional photodissociation region code
NASA Astrophysics Data System (ADS)
Bisbas, T. G.; Bell, T. A.; Viti, S.; Yates, J.; Barlow, M. J.
2018-03-01
3D-PDR is a three-dimensional photodissociation region code written in Fortran. It uses the Sundials package (written in C) to solve the set of ordinary differential equations and it is the successor of the one-dimensional PDR code UCL_PDR (ascl:1303.004). Using the HEALpix ray-tracing scheme (ascl:1107.018), 3D-PDR solves a three-dimensional escape probability routine and evaluates the attenuation of the far-ultraviolet radiation in the PDR and the propagation of FIR/submm emission lines out of the PDR. The code is parallelized (OpenMP) and can be applied to 1D and 3D problems.
Performance of a three-dimensional Navier-Stokes code on CYBER 205 for high-speed juncture flows
NASA Technical Reports Server (NTRS)
Lakshmanan, B.; Tiwari, S. N.
1987-01-01
A vectorized 3D Navier-Stokes code has been implemented on CYBER 205 for solving the supersonic laminar flow over a swept fin/flat plate junction. The code extends MacCormack's predictor-corrector finite volume scheme to a generalized coordinate system in a locally one dimensional time split fashion. A systematic parametric study is conducted to examine the effect of fin sweep on the computed flow field. Calculated results for the pressure distribution on the flat plate and fin leading edge are compared with the experimental measurements of a right angle blunt fin/flat plate junction. The decrease in the extent of the separated flow region and peak pressure on the fin leading edge, and weakening of the two reversed supersonic zones with increase in fin sweep have been clearly observed in the numerical simulation.
A Finite Layer Formulation for Groundwater Flow to Horizontal Wells.
Xu, Jin; Wang, Xudong
2016-09-01
A finite layer approach for the general problem of three-dimensional (3D) flow to horizontal wells in multilayered aquifer systems is presented, in which the unconfined flow can be taken into account. The flow is approximated by an integration of the standard finite element method in vertical direction and the analytical techniques in the other spatial directions. Because only the vertical discretization is involved, the horizontal wells can be completely contained in one specific nodal plane without discretization. Moreover, due to the analytical eigenfunctions introduced in the formulation, the weighted residual equations can be decoupled, and the formulas for the global matrices and flow vector corresponding to horizontal wells can be obtained explicitly. Consequently, the bandwidth of the global matrices and computational cost rising from 3D analysis can be significantly reduced. Two comparisons to the existing solutions are made to verify the validity of the formulation, including transient flow to horizontal wells in confined and unconfined aquifers. Furthermore, an additional numerical application to horizontal wells in three-layered systems is presented to demonstrate the applicability of the present method in modeling flow in more complex aquifer systems. © 2016, National Ground Water Association.
An Integral Method and Its Application to Some Three-Dimensional Boundary-Layer Flows,
1979-07-18
M. Scala Dr. H. Lew Mr. J. W. Faust A . Martellucci W. Daskin J. D. Cresswell J. B. Arnaiz L. A . Marshall J. Cassanto R. Hobbs C. Harris F. George P.O...RESEARCH AND TECHNOLOGY DEPARTMENT 18 JULY 1979 Approved for public release, distribution unlimited DTICEILECTE1 APR 2 5 1930,, A NAVAL SURFACE WEAPONS...TITLE (end Subtlle) S. TYPE OF REPORT A PERIOD COVERED I INVTEGRAL M.ETHOD AND ITS 4PPLICATION TO SSOME THREE-DIMENSIONAL BOUNDARY-LAYER FLOWS 6
Elkafrawy, Fatma; Reda, Ihab; Elsirafy, Mohamed; Gawad, Mohamed Saied Abdel; Elnaggar, Alaa; Khalek Abdel Razek, Ahmed Abdel
2017-02-01
To evaluate the role of three-dimensional constructive interference in steady state (3D-CISS) sequences and phase-contrast magnetic resonance imaging (PC-MRI) in patients with arrested hydrocephalus. A prospective study of 20 patients with arrested hydrocephalus was carried out. All patients underwent PC-MRI and 3D-CISS for assessment of the aqueduct. Axial (through-plane), sagittal (in-plane) PC-MRI, and sagittal 3D-CISS were applied to assess the cerebral aqueduct and the spontaneous third ventriculostomy if present. Aqueductal patency was graded using 3D-CISS and PC-MRI. Quantitative analysis of flow through the aqueduct was performed using PC-MRI. The causes of obstruction were aqueductal obstruction in 75% (n = 15), third ventricular obstruction in 5% (n = 1), and fourth ventricular obstruction in 20% (n = 4). The cause of arrest of hydrocephalus was spontaneous third ventriculostomy in 65% (n = 13), endoscopic third ventriculostomy in 10% (n = 2), and ventriculoperitoneal shunt in 5% (n = 1), and no cause could be detected in 20% of patients (n = 4). There is a positive correlation (r = 0.80) and moderate agreement (κ = 0.509) of grading with PC-MRI and 3D-CISS sequences. The mean peak systolic velocity of cerebrospinal fluid was 1.86 ± 2.48 cm/second, the stroke volume was 6.43 ± 13.81 μL/cycle, and the mean flow was 0.21 ± 0.32 mL/minute. We concluded that 3D-CISS and PC-MRI are noninvasive sequences for diagnosis of the level and cause of arrested hydrocephalus. Copyright © 2016 Elsevier Inc. All rights reserved.
Hasler, David; Obrist, Dominik
2018-01-01
The flow field past a prosthetic aortic valve comprises many details that indicate whether the prosthesis is functioning well or not. It is, however, not yet fully understood how an optimal flow scenario would look, i.e. which subtleties of the fluid dynamics in place are essential regarding the durability and compatibility of a prosthetic valve. In this study, we measured and analyzed the 3D flow field in the vicinity of a bio-prosthetic heart valve in function of the aortic root size. The measurements were conducted within aortic root phantoms of different size, mounted in a custom-built hydraulic setup, which mimicked physiological flow conditions in the aorta. Tomographic particle image velocimetry was used to measure the 3D instantaneous velocity field at various instances. Several 3D fields (e.g. instantaneous and mean velocity, 3D shear rate) were analyzed and compared focusing on the impact of the aortic root size, but also in order to gain general insight in the 3D flow structure past the bio-prosthetic valve. We found that the diameter of the aortic jet relative to the diameter of the ascending aorta is the most important parameter in determining the characteristics of the flow. A large aortic cross-section, relative to the cross-section of the aortic jet, was associated with higher levels of turbulence intensity and higher retrograde flow in the ascending aorta.
Xiao, Hua-Feng; Lou, Xin; Liu, Meng-Yu; Wang, Yu-Lin; Wang, Yan; Chen, Zhi-Ye; Shi, Kai-Ning; Ma, Lin
2014-08-01
To evaluate the diagnostic value of magnetic resonance diffusion-weighted imaging (DWI) and three-dimensional arterial spin labelling perfusion imaging (3D-ASL) in distinguishing cavernous haemangioma from parasellar meningioma, using histological data as a reference standard. Patients with parasellar meningioma or parasellar cavernous haemangioma underwent conventional T1- and T2-weighted magnetic resonance imaging (MRI) followed by DWI and 3D-ASL using a 3.0 Tesla MRI. The minimum apparent diffusion coefficient (minADC) from DWI and the maximal normalized cerebral blood flow (nCBF) from 3D-ASL were measured in each tumour. Diagnosis was confirmed by histology. MinADC was significantly lower and nCBF significantly higher in meningioma (n = 19) than cavernous haemangioma (n = 15). There was a significant negative correlation between minADC and nCBF (r = -0.605). DWI and 3D-ASL are useful in differentiating cavernous haemangiomas from parasellar meningiomas, particularly in situations when the appearance on conventional MRI sequences is otherwise ambiguous. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Conservative multizonal interface algorithm for the 3-D Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Klopfer, G. H.; Molvik, G. A.
1991-01-01
A conservative zonal interface algorithm using features of both structured and unstructured mesh CFD technology is presented. The flow solver within each of the zones is based on structured mesh CFD technology. The interface algorithm was implemented into two three-dimensional Navier-Stokes finite volume codes and was found to yield good results.
1997-04-30
Currently there are no systems available which allow for economical and accurate subsurface imaging of remediation sites. In some cases, high...system to address this need. This project has been very successful in showing a promising new direction for high resolution subsurface imaging . Our
Elements of a modern turbomachinery design system
NASA Astrophysics Data System (ADS)
Jennions, Ian K.
1994-05-01
The aerodynamic design system at GE Aircraft Engines (GEAE) consists of many parts: throughflow, secondary flow, geometry generators, blade-to-blade and fully three-dimensional (3D) analysis. This paper describes each of these elements and discusses optimization and computer architecture issues. Emphasis is placed on those areas in which the company is thought to have special capability.
Perturbation Effects on a Supercritical C7H16/N2 Mixing Layer
NASA Technical Reports Server (NTRS)
Okongo'o, Nora; Bellan, Josette
2008-01-01
A computational-simulation study has been presented of effects of perturbation wavelengths and initial Reynolds numbers on the transition to turbulence of a heptane/nitrogen mixing layer at supercritical pressure. The governing equations for the simulations were the same as those of related prior studies reported in NASA Tech Briefs. Two-dimensional (2D) simulations were performed with initially im posed span wise perturbations whereas three-dimensional (3D) simulations had both streamwise and spanwise initial perturbations. The 2D simulations were undertaken to ascertain whether perturbations having the shortest unstable wavelength obtained from a linear stability analysis for inviscid flow are unstable in viscous nonlinear flows. The goal of the 3D simulations was to ascertain whether perturbing the mixing layer at different wavelengths affects the transition to turbulence. It was found that transitions to turbulence can be obtained at different perturbation wavelengths, provided that they are longer than the shortest unstable wavelength as determined by 2D linear stability analysis for the inviscid case and that the initial Reynolds number is proportionally increased as the wavelength is decreased. The transitional states thus obtained display different dynamic and mixture characteristics, departing strongly from the behaviors of perfect gases and ideal mixtures.
NASA Astrophysics Data System (ADS)
Guo, Zhenyan; Song, Yang; Yuan, Qun; Wulan, Tuya; Chen, Lei
2017-06-01
In this paper, a transient multi-parameter three-dimensional (3D) reconstruction method is proposed to diagnose and visualize a combustion flow field. Emission and transmission tomography based on spatial phase-shifted technology are combined to reconstruct, simultaneously, the various physical parameter distributions of a propane flame. Two cameras triggered by the internal trigger mode capture the projection information of the emission and moiré tomography, respectively. A two-step spatial phase-shifting method is applied to extract the phase distribution in the moiré fringes. By using the filtered back-projection algorithm, we reconstruct the 3D refractive-index distribution of the combustion flow field. Finally, the 3D temperature distribution of the flame is obtained from the refractive index distribution using the Gladstone-Dale equation. Meanwhile, the 3D intensity distribution is reconstructed based on the radiation projections from the emission tomography. Therefore, the structure and edge information of the propane flame are well visualized.
Wu, Yupan; Ren, Yukun; Jiang, Hongyuan
2017-01-01
We propose a 3D microfluidic mixer based on the alternating current electrothermal (ACET) flow. The ACET vortex is produced by 3D electrodes embedded in the sidewall of the microchannel and is used to stir the fluidic sample throughout the entire channel depth. An optimized geometrical structure of the proposed 3D micromixer device is obtained based on the enhanced theoretical model of ACET flow and natural convection. We quantitatively analyze the flow field driven by the ACET, and a pattern of electrothermal microvortex is visualized by the micro-particle imaging velocimetry. Then, the mixing experiment is conducted using dye solutions with varying solution conductivities. Mixing efficiency can exceed 90% for electrolytes with 0.2 S/m (1 S/m) when the flow rate is 0.364 μL/min (0.728 μL/min) and the imposed peak-to-peak voltage is 52.5 V (35 V). A critical analysis of our micromixer in comparison with different mixer designs using a comparative mixing index is also performed. The ACET micromixer embedded with sidewall 3D electrodes can achieve a highly effective mixing performance and can generate high throughput in the continuous-flow condition. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Benjankar, R. M.; Sohrabi, M.; Tonina, D.; McKean, J. A.
2013-12-01
Aquatic habitat models utilize flow variables which may be predicted with one-dimensional (1D) or two-dimensional (2D) hydrodynamic models to simulate aquatic habitat quality. Studies focusing on the effects of hydrodynamic model dimensionality on predicted aquatic habitat quality are limited. Here we present the analysis of the impact of flow variables predicted with 1D and 2D hydrodynamic models on simulated spatial distribution of habitat quality and Weighted Usable Area (WUA) for fall-spawning Chinook salmon. Our study focuses on three river systems located in central Idaho (USA), which are a straight and pool-riffle reach (South Fork Boise River), small pool-riffle sinuous streams in a large meadow (Bear Valley Creek) and a steep-confined plane-bed stream with occasional deep forced pools (Deadwood River). We consider low and high flows in simple and complex morphologic reaches. Results show that 1D and 2D modeling approaches have effects on both the spatial distribution of the habitat and WUA for both discharge scenarios, but we did not find noticeable differences between complex and simple reaches. In general, the differences in WUA were small, but depended on stream type. Nevertheless, spatially distributed habitat quality difference is considerable in all streams. The steep-confined plane bed stream had larger differences between aquatic habitat quality defined with 1D and 2D flow models compared to results for streams with well defined macro-topographies, such as pool-riffle bed forms. KEY WORDS: one- and two-dimensional hydrodynamic models, habitat modeling, weighted usable area (WUA), hydraulic habitat suitability, high and low discharges, simple and complex reaches
Aquifer Vulnerability Assessment Based on Sequence Stratigraphic and ³⁹Ar Transport Modeling.
Sonnenborg, Torben O; Scharling, Peter B; Hinsby, Klaus; Rasmussen, Erik S; Engesgaard, Peter
2016-03-01
A large-scale groundwater flow and transport model is developed for a deep-seated (100 to 300 m below ground surface) sedimentary aquifer system. The model is based on a three-dimensional (3D) hydrostratigraphic model, building on a sequence stratigraphic approach. The flow model is calibrated against observations of hydraulic head and stream discharge while the credibility of the transport model is evaluated against measurements of (39)Ar from deep wells using alternative parameterizations of dispersivity and effective porosity. The directly simulated 3D mean age distributions and vertical fluxes are used to visualize the two-dimensional (2D)/3D age and flux distribution along transects and at the top plane of individual aquifers. The simulation results are used to assess the vulnerability of the aquifer system that generally has been assumed to be protected by thick overlaying clayey units and therefore proposed as future reservoirs for drinking water supply. The results indicate that on a regional scale these deep-seated aquifers are not as protected from modern surface water contamination as expected because significant leakage to the deeper aquifers occurs. The complex distribution of local and intermediate groundwater flow systems controlled by the distribution of the river network as well as the topographical variation (Tóth 1963) provides the possibility for modern water to be found in even the deepest aquifers. © 2015, National Ground Water Association.
Parker, Katherine M.; Clark, Alexander P.; Goodman, Norman C.; Glover, David K.; Holmes, Jeffrey W.
2015-01-01
Background Quantitative analysis of wall motion from three-dimensional (3D) dobutamine stress echocardiography (DSE) could provide additional diagnostic information not available from qualitative analysis. In this study we compare the effectiveness of 3D fractional shortening (3DFS), a measure of wall motion computed from 3D echocardiography (3DE), to strain and strain rate measured with sonomicrometry for detecting critical stenoses during DSE. Methods Eleven open-chest dogs underwent DSE both with and without a critical stenosis. 3DFS was measured from 3DE images acquired at peak stress. 3DFS was normalized by subtracting average 3DFS during control peak stress (Δ3DFS). Strains in the perfusion defect (PD) were measured from sonomicrometry, and PD size and location were measured with microspheres. Results A Δ3DFS abnormality indicated the presence of a critical stenosis with high sensitivity and specificity (88% and 100%, respectively), and Δ3DFS abnormality size correlated with PD size (R2=0.54). The sensitivity and specificity for Δ3DFS was similar to that for area strain (88%, 100%) and circumferential strain and strain rate (88%, 92% and 88%, 86%, respectively), while longitudinal strain and strain rate were less specific. Δ3DFS correlated significantly with both coronary flow reserve (R2=0.71) and PD size (R2=0.97), while area strain correlated with PD size only (R2=0.67), and other measures were not significantly correlated with flow reserve or PD size. Conclusion Quantitative wall motion analysis using Δ3DFS is effective for detecting critical stenoses during DSE, performing similarly to 3D strain, and provides potentially useful information on the size and location of a perfusion defect. PMID:24815588
A system of three-dimensional complex variables
NASA Technical Reports Server (NTRS)
Martin, E. Dale
1986-01-01
Some results of a new theory of multidimensional complex variables are reported, including analytic functions of a three-dimensional (3-D) complex variable. Three-dimensional complex numbers are defined, including vector properties and rules of multiplication. The necessary conditions for a function of a 3-D variable to be analytic are given and shown to be analogous to the 2-D Cauchy-Riemann equations. A simple example also demonstrates the analogy between the newly defined 3-D complex velocity and 3-D complex potential and the corresponding ordinary complex velocity and complex potential in two dimensions.
On the Solution of the Three-Dimensional Flowfield About a Flow-Through Nacelle. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Compton, William Bernard
1985-01-01
The solution of the three dimensional flow field for a flow through nacelle was studied. Both inviscid and viscous inviscid interacting solutions were examined. Inviscid solutions were obtained with two different computational procedures for solving the three dimensional Euler equations. The first procedure employs an alternating direction implicit numerical algorithm, and required the development of a complete computational model for the nacelle problem. The second computational technique employs a fourth order Runge-Kutta numerical algorithm which was modified to fit the nacelle problem. Viscous effects on the flow field were evaluated with a viscous inviscid interacting computational model. This model was constructed by coupling the explicit Euler solution procedure with a flag entrainment boundary layer solution procedure in a global iteration scheme. The computational techniques were used to compute the flow field for a long duct turbofan engine nacelle at free stream Mach numbers of 0.80 and 0.94 and angles of attack of 0 and 4 deg.
Multigrid calculation of three-dimensional turbomachinery flows
NASA Technical Reports Server (NTRS)
Caughey, David A.
1989-01-01
Research was performed in the general area of computational aerodynamics, with particular emphasis on the development of efficient techniques for the solution of the Euler and Navier-Stokes equations for transonic flows through the complex blade passages associated with turbomachines. In particular, multigrid methods were developed, using both explicit and implicit time-stepping schemes as smoothing algorithms. The specific accomplishments of the research have included: (1) the development of an explicit multigrid method to solve the Euler equations for three-dimensional turbomachinery flows based upon the multigrid implementation of Jameson's explicit Runge-Kutta scheme (Jameson 1983); (2) the development of an implicit multigrid scheme for the three-dimensional Euler equations based upon lower-upper factorization; (3) the development of a multigrid scheme using a diagonalized alternating direction implicit (ADI) algorithm; (4) the extension of the diagonalized ADI multigrid method to solve the Euler equations of inviscid flow for three-dimensional turbomachinery flows; and also (5) the extension of the diagonalized ADI multigrid scheme to solve the Reynolds-averaged Navier-Stokes equations for two-dimensional turbomachinery flows.
Simulation of a Synthetic Jet in Quiescent Air Using TLNS3D Flow Code
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Turkel, Eli
2007-01-01
Although the actuator geometry is highly three-dimensional, the outer flowfield is nominally two-dimensional because of the high aspect ratio of the rectangular slot. For the present study, this configuration is modeled as a two-dimensional problem. A multi-block structured grid available at the CFDVAL2004 website is used as a baseline grid. The periodic motion of the diaphragm is simulated by specifying a sinusoidal velocity at the diaphragm surface with a frequency of 450 Hz, corresponding to the experimental setup. The amplitude is chosen so that the maximum Mach number at the jet exit is approximately 0.1, to replicate the experimental conditions. At the solid walls zero slip, zero injection, adiabatic temperature and zero pressure gradient conditions are imposed. In the external region, symmetry conditions are imposed on the side (vertical) boundaries and far-field conditions are imposed on the top boundary. A nominal free-stream Mach number of 0.001 is imposed in the free stream to simulate incompressible flow conditions in the TLNS3D code, which solves compressible flow equations. The code was run in unsteady (URANS) mode until the periodicity was established. The time-mean quantities were obtained by running the code for at least another 15 periods and averaging the flow quantities over these periods. The phase-locked average of flow quantities were assumed to be coincident with their values during the last full time period.
Provost, J.; Papadacci, C.; Demene, C.; Gennisson, J-L.; Tanter, M.; Pernot, M.
2016-01-01
Ultrafast Doppler Imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D Ultrafast Ultrasound Imaging, a technique that can produce thousands of ultrasound volumes per second, based on three-dimensional plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that non-invasive 3-D Ultrafast Power Doppler, Pulsed Doppler, and Color Doppler Imaging can be used to perform quantitative imaging of blood vessels in humans when using coherent compounding of three-dimensional tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D Ultrafast Imaging. Using a 32X32, 3-MHz matrix phased array (Vermon, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. 3-D Ultrafast Power Doppler Imaging was first validated by imaging Tygon tubes of varying diameter and its in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D Color and Pulsed Doppler Imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer. PMID:26276956
NASA Astrophysics Data System (ADS)
Liang, Liying; Xu, Yimeng; Lei, Yong; Liu, Haimei
2014-03-01
Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability.Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability. Electronic supplementary information (ESI) available: Preparation, characterization, SEM images, XRD patterns, and XPS of AgVO3/GAs. See DOI: 10.1039/c3nr06899d
Modeling dynamic stall on wind turbine blades under rotationally augmented flow fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guntur, S.; Schreck, S.; Sorensen, N. N.
It is well known that airfoils under unsteady flow conditions with a periodically varying angle of attack exhibit aerodynamic characteristics different from those under steady flow conditions, a phenomenon commonly known as dynamic stall. It is also well known that the steady aerodynamic characteristics of airfoils in the inboard region of a rotating blade differ from those under steady two-dimensional (2D) flow conditions, a phenomenon commonly known as rotational augmentation. This paper presents an investigation of these two phenomena together in the inboard parts of wind turbine blades. This analysis is carried out using data from three sources: (1) themore » National Renewable Energy Laboratory’s Unsteady Aerodynamics Experiment Phase VI experimental data, including constant as well as continuously pitching blade conditions during axial operation, (2) data from unsteady Delayed Detached Eddy Simulations (DDES) carried out using the Technical University of Denmark’s in-house flow solver Ellipsys3D, and (3) data from a simplified model based on the blade element momentum method with a dynamic stall subroutine that uses rotationally augmented steady-state polars obtained from steady Phase VI experimental sequences, instead of the traditional 2D nonrotating data. The aim of this work is twofold. First, the blade loads estimated by the DDES simulations are compared to three select cases of the N sequence experimental data, which serves as a validation of the DDES method. Results show reasonable agreement between the two data in two out of three cases studied. Second, the dynamic time series of the lift and the moment polars obtained from the experiments are compared to those from the dynamic stall subroutine that uses the rotationally augmented steady polars. This allowed the differences between the stall phenomenon on the inboard parts of harmonically pitching blades on a rotating wind turbine and the classic dynamic stall representation in 2D flow to be investigated. Results from the dynamic stall subroutine indicated a good qualitative agreement between the model and the experimental data in many cases, which suggests that the current 2D dynamic stall model as used in BEM-based aeroelastic codes may provide a reasonably accurate representation of three-dimensional rotor aerodynamics when used in combination with a robust rotational augmentation model.« less
CFD code calibration and inlet-fairing effects on a 3D hypersonic powered-simulation model
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Tatum, Kenneth E.
1993-01-01
A three-dimensional (3D) computational study has been performed addressing issues related to the wind tunnel testing of a hypersonic powered-simulation model. The study consisted of three objectives. The first objective was to calibrate a state-of-the-art computational fluid dynamics (CFD) code in its ability to predict hypersonic powered-simulation flows by comparing CFD solutions with experimental surface pressure dam. Aftbody lower surface pressures were well predicted, but lower surface wing pressures were less accurately predicted. The second objective was to determine the 3D effects on the aftbody created by fairing over the inlet; this was accomplished by comparing the CFD solutions of two closed-inlet powered configurations with a flowing-inlet powered configuration. Although results at four freestream Mach numbers indicate that the exhaust plume tends to isolate the aftbody surface from most forebody flowfield differences, a smooth inlet fairing provides the least aftbody force and moment variation compared to a flowing inlet. The final objective was to predict and understand the 3D characteristics of exhaust plume development at selected points on a representative flight path. Results showed a dramatic effect of plume expansion onto the wings as the freestream Mach number and corresponding nozzle pressure ratio are increased.
The Three-D Flow Structures of Gas and Liquid Generated by a Spreading Flame Over Liquid Fuel
NASA Technical Reports Server (NTRS)
Tashtoush, G.; Ito, A.; Konishi, T.; Narumi, A.; Saito, K.; Cremers, C. J.
1999-01-01
We developed a new experimental technique called: Combined laser sheet particle tracking (LSPT) and laser holographic interferometry (HI), which is capable of measuring the transient behavior of three dimensional structures of temperature and flow both in liquid and gas phases. We applied this technique to a pulsating flame spread over n-butanol. We found a twin vortex flow both on the liquid surface and deep in the liquid a few mm below the surface and a twin vortex flow in the gas phase. The first twin vortex flow at the liquid surface was observed previously by NASA Lewis researchers, while the last two observations are new. These observations revealed that the convective flow structure ahead of the flame leading edge is three dimensional in nature and the pulsating spread is controlled by the convective flow of both liquid and gas.
Synchrotron radiation microtomography of Taylor bubbles in capillary two-phase flow
NASA Astrophysics Data System (ADS)
Boden, Stephan; dos Santos Rolo, Tomy; Baumbach, Tilo; Hampel, Uwe
2014-07-01
We report on a study to measure the three-dimensional shape of Taylor bubbles in capillaries using synchrotron radiation in conjunction with ultrafast radiographic imaging. Moving Taylor bubbles in 2-mm round and square capillaries were radiographically scanned with an ultrahigh frame rate of up to 36,000 fps and 5.6-µm pixel separation. Consecutive images were properly processed to yield 2D transmission radiographs of high contrast-to-noise ratio. Application of 3D tomographic image reconstruction disclosed the 3D bubble shape. The results provide a reference data base for development of sophisticated interface resolving CFD computations.
Multi-phase models for water and thermal management of proton exchange membrane fuel cell: A review
NASA Astrophysics Data System (ADS)
Zhang, Guobin; Jiao, Kui
2018-07-01
The 3D (three-dimensional) multi-phase CFD (computational fluid dynamics) model is widely utilized in optimizing water and thermal management of PEM (proton exchange membrane) fuel cell. However, a satisfactory 3D multi-phase CFD model which is able to simulate the detailed gas and liquid two-phase flow in channels and reflect its effect on performance precisely is still not developed due to the coupling difficulties and computation amount. Meanwhile, the agglomerate model of CL (catalyst layer) should also be added in 3D CFD model so as to better reflect the concentration loss and optimize CL structure in macroscopic scale. Besides, the effect of thermal management is perhaps underestimated in current 3D multi-phase CFD simulations due to the lack of coolant channel in computation domain and constant temperature boundary condition. Therefore, the 3D CFD simulations in cell and stack levels with convection boundary condition are suggested to simulate the water and thermal management more accurately. Nevertheless, with the rapid development of PEM fuel cell, current 3D CFD simulations are far from practical demand, especially at high current density and low to zero humidity and for the novel designs developed recently, such as: metal foam flow field, 3D fine mesh flow field, anode circulation etc.
Doorwar, Shashvat; Mohanty, Kishore K
2014-07-01
Immiscible displacement of viscous oil by water in a petroleum reservoir is often hydrodynamically unstable. Due to similarities between the physics of dielectric breakdown and immiscible flow in porous media, we extend the existing dielectric breakdown model to simulate viscous fingering patterns for a wide range of viscosity ratios (μ(r)). At low values of power-law index η, the system behaves like a stable Eden growth model and as the value of η is increased to unity, diffusion limited aggregation-like fractals appear. This model is compared with our two-dimensional (2D) experiments to develop a correlation between the viscosity ratio and the power index, i.e., η = 10(-5)μ(r)(0.8775). The 2D and three-dimensional (3D) simulation data appear scalable. The fingering pattern in 3D simulations at finite viscosity ratios appear qualitatively similar to the few experimental results published in the literature.
Convergence acceleration of the Proteus computer code with multigrid methods
NASA Technical Reports Server (NTRS)
Demuren, A. O.; Ibraheem, S. O.
1995-01-01
This report presents the results of a study to implement convergence acceleration techniques based on the multigrid concept in the two-dimensional and three-dimensional versions of the Proteus computer code. The first section presents a review of the relevant literature on the implementation of the multigrid methods in computer codes for compressible flow analysis. The next two sections present detailed stability analysis of numerical schemes for solving the Euler and Navier-Stokes equations, based on conventional von Neumann analysis and the bi-grid analysis, respectively. The next section presents details of the computational method used in the Proteus computer code. Finally, the multigrid implementation and applications to several two-dimensional and three-dimensional test problems are presented. The results of the present study show that the multigrid method always leads to a reduction in the number of iterations (or time steps) required for convergence. However, there is an overhead associated with the use of multigrid acceleration. The overhead is higher in 2-D problems than in 3-D problems, thus overall multigrid savings in CPU time are in general better in the latter. Savings of about 40-50 percent are typical in 3-D problems, but they are about 20-30 percent in large 2-D problems. The present multigrid method is applicable to steady-state problems and is therefore ineffective in problems with inherently unstable solutions.
Hughes, J.D.; Vacher, H. Leonard; Sanford, W.E.
2007-01-01
Kohout convection is the name given to the circulation of saline groundwater deep within carbonate platforms, first proposed by F.A. Kohout in the 1960s for south Florida. It is now seen as an Mg pump for dolomitization by seawater. As proposed by Kohout, cold seawater is drawn into the Florida platform from the deep Straits of Florida as part of a geothermally driven circulation in which the seawater then rises in the interior of the platform to mix and exit with the discharging meteoric water of the Floridan aquifer system. Simulation of the asymmetrically emergent Florida platform with the new three-dimensional (3-D), finite-element groundwater flow and transport model SUTRA-MS, which couples salinity- and temperature-dependent density variations, allows analysis of how much of the cyclic flow is due to geothermal heating (free convection) as opposed to mixing with meteoric water discharging to the shoreline (forced convection). Simulation of the system with and without geothermal heating reveals that the inflow of seawater from the Straits of Florida would be similar without the heat flow, but the distribution would differ significantly. The addition of heat flow reduces the asymmetry of the circulation: it decreases seawater inflows on the Atlantic side by 8% and on the Guff of Mexico side by half. The study illustrates the complex interplay of freshwater-saltwater mixing, geothermal heat flow, and projected dolomitization in complicated 3-D settings with asymmetric boundary conditions and realistic horizontal and vertical variations in hydraulic properties. ?? 2007 The Geological Society of America.
NASA Technical Reports Server (NTRS)
2003-01-01
When research staff at NASA s Glenn Research Center developed and patented Stereo Imaging Velocimetry (SIV), the world s first three-dimensional (3-D), full-field quantitative and qualitative analysis tool to investigate flow velocities, experiments that were previously impossible became a reality. Seizing the opportunity to commercialize NASA s breakthrough invention, Digital Interface Systems (DIS), Inc., of North Olmsted, Ohio, acquired an exclusive license to market SIV, which has a range of applications from improving the aerodynamics of aircraft and automobiles to avoiding "no flow" regions in artificial hearts.
Three-dimensional imaging technology offers promise in medicine.
Karako, Kenji; Wu, Qiong; Gao, Jianjun
2014-04-01
Medical imaging plays an increasingly important role in the diagnosis and treatment of disease. Currently, medical equipment mainly has two-dimensional (2D) imaging systems. Although this conventional imaging largely satisfies clinical requirements, it cannot depict pathologic changes in 3 dimensions. The development of three-dimensional (3D) imaging technology has encouraged advances in medical imaging. Three-dimensional imaging technology offers doctors much more information on a pathology than 2D imaging, thus significantly improving diagnostic capability and the quality of treatment. Moreover, the combination of 3D imaging with augmented reality significantly improves surgical navigation process. The advantages of 3D imaging technology have made it an important component of technological progress in the field of medical imaging.
Bubble behavior characteristics based on virtual binocular stereo vision
NASA Astrophysics Data System (ADS)
Xue, Ting; Xu, Ling-shuang; Zhang, Shang-zhen
2018-01-01
The three-dimensional (3D) behavior characteristics of bubble rising in gas-liquid two-phase flow are of great importance to study bubbly flow mechanism and guide engineering practice. Based on the dual-perspective imaging of virtual binocular stereo vision, the 3D behavior characteristics of bubbles in gas-liquid two-phase flow are studied in detail, which effectively increases the projection information of bubbles to acquire more accurate behavior features. In this paper, the variations of bubble equivalent diameter, volume, velocity and trajectory in the rising process are estimated, and the factors affecting bubble behavior characteristics are analyzed. It is shown that the method is real-time and valid, the equivalent diameter of the rising bubble in the stagnant water is periodically changed, and the crests and troughs in the equivalent diameter curve appear alternately. The bubble behavior characteristics as well as the spiral amplitude are affected by the orifice diameter and the gas volume flow.
Grid Convergence for Turbulent Flows(Invited)
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.; Rumsey, Christopher L.; Schwoppe, Axel
2015-01-01
A detailed grid convergence study has been conducted to establish accurate reference solutions corresponding to the one-equation linear eddy-viscosity Spalart-Allmaras turbulence model for two dimensional turbulent flows around the NACA 0012 airfoil and a flat plate. The study involved three widely used codes, CFL3D (NASA), FUN3D (NASA), and TAU (DLR), and families of uniformly refined structured grids that differ in the grid density patterns. Solutions computed by different codes on different grid families appear to converge to the same continuous limit, but exhibit different convergence characteristics. The grid resolution in the vicinity of geometric singularities, such as a sharp trailing edge, is found to be the major factor affecting accuracy and convergence of discrete solutions, more prominent than differences in discretization schemes and/or grid elements. The results reported for these relatively simple turbulent flows demonstrate that CFL3D, FUN3D, and TAU solutions are very accurate on the finest grids used in the study, but even those grids are not sufficient to conclusively establish an asymptotic convergence order.
Using 1D theory to understand 3D stagnation of a wire-array Z pinch in the absence of radiation
NASA Astrophysics Data System (ADS)
Yu, Edmund
2015-11-01
Many high-energy-density systems implode towards the axis of symmetry, where it collides on itself, forming a hot plasma. However, experiments show these imploding plasmas develop three-dimensional (3D) structures. As a result, the plasma cannot completely dissipate its kinetic energy at stagnation, instead retaining significant 3D flow. A useful tool for understanding the effects of this residual flow is 3D simulation, but the amount and complexity of information can be daunting. To address this problem, we explore the connection between 3D simulation and one-dimensional (1D) theory. Such a connection, if it exists, is mutually beneficial: 1D theory can provide a clear picture of the underlying dynamics of 3D stagnation. On the other hand, deviations between theory and simulation suggest how 1D theory must be modified to account for 3D effects. In this work, we focus on a 3D, magnetohydrodynamic simulation of a compact wire-array Z pinch. To provide a simpler background against which to test our ideas, we artificially turn off radiation during the stagnation phase. Examination of the initial accumulation of mass on axis reveals oblique collision between jets, shock accretion, and vortex formation. Despite evidence for shock-dominated stagnation, a 1D shockless stagnation solution is more appropriate for describing the global dynamics, in that it reproduces the increase of on-axis density with time. However, the 1D solution must be modified to account for 3D effects: the flows suggest enhanced thermal transport as well as centrifugal force. Upon reaching peak compression, the stagnation transitions to a second phase, in which the high-pressure core on axis expands outward into the remaining imploding plasma. During this phase, a 1D shock solution describes the growth of the shock accretion region, as well as the decrease of on-axis density with time. However, the effect of 3D flows is still present: the on-axis temperature does not cool during expansion, which appears due to ``channels'' of plasma carrying heat to the core center. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockhead Martin Company, for the National Nuclear Security Administration under DE-AC04-94AL85000.
Mahmood, Feroze; Karthik, Swaminathan; Subramaniam, Balachundhar; Panzica, Peter J; Mitchell, John; Lerner, Adam B; Jervis, Karinne; Maslow, Andrew D
2008-04-01
To study the feasibility of using 3-dimensional (3D) echocardiography in the operating room for mitral valve repair or replacement surgery. To perform geometric analysis of the mitral valve before and after repair. Prospective observational study. Academic, tertiary care hospital. Consecutive patients scheduled for mitral valve surgery. Intraoperative reconstruction of 3D images of the mitral valve. One hundred and two patients had 3D analysis of their mitral valve. Successful image reconstruction was performed in 93 patients-8 patients had arrhythmias or a dilated mitral valve annulus resulting in significant artifacts. Time from acquisition to reconstruction and analysis was less than 5 minutes. Surgeon identification of mitral valve anatomy was 100% accurate. The study confirms the feasibility of performing intraoperative 3D reconstruction of the mitral valve. This data can be used for confirmation and communication of 2-dimensional data to the surgeons by obtaining a surgical view of the mitral valve. The incorporation of color-flow Doppler into these 3D images helps in identification of the commissural or perivalvular location of regurgitant orifice. With improvements in the processing power of the current generation of echocardiography equipment, it is possible to quickly acquire, reconstruct, and manipulate images to help with timely diagnosis and surgical planning.
Numerical solution of 3D Navier-Stokes equations with upwind implicit schemes
NASA Technical Reports Server (NTRS)
Marx, Yves P.
1990-01-01
An upwind MUSCL type implicit scheme for the three-dimensional Navier-Stokes equations is presented. Comparison between different approximate Riemann solvers (Roe and Osher) are performed and the influence of the reconstructions schemes on the accuracy of the solution as well as on the convergence of the method is studied. A new limiter is introduced in order to remove the problems usually associated with non-linear upwind schemes. The implementation of a diagonal upwind implicit operator for the three-dimensional Navier-Stokes equations is also discussed. Finally the turbulence modeling is assessed. Good prediction of separated flows are demonstrated if a non-equilibrium turbulence model is used.
Enhancement of viability of muscle precursor cells on 3D scaffold in a perfusion bioreactor.
Cimetta, E; Flaibani, M; Mella, M; Serena, E; Boldrin, L; De Coppi, P; Elvassore, N
2007-05-01
The aim of this study was to develop a methodology for the in vitro expansion of skeletal-muscle precursor cells (SMPC) in a three-dimensional (3D) environment in order to fabricate a cellularized artificial graft characterized by high density of viable cells and uniform cell distribution over the entire 3D domain. Cell seeding and culture within 3D porous scaffolds by conventional static techniques can lead to a uniform cell distribution only on the scaffold surface, whereas dynamic culture systems have the potential of allowing a uniform growth of SMPCs within the entire scaffold structure. In this work, we designed and developed a perfusion bioreactor able to ensure long-term culture conditions and uniform flow of medium through 3D collagen sponges. A mathematical model to assist the design of the experimental setup and of the operative conditions was developed. The effects of dynamic vs static culture in terms of cell viability and spatial distribution within 3D collagen scaffolds were evaluated at 1, 4 and 7 days and for different flow rates of 1, 2, 3.5 and 4.5 ml/min using C2C12 muscle cell line and SMPCs derived from satellite cells. C2C12 cells, after 7 days of culture in our bioreactor, perfused applying a 3.5 ml/min flow rate, showed a higher viability resulting in a three-fold increase when compared with the same parameter evaluated for cultures kept under static conditions. In addition, dynamic culture resulted in a more uniform 3D cell distribution. The 3.5 ml/min flow rate in the bioreactor was also applied to satellite cell-derived SMPCs cultured on 3D collagen scaffolds. The dynamic culture conditions improved cell viability leading to higher cell density and uniform distribution throughout the entire 3D collagen sponge for both C2C12 and satellite cells.
Digital holographic microscopy applied to measurement of a flow in a T-shaped micromixer
NASA Astrophysics Data System (ADS)
Ooms, T. A.; Lindken, R.; Westerweel, J.
2009-12-01
In this paper, we describe measurements of a three-dimensional (3D) flow in a T-shaped micromixer by means of digital holographic microscopy. Imaging tracer particles in a microscopic flow with conventional microscopy is accompanied by a small depth-of-field, which hinders true volumetric flow measurements. In holographic microscopy, the depth of the measurement domain does not have this limitation because any desired image plane can be reconstructed after recording. Our digital holographic microscope (DHM) consists of a conventional in-line recording system with an added magnifying optical element. The measured flow velocity and the calculated vorticity illustrate four streamwise vortices in the micromixer outflow channel. Because the investigated flow is stationary and strongly 3D, the DHM performance (i.e. accuracy and resolution) can be precisely investigated. The obtained Dynamic spatial range and Dynamic velocity range are larger than 20 and 30, respectively. High-speed multiple-frame measurements illustrate the capability to simultaneously track about 80 particles in a volumetric measurement domain.
Multi-scale modeling of tsunami flows and tsunami-induced forces
NASA Astrophysics Data System (ADS)
Qin, X.; Motley, M. R.; LeVeque, R. J.; Gonzalez, F. I.
2016-12-01
The modeling of tsunami flows and tsunami-induced forces in coastal communities with the incorporation of the constructed environment is challenging for many numerical modelers because of the scale and complexity of the physical problem. A two-dimensional (2D) depth-averaged model can be efficient for modeling of waves offshore but may not be accurate enough to predict the complex flow with transient variance in vertical direction around constructed environments on land. On the other hand, using a more complex three-dimensional model is much more computational expensive and can become impractical due to the size of the problem and the meshing requirements near the built environment. In this study, a 2D depth-integrated model and a 3D Reynolds Averaged Navier-Stokes (RANS) model are built to model a 1:50 model-scale, idealized community, representative of Seaside, OR, USA, for which existing experimental data is available for comparison. Numerical results from the two numerical models are compared with each other as well as experimental measurement. Both models predict the flow parameters (water level, velocity, and momentum flux in the vicinity of the buildings) accurately, in general, except for time period near the initial impact, where the depth-averaged models can fail to capture the complexities in the flow. Forces predicted using direct integration of predicted pressure on structural surfaces from the 3D model and using momentum flux from the 2D model with constructed environment are compared, which indicates that force prediction from the 2D model is not always reliable in such a complicated case. Force predictions from integration of the pressure are also compared with forces predicted from bare earth momentum flux calculations to reveal the importance of incorporating the constructed environment in force prediction models.
Agarwal, Nitin; Biancardi, Alberto M; Patten, Florence W; Reeves, Anthony P; Seibel, Eric J
2014-04-01
Aneuploidy is typically assessed by flow cytometry (FCM) and image cytometry (ICM). We used optical projection tomographic microscopy (OPTM) for assessing cellular DNA content using absorption and fluorescence stains. OPTM combines some of the attributes of both FCM and ICM and generates isometric high-resolution three-dimensional (3-D) images of single cells. Although the depth of field of the microscope objective was in the submicron range, it was extended by scanning the objective's focal plane. The extended depth of field image is similar to a projection in a conventional x-ray computed tomography. These projections were later reconstructed using computed tomography methods to form a 3-D image. We also present an automated method for 3-D nuclear segmentation. Nuclei of chicken, trout, and triploid trout erythrocyte were used to calibrate OPTM. Ratios of integrated optical densities extracted from 50 images of each standard were compared to ratios of DNA indices from FCM. A comparison of mean square errors with thionin, hematoxylin, Feulgen, and SYTOX green was done. Feulgen technique was preferred as it showed highest stoichiometry, least variance, and preserved nuclear morphology in 3-D. The addition of this quantitative biomarker could further strengthen existing classifiers and improve early diagnosis of cancer using 3-D microscopy.
Zhu, S; Yang, Y; Khambay, B
2017-03-01
Clinicians are accustomed to viewing conventional two-dimensional (2D) photographs and assume that viewing three-dimensional (3D) images is similar. Facial images captured in 3D are not viewed in true 3D; this may alter clinical judgement. The aim of this study was to evaluate the reliability of using conventional photographs, 3D images, and stereoscopic projected 3D images to rate the severity of the deformity in pre-surgical class III patients. Forty adult patients were recruited. Eight raters assessed facial height, symmetry, and profile using the three different viewing media and a 100-mm visual analogue scale (VAS), and appraised the most informative viewing medium. Inter-rater consistency was above good for all three media. Intra-rater reliability was not significantly different for rating facial height using 2D (P=0.704), symmetry using 3D (P=0.056), and profile using projected 3D (P=0.749). Using projected 3D for rating profile and symmetry resulted in significantly lower median VAS scores than either 3D or 2D images (all P<0.05). For 75% of the raters, stereoscopic 3D projection was the preferred method for rating. The reliability of assessing specific characteristics was dependent on the viewing medium. Clinicians should be aware that the visual information provided when viewing 3D images is not the same as when viewing 2D photographs, especially for facial depth, and this may change the clinical impression. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zounemat-Kermani, Mohammad; Sabbagh-Yazdi, Saeed-Reza
2010-06-01
The main objective of this study is the simulation of flow dynamics in the deep parts of the Caspian Sea, in which the southern and middle deep regions are surrounded by considerable areas of shallow zones. To simulate spatio-temporal wind induced hydrodynamics in deep waters, a conjunctive numerical model consisting of a 2D depth average model and a 3D pseudo compressible model is proposed. The 2D model is applied to determine time dependent free surface oscillations as well as the surface velocity patterns and is conjunct to the 3D flow solver for computing three-dimensional velocity and pressure fields which coverage to steady state for the top boundary condition. The modified 2D and 3D sets of equations are conjunct considering interface shear stresses. Both sets of 2D and 3D equations are solved on unstructured triangular and tetrahedral meshes using the Galerkin Finite Volume Method. The conjunctive model is utilized to investigate the deep currents affected by wind, Coriolis forces and the river inflow conditions of the Caspian Sea. In this study, the simulation of flow field due to major winds as well as transient winds in the Caspian Sea during a period of 6 hours in the winter season has been conducted and the numerical results for water surface level are then compared to the 2D numerical results.
Quasi-three-dimensional flow solution by meridional plane analysis
NASA Technical Reports Server (NTRS)
Katsanis, T.; Mcnally, W. D.
1974-01-01
A computer program has been developed to obtain subsonic or shockfree transonic, nonviscous flow analysis on the hub-shroud mid-channel flow surface of a turbomachine. The analysis may be for any annular passage, with or without blades. The blades may be fixed or rotating and may be twisted and leaned. The flow may be axial, radial or mixed. Blade surface velocities over the entire blade are approximated based on the rate of change of angular momentum. This gives a 3-D flow picture based on a 2-D analysis. The paper discusses the method used for the program and shows examples of the type of passages and blade rows which can be analyzed. Also, some numerical examples are given to show how the program can be used for practical assistance in design of blading, annular passages, and annular diffusers.
Characterization of 3-Dimensional PET Systems for Accurate Quantification of Myocardial Blood Flow.
Renaud, Jennifer M; Yip, Kathy; Guimond, Jean; Trottier, Mikaël; Pibarot, Philippe; Turcotte, Eric; Maguire, Conor; Lalonde, Lucille; Gulenchyn, Karen; Farncombe, Troy; Wisenberg, Gerald; Moody, Jonathan; Lee, Benjamin; Port, Steven C; Turkington, Timothy G; Beanlands, Rob S; deKemp, Robert A
2017-01-01
Three-dimensional (3D) mode imaging is the current standard for PET/CT systems. Dynamic imaging for quantification of myocardial blood flow with short-lived tracers, such as 82 Rb-chloride, requires accuracy to be maintained over a wide range of isotope activities and scanner counting rates. We proposed new performance standard measurements to characterize the dynamic range of PET systems for accurate quantitative imaging. 82 Rb or 13 N-ammonia (1,100-3,000 MBq) was injected into the heart wall insert of an anthropomorphic torso phantom. A decaying isotope scan was obtained over 5 half-lives on 9 different 3D PET/CT systems and 1 3D/2-dimensional PET-only system. Dynamic images (28 × 15 s) were reconstructed using iterative algorithms with all corrections enabled. Dynamic range was defined as the maximum activity in the myocardial wall with less than 10% bias, from which corresponding dead-time, counting rates, and/or injected activity limits were established for each scanner. Scatter correction residual bias was estimated as the maximum cavity blood-to-myocardium activity ratio. Image quality was assessed via the coefficient of variation measuring nonuniformity of the left ventricular myocardium activity distribution. Maximum recommended injected activity/body weight, peak dead-time correction factor, counting rates, and residual scatter bias for accurate cardiac myocardial blood flow imaging were 3-14 MBq/kg, 1.5-4.0, 22-64 Mcps singles and 4-14 Mcps prompt coincidence counting rates, and 2%-10% on the investigated scanners. Nonuniformity of the myocardial activity distribution varied from 3% to 16%. Accurate dynamic imaging is possible on the 10 3D PET systems if the maximum injected MBq/kg values are respected to limit peak dead-time losses during the bolus first-pass transit. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
An experimental investigation on the subcritical instability in plane Poieseuille flow
NASA Technical Reports Server (NTRS)
Nishioka, T.; Honda, S.; Kamibayashi, S.
1981-01-01
The relationship between the three dimensional properties of the fundamental flow of a plane Poieseuille flow and subcritical stability was studied. An S-T wave was introduced into the flow and the three dimensional development of the wave observed. Results indicate that: (1) the T-S wave has three dimensional properties which are synchronous with the fundamental flow, but there is damping at microamplitude; (2) when the amplitude reaches a certain threshold, subcritical instability and peak valley bifurcation occur simultaneously and a peak valley structure is formed; (3) this threshold depends to a great extent on the frequency; and (4) after the peak valley bifurcation there is a transition to a turbulent flow by the process of laminar flow collapse identical to that in Blasius flow.
APPLICATION OF THE 3D MODEL OF RAILWAY VIADUCTS TO COST ESTIMATION AND CONSTRUCTION
NASA Astrophysics Data System (ADS)
Fujisawa, Yasuo; Yabuki, Nobuyoshi; Igarashi, Zenichi; Yoshino, Hiroyuki
Three dimensional models of civil engineering structures are only partially used in either design or construction but not both. Research on integration of design, cost estimation and construction by 3Dmodels has not been heard in civil engineering domain yet. Using continuously a 3D product model of a structure from design to construction through estimation should improve the efficiency and decrease the occurrence of mistakes, hence enhancing the quality. In this research, we investigated the current practices of flow from design to construction, particularly focusing on cost estimation. Then, we identified advantages and issues on utilization of 3D design models to estimation and construction by applying 3D models to an actual railway construction project.
TRIM—3D: a three-dimensional model for accurate simulation of shallow water flow
Casulli, Vincenzo; Bertolazzi, Enrico; Cheng, Ralph T.
1993-01-01
A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is discussed. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that the resulting algorithm permits the use of large time steps at a minimal computational cost. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers. The high computational efficiency of this method has made it possible to provide the fine details of circulation structure in complex regions that previous studies were unable to obtain. For proper interpretation of the model results suitable interactive graphics is also an essential tool.
Effect of hydrogen peroxide on the three-dimensional polymer network in composites.
Durner, Jürgen; Stojanovic, Marija; Urcan, Ebru; Spahl, Werner; Haertel, Ursula; Hickel, Reinhard; Reichl, Franx-Xaver
2011-06-01
Less data are available about the effects of hydrogen peroxide on the three-dimensional polymer network of polymerized composites. Therefore the study was performed to test the effects of hydrogen peroxide on the three-dimensional polymer network in composites. Polymerized specimens from Tetric Flow®, Tetric Ceram® and Filtek™ Supreme XT were bleached with Opalescence® PF 15% for 5h or PF 35% for 0.5h, respectively, and then stored in methanol for 1d and 7d. Controls were unbleached specimens. The eluates were analyzed by gas chromatography/mass spectrometry. More methacrylic acid (MAA), bisphenol-A (BPA), ethoxylated bisphenol-A-dimethacrylate (BisEMA), hydroquinone monomethyl ether (HQME), 1,10-decanediol dimethacrylate (DDDMA) and/or triethylene glycol dimethacrylate (TEGDMA) were eluted from bleached specimens compared with non bleached controls (1d). The highest DDDMA amount of 419.8 μmol/l was found in the eluates after 7d in Tetric Flow® specimens treated with PF 15. The highest HQME amount of 159.6 μmol/l was found in eluates from Tetric Ceram® specimens treated with PF after 7d. The highest TEGDMA amount of 178.7 μmol/l was found in eluates from Filtek™ Supreme XT specimens treated with PF 35 after 7d. Bleaching with hydrogen peroxide has an effect on the three-dimensional polymer network in polymerized composites leading to an increase in the release of unpolymerized monomers, additives and unspecific oxidative products. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tomar, J.; Yadav, B. K.
2016-12-01
The aim of this study is to investigate the soil water flow and nitrate movement through vadose zone considering mobile-immobile approach using large scale three dimensional (3D) tank setup. The three dimensional sand tank setup was fabricated having dimension of 60 cm length, 30 cm width and 60 cm height and embedded with horizontal and vertical layers of sampling ports. The tank was filled with a porous media of average size of 0.5 to 1.0 mm homogeneous and nitrate concentration of 300 mg/l was applied with a distributed constant water flux of 150ml/hr. at the top using a sprinkler system. Pore water samples were collected hourly from the sampling ports and were analyzed using UV-spectrophotometer. The soil hydraulic and solute transport parameters were deduced from the laboratory experiments for simulating the considered 3D domain using the mobile-immobile approach. Soil moisture flow and contaminant transport equations are numerically solved for simulating the nitrate movement in the tank setup. The simulated break through curves (BTC) show the nitrate movement is rapid in mobile region by a factor of 1.2 as compared with the immobile region. The results show that the mobile-immobile approach of predicting solute transport in variably saturated zone can be used effectively in field after getting the required parameters using the laboratory experiments under similar environmental conditions. The high concentration 130 ppm was observed in lateral and transverse axis at 05 cm depth. This results will help in further investigation in field and in implementation of decontamination techniques.
Three-dimensional photography for the evaluation of facial profiles in obstructive sleep apnoea.
Lin, Shih-Wei; Sutherland, Kate; Liao, Yu-Fang; Cistulli, Peter A; Chuang, Li-Pang; Chou, Yu-Ting; Chang, Chih-Hao; Lee, Chung-Shu; Li, Li-Fu; Chen, Ning-Hung
2018-06-01
Craniofacial structure is an important determinant of obstructive sleep apnoea (OSA) syndrome risk. Three-dimensional stereo-photogrammetry (3dMD) is a novel technique which allows quantification of the craniofacial profile. This study compares the facial images of OSA patients captured by 3dMD to three-dimensional computed tomography (3-D CT) and two-dimensional (2-D) digital photogrammetry. Measurements were correlated with indices of OSA severity. Thirty-eight patients diagnosed with OSA were included, and digital photogrammetry, 3dMD and 3-D CT were performed. Distances, areas, angles and volumes from the images captured by three methods were analysed. Almost all measurements captured by 3dMD showed strong agreement with 3-D CT measurements. Results from 2-D digital photogrammetry showed poor agreement with 3-D CT. Mandibular width, neck perimeter size and maxillary volume measurements correlated well with the severity of OSA using all three imaging methods. Mandibular length, facial width, binocular width, neck width, cranial base triangle area, cranial base area 1 and middle cranial fossa volume correlated well with OSA severity using 3dMD and 3-D CT, but not with 2-D digital photogrammetry. 3dMD provided accurate craniofacial measurements of OSA patients, which were highly concordant with those obtained by CT, while avoiding the radiation associated with CT. © 2018 Asian Pacific Society of Respirology.
Posterior Parietal Cortex Drives Inferotemporal Activations During Three-Dimensional Object Vision.
Van Dromme, Ilse C; Premereur, Elsie; Verhoef, Bram-Ernst; Vanduffel, Wim; Janssen, Peter
2016-04-01
The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams.
Posterior Parietal Cortex Drives Inferotemporal Activations During Three-Dimensional Object Vision
Van Dromme, Ilse C.; Premereur, Elsie; Verhoef, Bram-Ernst; Vanduffel, Wim; Janssen, Peter
2016-01-01
The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams. PMID:27082854
Convergence Acceleration for Multistage Time-Stepping Schemes
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Turkel, Eli L.; Rossow, C-C; Vasta, V. N.
2006-01-01
The convergence of a Runge-Kutta (RK) scheme with multigrid is accelerated by preconditioning with a fully implicit operator. With the extended stability of the Runge-Kutta scheme, CFL numbers as high as 1000 could be used. The implicit preconditioner addresses the stiffness in the discrete equations associated with stretched meshes. Numerical dissipation operators (based on the Roe scheme, a matrix formulation, and the CUSP scheme) as well as the number of RK stages are considered in evaluating the RK/implicit scheme. Both the numerical and computational efficiency of the scheme with the different dissipation operators are discussed. The RK/implicit scheme is used to solve the two-dimensional (2-D) and three-dimensional (3-D) compressible, Reynolds-averaged Navier-Stokes equations. In two dimensions, turbulent flows over an airfoil at subsonic and transonic conditions are computed. The effects of mesh cell aspect ratio on convergence are investigated for Reynolds numbers between 5.7 x 10(exp 6) and 100.0 x 10(exp 6). Results are also obtained for a transonic wing flow. For both 2-D and 3-D problems, the computational time of a well-tuned standard RK scheme is reduced at least a factor of four.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Speetjens, M. F. M.; Demissie, E. A.; Metcalfe, G.
Laminar mixing by the inline-mixing principle is a key to many industrial fluids-engineering systems of size extending from micrometers to meters. However, insight into fundamental transport phenomena particularly under the realistic conditions of three-dimensionality (3D) and fluid inertia remains limited. This study addresses these issues for inline mixers with cylindrical geometries and adopts the Rotated Arc Mixer (RAM) as a representative system. Transport is investigated from a Lagrangian perspective by identifying and examining coherent structures that form in the 3D streamline portrait. 3D effects and fluid inertia introduce three key features that are not found in simplified configurations: transition zonesmore » between consecutive mixing cells of the inline-mixing flow; local upstream flow (in certain parameter regimes); transition/inertia-induced breaking of symmetries in the Lagrangian equations of motion (causing topological changes in coherent structures). Topological considerations strongly suggest that there nonetheless always exists a net throughflow region between inlet and outlet of the inline-mixing flow that is strictly separated from possible internal regions. The Lagrangian dynamics in this region admits representation by a 2D time-periodic Hamiltonian system. This establishes one fundamental kinematic structure for the present class of inline-mixing flows and implies universal behavior in that all states follow from the Hamiltonian breakdown of one common integrable state. A so-called period-doubling bifurcation is the only way to eliminate transport barriers originating from this state and thus is a necessary (yet not sufficient) condition for global chaos. Important in a practical context is that a common simplification in literature, i.e., cell-wise fully-developed Stokes flow (“2.5D approach”), retains these fundamental kinematic properties and deviates from the generic 3D inertial case only in a quantitative sense. This substantiates its suitability for (at least first exploratory) studies on (qualitative) mixing properties.« less
Turbulence generation by waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaftori, D.; Nan, X.S.; Banerjee, S.
The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased.more » Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.« less
Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, R.; Aluie, H.; Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14627
The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. The vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.
Optimizing Micromixer Surfaces To Deter Biofouling.
Waters, James T; Liu, Ya; Li, Like; Balazs, Anna C
2018-03-07
Using computational modeling, we show that the dynamic interplay between a flowing fluid and the appropriately designed surface relief pattern can inhibit the fouling of the substrate. We specifically focus on surfaces that are decorated with three-dimensional (3D) chevron or sawtooth "micromixer" patterns and model the fouling agents (e.g., cells) as spherical microcapsules. The interaction between the imposed shear flow and the chevrons on the surface generates 3D vortices in the system. We pinpoint a range of shear rates where the forces from these vortices can rupture the bonds between the two mobile microcapsules near the surface. Notably, the patterned surface offers fewer points of attachment than a flat substrate, and the shear flows readily transport the separated capsules away from the layer. We contrast the performance of surfaces that encompass rectangular posts, chevrons, and asymmetric sawtooth patterns and thereby identify the geometric factors that cause the sawtooth structure to be most effective at disrupting the bonding between the capsules. By breaking up nascent clusters of contaminant cells, these 3D relief patterns can play a vital role in disrupting the biofouling of surfaces immersed in flowing fluids.
Implementation of algebraic stress models in a general 3-D Navier-Stokes method (PAB3D)
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.
1995-01-01
A three-dimensional multiblock Navier-Stokes code, PAB3D, which was developed for propulsion integration and general aerodynamic analysis, has been used extensively by NASA Langley and other organizations to perform both internal (exhaust) and external flow analysis of complex aircraft configurations. This code was designed to solve the simplified Reynolds Averaged Navier-Stokes equations. A two-equation k-epsilon turbulence model has been used with considerable success, especially for attached flows. Accurate predicting of transonic shock wave location and pressure recovery in separated flow regions has been more difficult. Two algebraic Reynolds stress models (ASM) have been recently implemented in the code that greatly improved the code's ability to predict these difficult flow conditions. Good agreement with Direct Numerical Simulation (DNS) for a subsonic flat plate was achieved with ASM's developed by Shih, Zhu, and Lumley and Gatski and Speziale. Good predictions were also achieved at subsonic and transonic Mach numbers for shock location and trailing edge boattail pressure recovery on a single-engine afterbody/nozzle model.
This document is the user's manual of 3DFATMIC, a 3-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals Model using a Lagrangian-Eulerian adapted zooming and peak capturing (LEZOOMPC) algorithm.
Plane boundary effects on characteristics of propeller jets
NASA Astrophysics Data System (ADS)
Wei, Maoxing; Chiew, Yee-Meng; Hsieh, Shih-Chun
2017-10-01
The flow properties of a propeller jet in the presence of a plane bed boundary were investigated using the particle image velocimetry technique. Three clearance heights, Z b = 2 D p, D p, and 0.5 D p, where D p = propeller diameter, were used to examine boundary effects on the development of the jet. In each case, the mean flow properties and turbulence characteristics were measured in a larger field of view than those used in past studies. Both the streamwise and transverse flow fields were measured to obtain the three-dimensional characteristics of the propeller jet. Similar to a confined offset jet, the propeller jet also exhibits a wall attachment behavior when it is placed near a plane boundary. As a result, in contrast to its unconfined counterpart, the confined propeller jet features three regions, namely the free jet, impingement and wall jet regions. The study shows that the extent of each region varies under different clearance heights. The development of the mean flow and turbulence characteristics associated with varying clearance heights are compared to illustrate boundary effects in these regions. In the impingement region, the measured transverse flow fields provide new insights on the lateral motions induced by the impingement of the swirling jet. In the wall jet region, observations reveal that the jet behaves like a typical three-dimensional wall jet and its axial velocity profiles show good agreement with the classical wall jet similarity function.
2-D and 3-D mixing flow analyses of a scramjet-afterbody configuration
NASA Technical Reports Server (NTRS)
Baysal, Oktay; Eleshaky, Mohamed E.; Engelund, Walter C.
1989-01-01
A cold simulant gas study of propulsion/airframe integration for a hypersonic vehicle powered by a scramjet engine is presented. The specific heat ratio of the hot exhaust gases are matched by utilizing a cold mixture of argon and Freon-12. Solutions are obtained for a hypersonic corner flow and a supersonic rectangular flow in order to provide the upstream boundary conditions. The computational test examples also provide a comparison of this flow with that of air as the expanding supersonic jet, where the specific heats are assumed to be constant. It is shown that the three-dimensional computational fluid capabilities developed for these types of flow may be utilized to augment the conventional wind tunnel studies of scramjet afterbody flows using cold simulant exhaust gases, which in turn can help in the design of a scramjet internal-external nozzle.
NASA Astrophysics Data System (ADS)
Xu, Jiexin; Chen, Zhiwu; Xie, Jieshuo; Cai, Shuqun
2016-03-01
In this paper, the generation and evolution of seaward propagating internal solitary waves (ISWs) detected by satellite image in the northwestern South China Sea (SCS) are investigated by a fully nonlinear, non-hydrostatic, three-dimensional Massachusetts Institute of Technology general circulation model (MITgcm). The three-dimensional (3D) modeled ISWs agree favorably with those by satellite image, indicating that the observed seaward propagating ISWs may be generated by the interaction of barotropic tidal flow with the arc-like continental slope south of Hainan Island. Though the tidal current is basically in east-west direction, different types of internal waves are generated by tidal currents flowing over the slopes with different shaped shorelines. Over the slope where the shoreline is straight, only weak internal tides are generated; over the slope where the shoreline is seaward concave, large-amplitude internal bores are generated, and since the concave isobaths of the arc-like continental slope tend to focus the baroclinic tidal energy which is conveyed to the internal bores, the internal bores can efficiently disintegrate into a train of rank-ordered ISWs during their propagation away from the slope; while over the slope where the shoreline is seaward convex, no distinct internal tides are generated. It is also implied that the internal waves over the slope are generated due to mixed lee wave mechanism. Furthermore, the effects of 3D model, continental slope curvature, stratification, rotation and tidal forcing on the generation of ISWs are discussed, respectively. It is shown that, the amplitude and phase speed of ISWs derived from a two-dimensional (2D) model are smaller than those from the 3D one, and the 3D model has an advantage over 2D one in simulating the ISWs generated by the interaction between tidal currents and 3D curved continental slope; the reduced continental slope curvature hinders the extension of ISW crestline; both weaker stratification and rotation suppress the generation of ISWs; and the width of ISW crestline generated by K1 tidal harmonic is longer than that by M2 tidal harmonic.
Inflow/Outflow Boundary Conditions with Application to FUN3D
NASA Technical Reports Server (NTRS)
Carlson, Jan-Renee
2011-01-01
Several boundary conditions that allow subsonic and supersonic flow into and out of the computational domain are discussed. These boundary conditions are demonstrated in the FUN3D computational fluid dynamics (CFD) code which solves the three-dimensional Navier-Stokes equations on unstructured computational meshes. The boundary conditions are enforced through determination of the flux contribution at the boundary to the solution residual. The boundary conditions are implemented in an implicit form where the Jacobian contribution of the boundary condition is included and is exact. All of the flows are governed by the calorically perfect gas thermodynamic equations. Three problems are used to assess these boundary conditions. Solution residual convergence to machine zero precision occurred for all cases. The converged solution boundary state is compared with the requested boundary state for several levels of mesh densities. The boundary values converged to the requested boundary condition with approximately second-order accuracy for all of the cases.
Navier-Stokes analysis of radial turbine rotor performance
NASA Technical Reports Server (NTRS)
Larosiliere, L. M.
1993-01-01
An analysis of flow through a radial turbine rotor using the three-dimensional, thin-layer Navier-Stokes code RVC3D is described. The rotor is a solid version of an air-cooled metallic radial turbine having thick trailing edges, shroud clearance, and scalloped-backface clearance. Results are presented at the nominal operating condition using both a zero-clearance model and a model simulating the effects of the shroud and scalloped-backface clearance flows. A comparison with the available test data is made and details of the internal flow physics are discussed, allowing a better understanding of the complex flow distribution within the rotor.
Fundamental Study of Material Flow in Friction Stir Welds
NASA Technical Reports Server (NTRS)
Reynolds, Anthony P.
1999-01-01
The presented research project consists of two major parts. First, the material flow in solid-state, friction stir, butt-welds as been investigated using a marker insert technique. Changes in material flow due to welding parameter as well as tool geometry variations have been examined for different materials. The method provides a semi-quantitative, three-dimensional view of the material transport in the welded zone. Second, a FSW process model has been developed. The fully coupled model is based on fluid mechanics; the solid-state material transport during welding is treated as a laminar, viscous flow of a non-Newtonian fluid past a rotating circular cylinder. The heat necessary for the material softening is generated by deformation of the material. As a first step, a two-dimensional model, which contains only the pin of the FSW tool, has been created to test the suitability of the modeling approach and to perform parametric studies of the boundary conditions. The material flow visualization experiments agree very well with the predicted flow field. Accordingly, material within the pin diameter is transported only in the rotation direction around the pin. Due to the simplifying assumptions inherent in the 2-D model, other experimental data such as forces on the pin, torque, and weld energy cannot be directly used for validation. However, the 2-D model predicts the same trends as shown in the experiments. The model also predicts a deviation from the "normal" material flow at certain combinations of welding parameters, suggesting a possible mechanism for the occurrence of some typical FSW defects. The next step has been the development of a three-dimensional process model. The simplified FSW tool has been designed as a flat shoulder rotating on the top of the workpiece and a rotating, cylindrical pin, which extends throughout the total height of the flow domain. The thermal boundary conditions at the tool and at the contact area to the backing plate have been varied to fit experimental data such as temperature profiles, torque and tool forces. General aspects of the experimentally visualized material flow pattern are confirmed by the 3-D model.
Jaremko, Jacob L; Mabee, Myles; Swami, Vimarsha G; Jamieson, Lucy; Chow, Kelvin; Thompson, Richard B
2014-12-01
To use three-dimensional ( 3D three-dimensional ) ultrasonography (US) to quantify the alpha-angle variability due to changing probe orientation during two-dimensional ( 2D two-dimensional ) US of the infant hip and its effect on the diagnostic classification of developmental dysplasia of the hip ( DDH developmental dysplasia of the hip ). In this institutional research ethics board-approved prospective study, with parental written informed consent, 13-MHz 3D three-dimensional US was added to initial 2D two-dimensional US for 56 hips in 35 infants (mean age, 41.7 days; range, 4-112 days), 26 of whom were female (mean age, 38.7 days; range, 6-112 days) and nine of whom were male (mean age, 50.2 days; range, 4-111 days). Findings in 20 hips were normal at the initial visit and were initially inconclusive but normalized spontaneously at follow-up in 23 hips; 13 hips were treated for dysplasia. With the computer algorithm, 3D three-dimensional US data were resectioned in planes tilted in 5° increments away from a central plane, as if slowly rotating a 2D two-dimensional US probe, until resulting images no longer met Graf quality criteria. On each acceptable 2D two-dimensional image, two observers measured alpha angles, and descriptive statistics, including mean, standard deviation, and limits of agreement, were computed. Acceptable 2D two-dimensional images were produced over a range of probe orientations averaging 24° (maximum, 45°) from the central plane. Over this range, alpha-angle variation was 19° (upper limit of agreement), leading to alteration of the diagnostic category of hip dysplasia in 54% of hips scanned. Use of 3D three-dimensional US showed that alpha angles measured at routine 2D two-dimensional US of the hip can vary substantially between 2D two-dimensional scans solely because of changes in probe positioning. Not only could normal hips appear dysplastic, but dysplastic hips also could have normal alpha angles. Three-dimensional US can display the full acetabular shape, which might improve DDH developmental dysplasia of the hip assessment accuracy. © RSNA, 2014.
NASA Technical Reports Server (NTRS)
Suder, Kenneth (Technical Monitor); Tan, Choon-Sooi
2003-01-01
The effects of two types of flow non-uniformity on stall inception behavior were assessed with linearized stability analyses of two compressor flow models. Response to rotating tip clearance asymmetries induced by a whirling rotor shaft or rotor height variations were investigated with a two-dimensional flow model. A 3-D compressor model was also developed to study the stability of both full-span and part-span rotating stall modes in annular geometries with radial flow variations. The studies focussed on (1) understanding what compressor designs were sensitive to these types of circumferential and spanwise flow non-uniformities, and (2) situations where 2-D stability theories were inadequate because of 3-D flow effects. Rotating tip clearance non-uniformity caused the greatest performance loss for shafts whirling at the rotating stall frequency. A whirling shaft displacement of 1 percent chord caused the stalling mass flow to rise by as much as 10 percent and the peak pressure rise to decrease by 6 percent. These changes were an order of magnitude larger than for equivalent-sized stationary or rotor-locked clearance asymmetries. Spanwise flow non-uniformity always destabilized the compressor, so that 2-D models over-predicted that stall margin compared to 3-D theory. The difference increased for compressors with larger spanwise variations of characteristic slope and reduced characteristic curvature near the peak. Differences between 2-D and 3-D stall point predictions were generally unacceptable (2 - 4 percent of flow coefficient) for single-stage configurations, but were less than 1 percent for multistage compressors. 2-D analyses predicted the wrong stall mode for specific cases of radial inlet flow distortion, mismatching and annulus area contraction, where higher-order radial modes led to stall. The stability behavior of flows with circumferential or radial non-uniformity was unified through a single stability criterion. The stall point for both cases was set by the integral around the annulus of the pressure rise characteristic slope, weighted by the amplitude of the mode shape. For the case of steady circumferential variations, this criterion reduced to the integrated mean slope (IMS) condition associated with steady inlet distortions. The rotating tip clearance asymmetry model was also used to demonstrate the feasibility of actively controlling the shaft position to suppress rotating stall. In axisymmetric mean flow, this method only stabilized the first harmonic mode, increasing the operating range until surge or higher harmonic modes became unstable.
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Lakshmanan, B.; Carlson, John R.
1995-01-01
A three-dimensional Navier-Stokes solver was used to determine how accurately computations can predict local and average skin friction coefficients for attached and separated flows for simple experimental geometries. Algebraic and transport equation closures were used to model turbulence. To simulate anisotropic turbulence, the standard two-equation turbulence model was modified by adding nonlinear terms. The effects of both grid density and the turbulence model on the computed flow fields were also investigated and compared with available experimental data for subsonic and supersonic free-stream conditions.
The northern tidal dynamic of Aceh waters: A 3D numerical model
NASA Astrophysics Data System (ADS)
Irham, M.; Miswar, E.; Ilhamsyah, Y.; Setiawan, I.
2018-05-01
The northern tidal dynamic of Aceh waters studied by employing three-dimensional (3D) numerical hydrodynamic model. The purpose of this study is to understand the phenomena and the characteristic of the northern tidal dynamic of Aceh waters. The research used the explicit-splitting scheme numerical model of Navier-Stokes formulation. The result displays that the vertical rotation of flow movement (vertical eddy) at a depth of 15 to 25 meter eastern part of the study area. Hence, the result also informs that the current circulation identically to the upwelling in the western region of Aceh during the wet season and vice versa. However, during the transitional season, the flow circulation depends on how the tidal dynamic occurs in the area.
2007-06-01
information flow involved in network attacks. This kind of information can be invaluable in learning how to best setup and defend computer networks...administrators, and those interested in learning about securing networks a way to conceptualize this complex system of computing. NTAV3D will provide a three...teaching with visual and other components can make learning more effective” (Baxley et al, 2006). A hyperbox (Alpern and Carter, 1991) is
Hairy Slices: Evaluating the Perceptual Effectiveness of Cutting Plane Glyphs for 3D Vector Fields.
Stevens, Andrew H; Butkiewicz, Thomas; Ware, Colin
2017-01-01
Three-dimensional vector fields are common datasets throughout the sciences. Visualizing these fields is inherently difficult due to issues such as visual clutter and self-occlusion. Cutting planes are often used to overcome these issues by presenting more manageable slices of data. The existing literature provides many techniques for visualizing the flow through these cutting planes; however, there is a lack of empirical studies focused on the underlying perceptual cues that make popular techniques successful. This paper presents a quantitative human factors study that evaluates static monoscopic depth and orientation cues in the context of cutting plane glyph designs for exploring and analyzing 3D flow fields. The goal of the study was to ascertain the relative effectiveness of various techniques for portraying the direction of flow through a cutting plane at a given point, and to identify the visual cues and combinations of cues involved, and how they contribute to accurate performance. It was found that increasing the dimensionality of line-based glyphs into tubular structures enhances their ability to convey orientation through shading, and that increasing their diameter intensifies this effect. These tube-based glyphs were also less sensitive to visual clutter issues at higher densities. Adding shadows to lines was also found to increase perception of flow direction. Implications of the experimental results are discussed and extrapolated into a number of guidelines for designing more perceptually effective glyphs for 3D vector field visualizations.
Three dimensional fabrication at small size scales
Leong, Timothy G.; Zarafshar, Aasiyeh M.; Gracias, David H.
2010-01-01
Despite the fact that we live in a three-dimensional (3D) world and macroscale engineering is 3D, conventional sub-mm scale engineering is inherently two-dimensional (2D). New fabrication and patterning strategies are needed to enable truly three-dimensionally-engineered structures at small size scales. Here, we review strategies that have been developed over the last two decades that seek to enable such millimeter to nanoscale 3D fabrication and patterning. A focus of this review is the strategy of self-assembly, specifically in a biologically inspired, more deterministic form known as self-folding. Self-folding methods can leverage the strengths of lithography to enable the construction of precisely patterned 3D structures and “smart” components. This self-assembling approach is compared with other 3D fabrication paradigms, and its advantages and disadvantages are discussed. PMID:20349446
Faber, D.M; Weiland, M.A.; Moursund, R.A.; Carlson, T.J.; Adams, N.; Rondorf, D.
2001-01-01
This report describes tests conducted at Bonneville Dam on the Columbia River in the spring of 2000. The studies used three-dimensional (3D) acoustic telemetry and computational fluid dynamics (CFD) hydraulic modeling techniques to evaluate the response of outmigrating juvenile steelhead (Oncorhynchus mykiss) and yearling chinook (O. tshawytscha) to the Prototype Surface Collector (PSC) installed at Powerhouse I of Bonneville Dam in 1998 to test the concept of using a deep-slot surface bypass collector to divert downstream migrating salmon from turbines. The study was conducted by Pacific Northwest National Laboratory (PNNL), the Waterways Experiment Station of the U.S. Army Corp of Engineers (COE), Asci Corporation, and the U.S. Geological Survey (USGS), and was sponsored by COE’s Portland District. The goal of the study was to observe the three-dimensional behavior of tagged fish (fish bearing ultrasonic micro-transmitters) within 100 meters (m) of the surface flow bypass structure to test hypotheses about the response of migrants to flow stimuli generated by the presence of the surface flow bypass prototype and its operation. Research was done in parallel with radio telemetry studies conducted by USGS and hydroacoustic studies conducted by WES & Asci to evaluate the prototype surface collector.
Pressure-based high-order TVD methodology for dynamic stall control
NASA Astrophysics Data System (ADS)
Yang, H. Q.; Przekwas, A. J.
1992-01-01
The quantitative prediction of the dynamics of separating unsteady flows, such as dynamic stall, is of crucial importance. This six-month SBIR Phase 1 study has developed several new pressure-based methodologies for solving 3D Navier-Stokes equations in both stationary and moving (body-comforting) coordinates. The present pressure-based algorithm is equally efficient for low speed incompressible flows and high speed compressible flows. The discretization of convective terms by the presently developed high-order TVD schemes requires no artificial dissipation and can properly resolve the concentrated vortices in the wing-body with minimum numerical diffusion. It is demonstrated that the proposed Newton's iteration technique not only increases the convergence rate but also strongly couples the iteration between pressure and velocities. The proposed hyperbolization of the pressure correction equation is shown to increase the solver's efficiency. The above proposed methodologies were implemented in an existing CFD code, REFLEQS. The modified code was used to simulate both static and dynamic stalls on two- and three-dimensional wing-body configurations. Three-dimensional effect and flow physics are discussed.
Residual stresses and their effects on deformation
NASA Astrophysics Data System (ADS)
Davis, L. C.; Allison, J. E.
1993-11-01
Residual stresses induced by thermal expansion mismatch in metal-matrix composites are studied by three-dimensional (3-D) elastic-plastic finite element analyses. Typically, the stress-free state is 150 to 300 K above room temperature. The coefficient of thermal expansion of the matrix is 3 to 5 times larger than that of the ceramic inclusion, resulting in compressive stresses of order 200 MPa in the inclusions. Both compressive and tensile stresses can be found in the matrix. Since the stress may exceed the matrix yield strength near the particles, plastic flow occurs. The authors find a significant influence of this flow on the elastic and plastic properties of the composite. The calculated residual strains in TiC particles due to thermal expansion mismatch and external loads compare well with recent neutron diffraction experiments (Bourke et al.) The present work is the first reported three-dimensional analysis of spherical inclusions in different arrays (simple cubic (sc) and face-centered cubic (fcc)) that permit a study of particle interactions.
A finite area scheme for shallow granular flows on three-dimensional surfaces
NASA Astrophysics Data System (ADS)
Rauter, Matthias
2017-04-01
Shallow granular flow models have become a popular tool for the estimation of natural hazards, such as landslides, debris flows and avalanches. The shallowness of the flow allows to reduce the three-dimensional governing equations to a quasi two-dimensional system. Three-dimensional flow fields are replaced by their depth-integrated two-dimensional counterparts, which yields a robust and fast method [1]. A solution for a simple shallow granular flow model, based on the so-called finite area method [3] is presented. The finite area method is an adaption of the finite volume method [4] to two-dimensional curved surfaces in three-dimensional space. This method handles the three dimensional basal topography in a simple way, making the model suitable for arbitrary (but mildly curved) topography, such as natural terrain. Furthermore, the implementation into the open source software OpenFOAM [4] is shown. OpenFOAM is a popular computational fluid dynamics application, designed so that the top-level code mimics the mathematical governing equations. This makes the code easy to read and extendable to more sophisticated models. Finally, some hints on how to get started with the code and how to extend the basic model will be given. I gratefully acknowledge the financial support by the OEAW project "beyond dense flow avalanches". Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics 199, 177-215. Ferziger, J. & Peric, M. 2002 Computational methods for fluid dynamics, 3rd edn. Springer. Tukovic, Z. & Jasak, H. 2012 A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Computers & fluids 55, 70-84. Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics 12(6), 620-631.
Three-Dimensional Upward Flame Spreading in Partial-Gravity Buoyant Flows
NASA Technical Reports Server (NTRS)
Sacksteder, Kurt R.; Feier, Ioan I.; Shih, Hsin-Yi; T'ien, James S.
2001-01-01
Reduced-gravity environments have been used to establish low-speed, purely forced flows for both opposed- and concurrent-flow flame spread studies. Altenkirch's group obtained spacebased experimental results and developed unsteady, two-dimensional numerical simulations of opposed-flow flame spread including gas-phase radiation, primarily away from the flammability limit for thin fuels, but including observations of thick fuel quenching in quiescent environments. T'ien's group contributed some early flame spreading results for thin fuels both in opposed flow and concurrent flow regimes, with more focus on near-limit conditions. T'ien's group also developed two- and three-dimensional numerical simulations of concurrent-flow flame spread incorporating gas-phase radiative models, including predictions of a radiatively-induced quenching limit reached in very low-speed air flows. Radiative quenching has been subsequently observed in other studies of combustion in very low-speed flows including other flame spread investigations, droplet combustion and homogeneous diffusion flames, and is the subject of several contemporary studies reported in this workshop. Using NASA aircraft flying partial-gravity "parabolic" trajectories, flame spreading in purely buoyant, opposed-flow (downward burning) has been studied. These results indicated increases in flame spread rates and enhanced flammability (lower limiting atmospheric oxygen content) as gravity levels were reduced from normal Earth gravity, and were consistent with earlier data obtained by Altenkirch using a centrifuge. In this work, experimental results and a three-dimensional numerical simulation of upward flame spreading in variable partial-gravity environments were obtained including some effects of reduced pressure and variable sample width. The simulation provides physical insight for interpreting the experimental results and shows the intrinsic 3-D nature of buoyant, upward flame spreading. This study is intended to link the evolving understanding of flame spreading in purely-forced flows to the purely-buoyant flow environment, particularly in the concurrent flow regime; provide additional insight into the existence of steady flame spread in concurrent flows; and stimulate direct comparisons between opposed- and concurrent-flow flame spread. Additionally, this effort is intended to provide direct practical understanding applicable to fire protection planning for the habitable facilities in partial gravity environments of anticipated Lunar and Martian explorations.
Single-camera three-dimensional tracking of natural particulate and zooplankton
NASA Astrophysics Data System (ADS)
Troutman, Valerie A.; Dabiri, John O.
2018-07-01
We develop and characterize an image processing algorithm to adapt single-camera defocusing digital particle image velocimetry (DDPIV) for three-dimensional (3D) particle tracking velocimetry (PTV) of natural particulates, such as those present in the ocean. The conventional DDPIV technique is extended to facilitate tracking of non-uniform, non-spherical particles within a volume depth an order of magnitude larger than current single-camera applications (i.e. 10 cm × 10 cm × 24 cm depth) by a dynamic template matching method. This 2D cross-correlation method does not rely on precise determination of the centroid of the tracked objects. To accommodate the broad range of particle number densities found in natural marine environments, the performance of the measurement technique at higher particle densities has been improved by utilizing the time-history of tracked objects to inform 3D reconstruction. The developed processing algorithms were analyzed using synthetically generated images of flow induced by Hill’s spherical vortex, and the capabilities of the measurement technique were demonstrated empirically through volumetric reconstructions of the 3D trajectories of particles and highly non-spherical, 5 mm zooplankton.
Coherent backscattering enhancement in cavities. Highlights of the role of symmetry.
Gallot, Thomas; Catheline, Stefan; Roux, Philippe
2011-04-01
Through experiments and simulations, the consequences of symmetry on coherent backscattering enhancement (CBE) are studied in cavities. Three main results are highlighted. First, the CBE outside the source is observed: (a) on a single symmetric point in a one-dimensional (1-D) cavity, in a disk and in a symmetric chaotic plate; (b) on three symmetric points in a two-dimensional (2-D) rectangle; and (c) on seven symmetric points in a three-dimensional (3-D) parallelepiped cavity. Second, the existence of enhanced intensity lines and planes in 2-D and 3-D simple-shape cavities is demonstrated. Third, it is shown how the anti-symmetry caused by the special boundary conditions is responsible for the existence of a coherent backscattering decrement with a dimensional dependence of R = (½)(d), with d = 1,2,3 as the dimensionality of the cavity.
Chern-Simons theory and Wilson loops in the Brillouin zone
NASA Astrophysics Data System (ADS)
Lian, Biao; Vafa, Cumrun; Vafa, Farzan; Zhang, Shou-Cheng
2017-03-01
Berry connection is conventionally defined as a static gauge field in the Brillouin zone. Here we show that for three-dimensional (3D) time-reversal invariant superconductors, a generalized Berry gauge field behaves as a fluctuating field of a Chern-Simons gauge theory. The gapless nodal lines in the momentum space play the role of Wilson loop observables, while their linking and knot invariants modify the gravitational theta angle. This angle induces a topological gravitomagnetoelectric effect where a temperature gradient induces a rotational energy flow. We also show how topological strings may be realized in the six-dimensional phase space, where the physical space defects play the role of topological D-branes.
Dynamical Chern-Simons Theory in the Brillouin Zone
NASA Astrophysics Data System (ADS)
Lian, Biao; Vafa, Cumrun; Vafa, Farzan; Zhang, Shou-Cheng
Berry connection is conventionally defined as a static gauge field in the Brillouin zone. Here we show that for three-dimensional (3d) time-reversal invariant superconductors, a generalized Berry gauge field behaves as a dynamical fluctuating field of a Chern-Simons gauge theory. The gapless nodal lines in the momentum space play the role of Wilson loop observables, while their linking and knot invariants modify the gravitational theta angle. This angle induces a topological gravitomagnetoelectric effect where a temperature gradient induces a rotational energy flow. We also show how topological strings may be realized in the 6 dimensional phase space, where the physical space defects play the role of topological D-branes.
On-Demand Production of Flow-Reactor Cartridges by 3D Printing of Thermostable Enzymes.
Maier, Manfred; Radtke, Carsten P; Hubbuch, Jürgen; Niemeyer, Christof M; Rabe, Kersten S
2018-05-04
The compartmentalization of chemical reactions is an essential principle of life that provides a major source of innovation for the development of novel approaches in biocatalysis. To implement spatially controlled biotransformations, rapid manufacturing methods are needed for the production of biocatalysts that can be applied in flow systems. Whereas three-dimensional (3D) printing techniques offer high-throughput manufacturing capability, they are usually not compatible with the delicate nature of enzymes, which call for physiological processing parameters. We herein demonstrate the utility of thermostable enzymes in the generation of biocatalytic agarose-based inks for a simple temperature-controlled 3D printing process. As examples we utilized an esterase and an alcohol dehydrogenase from thermophilic organisms as well as a decarboxylase that was thermostabilized by directed protein evolution. We used the resulting 3D-printed parts for a continuous, two-step sequential biotransformation in a fluidic setup. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Morimoto, Takuma; Mizokami, Yoko; Yaguchi, Hirohisa; Buck, Steven L
2017-01-01
There has been debate about how and why color constancy may be better in three-dimensional (3-D) scenes than in two-dimensional (2-D) scenes. Although some studies have shown better color constancy for 3-D conditions, the role of specific cues remains unclear. In this study, we compared color constancy for a 3-D miniature room (a real scene consisting of actual objects) and 2-D still images of that room presented on a monitor using three viewing methods: binocular viewing, monocular viewing, and head movement. We found that color constancy was better for the 3-D room; however, color constancy for the 2-D image improved when the viewing method caused the scene to be perceived more like a 3-D scene. Separate measurements of the perceptual 3-D effect of each viewing method also supported these results. An additional experiment comparing a miniature room and its image with and without texture suggested that surface texture of scene objects contributes to color constancy.
Zhang, Ziyu; Yuan, Lang; Lee, Peter D; Jones, Eric; Jones, Julian R
2014-01-01
Bone augmentation implants are porous to allow cellular growth, bone formation and fixation. However, the design of the pores is currently based on simple empirical rules, such as minimum pore and interconnects sizes. We present a three-dimensional (3D) transient model of cellular growth based on the Navier–Stokes equations that simulates the body fluid flow and stimulation of bone precursor cellular growth, attachment, and proliferation as a function of local flow shear stress. The model's effectiveness is demonstrated for two additive manufactured (AM) titanium scaffold architectures. The results demonstrate that there is a complex interaction of flow rate and strut architecture, resulting in partially randomized structures having a preferential impact on stimulating cell migration in 3D porous structures for higher flow rates. This novel result demonstrates the potential new insights that can be gained via the modeling tool developed, and how the model can be used to perform what-if simulations to design AM structures to specific functional requirements. PMID:24664988
Solwnd: A 3D Compressible MHD Code for Solar Wind Studies. Version 1.0: Cartesian Coordinates
NASA Technical Reports Server (NTRS)
Deane, Anil E.
1996-01-01
Solwnd 1.0 is a three-dimensional compressible MHD code written in Fortran for studying the solar wind. Time-dependent boundary conditions are available. The computational algorithm is based on Flux Corrected Transport and the code is based on the existing code of Zalesak and Spicer. The flow considered is that of shear flow with incoming flow that perturbs this base flow. Several test cases corresponding to pressure balanced magnetic structures with velocity shear flow and various inflows including Alfven waves are presented. Version 1.0 of solwnd considers a rectangular Cartesian geometry. Future versions of solwnd will consider a spherical geometry. Some discussions of this issue is presented.
Hsieh, K S; Lin, C C; Liu, W S; Chen, F L
1996-01-01
Two-dimensional echocardiography had long been a standard diagnostic modality for congenital heart disease. Further attempts of three-dimensional reconstruction using two-dimensional echocardiographic images to visualize stereotypic structure of cardiac lesions have been successful only recently. So far only very few studies have been done to display three-dimensional anatomy of the heart through two-dimensional image acquisition because such complex procedures were involved. This study introduced a recently developed image acquisition and processing system for dynamic three-dimensional visualization of various congenital cardiac lesions. From December 1994 to April 1995, 35 cases were selected in the Echo Laboratory here from about 3000 Echo examinations completed. Each image was acquired on-line with specially designed high resolution image grazmber with EKG and respiratory gating technique. Off-line image processing using a window-architectured interactive software package includes construction of 2-D ehcocardiographic pixel to 3-D "voxel" with conversion of orthogonal to rotatory axial system, interpolation, extraction of region of interest, segmentation, shading and, finally, 3D rendering. Three-dimensional anatomy of various congenital cardiac defects was shown, including four cases with ventricular septal defects, two cases with atrial septal defects, and two cases with aortic stenosis. Dynamic reconstruction of a "beating heart" is recorded as vedio tape with video interface. The potential application of 3D display of the reconstruction from 2D echocardiographic images for the diagnosis of various congenital heart defects has been shown. The 3D display was able to improve the diagnostic ability of echocardiography, and clear-cut display of the various congenital cardiac defects and vavular stenosis could be demonstrated. Reinforcement of current techniques will expand future application of 3D display of conventional 2D images.
Gosnell, Jordan; Pietila, Todd; Samuel, Bennett P; Kurup, Harikrishnan K N; Haw, Marcus P; Vettukattil, Joseph J
2016-12-01
Three-dimensional (3D) printing is an emerging technology aiding diagnostics, education, and interventional, and surgical planning in congenital heart disease (CHD). Three-dimensional printing has been derived from computed tomography, cardiac magnetic resonance, and 3D echocardiography. However, individually the imaging modalities may not provide adequate visualization of complex CHD. The integration of the strengths of two or more imaging modalities has the potential to enhance visualization of cardiac pathomorphology. We describe the feasibility of hybrid 3D printing from two imaging modalities in a patient with congenitally corrected transposition of the great arteries (L-TGA). Hybrid 3D printing may be useful as an additional tool for cardiologists and cardiothoracic surgeons in planning interventions in children and adults with CHD.
Evaluation of Full Reynolds Stress Turbulence Models in FUN3D
NASA Technical Reports Server (NTRS)
Dudek, Julianne C.; Carlson, Jan-Renee
2017-01-01
Full seven-equation Reynolds stress turbulence models are promising tools for today’s aerospace technology challenges. This paper examines two such models for computing challenging turbulent flows including shock-wave boundary layer interactions, separation and mixing layers. The Wilcox and the SSG/LRR full second-moment Reynolds stress models have been implemented into the FUN3D (Fully Unstructured Navier-Stokes Three Dimensional) unstructured Navier-Stokes code and were evaluated for four problems: a transonic two-dimensional diffuser, a supersonic axisymmetric compression corner, a compressible planar shear layer, and a subsonic axisymmetric jet. Simulation results are compared with experimental data and results computed using the more commonly used Spalart-Allmaras (SA) one-equation and the Menter Shear Stress Transport (SST-V) two-equation turbulence models.
Evaluation of Full Reynolds Stress Turbulence Models in FUN3D
NASA Technical Reports Server (NTRS)
Dudek, Julianne C.; Carlson, Jan-Renee
2017-01-01
Full seven-equation Reynolds stress turbulence models are a relatively new and promising tool for todays aerospace technology challenges. This paper uses two stress-omega full Reynolds stress models to evaluate challenging flows including shock-wave boundary layer interactions, separation and mixing layers. The Wilcox and the SSG/LRR full second-moment Reynolds stress models have been implemented into the FUN3D (Fully Unstructured Navier-Stokes Three Dimensional) unstructured Navier-Stokes code and are evaluated for four problems: a transonic two-dimensional diffuser, a supersonic axisymmetric compression corner, a compressible planar shear layer, and a subsonic axisymmetric jet. Simulation results are compared with experimental data and results using the more commonly used Spalart-Allmaras (SA) one-equation and the Menter Shear Stress Transport (SST-V) two-equation turbulence models.
Computational Study of the Blood Flow in Three Types of 3D Hollow Fiber Membrane Bundles
Zhang, Jiafeng; Chen, Xiaobing; Ding, Jun; Fraser, Katharine H.; Ertan Taskin, M.; Griffith, Bartley P.; Wu, Zhongjun J.
2013-01-01
The goal of this study is to develop a computational fluid dynamics (CFD) modeling approach to better estimate the blood flow dynamics in the bundles of the hollow fiber membrane based medical devices (i.e., blood oxygenators, artificial lungs, and hemodialyzers). Three representative types of arrays, square, diagonal, and random with the porosity value of 0.55, were studied. In addition, a 3D array with the same porosity was studied. The flow fields between the individual fibers in these arrays at selected Reynolds numbers (Re) were simulated with CFD modeling. Hemolysis is not significant in the fiber bundles but the platelet activation may be essential. For each type of array, the average wall shear stress is linearly proportional to the Re. For the same Re but different arrays, the average wall shear stress also exhibits a linear dependency on the pressure difference across arrays, while Darcy′s law prescribes a power-law relationship, therefore, underestimating the shear stress level. For the same Re, the average wall shear stress of the diagonal array is approximately 3.1, 1.8, and 2.0 times larger than that of the square, random, and 3D arrays, respectively. A coefficient C is suggested to correlate the CFD predicted data with the analytical solution, and C is 1.16, 1.51, and 2.05 for the square, random, and diagonal arrays in this paper, respectively. It is worth noting that C is strongly dependent on the array geometrical properties, whereas it is weakly dependent on the flow field. Additionally, the 3D fiber bundle simulation results show that the three-dimensional effect is not negligible. Specifically, velocity and shear stress distribution can vary significantly along the fiber axial direction. PMID:24141394
Three-dimensional particle tracking velocimetry using dynamic vision sensors
NASA Astrophysics Data System (ADS)
Borer, D.; Delbruck, T.; Rösgen, T.
2017-12-01
A fast-flow visualization method is presented based on tracking neutrally buoyant soap bubbles with a set of neuromorphic cameras. The "dynamic vision sensors" register only the changes in brightness with very low latency, capturing fast processes at a low data rate. The data consist of a stream of asynchronous events, each encoding the corresponding pixel position, the time instant of the event and the sign of the change in logarithmic intensity. The work uses three such synchronized cameras to perform 3D particle tracking in a medium sized wind tunnel. The data analysis relies on Kalman filters to associate the asynchronous events with individual tracers and to reconstruct the three-dimensional path and velocity based on calibrated sensor information.
Young Infants' Perception of the Trajectories of Two- and Three-Dimensional Objects
ERIC Educational Resources Information Center
Johnson, Scott P.; Bremner, J. Gavin; Slater, Alan M.; Shuwairi, Sarah M.; Mason, Uschi; Spring, Jo; Usherwood, Barrie
2012-01-01
We investigated oculomotor anticipations in 4-month-old infants as they viewed center-occluded object trajectories. In two experiments, we examined performance in two-dimensional (2D) and three-dimensional (3D) dynamic occlusion displays and in an additional 3D condition with a smiley face as the moving target stimulus. Rates of anticipatory eye…
Sakai, Toshiyuki; Kuzuhara, Shigeki
2003-04-01
We investigated the regional cerebral blood flow (rCBF) in 8 patients with Parkinson disease (PD) with cognitive impairment (age; 64-82 years, Mini-Mental State Examination score = MMSE score; 22-6 points, Yahr stage; III-V), with the standard transaxial images and the Z-score images using the three-dimensional stereotactic surface projections (3D-SSP) of 123I-IMP SPECT. A contrast database was created by averaging extracted database sets of the contrast group (numbers; 14 cases, age; 64-82 years, MMSE score; > or = 29 points). The regions of the perfusion reduction shown on the standard transaxial images were similarly demonstrated on the Z-score images in 6 of the 8 patients, and only the Z-score images demonstrated definite regions of perfusion reduction in remaining 2 patients. Both the standard transaxial and Z-score images demonstrated the perfusion reduction in the temporo-parietal regions in all of the patients, and the Z-score images but not the standard transaxial ones detected the reduction in the posterior cingulate gyrus and precuneus in 3 patients. 3D-SSP images of 123I-IMP SPECT are thus more sensitive in detecting rCBF of the medial aspect of the parietal cortex than the standard transaxial images, and can be used as a diagnostic tool to objectively evaluate the cognitive function of PD patients.
Pai, Rekha S; Walsh, Kevin M; Crain, Mark M; Roussel, Thomas J; Jackson, Douglas J; Baldwin, Richard P; Keynton, Robert S; Naber, John F
2009-06-15
A scalable and rather inexpensive solution to producing microanalytical systems with "on-chip" three-dimensional (3D) microelectrodes is presented in this study, along with applicability to practical electrochemical (EC) detection scenarios such as preconcentration and interferant removal. This technique to create high-aspect-ratio (as much as 4:1) gold microstructures in constrained areas involved the modification of stud bump geometry with microfabricated silicon molds via an optimized combination of temperature, pressure, and time. The microelectrodes that resulted consisted of an array of square pillars approximately 18 microm tall and 20 microm wide on each side, placed at the end of a microfabricated electrophoresis channel. This technique increased the active surface area of the microelectrodes by as much as a factor of 50, while mass transfer and, consequently, preconcentration collection efficiencies were increased to approximately 100%, compared to approximately 30% efficiency for planar nonmodified microelectrodes (samples that were used included the neurotransmitters dopamine and catechol). The 3D microelectrodes were used both in a stand-alone configuration, for direct EC detection of model catecholamine analytes, and, more interestingly, in dual electrode configurations for EC sample processing prior to detection downstream at a second planar electrode. In particular, the 3D electrodes were shown to be capable of performing coulometry or complete (100%) redox conversion of analyte species over a wide range of concentrations, from 4.3 microM to 4.4 mM, in either plug-flow or continuous-flow formats.
NASA Astrophysics Data System (ADS)
Hazenberg, P.; Broxton, P. D.; Brunke, M.; Gochis, D.; Niu, G. Y.; Pelletier, J. D.; Troch, P. A. A.; Zeng, X.
2015-12-01
The terrestrial hydrological system, including surface and subsurface water, is an essential component of the Earth's climate system. Over the past few decades, land surface modelers have built one-dimensional (1D) models resolving the vertical flow of water through the soil column for use in Earth system models (ESMs). These models generally have a relatively coarse model grid size (~25-100 km) and only account for sub-grid lateral hydrological variations using simple parameterization schemes. At the same time, hydrologists have developed detailed high-resolution (~0.1-10 km grid size) three dimensional (3D) models and showed the importance of accounting for the vertical and lateral redistribution of surface and subsurface water on soil moisture, the surface energy balance and ecosystem dynamics on these smaller scales. However, computational constraints have limited the implementation of the high-resolution models for continental and global scale applications. The current work presents a hybrid-3D hydrological approach is presented, where the 1D vertical soil column model (available in many ESMs) is coupled with a high-resolution lateral flow model (h2D) to simulate subsurface flow and overland flow. H2D accounts for both local-scale hillslope and regional-scale unconfined aquifer responses (i.e. riparian zone and wetlands). This approach was shown to give comparable results as those obtained by an explicit 3D Richards model for the subsurface, but improves runtime efficiency considerably. The h3D approach is implemented for the Delaware river basin, where Noah-MP land surface model (LSM) is used to calculated vertical energy and water exchanges with the atmosphere using a 10km grid resolution. Noah-MP was coupled within the WRF-Hydro infrastructure with the lateral 1km grid resolution h2D model, for which the average depth-to-bedrock, hillslope width function and soil parameters were estimated from digital datasets. The ability of this h3D approach to simulate the hydrological dynamics of the Delaware River basin will be assessed by comparing the model results (both hydrological performance and numerical efficiency) with the standard setup of the NOAH-MP model and a high-resolution (1km) version of NOAH-MP, which also explicitly accounts for lateral subsurface and overland flow.
Numerical Simulation of the Vortex-Induced Vibration of A Curved Flexible Riser in Shear Flow
NASA Astrophysics Data System (ADS)
Zhu, Hong-jun; Lin, Peng-zhi
2018-06-01
A series of fully three-dimensional (3D) numerical simulations of flow past a free-to-oscillate curved flexible riser in shear flow were conducted at Reynolds number of 185-1015. The numerical results obtained by the two-way fluid-structure interaction (FSI) simulations are in good agreement with the experimental results reported in the earlier study. It is further found that the frequency transition is out of phase not only in the inline (IL) and crossflow (CF) directions but also along the span direction. The mode competition leads to the non-zero nodes of the rootmean- square (RMS) amplitude and the relatively chaotic trajectories. The fluid-structure interaction is to some extent reflected by the transverse velocity of the ambient fluid, which reaches the maximum value when the riser reaches the equilibrium position. Moreover, the local maximum transverse velocities occur at the peak CF amplitudes, and the values are relatively large when the vibration is in the resonance regions. The 3D vortex columns are shed nearly parallel to the axis of the curved flexible riser. As the local Reynolds number increases from 0 at the bottom of the riser to the maximum value at the top, the wake undergoes a transition from a two-dimensional structure to a 3D one. More irregular small-scale vortices appeared at the wake region of the riser, undergoing large amplitude responses.
PAB3D: Its History in the Use of Turbulence Models in the Simulation of Jet and Nozzle Flows
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Pao, S. Paul; Hunter, Craig A.; Deere, Karen A.; Massey, Steven J.; Elmiligui, Alaa
2006-01-01
This is a review paper for PAB3D s history in the implementation of turbulence models for simulating jet and nozzle flows. We describe different turbulence models used in the simulation of subsonic and supersonic jet and nozzle flows. The time-averaged simulations use modified linear or nonlinear two-equation models to account for supersonic flow as well as high temperature mixing. Two multiscale-type turbulence models are used for unsteady flow simulations. These models require modifications to the Reynolds Averaged Navier-Stokes (RANS) equations. The first scheme is a hybrid RANS/LES model utilizing the two-equation (k-epsilon) model with a RANS/LES transition function, dependent on grid spacing and the computed turbulence length scale. The second scheme is a modified version of the partially averaged Navier-Stokes (PANS) formulation. All of these models are implemented in the three-dimensional Navier-Stokes code PAB3D. This paper discusses computational methods, code implementation, computed results for a wide range of nozzle configurations at various operating conditions, and comparisons with available experimental data. Very good agreement is shown between the numerical solutions and available experimental data over a wide range of operating conditions.
NASA Astrophysics Data System (ADS)
Hayat, Tanzila; Nadeem, S.
2018-03-01
This paper examines the three dimensional Eyring-Powell fluid flow over an exponentially stretching surface with heterogeneous-homogeneous chemical reactions. A new model of heat flux suggested by Cattaneo and Christov is employed to study the properties of relaxation time. From the present analysis we observe that there is an inverse relationship between temperature and thermal relaxation time. The temperature in Cattaneo-Christov heat flux model is lesser than the classical Fourier's model. In this paper the three dimensional Cattaneo-Christov heat flux model over an exponentially stretching surface is calculated first time in the literature. For negative values of temperature exponent, temperature profile firstly intensifies to its most extreme esteem and after that gradually declines to zero, which shows the occurrence of phenomenon (SGH) "Sparrow-Gregg hill". Also, for higher values of strength of reaction parameters, the concentration profile decreases.
Three-Dimensional Navier-Stokes Calculations Using the Modified Space-Time CESE Method
NASA Technical Reports Server (NTRS)
Chang, Chau-lyan
2007-01-01
The space-time conservation element solution element (CESE) method is modified to address the robustness issues of high-aspect-ratio, viscous, near-wall meshes. In this new approach, the dependent variable gradients are evaluated using element edges and the corresponding neighboring solution elements while keeping the original flux integration procedure intact. As such, the excellent flux conservation property is retained and the new edge-based gradients evaluation significantly improves the robustness for high-aspect ratio meshes frequently encountered in three-dimensional, Navier-Stokes calculations. The order of accuracy of the proposed method is demonstrated for oblique acoustic wave propagation, shock-wave interaction, and hypersonic flows over a blunt body. The confirmed second-order convergence along with the enhanced robustness in handling hypersonic blunt body flow calculations makes the proposed approach a very competitive CFD framework for 3D Navier-Stokes simulations.
A parallel finite-difference method for computational aerodynamics
NASA Technical Reports Server (NTRS)
Swisshelm, Julie M.
1989-01-01
A finite-difference scheme for solving complex three-dimensional aerodynamic flow on parallel-processing supercomputers is presented. The method consists of a basic flow solver with multigrid convergence acceleration, embedded grid refinements, and a zonal equation scheme. Multitasking and vectorization have been incorporated into the algorithm. Results obtained include multiprocessed flow simulations from the Cray X-MP and Cray-2. Speedups as high as 3.3 for the two-dimensional case and 3.5 for segments of the three-dimensional case have been achieved on the Cray-2. The entire solver attained a factor of 2.7 improvement over its unitasked version on the Cray-2. The performance of the parallel algorithm on each machine is analyzed.
Recognition Of Complex Three Dimensional Objects Using Three Dimensional Moment Invariants
NASA Astrophysics Data System (ADS)
Sadjadi, Firooz A.
1985-01-01
A technique for the recognition of complex three dimensional objects is presented. The complex 3-D objects are represented in terms of their 3-D moment invariants, algebraic expressions that remain invariant independent of the 3-D objects' orientations and locations in the field of view. The technique of 3-D moment invariants has been used successfully for simple 3-D object recognition in the past. In this work we have extended this method for the representation of more complex objects. Two complex objects are represented digitally; their 3-D moment invariants have been calculated, and then the invariancy of these 3-D invariant moment expressions is verified by changing the orientation and the location of the objects in the field of view. The results of this study have significant impact on 3-D robotic vision, 3-D target recognition, scene analysis and artificial intelligence.
Full Navier-Stokes analysis of a two-dimensional mixer/ejector nozzle for noise suppression
NASA Technical Reports Server (NTRS)
Debonis, James R.
1992-01-01
A three-dimensional full Navier-Stokes (FNS) analysis was performed on a mixer/ejector nozzle designed to reduce the jet noise created at takeoff by a future supersonic transport. The PARC3D computational fluid dynamics (CFD) code was used to study the flow field of the nozzle. The grid that was used in the analysis consisted of approximately 900,000 node points contained in eight grid blocks. Two nozzle configurations were studied: a constant area mixing section and a diverging mixing section. Data are presented for predictions of pressure, velocity, and total temperature distributions and for evaluations of internal performance and mixing effectiveness. The analysis provided good insight into the behavior of the flow.
NASA Astrophysics Data System (ADS)
Haitjema, Henk M.
1985-10-01
A technique is presented to incorporate three-dimensional flow in a Dupuit-Forchheimer model. The method is based on superposition of approximate analytic solutions to both two- and three-dimensional flow features in a confined aquifer of infinite extent. Three-dimensional solutions are used in the domain of interest, while farfield conditions are represented by two-dimensional solutions. Approximate three- dimensional solutions have been derived for a partially penetrating well and a shallow creek. Each of these solutions satisfies the condition that no flow occurs across the confining layers of the aquifer. Because of this condition, the flow at some distance of a three-dimensional feature becomes nearly horizontal. Consequently, remotely from a three-dimensional feature, its three-dimensional solution is replaced by a corresponding two-dimensional one. The latter solution is trivial as compared to its three-dimensional counterpart, and its use greatly enhances the computational efficiency of the model. As an example, the flow is modeled between a partially penetrating well and a shallow creek that occur in a regional aquifer system.
Three-dimensional single-mode nonlinear ablative Rayleigh-Taylor instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, R.; Betti, R.; Sanz, J.
The nonlinear evolution of the single-mode ablative Rayleigh-Taylor instability is studied in three dimensions. As the mode wavelength approaches the cutoff of the linear spectrum (short-wavelength modes), it is found that the three-dimensional (3D) terminal bubble velocity greatly exceeds both the two-dimensional (2D) value and the classical 3D bubble velocity. Unlike in 2D, the 3D short-wavelength bubble velocity does not saturate. The growing 3D bubble acceleration is driven by the unbounded accumulation of vorticity inside the bubble. As a result, the vorticity is transferred by mass ablation from the Rayleigh-Taylor spikes to the ablated plasma filling the bubble volume.
This report presents a three-dimensional finite-element numerical model designed to simulate chemical transport in subsurface systems with temperature effect taken into account. The three-dimensional model is developed to provide (1) a tool of application, with which one is able...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Neeraj; Büchner, Jörg; Max Planck Institute for Solar System Research, Justus-Von-Liebig-Weg-3, Göttingen
Nonlinear evolution of three dimensional electron shear flow instabilities of an electron current sheet (ECS) is studied using electron-magnetohydrodynamic simulations. The dependence of the evolution on current sheet thickness is examined. For thin current sheets (half thickness =d{sub e}=c/ω{sub pe}), tearing mode instability dominates. In its nonlinear evolution, it leads to the formation of oblique current channels. Magnetic field lines form 3-D magnetic spirals. Even in the absence of initial guide field, the out-of-reconnection-plane magnetic field generated by the tearing instability itself may play the role of guide field in the growth of secondary finite-guide-field instabilities. For thicker current sheetsmore » (half thickness ∼5 d{sub e}), both tearing and non-tearing modes grow. Due to the non-tearing mode, current sheet becomes corrugated in the beginning of the evolution. In this case, tearing mode lets the magnetic field reconnect in the corrugated ECS. Later thick ECS develops filamentary structures and turbulence in which reconnection occurs. This evolution of thick ECS provides an example of reconnection in self-generated turbulence. The power spectra for both the thin and thick current sheets are anisotropic with respect to the electron flow direction. The cascade towards shorter scales occurs preferentially in the direction perpendicular to the electron flow.« less
3D flow effects on measuring turbulence statistics using 2D PIV
NASA Astrophysics Data System (ADS)
Lee, Hoonsang; Hwang, Wontae
2017-11-01
Homogeneous & isotropic turbulence (HIT) with no mean flow is the simplest type of turbulent flow which can be used to study various phenomena. Although HIT is inherently three dimensional in nature, various turbulence statistics can be measured with 2D PIV utilizing various assumptions. In this study, the loss of tracer particle pairs due to out-of-plane motion, and the effect it has on statistics such as turbulence kinetic energy, dissipation rate, and velocity correlations is investigated. Synthetic PIV images created from HIT direct numerical simulation (DNS) data are utilized to quantify this effect. We estimate the out-of-plane error by adjusting parameters such as PIV time interval, interrogation window size, and particle size. This information can be utilized to optimize experimental parameters when examining 3D turbulence via 2D PIV. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2017R1A2B4007372), and also by SNU new faculty Research Resettlement Fund.
NASA Astrophysics Data System (ADS)
Donovan, D.; Nygren, R.; Buchenauer, D.; Watkins, J.; Rudakov, D.; Leonard, A.; Wong, C. P. C.; Makowski, M.
2014-04-01
Experimental results are presented from the three-Langmuir probe (LP) diagnostic head of the divertor material evaluation system (DiMES) on DIII-D that confirm the size of the projected current collection area of the LPs, which is essential for properly measuring ion saturation current density (Jsat) and the sheath power transmission factor (SPTF). Also using the 3-LP DiMES head, the hypothesis that collisional effects on plasma density occurring in the magnetic sheath of the tile are responsible for a lower than expected SPTF is tested and deemed not to have a significant impact on the SPTF. Three-dimensional thermal modeling of wall tiles is presented that accounts for lateral heat conduction, temperature dependence of tile material properties and radiative heat loss from the tile surface. This modeling was developed to be used in the analysis of temperature profiles of the divertor embedded thermocouple (TC) array to obtain more accurate interpretations of TC temperature profiles to infer divertor surface heat flux than have previously been accomplished using more basic one-dimensional methods.
Advanced numerical methods for three dimensional two-phase flow calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toumi, I.; Caruge, D.
1997-07-01
This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses anmore » extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.« less
Far-field analysis of coupled bulk and boundary layer diffusion toward an ion channel entrance.
Schumaker, M F; Kentler, C J
1998-01-01
We present a far-field analysis of ion diffusion toward a channel embedded in a membrane with a fixed charge density. The Smoluchowski equation, which represents the 3D problem, is approximated by a system of coupled three- and two-dimensional diffusions. The 2D diffusion models the quasi-two-dimensional diffusion of ions in a boundary layer in which the electrical potential interaction with the membrane surface charge is important. The 3D diffusion models ion transport in the bulk region outside the boundary layer. Analytical expressions for concentration and flux are developed that are accurate far from the channel entrance. These provide boundary conditions for a numerical solution of the problem. Our results are used to calculate far-field ion flows corresponding to experiments of Bell and Miller (Biophys. J. 45:279, 1984). PMID:9591651
NASA Technical Reports Server (NTRS)
Stanitz, J. D.
1985-01-01
The general design method for three-dimensional, potential, incompressible or subsonic-compressible flow developed in part 1 of this report is applied to the design of simple, unbranched ducts. A computer program, DIN3D1, is developed and five numerical examples are presented: a nozzle, two elbows, an S-duct, and the preliminary design of a side inlet for turbomachines. The two major inputs to the program are the upstream boundary shape and the lateral velocity distribution on the duct wall. As a result of these inputs, boundary conditions are overprescribed and the problem is ill posed. However, it appears that there are degrees of compatibility between these two major inputs and that, for reasonably compatible inputs, satisfactory solutions can be obtained. By not prescribing the shape of the upstream boundary, the problem presumably becomes well posed, but it is not clear how to formulate a practical design method under this circumstance. Nor does it appear desirable, because the designer usually needs to retain control over the upstream (or downstream) boundary shape. The problem is further complicated by the fact that, unlike the two-dimensional case, and irrespective of the upstream boundary shape, some prescribed lateral velocity distributions do not have proper solutions.
Calculation of unsteady aerodynamics for four AGARD standard aeroelastic configurations
NASA Technical Reports Server (NTRS)
Bland, S. R.; Seidel, D. A.
1984-01-01
Calculated unsteady aerodynamic characteristics for four Advisory Group for Aeronautical Research Development (AGARD) standard aeroelastic two-dimensional airfoils and for one of the AGARD three-dimensional wings are reported. Calculations were made using the finite-difference codes XTRAN2L (two-dimensional flow) and XTRAN3S (three-dimensional flow) which solve the transonic small disturbance potential equations. Results are given for the 36 AGARD cases for the NACA 64A006, NACA 64A010, and NLR 7301 airfoils with experimental comparisons for most of these cases. Additionally, six of the MBB-A3 airfoil cases are included. Finally, results are given for three of the cases for the rectangular wing.
Levy, Gary; Malik, Minnie; Britten, Joy; Gilden, Melissa; Segars, James; Catherino, William H.
2014-01-01
Objective To investigate the impact of liarozole on transforming growth factor-β3 (TGF-β3) expression, TGF-β3 controlled profibrotic cytokines, and extracellular matrix formation in a three-dimensional (3D) leiomyoma model system. Design Molecular and immunohistochemical analysis in a cell line evaluated in a three-dimensional culture. Setting Laboratory study. Patient(s) None. Intervention(s) Treatment of leiomyoma and myometrial cells with liarozole and TGF-β3 in a three-dimensional culture system. Main Outcome Measure(s) Quantitative real-time reverse-transcriptase polymerase chain reaction and Western blotting to assess fold gene and protein expression of TGF-β3 and TGF-β3 regulated fibrotic cytokines: collagen 1A1 (COL1A1), fibronectin, and versican before and after treatment with liarozole, and confirmatory immunohistochemical stains of treated three-dimensional cultures. Result(s) Both TGF-β3 gene and protein expression were elevated in leiomyoma cells compared with myometrium in two-dimensional and 3D cultures. Treatment with liarozole decreased TGF-β3 gene and protein expression. Extracellular matrix components versican, COL1A1, and fibronectin were also decreased by liarozole treatment in 3D cultures. Treatment of 3D cultures with TGF-β3 increased gene expression and protein production of COL1A1, fibronectin, and versican. Conclusion(s) Liarozole decreased TGF-β3 and TGF-β3–mediated extracellular matrix expression in a 3D uterine leiomyoma culture system. PMID:24825427
SASI ACTIVITY IN THREE-DIMENSIONAL NEUTRINO-HYDRODYNAMICS SIMULATIONS OF SUPERNOVA CORES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanke, Florian; Mueller, Bernhard; Wongwathanarat, Annop
The relevance of the standing accretion shock instability (SASI) compared to neutrino-driven convection in three-dimensional (3D) supernova-core environments is still highly controversial. Studying a 27 M{sub Sun} progenitor, we demonstrate, for the first time, that violent SASI activity can develop in 3D simulations with detailed neutrino transport despite the presence of convection. This result was obtained with the PROMETHEUS-VERTEX code with the same sophisticated neutrino treatment so far used only in one-dimensional and two-dimensional (2D) models. While buoyant plumes initially determine the nonradial mass motions in the postshock layer, bipolar shock sloshing with growing amplitude sets in during a phasemore » of shock retraction and turns into a violent spiral mode whose growth is only quenched when the infall of the Si/SiO interface leads to strong shock expansion in response to a dramatic decrease of the mass accretion rate. In the phase of large-amplitude SASI sloshing and spiral motions, the postshock layer exhibits nonradial deformation dominated by the lowest-order spherical harmonics (l = 1, m = 0, {+-}1) in distinct contrast to the higher multipole structures associated with neutrino-driven convection. We find that the SASI amplitudes, shock asymmetry, and nonradial kinetic energy in three dimensions can exceed those of the corresponding 2D case during extended periods of the evolution. We also perform parameterized 3D simulations of a 25 M{sub Sun} progenitor, using a simplified, gray neutrino transport scheme, an axis-free Yin-Yang grid, and different amplitudes of random seed perturbations. They confirm the importance of the SASI for another progenitor, its independence of the choice of spherical grid, and its preferred growth for fast accretion flows connected to small shock radii and compact proto-neutron stars as previously found in 2D setups.« less
NASA Astrophysics Data System (ADS)
Maeda, Moe; Nagaoka, Ryo; Ikeda, Hayato; Yaegashi, So; Saijo, Yoshifumi
2018-07-01
Color Doppler method is widely used for noninvasive diagnosis of heart diseases. However, the method can measure one-dimensional (1D) blood flow velocity only along an ultrasonic beam. In this study, diverging waves with two different angles were irradiated from a cardiac sector probe to estimate a two-dimensional (2D) blood flow vector from each velocity measured with the angles. The feasibility of the proposed method was evaluated in experiments using flow poly(vinyl alcohol) (PVA) gel phantoms. The 2D velocity vectors obtained with the proposed method were compared with the flow vectors obtained with the particle image velocimetry (PIV) method. Root mean square errors of the axial and lateral components were 11.3 and 29.5 mm/s, respectively. The proposed method was also applied to echo data from the left ventricle of the heart. The inflow from the mitral valve in diastole and the ejection flow concentrating in the aorta in systole were visualized.
Wang, Dongwen; Zhang, Bin; Yuan, Xiaobin; Zhang, Xuhui; Liu, Chen
2015-09-01
To evaluate the feasibility and effectiveness of preoperative planning and real-time assisted surgical navigation for three-dimensional laparoscopic partial nephrectomy under the guidance of three-dimensional individual digital model (3D-IDM) created using three-dimensional medical image reconstructing and guiding system (3D-MIRGS). Between May 2012 and February 2014, 44 patients with cT1 renal tumors underwent retroperitoneal laparoscopic partial nephrectomy (LPN) using a three-dimensional laparoscopic system. The 3D-IDMs were created using the 3D-MIRGS in 21 patients (3D-MIRGS group) between February 2013 and February 2014. After preoperative planning, operations were real-time assisted using composite 3D-IDMs, which were fused with two-dimensional retrolaparoscopic images. The remaining 23 patients underwent surgery without 3D-MIRGS between May 2012 and February 2013; 14 of these patients were selected as a control group. Preoperative aspects and dimensions used for an anatomical score, "radius; exophytic/endophytic; nearness; anterior/posterior; location" nephrometry score, tumor size, operative time (OT), segmental renal artery clamping (SRAC) time, estimated blood loss (EBL), postoperative hospitalization, the preoperative serum creatinine level and ipsilateral glomerular filtration rate (GFR), as well as postoperative 6-month data were compared between groups. All the SRAC procedures were technically successful, and each targeted tumor was excised completely; final pathological margin results were negative. The OT was shorter (159.0 vs. 193.2 min; p < 0.001), and EBL (148.1 vs. 176.1 mL; p < 0.001) was reduced in the 3D-MIRGS group compared with controls. No statistically significant differences in SRAC time or postoperative hospitalization were found between the groups. Neither group showed any statistically significant increases in serum creatinine level or decreases in ipsilateral GFR postoperatively. Preoperative planning and real-time assisted surgical navigation using the 3D-IDM reconstructed from 3D-MIRGS and combined with the 3D laparoscopic system can facilitate LPN and result in precise SRAC and accurate excision of tumor that is both effective and safe.
Pihl, Michael Johannes; Jensen, Jørgen Arendt
2014-10-01
A method for 3-D velocity vector estimation using transverse oscillations is presented. The method employs a 2-D transducer and decouples the velocity estimation into three orthogonal components, which are estimated simultaneously and from the same data. The validity of the method is investigated by conducting simulations emulating a 32 × 32 matrix transducer. The results are evaluated using two performance metrics related to precision and accuracy. The study includes several parameters including 49 flow directions, the SNR, steering angle, and apodization types. The 49 flow directions cover the positive octant of the unit sphere. In terms of accuracy, the median bias is -2%. The precision of v(x) and v(y) depends on the flow angle ß and ranges from 5% to 31% relative to the peak velocity magnitude of 1 m/s. For comparison, the range is 0.4 to 2% for v(z). The parameter study also reveals, that the velocity estimation breaks down with an SNR between -6 and -3 dB. In terms of computational load, the estimation of the three velocity components requires 0.75 billion floating point operations per second (0.75 Gflops) for a realistic setup. This is well within the capability of modern scanners.
Shibata, Shun-Ichi; Marushima, Hideki; Asakura, Tadashi; Matsuura, Tomokazu; Eda, Homare; Aoki, Katsuhiko; Matsudaira, Hiroshi; Ueda, Kazu; Ohkawa, Kiyoshi
2009-05-01
To confirm the usefulness of the radial flow type bioreactor (RFB) for a three-dimensional (3D) culture system, which provides a tissue architecture and molecular function mimicking the in vivo environment, molecular expression in the A431 human squamous carcinoma cell line during culture were analyzed under the physically different environments of 3D culture in the RFB, 2D culture in a monolayer as well as in nude mice. Time-dependent accumulation of autocrine transforming growth factor (TGF) beta1 was found in spent culture media obtained only from 3D cultured A431 cancer cells, which grew well with a stratified-sheet morphology. Cells in the RFB overexpressed matrix metalloproteinase 7 (MMP7) and showed an increased release of soluble 80-kDa fragments of E-cadherin into the media time-dependently, resulting in the reduction of E-cadherin protein at the cell surface without down-regulation of the mRNA. beta-Catenin and its nuclear partner, LEF1, were up-regulated and Wnt protein secretion was also accelerated. Additional up-regulation of the transcriptional factors, HMGA2 and down-stream Slug, was noted. TGFbeta1-dependent, MMP7-mediated up-regulation of beta-catenin/LEF1 signaling and TGFbeta1-activated HMGA2 pathways consequently converged with Slug overexpression, due to disassembly and further repression of E-cadherin expression, which was reproducible in the epithelial mesenchymal transition process without any manipulation. Other transcriptional factors, Notch/HEY1 and NF-kappaB, were also up-regulated in 3D-cultured cells. These signals recruited molecules related to extracellular matrix-cell remodeling and angiogenesis. Expression of several representative molecules in the 3D cultured cells was parallel with that in xenotransplanted A431 tumor tissues in nude mice. 3D culture of tumor cells in the RFB is a useful tool for cancer experimental biology and evaluation of cancer therapeutic-like systems in nude mice.
NASA Technical Reports Server (NTRS)
Manro, M. E.
1983-01-01
Two separated flow computer programs and a semiempirical method for incorporating the experimentally measured separated flow effects into a linear aeroelastic analysis were evaluated. The three dimensional leading edge vortex (LEV) code is evaluated. This code is an improved panel method for three dimensional inviscid flow over a wing with leading edge vortex separation. The governing equations are the linear flow differential equation with nonlinear boundary conditions. The solution is iterative; the position as well as the strength of the vortex is determined. Cases for both full and partial span vortices were executed. The predicted pressures are good and adequately reflect changes in configuration.
NASA Technical Reports Server (NTRS)
Sohn, Kiho D.; Ip, Shek-Se P.
1988-01-01
Three-dimensional finite element models were generated and transferred into three-dimensional finite difference models to perform transient thermal analyses for the SSME high pressure fuel turbopump's first stage nozzles and rotor blades. STANCOOL was chosen to calculate the heat transfer characteristics (HTCs) around the airfoils, and endwall effects were included at the intersections of the airfoils and platforms for the steady-state boundary conditions. Free and forced convection due to rotation effects were also considered in hollow cores. Transient HTCs were calculated by taking ratios of the steady-state values based on the flow rates and fluid properties calculated at each time slice. Results are presented for both transient plots and three-dimensional color contour isotherm plots; they were also converted into universal files to be used for FEM stress analyses.
NASA Astrophysics Data System (ADS)
Yuan, Yuefeng; Zhu, Peimin; Zhao, Na; Xiao, Long; Garnero, Edward; Xiao, Zhiyong; Zhao, Jiannan; Qiao, Le
2017-07-01
High-frequency lunar penetrating radar (LPR) data from an instrument on the lunar rover Yutu, from the Chang'E-3 (CE-3) robotic lander, were used to build a three-dimensional (3-D) geological model of the lunar subsurface structure. The CE-3 landing site is in the northern Mare Imbrium. More than five significant reflection horizons are evident in the LPR profile, which we interpret as different period lava flow sequences deposited on the lunar surface. The most probable directions of these flows were inferred from layer depths, thicknesses, and other geological information. Moreover, the apparent Imbrian paleoregolith homogeneity in the profile supports the suggestion of a quiescent period of lunar surface evolution. Similar subsurface structures are found at the NASA Apollo landing sites, indicating that the cause and time of formation of the imaged phenomena may be similar between the two distant regions.
Gas Dynamic Modernization of Axial Uncooled Turbine by Means of CFD and Optimization Software
NASA Astrophysics Data System (ADS)
Marchukov, E. Yu; Egorov, I. N.
2018-01-01
The results of multicriteria optimization of three-stage low-pressure turbine are described in the paper. The aim of the optimization is to improve turbine operation process by three criteria: turbine outlet flow angle, value of residual swirl at the turbine outlet, and turbine efficiency. Full reprofiling of all blade rows is carried out while solving optimization problem. Reprofiling includes a change in both shape of flat blade sections (profiles) and three-dimensional shape of the blades. The study is carried out with 3D numerical models of turbines.
Cheri, Mohammad Sadegh; Latifi, Hamid; Sadeghi, Jalal; Moghaddam, Mohammadreza Salehi; Shahraki, Hamidreza; Hajghassem, Hasan
2014-01-21
Real-time and accurate measurement of flow rate is an important reqirement in lab on a chip (LOC) and micro total analysis system (μTAS) applications. In this paper, we present an experimental and numerical investigation of a cantilever-based optofluidic flow sensor for this purpose. Two sensors with thin and thick cantilevers were fabricated by engraving a 2D pattern of cantilever/base on two polymethylmethacrylate (PMMA) slabs using a CO2 laser system and then casting a 2D pattern with polydimethylsiloxane (PDMS). The basic working principle of the sensor is the fringe shift of the Fabry-Pérot (FP) spectrum due to a changing flow rate. A Finite Element Method (FEM) is used to solve the three dimensional (3D) Navier-Stokes and structural deformation equations to simulate the pressure distribution, velocity and cantilever deflection results of the flow in the channel. The experimental results show that the thin and thick cantilevers have a minimum detectable flow change of 1.3 and 4 (μL min(-1)) respectively. In addition, a comparison of the numerical and experimental deflection of the cantilever has been done to obtain the effective Young's modulus of the thin and thick PDMS cantilevers.
Multigrid methods for flow transition in three-dimensional boundary layers with surface roughness
NASA Technical Reports Server (NTRS)
Liu, Chaoqun; Liu, Zhining; Mccormick, Steve
1993-01-01
The efficient multilevel adaptive method has been successfully applied to perform direct numerical simulations (DNS) of flow transition in 3-D channels and 3-D boundary layers with 2-D and 3-D isolated and distributed roughness in a curvilinear coordinate system. A fourth-order finite difference technique on stretched and staggered grids, a fully-implicit time marching scheme, a semi-coarsening multigrid method associated with line distributive relaxation scheme, and an improved outflow boundary-condition treatment, which needs only a very short buffer domain to damp all order-one wave reflections, are developed. These approaches make the multigrid DNS code very accurate and efficient. This allows us not only to be able to do spatial DNS for the 3-D channel and flat plate at low computational costs, but also to do spatial DNS for transition in the 3-D boundary layer with 3-D single and multiple roughness elements, which would have extremely high computational costs with conventional methods. Numerical results show good agreement with the linear stability theory, the secondary instability theory, and a number of laboratory experiments. The contribution of isolated and distributed roughness to transition is analyzed.
Three-dimensional Numerical Models of the Cocos-northern Nazca Slab Gap
NASA Astrophysics Data System (ADS)
Jadamec, M.; Fischer, K. M.
2012-12-01
In contrast to anisotropy beneath the middle of oceanic plates, seismic observations in subduction zones often indicate mantle flow patterns that are not easily explained by simple coupling of the subducting and overriding plates to the mantle. For example, in the Costa Rica-Nicaragua subduction zone local S shear wave splitting measurements combined with geochemical data indicate trench parallel flow in the mantle wedge with flow rates of 6.3-19 cm/yr, which is on order of or may be up to twice the subducting plate velocity. We construct geographically referenced high-resolution three-dimensional (3D) geodynamic models of the Cocos-northern Nazca subduction system to investigate what is driving the northwest directed, and apparently rapid, trench-parallel flow in the mantle wedge beneath Costa Rica-Nicaragua. We use the SlabGenerator code to construct a 3D plate configuration that is used as input to the community mantle convection code, CitcomCU. Models are run on over 400 CPUs on XSEDE, with a mesh resolution of up to 3 km at the plate boundary. Seismicity and seismic tomography delineate the shape and depth of the Cocos and northern Nazca slabs. The subducting plate thermal structure is based on a plate cooling model and ages from the seafloor age grid. Overriding plate thickness is constrained by the ages from the sea floor age grid where available and the depth to the lithosphere-asthenosphere boundary from the greatest negative gradient in absolute shear wave velocity. The geodynamic models test the relative controls of the change in the dip of the Cocos plate and the slab gap between the Cocos and northern Nazca plates in driving the mantle flow beneath Central America. The models also investigate the effect of a non-Newtonian rheology in dynamically generating a low viscosity mantle wedge and how this controls mantle flow rates. To what extent the Cocos-northern Nazca slab gap channelizes mantle flow between Central and South America has direct application to geochemical and geologic studies of the region. In addition, 3D geodynamic models of this kind can further test the hypothesis of rapid mantle flow in subduction zones as a global process and the non-Newtonian rheology as a mechanism for decoupling the mantle from lithospheric plate motion.
Experimental Investigation of Nozzle/Plume Aerodynamics at Hypersonic Speeds
NASA Technical Reports Server (NTRS)
Heinemann, K.; Bogdanoff, David W.; Cambier, Jean-Luc
1992-01-01
The work performed by D. W. Bogdanoff and J.-L. Cambier during the period of 1 Feb. - 31 Oct. 1992 is presented. The following topics are discussed: (1) improvement in the operation of the facility; (2) the wedge model; (3) calibration of the new test section; (4) combustor model; (5) hydrogen fuel system for combustor model; (6) three inch calibration/development tunnel; (7) shock tunnel unsteady flow; (8) pulse detonation wave engine; (9) DCAF flow simulation; (10) high temperature shock layer simulation; and (11) the one dimensional Godunov CFD code.
NASA Technical Reports Server (NTRS)
Bartels, Robert E.
2001-01-01
Three-dimensional transonic flow over a delta wing is investigated using several turbulence models. The performance of linear eddy viscosity models and an explicit algebraic stress model is assessed at the start of vortex flow, and the results compared with experimental data. To assess the effect of transition location, computations that either fix transition aft of the leading edge or are fully turbulent are performed. These computations show that grid resolution, transition location and turbulence model significantly affect the 3D flowfield.
Preconditioned upwind methods to solve 3-D incompressible Navier-Stokes equations for viscous flows
NASA Technical Reports Server (NTRS)
Hsu, C.-H.; Chen, Y.-M.; Liu, C. H.
1990-01-01
A computational method for calculating low-speed viscous flowfields is developed. The method uses the implicit upwind-relaxation finite-difference algorithm with a nonsingular eigensystem to solve the preconditioned, three-dimensional, incompressible Navier-Stokes equations in curvilinear coordinates. The technique of local time stepping is incorporated to accelerate the rate of convergence to a steady-state solution. An extensive study of optimizing the preconditioned system is carried out for two viscous flow problems. Computed results are compared with analytical solutions and experimental data.
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Aziz, Arsalan; Muhammad, Taseer; Alsaedi, Ahmed
2018-06-01
Darcy-Forchheimer three dimensional flow of Carreau nanoliquid induced by a linearly stretchable surface with convective boundary condition has been analyzed. Buongiorno model has been employed to elaborate thermophoresis and Brownian diffusion effects. Zero nanoparticles mass flux and convective surface conditions are implemented at the boundary. The governing problems are nonlinear. Optimal homotopic procedure has been used to tackle the governing mathematical system. Graphical results clearly depict the outcome of temperature and concentration fields. Surface drag coefficients and local Nusselt number are also plotted and discussed.
Real three-dimensional objects: effects on mental rotation.
Felix, Michael C; Parker, Joshua D; Lee, Charles; Gabriel, Kara I
2011-08-01
The current experiment investigated real three-dimensional (3D) objects with regard to performance on a mental rotation task and whether the appearance of sex differences may be mediated by experiences with spatially related activities. 40 men and 40 women were presented with alternating timed trials consisting of real-3D objects or two-dimensional illustrations of 3D objects. Sex differences in spatially related activities did not significantly influence the finding that men outperformed women on mental rotation of either stimulus type. However, on measures related to spatial activities, self-reported proficiency using maps correlated positively with performance only on trials with illustrations whereas self-reported proficiency using GPS correlated negatively with performance regardless of stimulus dimensionality. Findings may be interpreted as suggesting that rotating real-3D objects utilizes distinct but overlapping spatial skills compared to rotating two-dimensional representations of 3D objects, and real-3D objects can enhance mental rotation performance.