Sample records for three-dimensional anatomical database

  1. Multiple brain atlas database and atlas-based neuroimaging system.

    PubMed

    Nowinski, W L; Fang, A; Nguyen, B T; Raphel, J K; Jagannathan, L; Raghavan, R; Bryan, R N; Miller, G A

    1997-01-01

    For the purpose of developing multiple, complementary, fully labeled electronic brain atlases and an atlas-based neuroimaging system for analysis, quantification, and real-time manipulation of cerebral structures in two and three dimensions, we have digitized, enhanced, segmented, and labeled the following print brain atlases: Co-Planar Stereotaxic Atlas of the Human Brain by Talairach and Tournoux, Atlas for Stereotaxy of the Human Brain by Schaltenbrand and Wahren, Referentially Oriented Cerebral MRI Anatomy by Talairach and Tournoux, and Atlas of the Cerebral Sulci by Ono, Kubik, and Abernathey. Three-dimensional extensions of these atlases have been developed as well. All two- and three-dimensional atlases are mutually preregistered and may be interactively registered with an actual patient's data. An atlas-based neuroimaging system has been developed that provides support for reformatting, registration, visualization, navigation, image processing, and quantification of clinical data. The anatomical index contains about 1,000 structures and over 400 sulcal patterns. Several new applications of the brain atlas database also have been developed, supported by various technologies such as virtual reality, the Internet, and electronic publishing. Fusion of information from multiple atlases assists the user in comprehensively understanding brain structures and identifying and quantifying anatomical regions in clinical data. The multiple brain atlas database and atlas-based neuroimaging system have substantial potential impact in stereotactic neurosurgery and radiotherapy by assisting in visualization and real-time manipulation in three dimensions of anatomical structures, in quantitative neuroradiology by allowing interactive analysis of clinical data, in three-dimensional neuroeducation, and in brain function studies.

  2. Establishment of a database of fetal congenital heart malformations and preliminary investigation of its clinical application.

    PubMed

    Gao, Jun-Xue; Pei, Qiu-Yan; Li, Yun-Tao; Yang, Zhen-Juan

    2015-06-01

    The aim of this study was to create a database of anatomical ultrathin cross-sectional images of fetal hearts with different congenital heart diseases (CHDs) and preliminarily to investigate its clinical application. Forty Chinese fetal heart samples from induced labor due to different CHDs were cut transversely at 60-μm thickness. All thoracic organs were removed from the thoracic cavity after formalin fixation, embedded in optimum cutting temperature compound, and then frozen at -25°C for 2 hours. Subsequently, macro shots of the frozen serial sections were obtained using a digital camera in order to build a database of anatomical ultrathin cross-sectional images. Images in the database clearly displayed the fetal heart structures. After importing the images into three-dimensional software, the following functions could be realized: (1) based on the original database of transverse sections, databases of sagittal and coronal sections could be constructed; and (2) the original and constructed databases could be displayed continuously and dynamically, and rotated in arbitrary angles. They could also be displayed synchronically. The aforementioned functions of the database allowed for the retrieval of images and three-dimensional anatomy characteristics of the different fetal CHDs, and virtualization of fetal echocardiography findings. A database of 40 different cross-sectional fetal CHDs was established. An extensive database library of fetal CHDs, from which sonographers and students can study the anatomical features of fetal CHDs and virtualize fetal echocardiography findings via either centralized training or distance education, can be established in the future by accumulating further cases. Copyright © 2015. Published by Elsevier B.V.

  3. Soft Tissue Structure Modelling for Use in Orthopaedic Applications and Musculoskeletal Biomechanics

    NASA Astrophysics Data System (ADS)

    Audenaert, E. A.; Mahieu, P.; van Hoof, T.; Pattyn, C.

    2009-12-01

    We present our methodology for the three-dimensional anatomical and geometrical description of soft tissues, relevant for orthopaedic surgical applications and musculoskeletal biomechanics. The technique involves the segmentation and geometrical description of muscles and neurovascular structures from high-resolution computer tomography scanning for the reconstruction of generic anatomical models. These models can be used for quantitative interpretation of anatomical and biomechanical aspects of different soft tissue structures. This approach should allow the use of these data in other application fields, such as musculoskeletal modelling, simulations for radiation therapy, and databases for use in minimally invasive, navigated and robotic surgery.

  4. A topological multilayer model of the human body.

    PubMed

    Barbeito, Antonio; Painho, Marco; Cabral, Pedro; O'Neill, João

    2015-11-04

    Geographical information systems deal with spatial databases in which topological models are described with alphanumeric information. Its graphical interfaces implement the multilayer concept and provide powerful interaction tools. In this study, we apply these concepts to the human body creating a representation that would allow an interactive, precise, and detailed anatomical study. A vector surface component of the human body is built using a three-dimensional (3-D) reconstruction methodology. This multilayer concept is implemented by associating raster components with the corresponding vector surfaces, which include neighbourhood topology enabling spatial analysis. A root mean square error of 0.18 mm validated the three-dimensional reconstruction technique of internal anatomical structures. The expansion of the identification and the development of a neighbourhood analysis function are the new tools provided in this model.

  5. Introducing 3-Dimensional Printing of a Human Anatomic Pathology Specimen: Potential Benefits for Undergraduate and Postgraduate Education and Anatomic Pathology Practice.

    PubMed

    Mahmoud, Amr; Bennett, Michael

    2015-08-01

    Three-dimensional (3D) printing, a rapidly advancing technology, is widely applied in fields such as mechanical engineering and architecture. Three-dimensional printing has been introduced recently into medical practice in areas such as reconstructive surgery, as well as in clinical research. Three-dimensionally printed models of anatomic and autopsy pathology specimens can be used for demonstrating pathology entities to undergraduate medical, dental, and biomedical students, as well as for postgraduate training in examination of gross specimens for anatomic pathology residents and pathology assistants, aiding clinicopathological correlation at multidisciplinary team meetings, and guiding reconstructive surgical procedures. To apply 3D printing in anatomic pathology for teaching, training, and clinical correlation purposes. Multicolored 3D printing of human anatomic pathology specimens was achieved using a ZCorp 510 3D printer (3D Systems, Rock Hill, South Carolina) following creation of a 3D model using Autodesk 123D Catch software (Autodesk, Inc, San Francisco, California). Three-dimensionally printed models of anatomic pathology specimens created included pancreatoduodenectomy (Whipple operation) and radical nephrectomy specimens. The models accurately depicted the topographic anatomy of selected specimens and illustrated the anatomic relation of excised lesions to adjacent normal tissues. Three-dimensional printing of human anatomic pathology specimens is achievable. Advances in 3D printing technology may further improve the quality of 3D printable anatomic pathology specimens.

  6. Generating Neuron Geometries for Detailed Three-Dimensional Simulations Using AnaMorph.

    PubMed

    Mörschel, Konstantin; Breit, Markus; Queisser, Gillian

    2017-07-01

    Generating realistic and complex computational domains for numerical simulations is often a challenging task. In neuroscientific research, more and more one-dimensional morphology data is becoming publicly available through databases. This data, however, only contains point and diameter information not suitable for detailed three-dimensional simulations. In this paper, we present a novel framework, AnaMorph, that automatically generates water-tight surface meshes from one-dimensional point-diameter files. These surface triangulations can be used to simulate the electrical and biochemical behavior of the underlying cell. In addition to morphology generation, AnaMorph also performs quality control of the semi-automatically reconstructed cells coming from anatomical reconstructions. This toolset allows an extension from the classical dimension-reduced modeling and simulation of cellular processes to a full three-dimensional and morphology-including method, leading to novel structure-function interplay studies in the medical field. The developed numerical methods can further be employed in other areas where complex geometries are an essential component of numerical simulations.

  7. Sharing and reusing cardiovascular anatomical models over the Web: a step towards the implementation of the virtual physiological human project.

    PubMed

    Gianni, Daniele; McKeever, Steve; Yu, Tommy; Britten, Randall; Delingette, Hervé; Frangi, Alejandro; Hunter, Peter; Smith, Nicolas

    2010-06-28

    Sharing and reusing anatomical models over the Web offers a significant opportunity to progress the investigation of cardiovascular diseases. However, the current sharing methodology suffers from the limitations of static model delivery (i.e. embedding static links to the models within Web pages) and of a disaggregated view of the model metadata produced by publications and cardiac simulations in isolation. In the context of euHeart--a research project targeting the description and representation of cardiovascular models for disease diagnosis and treatment purposes--we aim to overcome the above limitations with the introduction of euHeartDB, a Web-enabled database for anatomical models of the heart. The database implements a dynamic sharing methodology by managing data access and by tracing all applications. In addition to this, euHeartDB establishes a knowledge link with the physiome model repository by linking geometries to CellML models embedded in the simulation of cardiac behaviour. Furthermore, euHeartDB uses the exFormat--a preliminary version of the interoperable FieldML data format--to effectively promote reuse of anatomical models, and currently incorporates Continuum Mechanics, Image Analysis, Signal Processing and System Identification Graphical User Interface (CMGUI), a rendering engine, to provide three-dimensional graphical views of the models populating the database. Currently, euHeartDB stores 11 cardiac geometries developed within the euHeart project consortium.

  8. Explorable Three-Dimensional Digital Model of the Female Pelvis, Pelvic Contents, and Perineum for Anatomical Education

    ERIC Educational Resources Information Center

    Sergovich, Aimee; Johnson, Marjorie; Wilson, Timothy D.

    2010-01-01

    The anatomy of the pelvis is complex, multilayered, and its three-dimensional organization is conceptually difficult for students to grasp. The aim of this project was to create an explorable and projectable stereoscopic, three-dimensional (3D) model of the female pelvis and pelvic contents for anatomical education. The model was created using…

  9. Three-Dimensional Anatomic Evaluation of the Anterior Cruciate Ligament for Planning Reconstruction

    PubMed Central

    Hoshino, Yuichi; Kim, Donghwi; Fu, Freddie H.

    2012-01-01

    Anatomic study related to the anterior cruciate ligament (ACL) reconstruction surgery has been developed in accordance with the progress of imaging technology. Advances in imaging techniques, especially the move from two-dimensional (2D) to three-dimensional (3D) image analysis, substantially contribute to anatomic understanding and its application to advanced ACL reconstruction surgery. This paper introduces previous research about image analysis of the ACL anatomy and its application to ACL reconstruction surgery. Crucial bony landmarks for the accurate placement of the ACL graft can be identified by 3D imaging technique. Additionally, 3D-CT analysis of the ACL insertion site anatomy provides better and more consistent evaluation than conventional “clock-face” reference and roentgenologic quadrant method. Since the human anatomy has a complex three-dimensional structure, further anatomic research using three-dimensional imaging analysis and its clinical application by navigation system or other technologies is warranted for the improvement of the ACL reconstruction. PMID:22567310

  10. Mid-twentieth-century anatomical transparencies and the depiction of three-dimensional form.

    PubMed

    Wall, Shelley

    2010-11-01

    Before the advent of digital visualization, the "anatomical transparency"--layered images of organ systems, printed on a transparent medium--flourished in the mid-twentieth century as an interactive means to represent complex anatomical relationships to medical professionals and lay audiences. This article introduces the transparency work of medical illustrators Gladys McHugh and Ernest W. Beck, situating it in the historical context of strategies to represent three-dimensional anatomical relationships using print media.

  11. Simplified three-dimensional model provides anatomical insights in lizards' caudal autotomy as printed illustration.

    PubMed

    De Amorim, Joana D C G; Travnik, Isadora; De Sousa, Bernadete M

    2015-03-01

    Lizards' caudal autotomy is a complex and vastly employed antipredator mechanism, with thorough anatomic adaptations involved. Due to its diminished size and intricate structures, vertebral anatomy is hard to be clearly conveyed to students and researchers of other areas. Three-dimensional models are prodigious tools in unveiling anatomical nuances. Some of the techniques used to create them can produce irregular and complicated forms, which despite being very accurate, lack didactical uniformity and simplicity. Since both are considered fundamental characteristics for comprehension, a simplified model could be the key to improve learning. The model here presented depicts the caudal osteology of Tropidurus itambere, and was designed to be concise, in order to be easily assimilated, yet complete, not to compromise the informative aspect. The creation process requires only basic skills in manipulating polygons in 3D modeling softwares, in addition to the appropriate knowledge of the structure to be modeled. As reference for the modeling, we used microscopic observation and a photograph database of the caudal structures. This way, no advanced laboratory equipment was needed and all biological materials were preserved for future research. Therefore, we propose a wider usage of simplified 3D models both in the classroom and as illustrations for scientific publications.

  12. Three-dimensional printing of X-ray computed tomography datasets with multiple materials using open-source data processing.

    PubMed

    Sander, Ian M; McGoldrick, Matthew T; Helms, My N; Betts, Aislinn; van Avermaete, Anthony; Owers, Elizabeth; Doney, Evan; Liepert, Taimi; Niebur, Glen; Liepert, Douglas; Leevy, W Matthew

    2017-07-01

    Advances in three-dimensional (3D) printing allow for digital files to be turned into a "printed" physical product. For example, complex anatomical models derived from clinical or pre-clinical X-ray computed tomography (CT) data of patients or research specimens can be constructed using various printable materials. Although 3D printing has the potential to advance learning, many academic programs have been slow to adopt its use in the classroom despite increased availability of the equipment and digital databases already established for educational use. Herein, a protocol is reported for the production of enlarged bone core and accurate representation of human sinus passages in a 3D printed format using entirely consumer-grade printers and a combination of free-software platforms. The comparative resolutions of three surface rendering programs were also determined using the sinuses, a human body, and a human wrist data files to compare the abilities of different software available for surface map generation of biomedical data. Data shows that 3D Slicer provided highest compatibility and surface resolution for anatomical 3D printing. Generated surface maps were then 3D printed via fused deposition modeling (FDM printing). In conclusion, a methodological approach that explains the production of anatomical models using entirely consumer-grade, fused deposition modeling machines, and a combination of free software platforms is presented in this report. The methods outlined will facilitate the incorporation of 3D printed anatomical models in the classroom. Anat Sci Educ 10: 383-391. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  13. A novel approach for determining three-dimensional acetabular orientation: results from two hundred subjects.

    PubMed

    Higgins, Sean W; Spratley, E Meade; Boe, Richard A; Hayes, Curtis W; Jiranek, William A; Wayne, Jennifer S

    2014-11-05

    The inherently complex three-dimensional morphology of both the pelvis and acetabulum create difficulties in accurately determining acetabular orientation. Our objectives were to develop a reliable and accurate methodology for determining three-dimensional acetabular orientation and to utilize it to describe relevant characteristics of a large population of subjects without apparent hip pathology. High-resolution computed tomography studies of 200 patients previously receiving pelvic scans for indications not related to orthopaedic conditions were selected from our institution's database. Three-dimensional models of each osseous pelvis were generated to extract specific anatomical data sets. A novel computational method was developed to determine standard measures of three-dimensional acetabular orientation within an automatically identified anterior pelvic plane reference frame. Automatically selected points on the osseous ridge of the acetabulum were used to generate a best-fit plane for describing acetabular orientation. Our method showed excellent interobserver and intraobserver agreement (an intraclass correlation coefficient [ICC] of >0.999) and achieved high levels of accuracy. A significant difference between males and females in both anteversion (average, 3.5°; 95% confidence interval [CI], 1.9° to 5.1° across all angular definitions; p < 0.0001) and inclination (1.4°; 95% CI, 0.6° to 2.3° for anatomic angular definition; p < 0.002) was observed. Intrapatient asymmetry in anatomic measures showed bilateral differences in anteversion (maximum, 12.1°) and in inclination (maximum, 10.9°). Significant differences in acetabular orientation between the sexes can be detected only with accurate measurements that account for the entire acetabulum. While a wide range of interpatient acetabular orientations was observed, the majority of subjects had acetabula that were relatively symmetrical in both inclination and anteversion. A highly accurate and reproducible method for determining the orientation of the acetabulum's aperture will benefit both surgeons and patients, by further refining the distinctions between normal and abnormal hip characteristics. Enhanced understanding of the acetabulum could be useful in the diagnostic, planning, and execution stages for surgical procedures of the hip or in advancing the design of new implant systems. Copyright © 2014 by The Journal of Bone and Joint Surgery, Incorporated.

  14. Magnetic Resonance Imaging of Three-Dimensional Cervical Anatomy in the Second and Third Trimester

    PubMed Central

    HOUSE, Michael; BHADELIA, Rafeeque A.; MYERS, Kristin; SOCRATE, Simona

    2009-01-01

    OBJECTIVE Although a short cervix is known to be associated with preterm birth, the patterns of three-dimensional, anatomic changes leading to a short cervix are unknown. Our objective was to 1) construct three-dimensional anatomic models during normal pregnancy and 2) use the models to compare cervical anatomy in the second and third trimester. STUDY DESIGN A cross sectional study was performed in a population of patients referred to magnetic resonance imaging (MRI) for a fetal indication. Using magnetic resonance images for guidance, three-dimensional solid models of the following anatomic structures were constructed: amniotic cavity, uterine wall, cervical stroma, cervical mucosa and anterior vaginal wall. To compare cervical anatomy in the second and third trimester, models were matched according the size of the bony pelvis. RESULTS Fourteen patients were imaged and divided into two groups according to gestational age: 20 – 24 weeks (n=7)) and 31 – 36 weeks (n=7). Compared to the second trimester, the third trimester was associated with significant descent of the amniotic sac. (p=.02). Descent of the amniotic sac was associated with modified anatomy of the uterocervical junction. These 3-dimensional changes were associated with a cervix that appeared shorter in the third trimester. CONCLUSION We report a technique for constructing MRI-based, three-dimensional anatomic models during pregnancy. Compared to the second trimester, the third trimester is associated with three-dimensional changes in the cervix and lower uterine segment. PMID:19297070

  15. Technique of semiautomatic surface reconstruction of the visible Korean human data using commercial software.

    PubMed

    Park, Jin Seo; Shin, Dong Sun; Chung, Min Suk; Hwang, Sung Bae; Chung, Jinoh

    2007-11-01

    This article describes the technique of semiautomatic surface reconstruction of anatomic structures using widely available commercial software. This technique would enable researchers to promptly and objectively perform surface reconstruction, creating three-dimensional anatomic images without any assistance from computer engineers. To develop the technique, we used data from the Visible Korean Human project, which produced digitalized photographic serial images of an entire cadaver. We selected 114 anatomic structures (skin [1], bones [32], knee joint structures [7], muscles [60], arteries [7], and nerves [7]) from the 976 anatomic images which were generated from the left lower limb of the cadaver. Using Adobe Photoshop, the selected anatomic structures in each serial image were outlined, creating a segmented image. The Photoshop files were then converted into Adobe Illustrator files to prepare isolated segmented images, so that the contours of the structure could be viewed independent of the surrounding anatomy. Using Alias Maya, these isolated segmented images were then stacked to construct a contour image. Gaps between the contour lines were filled with surfaces, and three-dimensional surface reconstruction could be visualized with Rhinoceros. Surface imperfections were then corrected to complete the three-dimensional images in Alias Maya. We believe that the three-dimensional anatomic images created by these methods will have widespread application in both medical education and research. 2007 Wiley-Liss, Inc

  16. A Three-Dimensional Statistical Average Skull: Application of Biometric Morphing in Generating Missing Anatomy.

    PubMed

    Teshima, Tara Lynn; Patel, Vaibhav; Mainprize, James G; Edwards, Glenn; Antonyshyn, Oleh M

    2015-07-01

    The utilization of three-dimensional modeling technology in craniomaxillofacial surgery has grown exponentially during the last decade. Future development, however, is hindered by the lack of a normative three-dimensional anatomic dataset and a statistical mean three-dimensional virtual model. The purpose of this study is to develop and validate a protocol to generate a statistical three-dimensional virtual model based on a normative dataset of adult skulls. Two hundred adult skull CT images were reviewed. The average three-dimensional skull was computed by processing each CT image in the series using thin-plate spline geometric morphometric protocol. Our statistical average three-dimensional skull was validated by reconstructing patient-specific topography in cranial defects. The experiment was repeated 4 times. In each case, computer-generated cranioplasties were compared directly to the original intact skull. The errors describing the difference between the prediction and the original were calculated. A normative database of 33 adult human skulls was collected. Using 21 anthropometric landmark points, a protocol for three-dimensional skull landmarking and data reduction was developed and a statistical average three-dimensional skull was generated. Our results show the root mean square error (RMSE) for restoration of a known defect using the native best match skull, our statistical average skull, and worst match skull was 0.58, 0.74, and 4.4  mm, respectively. The ability to statistically average craniofacial surface topography will be a valuable instrument for deriving missing anatomy in complex craniofacial defects and deficiencies as well as in evaluating morphologic results of surgery.

  17. Low-Dimensional Statistics of Anatomical Variability via Compact Representation of Image Deformations.

    PubMed

    Zhang, Miaomiao; Wells, William M; Golland, Polina

    2016-10-01

    Using image-based descriptors to investigate clinical hypotheses and therapeutic implications is challenging due to the notorious "curse of dimensionality" coupled with a small sample size. In this paper, we present a low-dimensional analysis of anatomical shape variability in the space of diffeomorphisms and demonstrate its benefits for clinical studies. To combat the high dimensionality of the deformation descriptors, we develop a probabilistic model of principal geodesic analysis in a bandlimited low-dimensional space that still captures the underlying variability of image data. We demonstrate the performance of our model on a set of 3D brain MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our model yields a more compact representation of group variation at substantially lower computational cost than models based on the high-dimensional state-of-the-art approaches such as tangent space PCA (TPCA) and probabilistic principal geodesic analysis (PPGA).

  18. Importance of preoperative imaging with 64-row three-dimensional multidetector computed tomography for safer video-assisted thoracic surgery in lung cancer.

    PubMed

    Akiba, Tadashi; Marushima, Hideki; Harada, Junta; Kobayashi, Susumu; Morikawa, Toshiaki

    2009-01-01

    Video-assisted thoracic surgery (VATS) has recently been adopted for complicated anatomical lung resections. During these thoracoscopic procedures, surgeons view the operative field on a two-dimensional (2-D) video monitor and cannot palpate the organ directly, thus frequently encountering anatomical difficulties. This study aimed to estimate the usefulness of preoperative three-dimensional (3-D) imaging of thoracic organs. We compared the preoperative 64-row three-dimensional multidetector computed tomography (3DMDCT) findings of lung cancer-affected thoracic organs to the operative findings. In comparison to the operative findings, the branches of pulmonary arteries, veins, and bronchi were well defined in the 3D-MDCT images of 27 patients. 3D-MDCT imaging is useful for preoperatively understanding the individual thoracic anatomy in lung cancer surgery. This modality can therefore contribute to safer anatomical pulmonary operations, especially in VATS.

  19. The visible human project®: From body to bits.

    PubMed

    Ackerman, Michael J

    2016-08-01

    In the middle 1990's the U.S. National Library sponsored the acquisition and development of the Visible Human Project® data base. This image database contains anatomical cross-sectional images which allow the reconstruction of three dimensional male and female anatomy to an accuracy of less than 1.0 mm. The male anatomy is contained in a 15 gigabyte database, the female in a 39 gigabyte database. This talk will describe why and how this project was accomplished and demonstrate some of the products which the Visible Human dataset has made possible. I will conclude by describing how the Visible Human Project, completed over 20 years ago, has led the National Library of Medicine to a series of image research projects including an open source image processing toolkit which is included in several commercial products.

  20. Application of MSCTA combined with VRT in the operation of cervical dumbbell tumors

    PubMed Central

    Wang, Wan; Lin, Jia; Knosp, Engelbert; Zhao, Yuanzheng; Xiu, Dianhui; Guo, Yongchuan

    2015-01-01

    Cervical dumbbell tumor poses great difficulties for neurosurgical treatment and incurs remarkable local recurrence rate as the formidable problem for neurosurgery. However, as the routine preoperative evaluation scheme, MRI and CT failed to reveal the mutual three-dimensional relationships between tumor and adjacent structures. Here, we report the clinical application of MSCTA and VRT in three-dimensional reconstruction of cervical dumbbell tumors. From January 2012 to July 2014, 24 patients diagnosed with cervical dumbbell tumor were retrospectively analyzed. All patients enrolled were indicated for preoperative MSCTA/VRT image reconstruction to explore the three-dimensional stereoscopic anatomical relationships among neuroma, spinal cord and vertebral artery to achieve optimal surgical approach from multiple configurations and surgical practice. Three-dimensional mutual anatomical relationships among tumor, adjacent vessels and vertebrae were vividly reconstructed by MSCTA/VRT in all patients in accordance with intraoperative findings. Multiple configurations for optimal surgical approach contribute to total resection of tumor, minimal damage to vessels and nerves, and maximal maintenance of cervical spine stability. Preoperative MSCTA/VRT contributes to reconstruction of three-dimensional stereoscopic anatomical relationships between cervical dumbbell tumor and adjacent structures for optimal surgical approach by multiple configurations and reduction of intraoperative damages and postoperative complications. PMID:26550385

  1. Application of MSCTA combined with VRT in the operation of cervical dumbbell tumors.

    PubMed

    Wang, Wan; Lin, Jia; Knosp, Engelbert; Zhao, Yuanzheng; Xiu, Dianhui; Guo, Yongchuan

    2015-01-01

    Cervical dumbbell tumor poses great difficulties for neurosurgical treatment and incurs remarkable local recurrence rate as the formidable problem for neurosurgery. However, as the routine preoperative evaluation scheme, MRI and CT failed to reveal the mutual three-dimensional relationships between tumor and adjacent structures. Here, we report the clinical application of MSCTA and VRT in three-dimensional reconstruction of cervical dumbbell tumors. From January 2012 to July 2014, 24 patients diagnosed with cervical dumbbell tumor were retrospectively analyzed. All patients enrolled were indicated for preoperative MSCTA/VRT image reconstruction to explore the three-dimensional stereoscopic anatomical relationships among neuroma, spinal cord and vertebral artery to achieve optimal surgical approach from multiple configurations and surgical practice. Three-dimensional mutual anatomical relationships among tumor, adjacent vessels and vertebrae were vividly reconstructed by MSCTA/VRT in all patients in accordance with intraoperative findings. Multiple configurations for optimal surgical approach contribute to total resection of tumor, minimal damage to vessels and nerves, and maximal maintenance of cervical spine stability. Preoperative MSCTA/VRT contributes to reconstruction of three-dimensional stereoscopic anatomical relationships between cervical dumbbell tumor and adjacent structures for optimal surgical approach by multiple configurations and reduction of intraoperative damages and postoperative complications.

  2. Comparison of face types in Chinese women using three-dimensional computed tomography.

    PubMed

    Zhou, Rong-Rong; Zhao, Qi-Ming; Liu, Miao

    2015-04-01

    This study compared inverted triangle and square faces of 21 young Chinese Han women (18-25 years old) using three-dimensional computed tomography images retrieved from a records database. In this study, 11 patients had inverted triangle faces and 10 had square faces. The anatomic features were examined and compared. There were significant differences in lower face width, lower face height, masseter thickness, middle/lower face width ratio, and lower face width/height ratio between the two facial types (p < 0.01). Lower face width was positively correlated with masseter thickness and negatively correlated with gonial angle. Lower face height was positively correlated with gonial angle and negatively correlated with masseter thickness, and gonial angle was negatively correlated with masseter thickness. In young Chinese Han women, inverted triangle faces and square faces differ significantly in masseter thickness and lower face height. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Three-dimensional anthropometry of the adult face.

    DOT National Transportation Integrated Search

    1978-03-01

    This study describes a new three-dimensional anatomical axis system based on four conventional anthropometrical face landmarks. Coincident as a coordinate (orthogonal) axis system, this reference system was developed to provide convenient orientation...

  4. Role of a computer-generated three-dimensional laryngeal model in anatomy teaching for advanced learners.

    PubMed

    Tan, S; Hu, A; Wilson, T; Ladak, H; Haase, P; Fung, K

    2012-04-01

    (1) To investigate the efficacy of a computer-generated three-dimensional laryngeal model for laryngeal anatomy teaching; (2) to explore the relationship between students' spatial ability and acquisition of anatomical knowledge; and (3) to assess participants' opinion of the computerised model. Forty junior doctors were randomised to undertake laryngeal anatomy study supplemented by either a three-dimensional computer model or two-dimensional images. Outcome measurements comprised a laryngeal anatomy test, the modified Vandenberg and Kuse mental rotation test, and an opinion survey. Mean scores ± standard deviations for the anatomy test were 15.7 ± 2.0 for the 'three dimensions' group and 15.5 ± 2.3 for the 'standard' group (p = 0.7222). Pearson's correlation between the rotation test scores and the scores for the spatial ability questions in the anatomy test was 0.4791 (p = 0.086, n = 29). Opinion survey answers revealed significant differences in respondents' perceptions of the clarity and 'user friendliness' of, and their preferences for, the three-dimensional model as regards anatomical study. The three-dimensional computer model was equivalent to standard two-dimensional images, for the purpose of laryngeal anatomy teaching. There was no association between students' spatial ability and functional anatomy learning. However, students preferred to use the three-dimensional model.

  5. The Development of a Virtual 3D Model of the Renal Corpuscle from Serial Histological Sections for E-Learning Environments

    ERIC Educational Resources Information Center

    Roth, Jeremy A.; Wilson, Timothy D.; Sandig, Martin

    2015-01-01

    Histology is a core subject in the anatomical sciences where learners are challenged to interpret two-dimensional (2D) information (gained from histological sections) to extrapolate and understand the three-dimensional (3D) morphology of cells, tissues, and organs. In gross anatomical education 3D models and learning tools have been associated…

  6. Probabilistic modeling of anatomical variability using a low dimensional parameterization of diffeomorphisms.

    PubMed

    Zhang, Miaomiao; Wells, William M; Golland, Polina

    2017-10-01

    We present an efficient probabilistic model of anatomical variability in a linear space of initial velocities of diffeomorphic transformations and demonstrate its benefits in clinical studies of brain anatomy. To overcome the computational challenges of the high dimensional deformation-based descriptors, we develop a latent variable model for principal geodesic analysis (PGA) based on a low dimensional shape descriptor that effectively captures the intrinsic variability in a population. We define a novel shape prior that explicitly represents principal modes as a multivariate complex Gaussian distribution on the initial velocities in a bandlimited space. We demonstrate the performance of our model on a set of 3D brain MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our model yields a more compact representation of group variation at substantially lower computational cost than the state-of-the-art method such as tangent space PCA (TPCA) and probabilistic principal geodesic analysis (PPGA) that operate in the high dimensional image space. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Three-Dimensional Display Technologies for Anatomical Education: A Literature Review

    NASA Astrophysics Data System (ADS)

    Hackett, Matthew; Proctor, Michael

    2016-08-01

    Anatomy is a foundational component of biological sciences and medical education and is important for a variety of clinical tasks. To augment current curriculum and improve students' spatial knowledge of anatomy, many educators, anatomists, and researchers use three-dimensional (3D) visualization technologies. This article reviews 3D display technologies and their associated assessments for anatomical education. In the first segment, the review covers the general function of displays employing 3D techniques. The second segment of the review highlights the use and assessment of 3D technology in anatomical education, focusing on factors such as knowledge gains, student perceptions, and cognitive load. The review found 32 articles on the use of 3D displays in anatomical education and another 38 articles on the assessment of 3D displays. The review shows that the majority (74 %) of studies indicate that the use of 3D is beneficial for many tasks in anatomical education, and that student perceptions are positive toward the technology.

  8. Applications of 3D printing in the management of severe spinal conditions.

    PubMed

    Provaggi, Elena; Leong, Julian J H; Kalaskar, Deepak M

    2017-06-01

    The latest and fastest-growing innovation in the medical field has been the advent of three-dimensional printing technologies, which have recently seen applications in the production of low-cost, patient-specific medical implants. While a wide range of three-dimensional printing systems has been explored in manufacturing anatomical models and devices for the medical setting, their applications are cutting-edge in the field of spinal surgery. This review aims to provide a comprehensive overview and classification of the current applications of three-dimensional printing technologies in spine care. Although three-dimensional printing technology has been widely used for the construction of patient-specific anatomical models of the spine and intraoperative guide templates to provide personalized surgical planning and increase pedicle screw placement accuracy, only few studies have been focused on the manufacturing of spinal implants. Therefore, three-dimensional printed custom-designed intervertebral fusion devices, artificial vertebral bodies and disc substitutes for total disc replacement, along with tissue engineering strategies focused on scaffold constructs for bone and cartilage regeneration, represent a set of promising applications towards the trend of individualized patient care.

  9. Anatomical characteristics of southern pine stemwood

    Treesearch

    Elaine T. Howard; Floyd G. Manwiller

    1968-01-01

    To obtain a definitive description of the wood and anatomy of all 10 species of southern pine, juvenile, intermediate, and mature wood was sampled at three heights in one tree of each species and examined under a light microscope. Photographs and three-dimensional drawings were made to illustrate the morphology. No significant anatomical differences were found...

  10. Digital preservation of anatomical variation: 3D-modeling of embalmed and plastinated cadaveric specimens using uCT and MRI.

    PubMed

    Moore, Colin W; Wilson, Timothy D; Rice, Charles L

    2017-01-01

    Anatomy educators have an opportunity to teach anatomical variations as a part of medical and allied health curricula using both cadaveric and three-dimensional (3D) digital models of these specimens. Beyond published cadaveric case reports, anatomical variations identified during routine gross anatomy dissection can be powerful teaching tools and a medium to discuss several anatomical sub-disciplines from embryology to medical imaging. The purpose of this study is to document how cadaveric anatomical variation identified during routine dissection can be scanned using medical imaging techniques to create two-dimensional axial images and interactive 3D models for teaching and learning of anatomical variations. Three cadaveric specimens (2 formalin embalmed, 1 plastinated) depicting anatomical variations and an embryological malformation were scanned using magnetic resonance imaging (MRI) and micro-computed tomography (μCT) for visualization in cross-section and for creation of 3D volumetric models. Results provide educational options to enable visualization and facilitate learning of anatomical variations from cross-sectional scans. Furthermore, the variations can be highlighted, digitized, modeled and manipulated using 3D imaging software and viewed in the anatomy laboratory in conjunction with traditional anatomical dissection. This study provides an example for anatomy educators to teach and describe anatomical variations in the undergraduate medical curriculum. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Anatomical placement of the human eyeball in the orbit--validation using CT scans of living adults and prediction for facial approximation.

    PubMed

    Guyomarc'h, Pierre; Dutailly, Bruno; Couture, Christine; Coqueugniot, Hélène

    2012-09-01

    Accuracy of forensic facial approximation and superimposition techniques relies on the knowledge of anatomical correlations between soft and hard tissues. Recent studies by Stephan and collaborators (6,8,10) reviewed traditional guidelines leading to a wrong placement of the eyeball in the orbit. As those statements are based on a small cadaver sample, we propose a validation of these findings on a large database (n = 375) of living people. Computed tomography scans of known age and sex subjects were used to collect landmarks on three-dimensional surfaces and DICOM with TIVMI. Results confirmed a more superior and lateral position of the eyeball relatively to the orbital rims. Orbital height and breadth were used to compute regression formulae and proportional placement using percentages to find the most probable position of the eyeball in the orbit. A size-related sexual dimorphism was present but did not impact on the prediction accuracy. © 2012 American Academy of Forensic Sciences.

  12. Do Three-dimensional Visualization and Three-dimensional Printing Improve Hepatic Segment Anatomy Teaching? A Randomized Controlled Study.

    PubMed

    Kong, Xiangxue; Nie, Lanying; Zhang, Huijian; Wang, Zhanglin; Ye, Qiang; Tang, Lei; Li, Jianyi; Huang, Wenhua

    2016-01-01

    Hepatic segment anatomy is difficult for medical students to learn. Three-dimensional visualization (3DV) is a useful tool in anatomy teaching, but current models do not capture haptic qualities. However, three-dimensional printing (3DP) can produce highly accurate complex physical models. Therefore, in this study we aimed to develop a novel 3DP hepatic segment model and compare the teaching effectiveness of a 3DV model, a 3DP model, and a traditional anatomical atlas. A healthy candidate (female, 50-years old) was recruited and scanned with computed tomography. After three-dimensional (3D) reconstruction, the computed 3D images of the hepatic structures were obtained. The parenchyma model was divided into 8 hepatic segments to produce the 3DV hepatic segment model. The computed 3DP model was designed by removing the surrounding parenchyma and leaving the segmental partitions. Then, 6 experts evaluated the 3DV and 3DP models using a 5-point Likert scale. A randomized controlled trial was conducted to evaluate the educational effectiveness of these models compared with that of the traditional anatomical atlas. The 3DP model successfully displayed the hepatic segment structures with partitions. All experts agreed or strongly agreed that the 3D models provided good realism for anatomical instruction, with no significant differences between the 3DV and 3DP models in each index (p > 0.05). Additionally, the teaching effects show that the 3DV and 3DP models were significantly better than traditional anatomical atlas in the first and second examinations (p < 0.05). Between the first and second examinations, only the traditional method group had significant declines (p < 0.05). A novel 3DP hepatic segment model was successfully developed. Both the 3DV and 3DP models could improve anatomy teaching significantly. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  13. Visualization of Stereoscopic Anatomic Models of the Paranasal Sinuses and Cervical Vertebrae from the Surgical and Procedural Perspective

    ERIC Educational Resources Information Center

    Chen, Jian; Smith, Andrew D.; Khan, Majid A.; Sinning, Allan R.; Conway, Marianne L.; Cui, Dongmei

    2017-01-01

    Recent improvements in three-dimensional (3D) virtual modeling software allows anatomists to generate high-resolution, visually appealing, colored, anatomical 3D models from computed tomography (CT) images. In this study, high-resolution CT images of a cadaver were used to develop clinically relevant anatomic models including facial skull, nasal…

  14. Three-Dimensional Display Technologies for Anatomical Education: A Literature Review

    ERIC Educational Resources Information Center

    Hackett, Matthew; Proctor, Michael

    2016-01-01

    Anatomy is a foundational component of biological sciences and medical education and is important for a variety of clinical tasks. To augment current curriculum and improve students' spatial knowledge of anatomy, many educators, anatomists, and researchers use three-dimensional (3D) visualization technologies. This article reviews 3D display…

  15. Dorello's Canal for Laymen: A Lego-Like Presentation.

    PubMed

    Ezer, Haim; Banerjee, Anirban Deep; Thakur, Jai Deep; Nanda, Anil

    2012-06-01

    Objective Dorello's canal was first described by Gruber in 1859, and later by Dorello. Vail also described the anatomy of Dorello's canal. In the preceding century, Dorello's canal was clinically important, in understanding sixth nerve palsy and nowadays it is mostly important for skull base surgery. The understanding of the three dimensional anatomy, of this canal is very difficult to understand, and there is no simple explanation for its anatomy and its relationship with adjacent structures. We present a simple, Lego-like, presentation of Dorello's canal, in a stepwise manner. Materials and Methods Dorello's canal was dissected in five formalin-fixed cadaver specimens (10 sides). The craniotomy was performed, while preserving the neural and vascular structures associated with the canal. A 3D model was created, to explain the canal's anatomy. Results Using the petrous pyramid, the sixth nerve, the cavernous sinus, the trigeminal ganglion, the petorclival ligament and the posterior clinoid, the three-dimensional structure of Dorello's canal was defined. This simple representation aids in understanding the three dimensional relationship of Dorello's canal to its neighboring structures. Conclusion Dorello's canal with its three dimensional structure and relationship to its neighboring anatomical structures could be reconstructed using a few anatomical building blocks. This method simplifies the understanding of this complex anatomical structure, and could be used for teaching purposes for aspiring neurosurgeons, and anatomy students.

  16. Dorello's Canal for Laymen: A Lego-Like Presentation

    PubMed Central

    Ezer, Haim; Banerjee, Anirban Deep; Thakur, Jai Deep; Nanda, Anil

    2012-01-01

    Objective Dorello's canal was first described by Gruber in 1859, and later by Dorello. Vail also described the anatomy of Dorello's canal. In the preceding century, Dorello's canal was clinically important, in understanding sixth nerve palsy and nowadays it is mostly important for skull base surgery. The understanding of the three dimensional anatomy, of this canal is very difficult to understand, and there is no simple explanation for its anatomy and its relationship with adjacent structures. We present a simple, Lego-like, presentation of Dorello's canal, in a stepwise manner. Materials and Methods Dorello's canal was dissected in five formalin-fixed cadaver specimens (10 sides). The craniotomy was performed, while preserving the neural and vascular structures associated with the canal. A 3D model was created, to explain the canal's anatomy. Results Using the petrous pyramid, the sixth nerve, the cavernous sinus, the trigeminal ganglion, the petorclival ligament and the posterior clinoid, the three-dimensional structure of Dorello's canal was defined. This simple representation aids in understanding the three dimensional relationship of Dorello's canal to its neighboring structures. Conclusion Dorello's canal with its three dimensional structure and relationship to its neighboring anatomical structures could be reconstructed using a few anatomical building blocks. This method simplifies the understanding of this complex anatomical structure, and could be used for teaching purposes for aspiring neurosurgeons, and anatomy students. PMID:23730547

  17. The ANISEED database: digital representation, formalization, and elucidation of a chordate developmental program.

    PubMed

    Tassy, Olivier; Dauga, Delphine; Daian, Fabrice; Sobral, Daniel; Robin, François; Khoueiry, Pierre; Salgado, David; Fox, Vanessa; Caillol, Danièle; Schiappa, Renaud; Laporte, Baptiste; Rios, Anne; Luxardi, Guillaume; Kusakabe, Takehiro; Joly, Jean-Stéphane; Darras, Sébastien; Christiaen, Lionel; Contensin, Magali; Auger, Hélène; Lamy, Clément; Hudson, Clare; Rothbächer, Ute; Gilchrist, Michael J; Makabe, Kazuhiro W; Hotta, Kohji; Fujiwara, Shigeki; Satoh, Nori; Satou, Yutaka; Lemaire, Patrick

    2010-10-01

    Developmental biology aims to understand how the dynamics of embryonic shapes and organ functions are encoded in linear DNA molecules. Thanks to recent progress in genomics and imaging technologies, systemic approaches are now used in parallel with small-scale studies to establish links between genomic information and phenotypes, often described at the subcellular level. Current model organism databases, however, do not integrate heterogeneous data sets at different scales into a global view of the developmental program. Here, we present a novel, generic digital system, NISEED, and its implementation, ANISEED, to ascidians, which are invertebrate chordates suitable for developmental systems biology approaches. ANISEED hosts an unprecedented combination of anatomical and molecular data on ascidian development. This includes the first detailed anatomical ontologies for these embryos, and quantitative geometrical descriptions of developing cells obtained from reconstructed three-dimensional (3D) embryos up to the gastrula stages. Fully annotated gene model sets are linked to 30,000 high-resolution spatial gene expression patterns in wild-type and experimentally manipulated conditions and to 528 experimentally validated cis-regulatory regions imported from specialized databases or extracted from 160 literature articles. This highly structured data set can be explored via a Developmental Browser, a Genome Browser, and a 3D Virtual Embryo module. We show how integration of heterogeneous data in ANISEED can provide a system-level understanding of the developmental program through the automatic inference of gene regulatory interactions, the identification of inducing signals, and the discovery and explanation of novel asymmetric divisions.

  18. The ANISEED database: Digital representation, formalization, and elucidation of a chordate developmental program

    PubMed Central

    Tassy, Olivier; Dauga, Delphine; Daian, Fabrice; Sobral, Daniel; Robin, François; Khoueiry, Pierre; Salgado, David; Fox, Vanessa; Caillol, Danièle; Schiappa, Renaud; Laporte, Baptiste; Rios, Anne; Luxardi, Guillaume; Kusakabe, Takehiro; Joly, Jean-Stéphane; Darras, Sébastien; Christiaen, Lionel; Contensin, Magali; Auger, Hélène; Lamy, Clément; Hudson, Clare; Rothbächer, Ute; Gilchrist, Michael J.; Makabe, Kazuhiro W.; Hotta, Kohji; Fujiwara, Shigeki; Satoh, Nori; Satou, Yutaka; Lemaire, Patrick

    2010-01-01

    Developmental biology aims to understand how the dynamics of embryonic shapes and organ functions are encoded in linear DNA molecules. Thanks to recent progress in genomics and imaging technologies, systemic approaches are now used in parallel with small-scale studies to establish links between genomic information and phenotypes, often described at the subcellular level. Current model organism databases, however, do not integrate heterogeneous data sets at different scales into a global view of the developmental program. Here, we present a novel, generic digital system, NISEED, and its implementation, ANISEED, to ascidians, which are invertebrate chordates suitable for developmental systems biology approaches. ANISEED hosts an unprecedented combination of anatomical and molecular data on ascidian development. This includes the first detailed anatomical ontologies for these embryos, and quantitative geometrical descriptions of developing cells obtained from reconstructed three-dimensional (3D) embryos up to the gastrula stages. Fully annotated gene model sets are linked to 30,000 high-resolution spatial gene expression patterns in wild-type and experimentally manipulated conditions and to 528 experimentally validated cis-regulatory regions imported from specialized databases or extracted from 160 literature articles. This highly structured data set can be explored via a Developmental Browser, a Genome Browser, and a 3D Virtual Embryo module. We show how integration of heterogeneous data in ANISEED can provide a system-level understanding of the developmental program through the automatic inference of gene regulatory interactions, the identification of inducing signals, and the discovery and explanation of novel asymmetric divisions. PMID:20647237

  19. Preservation of three-dimensional anatomy in phosphatized fossil arthropods enriches evolutionary inference.

    PubMed

    Schwermann, Achim H; Dos Santos Rolo, Tomy; Caterino, Michael S; Bechly, Günter; Schmied, Heiko; Baumbach, Tilo; van de Kamp, Thomas

    2016-02-05

    External and internal morphological characters of extant and fossil organisms are crucial to establishing their systematic position, ecological role and evolutionary trends. The lack of internal characters and soft-tissue preservation in many arthropod fossils, however, impedes comprehensive phylogenetic analyses and species descriptions according to taxonomic standards for Recent organisms. We found well-preserved three-dimensional anatomy in mineralized arthropods from Paleogene fissure fillings and demonstrate the value of these fossils by utilizing digitally reconstructed anatomical structure of a hister beetle. The new anatomical data facilitate a refinement of the species diagnosis and allowed us to reject a previous hypothesis of close phylogenetic relationship to an extant congeneric species. Our findings suggest that mineralized fossils, even those of macroscopically poor preservation, constitute a rich but yet largely unexploited source of anatomical data for fossil arthropods.

  20. The assessment of virtual reality for human anatomy instruction

    NASA Technical Reports Server (NTRS)

    Benn, Karen P.

    1994-01-01

    This research project seeks to meet the objective of science training by developing, assessing, and validating virtual reality as a human anatomy training medium. In ideal situations, anatomic models, computer-based instruction, and cadaver dissection are utilized to augment the traditional methods of instruction. At many institutions, lack of financial resources limits anatomy instruction to textbooks and lectures. However, human anatomy is three dimensional, unlike the one dimensional depiction found in textbooks and the two dimensional depiction found on the computer. Virtual reality is a breakthrough technology that allows one to step through the computer screen into a three dimensional world. This technology offers many opportunities to enhance science education. Therefore, a virtual testing environment of the abdominopelvic region of a human cadaver was created to study the placement of body parts within the nine anatomical divisions of the abdominopelvic region and the four abdominal quadrants.

  1. Transforming Clinical Imaging Data for Virtual Reality Learning Objects

    ERIC Educational Resources Information Center

    Trelease, Robert B.; Rosset, Antoine

    2008-01-01

    Advances in anatomical informatics, three-dimensional (3D) modeling, and virtual reality (VR) methods have made computer-based structural visualization a practical tool for education. In this article, the authors describe streamlined methods for producing VR "learning objects," standardized interactive software modules for anatomical sciences…

  2. The Impact of Stereoscopic Imagery and Motion on Anatomical Structure Recognition and Visual Attention Performance

    ERIC Educational Resources Information Center

    Remmele, Martin; Schmidt, Elena; Lingenfelder, Melissa; Martens, Andreas

    2018-01-01

    Gross anatomy is located in a three-dimensional space. Visualizing aspects of structures in gross anatomy education should aim to provide information that best resembles their original spatial proportions. Stereoscopic three-dimensional imagery might offer possibilities to implement this aim, though some research has revealed potential impairments…

  3. Analysis of Traditional versus Three-Dimensional Augmented Curriculum on Anatomical Learning Outcome Measures

    ERIC Educational Resources Information Center

    Peterson, Diana Coomes; Mlynarczyk, Gregory S.A.

    2016-01-01

    This study examined whether student learning outcome measures are influenced by the addition of three-dimensional and digital teaching tools to a traditional dissection and lecture learning format curricula. The study was performed in a semester long graduate level course that incorporated both gross anatomy and neuroanatomy curricula. Methods…

  4. [Research progress of three-dimensional digital model for repair and reconstruction of knee joint].

    PubMed

    Tong, Lu; Li, Yanlin; Hu, Meng

    2013-01-01

    To review recent advance in the application and research of three-dimensional digital knee model. The recent original articles about three-dimensional digital knee model were extensively reviewed and analyzed. The digital three-dimensional knee model can simulate the knee complex anatomical structure very well. Based on this, there are some developments of new software and techniques, and good clinical results are achieved. With the development of computer techniques and software, the knee repair and reconstruction procedure has been improved, the operation will be more simple and its accuracy will be further improved.

  5. Techniques on semiautomatic segmentation using the Adobe Photoshop

    NASA Astrophysics Data System (ADS)

    Park, Jin Seo; Chung, Min Suk; Hwang, Sung Bae

    2005-04-01

    The purpose of this research is to enable anybody to semiautomatically segment the anatomical structures in the MRIs, CTs, and other medical images on the personal computer. The segmented images are used for making three-dimensional images, which are helpful in medical education and research. To achieve this purpose, the following trials were performed. The entire body of a volunteer was MR scanned to make 557 MRIs, which were transferred to a personal computer. On Adobe Photoshop, contours of 19 anatomical structures in the MRIs were semiautomatically drawn using MAGNETIC LASSO TOOL; successively, manually corrected using either LASSO TOOL or DIRECT SELECTION TOOL to make 557 segmented images. In a likewise manner, 11 anatomical structures in the 8,500 anatomcial images were segmented. Also, 12 brain and 10 heart anatomical structures in anatomical images were segmented. Proper segmentation was verified by making and examining the coronal, sagittal, and three-dimensional images from the segmented images. During semiautomatic segmentation on Adobe Photoshop, suitable algorithm could be used, the extent of automatization could be regulated, convenient user interface could be used, and software bugs rarely occurred. The techniques of semiautomatic segmentation using Adobe Photoshop are expected to be widely used for segmentation of the anatomical structures in various medical images.

  6. Presentation of Anatomical Variations Using the Aurasma Mobile App

    PubMed Central

    Bézard, Georg; Lozanoff, Beth K; Labrash, Steven; Lozanoff, Scott

    2015-01-01

    Knowledge of anatomical variations is critical to avoid clinical complications and it enables an understanding of morphogenetic mechanisms. Depictions are comprised of photographs or illustrations often limiting appreciation of three-dimensional (3D) spatial relationships. The purpose of this study is to describe an approach for presenting anatomical variations utilizing video clips emphasizing 3D anatomical relationships delivered on personal electronic devices. An aberrant right subclavian artery (ARSA) was an incidental finding in a routine dissection of an 89-year-old man cadaver during a medical student instructional laboratory. The specimen was photographed and physical measurements were recorded. Three-dimensional models were lofted and rendered with Maya software and converted as Quicktime animations. Photographs of the first frame of the animations were recorded and registered with Aurasma Mobile App software (www.aurasma.com). Resulting animations were viewed on mobile devices. The ARSA model can be manipulated on the mobile device enabling the student to view and appreciate spatial relationships. Model elements can be de-constructed to provide even greater spatial resolution of anatomical relationships. Animations provide a useful approach for visualizing anatomical variations. Future work will be directed at creating a library of variants and underlying mechanism of formation for presentation through the Aurasma application. PMID:26793410

  7. Preservation of three-dimensional anatomy in phosphatized fossil arthropods enriches evolutionary inference

    PubMed Central

    Schwermann, Achim H; dos Santos Rolo, Tomy; Caterino, Michael S; Bechly, Günter; Schmied, Heiko; Baumbach, Tilo; van de Kamp, Thomas

    2016-01-01

    External and internal morphological characters of extant and fossil organisms are crucial to establishing their systematic position, ecological role and evolutionary trends. The lack of internal characters and soft-tissue preservation in many arthropod fossils, however, impedes comprehensive phylogenetic analyses and species descriptions according to taxonomic standards for Recent organisms. We found well-preserved three-dimensional anatomy in mineralized arthropods from Paleogene fissure fillings and demonstrate the value of these fossils by utilizing digitally reconstructed anatomical structure of a hister beetle. The new anatomical data facilitate a refinement of the species diagnosis and allowed us to reject a previous hypothesis of close phylogenetic relationship to an extant congeneric species. Our findings suggest that mineralized fossils, even those of macroscopically poor preservation, constitute a rich but yet largely unexploited source of anatomical data for fossil arthropods. DOI: http://dx.doi.org/10.7554/eLife.12129.001 PMID:26854367

  8. A systematic review of clinical value of three-dimensional printing in renal disease.

    PubMed

    Sun, Zhonghua; Liu, Dongting

    2018-04-01

    The aim of this systematic review is to analyse current literature related to the clinical value of three-dimensional (3D) printed models in renal disease. A literature search of PubMed and Scopus databases was performed to identify studies reporting the clinical application and usefulness of 3D printed models in renal disease. Fifteen studies were found to meet the selection criteria and were included in the analysis. Eight of them provided quantitative assessments with five studies focusing on dimensional accuracy of 3D printed models in replicating renal anatomy and tumour, and on measuring tumour volume between 3D printed models and original source images and surgical specimens, with mean difference less than 10%. The other three studies reported that the use of 3D printed models significantly enhanced medical students and specialists' ability to identify anatomical structures when compared to two-dimensional (2D) images alone; and significantly shortened intraoperative ultrasound duration compared to without use of 3D printed models. Seven studies provided qualitative assessments of the usefulness of 3D printed kidney models with findings showing that 3D printed models improved patient's understanding of renal anatomy and pathology; improved medical trainees' understanding of renal malignant tumours when compared to viewing medical images alone; and assisted surgical planning and simulation of renal surgical procedures with significant reductions of intraoperative complications. The cost and time associated with 3D printed kidney model production was reported in 10 studies, with costs ranging from USD$100 to USD$1,000, and duration of 3D printing production up to 31 h. The entire process of 3D printing could take up to a few days. This review shows that 3D printed kidney models are accurate in delineating renal anatomical structures and renal tumours with high accuracy. Patient-specific 3D printed models serve as a useful tool in preoperative planning and simulation of surgical procedures for treatment of renal tumours. Further studies with inclusion of more cases and with a focus on reducing the cost and 3D model production time deserve to be investigated.

  9. A systematic review of clinical value of three-dimensional printing in renal disease

    PubMed Central

    2018-01-01

    The aim of this systematic review is to analyse current literature related to the clinical value of three-dimensional (3D) printed models in renal disease. A literature search of PubMed and Scopus databases was performed to identify studies reporting the clinical application and usefulness of 3D printed models in renal disease. Fifteen studies were found to meet the selection criteria and were included in the analysis. Eight of them provided quantitative assessments with five studies focusing on dimensional accuracy of 3D printed models in replicating renal anatomy and tumour, and on measuring tumour volume between 3D printed models and original source images and surgical specimens, with mean difference less than 10%. The other three studies reported that the use of 3D printed models significantly enhanced medical students and specialists’ ability to identify anatomical structures when compared to two-dimensional (2D) images alone; and significantly shortened intraoperative ultrasound duration compared to without use of 3D printed models. Seven studies provided qualitative assessments of the usefulness of 3D printed kidney models with findings showing that 3D printed models improved patient’s understanding of renal anatomy and pathology; improved medical trainees’ understanding of renal malignant tumours when compared to viewing medical images alone; and assisted surgical planning and simulation of renal surgical procedures with significant reductions of intraoperative complications. The cost and time associated with 3D printed kidney model production was reported in 10 studies, with costs ranging from USD$100 to USD$1,000, and duration of 3D printing production up to 31 h. The entire process of 3D printing could take up to a few days. This review shows that 3D printed kidney models are accurate in delineating renal anatomical structures and renal tumours with high accuracy. Patient-specific 3D printed models serve as a useful tool in preoperative planning and simulation of surgical procedures for treatment of renal tumours. Further studies with inclusion of more cases and with a focus on reducing the cost and 3D model production time deserve to be investigated. PMID:29774184

  10. Craniospinal Irradiation for Trilateral Retinoblastoma Following Ocular Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marks, Lawrence B.; Bentel, Gunilla; Sherouse, George W.

    A case study is presented. Craniospinal radiotherapy and a three-field pineal boost for trilateral retinoblastoma were delivered to a patient previously irradiated for ocular retinoblastoma. The availability of CT-based three-dimensional treatment planning provided the capability of identifying the previously irradiated volume as a three-dimensional anatomic structure and of designing a highly customized set of treatment beams that minimized reirradiation of that volume.

  11. The female knee: anatomic variations.

    PubMed

    Conley, Sheryl; Rosenberg, Aaron; Crowninshield, Roy

    2007-01-01

    Traditional knee implants have been designed "down the middle,"based on the combined average size and shape of male and female knee anatomy.Sex-based research in the field of orthopaedics has led to new understanding of the anatomic differences between the sexes and the associated implications for women undergoing total knee arthroplasty. Through the use of a comprehensive bone morphology atlas that utilizes novel three-dimensional computed tomography analysis technology, significant anatomic differences have been documented in the shape and size of female knees compared with male knees. This research identifies three notable anatomic differences in the female population: a less prominent anterior condyle, an increased Q angle, and a reduced medial-lateral:anterior-posterior aspect ratio.

  12. Defining the spatial relationships between eight anatomic planes in the 11+6 to 13+6 weeks fetus: a pilot study.

    PubMed

    Abu-Rustum, Reem S; Ziade, M Fouad; Abu-Rustum, Sameer E

    2012-09-01

    Our study aims at investigating the spatial relationships between eight anatomic planes in the 11+6 to 13+6 weeks fetus. This is a retrospective pilot study where three-dimensional and four-dimensional stored data sets were manipulated to retrieve eight anatomic planes starting from the midsagittal plane of the fetus. Standardization of volumes was performed at the level of the transverse abdominal circumference plane. Parallel shift was utilized and the spatial relationships between eight anatomic planes were established. The median and the range were calculated for each of the planes, and they were evaluated as a function of the fetal crown-rump length. P < 0.05 was considered statistically significant. A total of 63 volume data sets were analyzed. The eight anatomic planes were found to adhere to normal distribution curves, and most of the planes were in a definable relationship to each other with statistically significant correlations. To our knowledge, this is the first study to describe the possible spatial relationships between eight two-dimensional anatomic planes in the 11+6 to 13+6 weeks fetus, utilizing a standardized approach. Defining these spatial relationships may serve as the first step for the potential future development of automation software for fetal anatomic assessment at 11+6 to 13+6 weeks. © 2012 John Wiley & Sons, Ltd.

  13. The importance of spatial ability and mental models in learning anatomy

    NASA Astrophysics Data System (ADS)

    Chatterjee, Allison K.

    As a foundational course in medical education, gross anatomy serves to orient medical and veterinary students to the complex three-dimensional nature of the structures within the body. Understanding such spatial relationships is both fundamental and crucial for achievement in gross anatomy courses, and is essential for success as a practicing professional. Many things contribute to learning spatial relationships; this project focuses on a few key elements: (1) the type of multimedia resources, particularly computer-aided instructional (CAI) resources, medical students used to study and learn; (2) the influence of spatial ability on medical and veterinary students' gross anatomy grades and their mental models; and (3) how medical and veterinary students think about anatomy and describe the features of their mental models to represent what they know about anatomical structures. The use of computer-aided instruction (CAI) by gross anatomy students at Indiana University School of Medicine (IUSM) was assessed through a questionnaire distributed to the regional centers of the IUSM. Students reported using internet browsing, PowerPoint presentation software, and email on a daily bases to study gross anatomy. This study reveals that first-year medical students at the IUSM make limited use of CAI to study gross anatomy. Such studies emphasize the importance of examining students' use of CAI to study gross anatomy prior to development and integration of electronic media into the curriculum and they may be important in future decisions regarding the development of alternative learning resources. In order to determine how students think about anatomical relationships and describe the features of their mental models, personal interviews were conducted with select students based on students' ROT scores. Five typologies of the characteristics of students' mental models were identified and described: spatial thinking, kinesthetic approach, identification of anatomical structures, problem solving strategies, and study methods. Students with different levels of spatial ability visualize and think about anatomy in qualitatively different ways, which is reflected by the features of their mental models. Low spatial ability students thought about and used two-dimensional images from the textbook. They possessed basic two-dimensional models of anatomical structures; they placed emphasis on diagrams and drawings in their studies; and they re-read anatomical problems many times before answering. High spatial ability students thought fully in three-dimensional and imagined rotation and movement of the structures; they made use of many types of images and text as they studied and solved problems. They possessed elaborate three-dimensional models of anatomical structures which they were able to manipulate to solve problems; and they integrated diagrams, drawings, and written text in their studies. Middle spatial ability students were a mix between both low and high spatial ability students. They imagined two-dimensional images popping out of the flat paper to become more three-dimensional, but still relied on drawings and diagrams. Additionally, high spatial ability students used a higher proportion of anatomical terminology than low spatial ability or middle spatial ability students. This provides additional support to the premise that high spatial students' mental models are a complex mixture of imagistic representations and propositional representations that incorporate correct anatomical terminology. Low spatial ability students focused on the function of structures and ways to group information primarily for the purpose of recall. This supports the theory that low spatial students' mental models will be characterized by more on imagistic representations that are general in nature. (Abstract shortened by UMI.)

  14. CAVEman: Standardized Anatomical Context for Biomedical Data Mapping

    ERIC Educational Resources Information Center

    Turinsky, Andrei L.; Fanea, Elena; Trinh, Quang; Wat, Stephen; Hallgrimsson, Benedikt; Dong, Xiaoli; Shu, Xueling; Stromer, Julie N.; Hill, Jonathan W.; Edwards, Carol; Grosenick, Brenda; Yajima, Masumi; Sensen, Christoph W.

    2008-01-01

    The authors have created a software system called the CAVEman, for the visual integration and exploration of heterogeneous anatomical and biomedical data. The CAVEman can be applied for both education and research tasks. The main component of the system is a three-dimensional digital atlas of the adult male human anatomy, structured according to…

  15. A three-dimensional model to assess the effect of ankle joint axis misalignments in ankle-foot orthoses.

    PubMed

    Fatone, Stefania; Johnson, William Brett; Tucker, Kerice

    2016-04-01

    Misalignment of an articulated ankle-foot orthosis joint axis with the anatomic joint axis may lead to discomfort, alterations in gait, and tissue damage. Theoretical, two-dimensional models describe the consequences of misalignments, but cannot capture the three-dimensional behavior of ankle-foot orthosis use. The purpose of this project was to develop a model to describe the effects of ankle-foot orthosis ankle joint misalignment in three dimensions. Computational simulation. Three-dimensional scans of a leg and ankle-foot orthosis were incorporated into a link segment model where the ankle-foot orthosis joint axis could be misaligned with the anatomic ankle joint axis. The leg/ankle-foot orthosis interface was modeled as a network of nodes connected by springs to estimate interface pressure. Motion between the leg and ankle-foot orthosis was calculated as the ankle joint moved through a gait cycle. While the three-dimensional model corroborated predictions of the previously published two-dimensional model that misalignments in the anterior -posterior direction would result in greater relative motion compared to misalignments in the proximal -distal direction, it provided greater insight showing that misalignments have asymmetrical effects. The three-dimensional model has been incorporated into a freely available computer program to assist others in understanding the consequences of joint misalignments. Models and simulations can be used to gain insight into functioning of systems of interest. We have developed a three-dimensional model to assess the effect of ankle joint axis misalignments in ankle-foot orthoses. The model has been incorporated into a freely available computer program to assist understanding of trainees and others interested in orthotics. © The International Society for Prosthetics and Orthotics 2014.

  16. Teaching Three-Dimensional Structural Chemistry Using Crystal Structure Databases. 4. Examples of Discovery-Based Learning Using the Complete Cambridge Structural Database

    ERIC Educational Resources Information Center

    Battle, Gary M.; Allen, Frank H.; Ferrence, Gregory M.

    2011-01-01

    Parts 1 and 2 of this series described the educational value of experimental three-dimensional (3D) chemical structures determined by X-ray crystallography and retrieved from the crystallographic databases. In part 1, we described the information content of the Cambridge Structural Database (CSD) and discussed a representative teaching subset of…

  17. Teaching Three-Dimensional Structural Chemistry Using Crystal Structure Databases. 3. The Cambridge Structural Database System: Information Content and Access Software in Educational Applications

    ERIC Educational Resources Information Center

    Battle, Gary M.; Allen, Frank H.; Ferrence, Gregory M.

    2011-01-01

    Parts 1 and 2 of this series described the educational value of experimental three-dimensional (3D) chemical structures determined by X-ray crystallography and retrieved from the crystallographic databases. In part 1, we described the information content of the Cambridge Structural Database (CSD) and discussed a representative teaching subset of…

  18. Three-Dimensional Printing of X-Ray Computed Tomography Datasets with Multiple Materials Using Open-Source Data Processing

    ERIC Educational Resources Information Center

    Sander, Ian M.; McGoldrick, Matthew T.; Helms, My N.; Betts, Aislinn; van Avermaete, Anthony; Owers, Elizabeth; Doney, Evan; Liepert, Taimi; Niebur, Glen; Liepert, Douglas; Leevy, W. Matthew

    2017-01-01

    Advances in three-dimensional (3D) printing allow for digital files to be turned into a "printed" physical product. For example, complex anatomical models derived from clinical or pre-clinical X-ray computed tomography (CT) data of patients or research specimens can be constructed using various printable materials. Although 3D printing…

  19. A method of measuring three-dimensional scapular attitudes using the optotrak probing system.

    PubMed

    Hébert, L J; Moffet, H; McFadyen, B J; St-Vincent, G

    2000-01-01

    To develop a method to obtain accurate three-dimensional scapular attitudes and to assess their concurrent validity and reliability. In this methodological study, the three-dimensional scapular attitudes were calculated in degrees, using a rotation matrix (cyclic Cardanic sequence), from spatial coordinates obtained with the probing of three non colinear landmarks first on an anatomical model and second on a healthy subject. Although abnormal movement of the scapula is related to shoulder impingement syndrome, it is not clearly understood whether or not scapular motion impairment is a predisposing factor. Characterization of three-dimensional scapular attitudes in planes and at joint angles for which sub-acromial impingement is more likely to occur is not known. The Optotrak probing system was used. An anatomical model of the scapula was built and allowed us to impose scapular attitudes of known direction and magnitude. A local coordinate reference system was defined with three non colinear anatomical landmarks to assess accuracy and concurrent validity of the probing method with fixed markers. Axial rotation angles were calculated from a rotation matrix using a cyclic Cardanic sequence of rotations. The same three non colinear body landmarks were digitized on one healthy subject and the three dimensional scapular attitudes obtained were compared between sessions in order to assess the reliability. The measure of three dimensional scapular attitudes calculated from data using the Optotrak probing system was accurate with means of the differences between imposed and calculated rotation angles ranging from 1.5 degrees to 4.2 degrees. Greatest variations were observed around the third axis of the Cardanic sequence associated with posterior-anterior transverse rotations. The mean difference between the Optotrak probing system method and fixed markers was 1.73 degrees showing a good concurrent validity. Differences between the two methods were generally very low for one and two direction displacements and the largest discrepancies were observed for imposed displacements combining movement about the three axes. The between sessions variation of three dimensional scapular attitudes was less than 10% for most of the arm positions adopted by a healthy subject suggesting a good reliability. The Optotrak probing system used with a standardized protocol lead to accurate, valid and reliable measures of scapular attitudes. Although abnormal range of motion of the scapula is often related to shoulder pathologies, reliable outcome measures to quantify three-dimensional scapular motion on subjects are not available. It is important to establish a standardized protocol to characterize three-dimensional scapular motion on subjects using a method for which the accuracy and validity are known. The method used in the present study has provided such a protocol and will now allow to verify to what extent, scapular motion impairment is linked to the development of specific shoulder pathologies.

  20. Heuristic problems in defining the three-dimensional arrangement of the ventricular myocytes.

    PubMed

    Anderson, Robert H; Ho, Siew Yen; Sanchez-Quintana, Damian; Redmann, Klaus; Lunkenheimer, Paul P

    2006-06-01

    There is lack of consensus concerning the three-dimensional arrangement of the myocytes within the ventricular muscle masses. Bioengineers are seeking to model the structure of the heart. Although the success of such models depends on the accuracy of the anatomic evidence, most of them have been based on concepts that are far from anatomical reality, which ignore many significant previous accounts of anatomy presented over the past 400 years. During the 19th century, Pettigrew emphasized that the heart was built on the basis of a modified blood vessel rather than in the form of skeletal muscles. This fact was reemphasized by Lev and Simkins as well as Grant in the 20th century, but the caveats listed by these authors have been ignored by proponents of two current concepts, which state either that the myocardium is arranged in the form of a "unique myocardial band," or that the walls of the ventricles are sequestrated in uniform fashion by laminar sheets of fibrous tissue extending from epicardium to endocardium. These two concepts are themselves incompatible and are further at variance with the majority of anatomic studies, which have emphasized the regional heterogeneity to be found in the three-dimensional packing of the myocytes within a supporting matrix of fibrous tissue. We reemphasize the significance of this three-dimensional muscular mesh, showing how the presence of intruding aggregates of myocytes extending in oblique transmural fashion also contends against the notion that all myocytes are orientated with their long axes parallel to the epicardial and enodcardial surfaces.

  1. Reproducibility of three-dimensional cephalometric landmarks in cone-beam and low-dose computed tomography.

    PubMed

    Olszewski, R; Frison, L; Wisniewski, M; Denis, J M; Vynckier, S; Cosnard, G; Zech, F; Reychler, H

    2013-01-01

    The purpose of this study is to compare the reproducibility of three-dimensional cephalometric landmarks on three-dimensional computed tomography (3D-CT) surface rendering using clinical protocols based on low-dose (35-mAs) spiral CT and cone-beam CT (I-CAT). The absorbed dose levels for radiosensitive organs in the maxillofacial region during exposure in both 3D-CT protocols were also assessed. The study population consisted of ten human dry skulls examined with low-dose CT and cone-beam CT. Two independent observers identified 24 cephalometric anatomic landmarks at 13 sites on the 3D-CT surface renderings using both protocols, with each observer repeating the identification 1 month later. A total of 1,920 imaging measurements were performed. Thermoluminescent dosimeters were placed at six sites around the thyroid gland, the submandibular glands, and the eyes in an Alderson phantom to measure the absorbed dose levels. When comparing low-dose CT and cone-beam CT protocols, the cone-beam CT protocol proved to be significantly more reproducible for four of the 13 anatomical sites. There was no significant difference between the protocols for the other nine anatomical sites. Both low-dose and cone-beam CT protocols were equivalent in dose absorption to the eyes and submandibular glands. However, thyroid glands were more irradiated with low-dose CT. Cone-beam CT was more reproducible and procured less irradiation to the thyroid gland than low-dose CT. Cone-beam CT should be preferred over low-dose CT for developing three-dimensional bony cephalometric analyses.

  2. Three-dimensional mapping in the electrophysiological laboratory.

    PubMed

    Maury, Philippe; Monteil, Benjamin; Marty, Lilian; Duparc, Alexandre; Mondoly, Pierre; Rollin, Anne

    2018-06-07

    Investigation and catheter ablation of cardiac arrhythmias are currently still based on optimal knowledge of arrhythmia mechanisms in relation to the cardiac anatomy involved, in order to target their crucial components. Currently, most complex arrhythmias are investigated using three-dimensional electroanatomical navigation systems, because these are felt to optimally integrate both the anatomical and electrophysiological features of a given arrhythmia in a given patient. In this article, we review the technical background of available three-dimensional electroanatomical navigation systems, and their potential use in complex ablations. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. Effects of lung disease on the three-dimensional structure and air flow pattern in the human airway tree

    NASA Astrophysics Data System (ADS)

    van de Moortele, Tristan; Nemes, Andras; Wendt, Christine; Coletti, Filippo

    2016-11-01

    The morphological features of the airway tree directly affect the air flow features during breathing, which determines the gas exchange and inhaled particle transport. Lung disease, Chronic Obstructive Pulmonary Disease (COPD) in this study, affects the structural features of the lungs, which in turn negatively affects the air flow through the airways. Here bronchial tree air volume geometries are segmented from Computed Tomography (CT) scans of healthy and diseased subjects. Geometrical analysis of the airway centerlines and corresponding cross-sectional areas provide insight into the specific effects of COPD on the airway structure. These geometries are also used to 3D print anatomically accurate, patient specific flow models. Three-component, three-dimensional velocity fields within these models are acquired using Magnetic Resonance Imaging (MRI). The three-dimensional flow fields provide insight into the change in flow patterns and features. Additionally, particle trajectories are determined using the velocity fields, to identify the fate of therapeutic and harmful inhaled aerosols. Correlation between disease-specific and patient-specific anatomical features with dysfunctional airflow patterns can be achieved by combining geometrical and flow analysis.

  4. A rudimentary database for three-dimensional objects using structural representation

    NASA Technical Reports Server (NTRS)

    Sowers, James P.

    1987-01-01

    A database which enables users to store and share the description of three-dimensional objects in a research environment is presented. The main objective of the design is to make it a compact structure that holds sufficient information to reconstruct the object. The database design is based on an object representation scheme which is information preserving, reasonably efficient, and yet economical in terms of the storage requirement. The determination of the needed data for the reconstruction process is guided by the belief that it is faster to do simple computations to generate needed data/information for construction than to retrieve everything from memory. Some recent techniques of three-dimensional representation that influenced the design of the database are discussed. The schema for the database and the structural definition used to define an object are given. The user manual for the software developed to create and maintain the contents of the database is included.

  5. Anatomic Optical Coherence Tomography of Upper Airways

    NASA Astrophysics Data System (ADS)

    Chin Loy, Anthony; Jing, Joseph; Zhang, Jun; Wang, Yong; Elghobashi, Said; Chen, Zhongping; Wong, Brian J. F.

    The upper airway is a complex and intricate system responsible for respiration, phonation, and deglutition. Obstruction of the upper airways afflicts an estimated 12-18 million Americans. Pharyngeal size and shape are important factors in the pathogenesis of airway obstructions. In addition, nocturnal loss in pharyngeal muscular tone combined with high pharyngeal resistance can lead to collapse of the airway and periodic partial or complete upper airway obstruction. Anatomical optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images of the airway lumen without the use of ionizing radiation. In this chapter we describe the methods behind endoscopic OCT imaging and processing to generate full three dimensional anatomical models of the human airway which can be used in conjunction with numerical simulation methods to assess areas of airway obstruction. Combining this structural information with flow dynamic simulations, we can better estimate the site and causes of airway obstruction and better select and design surgery for patients with obstructive sleep apnea.

  6. Evaluation by Medical Students of the Educational Value of Multi-Material and Multi-Colored Three-Dimensional Printed Models of the Upper Limb for Anatomical Education

    ERIC Educational Resources Information Center

    Mogali, Sreenivasulu Reddy; Yeong, Wai Yee; Tan, Heang Kuan Joel; Tan, Gerald Jit Shen; Abrahams, Peter H.; Zary, Nabil; Low-Beer, Naomi; Ferenczi, Michael Alan

    2018-01-01

    For centuries, cadaveric material has been the cornerstone of anatomical education. For reasons of changes in curriculum emphasis, cost, availability, expertise, and ethical concerns, several medical schools have replaced wet cadaveric specimens with plastinated prosections, plastic models, imaging, and digital models. Discussions about the…

  7. Aligning Microtomography Analysis with Traditional Anatomy for a 3D Understanding of the Host-Parasite Interface – Phoradendron spp. Case Study

    PubMed Central

    Teixeira-Costa, Luíza; Ceccantini, Gregório C. T.

    2016-01-01

    The complex endophytic structure formed by parasitic plant species often represents a challenge in the study of the host-parasite interface. Even with the large amounts of anatomical slides, a three-dimensional comprehension of the structure may still be difficult to obtain. In the present study we applied the High Resolution X-ray Computed Tomography (HRXCT) analysis along with usual plant anatomy techniques in order to compare the infestation pattern of two mistletoe species of the genus Phoradendron. Additionally, we tested the use of contrasting solutions in order to improve the detection of the parasite’s endophytic tissue. To our knowledge, this is the first study to show the three-dimensional structure of host-mistletoe interface by using HRXCT technique. Results showed that Phoradendron perrottetii growing on the host Tapirira guianensis forms small woody galls with a restricted endophytic system. The sinkers were short and eventually grouped creating a continuous interface with the host wood. On the other hand, the long sinkers of P. bathyoryctum penetrate deeply into the wood of Cedrela fissilis branching in all directions throughout the woody gall area, forming a spread-out infestation pattern. The results indicate that the HRXCT is indeed a powerful approach to understand the endophytic system of parasitic plants. The combination of three-dimensional models of the infestation with anatomical analysis provided a broader understanding of the host-parasite connection. Unique anatomic features are reported for the sinkes of P. perrottetii, while the endophytic tissue of P. bathyoryctum conformed to general anatomy observed for other species of this genus. These differences are hypothesized to be related to the three-dimensional structure of each endophytic system and the communication stablished with the host. PMID:27630661

  8. Three-dimensional image reconstruction with free open-source OsiriX software in video-assisted thoracoscopic lobectomy and segmentectomy.

    PubMed

    Yao, Fei; Wang, Jian; Yao, Ju; Hang, Fangrong; Lei, Xu; Cao, Yongke

    2017-03-01

    The aim of this retrospective study was to evaluate the practice and the feasibility of Osirix, a free and open-source medical imaging software, in performing accurate video-assisted thoracoscopic lobectomy and segmentectomy. From July 2014 to April 2016, 63 patients received anatomical video-assisted thoracoscopic surgery (VATS), either lobectomy or segmentectomy, in our department. Three-dimensional (3D) reconstruction images of 61 (96.8%) patients were preoperatively obtained with contrast-enhanced computed tomography (CT). Preoperative resection simulations were accomplished with patient-individual reconstructed 3D images. For lobectomy, pulmonary lobar veins, arteries and bronchi were identified meticulously by carefully reviewing the 3D images on the display. For segmentectomy, the intrasegmental veins in the affected segment for division and the intersegmental veins to be preserved were identified on the 3D images. Patient preoperative characteristics, surgical outcomes and postoperative data were reviewed from a prospective database. The study cohort of 63 patients included 33 (52.4%) men and 30 (47.6%) women, of whom 46 (73.0%) underwent VATS lobectomy and 17 (27.0%) underwent VATS segmentectomy. There was 1 conversion from VATS lobectomy to open thoracotomy because of fibrocalcified lymph nodes. A VATS lobectomy was performed in 1 case after completing the segmentectomy because invasive adenocarcinoma was detected by intraoperative frozen-section analysis. There were no 30-day or 90-day operative mortalities CONCLUSIONS: The free, simple, and user-friendly software program Osirix can provide a 3D anatomic structure of pulmonary vessels and a clear vision into the space between the lesion and adjacent tissues, which allows surgeons to make preoperative simulations and improve the accuracy and safety of actual surgery. Copyright © 2017 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  9. An Elaborate Data Set Characterizing the Mechanical Response of the Foot

    PubMed Central

    Erdemir, Ahmet; Sirimamilla, Pavana A.; Halloran, Jason P.; van den Bogert, Antonie J.

    2010-01-01

    Background Mechanical properties of the foot are responsible for its normal function and play a role in various clinical problems. Specifically, we are interested in quantification of foot mechanical properties to assist the development of computational models for movement analysis and detailed simulations of tissue deformation. Current available data are specific to a foot region and the loading scenarios are limited to a single direction. A data set that incorporates regional response, to quantify individual function of foot components, as well as overall response, to illustrate their combined operation, does not exist. Furthermore, combined three-dimensional loading scenarios while measuring the complete three-dimensional deformation response are lacking. When combined with an anatomical image data set, development of anatomically realistic and mechanically validated models becomes possible. Therefore, the goal of this study was to record and disseminate the mechanical response of a foot specimen, supported by imaging data. Method of Approach Robotic testing was conducted at the rear foot, forefoot, metatarsal heads, and the foot as a whole. Complex foot deformations were induced by single mode loading, e.g. compression, and combined loading, e.g. compression and shear. Small and large indenters were used for heel and metatarsal head loading; an elevated platform was utilized to isolate the rear foot and forefoot; and a full platform compressed the whole foot. Three-dimensional tool movements and reaction loads were recorded simultaneously. Computed tomography scans of the same specimen were collected for anatomical reconstruction a-priori. Results Three-dimensional mechanical response of the specimen was nonlinear and viscoelastic. A low stiffness region was observed starting with contact between the tool and foot regions, increasing with loading. Loading and unloading response portrayed hysteresis. Loading range ensured capturing the toe and linear regions of the load deformation curves for the dominant loading direction, with the rates approximating those of walking. Conclusion A large data set was successfully obtained to characterize the overall as well as regional mechanical response of an intact foot specimen under single and combined loads. Medical imaging complemented the mechanical testing data to establish the potential relationship between the anatomical architecture and mechanical response, and for further development of foot models that are mechanically realistic and anatomically consistent. This combined data set has been documented and disseminated in the public domain to promote future development in foot biomechanics. PMID:19725699

  10. Teaching Three-Dimensional Structural Chemistry Using Crystal Structure Databases. 2. Teaching Units that Utilize an Interactive Web-Accessible Subset of the Cambridge Structural Database

    ERIC Educational Resources Information Center

    Battle, Gary M.; Allen, Frank H.; Ferrence, Gregory M.

    2010-01-01

    A series of online interactive teaching units have been developed that illustrate the use of experimentally measured three-dimensional (3D) structures to teach fundamental chemistry concepts. The units integrate a 500-structure subset of the Cambridge Structural Database specially chosen for their pedagogical value. The units span a number of key…

  11. Using three-dimensional computational modeling to compare the geometrical fitness of two kinds of proximal femoral intramedullary nail for Chinese femur.

    PubMed

    Zhang, Sheng; Zhang, Kairui; Wang, Yimin; Feng, Wei; Wang, Bowei; Yu, Bin

    2013-01-01

    The aim of this study was to use three-dimensional (3D) computational modeling to compare the geometric fitness of these two kinds of proximal femoral intramedullary nails in the Chinese femurs. Computed tomography (CT) scans of a total of 120 normal adult Chinese cadaveric femurs were collected for analysis. With the three-dimensional (3D) computational technology, the anatomical fitness between the nail and bone was quantified according to the impingement incidence, maximum thicknesses and lengths by which the nail was protruding into the cortex in the virtual bone model, respectively, at the proximal, middle, and distal portions of the implant in the femur. The results showed that PFNA-II may fit better for the Chinese proximal femurs than InterTan, and the distal portion of InterTan may perform better than that of PFNA-II; the anatomic fitness of both nails for Chinese patients may not be very satisfactory. As a result, both implants need further modifications to meet the needs of the Chinese population.

  12. A reusable anatomically segmented digital mannequin for public health communication.

    PubMed

    Fujieda, Kaori; Okubo, Kosaku

    2016-01-01

    The ongoing development of world wide web technologies has facilitated a change in health communication, which has now become bi-directional and encompasses people with diverse backgrounds. To enable an even greater role for medical illustrations, a data set, BodyParts3D, has been generated and its data set can be used by anyone to create and exchange customised three-dimensional (3D) anatomical images. BP3D comprises more than 3000 3D object files created by segmenting a digital mannequin in accordance with anatomical naming conventions. This paper describes the methodologies and features used to generate an anatomically correct male mannequin.

  13. Functional Strain-Line Pattern in the Human Left Ventricle

    NASA Astrophysics Data System (ADS)

    Pedrizzetti, Gianni; Kraigher-Krainer, Elisabeth; De Luca, Alessio; Caracciolo, Giuseppe; Mangual, Jan O.; Shah, Amil; Toncelli, Loira; Domenichini, Federico; Tonti, Giovanni; Galanti, Giorgio; Sengupta, Partho P.; Narula, Jagat; Solomon, Scott

    2012-07-01

    Analysis of deformations in terms of principal directions appears well suited for biological tissues that present an underlying anatomical structure of fiber arrangement. We applied this concept here to study deformation of the beating heart in vivo analyzing 30 subjects that underwent accurate three-dimensional echocardiographic recording of the left ventricle. Results show that strain develops predominantly along the principal direction with a much smaller transversal strain, indicating an underlying anisotropic, one-dimensional contractile activity. The strain-line pattern closely resembles the helical anatomical structure of the heart muscle. These findings demonstrate that cardiac contraction occurs along spatially variable paths and suggest a potential clinical significance of the principal strain concept for the assessment of mechanical cardiac function. The same concept can help in characterizing the relation between functional and anatomical properties of biological tissues, as well as fiber-reinforced engineered materials.

  14. [3D FSPGR (fast spoiled gradient echo) magnetic resonance imaging in the diagnosis of focal cortical dysplasia in children].

    PubMed

    Alikhanov, A A; Sinitsyn, V E; Perepelova, E M; Mukhin, K Iu; Demushkina, A A; Omarova, M O; Piliia, S V

    2001-01-01

    Small dysplastic lesions of the cerebral cortex are often missed by conventional MRI methods. The identification of subtle structural abnormalities by traditional multiplanar rectilinear slices is often limited by the complex convolutional pattern of the brain. We used a method of FSPGR (fast spoiled gradient-echo) of three-dimensional MRI data that improves the anatomical display of the sulcal structure of the hemispheric convexities. It also reduces the asymmetric sampling of gray-white matter that may lead to false-positive results. We present 5 from 12 patients with dysplastic cortical lesions in whom conventional two-dimensional and three-dimensional MRI with multiplanar reformatting was initially considered normal. Subsequent studies using 3D FSPGR identified various types of focal cortical dysplasia in all. These results indicate that an increase in the detection of subtle focal dysplastic lesions may be accomplished when one improves the anatomical display of the brain sulcal structure by performing 3D FSPGR.

  15. WebCSD: the online portal to the Cambridge Structural Database

    PubMed Central

    Thomas, Ian R.; Bruno, Ian J.; Cole, Jason C.; Macrae, Clare F.; Pidcock, Elna; Wood, Peter A.

    2010-01-01

    WebCSD, a new web-based application developed by the Cambridge Crystallographic Data Centre, offers fast searching of the Cambridge Structural Database using only a standard internet browser. Search facilities include two-dimensional substructure, molecular similarity, text/numeric and reduced cell searching. Text, chemical diagrams and three-dimensional structural information can all be studied in the results browser using the efficient entry summaries and embedded three-dimensional viewer. PMID:22477776

  16. 3D-printing techniques in a medical setting: a systematic literature review.

    PubMed

    Tack, Philip; Victor, Jan; Gemmel, Paul; Annemans, Lieven

    2016-10-21

    Three-dimensional (3D) printing has numerous applications and has gained much interest in the medical world. The constantly improving quality of 3D-printing applications has contributed to their increased use on patients. This paper summarizes the literature on surgical 3D-printing applications used on patients, with a focus on reported clinical and economic outcomes. Three major literature databases were screened for case series (more than three cases described in the same study) and trials of surgical applications of 3D printing in humans. 227 surgical papers were analyzed and summarized using an evidence table. The papers described the use of 3D printing for surgical guides, anatomical models, and custom implants. 3D printing is used in multiple surgical domains, such as orthopedics, maxillofacial surgery, cranial surgery, and spinal surgery. In general, the advantages of 3D-printed parts are said to include reduced surgical time, improved medical outcome, and decreased radiation exposure. The costs of printing and additional scans generally increase the overall cost of the procedure. 3D printing is well integrated in surgical practice and research. Applications vary from anatomical models mainly intended for surgical planning to surgical guides and implants. Our research suggests that there are several advantages to 3D-printed applications, but that further research is needed to determine whether the increased intervention costs can be balanced with the observable advantages of this new technology. There is a need for a formal cost-effectiveness analysis.

  17. Modelling and Manufacturing of a 3D Printed Trachea for Cricothyroidotomy Simulation.

    PubMed

    Doucet, Gregory; Ryan, Stephen; Bartellas, Michael; Parsons, Michael; Dubrowski, Adam; Renouf, Tia

    2017-08-18

    Cricothyroidotomy is a life-saving medical procedure that allows for tracheal intubation. Most current cricothyroidotomy simulation models are either expensive or not anatomically accurate and provide the learner with an unrealistic simulation experience. The goal of this project is to improve current simulation techniques by utilizing rapid prototyping using 3D printing technology and expert opinions to develop inexpensive and anatomically accurate trachea simulators. In doing so, emergency cricothyroidotomy simulation can be made accessible, accurate, cost-effective and reproducible. Three-dimensional modelling software was used in conjunction with a desktop three-dimensional (3D) printer to design and manufacture an anatomically accurate model of the cartilage within the trachea (thyroid cartilage, cricoid cartilage, and the tracheal rings). The initial design was based on dimensions found in studies of tracheal anatomical configuration. This ensured that the landmarking necessary for emergency cricothyroidotomies was designed appropriately. Several revisions of the original model were made based on informal opinion from medical professionals to establish appropriate anatomical accuracy of the model for use in rural/remote cricothyroidotomy simulation. Using an entry-level desktop 3D printer, a low cost tracheal model was successfully designed that can be printed in less than three hours for only $1.70 Canadian dollars (CAD). Due to its anatomical accuracy, flexibility and durability, this model is great for use in emergency medicine simulation training. Additionally, the model can be assembled in conjunction with a membrane to simulate tracheal ligaments. Skin has been simulated as well to enhance the realism of the model. The result is an accurate simulation that will provide users with an anatomically correct model to practice important skills used in emergency airway surgery, specifically landmarking, incision and intubation. This design is a novel and easy to manufacture and reproduce, high fidelity trachea model that can be used by educators with limited resources.

  18. Modelling and Manufacturing of a 3D Printed Trachea for Cricothyroidotomy Simulation

    PubMed Central

    Ryan, Stephen; Bartellas, Michael; Parsons, Michael; Dubrowski, Adam; Renouf, Tia

    2017-01-01

    Cricothyroidotomy is a life-saving medical procedure that allows for tracheal intubation. Most current cricothyroidotomy simulation models are either expensive or not anatomically accurate and provide the learner with an unrealistic simulation experience. The goal of this project is to improve current simulation techniques by utilizing rapid prototyping using 3D printing technology and expert opinions to develop inexpensive and anatomically accurate trachea simulators. In doing so, emergency cricothyroidotomy simulation can be made accessible, accurate, cost-effective and reproducible. Three-dimensional modelling software was used in conjunction with a desktop three-dimensional (3D) printer to design and manufacture an anatomically accurate model of the cartilage within the trachea (thyroid cartilage, cricoid cartilage, and the tracheal rings). The initial design was based on dimensions found in studies of tracheal anatomical configuration. This ensured that the landmarking necessary for emergency cricothyroidotomies was designed appropriately. Several revisions of the original model were made based on informal opinion from medical professionals to establish appropriate anatomical accuracy of the model for use in rural/remote cricothyroidotomy simulation. Using an entry-level desktop 3D printer, a low cost tracheal model was successfully designed that can be printed in less than three hours for only $1.70 Canadian dollars (CAD). Due to its anatomical accuracy, flexibility and durability, this model is great for use in emergency medicine simulation training. Additionally, the model can be assembled in conjunction with a membrane to simulate tracheal ligaments. Skin has been simulated as well to enhance the realism of the model. The result is an accurate simulation that will provide users with an anatomically correct model to practice important skills used in emergency airway surgery, specifically landmarking, incision and intubation. This design is a novel and easy to manufacture and reproduce, high fidelity trachea model that can be used by educators with limited resources. PMID:29057187

  19. Three-dimensional printing and pediatric liver disease.

    PubMed

    Alkhouri, Naim; Zein, Nizar N

    2016-10-01

    Enthusiastic physicians and medical researchers are investigating the role of three-dimensional printing in medicine. The purpose of the current review is to provide a concise summary of the role of three-dimensional printing technology as it relates to the field of pediatric hepatology and liver transplantation. Our group and others have recently demonstrated the feasibility of printing three-dimensional livers with identical anatomical and geometrical landmarks to the native liver to facilitate presurgical planning of complex liver surgeries. Medical educators are exploring the use of three-dimensional printed organs in anatomy classes and surgical residencies. Moreover, mini-livers are being developed by regenerative medicine scientist as a way to test new drugs and, eventually, whole livers will be grown in the laboratory to replace organs with end-stage disease solving the organ shortage problem. From presurgical planning to medical education to ultimately the bioprinting of whole organs for transplantation, three-dimensional printing will change medicine as we know in the next few years.

  20. An interactive three-dimensional virtual body structures system for anatomical training over the internet.

    PubMed

    Temkin, Bharti; Acosta, Eric; Malvankar, Ameya; Vaidyanath, Sreeram

    2006-04-01

    The Visible Human digital datasets make it possible to develop computer-based anatomical training systems that use virtual anatomical models (virtual body structures-VBS). Medical schools are combining these virtual training systems and classical anatomy teaching methods that use labeled images and cadaver dissection. In this paper we present a customizable web-based three-dimensional anatomy training system, W3D-VBS. W3D-VBS uses National Library of Medicine's (NLM) Visible Human Male datasets to interactively locate, explore, select, extract, highlight, label, and visualize, realistic 2D (using axial, coronal, and sagittal views) and 3D virtual structures. A real-time self-guided virtual tour of the entire body is designed to provide detailed anatomical information about structures, substructures, and proximal structures. The system thus facilitates learning of visuospatial relationships at a level of detail that may not be possible by any other means. The use of volumetric structures allows for repeated real-time virtual dissections, from any angle, at the convenience of the user. Volumetric (3D) virtual dissections are performed by adding, removing, highlighting, and labeling individual structures (and/or entire anatomical systems). The resultant virtual explorations (consisting of anatomical 2D/3D illustrations and animations), with user selected highlighting colors and label positions, can be saved and used for generating lesson plans and evaluation systems. Tracking users' progress using the evaluation system helps customize the curriculum, making W3D-VBS a powerful learning tool. Our plan is to incorporate other Visible Human segmented datasets, especially datasets with higher resolutions, that make it possible to include finer anatomical structures such as nerves and small vessels. (c) 2006 Wiley-Liss, Inc.

  1. Evaluation by medical students of the educational value of multi-material and multi-colored three-dimensional printed models of the upper limb for anatomical education.

    PubMed

    Mogali, Sreenivasulu Reddy; Yeong, Wai Yee; Tan, Heang Kuan Joel; Tan, Gerald Jit Shen; Abrahams, Peter H; Zary, Nabil; Low-Beer, Naomi; Ferenczi, Michael Alan

    2018-01-01

    For centuries, cadaveric material has been the cornerstone of anatomical education. For reasons of changes in curriculum emphasis, cost, availability, expertise, and ethical concerns, several medical schools have replaced wet cadaveric specimens with plastinated prosections, plastic models, imaging, and digital models. Discussions about the qualities and limitations of these alternative teaching resources are on-going. We hypothesize that three-dimensional printed (3DP) models can replace or indeed enhance existing resources for anatomical education. A novel multi-colored and multi-material 3DP model of the upper limb was developed based on a plastinated upper limb prosection, capturing muscles, nerves, arteries and bones with a spatial resolution of ∼1 mm. This study aims to examine the educational value of the 3DP model from the learner's point of view. Students (n = 15) compared the developed 3DP models with the plastinated prosections, and provided their views on their learning experience using 3DP models using a survey and focus group discussion. Anatomical features in 3DP models were rated as accurate by all students. Several positive aspects of 3DP models were highlighted, such as the color coding by tissue type, flexibility and that less care was needed in the handling and examination of the specimen than plastinated specimens which facilitated the appreciation of relations between the anatomical structures. However, students reported that anatomical features in 3DP models are less realistic compared to the plastinated specimens. Multi-colored, multi-material 3DP models are a valuable resource for anatomical education and an excellent adjunct to wet cadaveric or plastinated prosections. Anat Sci Educ 11: 54-64. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  2. [3-dimensional models of actual or simulated cesarean sections].

    PubMed

    Patzak, B; Schaller, A

    2001-01-01

    Following upon an etymological and historical introduction, this report refers to two three-dimensional wax models of Caesarean sections, which have recently been acquired by the Pathological-anatomical Federal Museum in Vienna. Information is given on origin, dating and kind of production; questions of indication and operation technique, and--when in doubt--obduction technique, are being considered.

  3. Realistic simulated MRI and SPECT databases. Application to SPECT/MRI registration evaluation.

    PubMed

    Aubert-Broche, Berengere; Grova, Christophe; Reilhac, Anthonin; Evans, Alan C; Collins, D Louis

    2006-01-01

    This paper describes the construction of simulated SPECT and MRI databases that account for realistic anatomical and functional variability. The data is used as a gold-standard to evaluate four SPECT/MRI similarity-based registration methods. Simulation realism was accounted for using accurate physical models of data generation and acquisition. MRI and SPECT simulations were generated from three subjects to take into account inter-subject anatomical variability. Functional SPECT data were computed from six functional models of brain perfusion. Previous models of normal perfusion and ictal perfusion observed in Mesial Temporal Lobe Epilepsy (MTLE) were considered to generate functional variability. We studied the impact noise and intensity non-uniformity in MRI simulations and SPECT scatter correction may have on registration accuracy. We quantified the amount of registration error caused by anatomical and functional variability. Registration involving ictal data was less accurate than registration involving normal data. MR intensity nonuniformity was the main factor decreasing registration accuracy. The proposed simulated database is promising to evaluate many functional neuroimaging methods, involving MRI and SPECT data.

  4. An integrated approach to reservoir modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donaldson, K.

    1993-08-01

    The purpose of this research is to evaluate the usefulness of the following procedural and analytical methods in investigating the heterogeneity of the oil reserve for the Mississipian Big Injun Sandstone of the Granny Creek field, Clay and Roane counties, West Virginia: (1) relational database, (2) two-dimensional cross sections, (3) true three-dimensional modeling, (4) geohistory analysis, (5) a rule-based expert system, and (6) geographical information systems. The large data set could not be effectively integrated and interpreted without this approach. A relational database was designed to fully integrate three- and four-dimensional data. The database provides an effective means for maintainingmore » and manipulating the data. A two-dimensional cross section program was designed to correlate stratigraphy, depositional environments, porosity, permeability, and petrographic data. This flexible design allows for additional four-dimensional data. Dynamic Graphics[sup [trademark

  5. Three-dimensional computed topography analysis of a patient with an unusual anatomy of the maxillary second and third molars.

    PubMed

    Zhao, Jin; Li, Yan; Yang, Zhi-Wei; Wang, Wei; Meng, Yan

    2011-10-01

    We present a case of a patient with rare anatomy of a maxillary second molar with three mesiobuccal root canals and a maxillary third molar with four separate roots, identified using multi-slice computed topography (CT) and three-dimensional reconstruction techniques. The described case enriched/might enrich our knowledge about possible anatomical aberrations of maxillary molars. In addition, we demonstrate the role of multi-slice CT as an objective tool for confirmatory diagnosis and successful endodontic management.

  6. Computed Tomographic Analysis of Ventral Atlantoaxial Optimal Safe Implantation Corridors in 27 Dogs.

    PubMed

    Leblond, Guillaume; Gaitero, Luis; Moens, Noel M M; Zur Linden, Alex; James, Fiona M K; Monteith, Gabrielle J; Runciman, John

    2017-11-01

    Objectives  Ventral atlantoaxial stabilization techniques are challenging surgical procedures in dogs. Available surgical guidelines are based upon subjective anatomical landmarks, and limited radiographic and computed tomographic data. The aims of this study were (1) to provide detailed anatomical descriptions of atlantoaxial optimal safe implantation corridors to generate objective recommendations for optimal implant placements and (2) to compare anatomical data obtained in non-affected Toy breed dogs, affected Toy breed dogs suffering from atlantoaxial instability and non-affected Beagle dogs. Methods  Anatomical data were collected from a prospectively recruited population of 27 dogs using a previously validated method of optimal safe implantation corridor analysis using computed tomographic images. Results  Optimal implant positions and three-dimensional numerical data were generated successfully in all cases. Anatomical landmarks could be used to generate objective definitions of optimal insertion points which were applicable across all three groups. Overall the geometrical distribution of all implant sites was similar in all three groups with a few exceptions. Clinical Significance  This study provides extensive anatomical data available to facilitate surgical planning of implant placement for atlantoaxial stabilization. Our data suggest that non-affected Toy breed dogs and non-affected Beagle dogs constitute reasonable research models to study atlantoaxial stabilization constructs. Schattauer GmbH Stuttgart.

  7. Registration of planar bioluminescence to magnetic resonance and x-ray computed tomography images as a platform for the development of bioluminescence tomography reconstruction algorithms.

    PubMed

    Beattie, Bradley J; Klose, Alexander D; Le, Carl H; Longo, Valerie A; Dobrenkov, Konstantine; Vider, Jelena; Koutcher, Jason A; Blasberg, Ronald G

    2009-01-01

    The procedures we propose make possible the mapping of two-dimensional (2-D) bioluminescence image (BLI) data onto a skin surface derived from a three-dimensional (3-D) anatomical modality [magnetic resonance (MR) or computed tomography (CT)] dataset. This mapping allows anatomical information to be incorporated into bioluminescence tomography (BLT) reconstruction procedures and, when applied using sources visible to both optical and anatomical modalities, can be used to evaluate the accuracy of those reconstructions. Our procedures, based on immobilization of the animal and a priori determined fixed projective transforms, should be more robust and accurate than previously described efforts, which rely on a poorly constrained retrospectively determined warping of the 3-D anatomical information. Experiments conducted to measure the accuracy of the proposed registration procedure found it to have a mean error of 0.36+/-0.23 mm. Additional experiments highlight some of the confounds that are often overlooked in the BLT reconstruction process, and for two of these confounds, simple corrections are proposed.

  8. Retrieving high-resolution images over the Internet from an anatomical image database

    NASA Astrophysics Data System (ADS)

    Strupp-Adams, Annette; Henderson, Earl

    1999-12-01

    The Visible Human Data set is an important contribution to the national collection of anatomical images. To enhance the availability of these images, the National Library of Medicine has supported the design and development of a prototype object-oriented image database which imports, stores, and distributes high resolution anatomical images in both pixel and voxel formats. One of the key database modules is its client-server Internet interface. This Web interface provides a query engine with retrieval access to high-resolution anatomical images that range in size from 100KB for browser viewable rendered images, to 1GB for anatomical structures in voxel file formats. The Web query and retrieval client-server system is composed of applet GUIs, servlets, and RMI application modules which communicate with each other to allow users to query for specific anatomical structures, and retrieve image data as well as associated anatomical images from the database. Selected images can be downloaded individually as single files via HTTP or downloaded in batch-mode over the Internet to the user's machine through an applet that uses Netscape's Object Signing mechanism. The image database uses ObjectDesign's object-oriented DBMS, ObjectStore that has a Java interface. The query and retrieval systems has been tested with a Java-CDE window system, and on the x86 architecture using Windows NT 4.0. This paper describes the Java applet client search engine that queries the database; the Java client module that enables users to view anatomical images online; the Java application server interface to the database which organizes data returned to the user, and its distribution engine that allow users to download image files individually and/or in batch-mode.

  9. Defining Ebstein's malformation using three-dimensional echocardiography.

    PubMed

    Vettukattil, Joseph J; Bharucha, Tara; Anderson, Robert H

    2007-12-01

    Ebstein's malformation is difficult to visualise, for both the echocardiographer and the surgeon. The essence of the problem in Ebstein's malformation is the deviation of the hingepoints of the leaflets towards the junctions of the inlet and apical trabecular parts of the right ventricle. Three-dimensional echocardiography offers new insights into the morphology and function of malformed valves, and allows elucidation of all the features. It allows clear visualisation of the valve leaflets, showing the precise morphology of the valve leaflets, the extent of their formation, the level of their attachment, and their degree of coaptation. Visualisation of the mechanism of regurgitation or stenosis is possible, as is more accurate quantification of the regurgitant jet or jets. Subchordal apparatus may be seen more clearly using three-dimensional echocardiography, and their functional anatomy understood. The multiplanar review modality allows examination of the three-dimensional data set even in patients with sub-optimal echocardiographic imaging. Previously, much of this information could only be well-understood at the time of surgery or post mortem, meaning that the majority of the specimens fully examined were at the poorly functioning end of the spectrum. This information is of use in furthering our understanding of this complex lesion as it functions in vivo, and demonstrating which anatomical pathology is significant in producing functional and physiological consequences. It is also of use for the clinician in selecting which patients are amenable to surgical intervention, for either single or biventricular repair, and for the surgeon in planning how to approach the operation. Correlation between three-dimensional echocardiographic findings and surgical findings has already been established, but the effect of this enhanced anatomical knowledge on surgical planning and surgical outcome requires further investigation.

  10. A diagnostic approach in Alzheimer`s disease using three-dimensional stereotactic surface projections of Fluorine-18-FDG PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minoshima, S.; Frey, K.A.; Koeppe, R.A.

    1995-07-01

    To improve the diagnostic performance of PET as an aid in evaluating patients suspected of having Alzheimer`s disease, the authors developed a fully automated method which generates comprehensive image presentations and objective diagnostic indices. Fluorine-18-fluorodeoxyglucose PET image sets were collected from 37 patients with probable Alzheimer`s disease (including questionable and mild dementia), 22 normal subjects and 5 patients with cerebrovascular disease. Following stereotactic anatomic standardization, metabolic activity on an individual`s PET image set was extracted to a set of predefined surface pixels (three-dimensional stereotactic surface projection, 3D-SSP), which was used in the subsequent analysis. A normal database was created bymore » averaging extracted datasets of the normal subjects. Patients` datasets were compared individually with the normal database by calculating a Z-score on a pixel-by-pixel basis and were displayed in 3D-SSP views for visual inspections. Diagnostic indices were then generated based on averaged Z-scores for the association cortices. Patterns and severities of metabolic reduction in patients with probable Alzheimer`s disease were seen in the standard 3D-SSP views of extracted raw data and statistical Z-scores. When discriminating patients with probable Alzheimer`s disease from normal subjects, diagnostic indices of the parietal association cortex and unilaterally averaged parietal-temporal-frontal cortex showed sensitivities of 95% and 97%, respectively, with a specificity of 100%. Neither index yielded false-positive results for cerebrovascular disease. 3D-SSP enables quantitative data extraction and reliable localization of metabolic abnormalities by means of stereotactic coordinates. The proposed method is a promising approach for interpreting functional brain PET scans. 45 refs., 5 figs.« less

  11. A Proposed Maneuver to Guide Transseptal Puncture Using Real-Time Three-Dimensional Transesophageal Echocardiography: Pilot Study.

    PubMed

    Mahmoud, Hani M; Al-Ghamdi, Mohammed A; Ghabashi, Abdullah E; Anwar, Ashraf M

    2015-01-01

    Aim of Study. To assess the feasibility of a new proposed maneuver "RATLe-90" using real-time three-dimensional transesophageal echocardiography (RT-3DTEE) for anatomically oriented visualization of the interatrial septum (IAS) in guiding the transseptal puncture TSP. Methods. The study included 20 patients (mean age, 60.2 ± 6.7 years; 60% males) who underwent TSP for different indications. RT-3DTEE was used to guide TSP. The proposed maneuver RATLe-90 (Rotate-Anticlockwise-Tilt-Left-90) was applied in all cases to have the anatomically oriented en face view of the IAS from the right atrial (RA) aspect. Having this anatomically oriented view, we guided the TSP catheter towards the proper puncture site according to the planned procedure. Results. Using the RATLe-90 maneuver, the anatomically oriented en face view of the IAS from the RA was obtained in all patients. We were able to guide the puncture catheter to the proper puncture site on the IAS. The 3D images obtained were clearly understood by both echocardiographers and interventionists. The RATLe-90 maneuver acquisition time was 19.9 ± 1.6 seconds. The time-to-tent was 64.8 ± 16.3 seconds. Less TEE probe manipulations were needed while guiding the TSP. Conclusions. Application of RT3D-TEE during TSP using RATLe-90 maneuver is feasible with shorter fluoroscopy time and minimizing TEE probe manipulations.

  12. [Construction and validation of a three-dimensional finite element model of cranio-maxillary complex with sutures in unilateral cleft lip and palate patient].

    PubMed

    Wu, Zhi-fang; Lei, Yong-hua; Li, Wen-jie; Liao, Sheng-hui; Zhao, Zi-jin

    2013-02-01

    To explore an effective method to construct and validate a finite element model of the unilateral cleft lip and palate(UCLP) craniomaxillary complex with sutures, which could be applied in further three-dimensional finite element analysis (FEA). One male patient aged 9 with left complete lip and palate cleft was selected and CT scan was taken at 0.75mm intervals on the skull. The CT data was saved in Dicom format, which was, afterwards, imported into Software Mimics 10.0 to generate a three-dimensional anatomic model. Then Software Geomagic Studio 12.0 was used to match, smoothen and transfer the anatomic model into a CAD model with NURBS patches. Then, 12 circum-maxillary sutures were integrated into the CAD model by Solidworks (2011 version). Finally meshing by E-feature Biomedical Modeler was done and a three-dimensional finite element model with sutures was obtained. A maxillary protraction force (500 g per side, 20° downward and forward from the occlusal plane) was applied. Displacement and stress distribution of some important craniofacial structures were measured and compared with the results of related researches in the literature. A three-dimensional finite element model of UCLP craniomaxillary complex with 12 sutures was established from the CT scan data. This simulation model consisted of 206 753 individual elements with 260 662 nodes, which was a more precise simulation and a better representation of human craniomaxillary complex than the formerly available FEA models. By comparison, this model was proved to be valid. It is an effective way to establish the three-dimensional finite element model of UCLP cranio-maxillary complex with sutures from CT images with the help of the following softwares: Mimics 10.0, Geomagic Studio 12.0, Solidworks and E-feature Biomedical Modeler.

  13. Evaluating mental workload of two-dimensional and three-dimensional visualization for anatomical structure localization.

    PubMed

    Foo, Jung-Leng; Martinez-Escobar, Marisol; Juhnke, Bethany; Cassidy, Keely; Hisley, Kenneth; Lobe, Thom; Winer, Eliot

    2013-01-01

    Visualization of medical data in three-dimensional (3D) or two-dimensional (2D) views is a complex area of research. In many fields 3D views are used to understand the shape of an object, and 2D views are used to understand spatial relationships. It is unclear how 2D/3D views play a role in the medical field. Using 3D views can potentially decrease the learning curve experienced with traditional 2D views by providing a whole representation of the patient's anatomy. However, there are challenges with 3D views compared with 2D. This current study expands on a previous study to evaluate the mental workload associated with both 2D and 3D views. Twenty-five first-year medical students were asked to localize three anatomical structures--gallbladder, celiac trunk, and superior mesenteric artery--in either 2D or 3D environments. Accuracy and time were taken as the objective measures for mental workload. The NASA Task Load Index (NASA-TLX) was used as a subjective measure for mental workload. Results showed that participants viewing in 3D had higher localization accuracy and a lower subjective measure of mental workload, specifically, the mental demand component of the NASA-TLX. Results from this study may prove useful for designing curricula in anatomy education and improving training procedures for surgeons.

  14. Regular three-dimensional presentations improve in the identification of surgical liver anatomy - a randomized study.

    PubMed

    Müller-Stich, Beat P; Löb, Nicole; Wald, Diana; Bruckner, Thomas; Meinzer, Hans-Peter; Kadmon, Martina; Büchler, Markus W; Fischer, Lars

    2013-09-25

    Three-dimensional (3D) presentations enhance the understanding of complex anatomical structures. However, it has been shown that two dimensional (2D) "key views" of anatomical structures may suffice in order to improve spatial understanding. The impact of real 3D images (3Dr) visible only with 3D glasses has not been examined yet. Contrary to 3Dr, regular 3D images apply techniques such as shadows and different grades of transparency to create the impression of 3D.This randomized study aimed to define the impact of both the addition of key views to CT images (2D+) and the use of 3Dr on the identification of liver anatomy in comparison with regular 3D presentations (3D). A computer-based teaching module (TM) was used. Medical students were randomized to three groups (2D+ or 3Dr or 3D) and asked to answer 11 anatomical questions and 4 evaluative questions. Both 3D groups had animated models of the human liver available to them which could be moved in all directions. 156 medical students (57.7% female) participated in this randomized trial. Students exposed to 3Dr and 3D performed significantly better than those exposed to 2D+ (p < 0.01, ANOVA). There were no significant differences between 3D and 3Dr and no significant gender differences (p > 0.1, t-test). Students randomized to 3D and 3Dr not only had significantly better results, but they also were significantly faster in answering the 11 anatomical questions when compared to students randomized to 2D+ (p < 0.03, ANOVA). Whether or not "key views" were used had no significant impact on the number of correct answers (p > 0.3, t-test). This randomized trial confirms that regular 3D visualization improve the identification of liver anatomy.

  15. SU-E-J-111: Finite Element-Based Deformable Image Registration of Pleural Cavity for Photodynamic Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penjweini, R; Zhu, T

    Purpose: The pleural volumes will deform during surgery portion of the pleural photodynamic therapy (PDT) of lung cancer when the pleural cavity is opened. This impact the delivered dose when using highly conformal treatment techniques. In this study, a finite element-based (FEM) deformable image registration is used to quantify the anatomical variation between the contours for the pleural cavities obtained in the operating room and those determined from pre-surgery computed tomography (CT) scans. Methods: An infrared camera-based navigation system (NDI) is used during PDT to track the anatomical changes and contour the lung and chest cavity. A series of CTsmore » of the lungs, in the same patient, are also acquired before the surgery. The structure contour of lung and the CTs are processed and contoured in Matlab and MeshLab. Then, the contours are imported into COMSOL Multiphysics 5.0, where the FEM-based deformable image registration is obtained using the deformed mesh - moving mesh (ALE) model. The NDI acquired lung contour is considered as the reference contour, and the CT contour is used as the target one, which will be deformed. Results: The reconstructed three-dimensional contours from both NDI and CT can be converted to COMSOL so that a three-dimensional ALE model can be developed. The contours can be registered using COMSOL ALE moving mesh model, which takes into account the deformation along x, y and z-axes. The deformed contour has good matches to the reference contour after the dynamic matching process. The resulting 3D deformation map can be used to obtain the locations of other critical anatomic structures, e.g., heart, during surgery. Conclusion: Deformable image registration can fuse images acquired by different modalities. It provides insights into the development of phenomenon and variation in normal anatomical structures over time. The initial assessments of three-dimensional registration show good agreement.« less

  16. Utilisation of three-dimensional printed heart models for operative planning of complex congenital heart defects.

    PubMed

    Olejník, Peter; Nosal, Matej; Havran, Tomas; Furdova, Adriana; Cizmar, Maros; Slabej, Michal; Thurzo, Andrej; Vitovic, Pavol; Klvac, Martin; Acel, Tibor; Masura, Jozef

    2017-01-01

    To evaluate the accuracy of the three-dimensional (3D) printing of cardiovascular structures. To explore whether utilisation of 3D printed heart replicas can improve surgical and catheter interventional planning in patients with complex congenital heart defects. Between December 2014 and November 2015 we fabricated eight cardiovascular models based on computed tomography data in patients with complex spatial anatomical relationships of cardiovascular structures. A Bland-Altman analysis was used to assess the accuracy of 3D printing by comparing dimension measurements at analogous anatomical locations between the printed models and digital imagery data, as well as between printed models and in vivo surgical findings. The contribution of 3D printed heart models for perioperative planning improvement was evaluated in the four most representative patients. Bland-Altman analysis confirmed the high accuracy of 3D cardiovascular printing. Each printed model offered an improved spatial anatomical orientation of cardiovascular structures. Current 3D printers can produce authentic copies of patients` cardiovascular systems from computed tomography data. The use of 3D printed models can facilitate surgical or catheter interventional procedures in patients with complex congenital heart defects due to better preoperative planning and intraoperative orientation.

  17. Surgical planning for radical prostatectomies using three-dimensional visualization and a virtual reality display system

    NASA Astrophysics Data System (ADS)

    Kay, Paul A.; Robb, Richard A.; King, Bernard F.; Myers, R. P.; Camp, Jon J.

    1995-04-01

    Thousands of radical prostatectomies for prostate cancer are performed each year. Radical prostatectomy is a challenging procedure due to anatomical variability and the adjacency of critical structures, including the external urinary sphincter and neurovascular bundles that subserve erectile function. Because of this, there are significant risks of urinary incontinence and impotence following this procedure. Preoperative interaction with three-dimensional visualization of the important anatomical structures might allow the surgeon to understand important individual anatomical relationships of patients. Such understanding might decrease the rate of morbidities, especially for surgeons in training. Patient specific anatomic data can be obtained from preoperative 3D MRI diagnostic imaging examinations of the prostate gland utilizing endorectal coils and phased array multicoils. The volumes of the important structures can then be segmented using interactive image editing tools and then displayed using 3-D surface rendering algorithms on standard work stations. Anatomic relationships can be visualized using surface displays and 3-D colorwash and transparency to allow internal visualization of hidden structures. Preoperatively a surgeon and radiologist can interactively manipulate the 3-D visualizations. Important anatomical relationships can better be visualized and used to plan the surgery. Postoperatively the 3-D displays can be compared to actual surgical experience and pathologic data. Patients can then be followed to assess the incidence of morbidities. More advanced approaches to visualize these anatomical structures in support of surgical planning will be implemented on virtual reality (VR) display systems. Such realistic displays are `immersive,' and allow surgeons to simultaneously see and manipulate the anatomy, to plan the procedure and to rehearse it in a realistic way. Ultimately the VR systems will be implemented in the operating room (OR) to assist the surgeon in conducting the surgery. Such an implementation will bring to the OR all of the pre-surgical planning data and rehearsal experience in synchrony with the actual patient and operation to optimize the effectiveness and outcome of the procedure.

  18. Face and content validation of a novel three-dimensional printed temporal bone for surgical skills development.

    PubMed

    Da Cruz, M J; Francis, H W

    2015-07-01

    To assess the face and content validity of a novel synthetic, three-dimensional printed temporal bone for surgical skills development and training. A synthetic temporal bone was printed using composite materials and three-dimensional printing technology. Surgical trainees were asked to complete three structured temporal bone dissection exercises. Attitudes and impressions were then assessed using a semi-structured questionnaire. Previous cadaver and real operating experiences were used as a reference. Trainees' experiences of the synthetic temporal bone were analysed in terms of four domains: anatomical realism, usefulness as a training tool, task-based usefulness and overall reactions. Responses across all domains indicated a high degree of acceptance, suggesting that the three-dimensional printed temporal bone was a useful tool in skills development. A sophisticated three-dimensional printed temporal bone that demonstrates face and content validity was developed. The efficiency in cost savings coupled with low associated biohazards make it likely that the printed temporal bone will be incorporated into traditional temporal bone skills development programmes in the near future.

  19. Spatial Ability, Gender, and the Ability To Visualize Anatomy in Three Dimensions.

    ERIC Educational Resources Information Center

    Provo, Judy A.; Lamar, Carlton H.; Newby, Timothy J.

    This research aims to devise an intervention that can enhance three-dimensional anatomical understanding and develop testing instruments that can be used to measure this understanding. First year veterinary medicine students (N=62) participated in a study that explored: (1) whether participants who use a cross section for learning the anatomy of…

  20. Using a Cross Section to Train Veterinary Students To Visualize Anatomical Structures in Three Dimensions.

    ERIC Educational Resources Information Center

    Provo, Judy; Lamar, Carlton; Newby, Timothy

    2002-01-01

    Uses a cross section to enhance three-dimensional knowledge of the anatomy of a canine head. Involves (n=124) veterinary students dissecting the head and experimental groups also identifying structures on a cross section of the head. Reports a positive impact of this experience on participant students. (Contains 52 references.) (Author/YDS)

  1. Planning surgical reconstruction in Treacher-Collins syndrome using virtual simulation.

    PubMed

    Nikkhah, Dariush; Ponniah, Allan; Ruff, Cliff; Dunaway, David

    2013-11-01

    Treacher-Collins syndrome is a rare autosomal dominant condition of varying phenotypic expression. The surgical correction in this syndrome is difficult, and the approach varies between craniofacial departments worldwide. The authors aimed to design standardized tools for planning orbitozygomatic and mandibular reconstruction in Treacher-Collins syndrome using geometric morphometrics. The Great Ormond Street Hospital database was retrospectively identified for patients with Treacher-Collins syndrome. Thirteen children (aged 2 to 15 years) who had suitable preoperative three-dimensional computed tomographic head scans were included. Six Treacher-Collins syndrome three-dimensional computed tomographic head scans were quantitatively compared using a template of 96 anatomically defined landmarks to 26 age-matched normal dry skulls. Thin-plate spline videos illustrated the characteristic deformities of retromicrognathia and maxillary and orbitozygomatic hypoplasia in the Treacher-Collins syndrome population. Geometric morphometrics was used in the virtual reconstruction of the orbitozygomatic and mandibular region in Treacher-Collins syndrome patients. Intrarater and interrater reliability of the landmarks was acceptable and within a standard deviation of less than 1 mm on 97 percent and 100 percent of 10 repeated scans, respectively. Virtual normalization of the Treacher-Collins syndrome skull effectively describes characteristic skeletal deformities and provides a useful guide to surgical reconstruction. Size-matched stereolithographic templates derived from thin-plate spline warps can provide effective intraoperative templates for zygomatic and mandibular reconstruction in the Treacher-Collins syndrome patient. Diagnostic, V.

  2. TIPdb-3D: the three-dimensional structure database of phytochemicals from Taiwan indigenous plants

    PubMed Central

    Tung, Chun-Wei; Lin, Ying-Chi; Chang, Hsun-Shuo; Wang, Chia-Chi; Chen, Ih-Sheng; Jheng, Jhao-Liang; Li, Jih-Heng

    2014-01-01

    The rich indigenous and endemic plants in Taiwan serve as a resourceful bank for biologically active phytochemicals. Based on our TIPdb database curating bioactive phytochemicals from Taiwan indigenous plants, this study presents a three-dimensional (3D) chemical structure database named TIPdb-3D to support the discovery of novel pharmacologically active compounds. The Merck Molecular Force Field (MMFF94) was used to generate 3D structures of phytochemicals in TIPdb. The 3D structures could facilitate the analysis of 3D quantitative structure–activity relationship, the exploration of chemical space and the identification of potential pharmacologically active compounds using protein–ligand docking. Database URL: http://cwtung.kmu.edu.tw/tipdb. PMID:24930145

  3. Cluster-based upper body marker models for three-dimensional kinematic analysis: Comparison with an anatomical model and reliability analysis.

    PubMed

    Boser, Quinn A; Valevicius, Aïda M; Lavoie, Ewen B; Chapman, Craig S; Pilarski, Patrick M; Hebert, Jacqueline S; Vette, Albert H

    2018-04-27

    Quantifying angular joint kinematics of the upper body is a useful method for assessing upper limb function. Joint angles are commonly obtained via motion capture, tracking markers placed on anatomical landmarks. This method is associated with limitations including administrative burden, soft tissue artifacts, and intra- and inter-tester variability. An alternative method involves the tracking of rigid marker clusters affixed to body segments, calibrated relative to anatomical landmarks or known joint angles. The accuracy and reliability of applying this cluster method to the upper body has, however, not been comprehensively explored. Our objective was to compare three different upper body cluster models with an anatomical model, with respect to joint angles and reliability. Non-disabled participants performed two standardized functional upper limb tasks with anatomical and cluster markers applied concurrently. Joint angle curves obtained via the marker clusters with three different calibration methods were compared to those from an anatomical model, and between-session reliability was assessed for all models. The cluster models produced joint angle curves which were comparable to and highly correlated with those from the anatomical model, but exhibited notable offsets and differences in sensitivity for some degrees of freedom. Between-session reliability was comparable between all models, and good for most degrees of freedom. Overall, the cluster models produced reliable joint angles that, however, cannot be used interchangeably with anatomical model outputs to calculate kinematic metrics. Cluster models appear to be an adequate, and possibly advantageous alternative to anatomical models when the objective is to assess trends in movement behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. A virtual reality atlas of craniofacial anatomy.

    PubMed

    Smith, Darren M; Oliker, Aaron; Carter, Christina R; Kirov, Miro; McCarthy, Joseph G; Cutting, Court B

    2007-11-01

    Head and neck anatomy is complex and represents an educational challenge to the student. Conventional two-dimensional illustrations inherently fall short in conveying intricate anatomical relationships that exist in three dimensions. A gratis three-dimensional virtual reality atlas of craniofacial anatomy is presented in an effort to address the paucity of readily accessible and customizable three-dimensional educational material available to the student of head and neck anatomy. Three-dimensional model construction was performed in Alias Maya 4.5 and 6.0. A basic three-dimensional skull model was altered to include surgical landmarks and proportions. Some of the soft tissues were adapted from previous work, whereas others were constructed de novo. Texturing was completed with Adobe Photoshop 7.0 and Maya. The Internet application was designed in Viewpoint Enliven 1.0. A three-dimensional computer model of craniofacial anatomy (bone and soft tissue) was completed. The model is compatible with many software packages and can be accessed by means of the Internet or downloaded to a personal computer. As the three-dimensional meshes are publicly available, they can be extensively manipulated by the user, even at the polygonal level. Three-dimensional computer graphics has yet to be fully exploited for head and neck anatomy education. In this context, the authors present a publicly available computer model of craniofacial anatomy. This model may also find applications beyond clinical medicine. The model can be accessed gratis at the Plastic and Reconstructive Surgery Web site or obtained as a three-dimensional mesh, also gratis, by contacting the authors.

  5. Development of quantitative analysis method for stereotactic brain image: assessment of reduced accumulation in extent and severity using anatomical segmentation.

    PubMed

    Mizumura, Sunao; Kumita, Shin-ichiro; Cho, Keiichi; Ishihara, Makiko; Nakajo, Hidenobu; Toba, Masahiro; Kumazaki, Tatsuo

    2003-06-01

    Through visual assessment by three-dimensional (3D) brain image analysis methods using stereotactic brain coordinates system, such as three-dimensional stereotactic surface projections and statistical parametric mapping, it is difficult to quantitatively assess anatomical information and the range of extent of an abnormal region. In this study, we devised a method to quantitatively assess local abnormal findings by segmenting a brain map according to anatomical structure. Through quantitative local abnormality assessment using this method, we studied the characteristics of distribution of reduced blood flow in cases with dementia of the Alzheimer type (DAT). Using twenty-five cases with DAT (mean age, 68.9 years old), all of whom were diagnosed as probable Alzheimer's disease based on NINCDS-ADRDA, we collected I-123 iodoamphetamine SPECT data. A 3D brain map using the 3D-SSP program was compared with the data of 20 cases in the control group, who age-matched the subject cases. To study local abnormalities on the 3D images, we divided the whole brain into 24 segments based on anatomical classification. We assessed the extent of an abnormal region in each segment (rate of the coordinates with a Z-value that exceeds the threshold value, in all coordinates within a segment), and severity (average Z-value of the coordinates with a Z-value that exceeds the threshold value). This method clarified orientation and expansion of reduced accumulation, through classifying stereotactic brain coordinates according to the anatomical structure. This method was considered useful for quantitatively grasping distribution abnormalities in the brain and changes in abnormality distribution.

  6. Experimental study of quantitative assessment of left ventricular mass with contrast enhanced real-time three-dimensional echocardiography.

    PubMed

    Zhuang, Lei; Wang, Xin-Fang; Xie, Ming-Xing; Chen, Li-Xin; Fei, Hong-Wen; Yang, Ying; Wang, Jing; Huang, Run-Qing; Chen, Ou-Di; Wang, Liang-Yu

    2004-01-01

    To evaluate the feasibility and accuracy of measurement of left ventricular mass with intravenous contrast enhanced real-time three-dimensional (RT3D) echocardiography in the experimental setting. RT3D echocardiography was performed in 13 open-chest mongrel dogs before and after intravenous infusion of a perfluorocarbon contrast agent. Left ventricular myocardium volume was measured according to the apical four-plane method provided by TomTec 4D cardio-View RT1.0 software, then the left ventricular mass was calculated as the myocardial volume multiplied by the relative density of myocardium. Correlative analysis and paired t-test were performed between left ventricular mass obtained from RT3D echocardiography and the anatomic measurements. Anatomic measurement of total left ventricular mass was 55.6 +/- 9.3 g, whereas RT3D echocardiographic calculation of left ventricular mass before and after intravenous perfluorocarbon contrast agent was 57.5 +/- 11.4 and 55.5 +/- 9.3 g, respectively. A significant correlation was observed between the RT3D echocardiographic estimates of total left ventricular mass and the corresponding anatomic measurements (r = 0.95). A strong correlation was found between RT3D echocardiographic estimates of left ventricular mass with perfluorocarbon contrast and the anatomic results (r = 0.99). Analysis of intraobserver and interobserver variability showed strong indexes of agreement in the measurement of left ventricular mass with pre and post-contrast RT3D echocardiography. Measurements of left ventricular mass derived from RT3D echocardiography with and without intravenous contrast showed a significant correlation with the anatomic results. Contrast enhanced RT3D echocardiography permitted better visualization of the endocardial border, which would provide a more accurate and reliable means of determining left ventricular myocardial mass in the experimental setting.

  7. Three-dimensional automatic computer-aided evaluation of pleural effusions on chest CT images

    NASA Astrophysics Data System (ADS)

    Bi, Mark; Summers, Ronald M.; Yao, Jianhua

    2011-03-01

    The ability to estimate the volume of pleural effusions is desirable as it can provide information about the severity of the condition and the need for thoracentesis. We present here an improved version of an automated program to measure the volume of pleural effusions using regular chest CT images. First, the lungs are segmented using region growing, mathematical morphology, and anatomical knowledge. The visceral and parietal layers of the pleura are then extracted based on anatomical landmarks, curve fitting and active contour models. The liver and compressed tissues are segmented out using thresholding. The pleural space is then fitted to a Bezier surface which is subsequently projected onto the individual two-dimensional slices. Finally, the volume of the pleural effusion is quantified. Our method was tested on 15 chest CT studies and validated against three separate manual tracings. The Dice coefficients were 0.74+/-0.07, 0.74+/-0.08, and 0.75+/-0.07 respectively, comparable to the variation between two different manual tracings.

  8. [Three-dimensional endoscopic endonasal study of skull base anatomy].

    PubMed

    Abarca-Olivas, Javier; Monjas-Cánovas, Irene; López-Álvarez, Beatriz; Lloret-García, Jaime; Sanchez-del Campo, Jose; Gras-Albert, Juan Ramon; Moreno-López, Pedro

    2014-01-01

    Training in dissection of the paranasal sinuses and the skull base is essential for anatomical understanding and correct surgical techniques. Three-dimensional (3D) visualisation of endoscopic skull base anatomy increases spatial orientation and allows depth perception. To show endoscopic skull base anatomy based on the 3D technique. We performed endoscopic dissection in cadaveric specimens fixed with formalin and with the Thiel technique, both prepared using intravascular injection of coloured material. Endonasal approaches were performed with conventional 2D endoscopes. Then we applied the 3D anaglyph technique to illustrate the pictures in 3D. The most important anatomical structures and landmarks of the sellar region under endonasal endoscopic vision are illustrated in 3D images. The skull base consists of complex bony and neurovascular structures. Experience with cadaver dissection is essential to understand complex anatomy and develop surgical skills. A 3D view constitutes a useful tool for understanding skull base anatomy. Copyright © 2012 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.

  9. TIPdb-3D: the three-dimensional structure database of phytochemicals from Taiwan indigenous plants.

    PubMed

    Tung, Chun-Wei; Lin, Ying-Chi; Chang, Hsun-Shuo; Wang, Chia-Chi; Chen, Ih-Sheng; Jheng, Jhao-Liang; Li, Jih-Heng

    2014-01-01

    The rich indigenous and endemic plants in Taiwan serve as a resourceful bank for biologically active phytochemicals. Based on our TIPdb database curating bioactive phytochemicals from Taiwan indigenous plants, this study presents a three-dimensional (3D) chemical structure database named TIPdb-3D to support the discovery of novel pharmacologically active compounds. The Merck Molecular Force Field (MMFF94) was used to generate 3D structures of phytochemicals in TIPdb. The 3D structures could facilitate the analysis of 3D quantitative structure-activity relationship, the exploration of chemical space and the identification of potential pharmacologically active compounds using protein-ligand docking. Database URL: http://cwtung.kmu.edu.tw/tipdb. © The Author(s) 2014. Published by Oxford University Press.

  10. Three-dimensional finite element modelling of muscle forces during mastication.

    PubMed

    Röhrle, Oliver; Pullan, Andrew J

    2007-01-01

    This paper presents a three-dimensional finite element model of human mastication. Specifically, an anatomically realistic model of the masseter muscles and associated bones is used to investigate the dynamics of chewing. A motion capture system is used to track the jaw motion of a subject chewing standard foods. The three-dimensional nonlinear deformation of the masseter muscles are calculated via the finite element method, using the jaw motion data as boundary conditions. Motion-driven muscle activation patterns and a transversely isotropic material law, defined in a muscle-fibre coordinate system, are used in the calculations. Time-force relationships are presented and analysed with respect to different tasks during mastication, e.g. opening, closing, and biting, and are also compared to a more traditional one-dimensional model. The results strongly suggest that, due to the complex arrangement of muscle force directions, modelling skeletal muscles as conventional one-dimensional lines of action might introduce a significant source of error.

  11. What is dorso-lateral in the subthalamic Nucleus (STN)?--a topographic and anatomical consideration on the ambiguous description of today's primary target for deep brain stimulation (DBS) surgery.

    PubMed

    Coenen, Volker A; Prescher, Andreas; Schmidt, Thorsten; Picozzi, Piero; Gielen, Frans L H

    2008-11-01

    The most frequently used target for DBS in advanced Parkinson Disease (PD) is the sensorimotor subthalamic nucleus (STN), anatomically referred to as dorso-lateral STN [3]. Ambiguities arise, regarding the true meaning of this description in the STN. Does "dorsal" indicate posterior or superior? At its best, this definition assigns two directions in space to a three-dimensional structure. This paper evaluates the ambiguity and describes the sensorimotor part of the STN in stereotactic space.

  12. Recent development on computer aided tissue engineering--a review.

    PubMed

    Sun, Wei; Lal, Pallavi

    2002-02-01

    The utilization of computer-aided technologies in tissue engineering has evolved in the development of a new field of computer-aided tissue engineering (CATE). This article reviews recent development and application of enabling computer technology, imaging technology, computer-aided design and computer-aided manufacturing (CAD and CAM), and rapid prototyping (RP) technology in tissue engineering, particularly, in computer-aided tissue anatomical modeling, three-dimensional (3-D) anatomy visualization and 3-D reconstruction, CAD-based anatomical modeling, computer-aided tissue classification, computer-aided tissue implantation and prototype modeling assisted surgical planning and reconstruction.

  13. Three-dimensional mapping of the lateral ventricles in autism

    PubMed Central

    Vidal, Christine N.; Nicolsonln, Rob; Boire, Jean-Yves; Barra, Vincent; DeVito, Timothy J.; Hayashi, Kiralee M.; Geaga, Jennifer A.; Drost, Dick J.; Williamson, Peter C.; Rajakumar, Nagalingam; Toga, Arthur W.; Thompson, Paul M.

    2009-01-01

    In this study, a computational mapping technique was used to examine the three-dimensional profile of the lateral ventricles in autism. T1-weighted three-dimensional magnetic resonance images of the brain were acquired from 20 males with autism (age: 10.1 ± 3.5 years) and 22 male control subjects (age: 10.7 ± 2.5 years). The lateral ventricles were delineated manually and ventricular volumes were compared between the two groups. Ventricular traces were also converted into statistical three-dimensional maps, based on anatomical surface meshes. These maps were used to visualize regional morphological differences in the thickness of the lateral ventricles between patients and controls. Although ventricular volumes measured using traditional methods did not differ significantly between groups, statistical surface maps revealed subtle, highly localized reductions in ventricular size in patients with autism in the left frontal and occipital horns. These localized reductions in the lateral ventricles may result from exaggerated brain growth early in life. PMID:18502618

  14. Three-dimensional visual guidance improves the accuracy of calculating right ventricular volume with two-dimensional echocardiography

    NASA Technical Reports Server (NTRS)

    Dorosz, Jennifer L.; Bolson, Edward L.; Waiss, Mary S.; Sheehan, Florence H.

    2003-01-01

    Three-dimensional guidance programs have been shown to increase the reproducibility of 2-dimensional (2D) left ventricular volume calculations, but these systems have not been tested in 2D measurements of the right ventricle. Using magnetic fields to identify the probe location, we developed a new 3-dimensional guidance system that displays the line of intersection, the plane of intersection, and the numeric angle of intersection between the current image plane and previously saved scout views. When used by both an experienced and an inexperienced sonographer, this guidance system increases the accuracy of the 2D right ventricular volume measurements using a monoplane pyramidal model. Furthermore, a reconstruction of the right ventricle, with a computed volume similar to the calculated 2D volume, can be displayed quickly by tracing a few anatomic structures on 2D scans.

  15. Accuracy and predictability in use of AO three-dimensionally preformed titanium mesh plates for posttraumatic orbital reconstruction: a pilot study.

    PubMed

    Scolozzi, Paolo; Momjian, Armen; Heuberger, Joris; Andersen, Elene; Broome, Martin; Terzic, Andrej; Jaques, Bertrand

    2009-07-01

    The aim of this study was to prospectively evaluate the accuracy and predictability of new three-dimensionally preformed AO titanium mesh plates for posttraumatic orbital wall reconstruction.We analyzed the preoperative and postoperative clinical and radiologic data of 10 patients with isolated blow-out orbital fractures. Fracture locations were as follows: floor (N = 7; 70%), medial wall (N = 1; 1%), and floor/medial wall (N = 2; 2%). The floor fractures were exposed by a standard transconjunctival approach, whereas a combined transcaruncular transconjunctival approach was used in patients with medial wall fractures. A three-dimensional preformed AO titanium mesh plate (0.4 mm in thickness) was selected according to the size of the defect previously measured on the preoperative computed tomographic (CT) scan examination and fixed at the inferior orbital rim with 1 or 2 screws. The accuracy of plate positioning of the reconstructed orbit was assessed on the postoperative CT scan. Coronal CT scan slices were used to measure bony orbital volume using OsiriX Medical Image software. Reconstructed versus uninjured orbital volume were statistically correlated.Nine patients (90%) had a successful treatment outcome without complications. One patient (10%) developed a mechanical limitation of upward gaze with a resulting handicapping diplopia requiring hardware removal. Postoperative orbital CT scan showed an anatomic three-dimensional placement of the orbital mesh plates in all of the patients. Volume data of the reconstructed orbit fitted that of the contralateral uninjured orbit with accuracy to within 2.5 cm(3). There was no significant difference in volume between the reconstructed and uninjured orbits.This preliminary study has demonstrated that three-dimensionally preformed AO titanium mesh plates for posttraumatic orbital wall reconstruction results in (1) a high rate of success with an acceptable rate of major clinical complications (10%) and (2) an anatomic restoration of the bony orbital contour and volume that closely approximates that of the contralateral uninjured orbit.

  16. Exploring the CAESAR database using dimensionality reduction techniques

    NASA Astrophysics Data System (ADS)

    Mendoza-Schrock, Olga; Raymer, Michael L.

    2012-06-01

    The Civilian American and European Surface Anthropometry Resource (CAESAR) database containing over 40 anthropometric measurements on over 4000 humans has been extensively explored for pattern recognition and classification purposes using the raw, original data [1-4]. However, some of the anthropometric variables would be impossible to collect in an uncontrolled environment. Here, we explore the use of dimensionality reduction methods in concert with a variety of classification algorithms for gender classification using only those variables that are readily observable in an uncontrolled environment. Several dimensionality reduction techniques are employed to learn the underlining structure of the data. These techniques include linear projections such as the classical Principal Components Analysis (PCA) and non-linear (manifold learning) techniques, such as Diffusion Maps and the Isomap technique. This paper briefly describes all three techniques, and compares three different classifiers, Naïve Bayes, Adaboost, and Support Vector Machines (SVM), for gender classification in conjunction with each of these three dimensionality reduction approaches.

  17. [Localization of perforators in the lower leg by digital antomy imaging methods].

    PubMed

    Wei, Peng; Ma, Liang-Liang; Fang, Ye-Dong; Xia, Wei-Zhi; Ding, Mao-Chao; Mei, Jin

    2012-03-01

    To offer both the accurate three-dimensional anatomical information and algorithmic morphology of perforators in the lower leg for perforator flaps design. The cadaver was injected with a modified lead oxide-gelatin mixture. Radiography was first performed and the images were analyzed using the software Photoshop and Scion Image. Then spiral CT scan was also performed and 3-dimensional images were reconstructed with MIMICS 10.01 software. There are (27 +/- 4) perforators whose outer diameter > or = 0.5 mm ( average, 0.8 +/- 0.2 mm). The average pedicle length within the superficial fascia is (37.3 +/- 18.6) mm. The average supplied area of each perforator is (49.5 +/- 25.5) cm2. The three-dimensional model displayed accurate morphology structure and three-dimensional distribution of the perforator-to- perforator and perforator-to-source artery. The 3D reconstruction model can clearly show the geometric, local details and three-dimensional distribution. It is a considerable method for the study of morphological characteristics of the individual perforators in human calf and preoperative planning of the perforator flap.

  18. 3D printing in neurosurgery: A systematic review

    PubMed Central

    Randazzo, Michael; Pisapia, Jared M.; Singh, Nickpreet; Thawani, Jayesh P.

    2016-01-01

    Background: The recent expansion of three-dimensional (3D) printing technology into the field of neurosurgery has prompted a widespread investigation of its utility. In this article, we review the current body of literature describing rapid prototyping techniques with applications to the practice of neurosurgery. Methods: An extensive and systematic search of the Compendex, Scopus, and PubMed medical databases was conducted using keywords relating to 3D printing and neurosurgery. Results were manually screened for relevance to applications within the field. Results: Of the search results, 36 articles were identified and included in this review. The articles spanned the various subspecialties of the field including cerebrovascular, neuro-oncologic, spinal, functional, and endoscopic neurosurgery. Conclusions: We conclude that 3D printing techniques are practical and anatomically accurate methods of producing patient-specific models for surgical planning, simulation and training, tissue-engineered implants, and secondary devices. Expansion of this technology may, therefore, contribute to advancing the neurosurgical field from several standpoints. PMID:27920940

  19. Current Applications and Future Perspectives of the Use of 3D Printing in Anatomical Training and Neurosurgery

    PubMed Central

    Baskaran, Vivek; Štrkalj, Goran; Štrkalj, Mirjana; Di Ieva, Antonio

    2016-01-01

    3D printing is a form of rapid prototyping technology, which has led to innovative new applications in biomedicine. It facilitates the production of highly accurate three dimensional objects from substrate materials. The inherent accuracy and other properties of 3D printing have allowed it to have exciting applications in anatomy education and surgery, with the specialty of neurosurgery having benefited particularly well. This article presents the findings of a literature review of the Pubmed and Web of Science databases investigating the applications of 3D printing in anatomy and surgical education, and neurosurgery. A number of applications within these fields were found, with many significantly improving the quality of anatomy and surgical education, and the practice of neurosurgery. They also offered advantages over existing approaches and practices. It is envisaged that the number of useful applications will rise in the coming years, particularly as the costs of this technology decrease and its uptake rises. PMID:27445707

  20. Current Applications and Future Perspectives of the Use of 3D Printing in Anatomical Training and Neurosurgery.

    PubMed

    Baskaran, Vivek; Štrkalj, Goran; Štrkalj, Mirjana; Di Ieva, Antonio

    2016-01-01

    3D printing is a form of rapid prototyping technology, which has led to innovative new applications in biomedicine. It facilitates the production of highly accurate three dimensional objects from substrate materials. The inherent accuracy and other properties of 3D printing have allowed it to have exciting applications in anatomy education and surgery, with the specialty of neurosurgery having benefited particularly well. This article presents the findings of a literature review of the Pubmed and Web of Science databases investigating the applications of 3D printing in anatomy and surgical education, and neurosurgery. A number of applications within these fields were found, with many significantly improving the quality of anatomy and surgical education, and the practice of neurosurgery. They also offered advantages over existing approaches and practices. It is envisaged that the number of useful applications will rise in the coming years, particularly as the costs of this technology decrease and its uptake rises.

  1. Three-dimensional modelling and three-dimensional printing in pediatric and congenital cardiac surgery.

    PubMed

    Kiraly, Laszlo

    2018-04-01

    Three-dimensional (3D) modelling and printing methods greatly support advances in individualized medicine and surgery. In pediatric and congenital cardiac surgery, personalized imaging and 3D modelling presents with a range of advantages, e.g., better understanding of complex anatomy, interactivity and hands-on approach, possibility for preoperative surgical planning and virtual surgery, ability to assess expected results, and improved communication within the multidisciplinary team and with patients. 3D virtual and printed models often add important new anatomical findings and prompt alternative operative scenarios. For the lack of critical mass of evidence, controlled randomized trials, however, most of these general benefits remain anecdotal. For an individual surgical case-scenario, prior knowledge, preparedness and possibility of emulation are indispensable in raising patient-safety. It is advocated that added value of 3D printing in healthcare could be raised by establishment of a multidisciplinary centre of excellence (COE). Policymakers, research scientists, clinicians, as well as health care financers and local entrepreneurs should cooperate and communicate along a legal framework and established scientific guidelines for the clinical benefit of patients, and towards financial sustainability. It is expected that besides the proven utility of 3D printed patient-specific anatomical models, 3D printing will have a major role in pediatric and congenital cardiac surgery by providing individually customized implants and prostheses, especially in combination with evolving techniques of bioprinting.

  2. Three-dimensional modelling and three-dimensional printing in pediatric and congenital cardiac surgery

    PubMed Central

    2018-01-01

    Three-dimensional (3D) modelling and printing methods greatly support advances in individualized medicine and surgery. In pediatric and congenital cardiac surgery, personalized imaging and 3D modelling presents with a range of advantages, e.g., better understanding of complex anatomy, interactivity and hands-on approach, possibility for preoperative surgical planning and virtual surgery, ability to assess expected results, and improved communication within the multidisciplinary team and with patients. 3D virtual and printed models often add important new anatomical findings and prompt alternative operative scenarios. For the lack of critical mass of evidence, controlled randomized trials, however, most of these general benefits remain anecdotal. For an individual surgical case-scenario, prior knowledge, preparedness and possibility of emulation are indispensable in raising patient-safety. It is advocated that added value of 3D printing in healthcare could be raised by establishment of a multidisciplinary centre of excellence (COE). Policymakers, research scientists, clinicians, as well as health care financers and local entrepreneurs should cooperate and communicate along a legal framework and established scientific guidelines for the clinical benefit of patients, and towards financial sustainability. It is expected that besides the proven utility of 3D printed patient-specific anatomical models, 3D printing will have a major role in pediatric and congenital cardiac surgery by providing individually customized implants and prostheses, especially in combination with evolving techniques of bioprinting. PMID:29770294

  3. Towards building a team of intelligent robots

    NASA Technical Reports Server (NTRS)

    Varanasi, Murali R.; Mehrotra, R.

    1987-01-01

    Topics addressed include: collision-free motion planning of multiple robot arms; two-dimensional object recognition; and pictorial databases (storage and sharing of the representations of three-dimensional objects).

  4. 3DSDSCAR--a three dimensional structural database for sialic acid-containing carbohydrates through molecular dynamics simulation.

    PubMed

    Veluraja, Kasinadar; Selvin, Jeyasigamani F A; Venkateshwari, Selvakumar; Priyadarzini, Thanu R K

    2010-09-23

    The inherent flexibility and lack of strong intramolecular interactions of oligosaccharides demand the use of theoretical methods for their structural elucidation. In spite of the developments of theoretical methods, not much research on glycoinformatics is done so far when compared to bioinformatics research on proteins and nucleic acids. We have developed three dimensional structural database for a sialic acid-containing carbohydrates (3DSDSCAR). This is an open-access database that provides 3D structural models of a given sialic acid-containing carbohydrate. At present, 3DSDSCAR contains 60 conformational models, belonging to 14 different sialic acid-containing carbohydrates, deduced through 10 ns molecular dynamics (MD) simulations. The database is available at the URL: http://www.3dsdscar.org. Copyright 2010 Elsevier Ltd. All rights reserved.

  5. [Design of cross-sectional anatomical model focused on drainage pathways of paranasal sinuses].

    PubMed

    Zha, Y; Lv, W; Gao, Y L; Zhu, Z Z; Gao, Z Q

    2018-05-01

    Objective: To design and produce cross-sectional anatomical models of paranasal sinuses for the purpose of demonstrating drainage pathways of each nasal sinus for the young doctors. Method: We reconstructed the three-dimensional model of sinuses area based on CT scan data, and divided it into 5 thick cross-sectional anatomy models by 4 coronal plane,which cross middle points of agger nasi cell, ethmoid bulla, posterior ethmoid sinuses and sphenoid sinus respectively. Then a 3D printerwas used to make anatomical cross-sectional anatomical models. Result: Successfully produced a digital 3D printing cross-sectional models of paranasal sinuses. Sinus drainage pathways were observed on the models. Conclusion: The cross-sectional anatomical models made by us can exactly and intuitively demonstrate the ostia of each sinus cell and they can help the young doctors to understand and master the key anatomies and relationships which are important to the endoscopic sinus surgery. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.

  6. Three-Dimensional Liver Surgery Simulation: Computer-Assisted Surgical Planning with Three-Dimensional Simulation Software and Three-Dimensional Printing.

    PubMed

    Oshiro, Yukio; Ohkohchi, Nobuhiro

    2017-06-01

    To perform accurate hepatectomy without injury, it is necessary to understand the anatomical relationship among the branches of Glisson's sheath, hepatic veins, and tumor. In Japan, three-dimensional (3D) preoperative simulation for liver surgery is becoming increasingly common, and liver 3D modeling and 3D hepatectomy simulation by 3D analysis software for liver surgery have been covered by universal healthcare insurance since 2012. Herein, we review the history of virtual hepatectomy using computer-assisted surgery (CAS) and our research to date, and we discuss the future prospects of CAS. We have used the SYNAPSE VINCENT medical imaging system (Fujifilm Medical, Tokyo, Japan) for 3D visualization and virtual resection of the liver since 2010. We developed a novel fusion imaging technique combining 3D computed tomography (CT) with magnetic resonance imaging (MRI). The fusion image enables us to easily visualize anatomic relationships among the hepatic arteries, portal veins, bile duct, and tumor in the hepatic hilum. In 2013, we developed an original software, called Liversim, which enables real-time deformation of the liver using physical simulation, and a randomized control trial has recently been conducted to evaluate the use of Liversim and SYNAPSE VINCENT for preoperative simulation and planning. Furthermore, we developed a novel hollow 3D-printed liver model whose surface is covered with frames. This model is useful for safe liver resection, has better visibility, and the production cost is reduced to one-third of a previous model. Preoperative simulation and navigation with CAS in liver resection are expected to help planning and conducting a surgery and surgical education. Thus, a novel CAS system will contribute to not only the performance of reliable hepatectomy but also to surgical education.

  7. Stereolithographic biomodelling to create tangible hard copies of the ethmoidal labyrinth air cells based on the visible human project.

    PubMed

    Kapakin, S

    2011-02-01

    Rapid prototyping (RP), or stereolithography, is a new clinical application area, which is used to obtain accurate three-dimensional physical replicas of complex anatomical structures. The aim of this study was to create tangible hard copies of the ethmoidal labyrinth air cells (ELACs) with stereolithographic biomodelling. The visible human dataset (VHD) was used as the input imaging data. The Surfdriver software package was applied to these images to reconstruct the ELACs as three-dimensional DXF (data exchange file) models. These models were post-processed in 3D-Doctor software for virtual reality modelling language (VRML) and STL (Standard Triangulation Language) formats. Stereolithographic replicas were manufactured in a rapid prototyping machine by using the STL format. The total number of ELACs was 21. The dimensions of the ELACs on the right and left sides were 52.91 x 13.00 x 28.68 mm and 53.79 x 12.42 x 28.55 mm, respectively. The total volume of the ELACs was 4771.1003 mm(3). The mean ELAC distance was 27.29 mm from the nasion and 71.09 mm from the calotte topologically. In conclusion, the combination of Surfdriver and 3D-Doctor could be effectively used for manufacturing 3D solid models from serial sections of anatomical structures. Stereolithographic anatomical models provide an innovative and complementary tool for students, researchers, and surgeons to apprehend these anatomical structures tangibly. The outcomes of these attempts can provide benefits in terms of the visualization, perception, and interpretation of the structures in anatomy teaching and prior to surgical interventions.

  8. Automatic construction of subject-specific human airway geometry including trifurcations based on a CT-segmented airway skeleton and surface

    PubMed Central

    Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Wenzel, Sally E.; Lin, Ching-Long

    2016-01-01

    We propose a method to construct three-dimensional airway geometric models based on airway skeletons, or centerlines (CLs). Given a CT-segmented airway skeleton and surface, the proposed CL-based method automatically constructs subject-specific models that contain anatomical information regarding branches, include bifurcations and trifurcations, and extend from the trachea to terminal bronchioles. The resulting model can be anatomically realistic with the assistance of an image-based surface; alternatively a model with an idealized skeleton and/or branch diameters is also possible. This method systematically identifies and classifies trifurcations to successfully construct the models, which also provides the number and type of trifurcations for the analysis of the airways from an anatomical point of view. We applied this method to 16 normal and 16 severe asthmatic subjects using their computed tomography images. The average distance between the surface of the model and the image-based surface was 11% of the average voxel size of the image. The four most frequent locations of trifurcations were the left upper division bronchus, left lower lobar bronchus, right upper lobar bronchus, and right intermediate bronchus. The proposed method automatically constructed accurate subject-specific three-dimensional airway geometric models that contain anatomical information regarding branches using airway skeleton, diameters, and image-based surface geometry. The proposed method can construct (i) geometry automatically for population-based studies, (ii) trifurcations to retain the original airway topology, (iii) geometry that can be used for automatic generation of computational fluid dynamics meshes, and (iv) geometry based only on a skeleton and diameters for idealized branches. PMID:27704229

  9. Characterizing mandibular growth using three-dimensional imaging techniques and anatomic landmarks

    PubMed Central

    Kelly, Michael P.; Vorperian, Houri K.; Wang, Yuan; Tillman, Katelyn K.; Werner, Helen M.; Chung, Moo K.; Gentry, Lindell R.

    2017-01-01

    Objective To provide quantitative data on the multi-planar growth of the mandible, this study derived accurate linear and angular mandible measurements using landmarks on three dimensional (3D) mandible models. This novel method was used to quantify 3D mandibular growth and characterize the emergence of sexual dimorphism. Design Cross-sectional and longitudinal imaging data were obtained from a retrospective computed tomography (CT) database for 51 typically developing individuals between the ages of one and nineteen years. The software Analyze was used to generate 104 3DCT mandible models. Eleven landmarks placed on the models defined six linear measurements (lateral condyle, gonion, and endomolare width, ramus and mental depth, and mandible length) and three angular measurements (gonion, gnathion, and lingual). A fourth degree polynomial fit quantified growth trends, its derivative quantified growth rates, and a composite growth model determined growth types (neural/cranial and somatic/skeletal). Sex differences were assessed in four age cohorts, each spanning five years, to determine the ontogenetic pattern producing sexual dimorphism of the adult mandible. Results Mandibular growth trends and growth rates were non-uniform. In general, structures in the horizontal plane displayed predominantly neural/cranial growth types, whereas structures in the vertical plane had somatic/skeletal growth types. Significant prepubertal sex differences in the inferior aspect of the mandible dissipated when growth in males began to outpace that of females at eight to ten years of age, but sexual dimorphism re-emerged during and after puberty. Conclusions This 3D analysis of mandibular growth provides preliminary normative developmental data for clinical assessment and craniofacial growth studies. PMID:28161602

  10. Computer aided three-dimensional reconstruction and modeling of the pelvis, by using plastinated cross sections, as a powerful tool for morphological investigations.

    PubMed

    Sora, Mircea-Constantin; Jilavu, Radu; Matusz, Petru

    2012-10-01

    The aim of this study was to describe a method of developing a computerized model of the human female pelvis using plastinated slices. Computerized reconstruction of anatomical structures is becoming very useful for developing anatomical teaching, research modules and animations. Although databases consisting of serial sections derived from frozen cadaver material exist, plastination represents an alternative method for developing anatomical data useful for computerized reconstruction. A slice anatomy study, using plastinated transparent pelvis cross sections, was performed to obtain a 3D reconstruction. One female human pelvis used for this study, first plastinated as a block, then sliced into thin slices and in the end subjected to 3D computerized reconstruction using WinSURF modeling system (SURFdriver Software). To facilitate the understanding of the complex pelvic floor anatomy on sectional images obtained through MR imaging, and to make the representation more vivid, a female pelvis computer-aided 3D model was created. Qualitative observations revealed that the morphological features of the model were consistent with those displayed by typical cadaveric specimens. The quality of the reconstructed images appeared distinct, especially the spatial positions and complicated relationships of contiguous structures of the female pelvis. All reconstructed structures can be displayed in groups or as a whole and interactively rotated in 3D space. The utilization of plastinates for generating tissue sections is useful for 3D computerized modeling. The 3D model of the female pelvis presented in this paper provides a stereoscopic view to study the adjacent relationship and arrangement of respective pelvis sections. A better understanding of the pelvic floor anatomy is relevant to gynaecologists, radiologists, surgeons, urologists, physical therapists and all professionals who take care of women with pelvic floor dysfunction.

  11. Bayesian reconstruction and use of anatomical a priori information for emission tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowsher, J.E.; Johnson, V.E.; Turkington, T.G.

    1996-10-01

    A Bayesian method is presented for simultaneously segmenting and reconstructing emission computed tomography (ECT) images and for incorporating high-resolution, anatomical information into those reconstructions. The anatomical information is often available from other imaging modalities such as computed tomography (CT) or magnetic resonance imaging (MRI). The Bayesian procedure models the ECT radiopharmaceutical distribution as consisting of regions, such that radiopharmaceutical activity is similar throughout each region. It estimates the number of regions, the mean activity of each region, and the region classification and mean activity of each voxel. Anatomical information is incorporated by assigning higher prior probabilities to ECT segmentations inmore » which each ECT region stays within a single anatomical region. This approach is effective because anatomical tissue type often strongly influences radiopharmaceutical uptake. The Bayesian procedure is evaluated using physically acquired single-photon emission computed tomography (SPECT) projection data and MRI for the three-dimensional (3-D) Hoffman brain phantom. A clinically realistic count level is used. A cold lesion within the brain phantom is created during the SPECT scan but not during the MRI to demonstrate that the estimation procedure can detect ECT structure that is not present anatomically.« less

  12. Human cartilage tissue fabrication using three-dimensional inkjet printing technology.

    PubMed

    Cui, Xiaofeng; Gao, Guifang; Yonezawa, Tomo; Dai, Guohao

    2014-06-10

    Bioprinting, which is based on thermal inkjet printing, is one of the most attractive enabling technologies in the field of tissue engineering and regenerative medicine. With digital control cells, scaffolds, and growth factors can be precisely deposited to the desired two-dimensional (2D) and three-dimensional (3D) locations rapidly. Therefore, this technology is an ideal approach to fabricate tissues mimicking their native anatomic structures. In order to engineer cartilage with native zonal organization, extracellular matrix composition (ECM), and mechanical properties, we developed a bioprinting platform using a commercial inkjet printer with simultaneous photopolymerization capable for 3D cartilage tissue engineering. Human chondrocytes suspended in poly(ethylene glycol) diacrylate (PEGDA) were printed for 3D neocartilage construction via layer-by-layer assembly. The printed cells were fixed at their original deposited positions, supported by the surrounding scaffold in simultaneous photopolymerization. The mechanical properties of the printed tissue were similar to the native cartilage. Compared to conventional tissue fabrication, which requires longer UV exposure, the viability of the printed cells with simultaneous photopolymerization was significantly higher. Printed neocartilage demonstrated excellent glycosaminoglycan (GAG) and collagen type II production, which was consistent with gene expression. Therefore, this platform is ideal for accurate cell distribution and arrangement for anatomic tissue engineering.

  13. Discovering More Chemical Concepts from 3D Chemical Information Searches of Crystal Structure Databases

    ERIC Educational Resources Information Center

    Rzepa, Henry S.

    2016-01-01

    Three new examples are presented illustrating three-dimensional chemical information searches of the Cambridge structure database (CSD) from which basic core concepts in organic and inorganic chemistry emerge. These include connecting the regiochemistry of aromatic electrophilic substitution with the geometrical properties of hydrogen bonding…

  14. An Anatomical Study of Maxillary-Zygomatic Complex Using Three-Dimensional Computerized Tomography-Based Zygomatic Implantation

    PubMed Central

    Zhao, Shijie; Liu, Hui; Sun, Zhipeng; Wang, Jianwei

    2017-01-01

    Objective To obtain anatomical data of maxillary-zygomatic complex based on simulating the zygomatic implantation using cadaver heads and three-dimensional computerized tomography (3D-CT). Methods Simulating zygomatic implantation was performed using seven cadaver heads and 3D-CT images from forty-eight adults. After measuring the maxillary-zygomatic complex, we analyzed the position between the implantation path and the maxillary sinus cavity as well as the distance between the implantation path and the zygomatic nerve. Results The distance from the starting point to the endpoint of the implant was 56.85 ± 5.35 mm in cadaver heads and 58.15 ± 7.37 mm in 3D-CT images. For the most common implantation path (80.20%), the implant went through the maxillary sinus cavity completely. The projecting points of the implant axis (IA) on the surface of zygoma were mainly located in the region of frontal process of zygomatic bone close to the lateral orbital wall. The distances between IA and zygomatic nerve in 53 sides were shorter than 2 mm. Conclusion The simulating zygomatic implantation on cadaver skulls and 3D-CT imaging provided useful anatomical data of the maxillary-zygomatic complex. It is necessary to take care to avoid the zygomatic nerve injury during implantation, because it frequently appears on the route of implantation. PMID:29376077

  15. The production of anatomical teaching resources using three-dimensional (3D) printing technology.

    PubMed

    McMenamin, Paul G; Quayle, Michelle R; McHenry, Colin R; Adams, Justin W

    2014-01-01

    The teaching of anatomy has consistently been the subject of societal controversy, especially in the context of employing cadaveric materials in professional medical and allied health professional training. The reduction in dissection-based teaching in medical and allied health professional training programs has been in part due to the financial considerations involved in maintaining bequest programs, accessing human cadavers and concerns with health and safety considerations for students and staff exposed to formalin-containing embalming fluids. This report details how additive manufacturing or three-dimensional (3D) printing allows the creation of reproductions of prosected human cadaver and other anatomical specimens that obviates many of the above issues. These 3D prints are high resolution, accurate color reproductions of prosections based on data acquired by surface scanning or CT imaging. The application of 3D printing to produce models of negative spaces, contrast CT radiographic data using segmentation software is illustrated. The accuracy of printed specimens is compared with original specimens. This alternative approach to producing anatomically accurate reproductions offers many advantages over plastination as it allows rapid production of multiple copies of any dissected specimen, at any size scale and should be suitable for any teaching facility in any country, thereby avoiding some of the cultural and ethical issues associated with cadaver specimens either in an embalmed or plastinated form. © 2014 American Association of Anatomists.

  16. Three-dimensional study of pelvic asymmetry on anatomical specimens and its clinical perspectives.

    PubMed

    Boulay, Christophe; Tardieu, Christine; Bénaim, Charles; Hecquet, Jérome; Marty, Catherine; Prat-Pradal, Dominique; Legaye, Jean; Duval-Beaupère, Ginette; Pélissier, Jacques

    2006-01-01

    The aim of this study was to assess pelvic asymmetry (i.e. to determine whether the right iliac bone and the right part of the sacrum are mirror images of the left), both quantitatively and qualitatively, using three-dimensional measurements. Pelvic symmetry was described osteologically using a common reference coordinate system for a large sample of pelvises. Landmarks were established on 12 anatomical specimens with an electromagnetic Fastrak system. Seventy-one paired variables were tested with a paired t-test and a non-parametric test (Wilcoxon). A Pearson correlation matrix between the right and left values of the same variable was applied exclusively to values that were significantly asymmetric in order to calculate a dimensionless asymmetry index, ABGi, for each variable. Fifteen variables were significantly asymmetric and correlated with the right vs. left sides for the following anatomical regions: sacrum, iliac blades, iliac width, acetabulum and the superior lunate surface of the acetabulum. ABGi values above a threshold of +/- 4.8% were considered significantly asymmetric in seven variables of the pelvic area. Total asymmetry involving the right and the left pelvis seems to follow a spiral path in the pelvis; in the upper part, the iliac blades rotate clockwise, and in the lower part, the pubic symphysis rotates anticlockwise. Thus, pelvic asymmetry may be evaluated in clinical examinations by measuring iliac crest orientation.

  17. Three-dimensional study of pelvic asymmetry on anatomical specimens and its clinical perspectives

    PubMed Central

    Boulay, Christophe; Tardieu, Christine; Bénaim, Charles; Hecquet, Jérome; Marty, Catherine; Prat-Pradal, Dominique; Legaye, Jean; Duval-Beaupère, Ginette; Pélissier, Jacques

    2006-01-01

    The aim of this study was to assess pelvic asymmetry (i.e. to determine whether the right iliac bone and the right part of the sacrum are mirror images of the left), both quantitatively and qualitatively, using three-dimensional measurements. Pelvic symmetry was described osteologically using a common reference coordinate system for a large sample of pelvises. Landmarks were established on 12 anatomical specimens with an electromagnetic Fastrak system. Seventy-one paired variables were tested with a paired t-test and a non-parametric test (Wilcoxon). A Pearson correlation matrix between the right and left values of the same variable was applied exclusively to values that were significantly asymmetric in order to calculate a dimensionless asymmetry index, ABGi, for each variable. Fifteen variables were significantly asymmetric and correlated with the right vs. left sides for the following anatomical regions: sacrum, iliac blades, iliac width, acetabulum and the superior lunate surface of the acetabulum. ABGi values above a threshold of ± 4.8% were considered significantly asymmetric in seven variables of the pelvic area. Total asymmetry involving the right and the left pelvis seems to follow a spiral path in the pelvis; in the upper part, the iliac blades rotate clockwise, and in the lower part, the pubic symphysis rotates anticlockwise. Thus, pelvic asymmetry may be evaluated in clinical examinations by measuring iliac crest orientation. PMID:16420376

  18. Factors Influencing Undergraduate Students' Acceptance of a Haptic Interface for Learning Gross Anatomy

    ERIC Educational Resources Information Center

    Yeom, Soonja; Choi-Lundberg, Derek L.; Fluck, Andrew Edward; Sale, Arthur

    2017-01-01

    Purpose: This study aims to evaluate factors influencing undergraduate students' acceptance of a computer-aided learning resource using the Phantom Omni haptic stylus to enable rotation, touch and kinaesthetic feedback and display of names of three-dimensional (3D) human anatomical structures on a visual display. Design/methodology/approach: The…

  19. The Production of Anatomical Teaching Resources Using Three-Dimensional (3D) Printing Technology

    ERIC Educational Resources Information Center

    McMenamin, Paul G.; Quayle, Michelle R.; McHenry, Colin R.; Adams, Justin W.

    2014-01-01

    The teaching of anatomy has consistently been the subject of societal controversy, especially in the context of employing cadaveric materials in professional medical and allied health professional training. The reduction in dissection-based teaching in medical and allied health professional training programs has been in part due to the financial…

  20. How Spatial Abilities and Dynamic Visualizations Interplay When Learning Functional Anatomy with 3D Anatomical Models

    ERIC Educational Resources Information Center

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material…

  1. Virtual Cerebral Ventricular System: An MR-Based Three-Dimensional Computer Model

    ERIC Educational Resources Information Center

    Adams, Christina M.; Wilson, Timothy D.

    2011-01-01

    The inherent spatial complexity of the human cerebral ventricular system, coupled with its deep position within the brain, poses a problem for conceptualizing its anatomy. Cadaveric dissection, while considered the gold standard of anatomical learning, may be inadequate for learning the anatomy of the cerebral ventricular system; even with…

  2. Development of an Interactive Anatomical Three-Dimensional Eye Model

    ERIC Educational Resources Information Center

    Allen, Lauren K.; Bhattacharyya, Siddhartha; Wilson, Timothy D.

    2015-01-01

    The discrete anatomy of the eye's intricate oculomotor system is conceptually difficult for novice students to grasp. This is problematic given that this group of muscles represents one of the most common sites of clinical intervention in the treatment of ocular motility disorders and other eye disorders. This project was designed to develop a…

  3. Three-Dimensional Printing: Custom-Made Implants for Craniomaxillofacial Reconstructive Surgery

    PubMed Central

    Matias, Mariana; Zenha, Horácio; Costa, Horácio

    2017-01-01

    Craniomaxillofacial reconstructive surgery is a challenging field. First it aims to restore primary functions and second to preserve craniofacial anatomical features like symmetry and harmony. Three-dimensional (3D) printed biomodels have been widely adopted in medical fields by providing tactile feedback and a superior appreciation of visuospatial relationship between anatomical structures. Craniomaxillofacial reconstructive surgery was one of the first areas to implement 3D printing technology in their practice. Biomodeling has been used in craniofacial reconstruction of traumatic injuries, congenital disorders, tumor removal, iatrogenic injuries (e.g., decompressive craniectomies), orthognathic surgery, and implantology. 3D printing has proven to improve and enable an optimization of preoperative planning, develop intraoperative guidance tools, reduce operative time, and significantly improve the biofunctional and the aesthetic outcome. This technology has also shown great potential in enriching the teaching of medical students and surgical residents. The aim of this review is to present the current status of 3D printing technology and its practical and innovative applications, specifically in craniomaxillofacial reconstructive surgery, illustrated with two clinical cases where the 3D printing technology was successfully used. PMID:28523082

  4. Application of two segmentation protocols during the processing of virtual images in rapid prototyping: ex vivo study with human dry mandibles.

    PubMed

    Ferraz, Eduardo Gomes; Andrade, Lucio Costa Safira; dos Santos, Aline Rode; Torregrossa, Vinicius Rabelo; Rubira-Bullen, Izabel Regina Fischer; Sarmento, Viviane Almeida

    2013-12-01

    The aim of this study was to evaluate the accuracy of virtual three-dimensional (3D) reconstructions of human dry mandibles, produced from two segmentation protocols ("outline only" and "all-boundary lines"). Twenty virtual three-dimensional (3D) images were built from computed tomography exam (CT) of 10 dry mandibles, in which linear measurements between anatomical landmarks were obtained and compared to an error probability of 5 %. The results showed no statistically significant difference among the dry mandibles and the virtual 3D reconstructions produced from segmentation protocols tested (p = 0,24). During the designing of a virtual 3D reconstruction, both "outline only" and "all-boundary lines" segmentation protocols can be used. Virtual processing of CT images is the most complex stage during the manufacture of the biomodel. Establishing a better protocol during this phase allows the construction of a biomodel with characteristics that are closer to the original anatomical structures. This is essential to ensure a correct preoperative planning and a suitable treatment.

  5. Diffusion spectral imaging modules correlate with EEG LORETA neuroimaging modules.

    PubMed

    Thatcher, Robert W; North, Duane M; Biver, Carl J

    2012-05-01

    The purpose of this study was to test the hypothesis that the highest temporal correlations between 3-dimensional EEG current source density corresponds to anatomical Modules of high synaptic connectivity. Eyes closed and eyes open EEG was recorded from 19 scalp locations with a linked ears reference from 71 subjects age 13-42 years. LORETA was computed from 1 to 30 Hz in 2,394 cortical gray matter voxels that were grouped into six anatomical Modules corresponding to the ROIs in the Hagmann et al.'s [2008] diffusion spectral imaging (DSI) study. All possible cross-correlations between voxels within a DSI Module were compared with the correlations between Modules. The Hagmann et al. [ 2008] Module correlation structure was replicated in the correlation structure of EEG three-dimensional current source density. EEG Temporal correlation between brain regions is related to synaptic density as measured by diffusion spectral imaging. Copyright © 2011 Wiley-Liss, Inc.

  6. Stemless shoulder arthroplasty: a literature review

    PubMed Central

    PETRICCIOLI, DARIO; BERTONE, CELESTE; MARCHI, GIACOMO

    2015-01-01

    The design of humeral implants for shoulder arthroplasty has evolved over the years. The new-generation modular shoulder prostheses have an anatomical humeral stem that replicates the three-dimensional parameters of the proximal humerus. An anatomical reconstruction is the best way to restore stability and mobility of the prosthetic shoulder and improve implant durability. However, a perfect anatomical match is not always possible in, for example, patients with post-traumatic osteoarthritis of the shoulder and deformities in the metaphyseal region. To avoid stem-related complications while retaining the advantages of the fourth generation of shoulder implants, different stemless implants have been developed. The stemless shoulder prosthesis is a new concept in shoulder arthroplasty. The authors review the indications, surgical technique, clinical and radiological midterm results, and complications of these humeral implants. PMID:26151038

  7. Cross-sectional anatomy, computed tomography and magnetic resonance imaging of the head of common dolphin (Delphinus delphis) and striped dolphin (Stenella coeruleoalba).

    PubMed

    Alonso-Farré, J M; Gonzalo-Orden, M; Barreiro-Vázquez, J D; Barreiro-Lois, A; André, M; Morell, M; Llarena-Reino, M; Monreal-Pawlowsky, T; Degollada, E

    2015-02-01

    Computed tomography (CT) and low-field magnetic resonance imaging (MRI) were used to scan seven by-caught dolphin cadavers, belonging to two species: four common dolphins (Delphinus delphis) and three striped dolphins (Stenella coeruleoalba). CT and MRI were obtained with the animals in ventral recumbency. After the imaging procedures, six dolphins were frozen at -20°C and sliced in the same position they were examined. Not only CT and MRI scans, but also cross sections of the heads were obtained in three body planes: transverse (slices of 1 cm thickness) in three dolphins, sagittal (5 cm thickness) in two dolphins and dorsal (5 cm thickness) in two dolphins. Relevant anatomical structures were identified and labelled on each cross section, obtaining a comprehensive bi-dimensional topographical anatomy guide of the main features of the common and the striped dolphin head. Furthermore, the anatomical cross sections were compared with their corresponding CT and MRI images, allowing an imaging identification of most of the anatomical features. CT scans produced an excellent definition of the bony and air-filled structures, while MRI allowed us to successfully identify most of the soft tissue structures in the dolphin's head. This paper provides a detailed anatomical description of the head structures of common and striped dolphins and compares anatomical cross sections with CT and MRI scans, becoming a reference guide for the interpretation of imaging studies. © 2014 Blackwell Verlag GmbH.

  8. Design and Implementation of 3D Model Data Management System Based on SQL

    NASA Astrophysics Data System (ADS)

    Li, Shitao; Zhang, Shixin; Zhang, Zhanling; Li, Shiming; Jia, Kun; Hu, Zhongxu; Ping, Liang; Hu, Youming; Li, Yanlei

    CAD/CAM technology plays an increasingly important role in the machinery manufacturing industry. As an important means of production, the accumulated three-dimensional models in many years of design work are valuable. Thus the management of these three-dimensional models is of great significance. This paper gives detailed explanation for a method to design three-dimensional model databases based on SQL and to implement the functions such as insertion, modification, inquiry, preview and so on.

  9. Magnetic resonance imaging-three-dimensional printing technology fabricates customized scaffolds for brain tissue engineering

    PubMed Central

    Fu, Feng; Qin, Zhe; Xu, Chao; Chen, Xu-yi; Li, Rui-xin; Wang, Li-na; Peng, Ding-wei; Sun, Hong-tao; Tu, Yue; Chen, Chong; Zhang, Sai; Zhao, Ming-liang; Li, Xiao-hong

    2017-01-01

    Conventional fabrication methods lack the ability to control both macro- and micro-structures of generated scaffolds. Three-dimensional printing is a solid free-form fabrication method that provides novel ways to create customized scaffolds with high precision and accuracy. In this study, an electrically controlled cortical impactor was used to induce randomized brain tissue defects. The overall shape of scaffolds was designed using rat-specific anatomical data obtained from magnetic resonance imaging, and the internal structure was created by computer-aided design. As the result of limitations arising from insufficient resolution of the manufacturing process, we magnified the size of the cavity model prototype five-fold to successfully fabricate customized collagen-chitosan scaffolds using three-dimensional printing. Results demonstrated that scaffolds have three-dimensional porous structures, high porosity, highly specific surface areas, pore connectivity and good internal characteristics. Neural stem cells co-cultured with scaffolds showed good viability, indicating good biocompatibility and biodegradability. This technique may be a promising new strategy for regenerating complex damaged brain tissues, and helps pave the way toward personalized medicine. PMID:28553343

  10. The development, assessment and validation of virtual reality for human anatomy instruction

    NASA Technical Reports Server (NTRS)

    Marshall, Karen Benn

    1996-01-01

    This research project seeks to meet the objective of science training by developing, assessing, validating and utilizing VR as a human anatomy training medium. Current anatomy instruction is primarily in the form of lectures and usage of textbooks. In ideal situations, anatomic models, computer-based instruction, and cadaver dissection are utilized to augment traditional methods of instruction. At many institutions, lack of financial resources limits anatomy instruction to textbooks and lectures. However, human anatomy is three-dimensional, unlike the one-dimensional depiction found in textbooks and the two-dimensional depiction found on the computer. Virtual reality allows one to step through the computer screen into a 3-D artificial world. The primary objective of this project is to produce a virtual reality application of the abdominopelvic region of a human cadaver that can be taken back to the classroom. The hypothesis is that an immersive learning environment affords quicker anatomic recognition and orientation and a greater level of retention in human anatomy instruction. The goal is to augment not replace traditional modes of instruction.

  11. Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder

    PubMed Central

    Zhao, Guangjun; Wang, Xuchu; Niu, Yanmin; Tan, Liwen; Zhang, Shao-Xiang

    2016-01-01

    Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel). Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE) to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain. PMID:27057543

  12. Segmenting Brain Tissues from Chinese Visible Human Dataset by Deep-Learned Features with Stacked Autoencoder.

    PubMed

    Zhao, Guangjun; Wang, Xuchu; Niu, Yanmin; Tan, Liwen; Zhang, Shao-Xiang

    2016-01-01

    Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues because of its high resolution (e.g., 0.167 mm per pixel). Fast and accurate segmentation of these images into white matter, gray matter, and cerebrospinal fluid plays a critical role in analyzing and measuring the anatomical structures of human brain. However, most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data, and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE) to automatically learn the deep feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential in exploring the high-resolution anatomical structures of human brain.

  13. Post-operative 3D CT feedback improves accuracy and precision in the learning curve of anatomic ACL femoral tunnel placement.

    PubMed

    Sirleo, Luigi; Innocenti, Massimo; Innocenti, Matteo; Civinini, Roberto; Carulli, Christian; Matassi, Fabrizio

    2018-02-01

    To evaluate the feedback from post-operative three-dimensional computed tomography (3D-CT) on femoral tunnel placement in the learning process, to obtain an anatomic anterior cruciate ligament (ACL) reconstruction. A series of 60 consecutive patients undergoing primary ACL reconstruction using autologous hamstrings single-bundle outside-in technique were prospectively included in the study. ACL reconstructions were performed by the same trainee-surgeon during his learning phase of anatomic ACL femoral tunnel placement. A CT scan with dedicated tunnel study was performed in all patients within 48 h after surgery. The data obtained from the CT scan were processed into a three-dimensional surface model, and a true medial view of the lateral femoral condyle was used for the femoral tunnel placement analysis. Two independent examiners analysed the tunnel placements. The centre of femoral tunnel was measured using a quadrant method as described by Bernard and Hertel. The coordinates measured were compared with anatomic coordinates values described in the literature [deep-to-shallow distance (X-axis) 28.5%; high-to-low distance (Y-axis) 35.2%]. Tunnel placement was evaluated in terms of accuracy and precision. After each ACL reconstruction, results were shown to the surgeon to receive an instant feedback in order to achieve accurate correction and improve tunnel placement for the next surgery. Complications and arthroscopic time were also recorded. Results were divided into three consecutive series (1, 2, 3) of 20 patients each. A trend to placing femoral tunnel slightly shallow in deep-to-shallow distance and slightly high in high-to-low distance was observed in the first and the second series. A progressive improvement in tunnel position was recorded from the first to second series and from the second to the third series. Both accuracy (+52.4%) and precision (+55.7%) increased from the first to the third series (p < 0.001). Arthroscopic time decreased from a mean of 105 min in the first series to 57 min in the third series (p < 0.001). After 50 ACL reconstructions, a satisfactory anatomic femoral tunnel was reached. Feedback from post-operative 3D-CT is effective in the learning process to improve accuracy and precision of femoral tunnel placement in order to obtain anatomic ACL reconstruction and helps to reduce also arthroscopic time and learning curve. For clinical relevance, trainee-surgeons should use feedback from post-operative 3DCT to learn anatomic ACL femoral tunnel placement and apply it appropriately. Consecutive case series, Level IV.

  14. Comparative Three-Dimensional Morphology of Baleen: Cross-Sectional Profiles and Volume Measurements Using CT Images.

    PubMed

    Jensen, Megan M; Saladrigas, Amalia H; Goldbogen, Jeremy A

    2017-11-01

    Baleen whales are obligate filter feeders, straining prey-laden seawater through racks of keratinized baleen plates. Despite the importance of baleen to the ecology and natural history of these animals, relatively little work has been done on baleen morphology, particularly with regard to the three-dimensional morphology and structure of baleen. We used computed tomography (CT) scanning to take 3D images of six baleen specimens representing five species, including three complete racks. With these images, we described the three-dimensional shape of the baleen plates using cross-sectional profiles from within the gum tissue to the tip of the plates. We also measured the percentage of each specimen that was composed of either keratinized plate material or was void space between baleen plates, and thus available for seawater flow. Baleen plates have a complex three-dimensional structure with curvature that varies across the anterior-posterior, proximal-distal, and medial-lateral (lingual-labial) axes. These curvatures also vary with location along the baleen rack, and between species. Cross-sectional profiles resemble backwards-facing airfoils, and some specimens display S-shaped, or reflexed, camber. Within a baleen specimen, the intra-baleen void volume correlates with the average bristle diameter for a species, suggesting that essentially, thinner plates (with more space between them for flow) have thinner bristles. Both plate curvature and the relative proportions of plate and void volumes are likely to have implications for the mechanics of mysticete filtration, and future studies are needed to determine the particular functions of these morphological characters. Anat Rec, 300:1942-1952, 2017. © 2017 The Authors The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists. © 2017 The Authors The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.

  15. Production of Accurate Skeletal Models of Domestic Animals Using Three-Dimensional Scanning and Printing Technology

    ERIC Educational Resources Information Center

    Li, Fangzheng; Liu, Chunying; Song, Xuexiong; Huan, Yanjun; Gao, Shansong; Jiang, Zhongling

    2018-01-01

    Access to adequate anatomical specimens can be an important aspect in learning the anatomy of domestic animals. In this study, the authors utilized a structured light scanner and fused deposition modeling (FDM) printer to produce highly accurate animal skeletal models. First, various components of the bovine skeleton, including the femur, the…

  16. ANIMATED SERIAL SECTIONS, A TEACHING AID FOR ORAL HISTOLOGY AND EMBRYOLOGY.

    ERIC Educational Resources Information Center

    HAYDEN, JESS; AND OTHERS

    THE RELATIVE EFFECTIVENESS OF TWO TYPES OF VISUAL MEDIA FOR THE DEVELOPMENT OF A THREE-DIMENSIONAL CONCEPT OF A GIVEN ANATOMICAL REGION WAS INVESTIGATED. EXPERIMENTAL AND CONTROL GROUPS WERE RANDOMLY SELECTED FROM 119 FIRST-YEAR MEDICAL AND DENTAL STUDENTS IN AN HISTOLOGY CLASS. BOTH GROUPS ATTENDED THE SAME ONE-HOUR LECTURE. FOLLOWING THE LECTURE…

  17. From Vesalius to Virtual Reality: How Embodied Cognition Facilitates the Visualization of Anatomy

    ERIC Educational Resources Information Center

    Jang, Susan

    2010-01-01

    This study examines the facilitative effects of embodiment of a complex internal anatomical structure through three-dimensional ("3-D") interactivity in a virtual reality ("VR") program. Since Shepard and Metzler's influential 1971 study, it has been known that 3-D objects (e.g., multiple-armed cube or external body parts) are visually and…

  18. A Head in Virtual Reality: Development of A Dynamic Head and Neck Model

    ERIC Educational Resources Information Center

    Nguyen, Ngan; Wilson, Timothy D.

    2009-01-01

    Advances in computer and interface technologies have made it possible to create three-dimensional (3D) computerized models of anatomical structures for visualization, manipulation, and interaction in a virtual 3D environment. In the past few decades, a multitude of digital models have been developed to facilitate complex spatial learning of the…

  19. Health Information Retrieval Tool (HIRT)

    PubMed Central

    Nyun, Mra Thinzar; Ogunyemi, Omolola; Zeng, Qing

    2002-01-01

    The World Wide Web (WWW) is a powerful way to deliver on-line health information, but one major problem limits its value to consumers: content is highly distributed, while relevant and high quality information is often difficult to find. To address this issue, we experimented with an approach that utilizes three-dimensional anatomic models in conjunction with free-text search.

  20. The Digital Fish Library: Using MRI to Digitize, Database, and Document the Morphological Diversity of Fish

    PubMed Central

    Berquist, Rachel M.; Gledhill, Kristen M.; Peterson, Matthew W.; Doan, Allyson H.; Baxter, Gregory T.; Yopak, Kara E.; Kang, Ning; Walker, H. J.; Hastings, Philip A.; Frank, Lawrence R.

    2012-01-01

    Museum fish collections possess a wealth of anatomical and morphological data that are essential for documenting and understanding biodiversity. Obtaining access to specimens for research, however, is not always practical and frequently conflicts with the need to maintain the physical integrity of specimens and the collection as a whole. Non-invasive three-dimensional (3D) digital imaging therefore serves a critical role in facilitating the digitization of these specimens for anatomical and morphological analysis as well as facilitating an efficient method for online storage and sharing of this imaging data. Here we describe the development of the Digital Fish Library (DFL, http://www.digitalfishlibrary.org), an online digital archive of high-resolution, high-contrast, magnetic resonance imaging (MRI) scans of the soft tissue anatomy of an array of fishes preserved in the Marine Vertebrate Collection of Scripps Institution of Oceanography. We have imaged and uploaded MRI data for over 300 marine and freshwater species, developed a data archival and retrieval system with a web-based image analysis and visualization tool, and integrated these into the public DFL website to disseminate data and associated metadata freely over the web. We show that MRI is a rapid and powerful method for accurately depicting the in-situ soft-tissue anatomy of preserved fishes in sufficient detail for large-scale comparative digital morphology. However these 3D volumetric data require a sophisticated computational and archival infrastructure in order to be broadly accessible to researchers and educators. PMID:22493695

  1. The Digital Fish Library: using MRI to digitize, database, and document the morphological diversity of fish.

    PubMed

    Berquist, Rachel M; Gledhill, Kristen M; Peterson, Matthew W; Doan, Allyson H; Baxter, Gregory T; Yopak, Kara E; Kang, Ning; Walker, H J; Hastings, Philip A; Frank, Lawrence R

    2012-01-01

    Museum fish collections possess a wealth of anatomical and morphological data that are essential for documenting and understanding biodiversity. Obtaining access to specimens for research, however, is not always practical and frequently conflicts with the need to maintain the physical integrity of specimens and the collection as a whole. Non-invasive three-dimensional (3D) digital imaging therefore serves a critical role in facilitating the digitization of these specimens for anatomical and morphological analysis as well as facilitating an efficient method for online storage and sharing of this imaging data. Here we describe the development of the Digital Fish Library (DFL, http://www.digitalfishlibrary.org), an online digital archive of high-resolution, high-contrast, magnetic resonance imaging (MRI) scans of the soft tissue anatomy of an array of fishes preserved in the Marine Vertebrate Collection of Scripps Institution of Oceanography. We have imaged and uploaded MRI data for over 300 marine and freshwater species, developed a data archival and retrieval system with a web-based image analysis and visualization tool, and integrated these into the public DFL website to disseminate data and associated metadata freely over the web. We show that MRI is a rapid and powerful method for accurately depicting the in-situ soft-tissue anatomy of preserved fishes in sufficient detail for large-scale comparative digital morphology. However these 3D volumetric data require a sophisticated computational and archival infrastructure in order to be broadly accessible to researchers and educators.

  2. [Leonardo da Vinci the first human body imaging specialist. A brief communication on the thorax oseum images].

    PubMed

    Cicero, Raúl; Criales, José Luis; Cardoso, Manuel

    2009-01-01

    The impressive development of computed tomography (CT) techniques such as the three dimensional helical CT produces a spatial image of the thoracic skull. At the beginning of the 16th century Leonardo da Vinci drew with great precision the thorax oseum. These drawings show an outstanding similarity with the images obtained by three dimensional helical CT. The cumbersome task of the Renaissance genius is a prime example of the careful study of human anatomy. Modern imaging techniques require perfect anatomic knowledge of the human body in order to generate exact interpretations of images. Leonardo's example is alive for anybody devoted to modern imaging studies.

  3. Principles of three-dimensional printing and clinical applications within the abdomen and pelvis.

    PubMed

    Bastawrous, Sarah; Wake, Nicole; Levin, Dmitry; Ripley, Beth

    2018-04-04

    Improvements in technology and reduction in costs have led to widespread interest in three-dimensional (3D) printing. 3D-printed anatomical models contribute to personalized medicine, surgical planning, and education across medical specialties, and these models are rapidly changing the landscape of clinical practice. A physical object that can be held in one's hands allows for significant advantages over standard two-dimensional (2D) or even 3D computer-based virtual models. Radiologists have the potential to play a significant role as consultants and educators across all specialties by providing 3D-printed models that enhance clinical care. This article reviews the basics of 3D printing, including how models are created from imaging data, clinical applications of 3D printing within the abdomen and pelvis, implications for education and training, limitations, and future directions.

  4. Femoral articular shape and geometry. A three-dimensional computerized analysis of the knee.

    PubMed

    Siu, D; Rudan, J; Wevers, H W; Griffiths, P

    1996-02-01

    An average, three-dimensional anatomic shape and geometry of the distal femur were generated from x-ray computed tomography data of five fresh asymptomatic cadaver knees using AutoCAD (AutoDesk, Sausalito, CA), a computer-aided design and drafting software. Each femur model was graphically repositioned to a standardized orientation using a series of alignment templates and scaled to a nominal size of 85 mm in mediolateral and 73 mm in anteroposterior dimensions. An average generic shape of the distal femur was synthesized by combining these pseudosolid models and reslicing the composite structure at different elevations using clipping and smoothing techniques in interactive computer graphics. The resulting distal femoral geometry was imported into a computer-aided manufacturing system, and anatomic prototypes of the distal femur were produced. Quantitative geometric analyses of the generic femur in the coronal and transverse planes revealed definite condylar camber (3 degrees-6 degrees) and toe-in (8 degrees-10 degrees) with an oblique patellofemoral groove (15 degrees) with respect to the mechanical axis of the femur. In the sagittal plane, each condyle could be approximated by three concatenated circular arcs (anterior, distal, and posterior) with slope continuity and a single arc for the patellofemoral groove. The results of this study may have important implications in future femoral prosthesis design and clinical applications.

  5. Improved automatic optic nerve radius estimation from high resolution MRI

    NASA Astrophysics Data System (ADS)

    Harrigan, Robert L.; Smith, Alex K.; Mawn, Louise A.; Smith, Seth A.; Landman, Bennett A.

    2017-02-01

    The optic nerve (ON) is a vital structure in the human visual system and transports all visual information from the retina to the cortex for higher order processing. Due to the lack of redundancy in the visual pathway, measures of ON damage have been shown to correlate well with visual deficits. These measures are typically taken at an arbitrary anatomically defined point along the nerve and do not characterize changes along the length of the ON. We propose a fully automated, three-dimensionally consistent technique building upon a previous independent slice-wise technique to estimate the radius of the ON and surrounding cerebrospinal fluid (CSF) on high-resolution heavily T2-weighted isotropic MRI. We show that by constraining results to be three-dimensionally consistent this technique produces more anatomically viable results. We compare this technique with the previously published slice-wise technique using a short-term reproducibility data set, 10 subjects, follow-up <1 month, and show that the new method is more reproducible in the center of the ON. The center of the ON contains the most accurate imaging because it lacks confounders such as motion and frontal lobe interference. Long-term reproducibility, 5 subjects, follow-up of approximately 11 months, is also investigated with this new technique and shown to be similar to short-term reproducibility, indicating that the ON does not change substantially within 11 months. The increased accuracy of this new technique provides increased power when searching for anatomical changes in ON size amongst patient populations.

  6. Improved Automatic Optic Nerve Radius Estimation from High Resolution MRI.

    PubMed

    Harrigan, Robert L; Smith, Alex K; Mawn, Louise A; Smith, Seth A; Landman, Bennett A

    2017-02-11

    The optic nerve (ON) is a vital structure in the human visual system and transports all visual information from the retina to the cortex for higher order processing. Due to the lack of redundancy in the visual pathway, measures of ON damage have been shown to correlate well with visual deficits. These measures are typically taken at an arbitrary anatomically defined point along the nerve and do not characterize changes along the length of the ON. We propose a fully automated, three-dimensionally consistent technique building upon a previous independent slice-wise technique to estimate the radius of the ON and surrounding cerebrospinal fluid (CSF) on high-resolution heavily T2-weighted isotropic MRI. We show that by constraining results to be three-dimensionally consistent this technique produces more anatomically viable results. We compare this technique with the previously published slice-wise technique using a short-term reproducibility data set, 10 subjects, follow-up <1 month, and show that the new method is more reproducible in the center of the ON. The center of the ON contains the most accurate imaging because it lacks confounders such as motion and frontal lobe interference. Long-term reproducibility, 5 subjects, follow-up of approximately 11 months, is also investigated with this new technique and shown to be similar to short-term reproducibility, indicating that the ON does not change substantially within 11 months. The increased accuracy of this new technique provides increased power when searching for anatomical changes in ON size amongst patient populations.

  7. Construction of a three-dimensional interactive model of the skull base and cranial nerves.

    PubMed

    Kakizawa, Yukinari; Hongo, Kazuhiro; Rhoton, Albert L

    2007-05-01

    The goal was to develop an interactive three-dimensional (3-D) computerized anatomic model of the skull base for teaching microneurosurgical anatomy and for operative planning. The 3-D model was constructed using commercially available software (Maya 6.0 Unlimited; Alias Systems Corp., Delaware, MD), a personal computer, four cranial specimens, and six dry bones. Photographs from at least two angles of the superior and lateral views were imported to the 3-D software. Many photographs were needed to produce the model in anatomically complex areas. Careful dissection was needed to expose important structures in the two views. Landmarks, including foramen, bone, and dura mater, were used as reference points. The 3-D model of the skull base and related structures was constructed using more than 300,000 remodeled polygons. The model can be viewed from any angle. It can be rotated 360 degrees in any plane using any structure as the focal point of rotation. The model can be reduced or enlarged using the zoom function. Variable transparencies could be assigned to any structures so that the structures at any level can be seen. Anatomic labels can be attached to the structures in the 3-D model for educational purposes. This computer-generated 3-D model can be observed and studied repeatedly without the time limitations and stresses imposed by surgery. This model may offer the potential to create interactive surgical exercises useful in evaluating multiple surgical routes to specific target areas in the skull base.

  8. Comparison of femur tunnel aperture location in patients undergoing transtibial and anatomical single-bundle anterior cruciate ligament reconstruction.

    PubMed

    Lee, Dae-Hee; Kim, Hyun-Jung; Ahn, Hyeong-Sik; Bin, Seong-Il

    2016-12-01

    Although three-dimensional computed tomography (3D-CT) has been used to compare femoral tunnel position following transtibial and anatomical anterior cruciate ligament (ACL) reconstruction, no consensus has been reached on which technique results in a more anatomical position because methods of quantifying femoral tunnel position on 3D-CT have not been consistent. This meta-analysis was therefore performed to compare femoral tunnel location following transtibial and anatomical ACL reconstruction, in both the low-to-high and deep-to-shallow directions. This meta-analysis included all studies that used 3D-CT to compare femoral tunnel location, using quadrant or anatomical coordinate axis methods, following transtibial and anatomical (AM portal or OI) single-bundle ACL reconstruction. Six studies were included in the meta-analysis. Femoral tunnel location was 18 % higher in the low-to-high direction, but was not significant in the deep-to-shallow direction, using the transtibial technique than the anatomical methods, when measured using the anatomical coordinate axis method. When measured using the quadrant method, however, femoral tunnel positions were significantly higher (21 %) and shallower (6 %) with transtibial than anatomical methods of ACL reconstruction. The anatomical ACL reconstruction techniques led to a lower femoral tunnel aperture location than the transtibial technique, suggesting the superiority of anatomical techniques for creating new femoral tunnels during revision ACL reconstruction in femoral tunnel aperture location in the low-to-high direction. However, the mean difference in the deep-to-shallow direction differed by method of measurement. Meta-analysis, Level II.

  9. 3D printing functional materials and devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    McAlpine, Michael C.

    2017-05-01

    The development of methods for interfacing high performance functional devices with biology could impact regenerative medicine, smart prosthetics, and human-machine interfaces. Indeed, the ability to three-dimensionally interweave biological and functional materials could enable the creation of devices possessing unique geometries, properties, and functionalities. Yet, most high quality functional materials are two dimensional, hard and brittle, and require high crystallization temperatures for maximal performance. These properties render the corresponding devices incompatible with biology, which is three-dimensional, soft, stretchable, and temperature sensitive. We overcome these dichotomies by: 1) using 3D printing and scanning for customized, interwoven, anatomically accurate device architectures; 2) employing nanotechnology as an enabling route for overcoming mechanical discrepancies while retaining high performance; and 3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This three-dimensional blending of functional materials and `living' platforms may enable next-generation 3D printed devices.

  10. Volume rendering based on magnetic resonance imaging: advances in understanding the three-dimensional anatomy of the human knee

    PubMed Central

    Anastasi, Giuseppe; Bramanti, Placido; Di Bella, Paolo; Favaloro, Angelo; Trimarchi, Fabio; Magaudda, Ludovico; Gaeta, Michele; Scribano, Emanuele; Bruschetta, Daniele; Milardi, Demetrio

    2007-01-01

    The choice of medical imaging techniques, for the purpose of the present work aimed at studying the anatomy of the knee, derives from the increasing use of images in diagnostics, research and teaching, and the subsequent importance that these methods are gaining within the scientific community. Medical systems using virtual reality techniques also offer a good alternative to traditional methods, and are considered among the most important tools in the areas of research and teaching. In our work we have shown some possible uses of three-dimensional imaging for the study of the morphology of the normal human knee, and its clinical applications. We used the direct volume rendering technique, and created a data set of images and animations to allow us to visualize the single structures of the human knee in three dimensions. Direct volume rendering makes use of specific algorithms to transform conventional two-dimensional magnetic resonance imaging sets of slices into see-through volume data set images. It is a technique which does not require the construction of intermediate geometric representations, and has the advantage of allowing the visualization of a single image of the full data set, using semi-transparent mapping. Digital images of human structures, and in particular of the knee, offer important information about anatomical structures and their relationships, and are of great value in the planning of surgical procedures. On this basis we studied seven volunteers with an average age of 25 years, who underwent magnetic resonance imaging. After elaboration of the data through post-processing, we analysed the structure of the knee in detail. The aim of our investigation was the three-dimensional image, in order to comprehend better the interactions between anatomical structures. We believe that these results, applied to living subjects, widen the frontiers in the areas of teaching, diagnostics, therapy and scientific research. PMID:17645453

  11. Automatic Testing and Assessment of Neuroanatomy Using a Digital Brain Atlas: Method and Development of Computer- and Mobile-Based Applications

    ERIC Educational Resources Information Center

    Nowinski, Wieslaw L.; Thirunavuukarasuu, Arumugam; Ananthasubramaniam, Anand; Chua, Beng Choon; Qian, Guoyu; Nowinska, Natalia G.; Marchenko, Yevgen; Volkau, Ihar

    2009-01-01

    Preparation of tests and student's assessment by the instructor are time consuming. We address these two tasks in neuroanatomy education by employing a digital media application with a three-dimensional (3D), interactive, fully segmented, and labeled brain atlas. The anatomical and vascular models in the atlas are linked to "Terminologia…

  12. Take Away Body Parts! An Investigation into the Use of 3D-Printed Anatomical Models in Undergraduate Anatomy Education

    ERIC Educational Resources Information Center

    Smith, Claire F.; Tollemache, Nicholas; Covill, Derek; Johnston, Malcolm

    2018-01-01

    Understanding the three-dimensional (3D) nature of the human form is imperative for effective medical practice and the emergence of 3D printing creates numerous opportunities to enhance aspects of medical and healthcare training. A recently deceased, un-embalmed donor was scanned through high-resolution computed tomography. The scan data underwent…

  13. [An interactive three-dimensional model of the human body].

    PubMed

    Liem, S L

    2009-01-01

    Driven by advanced computer technology, it is now possible to show the human anatomy on a computer. On the internet, the Visible Body programme makes it possible to navigate in all directions through the anatomical structures of the human body, using mouse and keyboard. Visible Body is a wonderful tool to give insight in the human structures, body functions and organs.

  14. Predicting Student Performance in Sonographic Scanning Using Spatial Ability as an Ability Determinent of Skill Acquisition

    ERIC Educational Resources Information Center

    Clem, Douglas Wayne

    2012-01-01

    Spatial ability refers to an individual's capacity to visualize and mentally manipulate three dimensional objects. Since sonographers manually manipulate 2D and 3D sonographic images to generate multi-viewed, logical, sequential renderings of an anatomical structure, it can be assumed that spatial ability is central to the perception and…

  15. Image- and model-based surgical planning in otolaryngology.

    PubMed

    Korves, B; Klimek, L; Klein, H M; Mösges, R

    1995-10-01

    Preoperative evaluation of any operating field is essential for the preparation of surgical procedures. The relationship between pathology and adjacent structures, and anatomically dangerous sites need to be analyzed for the determination of intraoperative action. For the simulation of surgery using three-dimensional imaging or individually manufactured plastic patient models, the authors have worked out different procedures. A total of 481 surgical interventions in the maxillofacial region, paranasal sinuses, orbit, and the anterior and middle skull base, in addition to neurotologic procedures were presurgically simulated using three-dimensional imaging and image manipulation. An intraoperative simulation device, part of the Aachen Computer-Assisted Surgery System, had been applied in 407 of these cases. In seven patients, stereolithography was used to create plastic patient models for the preparation of reconstructive surgery and prostheses fabrication. The disadvantages of this process include time and cost; however, the advantages included (1) a better understanding of the anatomic relationships, (2) the feasibility of presurgical simulation of the prevailing procedure, (3) an improved intraoperative localization accuracy, (4) prostheses fabrication in reconstructive procedures with an approach to more accuracy, (5) permanent recordings for future requirements or reconstructions, and (6) improved residency education.

  16. Medical 3D Printing for the Radiologist

    PubMed Central

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A.; Cai, Tianrun; Kumamaru, Kanako K.; George, Elizabeth; Wake, Nicole; Caterson, Edward J.; Pomahac, Bohdan; Ho, Vincent B.; Grant, Gerald T.

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. ©RSNA, 2015 PMID:26562233

  17. "Black Bone" MRI: a novel imaging technique for 3D printing.

    PubMed

    Eley, Karen A; Watt-Smith, Stephen R; Golding, Stephen J

    2017-03-01

    Three-dimensionally printed anatomical models are rapidly becoming an integral part of pre-operative planning of complex surgical cases. We have previously reported the "Black Bone" MRI technique as a non-ionizing alternative to CT. Segmentation of bone becomes possible by minimizing soft tissue contrast to enhance the bone-soft tissue boundary. The objectives of this study were to ascertain the potential of utilizing this technique to produce three-dimensional (3D) printed models. "Black Bone" MRI acquired from adult volunteers and infants with craniosynostosis were 3D rendered and 3D printed. A custom phantom provided a surrogate marker of accuracy permitting comparison between direct measurements and 3D printed models created by segmenting both CT and "Black Bone" MRI data sets using two different software packages. "Black Bone" MRI was successfully utilized to produce 3D models of the craniofacial skeleton in both adults and an infant. Measurements of the cube phantom and 3D printed models demonstrated submillimetre discrepancy. In this novel preliminary study exploring the potential of 3D printing from "Black Bone" MRI data, the feasibility of producing anatomical 3D models has been demonstrated, thus offering a potential non-ionizing alterative to CT for the craniofacial skeleton.

  18. Three-Dimensional Photoacoustic Endoscopic Imaging of the Rabbit Esophagus

    PubMed Central

    Yao, Junjie; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk; Wang, Lihong V.

    2015-01-01

    We report photoacoustic and ultrasonic endoscopic images of two intact rabbit esophagi. To investigate the esophageal lumen structure and microvasculature, we performed in vivo and ex vivo imaging studies using a 3.8-mm diameter photoacoustic endoscope and correlated the images with histology. Several interesting anatomic structures were newly found in both the in vivo and ex vivo images, which demonstrates the potential clinical utility of this endoscopic imaging modality. In the ex vivo imaging experiment, we acquired high-resolution motion-artifact-free three-dimensional photoacoustic images of the vasculatures distributed in the walls of the esophagi and extending to the neighboring mediastinal regions. Blood vessels with apparent diameters as small as 190 μm were resolved. Moreover, by taking advantage of the dual-mode high-resolution photoacoustic and ultrasound endoscopy, we could better identify and characterize the anatomic structures of the esophageal lumen, such as the mucosal and submucosal layers in the esophageal wall, and an esophageal branch of the thoracic aorta. In this paper, we present the first photoacoustic images showing the vasculature of a vertebrate esophagus and discuss the potential clinical applications and future development of photoacoustic endoscopy. PMID:25874640

  19. Three-dimensional photoacoustic endoscopic imaging of the rabbit esophagus.

    PubMed

    Yang, Joon Mo; Favazza, Christopher; Yao, Junjie; Chen, Ruimin; Zhou, Qifa; Shung, K Kirk; Wang, Lihong V

    2015-01-01

    We report photoacoustic and ultrasonic endoscopic images of two intact rabbit esophagi. To investigate the esophageal lumen structure and microvasculature, we performed in vivo and ex vivo imaging studies using a 3.8-mm diameter photoacoustic endoscope and correlated the images with histology. Several interesting anatomic structures were newly found in both the in vivo and ex vivo images, which demonstrates the potential clinical utility of this endoscopic imaging modality. In the ex vivo imaging experiment, we acquired high-resolution motion-artifact-free three-dimensional photoacoustic images of the vasculatures distributed in the walls of the esophagi and extending to the neighboring mediastinal regions. Blood vessels with apparent diameters as small as 190 μm were resolved. Moreover, by taking advantage of the dual-mode high-resolution photoacoustic and ultrasound endoscopy, we could better identify and characterize the anatomic structures of the esophageal lumen, such as the mucosal and submucosal layers in the esophageal wall, and an esophageal branch of the thoracic aorta. In this paper, we present the first photoacoustic images showing the vasculature of a vertebrate esophagus and discuss the potential clinical applications and future development of photoacoustic endoscopy.

  20. Medical 3D Printing for the Radiologist.

    PubMed

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. (©)RSNA, 2015.

  1. Dosimetric study of the protection level of the bone marrow in patients with cervical or endometrial cancer for three radiotherapy techniques - 3D CRT, IMRT and VMAT. Study protocol.

    NASA Astrophysics Data System (ADS)

    Jodda, Agata; Urbański, Bartosz; Piotrowski, Tomasz; Malicki, Julian

    2016-03-01

    Background: The paper shows the methodology of an in-phantom study of the protection level of the bone marrow in patients with cervical or endometrial cancer for three radiotherapy techniques: three-dimensional conformal radiotherapy, intensity modulated radiotherapy, and volumetric modulated arc therapy, preceded by the procedures of image guidance. Methods/Design: The dosimetric evaluation of the doses will be performed in an in-house multi-element anthropomorphic phantom of the female pelvic area created by three-dimensional printing technology. The volume and position of the structures will be regulated according to the guidelines from the Bayesian network. The input data for the learning procedure of the model will be obtained from the retrospective analysis of imaging data obtained for 96 patients with endometrial cancer or cervical cancer treated with radiotherapy in our centre in 2008-2013. Three anatomical representations of the phantom simulating three independent clinical cases will be chosen. Five alternative treatment plans (1 × three-dimensional conformal radiotherapy, 2 × intensity modulated radiotherapy and 2 × volumetric modulated arc therapy) will be created for each representation. To simulate image-guided radiotherapy, ten specific recombinations will be designated, for each anatomical representation separately, reflecting possible changes in the volume and position of the phantom components. Discussion: The comparative analysis of planned measurements will identify discrepancies between calculated doses and doses that were measured in the phantom. Finally, differences between the doses cumulated in the hip plates performed by different techniques simulating the gynaecological patients' irradiation of dose delivery will be established. The results of this study will form the basis of the prospective clinical trial that will be designed for the assessment of hematologic toxicity and its correlation with the doses cumulated in the hip plates, for gynaecologic patients undergoing radiation therapy.

  2. Single calibration multiplane stereo-PIV: the effect of mitral valve orientation on three-dimensional flow in a left ventricle model

    NASA Astrophysics Data System (ADS)

    Saaid, Hicham; Segers, Patrick; Novara, Matteo; Claessens, Tom; Verdonck, Pascal

    2018-03-01

    The characterization of flow patterns in the left ventricle may help the development and interpretation of flow-based parameters of cardiac function and (patho-)physiology. Yet, in vivo visualization of highly dynamic three-dimensional flow patterns in an opaque and moving chamber is a challenging task. This has been shown in several recent multidisciplinary studies where in vivo imaging methods are often complemented by in silico solutions, or by in vitro methods. Because of its distinctive features, particle image velocimetry (PIV) has been extensively used to investigate flow dynamics in the cardiovascular field. However, full volumetric PIV data in a dynamically changing geometry such as the left ventricle remain extremely scarce, which justifies the present study. An investigation of the left ventricle flow making use of a customized cardiovascular simulator is presented; a multiplane scanning-stereoscopic PIV setup is used, which allows for the measurement of independent planes across the measurement volume. Due to the accuracy in traversing the illumination and imaging systems, the present setup allows to reconstruct the flow in a 3D volume performing only one single calibration. The effects of the orientation of a prosthetic mitral valve in anatomical and anti-anatomical configurations have been investigated during the diastolic filling time. The measurement is performed in a phase-locked manner; the mean velocity components are presented together with the vorticity and turbulent kinetic energy maps. The reconstructed 3D flow structures downstream the bileaflet mitral valve are shown, which provides additional insight of the highly three-dimensional flow.

  3. Comparison of three aids for teaching lumbar surgical anatomy.

    PubMed

    Das, S; Mitchell, P

    2013-08-01

    Reduced surgeons' training time has resulted in a need to increase the speed of learning. Currently, anatomy education involves traditional (textbooks, physical models, cadaveric dissection/prosection) and recent (electronic) techniques. As yet there are no available data comparing their performance. The performance of three anatomical training aids at teaching the surgical anatomy of the lumbar spinal was compared. The aids used were paper-based images, a three-dimensional plastic model and a semitransparent computer model. Fifty one study subjects were recruited from a population of junior doctors, nurses, medical and nursing students. Three study groups were created which differed in the order of presenting the aids. For each subject, spinal anatomy was revised by the investigator, teaching them the anatomy using each aid. They were specifically taught the locations of the intervertebral disc, pedicles and nerve roots in the lateral recesses. They then drew these structures on a response sheet (three response sheets per subject). The computer model was the best at allowing subjects accurately to determine structure location followed by the paper-based images, the plastic model was the worst. Accuracy improved with successive models used but this trend was not significant. Subjects were not versed in spinal anatomy beforehand, so meaningful baseline measures were not available. The educational performance of surgical anatomical training aids can be measured and compared. A computer generated 3 dimensional model gave the best results with paper-based images second and the plastic model third.

  4. Skeletal Muscle Fascicle Arrangements Can Be Reconstructed Using a Laplacian Vector Field Simulation

    PubMed Central

    Choi, Hon Fai; Blemker, Silvia S.

    2013-01-01

    Skeletal muscles are characterized by a large diversity in anatomical architecture and function. Muscle force and contraction are generated by contractile fiber cells grouped in fascicle bundles, which transmit the mechanical action between origin and insertion attachments of the muscle. Therefore, an adequate representation of fascicle arrangements in computational models of skeletal muscles is important, especially when investigating three-dimensional muscle deformations in finite element models. However, obtaining high resolution in vivo measurements of fascicle arrangements in skeletal muscles is currently still challenging. This motivated the development of methods in previous studies to generate numerical representations of fascicle trajectories using interpolation templates. Here, we present an alternative approach based on the hypothesis of a rotation and divergence free (Laplacian) vector field behavior which reflects observed physical characteristics of fascicle trajectories. To obtain this representation, the Laplace equation was solved in anatomical reconstructions of skeletal muscle shapes based on medical images using a uniform flux boundary condition on the attachment areas. Fascicle tracts were generated through a robust flux based tracing algorithm. The concept of this approach was demonstrated in two-dimensional synthetic examples of typical skeletal muscle architectures. A detailed evaluation was performed in an example of the anatomical human tibialis anterior muscle which showed an overall agreement with measurements from the literature. The utility and capability of the proposed method was further demonstrated in other anatomical examples of human skeletal muscles with a wide range of muscle shapes and attachment morphologies. PMID:24204878

  5. New horizons for study of the cardiopulmonary and circulatory systems. [image reconstruction techniques

    NASA Technical Reports Server (NTRS)

    Wood, E. H.

    1976-01-01

    The paper discusses the development of computer-controlled three-dimensional reconstruction techniques designed to determine the dynamic changes in the true shape and dimensions of the epi- and endocardial surfaces of the heart, along with variable time base (stop-action to real-time) displays of the transmural distribution of the coronary microcirculation and the three-dimensional anatomy of the macrovasculature in all regions of the body throughout individual cardiac and/or respiratory cycles. A technique for reconstructing a cross section of the heart from multiplanar videoroentgenograms is outlined. The capability of high spatial and high temporal resolution scanning videodensitometry makes possible measurement of the appearance, mean transit and clearance of roentgen opaque substances in three-dimensional space through the myocardium with a degree of simultaneous anatomic and temporal resolution not obtainable by current isotope techniques. The distribution of a variety of selected chemical elements or biologic materials within a body portion can also be determined.

  6. Bioprinting Cartilage Tissue from Mesenchymal Stem Cells and PEG Hydrogel.

    PubMed

    Gao, Guifang; Hubbell, Karen; Schilling, Arndt F; Dai, Guohao; Cui, Xiaofeng

    2017-01-01

    Bioprinting based on thermal inkjet printing is one of the most attractive enabling technologies for tissue engineering and regeneration. During the printing process, cells, scaffolds , and growth factors are rapidly deposited to the desired two-dimensional (2D) and three-dimensional (3D) locations. Ideally, the bioprinted tissues are able to mimic the native anatomic structures in order to restore the biological functions. In this study, a bioprinting platform for 3D cartilage tissue engineering was developed using a commercially available thermal inkjet printer with simultaneous photopolymerization . The engineered cartilage demonstrated native zonal organization, ideal extracellular matrix (ECM ) composition, and proper mechanical properties. Compared to the conventional tissue fabrication approach, which requires extended UV exposure, the viability of the printed cells with simultaneous photopolymerization was significantly higher. Printed neocartilage demonstrated excellent glycosaminoglycan (GAG) and collagen type II production, which was consistent with gene expression profile. Therefore, this platform is ideal for anatomic tissue engineering with accurate cell distribution and arrangement.

  7. Data representation for joint kinematics simulation of the lower limb within an educational context.

    PubMed

    Van Sint Jan, Serge; Hilal, Isam; Salvia, Patrick; Sholukha, Victor; Poulet, Pascal; Kirokoya, Ibrahim; Rooze, Marcel

    2003-04-01

    Three-dimensional (3D) visualization is becoming increasingly frequent in both qualitative and quantitative biomechanical studies of anatomical structures involving multiple data sources (e.g. morphological data and kinematics data). For many years, this kind of experiment was limited to the use of bi-dimensional images due to a lack of accurate 3D data. However, recent progress in medical imaging and computer graphics has forged new perspectives. Indeed, new techniques allow the development of an interactive interface for the simulation of human motions combining data from both medical imaging (i.e., morphology) and biomechanical studies (i.e., kinematics). Fields of application include medical education, biomechanical research and clinical research. This paper presents an experimental protocol for the development of anatomically realistic joint simulation within a pedagogical context. Results are shown for the lower limb. Extension to other joints is straightforward. This work is part of the Virtual Animation of the Kinematics of the Human project (VAKHUM) (http://www.ulb.ac.be/project/vakhum).

  8. 3D visualization of Thoraco-Lumbar Spinal Lesions in German Shepherd Dog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azpiroz, J.; Krafft, J.; Cadena, M.

    2006-09-08

    Computed tomography (CT) has been found to be an excellent imaging modality due to its sensitivity to characterize the morphology of the spine in dogs. This technique is considered to be particularly helpful for diagnosing spinal cord atrophy and spinal stenosis. The three-dimensional visualization of organs and bones can significantly improve the diagnosis of certain diseases in dogs. CT images were acquired of a German shepherd's dog spinal cord to generate stacks and digitally process them to arrange them in a volume image. All imaging experiments were acquired using standard clinical protocols on a clinical CT scanner. The three-dimensional visualizationmore » allowed us to observe anatomical structures that otherwise are not possible to observe with two-dimensional images. The combination of an imaging modality like CT together with imaging processing techniques can be a powerful tool for the diagnosis of a number of animal diseases.« less

  9. 3D Printing Provides a Precise Approach in the Treatment of Tetralogy of Fallot, Pulmonary Atresia with Major Aortopulmonary Collateral Arteries.

    PubMed

    Anwar, Shafkat; Rockefeller, Toby; Raptis, Demetrios A; Woodard, Pamela K; Eghtesady, Pirooz

    2018-02-03

    Patients with tetralogy of Fallot, pulmonary atresia, and multiple aortopulmonary collateral arteries (Tet PA MAPCAs) have a wide spectrum of anatomy and disease severity. Management of these patients can be challenging and often require multiple high-risk surgical and interventional catheterization procedures. These interventions are made challenging by complex anatomy that require the proceduralist to mentally reconstruct three-dimensional anatomic relationships from two-dimensional images. Three-dimensional (3D) printing is an emerging medical technology that provides added benefits in the management of patients with Tet PA MAPCAs. When used in combination with current diagnostic modalities and procedures, 3D printing provides a precise approach to the management of these challenging, high-risk patients. Specifically, 3D printing enables detailed surgical and interventional planning prior to the procedure, which may improve procedural outcomes, decrease complications, and reduce procedure-related radiation dose and contrast load.

  10. From tissue to silicon to plastic: three-dimensional printing in comparative anatomy and physiology

    PubMed Central

    Lauridsen, Henrik; Hansen, Kasper; Nørgård, Mathias Ørum; Wang, Tobias; Pedersen, Michael

    2016-01-01

    Comparative anatomy and physiology are disciplines related to structures and mechanisms in three-dimensional (3D) space. For the past centuries, scientific reports in these fields have relied on written descriptions and two-dimensional (2D) illustrations, but in recent years 3D virtual modelling has entered the scene. However, comprehending complex anatomical structures is hampered by reproduction on flat inherently 2D screens. One way to circumvent this problem is in the production of 3D-printed scale models. We have applied computed tomography and magnetic resonance imaging to produce digital models of animal anatomy well suited to be printed on low-cost 3D printers. In this communication, we report how to apply such technology in comparative anatomy and physiology to aid discovery, description, comprehension and communication, and we seek to inspire fellow researchers in these fields to embrace this emerging technology. PMID:27069653

  11. 3D visualization of Thoraco-Lumbar Spinal Lesions in German Shepherd Dog

    NASA Astrophysics Data System (ADS)

    Azpiroz, J.; Krafft, J.; Cadena, M.; Rodríguez, A. O.

    2006-09-01

    Computed tomography (CT) has been found to be an excellent imaging modality due to its sensitivity to characterize the morphology of the spine in dogs. This technique is considered to be particularly helpful for diagnosing spinal cord atrophy and spinal stenosis. The three-dimensional visualization of organs and bones can significantly improve the diagnosis of certain diseases in dogs. CT images were acquired of a German shepherd's dog spinal cord to generate stacks and digitally process them to arrange them in a volume image. All imaging experiments were acquired using standard clinical protocols on a clinical CT scanner. The three-dimensional visualization allowed us to observe anatomical structures that otherwise are not possible to observe with two-dimensional images. The combination of an imaging modality like CT together with imaging processing techniques can be a powerful tool for the diagnosis of a number of animal diseases.

  12. Development of a patient-specific anatomical foot model from structured light scan data.

    PubMed

    Lochner, Samuel J; Huissoon, Jan P; Bedi, Sanjeev S

    2014-01-01

    The use of anatomically accurate finite element (FE) models of the human foot in research studies has increased rapidly in recent years. Uses for FE foot models include advancing knowledge of orthotic design, shoe design, ankle-foot orthoses, pathomechanics, locomotion, plantar pressure, tissue mechanics, plantar fasciitis, joint stress and surgical interventions. Similar applications but for clinical use on a per-patient basis would also be on the rise if it were not for the high costs associated with developing patient-specific anatomical foot models. High costs arise primarily from the expense and challenges of acquiring anatomical data via magnetic resonance imaging (MRI) or computed tomography (CT) and reconstructing the three-dimensional models. The proposed solution morphs detailed anatomy from skin surface geometry and anatomical landmarks of a generic foot model (developed from CT or MRI) to surface geometry and anatomical landmarks acquired from an inexpensive structured light scan of a foot. The method yields a patient-specific anatomical foot model at a fraction of the cost of standard methods. Average error for bone surfaces was 2.53 mm for the six experiments completed. Highest accuracy occurred in the mid-foot and lowest in the forefoot due to the small, irregular bones of the toes. The method must be validated in the intended application to determine if the resulting errors are acceptable.

  13. Scaled Anatomical Model Creation of Biomedical Tomographic Imaging Data and Associated Labels for Subsequent Sub-surface Laser Engraving (SSLE) of Glass Crystals.

    PubMed

    Betts, Aislinn M; McGoldrick, Matthew T; Dethlefs, Christopher R; Piotrowicz, Justin; Van Avermaete, Tony; Maki, Jeff; Gerstler, Steve; Leevy, W M

    2017-04-25

    Biomedical imaging modalities like computed tomography (CT) and magnetic resonance (MR) provide excellent platforms for collecting three-dimensional data sets of patient or specimen anatomy in clinical or preclinical settings. However, the use of a virtual, on-screen display limits the ability of these tomographic images to fully convey the anatomical information embedded within. One solution is to interface a biomedical imaging data set with 3D printing technology to generate a physical replica. Here we detail a complementary method to visualize tomographic imaging data with a hand-held model: Sub Surface Laser Engraving (SSLE) of crystal glass. SSLE offers several unique benefits including: the facile ability to include anatomical labels, as well as a scale bar; streamlined multipart assembly of complex structures in one medium; high resolution in the X, Y, and Z planes; and semi-transparent shells for visualization of internal anatomical substructures. Here we demonstrate the process of SSLE with CT data sets derived from pre-clinical and clinical sources. This protocol will serve as a powerful and inexpensive new tool with which to visualize complex anatomical structures for scientists and students in a number of educational and research settings.

  14. Vascular corrosion casting technique steps.

    PubMed

    Verli, Flaviana Dornela; Rossi-Schneider, Tissiana Raquel; Schneider, Felipe Luís; Yurgel, Liliane Soares; de Souza, Maria Antonieta Lopes

    2007-01-01

    The vascular corrosion casting technique produces a replica of vascular beds of normal or pathological tissues. Once associated with scanning electron microscopy (SEM), this technique provides details of the three-dimensional anatomic arrangement of the vascular replica, which is the main advantage of this method. The present study is intended to describe the steps of the vascular corrosion casting technique and the different ways to perform them. them.

  15. Coupled Physical and Digital Cadaver Dissection Followed by a Visual Test Protocol Provides Insights into the Nature of Anatomical Knowledge and Its Evaluation

    ERIC Educational Resources Information Center

    Hisley, Kenneth C.; Anderson, Larry D.; Smith, Stacy E.; Kavic, Stephen M.; Tracy, J. Kathleen

    2008-01-01

    This research effort compared and contrasted two conceptually different methods for the exploration of human anatomy in the first-year dissection laboratory by accomplished students: "physical" dissection using an embalmed cadaver and "digital" dissection using three-dimensional volume modeling of whole-body CT and MRI image sets acquired using…

  16. Use of 3D Printed Models in Medical Education: A Randomized Control Trial Comparing 3D Prints versus Cadaveric Materials for Learning External Cardiac Anatomy

    ERIC Educational Resources Information Center

    Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J.; Adams, Justin W.; McMenamin, Paul G.

    2016-01-01

    Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized…

  17. Image-guided brachytherapy for cervical cancer: analysis of D2 cc hot spot in three-dimensional and anatomic factors affecting D2 cc hot spot in organs at risk.

    PubMed

    Kim, Robert Y; Dragovic, Alek F; Whitley, Alexander C; Shen, Sui

    2014-01-01

    To analyze the D2 cc hot spot in three-dimensional CT and anatomic factors affecting the D2 cc hot spot in organs at risk (OARs). Thirty-one patients underwent pelvic CT scan after insertion of the applicator. High-dose-rate treatment planning was performed with standard loading patterns. The D2 cc structures in OARs were generated in three dimensional if the total equivalent dose in 2 Gy exceeded our defined dose limits (hot spot). The location of D2 cc hot spot was defined as the center of the largest D2 cc fragment. The relationship between the hot spot and the applicator position was reported in Digital Imaging and Communication in Medicine coordinates. The location of sigmoid, small bowel, and bladder D2 cc hot spots was around the endocervix: The mean location of sigmoid hot spot for lateral view was 1.6 cm posteriorly and 2.3 cm superiorly (Y, 1.6 and Z, 2.3), small bowel was 1.6 cm anteriorly and 2.7 cm superiorly (Y, -1.6 and Z, 2.7). The mean location of bladder hot spot was 1.6 cm anteriorly and 1.6 cm superiorly (Y, -1.6 and Z, 1.6). These hot spots were near the plane of Point A (X, 2.0 or -2.0; Y, 0; and Z, 2.0). The mean location of rectal hot spot was 1.6 cm posteriorly and 1.9 cm inferiorly (Y, 1.6 and Z, -1.9). D2 cc hot spot was affected by uterine wall thickness, uterine tandem position, fibroids, bladder fullness, bowel gas, and vaginal packing. Because of the location of the D2 cc hot spots, larger tumors present a challenge for adequate tumor coverage with a conventional brachytherapy applicator without an interstitial implant. Additionally, anatomic factors were identified which affect the D2 cc hot spot in OARs. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  18. Operative simulation of anterior clinoidectomy using a rapid prototyping model molded by a three-dimensional printer.

    PubMed

    Okonogi, Shinichi; Kondo, Kosuke; Harada, Naoyuki; Masuda, Hiroyuki; Nemoto, Masaaki; Sugo, Nobuo

    2017-09-01

    As the anatomical three-dimensional (3D) positional relationship around the anterior clinoid process (ACP) is complex, experience of many surgeries is necessary to understand anterior clinoidectomy (AC). We prepared a 3D synthetic image from computed tomographic angiography (CTA) and magnetic resonance imaging (MRI) data and a rapid prototyping (RP) model from the imaging data using a 3D printer. The objective of this study was to evaluate anatomical reproduction of the 3D synthetic image and intraosseous region after AC in the RP model. In addition, the usefulness of the RP model for operative simulation was investigated. The subjects were 51 patients who were examined by CTA and MRI before surgery. The size of the ACP, thickness and length of the optic nerve and artery, and intraosseous length after AC were measured in the 3D synthetic image and RP model, and reproducibility in the RP model was evaluated. In addition, 10 neurosurgeons performed AC in the completed RP models to investigate their usefulness for operative simulation. The RP model reproduced the region in the vicinity of the ACP in the 3D synthetic image, including the intraosseous region, at a high accuracy. In addition, drilling of the RP model was a useful operative simulation method of AC. The RP model of the vicinity of ACP, prepared using a 3D printer, showed favorable anatomical reproducibility, including reproduction of the intraosseous region. In addition, it was concluded that this RP model is useful as a surgical education tool for drilling.

  19. Deformable medical image registration of pleural cavity for photodynamic therapy by using finite-element based method

    NASA Astrophysics Data System (ADS)

    Penjweini, Rozhin; Kim, Michele M.; Dimofte, Andrea; Finlay, Jarod C.; Zhu, Timothy C.

    2016-03-01

    When the pleural cavity is opened during the surgery portion of pleural photodynamic therapy (PDT) of malignant mesothelioma, the pleural volume will deform. This impacts the delivered dose when using highly conformal treatment techniques. To track the anatomical changes and contour the lung and chest cavity, an infrared camera-based navigation system (NDI) is used during PDT. In the same patient, a series of computed tomography (CT) scans of the lungs are also acquired before the surgery. The reconstructed three-dimensional contours from both NDI and CTs are imported into COMSOL Multiphysics software, where a finite element-based (FEM) deformable image registration is obtained. The CT contour is registered to the corresponding NDI contour by overlapping the center of masses and aligning their orientations. The NDI contour is considered as the reference contour, and the CT contour is used as the target one, which will be deformed. Deformed Geometry model is applied in COMSOL to obtain a deformed target contour. The distortion of the volume at X, Y and Z is mapped to illustrate the transformation of the target contour. The initial assessment shows that FEM-based image deformable registration can fuse images acquired by different modalities. It provides insights into the deformation of anatomical structures along X, Y and Z-axes. The deformed contour has good matches to the reference contour after the dynamic matching process. The resulting three-dimensional deformation map can be used to obtain the locations of other critical anatomic structures, e.g., heart, during surgery.

  20. Hereditary Angioedema Attacks: Local Swelling at Multiple Sites.

    PubMed

    Hofman, Zonne L M; Relan, Anurag; Hack, C Erik

    2016-02-01

    Hereditary angioedema (HAE) patients experience recurrent local swelling in various parts of the body including painful swelling of the intestine and life-threatening laryngeal oedema. Most HAE literature is about attacks located in one anatomical site, though it is mentioned that HAE attacks may also involve multiple anatomical sites simultaneously. A detailed description of such multi-location attacks is currently lacking. This study investigated the occurrence, severity and clinical course of HAE attacks with multiple anatomical locations. HAE patients included in a clinical database of recombinant human C1-inhibitor (rhC1INH) studies were evaluated. Visual analog scale scores filled out by the patients for various symptoms at various locations and investigator symptoms scores during the attack were analysed. Data of 219 eligible attacks in 119 patients was analysed. Thirty-three patients (28%) had symptoms at multiple locations in anatomically unrelated regions at the same time during their first attack. Up to five simultaneously affected locations were reported. The observation that severe HAE attacks often affect multiple sites in the body suggests that HAE symptoms result from a systemic rather than from a local process as is currently believed.

  1. Three-dimensional printing in surgery: a review of current surgical applications.

    PubMed

    Malik, Hammad H; Darwood, Alastair R J; Shaunak, Shalin; Kulatilake, Priyantha; El-Hilly, Abdulrahman A; Mulki, Omar; Baskaradas, Aroon

    2015-12-01

    Three-dimensional printing (3DP) is gaining increasing recognition as a technique that will transform the landscape of surgical practice. It allows for the rapid conversion of anatomic images into physical objects, which are being used across a variety of surgical specialties. It has been unclear which groups are leading the way in coming up with novel ways of using the technology and what specifically the technology is being used for. The aim of this article was to review the current applications of 3DP in modern surgical practice. An electronic search was carried out in MEDLINE, EMBASE, and PsycINFO for terms related to 3DP. These were then screened for relevance and practical applications of the technology in surgery. Four hundred eighty-eight articles were initially found, and these were eventually narrowed down to 93 full-text articles. It was determined that there were three main areas in which the technology is being used to print: (1) anatomic models, (2) surgical instruments, and (3) implants and prostheses. Different specialties are at different stages in the use of the technology. The costs involved with implementing the technology and time taken for printing are important factors to consider before widespread use. For the foreseeable future, this is an exciting and interesting technology with the capacity to radically change health care and revolutionize modern surgery. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Facet orientation in the thoracolumbar spine: three-dimensional anatomic and biomechanical analysis.

    PubMed

    Masharawi, Youssef; Rothschild, Bruce; Dar, Gali; Peleg, Smadar; Robinson, Dror; Been, Ella; Hershkovitz, Israel

    2004-08-15

    Thoracolumbar facet orientations were measured and analyzed. To establish a comprehensive database for facet orientation in the thoracolumbar vertebrae and to determine the normal human condition. Most studies on facet orientation have based their conclusions on two-dimensional measurements, in small samples or isolated vertebrae. The amount of normal asymmetry in facet orientation is poorly addressed. Transverse and longitudinal facet angles were measured directly from 240 human vertebral columns (males/females, blacks/whites). The specimens' osteologic material is part of the Hamann-Todd Osteological Collection housed at the Cleveland Museum of Natural History (Cleveland, OH). A total of 4,080 vertebrae (T1-L5) from the vertebral columns of individuals 20 to 80 years of age were measured, using a Microscribe three-dimensional apparatus (Immersion Co., San Jose, CA). Data were recorded directly on computer software. Statistical analysis included paired t tests and analysis of variance. RESULTS.: Facet orientation is independent of gender, age, and ethnic group. Asymmetry in facet orientation is found in the thorax. All thoracolumbar facets are positioned in an oblique plane. In the transverse plane, all facets from T1 to T11 are positioned with an anterior inclination of approximately 25 degrees to 30 degrees from the frontal plane. The facets of T12-L2 are oriented closer to the midsagittal plane of the vertebral body (mean range, 25.89 degrees-33.87 degrees), while the facets of L3-L5 are oriented away from that plane (mean range, 40.40 degrees-56.30 degrees). Facet transverse orientation at the thoracolumbar junction is highly variable (approximately 80% with approximately 101 degrees and approximately 20% with 35 degrees). All facets are oriented more vertically from T1 (approximately 150 degrees) to L5 (approximately 170 degrees). The facet sagittal orientations of the lumbar zygoapophyseal joints are not equivalent. CONCLUSIONS.: Asymmetry in facet orientation is a normal characteristic in the thorax.

  3. Effect of same-sided and cross-body load carriage on 3D back shape in young adults.

    PubMed

    O'Shea, C; Bettany-Saltikov, J A; Warren, J G

    2006-01-01

    Regular carriage of heavy loads such as backpacks, satchels and mailbags results in a variety of acute medical problems and increased potential for back injury. There is a paucity of information about the specific changes in back posture that occur in response to asymmetrical loading. The purpose of this study was to examine the changes in back shape that occurred in response to asymmetrical load carriage, either on one shoulder (same-side) or across the body (cross-body), in healthy young adults. A convenience sample of 21 physiotherapy students randomly performed three trials (unloaded, same-side loaded, cross-body loaded) in standing with a 15% body load. The Microscribe 3DX digitiser (Immersion Group Ltd) recorded the three dimensional coordinates of 15 Key anatomical landmarks on the back in the three conditions. A one-way ANOVA with repeated measures and post-hoc tests was implemented to highlight statistical differences in the data collected (p<0.05). Significant differences were found in the x, y and z coordinates of the anatomical landmarks in the upper back between unloaded and loaded conditions. Results demonstrated significantly less impact on spinal posture from cross-body loading as compared to same-sided loading. This study confirms that there are significant three-dimensional changes in back shape in response to asymmetrical loading. Further work is needed to evaluate the optimal carriage type and maximal body load that results in the least spinal impact and injury potential in young adults.

  4. Conserved and Divergent Features of Human and Mouse Kidney Organogenesis.

    PubMed

    Lindström, Nils O; McMahon, Jill A; Guo, Jinjin; Tran, Tracy; Guo, Qiuyu; Rutledge, Elisabeth; Parvez, Riana K; Saribekyan, Gohar; Schuler, Robert E; Liao, Christopher; Kim, Albert D; Abdelhalim, Ahmed; Ruffins, Seth W; Thornton, Matthew E; Basking, Laurence; Grubbs, Brendan; Kesselman, Carl; McMahon, Andrew P

    2018-03-01

    Human kidney function is underpinned by approximately 1,000,000 nephrons, although the number varies substantially, and low nephron number is linked to disease. Human kidney development initiates around 4 weeks of gestation and ends around 34-37 weeks of gestation. Over this period, a reiterative inductive process establishes the nephron complement. Studies have provided insightful anatomic descriptions of human kidney development, but the limited histologic views are not readily accessible to a broad audience. In this first paper in a series providing comprehensive insight into human kidney formation, we examined human kidney development in 135 anonymously donated human kidney specimens. We documented kidney development at a macroscopic and cellular level through histologic analysis, RNA in situ hybridization, immunofluorescence studies, and transcriptional profiling, contrasting human development (4-23 weeks) with mouse development at selected stages (embryonic day 15.5 and postnatal day 2). The high-resolution histologic interactive atlas of human kidney organogenesis generated can be viewed at the GUDMAP database (www.gudmap.org) together with three-dimensional reconstructions of key components of the data herein. At the anatomic level, human and mouse kidney development differ in timing, scale, and global features such as lobe formation and progenitor niche organization. The data also highlight differences in molecular and cellular features, including the expression and cellular distribution of anchor gene markers used to identify key cell types in mouse kidney studies. These data will facilitate and inform in vitro efforts to generate human kidney structures and comparative functional analyses across mammalian species. Copyright © 2018 by the American Society of Nephrology.

  5. Distribution of Prostate Sentinel Nodes: A SPECT-Derived Anatomic Atlas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganswindt, Ute, E-mail: ute.ganswindt@med.uni-muenchen.d; Schilling, David; Mueller, Arndt-Christian

    2011-04-01

    Purpose: The randomized Radiation Therapy Oncology Group 94-13 trial revealed that coverage of the pelvic lymph nodes in high-risk prostate cancer confers an advantage (progression-free survival and biochemical failure) in patients with {>=}15% risk of lymph node involvement. To facilitate an improved definition of the adjuvant target volume, precise knowledge regarding the location of the relevant lymph nodes is necessary. Therefore, we generated a three-dimensional sentinel lymph node atlas. Methods and Materials: In 61 patients with high-risk prostate cancer, a three-dimensional visualization of sentinel lymph nodes was performed using a single photon emission computed tomography system after transrectal intraprostatic injectionmore » of 150 to 362 (median 295) mega becquerel (MBq) {sup 99m}Technetium-nanocolloid (1.5-3h after injection) followed by an anatomic functional image fusion. Results: In all, 324 sentinel nodes in 59 of 61 patients (96.7%) were detected, with 0 to 13 nodes per patient (median 5, mean 5.3). The anatomic distribution of the sentinel nodes was as follows: external iliac 34.3%, internal iliac 17.9%, common iliac 12.7%, sacral 8.6%, perirectal 6.2%, left paraaortic 5.3%, right paraaortic 5.3%, seminal vesicle lymphatic plexus 3.1%, deep inguinal 1.5%, superior rectal 1.2%, internal pudendal 1.2%, perivesical 0.9%, inferior rectal 0.9%, retroaortic 0.3%, superficial inguinal 0.3%, and periprostatic 0.3%. Conclusions: The distribution of sentinel nodes as detected by single photon emission computed tomography imaging correlates well with the distribution determined by intraoperative gamma probe detection. A lower detection rate of sentinels in close proximity to the bladder and seminal vesicles is probably caused by the radionuclide accumulation in the bladder. In regard to intensity-modulated radiotherapy techniques, the presented anatomic atlas may allow optimized target volume definitions.« less

  6. Three-dimensional anisotropy contrast periodically rotated overlapping parallel lines with enhanced reconstruction (3DAC PROPELLER) on a 3.0T system: a new modality for routine clinical neuroimaging.

    PubMed

    Nakada, Tsutomu; Matsuzawa, Hitoshi; Fujii, Yukihiko; Takahashi, Hitoshi; Nishizawa, Masatoyo; Kwee, Ingrid L

    2006-07-01

    Clinical magnetic resonance imaging (MRI) has recently entered the "high-field" era, and systems equipped with 3.0-4.0T superconductive magnets are becoming the gold standard for diagnostic imaging. While higher signal-to-noise ratio (S/N) is a definite advantage of higher field systems, higher susceptibility effect remains to be a significant trade-off. To take advantage of a higher field system in performing routine clinical images of higher anatomical resolution, we implemented a vector contrast image technique to 3.0T imaging, three-dimensional anisotropy contrast (3DAC), with a PROPELLER (Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction) sequence, a method capable of effectively eliminating undesired artifacts on rapid diffusion imaging sequences. One hundred subjects (20 normal volunteers and 80 volunteers with various central nervous system diseases) participated in the study. Anisotropic diffusion-weighted PROPELLER images were obtained on a General Electric (Waukesha, WI, USA) Signa 3.0T for each axis, with b-value of 1100 sec/mm(2). Subsequently, 3DAC images were constructed using in-house software written on MATLAB (MathWorks, Natick, MA, USA). The vector contrast allows for providing exquisite anatomical detail illustrated by clear identification of all major tracts through the entire brain. 3DAC images provide better anatomical resolution for brainstem glioma than higher-resolution T2 reversed images. Degenerative processes of disease-specific tracts were clearly identified as illustrated in cases of multiple system atrophy and Joseph-Machado disease. Anatomical images of significantly higher resolution than the best current standard, T2 reversed images, were successfully obtained. As a technique readily applicable under routine clinical setting, 3DAC PROPELLER on a 3.0T system will be a powerful addition to diagnostic imaging.

  7. A tool for multi-scale modelling of the renal nephron

    PubMed Central

    Nickerson, David P.; Terkildsen, Jonna R.; Hamilton, Kirk L.; Hunter, Peter J.

    2011-01-01

    We present the development of a tool, which provides users with the ability to visualize and interact with a comprehensive description of a multi-scale model of the renal nephron. A one-dimensional anatomical model of the nephron has been created and is used for visualization and modelling of tubule transport in various nephron anatomical segments. Mathematical models of nephron segments are embedded in the one-dimensional model. At the cellular level, these segment models use models encoded in CellML to describe cellular and subcellular transport kinetics. A web-based presentation environment has been developed that allows the user to visualize and navigate through the multi-scale nephron model, including simulation results, at the different spatial scales encompassed by the model description. The Zinc extension to Firefox is used to provide an interactive three-dimensional view of the tubule model and the native Firefox rendering of scalable vector graphics is used to present schematic diagrams for cellular and subcellular scale models. The model viewer is embedded in a web page that dynamically presents content based on user input. For example, when viewing the whole nephron model, the user might be presented with information on the various embedded segment models as they select them in the three-dimensional model view. Alternatively, the user chooses to focus the model viewer on a cellular model located in a particular nephron segment in order to view the various membrane transport proteins. Selecting a specific protein may then present the user with a description of the mathematical model governing the behaviour of that protein—including the mathematical model itself and various simulation experiments used to validate the model against the literature. PMID:22670210

  8. Commercial Aircraft Emission Scenario for 2020: Database Development and Analysis

    NASA Technical Reports Server (NTRS)

    Sutkus, Donald J., Jr.; Baughcum, Steven L.; DuBois, Douglas P.; Wey, Chowen C. (Technical Monitor)

    2003-01-01

    This report describes the development of a three-dimensional database of aircraft fuel use and emissions (NO(x), CO, and hydrocarbons) for the commercial aircraft fleet projected to 2020. Global totals of emissions and fuel burn for 2020 are compared to global totals from previous aircraft emission scenario calculations.

  9. The Influence of Knee Flexion Angle for Graft Fixation on Rotational Knee Stability During Anterior Cruciate Ligament Reconstruction: A Biomechanical Study.

    PubMed

    Debandi, Aníbal; Maeyama, Akira; Hoshino, Yuichi; Asai, Shigehiro; Goto, Bunsei; Smolinski, Patrick; Fu, Freddie H

    2016-11-01

    To evaluate the effect of knee flexion angle for hamstring graft fixation, full extension (FE), or 30°, on acceleration of the knee motion during pivot-shift testing after either anatomic or nonanatomic anterior cruciate ligament (ACL) reconstruction using triaxial accelerometry. Two types of ACL reconstructions (anatomic and nonanatomic) using 2 different angles of knee flexion during graft fixation (FE and 30°) were performed on 12 fresh-frozen human knees making 4 groups: anatomic-FE, anatomic-30°, nonanatomic-FE, and nonanatomic-30°. Manual pivot-shift testing was performed at ACL-intact, ACL-deficient, and ACL-reconstructed conditions. Three-dimensional acceleration of knee motion was recorded using a triaxial accelerometer. The anatomic-30° group showed the smallest overall magnitude of acceleration among the ACL-reconstructed groups (P = .0039). There were no significant differences among the anatomic-FE group, the nonanatomic-FE group, and the nonantomic-30° group (anatomic-FE vs nonanatomic-FE, P = .1093; anatomic-FE vs nonanatomic-30°, P = .8728; and nonanatomic-FE vs nonanatomic-30°, P = .1093). After ACL transection, acceleration was reduced by ACL reconstruction with the exception of the nonanatomic-FE group that did not show a significant difference when compared with the ACL-deficient (P = .4537). The anatomic ACL reconstruction with the graft fixed at 30° of knee flexion better restored rotational knee stability compared with FE. An ACL graft fixed with the knee at FE in anatomic position did not show a significant difference compared with the nonanatomic ACL reconstructions. Knee flexion angle at the time of graft fixation for ACL reconstruction can be considered to maximize the rotational knee stability. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  10. Experimental validation of finite element modelling of a modular metal-on-polyethylene total hip replacement.

    PubMed

    Hua, Xijin; Wang, Ling; Al-Hajjar, Mazen; Jin, Zhongmin; Wilcox, Ruth K; Fisher, John

    2014-07-01

    Finite element models are becoming increasingly useful tools to conduct parametric analysis, design optimisation and pre-clinical testing for hip joint replacements. However, the verification of the finite element model is critically important. The purposes of this study were to develop a three-dimensional anatomic finite element model for a modular metal-on-polyethylene total hip replacement for predicting its contact mechanics and to conduct experimental validation for a simple finite element model which was simplified from the anatomic finite element model. An anatomic modular metal-on-polyethylene total hip replacement model (anatomic model) was first developed and then simplified with reasonable accuracy to a simple modular total hip replacement model (simplified model) for validation. The contact areas on the articulating surface of three polyethylene liners of modular metal-on-polyethylene total hip replacement bearings with different clearances were measured experimentally in the Leeds ProSim hip joint simulator under a series of loading conditions and different cup inclination angles. The contact areas predicted from the simplified model were then compared with that measured experimentally under the same conditions. The results showed that the simplification made for the anatomic model did not change the predictions of contact mechanics of the modular metal-on-polyethylene total hip replacement substantially (less than 12% for contact stresses and contact areas). Good agreements of contact areas between the finite element predictions from the simplified model and experimental measurements were obtained, with maximum difference of 14% across all conditions considered. This indicated that the simplification and assumptions made in the anatomic model were reasonable and the finite element predictions from the simplified model were valid. © IMechE 2014.

  11. Reliability of intracerebral hemorrhage classification systems: A systematic review.

    PubMed

    Rannikmäe, Kristiina; Woodfield, Rebecca; Anderson, Craig S; Charidimou, Andreas; Chiewvit, Pipat; Greenberg, Steven M; Jeng, Jiann-Shing; Meretoja, Atte; Palm, Frederic; Putaala, Jukka; Rinkel, Gabriel Je; Rosand, Jonathan; Rost, Natalia S; Strbian, Daniel; Tatlisumak, Turgut; Tsai, Chung-Fen; Wermer, Marieke Jh; Werring, David; Yeh, Shin-Joe; Al-Shahi Salman, Rustam; Sudlow, Cathie Lm

    2016-08-01

    Accurately distinguishing non-traumatic intracerebral hemorrhage (ICH) subtypes is important since they may have different risk factors, causal pathways, management, and prognosis. We systematically assessed the inter- and intra-rater reliability of ICH classification systems. We sought all available reliability assessments of anatomical and mechanistic ICH classification systems from electronic databases and personal contacts until October 2014. We assessed included studies' characteristics, reporting quality and potential for bias; summarized reliability with kappa value forest plots; and performed meta-analyses of the proportion of cases classified into each subtype. We included 8 of 2152 studies identified. Inter- and intra-rater reliabilities were substantial to perfect for anatomical and mechanistic systems (inter-rater kappa values: anatomical 0.78-0.97 [six studies, 518 cases], mechanistic 0.89-0.93 [three studies, 510 cases]; intra-rater kappas: anatomical 0.80-1 [three studies, 137 cases], mechanistic 0.92-0.93 [two studies, 368 cases]). Reporting quality varied but no study fulfilled all criteria and none was free from potential bias. All reliability studies were performed with experienced raters in specialist centers. Proportions of ICH subtypes were largely consistent with previous reports suggesting that included studies are appropriately representative. Reliability of existing classification systems appears excellent but is unknown outside specialist centers with experienced raters. Future reliability comparisons should be facilitated by studies following recently published reporting guidelines. © 2016 World Stroke Organization.

  12. [Usefulness of computed tomography with three-dimensional reconstructions in visualization of cervical spine malformation of a child with Sprengel's deformity].

    PubMed

    Wawrzynek, Wojciech; Siemianowicz, Anna; Koczy, Bogdan; Kasprowska, Sabina; Besler, Krzysztof

    2005-01-01

    The Sprengel's deformity is a congenital anomaly of the shoulder girdle with an elevation of the scapula and limitation of movement of the shoulder. Sprengel's deformity is frequently associated with cervical spine malformations such as: spinal synostosis, spina bifida and an abnormal omovertebral fibrous, cartilaginous or osseus connection. The diagnosis of Sprengel's deformity is based on a clinical examination and radiological procedures. In every case of Sprengel's deformity plain radiography and computed tomography should be performed. Three-dimensional (3D) reconstructions allow to visualize precise topography and spatial proportions of examined bone structures. 3D reconstruction also enables an optional rotation of visualized bone structures in order to clarify the anatomical abnormalities and to plan surgical treatment.

  13. Light field otoscope design for 3D in vivo imaging of the middle ear

    PubMed Central

    Bedard, Noah; Shope, Timothy; Hoberman, Alejandro; Haralam, Mary Ann; Shaikh, Nader; Kovačević, Jelena; Balram, Nikhil; Tošić, Ivana

    2016-01-01

    We present a light field digital otoscope designed to measure three-dimensional shape of the tympanic membrane. This paper describes the optical and anatomical considerations we used to develop the prototype, along with the simulation and experimental measurements of vignetting, field curvature, and lateral resolution. Using an experimental evaluation procedure, we have determined depth accuracy and depth precision of our system to be 0.05–0.07 mm and 0.21–0.44 mm, respectively. To demonstrate the application of our light field otoscope, we present the first three-dimensional reconstructions of tympanic membranes in normal and otitis media conditions, acquired from children who participated in a feasibility study at the Children’s Hospital of Pittsburgh of the University of Pittsburgh Medical Center. PMID:28101416

  14. [New simulation technologies in neurosurgery].

    PubMed

    Byvaltsev, V A; Belykh, E G; Konovalov, N A

    2016-01-01

    The article presents a literature review on the current state of simulation technologies in neurosurgery, a brief description of the basic technology and the classification of simulation models, and examples of simulation models and skills simulators used in neurosurgery. Basic models for the development of physical skills, the spectrum of available computer virtual simulators, and their main characteristics are described. It would be instructive to include microneurosurgical training and a cadaver course of neurosurgical approaches in neurosurgery training programs and to extend the use of three-dimensional imaging. Technologies for producing three-dimensional anatomical models and patient-specific computer simulators as well as improvement of tactile feedback systems and display quality of virtual models are promising areas. Continued professional education necessitates further research for assessing the validity and practical use of simulators and physical models.

  15. [Advances on biomechanics and kinematics of sprain of ankle joint].

    PubMed

    Zhao, Yong; Wang, Gang

    2015-04-01

    Ankle sprains are orthopedic clinical common disease, accounting for joint ligament sprain of the first place. If treatment is not timely or appropriate, the joint pain and instability maybe develop, and even bone arthritis maybe develop. The mechanism of injury of ankle joint, anatomical basis has been fully study at present, and the diagnostic problem is very clear. Along with the development of science and technology, biological modeling and three-dimensional finite element, three-dimensional motion capture system,digital technology study, electromyographic signal study were used for the basic research of sprain of ankle. Biomechanical and kinematic study of ankle sprain has received adequate attention, combined with the mechanism research of ankle sprain,and to explore the the biomechanics and kinematics research progress of the sprain of ankle joint.

  16. Quantitative three-dimensional photoacoustic tomography of the finger joints: an in vivo study

    NASA Astrophysics Data System (ADS)

    Sun, Yao; Sobel, Eric; Jiang, Huabei

    2009-11-01

    We present for the first time in vivo full three-dimensional (3-D) photoacoustic tomography (PAT) of the distal interphalangeal joint in a human subject. Both absorbed energy density and absorption coefficient images of the joint are quantitatively obtained using our finite-element-based photoacoustic image reconstruction algorithm coupled with the photon diffusion equation. The results show that major anatomical features in the joint along with the side arteries can be imaged with a 1-MHz transducer in a spherical scanning geometry. In addition, the cartilages associated with the joint can be quantitatively differentiated from the phalanx. This in vivo study suggests that the 3-D PAT method described has the potential to be used for early diagnosis of joint diseases such as osteoarthritis and rheumatoid arthritis.

  17. Postimplant left ventricular assist device fit analysis using three-dimensional reconstruction.

    PubMed

    Truong, Thang V; Stanfield, J Ryan; Chaffin, John S; Elkins, C Craig; Kanaly, Paul J; Horstmanshof, Douglas A; Long, James W; Snyder, Trevor A

    2013-01-01

    Left ventricular assist devices (LVADs) are blood pumps that augment the function of the failing heart to improve perfusion, resulting in improved survival. For LVADs to effectively unload the left ventricle, the inflow cannula (IC) should be unobstructed and ideally aligned with the heart's mitral valve (MV). We examined IC orientation deviation from a hypothesized conventional angle (45° right-posterior) and the approximate angle for direct IC-MV alignment in many patients. Three-dimensional anatomic models were created from computed tomography scans for 24 LVAD-implanted patients, and angles were measured between the IC and the apical z-axis in both the coronal and the sagittal planes. Common surgical IC angulation was found to be 22 ± 15° rightward and 21 ± 12° posterior from the apical z-axis; 38% (n = 9) of patients fell in this range. Direct IC-MV angulation was found to be 34 ± 8° rightward and 15 ± 7° posterior; only 8% (n = 2) of patients fell in this range. Rightward deviation toward ventricular septal wall and anterior deviation toward LV anterior freewall are associated with mortalities more so than leftward and posterior deviation. In conclusion, anatomic reconstruction may be a useful preoperative tool to obtain general population and patient-specific alignment for optimal LVAD implantation.

  18. Optimising magnetic resonance image quality of the ear in healthy dogs.

    PubMed

    Wolf, Davina; Lüpke, Matthias; Wefstaedt, Patrick; Klopmann, Thilo; Nolte, Ingo; Seifert, Hermann

    2011-03-01

    The aim of this study was to develop an examination protocol for magnetic resonance imaging, in order to display diagnostically important information of the canine middle and inner ear. To ensure that this protocol could also be used as a basis for determining pathological changes, the anatomical structures of the ear were presented in detail. To minimise stress through anaesthesia in live animals, preliminary examinations were carried out on four dog cadavers. During these initial examinations, three-dimensional (3D) sequences proved to be superior to two-dimensional ones. Therefore, only 3D sequences were applied for the main examinations performed on six clinically healthy Beagles. The anonymised MR images were rated by three experienced reviewers using a five-point scale. The most valuable sequence was a T2-weighted CISS sequence (TR = 16.7 ms, TE = 8.08 ms). This sequence proved to be most suitable for illustrating the inner ear structures and enabled good tissue contrasts. The sequence ranked second best was also a T2-weighted DESS sequence (TR = 19 ms, TE = 6 ms), allowing the imaging of the tympanic cavity and enabling 3D reconstruction due to its isotropic voxels. Due to low contrast and strong noise, the other sequences (TSE, FISP, MP RAGE) were not suitable for anatomical illustration of the middle and inner ear.

  19. Introducing a Virtual Reality Experience in Anatomic Pathology Education.

    PubMed

    Madrigal, Emilio; Prajapati, Shyam; Hernandez-Prera, Juan C

    2016-10-01

    A proper examination of surgical specimens is fundamental in anatomic pathology (AP) education. However, the resources available to residents may not always be suitable for efficient skill acquisition. We propose a method to enhance AP education by introducing high-definition videos featuring methods for appropriate specimen handling, viewable on two-dimensional (2D) and stereoscopic three-dimensional (3D) platforms. A stereo camera system recorded the gross processing of commonly encountered specimens. Three edited videos, with instructional audio voiceovers, were experienced by nine junior residents in a crossover study to assess the effects of the exposure (2D vs 3D movie views) on self-reported physiologic symptoms. A questionnaire was used to analyze viewer acceptance. All surveyed residents found the videos beneficial in preparation to examine a new specimen type. Viewer data suggest an improvement in specimen handling confidence and knowledge and enthusiasm toward 3D technology. None of the participants encountered significant motion sickness. Our novel method provides the foundation to create a robust teaching library. AP is inherently a visual discipline, and by building on the strengths of traditional teaching methods, our dynamic approach allows viewers to appreciate the procedural actions involved in specimen processing. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Use of three-dimensional computer graphic animation to illustrate cleft lip and palate surgery.

    PubMed

    Cutting, C; Oliker, A; Haring, J; Dayan, J; Smith, D

    2002-01-01

    Three-dimensional (3D) computer animation is not commonly used to illustrate surgical techniques. This article describes the surgery-specific processes that were required to produce animations to teach cleft lip and palate surgery. Three-dimensional models were created using CT scans of two Chinese children with unrepaired clefts (one unilateral and one bilateral). We programmed several custom software tools, including an incision tool, a forceps tool, and a fat tool. Three-dimensional animation was found to be particularly useful for illustrating surgical concepts. Positioning the virtual "camera" made it possible to view the anatomy from angles that are impossible to obtain with a real camera. Transparency allows the underlying anatomy to be seen during surgical repair while maintaining a view of the overlaying tissue relationships. Finally, the representation of motion allows modeling of anatomical mechanics that cannot be done with static illustrations. The animations presented in this article can be viewed on-line at http://www.smiletrain.org/programs/virtual_surgery2.htm. Sophisticated surgical procedures are clarified with the use of 3D animation software and customized software tools. The next step in the development of this technology is the creation of interactive simulators that recreate the experience of surgery in a safe, digital environment. Copyright 2003 Wiley-Liss, Inc.

  1. Analysis of traditional versus three-dimensional augmented curriculum on anatomical learning outcome measures.

    PubMed

    Peterson, Diana Coomes; Mlynarczyk, Gregory S A

    2016-11-01

    This study examined whether student learning outcome measures are influenced by the addition of three-dimensional and digital teaching tools to a traditional dissection and lecture learning format curricula. The study was performed in a semester long graduate level course that incorporated both gross anatomy and neuroanatomy curricula. Methods compared student examination performance on material taught using lecture and cadaveric dissection teaching tools alone or lecture and cadaveric dissection augmented with computerized three-dimensional teaching tools. Additional analyses were performed to examine potential correlations between question difficulty and format, previous student performance (i.e., undergraduate grade point average), and a student perception survey. The results indicated that students performed better on material in which three-dimensional (3D) technologies are utilized in conjunction with lecture and dissection methodologies. The improvement in performance was observed across the student population primarily on laboratory examinations. Although, student performance was increased, students did not perceive that the use of the additional 3D technology significantly influenced their learning. The results indicate that the addition of 3D learning tools can influence long-term retention of gross anatomy material and should be considered as a beneficial supplement for anatomy courses. Anat Sci Educ 9: 529-536. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  2. An interactive, web-based tool for learning anatomic landmarks.

    PubMed

    Hallgren, Richard C; Parkhurst, Perrin E; Monson, Carol L; Crewe, Nancy M

    2002-03-01

    To evaluate the effectiveness of a Web-based interactive teaching tool that uses self-assessment exercises with real-time feedback to aid students' learning in a gross anatomy class. A total of 107 of 124 first-year medical students at one school were enrolled in the study. Students were divided into three groups: Group 1 (n = 63) received introductory material and activated their Web-based accounts; Group 2 (n = 44) received introductory material but did not activate their Web-based accounts; and Group 3 (n = 17) were not enrolled in the study and received no introductory material. Students in Group 1 had access to a graphic showing the locations of anatomic landmarks, a drill exercise, and a self-evaluation exercise. Students' ability to identify the anatomic landmarks on a 30-question midterm and a 30-question final exam were compared among the groups. The mean scores of students in Group 1 (midterm = 28.5, final = 28.1) were significantly higher than were the mean scores of students in Group 2 (midterm = 26.8, p <.001; final = 26.9, p <.017) and Group 3 (midterm = 24.8, p <.001; final = 26.4, p <.007). The Web-based tool was effective in improving students' scores on anatomic landmark exams. Future studies will determine whether the tool aids students in identifying structures located in three-dimensional space within regions such as the cranium and the abdominal cavity.

  3. The Virtual Pelvic Floor, a tele-immersive educational environment.

    PubMed Central

    Pearl, R. K.; Evenhouse, R.; Rasmussen, M.; Dech, F.; Silverstein, J. C.; Prokasy, S.; Panko, W. B.

    1999-01-01

    This paper describes the development of the Virtual Pelvic Floor, a new method of teaching the complex anatomy of the pelvic region utilizing virtual reality and advanced networking technology. Virtual reality technology allows improved visualization of three-dimensional structures over conventional media because it supports stereo vision, viewer-centered perspective, large angles of view, and interactivity. Two or more ImmersaDesk systems, drafting table format virtual reality displays, are networked together providing an environment where teacher and students share a high quality three-dimensional anatomical model, and are able to converse, see each other, and to point in three dimensions to indicate areas of interest. This project was realized by the teamwork of surgeons, medical artists and sculptors, computer scientists, and computer visualization experts. It demonstrates the future of virtual reality for surgical education and applications for the Next Generation Internet. Images Figure 1 Figure 2 Figure 3 PMID:10566378

  4. Casting materials and their application in research and teaching.

    PubMed

    Haenssgen, Kati; Makanya, Andrew N; Djonov, Valentin

    2014-04-01

    From a biological point of view, casting refers to filling of anatomical and/or pathological spaces with extraneous material that reproduces a three-dimensional replica of the space. Casting may be accompanied by additional procedures such as corrosion, in which the soft tissue is digested out, leaving a clean cast, or the material may be mixed with radiopaque substances to allow x-ray photography or micro computed topography (µCT) scanning. Alternatively, clearing of the surrounding soft tissue increases transparency and allows visualization of the casted cavities. Combination of casting with tissue fixation allows anatomical dissection and didactic surgical procedures on the tissue. Casting materials fall into three categories namely, aqueous substances (India ink, Prussian blue ink), pliable materials (gelatins, latex, and silicone rubber), or hard materials (methyl methacrylates, polyurethanes, polyesters, and epoxy resins). Casting has proved invaluable in both teaching and research and many phenomenal biological processes have been discovered through casting. The choice of a particular material depends inter alia on the targeted use and the intended subsequent investigative procedures, such as dissection, microscopy, or µCT. The casting material needs to be pliable where anatomical and surgical manipulations are intended, and capillary-passable for ultrastructural investigations.

  5. How spatial abilities and dynamic visualizations interplay when learning functional anatomy with 3D anatomical models.

    PubMed

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material presentation formats, spatial abilities, and anatomical tasks. First, to understand the cognitive challenges a novice learner would be faced with when first exposed to 3D anatomical content, a six-step cognitive task analysis was developed. Following this, an experimental study was conducted to explore how presentation formats (dynamic vs. static visualizations) support learning of functional anatomy, and affect subsequent anatomical tasks derived from the cognitive task analysis. A second aim was to investigate the interplay between spatial abilities (spatial visualization and spatial relation) and presentation formats when the functional anatomy of a 3D scapula and the associated shoulder flexion movement are learned. Findings showed no main effect of the presentation formats on performances, but revealed the predictive influence of spatial visualization and spatial relation abilities on performance. However, an interesting interaction between presentation formats and spatial relation ability for a specific anatomical task was found. This result highlighted the influence of presentation formats when spatial abilities are involved as well as the differentiated influence of spatial abilities on anatomical tasks. © 2015 American Association of Anatomists.

  6. Three-dimensional modeling of tea-shoots using images and models.

    PubMed

    Wang, Jian; Zeng, Xianyin; Liu, Jianbing

    2011-01-01

    In this paper, a method for three-dimensional modeling of tea-shoots with images and calculation models is introduced. The process is as follows: the tea shoots are photographed with a camera, color space conversion is conducted, using an improved algorithm that is based on color and regional growth to divide the tea shoots in the images, and the edges of the tea shoots extracted with the help of edge detection; after that, using the divided tea-shoot images, the three-dimensional coordinates of the tea shoots are worked out and the feature parameters extracted, matching and calculation conducted according to the model database, and finally the three-dimensional modeling of tea-shoots is completed. According to the experimental results, this method can avoid a lot of calculations and has better visual effects and, moreover, performs better in recovering the three-dimensional information of the tea shoots, thereby providing a new method for monitoring the growth of and non-destructive testing of tea shoots.

  7. EDCs DataBank: 3D-Structure database of endocrine disrupting chemicals.

    PubMed

    Montes-Grajales, Diana; Olivero-Verbel, Jesus

    2015-01-02

    Endocrine disrupting chemicals (EDCs) are a group of compounds that affect the endocrine system, frequently found in everyday products and epidemiologically associated with several diseases. The purpose of this work was to develop EDCs DataBank, the only database of EDCs with three-dimensional structures. This database was built on MySQL using the EU list of potential endocrine disruptors and TEDX list. It contains the three-dimensional structures available on PubChem, as well as a wide variety of information from different databases and text mining tools, useful for almost any kind of research regarding EDCs. The web platform was developed employing HTML, CSS and PHP languages, with dynamic contents in a graphic environment, facilitating information analysis. Currently EDCs DataBank has 615 molecules, including pesticides, natural and industrial products, cosmetics, drugs and food additives, among other low molecular weight xenobiotics. Therefore, this database can be used to study the toxicological effects of these molecules, or to develop pharmaceuticals targeting hormone receptors, through docking studies, high-throughput virtual screening and ligand-protein interaction analysis. EDCs DataBank is totally user-friendly and the 3D-structures of the molecules can be downloaded in several formats. This database is freely available at http://edcs.unicartagena.edu.co. Copyright © 2014. Published by Elsevier Ireland Ltd.

  8. Reliability of tunnel angle in ACL reconstruction: two-dimensional versus three-dimensional guide technique.

    PubMed

    Leiter, Jeff R S; de Korompay, Nevin; Macdonald, Lindsey; McRae, Sheila; Froese, Warren; Macdonald, Peter B

    2011-08-01

    To compare the reliability of tibial tunnel position and angle produced with a standard ACL guide (two-dimensional guide) or Howell 65° Guide (three-dimensional guide) in the coronal and sagittal planes. In the sagittal plane, the dependent variables were the angle of the tibial tunnel relative to the tibial plateau and the position of the tibial tunnel with respect to the most posterior aspect of the tibia. In the coronal plane, the dependent variables were the angle of the tunnel with respect to the medial joint line of the tibia and the medial and lateral placement of the tibial tunnel relative to the most medial aspect of the tibia. The position and angle of the tibial tunnel in the coronal and sagittal planes were determined from anteroposterior and lateral radiographs, respectively, taken 2-6 months postoperatively. The two-dimensional and three-dimensional guide groups included 28 and 24 sets of radiographs, respectively. Tibial tunnel position was identified, and tunnel angle measurements were completed. Multiple investigators measured the position and angle of the tunnel 3 times, at least 7 days apart. The angle of the tibial tunnel in the coronal plane using a two-dimensional guide (61.3 ± 4.8°) was more horizontal (P < 0.05) than tunnels drilled with a three-dimensional guide (64.7 ± 6.2°). The position of the tibial tunnel in the sagittal plane was more anterior (P < 0.05) in the two-dimensional (41.6 ± 2.5%) guide group compared to the three-dimensional guide group (43.3 ± 2.9%). The Howell Tibial Guide allows for reliable placement of the tibial tunnel in the coronal plane at an angle of 65°. Tibial tunnels were within the anatomical footprint of the ACL with either technique. Future studies should investigate the effects of tibial tunnel angle on knee function and patient quality of life. Case-control retrospective comparative study, Level III.

  9. Three-dimensional HDlive imaging of an umbilical cord cyst.

    PubMed

    Inubashiri, Eisuke; Nishiyama, Naomi; Tatedo, Sayuri; Minami, Hiina; Saitou, Atushi; Watanabe, Yukio; Sugawara, Masaki

    2018-04-01

    Umbilical cord cysts (UCC) are a rare congenital malformation. Previous reports have suggested that the second- and third-trimester UCC may be associated with other structural anomalies or chromosomal abnormalities. Therefore, high-quality imaging is clinically important for the antenatal diagnosis of UCC and to conduct a precise anatomical survey of intrauterine abnormalities. There have been few reports of antenatal diagnosis of UCC with the conventional two- and three-dimensional ultrasonography. In this report, we demonstrate the novel visual depiction of UCC in utero with three-dimensional HDlive imaging, which helps substantially with prenatal diagnosis. A case with an abnormal placental mass at 16 weeks and 5 days of gestation was observed in detail using HDlive. HDlive revealed very realistic images of the intrauterine abnormality: the oval lesion was smooth with regular contours and a homogenous wall at the site of cord insertion on the placenta. In addition, we confirmed the absent of umbilical cord, placental, and fetal structural anomalies. Here, we report a case wherein HDlive may have provided clinically valuable information for prenatal diagnosis of UCC and offered a potential advantage relative to the conventional US.

  10. Histomorphology of canine urethral sphincter systems, including three-dimensional reconstruction and magnetic resonance imaging.

    PubMed

    Stolzenburg, Jens-Uwe; Neuhaus, Jochen; Liatsikos, Evangelos N; Schwalenberg, Thilo; Ludewig, Eberhard; Ganzer, Roman

    2006-03-01

    To present a detailed anatomic description and comparison of the smooth and striated urethral sphincter in male and female dogs. We performed a thorough histologic evaluation, three-dimensional reconstruction, and magnetic resonance imaging of the lower urinary tract of male and female dogs. The lower urinary tract anatomy was investigated in 16 male and 18 female dogs by serial sectioning, including immunohistochemical staining and three-dimensional reconstruction. Magnetic resonance imaging performed in 5 male and 5 female dogs before histologic investigation helped to demonstrate the anatomy in vivo. A urethral sphincter muscle in both sexes existed without muscular connection to the pelvic floor. It ran circularly and consisted of an inner smooth and outer striated muscular part. In the female dog, the striated muscle encircled the urethra and vagina in the caudal third of the membranous urethra (musculus urethrovaginalis). A urinary diaphragm (diaphragma urogenitale) could not be found histologically or by magnetic resonance imaging. The dog is a suitable animal model for investigations of the urethral sphincter. In the female dog, attention should be given to the special topography of the musculus urethrovaginalis.

  11. Bioengineered humanized livers as better three-dimensional drug testing model system.

    PubMed

    Vishwakarma, Sandeep Kumar; Bardia, Avinash; Lakkireddy, Chandrakala; Nagarapu, Raju; Habeeb, Md Aejaz; Khan, Aleem Ahmed

    2018-01-27

    To develop appropriate humanized three-dimensional ex-vivo model system for drug testing. Bioengineered humanized livers were developed in this study using human hepatic stem cells repopulation within the acellularized liver scaffolds which mimics with the natural organ anatomy and physiology. Six cytochrome P-450 probes were used to enable efficient identification of drug metabolism in bioengineered humanized livers. The drug metabolism study in bioengineered livers was evaluated to identify the absorption, distribution, metabolism, excretion and toxicity responses. The bioengineered humanized livers showed cellular and molecular characteristics of human livers. The bioengineered liver showed three-dimensional natural architecture with intact vasculature and extra-cellular matrix. Human hepatic cells were engrafted similar to the human liver. Drug metabolism studies provided a suitable platform alternative to available ex-vivo and in vivo models for identifying cellular and molecular dynamics of pharmacological drugs. The present study paves a way towards the development of suitable humanized preclinical model systems for pharmacological testing. This approach may reduce the cost and time duration of preclinical drug testing and further overcomes on the anatomical and physiological variations in xenogeneic systems.

  12. Three-Dimensional Modeling May Improve Surgical Education and Clinical Practice.

    PubMed

    Jones, Daniel B; Sung, Robert; Weinberg, Crispin; Korelitz, Theodore; Andrews, Robert

    2016-04-01

    Three-dimensional (3D) printing has been used in the manufacturing industry for rapid prototyping and product testing. The aim of our study was to assess the feasibility of creating anatomical 3D models from a digital image using 3D printers. Furthermore, we sought face validity of models and explored potential opportunities for using 3D printing to enhance surgical education and clinical practice. Computed tomography and magnetic resonance images were reviewed, converted to computer models, and printed by stereolithography to create near exact replicas of human organs. Medical students and surgeons provided feedback via survey at the 2014 Surgical Education Week conference. There were 51 respondents, and 95.8% wanted these models for their patients. Cost was a concern, but 82.6% found value in these models at a price less than $500. All respondents thought the models would be useful for integration into the medical school curriculum. Three-dimensional printing is a potentially disruptive technology to improve both surgical education and clinical practice. As the technology matures and cost decreases, we envision 3D models being increasingly used in surgery. © The Author(s) 2015.

  13. 3D printing from microfocus computed tomography (micro-CT) in human specimens: education and future implications.

    PubMed

    Shelmerdine, Susan C; Simcock, Ian C; Hutchinson, John Ciaran; Aughwane, Rosalind; Melbourne, Andrew; Nikitichev, Daniil I; Ong, Ju-Ling; Borghi, Alessandro; Cole, Garrard; Kingham, Emilia; Calder, Alistair D; Capelli, Claudio; Akhtar, Aadam; Cook, Andrew C; Schievano, Silvia; David, Anna; Ourselin, Sebastian; Sebire, Neil J; Arthurs, Owen J

    2018-06-14

    Microfocus CT (micro-CT) is an imaging method that provides three-dimensional digital data sets with comparable resolution to light microscopy. Although it has traditionally been used for non-destructive testing in engineering, aerospace industries and in preclinical animal studies, new applications are rapidly becoming available in the clinical setting including post-mortem fetal imaging and pathological specimen analysis. Printing three-dimensional models from imaging data sets for educational purposes is well established in the medical literature, but typically using low resolution (0.7 mm voxel size) data acquired from CT or MR examinations. With higher resolution imaging (voxel sizes below 1 micron, <0.001 mm) at micro-CT, smaller structures can be better characterised, and data sets post-processed to create accurate anatomical models for review and handling. In this review, we provide examples of how three-dimensional printing of micro-CT imaged specimens can provide insight into craniofacial surgical applications, developmental cardiac anatomy, placental imaging, archaeological remains and high-resolution bone imaging. We conclude with other potential future usages of this emerging technique.

  14. Scaled Anatomical Model Creation of Biomedical Tomographic Imaging Data and Associated Labels for Subsequent Sub-surface Laser Engraving (SSLE) of Glass Crystals

    PubMed Central

    Dethlefs, Christopher R.; Piotrowicz, Justin; Van Avermaete, Tony; Maki, Jeff; Gerstler, Steve; Leevy, W. M.

    2017-01-01

    Biomedical imaging modalities like computed tomography (CT) and magnetic resonance (MR) provide excellent platforms for collecting three-dimensional data sets of patient or specimen anatomy in clinical or preclinical settings. However, the use of a virtual, on-screen display limits the ability of these tomographic images to fully convey the anatomical information embedded within. One solution is to interface a biomedical imaging data set with 3D printing technology to generate a physical replica. Here we detail a complementary method to visualize tomographic imaging data with a hand-held model: Sub Surface Laser Engraving (SSLE) of crystal glass. SSLE offers several unique benefits including: the facile ability to include anatomical labels, as well as a scale bar; streamlined multipart assembly of complex structures in one medium; high resolution in the X, Y, and Z planes; and semi-transparent shells for visualization of internal anatomical substructures. Here we demonstrate the process of SSLE with CT data sets derived from pre-clinical and clinical sources. This protocol will serve as a powerful and inexpensive new tool with which to visualize complex anatomical structures for scientists and students in a number of educational and research settings. PMID:28518066

  15. A Bayesian approach to the creation of a study-customized neonatal brain atlas

    PubMed Central

    Zhang, Yajing; Chang, Linda; Ceritoglu, Can; Skranes, Jon; Ernst, Thomas; Mori, Susumu; Miller, Michael I.; Oishi, Kenichi

    2014-01-01

    Atlas-based image analysis (ABA), in which an anatomical “parcellation map” is used for parcel-by-parcel image quantification, is widely used to analyze anatomical and functional changes related to brain development, aging, and various diseases. The parcellation maps are often created based on common MRI templates, which allow users to transform the template to target images, or vice versa, to perform parcel-by-parcel statistics, and report the scientific findings based on common anatomical parcels. The use of a study-specific template, which represents the anatomical features of the study population better than common templates, is preferable for accurate anatomical labeling; however, the creation of a parcellation map for a study-specific template is extremely labor intensive, and the definitions of anatomical boundaries are not necessarily compatible with those of the common template. In this study, we employed a Volume-based Template Estimation (VTE) method to create a neonatal brain template customized to a study population, while keeping the anatomical parcellation identical to that of a common MRI atlas. The VTE was used to morph the standardized parcellation map of the JHU-neonate-SS atlas to capture the anatomical features of a study population. The resultant “study-customized” T1-weighted and diffusion tensor imaging (DTI) template, with three-dimensional anatomical parcellation that defined 122 brain regions, was compared with the JHU-neonate-SS atlas, in terms of the registration accuracy. A pronounced increase in the accuracy of cortical parcellation and superior tensor alignment were observed when the customized template was used. With the customized atlas-based analysis, the fractional anisotropy (FA) detected closely approximated the manual measurements. This tool provides a solution for achieving normalization-based measurements with increased accuracy, while reporting scientific findings in a consistent framework. PMID:25026155

  16. Digital Earth system based river basin data integration

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Li, Wanqing; Lin, Chao

    2014-12-01

    Digital Earth is an integrated approach to build scientific infrastructure. The Digital Earth systems provide a three-dimensional visualization and integration platform for river basin data which include the management data, in situ observation data, remote sensing observation data and model output data. This paper studies the Digital Earth system based river basin data integration technology. Firstly, the construction of the Digital Earth based three-dimensional river basin data integration environment is discussed. Then the river basin management data integration technology is presented which is realized by general database access interface, web service and ActiveX control. Thirdly, the in situ data stored in database tables as records integration is realized with three-dimensional model of the corresponding observation apparatus display in the Digital Earth system by a same ID code. In the next two parts, the remote sensing data and the model output data integration technologies are discussed in detail. The application in the Digital Zhang River basin System of China shows that the method can effectively improve the using efficiency and visualization effect of the data.

  17. 3D annotation and manipulation of medical anatomical structures

    NASA Astrophysics Data System (ADS)

    Vitanovski, Dime; Schaller, Christian; Hahn, Dieter; Daum, Volker; Hornegger, Joachim

    2009-02-01

    Although the medical scanners are rapidly moving towards a three-dimensional paradigm, the manipulation and annotation/labeling of the acquired data is still performed in a standard 2D environment. Editing and annotation of three-dimensional medical structures is currently a complex task and rather time-consuming, as it is carried out in 2D projections of the original object. A major problem in 2D annotation is the depth ambiguity, which requires 3D landmarks to be identified and localized in at least two of the cutting planes. Operating directly in a three-dimensional space enables the implicit consideration of the full 3D local context, which significantly increases accuracy and speed. A three-dimensional environment is as well more natural optimizing the user's comfort and acceptance. The 3D annotation environment requires the three-dimensional manipulation device and display. By means of two novel and advanced technologies, Wii Nintendo Controller and Philips 3D WoWvx display, we define an appropriate 3D annotation tool and a suitable 3D visualization monitor. We define non-coplanar setting of four Infrared LEDs with a known and exact position, which are tracked by the Wii and from which we compute the pose of the device by applying a standard pose estimation algorithm. The novel 3D renderer developed by Philips uses either the Z-value of a 3D volume, or it computes the depth information out of a 2D image, to provide a real 3D experience without having some special glasses. Within this paper we present a new framework for manipulation and annotation of medical landmarks directly in three-dimensional volume.

  18. Perfluorocarbon-perfused 23 gauge three-dimensional vitrectomy for complicated diabetic tractional retinal detachment

    PubMed Central

    Velez-Montoya, Raul; Guerrero-Naranjo, Jose Luis; Garcia-Aguirre, Gerardo; Morales-Cantón, Virgilio; Fromow-Guerra, Jans; Quiroz-Mercado, Hugo

    2011-01-01

    Background Perfluorocarbon liquid (PCL)-perfused vitrectomy has been shown in previous studies to be feasible, safe, and to have advantages in managing complicated cases of tractional retinal detachment. The present study had the objectives of describing the anatomical results and measuring surgical time and PCL consumption when combining PCL-perfused techniques with modern vitrectomy equipment. Methods A prospective, interventional consecutive case series was investigated. We enrolled patients with diabetic tractional retinal detachment, complicated by proliferative vitreoretinopathy and poor vision. A 23 gauge PCL-perfused vitrectomy was done with three-dimensional settings. During the procedure, we assessed the degree of surgical bleeding, visualization quality, and difficulty of membrane dissections. Visual acuity, intraocular pressure, and anatomical success were assessed at one and 3 months of follow-up. Results Twelve patients were enrolled in this study. There were no statistical significant changes in intraocular pressure and visual acuity throughout the follow-up period. Surgery was performed in a hemorrhage-free environment in almost all cases, with good visualization and low technical difficulty. The mean complete surgical time was 94.92 ± 25.03 minutes. The mean effective vitrectomy time was 22.50 ± 19.04 minutes and the mean PCL consumption was 25.08 ± 9.76 mL, with a speed of 1.11 mL/minute. Anatomical success was 67% at 3 months. Conclusion Although the technique proved to have some advantages in managing complicated cases of diabetic tractional retinal detachment, there was a high consumption of PCL. A redesign of the entire system is needed in order to decrease the amount of PCL needed for the technique. PMID:22267907

  19. An Automatic Segmentation and Classification Framework Based on PCNN Model for Single Tooth in MicroCT Images.

    PubMed

    Wang, Liansheng; Li, Shusheng; Chen, Rongzhen; Liu, Sze-Yu; Chen, Jyh-Cheng

    2016-01-01

    Accurate segmentation and classification of different anatomical structures of teeth from medical images plays an essential role in many clinical applications. Usually, the anatomical structures of teeth are manually labelled by experienced clinical doctors, which is time consuming. However, automatic segmentation and classification is a challenging task because the anatomical structures and surroundings of the tooth in medical images are rather complex. Therefore, in this paper, we propose an effective framework which is designed to segment the tooth with a Selective Binary and Gaussian Filtering Regularized Level Set (GFRLS) method improved by fully utilizing three dimensional (3D) information, and classify the tooth by employing unsupervised learning Pulse Coupled Neural Networks (PCNN) model. In order to evaluate the proposed method, the experiments are conducted on the different datasets of mandibular molars and the experimental results show that our method can achieve better accuracy and robustness compared to other four state of the art clustering methods.

  20. Visualization of stereoscopic anatomic models of the paranasal sinuses and cervical vertebrae from the surgical and procedural perspective.

    PubMed

    Chen, Jian; Smith, Andrew D; Khan, Majid A; Sinning, Allan R; Conway, Marianne L; Cui, Dongmei

    2017-11-01

    Recent improvements in three-dimensional (3D) virtual modeling software allows anatomists to generate high-resolution, visually appealing, colored, anatomical 3D models from computed tomography (CT) images. In this study, high-resolution CT images of a cadaver were used to develop clinically relevant anatomic models including facial skull, nasal cavity, septum, turbinates, paranasal sinuses, optic nerve, pituitary gland, carotid artery, cervical vertebrae, atlanto-axial joint, cervical spinal cord, cervical nerve root, and vertebral artery that can be used to teach clinical trainees (students, residents, and fellows) approaches for trans-sphenoidal pituitary surgery and cervical spine injection procedure. Volume, surface rendering and a new rendering technique, semi-auto-combined, were applied in the study. These models enable visualization, manipulation, and interaction on a computer and can be presented in a stereoscopic 3D virtual environment, which makes users feel as if they are inside the model. Anat Sci Educ 10: 598-606. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  1. [Study of the appearance difference of lower complete denture between functional and anatomic impression techniques].

    PubMed

    Zhong, Qun; Wu, Xue-yin; Shen, Qing-yi; Shen, Qing-ping

    2012-04-01

    To compare the difference in oblique external ridge, oblique internal ridge and alveolar process crest of lower complete denture base made through functional impression and anatomic impression techniques. Fifteen patients were chosen to treat with two kinds of complete dentures through functional impression and anatomic impression technique respectively. 3D laser scanner was used to scan the three-dimensional model of the denture base and the differences of the surface structural between two techniques in alveolar process crest, external and internal oblique ridges were analyzed, using paired t test with SPSS 12.0 software package. Between the two techniques, there were significant differences in the areas of internal and external oblique ridge(P<0.01); there was no significant difference in the main support areas(P>0.05). The results explain why there is less tenderness when functional impression technique is applied. The differences measured also indicate that sufficient buffering should be made in external and internal oblique ridge areas in clinic.

  2. A segmentation and classification scheme for single tooth in MicroCT images based on 3D level set and k-means+.

    PubMed

    Wang, Liansheng; Li, Shusheng; Chen, Rongzhen; Liu, Sze-Yu; Chen, Jyh-Cheng

    2017-04-01

    Accurate classification of different anatomical structures of teeth from medical images provides crucial information for the stress analysis in dentistry. Usually, the anatomical structures of teeth are manually labeled by experienced clinical doctors, which is time consuming. However, automatic segmentation and classification is a challenging task because the anatomical structures and surroundings of the tooth in medical images are rather complex. Therefore, in this paper, we propose an effective framework which is designed to segment the tooth with a Selective Binary and Gaussian Filtering Regularized Level Set (GFRLS) method improved by fully utilizing 3 dimensional (3D) information, and classify the tooth by employing unsupervised learning i.e., k-means++ method. In order to evaluate the proposed method, the experiments are conducted on the sufficient and extensive datasets of mandibular molars. The experimental results show that our method can achieve higher accuracy and robustness compared to other three clustering methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The oldest anatomical handmade skull of the world c. 1508: 'the ugliness of growing old' attributed to Leonardo da Vinci.

    PubMed

    Missinne, Stefaan J

    2014-06-01

    The author discusses a previously unknown early sixteenth-century renaissance handmade anatomical miniature skull. The small, naturalistic skull made from an agate (calcedonia) stone mixture (mistioni) shows remarkable osteologic details. Dr. Saban was the first to link the skull to Leonardo. The three-dimensional perspective of and the search for the senso comune are discussed. Anatomical errors both in the drawings of Leonardo and this skull are presented. The article ends with the issue of physiognomy, his grotesque faces, the Perspective Communis and his experimenting c. 1508 with the stone mixture and the human skull. Evidence, including the Italian scale based on Crazie and Braccia, chemical analysis leading to a mine in Volterra and Leonardo's search for the soul in the skull are presented. Written references in the inventory of Salai (1524), the inventory of the Villa Riposo (Raffaello Borghini 1584) and Don Ambrogio Mazenta (1635) are reviewed. The author attributes the skull c. 1508 to Leonardo da Vinci.

  4. Stereoscopic three-dimensional images of an anatomical dissection of the eyeball and orbit for educational purposes.

    PubMed

    Matsuo, Toshihiko; Takeda, Yoshimasa; Ohtsuka, Aiji

    2013-01-01

    The purpose of this study was to develop a series of stereoscopic anatomical images of the eye and orbit for use in the curricula of medical schools and residency programs in ophthalmology and other specialties. Layer-by-layer dissection of the eyelid, eyeball, and orbit of a cadaver was performed by an ophthalmologist. A stereoscopic camera system was used to capture a series of anatomical views that were scanned in a panoramic three-dimensional manner around the center of the lid fissure. The images could be rotated 360 degrees in the frontal plane and the angle of views could be tilted up to 90 degrees along the anteroposterior axis perpendicular to the frontal plane around the 360 degrees. The skin, orbicularis oculi muscle, and upper and lower tarsus were sequentially observed. The upper and lower eyelids were removed to expose the bulbar conjunctiva and to insert three 25-gauge trocars for vitrectomy at the location of the pars plana. The cornea was cut at the limbus, and the lens with mature cataract was dislocated. The sclera was cut to observe the trocars from inside the eyeball. The sclera was further cut to visualize the superior oblique muscle with the trochlea and the inferior oblique muscle. The eyeball was dissected completely to observe the optic nerve and the ophthalmic artery. The thin bones of the medial and inferior orbital wall were cracked with a forceps to expose the ethmoid and maxillary sinus, respectively. In conclusion, the serial dissection images visualized aspects of the local anatomy specific to various procedures, including the levator muscle and tarsus for blepharoptosis surgery, 25-gauge trocars as viewed from inside the eye globe for vitrectomy, the oblique muscles for strabismus surgery, and the thin medial and inferior orbital bony walls for orbital bone fractures.

  5. Correlation Between Echodefecography and 3-Dimensional Vaginal Ultrasonography in the Detection of Perineal Descent in Women With Constipation Symptoms.

    PubMed

    Murad-Regadas, Sthela M; Pinheiro Regadas, Francisco Sergio; Rodrigues, Lusmar V; da Silva Vilarinho, Adjra; Buchen, Guilherme; Borges, Livia Olinda; Veras, Lara B; da Cruz, Mariana Murad

    2016-12-01

    Defecography is an established method of evaluating dynamic anorectal dysfunction, but conventional defecography does not allow for visualization of anatomic structures. The purpose of this study was to describe the use of dynamic 3-dimensional endovaginal ultrasonography for evaluating perineal descent in comparison with echodefecography (3-dimensional anorectal ultrasonography) and to study the relationship between perineal descent and symptoms and anatomic/functional abnormalities of the pelvic floor. This was a prospective study. The study was conducted at a large university tertiary care hospital. Consecutive female patients were eligible if they had pelvic floor dysfunction, obstructed defecation symptoms, and a score >6 on the Cleveland Clinic Florida Constipation Scale. Each patient underwent both echodefecography and dynamic 3-dimensional endovaginal ultrasonography to evaluate posterior pelvic floor dysfunction. Normal perineal descent was defined on echodefecography as puborectalis muscle displacement ≤2.5 cm; excessive perineal descent was defined as displacement >2.5 cm. Of 61 women, 29 (48%) had normal perineal descent; 32 (52%) had excessive perineal descent. Endovaginal ultrasonography identified 27 of the 29 patients in the normal group as having anorectal junction displacement ≤1 cm (mean = 0.6 cm; range, 0.1-1.0 cm) and a mean anorectal junction position of 0.6 cm (range, 0-2.3 cm) above the symphysis pubis during the Valsalva maneuver and correctly identified 30 of the 32 patients in the excessive perineal descent group. The κ statistic showed almost perfect agreement (κ = 0.86) between the 2 methods for categorization into the normal and excessive perineal descent groups. Perineal descent was not related to fecal or urinary incontinence or anatomic and functional factors (sphincter defects, pubovisceral muscle defects, levator hiatus area, grade II or III rectocele, intussusception, or anismus). The study did not include a control group without symptoms. Three-dimensional endovaginal ultrasonography is a reliable technique for assessment of perineal descent. Using this technique, excessive perineal descent can be defined as displacement of the anorectal junction >1 cm and/or its position below the symphysis pubis on Valsalva maneuver.

  6. A reference dataset for deformable image registration spatial accuracy evaluation using the COPDgene study archive

    NASA Astrophysics Data System (ADS)

    Castillo, Richard; Castillo, Edward; Fuentes, David; Ahmad, Moiz; Wood, Abbie M.; Ludwig, Michelle S.; Guerrero, Thomas

    2013-05-01

    Landmark point-pairs provide a strategy to assess deformable image registration (DIR) accuracy in terms of the spatial registration of the underlying anatomy depicted in medical images. In this study, we propose to augment a publicly available database (www.dir-lab.com) of medical images with large sets of manually identified anatomic feature pairs between breath-hold computed tomography (BH-CT) images for DIR spatial accuracy evaluation. Ten BH-CT image pairs were randomly selected from the COPDgene study cases. Each patient had received CT imaging of the entire thorax in the supine position at one-fourth dose normal expiration and maximum effort full dose inspiration. Using dedicated in-house software, an imaging expert manually identified large sets of anatomic feature pairs between images. Estimates of inter- and intra-observer spatial variation in feature localization were determined by repeat measurements of multiple observers over subsets of randomly selected features. 7298 anatomic landmark features were manually paired between the 10 sets of images. Quantity of feature pairs per case ranged from 447 to 1172. Average 3D Euclidean landmark displacements varied substantially among cases, ranging from 12.29 (SD: 6.39) to 30.90 (SD: 14.05) mm. Repeat registration of uniformly sampled subsets of 150 landmarks for each case yielded estimates of observer localization error, which ranged in average from 0.58 (SD: 0.87) to 1.06 (SD: 2.38) mm for each case. The additions to the online web database (www.dir-lab.com) described in this work will broaden the applicability of the reference data, providing a freely available common dataset for targeted critical evaluation of DIR spatial accuracy performance in multiple clinical settings. Estimates of observer variance in feature localization suggest consistent spatial accuracy for all observers across both four-dimensional CT and COPDgene patient cohorts.

  7. Fiber bundle endomicroscopy with multi-illumination for three-dimensional reflectance image reconstruction

    NASA Astrophysics Data System (ADS)

    Ando, Yoriko; Sawahata, Hirohito; Kawano, Takeshi; Koida, Kowa; Numano, Rika

    2018-02-01

    Bundled fiber optics allow in vivo imaging at deep sites in a body. The intrinsic optical contrast detects detailed structures in blood vessels and organs. We developed a bundled-fiber-coupled endomicroscope, enabling stereoscopic three-dimensional (3-D) reflectance imaging with a multipositional illumination scheme. Two illumination sites were attached to obtain reflectance images with left and right illumination. Depth was estimated by the horizontal disparity between the two images under alternative illuminations and was calibrated by the targets with known depths. This depth reconstruction was applied to an animal model to obtain the 3-D structure of blood vessels of the cerebral cortex (Cereb cortex) and preputial gland (Pre gla). The 3-D endomicroscope could be instrumental to microlevel reflectance imaging, improving the precision in subjective depth perception, spatial orientation, and identification of anatomical structures.

  8. Estimation of lung tumor position from multiple anatomical features on 4D-CT using multiple regression analysis.

    PubMed

    Ono, Tomohiro; Nakamura, Mitsuhiro; Hirose, Yoshinori; Kitsuda, Kenji; Ono, Yuka; Ishigaki, Takashi; Hiraoka, Masahiro

    2017-09-01

    To estimate the lung tumor position from multiple anatomical features on four-dimensional computed tomography (4D-CT) data sets using single regression analysis (SRA) and multiple regression analysis (MRA) approach and evaluate an impact of the approach on internal target volume (ITV) for stereotactic body radiotherapy (SBRT) of the lung. Eleven consecutive lung cancer patients (12 cases) underwent 4D-CT scanning. The three-dimensional (3D) lung tumor motion exceeded 5 mm. The 3D tumor position and anatomical features, including lung volume, diaphragm, abdominal wall, and chest wall positions, were measured on 4D-CT images. The tumor position was estimated by SRA using each anatomical feature and MRA using all anatomical features. The difference between the actual and estimated tumor positions was defined as the root-mean-square error (RMSE). A standard partial regression coefficient for the MRA was evaluated. The 3D lung tumor position showed a high correlation with the lung volume (R = 0.92 ± 0.10). Additionally, ITVs derived from SRA and MRA approaches were compared with ITV derived from contouring gross tumor volumes on all 10 phases of the 4D-CT (conventional ITV). The RMSE of the SRA was within 3.7 mm in all directions. Also, the RMSE of the MRA was within 1.6 mm in all directions. The standard partial regression coefficient for the lung volume was the largest and had the most influence on the estimated tumor position. Compared with conventional ITV, average percentage decrease of ITV were 31.9% and 38.3% using SRA and MRA approaches, respectively. The estimation accuracy of lung tumor position was improved by the MRA approach, which provided smaller ITV than conventional ITV. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  9. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.

    PubMed

    Zhou, Xiangrong; Takayama, Ryosuke; Wang, Song; Hara, Takeshi; Fujita, Hiroshi

    2017-10-01

    We propose a single network trained by pixel-to-label deep learning to address the general issue of automatic multiple organ segmentation in three-dimensional (3D) computed tomography (CT) images. Our method can be described as a voxel-wise multiple-class classification scheme for automatically assigning labels to each pixel/voxel in a 2D/3D CT image. We simplify the segmentation algorithms of anatomical structures (including multiple organs) in a CT image (generally in 3D) to a majority voting scheme over the semantic segmentation of multiple 2D slices drawn from different viewpoints with redundancy. The proposed method inherits the spirit of fully convolutional networks (FCNs) that consist of "convolution" and "deconvolution" layers for 2D semantic image segmentation, and expands the core structure with 3D-2D-3D transformations to adapt to 3D CT image segmentation. All parameters in the proposed network are trained pixel-to-label from a small number of CT cases with human annotations as the ground truth. The proposed network naturally fulfills the requirements of multiple organ segmentations in CT cases of different sizes that cover arbitrary scan regions without any adjustment. The proposed network was trained and validated using the simultaneous segmentation of 19 anatomical structures in the human torso, including 17 major organs and two special regions (lumen and content inside of stomach). Some of these structures have never been reported in previous research on CT segmentation. A database consisting of 240 (95% for training and 5% for testing) 3D CT scans, together with their manually annotated ground-truth segmentations, was used in our experiments. The results show that the 19 structures of interest were segmented with acceptable accuracy (88.1% and 87.9% voxels in the training and testing datasets, respectively, were labeled correctly) against the ground truth. We propose a single network based on pixel-to-label deep learning to address the challenging issue of anatomical structure segmentation in 3D CT cases. The novelty of this work is the policy of deep learning of the different 2D sectional appearances of 3D anatomical structures for CT cases and the majority voting of the 3D segmentation results from multiple crossed 2D sections to achieve availability and reliability with better efficiency, generality, and flexibility than conventional segmentation methods, which must be guided by human expertise. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  10. CT-based manual segmentation and evaluation of paranasal sinuses.

    PubMed

    Pirner, S; Tingelhoff, K; Wagner, I; Westphal, R; Rilk, M; Wahl, F M; Bootz, F; Eichhorn, Klaus W G

    2009-04-01

    Manual segmentation of computed tomography (CT) datasets was performed for robot-assisted endoscope movement during functional endoscopic sinus surgery (FESS). Segmented 3D models are needed for the robots' workspace definition. A total of 50 preselected CT datasets were each segmented in 150-200 coronal slices with 24 landmarks being set. Three different colors for segmentation represent diverse risk areas. Extension and volumetric measurements were performed. Three-dimensional reconstruction was generated after segmentation. Manual segmentation took 8-10 h for each CT dataset. The mean volumes were: right maxillary sinus 17.4 cm(3), left side 17.9 cm(3), right frontal sinus 4.2 cm(3), left side 4.0 cm(3), total frontal sinuses 7.9 cm(3), sphenoid sinus right side 5.3 cm(3), left side 5.5 cm(3), total sphenoid sinus volume 11.2 cm(3). Our manually segmented 3D-models present the patient's individual anatomy with a special focus on structures in danger according to the diverse colored risk areas. For safe robot assistance, the high-accuracy models represent an average of the population for anatomical variations, extension and volumetric measurements. They can be used as a database for automatic model-based segmentation. None of the segmentation methods so far described provide risk segmentation. The robot's maximum distance to the segmented border can be adjusted according to the differently colored areas.

  11. Anatomical Study of the Clavicles in a Chinese Population

    PubMed Central

    Qiu, Xu-sheng; Wang, Xiao-bo; Zhang, Yan; Zhu, Yan-Cheng; Guo, Xia; Chen, Yi-xin

    2016-01-01

    Background. A reemergence of interest in clavicle anatomy was prompted because of the advocacy for operative treatment of midshaft clavicle fractures. Several anatomical studies of the clavicle have been performed in western population. However, there was no anatomical study of clavicle in Chinese population. Patients and Methods. 52 patients were included in the present study. Three-dimensional reconstructions of the clavicles were generated. The length of the clavicle, the widths and thicknesses of the clavicle, curvatures of the clavicle, the areas of the intramedullary canal, and sectional areas of the clavicle were measured. All the measurements were compared between genders and two sides. Results. The mean length of the clavicles was 144.2 ± 12.0 mm. Clavicles in males were longer, wider, and thicker than in females; also males have different curvatures in both planes compared with females. The men's intramedullary canals and sectional areas of the clavicle were larger than those of women. No significant difference between the sides was found for all the measurements. Conclusion. This study provided an anatomical data of the clavicle in a Chinese population. These clavicle dimensions can be applied to the modifications of the contemporary clavicle plate or a new development for the Chinese population. PMID:27088088

  12. Can virtual reality improve anatomy education? A randomised controlled study of a computer-generated three-dimensional anatomical ear model.

    PubMed

    Nicholson, Daren T; Chalk, Colin; Funnell, W Robert J; Daniel, Sam J

    2006-11-01

    The use of computer-generated 3-dimensional (3-D) anatomical models to teach anatomy has proliferated. However, there is little evidence that these models are educationally effective. The purpose of this study was to test the educational effectiveness of a computer-generated 3-D model of the middle and inner ear. We reconstructed a fully interactive model of the middle and inner ear from a magnetic resonance imaging scan of a human cadaver ear. To test the model's educational usefulness, we conducted a randomised controlled study in which 28 medical students completed a Web-based tutorial on ear anatomy that included the interactive model, while a control group of 29 students took the tutorial without exposure to the model. At the end of the tutorials, both groups were asked a series of 15 quiz questions to evaluate their knowledge of 3-D relationships within the ear. The intervention group's mean score on the quiz was 83%, while that of the control group was 65%. This difference in means was highly significant (P < 0.001). Our findings stand in contrast to the handful of previous randomised controlled trials that evaluated the effects of computer-generated 3-D anatomical models on learning. The equivocal and negative results of these previous studies may be due to the limitations of these studies (such as small sample size) as well as the limitations of the models that were studied (such as a lack of full interactivity). Given our positive results, we believe that further research is warranted concerning the educational effectiveness of computer-generated anatomical models.

  13. Facial reconstruction--anatomical art or artistic anatomy?

    PubMed

    Wilkinson, Caroline

    2010-02-01

    Facial reconstruction is employed in the context of forensic investigation and for creating three-dimensional portraits of people from the past, from ancient Egyptian mummies and bog bodies to digital animations of J. S. Bach. This paper considers a facial reconstruction method (commonly known as the Manchester method) associated with the depiction and identification of the deceased from skeletal remains. Issues of artistic licence and scientific rigour, in relation to soft tissue reconstruction, anatomical variation and skeletal assessment, are discussed. The need for artistic interpretation is greatest where only skeletal material is available, particularly for the morphology of the ears and mouth, and with the skin for an ageing adult. The greatest accuracy is possible when information is available from preserved soft tissue, from a portrait, or from a pathological condition or healed injury.

  14. Toward building an anatomically correct solid eye model with volumetric representation of retinal morphology

    NASA Astrophysics Data System (ADS)

    Zawadzki, Robert J.; Rowe, T. Scott; Fuller, Alfred R.; Hamann, Bernd; Werner, John S.

    2010-02-01

    An accurate solid eye model (with volumetric retinal morphology) has many applications in the field of ophthalmology, including evaluation of ophthalmic instruments and optometry/ophthalmology training. We present a method that uses volumetric OCT retinal data sets to produce an anatomically correct representation of three-dimensional (3D) retinal layers. This information is exported to a laser scan system to re-create it within solid eye retinal morphology of the eye used in OCT testing. The solid optical model eye is constructed from PMMA acrylic, with equivalent optical power to that of the human eye (~58D). Additionally we tested a water bath eye model from Eyetech Ltd. with a customized retina consisting of five layers of ~60 μm thick biaxial polypropylene film and hot melt rubber adhesive.

  15. Should we teach Abernethy and Zuckerkandl?

    PubMed

    Winkelmann, A

    2012-03-01

    In this study, the author analyzed the relevance of anatomical eponyms for medical education by researching 453 anatomical eponyms and their corresponding English or Latin terms in the Medline database. The number of hits in the database ranged from 0 to 34,490 per eponym (median 11). Almost a quarter (110) of the eponyms did not appear at all. Only 11% of those articles that use anatomical eponyms in their title or abstract added a descriptive English or Latin term. In conclusion, familiarity with many of these eponyms is superfluous for medical students, as they are not in common use by the medical community. However, a number of eponyms must be actively retained by students to understand clinicians and efficiently research medical literature. Copyright © 2011 Wiley-Liss, Inc.

  16. RNA FRABASE 2.0: an advanced web-accessible database with the capacity to search the three-dimensional fragments within RNA structures

    PubMed Central

    2010-01-01

    Background Recent discoveries concerning novel functions of RNA, such as RNA interference, have contributed towards the growing importance of the field. In this respect, a deeper knowledge of complex three-dimensional RNA structures is essential to understand their new biological functions. A number of bioinformatic tools have been proposed to explore two major structural databases (PDB, NDB) in order to analyze various aspects of RNA tertiary structures. One of these tools is RNA FRABASE 1.0, the first web-accessible database with an engine for automatic search of 3D fragments within PDB-derived RNA structures. This search is based upon the user-defined RNA secondary structure pattern. In this paper, we present and discuss RNA FRABASE 2.0. This second version of the system represents a major extension of this tool in terms of providing new data and a wide spectrum of novel functionalities. An intuitionally operated web server platform enables very fast user-tailored search of three-dimensional RNA fragments, their multi-parameter conformational analysis and visualization. Description RNA FRABASE 2.0 has stored information on 1565 PDB-deposited RNA structures, including all NMR models. The RNA FRABASE 2.0 search engine algorithms operate on the database of the RNA sequences and the new library of RNA secondary structures, coded in the dot-bracket format extended to hold multi-stranded structures and to cover residues whose coordinates are missing in the PDB files. The library of RNA secondary structures (and their graphics) is made available. A high level of efficiency of the 3D search has been achieved by introducing novel tools to formulate advanced searching patterns and to screen highly populated tertiary structure elements. RNA FRABASE 2.0 also stores data and conformational parameters in order to provide "on the spot" structural filters to explore the three-dimensional RNA structures. An instant visualization of the 3D RNA structures is provided. RNA FRABASE 2.0 is freely available at http://rnafrabase.cs.put.poznan.pl. Conclusions RNA FRABASE 2.0 provides a novel database and powerful search engine which is equipped with new data and functionalities that are unavailable elsewhere. Our intention is that this advanced version of the RNA FRABASE will be of interest to all researchers working in the RNA field. PMID:20459631

  17. RNA FRABASE 2.0: an advanced web-accessible database with the capacity to search the three-dimensional fragments within RNA structures.

    PubMed

    Popenda, Mariusz; Szachniuk, Marta; Blazewicz, Marek; Wasik, Szymon; Burke, Edmund K; Blazewicz, Jacek; Adamiak, Ryszard W

    2010-05-06

    Recent discoveries concerning novel functions of RNA, such as RNA interference, have contributed towards the growing importance of the field. In this respect, a deeper knowledge of complex three-dimensional RNA structures is essential to understand their new biological functions. A number of bioinformatic tools have been proposed to explore two major structural databases (PDB, NDB) in order to analyze various aspects of RNA tertiary structures. One of these tools is RNA FRABASE 1.0, the first web-accessible database with an engine for automatic search of 3D fragments within PDB-derived RNA structures. This search is based upon the user-defined RNA secondary structure pattern. In this paper, we present and discuss RNA FRABASE 2.0. This second version of the system represents a major extension of this tool in terms of providing new data and a wide spectrum of novel functionalities. An intuitionally operated web server platform enables very fast user-tailored search of three-dimensional RNA fragments, their multi-parameter conformational analysis and visualization. RNA FRABASE 2.0 has stored information on 1565 PDB-deposited RNA structures, including all NMR models. The RNA FRABASE 2.0 search engine algorithms operate on the database of the RNA sequences and the new library of RNA secondary structures, coded in the dot-bracket format extended to hold multi-stranded structures and to cover residues whose coordinates are missing in the PDB files. The library of RNA secondary structures (and their graphics) is made available. A high level of efficiency of the 3D search has been achieved by introducing novel tools to formulate advanced searching patterns and to screen highly populated tertiary structure elements. RNA FRABASE 2.0 also stores data and conformational parameters in order to provide "on the spot" structural filters to explore the three-dimensional RNA structures. An instant visualization of the 3D RNA structures is provided. RNA FRABASE 2.0 is freely available at http://rnafrabase.cs.put.poznan.pl. RNA FRABASE 2.0 provides a novel database and powerful search engine which is equipped with new data and functionalities that are unavailable elsewhere. Our intention is that this advanced version of the RNA FRABASE will be of interest to all researchers working in the RNA field.

  18. Creation of three-dimensional craniofacial standards from CBCT images

    NASA Astrophysics Data System (ADS)

    Subramanyan, Krishna; Palomo, Martin; Hans, Mark

    2006-03-01

    Low-dose three-dimensional Cone Beam Computed Tomography (CBCT) is becoming increasingly popular in the clinical practice of dental medicine. Two-dimensional Bolton Standards of dentofacial development are routinely used to identify deviations from normal craniofacial anatomy. With the advent of CBCT three dimensional imaging, we propose a set of methods to extend these 2D Bolton Standards to anatomically correct surface based 3D standards to allow analysis of morphometric changes seen in craniofacial complex. To create 3D surface standards, we have implemented series of steps. 1) Converting bi-plane 2D tracings into set of splines 2) Converting the 2D splines curves from bi-plane projection into 3D space curves 3) Creating labeled template of facial and skeletal shapes and 4) Creating 3D average surface Bolton standards. We have used datasets from patients scanned with Hitachi MercuRay CBCT scanner providing high resolution and isotropic CT volume images, digitized Bolton Standards from age 3 to 18 years of lateral and frontal male, female and average tracings and converted them into facial and skeletal 3D space curves. This new 3D standard will help in assessing shape variations due to aging in young population and provide reference to correct facial anomalies in dental medicine.

  19. Design, development and clinical validation of computer-aided surgical simulation system for streamlined orthognathic surgical planning.

    PubMed

    Yuan, Peng; Mai, Huaming; Li, Jianfu; Ho, Dennis Chun-Yu; Lai, Yingying; Liu, Siting; Kim, Daeseung; Xiong, Zixiang; Alfi, David M; Teichgraeber, John F; Gateno, Jaime; Xia, James J

    2017-12-01

    There are many proven problems associated with traditional surgical planning methods for orthognathic surgery. To address these problems, we developed a computer-aided surgical simulation (CASS) system, the AnatomicAligner, to plan orthognathic surgery following our streamlined clinical protocol. The system includes six modules: image segmentation and three-dimensional (3D) reconstruction, registration and reorientation of models to neutral head posture, 3D cephalometric analysis, virtual osteotomy, surgical simulation, and surgical splint generation. The accuracy of the system was validated in a stepwise fashion: first to evaluate the accuracy of AnatomicAligner using 30 sets of patient data, then to evaluate the fitting of splints generated by AnatomicAligner using 10 sets of patient data. The industrial gold standard system, Mimics, was used as the reference. When comparing the results of segmentation, virtual osteotomy and transformation achieved with AnatomicAligner to the ones achieved with Mimics, the absolute deviation between the two systems was clinically insignificant. The average surface deviation between the two models after 3D model reconstruction in AnatomicAligner and Mimics was 0.3 mm with a standard deviation (SD) of 0.03 mm. All the average surface deviations between the two models after virtual osteotomy and transformations were smaller than 0.01 mm with a SD of 0.01 mm. In addition, the fitting of splints generated by AnatomicAligner was at least as good as the ones generated by Mimics. We successfully developed a CASS system, the AnatomicAligner, for planning orthognathic surgery following the streamlined planning protocol. The system has been proven accurate. AnatomicAligner will soon be available freely to the boarder clinical and research communities.

  20. Design, development and clinical validation of computer-aided surgical simulation system for streamlined orthognathic surgical planning

    PubMed Central

    Yuan, Peng; Mai, Huaming; Li, Jianfu; Ho, Dennis Chun-Yu; Lai, Yingying; Liu, Siting; Kim, Daeseung; Xiong, Zixiang; Alfi, David M.; Teichgraeber, John F.; Gateno, Jaime

    2017-01-01

    Purpose There are many proven problems associated with traditional surgical planning methods for orthognathic surgery. To address these problems, we developed a computer-aided surgical simulation (CASS) system, the AnatomicAligner, to plan orthognathic surgery following our streamlined clinical protocol. Methods The system includes six modules: image segmentation and three-dimensional (3D) reconstruction, registration and reorientation of models to neutral head posture, 3D cephalometric analysis, virtual osteotomy, surgical simulation, and surgical splint generation. The accuracy of the system was validated in a stepwise fashion: first to evaluate the accuracy of AnatomicAligner using 30 sets of patient data, then to evaluate the fitting of splints generated by AnatomicAligner using 10 sets of patient data. The industrial gold standard system, Mimics, was used as the reference. Result When comparing the results of segmentation, virtual osteotomy and transformation achieved with AnatomicAligner to the ones achieved with Mimics, the absolute deviation between the two systems was clinically insignificant. The average surface deviation between the two models after 3D model reconstruction in AnatomicAligner and Mimics was 0.3 mm with a standard deviation (SD) of 0.03 mm. All the average surface deviations between the two models after virtual osteotomy and transformations were smaller than 0.01 mm with a SD of 0.01 mm. In addition, the fitting of splints generated by AnatomicAligner was at least as good as the ones generated by Mimics. Conclusion We successfully developed a CASS system, the AnatomicAligner, for planning orthognathic surgery following the streamlined planning protocol. The system has been proven accurate. AnatomicAligner will soon be available freely to the boarder clinical and research communities. PMID:28432489

  1. Anatomic regurgitant orifice area obtained using 3D-echocardiography as an indicator of severity of mitral regurgitation in dogs with myxomatous mitral valve disease.

    PubMed

    Müller, S; Menciotti, G; Borgarelli, M

    2017-10-01

    To determine feasibility and repeatability of measuring the anatomic regurgitant orifice area (AROA) using real-time three-dimensional transthoracic echocardiography (RT3DE) in dogs with myxomatous mitral valve disease (MMVD), and to investigate differences in the AROA of dogs with different disease severity and in different American College of Veterinary Internal Medicine (ACVIM) stages. Sixty privately-owned dogs diagnosed with MMVD. The echocardiographic database of our institution was retrospectively searched for dogs diagnosed with MMVD and RT3DE data set acquisition. Dogs were classified into mild, moderate, or severe MMVD according to a Mitral Regurgitation Severity Score (MRSS), and into stage B1, B2 or C according to ACVIM staging. The RT3DE data sets were imported into dedicated software and a short axis plane crossing the regurgitant orifice was used to measure the AROA. Feasibility, inter- and intra-observer variability of measuring the AROA was calculated. Differences in the AROA between dogs in different MRSS and ACVIM stages were investigated. The AROA was measurable in 60 data sets of 81 selected to be included in the study (74%). The inter- and intra-observer coefficients of variation were 26% and 21%, respectively. The AROA was significantly greater in dogs with a severe MRSS compared with dogs with mild MRSS (p=0.045). There was no difference between the AROA of dogs in different ACVIM clinical stages. Obtaining the AROA using RT3DE is feasible and might provide additional information to stratify mitral regurgitation severity in dogs with MMVD. Diagnostic and prognostic utility of the AROA deserves further investigation. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Three-Dimensional Virtual Sonographic Cystoscopy for Detection of Ureterocele in Duplicated Collecting Systems in Children.

    PubMed

    Nabavizadeh, Behnam; Mozafarpour, Sarah; Hosseini Sharifi, Seyed Hossein; Nabavizadeh, Reza; Abbasioun, Reza; Kajbafzadeh, Abdol-Mohammad

    2018-03-01

    Ureterocele is a sac-like dilatation of terminal ureter. Precise anatomic delineation is of utmost importance to proceed with the surgical plan, particularly in the ectopic subtype. However, the level of ureterocele extension is not always elucidated by the existing imaging modalities and even by conventional cystoscopy, which is considered as the gold standard for evaluation of ureterocele. This study aims to evaluate the accuracy of three-dimensional virtual sonographic cystoscopy (VSC) in the characterization of ureterocele in duplex collecting systems. Sixteen children with a mean age of 5.1 (standard deviation 1.96) years with transabdominal ultrasonography-proven duplex system and ureterocele were included. They underwent VSC by a single pediatric radiologist. All of them subsequently had conventional cystoscopy, and the results were compared in terms of ureterocele features including anatomy, number, size, location, and extension. Three-dimensional VSC was well tolerated in all cases without any complication. Image quality was suboptimal in 2 of 16 patients. Out of the remaining 14 cases, VSC had a high accuracy in characterization of the ureterocele features (93%). Only the extension of one ureterocele was not precisely detected by VSC. The results of this study suggest three-dimensional sonography as a promising noninvasive diagnostic modality in the evaluation of ectopic ureterocele in children. © 2017 by the American Institute of Ultrasound in Medicine.

  3. Ephaptic conduction in a cardiac strand model with 3D electrodiffusion

    PubMed Central

    Mori, Yoichiro; Fishman, Glenn I.; Peskin, Charles S.

    2008-01-01

    We study cardiac action potential propagation under severe reduction in gap junction conductance. We use a mathematical model of cellular electrical activity that takes into account both three-dimensional geometry and ionic concentration effects. Certain anatomical and biophysical parameters are varied to see their impact on cardiac action potential conduction velocity. This study uncovers quantitative features of ephaptic propagation that differ from previous studies based on one-dimensional models. We also identify a mode of cardiac action potential propagation in which the ephaptic and gap-junction-mediated mechanisms alternate. Our study demonstrates the usefulness of this modeling approach for electrophysiological systems especially when detailed membrane geometry plays an important role. PMID:18434544

  4. High-Resolution Isotropic Three-Dimensional MR Imaging of the Extraforaminal Segments of the Cranial Nerves.

    PubMed

    Wen, Jessica; Desai, Naman S; Jeffery, Dean; Aygun, Nafi; Blitz, Ari

    2018-02-01

    High-resolution isotropic 3-dimensional (D) MR imaging with and without contrast is now routinely used for imaging evaluation of cranial nerve anatomy and pathologic conditions. The anatomic details of the extraforaminal segments are well-visualized on these techniques. A wide range of pathologic entities may cause enhancement or displacement of the nerve, which is now visible to an extent not available on standard 2D imaging. This article highlights the anatomy of extraforaminal segments of the cranial nerves and uses select cases to illustrate the utility and power of these sequences, with a focus on constructive interference in steady-state. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Estimating the Uncertainty and Predictive Capabilities of Three-Dimensional Earth Models (Postprint)

    DTIC Science & Technology

    2012-03-22

    www.isc.ac.uk). This global database includes more than 7,000 events whose epicentral location accuracy is known to at least 5 km. GT events with...region, which illustrates the difficulty of validating a model with travel times alone. However, the IASPEI REL database is currently the highest...S (right) paths in the IASPEI REL ground-truth database . Stations are represented by purple triangles and events by gray circles. Note the sparse

  6. A systematic review of single- versus double-bundle ACL reconstruction using the anatomic anterior cruciate ligament reconstruction scoring checklist.

    PubMed

    Desai, Neel; Alentorn-Geli, Eduard; van Eck, Carola F; Musahl, Volker; Fu, Freddie H; Karlsson, Jón; Samuelsson, Kristian

    2016-03-01

    The aim of this systematic review was to apply the anatomic ACL reconstruction scoring checklist (AARSC) and to evaluate the degree to which clinical studies comparing single-bundle (SB) and double-bundle (DB) ACL reconstructions are anatomic. A systematic electronic search was performed using the databases PubMed (MEDLINE), EMBASE and Cochrane Library. Studies published from January 1995 to January 2014 comparing SB and DB ACL reconstructions with clinical outcome measurements were included. The items from the AARSC were recorded for both the SB and DB groups in each study. Eight-thousand nine-hundred and ninety-four studies were analysed, 77 were included. Randomized clinical trials (29; 38%) and prospective comparative studies (29; 38%) were the most frequent study type. Most studies were published in 2011 (19; 25%). The most commonly reported items for both SB and DB groups were as follows: graft type (152; 99%), femoral and tibial fixation method (149; 97% respectively), knee flexion angle during graft tensioning (124; 8%) and placement of the tibial tunnel at the ACL insertion site (101; 66%). The highest level of documentation used for ACL tunnel position for both groups was often one dimensional, e.g. drawing, operative notes or o'clock reference. The DB reconstruction was in general more thoroughly reported. The means for the AARSC were 6.9 ± 2.8 for the SB group and 8.3 ± 2.8 for the DB group. Both means were below a proposed required minimum score of 10 for anatomic ACL reconstruction. There was substantial underreporting of surgical data for both the SB and DB groups in clinical studies. This underreporting creates difficulties when analysing, comparing and pooling results of scientific studies on this subject.

  7. The biomechanical analysis of three-dimensional distal radius fracture model with different fixed splints.

    PubMed

    Hua, Zhen; Wang, Jian-Wei; Lu, Zhen-Fei; Ma, Jian-Wei; Yin, Heng

    2018-01-01

    The distal radius fracture is one of the common clinical fractures. At present, there are no reports regarding application of the finite element method in studying the mechanism of Colles fracture and the biomechanical behavior when using splint fixation. To explore the mechanism of Colles fracture and the biomechanical behavior when using different fixed splints. Based on the CT scanning images of forearm for a young female volunteer, by using model construction technology combined with RPOE and ANSYS software, a 3-D distal radius fracture forearm finite element model with a real shape and bioactive materials is built. The material tests are performed to obtain the mechanical properties of the paper-based splint, the willow splint and the anatomical splint. The numerical results are compared with the experimental results to verify the correctness of the presented model. Based on the verified model, the stress distribution of different tissues are analyzed. Finally, the clinical tests are performed to observe and verify that the anatomical splint is the best fit for human body. Using the three kinds of splints, the transferred bone stress focus on the distal radius and ulna, which is helpful to maintain the stability of fracture. Also the stress is accumulated in the distal radius which may be attributed to flexion position. Such stress distribution may be helpful to maintain the ulnar declination. By comparing the simulation results with the experimental observations, the anatomical splint has the best fitting to the limb, which can effectively avoid the local compression. The anatomical splint is the most effective for fixing and curing the fracture. The presented model can provide theoretical basis and technical guide for further investigating mechanism of distal radius fracture and clinical application of anatomical splint.

  8. Digital dissection - using contrast-enhanced computed tomography scanning to elucidate hard- and soft-tissue anatomy in the Common Buzzard Buteo buteo.

    PubMed

    Lautenschlager, Stephan; Bright, Jen A; Rayfield, Emily J

    2014-04-01

    Gross dissection has a long history as a tool for the study of human or animal soft- and hard-tissue anatomy. However, apart from being a time-consuming and invasive method, dissection is often unsuitable for very small specimens and often cannot capture spatial relationships of the individual soft-tissue structures. The handful of comprehensive studies on avian anatomy using traditional dissection techniques focus nearly exclusively on domestic birds, whereas raptorial birds, and in particular their cranial soft tissues, are essentially absent from the literature. Here, we digitally dissect, identify, and document the soft-tissue anatomy of the Common Buzzard (Buteo buteo) in detail, using the new approach of contrast-enhanced computed tomography using Lugol's iodine. The architecture of different muscle systems (adductor, depressor, ocular, hyoid, neck musculature), neurovascular, and other soft-tissue structures is three-dimensionally visualised and described in unprecedented detail. The three-dimensional model is further presented as an interactive PDF to facilitate the dissemination and accessibility of anatomical data. Due to the digital nature of the data derived from the computed tomography scanning and segmentation processes, these methods hold the potential for further computational analyses beyond descriptive and illustrative proposes. © 2013 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.

  9. Anatomical Reproducibility of a Head Model Molded by a Three-dimensional Printer

    PubMed Central

    KONDO, Kosuke; NEMOTO, Masaaki; MASUDA, Hiroyuki; OKONOGI, Shinichi; NOMOTO, Jun; HARADA, Naoyuki; SUGO, Nobuo; MIYAZAKI, Chikao

    We prepared rapid prototyping models of heads with unruptured cerebral aneurysm based on image data of computed tomography angiography (CTA) using a three-dimensional (3D) printer. The objective of this study was to evaluate the anatomical reproducibility and accuracy of these models by comparison with the CTA images on a monitor. The subjects were 22 patients with unruptured cerebral aneurysm who underwent preoperative CTA. Reproducibility of the microsurgical anatomy of skull bone and arteries, the length and thickness of the main arteries, and the size of cerebral aneurysm were compared between the CTA image and rapid prototyping model. The microsurgical anatomy and arteries were favorably reproduced, apart from a few minute regions, in the rapid prototyping models. No significant difference was noted in the measured lengths of the main arteries between the CTA image and rapid prototyping model, but errors were noted in their thickness (p < 0.001). A significant difference was also noted in the longitudinal diameter of the cerebral aneurysm (p < 0.01). Regarding the CTA image as the gold standard, reproducibility of the microsurgical anatomy of skull bone and main arteries was favorable in the rapid prototyping models prepared using a 3D printer. It was concluded that these models are useful tools for neurosurgical simulation. The thickness of the main arteries and size of cerebral aneurysm should be comprehensively judged including other neuroimaging in consideration of errors. PMID:26119896

  10. Prospective randomized comparison of rotational angiography with three-dimensional reconstruction and computed tomography merged with electro-anatomical mapping: a two center atrial fibrillation ablation study.

    PubMed

    Anand, Rishi; Gorev, Maxim V; Poghosyan, Hermine; Pothier, Lindsay; Matkins, John; Kotler, Gregory; Moroz, Sarah; Armstrong, James; Nemtsov, Sergei V; Orlov, Michael V

    2016-08-01

    To compare the efficacy and accuracy of rotational angiography with three-dimensional reconstruction (3DATG) image merged with electro-anatomical mapping (EAM) vs. CT-EAM. A prospective, randomized, parallel, two-center study conducted in 36 patients (25 men, age 65 ± 10 years) undergoing AF ablation (33 % paroxysmal, 67 % persistent) guided by 3DATG (group 1) vs. CT (group 2) image fusion with EAM. 3DATG was performed on the Philips Allura Xper FD 10 system. Procedural characteristics including time, radiation exposure, outcome, and navigation accuracy were compared between two groups. There was no significant difference between the groups in total procedure duration or time spent for various procedural steps. Minor differences in procedural characteristics were present between two centers. Segmentation and fusion time for 3DATG or CT-EAM was short and similar between both centers. Accuracy of navigation guided by either method was high and did not depend on left atrial size. Maintenance of sinus rhythm between the two groups was no different up to 24 months of follow-up. This study did not find superiority of 3DATG-EAM image merge to guide AF ablation when compared to CT-EAM fusion. Both merging techniques result in similar navigation accuracy.

  11. Tooth segmentation system with intelligent editing for cephalometric analysis

    NASA Astrophysics Data System (ADS)

    Chen, Shoupu

    2015-03-01

    Cephalometric analysis is the study of the dental and skeletal relationship in the head, and it is used as an assessment and planning tool for improved orthodontic treatment of a patient. Conventional cephalometric analysis identifies bony and soft-tissue landmarks in 2D cephalometric radiographs, in order to diagnose facial features and abnormalities prior to treatment, or to evaluate the progress of treatment. Recent studies in orthodontics indicate that there are persistent inaccuracies and inconsistencies in the results provided using conventional 2D cephalometric analysis. Obviously, plane geometry is inappropriate for analyzing anatomical volumes and their growth; only a 3D analysis is able to analyze the three-dimensional, anatomical maxillofacial complex, which requires computing inertia systems for individual or groups of digitally segmented teeth from an image volume of a patient's head. For the study of 3D cephalometric analysis, the current paper proposes a system for semi-automatically segmenting teeth from a cone beam computed tomography (CBCT) volume with two distinct features, including an intelligent user-input interface for automatic background seed generation, and a graphics processing unit (GPU) acceleration mechanism for three-dimensional GrowCut volume segmentation. Results show a satisfying average DICE score of 0.92, with the use of the proposed tooth segmentation system, by 15 novice users who segmented a randomly sampled tooth set. The average GrowCut processing time is around one second per tooth, excluding user interaction time.

  12. [Depiction of the cranial nerves around the cavernous sinus by 3D reversed FISP with diffusion weighted imaging (3D PSIF-DWI)].

    PubMed

    Ishida, Go; Oishi, Makoto; Jinguji, Shinya; Yoneoka, Yuichiro; Sato, Mitsuya; Fujii, Yukihiko

    2011-10-01

    To evaluate the anatomy of cranial nerves running in and around the cavernous sinus, we employed three-dimensional reversed fast imaging with steady-state precession (FISP) with diffusion weighted imaging (3D PSIF-DWI) on 3-T magnetic resonance (MR) system. After determining the proper parameters to obtain sufficient resolution of 3D PSIF-DWI, we collected imaging data of 20-side cavernous regions in 10 normal subjects. 3D PSIF-DWI provided high contrast between the cranial nerves and other soft tissues, fluid, and blood in all subjects. We also created volume-rendered images of 3D PSIF-DWI and anatomically evaluated the reliability of visualizing optic, oculomotor, trochlear, trigeminal, and abducens nerves on 3D PSIF-DWI. All 20 sets of cranial nerves were visualized and 12 trochlear nerves and 6 abducens nerves were partially identified. We also presented preliminary clinical experiences in two cases with pituitary adenomas. The anatomical relationship between the tumor and cranial nerves running in and around the cavernous sinus could be three-dimensionally comprehended by 3D PSIF-DWI and the volume-rendered images. In conclusion, 3D PSIF-DWI has great potential to provide high resolution "cranial nerve imaging", which visualizes the whole length of the cranial nerves including the parts in the blood flow as in the cavernous sinus region.

  13. The three-dimensional structure of the cellobiohydrolase Cel7A from Aspergillus fumigatus at 1.5 Å resolution

    PubMed Central

    Moroz, Olga V.; Maranta, Michelle; Shaghasi, Tarana; Harris, Paul V.; Wilson, Keith S.; Davies, Gideon J.

    2015-01-01

    The enzymatic degradation of plant cell-wall cellulose is central to many industrial processes, including second-generation biofuel production. Key players in this deconstruction are the fungal cellobiohydrolases (CBHs), notably those from family GH7 of the carbohydrate-active enzymes (CAZY) database, which are generally known as CBHI enzymes. Here, three-dimensional structures are reported of the Aspergillus fumigatus CBHI Cel7A solved in uncomplexed and disaccharide-bound forms at resolutions of 1.8 and 1.5 Å, respectively. The product complex with a disaccharide in the +1 and +2 subsites adds to the growing three-dimensional insight into this family of industrially relevant biocatalysts. PMID:25615982

  14. Three-Dimensional Biologically Relevant Spectrum (BRS-3D): Shape Similarity Profile Based on PDB Ligands as Molecular Descriptors.

    PubMed

    Hu, Ben; Kuang, Zheng-Kun; Feng, Shi-Yu; Wang, Dong; He, Song-Bing; Kong, De-Xin

    2016-11-17

    The crystallized ligands in the Protein Data Bank (PDB) can be treated as the inverse shapes of the active sites of corresponding proteins. Therefore, the shape similarity between a molecule and PDB ligands indicated the possibility of the molecule to bind with the targets. In this paper, we proposed a shape similarity profile that can be used as a molecular descriptor for ligand-based virtual screening. First, through three-dimensional (3D) structural clustering, 300 diverse ligands were extracted from the druggable protein-ligand database, sc-PDB. Then, each of the molecules under scrutiny was flexibly superimposed onto the 300 ligands. Superimpositions were scored by shape overlap and property similarity, producing a 300 dimensional similarity array termed the "Three-Dimensional Biologically Relevant Spectrum (BRS-3D)". Finally, quantitative or discriminant models were developed with the 300 dimensional descriptor using machine learning methods (support vector machine). The effectiveness of this approach was evaluated using 42 benchmark data sets from the G protein-coupled receptor (GPCR) ligand library and the GPCR decoy database (GLL/GDD). We compared the performance of BRS-3D with other 2D and 3D state-of-the-art molecular descriptors. The results showed that models built with BRS-3D performed best for most GLL/GDD data sets. We also applied BRS-3D in histone deacetylase 1 inhibitors screening and GPCR subtype selectivity prediction. The advantages and disadvantages of this approach are discussed.

  15. Establishing the 3-D finite element solid model of femurs in partial by volume rendering.

    PubMed

    Zhang, Yinwang; Zhong, Wuxue; Zhu, Haibo; Chen, Yun; Xu, Lingjun; Zhu, Jianmin

    2013-01-01

    It remains rare to report three-dimensional (3-D) finite element solid model of femurs in partial by volume rendering method, though several methods of femoral 3-D finite element modeling are already available. We aim to analyze the advantages of the modeling method by establishing the 3-D finite element solid model of femurs in partial by volume rendering. A 3-D finite element model of the normal human femurs, made up of three anatomic structures: cortical bone, cancellous bone and pulp cavity, was constructed followed by pretreatment of the CT original image. Moreover, the finite-element analysis was carried on different material properties, three types of materials given for cortical bone, six assigned for cancellous bone, and single for pulp cavity. The established 3-D finite element of femurs contains three anatomical structures: cortical bone, cancellous bone, and pulp cavity. The compressive stress primarily concentrated in the medial surfaces of femur, especially in the calcar femorale. Compared with whole modeling by volume rendering method, the 3-D finite element solid model created in partial is more real and fit for finite element analysis. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

  16. Anatomical and Electrophysiological Comparison of CA1 Pyramidal Neurons of the Rat and Mouse

    PubMed Central

    Routh, Brandy N.; Johnston, Daniel; Harris, Kristen

    2009-01-01

    The study of learning and memory at the single-neuron level has relied on the use of many animal models, most notably rodents. Although many physiological and anatomical studies have been carried out in rats, the advent of genetically engineered mice has necessitated the comparison of new results in mice to established results from rats. Here we compare fundamental physiological and morphological properties and create three-dimensional compartmental models of identified hippocampal CA1 pyramidal neurons of one strain of rat, Sprague–Dawley, and two strains of mice, C57BL/6 and 129/SvEv. We report several differences in neuronal physiology and anatomy among the three animal groups, the most notable being that neurons of the 129/SvEv mice, but not the C57BL/6 mice, have higher input resistance, lower dendritic surface area, and smaller spines than those of rats. A surprising species-specific difference in membrane resonance indicates that both mouse strains have lower levels of the hyperpolarization-activated nonspecific cation current Ih. Simulations suggest that differences in Ih kinetics rather than maximal conductance account for the lower resonance. Our findings indicate that comparisons of data obtained across strains or species will need to account for these and potentially other physiological and anatomical differences. PMID:19675296

  17. Anatomical location differences between mutated and wild-type isocitrate dehydrogenase 1 in low-grade gliomas.

    PubMed

    Yu, Jinhua; Shi, Zhifeng; Ji, Chunhong; Lian, Yuxi; Wang, Yuanyuan; Chen, Liang; Mao, Ying

    2017-10-01

    Anatomical location of gliomas has been considered as a factor implicating the contributions of a specific precursor cells during the tumor growth. Isocitrate dehydrogenase 1 (IDH1) is a pathognomonic biomarker with a significant impact on the development of gliomas and remarkable prognostic effect. The correlation between anatomical location of tumor and IDH1 states for low-grade gliomas was analyzed quantitatively in this study. Ninety-two patients diagnosed of low-grade glioma pathologically were recruited in this study, including 65 patients with IDH1-mutated glioma and 27 patients with wide-type IDH1. A convolutional neural network was designed to segment the tumor from three-dimensional magnetic resonance imaging images. Voxel-based lesion symptom mapping was then employed to study the tumor location distribution differences between gliomas with mutated and wild-type IDH1. In order to characterize the location differences quantitatively, the Automated Anatomical Labeling Atlas was used to partition the standard brain atlas into 116 anatomical volumes of interests (AVOIs). The percentages of tumors with different IDH1 states in 116 AVOIs were calculated and compared. Support vector machine and AdaBoost algorithms were used to estimate the IDH1 status based on the 116 location features of each patient. Experimental results proved that the quantitative tumor location measurement could be a very important group of imaging features in biomarker estimation based on radiomics analysis of glioma.

  18. A scalable method to improve gray matter segmentation at ultra high field MRI.

    PubMed

    Gulban, Omer Faruk; Schneider, Marian; Marquardt, Ingo; Haast, Roy A M; De Martino, Federico

    2018-01-01

    High-resolution (functional) magnetic resonance imaging (MRI) at ultra high magnetic fields (7 Tesla and above) enables researchers to study how anatomical and functional properties change within the cortical ribbon, along surfaces and across cortical depths. These studies require an accurate delineation of the gray matter ribbon, which often suffers from inclusion of blood vessels, dura mater and other non-brain tissue. Residual segmentation errors are commonly corrected by browsing the data slice-by-slice and manually changing labels. This task becomes increasingly laborious and prone to error at higher resolutions since both work and error scale with the number of voxels. Here we show that many mislabeled, non-brain voxels can be corrected more efficiently and semi-automatically by representing three-dimensional anatomical images using two-dimensional histograms. We propose both a uni-modal (based on first spatial derivative) and multi-modal (based on compositional data analysis) approach to this representation and quantify the benefits in 7 Tesla MRI data of nine volunteers. We present an openly accessible Python implementation of these approaches and demonstrate that editing cortical segmentations using two-dimensional histogram representations as an additional post-processing step aids existing algorithms and yields improved gray matter borders. By making our data and corresponding expert (ground truth) segmentations openly available, we facilitate future efforts to develop and test segmentation algorithms on this challenging type of data.

  19. A scalable method to improve gray matter segmentation at ultra high field MRI

    PubMed Central

    De Martino, Federico

    2018-01-01

    High-resolution (functional) magnetic resonance imaging (MRI) at ultra high magnetic fields (7 Tesla and above) enables researchers to study how anatomical and functional properties change within the cortical ribbon, along surfaces and across cortical depths. These studies require an accurate delineation of the gray matter ribbon, which often suffers from inclusion of blood vessels, dura mater and other non-brain tissue. Residual segmentation errors are commonly corrected by browsing the data slice-by-slice and manually changing labels. This task becomes increasingly laborious and prone to error at higher resolutions since both work and error scale with the number of voxels. Here we show that many mislabeled, non-brain voxels can be corrected more efficiently and semi-automatically by representing three-dimensional anatomical images using two-dimensional histograms. We propose both a uni-modal (based on first spatial derivative) and multi-modal (based on compositional data analysis) approach to this representation and quantify the benefits in 7 Tesla MRI data of nine volunteers. We present an openly accessible Python implementation of these approaches and demonstrate that editing cortical segmentations using two-dimensional histogram representations as an additional post-processing step aids existing algorithms and yields improved gray matter borders. By making our data and corresponding expert (ground truth) segmentations openly available, we facilitate future efforts to develop and test segmentation algorithms on this challenging type of data. PMID:29874295

  20. Neuronavigation using three-dimensional proton magnetic resonance spectroscopy data.

    PubMed

    Kanberoglu, Berkay; Moore, Nina Z; Frakes, David; Karam, Lina J; Debbins, Josef P; Preul, Mark C

    2014-01-01

    Applications in clinical medicine can benefit from fusion of spectroscopy data with anatomical imagery. For example, new 3-dimensional (3D) spectroscopy techniques allow for improved correlation of metabolite profiles with specific regions of interest in anatomical tumor images, which can be useful in characterizing and treating heterogeneous tumors that appear structurally homogeneous. We sought to develop a clinical workflow and uniquely capable custom software tool to integrate advanced 3-tesla 3D proton magnetic resonance spectroscopic imaging ((1)H-MRSI) into industry standard image-guided neuronavigation systems, especially for use in brain tumor surgery. (1)H-MRSI spectra from preoperative scanning on 15 patients with recurrent or newly diagnosed meningiomas were processed and analyzed, and specific voxels were selected based on their chemical contents. 3D neuronavigation overlays were then generated and applied to anatomical image data in the operating room. The proposed 3D methods fully account for scanner calibration and comprise tools that we have now made publicly available. The new methods were quantitatively validated through a phantom study and applied successfully to mitigate biopsy uncertainty in a clinical study of meningiomas. The proposed methods improve upon the current state of the art in neuronavigation through the use of detailed 3D (1)H-MRSI data. Specifically, 3D MRSI-based overlays provide comprehensive, quantitative visual cues and location information during neurosurgery, enabling a progressive new form of online spectroscopy-guided neuronavigation. © 2014 S. Karger AG, Basel.

  1. Three-dimensional topographic fiber tract anatomy of the cerebrum.

    PubMed

    Yagmurlu, Kaan; Vlasak, Alexander L; Rhoton, Albert L

    2015-06-01

    The fiber tracts of the cerebrum may be a more important determinant of resection limits than the cortex. Better knowledge of the 3-dimensional (3-D) anatomic organization of the fiber pathways is important in planning safe and accurate surgery for lesions within the cerebrum. To examine the topographic anatomy of fiber tracts and subcortical gray matter of the human cerebrum and their relationships with consistent cortical, ventricular, and nuclear landmarks. Twenty-five formalin-fixed human brains and 4 whole cadaveric heads were examined by fiber dissection technique and ×6 to ×40 magnification. The fiber tracts and central core structures, including the insula and basal ganglia, were examined and their relationships captured in 3-D photography. The depth between the surface of the cortical gyri and selected fiber tracts was measured. The topographic relationships of the important association, projection, and commissural fasciculi within the cerebrum and superficial cortical landmarks were identified. Important landmarks with consistent relationships to the fiber tracts were the cortical gyri and sulci, limiting sulci of the insula, nuclear masses in the central core, and lateral ventricles. The fiber tracts were also organized in a consistent pattern in relation to each other. The anatomic findings are briefly compared with functional data from clinicoradiological analysis and intraoperative stimulation of fiber tracts. An understanding of the 3-D anatomic organization of the fiber tracts of the brain is essential in planning safe and accurate cerebral surgery.

  2. Three- and four-dimensional reconstruction of intra-cardiac anatomy from two-dimensional magnetic resonance images.

    PubMed

    Miquel, M E; Hill, D L G; Baker, E J; Qureshi, S A; Simon, R D B; Keevil, S F; Razavi, R S

    2003-06-01

    The present study was designed to evaluate the feasibility and clinical usefulness of three-dimensional (3D) reconstruction of intra-cardiac anatomy from a series of two-dimensional (2D) MR images using commercially available software. Sixteen patients (eight with structurally normal hearts but due to have catheter radio-frequency ablation of atrial tachyarrhythmias and eight with atrial septal defects (ASD) due for trans-catheter closure) and two volunteers were imaged at 1T. For each patient, a series of ECG-triggered images (5 mm thick slices, 2-3 mm apart) were acquired during breath holding. Depending on image quality, T1- or T2-weighted spin-echo images or gradient-echo cine images were used. The 3D reconstruction was performed off-line: the blood pools within cardiac chambers and great vessels were semi-automatically segmented, their outer surface was extracted using a marching cube algorithm and rendered. Intra- and inter-observer variability, effect of breath-hold position and differences between pulse sequences were assessed by imaging a volunteer. The 3D reconstructions were assessed by three cardiologists and compared with the 2D MR images and with 2D and 3D trans-esophagal and intra-cardiac echocardiography obtained during interventions. In every case, an anatomically detailed 3D volume was obtained. In the two patients where a 3 mm interval between slices was used, the resolution was not as good but it was still possible to visualize all the major anatomical structures. Spin-echo images lead to reconstructions more detailed than those obtained from gradient-echo images. However, gradient-echo images are easier to segment due to their greater contrast. Furthermore, because images were acquired at least at ten points in the cardiac cycles for every slice it was possible to reconstruct a cine loop and, for example, to visualize the evolution of the size and margins of the ASD during the cardiac cycle. 3D reconstruction proved to be an effective way to assess the relationship between the different parts of the cardiac anatomy. The technique was useful in planning interventions in these patients.

  3. Three-Dimensional Analysis of the Fundus of the Human Internal Acoustic Canal.

    PubMed

    Schart-Morén, Nadine; Larsson, Sune; Rask-Andersen, Helge; Li, Hao

    Documentation of the nerve components in the internal acoustic canal is essential before cochlea implantation surgery. Interpretations may be challenged by wide anatomical variations of the VIIIth nerve and their ramifications. Malformations may further defy proper nerve identification. Using microcomputed tomography, we analyzed the fundus bone channels in an archival collection of 113 macerated human temporal bones and 325 plastic inner molds. Data were subsequently processed by volume-rendering software using a bony tissue algorithm. Three-dimensional reconstructions were made, and through orthogonal sections, the topographic anatomy was established. The technique provided additional information regarding the anatomy of the nerve foramina/channels of the human fundus region, including variations and destinations. Channel anastomosis were found beyond the level of the fundus. A foramen of the transverse crest was identified. Three-dimensional reconstructions and cropping outlined the bone canals and demonstrated the highly variable VIIIth nerve anatomy at the fundus of the human inner acoustic canal. Myriad channel interconnections suggested an intricate system of neural interactive pathways in humans. Particularly striking was the variable anatomy of the saccule nerve channels. The results may assist in the preoperative interpretation of the VIIIth nerve anatomy.

  4. Three-dimensional prediction of the human eyeball and canthi for craniofacial reconstruction using cone-beam computed tomography.

    PubMed

    Kim, Sang-Rok; Lee, Kyung-Min; Cho, Jin-Hyoung; Hwang, Hyeon-Shik

    2016-04-01

    An anatomical relationship between the hard and soft tissues of the face is mandatory for facial reconstruction. The purpose of this study was to investigate the positions of the eyeball and canthi three-dimensionally from the relationships between the facial hard and soft tissues using cone-beam computed tomography (CBCT). CBCT scan data of 100 living subjects were used to obtain the measurements of facial hard and soft tissues. Stepwise multiple regression analyses were carried out using the hard tissue measurements in the orbit, nasal bone, nasal cavity and maxillary canine to predict the most probable positions of the eyeball and canthi within the orbit. Orbital width, orbital height, and orbital depth were strong predictors of the eyeball and canthi position. Intercanine width was also a predictor of the mediolateral position of the eyeball. Statistically significant regression models for the positions of the eyeball and canthi could be derived from the measurements of orbit and maxillary canine. These results suggest that CBCT data can be useful in predicting the positions of the eyeball and canthi three-dimensionally. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Application of an object-oriented programming paradigm in three-dimensional computer modeling of mechanically active gastrointestinal tissues.

    PubMed

    Rashev, P Z; Mintchev, M P; Bowes, K L

    2000-09-01

    The aim of this study was to develop a novel three-dimensional (3-D) object-oriented modeling approach incorporating knowledge of the anatomy, electrophysiology, and mechanics of externally stimulated excitable gastrointestinal (GI) tissues and emphasizing the "stimulus-response" principle of extracting the modeling parameters. The modeling method used clusters of class hierarchies representing GI tissues from three perspectives: 1) anatomical; 2) electrophysiological; and 3) mechanical. We elaborated on the first four phases of the object-oriented system development life-cycle: 1) analysis; 2) design; 3) implementation; and 4) testing. Generalized cylinders were used for the implementation of 3-D tissue objects modeling the cecum, the descending colon, and the colonic circular smooth muscle tissue. The model was tested using external neural electrical tissue excitation of the descending colon with virtual implanted electrodes and the stimulating current density distributions over the modeled surfaces were calculated. Finally, the tissue deformations invoked by electrical stimulation were estimated and represented by a mesh-surface visualization technique.

  6. Accelerating three-dimensional FDTD calculations on GPU clusters for electromagnetic field simulation.

    PubMed

    Nagaoka, Tomoaki; Watanabe, Soichi

    2012-01-01

    Electromagnetic simulation with anatomically realistic computational human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the computational human model, we adapt three-dimensional FDTD code to a multi-GPU cluster environment with Compute Unified Device Architecture and Message Passing Interface. Our multi-GPU cluster system consists of three nodes. The seven GPU boards (NVIDIA Tesla C2070) are mounted on each node. We examined the performance of the FDTD calculation on multi-GPU cluster environment. We confirmed that the FDTD calculation on the multi-GPU clusters is faster than that on a multi-GPU (a single workstation), and we also found that the GPU cluster system calculate faster than a vector supercomputer. In addition, our GPU cluster system allowed us to perform the large-scale FDTD calculation because were able to use GPU memory of over 100 GB.

  7. Diagnostic ability of computed tomography using DentaScan software in endodontics: case reports.

    PubMed

    Siotia, Jaya; Gupta, Sunil K; Acharya, Shashi R; Saraswathi, Vidya

    2011-01-01

    Radiographic examination is essential in diagnosis and treatment planning in endodontics. Conventional radiographs depict structures in two dimensions only. The ability to assess the area of interest in three dimensions is advantageous. Computed tomography is an imaging technique which produces three-dimensional images of an object by taking a series of two-dimensional sectional X-ray images. DentaScan is a computed tomography software program that allows the mandible and maxilla to be imaged in three planes: axial, panoramic, and cross-sectional. As computed tomography is used in endodontics, DentaScan can play a wider role in endodontic diagnosis. It provides valuable information in the assessment of the morphology of the root canal, diagnosis of root fractures, internal and external resorptions, pre-operative assessment of anatomic structures etc. The aim of this article is to explore the clinical usefulness of computed tomography and DentaScan in endodontic diagnosis, through a series of four cases of different endodontic problems.

  8. Modeling and analysis of visual digital impact model for a Chinese human thorax.

    PubMed

    Zhu, Jin; Wang, Kai-Ming; Li, Shu; Liu, Hai-Yan; Jing, Xiao; Li, Xiao-Fang; Liu, Yi-He

    2017-01-01

    To establish a three-dimensional finite element model of the human chest for engineering research on individual protection. Computed tomography (CT) scanning data were used for three-dimensional reconstruction with the medical image reconstruction software Mimics. The finite element method (FEM) preprocessing software ANSYS ICEM CFD was used for cell mesh generation, and the relevant material behavior parameters of all of the model's parts were specified. The finite element model was constructed with the FEM software, and the model availability was verified based on previous cadaver experimental data. A finite element model approximating the anatomical structure of the human chest was established, and the model's simulation results conformed to the results of the cadaver experiment overall. Segment data of the human body and specialized software can be utilized for FEM model reconstruction to satisfy the need for numerical analysis of shocks to the human chest in engineering research on body mechanics.

  9. Web-based Three-dimensional Virtual Body Structures: W3D-VBS

    PubMed Central

    Temkin, Bharti; Acosta, Eric; Hatfield, Paul; Onal, Erhan; Tong, Alex

    2002-01-01

    Major efforts are being made to improve the teaching of human anatomy to foster cognition of visuospatial relationships. The Visible Human Project of the National Library of Medicine makes it possible to create virtual reality-based applications for teaching anatomy. Integration of traditional cadaver and illustration-based methods with Internet-based simulations brings us closer to this goal. Web-based three-dimensional Virtual Body Structures (W3D-VBS) is a next-generation immersive anatomical training system for teaching human anatomy over the Internet. It uses Visible Human data to dynamically explore, select, extract, visualize, manipulate, and stereoscopically palpate realistic virtual body structures with a haptic device. Tracking user’s progress through evaluation tools helps customize lesson plans. A self-guided “virtual tour” of the whole body allows investigation of labeled virtual dissections repetitively, at any time and place a user requires it. PMID:12223495

  10. Three-dimensional temporomandibular joint modeling and animation.

    PubMed

    Cascone, Piero; Rinaldi, Fabrizio; Pagnoni, Mario; Marianetti, Tito Matteo; Tedaldi, Massimiliano

    2008-11-01

    The three-dimensional (3D) temporomandibular joint (TMJ) model derives from a study of the cranium by 3D virtual reality and mandibular function animation. The starting point of the project is high-fidelity digital acquisition of a human dry skull. The cooperation between the maxillofacial surgeon and the cartoonist enables the reconstruction of the fibroconnective components of the TMJ that are the keystone for comprehension of the anatomic and functional features of the mandible. The skeletal model is customized with the apposition of the temporomandibular ligament, the articular disk, the retrodiskal tissue, and the medial and the lateral ligament of the disk. The simulation of TMJ movement is the result of the integration of up-to-date data on the biomechanical restrictions. The 3D TMJ model is an easy-to-use application that may be run on a personal computer for the study of the TMJ and its biomechanics.

  11. Web-based three-dimensional Virtual Body Structures: W3D-VBS.

    PubMed

    Temkin, Bharti; Acosta, Eric; Hatfield, Paul; Onal, Erhan; Tong, Alex

    2002-01-01

    Major efforts are being made to improve the teaching of human anatomy to foster cognition of visuospatial relationships. The Visible Human Project of the National Library of Medicine makes it possible to create virtual reality-based applications for teaching anatomy. Integration of traditional cadaver and illustration-based methods with Internet-based simulations brings us closer to this goal. Web-based three-dimensional Virtual Body Structures (W3D-VBS) is a next-generation immersive anatomical training system for teaching human anatomy over the Internet. It uses Visible Human data to dynamically explore, select, extract, visualize, manipulate, and stereoscopically palpate realistic virtual body structures with a haptic device. Tracking user's progress through evaluation tools helps customize lesson plans. A self-guided "virtual tour" of the whole body allows investigation of labeled virtual dissections repetitively, at any time and place a user requires it.

  12. Influence of Thickness and Contact Surface Geometry of Condylar Stem of TMJ Implant on Its Stability

    NASA Astrophysics Data System (ADS)

    Arabshahi, Zohreh; Kashani, Jamal; Kadir, Mohammed Rafiq Abdul; Azari, Abbas

    The aim of this study is to examine the effect thickness and contact surface geometry of condylar stem of TMJ implant on its stability in total reconstruction system and evaluate the micro strain resulted in bone at fixation screw holes in jaw bone embedded with eight different designs of temporomandibular joint implants. A three dimensional model of a lower mandible of an adult were developed from a Computed Tomography scan images. Eight different TMJ implant designs and fixation screws were modeled. Three dimensional finite element models of eight implanted mandibles were analyzed. The forces assigned to the masticatory muscles for incisal clenching were applied consisting of nine important muscular loads. In chosen loading condition, The results indicated that the anatomical curvature contact surface design of TMJ implant can moderately improve the stability and the strain resulted in fixation screw holes in thinner TMJ implant was diminished in comparison with other thicknesses.

  13. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels

    PubMed Central

    Hinton, Thomas J.; Jallerat, Quentin; Palchesko, Rachelle N.; Park, Joon Hyung; Grodzicki, Martin S.; Shue, Hao-Jan; Ramadan, Mohamed H.; Hudson, Andrew R.; Feinberg, Adam W.

    2015-01-01

    We demonstrate the additive manufacturing of complex three-dimensional (3D) biological structures using soft protein and polysaccharide hydrogels that are challenging or impossible to create using traditional fabrication approaches. These structures are built by embedding the printed hydrogel within a secondary hydrogel that serves as a temporary, thermoreversible, and biocompatible support. This process, termed freeform reversible embedding of suspended hydrogels, enables 3D printing of hydrated materials with an elastic modulus <500 kPa including alginate, collagen, and fibrin. Computer-aided design models of 3D optical, computed tomography, and magnetic resonance imaging data were 3D printed at a resolution of ~200 μm and at low cost by leveraging open-source hardware and software tools. Proof-of-concept structures based on femurs, branched coronary arteries, trabeculated embryonic hearts, and human brains were mechanically robust and recreated complex 3D internal and external anatomical architectures. PMID:26601312

  14. A Review of Three-Dimensional Printing in Tissue Engineering.

    PubMed

    Sears, Nick A; Seshadri, Dhruv R; Dhavalikar, Prachi S; Cosgriff-Hernandez, Elizabeth

    2016-08-01

    Recent advances in three-dimensional (3D) printing technologies have led to a rapid expansion of applications from the creation of anatomical training models for complex surgical procedures to the printing of tissue engineering constructs. In addition to achieving the macroscale geometry of organs and tissues, a print layer thickness as small as 20 μm allows for reproduction of the microarchitectures of bone and other tissues. Techniques with even higher precision are currently being investigated to enable reproduction of smaller tissue features such as hepatic lobules. Current research in tissue engineering focuses on the development of compatible methods (printers) and materials (bioinks) that are capable of producing biomimetic scaffolds. In this review, an overview of current 3D printing techniques used in tissue engineering is provided with an emphasis on the printing mechanism and the resultant scaffold characteristics. Current practical challenges and technical limitations are emphasized and future trends of bioprinting are discussed.

  15. A Review of Current Clinical Applications of Three-Dimensional Printing in Spine Surgery

    PubMed Central

    Job, Alan Varkey; Chen, Jing; Baek, Jung Hwan

    2018-01-01

    Three-dimensional (3D) printing is a transformative technology with a potentially wide range of applications in the field of orthopaedic spine surgery. This article aims to review the current applications, limitations, and future developments of 3D printing technology in orthopaedic spine surgery. Current preoperative applications of 3D printing include construction of complex 3D anatomic models for improved visual understanding, preoperative surgical planning, and surgical simulations for resident education. Intraoperatively, 3D printers have been successfully used in surgical guidance systems and in the creation of patient specific implantable devices. Furthermore, 3D printing is revolutionizing the field of regenerative medicine and tissue engineering, allowing construction of biocompatible scaffolds suitable for cell growth and vasculature. Advances in printing technology and evidence of positive clinical outcomes are needed before there is an expansion of 3D printing applied to the clinical setting. PMID:29503698

  16. A Review of Current Clinical Applications of Three-Dimensional Printing in Spine Surgery.

    PubMed

    Cho, Woojin; Job, Alan Varkey; Chen, Jing; Baek, Jung Hwan

    2018-02-01

    Three-dimensional (3D) printing is a transformative technology with a potentially wide range of applications in the field of orthopaedic spine surgery. This article aims to review the current applications, limitations, and future developments of 3D printing technology in orthopaedic spine surgery. Current preoperative applications of 3D printing include construction of complex 3D anatomic models for improved visual understanding, preoperative surgical planning, and surgical simulations for resident education. Intraoperatively, 3D printers have been successfully used in surgical guidance systems and in the creation of patient specific implantable devices. Furthermore, 3D printing is revolutionizing the field of regenerative medicine and tissue engineering, allowing construction of biocompatible scaffolds suitable for cell growth and vasculature. Advances in printing technology and evidence of positive clinical outcomes are needed before there is an expansion of 3D printing applied to the clinical setting.

  17. A review of the surface and internal anatomy of the caudal canal in children.

    PubMed

    Lees, David; Frawley, Geoff; Taghavi, Kiarash; Mirjalili, Seyed Ali

    2014-08-01

    The anatomy of the sacral hiatus and caudal canal is prone to significant variation, yet studies assessing this in the pediatric population remain limited. Awareness of the possible anatomical variations is critical to the safety and success of caudal epidural blocks, particularly when image guidance is not employed. This systematic review analyzes the available evidence on the clinical anatomy of the caudal canal in pediatric patients, emphasizing surface anatomy and internal anatomical variations. A literature search using three electronic databases and standard pediatric and anatomy reference texts was conducted yielding 24 primary and seven secondary English-language sources. Appreciating that our current landmark-guided approaches to the caudal canal are not well studied in the pediatric population is important for both clinicians and researchers. © 2014 John Wiley & Sons Ltd.

  18. CFD and PTV steady flow investigation in an anatomically accurate abdominal aortic aneurysm.

    PubMed

    Boutsianis, Evangelos; Guala, Michele; Olgac, Ufuk; Wildermuth, Simon; Hoyer, Klaus; Ventikos, Yiannis; Poulikakos, Dimos

    2009-01-01

    There is considerable interest in computational and experimental flow investigations within abdominal aortic aneurysms (AAAs). This task stipulates advanced grid generation techniques and cross-validation because of the anatomical complexity. The purpose of this study is to examine the feasibility of velocity measurements by particle tracking velocimetry (PTV) in realistic AAA models. Computed tomography and rapid prototyping were combined to digitize and construct a silicone replica of a patient-specific AAA. Three-dimensional velocity measurements were acquired using PTV under steady averaged resting boundary conditions. Computational fluid dynamics (CFD) simulations were subsequently carried out with identical boundary conditions. The computational grid was created by splitting the luminal volume into manifold and nonmanifold subsections. They were filled with tetrahedral and hexahedral elements, respectively. Grid independency was tested on three successively refined meshes. Velocity differences of about 1% in all three directions existed mainly within the AAA sack. Pressure revealed similar variations, with the sparser mesh predicting larger values. PTV velocity measurements were taken along the abdominal aorta and showed good agreement with the numerical data. The results within the aneurysm neck and sack showed average velocity variations of about 5% of the mean inlet velocity. The corresponding average differences increased for all velocity components downstream the iliac bifurcation to as much as 15%. The two domains differed slightly due to flow-induced forces acting on the silicone model. Velocity quantification through narrow branches was problematic due to decreased signal to noise ratio at the larger local velocities. Computational wall pressure and shear fields are also presented. The agreement between CFD simulations and the PTV experimental data was confirmed by three-dimensional velocity comparisons at several locations within the investigated AAA anatomy indicating the feasibility of this approach.

  19. Three-dimensional circumferential liposuction of the overweight or obese upper arm.

    PubMed

    Hong, Yoon Gi; Sim, Hyung Bo; Lee, Mu Young; Seo, Sang Won; Chang, Choong Hyun; Yeo, Kwan Koo; Kim, June-kyu

    2012-06-01

    Due to recent trends in liposuction, anatomic consideration of the body's fatty layers is essential. Based on this knowledge, a circumferential approach to achieving maximal aesthetic results is highlighted. In the upper arm, aspiration of fat from only the posterolateral region can result in skin flaccidity and disharmony of the overall balance of the upper arm contour. Different suction techniques were applied depending on the degree of fat accumulation. If necessary, the operation area was extended around the axillary and scapular regions to overcome the limitations of the traditional method and to achieve optimal effects. To maximize skin contracture and redraping, the authors developed three-dimensional circumferential liposuction (3D-CL) based on two concepts: circumferential aspiration of the upper arm, to which was applied different fluid infiltration and liposuction techniques in three anatomic compartments (anteromedial, anterolateral, and posterolateral), and extension of liposuction to the periaxillar and parascarpular areas. A total of 57 female patients underwent liposuction of their excess arm fat using this technique. The authors achieved their aesthetic goals of a straightened inferior brachial border and a more slender body contour. Complications occurred for five patients including irregularity, incision-site scar, and transient pigmentation. Through 3D-CL, the limitations of traditional upper arm liposuction were overcome, and a slender arm contour with a straightened inferior brachial border was produced. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors at http://www.springer.com/00266.

  20. Marginal space learning for efficient detection of 2D/3D anatomical structures in medical images.

    PubMed

    Zheng, Yefeng; Georgescu, Bogdan; Comaniciu, Dorin

    2009-01-01

    Recently, marginal space learning (MSL) was proposed as a generic approach for automatic detection of 3D anatomical structures in many medical imaging modalities [1]. To accurately localize a 3D object, we need to estimate nine pose parameters (three for position, three for orientation, and three for anisotropic scaling). Instead of exhaustively searching the original nine-dimensional pose parameter space, only low-dimensional marginal spaces are searched in MSL to improve the detection speed. In this paper, we apply MSL to 2D object detection and perform a thorough comparison between MSL and the alternative full space learning (FSL) approach. Experiments on left ventricle detection in 2D MRI images show MSL outperforms FSL in both speed and accuracy. In addition, we propose two novel techniques, constrained MSL and nonrigid MSL, to further improve the efficiency and accuracy. In many real applications, a strong correlation may exist among pose parameters in the same marginal spaces. For example, a large object may have large scaling values along all directions. Constrained MSL exploits this correlation for further speed-up. The original MSL only estimates the rigid transformation of an object in the image, therefore cannot accurately localize a nonrigid object under a large deformation. The proposed nonrigid MSL directly estimates the nonrigid deformation parameters to improve the localization accuracy. The comparison experiments on liver detection in 226 abdominal CT volumes demonstrate the effectiveness of the proposed methods. Our system takes less than a second to accurately detect the liver in a volume.

  1. Three-dimensional finite element analysis of occipitocervical fixation using an anterior occiput-to-axis locking plate system: a pilot study.

    PubMed

    Cai, Xianhua; Yu, Yang; Liu, Zhichao; Zhang, Meichao; Huang, Weibing

    2014-08-01

    Although there are many techniques for occipitocervical fixation, there have been no reports regarding occipitocervical fixation via the use of an anterior anatomical locking plate system. The biomechanics of this new system were analyzed by a three-dimensional finite element to provide a theoretical basis for clinical application. This was a modeling study. We studied a 27-year-old healthy male volunteer in whom cervical disease was excluded via X-ray examination. The states of stress and strain of these two internal fixation devices were analyzed. A three-dimensional finite element model of normal occiput-C2 was established based on the anatomical data from a Chinese population. An unstable model of occipital-cervical region was established by subtracting several unit structures from the normal model. An anterior occiput-to-axis locking titanium plate system was then applied and an anterior occiput-to-axis screw fixation was performed on the unstable model. Limitation of motion was performed on the surface of the fixed model, and physiological loads were imposed on the surface of the skull base. Under various loads from different directions, the peak values of displacement of the anterior occiput-to-axis locking titanium plate system decreased 15.5%, 12.5%, 14.4%, and 23.7%, respectively, under the loads of flexion, extension, lateral bending, and axial rotation. Compared with the anterior occiput-to-axis screw fixation, the peak values of stress of the anterior occiput-to-axis locking titanium plate system also decreased 3.9%, 2.9%, 9.7%, and 7.2%, respectively, under the loads of flexion, extension, lateral bending, and axial rotation. The anterior occiput-to-axis locking titanium plate system proved superior to the anterior occiput-to-axis screw system both in the stress distribution and fixation stability based on finite element analysis. It provides a new clinical option for anterior occipitocervical fixation. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Multi-material 3D Models for Temporal Bone Surgical Simulation.

    PubMed

    Rose, Austin S; Kimbell, Julia S; Webster, Caroline E; Harrysson, Ola L A; Formeister, Eric J; Buchman, Craig A

    2015-07-01

    A simulated, multicolor, multi-material temporal bone model can be created using 3-dimensional (3D) printing that will prove both safe and beneficial in training for actual temporal bone surgical cases. As the process of additive manufacturing, or 3D printing, has become more practical and affordable, a number of applications for the technology in the field of Otolaryngology-Head and Neck Surgery have been considered. One area of promise is temporal bone surgical simulation. Three-dimensional representations of human temporal bones were created from temporal bone computed tomography (CT) scans using biomedical image processing software. Multi-material models were then printed and dissected in a temporal bone laboratory by attending and resident otolaryngologists. A 5-point Likert scale was used to grade the models for their anatomical accuracy and suitability as a simulation of cadaveric and operative temporal bone drilling. The models produced for this study demonstrate significant anatomic detail and a likeness to human cadaver specimens for drilling and dissection. Simulated temporal bones created by this process have potential benefit in surgical training, preoperative simulation for challenging otologic cases, and the standardized testing of temporal bone surgical skills. © The Author(s) 2015.

  3. Assessment of mitral apparatus in patients with acute inferoposterior myocardial infarction and ischaemic mitral regurgitation with two-dimensional echocardiography from anatomically correct imaging planes.

    PubMed

    Mėlinytė, Karolina; Valuckiene, Živile; Jurkevičius, Renaldas

    2017-01-01

    Ischaemic mitral regurgitation (IMR) is associated with adverse prognosis after myocardial infarction (MI) as a result of left ventricular remodelling and geometric deformation of the mitral apparatus (MA). The aim of this study was to assess MA from anatomically correct imaging planes in acute inferoposterior MI and IMR. Ninety-three patients with no structural cardiac valve abnormalities and the first acute inferoposterior MI were prospectively enrolled into the study. Two-dimensional transthoracic echocardiography for MA assessment was performed within 48 h of presentation after reperfusion therapy. Based on the degree of mitral regurgitation (MR), patients were divided into either a no significant MR (NMR) group (n = 52 with no or mild, grade 0-I MR) or an IMR group (n = 41 with grade ≥ 2 MR). The control group consisted of 45 healthy individuals. Ischaemic MR was related with dilatation of the left ventricle chambers, decrease in ejection fraction, increase in mitral annulus diameter and area, and changes in subvalvular apparatus when compared with the NMR group or healthy individuals. Ischaemic MR in acute inferoposterior MI is related with worse lesions in MA geometry that cause insufficiency of mitral valve function.

  4. Investigation Of Integrating Three-Dimensional (3-D) Geometry Into The Visual Anatomical Injury Descriptor (Visual AID) Using WebGL

    DTIC Science & Technology

    2011-08-01

    generated using the Zygote Human Anatomy 3-D model (3). Use of a reference anatomy independent of personal identification, such as Zygote, allows Visual...Zygote Human Anatomy 3D Model, 2010. http://www.zygote.com/ (accessed July 26, 2011). 4. Khronos Group Web site. Khronos to Create New Open Standard for...understanding of the information at hand. In order to fulfill the medical illustration track, I completed a concentration in science, focusing on human

  5. A comparative study of approaches to compute the field distribution of deep brain stimulation in the Hemiparkinson rat model.

    PubMed

    Bohme, Andrea; van Rienen, Ursula

    2016-08-01

    Computational modeling of the stimulating field distribution during Deep Brain Stimulation provides an opportunity to advance our knowledge of this neurosurgical therapy for Parkinson's disease. There exist several approaches to model the target region for Deep Brain Stimulation in Hemi-parkinson Rats with volume conductor models. We have described and compared the normalized mapping approach as well as the modeling with three-dimensional structures, which include curvilinear coordinates to assure an anatomically realistic conductivity tensor orientation.

  6. Anatomical education and surgical simulation based on the Chinese Visible Human: a three-dimensional virtual model of the larynx region.

    PubMed

    Liu, Kaijun; Fang, Binji; Wu, Yi; Li, Ying; Jin, Jun; Tan, Liwen; Zhang, Shaoxiang

    2013-09-01

    Anatomical knowledge of the larynx region is critical for understanding laryngeal disease and performing required interventions. Virtual reality is a useful method for surgical education and simulation. Here, we assembled segmented cross-section slices of the larynx region from the Chinese Visible Human dataset. The laryngeal structures were precisely segmented manually as 2D images, then reconstructed and displayed as 3D images in the virtual reality Dextrobeam system. Using visualization and interaction with the virtual reality modeling language model, a digital laryngeal anatomy instruction was constructed using HTML and JavaScript languages. The volume larynx models can thus display an arbitrary section of the model and provide a virtual dissection function. This networked teaching system of the digital laryngeal anatomy can be read remotely, displayed locally, and manipulated interactively.

  7. Facial reconstruction – anatomical art or artistic anatomy?

    PubMed Central

    Wilkinson, Caroline

    2010-01-01

    Facial reconstruction is employed in the context of forensic investigation and for creating three-dimensional portraits of people from the past, from ancient Egyptian mummies and bog bodies to digital animations of J. S. Bach. This paper considers a facial reconstruction method (commonly known as the Manchester method) associated with the depiction and identification of the deceased from skeletal remains. Issues of artistic licence and scientific rigour, in relation to soft tissue reconstruction, anatomical variation and skeletal assessment, are discussed. The need for artistic interpretation is greatest where only skeletal material is available, particularly for the morphology of the ears and mouth, and with the skin for an ageing adult. The greatest accuracy is possible when information is available from preserved soft tissue, from a portrait, or from a pathological condition or healed injury. PMID:20447245

  8. LIPS database with LIPService: a microscopic image database of intracellular structures in Arabidopsis guard cells.

    PubMed

    Higaki, Takumi; Kutsuna, Natsumaro; Hasezawa, Seiichiro

    2013-05-16

    Intracellular configuration is an important feature of cell status. Recent advances in microscopic imaging techniques allow us to easily obtain a large number of microscopic images of intracellular structures. In this circumstance, automated microscopic image recognition techniques are of extreme importance to future phenomics/visible screening approaches. However, there was no benchmark microscopic image dataset for intracellular organelles in a specified plant cell type. We previously established the Live Images of Plant Stomata (LIPS) database, a publicly available collection of optical-section images of various intracellular structures of plant guard cells, as a model system of environmental signal perception and transduction. Here we report recent updates to the LIPS database and the establishment of a database table, LIPService. We updated the LIPS dataset and established a new interface named LIPService to promote efficient inspection of intracellular structure configurations. Cell nuclei, microtubules, actin microfilaments, mitochondria, chloroplasts, endoplasmic reticulum, peroxisomes, endosomes, Golgi bodies, and vacuoles can be filtered using probe names or morphometric parameters such as stomatal aperture. In addition to the serial optical sectional images of the original LIPS database, new volume-rendering data for easy web browsing of three-dimensional intracellular structures have been released to allow easy inspection of their configurations or relationships with cell status/morphology. We also demonstrated the utility of the new LIPS image database for automated organelle recognition of images from another plant cell image database with image clustering analyses. The updated LIPS database provides a benchmark image dataset for representative intracellular structures in Arabidopsis guard cells. The newly released LIPService allows users to inspect the relationship between organellar three-dimensional configurations and morphometrical parameters.

  9. Transition Documentation on a Three-Element High-Lift Configuration at High Reynolds Numbers--Database. [conducted in the Langley Low Turbulence Pressure Tunnel

    NASA Technical Reports Server (NTRS)

    Bertelrud, Arild; Johnson, Sherylene; Anders, J. B. (Technical Monitor)

    2002-01-01

    A 2-D (two dimensional) high-lift system experiment was conducted in August of 1996 in the Low Turbulence Pressure Tunnel at NASA Langley Research Center, Hampton, VA. The purpose of the experiment was to obtain transition measurements on a three element high-lift system for CFD (computational fluid dynamics) code validation studies. A transition database has been created using the data from this experiment. The present report details how the hot-film data and the related pressure data are organized in the database. Data processing codes to access the data in an efficient and reliable manner are described and limited examples are given on how to access the database and store acquired information.

  10. Levator hiatal area as a risk factor for cystocele recurrence after surgery: a prospective study.

    PubMed

    Vergeldt, T F M; Notten, K J B; Weemhoff, M; van Kuijk, S M J; Mulder, F E M; Beets-Tan, R G; Vliegen, R F A; Gondrie, E T C M; Bergmans, M G M; Roovers, J P W R; Kluivers, K B

    2015-07-01

    To investigate whether increased levator hiatal area, measured preoperatively, was independently associated with anatom-ical cystocele recurrence 12 months after anterior colporrhaphy. Multicentre prospective cohort study. Nine teaching hospitals in the Netherlands. Women planned for conventional anterior colporrhaphy without mesh. Women underwent physical examination, translabial three-dimensional (3D) ultrasound and magnetic resonance imaging (MRI) prior to surgery. At 12 months after surgery the physical examination was repeated. Women with and without anatomical cystocele recurrence were compared to assess the association with levator hiatal area on 3D ultrasound, levator hiatal area on MRI, and potential confounding factors. The receiver operating characteristic (ROC) curve was created to quantify the discriminative ability of using levator hiatal area to predict anatomical cystocele recurrence. Of 139 included women, 76 (54.7%) had anatomical cystocele recurrence. Preoperative stage 3 or 4 and increased levator hiatal area during Valsalva on ultrasound were significantly associated with cystocele recurrence, with odds ratios of 3.47 (95% confidence interval, 95% CI 1.66-7.28) and 1.06 (95% CI 1.01-1.11) respectively. The area under the ROC curve was 0.60 (95% CI 0.51-0.70) for levator hiatal area during Valsalva on ultrasound, and 0.65 (95% CI 0.55-0.71) for preoperative Pelvic Organ Prolapse Quantification (POP-Q) stage. Increased levator hiatal area during Valsalva on ultrasound prior to surgery and preoperative stage 3 or 4 are independent risk factors for anatomical cystocele recurrence after anterior colporrhaphy; however, increased levator hiatal area as the sole factor for predicting anatomical cystocele recurrence after surgery shows poor test characteristics. © 2015 Royal College of Obstetricians and Gynaecologists.

  11. Three-dimensional reconstruction of rat knee joint using episcopic fluorescence image capture.

    PubMed

    Takaishi, R; Aoyama, T; Zhang, X; Higuchi, S; Yamada, S; Takakuwa, T

    2014-10-01

    Development of the knee joint was morphologically investigated, and the process of cavitation was analyzed by using episcopic fluorescence image capture (EFIC) to create spatial and temporal three-dimensional (3D) reconstructions. Knee joints of Wister rat embryos between embryonic day (E)14 and E20 were investigated. Samples were sectioned and visualized using an EFIC. Then, two-dimensional image stacks were reconstructed using OsiriX software, and 3D reconstructions were generated using Amira software. Cavitations of the knee joint were constructed from five divided portions. Cavity formation initiated at multiple sites at E17; among them, the femoropatellar cavity (FPC) was the first. Cavitations of the medial side preceded those of the lateral side. Each cavity connected at E20 when cavitations around the anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) were completed. Cavity formation initiated from six portions. In each portion, development proceeded asymmetrically. These results concerning anatomical development of the knee joint using EFIC contribute to a better understanding of the structural feature of the knee joint. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  12. Paradigm shift regarding the transversalis fascia, preperitoneal space, and Retzius' space.

    PubMed

    Asakage, N

    2018-06-01

    There has been confusion in the anatomical recognition when performing inguinal hernia operations in Japan. From now on, a paradigm shift from the concept of two-dimensional layer structure to the three-dimensional space recognition is necessary to promote an understanding of anatomy. Along with the formation of the abdominal wall, the extraperitoneal space is formed by the transversalis fascia and preperitoneal space. The transversalis fascia is a somatic vascular fascia originating from an arteriovenous fascia. It is a dense areolar tissue layer at the outermost of the extraperitoneal space that runs under the diaphragm and widely lines the body wall muscle. The umbilical funiculus is taken into the abdominal wall and transformed into the preperitoneal space that is a local three-dimensional cavity enveloping preperitoneal fasciae composed of the renal fascia, vesicohypogastric fascia, and testiculoeferential fascia. The Retzius' space is an artificial cavity formed at the boundary between the transversalis fascia and preperitoneal space. In the underlay mesh repair, the mesh expands in the range spanning across the Retzius' space and preperitoneal space.

  13. Student perceptions of an upper-level, undergraduate human anatomy laboratory course without cadavers.

    PubMed

    Wright, Shirley J

    2012-01-01

    Several programs in health professional education require or are considering requiring upper-level human anatomy as prerequisite for their applicants. Undergraduate students are confronted with few institutions offering such a course, in part because of the expense and logistical issues associated with a cadaver-based human anatomy course. This study describes the development of and student reactions to an upper-level human anatomy laboratory course for undergraduate students that used a regional approach and contemporary, alternative teaching methods to a cadaver-based course. The alternative pedagogy to deliver the curriculum included use of commercially available, three-dimensional anatomical virtual dissection software, anatomical models coupled with a learning management system to offer Web-based learning, and a new laboratory manual with collaborative exercises designed to develop the student's anatomical skills and collaborative team skills. A Likert-scale survey with open-ended questions was used to ascertain student perceptions of the course and its various aspects. Students perceived that the noncadaver-based, upper-level human anatomy course with an engaging, regional approach is highly valuable in their learning of anatomy. anatomy. Copyright © 2012 American Association of Anatomists.

  14. Technical report on the surface reconstruction of stacked contours by using the commercial software

    NASA Astrophysics Data System (ADS)

    Shin, Dong Sun; Chung, Min Suk; Hwang, Sung Bae; Park, Jin Seo

    2007-03-01

    After drawing and stacking contours of a structure, which is identified in the serially sectioned images, three-dimensional (3D) image can be made by surface reconstruction. Usually, software is composed for the surface reconstruction. In order to compose the software, medical doctors have to acquire the help of computer engineers. So in this research, surface reconstruction of stacked contours was tried by using commercial software. The purpose of this research is to enable medical doctors to perform surface reconstruction to make 3D images by themselves. The materials of this research were 996 anatomic images (1 mm intervals) of left lower limb, which were made by serial sectioning of a cadaver. On the Adobe Photoshop, contours of 114 anatomic structures were drawn, which were exported to Adobe Illustrator files. On the Maya, contours of each anatomic structure were stacked. On the Rhino, superoinferior lines were drawn along all stacked contours to fill quadrangular surfaces between contours. On the Maya, the contours were deleted. 3D images of 114 anatomic structures were assembled with their original locations preserved. With the surface reconstruction technique, developed in this research, medical doctors themselves could make 3D images of the serially sectioned images such as CTs and MRIs.

  15. Into the decomposed body-forensic digital autopsy using multislice-computed tomography.

    PubMed

    Thali, M J; Yen, K; Schweitzer, W; Vock, P; Ozdoba, C; Dirnhofer, R

    2003-07-08

    It is impossible to obtain a representative anatomical documentation of an entire body using classical X-ray methods, they subsume three-dimensional bodies into a two-dimensional level. We used the novel multislice-computed tomography (MSCT) technique in order to evaluate a case of homicide with putrefaction of the corpse before performing a classical forensic autopsy. This non-invasive method showed gaseous distension of the decomposing organs and tissues in detail as well as a complex fracture of the calvarium. MSCT also proved useful in screening for foreign matter in decomposing bodies, and full-body scanning took only a few minutes. In conclusion, we believe postmortem MSCT imaging is an excellent vizualisation tool with great potential for forensic documentation and evaluation of decomposed bodies.

  16. Atlas-guided cluster analysis of large tractography datasets.

    PubMed

    Ros, Christian; Güllmar, Daniel; Stenzel, Martin; Mentzel, Hans-Joachim; Reichenbach, Jürgen Rainer

    2013-01-01

    Diffusion Tensor Imaging (DTI) and fiber tractography are important tools to map the cerebral white matter microstructure in vivo and to model the underlying axonal pathways in the brain with three-dimensional fiber tracts. As the fast and consistent extraction of anatomically correct fiber bundles for multiple datasets is still challenging, we present a novel atlas-guided clustering framework for exploratory data analysis of large tractography datasets. The framework uses an hierarchical cluster analysis approach that exploits the inherent redundancy in large datasets to time-efficiently group fiber tracts. Structural information of a white matter atlas can be incorporated into the clustering to achieve an anatomically correct and reproducible grouping of fiber tracts. This approach facilitates not only the identification of the bundles corresponding to the classes of the atlas; it also enables the extraction of bundles that are not present in the atlas. The new technique was applied to cluster datasets of 46 healthy subjects. Prospects of automatic and anatomically correct as well as reproducible clustering are explored. Reconstructed clusters were well separated and showed good correspondence to anatomical bundles. Using the atlas-guided cluster approach, we observed consistent results across subjects with high reproducibility. In order to investigate the outlier elimination performance of the clustering algorithm, scenarios with varying amounts of noise were simulated and clustered with three different outlier elimination strategies. By exploiting the multithreading capabilities of modern multiprocessor systems in combination with novel algorithms, our toolkit clusters large datasets in a couple of minutes. Experiments were conducted to investigate the achievable speedup and to demonstrate the high performance of the clustering framework in a multiprocessing environment.

  17. Motivated Proteins: A web application for studying small three-dimensional protein motifs

    PubMed Central

    Leader, David P; Milner-White, E James

    2009-01-01

    Background Small loop-shaped motifs are common constituents of the three-dimensional structure of proteins. Typically they comprise between three and seven amino acid residues, and are defined by a combination of dihedral angles and hydrogen bonding partners. The most abundant of these are αβ-motifs, asx-motifs, asx-turns, β-bulges, β-bulge loops, β-turns, nests, niches, Schellmann loops, ST-motifs, ST-staples and ST-turns. We have constructed a database of such motifs from a range of high-quality protein structures and built a web application as a visual interface to this. Description The web application, Motivated Proteins, provides access to these 12 motifs (with 48 sub-categories) in a database of over 400 representative proteins. Queries can be made for specific categories or sub-categories of motif, motifs in the vicinity of ligands, motifs which include part of an enzyme active site, overlapping motifs, or motifs which include a particular amino acid sequence. Individual proteins can be specified, or, where appropriate, motifs for all proteins listed. The results of queries are presented in textual form as an (X)HTML table, and may be saved as parsable plain text or XML. Motifs can be viewed and manipulated either individually or in the context of the protein in the Jmol applet structural viewer. Cartoons of the motifs imposed on a linear representation of protein secondary structure are also provided. Summary information for the motifs is available, as are histograms of amino acid distribution, and graphs of dihedral angles at individual positions in the motifs. Conclusion Motivated Proteins is a publicly and freely accessible web application that enables protein scientists to study small three-dimensional motifs without requiring knowledge of either Structured Query Language or the underlying database schema. PMID:19210785

  18. Feasibility of creating a high-resolution 3D diffusion tensor imaging based atlas of the human brainstem: A case study at 11.7T

    PubMed Central

    Aggarwal, Manisha; Zhang, Jiangyang; Pletnikova, Olga; Crain, Barbara; Troncoso, Juan; Mori, Susumu

    2013-01-01

    A three-dimensional stereotaxic atlas of the human brainstem based on high resolution ex vivo diffusion tensor imaging (DTI) is introduced. The atlas consists of high resolution (125–255 μm isotropic) three-dimensional DT images of the formalin-fixed brainstem acquired at 11.7T. The DTI data revealed microscopic neuroanatomical details, allowing three-dimensional visualization and reconstruction of fiber pathways including the decussation of the pyramidal tract fibers, and interdigitating fascicles of the corticospinal and transverse pontine fibers. Additionally, strong grey-white matter contrasts in the apparent diffusion coefficient (ADC) maps enabled precise delineation of grey matter nuclei in the brainstem, including the cranial nerve and the inferior olivary nuclei. Comparison with myelin-stained histology shows that at the level of resolution achieved in this study, the structural details resolved with DTI contrasts in the brainstem were comparable to anatomical delineation obtained with histological sectioning. Major neural structures delineated from DTI contrasts in the brainstem are segmented and three-dimensionally reconstructed. Further, the ex vivo DTI data are nonlinearly mapped to a widely-used in vivo human brain atlas, to construct a high-resolution atlas of the brainstem in the Montreal Neurological Institute (MNI) stereotaxic coordinate space. The results demonstrate the feasibility of developing a 3D DTI based atlas for detailed characterization of brainstem neuroanatomy with high resolution and contrasts, which will be a useful resource for research and clinical applications. PMID:23384518

  19. Variations of the superficial middle cerebral vein: classification using three-dimensional CT angiography.

    PubMed

    Suzuki, Y; Matsumoto, K

    2000-05-01

    Classification of variations of the superficial middle cerebral vein (SMCV) remains ambiguous. We propose a new classification system based on embryologic development for preoperative examination. Three-dimensional CT angiography was used to evaluate 500 SMCVs (in 250 patients). The outflow vessels from the SMCV were classified into seven types on the basis of embryologic development. The 3D CT angiograms in axial stereoscopic and oblique views and multiple intensity projection images were evaluated by the same neurosurgeon on two occasions. Inconsistent interpretations were regarded as equivocal. Three-dimensional CT angiography clearly depicted the SMCV running along the lesser wing or the middle cranial fossa. However, the outflow vessel could not be confirmed as the sphenoparietal, cavernous, or emissary type in 39 (8%) of the sides. SMCVs running in the middle cranial fossa to join the transverse sinus or superior petrosal sinus were accurately identified. SMCVs were present in 456 sides: 62% entered the sphenoparietal sinus or the cavernous sinus and 12% joined the emissary vein. Nine vessels were the superior petrosal type, 10 the basal type, 12 the squamosal type, and 44 the undeveloped type. Three-dimensional CT angiography can depict the vessels and their anatomic relationship to the bone structure, allowing identification of the SMCV variant in individual patients. Preoperative planning for skull base surgery requires such information to reduce the invasiveness of the procedure. With the use of our classification system, 3D CT angiography can provide exact and practical information concerning the SMCV.

  20. Comparing the Microsoft Kinect to a traditional mouse for adjusting the viewed tissue densities of three-dimensional anatomical structures

    NASA Astrophysics Data System (ADS)

    Juhnke, Bethany; Berron, Monica; Philip, Adriana; Williams, Jordan; Holub, Joseph; Winer, Eliot

    2013-03-01

    Advancements in medical image visualization in recent years have enabled three-dimensional (3D) medical images to be volume-rendered from magnetic resonance imaging (MRI) and computed tomography (CT) scans. Medical data is crucial for patient diagnosis and medical education, and analyzing these three-dimensional models rather than two-dimensional (2D) slices would enable more efficient analysis by surgeons and physicians, especially non-radiologists. An interaction device that is intuitive, robust, and easily learned is necessary to integrate 3D modeling software into the medical community. The keyboard and mouse configuration does not readily manipulate 3D models because these traditional interface devices function within two degrees of freedom, not the six degrees of freedom presented in three dimensions. Using a familiar, commercial-off-the-shelf (COTS) device for interaction would minimize training time and enable maximum usability with 3D medical images. Multiple techniques are available to manipulate 3D medical images and provide doctors more innovative ways of visualizing patient data. One such example is windowing. Windowing is used to adjust the viewed tissue density of digital medical data. A software platform available at the Virtual Reality Applications Center (VRAC), named Isis, was used to visualize and interact with the 3D representations of medical data. In this paper, we present the methodology and results of a user study that examined the usability of windowing 3D medical imaging using a Kinect™ device compared to a traditional mouse.

  1. Anatomics: the intersection of anatomy and bioinformatics

    PubMed Central

    Bard, Jonathan BL

    2005-01-01

    Computational resources are now using the tissue names of the major model organisms so that tissue-associated data can be archived in and retrieved from databases on the basis of developing and adult anatomy. For this to be done, the set of tissues in that organism (its anatome) has to be organized in a way that is computer-comprehensible. Indeed, such formalization is a necessary part of what is becoming known as systems biology, in which explanations of high-level biological phenomena are not only sought in terms of lower-level events, but are articulated within a computational framework. Lists of tissue names alone, however, turn out to be inadequate for this formalization because tissue organization is essentially hierarchical and thus cannot easily be put into tables, the natural format of relational databases. The solution now adopted is to organize the anatomy of each organism as a hierarchy of tissue names and linking relationships (e.g. the tibia is PART OF the leg, the tibia IS-A bone) within what are known as ontologies. In these, a unique ID is assigned to each tissue and this can be used within, for example, gene-expression databases to link data to tissue organization, and also used to query other data sources (interoperability), while inferences about the anatomy can be made within the ontology on the basis of the relationships. There are now about 15 such anatomical ontologies, many of which are linked to organism databases; these ontologies are now publicly available at the Open Biological Ontologies website (http://obo.sourceforge.net) from where they can be freely downloaded and viewed using standard tools. This review considers how anatomy is formalized within ontologies, together with the problems that have had to be solved for this to be done. It is suggested that the appropriate term for the analysis, computer formulation and use of the anatome is anatomics. PMID:15679867

  2. Improved Data Analysis Tools for the Thermal Emission Spectrometer

    NASA Astrophysics Data System (ADS)

    Rodriguez, K.; Laura, J.; Fergason, R.; Bogle, R.

    2017-06-01

    We plan to stand up three different database systems for testing of a new datastore for MGS TES data allowing for more accessible tools supporting high throughput data analysis on the high-dimensionality hyperspectral data set.

  3. 3D printing from cardiovascular CT: a practical guide and review

    PubMed Central

    Birbara, Nicolette S.; Hussain, Tarique; Greil, Gerald; Foley, Thomas A.; Pather, Nalini

    2017-01-01

    Current cardiovascular imaging techniques allow anatomical relationships and pathological conditions to be captured in three dimensions. Three-dimensional (3D) printing, or rapid prototyping, has also become readily available and made it possible to transform virtual reconstructions into physical 3D models. This technology has been utilised to demonstrate cardiovascular anatomy and disease in clinical, research and educational settings. In particular, 3D models have been generated from cardiovascular computed tomography (CT) imaging data for purposes such as surgical planning and teaching. This review summarises applications, limitations and practical steps required to create a 3D printed model from cardiovascular CT. PMID:29255693

  4. Three Dimensional Guidance for the NPS Autonomous Underwater Vehicle

    DTIC Science & Technology

    1991-09-01

    is loaded into a least-squares-fit algorithm to determine surfaces of polyhedrons . These computed surfaces are then compared with the known...the obstacle information stored in the vehicle’s environmental database , there is great potential of encountering unplanned for obstacles during the... database that holds current posture information recorded by the navigator. This data store receives a new current posture on each cycle of the control

  5. Presurgical nasoalveolar molding for cleft lip and palate: the application of digitally designed molds.

    PubMed

    Shen, Congcong; Yao, Caroline A; Magee, William; Chai, Gang; Zhang, Yan

    2015-06-01

    The authors present a novel nasoalveolar molding protocol by prefabricating sets of nasoalveolar molding appliances using three-dimensional technology. Prospectively, 17 infants with unilateral complete cleft lip and palate underwent the authors' protocol before primary cheiloplasty. An initial nasoalveolar molding appliance was created based on the patient's first and only in-person maxillary cast, produced from a traditional intraoral dental impression. Thereafter, each patient's molding course was simulated using computer software that aimed to narrow the alveolar gap by 1 mm each week by rotating the greater alveolar segment. A maxillary cast of each predicted molding stage was created using three-dimensional printing. Subsequent appliances were constructed in advance, based on the series of computer-generated casts. Each patient had a total three clinic visits spaced 1 month apart. Anthropometric measurements and bony segment volumes were recorded before and after treatment. Alveolar cleft widths narrowed significantly (p < 0.01), soft-tissue volume of each segment expanded (p < 0.01), and the arc of the alveolus became more contiguous across the cleft (p < 0.01). One patient required a new appliance at the second visit because of bleeding and discomfort. Eleven patients had mucosal irritation and two experienced minor mucosal ulceration. Three-dimensional technology can precisely represent anatomic structures in pediatric clefts. Results from the authors' algorithm are equivalent to those of traditional nasoalveolar molding therapies; however, the number of required clinic visits and appliance adjustments decreased. As three-dimensional technology costs decrease, multidisciplinary teams may design customized nasoalveolar molding treatment with improved efficiency and less burden to medical staff, patients, and families. Therapeutic, IV.

  6. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells.

    PubMed

    Duan, B; Kapetanovic, E; Hockaday, L A; Butcher, J T

    2014-05-01

    Tissue engineering has great potential to provide a functional de novo living valve replacement, capable of integration with host tissue and growth. Among various valve conduit fabrication techniques, three-dimensional (3-D) bioprinting enables deposition of cells and hydrogels into 3-D constructs with anatomical geometry and heterogeneous mechanical properties. Successful translation of this approach, however, is constrained by the dearth of printable and biocompatible hydrogel materials. Furthermore, it is not known how human valve cells respond to these printed environments. In this study, 3-D printable formulations of hybrid hydrogels are developed, based on methacrylated hyaluronic acid (Me-HA) and methacrylated gelatin (Me-Gel), and used to bioprint heart valve conduits containing encapsulated human aortic valvular interstitial cells (HAVIC). Increasing Me-Gel concentration resulted in lower stiffness and higher viscosity, facilitated cell spreading, and better maintained HAVIC fibroblastic phenotype. Bioprinting accuracy was dependent upon the relative concentrations of Me-Gel and Me-HA, but when optimized enabled the fabrication of a trileaflet valve shape accurate to the original design. HAVIC encapsulated within bioprinted heart valves maintained high viability, and remodeled the initial matrix by depositing collagen and glyosaminoglycans. These findings represent the first rational design of bioprinted trileaflet valve hydrogels that regulate encapsulated human VIC behavior. The use of anatomically accurate living valve scaffolds through bioprinting may accelerate understanding of physiological valve cell interactions and progress towards de novo living valve replacements. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Three-dimensional representation of the human cochlea using micro-computed tomography data: presenting an anatomical model for further numerical calculations.

    PubMed

    Braun, Katharina; Böhnke, Frank; Stark, Thomas

    2012-06-01

    We present a complete geometric model of the human cochlea, including the segmentation and reconstruction of the fluid-filled chambers scala tympani and scala vestibuli, the lamina spiralis ossea and the vibrating structure (cochlear partition). Future fluid-structure coupled simulations require a reliable geometric model of the cochlea. The aim of this study was to present an anatomical model of the human cochlea, which can be used for further numerical calculations. Using high resolution micro-computed tomography (µCT), we obtained images of a cut human temporal bone with a spatial resolution of 5.9 µm. Images were manually segmented to obtain the three-dimensional reconstruction of the cochlea. Due to the high resolution of the µCT data, a detailed examination of the geometry of the twisted cochlear partition near the oval and the round window as well as the precise illustration of the helicotrema was possible. After reconstruction of the lamina spiralis ossea, the cochlear partition and the curved geometry of the scala vestibuli and the scala tympani were presented. The obtained data sets were exported as standard lithography (stl) files. These files represented a complete framework for future numerical simulations of mechanical (acoustic) wave propagation on the cochlear partition in the form of mathematical mechanical cochlea models. Additional quantitative information concerning heights, lengths and volumes of the scalae was found and compared with previous results.

  8. Production of accurate skeletal models of domestic animals using three-dimensional scanning and printing technology.

    PubMed

    Li, Fangzheng; Liu, Chunying; Song, Xuexiong; Huan, Yanjun; Gao, Shansong; Jiang, Zhongling

    2018-01-01

    Access to adequate anatomical specimens can be an important aspect in learning the anatomy of domestic animals. In this study, the authors utilized a structured light scanner and fused deposition modeling (FDM) printer to produce highly accurate animal skeletal models. First, various components of the bovine skeleton, including the femur, the fifth rib, and the sixth cervical (C6) vertebra were used to produce digital models. These were then used to produce 1:1 scale physical models with the FDM printer. The anatomical features of the digital models and three-dimensional (3D) printed models were then compared with those of the original skeletal specimens. The results of this study demonstrated that both digital and physical scale models of animal skeletal components could be rapidly produced using 3D printing technology. In terms of accuracy between models and original specimens, the standard deviations of the femur and the fifth rib measurements were 0.0351 and 0.0572, respectively. All of the features except the nutrient foramina on the original bone specimens could be identified in the digital and 3D printed models. Moreover, the 3D printed models could serve as a viable alternative to original bone specimens when used in anatomy education, as determined from student surveys. This study demonstrated an important example of reproducing bone models to be used in anatomy education and veterinary clinical training. Anat Sci Educ 11: 73-80. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  9. Unsupervised definition of the tibia-femoral joint regions of the human knee and its applications to cartilage analysis

    NASA Astrophysics Data System (ADS)

    Tamez-Peña, José G.; Barbu-McInnis, Monica; Totterman, Saara

    2006-03-01

    Abnormal MR findings including cartilage defects, cartilage denuded areas, osteophytes, and bone marrow edema (BME) are used in staging and evaluating the degree of osteoarthritis (OA) in the knee. The locations of the abnormal findings have been correlated to the degree of pain and stiffness of the joint in the same location. The definition of the anatomic region in MR images is not always an objective task, due to the lack of clear anatomical features. This uncertainty causes variance in the location of the abnormality between readers and time points. Therefore, it is important to have a reproducible system to define the anatomic regions. This works present a computerized approach to define the different anatomic knee regions. The approach is based on an algorithm that uses unique features of the femur and its spatial relation in the extended knee. The femur features are found from three dimensional segmentation maps of the knee. From the segmentation maps, the algorithm automatically divides the femur cartilage into five anatomic regions: trochlea, medial weight bearing area, lateral weight bearing area, posterior medial femoral condyle, and posterior lateral femoral condyle. Furthermore, the algorithm automatically labels the medial and lateral tibia cartilage. The unsupervised definition of the knee regions allows a reproducible way to evaluate regional OA changes. This works will present the application of this automated algorithm for the regional analysis of the cartilage tissue.

  10. Clinical anatomy of the subserous layer: An amalgamation of gross and clinical anatomy.

    PubMed

    Yabuki, Yoshihiko

    2016-05-01

    The 1998 edition of Terminologia Anatomica introduced some currently used clinical anatomical terms for the pelvic connective tissue or subserous layer. These innovations persuaded the present author to consider a format in which the clinical anatomical terms could be reconciled with those of gross anatomy and incorporated into a single anatomical glossary without contradiction or ambiguity. Specific studies on the subserous layer were undertaken on 79 Japanese women who had undergone surgery for uterine cervical cancer, and on 26 female cadavers that were dissected, 17 being formalin-fixed and 9 fresh. The results were as follows: (a) the subserous layer could be segmentalized by surgical dissection in the perpendicular, horizontal and sagittal planes; (b) the segmentalized subserous layer corresponded to 12 cubes, or ligaments, of minimal dimension that enabled the pelvic organs to be extirpated; (c) each ligament had a three-dimensional (3D) structure comprising craniocaudal, mediolateral, and dorsoventral directions vis-á-vis the pelvic axis; (d) these 3D-structured ligaments were encoded morphologically in order of decreasing length; and (e) using these codes, all the surgical procedures for 19th century to present-day radical hysterectomy could be expressed symbolically. The establishment of clinical anatomical terms, represented symbolically through coding as demonstrated in this article, could provide common ground for amalgamating clinical anatomy with gross anatomy. Consequently, terms in clinical anatomy and gross anatomy could be reconciled and compiled into a single anatomical glossary. © 2015 Wiley Periodicals, Inc.

  11. Sacral orientation revisited.

    PubMed

    Peleg, Smadar; Dar, Gali; Steinberg, Nili; Peled, Nathan; Hershkovitz, Israel; Masharawi, Youssef

    2007-07-01

    A descriptive study of the sacral anatomic orientation (SAO) and its association with pelvic incidence (PI). To introduce the concept of SAO, establish a method for measuring it, and evaluate its association with pelvic orientation. Pelvic orientation (PO) is considered a key factor in spinal shape and balance. Sacral slope (SS), PI, and pelvic tilt (PT) are the most frequently used parameters for evaluating PO. Nevertheless, the association between the anatomic orientation of the sacrum and these parameters has never been established. The aim of the present study is to define the anatomic orientation of the sacrum, to establish a reliable method for measuring it, and to examine its association with PI. SAO was defined as the angle created between the intersection of a line running parallel to the superior endplate surface of the sacrum and a line running between the anterior superior iliac spine (ASIS) and the anterior-superior edge of the symphysis pubis. Methods for measuring SAO and PI on both skeletal populations and living individuals are described. The study was carried out on 424 skeletons (articulated pelves) using a three-dimensional digitizer and on 20 adult individuals using CT three-dimensional images (volume-rendering method). Reliability (intratester and intertester) was assessed using intraclass correlation test. A regression analysis was carried out to evaluate the association between the two measurements. The mean SAO and PI in the human skeletal population were found to be 48.46 degrees +/- 10.17 degrees and 54.08 degrees +/- 12.64 degrees , respectively and of the living individuals (CT) 52.76 degrees +/- 10.31 degrees and 57.14 degrees +/- 13.08 degrees , respectively. SAO and PI measurements were highly correlated (r = -0.824, and r = -0.828, P < 0.001 for skeletal material and living individuals, respectively). PI can be predicted via SAO, i.e., PI = [-0.971 x SAO] + 101.16 degrees . The newly suggested parameter (SAO) may be an important tool in defining the sagittal shape of the spine and understanding its association with spinal diseases.

  12. SU-F-I-50: Finite Element-Based Deformable Image Registration of Lung and Heart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penjweini, R; Kim, M; Zhu, T

    Purpose: Photodynamic therapy (PDT) is used after surgical resection to treat the microscopic disease for malignant pleural mesothelioma and to increase survival rates. Although accurate light delivery is imperative to PDT efficacy, the deformation of the pleural volume during the surgery impacts the delivered light dose. To facilitate treatment planning, we use a finite-element-based (FEM) deformable image registration to quantify the anatomical variation of lung and heart volumes between CT pre-(or post-) surgery and surface contours obtained during PDT using an infrared camera-based navigation system (NDI). Methods: NDI is used during PDT to obtain the information of the cumulative lightmore » fluence on every cavity surface point that is being treated. A wand, comprised of a modified endotrachial tube filled with Intralipid and an optical fiber inside the tube, is used to deliver the light during PDT. The position of the treatment is tracked using an attachment with nine reflective passive markers that are seen by the NDI system. Then, the position points are plotted as three-dimensional volume of the pleural cavity using Matlab and Meshlab. A series of computed tomography (CT) scans of the lungs and heart, in the same patient, are also acquired before and after the surgery. The NDI and CT contours are imported into COMSOL Multiphysics, where the FEM-based deformable image registration is obtained. The NDI and CT contours acquired during and post-PDT are considered as the reference, and the Pre-PDT CT contours are used as the target, which will be deformed. Results: Anatomical variation of the lung and heart volumes, taken at different times from different imaging devices, was determined by using our model. The resulting three-dimensional deformation map along x, y and z-axes was obtained. Conclusion: Our model fuses images acquired by different modalities and provides insights into the variation in anatomical structures over time.« less

  13. Preoperative (3-dimensional) computed tomography lung reconstruction before anatomic segmentectomy or lobectomy for stage I non-small cell lung cancer.

    PubMed

    Chan, Ernest G; Landreneau, James R; Schuchert, Matthew J; Odell, David D; Gu, Suicheng; Pu, Jiantao; Luketich, James D; Landreneau, Rodney J

    2015-09-01

    Accurate cancer localization and negative resection margins are necessary for successful segmentectomy. In this study, we evaluate a newly developed software package that permits automated segmentation of the pulmonary parenchyma, allowing 3-dimensional assessment of tumor size, location, and estimates of surgical margins. A pilot study using a newly developed 3-dimensional computed tomography analytic software package was performed to retrospectively evaluate preoperative computed tomography images of patients who underwent segmentectomy (n = 36) or lobectomy (n = 15) for stage 1 non-small cell lung cancer. The software accomplishes an automated reconstruction of anatomic pulmonary segments of the lung based on bronchial arborization. Estimates of anticipated surgical margins and pulmonary segmental volume were made on the basis of 3-dimensional reconstruction. Autosegmentation was achieved in 72.7% (32/44) of preoperative computed tomography images with slice thicknesses of 3 mm or less. Reasons for segmentation failure included local severe emphysema or pneumonitis, and lower computed tomography resolution. Tumor segmental localization was achieved in all autosegmented studies. The 3-dimensional computed tomography analysis provided a positive predictive value of 87% in predicting a marginal clearance greater than 1 cm and a 75% positive predictive value in predicting a margin to tumor diameter ratio greater than 1 in relation to the surgical pathology assessment. This preoperative 3-dimensional computed tomography analysis of segmental anatomy can confirm the tumor location within an anatomic segment and aid in predicting surgical margins. This 3-dimensional computed tomography information may assist in the preoperative assessment regarding the suitability of segmentectomy for peripheral lung cancers. Published by Elsevier Inc.

  14. Two- and Three-Dimensional Anatomy of Paranasal Sinuses in Arabian Foals

    PubMed Central

    BAHAR, Sadullah; BOLAT, Durmus; DAYAN, Mustafa Orhun; PAKSOY, Yahya

    2013-01-01

    ABSTRACT The 2- and 3-dimensional (3D) anatomy and the morphometric properties of the paranasal sinuses of the foal have received little or no attention in the literature. The aim of this study was to obtain details of the paranasal sinuses using multiplane CT imaging to create 3D models and to determine morphological and morphometric data for the sinuses using the 3D models. The heads of five female foals were used in this study. The heads were scanned using computed tomography (CT) in the rostrocaudal direction. After the heads had been frozen, anatomical sections were obtained in the scan position. The 3D models of sinuses and the skull were prepared using MIMICS®. These models were used to assess the surface area and volume of the sinuses, the width, height and orientation of the apertures connecting these sinuses and finally the planar relation of the sinuses with the skull. The right and left sides of all anatomical structures, except the sphenoid sinuses, had symmetric organization on CT images and anatomical sections. The total sinus surface area and volume on both sides were 214.4 cm2 and 72.9 ml, respectively. The largest and the smallest sinuses were the frontal sinus (41.5 ml) and the middle conchal sinus (0.2 ml), respectively. It was found that the planes bounding the sinuses passed through easily palpable points on the head. In conclusion, 3D modeling in combination with conventional sectional imaging of the paranasal sinuses of the foal may help anatomists, radiologists, clinicians and veterinary students. PMID:24004969

  15. Two- and three-dimensional anatomy of paranasal sinuses in Arabian foals.

    PubMed

    Bahar, Sadullah; Bolat, Durmus; Dayan, Mustafa Orhun; Paksoy, Yahya

    2014-01-01

    The 2- and 3-dimensional (3D) anatomy and the morphometric properties of the paranasal sinuses of the foal have received little or no attention in the literature. The aim of this study was to obtain details of the paranasal sinuses using multiplane CT imaging to create 3D models and to determine morphological and morphometric data for the sinuses using the 3D models. The heads of five female foals were used in this study. The heads were scanned using computed tomography (CT) in the rostrocaudal direction. After the heads had been frozen, anatomical sections were obtained in the scan position. The 3D models of sinuses and the skull were prepared using MIMICS(®). These models were used to assess the surface area and volume of the sinuses, the width, height and orientation of the apertures connecting these sinuses and finally the planar relation of the sinuses with the skull. The right and left sides of all anatomical structures, except the sphenoid sinuses, had symmetric organization on CT images and anatomical sections. The total sinus surface area and volume on both sides were 214.4 cm(2) and 72.9 ml, respectively. The largest and the smallest sinuses were the frontal sinus (41.5 ml) and the middle conchal sinus (0.2 ml), respectively. It was found that the planes bounding the sinuses passed through easily palpable points on the head. In conclusion, 3D modeling in combination with conventional sectional imaging of the paranasal sinuses of the foal may help anatomists, radiologists, clinicians and veterinary students.

  16. Endodontic treatment of a maxillary first molar with seven root canals confirmed with cone beam computer tomography - case report.

    PubMed

    Martins, Jorge N R

    2014-06-01

    The most common configuration of the maxillary first molar is the presence of three roots and four root canals, although the presence of several other configurations have already been reported. The objective of this work is to present a rare anatomic configuration with seven root canals diagnosed during an endodontic therapy. Endodontic treatment was performed using a dental operating microscope. Exploring the grooves surrounding the main canals with ultrasonic troughing was able expose unexpected root canals. Instrumentation with files of smaller sizes and tapers was performed to prevent root physical weakness. The anatomic configuration was confirmed with a Cone Beam Computer Tomography image analysis which was able to clearly show the presence of seven root canals. An electronic database search was conducted to identify all the published similar cases and the best techniques to approach them are discussed.

  17. Automatic anatomy partitioning of the torso region on CT images by using multiple organ localizations with a group-wise calibration technique

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangrong; Morita, Syoichi; Zhou, Xinxin; Chen, Huayue; Hara, Takeshi; Yokoyama, Ryujiro; Kanematsu, Masayuki; Hoshi, Hiroaki; Fujita, Hiroshi

    2015-03-01

    This paper describes an automatic approach for anatomy partitioning on three-dimensional (3D) computedtomography (CT) images that divide the human torso into several volume-of-interesting (VOI) images based on anatomical definition. The proposed approach combines several individual detections of organ-location with a groupwise organ-location calibration and correction to achieve an automatic and robust multiple-organ localization task. The essence of the proposed method is to jointly detect the 3D minimum bounding box for each type of organ shown on CT images based on intra-organ-image-textures and inter-organ-spatial-relationship in the anatomy. Machine-learning-based template matching and generalized Hough transform-based point-distribution estimation are used in the detection and calibration processes. We apply this approach to the automatic partitioning of a torso region on CT images, which are divided into 35 VOIs presenting major organ regions and tissues required by routine diagnosis in clinical medicine. A database containing 4,300 patient cases of high-resolution 3D torso CT images is used for training and performance evaluations. We confirmed that the proposed method was successful in target organ localization on more than 95% of CT cases. Only two organs (gallbladder and pancreas) showed a lower success rate: 71 and 78% respectively. In addition, we applied this approach to another database that included 287 patient cases of whole-body CT images scanned for positron emission tomography (PET) studies and used for additional performance evaluation. The experimental results showed that no significant difference between the anatomy partitioning results from those two databases except regarding the spleen. All experimental results showed that the proposed approach was efficient and useful in accomplishing localization tasks for major organs and tissues on CT images scanned using different protocols.

  18. Imaging Techniques in Percutaneous Cardiac Structural Interventions: Atrial Septal Defect Closure and Left Atrial Appendage Occlusion.

    PubMed

    Rodríguez Fernández, Antonio; Bethencourt González, Armando

    2016-08-01

    Because of advances in cardiac structural interventional procedures, imaging techniques are playing an increasingly important role. Imaging studies show sufficient anatomic detail of the heart structure to achieve an excellent outcome in interventional procedures. Up to 98% of atrial septal defects at the ostium secundum can be closed successfully with a percutaneous procedure. Candidates for this type of procedure can be identified through a systematic assessment of atrial septum anatomy, locating and measuring the size and shape of all defects, their rims, and the degree and direction of shunting. Three dimensional echocardiography has significantly improved anatomic assessments and the end result itself. In the future, when combined with other imaging techniques such as cardiac computed tomography and fluoroscopy, 3-dimensional echocardiography will be particularly useful for procedure guidance. Percutaneous closure of the left atrial appendage offers an alternative for treating patients with atrial fibrillation and contraindication for oral anticoagulants. In the future, the clinical focus may well turn to stroke prevention in selected patients. Percutaneous closure is effective and safe; device implantation is successful in 94% to 99% of procedures. However, the procedure requires an experienced cardiac structural interventional team. At present, 3-dimensional echocardiography is the most appropriate imaging technique to assess anatomy suitability, select device type and size, guide the procedure alongside fluoroscopy, and to follow-up the patient afterwards. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  19. BIOSPIDA: A Relational Database Translator for NCBI.

    PubMed

    Hagen, Matthew S; Lee, Eva K

    2010-11-13

    As the volume and availability of biological databases continue widespread growth, it has become increasingly difficult for research scientists to identify all relevant information for biological entities of interest. Details of nucleotide sequences, gene expression, molecular interactions, and three-dimensional structures are maintained across many different databases. To retrieve all necessary information requires an integrated system that can query multiple databases with minimized overhead. This paper introduces a universal parser and relational schema translator that can be utilized for all NCBI databases in Abstract Syntax Notation (ASN.1). The data models for OMIM, Entrez-Gene, Pubmed, MMDB and GenBank have been successfully converted into relational databases and all are easily linkable helping to answer complex biological questions. These tools facilitate research scientists to locally integrate databases from NCBI without significant workload or development time.

  20. Textural analysis of optical coherence tomography skin images: quantitative differentiation between healthy and cancerous tissues

    NASA Astrophysics Data System (ADS)

    Adabi, Saba; Conforto, Silvia; Hosseinzadeh, Matin; Noe, Shahryar; Daveluy, Steven; Mehregan, Darius; Nasiriavanaki, Mohammadreza

    2017-02-01

    Optical Coherence Tomography (OCT) offers real-time high-resolution three-dimensional images of tissue microstructures. In this study, we used OCT skin images acquired from ten volunteers, neither of whom had any skin conditions addressing the features of their anatomic location. OCT segmented images are analyzed based on their optical properties (attenuation coefficient) and textural image features e.g., contrast, correlation, homogeneity, energy, entropy, etc. Utilizing the information and referring to their clinical insight, we aim to make a comprehensive computational model for the healthy skin. The derived parameters represent the OCT microstructural morphology and might provide biological information for generating an atlas of normal skin from different anatomic sites of human skin and may allow for identification of cell microstructural changes in cancer patients. We then compared the parameters of healthy samples with those of abnormal skin and classified them using a linear Support Vector Machines (SVM) with 82% accuracy.

  1. How to quantify conduits in wood?

    PubMed

    Scholz, Alexander; Klepsch, Matthias; Karimi, Zohreh; Jansen, Steven

    2013-01-01

    Vessels and tracheids represent the most important xylem cells with respect to long distance water transport in plants. Wood anatomical studies frequently provide several quantitative details of these cells, such as vessel diameter, vessel density, vessel element length, and tracheid length, while important information on the three dimensional structure of the hydraulic network is not considered. This paper aims to provide an overview of various techniques, although there is no standard protocol to quantify conduits due to high anatomical variation and a wide range of techniques available. Despite recent progress in image analysis programs and automated methods for measuring cell dimensions, density, and spatial distribution, various characters remain time-consuming and tedious. Quantification of vessels and tracheids is not only important to better understand functional adaptations of tracheary elements to environment parameters, but will also be essential for linking wood anatomy with other fields such as wood development, xylem physiology, palaeobotany, and dendrochronology.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van de Velde, Joris, E-mail: joris.vandevelde@ugent.be; Department of Radiotherapy, Ghent University, Ghent; Audenaert, Emmanuel

    Purpose: To develop contouring guidelines for the brachial plexus (BP) using anatomically validated cadaver datasets. Magnetic resonance imaging (MRI) and computed tomography (CT) were used to obtain detailed visualizations of the BP region, with the goal of achieving maximal inclusion of the actual BP in a small contoured volume while also accommodating for anatomic variations. Methods and Materials: CT and MRI were obtained for 8 cadavers positioned for intensity modulated radiation therapy. 3-dimensional reconstructions of soft tissue (from MRI) and bone (from CT) were combined to create 8 separate enhanced CT project files. Dissection of the corresponding cadavers anatomically validatedmore » the reconstructions created. Seven enhanced CT project files were then automatically fitted, separately in different regions, to obtain a single dataset of superimposed BP regions that incorporated anatomic variations. From this dataset, improved BP contouring guidelines were developed. These guidelines were then applied to the 7 original CT project files and also to 1 additional file, left out from the superimposing procedure. The percentage of BP inclusion was compared with the published guidelines. Results: The anatomic validation procedure showed a high level of conformity for the BP regions examined between the 3-dimensional reconstructions generated and the dissected counterparts. Accurate and detailed BP contouring guidelines were developed, which provided corresponding guidance for each level in a clinical dataset. An average margin of 4.7 mm around the anatomically validated BP contour is sufficient to accommodate for anatomic variations. Using the new guidelines, 100% inclusion of the BP was achieved, compared with a mean inclusion of 37.75% when published guidelines were applied. Conclusion: Improved guidelines for BP delineation were developed using combined MRI and CT imaging with validation by anatomic dissection.« less

  3. Preoperative planning and real-time assisted navigation by three-dimensional individual digital model in partial nephrectomy with three-dimensional laparoscopic system.

    PubMed

    Wang, Dongwen; Zhang, Bin; Yuan, Xiaobin; Zhang, Xuhui; Liu, Chen

    2015-09-01

    To evaluate the feasibility and effectiveness of preoperative planning and real-time assisted surgical navigation for three-dimensional laparoscopic partial nephrectomy under the guidance of three-dimensional individual digital model (3D-IDM) created using three-dimensional medical image reconstructing and guiding system (3D-MIRGS). Between May 2012 and February 2014, 44 patients with cT1 renal tumors underwent retroperitoneal laparoscopic partial nephrectomy (LPN) using a three-dimensional laparoscopic system. The 3D-IDMs were created using the 3D-MIRGS in 21 patients (3D-MIRGS group) between February 2013 and February 2014. After preoperative planning, operations were real-time assisted using composite 3D-IDMs, which were fused with two-dimensional retrolaparoscopic images. The remaining 23 patients underwent surgery without 3D-MIRGS between May 2012 and February 2013; 14 of these patients were selected as a control group. Preoperative aspects and dimensions used for an anatomical score, "radius; exophytic/endophytic; nearness; anterior/posterior; location" nephrometry score, tumor size, operative time (OT), segmental renal artery clamping (SRAC) time, estimated blood loss (EBL), postoperative hospitalization, the preoperative serum creatinine level and ipsilateral glomerular filtration rate (GFR), as well as postoperative 6-month data were compared between groups. All the SRAC procedures were technically successful, and each targeted tumor was excised completely; final pathological margin results were negative. The OT was shorter (159.0 vs. 193.2 min; p < 0.001), and EBL (148.1 vs. 176.1 mL; p < 0.001) was reduced in the 3D-MIRGS group compared with controls. No statistically significant differences in SRAC time or postoperative hospitalization were found between the groups. Neither group showed any statistically significant increases in serum creatinine level or decreases in ipsilateral GFR postoperatively. Preoperative planning and real-time assisted surgical navigation using the 3D-IDM reconstructed from 3D-MIRGS and combined with the 3D laparoscopic system can facilitate LPN and result in precise SRAC and accurate excision of tumor that is both effective and safe.

  4. Three-dimensional morphology of heel fat pad: an in vivo computed tomography study.

    PubMed

    Campanelli, Valentina; Fantini, Massimiliano; Faccioli, Niccolò; Cangemi, Alessio; Pozzo, Antonio; Sbarbati, Andrea

    2011-11-01

    Heel fat pad cushioning efficiency is the result of its structure, shape and thickness. However, while a number of studies have investigated heel fat pad (HFP) anatomy, structural behavior and material properties, no previous study has described its three-dimensional morphology in situ. The assessment of the healthy, unloaded, three-dimensional morphology of heel pad may contribute to deepen the understanding of its role and behavior during locomotion. It is the basis for the assessment of possible HFP morphological modifications due to changes in the amount or distribution of the loads normally sustained by the foot. It may also help in guiding the surgical reconstruction of the pad and in improving footwear design, as well as in developing a correct heel pad geometry for finite element models of the foot. Therefore the purpose of this study was to obtain a complete analysis of HFP three-dimensional morphology in situ. The right foot of nine healthy volunteers was scanned with computed tomography. A methodological approach that maximizes reliability and repeatability of the data was developed by building a device to lock the foot in a neutral position with respect to the scan planes during image acquisition. Scan data were used to reconstruct virtual three-dimensional models for both the calcaneus and HFP. A set of virtual coronal and axial sections were extracted from the three-dimensional model of each HFP and processed to extract a set of one- and two-dimensional morphometrical measurements for a detailed description of heel pad morphology. The tissue exhibited a consistent and sophisticated morphology that may reflect the biomechanics of the foot support. HFP was found to be have a crest on its anterior dorsal surface, flanges on the sides and posteriorly, and a thick portion that reached and covered the posterior surface of the calcaneus and the achilles tendon insertion. Its anterior internal portion was thinner and a lump of fat was consistently present in this region. Finally, HFP was found to be thicker in males than in females. © 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland.

  5. A novel 3D shape descriptor for automatic retrieval of anatomical structures from medical images

    NASA Astrophysics Data System (ADS)

    Nunes, Fátima L. S.; Bergamasco, Leila C. C.; Delmondes, Pedro H.; Valverde, Miguel A. G.; Jackowski, Marcel P.

    2017-03-01

    Content-based image retrieval (CBIR) aims at retrieving from a database objects that are similar to an object provided by a query, by taking into consideration a set of extracted features. While CBIR has been widely applied in the two-dimensional image domain, the retrieval of3D objects from medical image datasets using CBIR remains to be explored. In this context, the development of descriptors that can capture information specific to organs or structures is desirable. In this work, we focus on the retrieval of two anatomical structures commonly imaged by Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) techniques, the left ventricle of the heart and blood vessels. Towards this aim, we developed the Area-Distance Local Descriptor (ADLD), a novel 3D local shape descriptor that employs mesh geometry information, namely facet area and distance from centroid to surface, to identify shape changes. Because ADLD only considers surface meshes extracted from volumetric medical images, it substantially diminishes the amount of data to be analyzed. A 90% precision rate was obtained when retrieving both convex (left ventricle) and non-convex structures (blood vessels), allowing for detection of abnormalities associated with changes in shape. Thus, ADLD has the potential to aid in the diagnosis of a wide range of vascular and cardiac diseases.

  6. Ice Accretion Test Results for Three Large-Scale Swept-Wing Models in the NASA Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Broeren, Andy; Potapczuk, Mark; Lee, Sam; Malone, Adam; Paul, Ben; Woodard, Brian

    2016-01-01

    The design and certification of modern transport airplanes for flight in icing conditions increasing relies on three-dimensional numerical simulation tools for ice accretion prediction. There is currently no publically available, high-quality, ice accretion database upon which to evaluate the performance of icing simulation tools for large-scale swept wings that are representative of modern commercial transport airplanes. The purpose of this presentation is to present the results of a series of icing wind tunnel test campaigns whose aim was to provide an ice accretion database for large-scale, swept wings.

  7. An Integrated Approach to Swept Wing Icing Simulation

    NASA Technical Reports Server (NTRS)

    Potapczuk, Mark G.; Broeren, Andy P.

    2017-01-01

    This presentation describes the various elements of a simulation approach used to develop a database of ice shape geometries and the resulting aerodynamic performance data for a representative commercial transport wing model exposed to a variety of icing conditions. Methods for capturing full three-dimensional ice shape geometries, geometry interpolation along the span of the wing, and creation of artificial ice shapes based upon that geometric data were developed for this effort. The icing conditions used for this effort were representative of actual ice shape encounter scenarios and run the gamut from ice roughness to full three-dimensional scalloped ice shapes.

  8. Proceedings of the Airframe Icing Workshop

    NASA Technical Reports Server (NTRS)

    Colantonio, Ron O. (Editor)

    2009-01-01

    The NASA Glenn Research Center (GRC) has a long history of working with its partners towards the understanding of ice accretion formation and its associated degradation of aerodynamic performance. The June 9, 2009, Airframe Icing Workshop held at GRC provided an opportunity to examine the current NASA airframe icing research program and to dialogue on remaining and emerging airframe icing issues and research with the external community. Some of the airframe icing gaps identified included, but are not limited to, ice accretion simulation enhancements, three-dimensional benchmark icing database development, three-dimensional iced aerodynamics modeling, and technology development for a smart icing system.

  9. A Computational and Experimental Investigation of a Three-Dimensional Hypersonic Scramjet Inlet Flow Field. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Holland, Scott Douglas

    1991-01-01

    A combined computational and experimental parametric study of the internal aerodynamics of a generic three dimensional sidewall compression scramjet inlet configuration was performed. The study was designed to demonstrate the utility of computational fluid dynamics as a design tool in hypersonic inlet flow fields, to provide a detailed account of the nature and structure of the internal flow interactions, and to provide a comprehensive surface property and flow field database to determine the effects of contraction ratio, cowl position, and Reynolds number on the performance of a hypersonic scramjet inlet configuration.

  10. Three-Dimensional Imaging of the Mouse Organ of Corti Cytoarchitecture for Mechanical Modeling

    NASA Astrophysics Data System (ADS)

    Puria, Sunil; Hartman, Byron; Kim, Jichul; Oghalai, John S.; Ricci, Anthony J.; Liberman, M. Charles

    2011-11-01

    Cochlear models typically use continuous anatomical descriptions and homogenized parameters based on two-dimensional images for describing the organ of Corti. To produce refined models based more closely on the actual cochlear cytoarchitecture, three-dimensional morphometric parameters of key mechanical structures are required. Towards this goal, we developed and compared three different imaging methods: (1) A fixed cochlear whole-mount preparation using the fluorescent dye Cellmask®, which is a molecule taken up by cell membranes and clearly delineates Deiters' cells, outer hair cells, and the phalangeal process, imaged using confocal microscopy; (2) An in situ fixed preparation with hair cells labeled using anti-prestin and supporting structures labeled using phalloidin, imaged using two-photon microscopy; and (3) A membrane-tomato (mT) mouse with fluorescent proteins expressed in all cell membranes, which enables two-photon imaging of an in situ live preparation with excellent visualization of the organ of Corti. Morphometric parameters including lengths, diameters, and angles, were extracted from 3D cellular surface reconstructions of the resulting images. Preliminary results indicate that the length of the phalangeal processes decreases from the first (inner most) to third (outer most) row of outer hair cells, and that their length also likely varies from base to apex and across species.

  11. Techniques of stapler-based navigational thoracoscopic segmentectomy using virtual assisted lung mapping (VAL-MAP)

    PubMed Central

    Murayama, Tomonori; Nakajima, Jun

    2016-01-01

    Anatomical segmentectomies play an important role in oncological lung resection, particularly for ground-glass types of primary lung cancers. This operation can also be applied to metastatic lung tumors deep in the lung. Virtual assisted lung mapping (VAL-MAP) is a novel technique that allows for bronchoscopic multi-spot dye markings to provide “geometric information” to the lung surface, using three-dimensional virtual images. In addition to wedge resections, VAL-MAP has been found to be useful in thoracoscopic segmentectomies, particularly complex segmentectomies, such as combined subsegmentectomies or extended segmentectomies. There are five steps in VAL-MAP-assisted segmentectomies: (I) “standing” stitches along the resection lines; (II) cleaning hilar anatomy; (III) confirming hilar anatomy; (IV) going 1 cm deeper; (V) step-by-step stapling technique. Depending on the anatomy, segmentectomies can be classified into linear (lingular, S6, S2), V- or U-shaped (right S1, left S3, S2b + S3a), and three dimensional (S7, S8, S9, S10) segmentectomies. Particularly three dimensional segmentectomies are challenging in the complexity of stapling techniques. This review focuses on how VAL-MAP can be utilized in segmentectomy, and how this technique can assist the stapling process in even the most challenging ones. PMID:28066675

  12. Three Dimensional Visualization of GOES Cloud Data Using Octress

    DTIC Science & Technology

    1993-06-01

    structure for CAD of integrated circuits that can subdivide the cubes into more complex polyhedrons . Medical imaging is also taking advantage of the...CIGOES 501 FORMAT(A) CALL OPENDBCPARAM’, ISTATRM) IF (ISTATRM .NE. 0) CALL FRIMERRC Error opening database .’, "+ ISTATRM) CALL OLDIMAGE(1, CIGOES, STATUS...image name (no .ext):’ ACCEPT 501, CIGOES 501 FORMAT(A) CALL OPENDB(’PARAM’, ISTATRM) IF (ISTATRM .NE. 0) CALL FRIMERRC Error opening database

  13. Modelling of aortic aneurysm and aortic dissection through 3D printing.

    PubMed

    Ho, Daniel; Squelch, Andrew; Sun, Zhonghua

    2017-03-01

    The aim of this study was to assess if the complex anatomy of aortic aneurysm and aortic dissection can be accurately reproduced from a contrast-enhanced computed tomography (CT) scan into a three-dimensional (3D) printed model. Contrast-enhanced cardiac CT scans from two patients were post-processed and produced as 3D printed thoracic aorta models of aortic aneurysm and aortic dissection. The transverse diameter was measured at five anatomical landmarks for both models, compared across three stages: the original contrast-enhanced CT images, the stereolithography (STL) format computerised model prepared for 3D printing and the contrast-enhanced CT of the 3D printed model. For the model with aortic dissection, measurements of the true and false lumen were taken and compared at two points on the descending aorta. Three-dimensional printed models were generated with strong and flexible plastic material with successful replication of anatomical details of aortic structures and pathologies. The mean difference in transverse vessel diameter between the contrast-enhanced CT images before and after 3D printing was 1.0 and 1.2 mm, for the first and second models respectively (standard deviation: 1.0 mm and 0.9 mm). Additionally, for the second model, the mean luminal diameter difference between the 3D printed model and CT images was 0.5 mm. Encouraging results were achieved with regards to reproducing 3D models depicting aortic aneurysm and aortic dissection. Variances in vessel diameter measurement outside a standard deviation of 1 mm tolerance indicate further work is required into the assessment and accuracy of 3D model reproduction. © 2017 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology.

  14. Microvasculature of the Olfactory Organ in the Japanese Monkey (Macaca fuscata fuscata)

    NASA Astrophysics Data System (ADS)

    Okada, Shigenori; Schraufnagel, Dean E.

    2002-06-01

    Olfaction is an important and primitive sense. As its importance has changed with evolution, anatomic adjustments have occurred in its structure and vasculature. Primates are a family of vertebrates that have had to develop their visual system to adapt to the arboreal environment and have evolved from a macrosmatic to a microsmatic species as the optic system has enlarged. This has resulted in anatomic changes of a small but critical area at the base of the brain. This paper describes the three-dimensional vascular anatomy of the olfactory organ of the Japanese monkey (Macaca fuscata fuscata). This is best understood by dividing the organ into three parts: the olfactory tract, olfactory bulb, and olfactory nerves in the nasal mucosa. The bulb can be partitioned into an outer or cortical part and inner or medullary part. The vasculature and tissue were examined grossly and with light microscopy and scanning electron microscopy of vascular corrosion casts. The olfactory tract and bulb were supplied by an arteriole from the anterior cerebral artery on each side. The tract was supplied by capillaries running spirally with a coarse network. At the olfactory bulb, the arteriole ramified into the intracortical and medullary branches that formed capillary networks. The bulbar intracortical capillaries were divided into two layers with different densities and vascular patterns. The capillaries of the superficial layer had a ladder-like pattern. The branches that ran into the medulla of the olfactory bulb were more widely spaced. Twigs from the posterior ethmoidal artery ran along the nerve fiber and formed intra- and extrafascicular networks. Each region of the olfactory organ had characteristic three-dimensional vascular patterns that were related to their cellular architecture.

  15. Statistical Analyses of Femur Parameters for Designing Anatomical Plates.

    PubMed

    Wang, Lin; He, Kunjin; Chen, Zhengming

    2016-01-01

    Femur parameters are key prerequisites for scientifically designing anatomical plates. Meanwhile, individual differences in femurs present a challenge to design well-fitting anatomical plates. Therefore, to design anatomical plates more scientifically, analyses of femur parameters with statistical methods were performed in this study. The specific steps were as follows. First, taking eight anatomical femur parameters as variables, 100 femur samples were classified into three classes with factor analysis and Q-type cluster analysis. Second, based on the mean parameter values of the three classes of femurs, three sizes of average anatomical plates corresponding to the three classes of femurs were designed. Finally, based on Bayes discriminant analysis, a new femur could be assigned to the proper class. Thereafter, the average anatomical plate suitable for that new femur was selected from the three available sizes of plates. Experimental results showed that the classification of femurs was quite reasonable based on the anatomical aspects of the femurs. For instance, three sizes of condylar buttress plates were designed. Meanwhile, 20 new femurs are judged to which classes the femurs belong. Thereafter, suitable condylar buttress plates were determined and selected.

  16. Design of a Multi Dimensional Database for the Archimed DataWarehouse.

    PubMed

    Bréant, Claudine; Thurler, Gérald; Borst, François; Geissbuhler, Antoine

    2005-01-01

    The Archimed data warehouse project started in 1993 at the Geneva University Hospital. It has progressively integrated seven data marts (or domains of activity) archiving medical data such as Admission/Discharge/Transfer (ADT) data, laboratory results, radiology exams, diagnoses, and procedure codes. The objective of the Archimed data warehouse is to facilitate the access to an integrated and coherent view of patient medical in order to support analytical activities such as medical statistics, clinical studies, retrieval of similar cases and data mining processes. This paper discusses three principal design aspects relative to the conception of the database of the data warehouse: 1) the granularity of the database, which refers to the level of detail or summarization of data, 2) the database model and architecture, describing how data will be presented to end users and how new data is integrated, 3) the life cycle of the database, in order to ensure long term scalability of the environment. Both, the organization of patient medical data using a standardized elementary fact representation and the use of the multi dimensional model have proved to be powerful design tools to integrate data coming from the multiple heterogeneous database systems part of the transactional Hospital Information System (HIS). Concurrently, the building of the data warehouse in an incremental way has helped to control the evolution of the data content. These three design aspects bring clarity and performance regarding data access. They also provide long term scalability to the system and resilience to further changes that may occur in source systems feeding the data warehouse.

  17. A new aiming guide can create the tibial tunnel at favorable position in transtibial pullout repair for the medial meniscus posterior root tear.

    PubMed

    Furumatsu, T; Kodama, Y; Fujii, M; Tanaka, T; Hino, T; Kamatsuki, Y; Yamada, K; Miyazawa, S; Ozaki, T

    2017-05-01

    Injuries to the medial meniscus (MM) posterior root lead to accelerated cartilage degeneration of the knee. An anatomic placement of the MM posterior root attachment is considered to be critical in transtibial pullout repair of the medial meniscus posterior root tear (MMPRT). However, tibial tunnel creation at the anatomic attachment of the MM posterior root is technically difficult using a conventional aiming device. The aim of this study was to compare two aiming guides. We hypothesized that a newly-developed guide, specifically designed, creates the tibial tunnel at an adequate position rather than a conventional device. Twenty-six patients underwent transtibial pullout repairs. Tibial tunnel creation was performed using the Multi-use guide (8 cases) or the PRT guide that had a narrow twisting/curving shape (18 cases). Three-dimensional computed tomography images of the tibial surface were evaluated using the Tsukada's measurement method postoperatively. Expected anatomic center of the MM posterior root attachment and tibial tunnel center were evaluated using the percentage-based posterolateral location on the tibial surface. Percentage distance between anatomic center and tunnel center was calculated. Anatomic center of the MM posterior root footprint located at a position of 78.5% posterior and 39.4% lateral. Both tunnels were anteromedial but tibial tunnel center located at a more favorable position in the PRT group: percentage distance was significantly smaller in the PRT guide group (8.7%) than in the Multi-use guide group (13.1%). The PRT guide may have great advantage to achieve a more anatomic location of the tibial tunnel in MMPRT pullout repair. III. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. A theoretical analysis of anatomical and functional intestinal slow wave re-entry.

    PubMed

    Du, Peng; O'Grady, Gregory; Cheng, Leo K

    2017-07-21

    Intestinal bioelectrical slow waves are a key regulator of intestinal motility. Peripheral pacemakers, ectopic initiations and sustained periods of re-entrant activities have all been experimentally observed to be important factors in setting the frequency of intestinal slow waves, but the tissue-level mechanisms underpinning these activities are unclear. This theoretical analysis aimed to define the initiation, maintenance, and termination criteria of two classes of intestinal re-entrant activities: anatomical re-entry and functional re-entry. Anatomical re-entry was modeled in a three-dimensional (3D) cylindrical model, and functional rotor was modeled in a 2D rectangle model. A single-pulse stimulus was used to invoke an anatomical re-entry and a prolonged refractory block was used to invoke the rotor. In both cases, the simulated re-entrant activities operated at frequencies above the baseline entrainment frequency. The anatomical re-entry simulation results demonstrated that a temporary functional refractory block would be required to initiate the re-entrant activity in a single direction around the cylindrical model. The rotor could be terminated by a single-pulse stimulus delivered around the core of the rotor. In conclusion, the simulation results provide the following new insights into the mechanisms of intestinal re-entry: (i) anatomical re-entry is only maintained within a specific range of velocities, outside of which the re-entrant activities become either an ectopic activity or simultaneous activations of the intestinal wall; (ii) a maintained rotor entrained slow waves faster in the antegrade direction than in the retrograde direction. Simulations are shown to be a valuable tool for achieving novel insights into the mechanisms of intestinal slow wave dysrhythmia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Take away body parts! An investigation into the use of 3D-printed anatomical models in undergraduate anatomy education.

    PubMed

    Smith, Claire F; Tollemache, Nicholas; Covill, Derek; Johnston, Malcolm

    2018-01-01

    Understanding the three-dimensional (3D) nature of the human form is imperative for effective medical practice and the emergence of 3D printing creates numerous opportunities to enhance aspects of medical and healthcare training. A recently deceased, un-embalmed donor was scanned through high-resolution computed tomography. The scan data underwent segmentation and post-processing and a range of 3D-printed anatomical models were produced. A four-stage mixed-methods study was conducted to evaluate the educational value of the models in a medical program. (1) A quantitative pre/post-test to assess change in learner knowledge following 3D-printed model usage in a small group tutorial; (2) student focus group (3) a qualitative student questionnaire regarding personal student model usage (4) teaching faculty evaluation. The use of 3D-printed models in small-group anatomy teaching session resulted in a significant increase in knowledge (P = 0.0001) when compared to didactic 2D-image based teaching methods. Student focus groups yielded six key themes regarding the use of 3D-printed anatomical models: model properties, teaching integration, resource integration, assessment, clinical imaging, and pathology and anatomical variation. Questionnaires detailed how students used the models in the home environment and integrated them with anatomical learning resources such as textbooks and anatomy lectures. In conclusion, 3D-printed anatomical models can be successfully produced from the CT data set of a recently deceased donor. These models can be used in anatomy education as a teaching tool in their own right, as well as a method for augmenting the curriculum and complementing established learning modalities, such as dissection-based teaching. Anat Sci Educ 11: 44-53. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  20. Cardiovascular cast model fabrication and casting effectiveness evaluation in fetus with severe congenital heart disease or normal heart.

    PubMed

    Wang, Yu; Cao, Hai-yan; Xie, Ming-xing; He, Lin; Han, Wei; Hong, Liu; Peng, Yuan; Hu, Yun-fei; Song, Ben-cai; Wang, Jing; Wang, Bin; Deng, Cheng

    2016-04-01

    To investigate the application and effectiveness of vascular corrosion technique in preparing fetal cardiovascular cast models, 10 normal fetal heart specimens with other congenital disease (control group) and 18 specimens with severe congenital heart disease (case group) from induced abortions were enrolled in this study from March 2013 to June 2015 in our hospital. Cast models were prepared by injecting casting material into vascular lumen to demonstrate real geometries of fetal cardiovascular system. Casting effectiveness was analyzed in terms of local anatomic structures and different anatomical levels (including overall level, atrioventricular and great vascular system, left-sided and right-sided heart), as well as different trimesters of pregnancy. In our study, all specimens were successfully casted. Casting effectiveness analysis of local anatomic structures showed a mean score from 1.90±1.45 to 3.60±0.52, without significant differences between case and control groups in most local anatomic structures except left ventricle, which had a higher score in control group (P=0.027). Inter-group comparison of casting effectiveness in different anatomical levels showed no significant differences between the two groups. Intra-group comparison also revealed undifferentiated casting effectiveness between atrioventricular and great vascular system, or left-sided and right-sided heart in corresponding group. Third-trimester group had a significantly higher perfusion score in great vascular system than second-trimester group (P=0.046), while the other anatomical levels displayed no such difference. Vascular corrosion technique can be successfully used in fabrication of fetal cardiovascular cast model. It is also a reliable method to demonstrate three-dimensional anatomy of severe congenital heart disease and normal heart in fetus.

  1. Simulation of realistic retinoscopic measurement

    NASA Astrophysics Data System (ADS)

    Tan, Bo; Chen, Ying-Ling; Baker, K.; Lewis, J. W.; Swartz, T.; Jiang, Y.; Wang, M.

    2007-03-01

    Realistic simulation of ophthalmic measurements on normal and diseased eyes is presented. We use clinical data of ametropic and keratoconus patients to construct anatomically accurate three-dimensional eye models and simulate the measurement of a streak retinoscope with all the optical elements. The results show the clinical observations including the anomalous motion in high myopia and the scissors reflex in keratoconus. The demonstrated technique can be applied to other ophthalmic instruments and to other and more extensively abnormal eye conditions. It provides promising features for medical training and for evaluating and developing ocular instruments.

  2. Improved Interactive Medical-Imaging System

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Twombly, Ian A.; Senger, Steven

    2003-01-01

    An improved computational-simulation system for interactive medical imaging has been invented. The system displays high-resolution, three-dimensional-appearing images of anatomical objects based on data acquired by such techniques as computed tomography (CT) and magnetic-resonance imaging (MRI). The system enables users to manipulate the data to obtain a variety of views for example, to display cross sections in specified planes or to rotate images about specified axes. Relative to prior such systems, this system offers enhanced capabilities for synthesizing images of surgical cuts and for collaboration by users at multiple, remote computing sites.

  3. Virtual reality haptic dissection.

    PubMed

    Erolin, Caroline; Wilkinson, Caroline; Soames, Roger

    2011-12-01

    This project aims to create a three-dimensional digital model of the human hand and wrist which can be virtually 'dissected' through a haptic interface. Tissue properties will be added to the various anatomical structures to replicate a realistic look and feel. The project will explore the role of the medical artist, and investigate cross-discipline collaborations in the field of virtual anatomy. The software will be used to train anatomy students in dissection skills, before experience on a real cadaver. The effectiveness of the software will be evaluated and assessed both quantitatively as well as qualitatively.

  4. Rapid prototyping raw models on the basis of high resolution computed tomography lung data for respiratory flow dynamics.

    PubMed

    Giesel, Frederik L; Mehndiratta, Amit; von Tengg-Kobligk, Hendrik; Schaeffer, A; Teh, Kevin; Hoffman, E A; Kauczor, Hans-Ulrich; van Beek, E J R; Wild, Jim M

    2009-04-01

    Three-dimensional image reconstruction by volume rendering and rapid prototyping has made it possible to visualize anatomic structures in three dimensions for interventional planning and academic research. Volumetric chest computed tomography was performed on a healthy volunteer. Computed tomographic images of the larger bronchial branches were segmented by an extended three-dimensional region-growing algorithm, converted into a stereolithography file, and used for computer-aided design on a laser sintering machine. The injection of gases for respiratory flow modeling and measurements using magnetic resonance imaging were done on a hollow cast. Manufacturing the rapid prototype took about 40 minutes and included the airway tree from trackea to segmental bronchi (fifth generation). The branching of the airways are clearly visible in the (3)He images, and the radial imaging has the potential to elucidate the airway dimensions. The results for flow patterns in the human bronchial tree using the rapid-prototype model with hyperpolarized helium-3 magnetic resonance imaging show the value of this model for flow phantom studies.

  5. Three-Dimensional Numerical Simulation of Airflow in Nasopharynx.

    NASA Astrophysics Data System (ADS)

    Shome, Biswadip; Wang, Lian-Ping; Santare, Michael H.; Szeri, Andras Z.; Prasad, Ajay K.; Roberts, David

    1996-11-01

    A three-dimensional numerical simulation of airflow in nasopharynx (from the soft palate to the epiglottis) was conducted, using anatomically accurate model and finite element method, to study the influence of flow characteristics on obstructive sleep apnea (OSA). The results showed that the pressure drop in the nasopharynx is in the range 200-500 Pa. Ten different nasopharynx geometries resulting from three OSA treatment therapies (CPAP, mandibular repositioning devices, and surgery) were compared. The results confirmed that the airflow in the nasopharynx lies in the transitional flow regime and thus, a subtle change in the morphology caused by these treatment therapies has a large effect on the airflow. The onset of turbulence can cause as much as 40% of increase in pressure drop. For the transitional flow regime, the k-ɛ turbulence model was found to be the most appropriate model, when compared to the mixing length and the k-ω model, as it correctly reproduces the limiting laminar behavior. In addition, the pressure drop increased approximately as the square of the volumetric flow rate. Supported by NIH.

  6. Dedicated ultrasound speckle tracking to study tendon displacement

    NASA Astrophysics Data System (ADS)

    Korstanje, Jan-Wiebe H.; Selles, Ruud W.; Stam, Henk J.; Hovius, Steven E. R.; Bosch, Johan G.

    2009-02-01

    Ultrasound can be used to study tendon and muscle movement. However, quantization is mostly based on manual tracking of anatomical landmarks such as the musculotendinous junction, limiting the applicability to a small number of muscle-tendon units. The aim of this study is to quantify tendon displacement without employing anatomical landmarks, using dedicated speckle tracking in long B-mode image sequences. We devised a dedicated two-dimensional multikernel block-matching scheme with subpixel accuracy to handle large displacements over long sequences. Images were acquired with a Philips iE33 with a 7 MHz linear array and a VisualSonics Vevo 770 using a 40 MHz mechanical probe. We displaced the flexor digitorum superficialis of two pig cadaver forelegs with three different velocities (4,10 and 16 mm/s) over 3 distances (5, 10, 15 mm). As a reference, we manually determined the total displacement of an injected hyperechogenic bullet in the tendons. We automatically tracked tendon parts with and without markers and compared results to the true displacement. Using the iE33, mean tissue displacement underestimations for the three different velocities were 2.5 +/- 1.0%, 1.7 +/- 1.1% and 0.7 +/- 0.4%. Using the Vevo770, mean tissue displacement underestimations were 0.8 +/- 1.3%, 0.6 +/- 0.3% and 0.6 +/- 0.3%. Marker tracking displacement underestimations were only slightly smaller, showing limited tracking drift for non-marker tendon tissue as well as for markers. This study showed that our dedicated speckle tracking can quantify extensive tendon displacement with physiological velocities without anatomical landmarks with good accuracy for different types of ultrasound configurations. This technique allows tracking of a much larger range of muscle-tendon units than by using anatomical landmarks.

  7. Atlas-Guided Cluster Analysis of Large Tractography Datasets

    PubMed Central

    Ros, Christian; Güllmar, Daniel; Stenzel, Martin; Mentzel, Hans-Joachim; Reichenbach, Jürgen Rainer

    2013-01-01

    Diffusion Tensor Imaging (DTI) and fiber tractography are important tools to map the cerebral white matter microstructure in vivo and to model the underlying axonal pathways in the brain with three-dimensional fiber tracts. As the fast and consistent extraction of anatomically correct fiber bundles for multiple datasets is still challenging, we present a novel atlas-guided clustering framework for exploratory data analysis of large tractography datasets. The framework uses an hierarchical cluster analysis approach that exploits the inherent redundancy in large datasets to time-efficiently group fiber tracts. Structural information of a white matter atlas can be incorporated into the clustering to achieve an anatomically correct and reproducible grouping of fiber tracts. This approach facilitates not only the identification of the bundles corresponding to the classes of the atlas; it also enables the extraction of bundles that are not present in the atlas. The new technique was applied to cluster datasets of 46 healthy subjects. Prospects of automatic and anatomically correct as well as reproducible clustering are explored. Reconstructed clusters were well separated and showed good correspondence to anatomical bundles. Using the atlas-guided cluster approach, we observed consistent results across subjects with high reproducibility. In order to investigate the outlier elimination performance of the clustering algorithm, scenarios with varying amounts of noise were simulated and clustered with three different outlier elimination strategies. By exploiting the multithreading capabilities of modern multiprocessor systems in combination with novel algorithms, our toolkit clusters large datasets in a couple of minutes. Experiments were conducted to investigate the achievable speedup and to demonstrate the high performance of the clustering framework in a multiprocessing environment. PMID:24386292

  8. VRML Industry: Microcosms in the Making.

    ERIC Educational Resources Information Center

    Brown, Eric

    1998-01-01

    Discusses VRML (Virtual Reality Modeling Language) technology and some of its possible applications, including creating three-dimensional images on the Web, advertising, and data visualization in computer-assisted design and computer-assisted manufacturing (CAD/CAM). Future improvements are discussed, including streaming, database support, and…

  9. Development of an interactive anatomical three-dimensional eye model.

    PubMed

    Allen, Lauren K; Bhattacharyya, Siddhartha; Wilson, Timothy D

    2015-01-01

    The discrete anatomy of the eye's intricate oculomotor system is conceptually difficult for novice students to grasp. This is problematic given that this group of muscles represents one of the most common sites of clinical intervention in the treatment of ocular motility disorders and other eye disorders. This project was designed to develop a digital, interactive, three-dimensional (3D) model of the muscles and cranial nerves of the oculomotor system. Development of the 3D model utilized data from the Visible Human Project (VHP) dataset that was refined using multiple forms of 3D software. The model was then paired with a virtual user interface in order to create a novel 3D learning tool for the human oculomotor system. Development of the virtual eye model was done while attempting to adhere to the principles of cognitive load theory (CLT) and the reduction of extraneous load in particular. The detailed approach, digital tools employed, and the CLT guidelines are described herein. © 2014 American Association of Anatomists.

  10. Toward a patient-specific tissue engineered vascular graft

    PubMed Central

    Best, Cameron; Strouse, Robert; Hor, Kan; Pepper, Victoria; Tipton, Amy; Kelly, John; Shinoka, Toshiharu; Breuer, Christopher

    2018-01-01

    Integrating three-dimensional printing with the creation of tissue-engineered vascular grafts could provide a readily available, patient-specific, autologous tissue source that could significantly improve outcomes in newborns with congenital heart disease. Here, we present the recent case of a candidate for our tissue-engineered vascular graft clinical trial deemed ineligible due to complex anatomical requirements and consider the application of three-dimensional printing technologies for a patient-specific graft. We 3D-printed a closed-disposable seeding device and validated that it performed equivalently to the traditional open seeding technique using ovine bone marrow–derived mononuclear cells. Next, our candidate’s preoperative imaging was reviewed to propose a patient-specific graft. A seeding apparatus was then designed to accommodate the custom graft and 3D-printed on a commodity fused deposition modeler. This exploratory feasibility study represents an important proof of concept advancing progress toward a rationally designed patient-specific tissue-engineered vascular graft for clinical application. PMID:29568478

  11. Feasibility of four-dimensional preoperative simulation for elbow debridement arthroplasty.

    PubMed

    Yamamoto, Michiro; Murakami, Yukimi; Iwatsuki, Katsuyuki; Kurimoto, Shigeru; Hirata, Hitoshi

    2016-04-02

    Recent advances in imaging modalities have enabled three-dimensional preoperative simulation. A four-dimensional preoperative simulation system would be useful for debridement arthroplasty of primary degenerative elbow osteoarthritis because it would be able to detect the impingement lesions. We developed a four-dimensional simulation system by adding the anatomical axis to the three-dimensional computed tomography scan data of the affected arm in one position. Eleven patients with primary degenerative elbow osteoarthritis were included. A "two rings" method was used to calculate the flexion-extension axis of the elbow by converting the surface of the trochlea and capitellum into two rings. A four-dimensional simulation movie was created and showed the optimal range of motion and the impingement area requiring excision. To evaluate the reliability of the flexion-extension axis, interobserver and intraobserver reliabilities regarding the assessment of bony overlap volumes were calculated twice for each patient by two authors. Patients were treated by open or arthroscopic debridement arthroplasties. Pre- and postoperative examinations included elbow range of motion measurement, and completion of the patient-rated questionnaire Hand20, Japanese Orthopaedic Association-Japan Elbow Society Elbow Function Score, and the Mayo Elbow Performance Score. Measurement of the bony overlap volume showed an intraobserver intraclass correlation coefficient of 0.93 and 0.90, and an interobserver intraclass correlation coefficient of 0.94. The mean elbow flexion-extension arc significantly improved from 101° to 125°. The mean Hand20 score significantly improved from 52 to 22. The mean Japanese Orthopaedic Association-Japan Elbow Society Elbow Function Score significantly improved from 67 to 88. The mean Mayo Elbow Performance Score significantly improved from 71 to 91 at the final follow-up evaluation. We showed that four-dimensional, preoperative simulation can be generated by adding the rotation axis to the one-position, three-dimensional computed tomography image of the affected arm. This method is feasible for elbow debridement arthroplasty.

  12. The Brainomics/Localizer database.

    PubMed

    Papadopoulos Orfanos, Dimitri; Michel, Vincent; Schwartz, Yannick; Pinel, Philippe; Moreno, Antonio; Le Bihan, Denis; Frouin, Vincent

    2017-01-01

    The Brainomics/Localizer database exposes part of the data collected by the in-house Localizer project, which planned to acquire four types of data from volunteer research subjects: anatomical MRI scans, functional MRI data, behavioral and demographic data, and DNA sampling. Over the years, this local project has been collecting such data from hundreds of subjects. We had selected 94 of these subjects for their complete datasets, including all four types of data, as the basis for a prior publication; the Brainomics/Localizer database publishes the data associated with these 94 subjects. Since regulatory rules prevent us from making genetic data available for download, the database serves only anatomical MRI scans, functional MRI data, behavioral and demographic data. To publish this set of heterogeneous data, we use dedicated software based on the open-source CubicWeb semantic web framework. Through genericity in the data model and flexibility in the display of data (web pages, CSV, JSON, XML), CubicWeb helps us expose these complex datasets in original and efficient ways. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Generation of an Atlas of the Proximal Femur and Its Application to Trabecular Bone Analysis

    PubMed Central

    Carballido-Gamio, Julio; Folkesson, Jenny; Karampinos, Dimitrios C.; Baum, Thomas; Link, Thomas M.; Majumdar, Sharmila; Krug, Roland

    2013-01-01

    Automatic placement of anatomically corresponding volumes of interest and comparison of parameters against a standard of reference are essential components in studies of trabecular bone. Only recently, in vivo MR images of the proximal femur, an important fracture site, could be acquired with high-spatial resolution. The purpose of this MRI trabecular bone study was two-fold: (1) to generate an atlas of the proximal femur to automatically place anatomically corresponding volumes of interest in a population study and (2) to demonstrate how mean models of geodesic topological analysis parameters can be generated to be used as potential standard of reference. Ten females were used to generate the atlas and geodesic topological analysis models, and 10 females were used to demonstrate the atlas-based trabecular bone analysis. All alignments were based on three-dimensional (3D) multiresolution affine transformations followed by 3D multiresolution free-form deformations. Mean distances less than 1 mm between aligned femora, and sharp edges in the atlas and in fused gray-level images of registered femora indicated that the anatomical variability was well accommodated and explained by the free-form deformations. PMID:21432904

  14. Creating vascular models by postprocessing computed tomography angiography images: a guide for anatomical education.

    PubMed

    Govsa, Figen; Ozer, Mehmet Asim; Sirinturk, Suzan; Eraslan, Cenk; Alagoz, Ahmet Kemal

    2017-08-01

    A new application of teaching anatomy includes the use of computed tomography angiography (CTA) images to create clinically relevant three-dimensional (3D) printed models. The purpose of this article is to review recent innovations on the process and the application of 3D printed models as a tool for using under and post-graduate medical education. Images of aortic arch pattern received by CTA were converted into 3D images using the Google SketchUp free software and were saved in stereolithography format. Using a 3D printer (Makerbot), a model mode polylactic acid material was printed. A two-vessel left aortic arch was identified consisting of the brachiocephalic trunk and left subclavian artery. The life-like 3D models were rotated 360° in all axes in hand. The early adopters in education and clinical practices have embraced the medical imaging-guided 3D printed anatomical models for their ability to provide tactile feedback and a superior appreciation of visuospatial relationship between the anatomical structures. Printed vascular models are used to assist in preoperative planning, develop intraoperative guidance tools, and to teach patients surgical trainees in surgical practice.

  15. PACSY, a relational database management system for protein structure and chemical shift analysis.

    PubMed

    Lee, Woonghee; Yu, Wookyung; Kim, Suhkmann; Chang, Iksoo; Lee, Weontae; Markley, John L

    2012-10-01

    PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.edu.

  16. BIOSPIDA: A Relational Database Translator for NCBI

    PubMed Central

    Hagen, Matthew S.; Lee, Eva K.

    2010-01-01

    As the volume and availability of biological databases continue widespread growth, it has become increasingly difficult for research scientists to identify all relevant information for biological entities of interest. Details of nucleotide sequences, gene expression, molecular interactions, and three-dimensional structures are maintained across many different databases. To retrieve all necessary information requires an integrated system that can query multiple databases with minimized overhead. This paper introduces a universal parser and relational schema translator that can be utilized for all NCBI databases in Abstract Syntax Notation (ASN.1). The data models for OMIM, Entrez-Gene, Pubmed, MMDB and GenBank have been successfully converted into relational databases and all are easily linkable helping to answer complex biological questions. These tools facilitate research scientists to locally integrate databases from NCBI without significant workload or development time. PMID:21347013

  17. A micro-computed tomography study of the negotiation and anatomical feature in apical root canal of mandibular molars.

    PubMed

    Min, Yi; Ma, Jing-Zhi; Shen, Ya; Cheung, Gary Shun-Pan; Gao, Yuan

    2016-11-01

    The aim of this study was to investigate the clinical negotiation of various apical anatomic features of the mandibular first molars in a Chinese population using micro-computed tomography (micro-CT). A total of 152 mandibular first molars were scanned with micro-CT at 30 µm resolution. The apical 5 mm of root canal (ARC) was reconstructed three dimensionally and classified. Subsequently, the access cavity was prepared with the ARC anatomy blinded to the operator. The ARC was negotiated with a size 10 K file with or without precurve. Information on the ability to obtain a reproducible glide path was recorded. The anatomical classification of ARC was Type I with 68.45% in mandibular first molars. The negotiation result of ARC with Category i was 387 canals (74.00%). With a bent negotiating file, 96 canals were negotiated, including 88 reproducible glide paths (Category ii) and 8 irregular glide paths (Category iii). About 7.65% canals could not be negotiated with patency successfully (Category iv). The statistical analyze shown the anatomic feature of ARC had effect on the negotiation of ARC (p < 0.05). In conclusion, ARC anatomic variations had a strong potential impact on the negotiation. The category of negotiation in ARC would be helpful in the using of NiTi rotary instruments. Negotiation of ARC to the working length with patency should be careful and skillful because of the complexities of ARC. SCANNING 38:819-824, 2016. © 2016 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  18. Reviews.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1988

    1988-01-01

    Reviews two computer programs: "Molecular Graphics," which allows molecule manipulation in three-dimensional space (requiring IBM PC with 512K, EGA monitor, and math coprocessor); and "Periodic Law," a database which contains up to 20 items of information on each of the first 103 elements (Apple II or IBM PC). (MVL)

  19. Applications of the Cambridge Structural Database in chemical education1

    PubMed Central

    Battle, Gary M.; Ferrence, Gregory M.; Allen, Frank H.

    2010-01-01

    The Cambridge Structural Database (CSD) is a vast and ever growing compendium of accurate three-dimensional structures that has massive chemical diversity across organic and metal–organic compounds. For these reasons, the CSD is finding significant uses in chemical education, and these applications are reviewed. As part of the teaching initiative of the Cambridge Crystallographic Data Centre (CCDC), a teaching subset of more than 500 CSD structures has been created that illustrate key chemical concepts, and a number of teaching modules have been devised that make use of this subset in a teaching environment. All of this material is freely available from the CCDC website, and the subset can be freely viewed and interrogated using WebCSD, an internet application for searching and displaying CSD information content. In some cases, however, the complete CSD System is required for specific educational applications, and some examples of these more extensive teaching modules are also discussed. The educational value of visualizing real three-dimensional structures, and of handling real experimental results, is stressed throughout. PMID:20877495

  20. Applications of the Cambridge Structural Database in chemical education.

    PubMed

    Battle, Gary M; Ferrence, Gregory M; Allen, Frank H

    2010-10-01

    The Cambridge Structural Database (CSD) is a vast and ever growing compendium of accurate three-dimensional structures that has massive chemical diversity across organic and metal-organic compounds. For these reasons, the CSD is finding significant uses in chemical education, and these applications are reviewed. As part of the teaching initiative of the Cambridge Crystallographic Data Centre (CCDC), a teaching subset of more than 500 CSD structures has been created that illustrate key chemical concepts, and a number of teaching modules have been devised that make use of this subset in a teaching environment. All of this material is freely available from the CCDC website, and the subset can be freely viewed and interrogated using WebCSD, an internet application for searching and displaying CSD information content. In some cases, however, the complete CSD System is required for specific educational applications, and some examples of these more extensive teaching modules are also discussed. The educational value of visualizing real three-dimensional structures, and of handling real experimental results, is stressed throughout.

  1. A Dynamic Finite Element Analysis of Human Foot Complex in the Sagittal Plane during Level Walking

    PubMed Central

    Qian, Zhihui; Ren, Lei; Ding, Yun; Hutchinson, John R.; Ren, Luquan

    2013-01-01

    The objective of this study is to develop a computational framework for investigating the dynamic behavior and the internal loading conditions of the human foot complex during locomotion. A subject-specific dynamic finite element model in the sagittal plane was constructed based on anatomical structures segmented from medical CT scan images. Three-dimensional gait measurements were conducted to support and validate the model. Ankle joint forces and moment derived from gait measurements were used to drive the model. Explicit finite element simulations were conducted, covering the entire stance phase from heel-strike impact to toe-off. The predicted ground reaction forces, center of pressure, foot bone motions and plantar surface pressure showed reasonably good agreement with the gait measurement data over most of the stance phase. The prediction discrepancies can be explained by the assumptions and limitations of the model. Our analysis showed that a dynamic FE simulation can improve the prediction accuracy in the peak plantar pressures at some parts of the foot complex by 10%–33% compared to a quasi-static FE simulation. However, to simplify the costly explicit FE simulation, the proposed model is confined only to the sagittal plane and has a simplified representation of foot structure. The dynamic finite element foot model proposed in this study would provide a useful tool for future extension to a fully muscle-driven dynamic three-dimensional model with detailed representation of all major anatomical structures, in order to investigate the structural dynamics of the human foot musculoskeletal system during normal or even pathological functioning. PMID:24244500

  2. A dynamic finite element analysis of human foot complex in the sagittal plane during level walking.

    PubMed

    Qian, Zhihui; Ren, Lei; Ding, Yun; Hutchinson, John R; Ren, Luquan

    2013-01-01

    The objective of this study is to develop a computational framework for investigating the dynamic behavior and the internal loading conditions of the human foot complex during locomotion. A subject-specific dynamic finite element model in the sagittal plane was constructed based on anatomical structures segmented from medical CT scan images. Three-dimensional gait measurements were conducted to support and validate the model. Ankle joint forces and moment derived from gait measurements were used to drive the model. Explicit finite element simulations were conducted, covering the entire stance phase from heel-strike impact to toe-off. The predicted ground reaction forces, center of pressure, foot bone motions and plantar surface pressure showed reasonably good agreement with the gait measurement data over most of the stance phase. The prediction discrepancies can be explained by the assumptions and limitations of the model. Our analysis showed that a dynamic FE simulation can improve the prediction accuracy in the peak plantar pressures at some parts of the foot complex by 10%-33% compared to a quasi-static FE simulation. However, to simplify the costly explicit FE simulation, the proposed model is confined only to the sagittal plane and has a simplified representation of foot structure. The dynamic finite element foot model proposed in this study would provide a useful tool for future extension to a fully muscle-driven dynamic three-dimensional model with detailed representation of all major anatomical structures, in order to investigate the structural dynamics of the human foot musculoskeletal system during normal or even pathological functioning.

  3. Usefulness of three-dimensional full-scale modeling of surgery for a giant cell tumor of the cervical spine.

    PubMed

    Yamazaki, M; Akazawa, T; Okawa, A; Koda, M

    2007-03-01

    Case report. To report a case with giant cell tumor (GCT) of C6 vertebra, in which three-dimensional (3-D) full-scale modeling of the cervical spine was useful for preoperative planning and intraoperative navigation. A university hospital in Japan. A 27-year-old man with a GCT involving the C6 vertebra presented with severe neck pain. The C6 vertebra was collapsed and the tumor had infiltrated around both vertebral arteries (VAs). A single-stage operation combining anterior and posterior surgical procedures was scheduled to resect the tumor and stabilize the spine. To evaluate the anatomic structures within the surgical fields, we produced a 3-D full-scale model from the computed tomography angiography data. The 3-D full-scale model clearly showed the relationships between the destroyed C6 vertebra and the deviations in the courses of both VAs. Using the model, we were able to identify the anatomic landmarks around the VAs during anterior surgery and to successfully resect the tumor. During the posterior surgery, we were able to determine accurate starting points for the pedicle screws. Anterior iliac bone graft from C5 to C7 and posterior fixation with a rod and screw system from C4 to T2 were performed without any complications. Postoperatively, the patient experienced relief of his neck pain. The 3-D full-scale model was useful for simultaneously evaluating the destruction of the vertebral bony structures and the deviations in the courses of the VAs during surgery for GCT involving the cervical spine.

  4. Three-dimensional printed ultrasound and photoacoustic training phantoms for vasculature access (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nikitichev, Daniil I.; Xia, Wenfeng; West, Simeon J.; Desjardins, Adrien E.; Ourselin, Sebastien; Vercauteren, Tom

    2017-03-01

    Ultrasound (US) imaging is widely used to guide vascular access procedures such as arterial and venous cannulation. As needle visualisation with US imaging can be very challenging, it is easy to misplace the needle in the patient and it can be life threating. Photoacoustic (PA) imaging is well suited to image medical needles and catheters that are commonly used for vascular access. To improve the success rate, a certain level of proficiency is required that can be gained through extensive practice on phantoms. Unfortunately, commercial training phantoms are expensive and custom-made phantoms usually do not replicate the anatomy very well. Thus, there is a great demand for more realistic and affordable ultrasound and photoacoustic imaging phantoms for vasculature access procedures training. Three-dimensional (3D) printing can help create models that replicate complex anatomical geometries. However, the available 3D printed materials do not possess realistic tissue properties. Alternatively, tissue-mimicking materials can be employed using casting and 3D printed moulds but this approach is limited to the creation of realistic outer shapes with no replication of complex internal structures. In this study, we developed a realistic vasculature access phantom using a combination of mineral oil based materials as background tissue and a non-toxic, water dissolvable filament material to create complex vascular structure using 3D printing. US and PA images of the phantoms comprising the complex vasculature network were acquired. The results show that 3D printing can facilitate the fabrication of anatomically realistic training phantoms, with designs that can be customized and shared electronically.

  5. Torcular Herophili classification and evaluation of dural venous sinus variations using digital subtraction angiography and magnetic resonance venographies.

    PubMed

    Gökçe, Erkan; Pınarbaşılı, Tansu; Acu, Berat; Fırat, M Murat; Erkorkmaz, Ünal

    2014-08-01

    The configurations of cerebral veins and dural venous sinuses differ not only between individuals, but also between the two brain hemispheres of an individual, making the anatomical classification of the cerebral veins difficult. We evaluated the superior dural venous sinuses and classified their types and variations using magnetic resonance venography (MRV) and digital substraction angiography (DSA). A total of 394 patients were studied retrospectively. Superior dural venous sinuses were evaluated and the confluence of the sinuses was classified on 2-dimensional time-of-flight MRV, contrast-enhanced 3-dimensional spoiled gradient recalled echo magnetic resonance imaging, and/or cerebral DSA. Confluens sinuum was divided into three types: true confluence, partial confluence, and non-confluence. Of the three types, partial confluence (type II) was most frequently seen. Co-dominance of the transverse sinuses was most frequently observed. An occipital sinus was observed in 15 % of the patients. There were statistically significant differences between the left transverse sinus agenesis and the presence of the occipital sinus (p < 0.001), between the co-presence of the partial confluence type torcular and the occipital sinus (p = 0.040), and between the co-presence of the fenestrated straight sinus and the occipital sinus (p = 0.010). Although anatomical variations of dural venous sinuses are seen frequently, classification of venous sinuses helps surgeons in preoperative evaluation and management, and prevention of possible complications. In this study, we think that a comprehensive evaluation and classification of dural venous sinuses is a significant contribution to the literature.

  6. Making education effective and fun: stations-based approach to teaching radiology and anatomy to third-year medical students.

    PubMed

    Arya, Rahul; Morrison, Trevor; Zumwalt, Ann; Shaffer, Kitt

    2013-10-01

    A hands-on stations-based approach to teaching anatomy to third-year medical students is used at Boston University. The goal of our study was to demonstrate that such an interactive, team-based approach to teaching anatomy would be well received and be helpful in recall, comprehension, and reinforcement of anatomy learned in the first year of medical school. Each radiology-anatomy correlation lab was focused on one particular anatomic part, such as skull base, pelvis, coronary anatomy, etc. Four stations, including a three-dimensional model, computer, ultrasound, and posters, were created for each lab. Informed consent was obtained before online survey dissemination to assess the effectiveness and quality of radiology-anatomy correlation lab. This study was approved by our institutional institutional review board, and data were analyzed using a χ(2) test. Survey data were collected from February 2010 through March 2012. The response rate was 33.5%. Overall, the highest percentage of students (46%) found the three-dimensional model station to be the most valuable. The computer station was most helpful in recall of the anatomic principles from the first year of medical school. Regarding the quality of the anatomy lab, less than 2% of the students thought that the images were of poor quality or the material presented was not clinically relevant. Our results indicate that an interactive, team-based approach to teaching anatomy was well received by the medical students. It was engaging and students were able to benefit from it in multiple ways. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  7. Use of 3D reconstruction cloacagrams and 3D printing in cloacal malformations.

    PubMed

    Ahn, Jennifer J; Shnorhavorian, Margarett; Amies Oelschlager, Anne-Marie E; Ripley, Beth; Shivaram, Giridhar M; Avansino, Jeffrey R; Merguerian, Paul A

    2017-08-01

    Cloacal anomalies are complex to manage, and the anatomy affects prognosis and management. Assessment historically includes examination under anesthesia, and genitography is often performed, but these do not consistently capture three-dimensional (3D) detail or spatial relationships of the anatomic structures. Three-dimensional reconstruction cloacagrams can provide a high level of detail including channel measurements and the level of the cloaca (<3 cm vs. >3 cm), which typically determines the approach for surgical reconstruction and can impact long-term prognosis. Yet this imaging modality has not yet been directly compared with intra-operative or endoscopic findings. Our objective was to compare 3D reconstruction cloacagrams with endoscopic and intraoperative findings, as well as to describe the use of 3D printing to create models for surgical planning and education. An IRB-approved retrospective review of all cloaca patients seen by our multi-disciplinary program from 2014 to 2016 was performed. All patients underwent examination under anesthesia, endoscopy, 3D reconstruction cloacagram, and subsequent reconstructive surgery at a later date. Patient characteristics, intraoperative details, and measurements from endoscopy and cloacagram were reviewed and compared. One of the 3D cloacagrams was reformatted for 3D printing to create a model for surgical planning. Four patients were included for review, with the Figure illustrating 3D cloacagram results. Measurements of common channel length and urethral length were similar between modalities, particularly with confirming the level of cloaca. No patient experienced any complications or adverse effects from cloacagram or endoscopy. A model was successfully created from cloacagram images with the use of 3D printing technology. Accurate preoperative assessment for cloacal anomalies is important for counseling and surgical planning. Three-dimensional cloacagrams have been shown to yield a high level of anatomic detail. Here, cloacagram measurements are shown to correlate well with endoscopic and intraoperative findings with regards to level of cloaca and Müllerian development. Measurement discrepancies may be due to technical variation indicating a need for further evaluation. The translation of the cloacagram images into a 3D printed model demonstrates potential applications of these models for pre-operative planning and education of both families and trainees. In our series, 3D reconstruction cloacagrams yielded accurate measurements of urethral length and level of cloaca common channel and urethral length, similar to those found on endoscopy. Three-dimensional models can be printed from using cloacagram images, and may be useful for surgical planning and education. Copyright © 2017 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.

  8. Accurate landmarking of three-dimensional facial data in the presence of facial expressions and occlusions using a three-dimensional statistical facial feature model.

    PubMed

    Zhao, Xi; Dellandréa, Emmanuel; Chen, Liming; Kakadiaris, Ioannis A

    2011-10-01

    Three-dimensional face landmarking aims at automatically localizing facial landmarks and has a wide range of applications (e.g., face recognition, face tracking, and facial expression analysis). Existing methods assume neutral facial expressions and unoccluded faces. In this paper, we propose a general learning-based framework for reliable landmark localization on 3-D facial data under challenging conditions (i.e., facial expressions and occlusions). Our approach relies on a statistical model, called 3-D statistical facial feature model, which learns both the global variations in configurational relationships between landmarks and the local variations of texture and geometry around each landmark. Based on this model, we further propose an occlusion classifier and a fitting algorithm. Results from experiments on three publicly available 3-D face databases (FRGC, BU-3-DFE, and Bosphorus) demonstrate the effectiveness of our approach, in terms of landmarking accuracy and robustness, in the presence of expressions and occlusions.

  9. [Establishment of the database of the 3D facial models for the plastic surgery based on network].

    PubMed

    Liu, Zhe; Zhang, Hai-Lin; Zhang, Zheng-Guo; Qiao, Qun

    2008-07-01

    To collect the three-dimensional (3D) facial data of 30 facial deformity patients by the 3D scanner and establish a professional database based on Internet. It can be helpful for the clinical intervention. The primitive point data of face topography were collected by the 3D scanner. Then the 3D point cloud was edited by reverse engineering software to reconstruct the 3D model of the face. The database system was divided into three parts, including basic information, disease information and surgery information. The programming language of the web system is Java. The linkages between every table of the database are credibility. The query operation and the data mining are convenient. The users can visit the database via the Internet and use the image analysis system to observe the 3D facial models interactively. In this paper we presented a database and a web system adapt to the plastic surgery of human face. It can be used both in clinic and in basic research.

  10. Canine hippocampal formation composited into three-dimensional structure using MPRAGE.

    PubMed

    Jung, Mi-Ae; Nahm, Sang-Soep; Lee, Min-Su; Lee, In-Hye; Lee, Ah-Ra; Jang, Dong-Pyo; Kim, Young-Bo; Cho, Zang-Hee; Eom, Ki-Dong

    2010-07-01

    This study was performed to anatomically illustrate the living canine hippocampal formation in three-dimensions (3D), and to evaluate its relationship to surrounding brain structures. Three normal beagle dogs were scanned on a MR scanner with inversion recovery segmented 3D gradient echo sequence (known as MP-RAGE: Magnetization Prepared Rapid Gradient Echo). The MRI data was manually segmented and reconstructed into a 3D model using the 3D slicer software tool. From the 3D model, the spatial relationships between hippocampal formation and surrounding structures were evaluated. With the increased spatial resolution and contrast of the MPRAGE, the canine hippocampal formation was easily depicted. The reconstructed 3D image allows easy understanding of the hippocampal contour and demonstrates the structural relationship of the hippocampal formation to surrounding structures in vivo.

  11. Three-dimensional (3D)- computed tomography bronchography and angiography combined with 3D-video-assisted thoracic surgery (VATS) versus conventional 2D-VATS anatomic pulmonary segmentectomy for the treatment of non-small cell lung cancer.

    PubMed

    She, Xiao-Wei; Gu, Yun-Bin; Xu, Chun; Li, Chang; Ding, Cheng; Chen, Jun; Zhao, Jun

    2018-02-01

    Compared to the pulmonary lobe, the anatomical structure of the pulmonary segment is relatively complex and prone to variation, thus the risk and difficulty of segmentectomy is increased. We compared three-dimensional computed tomography bronchography and angiography (3D-CTBA) combined with 3D video-assisted thoracic surgery (3D-VATS) to perform segmentectomy to conventional two-dimensional (2D)-VATS for the treatment of non-small cell lung cancer (NSCLC). We retrospectively reviewed the data of randomly selected patients who underwent 3D-CTBA combined with 3D-VATS (3D-CTBA-VATS) or 2D-VATS at the Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University Hospital, from January 2014 to May 2017. The operative duration of 3D group was significantly shorter than the 2D group (P < 0.05). There was no significant difference in the number of dissected lymph nodes between the two groups (P > 0.05). The extent of intraoperative bleeding and postoperative drainage in the 3D group was significantly lower than in the 2D group (P < 0.05). Chest tube duration in the 3D group was shorter than in the 2D group (P < 0.05). Incidences of pulmonary infection, atelectasis, and arrhythmia were not statistically different between the two groups (P > 0.05). However, hemoptysis and pulmonary air leakage (>3d) occurred significantly less frequently in the 3D than in the 2D group (P < 0.05). 3D-CTBA-VATS is a more accurate and smooth technique and leads to reduced intraoperative and postoperative complications. © 2018 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  12. Computational Flow Modeling of Human Upper Airway Breathing

    NASA Astrophysics Data System (ADS)

    Mylavarapu, Goutham

    Computational modeling of biological systems have gained a lot of interest in biomedical research, in the recent past. This thesis focuses on the application of computational simulations to study airflow dynamics in human upper respiratory tract. With advancements in medical imaging, patient specific geometries of anatomically accurate respiratory tracts can now be reconstructed from Magnetic Resonance Images (MRI) or Computed Tomography (CT) scans, with better and accurate details than traditional cadaver cast models. Computational studies using these individualized geometrical models have advantages of non-invasiveness, ease, minimum patient interaction, improved accuracy over experimental and clinical studies. Numerical simulations can provide detailed flow fields including velocities, flow rates, airway wall pressure, shear stresses, turbulence in an airway. Interpretation of these physical quantities will enable to develop efficient treatment procedures, medical devices, targeted drug delivery etc. The hypothesis for this research is that computational modeling can predict the outcomes of a surgical intervention or a treatment plan prior to its application and will guide the physician in providing better treatment to the patients. In the current work, three different computational approaches Computational Fluid Dynamics (CFD), Flow-Structure Interaction (FSI) and Particle Flow simulations were used to investigate flow in airway geometries. CFD approach assumes airway wall as rigid, and relatively easy to simulate, compared to the more challenging FSI approach, where interactions of airway wall deformations with flow are also accounted. The CFD methodology using different turbulence models is validated against experimental measurements in an airway phantom. Two case-studies using CFD, to quantify a pre and post-operative airway and another, to perform virtual surgery to determine the best possible surgery in a constricted airway is demonstrated. The unsteady Large Eddy simulations (LES) and a steady Reynolds Averaged Navier Stokes (RANS) approaches in CFD modeling are discussed. The more challenging FSI approach is modeled first in simple two-dimensional anatomical geometry and then extended to simplified three dimensional geometry and finally in three dimensionally accurate geometries. The concepts of virtual surgery and the differences to CFD are discussed. Finally, the influence of various drug delivery parameters on particle deposition efficiency in airway anatomy are investigated through particle-flow simulations in a nasal airway model.

  13. Advanced virtual endoscopy for endoscopic transsphenoidal pituitary surgery.

    PubMed

    Wolfsberger, Stefan; Neubauer, André; Bühler, Katja; Wegenkittl, Rainer; Czech, Thomas; Gentzsch, Stephan; Böcher-Schwarz, Hans-Gerd; Knosp, Engelbert

    2006-11-01

    Virtual endoscopy (vE) is the navigation of a camera through a virtual anatomical space that is computationally reconstructed from radiological image data. Inside this three-dimensional space, arbitrary movements and adaptations of viewing parameters are possible. Thereby, vE can be used for noninvasive diagnostic purposes and for simulation of surgical tasks. This article describes the development of an advanced system of vE for endoscopic transsphenoidal pituitary surgery and its application to teaching, training, and in the routine clinical setting. The vE system was applied to a series of 35 patients with pituitary pathology (32 adenomas, three Rathke's cleft cysts) operated endoscopically via the transsphenoidal route at the Department of Neurosurgery of the Medical University Vienna between 2004 and 2006. The virtual endoscopic images correlated well with the intraoperative view. For the transsphenoidal approach, vE improved intraoperative orientation by depicting anatomical landmarks and variations. For planning a safe and tailored opening of the sellar floor, transparent visualization of the pituitary adenoma and the normal gland in relation to the internal carotid arteries was useful. According to our experience, vE can be a valuable tool for endoscopic transsphenoidal pituitary surgery for training purposes and preoperative planning. For the novice, it can act as a simulator for endoscopic anatomy and for training surgical tasks. For the experienced pituitary surgeon, vE can depict the individual patient's anatomy, and may, therefore, improve intraoperative orientation. By prospectively visualizing unpredictable anatomical variations, vE may increase the safety of this surgical procedure.

  14. [Evaluation of a training system for middle ear surgery with optoelectric detection].

    PubMed

    Strauss, G; Bahrami, N; Pössneck, A; Strauss, M; Dietz, A; Korb, W; Lüth, T; Haase, R; Moeckel, H; Grunert, R

    2009-10-01

    This work presents a new training concept for surgery of the temporal bone. It is based on a model of gypsum plastic with optoelectric detection of risk structures. A prototypical evaluation is given. The training models are based on high-resolution computed tomographic data of a human skull. The resulting data set was printed by a three-dimensional (3D) printer. A 3D phantom is created from gypsum powder and a bonding agent. Risks structures are the facial nerve, semicircular canal, cochlea, ossicular chain, sigmoid sinus, dura, and internal carotid artery. An electrically conductive metal (Wood's metal) and a fiber-optic cable were used as detection materials for the risk structures. For evaluating the training system, a study was done with eight inexperienced and eight experienced ear surgeons. They were asked to perform temporal bone surgery using two identical training models (group A). In group B, the same surgeons underwent surgical training with human cadavers. In the case of injuries, the number, point in time, degree (facial nerve), and injured structure were documented during the training on the model. In addition, the total time needed was noted. The training systems could be used in all cases. Evaluation of the anatomic accuracy of the models showed results that were between 49.5% and 90% agreement with the anatomic origin. Error detection was evaluated with values between 79% and 100% agreement with the perception of an experienced surgeon. The operating setting was estimated to be better than the previous"gold standard." The possibility of completely replacing the previous training method, which uses cadavers, with the examined training model was affirmed. This study shows that the examined system fulfills the conditions for a new training concept for temporal bone surgery. The system connects the preliminary work with printed and sintered models with the possibilities of microsystem engineering. In addition, the model's digital database permits a complete virtual representation of the model with appropriate further applications ("look behind the wall," virtual endoscopy).

  15. Percutaneous Transcatheter Mitral Valve Replacement: Patient-specific Three-dimensional Computer-based Heart Model and Prototyping.

    PubMed

    Vaquerizo, Beatriz; Theriault-Lauzier, Pascal; Piazza, Nicolo

    2015-12-01

    Mitral regurgitation is the most prevalent valvular heart disease worldwide. Despite the widespread availability of curative surgical intervention, a considerable proportion of patients with severe mitral regurgitation are not referred for treatment, largely due to the presence of left ventricular dysfunction, advanced age, and comorbid illnesses. Transcatheter mitral valve replacement is a promising therapeutic alternative to traditional surgical valve replacement. The complex anatomical and pathophysiological nature of the mitral valvular complex, however, presents significant challenges to the successful design and implementation of novel transcatheter mitral replacement devices. Patient-specific 3-dimensional computer-based models enable accurate assessment of the mitral valve anatomy and preprocedural simulations for transcatheter therapies. Such information may help refine the design features of novel transcatheter mitral devices and enhance procedural planning. Herein, we describe a novel medical image-based processing tool that facilitates accurate, noninvasive assessment of the mitral valvular complex, by creating precise three-dimensional heart models. The 3-dimensional computer reconstructions are then converted to a physical model using 3-dimensional printing technology, thereby enabling patient-specific assessment of the interaction between device and patient. It may provide new opportunities for a better understanding of the mitral anatomy-pathophysiology-device interaction, which is of critical importance for the advancement of transcatheter mitral valve replacement. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  16. Concept and development of an orthotropic FE model of the proximal femur.

    PubMed

    Wirtz, Dieter Christian; Pandorf, Thomas; Portheine, Frank; Radermacher, Klaus; Schiffers, Norbert; Prescher, Andreas; Weichert, Dieter; Niethard, Fritz Uwe

    2003-02-01

    In contrast to many isotropic finite-element (FE) models of the femur in literature, it was the object of our study to develop an orthotropic FE "model femur" to realistically simulate three-dimensional bone remodelling. The three-dimensional geometry of the proximal femur was reconstructed by CT scans of a pair of cadaveric femurs at equal distances of 2mm. These three-dimensional CT models were implemented into an FE simulation tool. Well-known "density-determined" bony material properties (Young's modulus; Poisson's ratio; ultimate strength in pressure, tension and torsion; shear modulus) were assigned to each FE of the same "CT-density-characterized" volumetric group. In order to fix the principal directions of stiffness in FE areas with the same "density characterization", the cadaveric femurs were cut in 2mm slices in frontal (left femur) and sagittal plane (right femur). Each femoral slice was scanned into a computer-based image processing system. On these images, the principal directions of stiffness of cancellous and cortical bone were determined manually using the orientation of the trabecular structures and the Haversian system. Finally, these geometric data were matched with the "CT-density characterized" three-dimensional femur model. In addition, the time and density-dependent adaptive behaviour of bone remodelling was taken into account by implementation of Carter's criterion. In the constructed "model femur", each FE is characterized by the principal directions of the stiffness and the "CT-density-determined" material properties of cortical and cancellous bone. Thus, on the basis of anatomic data a three-dimensional FE simulation reference model of the proximal femur was realized considering orthotropic conditions of bone behaviour. With the orthotropic "model femur", the fundamental basis has been formed to realize realistic simulations of the dynamical processes of bone remodelling under different loading conditions or operative procedures (osteotomies, total hip replacements, etc).

  17. A three-dimensional axis for the study of femoral neck orientation

    PubMed Central

    Bonneau, Noémie; Libourel, Paul-Antoine; Simonis, Caroline; Puymerail, Laurent; Baylac, Michel; Tardieu, Christine; Gagey, Olivier

    2012-01-01

    A common problem in the quantification of the orientation of the femoral neck is the difficulty to determine its true axis; however, this axis is typically estimated visually only. Moreover, the orientation of the femoral neck is commonly analysed using angles that are dependent on anatomical planes of reference and only quantify the orientation in two dimensions. The purpose of this study is to establish a method to determine the three-dimensional orientation of the femoral neck using a three-dimensional model. An accurate determination of the femoral neck axis requires a reconsideration of the complex architecture of the proximal femur. The morphology of the femoral neck results from both the medial and arcuate trabecular systems, and the asymmetry of the cortical bone. Given these considerations, two alternative models, in addition to the cylindrical one frequently assumed, were tested. The surface geometry of the femoral neck was subsequently used to fit one cylinder, two cylinders and successive cross-sectional ellipses. The model based on successive ellipses provided a significantly smaller average deviation than the two other models (P < 0.001) and reduced the observer-induced measurement error. Comparisons with traditional measurements and analyses on a sample of 91 femora were also performed to assess the validity of the model based on successive ellipses. This study provides a semi-automatic and accurate method for the determination of the functional three-dimensional femoral neck orientation avoiding the use of a reference plane. This innovative method has important implications for future studies that aim to document and understand the change in the orientation of the femoral neck associated with the acquisition of a bipedal gait in humans. Moreover, the precise determination of the three-dimensional orientation has implications in current research involved in developing clinical applications in diagnosis, hip surgery and rehabilitation. PMID:22967192

  18. Bionic Nanosystems

    NASA Astrophysics Data System (ADS)

    Sebastian Mannoor, Manu

    Direct multidimensional integration of functional electronics and mechanical elements with viable biological systems could allow for the creation of bionic systems and devices possessing unique and advanced capabilities. For example, the ability to three dimensionally integrate functional electronic and mechanical components with biological cells and tissue could enable the creation of bionic systems that can have tremendous impact in regenerative medicine, prosthetics, and human-machine interfaces. However, as a consequence of the inherent dichotomy in material properties and limitations of conventional fabrication methods, the attainment of truly seamless integration of electronic and/or mechanical components with biological systems has been challenging. Nanomaterials engineering offers a general route for overcoming these dichotomies, primarily due to the existence of a dimensional compatibility between fundamental biological functional units and abiotic nanomaterial building blocks. One area of compelling interest for bionic systems is in the field of biomedical sensing, where the direct interfacing of nanosensors onto biological tissue or the human body could stimulate exciting opportunities such as on-body health quality monitoring and adaptive threat detection. Further, interfacing of antimicrobial peptide based bioselective probes onto the bionic nanosensors could offer abilities to detect pathogenic bacteria with bio-inspired selectivity. Most compellingly, when paired with additive manufacturing techniques such as 3D printing, these characteristics enable three dimensional integration and merging of a variety of functional materials including electronic, structural and biomaterials with viable biological cells, in the precise anatomic geometries of human organs, to form three dimensionally integrated, multi-functional bionic hybrids and cyborg devices with unique capabilities. In this thesis, we illustrate these approaches using three representative bionic systems: 1) Bionic Nanosensors: featuring bio-integrated graphene nanosensors for ubiquitous sensing, 2) Bionic Organs: featuring 3D printed bionic ears with three dimensionally integrated electronics and 3) Bionic Leaves: describing ongoing work in the direction of the creation of a bionic leaf enabled by the integration of plant derived photosynthetic functional units with electronic materials and components into a leaf-shaped hierarchical structure for harvesting photosynthetic bioelectricity.

  19. Access and use of the GUDMAP database of genitourinary development.

    PubMed

    Davies, Jamie A; Little, Melissa H; Aronow, Bruce; Armstrong, Jane; Brennan, Jane; Lloyd-MacGilp, Sue; Armit, Chris; Harding, Simon; Piu, Xinjun; Roochun, Yogmatee; Haggarty, Bernard; Houghton, Derek; Davidson, Duncan; Baldock, Richard

    2012-01-01

    The Genitourinary Development Molecular Atlas Project (GUDMAP) aims to document gene expression across time and space in the developing urogenital system of the mouse, and to provide access to a variety of relevant practical and educational resources. Data come from microarray gene expression profiling (from laser-dissected and FACS-sorted samples) and in situ hybridization at both low (whole-mount) and high (section) resolutions. Data are annotated to a published, high-resolution anatomical ontology and can be accessed using a variety of search interfaces. Here, we explain how to run typical queries on the database, by gene or anatomical location, how to view data, how to perform complex queries, and how to submit data.

  20. Three-dimensional organic Dirac-line materials due to nonsymmorphic symmetry: A data mining approach

    NASA Astrophysics Data System (ADS)

    Geilhufe, R. Matthias; Bouhon, Adrien; Borysov, Stanislav S.; Balatsky, Alexander V.

    2017-01-01

    A data mining study of electronic Kohn-Sham band structures was performed to identify Dirac materials within the Organic Materials Database. Out of that, the three-dimensional organic crystal 5,6-bis(trifluoromethyl)-2-methoxy-1 H -1,3-diazepine was found to host different Dirac-line nodes within the band structure. From a group theoretical analysis, it is possible to distinguish between Dirac-line nodes occurring due to twofold degenerate energy levels protected by the monoclinic crystalline symmetry and twofold degenerate accidental crossings protected by the topology of the electronic band structure. The obtained results can be generalized to all materials having the space group P 21/c (No. 14, C2h 5) by introducing three distinct topological classes.

  1. The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Magnetohydrodynamics Simulation Module for the Global Solar Corona.

    PubMed

    Hayashi, K; Hoeksema, J T; Liu, Y; Bobra, M G; Sun, X D; Norton, A A

    Time-dependent three-dimensional magnetohydrodynamics (MHD) simulation modules are implemented at the Joint Science Operation Center (JSOC) of the Solar Dynamics Observatory (SDO). The modules regularly produce three-dimensional data of the time-relaxed minimum-energy state of the solar corona using global solar-surface magnetic-field maps created from Helioseismic and Magnetic Imager (HMI) full-disk magnetogram data. With the assumption of a polytropic gas with specific-heat ratio of 1.05, three types of simulation products are currently generated: i) simulation data with medium spatial resolution using the definitive calibrated synoptic map of the magnetic field with a cadence of one Carrington rotation, ii) data with low spatial resolution using the definitive version of the synchronic frame format of the magnetic field, with a cadence of one day, and iii) low-resolution data using near-real-time (NRT) synchronic format of the magnetic field on a daily basis. The MHD data available in the JSOC database are three-dimensional, covering heliocentric distances from 1.025 to 4.975 solar radii, and contain all eight MHD variables: the plasma density, temperature, and three components of motion velocity, and three components of the magnetic field. This article describes details of the MHD simulations as well as the production of the input magnetic-field maps, and details of the products available at the JSOC database interface. To assess the merits and limits of the model, we show the simulated data in early 2011 and compare with the actual coronal features observed by the Atmospheric Imaging Assembly (AIA) and the near-Earth in-situ data.

  2. Real-time marker-free motion capture system using blob feature analysis

    NASA Astrophysics Data System (ADS)

    Park, Chang-Joon; Kim, Sung-Eun; Kim, Hong-Seok; Lee, In-Ho

    2005-02-01

    This paper presents a real-time marker-free motion capture system which can reconstruct 3-dimensional human motions. The virtual character of the proposed system mimics the motion of an actor in real-time. The proposed system captures human motions by using three synchronized CCD cameras and detects the root and end-effectors of an actor such as a head, hands, and feet by exploiting the blob feature analysis. And then, the 3-dimensional positions of end-effectors are restored and tracked by using Kalman filter. At last, the positions of the intermediate joint are reconstructed by using anatomically constrained inverse kinematics algorithm. The proposed system was implemented under general lighting conditions and we confirmed that the proposed system could reconstruct motions of a lot of people wearing various clothes in real-time stably.

  3. PACSY, a relational database management system for protein structure and chemical shift analysis

    PubMed Central

    Lee, Woonghee; Yu, Wookyung; Kim, Suhkmann; Chang, Iksoo

    2012-01-01

    PACSY (Protein structure And Chemical Shift NMR spectroscopY) is a relational database management system that integrates information from the Protein Data Bank, the Biological Magnetic Resonance Data Bank, and the Structural Classification of Proteins database. PACSY provides three-dimensional coordinates and chemical shifts of atoms along with derived information such as torsion angles, solvent accessible surface areas, and hydrophobicity scales. PACSY consists of six relational table types linked to one another for coherence by key identification numbers. Database queries are enabled by advanced search functions supported by an RDBMS server such as MySQL or PostgreSQL. PACSY enables users to search for combinations of information from different database sources in support of their research. Two software packages, PACSY Maker for database creation and PACSY Analyzer for database analysis, are available from http://pacsy.nmrfam.wisc.edu. PMID:22903636

  4. Morphologies of Primary Silicon in Hypereutectic Al-Si Alloys: Phase-Field Simulation Supported by Key Experiments

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Wei, Ming; Zhang, Lijun; Du, Yong

    2016-04-01

    We realized a three-dimensional visualization of the morphology evolution and the growth behavior of the octahedral primary silicon in hypereutectic Al-20wtpctSi alloy during solidification in a real length scale by utilizing the phase-field simulation coupled with CALPHAD databases, and supported by key experiments. Moreover, through two-dimensional cut of the octahedral primary silicon at random angles, different morphologies observed in experiments, including triangle, square, trapezoid, rhombic, pentagon, and hexagon, were well reproduced.

  5. Needle path planning and steering in a three-dimensional non-static environment using two-dimensional ultrasound images

    PubMed Central

    Vrooijink, Gustaaf J.; Abayazid, Momen; Patil, Sachin; Alterovitz, Ron; Misra, Sarthak

    2015-01-01

    Needle insertion is commonly performed in minimally invasive medical procedures such as biopsy and radiation cancer treatment. During such procedures, accurate needle tip placement is critical for correct diagnosis or successful treatment. Accurate placement of the needle tip inside tissue is challenging, especially when the target moves and anatomical obstacles must be avoided. We develop a needle steering system capable of autonomously and accurately guiding a steerable needle using two-dimensional (2D) ultrasound images. The needle is steered to a moving target while avoiding moving obstacles in a three-dimensional (3D) non-static environment. Using a 2D ultrasound imaging device, our system accurately tracks the needle tip motion in 3D space in order to estimate the tip pose. The needle tip pose is used by a rapidly exploring random tree-based motion planner to compute a feasible needle path to the target. The motion planner is sufficiently fast such that replanning can be performed repeatedly in a closed-loop manner. This enables the system to correct for perturbations in needle motion, and movement in obstacle and target locations. Our needle steering experiments in a soft-tissue phantom achieves maximum targeting errors of 0.86 ± 0.35 mm (without obstacles) and 2.16 ± 0.88 mm (with a moving obstacle). PMID:26279600

  6. FDI World Dental Federation - clinical criteria for the evaluation of direct and indirect restorations. Update and clinical examples.

    PubMed

    Hickel, Reinhard; Peschke, Arnd; Tyas, Martin; Mjör, Ivar; Bayne, Stephen; Peters, Mathilde; Hiller, Karl-Anton; Randall, Ross; Vanherle, Guido; Heintze, Siegward D

    2010-08-01

    In 2007, new clinical criteria were approved by the FDI World Dental Federation and simultaneously published in three dental journals. The criteria were categorized into three groups: esthetic parameters (four criteria), functional parameters (six criteria), and biological parameters (six criteria). Each criterion can be expressed with five scores, three for acceptable and two for non-acceptable (one for reparable and one for replacement). The criteria have been used in several clinical studies since 2007, and the resulting experience in their application has led to a requirement to modify some of the criteria and scores. The two major alterations involve staining and approximal contacts. As staining of the margins and the surface have different causes, both phenomena do not appear simultaneously. Thus, staining has been differentiated into marginal staining and surface staining. The approximal contact now appears under the name "approximal anatomic form" as the approximal contour is a specific, often non-esthetic issue that cannot be integrated into the criterion "esthetic anatomical form". In 2008, a web-based training and calibration tool called e-calib (www.e-calib.info) was made available. Clinical investigators and other research workers can train and calibrate themselves interactively by assessing clinical cases of posterior restorations, which are presented as high quality pictures. Currently, about 300 clinical cases are included in the database which is regularly updated. Training for 8 of the 16 clinical criteria is available in the program: "Surface luster"; "Staining (surface, margins)"; "Color match and translucency"; "Esthetic anatomical form"; "Fracture of material and retention"; "Marginal adaptation"; "Recurrence of caries, erosion, abfraction"; and "Tooth integrity (enamel cracks, tooth fractures)". Typical clinical cases are presented for each of these eight criteria and their corresponding five scores.

  7. Floral reversion mechanism in longan (Dimocarpus longan Lour.) revealed by proteomic and anatomic analyses.

    PubMed

    You, Xiangrong; Wang, Lingxia; Liang, Wenyu; Gai, Yonghong; Wang, Xiaoyan; Chen, Wei

    2012-02-02

    Two-dimensional gel electrophoresis (2-DE) was used to analyze the proteins related to floral reversion in Dimocarpus longan Lour. Proteins were extracted from buds undergoing the normal process of flowering and from those undergoing floral reversion in three developing stages in D. longan. Differentially expressed proteins were identified from the gels after 2-DE analysis, which were confirmed using matrix-assisted laser desorption/ionization-time of flying-mass spectroscopy and protein database search. A total of 39 proteins, including 18 up-regulated and 21 down-regulated proteins, were classified into different categories, such as energy and substance metabolism, protein translation, secondary metabolism, phytohormone, cytoskeleton structure, regulation, and stress tolerance. Among these, the largest functional class was associated with primary metabolism. Down-regulated proteins were involved in photosynthesis, transcription, and translation, whereas up-regulated proteins were involved in respiration. Decreased flavonoid synthesis and up-regulated GA20ox might be involved in the floral reversion process. Up-regulated 14-3-3 proteins played a role in the regulation of floral reversion in D. longan by responding to abiotic stress. Observations via transmission electron microscopy revealed the ultrastructure changes in shedding buds undergoing floral reversion. Overall, the results provided insights into the molecular basis for the floral reversion mechanism in D. longan. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Stereoscopic Three-Dimensional Neuroanatomy Lectures Enhance Neurosurgical Training: Prospective Comparison with Traditional Teaching.

    PubMed

    Clark, Anna D; Guilfoyle, Mathew R; Candy, Nicholas G; Budohoski, Karol P; Hofmann, Riikka; Barone, Damiano G; Santarius, Thomas; Kirollos, Ramez W; Trivedi, Rikin A

    2017-12-01

    Stereoscopic three-dimensional (3D) imaging is increasingly used in the teaching of neuroanatomy and although this is mainly aimed at undergraduate medical students, it has enormous potential for enhancing the training of neurosurgeons. This study aims to assess whether 3D lecturing is an effective method of enhancing the knowledge and confidence of neurosurgeons and how it compares with traditional two-dimensional (2D) lecturing and cadaveric training. Three separate teaching sessions for neurosurgical trainees were organized: 1) 2D course (2D lecture + cadaveric session), 2) 3D lecture alone, and 3) 3D course (3D lecture + cadaveric session). Before and after each session, delegates were asked to complete questionnaires containing questions relating to surgical experience, anatomic knowledge, confidence in performing procedures, and perceived value of 3D, 2D, and cadaveric teaching. Although both 2D and 3D lectures and courses were similarly effective at improving self-rated knowledge and understanding, the 3D lecture and course were associated with significantly greater gains in confidence reported by the delegates for performing a subfrontal approach and sylvian fissure dissection. Stereoscopic 3D lectures provide neurosurgical trainees with greater confidence for performing standard operative approaches and enhances the benefit of subsequent practical experience in developing technical skills in cadaveric dissection. Copyright © 2017. Published by Elsevier Inc.

  9. Femur-mounted navigation system for the arthroscopic treatment of femoroacetabular impingement

    NASA Astrophysics Data System (ADS)

    Park, S. H.; Hwang, D. S.; Yoon, Y. S.

    2013-07-01

    Femoroacetabular impingement stems from an abnormal shape of the acetabulum and proximal femur. It is treated by resection of damaged soft tissue and by the shaping of bone to resemble normal features. The arthroscopic treatment of femoroacetabular impingement has many advantages, including minimal incisions, rapid recovery, and less pain. However, in some cases, revision is needed owing to the insufficient resection of damaged bone from a misreading of the surgical site. The limited view of arthroscopy is the major reason for the complications. In this research, a navigation method for the arthroscopic treatment of femoroacetabular impingement is developed. The proposed navigation system consists of femur attachable measurement device and user interface. The bone mounted measurement devices measure points on head-neck junction for registration and position of surgical instrument. User interface shows the three-dimensional model of patient's femur and surgical instrument position that is tracked by measurement device. Surgeon can know the three-dimensional anatomical structure of hip joint and surgical instrument position on surgical site using navigation system. Surface registration was used to obtain relation between patient's coordinate at the surgical site and coordinate of three-dimensional model of femur. In this research, we evaluated the proposed navigation system using plastic model bone. It is expected that the surgical tool tracking position accuracy will be less than 1 mm.

  10. Anatomically Realistic Three-Dimensional Meshes of the Pelvic Floor & Anal Canal for Finite Element Analysis

    PubMed Central

    Noakes, Kimberley F.; Bissett, Ian P.; Pullan, Andrew J.; Cheng, Leo K.

    2014-01-01

    Three anatomically realistic meshes, suitable for finite element analysis, of the pelvic floor and anal canal regions have been developed to provide a framework with which to examine the mechanics, via finite element analysis of normal function within the pelvic floor. Two cadaver-based meshes were produced using the Visible Human Project (male and female) cryosection data sets, and a third mesh was produced based on MR image data from a live subject. The Visible Man (VM) mesh included 10 different pelvic structures while the Visible Woman and MRI meshes contained 14 and 13 structures respectively. Each image set was digitized and then finite element meshes were created using an iterative fitting procedure with smoothing constraints calculated from ‘L’-curves. These weights produced accurate geometric meshes of each pelvic structure with average Root Mean Square (RMS) fitting errors of less than 1.15 mm. The Visible Human cadaveric data provided high resolution images, however, the cadaveric meshes lacked the normal dynamic form of living tissue and suffered from artifacts related to postmortem changes. The lower resolution MRI mesh was able to accurately portray structure of the living subject and paves the way for dynamic, functional modeling. PMID:18317929

  11. A database of whole-body action videos for the study of action, emotion, and untrustworthiness.

    PubMed

    Keefe, Bruce D; Villing, Matthias; Racey, Chris; Strong, Samantha L; Wincenciak, Joanna; Barraclough, Nick E

    2014-12-01

    We present a database of high-definition (HD) videos for the study of traits inferred from whole-body actions. Twenty-nine actors (19 female) were filmed performing different actions-walking, picking up a box, putting down a box, jumping, sitting down, and standing and acting-while conveying different traits, including four emotions (anger, fear, happiness, sadness), untrustworthiness, and neutral, where no specific trait was conveyed. For the actions conveying the four emotions and untrustworthiness, the actions were filmed multiple times, with the actor conveying the traits with different levels of intensity. In total, we made 2,783 action videos (in both two-dimensional and three-dimensional format), each lasting 7 s with a frame rate of 50 fps. All videos were filmed in a green-screen studio in order to isolate the action information from all contextual detail and to provide a flexible stimulus set for future use. In order to validate the traits conveyed by each action, we asked participants to rate each of the actions corresponding to the trait that the actor portrayed in the two-dimensional videos. To provide a useful database of stimuli of multiple actions conveying multiple traits, each video name contains information on the gender of the actor, the action executed, the trait conveyed, and the rating of its perceived intensity. All videos can be downloaded free at the following address: http://www-users.york.ac.uk/~neb506/databases.html. We discuss potential uses for the database in the analysis of the perception of whole-body actions.

  12. Anatomisation with slicing: a new privacy preservation approach for multiple sensitive attributes.

    PubMed

    Susan, V Shyamala; Christopher, T

    2016-01-01

    An enormous quantity of personal health information is available in recent decades and tampering of any part of this information imposes a great risk to the health care field. Existing anonymization methods are only apt for single sensitive and low dimensional data to keep up with privacy specifically like generalization and bucketization. In this paper, an anonymization technique is proposed that is a combination of the benefits of anatomization, and enhanced slicing approach adhering to the principle of k-anonymity and l-diversity for the purpose of dealing with high dimensional data along with multiple sensitive data. The anatomization approach dissociates the correlation observed between the quasi identifier attributes and sensitive attributes (SA) and yields two separate tables with non-overlapping attributes. In the enhanced slicing algorithm, vertical partitioning does the grouping of the correlated SA in ST together and thereby minimizes the dimensionality by employing the advanced clustering algorithm. In order to get the optimal size of buckets, tuple partitioning is conducted by MFA. The experimental outcomes indicate that the proposed method can preserve privacy of data with numerous SA. The anatomization approach minimizes the loss of information and slicing algorithm helps in the preservation of correlation and utility which in turn results in reducing the data dimensionality and information loss. The advanced clustering algorithms prove its efficiency by minimizing the time and complexity. Furthermore, this work sticks to the principle of k-anonymity, l-diversity and thus avoids privacy threats like membership, identity and attributes disclosure.

  13. Strabismus surgery before versus after completion of amblyopia therapy in children

    PubMed Central

    Korah, Sanita; Philip, Swetha; Jasper, Smitha; Antonio-Santos, Aileen; Braganza, Andrew

    2015-01-01

    Background Normal visual development occurs when the brain is able to integrate the visual input from each of the two eyes to form a single three-dimensional image. The process of development of complete three-dimensional vision begins at birth and is almost complete by 24 months of age. The development of this binocular vision is hindered by any abnormality that prevents the brain from receiving a clear, similar image from each eye, due to decreased vision (e.g. amblyopia), or due to misalignment of the two eyes (strabismus or squint) in infancy and early childhood. Currently, practice patterns for management of a child with both strabismus and amblyopia are not standardized. Objectives To study the functional and anatomic (ocular alignment) outcomes of strabismus surgery before completion of amblyopia therapy as compared with surgery after completion of amblyopia therapy in children under seven years of age. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Group Trials Register) (2014, Issue 6), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to July 2014), EMBASE (January 1980 to July 2014), Latin American and Caribbean Health Sciences Literature Database (LILACS) (January 1982 to July 2014), the metaRegister of Controlled Trials (mRCT) (www.controlled-trials.com), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 24 July 2014. A manual search for articles from a review of the references of the selected publications and conference abstracts was completed to identify any additional relevant studies. Selection criteria We searched for randomized controlled trials (RCTs) that provided data on strabismus surgery in children less than seven years of age, performed after initiation of, but before completion of amblyopia therapy, as compared with strabismus surgery after completion of amblyopia therapy. Data collection and analysis Two authors independently assessed studies identified from the electronic and manual searches. Main results There were no RCTs that fit our inclusion criteria and so no analysis was possible. Authors’ conclusions As there are no RCTs currently available and the best existing evidence is only from non-randomized studies, there is a need for prospective RCTs to investigate strabismus surgery in the presence of strabismic amblyopia. The optimal timing of when to perform strabismus surgery in children with amblyopia is unknown. PMID:25315969

  14. Integration of genomic and medical data into a 3D atlas of human anatomy.

    PubMed

    Turinsky, Andrei L; Fanea, Elena; Trinh, Quang; Dong, Xiaoli; Stromer, Julie N; Shu, Xueling; Wat, Stephen; Hallgrímsson, Benedikt; Hill, Jonathan W; Edwards, Carol; Grosenick, Brenda; Yajima, Masumi; Sensen, Christoph W

    2008-01-01

    We have developed a framework for the visual integration and exploration of multi-scale biomedical data, which includes anatomical and molecular components. We have also created a Java-based software system that integrates molecular information, such as gene expression data, into a three-dimensional digital atlas of the male adult human anatomy. Our atlas is structured according to the Terminologia Anatomica. The underlying data-indexing mechanism uses open standards and semantic ontology-processing tools to establish the associations between heterogeneous data types. The software system makes an extensive use of virtual reality visualization.

  15. Neuronal Morphology goes Digital: A Research Hub for Cellular and System Neuroscience

    PubMed Central

    Parekh, Ruchi; Ascoli, Giorgio A.

    2013-01-01

    Summary The importance of neuronal morphology in brain function has been recognized for over a century. The broad applicability of “digital reconstructions” of neuron morphology across neuroscience sub-disciplines has stimulated the rapid development of numerous synergistic tools for data acquisition, anatomical analysis, three-dimensional rendering, electrophysiological simulation, growth models, and data sharing. Here we discuss the processes of histological labeling, microscopic imaging, and semi-automated tracing. Moreover, we provide an annotated compilation of currently available resources in this rich research “ecosystem” as a central reference for experimental and computational neuroscience. PMID:23522039

  16. A nearly modern amphibious bird from the Early Cretaceous of northwestern China.

    PubMed

    You, Hai-Lu; Lamanna, Matthew C; Harris, Jerald D; Chiappe, Luis M; O'connor, Jingmai; Ji, Shu-An; Lü, Jun-Chang; Yuan, Chong-Xi; Li, Da-Qing; Zhang, Xing; Lacovara, Kenneth J; Dodson, Peter; Ji, Qiang

    2006-06-16

    Three-dimensional specimens of the volant fossil bird Gansus yumenensis from the Early Cretaceous Xiagou Formation of northwestern China demonstrate that this taxon possesses advanced anatomical features previously known only in Late Cretaceous and Cenozoic ornithuran birds. Phylogenetic analysis recovers Gansus within the Ornithurae, making it the oldest known member of the clade. The Xiagou Formation preserves the oldest known ornithuromorph-dominated avian assemblage. The anatomy of Gansus, like that of other non-neornithean (nonmodern) ornithuran birds, indicates specialization for an amphibious life-style, supporting the hypothesis that modern birds originated in aquatic or littoral niches.

  17. Optical monitoring of scoliosis by 3D medical laser scanner

    NASA Astrophysics Data System (ADS)

    Rodríguez-Quiñonez, Julio C.; Sergiyenko, Oleg Yu.; Preciado, Luis C. Basaca; Tyrsa, Vera V.; Gurko, Alexander G.; Podrygalo, Mikhail A.; Lopez, Moises Rivas; Balbuena, Daniel Hernandez

    2014-03-01

    Three dimensional recording of the human body surface or anatomical areas have gained importance in many medical applications. In this paper, our 3D Medical Laser Scanner is presented. It is based on the novel principle of dynamic triangulation. We analyze the method of operation, medical applications, orthopedically diseases as Scoliosis and the most common types of skin to employ the system the most proper way. It is analyzed a group of medical problems related to the application of optical scanning in optimal way. Finally, experiments are conducted to verify the performance of the proposed system and its method uncertainty.

  18. Virtual reality haptic human dissection.

    PubMed

    Needham, Caroline; Wilkinson, Caroline; Soames, Roger

    2011-01-01

    This project aims to create a three-dimensional digital model of the human hand and wrist which can be virtually 'dissected' through a haptic interface. Tissue properties will be added to the various anatomical structures to replicate a realistic look and feel. The project will explore the role of the medical artist and investigate the cross-discipline collaborations required in the field of virtual anatomy. The software will be used to train anatomy students in dissection skills before experience on a real cadaver. The effectiveness of the software will be evaluated and assessed both quantitatively as well as qualitatively.

  19. Spacecraft Orbit Design and Analysis (SODA), version 1.0 user's guide

    NASA Technical Reports Server (NTRS)

    Stallcup, Scott S.; Davis, John S.

    1989-01-01

    The Spacecraft Orbit Design and Analysis (SODA) computer program, Version 1.0 is described. SODA is a spaceflight mission planning system which consists of five program modules integrated around a common database and user interface. SODA runs on a VAX/VMS computer with an EVANS & SUTHERLAND PS300 graphics workstation. BOEING RIM-Version 7 relational database management system performs transparent database services. In the current version three program modules produce an interactive three dimensional (3D) animation of one or more satellites in planetary orbit. Satellite visibility and sensor coverage capabilities are also provided. One module produces an interactive 3D animation of the solar system. Another module calculates cumulative satellite sensor coverage and revisit time for one or more satellites. Currently Earth, Moon, and Mars systems are supported for all modules except the solar system module.

  20. Techniques for Generating Objects in a Three-Dimensional CAD System.

    ERIC Educational Resources Information Center

    Goss, Larry D.

    1987-01-01

    Discusses coordinate systems, units of measure, scaling and levels as they relate to a database generated by a computer in a spatial rather than planer location. Describes geometric-oriented input, direct coordinates, transformations, annotation, editing and patterns. Stresses that hand drafting emulation is a short-sighted approach to…

  1. Mining and Indexing Graph Databases

    ERIC Educational Resources Information Center

    Yuan, Dayu

    2013-01-01

    Graphs are widely used to model structures and relationships of objects in various scientific and commercial fields. Chemical molecules, proteins, malware system-call dependencies and three-dimensional mechanical parts are all modeled as graphs. In this dissertation, we propose to mine and index those graph data to enable fast and scalable search.…

  2. Characterisation of seven Inocybe ectomycorrhizal morphotypes from a semiarid woody steppe.

    PubMed

    Seress, Diána; Dima, Bálint; Kovács, Gábor M

    2016-04-01

    Ectomycorrhizas (ECM) of Inocybe species (Inocybaceae, Basidiomycota) formed by three host plant species (Populus alba, Salix rosmarinifolia and Pinus nigra) in a semiarid woody steppe of Hungary were studied. To identify the fungal partners, we performed phylogenetic analyses of nucleotide sequences for the internal transcribed spacer region of nuclear DNA (nrDNA ITS) together with sequences gained from public databases. Seven Inocybe ectomycorrhiza morphotypes were morpho-anatomically characterised. Five morphotypes were identified (I. phaeoleuca, I. psammophila, I. semifulva, I. splendens and I. subporospora), whereas two morphotypes represented unidentified Inocybe species. Differences were discernible among the morphotypes, and they showed general anatomical characteristics of Inocybe ECM, such as the slightly organised plectenchymatic mantle (types A, B and E and the gelatinous C). The ECM of I. subporospora and I. phaeoleuca were detected from the introduced Pinus nigra. These two fungi are probably native to the area but capable of forming a novel ectomycorrhizal association with the invasive host.

  3. Correlations with operative anatomy of real time three-dimensional echocardiographic imaging of congenital aortic valvar stenosis.

    PubMed

    Sadagopan, Shankar N; Veldtman, Gruschen R; Sivaprakasam, Muthukumaran C; Keeton, Barry R; Gnanapragasam, James P; Salmon, Anthony P; Haw, Marcus P; Vettukattil, Joseph J

    2006-10-01

    To define the anatomic characteristics of the congenitally malformed and severely stenotic aortic valve using trans-thoracic real time three-dimensional echocardiography, and to compare and contrast this with the valvar morphology as seen at surgery. Prospective cross-sectional observational study. Tertiary centre for paediatric cardiology. All patients requiring aortic valvotomy between December 2003 and July 2004 were evaluated prior to surgery with three-dimensional echocardiography. Full volume loop images were acquired using the Phillips Sonos 7500 system. A single observer analysed the images using "Q lab 4.1" software. The details were then compared with operative findings. We identified 8 consecutive patients, with a median age of 16 weeks, ranging from 1 day to 11 years, with median weight of 7.22 kilograms, ranging from 2.78 to 22 kilograms. The measured diameter of the valvar orifice, and the number of leaflets identified, corresponded closely with surgical assessment. The sites of fusion of the leaflets were correctly identified by the echocardiographic imaging in all cases. Fusion between the right and non-coronary leaflets was identified in half the patients. Dysplasia was observed in 3 patients, with 1 patient having nodules and 2 shown to have excrescences. At surgery, nodules were excised, and excrescences were trimmed. The dysplastic changes correlated well with operative findings, though statistically not significant. We recommend trans-thoracic real time three-dimensional echocardiography for the assessment of the congenitally malformed aortic valve, particularly to identify sites of fusion between leaflets and to measure the orificial diameter. The definition of nodularity, and the prognosis of nodules based on the mode of intervention, will need a comparative study of patients submitted to balloon dilation as well as those undergoing surgical valvotomy.

  4. The size of the supraspinatus outlet during elevation of the arm in the frontal and sagittal plane: a 3-D model study.

    PubMed

    Meskers, Carel G M; van der Helm, Frans C T; Rozing, Piet M

    2002-05-01

    To quantify the size of the supraspinatus outlet as it is dictated by both the three-dimensional geometry of the shoulder and the relative orientation of the humerus with respect to the scapula during motions of the arm. Previously obtained data of shoulder kinematics were brought into a geometrical model of the shoulder, derived from a cadaver study. Knowledge of the parameters dictating the size of the supraspinatus outlet is essential for a better understanding of the impingement syndrome of the shoulder. A geometrical model, based on fitting spheres to various anatomical items of the shoulder was derived from three-dimensional position data of the gleno-humeral joint and coraco-acromial arch of 32 cadaver shoulders. Kinematical data were collected from 10 healthy volunteers. The geometrical and kinematical data were combined to study the supraspinatus outlet during elevation of the humerus in the frontal and sagittal plane. No single geometry parameter correlated significantly with the initial size of the outlet. During arm elevation, the greater tuberosity was moved away from the coraco-acromial arch quite effectively resulting in narrowing of the outlet during elevation in the frontal plane from 60 degrees to 120 degrees only. Deviations from the average were quite substantial. This was caused by kinematical and especially geometrical variability. The size of the outlet is dictated by both the geometry and kinematics of the gleno-humeral joint. Assessment of the individual susceptibility to impingement requires three-dimensional viewing techniques including three-dimensional movements of both the scapula and humerus. Little is known about etiology and pathogenesis of various shoulder disorders such as the impingement syndrome. The supraspinatus outlet plays probably a key role. More knowledge on the architecture of the outlet is required for a better understanding.

  5. Study of pelvic floor and sphincter muscles in congenital pouch colon with the help of three-dimensional CT scan.

    PubMed

    Maletha, Madhukar; Kureel, S N; Khan, Tanvir Roshan; Wakhlu, Ashish

    2010-12-01

    Congenital pouch colon (CPC) is a pouch-like dilatation of shortened colon associated with anorectal malformation (ARM). The disease is prevalent in northern India. Postoperatively, the continence results are not as good as in other ARMs and there is higher incidence of incontinence and perineal soiling in these patients. The present study aimed to evaluate the pelvic floor and sphincter muscle characteristics in patients of CPC with the help of 64-slice computerized tomography with three-dimensional (3D) volumetric reconstructions of images, thus, to know the overall quality of these muscles in the patients. The study was conducted in patients admitted over a period of July 2007 to November 2008 in our department. Totally, eight patients of CPC were subjected to 64-slice CT with three-dimensional reconstructions of images and different parameters such as quality of pelvic floor muscles, configuration of vertical and parasagittal fibres, shape and thickness of sphincter muscle complex, attenuation values of sphincters were studied. The 3D reconstructed images of pelvis in patients of CPC showed a well-developed pelvic floor and sphincter muscle complex. The length of the parasagittal fibres, transverse width of the vertical fibres and CT attenuation values of these structures with overall muscle quality were found to be good in these patients. In cases of CPC, the pelvic floor muscles including striated muscle complex (vertical and parasagittal fibres) are well developed. Higher rates of incontinence and soiling in CPC are not because of poorly developed pelvic floor and sphincter muscles. Three-dimensional CT can also provide important anatomical information that can help the operating surgeon while performing surgery.

  6. Hyper-X Engine Testing in the NASA Langley 8-Foot High Temperature Tunnel

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Rock, Kenneth E.; Witte, David W.; Ruf, Edward G.; Andrews, Earl H., Jr.

    2000-01-01

    Airframe-integrated scramjet engine tests have 8 completed at Mach 7 in the NASA Langley 8-Foot High Temperature Tunnel under the Hyper-X program. These tests provided critical engine data as well as design and database verification for the Mach 7 flight tests of the Hyper-X research vehicle (X-43), which will provide the first-ever airframe- integrated scramjet flight data. The first model tested was the Hyper-X Engine Model (HXEM), and the second was the Hyper-X Flight Engine (HXFE). The HXEM, a partial-width, full-height engine that is mounted on an airframe structure to simulate the forebody features of the X-43, was tested to provide data linking flowpath development databases to the complete airframe-integrated three-dimensional flight configuration and to isolate effects of ground testing conditions and techniques. The HXFE, an exact geometric representation of the X-43 scramjet engine mounted on an airframe structure that duplicates the entire three-dimensional propulsion flowpath from the vehicle leading edge to the vehicle base, was tested to verify the complete design as it will be flight tested. This paper presents an overview of these two tests, their importance to the Hyper-X program, and the significance of their contribution to scramjet database development.

  7. Ultra-wideband three-dimensional optoacoustic tomography.

    PubMed

    Gateau, Jérôme; Chekkoury, Andrei; Ntziachristos, Vasilis

    2013-11-15

    Broadband optoacoustic waves generated by biological tissues excited with nanosecond laser pulses carry information corresponding to a wide range of geometrical scales. Typically, the frequency content present in the signals generated during optoacoustic imaging is much larger compared to the frequency band captured by common ultrasonic detectors, the latter typically acting as bandpass filters. To image optical absorption within structures ranging from entire organs to microvasculature in three dimensions, we implemented optoacoustic tomography with two ultrasound linear arrays featuring a center frequency of 6 and 24 MHz, respectively. In the present work, we show that complementary information on anatomical features could be retrieved and provide a better understanding on the localization of structures in the general anatomy by analyzing multi-bandwidth datasets acquired on a freshly excised kidney.

  8. Motion representation of the long fingers: a proposal for the definitions of new anatomical frames.

    PubMed

    Coupier, Jérôme; Moiseev, Fédor; Feipel, Véronique; Rooze, Marcel; Van Sint Jan, Serge

    2014-04-11

    Despite the availability of the International Society of Biomechanics (ISB) recommendations for the orientation of anatomical frames, no consensus exists about motion representations related to finger kinematics. This paper proposes novel anatomical frames for motion representation of the phalangeal segments of the long fingers. A three-dimensional model of a human forefinger was acquired from a non-pathological fresh-frozen hand. Medical imaging was used to collect phalangeal discrete positions. Data processing was performed using a customized software interface ("lhpFusionBox") to create a specimen-specific model and to reconstruct the discrete motion path. Five examiners virtually palpated two sets of landmarks. These markers were then used to build anatomical frames following two methods: a reference method following ISB recommendations and a newly-developed method based on the mean helical axis (HA). Motion representations were obtained and compared between examiners. Virtual palpation precision was around 1mm, which is comparable to results from the literature. The comparison of the two methods showed that the helical axis method seemed more reproducible between examiners especially for secondary, or accessory, motions. Computed Root Mean Square distances comparing methods showed that the ISB method displayed a variability 10 times higher than the HA method. The HA method seems to be suitable for finger motion representation using discrete positions from medical imaging. Further investigations are required before being able to use the methodology with continuous tracking of markers set on the subject's hand. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. The 360 photography: a new anatomical insight of the sphenoid bone. Interest for anatomy teaching and skull base surgery.

    PubMed

    Jacquesson, Timothée; Mertens, Patrick; Berhouma, Moncef; Jouanneau, Emmanuel; Simon, Emile

    2017-01-01

    Skull base architecture is tough to understand because of its 3D complex shape and its numerous foramen, reliefs or joints. It is especially true for the sphenoid bone whom central location hinged with most of skull base components is unique. Recently, technological progress has led to develop new pedagogical tools. This way, we bought a new real-time three-dimensional insight of the sphenoid bone that could be useful for the teacher, the student and the surgeon. High-definition photography was taken all around an isolated dry skull base bone prepared with Beauchêne's technique. Pictures were then computed to provide an overview with rotation and magnification on demand. From anterior, posterior, lateral or oblique views and from in out looks, anatomical landmarks and subtleties were described step by step. Thus, the sella turcica, the optic canal, the superior orbital fissure, the sphenoid sinus, the vidian canal, pterygoid plates and all foramen were clearly placed relative to the others at each face of the sphenoid bone. In addition to be the first report of the 360 Photography tool, perspectives are promising as the development of a real-time interactive tridimensional space featuring the sphenoid bone. It allows to turn around the sphenoid bone and to better understand its own special shape, numerous foramen, neurovascular contents and anatomical relationships. This new technological tool may further apply for surgical planning and mostly for strengthening a basic anatomical knowledge firstly introduced.

  10. Comparative study of anatomical normalization errors in SPM and 3D-SSP using digital brain phantom.

    PubMed

    Onishi, Hideo; Matsutake, Yuki; Kawashima, Hiroki; Matsutomo, Norikazu; Amijima, Hizuru

    2011-01-01

    In single photon emission computed tomography (SPECT) cerebral blood flow studies, two major algorithms are widely used statistical parametric mapping (SPM) and three-dimensional stereotactic surface projections (3D-SSP). The aim of this study is to compare an SPM algorithm-based easy Z score imaging system (eZIS) and a 3D-SSP system in the errors of anatomical standardization using 3D-digital brain phantom images. We developed a 3D-brain digital phantom based on MR images to simulate the effects of head tilt, perfusion defective region size, and count value reduction rate on the SPECT images. This digital phantom was used to compare the errors of anatomical standardization by the eZIS and the 3D-SSP algorithms. While the eZIS allowed accurate standardization of the images of the phantom simulating a head in rotation, lateroflexion, anteflexion, or retroflexion without angle dependency, the standardization by 3D-SSP was not accurate enough at approximately 25° or more head tilt. When the simulated head contained perfusion defective regions, one of the 3D-SSP images showed an error of 6.9% from the true value. Meanwhile, one of the eZIS images showed an error as large as 63.4%, revealing a significant underestimation. When required to evaluate regions with decreased perfusion due to such causes as hemodynamic cerebral ischemia, the 3D-SSP is desirable. In a statistical image analysis, we must reconfirm the image after anatomical standardization by all means.

  11. SMAS Fusion Zones Determine the Subfascial and Subcutaneous Anatomy of the Human Face: Fascial Spaces, Fat Compartments, and Models of Facial Aging.

    PubMed

    Pessa, Joel E

    2016-05-01

    Fusion zones between superficial fascia and deep fascia have been recognized by surgical anatomists since 1938. Anatomical dissection performed by the author suggested that additional superficial fascia fusion zones exist. A study was performed to evaluate and define fusion zones between the superficial and the deep fascia. Dissection of fresh and minimally preserved cadavers was performed using the accepted technique for defining anatomic spaces: dye injection combined with cross-sectional anatomical dissection. This study identified bilaminar membranes traveling from deep to superficial fascia at consistent locations in all specimens. These membranes exist as fusion zones between superficial and deep fascia, and are referred to as SMAS fusion zones. Nerves, blood vessels and lymphatics transition between the deep and superficial fascia of the face by traveling along and within these membranes, a construct that provides stability and minimizes shear. Bilaminar subfascial membranes continue into the subcutaneous tissues as unilaminar septa on their way to skin. This three-dimensional lattice of interlocking horizontal, vertical, and oblique membranes defines the anatomic boundaries of the fascial spaces as well as the deep and superficial fat compartments of the face. This information facilitates accurate volume augmentation; helps to avoid facial nerve injury; and provides the conceptual basis for understanding jowls as a manifestation of enlargement of the buccal space that occurs with age. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  12. Increased revision rate with posterior tibial tunnel placement after using the 70-degree tibial guide in ACL reconstruction.

    PubMed

    Inderhaug, Eivind; Raknes, Sveinung; Østvold, Thomas; Solheim, Eirik; Strand, Torbjørn

    2017-01-01

    To map knee morphology radiographically in a population with a torn ACL and to investigate whether anatomic factors could be related to outcomes after ACL reconstruction at mid- to long-term follow-up. Further, we wanted to assess tibial tunnel placement after using the 70-degree "anti-impingement" tibial tunnel guide and investigate any relation between tunnel placement and revision surgery. Patients undergoing ACL reconstruction involving the 70-degree tibial guide from 2003 to 2008 were included. Two independent investigators analysed pre- and post-operative radiographs. Demographic data and information on revision surgery were collected from an internal database. Anatomic factors and post-operative tibial tunnel placements were investigated as predictors of revision. Three-hundred and seventy-seven patients were included in the study. A large anatomic variation with significant differences between men and women was seen. None of the anatomic factors could be related to a significant increase in revision rate. Patients with a posterior tibial tunnel placement, defined as 50 % or more posterior on the Amis and Jakob line, did, however, have a higher risk of revision surgery compared to patients with an anterior tunnel placement (P = 0.03). Use of the 70-degree tibial guide did result in a high incidence (47 %) of posterior tibial tunnel placements associated with an increased rate of revision surgery. The current study was, however, not able to identify any anatomic variation that could be related to a higher risk of revision surgery. Avoiding graft impingement from the femoral roof in anterior tibial tunnel placements is important, but the insight that overly posterior tunnel placement can lead to inferior outcome should also be kept in mind when performing ACL surgery. IV.

  13. Current and emerging applications of 3D printing in medicine.

    PubMed

    Liaw, Chya-Yan; Guvendiren, Murat

    2017-06-07

    Three-dimensional (3D) printing enables the production of anatomically matched and patient-specific devices and constructs with high tunability and complexity. It also allows on-demand fabrication with high productivity in a cost-effective manner. As a result, 3D printing has become a leading manufacturing technique in healthcare and medicine for a wide range of applications including dentistry, tissue engineering and regenerative medicine, engineered tissue models, medical devices, anatomical models and drug formulation. Today, 3D printing is widely adopted by the healthcare industry and academia. It provides commercially available medical products and a platform for emerging research areas including tissue and organ printing. In this review, our goal is to discuss the current and emerging applications of 3D printing in medicine. A brief summary on additive manufacturing technologies and available printable materials is also given. The technological and regulatory barriers that are slowing down the full implementation of 3D printing in the medical field are also discussed.

  14. A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei

    PubMed Central

    Pauli, Wolfgang M.; Nili, Amanda N.; Tyszka, J. Michael

    2018-01-01

    Recent advances in magnetic resonance imaging methods, including data acquisition, pre-processing and analysis, have benefited research on the contributions of subcortical brain nuclei to human cognition and behavior. At the same time, these developments have led to an increasing need for a high-resolution probabilistic in vivo anatomical atlas of subcortical nuclei. In order to address this need, we constructed high spatial resolution, three-dimensional templates, using high-accuracy diffeomorphic registration of T1- and T2- weighted structural images from 168 typical adults between 22 and 35 years old. In these templates, many tissue boundaries are clearly visible, which would otherwise be impossible to delineate in data from individual studies. The resulting delineations of subcortical nuclei complement current histology-based atlases. We further created a companion library of software tools for atlas development, to offer an open and evolving resource for the creation of a crowd-sourced in vivo probabilistic anatomical atlas of the human brain. PMID:29664465

  15. Numerical simulation of hemorrhage in human injury

    NASA Astrophysics Data System (ADS)

    Chong, Kwitae; Jiang, Chenfanfu; Santhanam, Anand; Benharash, Peyman; Teran, Joseph; Eldredge, Jeff

    2015-11-01

    Smoothed Particle Hydrodynamics (SPH) is adapted to simulate hemorrhage in the injured human body. As a Lagrangian fluid simulation, SPH uses fluid particles as computational elements and thus mass conservation is trivially satisfied. In order to ensure anatomical fidelity, a three-dimensional reconstruction of a portion of the human body -here, demonstrated on the lower leg- is sampled as skin, bone and internal tissue particles from the CT scan image of an actual patient. The injured geometry is then generated by simulation of ballistic projectiles passing through the anatomical model with the Material Point Method (MPM) and injured vessel segments are identified. From each such injured segment, SPH is used to simulate bleeding, with inflow boundary condition obtained from a coupled 1-d vascular tree model. Blood particles interact with impermeable bone and skin particles through the Navier-Stokes equations and with permeable internal tissue particles through the Brinkman equations. The SPH results are rendered in post-processing for improved visual fidelity. The overall simulation strategy is demonstrated on several injury scenarios in the lower leg.

  16. Colour flow and motion imaging.

    PubMed

    Evans, D H

    2010-01-01

    Colour flow imaging (CFI) is an ultrasound imaging technique whereby colour-coded maps of tissue velocity are superimposed on grey-scale pulse-echo images of tissue anatomy. The most widespread use of the method is to image the movement of blood through arteries and veins, but it may also be used to image the motion of solid tissue. The production of velocity information is technically more demanding than the production of the anatomical information, partly because the target of interest is often blood, which backscatters significantly less power than solid tissues, and partly because several transmit-receive cycles are necessary for each velocity estimate. This review first describes the various components of basic CFI systems necessary to generate the velocity information and to combine it with anatomical information. It then describes a number of variations on the basic autocorrelation technique, including cross-correlation-based techniques, power Doppler, Doppler tissue imaging, and three-dimensional (3D) Doppler imaging. Finally, a number of limitations of current techniques and some potential solutions are reviewed.

  17. From ancient to avant-garde: a review of traditional and modern multimodal approaches to surgical anatomy education.

    PubMed

    Hu, Minhao; Wattchow, David; de Fontgalland, Dayan

    2018-03-01

    The landscape of surgical anatomy education is progressively changing. Traditional methods, such as cadaveric dissection and didacticism are being increasingly phased out in undergraduate courses for multimodal approaches incorporating problem-based learning, radiology and computer-based simulations. Although effective at clinically contextualizing and integrating anatomical information, these approaches may be a poor substitute for fostering a grasp of foundational 'pure' anatomy. Dissection is ideal for this purpose and hence remains the cornerstone of anatomical education. However, novel methods and technological advancements continually give way to adjuncts such as cadaveric surgery, three-dimensional printing, virtual simulation and live surgical streaming, which have demonstrated significant efficacy alone or alongside dissection. Therefore, although divergent paradigms of 'new versus old' approaches have engulfed and divided the community, educators should seek to integrate the ancient and avant-garde to comprehensively satisfy all of the modern anatomy learner's educational needs. © 2017 Royal Australasian College of Surgeons.

  18. Anatomical and metabolic small-animal whole-body imaging using ring-shaped confocal photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Chatni, Muhammad; Maslov, Konstantin; Wang, Lihong V.

    2013-03-01

    Due to the wide use of animals for human disease studies, small animal whole-body imaging plays an increasingly important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose metabolic information, leading to higher costs of building dual-modality systems. Even with image coregistration, the spatial resolution of the metabolic imaging modality is not improved. We present a ring-shaped confocal photoacoustic computed tomography (RC-PACT) system that can provide both assessments in a single modality. Utilizing the novel design of confocal full-ring light delivery and ultrasound transducer array detection, RC-PACT provides full-view cross-sectional imaging with high spatial resolution. Scanning along the orthogonal direction provides three-dimensional imaging. While the mouse anatomy was imaged with endogenous hemoglobin contrast, the glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose. Through mouse tumor models, we demonstrate that RC-PACT may be a paradigm shifting imaging method for preclinical research.

  19. Imaging of congenital chest wall deformities

    PubMed Central

    Bhaludin, Basrull N; Naaseri, Sahar; Di Chiara, Francesco; Jordan, Simon; Padley, Simon

    2016-01-01

    To identify the anatomy and pathology of chest wall malformations presenting for consideration for corrective surgery or as a possible chest wall “mass”, and to review the common corrective surgical procedures. Congenital chest wall deformities are caused by anomalies of chest wall growth, leading to sternal depression or protrusion, or are related to failure of normal spine or rib development. Cross-sectional imaging allows appreciation not only of the involved structures but also assessment of the degree of displacement or deformity of adjacent but otherwise normal structures and differentiation between anatomical deformity and neoplasia. In some cases, CT is also useful for surgical planning. The use of three-dimensional reconstructions, utilizing a low-dose technique, provides important information for the surgeon to discuss the nature of anatomical abnormalities and planned corrections with the patient and often with their parents. In this pictorial essay, we discuss the radiological features of the commonest congenital chest wall deformities and illustrate pre- and post-surgical appearances for those undergoing surgical correction. PMID:26916279

  20. Semisupervised kernel marginal Fisher analysis for face recognition.

    PubMed

    Wang, Ziqiang; Sun, Xia; Sun, Lijun; Huang, Yuchun

    2013-01-01

    Dimensionality reduction is a key problem in face recognition due to the high-dimensionality of face image. To effectively cope with this problem, a novel dimensionality reduction algorithm called semisupervised kernel marginal Fisher analysis (SKMFA) for face recognition is proposed in this paper. SKMFA can make use of both labelled and unlabeled samples to learn the projection matrix for nonlinear dimensionality reduction. Meanwhile, it can successfully avoid the singularity problem by not calculating the matrix inverse. In addition, in order to make the nonlinear structure captured by the data-dependent kernel consistent with the intrinsic manifold structure, a manifold adaptive nonparameter kernel is incorporated into the learning process of SKMFA. Experimental results on three face image databases demonstrate the effectiveness of our proposed algorithm.

  1. Three-Dimensional Printing and Its Applications in Otorhinolaryngology-Head and Neck Surgery.

    PubMed

    Crafts, Trevor D; Ellsperman, Susan E; Wannemuehler, Todd J; Bellicchi, Travis D; Shipchandler, Taha Z; Mantravadi, Avinash V

    2017-06-01

    Objective Three-dimensional (3D)-printing technology is being employed in a variety of medical and surgical specialties to improve patient care and advance resident physician training. As the costs of implementing 3D printing have declined, the use of this technology has expanded, especially within surgical specialties. This article explores the types of 3D printing available, highlights the benefits and drawbacks of each methodology, provides examples of how 3D printing has been applied within the field of otolaryngology-head and neck surgery, discusses future innovations, and explores the financial impact of these advances. Data Sources Articles were identified from PubMed and Ovid MEDLINE. Review Methods PubMed and Ovid Medline were queried for English articles published between 2011 and 2016, including a few articles prior to this time as relevant examples. Search terms included 3-dimensional printing, 3 D printing, otolaryngology, additive manufacturing, craniofacial, reconstruction, temporal bone, airway, sinus, cost, and anatomic models. Conclusions Three-dimensional printing has been used in recent years in otolaryngology for preoperative planning, education, prostheses, grafting, and reconstruction. Emerging technologies include the printing of tissue scaffolds for the auricle and nose, more realistic training models, and personalized implantable medical devices. Implications for Practice After the up-front costs of 3D printing are accounted for, its utilization in surgical models, patient-specific implants, and custom instruments can reduce operating room time and thus decrease costs. Educational and training models provide an opportunity to better visualize anomalies, practice surgical technique, predict problems that might arise, and improve quality by reducing mistakes.

  2. Fabrication and assessment of 3D printed anatomical models of the lower limb for anatomical teaching and femoral vessel access training in medicine.

    PubMed

    O'Reilly, Michael K; Reese, Sven; Herlihy, Therese; Geoghegan, Tony; Cantwell, Colin P; Feeney, Robin N M; Jones, James F X

    2016-01-01

    For centuries, cadaveric dissection has been the touchstone of anatomy education. It offers a medical student intimate access to his or her first patient. In contrast to idealized artisan anatomical models, it presents the natural variation of anatomy in fine detail. However, a new teaching construct has appeared recently in which artificial cadavers are manufactured through three-dimensional (3D) printing of patient specific radiological data sets. In this article, a simple powder based printer is made more versatile to manufacture hard bones, silicone muscles and perfusable blood vessels. The approach involves blending modern approaches (3D printing) with more ancient ones (casting and lost-wax techniques). These anatomically accurate models can augment the approach to anatomy teaching from dissection to synthesis of 3D-printed parts held together with embedded rare earth magnets. Vascular simulation is possible through application of pumps and artificial blood. The resulting arteries and veins can be cannulated and imaged with Doppler ultrasound. In some respects, 3D-printed anatomy is superior to older teaching methods because the parts are cheap, scalable, they can cover the entire age span, they can be both dissected and reassembled and the data files can be printed anywhere in the world and mass produced. Anatomical diversity can be collated as a digital repository and reprinted rather than waiting for the rare variant to appear in the dissection room. It is predicted that 3D printing will revolutionize anatomy when poly-material printing is perfected in the early 21st century. © 2015 American Association of Anatomists.

  3. Three-dimensional analysis of the anatomical growth response of European conifers to mechanical disturbance.

    PubMed

    Schneuwly, Dominique M; Stoffel, Markus; Dorren, Luuk K A; Berger, Frédéric

    2009-10-01

    Studies on tree reaction after wounding were so far based on artificial wounding or chemical treatment. For the first time, type, spread and intensity of anatomical responses were analyzed and quantified in naturally disturbed Larix decidua Mill., Picea abies (L.) Karst. and Abies alba Mill. trees. The consequences of rockfall impacts on increment growth were assessed at the height of the wounds, as well as above and below the injuries. A total of 16 trees were selected on rockfall slopes, and growth responses following 54 wounding events were analyzed on 820 cross-sections. Anatomical analysis focused on the occurrence of tangential rows of traumatic resin ducts (TRD) and on the formation of reaction wood. Following mechanical disturbance, TRD production was observed in 100% of L. decidua and P. abies wounds. The radial extension of TRD was largest at wound height, and they occurred more commonly above, rather than below, the wounds. For all species, an intra-annual radial shift of TRD was observed with increasing axial distance from wounds. Reaction wood was formed in 87.5% of A. alba following wounding, but such cases occurred only in 7.7% of L. decidua. The results demonstrate that anatomical growth responses following natural mechanical disturbance differ significantly from the reactions induced by artificial stimuli or by decapitation. While the types of reactions remain comparable between the species, their intensity, spread and persistence disagree considerably. We also illustrate that the external appearance of wounds does not reflect an internal response intensity. This study reveals that disturbance induced under natural conditions triggers more intense and more widespread anatomical responses than that induced under artificial stimuli, and that experimental laboratory tests considerably underestimate tree response.

  4. A 3-Dimensional Atlas of Human Tongue Muscles

    PubMed Central

    SANDERS, IRA; MU, LIANCAI

    2013-01-01

    The human tongue is one of the most important yet least understood structures of the body. One reason for the relative lack of research on the human tongue is its complex anatomy. This is a real barrier to investigators as there are few anatomical resources in the literature that show this complex anatomy clearly. As a result, the diagnosis and treatment of tongue disorders lags behind that for other structures of the head and neck. This report intended to fill this gap by displaying the tongue’s anatomy in multiple ways. The primary material used in this study was serial axial images of the male and female human tongue from the Visible Human (VH) Project of the National Library of Medicine. In addition, thick serial coronal sections of three human tongues were rendered translucent. The VH axial images were computer reconstructed into serial coronal sections and each tongue muscle was outlined. These outlines were used to construct a 3-dimensional computer model of the tongue that allows each muscle to be seen in its in vivo anatomical position. The thick coronal sections supplement the 3-D model by showing details of the complex interweaving of tongue muscles throughout the tongue. The graphics are perhaps the clearest guide to date to aid clinical or basic science investigators in identifying each tongue muscle in any part of the human tongue. PMID:23650264

  5. Three-dimensional volume rendering of the ankle based on magnetic resonance images enables the generation of images comparable to real anatomy.

    PubMed

    Anastasi, Giuseppe; Cutroneo, Giuseppina; Bruschetta, Daniele; Trimarchi, Fabio; Ielitro, Giuseppe; Cammaroto, Simona; Duca, Antonio; Bramanti, Placido; Favaloro, Angelo; Vaccarino, Gianluigi; Milardi, Demetrio

    2009-11-01

    We have applied high-quality medical imaging techniques to study the structure of the human ankle. Direct volume rendering, using specific algorithms, transforms conventional two-dimensional (2D) magnetic resonance image (MRI) series into 3D volume datasets. This tool allows high-definition visualization of single or multiple structures for diagnostic, research, and teaching purposes. No other image reformatting technique so accurately highlights each anatomic relationship and preserves soft tissue definition. Here, we used this method to study the structure of the human ankle to analyze tendon-bone-muscle relationships. We compared ankle MRI and computerized tomography (CT) images from 17 healthy volunteers, aged 18-30 years (mean 23 years). An additional subject had a partial rupture of the Achilles tendon. The MRI images demonstrated superiority in overall quality of detail compared to the CT images. The MRI series accurately rendered soft tissue and bone in simultaneous image acquisition, whereas CT required several window-reformatting algorithms, with loss of image data quality. We obtained high-quality digital images of the human ankle that were sufficiently accurate for surgical and clinical intervention planning, as well as for teaching human anatomy. Our approach demonstrates that complex anatomical structures such as the ankle, which is rich in articular facets and ligaments, can be easily studied non-invasively using MRI data.

  6. Three-dimensional volume rendering of the ankle based on magnetic resonance images enables the generation of images comparable to real anatomy

    PubMed Central

    Anastasi, Giuseppe; Cutroneo, Giuseppina; Bruschetta, Daniele; Trimarchi, Fabio; Ielitro, Giuseppe; Cammaroto, Simona; Duca, Antonio; Bramanti, Placido; Favaloro, Angelo; Vaccarino, Gianluigi; Milardi, Demetrio

    2009-01-01

    We have applied high-quality medical imaging techniques to study the structure of the human ankle. Direct volume rendering, using specific algorithms, transforms conventional two-dimensional (2D) magnetic resonance image (MRI) series into 3D volume datasets. This tool allows high-definition visualization of single or multiple structures for diagnostic, research, and teaching purposes. No other image reformatting technique so accurately highlights each anatomic relationship and preserves soft tissue definition. Here, we used this method to study the structure of the human ankle to analyze tendon–bone–muscle relationships. We compared ankle MRI and computerized tomography (CT) images from 17 healthy volunteers, aged 18–30 years (mean 23 years). An additional subject had a partial rupture of the Achilles tendon. The MRI images demonstrated superiority in overall quality of detail compared to the CT images. The MRI series accurately rendered soft tissue and bone in simultaneous image acquisition, whereas CT required several window-reformatting algorithms, with loss of image data quality. We obtained high-quality digital images of the human ankle that were sufficiently accurate for surgical and clinical intervention planning, as well as for teaching human anatomy. Our approach demonstrates that complex anatomical structures such as the ankle, which is rich in articular facets and ligaments, can be easily studied non-invasively using MRI data. PMID:19678857

  7. The anatomical relationship between the roots of mandibular second molars and the inferior alveolar nerve.

    PubMed

    Chong, B S; Quinn, A; Pawar, R R; Makdissi, J; Sidhu, S K

    2015-06-01

    To evaluate the anatomical relationship between the roots of mandibular second molars and the inferior alveolar nerve (IAN) in relation to the risk of potential nerve injury during root canal treatment. Cone-beam computed tomography (CBCT) images from the patient record database at a dental hospital were selected. The anonymized CBCT images were reconstructed and examined in three planes (coronal, axial and sagittal) using 3D viewing software. The relationship between each root apex of mandibular second molars and the IAN was evaluated by measuring the horizontal and vertical distances from coronal CBCT sections, and the actual distance was then calculated mathematically using Pythagoras' theorem. In 55% of the 272 mandibular second molar roots evaluated, from a total of 134 scans, the distance between the anatomical root apex and the IAN was ≤3 mm. In over 50% of the cases evaluated, there was an intimate relationship between the roots of mandibular second molars and the inferior alveolar nerve (IAN). Therefore, root canal treatment of mandibular second molars may pose a more significant potential risk of IAN injury; necessary precautions should be exercised, and the prudent use of CBCT should be considered if an intimate relationship is suspected. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  8. A PATO-compliant zebrafish screening database (MODB): management of morpholino knockdown screen information.

    PubMed

    Knowlton, Michelle N; Li, Tongbin; Ren, Yongliang; Bill, Brent R; Ellis, Lynda Bm; Ekker, Stephen C

    2008-01-07

    The zebrafish is a powerful model vertebrate amenable to high throughput in vivo genetic analyses. Examples include reverse genetic screens using morpholino knockdown, expression-based screening using enhancer trapping and forward genetic screening using transposon insertional mutagenesis. We have created a database to facilitate web-based distribution of data from such genetic studies. The MOrpholino DataBase is a MySQL relational database with an online, PHP interface. Multiple quality control levels allow differential access to data in raw and finished formats. MODBv1 includes sequence information relating to almost 800 morpholinos and their targets and phenotypic data regarding the dose effect of each morpholino (mortality, toxicity and defects). To improve the searchability of this database, we have incorporated a fixed-vocabulary defect ontology that allows for the organization of morpholino affects based on anatomical structure affected and defect produced. This also allows comparison between species utilizing Phenotypic Attribute Trait Ontology (PATO) designated terminology. MODB is also cross-linked with ZFIN, allowing full searches between the two databases. MODB offers users the ability to retrieve morpholino data by sequence of morpholino or target, name of target, anatomical structure affected and defect produced. MODB data can be used for functional genomic analysis of morpholino design to maximize efficacy and minimize toxicity. MODB also serves as a template for future sequence-based functional genetic screen databases, and it is currently being used as a model for the creation of a mutagenic insertional transposon database.

  9. Developmental anatomy of the liver from computerized three-dimensional reconstructions of four human embryos (from Carnegie stage 14 to 23).

    PubMed

    Lhuaire, Martin; Tonnelet, Romain; Renard, Yohann; Piardi, Tullio; Sommacale, Daniele; Duparc, Fabrice; Braun, Marc; Labrousse, Marc

    2015-07-01

    Some aspects of human embryogenesis and organogenesis remain unclear, especially concerning the development of the liver and its vasculature. The purpose of this study was to investigate, from a descriptive standpoint, the evolutionary morphogenesis of the human liver and its vasculature by computerized three-dimensional reconstructions of human embryos. Serial histological sections of four human embryos at successive stages of development belonging to three prestigious French historical collections were digitized and reconstructed in 3D using software commonly used in medical radiology. Manual segmentation of the hepatic anatomical regions of interest was performed section by section. In this study, human liver organogenesis was examined at Carnegie stages 14, 18, 21 and 23. Using a descriptive and an analytical method, we showed that these stages correspond to the implementation of the large hepatic vascular patterns (the portal system, the hepatic artery and the hepatic venous system) and the biliary system. To our knowledge, our work is the first descriptive morphological study using 3D computerized reconstructions from serial histological sections of the embryonic development of the human liver between Carnegie stages 14 and 23. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. The helical ventricular myocardial band: global, three-dimensional, functional architecture of the ventricular myocardium.

    PubMed

    Kocica, Mladen J; Corno, Antonio F; Carreras-Costa, Francesc; Ballester-Rodes, Manel; Moghbel, Mark C; Cueva, Clotario N C; Lackovic, Vesna; Kanjuh, Vladimir I; Torrent-Guasp, Francisco

    2006-04-01

    We are currently witnessing the advent of new diagnostic tools and therapies for heart diseases, but, without serious scientific consensus on fundamental questions about normal and diseased heart structure and function. During the last decade, three successive, international, multidisciplinary symposia were organized in order to setup fundamental research principles, which would allow us to make a significant step forward in understanding heart structure and function. Helical ventricular myocardial band of Torrent-Guasp is the revolutionary new concept in understanding global, three-dimensional, functional architecture of the ventricular myocardium. This concept defines the principal, cumulative vectors, integrating the tissue architecture (i.e. form) and net forces developed (i.e. function) within the ventricular mass. Here we expose the compendium of Torrent-Guasp's half-century long functional anatomical investigations in the light of ongoing efforts to define the integrative approach, which would lead to new understanding of the ventricular form and function by linking across multiple scales of biological organization, as defined in ongoing Physiome project. Helical ventricular myocardial band of Torrent-Guasp may also, hopefully, allow overcoming some difficulties encountered in contemporary efforts to create a comprehensive mathematical model of the heart.

  11. BeatBox-HPC simulation environment for biophysically and anatomically realistic cardiac electrophysiology.

    PubMed

    Antonioletti, Mario; Biktashev, Vadim N; Jackson, Adrian; Kharche, Sanjay R; Stary, Tomas; Biktasheva, Irina V

    2017-01-01

    The BeatBox simulation environment combines flexible script language user interface with the robust computational tools, in order to setup cardiac electrophysiology in-silico experiments without re-coding at low-level, so that cell excitation, tissue/anatomy models, stimulation protocols may be included into a BeatBox script, and simulation run either sequentially or in parallel (MPI) without re-compilation. BeatBox is a free software written in C language to be run on a Unix-based platform. It provides the whole spectrum of multi scale tissue modelling from 0-dimensional individual cell simulation, 1-dimensional fibre, 2-dimensional sheet and 3-dimensional slab of tissue, up to anatomically realistic whole heart simulations, with run time measurements including cardiac re-entry tip/filament tracing, ECG, local/global samples of any variables, etc. BeatBox solvers, cell, and tissue/anatomy models repositories are extended via robust and flexible interfaces, thus providing an open framework for new developments in the field. In this paper we give an overview of the BeatBox current state, together with a description of the main computational methods and MPI parallelisation approaches.

  12. Multispectral embedding-based deep neural network for three-dimensional human pose recovery

    NASA Astrophysics Data System (ADS)

    Yu, Jialin; Sun, Jifeng

    2018-01-01

    Monocular image-based three-dimensional (3-D) human pose recovery aims to retrieve 3-D poses using the corresponding two-dimensional image features. Therefore, the pose recovery performance highly depends on the image representations. We propose a multispectral embedding-based deep neural network (MSEDNN) to automatically obtain the most discriminative features from multiple deep convolutional neural networks and then embed their penultimate fully connected layers into a low-dimensional manifold. This compact manifold can explore not only the optimum output from multiple deep networks but also the complementary properties of them. Furthermore, the distribution of each hierarchy discriminative manifold is sufficiently smooth so that the training process of our MSEDNN can be effectively implemented only using few labeled data. Our proposed network contains a body joint detector and a human pose regressor that are jointly trained. Extensive experiments conducted on four databases show that our proposed MSEDNN can achieve the best recovery performance compared with the state-of-the-art methods.

  13. Visualizing the anatomical-functional correlation of the human brain

    NASA Astrophysics Data System (ADS)

    Chang, YuKuang; Rockwood, Alyn P.; Reiman, Eric M.

    1995-04-01

    Three-dimensional tomographic images obtained from different modalities or from the same modality at different times provide complementary information. For example, while PET shows brain function, images from MRI identify anatomical structures. In this paper, we investigate the problem of displaying available information about structures and function together. Several steps are described to achieve our goal. These include segmentation of the data, registration, resampling, and display. Segmentation is used to identify brain tissue from surrounding tissues, especially in the MRI data. Registration aligns the different modalities as closely as possible. Resampling arises from the registration since two data sets do not usually correspond and the rendering method is most easily achieved if the data correspond to the same grid used in display. We combine several techniques to display the data. MRI data is reconstructed from 2D slices into 3D structures from which isosurfaces are extracted and represented by approximating polygonalizations. These are then displayed using standard graphics pipelines including shaded and transparent images. PET data measures the qualitative rates of cerebral glucose utilization or oxygen consumption. PET image is best displayed as a volume of luminous particles. The combination of both display methods allows the viewer to compare the functional information contained in the PET data with the anatomically more precise MRI data.

  14. Anatomic partial nephrectomy: technique evolution.

    PubMed

    Azhar, Raed A; Metcalfe, Charles; Gill, Inderbir S

    2015-03-01

    Partial nephrectomy provides equivalent long-term oncologic and superior functional outcomes as radical nephrectomy for T1a renal masses. Herein, we review the various vascular clamping techniques employed during minimally invasive partial nephrectomy, describe the evolution of our partial nephrectomy technique and provide an update on contemporary thinking about the impact of ischemia on renal function. Recently, partial nephrectomy surgical technique has shifted away from main artery clamping and towards minimizing/eliminating global renal ischemia during partial nephrectomy. Supported by high-fidelity three-dimensional imaging, novel anatomic-based partial nephrectomy techniques have recently been developed, wherein partial nephrectomy can now be performed with segmental, minimal or zero global ischemia to the renal remnant. Sequential innovations have included early unclamping, segmental clamping, super-selective clamping and now culminating in anatomic zero-ischemia surgery. By eliminating 'under-the-gun' time pressure of ischemia for the surgeon, these techniques allow an unhurried, tightly contoured tumour excision with point-specific sutured haemostasis. Recent data indicate that zero-ischemia partial nephrectomy may provide better functional outcomes by minimizing/eliminating global ischemia and preserving greater vascularized kidney volume. Contemporary partial nephrectomy includes a spectrum of surgical techniques ranging from conventional-clamped to novel zero-ischemia approaches. Technique selection should be tailored to each individual case on the basis of tumour characteristics, surgical feasibility, surgeon experience, patient demographics and baseline renal function.

  15. Complementing anatomy education using three-dimensional anatomy mobile software applications on tablet computers.

    PubMed

    Lewis, T L; Burnett, B; Tunstall, R G; Abrahams, P H

    2014-04-01

    Anatomy has traditionally been a cornerstone of medical education, which has been taught via dissection and didactic lectures. The rising prevalence of mobile tablet technology means medical software applications ("apps") play an increasingly important role in medical education. The applications highlighted in this article will aid anatomical educators to identify which are the most useful in clinical, academic, and educational environments. These have been systematically identified by downloading all applications with keywords related to anatomy and then carrying out qualitative assessment. Novel anatomy applications from developers such as Visible Body, 3D4Medical, and Pocket Anatomy allow students to visualize and manipulate complex anatomical structures using detailed 3D models. They often contain additional content including clinical correlations and a range of media from instructional videos to interactive quiz functions. The strength of tablet technology lies in its ability to consolidate and present anatomical information to the user in the most appropriate manner for their learning style. The only question mark remains over the level of detail and accuracy of these applications. Innovative medical educators who embrace tablet technology will find that anatomy applications serve as a useful learning tool when used in conjunction with existing teaching setups. Copyright © 2013 Wiley Periodicals, Inc.

  16. Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds.

    PubMed

    Temple, Joshua P; Hutton, Daphne L; Hung, Ben P; Huri, Pinar Yilgor; Cook, Colin A; Kondragunta, Renu; Jia, Xiaofeng; Grayson, Warren L

    2014-12-01

    The treatment of large craniomaxillofacial bone defects is clinically challenging due to the limited availability of transplantable autologous bone grafts and the complex geometry of the bones. The ability to regenerate new bone tissues that faithfully replicate the anatomy would revolutionize treatment options. Advances in the field of bone tissue engineering over the past few decades offer promising new treatment alternatives using biocompatible scaffold materials and autologous cells. This approach combined with recent advances in three-dimensional (3D) printing technologies may soon allow the generation of large, bioartificial bone grafts with custom, patient-specific architecture. In this study, we use a custom-built 3D printer to develop anatomically shaped polycaprolactone (PCL) scaffolds with varying internal porosities. These scaffolds are assessed for their ability to support induction of human adipose-derived stem cells (hASCs) to form vasculature and bone, two essential components of functional bone tissue. The development of functional tissues is assessed in vitro and in vivo. Finally, we demonstrate the ability to print large mandibular and maxillary bone scaffolds that replicate fine details extracted from patient's computed tomography scans. The findings of this study illustrate the capabilities and potential of 3D printed scaffolds to be used for engineering autologous, anatomically shaped, vascularized bone grafts. © 2014 Wiley Periodicals, Inc.

  17. Detailed Anatomy of the Nasolabial Muscle in Human Fetuses as Determined by Micro-CT Combined With Iodine Staining.

    PubMed

    Wu, Jiajun; Yin, Ningbei

    2016-01-01

    This study aims to investigate the 3-dimensional (3D) anatomical structure of the orbicularis oris and nasalis, which are closely associated with the appearance of the upper lip and lower part of the nose. The relationship of the complicated 3D anatomical structure with the outline shape was also determined. Microcomputed tomography combined with iodine staining was used to scan the nasolabial tissues of 3 aborted fetuses. The strictly aligned, corrected, full-capacity, 2-dimensional (2D) grayscale images obtained were then used to reconstruct 3D structures using a 3D reconstruction software. 2D grayscale slices and a 3D anatomical model of the orbicularis oris and nasalis of the specimens were obtained. The 2D images and the 3D model confirmed the orbicularis oris anatomical structure reported in previous studies and also provided new insights (such as the close association of the formation of the philtral dimple, lip peak, philtral ridge, and nasal sill with the orbicularis oris). In addition, the results show that the nasolabial muscle consists of muscle fibers from different sources and is divided into four distinct parts: pars marginalis, pars peripheralis, muscle fibers of the levator labii superioris, and nasalis muscle fibers. The 3D anatomical structures indicate that the orbicularis oris and nasalis are closely associated with the appearances of the upper lip and lower part of the nose. The results may aid plastic surgeons in performing cleft-lip correction surgery.

  18. Superimposition of 3-dimensional cone-beam computed tomography models of growing patients

    PubMed Central

    Cevidanes, Lucia H. C.; Heymann, Gavin; Cornelis, Marie A.; DeClerck, Hugo J.; Tulloch, J. F. Camilla

    2009-01-01

    Introduction The objective of this study was to evaluate a new method for superimposition of 3-dimensional (3D) models of growing subjects. Methods Cone-beam computed tomography scans were taken before and after Class III malocclusion orthopedic treatment with miniplates. Three observers independently constructed 18 3D virtual surface models from cone-beam computed tomography scans of 3 patients. Separate 3D models were constructed for soft-tissue, cranial base, maxillary, and mandibular surfaces. The anterior cranial fossa was used to register the 3D models of before and after treatment (about 1 year of follow-up). Results Three-dimensional overlays of superimposed models and 3D color-coded displacement maps allowed visual and quantitative assessment of growth and treatment changes. The range of interobserver errors for each anatomic region was 0.4 mm for the zygomatic process of maxilla, chin, condyles, posterior border of the rami, and lower border of the mandible, and 0.5 mm for the anterior maxilla soft-tissue upper lip. Conclusions Our results suggest that this method is a valid and reproducible assessment of treatment outcomes for growing subjects. This technique can be used to identify maxillary and mandibular positional changes and bone remodeling relative to the anterior cranial fossa. PMID:19577154

  19. NALDB: nucleic acid ligand database for small molecules targeting nucleic acid

    PubMed Central

    Kumar Mishra, Subodh; Kumar, Amit

    2016-01-01

    Nucleic acid ligand database (NALDB) is a unique database that provides detailed information about the experimental data of small molecules that were reported to target several types of nucleic acid structures. NALDB is the first ligand database that contains ligand information for all type of nucleic acid. NALDB contains more than 3500 ligand entries with detailed pharmacokinetic and pharmacodynamic information such as target name, target sequence, ligand 2D/3D structure, SMILES, molecular formula, molecular weight, net-formal charge, AlogP, number of rings, number of hydrogen bond donor and acceptor, potential energy along with their Ki, Kd, IC50 values. All these details at single platform would be helpful for the development and betterment of novel ligands targeting nucleic acids that could serve as a potential target in different diseases including cancers and neurological disorders. With maximum 255 conformers for each ligand entry, our database is a multi-conformer database and can facilitate the virtual screening process. NALDB provides powerful web-based search tools that make database searching efficient and simplified using option for text as well as for structure query. NALDB also provides multi-dimensional advanced search tool which can screen the database molecules on the basis of molecular properties of ligand provided by database users. A 3D structure visualization tool has also been included for 3D structure representation of ligands. NALDB offers an inclusive pharmacological information and the structurally flexible set of small molecules with their three-dimensional conformers that can accelerate the virtual screening and other modeling processes and eventually complement the nucleic acid-based drug discovery research. NALDB can be routinely updated and freely available on bsbe.iiti.ac.in/bsbe/naldb/HOME.php. Database URL: http://bsbe.iiti.ac.in/bsbe/naldb/HOME.php PMID:26896846

  20. Three-Dimensional Computer Model of the Right Atrium Including the Sinoatrial and Atrioventricular Nodes Predicts Classical Nodal Behaviours

    PubMed Central

    Li, Jue; Inada, Shin; Schneider, Jurgen E.; Zhang, Henggui; Dobrzynski, Halina; Boyett, Mark R.

    2014-01-01

    The aim of the study was to develop a three-dimensional (3D) anatomically-detailed model of the rabbit right atrium containing the sinoatrial and atrioventricular nodes to study the electrophysiology of the nodes. A model was generated based on 3D images of a rabbit heart (atria and part of ventricles), obtained using high-resolution magnetic resonance imaging. Segmentation was carried out semi-manually. A 3D right atrium array model (∼3.16 million elements), including eighteen objects, was constructed. For description of cellular electrophysiology, the Rogers-modified FitzHugh-Nagumo model was further modified to allow control of the major characteristics of the action potential with relatively low computational resource requirements. Model parameters were chosen to simulate the action potentials in the sinoatrial node, atrial muscle, inferior nodal extension and penetrating bundle. The block zone was simulated as passive tissue. The sinoatrial node, crista terminalis, main branch and roof bundle were considered as anisotropic. We have simulated normal and abnormal electrophysiology of the two nodes. In accordance with experimental findings: (i) during sinus rhythm, conduction occurs down the interatrial septum and into the atrioventricular node via the fast pathway (conduction down the crista terminalis and into the atrioventricular node via the slow pathway is slower); (ii) during atrial fibrillation, the sinoatrial node is protected from overdrive by its long refractory period; and (iii) during atrial fibrillation, the atrioventricular node reduces the frequency of action potentials reaching the ventricles. The model is able to simulate ventricular echo beats. In summary, a 3D anatomical model of the right atrium containing the cardiac conduction system is able to simulate a wide range of classical nodal behaviours. PMID:25380074

  1. Numerical Models of Human Circulatory System under Altered Gravity: Brain Circulation

    NASA Technical Reports Server (NTRS)

    Kim, Chang Sung; Kiris, Cetin; Kwak, Dochan; David, Tim

    2003-01-01

    A computational fluid dynamics (CFD) approach is presented to model the blood flow through the human circulatory system under altered gravity conditions. Models required for CFD simulation relevant to major hemodynamic issues are introduced such as non-Newtonian flow models governed by red blood cells, a model for arterial wall motion due to fluid-wall interactions, a vascular bed model for outflow boundary conditions, and a model for auto-regulation mechanism. The three-dimensional unsteady incompressible Navier-Stokes equations coupled with these models are solved iteratively using the pseudocompressibility method and dual time stepping. Moving wall boundary conditions from the first-order fluid-wall interaction model are used to study the influence of arterial wall distensibility on flow patterns and wall shear stresses during the heart pulse. A vascular bed modeling utilizing the analogy with electric circuits is coupled with an auto-regulation algorithm for multiple outflow boundaries. For the treatment of complex geometry, a chimera overset grid technique is adopted to obtain connectivity between arterial branches. For code validation, computed results are compared with experimental data for steady and unsteady non-Newtonian flows. Good agreement is obtained for both cases. In sin-type Gravity Benchmark Problems, gravity source terms are added to the Navier-Stokes equations to study the effect of gravitational variation on the human circulatory system. This computational approach is then applied to localized blood flows through a realistic carotid bifurcation and two Circle of Willis models, one using an idealized geometry and the other model using an anatomical data set. A three- dimensional anatomical Circle of Willis configuration is reconstructed from human-specific magnetic resonance images using an image segmentation method. The blood flow through these Circle of Willis models is simulated to provide means for studying gravitational effects on the brain circulation under auto-regulation.

  2. Femoral rotational asymmetry is a common anatomical variant.

    PubMed

    Newman, Christopher R; Walter, William L; Talbot, Simon

    2018-05-01

    The sulcus line (SL) is a three-dimensional landmark that corrects for individual variation in the coronal alignment of the trochlear groove in contrast to the traditional Whiteside's line (WL). Femoral rotational asymmetry (FRA) is an anatomical variation in which the posterior condyles and trochlear groove are not perpendicular to each other. This study aims to measure the SL and assess its reliability relative to WL, in addition to measuring and classifying the FRA. A retrospective analysis of a series of 191 CT scans of nonarthritic knees was performed. Measurements were taken of rotational landmarks in three-dimensional reconstructions. The variability and outlier rate of SL was less than WL (P < 0.05), however, it was also greater than the posterior condylar line (PC) (P < 0.05). Averaging the PC + 3° and the SL did not change the rate of femoral malrotation relative to the surgical epicondylar axis (SEA) (P > 0.05), however it decreased the rate of change of the rotational alignment of the trochlear groove between the native knee and the prosthetic knee from 31% to 5% (P < 0.05). FRA was classified and was >5° in 56/191 (29%) of cases. The SL technique is more accurate than WL for determining the rotational alignment of the trochlear groove. Nonarthritic femora have a high rate of rotational asymmetry. Identifying and classifying FRA in individual cases allows the femoral component to be inserted in a position which gives the best possible match to both the native posterior condyles and trochlear groove. Clin. Anat. 31:551-559, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  3. A three-dimensional insight into the complexity of flow convergence in mitral regurgitation: adjunctive benefit of anatomic regurgitant orifice area.

    PubMed

    Chandra, Sonal; Salgo, Ivan S; Sugeng, Lissa; Weinert, Lynn; Settlemier, Scott H; Mor-Avi, Victor; Lang, Roberto M

    2011-09-01

    Mitral effective regurgitant orifice area (EROA) using the flow convergence (FC) method is used to quantify the severity of mitral regurgitation (MR). However, it is challenging and prone to interobserver variability in complex valvular pathology. We hypothesized that real-time three-dimensional (3D) transesophageal echocardiography (RT3D TEE) derived anatomic regurgitant orifice area (AROA) can be a reasonable adjunct, irrespective of valvular geometry. Our goals were to 1) to determine the regurgitant orifice morphology and distance suitable for FC measurement using 3D computational flow dynamics and finite element analysis (FEA), and (2) to measure AROA from RT3D TEE and compare it with 2D FC derived EROA measurements. We studied 61 patients. EROA was calculated from 2D TEE images using the 2D-FC technique, and AROA was obtained from zoomed RT3DE TEE acquisitions using prototype software. 3D computational fluid dynamics by FEA were applied to 3D TEE images to determine the effects of mitral valve (MV) orifice geometry on FC pattern. 3D FEA analysis revealed that a central regurgitant orifice is suitable for FC measurements at an optimal distance from the orifice but complex MV orifice resulting in eccentric jets yielded nonaxisymmetric isovelocity contours close to the orifice where the assumptions underlying FC are problematic. EROA and AROA measurements correlated well (r = 0.81) with a nonsignificant bias. However, in patients with eccentric MR, the bias was larger than in central MR. Intermeasurement variability was higher for the 2D FC technique than for RT3DE-based measurements. With its superior reproducibility, 3D analysis of the AROA is a useful alternative to quantify MR when 2D FC measurements are challenging.

  4. Lower pole anatomy and mid-renal-zone classification applied to flexible ureteroscopy: experimental study using human three-dimensional endocasts.

    PubMed

    Marroig, Bruno; Favorito, Luciano Alves; Fortes, Marco A; Sampaio, Francisco J B

    2015-12-01

    The aim of this study was to analyze the anatomy of the inferior pole collecting system and the mid-renal-zone classification in human endocasts applied to flexible ureteroscopy. 170 three-dimensional polyester resin endocasts of the kidney collecting system were obtained from 85 adult cadavers. We divided the endocasts into four groups: A1--kidney midzone (KM), drained by minor calices (mc) that are dependent on the superior or the inferior caliceal groups; A2--KM drained by crossed calices; B1--KM drained by a major caliceal group independent of both the superior and inferior groups; and B2--KM drained by mc entering directly into the renal pelvis. We studied the number of calices, the angle between the lower infundibulum and renal pelvis and the angle between the lower infundibulum and the inferior mc (LIICA). Means were statistically compared using ANOVA and the unpaired T test (p < 0.05). We found 57 (33.53 %) endocasts of group A1; 23 (13.53 %) of group A2; 59 (34.71 %) of group B1; and 31 (18.23 %) of group B2. The inferior pole was drained by four or more calices in 84 cases (49.41 %), distributed into groups as follows: A1 = 35 cases (41.67 %); A2 = 18 (21.43 %); B1 = 22 (26.19 %); and B2 = 9 (10.71 %). Perpendicular mc were observed in 15 cases (8.82 %). We did not observe statistical differences between the LIICA in the groups studied. Collector systems with kidney midzone drained by minor calices that are dependent on the superior or on the inferior caliceal groups presented at least two restrictive anatomical features. The mid-renal-zone classification was predictive of anatomical risk factors for lower pole ureteroscopy difficulties.

  5. Three-dimensional hard and soft tissue imaging of the human cochlea by scanning laser optical tomography (SLOT)

    PubMed Central

    Mohebbi, Saleh; Andrade, José; Nolte, Lena; Meyer, Heiko; Heisterkamp, Alexander; Majdani, Omid

    2017-01-01

    The present study focuses on the application of scanning laser optical tomography (SLOT) for visualization of anatomical structures inside the human cochlea ex vivo. SLOT is a laser-based highly efficient microscopy technique which allows for tomographic imaging of the internal structure of transparent specimens. Thus, in the field of otology this technique is best convenient for an ex vivo study of the inner ear anatomy. For this purpose, the preparation before imaging comprises decalcification, dehydration as well as optical clearing of the cochlea samples in toto. Here, we demonstrate results of SLOT imaging visualizing hard and soft tissue structures with an optical resolution of down to 15 μm using extinction and autofluorescence as contrast mechanisms. Furthermore, the internal structure can be analyzed nondestructively and quantitatively in detail by sectioning of the three-dimensional datasets. The method of X-ray Micro Computed Tomography (μCT) has been previously applied to explanted cochlea and is solely based on absorption contrast. An advantage of SLOT is that it uses visible light for image formation and thus provides a variety of contrast mechanisms known from other light microscopy techniques, such as fluorescence or scattering. We show that SLOT data is consistent with μCT anatomical data and provides additional information by using fluorescence. We demonstrate that SLOT is applicable for cochlea with metallic cochlear implants (CI) that would lead to significant artifacts in μCT imaging. In conclusion, the present study demonstrates the capability of SLOT for resolution visualization of cleared human cochleae ex vivo using multiple contrast mechanisms and lays the foundation for a broad variety of additional studies. PMID:28873437

  6. Three-dimensional digital projection in neurosurgical education: technical note.

    PubMed

    Martins, Carolina; Ribas, Eduardo Carvalhal; Rhoton, Albert L; Ribas, Guilherme Carvalhal

    2015-10-01

    Three-dimensional images have become an important tool in teaching surgical anatomy, and its didactic power is enhanced when combined with 3D surgical images and videos. This paper describes the method used by the last author (G.C.R.) since 2002 to project 3D anatomical and surgical images using a computer source. Projecting 3D images requires the superposition of 2 similar but slightly different images of the same object. The set of images, one mimicking the view of the left eye and the other mimicking the view of the right eye, constitute the stereoscopic pair and can be processed using anaglyphic or horizontal-vertical polarization of light for individual use or presentation to larger audiences. Classically, 3D projection could be obtained by using a double set of slides, projected through 2 slide projectors, each of them equipped with complementary filters, shooting over a medium that keeps light polarized (a silver screen) and having the audience wear appropriate glasses. More recently, a digital method of 3D projection has been perfected. In this method, a personal computer is used as the source of the images, which are arranged in a Microsoft PowerPoint presentation. A beam splitter device is used to connect the computer source to 2 digital, portable projectors. Filters, a silver screen, and glasses are used, similar to the classic method. Among other advantages, this method brings flexibility to 3D presentations by allowing the combination of 3D anatomical and surgical still images and videos. It eliminates the need for using film and film developing, lowering the costs of the process. In using small, powerful digital projectors, this method substitutes for the previous technology, without incurring a loss of quality, and enhances portability.

  7. Investigation of the reproducibility and reliability of sagittal vertebral inclination measurements from MR images of the spine.

    PubMed

    Vrtovec, Tomaž; Pernuš, Franjo; Likar, Boštjan

    2014-10-01

    In this study, sagittal vertebral inclination (SVI) was systematically evaluated for 28 vertebrae (segments between T4 and L5) in magnetic resonance (MR) images of one normal and one scoliotic subject to compare the performance of manual and computerized measurements, and identify the most reproducible and reliable measurements. Manual measurements were performed by three observers, who identified on two occasions the distinctive anatomical landmarks required to evaluate SVI by six measurement methods, i.e. the superior tangents, inferior tangents, anterior tangents, posterior tangents, mid-endplate lines and mid-wall lines. Computerized measurements were performed by automatically evaluating SVI from the symmetry of vertebral anatomical structures in two-dimensional (2D) sagittal cross-sections and in three-dimensional (3D) volumetric images. The mid-wall lines and posterior tangents proved to be the manual measurements with the lowest intra-observer (standard deviation, SD, of 1.4° and 1.7°, respectively) and inter-observer variability (SD of 1.9° and 2.4°, respectively). The strongest inter-method agreement was found between the mid-wall lines and posterior tangents (SD of 2.0°). Computerized measurements in 2D and in 3D resulted in intra-observer (SD of 2.8° and 3.1°, respectively) and inter-observer variability (SD of 3.8° and 5.2°, respectively) that were comparable to those of the superior tangents (SD of 2.6° and 3.7°) and inferior tangents (SD of 3.2° and 4.5°), which represent standard Cobb angle measurements. It can be concluded that computerized measurements of SVI should be based on the inclination of vertebral body walls. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Thoracic, Lumbar, and Sacral Pedicle Screw Placement Using Stryker-Ziehm Virtual Screw Technology and Navigated Stryker Cordless Driver 3: Technical Note.

    PubMed

    Satarasinghe, Praveen; Hamilton, Kojo D; Tarver, Michael J; Buchanan, Robert J; Koltz, Michael T

    2018-04-17

    Utilization of pedicle screws (PS) for spine stabilization is common in spinal surgery. With reliance on visual inspection of anatomical landmarks prior to screw placement, the free-hand technique requires a high level of surgeon skill and precision. Three-dimensional (3D), computer-assisted virtual neuronavigation improves the precision of PS placement and minimization steps. Twenty-three patients with degenerative, traumatic, or neoplastic pathologies received treatment via a novel three-step PS technique that utilizes a navigated power driver in combination with virtual screw technology. (1) Following visualization of neuroanatomy using intraoperative CT, a navigated 3-mm match stick drill bit was inserted at an anatomical entry point with a screen projection showing a virtual screw. (2) A Navigated Stryker Cordless Driver with an appropriate tap was used to access the vertebral body through a pedicle with a screen projection again showing a virtual screw. (3) A Navigated Stryker Cordless Driver with an actual screw was used with a screen projection showing the same virtual screw. One hundred and forty-four consecutive screws were inserted using this three-step, navigated driver, virtual screw technique. Only 1 screw needed intraoperative revision after insertion using the three-step, navigated driver, virtual PS technique. This amounts to a 0.69% revision rate. One hundred percent of patients had intraoperative CT reconstructed images taken to confirm hardware placement. Pedicle screw placement utilizing the Stryker-Ziehm neuronavigation virtual screw technology with a three step, navigated power drill technique is safe and effective.

  9. Volumetric velocimetry downstream of a percutaneous heart valve

    NASA Astrophysics Data System (ADS)

    Raghav, Vrishank; Clifford, Christopher; Midha, Prem; Okafor, Ikechukwu; Thurow, Brian; Yoganathan, Ajit; Auburn University Collaboration; Georgia Institute of Technology Collaboration

    2017-11-01

    Transcatheter aortic valve replacement has emerged as a safe and effective treatment for severe, symptomatic aortic stenosis in intermediate or greater surgical risk patients. However, despite excellent short-term outcomes, improved imaging and awareness has led to the identification of leaflet thrombosis on the aortic side of the prosthesis. Upon implantation, the transcatheter heart valve (THV) becomes enclosed in the native aortic valve leaflet tissue dividing the native sinus into two regions - a smaller anatomical sinus and a neo-sinus. To understand the causes for thrombosis, plenoptic Particle Image Velocimetry (PIV) is used to investigate the pulsatile three-dimensional flow in the sinus and neo-sinus region of the THV. Experiments are conducted on both a real and a transparent THV model in a pulsatile flow loop capable of replicating physiological hemodynamics. Comparisons with planar PIV results demonstrate the feasibility of using Plenoptic PIV to study heart valve fluid dynamics. Large three-dimensional regions of low velocity magnitude and low viscous shear stress were observed near the heart valve which could increase particle residence time potentially leading to formation of clots the THV leaflet.

  10. Three dimensional structure of the distal condyles of the third metacarpal bone of the horse.

    PubMed

    Boyde, A; Haroon, Y; Jones, S J; Riggs, C M

    1999-03-01

    This study examined the three-dimensional (3D) microarchitecture of regions of the equine third metacarpal bone (McIII) commonly involved in distal condylar fractures. Limbs were obtained from Thoroughbred horses (neonates to age 24 years) destroyed for inoperable fractures and a variety of other conditions. Beams, blocks and sections were cut in the principal axes, some embedded in PMMA and others examined unembedded. Several methods were used to study the 3D structure, including conventional and confocal optical microscopy, scanning electron microscopy (SEM) and radiography. The mineralised articular cartilage tends to cleave in the sagittal plane. Proximal to the subchondral bone, the main trabeculae are robust plates running in the sagittal direction with less significant mediolateral connections. Small blood vessel canals lie inside the sagittal plates. This structure gives maximum strength and protection in the sagittal plane in which the bone rotates, but offers minimal resistance to fracture propagation in this plane. The anatomical course of the common distal condylar fractures of the third metacarpal bones can be explained by underlying anisotropic structural features of the mineralised tissues.

  11. Effects of fluid structure interaction in a three dimensional model of the spinal subarachnoid space.

    PubMed

    Cheng, Shaokoon; Fletcher, David; Hemley, Sarah; Stoodley, Marcus; Bilston, Lynne

    2014-08-22

    It is unknown whether spinal cord motion has a significant effect on cerebrospinal fluid (CSF) pressure and therefore the importance of including fluid structure interaction (FSI) in computational fluid dynamics models (CFD) of the spinal subarachnoid space (SAS) is unclear. This study aims to determine the effects of FSI on CSF pressure and spinal cord motion in a normal and in a stenosis model of the SAS. A three-dimensional patient specific model of the SAS and spinal cord were constructed from MR anatomical images and CSF flow rate measurements obtained from a healthy human being. The area of SAS at spinal level T4 was constricted by 20% to represent the stenosis model. FSI simulations in both models were performed by running ANSYS CFX and ANSYS Mechanical in tandem. Results from this study show that the effect of FSI on CSF pressure is only about 1% in both the normal and stenosis models and therefore show that FSI has a negligible effect on CSF pressure. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  12. Nasolabial Morphology Following Nasoalveolar Molding in Infants With Unilateral Cleft Lip and Palate.

    PubMed

    Nur Yilmaz, Rahime Burcu; Germeç Çakan, Derya

    2018-06-01

    The aim of the present study is to evaluate the effects of nasoalveolar molding (NAM) therapy on nasolabial morphology three dimensionally, and compare the nasolabial linear and surface distance measurements in infants with unilateral cleft lip and palate. Facial plaster casts of 42 infants with unilateral cleft lip and palate taken at the onset (pre-NAM) and finishing stage (post-NAM) of NAM were scanned with 3dMDface stereophotogrammetry system (3dMD, Atlanta, GA). Nineteen nasolabial linear and surface distance measurements were performed on three-dimensional images. In addition to standard descriptive statistical calculations (means and SDs), pre- and post-NAM measurements were evaluated by paired t test. All measurements except lip gap, nostril floor width, and nostril diameter increased between pre-NAM and post-NAM. Nostril and lip height increased significantly on the cleft side (P < 0.05). No differences were present between linear and surface distance measurements except for nasal width measurement. Nasal and lip symmetry improved with NAM. The use of surface distance measurements may be advised particularly for continuous and curved anatomic structures in which circumference differences are expected.

  13. Muscle-driven finite element simulation of human foot movements.

    PubMed

    Spyrou, L A; Aravas, N

    2012-01-01

    This paper describes a finite element scheme for realistic muscle-driven simulation of human foot movements. The scheme is used to simulate human ankle plantar flexion. A three-dimensional anatomically detailed finite element model of human foot and lower leg is developed and the idea of generating natural foot movement based entirely on the contraction of the plantar flexor muscles is used. The bones, ligaments, articular cartilage, muscles, tendons, as well as the rest soft tissues of human foot and lower leg are included in the model. A realistic three-dimensional continuum constitutive model that describes the biomechanical behaviour of muscles and tendons is used. Both the active and passive properties of muscle tissue are accounted for. The materials for bones and ligaments are considered as homogeneous, isotropic and linearly elastic, whereas the articular cartilage and the rest soft tissues (mainly fat) are defined as hyperelastic materials. The model is used to estimate muscle tissue deformations as well as stresses and strains that develop in the lower leg muscles during plantar flexion of the ankle. Stresses and strains that develop in Achilles tendon during such a movement are also investigated.

  14. Three-dimensional (3D) printed endovascular simulation models: a feasibility study.

    PubMed

    Mafeld, Sebastian; Nesbitt, Craig; McCaslin, James; Bagnall, Alan; Davey, Philip; Bose, Pentop; Williams, Rob

    2017-02-01

    Three-dimensional (3D) printing is a manufacturing process in which an object is created by specialist printers designed to print in additive layers to create a 3D object. Whilst there are initial promising medical applications of 3D printing, a lack of evidence to support its use remains a barrier for larger scale adoption into clinical practice. Endovascular virtual reality (VR) simulation plays an important role in the safe training of future endovascular practitioners, but existing VR models have disadvantages including cost and accessibility which could be addressed with 3D printing. This study sought to evaluate the feasibility of 3D printing an anatomically accurate human aorta for the purposes of endovascular training. A 3D printed model was successfully designed and printed and used for endovascular simulation. The stages of development and practical applications are described. Feedback from 96 physicians who answered a series of questions using a 5 point Likert scale is presented. Initial data supports the value of 3D printed endovascular models although further educational validation is required.

  15. Anatomy, Variants, and Pathologies of the Superior Glenohumeral Ligament: Magnetic Resonance Imaging with Three-Dimensional Volumetric Interpolated Breath-Hold Examination Sequence and Conventional Magnetic Resonance Arthrography

    PubMed Central

    Ogul, Hayri; Karaca, Leyla; Can, Cahit Emre; Pirimoglu, Berhan; Tuncer, Kutsi; Topal, Murat; Okur, Aylin

    2014-01-01

    The purpose of this review was to demonstrate magnetic resonance (MR) arthrography findings of anatomy, variants, and pathologic conditions of the superior glenohumeral ligament (SGHL). This review also demonstrates the applicability of a new MR arthrography sequence in the anterosuperior portion of the glenohumeral joint. The SGHL is a very important anatomical structure in the rotator interval that is responsible for stabilizing the long head of the biceps tendon. Therefore, a torn SGHL can result in pain and instability. Observation of the SGHL is difficult when using conventional MR imaging, because the ligament may be poorly visualized. Shoulder MR arthrography is the most accurately established imaging technique for identifying pathologies of the SGHL and associated structures. The use of three dimensional (3D) volumetric interpolated breath-hold examination (VIBE) sequences produces thinner image slices and enables a higher in-plane resolution than conventional MR arthrography sequences. Therefore, shoulder MR arthrography using 3D VIBE sequences may contribute to evaluating of the smaller intraarticular structures such as the SGHL. PMID:25053912

  16. A method for automatic feature points extraction of human vertebrae three-dimensional model

    NASA Astrophysics Data System (ADS)

    Wu, Zhen; Wu, Junsheng

    2017-05-01

    A method for automatic extraction of the feature points of the human vertebrae three-dimensional model is presented. Firstly, the statistical model of vertebrae feature points is established based on the results of manual vertebrae feature points extraction. Then anatomical axial analysis of the vertebrae model is performed according to the physiological and morphological characteristics of the vertebrae. Using the axial information obtained from the analysis, a projection relationship between the statistical model and the vertebrae model to be extracted is established. According to the projection relationship, the statistical model is matched with the vertebrae model to get the estimated position of the feature point. Finally, by analyzing the curvature in the spherical neighborhood with the estimated position of feature points, the final position of the feature points is obtained. According to the benchmark result on multiple test models, the mean relative errors of feature point positions are less than 5.98%. At more than half of the positions, the error rate is less than 3% and the minimum mean relative error is 0.19%, which verifies the effectiveness of the method.

  17. Craniofacial Anomalies And Biostereometrics

    NASA Astrophysics Data System (ADS)

    Christiansen, Richard L.

    1980-07-01

    Man's oral-facial structures are vital for the functions of breathing, mastication, swallowing, vision, and communication. When defective development of these tissues occurs, function becomes impaired and the anatomic features of the afflicted individual will frequently deviate from the norm. This error of form and function will classify the individual as being physically and psychosocially handicapped. The successful habilitation regimen of the handicapped person depends on the accurate analysis of both craniofacial anatomy and physiology of these individuals, as well as psychological implications of the disfigurement. Biostereometrics can contribute to the establishment of operationally valid measures for assessing the severity of the handicapping conditions. The heterogeneous nature of diverse disfigurement suggest that an improved classification of malformations would be beneficial. Three-dimensional analysis may also have significant influence on the accuracy of the diagnosis, and the establishment of a biologically sound treatment plan. Biostereometrics will contribute more fully if the three-dimensional surface analysis can be coordinated with a study of 1) the underlying skeletal structures, and 2) the operational musculature. Increased communication between the stereometric experts and the biological scientists should accelerate the application of this technique to the health problem.

  18. Volumetric Nephrogram Represents Renal Function and Complements Aortic Anatomic Severity Grade in Predicting EVAR Outcomes.

    PubMed

    Balceniuk, Mark D; Trakimas, Lauren; Aghaie, Claudia; Mix, Doran; Rasheed, Khurram; Seaman, Matthew; Ellis, Jennifer; Glocker, Roan; Doyle, Adam; Stoner, Michael C

    2018-07-01

    Chronic kidney disease (CKD) is a predictor of poor outcomes for patients undergoing endovascular aortic aneurysm repair (EVAR). Anatomic severity grade (ASG) represents a quantitative mechanism for assessing anatomical suitability for endovascular aortic repair. Anatomic severity grade has been correlated with repair outcomes and resource utilization. The purpose of this study was to identify a novel renal perfusion metric as a way to assist ASG with predicting EVAR outcomes. Retrospective review of a prospectively maintained database identified elective infrarenal aortic aneurysm repair cases. Anatomic grading was undertaken by independent reviewers. Using volumetric software, kidney volume, and a novel measure of kidney functional volume, the volumetric nephrogram (VN) was recorded. Systematic evaluation of the relationship of kidney volume and VN to CKD and ASG was undertaken using linear regression and receiver-operator statistical tools. A total of 386 cases with patient and anatomic data were identified and graded. Mean age was 72.9 ± 0.4 years. Renal volume <281 mL correlated with CKD (area under the curve [AUC] = .708; P ≤ .0001). Volumetric nephrogram <22.5 HU·L correlated with CKD (AUC = 0.764; P ≤ .0001). High (≥15) ASG scores correlated with both renal volume (AUC = .628; P ≤ .0001) and VN (AUC = .628; P ≤ .0001). Regression analysis demonstrated a strong, inverse relationship between ASG and VN ( R 2 = .95). These data demonstrate that VN is a strong predictor of CKD in a large database of patients undergoing elective aneurysm repair. We demonstrate an inverse relationship between renal function and ASG that has not been previously described in the literature. Additionally, we have shown that VN complements ASG as a model of overall cardiovascular health and atherosclerotic burden. Outcomes in patients with poor renal function may be related to anatomical issues in addition to well-described systemic ramifications.

  19. Arthroscopy or ultrasound in undergraduate anatomy education: a randomized cross-over controlled trial.

    PubMed

    Knobe, Matthias; Carow, John Bennet; Ruesseler, Miriam; Leu, Benjamin Moritz; Simon, Melanie; Beckers, Stefan K; Ghassemi, Alireza; Sönmez, Tolga T; Pape, Hans-Christoph

    2012-09-09

    The exponential growth of image-based diagnostic and minimally invasive interventions requires a detailed three-dimensional anatomical knowledge and increases the demand towards the undergraduate anatomical curriculum. This randomized controlled trial investigates whether musculoskeletal ultrasound (MSUS) or arthroscopic methods can increase the anatomical knowledge uptake. Second-year medical students were randomly allocated to three groups. In addition to the compulsory dissection course, the ultrasound group (MSUS) was taught by eight, didactically and professionally trained, experienced student-teachers and the arthroscopy group (ASK) was taught by eight experienced physicians. The control group (CON) acquired the anatomical knowledge only via the dissection course. Exposure (MSUS and ASK) took place in two separate lessons (75 minutes each, shoulder and knee joint) and introduced standard scan planes using a 10-MHz ultrasound system as well as arthroscopy tutorials at a simulator combined with video tutorials. The theoretical anatomic learning outcomes were tested using a multiple-choice questionnaire (MCQ), and after cross-over an objective structured clinical examination (OSCE). Differences in student's perceptions were evaluated using Likert scale-based items. The ASK-group (n = 70, age 23.4 (20-36) yrs.) performed moderately better in the anatomical MC exam in comparison to the MSUS-group (n = 84, age 24.2 (20-53) yrs.) and the CON-group (n = 88, 22.8 (20-33) yrs.; p = 0.019). After an additional arthroscopy teaching 1% of students failed the MC exam, in contrast to 10% in the MSUS- or CON-group, respectively. The benefit of the ASK module was limited to the shoulder area (p < 0.001). The final examination (OSCE) showed no significant differences between any of the groups with good overall performances. In the evaluation, the students certified the arthroscopic tutorial a greater advantage concerning anatomical skills with higher spatial imagination in comparison to the ultrasound tutorial (p = 0.002; p < 0.001). The additional implementation of arthroscopy tutorials to the dissection course during the undergraduate anatomy training is profitable and attractive to students with respect to complex joint anatomy. Simultaneous teaching of basic-skills in musculoskeletal ultrasound should be performed by medical experts, but seems to be inferior to the arthroscopic 2D-3D-transformation, and is regarded by students as more difficult to learn. Although arthroscopy and ultrasound teaching do not have a major effect on learning joint anatomy, they have the potency to raise the interest in surgery.

  20. Arthroscopy or ultrasound in undergraduate anatomy education: a randomized cross-over controlled trial

    PubMed Central

    2012-01-01

    Background The exponential growth of image-based diagnostic and minimally invasive interventions requires a detailed three-dimensional anatomical knowledge and increases the demand towards the undergraduate anatomical curriculum. This randomized controlled trial investigates whether musculoskeletal ultrasound (MSUS) or arthroscopic methods can increase the anatomical knowledge uptake. Methods Second-year medical students were randomly allocated to three groups. In addition to the compulsory dissection course, the ultrasound group (MSUS) was taught by eight, didactically and professionally trained, experienced student-teachers and the arthroscopy group (ASK) was taught by eight experienced physicians. The control group (CON) acquired the anatomical knowledge only via the dissection course. Exposure (MSUS and ASK) took place in two separate lessons (75 minutes each, shoulder and knee joint) and introduced standard scan planes using a 10-MHz ultrasound system as well as arthroscopy tutorials at a simulator combined with video tutorials. The theoretical anatomic learning outcomes were tested using a multiple-choice questionnaire (MCQ), and after cross-over an objective structured clinical examination (OSCE). Differences in student’s perceptions were evaluated using Likert scale-based items. Results The ASK-group (n = 70, age 23.4 (20–36) yrs.) performed moderately better in the anatomical MC exam in comparison to the MSUS-group (n = 84, age 24.2 (20–53) yrs.) and the CON-group (n = 88, 22.8 (20–33) yrs.; p = 0.019). After an additional arthroscopy teaching 1% of students failed the MC exam, in contrast to 10% in the MSUS- or CON-group, respectively. The benefit of the ASK module was limited to the shoulder area (p < 0.001). The final examination (OSCE) showed no significant differences between any of the groups with good overall performances. In the evaluation, the students certified the arthroscopic tutorial a greater advantage concerning anatomical skills with higher spatial imagination in comparison to the ultrasound tutorial (p = 0.002; p < 0.001). Conclusions The additional implementation of arthroscopy tutorials to the dissection course during the undergraduate anatomy training is profitable and attractive to students with respect to complex joint anatomy. Simultaneous teaching of basic-skills in musculoskeletal ultrasound should be performed by medical experts, but seems to be inferior to the arthroscopic 2D-3D-transformation, and is regarded by students as more difficult to learn. Although arthroscopy and ultrasound teaching do not have a major effect on learning joint anatomy, they have the potency to raise the interest in surgery. PMID:22958784

  1. Exploring Cystic Fibrosis Using Bioinformatics Tools: A Module Designed for the Freshman Biology Course

    ERIC Educational Resources Information Center

    Zhang, Xiaorong

    2011-01-01

    We incorporated a bioinformatics component into the freshman biology course that allows students to explore cystic fibrosis (CF), a common genetic disorder, using bioinformatics tools and skills. Students learn about CF through searching genetic databases, analyzing genetic sequences, and observing the three-dimensional structures of proteins…

  2. Interfraction Displacement of Primary Tumor and Involved Lymph Nodes Relative to Anatomic Landmarks in Image Guided Radiation Therapy of Locally Advanced Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jan, Nuzhat; Balik, Salim; Hugo, Geoffrey D.

    Purpose: To analyze primary tumor (PT) and lymph node (LN) position changes relative to each other and relative to anatomic landmarks during conventionally fractionated radiation therapy for patients with locally advanced lung cancer. Methods and Materials: In 12 patients with locally advanced non-small cell lung cancer PT, LN, carina, and 1 thoracic vertebra were manually contoured on weekly 4-dimensional fan-beam CT scans. Systematic and random interfraction displacements of all contoured structures were identified in the 3 cardinal directions, and resulting setup margins were calculated. Time trends and the effect of volume changes on displacements were analyzed. Results: Three-dimensional displacement vectorsmore » and systematic/random interfraction displacements were smaller for carina than for vertebra both for PT and LN. For PT, mean (SD) 3-dimensional displacement vectors with carina-based alignment were 7 (4) mm versus 9 (5) mm with bony anatomy (P<.0001). For LN, smaller displacements were found with carina- (5 [3] mm, P<.0001) and vertebra-based (6 [3] mm, P=.002) alignment compared with using PT for setup (8 [5] mm). Primary tumor and LN displacements relative to bone and carina were independent (P>.05). Displacements between PT and bone (P=.04) and between PT and LN (P=.01) were significantly correlated with PT volume regression. Displacements between LN and carina were correlated with LN volume change (P=.03). Conclusions: Carina-based setup results in a more reproducible PT and LN alignment than bony anatomy setup. Considering the independence of PT and LN displacement and the impact of volume regression on displacements over time, repeated CT imaging even with PT-based alignment is recommended in locally advanced disease.« less

  3. Educational utility of advanced three-dimensional virtual imaging in evaluating the anatomical configuration of the frontal recess.

    PubMed

    Agbetoba, Abib; Luong, Amber; Siow, Jin Keat; Senior, Brent; Callejas, Claudio; Szczygielski, Kornel; Citardi, Martin J

    2017-02-01

    Endoscopic sinus surgery represents a cornerstone in the professional development of otorhinolaryngology trainees. Mastery of these surgical skills requires an understanding of paranasal sinus and skull-base anatomy. The frontal sinus is associated with a wide range of variation and complex anatomical configuration, and thus represents an important challenge for all trainees performing endoscopic sinus surgery. Forty-five otorhinolaryngology trainees and 20 medical school students from 5 academic institutions were enrolled and randomized into 1 of 2 groups. Each subject underwent learning of frontal recess anatomy with both traditional 2-dimensional (2D) learning methods using a standard Digital Imaging and Communications in Medicine (DICOM) viewing software (RadiAnt Dicom Viewer Version 1.9.16) and 3-dimensional (3D) learning utilizing a novel preoperative virtual planning software (Scopis Building Blocks), with one half learning with the 2D method first and the other half learning with the 3D method first. Four questionnaires that included a total of 20 items were scored for subjects' self-assessment on knowledge of frontal recess and frontal sinus drainage pathway anatomy following each learned modality. A 2-sample Wilcoxon rank-sum test was used in the statistical analysis comparing the 2 groups. Most trainees (89%) believed that the virtual 3D planning software significantly improved their understanding of the spatial orientation of the frontal sinus drainage pathway. Incorporation of virtual 3D planning surgical software may help augment trainees' understanding and spatial orientation of the frontal recess and sinus anatomy. The potential increase in trainee proficiency and comprehension theoretically may translate to improved surgical skill and patient outcomes and in reduced surgical time. © 2016 ARS-AAOA, LLC.

  4. Utility and Scope of Rapid Prototyping in Patients with Complex Muscular Ventricular Septal Defects or Double-Outlet Right Ventricle: Does it Alter Management Decisions?

    PubMed

    Bhatla, Puneet; Tretter, Justin T; Ludomirsky, Achi; Argilla, Michael; Latson, Larry A; Chakravarti, Sujata; Barker, Piers C; Yoo, Shi-Joon; McElhinney, Doff B; Wake, Nicole; Mosca, Ralph S

    2017-01-01

    Rapid prototyping facilitates comprehension of complex cardiac anatomy. However, determining when this additional information proves instrumental in patient management remains a challenge. We describe our experience with patient-specific anatomic models created using rapid prototyping from various imaging modalities, suggesting their utility in surgical and interventional planning in congenital heart disease (CHD). Virtual and physical 3-dimensional (3D) models were generated from CT or MRI data, using commercially available software for patients with complex muscular ventricular septal defects (CMVSD) and double-outlet right ventricle (DORV). Six patients with complex anatomy and uncertainty of the optimal management strategy were included in this study. The models were subsequently used to guide management decisions, and the outcomes reviewed. 3D models clearly demonstrated the complex intra-cardiac anatomy in all six patients and were utilized to guide management decisions. In the three patients with CMVSD, one underwent successful endovascular device closure following a prior failed attempt at transcatheter closure, and the other two underwent successful primary surgical closure with the aid of 3D models. In all three cases of DORV, the models provided better anatomic delineation and additional information that altered or confirmed the surgical plan. Patient-specific 3D heart models show promise in accurately defining intra-cardiac anatomy in CHD, specifically CMVSD and DORV. We believe these models improve understanding of the complex anatomical spatial relationships in these defects and provide additional insight for pre/intra-interventional management and surgical planning.

  5. AR Based App for Tourist Attraction in ESKİ ÇARŞI (Safranbolu)

    NASA Astrophysics Data System (ADS)

    Polat, Merve; Rakıp Karaş, İsmail; Kahraman, İdris; Alizadehashrafi, Behnam

    2016-10-01

    This research is dealing with 3D modeling of historical and heritage landmarks of Safranbolu that are registered by UNESCO. This is an Augmented Reality (AR) based project in order to trigger virtual three-dimensional (3D) models, cultural music, historical photos, artistic features and animated text information. The aim is to propose a GIS-based approach with these features and add to the system as attribute data in a relational database. The database will be available in an AR-based application to provide information for the tourists.

  6. Creating and Using a Consumer Chemical Molecular Graphics Database: The "Molecule of the Day" - A Great Way To Begin Your Lecture

    NASA Astrophysics Data System (ADS)

    Scharberg, Maureen A.; Cox, Oran E.; Barelli, Carl A.

    1997-07-01

    "The Molecule of the Day" consumer chemical database has been created to allow introductory chemistry students to explore molecular structures of chemicals in household products, and to provide opportunities in molecular modeling for undergraduate chemistry students. Before class begins, an overhead transparency is displayed which shows a three-dimensional molecular structure of a household chemical, and lists relevant features and uses of this chemical. Within answers to questionnaires, students have commented that this molecular graphics database has helped them to visually connect the microscopic structure of a molecule with its physical and chemical properties, as well as its uses in consumer products. It is anticipated that this database will be incorporated into a navigational software package such as Netscape.

  7. Digital diagnosis and treatment of mandibular condylar fractures based on Extensible Neuro imaging Archive Toolkit (XNAT)

    PubMed Central

    Ren, Jiayin; He, Mingyun; Huang, Yongqing; Tian, WeiDong; Tang, Wei

    2018-01-01

    Objectives The treatment of condylar fractures has long been controversial. In this paper, we established a database for accurate measurement, storage, management and analysis of patients’ data, in order to help determine the best treatment plan. Methods First of all, the diagnosis and treatment database was established based on XNAT, including 339 cases of condylar fractures and their related information. Then image segmentation, registration and three-dimensional (3D) measurement were used to measure and analyze the condyle shapes. Statistical analysis was used to analyze the anatomical structure changes of condyle and the surrounding tissues at different stages before and after treatment. The processes of condylar fracture reestablishment at different stages were also dynamically monitored. Finally, based on all these information, the digital diagnosis and treatment plans for condylar fractures were developed. Results For the patients less than 18 years old with no significant dislocation, surgical treatment and conservative treatment were equally effective for intracapsular fracture, and had no significant difference for neck and basal fractures. For patients above 18 years old, there was no significant difference between the two treatment methods for intracapsular fractures; but for condylar neck and basal fractures, surgical treatment was better than conservative treatment. When condylar fracture shift angle was greater than 11 degrees, and mandibular ramus height reduction was greater than 4mm, the patients felt the strongest pain, and their mouths opening was severely restricted. There were 170 surgical cases with condylar fracture shift angel greater than 11 degrees, and 118 of them (69.4%) had good prognosis, 52 of them (30.6%) had complications such as limited mouth opening. There were 173 surgical cases with mandibular ramus height reduction more than 4mm, and 112 of them (64.7%) had good prognosis, 61 of them (35.3%) had complications such as limited mouth opening. Conclusions The establishment of XNAT condylar fracture database is helpful for establishing a digital diagnosis and treatment workflow for mandibular condylar fractures, providing new theoretical foundation and application basis for diagnosis and treatment of condylar fractures. PMID:29432477

  8. Effects of initial graft tension on femoral tunnel widening after anatomic anterior cruciate ligament reconstruction using a bone-patellar tendon-bone graft.

    PubMed

    Taketomi, Shuji; Inui, Hiroshi; Tahara, Keitaro; Shirakawa, Nobuyuki; Tanaka, Sakae; Nakagawa, Takumi

    2017-09-01

    The effects of initial graft tension upon tunnel widening (TW) following anatomic anterior cruciate ligament (ACL) reconstruction have not been elucidated. The purpose of this study was to retrospectively investigate the effect of two different graft-tensioning protocols upon femoral TW following anatomic ACL reconstruction using a bone-patellar tendon-bone (BPTB) graft and a three-dimensional (3D) computed tomography (CT) model. Forty-three patients who underwent isolated ACL reconstruction using BPTB grafts were included in this study. In 18 out of the 43 patients, the graft was fixed at full knee extension with manual maximum pull (Group H). These patients were compared with 25 patients in whom the BPTB graft was fixed at full knee extension with 80-N pull (Group L). Tunnel aperture area was measured using 3D CT 1 week and 1 year postoperatively, thus enabling us to calculate the percentage change in the area of femoral tunnel aperture. Clinical assessment was performed 1 year postoperatively, corresponding to the time period of CT assessment, and involved the evaluation of Lysholm score, anterior knee stability using a KneeLax3 arthrometer, and the pivot-shift test. When measured at 1 year postoperatively, the mean area of the femoral tunnel aperture had increased by 78.6 ± 36.8% in Group H when compared with at 1 week postoperatively, whereas that of Group L had increased by 27.7 ± 32.3%. Furthermore, TW (%) in Group H was significantly greater than that of Group L (P < 0.001). No significant differences were detected between the two groups with regard to any of the clinical outcomes evaluated. High levels of initial graft tension resulted in greater TW of the femoral tunnel aperture following anatomical ACL reconstruction using BPTB grafts. However, such levels of graft tension did not affect clinical outcome.

  9. Modeling the effect of mood on dimensional attention during categorization.

    PubMed

    Zivot, Matthew T; Cohen, Andrew L; Kapucu, Aycan

    2013-08-01

    Classification is a flexible process that can be affected by mood. The goal of this paper is to evaluate the idea that mood may modulate categorization behavior through an attentional weighting mechanism in which mood changes the attention afforded to different stimulus dimensions. In two experiments, participants learn and are tested on categories while in a calm or sad mood. In Experiment 1, sad participants are faster to learn one- and two-dimensional category structures, but show no advantage on a three-dimensional category structure. In Experiment 2, the generalized context model of categorization is used to measure dimensional weighting. The results suggest that sad participants have a narrower focus of attention, but that the narrowing tends to be on diagnostic dimensions. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  10. Marginal Space Deep Learning: Efficient Architecture for Volumetric Image Parsing.

    PubMed

    Ghesu, Florin C; Krubasik, Edward; Georgescu, Bogdan; Singh, Vivek; Yefeng Zheng; Hornegger, Joachim; Comaniciu, Dorin

    2016-05-01

    Robust and fast solutions for anatomical object detection and segmentation support the entire clinical workflow from diagnosis, patient stratification, therapy planning, intervention and follow-up. Current state-of-the-art techniques for parsing volumetric medical image data are typically based on machine learning methods that exploit large annotated image databases. Two main challenges need to be addressed, these are the efficiency in scanning high-dimensional parametric spaces and the need for representative image features which require significant efforts of manual engineering. We propose a pipeline for object detection and segmentation in the context of volumetric image parsing, solving a two-step learning problem: anatomical pose estimation and boundary delineation. For this task we introduce Marginal Space Deep Learning (MSDL), a novel framework exploiting both the strengths of efficient object parametrization in hierarchical marginal spaces and the automated feature design of Deep Learning (DL) network architectures. In the 3D context, the application of deep learning systems is limited by the very high complexity of the parametrization. More specifically 9 parameters are necessary to describe a restricted affine transformation in 3D, resulting in a prohibitive amount of billions of scanning hypotheses. The mechanism of marginal space learning provides excellent run-time performance by learning classifiers in clustered, high-probability regions in spaces of gradually increasing dimensionality. To further increase computational efficiency and robustness, in our system we learn sparse adaptive data sampling patterns that automatically capture the structure of the input. Given the object localization, we propose a DL-based active shape model to estimate the non-rigid object boundary. Experimental results are presented on the aortic valve in ultrasound using an extensive dataset of 2891 volumes from 869 patients, showing significant improvements of up to 45.2% over the state-of-the-art. To our knowledge, this is the first successful demonstration of the DL potential to detection and segmentation in full 3D data with parametrized representations.

  11. Use of cone beam computed tomography in periodontology

    PubMed Central

    Acar, Buket; Kamburoğlu, Kıvanç

    2014-01-01

    Diagnosis of periodontal disease mainly depends on clinical signs and symptoms. However, in the case of bone destruction, radiographs are valuable diagnostic tools as an adjunct to the clinical examination. Two dimensional periapical and panoramic radiographs are routinely used for diagnosing periodontal bone levels. In two dimensional imaging, evaluation of bone craters, lamina dura and periodontal bone level is limited by projection geometry and superpositions of adjacent anatomical structures. Those limitations of 2D radiographs can be eliminated by three-dimensional imaging techniques such as computed tomography. Cone beam computed tomography (CBCT) generates 3D volumetric images and is also commonly used in dentistry. All CBCT units provide axial, coronal and sagittal multi-planar reconstructed images without magnification. Also, panoramic images without distortion and magnification can be generated with curved planar reformation. CBCT displays 3D images that are necessary for the diagnosis of intra bony defects, furcation involvements and buccal/lingual bone destructions. CBCT applications provide obvious benefits in periodontics, however; it should be used only in correct indications considering the necessity and the potential hazards of the examination. PMID:24876918

  12. From Vesalius to virtual reality: How embodied cognition facilitates the visualization of anatomy

    NASA Astrophysics Data System (ADS)

    Jang, Susan

    This study examines the facilitative effects of embodiment of a complex internal anatomical structure through three-dimensional ("3-D") interactivity in a virtual reality ("VR") program. Since Shepard and Metzler's influential 1971 study, it has been known that 3-D objects (e.g., multiple-armed cube or external body parts) are visually and motorically embodied in our minds. For example, people take longer to rotate mentally an image of their hand not only when there is a greater degree of rotation, but also when the images are presented in a manner incompatible with their natural body movement (Parsons, 1987a, 1994; Cooper & Shepard, 1975; Sekiyama, 1983). Such findings confirm the notion that our mental images and rotations of those images are in fact confined by the laws of physics and biomechanics, because we perceive, think and reason in an embodied fashion. With the advancement of new technologies, virtual reality programs for medical education now enable users to interact directly in a 3-D environment with internal anatomical structures. Given that such structures are not readily viewable to users and thus not previously susceptible to embodiment, coupled with the VR environment also affording all possible degrees of rotation, how people learn from these programs raises new questions. If we embody external anatomical parts we can see, such as our hands and feet, can we embody internal anatomical parts we cannot see? Does manipulating the anatomical part in virtual space facilitate the user's embodiment of that structure and therefore the ability to visualize the structure mentally? Medical students grouped in yoked-pairs were tasked with mastering the spatial configuration of an internal anatomical structure; only one group was allowed to manipulate the images of this anatomical structure in a 3-D VR environment, whereas the other group could only view the manipulation. The manipulation group outperformed the visual group, suggesting that the interactivity that took place among the manipulation group promoted visual and motoric embodiment, which in turn enhanced learning. Moreover, when accounting for spatial ability, it was found that manipulation benefits students with low spatial ability more than students with high spatial ability.

  13. Anatomic Mesenchymal Stem Cell-Based Engineered Cartilage Constructs for Biologic Total Joint Replacement

    PubMed Central

    Saxena, Vishal; Kim, Minwook; Keah, Niobra M.; Neuwirth, Alexander L.; Stoeckl, Brendan D.; Bickard, Kevin; Restle, David J.; Salowe, Rebecca; Wang, Margaret Ye; Steinberg, David R.

    2016-01-01

    Cartilage has a poor healing response, and few viable options exist for repair of extensive damage. Hyaluronic acid (HA) hydrogels seeded with mesenchymal stem cells (MSCs) polymerized through UV crosslinking can generate functional tissue, but this crosslinking is not compatible with indirect rapid prototyping utilizing opaque anatomic molds. Methacrylate-modified polymers can also be chemically crosslinked in a cytocompatible manner using ammonium persulfate (APS) and N,N,N′,N′-tetramethylethylenediamine (TEMED). The objectives of this study were to (1) compare APS/TEMED crosslinking with UV crosslinking in terms of functional maturation of MSC-seeded HA hydrogels; (2) generate an anatomic mold of a complex joint surface through rapid prototyping; and (3) grow anatomic MSC-seeded HA hydrogel constructs using this alternative crosslinking method. Juvenile bovine MSCs were suspended in methacrylated HA (MeHA) and crosslinked either through UV polymerization or chemically with APS/TEMED to generate cylindrical constructs. Minipig porcine femoral heads were imaged using microCT, and anatomic negative molds were generated by three-dimensional printing using fused deposition modeling. Molded HA constructs were produced using the APS/TEMED method. All constructs were cultured for up to 12 weeks in a chemically defined medium supplemented with TGF-β3 and characterized by mechanical testing, biochemical assays, and histologic analysis. Both UV- and APS/TEMED-polymerized constructs showed increasing mechanical properties and robust proteoglycan and collagen deposition over time. At 12 weeks, APS/TEMED-polymerized constructs had higher equilibrium and dynamic moduli than UV-polymerized constructs, with no differences in proteoglycan or collagen content. Molded HA constructs retained their hemispherical shape in culture and demonstrated increasing mechanical properties and proteoglycan and collagen deposition, especially at the edges compared to the center of these larger constructs. Immunohistochemistry showed abundant collagen type II staining and little collagen type I staining. APS/TEMED crosslinking can be used to produce MSC-seeded HA-based neocartilage and can be used in combination with rapid prototyping techniques to generate anatomic MSC-seeded HA constructs for use in filling large and anatomically complex chondral defects or for biologic joint replacement. PMID:26871863

  14. A training platform for many-dimensional prosthetic devices using a virtual reality environment

    PubMed Central

    Putrino, David; Wong, Yan T.; Weiss, Adam; Pesaran, Bijan

    2014-01-01

    Brain machine interfaces (BMIs) have the potential to assist in the rehabilitation of millions of patients worldwide. Despite recent advancements in BMI technology for the restoration of lost motor function, a training environment to restore full control of the anatomical segments of an upper limb extremity has not yet been presented. Here, we develop a virtual upper limb prosthesis with 27 independent dimensions, the anatomical dimensions of the human arm and hand, and deploy the virtual prosthesis as an avatar in a virtual reality environment (VRE) that can be controlled in real-time. The prosthesis avatar accepts kinematic control inputs that can be captured from movements of the arm and hand as well as neural control inputs derived from processed neural signals. We characterize the system performance under kinematic control using a commercially available motion capture system. We also present the performance under kinematic control achieved by two non-human primates (Macaca Mulatta) trained to use the prosthetic avatar to perform reaching and grasping tasks. This is the first virtual prosthetic device that is capable of emulating all the anatomical movements of a healthy upper limb in real-time. Since the system accepts both neural and kinematic inputs for a variety of many-dimensional skeletons, we propose it provides a customizable training platform for the acquisition of many-dimensional neural prosthetic control. PMID:24726625

  15. Technical note: a landmark-based approach to the study of the ear ossicles using ultra-high-resolution X-ray computed tomography data.

    PubMed

    Schmidt, Jodi L; Cole, Theodore M; Silcox, Mary T

    2011-08-01

    Previous study of the ear ossicles in Primates has demonstrated that they vary on both functional and phylogenetic bases. Such studies have generally employed two-dimensional linear measurements rather than three-dimensional data. The availability of Ultra- high-resolution X-ray computed tomography (UhrCT) has made it possible to accurately image the ossicles so that broadly accepted methodologies for acquiring and studying morphometric data can be applied. Using UhrCT data also allows for the ossicular chain to be studied in anatomical position, so that it is possible to consider the spatial and size relationships of all three bones. One issue impeding the morphometric study of the ear ossicles is a lack of broadly recognized landmarks. Distinguishing landmarks on the ossicles is difficult in part because there are only two areas of articulation in the ossicular chain, one of which (the malleus/incus articulation) has a complex three-dimensional form. A measurement error study is presented demonstrating that a suite of 16 landmarks can be precisely located on reconstructions of the ossicles from UhrCT data. Estimates of measurement error showed that most landmarks were highly replicable, with an average CV for associated interlandmark distances of less than 3%. The positions of these landmarks are chosen to reflect not only the overall shape of the bones in the chain and their relative positions, but also functional parameters. This study should provide a basis for further examination of the smallest bones in the body in three dimensions. Copyright © 2011 Wiley-Liss, Inc.

  16. Dimensions and geometry of the temporomandibular joint and masseter muscles.

    PubMed

    Zurowski, R; Gosek, M; Aleksandrowicz, R

    1976-01-01

    The bio-engineering team presents its suggestion of a method for the measurement of the temporomandibular joint and masseter muscles in order to determine the parameters necessary for exact sciences and indispensable for unified and objective cognitive studies. Ten formalin-fixed human cadavers served for the studies. The preparations were prepared by the modified method of anatomical procedure. Linear and angular measurements of temporomandibular joint and masseter muscles were carried out with the use of the three-dimensional Cartesian system of OXYZ coordinates in relation to frontal, sagittal and horizontal planes. The physiological cross-sections of the masseter, temporal, lateral and medial pterygoid muscles were also determined. The collected data make it possible to develop a mathematical three-dimensioned model of the osseo-articulo-muscular system of the mastication organ.

  17. Three-dimensional assessment of squats and drop jumps using the Microsoft Xbox One Kinect: Reliability and validity.

    PubMed

    Mentiplay, Benjamin F; Hasanki, Ksaniel; Perraton, Luke G; Pua, Yong-Hao; Charlton, Paula C; Clark, Ross A

    2018-03-01

    The Microsoft Xbox One Kinect™ (Kinect V2) contains a depth camera that can be used to manually identify anatomical landmark positions in three-dimensions independent of the standard skeletal tracking, and therefore has potential for low-cost, time-efficient three-dimensional movement analysis (3DMA). This study examined inter-session reliability and concurrent validity of the Kinect V2 for the assessment of coronal and sagittal plane kinematics for the trunk, hip and knee during single leg squats (SLS) and drop vertical jumps (DVJ). Thirty young, healthy participants (age = 23 ± 5yrs, male/female = 15/15) performed a SLS and DVJ protocol that was recorded concurrently by the Kinect V2 and 3DMA during two sessions, one week apart. The Kinect V2 demonstrated good to excellent reliability for all SLS and DVJ variables (ICC ≥ 0.73). Concurrent validity ranged from poor to excellent (ICC = 0.02 to 0.98) during the SLS task, although trunk, hip and knee flexion and two-dimensional measures of knee abduction and frontal plane projection angle all demonstrated good to excellent validity (ICC ≥ 0.80). Concurrent validity for the DVJ task was typically worse, with only two variables exceeding ICC = 0.75 (trunk and hip flexion). These findings indicate that the Kinect V2 may have potential for large-scale screening for ACL injury risk, however future prospective research is required.

  18. 3D laser optoacoustic ultrasonic imaging system for preclinical research

    NASA Astrophysics Data System (ADS)

    Ermilov, Sergey A.; Conjusteau, André; Hernandez, Travis; Su, Richard; Nadvoretskiy, Vyacheslav; Tsyboulski, Dmitri; Anis, Fatima; Anastasio, Mark A.; Oraevsky, Alexander A.

    2013-03-01

    In this work, we introduce a novel three-dimensional imaging system for in vivo high-resolution anatomical and functional whole-body visualization of small animal models developed for preclinical or other type of biomedical research. The system (LOUIS-3DM) combines a multi-wavelength optoacoustic and ultrawide-band laser ultrasound tomographies to obtain coregistered maps of tissue optical absorption and acoustic properties, displayed within the skin outline of the studied animal. The most promising applications of the LOUIS-3DM include 3D angiography, cancer research, and longitudinal studies of biological distribution of optoacoustic contrast agents (carbon nanotubes, metal plasmonic nanoparticles, etc.).

  19. Virtual Reality Simulation of the Effects of Microgravity in Gastrointestinal Physiology

    NASA Technical Reports Server (NTRS)

    Compadre, Cesar M.

    1998-01-01

    The ultimate goal of this research is to create an anatomically accurate three-dimensional (3D) simulation model of the effects of microgravity in gastrointestinal physiology and to explore the role that such changes may have in the pharmacokinetics of drugs given to the space crews for prevention or therapy. To accomplish this goal the specific aims of this research are: 1) To generate a complete 3-D reconstructions of the human GastroIntestinal (GI) tract of the male and female Visible Humans. 2) To develop and implement time-dependent computer algorithms to simulate the GI motility using the above 3-D reconstruction.

  20. Estimating ankle rotational constraints from anatomic structure

    NASA Astrophysics Data System (ADS)

    Baker, H. H.; Bruckner, Janice S.; Langdon, John H.

    1992-09-01

    Three-dimensional biomedical data obtained through tomography provide exceptional views of biological anatomy. While visualization is one of the primary purposes for obtaining these data, other more quantitative and analytic uses are possible. These include modeling of tissue properties and interrelationships, simulation of physical processes, interactive surgical investigation, and analysis of kinematics and dynamics. As an application of our research in modeling tissue structure and function, we have been working to develop interactive and automated tools for studying joint geometry and kinematics. We focus here on discrimination of morphological variations in the foot and determining the implications of these on both hominid bipedal evolution and physical therapy treatment for foot disorders.

Top