Three-dimensional simulations of cumulus congestus clouds on GATE day 261
NASA Technical Reports Server (NTRS)
Simpson, J.; Van Helvoirt, G.; Mccumber, M.
1982-01-01
Schlesinger's (1978) three-dimensional cumulus model is applied to showering congestus clouds on day 261 of GATE. Model results are compared with each other and with observations to analyze the effects of varying shear and altered sounding. Relationships between shear, mesovortices and dynamic entrainment are examined, as well as the model clouds' impact on the environment as a function of shear. The simulations appear to resemble reality in many important aspects. Altostratus layers observed on day 261 are found to be a by-product of convection in three-dimensional shear. Rapid erosion of cloud base to 3.6 km is related to the ambient thermal structure, with wind shear and initial perturbation playing a secondary role. Some of the apparent conflict regarding lateral versus cloud-top entrainment is clarified, as well as some factors governing convective downdraft structure and intensity.
NASA Astrophysics Data System (ADS)
Veremey, N. E.; Dovgalyuk, Yu. A.; Zatevakhin, M. A.; Ignatyev, A. A.; Morozov, V. N.
2014-04-01
Numerical nonstationary three-dimensional model of a convective cloud with parameterized description of microphysical processes with allowance for the electrization processes is considered. The results of numerical modeling of the cloud evolution for the specified atmospheric conditions are presented. The spatio-temporal distribution of the main cloud characteristics including the volume charge density and the electric field is obtained. The calculation results show that the electric structure of the cloud is different at its various life stages, i.e., it varies from unipolar to dipolar and then to tripolar. This conclusion is in fair agreement with the field studies.
Three-dimensional reconstruction of indoor whole elements based on mobile LiDAR point cloud data
NASA Astrophysics Data System (ADS)
Gong, Yuejian; Mao, Wenbo; Bi, Jiantao; Ji, Wei; He, Zhanjun
2014-11-01
Ground-based LiDAR is one of the most effective city modeling tools at present, which has been widely used for three-dimensional reconstruction of outdoor objects. However, as for indoor objects, there are some technical bottlenecks due to lack of GPS signal. In this paper, based on the high-precision indoor point cloud data which was obtained by LiDAR, an international advanced indoor mobile measuring equipment, high -precision model was fulfilled for all indoor ancillary facilities. The point cloud data we employed also contain color feature, which is extracted by fusion with CCD images. Thus, it has both space geometric feature and spectral information which can be used for constructing objects' surface and restoring color and texture of the geometric model. Based on Autodesk CAD platform and with help of PointSence plug, three-dimensional reconstruction of indoor whole elements was realized. Specifically, Pointools Edit Pro was adopted to edit the point cloud, then different types of indoor point cloud data was processed, including data format conversion, outline extracting and texture mapping of the point cloud model. Finally, three-dimensional visualization of the real-world indoor was completed. Experiment results showed that high-precision 3D point cloud data obtained by indoor mobile measuring equipment can be used for indoor whole elements' 3-d reconstruction and that methods proposed in this paper can efficiently realize the 3 -d construction of indoor whole elements. Moreover, the modeling precision could be controlled within 5 cm, which was proved to be a satisfactory result.
Castellazzi, Giovanni; D'Altri, Antonio Maria; Bitelli, Gabriele; Selvaggi, Ilenia; Lambertini, Alessandro
2015-07-28
In this paper, a new semi-automatic procedure to transform three-dimensional point clouds of complex objects to three-dimensional finite element models is presented and validated. The procedure conceives of the point cloud as a stacking of point sections. The complexity of the clouds is arbitrary, since the procedure is designed for terrestrial laser scanner surveys applied to buildings with irregular geometry, such as historical buildings. The procedure aims at solving the problems connected to the generation of finite element models of these complex structures by constructing a fine discretized geometry with a reduced amount of time and ready to be used with structural analysis. If the starting clouds represent the inner and outer surfaces of the structure, the resulting finite element model will accurately capture the whole three-dimensional structure, producing a complex solid made by voxel elements. A comparison analysis with a CAD-based model is carried out on a historical building damaged by a seismic event. The results indicate that the proposed procedure is effective and obtains comparable models in a shorter time, with an increased level of automation.
NASA Technical Reports Server (NTRS)
Schlesinger, R. E.
1984-01-01
The present investigation is concerned with results from an initial set of comparative experiments in a project which utilize a three-dimensional convective storm model. The modeling results presented are related to four comparative experiments, designated Cases A through D. One of two scientific questions considered involves the dynamical processes, either near the cloud top or well within the cloud interior, which contribute to organize cloud thermal patterns such as those revealed by IR satellite imagery for some storms having strong internal cloud-scale rotation. The second question is concerned with differences, in cloud-top height and temperature field characteristics, between thunderstorms with and without significant internal cloud-scale rotation. The four experiments A-D are compared with regard to both interior and cloud-top configurations in the context of the second question. A particular strong-shear experiment, Case B, is analyzed to address question one.
Castellazzi, Giovanni; D’Altri, Antonio Maria; Bitelli, Gabriele; Selvaggi, Ilenia; Lambertini, Alessandro
2015-01-01
In this paper, a new semi-automatic procedure to transform three-dimensional point clouds of complex objects to three-dimensional finite element models is presented and validated. The procedure conceives of the point cloud as a stacking of point sections. The complexity of the clouds is arbitrary, since the procedure is designed for terrestrial laser scanner surveys applied to buildings with irregular geometry, such as historical buildings. The procedure aims at solving the problems connected to the generation of finite element models of these complex structures by constructing a fine discretized geometry with a reduced amount of time and ready to be used with structural analysis. If the starting clouds represent the inner and outer surfaces of the structure, the resulting finite element model will accurately capture the whole three-dimensional structure, producing a complex solid made by voxel elements. A comparison analysis with a CAD-based model is carried out on a historical building damaged by a seismic event. The results indicate that the proposed procedure is effective and obtains comparable models in a shorter time, with an increased level of automation. PMID:26225978
NASA Technical Reports Server (NTRS)
Zeng, Xiping; Tao, Wei-Kuo; Lang, Stephen; Hou, Arthur Y.; Zhang, Minghua; Simpson, Joanne
2008-01-01
Month-long large-scale forcing data from two field campaigns are used to drive a cloud-resolving model (CRM) and produce ensemble simulations of clouds and precipitation. Observational data are then used to evaluate the model results. To improve the model results, a new parameterization of the Bergeron process is proposed that incorporates the number concentration of ice nuclei (IN). Numerical simulations reveal that atmospheric ensembles are sensitive to IN concentration and ice crystal multiplication. Two- (2D) and three-dimensional (3D) simulations are carried out to address the sensitivity of atmospheric ensembles to model dimensionality. It is found that the ensembles with high IN concentration are more sensitive to dimensionality than those with low IN concentration. Both the analytic solutions of linear dry models and the CRM output show that there are more convective cores with stronger updrafts in 3D simulations than in 2D, which explains the differing sensitivity of the ensembles to dimensionality at different IN concentrations.
NASA Technical Reports Server (NTRS)
Smyth, William H.
2004-01-01
Progress in research to understand the three-dimensional nature of the Europagenic plasma torus is summarized. Efforts to improve the plasma torus description near Europa's orbit have included a better understanding of Europa's orbit and an improved description of the planetary magnetic field. New plasma torus chemistry for molecular and atomic species has been introduced and implemented in Europa neutral cloud models. Preliminary three-dimensional model calculations for Europa's neutral clouds and their plasma sources are presented.
Analysis of the Three-Dimensional Vector FAÇADE Model Created from Photogrammetric Data
NASA Astrophysics Data System (ADS)
Kamnev, I. S.; Seredovich, V. A.
2017-12-01
The results of the accuracy assessment analysis for creation of a three-dimensional vector model of building façade are described. In the framework of the analysis, analytical comparison of three-dimensional vector façade models created by photogrammetric and terrestrial laser scanning data has been done. The three-dimensional model built from TLS point clouds was taken as the reference one. In the course of the experiment, the three-dimensional model to be analyzed was superimposed on the reference one, the coordinates were measured and deviations between the same model points were determined. The accuracy estimation of the three-dimensional model obtained by using non-metric digital camera images was carried out. Identified façade surface areas with the maximum deviations were revealed.
2008-01-01
the sensor is a data cloud in multi- dimensional space with each band generating an axis of dimension. When the data cloud is viewed in two or three...endmember of interest is not a true endmember in the data space . A ) B) Figure 8: Linear mixture models. A ) two- dimensional ...multi- dimensional space . A classifier is a computer algorithm that takes
Evaluating Clouds in Long-Term Cloud-Resolving Model Simulations with Observational Data
NASA Technical Reports Server (NTRS)
Zeng, Xiping; Tao, Wei-Kuo; Zhang, Minghua; Peters-Lidard, Christa; Lang, Stephen; Simpson, Joanne; Kumar, Sujay; Xie, Shaocheng; Eastman, Joseph L.; Shie, Chung-Lin;
2006-01-01
Two 20-day, continental midlatitude cases are simulated with a three-dimensional (3D) cloud-resolving model (CRM) and compared to Atmospheric Radiation Measurement (ARM) data. This evaluation of long-term cloud-resolving model simulations focuses on the evaluation of clouds and surface fluxes. All numerical experiments, as compared to observations, simulate surface precipitation well but over-predict clouds, especially in the upper troposphere. The sensitivity of cloud properties to dimensionality and other factors is studied to isolate the origins of the over prediction of clouds. Due to the difference in buoyancy damping between 2D and 3D models, surface precipitation fluctuates rapidly with time, and spurious dehumidification occurs near the tropopause in the 2D CRM. Surface fluxes from a land data assimilation system are compared with ARM observations. They are used in place of the ARM surface fluxes to test the sensitivity of simulated clouds to surface fluxes. Summertime simulations show that surface fluxes from the assimilation system bring about a better simulation of diurnal cloud variation in the lower troposphere.
Simple Models of the Spatial Distribution of Cloud Radiative Properties for Remote Sensing Studies
NASA Technical Reports Server (NTRS)
2004-01-01
This project aimed to assess the degree to which estimates of three-dimensional cloud structure can be inferred from a time series of profiles obtained at a point. The work was motivated by the desire to understand the extent to which high-frequency profiles of the atmosphere (e.g. ARM data streams) can be used to assess the magnitude of non-plane parallel transfer of radiation in thc atmosphere. We accomplished this by performing an observing system simulation using a large-eddy simulation and a Monte Carlo radiative transfer model. We define the 3D effect as the part of the radiative transfer that isn't captured by one-dimensional radiative transfer calculations. We assess the magnitude of the 3D effect in small cumulus clouds by using a fine-scale cloud model to simulate many hours of cloudiness over a continental site. We then use a Monte Carlo radiative transfer model to compute the broadband shortwave fluxes at the surface twice, once using the complete three-dimensional radiative transfer F(sup 3D), and once using the ICA F (sup ICA); the difference between them is the 3D effect given.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Hou, A.; Atlas, R.; Starr, D.; Sud, Y.
2003-01-01
Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D). A few 3D CRMs have been used to study the response of clouds to large-scale forcing. In these 3D simulations, the model domain was small, and the integration time was 6 hours. The major objectives of this paper are: (1) to assess the performance of the super-parameterization technique (i.e. is 2D or semi-3D CRM appropriate for the super-parameterization?); (2) calculate and examine the surface energy (especially radiation) and water budgets; (3) identify the differences and similarities in the organization and entrainment rates of convection between simulated 2D and 3D cloud systems.
Parameterization and analysis of 3-D radiative transfer in clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varnai, Tamas
2012-03-16
This report provides a summary of major accomplishments from the project. The project examines the impact of radiative interactions between neighboring atmospheric columns, for example clouds scattering extra sunlight toward nearby clear areas. While most current cloud models don't consider these interactions and instead treat sunlight in each atmospheric column separately, the resulting uncertainties have remained unknown. This project has provided the first estimates on the way average solar heating is affected by interactions between nearby columns. These estimates have been obtained by combining several years of cloud observations at three DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility sitesmore » (in Alaska, Oklahoma, and Papua New Guinea) with simulations of solar radiation around the observed clouds. The importance of radiative interactions between atmospheric columns was evaluated by contrasting simulations that included the interactions with those that did not. This study provides lower-bound estimates for radiative interactions: It cannot consider interactions in cross-wind direction, because it uses two-dimensional vertical cross-sections through clouds that were observed by instruments looking straight up as clouds drifted aloft. Data from new DOE scanning radars will allow future radiative studies to consider the full three-dimensional nature of radiative processes. The results reveal that two-dimensional radiative interactions increase overall day-and-night average solar heating by about 0.3, 1.2, and 4.1 Watts per meter square at the three sites, respectively. This increase grows further if one considers that most large-domain cloud simulations have resolutions that cannot specify small-scale cloud variability. For example, the increases in solar heating mentioned above roughly double for a fairly typical model resolution of 1 km. The study also examined the factors that shape radiative interactions between atmospheric columns and found that local effects were often much larger than the overall values mentioned above, and were especially large for high sun and near convective clouds such as cumulus. The study also found that statistical methods such as neural networks appear promising for enabling cloud models to consider radiative interactions between nearby atmospheric columns. Finally, through collaboration with German scientists, the project found that new methods (especially one called stepwise kriging) show great promise in filling gaps between cloud radar scans. If applied to data from the new DOE scanning cloud radars, these methods can yield large, continuous three-dimensional cloud structures for future radiative simulations.« less
NASA Technical Reports Server (NTRS)
Varnai, Tamas; Marshak, Alexander
2000-01-01
This paper presents a simple approach to estimate the uncertainties that arise in satellite retrievals of cloud optical depth when the retrievals use one-dimensional radiative transfer theory for heterogeneous clouds that have variations in all three dimensions. For the first time, preliminary error bounds are set to estimate the uncertainty of cloud optical depth retrievals. These estimates can help us better understand the nature of uncertainties that three-dimensional effects can introduce into retrievals of this important product of the MODIS instrument. The probability distribution of resulting retrieval errors is examined through theoretical simulations of shortwave cloud reflection for a wide variety of cloud fields. The results are used to illustrate how retrieval uncertainties change with observable and known parameters, such as solar elevation or cloud brightness. Furthermore, the results indicate that a tendency observed in an earlier study, clouds appearing thicker for oblique sun, is indeed caused by three-dimensional radiative effects.
Evaluating statistical cloud schemes: What can we gain from ground-based remote sensing?
NASA Astrophysics Data System (ADS)
Grützun, V.; Quaas, J.; Morcrette, C. J.; Ament, F.
2013-09-01
Statistical cloud schemes with prognostic probability distribution functions have become more important in atmospheric modeling, especially since they are in principle scale adaptive and capture cloud physics in more detail. While in theory the schemes have a great potential, their accuracy is still questionable. High-resolution three-dimensional observational data of water vapor and cloud water, which could be used for testing them, are missing. We explore the potential of ground-based remote sensing such as lidar, microwave, and radar to evaluate prognostic distribution moments using the "perfect model approach." This means that we employ a high-resolution weather model as virtual reality and retrieve full three-dimensional atmospheric quantities and virtual ground-based observations. We then use statistics from the virtual observation to validate the modeled 3-D statistics. Since the data are entirely consistent, any discrepancy occurring is due to the method. Focusing on total water mixing ratio, we find that the mean ratio can be evaluated decently but that it strongly depends on the meteorological conditions as to whether the variance and skewness are reliable. Using some simple schematic description of different synoptic conditions, we show how statistics obtained from point or line measurements can be poor at representing the full three-dimensional distribution of water in the atmosphere. We argue that a careful analysis of measurement data and detailed knowledge of the meteorological situation is necessary to judge whether we can use the data for an evaluation of higher moments of the humidity distribution used by a statistical cloud scheme.
The effect of finite geometry on the three-dimensional transfer of solar irradiance in clouds
NASA Technical Reports Server (NTRS)
Davies, R.
1978-01-01
Results are presented for a Monte Carlo model applied to a wide range of cloud widths and heights, and for an analytical model restricted in its application to cuboidally shaped clouds whose length, breadth, and depth may be varied independently; the clouds must be internally homogeneous with respect to their intrinsic radiative properties. Comparative results from the Monte Carlo method and the derived analytical model are presented for a wide range of cloud sizes, with special emphasis on the effects of varying the single scatter albedo, the solar zenith angle, and the scattering phase angle.
Development of Three-Dimensional Dental Scanning Apparatus Using Structured Illumination
Park, Anjin; Lee, Byeong Ha; Eom, Joo Beom
2017-01-01
We demonstrated a three-dimensional (3D) dental scanning apparatus based on structured illumination. A liquid lens was used for tuning focus and a piezomotor stage was used for the shift of structured light. A simple algorithm, which detects intensity modulation, was used to perform optical sectioning with structured illumination. We reconstructed a 3D point cloud, which represents the 3D coordinates of the digitized surface of a dental gypsum cast by piling up sectioned images. We performed 3D registration of an individual 3D point cloud, which includes alignment and merging the 3D point clouds to exhibit a 3D model of the dental cast. PMID:28714897
NASA Technical Reports Server (NTRS)
Lacis, A. A.; Wang, W. C.; Hansen, J. E.
1979-01-01
A radiative transfer method appropriate for use in simple climate models and three dimensional global climate models was developed. It is fully interactive with climate changes, such as in the temperature-pressure profile, cloud distribution, and atmospheric composition, and it is accurate throughout the troposphere and stratosphere. The vertical inhomogeneity of the atmosphere is accounted for by assuming a correlation of gaseous k-distributions of different pressures and temperatures. Line-by-line calculations are made to demonstrate that The method is remarkably accurate. The method is then used in a one-dimensional radiative-convective climate model to study the effect of cirrus clouds on surface temperature. It is shown that an increase in cirrus cloud cover can cause a significant warming of the troposphere and the Earth's surface, by the mechanism of an enhanced green-house effect. The dependence of this phenomenon on cloud optical thickness, altitude, and latitude is investigated.
Statistical properties of a cloud ensemble - A numerical study
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Simpson, Joanne; Soong, Su-Tzai
1987-01-01
The statistical properties of cloud ensembles under a specified large-scale environment, such as mass flux by cloud drafts and vertical velocity as well as the condensation and evaporation associated with these cloud drafts, are examined using a three-dimensional numerical cloud ensemble model described by Soong and Ogura (1980) and Tao and Soong (1986). The cloud drafts are classified as active and inactive, and separate contributions to cloud statistics in areas of different cloud activity are then evaluated. The model results compare well with results obtained from aircraft measurements of a well-organized ITCZ rainband that occurred on August 12, 1974, during the Global Atmospheric Research Program's Atlantic Tropical Experiment.
NASA Technical Reports Server (NTRS)
Wang, J.; Biasca, R.; Liewer, P. C.
1996-01-01
Although the existence of the critical ionization velocity (CIV) is known from laboratory experiments, no agreement has been reached as to whether CIV exists in the natural space environment. In this paper we move towards more realistic models of CIV and present the first fully three-dimensional, electromagnetic particle-in-cell Monte-Carlo collision (PIC-MCC) simulations of typical space-based CIV experiments. In our model, the released neutral gas is taken to be a spherical cloud traveling across a magnetized ambient plasma. Simulations are performed for neutral clouds with various sizes and densities. The effects of the cloud parameters on ionization yield, wave energy growth, electron heating, momentum coupling, and the three-dimensional structure of the newly ionized plasma are discussed. The simulations suggest that the quantitative characteristics of momentum transfers among the ion beam, neutral cloud, and plasma waves is the key indicator of whether CIV can occur in space. The missing factors in space-based CIV experiments may be the conditions necessary for a continuous enhancement of the beam ion momentum. For a typical shaped charge release experiment, favorable CIV conditions may exist only in a very narrow, intermediate spatial region some distance from the release point due to the effects of the cloud density and size. When CIV does occur, the newly ionized plasma from the cloud forms a very complex structure due to the combined forces from the geomagnetic field, the motion induced emf, and the polarization. Hence the detection of CIV also critically depends on the sensor location.
A cloud, precipitation and electrification modeling effort for COHMEX
NASA Technical Reports Server (NTRS)
Orville, Harold D.; Helsdon, John H.; Farley, Richard D.
1991-01-01
In mid-1987, the Modeling Group of the Institute of Atmospheric Sciences (IAS) began to simulate and analyze cloud runs that were made during the Cooperative Huntsville Meteorological Experiment (COHMEX) Project and later. The cloud model was run nearly every day during the summer 1986 COHMEX Project. The Modeling Group was then funded to analyze the results, make further modeling tests, and help explain the precipitation processes in the Southeastern United States. The main science objectives of COHMEX were: (1) to observe the prestorm environment and understand the physical mechanisms leading to the formation of small convective systems and processes controlling the production of precipitation; (2) to describe the structure of small convective systems producing precipitation including the large and small scale events in the environment surrounding the developing and mature convective system; (3) to understand the interrelationships between electrical activity within the convective system and the process of precipitation; and (4) to develop and test numerical models describing the boundary layer, tropospheric, and cloud scale thermodynamics and dynamics associated with small convective systems. The latter three of these objectives were addressed by the modeling activities of the IAS. A series of cloud modes were used to simulate the clouds that formed during the operational project. The primary models used to date on the project were a two dimensional bulk water model, a two dimensional electrical model, and to a lesser extent, a two dimensional detailed microphysical cloud model. All of the models are based on fully interacting microphysics, dynamics, thermodynamics, and electrical equations. Only the 20 July 1986 case was analyzed in detail, although all of the cases run during the summer were analyzed as to how well they did in predicting the characteristics of the convection for that day.
NASA Astrophysics Data System (ADS)
Junkermann, Wolfgang
2005-03-01
During the ESCOMPTE campaign 2001, the vertical distribution of ultraviolet actinic radiation was investigated with concurrent measurements of ozone, aerosol size distributions, and scattering coefficients using a microlight aircraft as airborne platform. Three-dimensional (3D) measurements were performed on a regional scale in the area between Avignon, Aix-en-Provence, and Marseille up to an altitude of 4000 m a.s.l. The results show a pronounced dependence of the vertical actinic flux distribution on aerosol load and stratification while horizontally no significant variability was observed. Furthermore, investigations under cloudy conditions and in the vicinity of cumulus clouds were performed allowing comparisons with one-dimensional and recently published three-dimensional model results. Cloud effects of scattered convective clouds were often found to be masked by aerosols and the aerosol content was generally the dominating factor controlling radiation transfer.
Mastin, Larry G.; Randall, Michael J.; Schwaiger, Hans F.; Denlinger, Roger P.
2013-01-01
Ash3d is a three-dimensional Eulerian atmospheric model for tephra transport, dispersal, and deposition, written by the authors to study and forecast hazards of volcanic ash clouds and tephra fall. In this report, we explain how to set up simulations using both a web interface and an ASCII input file, and how to view and interpret model output. We also summarize the architecture of the model and some of its properties.
NASA Astrophysics Data System (ADS)
Emde, Claudia; Barlakas, Vasileios; Cornet, Céline; Evans, Frank; Wang, Zhen; Labonotte, Laurent C.; Macke, Andreas; Mayer, Bernhard; Wendisch, Manfred
2018-04-01
Initially unpolarized solar radiation becomes polarized by scattering in the Earth's atmosphere. In particular molecular scattering (Rayleigh scattering) polarizes electromagnetic radiation, but also scattering of radiation at aerosols, cloud droplets (Mie scattering) and ice crystals polarizes. Each atmospheric constituent produces a characteristic polarization signal, thus spectro-polarimetric measurements are frequently employed for remote sensing of aerosol and cloud properties. Retrieval algorithms require efficient radiative transfer models. Usually, these apply the plane-parallel approximation (PPA), assuming that the atmosphere consists of horizontally homogeneous layers. This allows to solve the vector radiative transfer equation (VRTE) efficiently. For remote sensing applications, the radiance is considered constant over the instantaneous field-of-view of the instrument and each sensor element is treated independently in plane-parallel approximation, neglecting horizontal radiation transport between adjacent pixels (Independent Pixel Approximation, IPA). In order to estimate the errors due to the IPA approximation, three-dimensional (3D) vector radiative transfer models are required. So far, only a few such models exist. Therefore, the International Polarized Radiative Transfer (IPRT) working group of the International Radiation Commission (IRC) has initiated a model intercomparison project in order to provide benchmark results for polarized radiative transfer. The group has already performed an intercomparison for one-dimensional (1D) multi-layer test cases [phase A, 1]. This paper presents the continuation of the intercomparison project (phase B) for 2D and 3D test cases: a step cloud, a cubic cloud, and a more realistic scenario including a 3D cloud field generated by a Large Eddy Simulation (LES) model and typical background aerosols. The commonly established benchmark results for 3D polarized radiative transfer are available at the IPRT website (http://www.meteo.physik.uni-muenchen.de/ iprt).
Classification by Using Multispectral Point Cloud Data
NASA Astrophysics Data System (ADS)
Liao, C. T.; Huang, H. H.
2012-07-01
Remote sensing images are generally recorded in two-dimensional format containing multispectral information. Also, the semantic information is clearly visualized, which ground features can be better recognized and classified via supervised or unsupervised classification methods easily. Nevertheless, the shortcomings of multispectral images are highly depending on light conditions, and classification results lack of three-dimensional semantic information. On the other hand, LiDAR has become a main technology for acquiring high accuracy point cloud data. The advantages of LiDAR are high data acquisition rate, independent of light conditions and can directly produce three-dimensional coordinates. However, comparing with multispectral images, the disadvantage is multispectral information shortage, which remains a challenge in ground feature classification through massive point cloud data. Consequently, by combining the advantages of both LiDAR and multispectral images, point cloud data with three-dimensional coordinates and multispectral information can produce a integrate solution for point cloud classification. Therefore, this research acquires visible light and near infrared images, via close range photogrammetry, by matching images automatically through free online service for multispectral point cloud generation. Then, one can use three-dimensional affine coordinate transformation to compare the data increment. At last, the given threshold of height and color information is set as threshold in classification.
Towards a Three-Dimensional Near-Real Time Cloud Product for Aviation Safety and Weather Diagnoses
NASA Technical Reports Server (NTRS)
Minnis, Patrick; Nguyen, Louis; Palikonda, Rabindra; Spangeberg, Douglas; Nordeen, Michele L.; Yi, Yu-Hong; Ayers, J. Kirk
2004-01-01
Satellite data have long been used for determining the extent of cloud cover and for estimating the properties at the cloud tops. The derived properties can also be used to estimate aircraft icing potential to improve the safety of air traffic in the region. Currently, cloud properties and icing potential are derived in near-real time over the United States of America (USA) from the Geostationary Operational Environmental Satellite GOES) imagers at 75 W and 135 W. Traditionally, the results have been given in two dimensions because of the lack of knowledge about the vertical extent of clouds and the occurrence of overlapping clouds. Aircraft fly in a three-dimensional space and require vertical as well as horizontal information about clouds, their intensity, and their potential for icing. To improve the vertical component of the derived cloud and icing parameters, this paper explores various methods and datasets for filling in the three-dimensional space over the USA with cloud water.
NASA Technical Reports Server (NTRS)
Schlesinger, Robert E.
1988-01-01
The effects of stratospheric temperature lapse rate on cloud top height/temperature structure for strongly sheared, mature, isolated midlatitude thunderstorms are investigated by performing three different experiments with an anelastic, three-dimensional model: (1) with an assumed stratospheric lapse rate of 0 K/km (i.e., the isothermal case), (2) with 3 K/km, and (3) with -3 K/km (i.e., the case of inversion). Kinematic storm structure is very similar in all three cases, especially in the troposphere; a strong quasi-steady updraft evolves and splits into a dominant cyclonic overshooting right-mover and a weaker, anticyclonic left-mover that does not reach the tropopause.
NASA Technical Reports Server (NTRS)
Zak, J. A.
1989-01-01
A three-dimensional cloud model was used to characterize the dominant influence of the environment on the Space Shuttle exhaust cloud. The model was modified to accept the actual heat and moisture from rocket exhausts and deluge water as initial conditions. An upper-air sounding determined the ambient atmosphere in which the cloud would grow. The model was validated by comparing simulated clouds with observed clouds from four actual Shuttle launches. Results are discussed with operational weather forecasters in mind. The model successfully produced clouds with dimensions, rise, decay, liquid water contents, and vertical motion fields very similar to observed clouds whose dimensions were calculated from 16 mm film frames. Once validated, the model was used in a number of different atmospheric conditions ranging from very unstable to very stable. Wind shear strongly affected the appearance of both the ground cloud and vertical column cloud. The ambient low-level atmospheric moisture governed the amount of cloud water in model clouds. Some dry atmospheres produced little or no cloud water. An empirical forecast technique for Shuttle cloud rise is presented and differences between natural atmospheric convection and exhaust clouds are discussed.
NASA Astrophysics Data System (ADS)
Li, Na; Gong, Xingyu; Li, Hongan; Jia, Pengtao
2018-01-01
For faded relics, such as Terracotta Army, the 2D-3D registration between an optical camera and point cloud model is an important part for color texture reconstruction and further applications. This paper proposes a nonuniform multiview color texture mapping for the image sequence and the three-dimensional (3D) model of point cloud collected by Handyscan3D. We first introduce nonuniform multiview calibration, including the explanation of its algorithm principle and the analysis of its advantages. We then establish transformation equations based on sift feature points for the multiview image sequence. At the same time, the selection of nonuniform multiview sift feature points is introduced in detail. Finally, the solving process of the collinear equations based on multiview perspective projection is given with three steps and the flowchart. In the experiment, this method is applied to the color reconstruction of the kneeling figurine, Tangsancai lady, and general figurine. These results demonstrate that the proposed method provides an effective support for the color reconstruction of the faded cultural relics and be able to improve the accuracy of 2D-3D registration between the image sequence and the point cloud model.
NASA Astrophysics Data System (ADS)
Mechem, David B.; Giangrande, Scott E.
2018-03-01
Controls on precipitation onset and the transition from shallow cumulus to congestus are explored using a suite of 16 large-eddy simulations based on the 25 May 2011 event from the Midlatitude Continental Convective Clouds Experiment (MC3E). The thermodynamic variables in the model are relaxed at various timescales to observationally constrained temperature and moisture profiles in order to better reproduce the observed behavior of precipitation onset and total precipitation. Three of the simulations stand out as best matching the precipitation observations and also perform well for independent comparisons of cloud fraction, precipitation area fraction, and evolution of cloud top occurrence. All three simulations exhibit a destabilization over time, which leads to a transition to deeper clouds, but the evolution of traditional stability metrics by themselves is not able to explain differences in the simulations. Conditionally sampled cloud properties (in particular, mean cloud buoyancy), however, do elicit differences among the simulations. The inability of environmental profiles alone to discern subtle differences among the simulations and the usefulness of conditionally sampled model quantities argue for hybrid observational/modeling approaches. These combined approaches enable a more complete physical understanding of cloud systems by combining observational sampling of time-varying three-dimensional meteorological quantities and cloud properties, along with detailed representation of cloud microphysical and dynamical processes from numerical models.
Three-Dimensional Space to Assess Cloud Interoperability
2013-03-01
12 1. Portability and Mobility ...collection of network-enabled services that guarantees to provide a scalable, easy accessible, reliable, and personalized computing infrastructure , based on...are used in research to describe cloud models, such as SaaS (Software as a Service), PaaS (Platform as a service), IaaS ( Infrastructure as a Service
Far-Field Simulation of the Hawaiian Wake: Sea Surface Temperature and Orographic Effects(.
NASA Astrophysics Data System (ADS)
Hafner, Jan; Xie, Shang-Ping
2003-12-01
Recent satellite observations reveal far-reaching effects of the Hawaiian Islands on surface wind, cloud, ocean current, and sea surface temperature (SST) that extend leeward over an unusually long distance (>1000 km). A three-dimensional regional atmospheric model with full physics is used to investigate the cause of this long wake. While previous wind wake studies tend to focus on regions near the islands, the emphasis here is the far-field effects of SST and orography well away from the Hawaiian Islands. In response to an island-induced SST pattern, the model produces surface wind and cloud anomaly patterns that resemble those observed by satellites. In particular, anomalous surface winds are found to converge onto a zonal band of warmer water, with cloud liquid water content enhanced over it but reduced on the northern and southern sides. In the vertical, a two-cell meridional circulation develops of a baroclinic structure with the rising motion and thicker clouds over the warm water band. The model response in the wind and cloud fields supports the hypothesis that ocean atmosphere interaction is crucial for sustaining the island effects over a few thousand kilometers.Near Hawaii, mountains generate separate wind wakes in the model lee of individual islands as observed by satellites. Under orographic forcing, the model simulates the windward cloud line and the southwest-tilted cloud band leeward of the Big Island. In the far field, orographically induced wind perturbations are found to be in geostrophic balance with pressure anomalies, indicative of quasigeostrophic Rossby wave propagation. A shallow-water model is developed for disturbances trapped in the inversion-capped planetary boundary layer. The westward propagation of Rossby waves is found to increase the wake length significantly, consistent with the three-dimensional simulation.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Shie, C.-H.; Simpson, J.; Starr, D.; Johnson, D.; Sud, Y.
2003-01-01
Real clouds and clouds systems are inherently three dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D). A few 3D CRMs have been used to study the response of clouds to large-scale forcing. In these 3D simulations, the model domain was small, and the integration time was 6 hours. Only recently have 3D experiments been performed for multi-day periods for tropical cloud system with large horizontal domains at the National Center for Atmospheric Research. The results indicate that surface precipitation and latent heating profiles are very similar between the 2D and 3D simulations of these same cases. The reason for the strong similarity between the 2D and 3D CRM simulations is that the observed large-scale advective tendencies of potential temperature, water vapor mixing ratio, and horizontal momentum were used as the main forcing in both the 2D and 3D models. Interestingly, the 2D and 3D versions of the CRM used in CSU and U.K. Met Office showed significant differences in the rainfall and cloud statistics for three ARM cases. The major objectives of this project are to calculate and axamine: (1)the surface energy and water budgets, (2) the precipitation processes in the convective and stratiform regions, (3) the cloud upward and downward mass fluxes in the convective and stratiform regions; (4) cloud characteristics such as size, updraft intensity and lifetime, and (5) the entrainment and detrainment rates associated with clouds and cloud systems that developed in TOGA COARE, GATE, SCSMEX, ARM and KWAJEX. Of special note is that the analyzed (model generated) data sets are all produced by the same current version of the GCE model, i.e. consistent model physics and configurations. Trajectory analyse and inert tracer calculation will be conducted to identify the differences and similarities in the organization of convection between simulated 2D and 3D cloud systems.
Three-dimensional radiative transfer models of clumpy tori in Seyfert galaxies
NASA Astrophysics Data System (ADS)
Schartmann, M.; Meisenheimer, K.; Camenzind, M.; Wolf, S.; Tristram, K. R. W.; Henning, T.
2008-04-01
Context: Tori of Active Galactic Nuclei (AGN) are made up of a mixture of hot and cold gas, as well as dust. In order to protect the dust grains from destruction by the surrounding hot gas as well as by the energetic (UV/optical) radiation from the accretion disk, the dust is often assumed to be distributed in clouds. Aims: A new three-dimensional model of AGN dust tori is extensively investigated. The torus is modelled as a wedge-shaped disk within which dusty clouds are randomly distributed throughout the volume, by taking the dust density distribution of the corresponding continuous model into account. We especially concentrate on the differences between clumpy and continuous models in terms of the temperature distributions, the surface brightness distributions and interferometric visibilities, as well as spectral energy distributions. Methods: Radiative transfer calculations with the help of the three-dimensional Monte Carlo radiative transfer code MC3D are used in order to simulate spectral energy distributions as well as surface brightness distributions at various wavelengths. In a second step, interferometric visibilities for various inclination as well as position angles and baselines are calculated, which can be used to directly compare our models to interferometric observations with the MIDI instrument. Results: We find that the radial temperature distributions of clumpy models possess significantly enhanced scatter compared to the continuous cases. Even at large distances, clouds can be heated directly by the central accretion disk. The existence of the silicate 10 μm-feature in absorption or in emission depends sensitively on the distribution, the size and optical depth of clouds in the innermost part of the dust distribution. With this explanation, failure and success of previous modelling efforts of clumpy tori can be understood. The main reason for this outcome are shadowing effects of clouds within the central region. We underline this result with the help of several parameter variations. After adapting the parameters of our clumpy standard model to the circumstances of the Seyfert 2 Circinus galaxy, it can qualitatively explain recent mid-infrared interferometric observations performed with MIDI, as well as high resolution spectral data.
NASA Technical Reports Server (NTRS)
Liu, Hongyu; Crawford, James H.; Pierce, Robert B.; Norris, Peter; Platnick, Steven E.; Chen, Gao; Logan, Jennifer A.; Yantosca, Robert M.; Evans, Mat J.; Kittaka, Chieko;
2006-01-01
Clouds exert an important influence on tropospheric photochemistry through modification of solar radiation that determines photolysis frequencies (J-values). We assess the radiative effect of clouds on photolysis frequencies and key oxidants in the troposphere with a global three-dimensional (3-D) chemical transport model (GEOS-CHEM) driven by assimilated meteorological observations from the Goddard Earth Observing System data assimilation system (GEOS DAS) at the NASA Global Modeling and Assimilation Office (GMAO). We focus on the year of 2001 with the GEOS-3 meteorological observations. Photolysis frequencies are calculated using the Fast-J radiative transfer algorithm. The GEOS-3 global cloud optical depth and cloud fraction are evaluated and generally consistent with the satellite retrieval products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the International Satellite Cloud Climatology Project (ISCCP). Results using the linear assumption, which assumes linear scaling of cloud optical depth with cloud fraction in a grid box, show global mean OH concentrations generally increase by less than 6% because of the radiative effect of clouds. The OH distribution shows much larger changes (with maximum decrease of approx.20% near the surface), reflecting the opposite effects of enhanced (weakened) photochemistry above (below) clouds. The global mean photolysis frequencies for J[O1D] and J[NO2] in the troposphere change by less than 5% because of clouds; global mean O3 concentrations in the troposphere increase by less than 5%. This study shows tropical upper tropospheric O3 to be less sensitive to the radiative effect of clouds than previously reported (approx.5% versus approx.20-30%). These results emphasize that the dominant effect of clouds is to influence the vertical redistribution of the intensity of photochemical activity while global average effects remain modest, again contrasting with previous studies. Differing vertical distributions of clouds may explain part, but not the majority, of these discrepancies between models. Using an approximate random overlap or a maximum-random overlap scheme to take account of the effect of cloud overlap in the vertical reduces the impact of clouds on photochemistry but does not significantly change our results with respect to the modest global average effect.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Hou, A.; Atlas, R.; Starr, D.; Sud, Y.
2003-01-01
Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D) have been used to study the response of clouds to large-scale forcing. IN these 3D simulators, the model domain was small, and the integration time was 6 hours. Only recently have 3D experiments been performed for multi-day periods for tropical clouds systems with large horizontal domains at the National Center of Atmospheric Research (NCAR) and at NASA Goddard Space Center. At Goddard, a 3D cumulus Ensemble (GCE) model was used to simulate periods during TOGA COARE, GATE, SCSMEX, ARM, and KWAJEX using a 512 by 512 km domain (with 2-km resolution). The result indicate that surface precipitation and latent heating profiles are very similar between the 2D and 3D GCE model simulation. The major objective of this paper are: (1) to assess the performance of the super-parametrization technique, (2) calculate and examine the surface energy (especially radiation) and water budget, and (3) identify the differences and similarities in the organization and entrainment rates of convection between simulated 2D and 3D cloud systems.
NASA Astrophysics Data System (ADS)
Su, Yun-Ting; Hu, Shuowen; Bethel, James S.
2017-05-01
Light detection and ranging (LIDAR) has become a widely used tool in remote sensing for mapping, surveying, modeling, and a host of other applications. The motivation behind this work is the modeling of piping systems in industrial sites, where cylinders are the most common primitive or shape. We focus on cylinder parameter estimation in three-dimensional point clouds, proposing a mathematical formulation based on angular distance to determine the cylinder orientation. We demonstrate the accuracy and robustness of the technique on synthetically generated cylinder point clouds (where the true axis orientation is known) as well as on real LIDAR data of piping systems. The proposed algorithm is compared with a discrete space Hough transform-based approach as well as a continuous space inlier approach, which iteratively discards outlier points to refine the cylinder parameter estimates. Results show that the proposed method is more computationally efficient than the Hough transform approach and is more accurate than both the Hough transform approach and the inlier method.
Retrieval of cloud cover parameters from multispectral satellite images
NASA Technical Reports Server (NTRS)
Arking, A.; Childs, J. D.
1985-01-01
A technique is described for extracting cloud cover parameters from multispectral satellite radiometric measurements. Utilizing three channels from the AVHRR (Advanced Very High Resolution Radiometer) on NOAA polar orbiting satellites, it is shown that one can retrieve four parameters for each pixel: cloud fraction within the FOV, optical thickness, cloud-top temperature and a microphysical model parameter. The last parameter is an index representing the properties of the cloud particle and is determined primarily by the radiance at 3.7 microns. The other three parameters are extracted from the visible and 11 micron infrared radiances, utilizing the information contained in the two-dimensional scatter plot of the measured radiances. The solution is essentially one in which the distributions of optical thickness and cloud-top temperature are maximally clustered for each region, with cloud fraction for each pixel adjusted to achieve maximal clustering.
NASA Technical Reports Server (NTRS)
Tao, W-K.
2003-01-01
Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D). A few 3D CRMs have been used to study the response of clouds to large-scale forcing. In these 3D simulations, the model domain was small, and the integration time was 6 hours. Only recently have 3D experiments been performed for multi-day periods for tropical cloud systems with large horizontal domains at the National Center for Atmospheric Research (NACAR) and at NASA Goddard Space Flight Center . At Goddard, a 3D Goddard Cumulus Ensemble (GCE) model was used to simulate periods during TOGA COARE, SCSMEX and KWAJEX using 512 by 512 km domain (with 2 km resolution). The results indicate that surface precipitation and latent heating profiles are very similar between the 2D and 3D GCE model simulations. The reason for the strong similarity between the 2D and 3D CRM simulations is that the same observed large-scale advective tendencies of potential temperature, water vapor mixing ratio, and horizontal momentum were used as the main focusing in both the 2D and 3D models. Interestingly, the 2D and 3D versions of the CRM used at CSU showed significant differences in the rainfall and cloud statistics for three ARM cases. The major objectives of this paper are: (1) to assess the performance of the super-parameterization technique, (2) calculate and examine the surface energy (especially radiation) and water budgets, and (3) identify the differences and similarities in the organization and entrainment rates of convection between simulated 2D and 3D cloud systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, T.J.; Ellis, J.S.; Schalk, W.W.
1992-06-25
During the recent (12--22 June 1991) Mount Pinatubo volcano eruptions, the US Air Force Global Weather Central (AFGWC) requested assistance of the US Department of Energy`s Atmospheric Release Advisory Capability (ARAC) in creating volcanic ash cloud aviation advisories for the region of the Philippine Islands. Through application of its three-dimensional material transport and diffusion models using AFGWC meteorological analysis and forecast wind fields ARAC developed extensive analysis and 12-hourly forecast ash cloud position advisories extending to 48 hours for a period of five days. The advisories consisted of ``relative`` ash cloud concentrations in ten layers (surface-5,000 feet, 5,000--10,000 feet andmore » every 10,000 feet to 90,000 feet). The ash was represented as a log-normal size distribution of 10--200 {mu}m diameter solid particles. Size-dependent ``ashfall`` was simulated over time as the eruption clouds dispersed. Except for an internal experimental attempt to model one of the Mount Redoubt, Alaska, eruptions (12/89), ARAC had no prior experience in modeling volcanic eruption ash hazards. For the cataclysmic eruption of 15--16 June, the complex three-dimensional atmospheric structure of the region produced dramatically divergent ash cloud patterns. The large eruptions (> 7--10 km) produced ash plume clouds with strong westward transport over the South China Sea, Southeast Asia, India and beyond. The low-level eruptions (< 7 km) and quasi-steady-state venting produced a plume which generally dispersed to the north and east throughout the support period. Modeling the sequence of eruptions presented a unique challenge. Although the initial approach proved viable, further refinement is necessary and possible. A distinct need exists to quantify eruptions consistently such that ``relative`` ash concentrations relate to specific aviation hazard categories.« less
The terminal area simulation system. Volume 1: Theoretical formulation
NASA Technical Reports Server (NTRS)
Proctor, F. H.
1987-01-01
A three-dimensional numerical cloud model was developed for the general purpose of studying convective phenomena. The model utilizes a time splitting integration procedure in the numerical solution of the compressible nonhydrostatic primitive equations. Turbulence closure is achieved by a conventional first-order diagnostic approximation. Open lateral boundaries are incorporated which minimize wave reflection and which do not induce domain-wide mass trends. Microphysical processes are governed by prognostic equations for potential temperature water vapor, cloud droplets, ice crystals, rain, snow, and hail. Microphysical interactions are computed by numerous Orville-type parameterizations. A diagnostic surface boundary layer is parameterized assuming Monin-Obukhov similarity theory. The governing equation set is approximated on a staggered three-dimensional grid with quadratic-conservative central space differencing. Time differencing is approximated by the second-order Adams-Bashforth method. The vertical grid spacing may be either linear or stretched. The model domain may translate along with a convective cell, even at variable speeds.
NASA Astrophysics Data System (ADS)
Wang, Yongzhi; Ma, Yuqing; Zhu, A.-xing; Zhao, Hui; Liao, Lixia
2018-05-01
Facade features represent segmentations of building surfaces and can serve as a building framework. Extracting facade features from three-dimensional (3D) point cloud data (3D PCD) is an efficient method for 3D building modeling. By combining the advantages of 3D PCD and two-dimensional optical images, this study describes the creation of a highly accurate building facade feature extraction method from 3D PCD with a focus on structural information. The new extraction method involves three major steps: image feature extraction, exploration of the mapping method between the image features and 3D PCD, and optimization of the initial 3D PCD facade features considering structural information. Results show that the new method can extract the 3D PCD facade features of buildings more accurately and continuously. The new method is validated using a case study. In addition, the effectiveness of the new method is demonstrated by comparing it with the range image-extraction method and the optical image-extraction method in the absence of structural information. The 3D PCD facade features extracted by the new method can be applied in many fields, such as 3D building modeling and building information modeling.
Incorporation of a Cumulus Fraction Scheme in the GRAPES_Meso and Evaluation of Its Performance
NASA Astrophysics Data System (ADS)
Zheng, X.
2016-12-01
Accurate simulation of cloud cover fraction is a key and difficult issue in numerical modeling studies. Preliminary evaluations have indicated that cloud fraction is generally underestimated in GRAPES_Meso simulations, while the cloud fraction scheme (CFS) of ECMWF can provide more realistic results. Therefore, the ECMWF cumulus fraction scheme is introduced into GRAPES_Meso to replace the original CFS, and the model performance with the new CFS is evaluated based on simulated three-dimensional cloud fractions and surface temperature. Results indicate that the simulated cloud fractions increase and become more accurate with the new CFS; the simulation for vertical cloud structure has improved too; errors in surface temperature simulation have decreased. The above analysis and results suggest that the new CFS has a positive impact on cloud fraction and surface temperature simulation.
SHOCKFIND - an algorithm to identify magnetohydrodynamic shock waves in turbulent clouds
NASA Astrophysics Data System (ADS)
Lehmann, Andrew; Federrath, Christoph; Wardle, Mark
2016-11-01
The formation of stars occurs in the dense molecular cloud phase of the interstellar medium. Observations and numerical simulations of molecular clouds have shown that supersonic magnetized turbulence plays a key role for the formation of stars. Simulations have also shown that a large fraction of the turbulent energy dissipates in shock waves. The three families of MHD shocks - fast, intermediate and slow - distinctly compress and heat up the molecular gas, and so provide an important probe of the physical conditions within a turbulent cloud. Here, we introduce the publicly available algorithm, SHOCKFIND, to extract and characterize the mixture of shock families in MHD turbulence. The algorithm is applied to a three-dimensional simulation of a magnetized turbulent molecular cloud, and we find that both fast and slow MHD shocks are present in the simulation. We give the first prediction of the mixture of turbulence-driven MHD shock families in this molecular cloud, and present their distinct distributions of sonic and Alfvénic Mach numbers. Using subgrid one-dimensional models of MHD shocks we estimate that ˜0.03 per cent of the volume of a typical molecular cloud in the Milky Way will be shock heated above 50 K, at any time during the lifetime of the cloud. We discuss the impact of this shock heating on the dynamical evolution of molecular clouds.
Digital elevation modeling via curvature interpolation for lidar data
USDA-ARS?s Scientific Manuscript database
Digital elevation model (DEM) is a three-dimensional (3D) representation of a terrain's surface - for a planet (including Earth), moon, or asteroid - created from point cloud data which measure terrain elevation. Its modeling requires surface reconstruction for the scattered data, which is an ill-p...
NASA Astrophysics Data System (ADS)
Rizki, Permata Nur Miftahur; Lee, Heezin; Lee, Minsu; Oh, Sangyoon
2017-01-01
With the rapid advance of remote sensing technology, the amount of three-dimensional point-cloud data has increased extraordinarily, requiring faster processing in the construction of digital elevation models. There have been several attempts to accelerate the computation using parallel methods; however, little attention has been given to investigating different approaches for selecting the most suited parallel programming model for a given computing environment. We present our findings and insights identified by implementing three popular high-performance parallel approaches (message passing interface, MapReduce, and GPGPU) on time demanding but accurate kriging interpolation. The performances of the approaches are compared by varying the size of the grid and input data. In our empirical experiment, we demonstrate the significant acceleration by all three approaches compared to a C-implemented sequential-processing method. In addition, we also discuss the pros and cons of each method in terms of usability, complexity infrastructure, and platform limitation to give readers a better understanding of utilizing those parallel approaches for gridding purposes.
Mechem, David B.; Giangrande, Scott E.
2018-03-01
Here, the controls on precipitation onset and the transition from shallow cumulus to congestus are explored using a suite of 16 large–eddy simulations based on the 25 May 2011 event from the Midlatitude Continental Convective Clouds Experiment (MC3E). The thermodynamic variables in the model are relaxed at various timescales to observationally constrained temperature and moisture profiles in order to better reproduce the observed behavior of precipitation onset and total precipitation. Three of the simulations stand out as best matching the precipitation observations and also perform well for independent comparisons of cloud fraction, precipitation area fraction, and evolution of cloud topmore » occurrence. All three simulations exhibit a destabilization over time, which leads to a transition to deeper clouds, but the evolution of traditional stability metrics by themselves is not able to explain differences in the simulations. Conditionally sampled cloud properties (in particular, mean cloud buoyancy), however, do elicit differences among the simulations. The inability of environmental profiles alone to discern subtle differences among the simulations and the usefulness of conditionally sampled model quantities argue for hybrid observational/modeling approaches. These combined approaches enable a more complete physical understanding of cloud systems by combining observational sampling of time–varying three–dimensional meteorological quantities and cloud properties, along with detailed representation of cloud microphysical and dynamical processes from numerical models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mechem, David B.; Giangrande, Scott E.
Here, the controls on precipitation onset and the transition from shallow cumulus to congestus are explored using a suite of 16 large–eddy simulations based on the 25 May 2011 event from the Midlatitude Continental Convective Clouds Experiment (MC3E). The thermodynamic variables in the model are relaxed at various timescales to observationally constrained temperature and moisture profiles in order to better reproduce the observed behavior of precipitation onset and total precipitation. Three of the simulations stand out as best matching the precipitation observations and also perform well for independent comparisons of cloud fraction, precipitation area fraction, and evolution of cloud topmore » occurrence. All three simulations exhibit a destabilization over time, which leads to a transition to deeper clouds, but the evolution of traditional stability metrics by themselves is not able to explain differences in the simulations. Conditionally sampled cloud properties (in particular, mean cloud buoyancy), however, do elicit differences among the simulations. The inability of environmental profiles alone to discern subtle differences among the simulations and the usefulness of conditionally sampled model quantities argue for hybrid observational/modeling approaches. These combined approaches enable a more complete physical understanding of cloud systems by combining observational sampling of time–varying three–dimensional meteorological quantities and cloud properties, along with detailed representation of cloud microphysical and dynamical processes from numerical models.« less
A satellite observation test bed for cloud parameterization development
NASA Astrophysics Data System (ADS)
Lebsock, M. D.; Suselj, K.
2015-12-01
We present an observational test-bed of cloud and precipitation properties derived from CloudSat, CALIPSO, and the the A-Train. The focus of the test-bed is on marine boundary layer clouds including stratocumulus and cumulus and the transition between these cloud regimes. Test-bed properties include the cloud cover and three dimensional cloud fraction along with the cloud water path and precipitation water content, and associated radiative fluxes. We also include the subgrid scale distribution of cloud and precipitation, and radiaitive quantities, which must be diagnosed by a model parameterization. The test-bed further includes meterological variables from the Modern Era Retrospective-analysis for Research and Applications (MERRA). MERRA variables provide the initialization and forcing datasets to run a parameterization in Single Column Model (SCM) mode. We show comparisons of an Eddy-Diffusivity/Mass-FLux (EDMF) parameterization coupled to micorphsycis and macrophysics packages run in SCM mode with observed clouds. Comparsions are performed regionally in areas of climatological subsidence as well stratified by dynamical and thermodynamical variables. Comparisons demonstrate the ability of the EDMF model to capture the observed transitions between subtropical stratocumulus and cumulus cloud regimes.
NASA Technical Reports Server (NTRS)
Varnai, Tamas; Marshak, Alexander; Lau, William K. M. (Technical Monitor)
2001-01-01
This paper examines three-dimensional (3D) radiative effects, which arise from horizontal radiative interactions between areas that have different cloud properties. Earlier studies have argued that these effects can cause significant uncertainties in current satellite retrievals of cloud properties, because the retrievals rely on one-dimensional (1D) theory and do not consider the effects of horizontal changes in cloud properties. This study addresses two questions: which retrieved cloud properties are influenced by 3D radiative effects, and where 3D effects tend to occur? The influence of 3D effects is detected from the wayside illumination and shadowing make clouds appear asymmetric: Areas appear brighter if the cloud top surface is tilted toward, rather than away from, the Sun. The analysis of 30 images by the Moderate Resolution Imaging Spectroradiometer (MODIS) reveals that retrievals of cloud optical thickness and cloud water content are most influenced by 3D effects, whereas retrievals of cloud particle size are much less affected. The results also indicate that while 3D effects are strongest at cloud edges, cloud top variability in cloud interiors, even in overcast regions, also produces considerable 3D effects. Finally, significant 3D effects are found in a wide variety of situations, ranging from thin clouds to thick ones and from low clouds to high ones.
Superposition and alignment of labeled point clouds.
Fober, Thomas; Glinca, Serghei; Klebe, Gerhard; Hüllermeier, Eyke
2011-01-01
Geometric objects are often represented approximately in terms of a finite set of points in three-dimensional euclidean space. In this paper, we extend this representation to what we call labeled point clouds. A labeled point cloud is a finite set of points, where each point is not only associated with a position in three-dimensional space, but also with a discrete class label that represents a specific property. This type of model is especially suitable for modeling biomolecules such as proteins and protein binding sites, where a label may represent an atom type or a physico-chemical property. Proceeding from this representation, we address the question of how to compare two labeled points clouds in terms of their similarity. Using fuzzy modeling techniques, we develop a suitable similarity measure as well as an efficient evolutionary algorithm to compute it. Moreover, we consider the problem of establishing an alignment of the structures in the sense of a one-to-one correspondence between their basic constituents. From a biological point of view, alignments of this kind are of great interest, since mutually corresponding molecular constituents offer important information about evolution and heredity, and can also serve as a means to explain a degree of similarity. In this paper, we therefore develop a method for computing pairwise or multiple alignments of labeled point clouds. To this end, we proceed from an optimal superposition of the corresponding point clouds and construct an alignment which is as much as possible in agreement with the neighborhood structure established by this superposition. We apply our methods to the structural analysis of protein binding sites.
NASA Technical Reports Server (NTRS)
Tao, W.-K.
2006-01-01
Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D). A few 3D CRMs have been used to study the response of clouds to large-scale forcing. In these 3D simulations, the model domain was small, and the integration time was 6 hours. Only recently have 3D experiments been performed for multi-day periods for tropical cloud systems with large horizontal domains at the National Center for Atmospheric Research (NCAR), NOAA GFDL, the U.K. Met. Office, Colorado State University and NASA Goddard Space Flight Center. An improved 3D Goddard Cumulus Ensemble (GCE) model was recently used to simulate periods during TOGA COARE (December 19-27, 1992), GATE (september 1-7, 1974), SCSMEX (May 18-26, June 2-11, 1998) and KWAJEX (August 7-13, August 18-21, and August 29-September 12, 1999) using a 512 by 512 km domain and 41 vertical layers. The major objectives of this paper are: (1) to identify the differences and similarities in the simulated precipitation processes and their associated surface and water energy budgets in TOGA COARE, GATE, KWAJEX, and SCSMEX, and (2) to asses the impact of microphysics, radiation budget and surface fluxes on the organization of convection in tropics.
The application of time series models to cloud field morphology analysis
NASA Technical Reports Server (NTRS)
Chin, Roland T.; Jau, Jack Y. C.; Weinman, James A.
1987-01-01
A modeling method for the quantitative description of remotely sensed cloud field images is presented. A two-dimensional texture modeling scheme based on one-dimensional time series procedures is adopted for this purpose. The time series procedure used is the seasonal autoregressive, moving average (ARMA) process in Box and Jenkins. Cloud field properties such as directionality, clustering and cloud coverage can be retrieved by this method. It has been demonstrated that a cloud field image can be quantitatively defined by a small set of parameters and synthesized surrogates can be reconstructed from these model parameters. This method enables cloud climatology to be studied quantitatively.
NASA Astrophysics Data System (ADS)
Kodama, C.; Noda, A. T.; Satoh, M.
2012-06-01
This study presents an assessment of three-dimensional structures of hydrometeors simulated by the NICAM, global nonhydrostatic atmospheric model without cumulus parameterization, using multiple satellite data sets. A satellite simulator package (COSP: the CFMIP Observation Simulator Package) is employed to consistently compare model output with ISCCP, CALIPSO, and CloudSat satellite observations. Special focus is placed on high thin clouds, which are not observable in the conventional ISCCP data set, but can be detected by the CALIPSO observations. For the control run, the NICAM simulation qualitatively captures the geographical distributions of the high, middle, and low clouds, even though the horizontal mesh spacing is as coarse as 14 km. The simulated low cloud is very close to that of the CALIPSO low cloud. Both the CloudSat observations and NICAM simulation show a boomerang-type pattern in the radar reflectivity-height histogram, suggesting that NICAM realistically simulates the deep cloud development process. A striking difference was found in the comparisons of high thin cirrus, showing overestimated cloud and higher cloud top in the model simulation. Several model sensitivity experiments are conducted with different cloud microphysical parameters to reduce the model-observation discrepancies in high thin cirrus. In addition, relationships among clouds, Hadley circulation, outgoing longwave radiation and precipitation are discussed through the sensitivity experiments.
[Three-dimensional computer aided design for individualized post-and-core restoration].
Gu, Xiao-yu; Wang, Ya-ping; Wang, Yong; Lü, Pei-jun
2009-10-01
To develop a method of three-dimensional computer aided design (CAD) of post-and-core restoration. Two plaster casts with extracted natural teeth were used in this study. The extracted teeth were prepared and scanned using tomography method to obtain three-dimensional digitalized models. According to the basic rules of post-and-core design, posts, cores and cavity surfaces of the teeth were designed using the tools for processing point clouds, curves and surfaces on the forward engineering software of Tanglong prosthodontic system. Then three-dimensional figures of the final restorations were corrected according to the configurations of anterior teeth, premolars and molars respectively. Computer aided design of 14 post-and-core restorations were finished, and good fitness between the restoration and the three-dimensional digital models were obtained. Appropriate retention forms and enough spaces for the full crown restorations can be obtained through this method. The CAD of three-dimensional figures of the post-and-core restorations can fulfill clinical requirements. Therefore they can be used in computer-aided manufacture (CAM) of post-and-core restorations.
NASA Technical Reports Server (NTRS)
Shie, Chung-Lin; Tao, Wei-Kuo; Johnson, Dan; Simpson, Joanne; Li, Xiaofan; Sui, Chung-Hsiung; Einaudi, Franco (Technical Monitor)
2001-01-01
Coupling a cloud resolving model (CRM) with an ocean mixed layer (OML) model can provide a powerful tool for better understanding impacts of atmospheric precipitation on sea surface temperature (SST) and salinity. The objective of this study is twofold. First, by using the three dimensional (3-D) CRM-simulated (the Goddard Cumulus Ensemble model, GCE) diabatic source terms, radiation (longwave and shortwave), surface fluxes (sensible and latent heat, and wind stress), and precipitation as input for the OML model, the respective impact of individual component on upper ocean heat and salt budgets are investigated. Secondly, a two-way air-sea interaction between tropical atmospheric climates (involving atmospheric radiative-convective processes) and upper ocean boundary layer is also examined using a coupled two dimensional (2-D) GCE and OML model. Results presented here, however, only involve the first aspect. Complete results will be presented at the conference.
Parameterization of bulk condensation in numerical cloud models
NASA Technical Reports Server (NTRS)
Kogan, Yefim L.; Martin, William J.
1994-01-01
The accuracy of the moist saturation adjustment scheme has been evaluated using a three-dimensional explicit microphysical cloud model. It was found that the error in saturation adjustment depends strongly on the Cloud Condensation Nucleii (CCN) concentration in the ambient atmosphere. The scheme provides rather accurate results in the case where a sufficiently large number of CCN (on the order of several hundred per cubic centimeter) is available. However, under conditions typical of marine stratocumulus cloud layers with low CCN concentration, the error in the amounts of condensed water vapor and released latent heat may be as large as 40%-50%. A revision of the saturation adjustment scheme is devised that employs the CCN concentration, dynamical supersaturation, and cloud water content as additional variables in the calculation of the condensation rate. The revised condensation model reduced the error in maximum updraft and cloud water content in the climatically significant case of marine stratocumulus cloud layers by an order of magnitude.
SPARSE—A subgrid particle averaged Reynolds stress equivalent model: testing with a priori closure
Davis, Sean L.; Sen, Oishik; Udaykumar, H. S.
2017-01-01
A Lagrangian particle cloud model is proposed that accounts for the effects of Reynolds-averaged particle and turbulent stresses and the averaged carrier-phase velocity of the subparticle cloud scale on the averaged motion and velocity of the cloud. The SPARSE (subgrid particle averaged Reynolds stress equivalent) model is based on a combination of a truncated Taylor expansion of a drag correction function and Reynolds averaging. It reduces the required number of computational parcels to trace a cloud of particles in Eulerian–Lagrangian methods for the simulation of particle-laden flow. Closure is performed in an a priori manner using a reference simulation where all particles in the cloud are traced individually with a point-particle model. Comparison of a first-order model and SPARSE with the reference simulation in one dimension shows that both the stress and the averaging of the carrier-phase velocity on the cloud subscale affect the averaged motion of the particle. A three-dimensional isotropic turbulence computation shows that only one computational parcel is sufficient to accurately trace a cloud of tens of thousands of particles. PMID:28413341
SPARSE-A subgrid particle averaged Reynolds stress equivalent model: testing with a priori closure.
Davis, Sean L; Jacobs, Gustaaf B; Sen, Oishik; Udaykumar, H S
2017-03-01
A Lagrangian particle cloud model is proposed that accounts for the effects of Reynolds-averaged particle and turbulent stresses and the averaged carrier-phase velocity of the subparticle cloud scale on the averaged motion and velocity of the cloud. The SPARSE (subgrid particle averaged Reynolds stress equivalent) model is based on a combination of a truncated Taylor expansion of a drag correction function and Reynolds averaging. It reduces the required number of computational parcels to trace a cloud of particles in Eulerian-Lagrangian methods for the simulation of particle-laden flow. Closure is performed in an a priori manner using a reference simulation where all particles in the cloud are traced individually with a point-particle model. Comparison of a first-order model and SPARSE with the reference simulation in one dimension shows that both the stress and the averaging of the carrier-phase velocity on the cloud subscale affect the averaged motion of the particle. A three-dimensional isotropic turbulence computation shows that only one computational parcel is sufficient to accurately trace a cloud of tens of thousands of particles.
Three-dimensional modelling of trace species in the Arctic lower stratosphere
NASA Technical Reports Server (NTRS)
Chipperfield, Martyn; Cariolle, Daniel; Simon, Pascal; Ramaroson, Richard
1994-01-01
A three-dimensional radiative-dynamical-chemical model has been developed and used to study some aspects of modeling the polar lower stratosphere. The model includes a comprehensive gas-phase chemistry scheme as well as a treatment of heterogeneous reactions occurring on the surface of polar stratospheric clouds. Tracer transport is treated by an accurate, nondispersive scheme with little diffusion suited to the representation of strong gradients. Results from a model simulation of early February 1990 are presented and used to illustrate the importance of the model transport scheme. The model simulation is also used to examine the potential for Arctic ozone destruction and the relative contributions of the chemical cycles responsible.
Microphysics in the Multi-Scale Modeling Systems with Unified Physics
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.
2011-01-01
In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the microphysics developments of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the heavy precipitation processes will be presented.
One-Dimensional Cloud Microphysical Models for Central Europe and Their Optical Properties.
1980-10-01
reverse ft N# neeM id fdlf by block number) One-dimensional microphysical models for six different cloud types are proposed. These models were...and table 2 was extracted from Koenig and Schutz"’ to show the gross features of these clouds. 2A. Kh. Khrgian, Editor, 1963, Cloud Physics, Israel...Acid, HC, Petroleum Oil , and Sulfuric Acid Military Smokes," ASL-TR-0052, April 1980. 124. Hinds, B. D., and J. B. Gillespie, "Optical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boss, Alan P.; Keiser, Sandra A., E-mail: boss@dtm.ciw.edu
2014-06-10
A key test of the supernova triggering and injection hypothesis for the origin of the solar system's short-lived radioisotopes is to reproduce the inferred initial abundances of these isotopes. We present here the most detailed models to date of the shock wave triggering and injection process, where shock waves with varied properties strike fully three-dimensional, rotating, dense cloud cores. The models are calculated with the FLASH adaptive mesh hydrodynamics code. Three different outcomes can result: triggered collapse leading to fragmentation into a multiple protostar system; triggered collapse leading to a single protostar embedded in a protostellar disk; or failure tomore » undergo dynamic collapse. Shock wave material is injected into the collapsing clouds through Rayleigh-Taylor fingers, resulting in initially inhomogeneous distributions in the protostars and protostellar disks. Cloud rotation about an axis aligned with the shock propagation direction does not increase the injection efficiency appreciably, as the shock parameters were chosen to be optimal for injection even in the absence of rotation. For a shock wave from a core-collapse supernova, the dilution factors for supernova material are in the range of ∼10{sup –4} to ∼3 × 10{sup –4}, in agreement with recent laboratory estimates of the required amount of dilution for {sup 60}Fe and {sup 26}Al. We conclude that a type II supernova remains as a promising candidate for synthesizing the solar system's short-lived radioisotopes shortly before their injection into the presolar cloud core by the supernova's remnant shock wave.« less
NASA Astrophysics Data System (ADS)
Martin, William G. K.; Hasekamp, Otto P.
2018-01-01
In previous work, we derived the adjoint method as a computationally efficient path to three-dimensional (3D) retrievals of clouds and aerosols. In this paper we will demonstrate the use of adjoint methods for retrieving two-dimensional (2D) fields of cloud extinction. The demonstration uses a new 2D radiative transfer solver (FSDOM). This radiation code was augmented with adjoint methods to allow efficient derivative calculations needed to retrieve cloud and surface properties from multi-angle reflectance measurements. The code was then used in three synthetic retrieval studies. Our retrieval algorithm adjusts the cloud extinction field and surface albedo to minimize the measurement misfit function with a gradient-based, quasi-Newton approach. At each step we compute the value of the misfit function and its gradient with two calls to the solver FSDOM. First we solve the forward radiative transfer equation to compute the residual misfit with measurements, and second we solve the adjoint radiative transfer equation to compute the gradient of the misfit function with respect to all unknowns. The synthetic retrieval studies verify that adjoint methods are scalable to retrieval problems with many measurements and unknowns. We can retrieve the vertically-integrated optical depth of moderately thick clouds as a function of the horizontal coordinate. It is also possible to retrieve the vertical profile of clouds that are separated by clear regions. The vertical profile retrievals improve for smaller cloud fractions. This leads to the conclusion that cloud edges actually increase the amount of information that is available for retrieving the vertical profile of clouds. However, to exploit this information one must retrieve the horizontally heterogeneous cloud properties with a 2D (or 3D) model. This prototype shows that adjoint methods can efficiently compute the gradient of the misfit function. This work paves the way for the application of similar methods to 3D remote sensing problems.
Study on the high-frequency laser measurement of slot surface difference
NASA Astrophysics Data System (ADS)
Bing, Jia; Lv, Qiongying; Cao, Guohua
2017-10-01
In view of the measurement of the slot surface difference in the large-scale mechanical assembly process, Based on high frequency laser scanning technology and laser detection imaging principle, This paragraph designs a double galvanometer pulse laser scanning system. Laser probe scanning system architecture consists of three parts: laser ranging part, mechanical scanning part, data acquisition and processing part. The part of laser range uses high-frequency laser range finder to measure the distance information of the target shape and get a lot of point cloud data. Mechanical scanning part includes high-speed rotary table, high-speed transit and related structure design, in order to realize the whole system should be carried out in accordance with the design of scanning path on the target three-dimensional laser scanning. Data processing part mainly by FPGA hardware with LAbVIEW software to design a core, to process the point cloud data collected by the laser range finder at the high-speed and fitting calculation of point cloud data, to establish a three-dimensional model of the target, so laser scanning imaging is realized.
FINAL REPORT (DE-FG02-97ER62338): Single-column modeling, GCM parameterizations, and ARM data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richard C. J. Somerville
2009-02-27
Our overall goal is the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data at all three ARM sites, and the implementation and testing of these parameterizations in global models. To test recently developed prognostic parameterizations based on detailed cloud microphysics, we have compared SCM (single-column model) output with ARM observations at the SGP, NSA and TWP sites. We focus on the predicted cloud amounts and on a suite of radiative quantities strongly dependent on clouds, such as downwelling surface shortwave radiation. Our results demonstrate the superiority of parameterizations based on comprehensive treatments ofmore » cloud microphysics and cloud-radiative interactions. At the SGP and NSA sites, the SCM results simulate the ARM measurements well and are demonstrably more realistic than typical parameterizations found in conventional operational forecasting models. At the TWP site, the model performance depends strongly on details of the scheme, and the results of our diagnostic tests suggest ways to develop improved parameterizations better suited to simulating cloud-radiation interactions in the tropics generally. These advances have made it possible to take the next step and build on this progress, by incorporating our parameterization schemes in state-of-the-art three-dimensional atmospheric models, and diagnosing and evaluating the results using independent data. Because the improved cloud-radiation results have been obtained largely via implementing detailed and physically comprehensive cloud microphysics, we anticipate that improved predictions of hydrologic cycle components, and hence of precipitation, may also be achievable.« less
Research of MPPT for photovoltaic generation based on two-dimensional cloud model
NASA Astrophysics Data System (ADS)
Liu, Shuping; Fan, Wei
2013-03-01
The cloud model is a mathematical representation to fuzziness and randomness in linguistic concepts. It represents a qualitative concept with expected value Ex, entropy En and hyper entropy He, and integrates the fuzziness and randomness of a linguistic concept in a unified way. This model is a new method for transformation between qualitative and quantitative in the knowledge. This paper is introduced MPPT (maximum power point tracking, MPPT) controller based two- dimensional cloud model through analysis of auto-optimization MPPT control of photovoltaic power system and combining theory of cloud model. Simulation result shows that the cloud controller is simple and easy, directly perceived through the senses, and has strong robustness, better control performance.
Generation of three-dimensional delaunay meshes from weakly structured and inconsistent data
NASA Astrophysics Data System (ADS)
Garanzha, V. A.; Kudryavtseva, L. N.
2012-03-01
A method is proposed for the generation of three-dimensional tetrahedral meshes from incomplete, weakly structured, and inconsistent data describing a geometric model. The method is based on the construction of a piecewise smooth scalar function defining the body so that its boundary is the zero isosurface of the function. Such implicit description of three-dimensional domains can be defined analytically or can be constructed from a cloud of points, a set of cross sections, or a "soup" of individual vertices, edges, and faces. By applying Boolean operations over domains, simple primitives can be combined with reconstruction results to produce complex geometric models without resorting to specialized software. Sharp edges and conical vertices on the domain boundary are reproduced automatically without using special algorithms. Refs. 42. Figs. 25.
Global Precipitation Measurement (GPM) Ground Validation (GV) Science Implementation Plan
NASA Technical Reports Server (NTRS)
Petersen, Walter A.; Hou, Arthur Y.
2008-01-01
For pre-launch algorithm development and post-launch product evaluation Global Precipitation Measurement (GPM) Ground Validation (GV) goes beyond direct comparisons of surface rain rates between ground and satellite measurements to provide the means for improving retrieval algorithms and model applications.Three approaches to GPM GV include direct statistical validation (at the surface), precipitation physics validation (in a vertical columns), and integrated science validation (4-dimensional). These three approaches support five themes: core satellite error characterization; constellation satellites validation; development of physical models of snow, cloud water, and mixed phase; development of cloud-resolving model (CRM) and land-surface models to bridge observations and algorithms; and, development of coupled CRM-land surface modeling for basin-scale water budget studies and natural hazard prediction. This presentation describes the implementation of these approaches.
Using Multi-Scale Modeling Systems and Satellite Data to Study the Precipitation Processes
NASA Technical Reports Server (NTRS)
Tao, Wei--Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.
2010-01-01
In recent years, exponentially increasing computer power extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 sq km in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale models can be run in grid size similar to cloud resolving models through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model). (2) a regional scale model (a NASA unified weather research and forecast, W8F). (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling systems to study the interactions between clouds, precipitation, and aerosols will be presented. Also how to use the multi-satellite simulator to improve precipitation processes will be discussed.
Using Multi-Scale Modeling Systems to Study the Precipitation Processes
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2010-01-01
In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the interactions between clouds, precipitation, and aerosols will be presented. Also how to use of the multi-satellite simulator to improve precipitation processes will be discussed.
NASA Technical Reports Server (NTRS)
Hinkelman, Laura M.; Evans, K. Franklin; Clothiaux, Eugene E.; Ackerman, Thomas P.; Stackhouse, Paul W., Jr.
2006-01-01
Cumulus clouds can become tilted or elongated in the presence of wind shear. Nevertheless, most studies of the interaction of cumulus clouds and radiation have assumed these clouds to be isotropic. This paper describes an investigation of the effect of fair-weather cumulus cloud field anisotropy on domain-averaged solar fluxes and atmospheric heating rate profiles. A stochastic field generation algorithm was used to produce twenty three-dimensional liquid water content fields based on the statistical properties of cloud scenes from a large eddy simulation. Progressively greater degrees of x-z plane tilting and horizontal stretching were imposed on each of these scenes, so that an ensemble of scenes was produced for each level of distortion. The resulting scenes were used as input to a three-dimensional Monte Carlo radiative transfer model. Domain-average transmission, reflection, and absorption of broadband solar radiation were computed for each scene along with the average heating rate profile. Both tilt and horizontal stretching were found to significantly affect calculated fluxes, with the amount and sign of flux differences depending strongly on sun position relative to cloud distortion geometry. The mechanisms by which anisotropy interacts with solar fluxes were investigated by comparisons to independent pixel approximation and tilted independent pixel approximation computations for the same scenes. Cumulus anisotropy was found to most strongly impact solar radiative transfer by changing the effective cloud fraction, i.e., the cloud fraction when the field is projected on a surface perpendicular to the direction of the incident solar beam.
NASA Technical Reports Server (NTRS)
Schlesinger, R. E.
1982-01-01
Preliminary results of four runs with a three-dimensional model of the effects of vertical wind shear on cloud top height/temperature structure and the internal properties of isolate midlatitude thunderstorms are reported. The model is being developed as an aid to analyses of GEO remote sensing satellite data. The grid is a 27 x 27 x 20 mesh with 2 km horizontal resolution and 0.9 vertical resolution. The total grid is 54 km on a side and 18 km deep. A second-order Crowley scheme for advecting momentum is extended with a third-order correction for spatial truncation error, and the earth-relative horizontal surface wind components are decreased to 50 percent of their values at 0.45 km. A temperature increase with height is included, together with an initial impulse consisting of a nonrotating cylindrical weak buoyant updraft 10 km in radius. The results of the runs are discussed in terms of the time variation of the vertical velocity extrema, the effects of strong and weak shear on a storm, the cloud top height, the Lagrangian dynamics of a thermal couplet, and data from a real storm.
Io: Escape and ionization of atmospheric gases
NASA Technical Reports Server (NTRS)
Smyth, W. H.
1981-01-01
Models for the Io oxygen clouds were improved to calculate the two dimensional sky plane intensity of the 1304 A emission and the 880 A emission of atomic oxygen, in addition to the 6300 A emission intensity. These three wavelength emissions are those for which observational measurements have been performed by ground based, rocket, Earth orbiting satellite and Voyager spacecraft instruments. Comparison of model results and observations suggests that an oxygen flux from Io of about 3 billion atoms sq cm sec is required for agreement. Quantitative analysis of the Io sodium cloud has focused upon the initial tasks of acquiring and preliminary evaluation of new sodium cloud and Io plasma torus data.
The Incorporation and Initialization of Cloud Water/ice in AN Operational Forecast Model
NASA Astrophysics Data System (ADS)
Zhao, Qingyun
Quantitative precipitation forecasts have been one of the weakest aspects of numerical weather prediction models. Theoretical studies show that the errors in precipitation calculation can arise from three sources: errors in the large-scale forecasts of primary variables, errors in the crude treatment of condensation/evaporation and precipitation processes, and errors in the model initial conditions. A new precipitation parameterization scheme has been developed to investigate the forecast value of improved precipitation physics via the introduction of cloud water and cloud ice into a numerical prediction model. The main feature of this scheme is the explicit calculation of cloud water and cloud ice in both the convective and stratiform precipitation parameterization. This scheme has been applied to the eta model at the National Meteorological Center. Four extensive tests have been performed. The statistical results showed a significant improvement in the model precipitation forecasts. Diagnostic studies suggest that the inclusion of cloud ice is important in transferring water vapor to precipitation and in the enhancement of latent heat release; the latter subsequently affects the vertical motion field significantly. Since three-dimensional cloud data is absent from the analysis/assimilation system for most numerical models, a method has been proposed to incorporate observed precipitation and nephanalysis data into the data assimilation system to obtain the initial cloud field for the eta model. In this scheme, the initial moisture and vertical motion fields are also improved at the same time as cloud initialization. The physical initialization is performed in a dynamical initialization framework that uses the Newtonian dynamical relaxation method to nudge the model's wind and mass fields toward analyses during a 12-hour data assimilation period. Results from a case study showed that a realistic cloud field was produced by this method at the end of the data assimilation period. Precipitation forecasts have been significantly improved as a result of the improved initial cloud, moisture and vertical motion fields.
Climate modeling. [for use in understanding earth's radiation budget
NASA Technical Reports Server (NTRS)
1978-01-01
The requirements for radiation measurements suitable for the understanding, improvement, and verification of models used in performing climate research are considered. Both zonal energy balance models and three dimensional general circulation models are considered, and certain problems are identified as common to all models. Areas of emphasis include regional energy balance observations, spectral band observations, cloud-radiation interaction, and the radiative properties of the earth's surface.
NASA Technical Reports Server (NTRS)
Wang, W.-C.; Stone, P. H.
1980-01-01
The feedback between the ice albedo and temperature is included in a one-dimensional radiative-convective climate model. The effect of this feedback on global sensitivity to changes in solar constant is studied for the current climate conditions. This ice-albedo feedback amplifies global sensitivity by 26 and 39%, respectively, for assumptions of fixed cloud altitude and fixed cloud temperature. The global sensitivity is not affected significantly if the latitudinal variations of mean solar zenith angle and cloud cover are included in the global model. The differences in global sensitivity between one-dimensional radiative-convective models and energy balance models are examined. It is shown that the models are in close agreement when the same feedback mechanisms are included. The one-dimensional radiative-convective model with ice-albedo feedback included is used to compute the equilibrium ice line as a function of solar constant.
A cloud model simulation of space shuttle exhaust clouds in different atmospheric conditions
NASA Technical Reports Server (NTRS)
Chen, C.; Zak, J. A.
1989-01-01
A three-dimensional cloud model was used to characterize the dominant influence of the environment on the Space Shuttle exhaust cloud. The model was modified to accept the actual heat and moisture from rocket exhausts and deluge water as initial conditions. An upper-air sounding determined the ambient atmosphere in which the cloud could grow. The model was validated by comparing simulated clouds with observed clouds from four actual Shuttle launches. The model successfully produced clouds with dimensions, rise, decay, liquid water contents and vertical motion fields very similar to observed clouds whose dimensions were calculated from 16 mm film frames. Once validated, the model was used in a number of different atmospheric conditions ranging from very unstable to very stable. In moist, unstable atmospheres simulated clouds rose to about 3.5 km in the first 4 to 8 minutes then decayed. Liquid water contents ranged from 0.3 to 1.0 g kg-1 mixing ratios and vertical motions were from 2 to 10 ms-1. An inversion served both to reduce entrainment (and erosion) at the top and to prevent continued cloud rise. Even in the most unstable atmospheres, the ground cloud did not rise beyond 4 km and in stable atmospheres with strong low level inversions the cloud could be trapped below 500 m. Wind shear strongly affected the appearance of both the ground cloud and vertical column cloud. The ambient low-level atmospheric moisture governed the amount of cloud water in model clouds. Some dry atmospheres produced little or no cloud water. One case of a simulated TITAN rocket explosion is also discussed.
NASA Astrophysics Data System (ADS)
Ishida, H.; Ota, Y.; Sekiguchi, M.; Sato, Y.
2016-12-01
A three-dimensional (3D) radiative transfer calculation scheme is developed to estimate horizontal transport of radiation energy in a very high resolution (with the order of 10 m in spatial grid) simulation of cloud evolution, especially for horizontally inhomogeneous clouds such as shallow cumulus and stratocumulus. Horizontal radiative transfer due to inhomogeneous clouds seems to cause local heating/cooling in an atmosphere with a fine spatial scale. It is, however, usually difficult to estimate the 3D effects, because the 3D radiative transfer often needs a large resource for computation compared to a plane-parallel approximation. This study attempts to incorporate a solution scheme that explicitly solves the 3D radiative transfer equation into a numerical simulation, because this scheme has an advantage in calculation for a sequence of time evolution (i.e., the scene at a time is little different from that at the previous time step). This scheme is also appropriate to calculation of radiation with strong absorption, such as the infrared regions. For efficient computation, this scheme utilizes several techniques, e.g., the multigrid method for iteration solution, and a correlated-k distribution method refined for efficient approximation of the wavelength integration. For a case study, the scheme is applied to an infrared broadband radiation calculation in a broken cloud field generated with a large eddy simulation model. The horizontal transport of infrared radiation, which cannot be estimated by the plane-parallel approximation, and its variation in time can be retrieved. The calculation result elucidates that the horizontal divergences and convergences of infrared radiation flux are not negligible, especially at the boundaries of clouds and within optically thin clouds, and the radiative cooling at lateral boundaries of clouds may reduce infrared radiative heating in clouds. In a future work, the 3D effects on radiative heating/cooling will be able to be included into atmospheric numerical models.
Wave Dynamics and Transport in the Stratosphere
NASA Technical Reports Server (NTRS)
Holton, James R.; Alexander, M. Joan
1999-01-01
The report discusses: (1) Gravity waves generated by tropical convection: A study in which a two-dimensional cloud-resolving model was used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation was completed. (2) Gravity wave ray tracing studies:It was developed a linear ray tracing model of gravity wave propagation to extend the nonlinear storm model results into the mesosphere and thermosphere. (3) tracer filamentation: Vertical soundings of stratospheric ozone often exhibit laminated tracer structures characterized by strong vertical tracer gradients. (4) Mesospheric gravity wave modeling studies: Although our emphasis in numerical simulation of gravity waves generated by convection has shifted from simulation of idealized two-dimensional squall lines to the most realistic (and complex) study of wave generation by three-dimensional storms. (5) Gravity wave climatology studies: Mr. Alexander applied a linear gravity wave propagation model together with observations of the background wind and stability fields to compute climatologies of gravity wave activity for comparison to observations. (6) Convective forcing of gravity waves: Theoretical study of gravity wave forcing by convective heat sources has completed. (7) Gravity waves observation from UARS: The objective of this work is to apply ray tracing, and other model technique, in order to determine to what extend the horizontal and vertical variation in satellite observed distribution of small-scale temperature variance can be attributed to gravity waves from particular sources. (8) The annual and interannual variations in temperature and mass flux near the tropical tropopause. and (9) Three dimensional cloud model.
NASA Astrophysics Data System (ADS)
Ott, Lesley E.; Pickering, Kenneth E.; Stenchikov, Georgiy L.; Huntrieser, Heidi; Schumann, Ulrich
2007-03-01
The 21 July 1998 thunderstorm observed during the European Lightning Nitrogen Oxides Project (EULINOX) project was simulated using the three-dimensional Goddard Cumulus Ensemble (GCE) model. The simulation successfully reproduced a number of observed storm features including the splitting of the original cell into a southern cell which developed supercell characteristics and a northern cell which became multicellular. Output from the GCE simulation was used to drive an offline cloud-scale chemical transport model which calculates tracer transport and includes a parameterization of lightning NOx production which uses observed flash rates as input. Estimates of lightning NOx production were deduced by assuming various values of production per intracloud and production per cloud-to-ground flash and comparing the results with in-cloud aircraft observations. The assumption that both types of flashes produce 360 moles of NO per flash on average compared most favorably with column mass and probability distribution functions calculated from observations. This assumed production per flash corresponds to a global annual lightning NOx source of 7 Tg N yr-1. Chemical reactions were included in the model to evaluate the impact of lightning NOx on ozone. During the storm, the inclusion of lightning NOx in the model results in a small loss of ozone (on average less than 4 ppbv) at all model levels. Simulations of the chemical environment in the 24 hours following the storm show on average a small increase in the net production of ozone at most levels resulting from lightning NOx, maximizing at approximately 5 ppbv day-1 at 5.5 km. Between 8 and 10.5 km, lightning NOx causes decreased net ozone production.
Methodology for cloud-based design of robots
NASA Astrophysics Data System (ADS)
Ogorodnikova, O. M.; Vaganov, K. A.; Putimtsev, I. D.
2017-09-01
This paper presents some important results for cloud-based designing a robot arm by a group of students. Methodology for the cloud-based design was developed and used to initiate interdisciplinary project about research and development of a specific manipulator. The whole project data files were hosted by Ural Federal University data center. The 3D (three-dimensional) model of the robot arm was created using Siemens PLM software (Product Lifecycle Management) and structured as a complex mechatronics product by means of Siemens Teamcenter thin client; all processes were performed in the clouds. The robot arm was designed in purpose to load blanks up to 1 kg into the work space of the milling machine for performing student's researches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Lianghai, E-mail: xielh@nssc.ac.cn; Li, Lei; Wang, Jingdong
2014-04-15
We present a three-dimensional, two-species (Ba{sup +} and H{sup +}) MHD model to study the early time behaviors of a barium release at about 1 R{sub E} like Combined Release and Radiation Effects Satellite G2, with emphasis placed on the three-dimensional evolution of the barium cloud and its effects on the ambient plasma environment. We find that the perturbations caused by the cloud are the combined results of the initial injection, the radial expansion, and the diamagnetic effect and propagate as fast MHD waves in the magnetosphere. In return, the transverse expansion and the cross-B motion of barium ions aremore » constrained by the magnetic force, which lead to a field-aligned striation of ions and the decoupling of these ions from the neutrals. Our simulation shows the formation and collapse of the diamagnetic cavity in the barium cloud. The estimated time scale for the cavity evolution might be much shorter if photoionization time scale and field aligned expansion of barium ions are considered. In addition, our two species MHD simulation also finds the snowplow effect resulting from the momentum coupling between barium ions and background H{sup +}, which creates density hole and bumps in the background H{sup +} when barium ions expanding along the magnetic field lines.« less
A Multi-scale Modeling System with Unified Physics to Study Precipitation Processes
NASA Astrophysics Data System (ADS)
Tao, W. K.
2017-12-01
In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (1) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), and (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF). The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, a review of developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitation, processes and their sensitivity on model resolution and microphysics schemes will be presented. Also how to use of the multi-satellite simulator to improve precipitation processes will be discussed.
Using Multi-Scale Modeling Systems and Satellite Data to Study the Precipitation Processes
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Chern, J.; Lamg, S.; Matsui, T.; Shen, B.; Zeng, X.; Shi, R.
2011-01-01
In recent years, exponentially increasing computer power has extended Cloud Resolving Model (CRM) integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 km2 in three-dimensions. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that NWP and mesoscale model can be run in grid size similar to cloud resolving model through nesting technique. Recently, a multi-scale modeling system with unified physics was developed at NASA Goddard. It consists of (l) a cloud-resolving model (Goddard Cumulus Ensemble model, GCE model), (2) a regional scale model (a NASA unified weather research and forecast, WRF), (3) a coupled CRM and global model (Goddard Multi-scale Modeling Framework, MMF), and (4) a land modeling system. The same microphysical processes, long and short wave radiative transfer and land processes and the explicit cloud-radiation, and cloud-land surface interactive processes are applied in this multi-scale modeling system. This modeling system has been coupled with a multi-satellite simulator to use NASA high-resolution satellite data to identify the strengths and weaknesses of cloud and precipitation processes simulated by the model. In this talk, the recent developments and applications of the multi-scale modeling system will be presented. In particular, the results from using multi-scale modeling system to study the precipitating systems and hurricanes/typhoons will be presented. The high-resolution spatial and temporal visualization will be utilized to show the evolution of precipitation processes. Also how to use of the multi-satellite simulator tqimproy precipitation processes will be discussed.
A new mosaic method for three-dimensional surface
NASA Astrophysics Data System (ADS)
Yuan, Yun; Zhu, Zhaokun; Ding, Yongjun
2011-08-01
Three-dimensional (3-D) data mosaic is a indispensable link in surface measurement and digital terrain map generation. With respect to the mosaic problem of the local unorganized cloud points with rude registration and mass mismatched points, a new mosaic method for 3-D surface based on RANSAC is proposed. Every circular of this method is processed sequentially by random sample with additional shape constraint, data normalization of cloud points, absolute orientation, data denormalization of cloud points, inlier number statistic, etc. After N random sample trials the largest consensus set is selected, and at last the model is re-estimated using all the points in the selected subset. The minimal subset is composed of three non-colinear points which form a triangle. The shape of triangle is considered in random sample selection in order to make the sample selection reasonable. A new coordinate system transformation algorithm presented in this paper is used to avoid the singularity. The whole rotation transformation between the two coordinate systems can be solved by twice rotations expressed by Euler angle vector, each rotation has explicit physical means. Both simulation and real data are used to prove the correctness and validity of this mosaic method. This method has better noise immunity due to its robust estimation property, and has high accuracy as the shape constraint is added to random sample and the data normalization added to the absolute orientation. This method is applicable for high precision measurement of three-dimensional surface and also for the 3-D terrain mosaic.
Volcanic Ash Data Assimilation System for Atmospheric Transport Model
NASA Astrophysics Data System (ADS)
Ishii, K.; Shimbori, T.; Sato, E.; Tokumoto, T.; Hayashi, Y.; Hashimoto, A.
2017-12-01
The Japan Meteorological Agency (JMA) has two operations for volcanic ash forecasts, which are Volcanic Ash Fall Forecast (VAFF) and Volcanic Ash Advisory (VAA). In these operations, the forecasts are calculated by atmospheric transport models including the advection process, the turbulent diffusion process, the gravitational fall process and the deposition process (wet/dry). The initial distribution of volcanic ash in the models is the most important but uncertain factor. In operations, the model of Suzuki (1983) with many empirical assumptions is adopted to the initial distribution. This adversely affects the reconstruction of actual eruption plumes.We are developing a volcanic ash data assimilation system using weather radars and meteorological satellite observation, in order to improve the initial distribution of the atmospheric transport models. Our data assimilation system is based on the three-dimensional variational data assimilation method (3D-Var). Analysis variables are ash concentration and size distribution parameters which are mutually independent. The radar observation is expected to provide three-dimensional parameters such as ash concentration and parameters of ash particle size distribution. On the other hand, the satellite observation is anticipated to provide two-dimensional parameters of ash clouds such as mass loading, top height and particle effective radius. In this study, we estimate the thickness of ash clouds using vertical wind shear of JMA numerical weather prediction, and apply for the volcanic ash data assimilation system.
Atmospheric Science Data Center
2013-04-19
... cloud-tracked winds at the different cloud levels. The wind vectors, shown in the right panel, reveal cyclonic motion associated with ... of cloud height and motions globally will help us monitor the effects of climate change on the three-dimensional distribution of ...
NASA Astrophysics Data System (ADS)
Korsholm, Ulrik; Petersen, Claus; Hansen Sass, Bent; Woetman, Niels; Getreuer Jensen, David; Olsen, Bjarke Tobias; GIll, Rasphal; Vedel, Henrik
2014-05-01
The DMI nowcasting system has been running in a pre-operational state for the past year. The system consists of hourly simulations with the High Resolution Limited Area weather model combined with surface and three-dimensional variational assimilation at each restart and nudging of satellite cloud products and radar precipitation. Nudging of a two-dimensional radar reflectivity CAPPI product is achieved using a new method where low level horizontal divergence is nudged towards pseudo observations. Pseudo observations are calculated based on an assumed relation between divergence and precipitation rate and the strength of the nudging is proportional to the offset between observed and modelled precipitation leading to increased moisture convergence below cloud base if there is an under-production of precipitation relative to the CAPPI product. If the model over-predicts precipitation, the low level moisture source is reduced, and in-cloud moisture is nudged towards environmental values. In this talk results will be discussed based on calculation of the fractions skill score in cases with heavy precipitation over Denmark. Furthermore, results from simulations combining reflectivity nudging and extrapolation of reflectivity will be shown. Results indicate that the new method leads to fast adjustment of the dynamical state of the model to facilitate precipitation release when the model precipitation intensity is too low. Removal of precipitation is also shown to be of importance and strong improvements were found in the position of the precipitation systems. Bias is reduced for low and extreme precipitation rates.
NASA Technical Reports Server (NTRS)
Bretherton, Christopher S.
2002-01-01
The goal of this project was to compare observations of marine and arctic boundary layers with: (1) parameterization systems used in climate and weather forecast models; and (2) two and three dimensional eddy resolving (LES) models for turbulent fluid flow. Based on this comparison, we hoped to better understand, predict, and parameterize the boundary layer structure and cloud amount, type, and thickness as functions of large scale conditions that are predicted by global climate models. The principal achievements of the project were as follows: (1) Development of a novel boundary layer parameterization for large-scale models that better represents the physical processes in marine boundary layer clouds; and (2) Comparison of column output from the ECMWF global forecast model with observations from the SHEBA experiment. Overall the forecast model did predict most of the major precipitation events and synoptic variability observed over the year of observation of the SHEBA ice camp.
Registration algorithm of point clouds based on multiscale normal features
NASA Astrophysics Data System (ADS)
Lu, Jun; Peng, Zhongtao; Su, Hang; Xia, GuiHua
2015-01-01
The point cloud registration technology for obtaining a three-dimensional digital model is widely applied in many areas. To improve the accuracy and speed of point cloud registration, a registration method based on multiscale normal vectors is proposed. The proposed registration method mainly includes three parts: the selection of key points, the calculation of feature descriptors, and the determining and optimization of correspondences. First, key points are selected from the point cloud based on the changes of magnitude of multiscale curvatures obtained by using principal components analysis. Then the feature descriptor of each key point is proposed, which consists of 21 elements based on multiscale normal vectors and curvatures. The correspondences in a pair of two point clouds are determined according to the descriptor's similarity of key points in the source point cloud and target point cloud. Correspondences are optimized by using a random sampling consistency algorithm and clustering technology. Finally, singular value decomposition is applied to optimized correspondences so that the rigid transformation matrix between two point clouds is obtained. Experimental results show that the proposed point cloud registration algorithm has a faster calculation speed, higher registration accuracy, and better antinoise performance.
NASA Technical Reports Server (NTRS)
Wang, W. C.; Stone, P. H.
1979-01-01
The feedback between ice snow albedo and temperature is included in a one dimensional radiative convective climate model. The effect of this feedback on sensitivity to changes in solar constant is studied for the current values of the solar constant and cloud characteristics. The ice snow albedo feedback amplifies global climate sensitivity by 33% and 50%, respectively, for assumptions of constant cloud altitude and constant cloud temperature.
Turbulent dispersion of the icing cloud from spray nozzles used in icing tunnels
NASA Technical Reports Server (NTRS)
Marek, C. J.; Olsen, W. A., Jr.
1986-01-01
To correctly simulate flight in natural icing conditions, the turbulence in an icing simulator must be as low as possible. But some turbulence is required to mix the droplets from the spray nozzles and achieve an icing cloud of uniform liquid water content. The goal for any spray system is to obtain the widest possible spray cloud with the lowest possible turbulence in the test section of a icing tunnel. This investigation reports the measurement of turbulence and the three-dimensional spread of the cloud from a single spray nozzle. The task was to determine how the air turbulence and cloud width are affected by spray bars of quite different drag coefficients, by changes in the turbulence upstream of the spray, the droplet size, and the atomizing air. An ice accretion grid, located 6.3 m downstream of the single spray nozzle, was used to measure cloud spread. Both the spray bar and the grid were located in the constant velocity test section. Three spray bar shapes were tested: the short blunt spray bar used in the NASA Lewis Icing Research Tunnel, a thin 14.6 cm chord airfoil, and a 53 cm chord NACA 0012 airfoil. At the low airspeed (56 km/hr) the ice accretion pattern was axisymmetric and was not affected by the shape of the spray bar. At the high airspeed (169 km/hr) the spread was 30 percent smaller than at the low airspeed. For the widest cloud the spray bars should be located as far upstream in the low velocity plenum of the icing tunnel. Good comparison is obtained between the cloud spread data and predicitons from a two-dimensional cloud mixing computer code using the two equation turbulence (k epsilon g) model.
Three Dimensional Imaging of Cold Atoms in a Magneto Optical Trap with a Light Field Microscope
2017-09-14
dimensional (3D) volume of the atoms is reconstructed using a modeled point spread function (PSF), taking into consideration the low magnification (1.25...axis fluorescence image. Optical axis separation between two atom clouds is measured to a 100µm accuracy in a 3mm deep volume , with a 16µm in-focus...79 vi Page 4.5 Phase Term Effects on the 3D Volume
NASA Astrophysics Data System (ADS)
Curic, M.; Janc, D.; Vuckovic, V.; Vujovic, D.
Cell regeneration mechanism within air-mass Cb cloud moving along the river valley is investigated by three-dimensional mesoscale ARPS model with improved micro- physics. Simulated cloud characteristics are then compared with those performed for the flat terrain conditions. The Western Morava valley area (Serbia) has selected as an important place for formation of such clouds in agreement with observations. Ana- lyzed results suggest that the river valley plays an important role for the cell regenera- tion mechanism in front of the mother cloud. Futher, it contributes to the fast Cb cloud propagation along the valley. In contrast, the front-side cell regeneration mechanism is absent for the flat terrain conditions since the cold air below cloud base deverges in all directions without any restrictions. This investigation gives us more complete insight in cell regeneration mechanisms than classic approach.
Study of Huizhou architecture component point cloud in surface reconstruction
NASA Astrophysics Data System (ADS)
Zhang, Runmei; Wang, Guangyin; Ma, Jixiang; Wu, Yulu; Zhang, Guangbin
2017-06-01
Surface reconfiguration softwares have many problems such as complicated operation on point cloud data, too many interaction definitions, and too stringent requirements for inputing data. Thus, it has not been widely popularized so far. This paper selects the unique Huizhou Architecture chuandou wooden beam framework as the research object, and presents a complete set of implementation in data acquisition from point, point cloud preprocessing and finally implemented surface reconstruction. Firstly, preprocessing the acquired point cloud data, including segmentation and filtering. Secondly, the surface’s normals are deduced directly from the point cloud dataset. Finally, the surface reconstruction is studied by using Greedy Projection Triangulation Algorithm. Comparing the reconstructed model with the three-dimensional surface reconstruction softwares, the results show that the proposed scheme is more smooth, time efficient and portable.
On the fragmentation of filaments in a molecular cloud simulation
NASA Astrophysics Data System (ADS)
Chira, R.-A.; Kainulainen, J.; Ibáñez-Mejía, J. C.; Henning, Th.; Mac Low, M.-M.
2018-03-01
Context. The fragmentation of filaments in molecular clouds has attracted a lot of attention recently as there seems to be a close relation between the evolution of filaments and star formation. The study of the fragmentation process has been motivated by simple analytical models. However, only a few comprehensive studies have analysed the evolution of filaments using numerical simulations where the filaments form self-consistently as part of large-scale molecular cloud evolution. Aim. We address the early evolution of parsec-scale filaments that form within individual clouds. In particular, we focus on three questions: How do the line masses of filaments evolve? How and when do the filaments fragment? How does the fragmentation relate to the line masses of the filaments? Methods: We examine three simulated molecular clouds formed in kiloparsec-scale numerical simulations performed with the FLASH adaptive mesh refinement magnetohydrodynamic code. The simulations model a self-gravitating, magnetised, stratified, supernova-driven interstellar medium, including photoelectric heating and radiative cooling. We follow the evolution of the clouds for 6 Myr from the time self-gravity starts to act. We identify filaments using the DisPerSe algorithm, and compare the results to other filament-finding algorithms. We determine the properties of the identified filaments and compare them with the predictions of analytic filament stability models. Results: The average line masses of the identified filaments, as well as the fraction of mass in filamentary structures, increases fairly continuously after the onset of self-gravity. The filaments show fragmentation starting relatively early: the first fragments appear when the line masses lie well below the critical line mass of Ostriker's isolated hydrostatic equilibrium solution ( 16 M⊙ pc-1), commonly used as a fragmentation criterion. The average line masses of filaments identified in three-dimensional volume density cubes increases far more quickly than those identified in two-dimensional column density maps. Conclusions: Our results suggest that hydrostatic or dynamic compression from the surrounding cloud has a significant impact on the early dynamical evolution of filaments. A simple model of an isolated, isothermal cylinder may not provide a good approach for fragmentation analysis. Caution must be exercised in interpreting distributions of properties of filaments identified in column density maps, especially in the case of low-mass filaments. Comparing or combining results from studies that use different filament finding techniques is strongly discouraged.
NASA Astrophysics Data System (ADS)
Posselt, D.; L'Ecuyer, T.; Matsui, T.
2009-05-01
Cloud resolving models are typically used to examine the characteristics of clouds and precipitation and their relationship to radiation and the large-scale circulation. As such, they are not required to reproduce the exact location of each observed convective system, much less each individual cloud. Some of the most relevant information about clouds and precipitation is provided by instruments located on polar-orbiting satellite platforms, but these observations are intermittent "snapshots" in time, making assessment of model performance challenging. In contrast to direct comparison, model results can be evaluated statistically. This avoids the requirement for the model to reproduce the observed systems, while returning valuable information on the performance of the model in a climate-relevant sense. The focus of this talk is a model evaluation study, in which updates to the microphysics scheme used in a three-dimensional version of the Goddard Cumulus Ensemble (GCE) model are evaluated using statistics of observed clouds, precipitation, and radiation. We present the results of multiday (non-equilibrium) simulations of organized deep convection using single- and double-moment versions of a the model's cloud microphysical scheme. Statistics of TRMM multi-sensor derived clouds, precipitation, and radiative fluxes are used to evaluate the GCE results, as are simulated TRMM measurements obtained using a sophisticated instrument simulator suite. We present advantages and disadvantages of performing model comparisons in retrieval and measurement space and conclude by motivating the use of data assimilation techniques for analyzing and improving model parameterizations.
Monte Carlo Calculations of Polarized Microwave Radiation Emerging from Cloud Structures
NASA Technical Reports Server (NTRS)
Kummerow, Christian; Roberti, Laura
1998-01-01
The last decade has seen tremendous growth in cloud dynamical and microphysical models that are able to simulate storms and storm systems with very high spatial resolution, typically of the order of a few kilometers. The fairly realistic distributions of cloud and hydrometeor properties that these models generate has in turn led to a renewed interest in the three-dimensional microwave radiative transfer modeling needed to understand the effect of cloud and rainfall inhomogeneities upon microwave observations. Monte Carlo methods, and particularly backwards Monte Carlo methods have shown themselves to be very desirable due to the quick convergence of the solutions. Unfortunately, backwards Monte Carlo methods are not well suited to treat polarized radiation. This study reviews the existing Monte Carlo methods and presents a new polarized Monte Carlo radiative transfer code. The code is based on a forward scheme but uses aliasing techniques to keep the computational requirements equivalent to the backwards solution. Radiative transfer computations have been performed using a microphysical-dynamical cloud model and the results are presented together with the algorithm description.
A Numerical Study of Cirrus Clouds. Part I: Model Description.
NASA Astrophysics Data System (ADS)
Liu, Hui-Chun; Wang, Pao K.; Schlesinger, Robert E.
2003-04-01
This article, the first of a two-part series, presents a detailed description of a two-dimensional numerical cloud model directed toward elucidating the physical processes governing the evolution of cirrus clouds. The two primary scientific purposes of this work are (a) to determine the evolution and maintenance mechanisms of cirrus clouds and try to explain why some cirrus can persist for a long time; and (b) to investigate the influence of certain physical factors such as radiation, ice crystal habit, latent heat, ventilation effects, and aggregation mechanisms on the evolution of cirrus. The second part will discuss sets of model experiments that were run to address objectives (a) and (b), respectively.As set forth in this paper, the aforementioned two-dimensional numerical model, which comprises the research tool for this study, is organized into three modules that embody dynamics, microphysics, and radiation. The dynamic module develops a set of equations to describe shallow moist convection, also parameterizing turbulence by using a 1.5-order closure scheme. The microphysical module uses a double-moment scheme to simulate the evolution of the size distribution of ice particles. Heterogeneous and homogeneous nucleation of haze particles are included, along with other ice crystal processes such as diffusional growth, sedimentation, and aggregation. The radiation module uses a two-stream radiative transfer scheme to determine the radiative fluxes and heating rates, while the cloud optical properties are determined by the modified anomalous diffraction theory (MADT) for ice particles. One of the main advantages of this cirrus model is its explicit formulation of the microphysical and radiative properties as functions of ice crystal habit.
NASA Technical Reports Server (NTRS)
Pavish, D. L.; Spaulding, M. L.
1977-01-01
A computer coded Lagrangian marker particle in Eulerian finite difference cell solution to the three dimensional incompressible mass transport equation, Water Advective Particle in Cell Technique, WAPIC, was developed, verified against analytic solutions, and subsequently applied in the prediction of long term transport of a suspended sediment cloud resulting from an instantaneous dredge spoil release. Numerical results from WAPIC were verified against analytic solutions to the three dimensional incompressible mass transport equation for turbulent diffusion and advection of Gaussian dye releases in unbounded uniform and uniformly sheared uni-directional flow, and for steady-uniform plug channel flow. WAPIC was utilized to simulate an analytic solution for non-equilibrium sediment dropout from an initially vertically uniform particle distribution in one dimensional turbulent channel flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Damao; Wang, Zhien; Heymsfield, Andrew J.
Measurement of ice number concentration in clouds is important but still challenging. Stratiform mixed-phase clouds (SMCs) provide a simple scenario for retrieving ice number concentration from remote sensing measurements. The simple ice generation and growth pattern in SMCs offers opportunities to use cloud radar reflectivity (Ze) measurements and other cloud properties to infer ice number concentration quantitatively. To understand the strong temperature dependency of ice habit and growth rate quantitatively, we develop a 1-D ice growth model to calculate the ice diffusional growth along its falling trajectory in SMCs. The radar reflectivity and fall velocity profiles of ice crystals calculatedmore » from the 1-D ice growth model are evaluated with the Atmospheric Radiation Measurements (ARM) Climate Research Facility (ACRF) ground-based high vertical resolution radar measurements. Combining Ze measurements and 1-D ice growth model simulations, we develop a method to retrieve the ice number concentrations in SMCs at given cloud top temperature (CTT) and liquid water path (LWP). The retrieved ice concentrations in SMCs are evaluated with in situ measurements and with a three-dimensional cloud-resolving model simulation with a bin microphysical scheme. These comparisons show that the retrieved ice number concentrations are within an uncertainty of a factor of 2, statistically.« less
NASA Technical Reports Server (NTRS)
Wen, Guoyong; Marshak, Alexander; Varnai, Tamas; Levy, Robert
2016-01-01
A transition zone exists between cloudy skies and clear sky; such that, clouds scatter solar radiation into clear-sky regions. From a satellite perspective, it appears that clouds enhance the radiation nearby. We seek a simple method to estimate this enhancement, since it is so computationally expensive to account for all three-dimensional (3-D) scattering processes. In previous studies, we developed a simple two-layer model (2LM) that estimated the radiation scattered via cloud-molecular interactions. Here we have developed a new model to account for cloud-surface interaction (CSI). We test the models by comparing to calculations provided by full 3-D radiative transfer simulations of realistic cloud scenes. For these scenes, the Moderate Resolution Imaging Spectroradiometer (MODIS)-like radiance fields were computed from the Spherical Harmonic Discrete Ordinate Method (SHDOM), based on a large number of cumulus fields simulated by the University of California, Los Angeles (UCLA) large eddy simulation (LES) model. We find that the original 2LM model that estimates cloud-air molecule interactions accounts for 64 of the total reflectance enhancement and the new model (2LM+CSI) that also includes cloud-surface interactions accounts for nearly 80. We discuss the possibility of accounting for cloud-aerosol radiative interactions in 3-D cloud-induced reflectance enhancement, which may explain the remaining 20 of enhancements. Because these are simple models, these corrections can be applied to global satellite observations (e.g., MODIS) and help to reduce biases in aerosol and other clear-sky retrievals.
3D Radiative Transfer in Cloudy Atmospheres
NASA Astrophysics Data System (ADS)
Marshak, Alexander; Davis, Anthony
Developments in three-dimensional cloud radiation over the past few decades are assessed and distilled into this contributed volume. Chapters are authored by subject-matter experts who address a broad audience of graduate students, researchers, and anyone interested in cloud-radiation processes in the solar and infrared spectral regions. After two introductory chapters and a section on the fundamental physics and computational techniques, the volume extensively treats two main application areas: the impact of clouds on the Earth's radiation budget, which is an essential aspect of climate modeling; and remote observation of clouds, especially with the advanced sensors on current and future satellite missions. http://www.springeronline.com/alert/article?a=3D1_1fva7w_1j826l_41z_6
NASA Astrophysics Data System (ADS)
Meinköhn, Erik
2002-11-01
The present work aims at the modelling of three-dimensional radiation fields in gas clouds from the early universe, in particular as to the influence of varying distributions of density and velocity. In observations of high-redshift gas clouds, the Lyα transition from the first excited energy level to the ground state of the hydrogen atom is usually found to be the only prominent emission lines in the entire spectrum. It is a well-known assumption that high-redshifted hydrogen clouds are the precursors of present-day galaxies. Thus, the investigation of the Lyα line is of paramount importance of the theory of galaxy formation and evolution. The observed Lyα line - or rather, to be precise, its profile - reveals both the complexity of the spatial distribution and of the kinematics of the interstellar gas, and also the nature of the photon source. In this thesis we have developed a code which is capable of solving the three-dimensional frequency-dependent radiative transfer equation for arbitrarily nonrelativistically moving media. The numerical treatment of the associated partial integro-differential equation is an extremely challenging task, since radiation intensity depends on 6 variables, namely 3 space variables, 2 variables describing the direction of photon propagation, and the frequency. With the goal of a quantitative comparison with observational data in mind, the implementation of very efficient methods for a sufficiently accurate solution of the complex radiative transfer problems turned out to be a necessity. The size of the resulting linear system of equations makes the use of parallelization techniques and grid refinement strategies indispensable.
Three-dimensional Structure of the Milky Way Dust: Modeling of LAMOST Data
NASA Astrophysics Data System (ADS)
Li, Linlin; Shen, Shiyin; Hou, Jinliang; Yuan, Haibo; Xiang, Maosheng; Chen, Bingqiu; Huang, Yang; Liu, Xiaowei
2018-05-01
We present a three-dimensional modeling of the Milky Way dust distribution by fitting the value-added star catalog of the LAMOST spectral survey. The global dust distribution can be described by an exponential disk with a scale length of 3192 pc and a scale height of 103 pc. In this modeling, the Sun is located above the dust disk with a vertical distance of 23 pc. Besides the global smooth structure, two substructures around the solar position are also identified. The one located at 150° < l < 200° and ‑5° < b < ‑30° is consistent with the Gould Belt model of Gontcharov, and the other one located at 140° < l < 165° and 0° < b < 15° is associated with the Camelopardalis molecular clouds.
NASA Astrophysics Data System (ADS)
Bott, Andreas; Kerkweg, Astrid; Wurzler, Sabine
A study has been made of the modification of aerosol spectra due to cloud pro- cesses and the impact of the modified aerosols on the microphysical structure of future clouds. For this purpose an entraining air parcel model with two-dimensional spectral cloud microphysics has been used. In order to treat collision/coalescence processes in the two-dimensional microphysical module, a new realistic and continuous formu- lation of the collection kernel has been developed. Based on experimental data, the kernel covers the entire investigated size range of aerosols, cloud and rain drops, that is the kernel combines all important coalescence processes such as the collision of cloud drops as well as the impaction scavenging of small aerosols by big raindrops. Since chemical reactions in the gas phase and in cloud drops have an important impact on the physico-chemical properties of aerosol particles, the parcel model has been extended by a chemical module describing gas phase and aqueous phase chemical reactions. However, it will be shown that in the numerical case studies presented in this paper the modification of aerosols by chemical reactions has a minor influence on the microphysical structure of future clouds. The major process yielding in a second cloud event an enhanced formation of rain is the production of large aerosol particles by collision/coalescence processes in the first cloud.
Applicability Analysis of Cloth Simulation Filtering Algorithm for Mobile LIDAR Point Cloud
NASA Astrophysics Data System (ADS)
Cai, S.; Zhang, W.; Qi, J.; Wan, P.; Shao, J.; Shen, A.
2018-04-01
Classifying the original point clouds into ground and non-ground points is a key step in LiDAR (light detection and ranging) data post-processing. Cloth simulation filtering (CSF) algorithm, which based on a physical process, has been validated to be an accurate, automatic and easy-to-use algorithm for airborne LiDAR point cloud. As a new technique of three-dimensional data collection, the mobile laser scanning (MLS) has been gradually applied in various fields, such as reconstruction of digital terrain models (DTM), 3D building modeling and forest inventory and management. Compared with airborne LiDAR point cloud, there are some different features (such as point density feature, distribution feature and complexity feature) for mobile LiDAR point cloud. Some filtering algorithms for airborne LiDAR data were directly used in mobile LiDAR point cloud, but it did not give satisfactory results. In this paper, we explore the ability of the CSF algorithm for mobile LiDAR point cloud. Three samples with different shape of the terrain are selected to test the performance of this algorithm, which respectively yields total errors of 0.44 %, 0.77 % and1.20 %. Additionally, large area dataset is also tested to further validate the effectiveness of this algorithm, and results show that it can quickly and accurately separate point clouds into ground and non-ground points. In summary, this algorithm is efficient and reliable for mobile LiDAR point cloud.
An Approach of Web-based Point Cloud Visualization without Plug-in
NASA Astrophysics Data System (ADS)
Ye, Mengxuan; Wei, Shuangfeng; Zhang, Dongmei
2016-11-01
With the advances in three-dimensional laser scanning technology, the demand for visualization of massive point cloud is increasingly urgent, but a few years ago point cloud visualization was limited to desktop-based solutions until the introduction of WebGL, several web renderers are available. This paper addressed the current issues in web-based point cloud visualization, and proposed a method of web-based point cloud visualization without plug-in. The method combines ASP.NET and WebGL technologies, using the spatial database PostgreSQL to store data and the open web technologies HTML5 and CSS3 to implement the user interface, a visualization system online for 3D point cloud is developed by Javascript with the web interactions. Finally, the method is applied to the real case. Experiment proves that the new model is of great practical value which avoids the shortcoming of the existing WebGIS solutions.
NASA Technical Reports Server (NTRS)
Hasler, A. F.; Desjardins, M.; Shenk, W. E.
1979-01-01
Simultaneous Geosynchronous Operational Environmental Satellite (GOES) 1 km resolution visible image pairs can provide quantitative three dimensional measurements of clouds. These data have great potential for severe storms research and as a basic parameter measurement source for other areas of meteorology (e.g. climate). These stereo cloud height measurements are not subject to the errors and ambiguities caused by unknown cloud emissivity and temperature profiles that are associated with infrared techniques. This effort describes the display and measurement of stereo data using digital processing techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kao, C.Y.J.; Bossert, J.E.; Winterkamp, J.
1993-10-01
One of the objectives of the DOE ARM Program is to improve the parameterization of clouds in general circulation models (GCMs). The approach taken in this research is two fold. We first examine the behavior of cumulus parameterization schemes by comparing their performance against the results from explicit cloud simulations with state-of-the-art microphysics. This is conducted in a two-dimensional (2-D) configuration of an idealized convective system. We then apply the cumulus parameterization schemes to realistic three-dimensional (3-D) simulations over the western US for a case with an enormous amount of convection in an extended period of five days. In themore » 2-D idealized tests, cloud effects are parameterized in the ``parameterization cases`` with a coarse resolution, whereas each cloud is explicitly resolved by the ``microphysics cases`` with a much finer resolution. Thus, the capability of the parameterization schemes in reproducing the growth and life cycle of a convective system can then be evaluated. These 2-D tests will form the basis for further 3-D realistic simulations which have the model resolution equivalent to that of the next generation of GCMs. Two cumulus parameterizations are used in this research: the Arakawa-Schubert (A-S) scheme (Arakawa and Schubert, 1974) used in Kao and Ogura (1987) and the Kuo scheme (Kuo, 1974) used in Tremback (1990). The numerical model used in this research is the Regional Atmospheric Modeling System (RAMS) developed at Colorado State University (CSU).« less
Enhanced clear sky reflectance near clouds: What can be learned from it about aerosol properties?
NASA Astrophysics Data System (ADS)
Marshak, A.; Varnai, T.; Wen, G.; Chiu, J.
2009-12-01
Studies on aerosol direct and indirect effects require a precise separation of cloud-free and cloudy air. However, separation between cloud-free and cloudy areas from remotely-sensed measurements is ambiguous. The transition zone in the regions around clouds often stretches out tens of km, which are neither precisely clear nor precisely cloudy. We study the transition zone between cloud-free and cloudy air using MODerate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements. Both instruments show enhanced clear-sky reflectance (MODIS) and clear-sky backscatterer (CALIPSO) near clouds. Analyzing a large dataset of MODIS observations, we examine the effect of three-dimensional radiative interactions between clouds and cloud-free areas, also known as a cloud adjacency effect. The cloud adjacency effect is well observed in MODIS clear-sky data in the vicinity of clouds. Comparing with CALIPSO clear-sky backscatterer measurements, we show that this effect may be responsible for a large portion of the enhanced clear-sky reflectance observed by MODIS. Finally, we describe a simple model that estimates the cloud-induced enhanced reflectances of cloud-free areas in the vicinity of clouds. The model assumes that the enhancement is due entirely to Rayleigh scattering and is therefore bigger at shorter wavelengths, thus creating a so-called apparent “bluing” of aerosols in remote sensing retrievals.
New Insights Concerning the Local Interstellar medium
NASA Astrophysics Data System (ADS)
Linsky, Jeffrey L.; Redfield, Seth
2015-08-01
We have been analyzing HST high-resolution ultraviolet spectra of nearby stars to measure the radial velocities, turbulence, temperature, and depletions on warm diffuse interstellar gas within a few parsecs of the Sun. These data reveal a picture of many partially-ionized warm gas clouds, each with their own vector velocity and physical characteristics. This picture has been recently challenged by Gry and Jenkins (2014), who argue for a single nonrigid cloud surrounding the Sun. We present a test of these two very different morphological structure by checking how well each predicts the radial velocities in a new data set (Malamut et al. 2014) that was not available when both models were constructed. We find that the multicloud model (Redfield & Linsky 2008) provides a much better fit to the new data. We compare the new IBEX results for the temperature and velocity of inflowing He gas (McComas et al. 2015) with the properties of the Local Interstellar Cloud and the G cloud. We also show a preliminary three-dimensional model for the local interstellar medium.
NASA Astrophysics Data System (ADS)
Schäfer, M.; Bierwirth, E.; Ehrlich, A.; Jäkel, E.; Wendisch, M.
2015-01-01
Based on airborne spectral imaging observations three-dimensional (3-D) radiative effects between Arctic boundary layer clouds and ice floes have been identified and quantified. A method is presented to discriminate sea ice and open water in case of clouds from imaging radiance measurements. This separation simultaneously reveals that in case of clouds the transition of radiance between open water and sea ice is not instantaneously but horizontally smoothed. In general, clouds reduce the nadir radiance above bright surfaces in the vicinity of sea ice - open water boundaries, while the nadir radiance above dark surfaces is enhanced compared to situations with clouds located above horizontal homogeneous surfaces. With help of the observations and 3-D radiative transfer simulations, this effect was quantified to range between 0 and 2200 m distance to the sea ice edge. This affected distance Δ L was found to depend on both, cloud and sea ice properties. For a ground overlaying cloud in 0-200 m altitude, increasing the cloud optical thickness from τ = 1 to τ = 10 decreases Δ L from 600 to 250 m, while increasing cloud base altitude or cloud geometrical thickness can increase Δ L; Δ L(τ = 1/10) = 2200 m/1250 m for 500-1000 m cloud altitude. To quantify the effect for different shapes and sizes of the ice floes, various albedo fields (infinite straight ice edge, circles, squares, realistic ice floe field) were modelled. Simulations show that Δ L increases by the radius of the ice floe and for sizes larger than 6 km (500-1000 m cloud altitude) asymptotically reaches maximum values, which corresponds to an infinite straight ice edge. Furthermore, the impact of these 3-D-radiative effects on retrieval of cloud optical properties was investigated. The enhanced brightness of a dark pixel next to an ice edge results in uncertainties of up to 90 and 30% in retrievals of cloud optical thickness and effective radius reff, respectively. With help of Δ L quantified here, an estimate of the distance to the ice edge for which the retrieval errors are negligible is given.
D Building FAÇADE Reconstruction Using Handheld Laser Scanning Data
NASA Astrophysics Data System (ADS)
Sadeghi, F.; Arefi, H.; Fallah, A.; Hahn, M.
2015-12-01
3D The three dimensional building modelling has been an interesting topic of research for decades and it seems that photogrammetry methods provide the only economic means to acquire truly 3D city data. According to the enormous developments of 3D building reconstruction with several applications such as navigation system, location based services and urban planning, the need to consider the semantic features (such as windows and doors) becomes more essential than ever, and therefore, a 3D model of buildings as block is not any more sufficient. To reconstruct the façade elements completely, we employed the high density point cloud data that obtained from the handheld laser scanner. The advantage of the handheld laser scanner with capability of direct acquisition of very dense 3D point clouds is that there is no need to derive three dimensional data from multi images using structure from motion techniques. This paper presents a grammar-based algorithm for façade reconstruction using handheld laser scanner data. The proposed method is a combination of bottom-up (data driven) and top-down (model driven) methods in which, at first the façade basic elements are extracted in a bottom-up way and then they are served as pre-knowledge for further processing to complete models especially in occluded and incomplete areas. The first step of data driven modelling is using the conditional RANSAC (RANdom SAmple Consensus) algorithm to detect façade plane in point cloud data and remove noisy objects like trees, pedestrians, traffic signs and poles. Then, the façade planes are divided into three depth layers to detect protrusion, indentation and wall points using density histogram. Due to an inappropriate reflection of laser beams from glasses, the windows appear like holes in point cloud data and therefore, can be distinguished and extracted easily from point cloud comparing to the other façade elements. Next step, is rasterizing the indentation layer that holds the windows and doors information. After rasterization process, the morphological operators are applied in order to remove small irrelevant objects. Next, the horizontal splitting lines are employed to determine floors and vertical splitting lines are employed to detect walls, windows, and doors. The windows, doors and walls elements which are named as terminals are clustered during classification process. Each terminal contains a special property as width. Among terminals, windows and doors are named the geometry tiles in definition of the vocabularies of grammar rules. Higher order structures that inferred by grouping the tiles resulted in the production rules. The rules with three dimensional modelled façade elements constitute formal grammar that is named façade grammar. This grammar holds all the information that is necessary to reconstruct façades in the style of the given building. Thus, it can be used to improve and complete façade reconstruction in areas with no or limited sensor data. Finally, a 3D reconstructed façade model is generated that the accuracy of its geometry size and geometry position depends on the density of the raw point cloud.
Formation of Spiral-Arm Spurs and Bound Clouds in Vertically Stratified Galactic Gas Disks
NASA Astrophysics Data System (ADS)
Kim, Woong-Tae; Ostriker, Eve C.
2006-07-01
We investigate the growth of spiral-arm substructure in vertically stratified, self-gravitating, galactic gas disks, using local numerical MHD simulations. Our new models extend our previous two-dimensional studies, which showed that a magnetized spiral shock in a thin disk can undergo magneto-Jeans instability (MJI), resulting in regularly spaced interarm spur structures and massive gravitationally bound fragments. Similar spur (or ``feather'') features have recently been seen in high-resolution observations of several galaxies. Here we consider two sets of numerical models: two-dimensional simulations that use a ``thick-disk'' gravitational kernel, and three-dimensional simulations with explicit vertical stratification. Both models adopt an isothermal equation of state with cs=7 km s-1. When disks are sufficiently magnetized and self-gravitating, the result in both sorts of models is the growth of spiral-arm substructure similar to that in our previous razor-thin models. Reduced self-gravity due to nonzero disk thickness increases the spur spacing to ~10 times the Jeans length at the arm peak. Bound clouds that form from spur fragmentation have masses ~(1-3)×107 Msolar each, similar to the largest observed GMCs. The mass-to-flux ratios and specific angular momenta of the bound condensations are lower than large-scale galactic values, as is true for observed GMCs. We find that unmagnetized or weakly magnetized two-dimensional models are unstable to the ``wiggle instability'' previously identified by Wada & Koda. However, our fully three-dimensional models do not show this effect. Nonsteady motions and strong vertical shear prevent coherent vortical structures from forming, evidently suppressing the wiggle instability. We also find no clear traces of Parker instability in the nonlinear spiral arm substructures that emerge, although conceivably Parker modes may help seed the MJI at early stages since azimuthal wavelengths are similar.
NASA Astrophysics Data System (ADS)
Schlesinger, Robert E.
1984-05-01
An anelastic three-dimensional model is used to investigate the effects of vertical wind shear regime on cloud-top structure and internal properties of mature isolated midlatitude thunderstorms. Four comparative experiments, designated A through D, are performed with varying shear profiles in otherwise identical initializations. Cases A-C assume strong shear, differing only in the veering of the low-level hodograph: moderate in A, strong in B and none in C. Weak shear, everywhere 40% as great as in C, is assumed in case D.The strong-shear cases A-C show moderately vigorous quasi-steady mature updrafts with strong midlevel mesovortex couplets, and marked anvil elongation along the net vertical shear vector. Differences are modest, especially at cloud top, though with low-level hodograph curvature the updraft is enhanced and skewed toward the cyclonic right flank. The weak-shear case D shows a weaker and less persistent mature updraft than A-C, along with weaker midlevel rotation and a much more newly circular anvil.In the strong-shear experiments, the cloud top considerably resembles geostationary satellite observations of tornadic storms (Negri, 1982), even though the model storm interiors lack the significant low-level mesocyclone and very strong concentrated updraft typical of observed tornadic storms. Both model and observations show a persistent cloud-top temperature pattern featuring a cold area slightly upshear of the cloud summit, with a warm area downshear in the absence of a local height minimum, though in the model the thermal couplet is smaller-scale with lower amplitude and lacks the well-developed `V' shape seen in the observations. The thermal couplet is also present with weak shear, but is only about half as strong, largely due to a much weaker cold area.Several dynamic features of the cloud-top thermal couplet are revealed by backward and forward parcel trajectory analyses for Case B: 1) The cold and warm areas at cloud top result from ascent and descent, respectively, of stratospheric air from upshear. 2) Only slightly below cloud top, shallow downward extensions of the warm and cold areas consist of air that originates from downshear in the lower troposphere, traverses' the updraft core and overshoots the tropopause. 3) Strong turbulent mixing between these contrasting airflow branches takes place astride the cloud top. 4) Parcels intercepting the cold region subside subsequently into the warm region. 5) The perturbation vertical pressure gradient force is an important factor in the trajectories.
Cloud draft structure and trace gas transport
NASA Technical Reports Server (NTRS)
Scala, John R.; Tao, Wei-Kuo; Thompson, Anne M.; Simpson, Joanne; Garstang, Michael; Pickering, Kenneth E.; Browell, Edward V.; Sachse, Glen W.; Gregory, Gerald L.; Torres, Arnold L.
1990-01-01
During the second Amazon Boundary Layer Experiment (ABLE 2B), meteorological observations, chemical measurements, and model simulations are utilized in order to interpret convective cloud draft structure and to analyze its role in transport and vertical distribution of trace gases. One-dimensional photochemical model results suggest that the observed poststorm changes in ozone concentration can be attributed to convective transports rather than photochemical production and the results of a two-dimensional time-dependent cloud model simulation are presented for the May 6, 1987 squall system. The mesoscale convective system exhibited evidence of significant midlevel detrainment in addition to transports to anvil heights. Chemical measurements of O3 and CO obtained in the convective environment are used to predict photochemical production within the troposphere and to corroborate the cloud model results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schartmann, M.; Ballone, A.; Burkert, A.
The dusty, ionized gas cloud G2 is currently passing the massive black hole in the Galactic Center at a distance of roughly 2400 Schwarzschild radii. We explore the possibility of a starting point of the cloud within the disks of young stars. We make use of the large amount of new observations in order to put constraints on G2's origin. Interpreting the observations as a diffuse cloud of gas, we employ three-dimensional hydrodynamical adaptive mesh refinement (AMR) simulations with the PLUTO code and do a detailed comparison with observational data. The simulations presented in this work update our previously obtainedmore » results in multiple ways: (1) high resolution three-dimensional hydrodynamical AMR simulations are used, (2) the cloud follows the updated orbit based on the Brackett-γ data, (3) a detailed comparison to the observed high-quality position–velocity (PV) diagrams and the evolution of the total Brackett-γ luminosity is done. We concentrate on two unsolved problems of the diffuse cloud scenario: the unphysical formation epoch only shortly before the first detection and the too steep Brackett-γ light curve obtained in simulations, whereas the observations indicate a constant Brackett-γ luminosity between 2004 and 2013. For a given atmosphere and cloud mass, we find a consistent model that can explain both, the observed Brackett-γ light curve and the PV diagrams of all epochs. Assuming initial pressure equilibrium with the atmosphere, this can be reached for a starting date earlier than roughly 1900, which is close to apo-center and well within the disks of young stars.« less
NASA Astrophysics Data System (ADS)
Peralta, J.; Lee, Y. J.; Hueso, R.; Clancy, R. T.; Sandor, B. J.; Sánchez-Lavega, A.; Lellouch, E.; Rengel, M.; Machado, P.; Omino, M.; Piccialli, A.; Imamura, T.; Horinouchi, T.; Murakami, S.; Ogohara, K.; Luz, D.; Peach, D.
2017-04-01
Even though many missions have explored the Venus atmospheric circulation, its instantaneous state is poorly characterized. In situ measurements vertically sampling the atmosphere exist for limited locations and dates, while remote sensing observations provide only global averages of winds at altitudes of the clouds: 47, 60, and 70 km. We present a three-dimensional global view of Venus's atmospheric circulation from data obtained in June 2007 by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and Venus Express spacecrafts, together with ground-based observations. Winds and temperatures were measured for heights 47-110 km from multiwavelength images and spectra covering 40°N-80°S and local times 12 h-21 h. Dayside westward winds exhibit day-to-day changes, with maximum speeds ranging 97-143 m/s and peaking at variable altitudes within 75-90 km, while on the nightside these peak below cloud tops at ˜60 km. Our results support past reports of strong variability of the westward zonal superrotation in the transition region, and good agreement is found above the clouds with results from the Laboratoire de Météorologie Dynamique (LMD) Venus general circulation model.
NASA Technical Reports Server (NTRS)
Schwemmer, Geary K.; Miller, David O.
2005-01-01
Clouds have a powerful influence on atmospheric radiative transfer and hence are crucial to understanding and interpreting the exchange of radiation between the Earth's surface, the atmosphere, and space. Because clouds are highly variable in space, time and physical makeup, it is important to be able to observe them in three dimensions (3-D) with sufficient resolution that the data can be used to generate and validate parameterizations of cloud fields at the resolution scale of global climate models (GCMs). Simulation of photon transport in three dimensionally inhomogeneous cloud fields show that spatial inhomogeneities tend to decrease cloud reflection and absorption and increase direct and diffuse transmission, Therefore it is an important task to characterize cloud spatial structures in three dimensions on the scale of GCM grid elements. In order to validate cloud parameterizations that represent the ensemble, or mean and variance of cloud properties within a GCM grid element, measurements of the parameters must be obtained on a much finer scale so that the statistics on those measurements are truly representative. High spatial sampling resolution is required, on the order of 1 km or less. Since the radiation fields respond almost instantaneously to changes in the cloud field, and clouds changes occur on scales of seconds and less when viewed on scales of approximately 100m, the temporal resolution of cloud properties should be measured and characterized on second time scales. GCM time steps are typically on the order of an hour, but in order to obtain sufficient statistical representations of cloud properties in the parameterizations that are used as model inputs, averaged values of cloud properties should be calculated on time scales on the order of 10-100 s. The Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) provides exceptional temporal (100 ms) and spatial (30 m) resolution measurements of aerosol and cloud backscatter in three dimensions. HARLIE was used in a ground-based configuration in several recent field campaigns. Principal data products include aerosol backscatter profiles, boundary layer heights, entrainment zone thickness, cloud fraction as a function of altitude and horizontal wind vector profiles based on correlating the motions of clouds and aerosol structures across portions of the scan. Comparisons will be made between various cloud detecting instruments to develop a baseline performance metric.
Cederwall, R T; Peterson, K R
1990-11-01
A three-dimensional atmospheric transport and diffusion model is used to calculate the arrival and deposition of fallout from 13 selected nuclear tests at the Nevada Test Site (NTS) in the 1950s. Results are used to extend NTS fallout patterns to intermediate downwind distances (300 to 1200 km). The radioactive cloud is represented in the model by a population of Lagrangian marker particles, with concentrations calculated on an Eulerian grid. Use of marker particles, with fall velocities dependent on particle size, provides a realistic simulation of fallout as the debris cloud travels downwind. The three-dimensional wind field is derived from observed data, adjusted for mass consistency. Terrain is represented in the grid, which extends up to 1200 km downwind of NTS and has 32-km horizontal resolution and 1-km vertical resolution. Ground deposition is calculated by a deposition-velocity approach. Source terms and relationships between deposition and exposure rate are based on work by Hicks. Uncertainty in particle size and vertical distributions within the debris cloud (and stem) allow for some model "tuning" to better match measured ground-deposition values. Particle trajectories representing different sizes and starting heights above ground zero are used to guide source specification. An hourly time history of the modeled fallout pattern as the debris cloud moves downwind provides estimates of fallout arrival times. Results for event HARRY illustrate the methodology. The composite deposition pattern for all 13 tests is characterized by two lobes extending out to the north-northeast and east-northeast, respectively, at intermediate distances from NTS. Arrival estimates, along with modeled deposition values, augment measured deposition data in the development of data bases at the county level; these data bases are used for estimating radiation exposure at intermediate distances downwind of NTS. Results from a study of event TRINITY are also presented.
Latent Heating Retrieval from TRMM Observations Using a Simplified Thermodynamic Model
NASA Technical Reports Server (NTRS)
Grecu, Mircea; Olson, William S.
2003-01-01
A procedure for the retrieval of hydrometeor latent heating from TRMM active and passive observations is presented. The procedure is based on current methods for estimating multiple-species hydrometeor profiles from TRMM observations. The species include: cloud water, cloud ice, rain, and graupel (or snow). A three-dimensional wind field is prescribed based on the retrieved hydrometeor profiles, and, assuming a steady-state, the sources and sinks in the hydrometeor conservation equations are determined. Then, the momentum and thermodynamic equations, in which the heating and cooling are derived from the hydrometeor sources and sinks, are integrated one step forward in time. The hydrometeor sources and sinks are reevaluated based on the new wind field, and the momentum and thermodynamic equations are integrated one more step. The reevalution-integration process is repeated until a steady state is reached. The procedure is tested using cloud model simulations. Cloud-model derived fields are used to synthesize TRMM observations, from which hydrometeor profiles are derived. The procedure is applied to the retrieved hydrometeor profiles, and the latent heating estimates are compared to the actual latent heating produced by the cloud model. Examples of procedure's applications to real TRMM data are also provided.
NASA Technical Reports Server (NTRS)
Wang, Shouping; Wang, Qing
1994-01-01
This study focuses on the effects of drizzle in a one-dimensional third-order turbulence closure model of the nocturnal stratus-topped marine boundary layer. When the simulated drizzle rate is relatively small (maximum approximately equal to 0.6 mm/day), steady-state solutions are obtained. The boundary layer stabilizes essentially because drizzle causes evaporative cooling of the subcloud layer. This stabilization considerably reduces the buoyancy flux and turbulence kinetic energy below the stratus cloud. Thus, drizzle tends to decouple the cloud from the subcloud layer in the model, as suggested by many observational studies. In addition, the evaporation of drizzle in the subcloud layer creates small scattered clouds, which are likely to represent cumulus clouds, below the solid stratus cloud in the model. The sensitivity experiments show that these scattered clouds help maintain a coupled boundary layer. When the drizzle rate is relatively large (maximum approximately equal to 0.9 mm/day), the response of the model becomes transient with bursts in turbulent fluxes. This phenomenon is related to the formation of the scattered cloud layer below the solid stratus cloud. It appears that the model is inadequate to represent the heat and moisture transport by strong updrafts covering a small fractional area in cumulus convection.
NASA Technical Reports Server (NTRS)
Stackhouse, Paul W., Jr.; Stephens, Graeme L.
1993-01-01
Due to the prevalence and persistence of cirrus cloudiness across the globe, cirrus clouds are believed to have an important effect on the climate. Stephens et al., (1990) among others have shown that the important factor determining how cirrus clouds modulate the climate is the balance between the albedo and emittance effect of the cloud systems. This factor was shown to depend in part upon the effective sizes of the cirrus cloud particles. Since effective sizes of cirrus cloud microphysical distributions are used as a basis of parameterizations in climate models, it is crucial that the relationships between effective sizes and radiative properties be clearly established. In this preliminary study, the retrieval of cirrus cloud effective sizes are examined using a two dimensional radiative transfer model for a cirrus cloud case sampled during FIRE Cirrus 11. The purpose of this paper is to present preliminary results from the SHSG model demonstrating the sensitivity of the bispectral relationships of reflected radiances and thus the retrieval of effective sizes to phase function and dimensionality.
Numerical simulation of airborne cloud seeding over Greece, using a convective cloud model
NASA Astrophysics Data System (ADS)
Spiridonov, Vlado; Karacostas, Theodore; Bampzelis, Dimitrios; Pytharoulis, Ioannis
2015-02-01
An extensive work has been done by the Department of Meteorology and Climatology at Aristotle University of Thessaloniki and others using a three-dimensional cloud resolving model to simulate AgI seeding by aircraft of three distinct hailstorm cases occurred over Greece in period 2007-2009. The seeding criterion for silver iodide glaciogenic seeding from air is based on the beneficial competition mechanism. According to thermodynamic analysis and classification proposed by Marwitz (1972a, b, and c) and based on their structural and evolutionary properties we classified them in three groups as singlecell, multicell and supercell hailstorms. The seeding optimization for each selected case is conducted by analysis of the thermodynamic characteristics of the meteorological environment as well as radar reflectivity fields observed by the state of the art Thunderstorm Identification, Tracking, Analysis and Nowcasting (TITAN) software applied in the Greek National Hail Suppression Program (GNHSP). Results of this comprehensive study have shown positive effects with respect to hailfall decrease after successful seeding as our primarily objective. All three cases have illustrated 15-20% decrease in accumulated hailfall at the ground Seeded clouds have exhibited earlier development of precipitation and slight dynamical enhancement of the updraft and rainfall increase of ~10- 12.5%. The results have emphasized a strong interaction between cloud dynamics and microphysics, especially the subgrid scale processes that have impact on agent transport and diffusion in a complex environment. Comparisons between modelled and observed radar reflectivity also show a relatively good agreement. Simulated cloud seeding follows the operational aircraft seeding for hail suppression. The ability of silver-iodide particles to act as ice nuclei has been used to perform airborne cloud seeding, under controlled conditions of temperature and humidity. The seeding effects depend upon applying the seeding methodology in proper seeding time, right placement and agent dose rate.
3D cloud detection and tracking system for solar forecast using multiple sky imagers
Peng, Zhenzhou; Yu, Dantong; Huang, Dong; ...
2015-06-23
We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together intomore » larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.« less
Assessing uncertainty in radar measurements on simplified meteorological scenarios
NASA Astrophysics Data System (ADS)
Molini, L.; Parodi, A.; Rebora, N.; Siccardi, F.
2006-02-01
A three-dimensional radar simulator model (RSM) developed by Haase (1998) is coupled with the nonhydrostatic mesoscale weather forecast model Lokal-Modell (LM). The radar simulator is able to model reflectivity measurements by using the following meteorological fields, generated by Lokal Modell, as inputs: temperature, pressure, water vapour content, cloud water content, cloud ice content, rain sedimentation flux and snow sedimentation flux. This work focuses on the assessment of some uncertainty sources associated with radar measurements: absorption by the atmospheric gases, e.g., molecular oxygen, water vapour, and nitrogen; attenuation due to the presence of a highly reflecting structure between the radar and a "target structure". RSM results for a simplified meteorological scenario, consisting of a humid updraft on a flat surface and four cells placed around it, are presented.
Gok, Kadir; Inal, Sermet; Gok, Arif; Gulbandilar, Eyyup
2017-05-01
In this study, biomechanical behaviors of three different screw materials (stainless steel, titanium and cobalt-chromium) have analyzed to fix with triangle fixation under axial loading in femoral neck fracture and which material is best has been investigated. Point cloud obtained after scanning the human femoral model with the three dimensional (3D) scanner and this point cloud has been converted to 3D femoral model by Geomagic Studio software. Femoral neck fracture was modeled by SolidWorks software for only triangle configuration and computer-aided numerical analyses of three different materials have been carried out by AnsysWorkbench finite element analysis (FEA) software. The loading, boundary conditions and material properties have prepared for FEA and Von-Misses stress values on upper and lower proximity of the femur and screws have been calculated. At the end of numerical analyses, the best advantageous screw material has calculated as titanium because it creates minimum stress at the upper and lower proximity of the fracture line.
NASA Astrophysics Data System (ADS)
Vedernikov, Andrei; Blum, Jurgen; Ingo Von Borstel, Olaf; Schraepler, Rainer; Balapanov, Daniyar; Cecere, Anselmo
2016-07-01
Nanometre and micrometre-sized solid particles are ubiquitous in space and on Earth - from galaxies, interstellar space, protoplanetary and debris disks to planetary rings and atmospheres, planetary surfaces, comets, interplanetary space, Earth's atmosphere. Apparently, the most intriguing problem in the picture of the formation of planets is the transition from individual microscopic dust grains to kilometre-sized planetesimals. Revealing the mechanisms of this transition is one of the main tasks of the European Space Agency's project Interaction in Cosmic and Atmospheric Particle Systems (ICAPS). It was found that Brownian motion driven agglomeration could not provide the transition within reasonable time scale. As a result, at this stage top scientific goals shifted towards forced agglomeration and concentration of particles, targeting revealing the onset of compaction, experimental study of the evolution of fractal dimensions, size and mass distribution, occurrence of bouncing. The main tasks comprise 1) development of the rapid agglomeration model 2) development of the experimental facilities creating big fractal-type agglomerates from 10 to 1000 μm from a cloud of micrometre-size grains; 3) experimental realization of the rapid agglomeration in microgravity and ground conditions; and 4) in situ investigation of the morphology, mobility, mechanical and optical properties of the free-floating agglomerates, including investigation of thermophoresis, photophoresis of the agglomerates and of the two-phase flow phenomena. To solve the experimental part of the tasks we developed a Cloud Manipulation System, realized as a breadboard (CMS BB) for long duration microgravity platforms and a simplified laboratory version (CMS LV) mostly oriented on short duration microgravity and ground tests. The new system is based on the use of thermophoresis, most favourable for cloud manipulation without creating additional particle-particle forces in the cloud with a possibility of growing single agglomerate out of the whole cloud. The cloud manipulation system additionally provides temperature stabilization or, on the contrary, high temperature variation in the observation volume; formation of controlled temperature gradients, intensive three-dimensional periodic shear flow or three-dimensional gas density pulsations of the contraction-expansion type; application of electrostatic gradients including electro dynamic balancing; imposing of photophoretic force, etc. Their choice and/or combination depend upon particular experimental task. Experiments on forced agglomeration in short duration microgravity conditions of the Bremen drop tower succeeded in rapid growth of extended agglomerates, formation of complex three-dimensional cloud patterns, allowed observing controlled cloud displacement, cloud trapping, particle separation with respect to their electrical charge. The breadboard (CMS BB) and the laboratory version of the Cloud Manipulation System (CMS LV) are new types of scientific instrument with high scientific potential. ESA PRODEX program, the Belgian Federal Science Policy Office, DLR project 50WM1223, ZARM Drop Tower Operation and Service Company Ltd. are greatly acknowledged.
NASA Astrophysics Data System (ADS)
Heus, Thijs; Jonker, Harm J. J.; van den Akker, Harry E. A.; Griffith, Eric J.; Koutek, Michal; Post, Frits H.
2009-03-01
In this study, a new method is developed to investigate the entire life cycle of shallow cumuli in large eddy simulations. Although trained observers have no problem in distinguishing the different life stages of a cloud, this process proves difficult to automate, because cloud-splitting and cloud-merging events complicate the distinction between a single system divided in several cloudy parts and two independent systems that collided. Because the human perception is well equipped to capture and to make sense of these time-dependent three-dimensional features, a combination of automated constraints and human inspection in a three-dimensional virtual reality environment is used to select clouds that are exemplary in their behavior throughout their entire life span. Three specific cases (ARM, BOMEX, and BOMEX without large-scale forcings) are analyzed in this way, and the considerable number of selected clouds warrants reliable statistics of cloud properties conditioned on the phase in their life cycle. The most dominant feature in this statistical life cycle analysis is the pulsating growth that is present throughout the entire lifetime of the cloud, independent of the case and of the large-scale forcings. The pulses are a self-sustained phenomenon, driven by a balance between buoyancy and horizontal convergence of dry air. The convective inhibition just above the cloud base plays a crucial role as a barrier for the cloud to overcome in its infancy stage, and as a buffer region later on, ensuring a steady supply of buoyancy into the cloud.
Rapid, semi-automatic fracture and contact mapping for point clouds, images and geophysical data
NASA Astrophysics Data System (ADS)
Thiele, Samuel T.; Grose, Lachlan; Samsu, Anindita; Micklethwaite, Steven; Vollgger, Stefan A.; Cruden, Alexander R.
2017-12-01
The advent of large digital datasets from unmanned aerial vehicle (UAV) and satellite platforms now challenges our ability to extract information across multiple scales in a timely manner, often meaning that the full value of the data is not realised. Here we adapt a least-cost-path solver and specially tailored cost functions to rapidly interpolate structural features between manually defined control points in point cloud and raster datasets. We implement the method in the geographic information system QGIS and the point cloud and mesh processing software CloudCompare. Using these implementations, the method can be applied to a variety of three-dimensional (3-D) and two-dimensional (2-D) datasets, including high-resolution aerial imagery, digital outcrop models, digital elevation models (DEMs) and geophysical grids. We demonstrate the algorithm with four diverse applications in which we extract (1) joint and contact patterns in high-resolution orthophotographs, (2) fracture patterns in a dense 3-D point cloud, (3) earthquake surface ruptures of the Greendale Fault associated with the Mw7.1 Darfield earthquake (New Zealand) from high-resolution light detection and ranging (lidar) data, and (4) oceanic fracture zones from bathymetric data of the North Atlantic. The approach improves the consistency of the interpretation process while retaining expert guidance and achieves significant improvements (35-65 %) in digitisation time compared to traditional methods. Furthermore, it opens up new possibilities for data synthesis and can quantify the agreement between datasets and an interpretation.
Radar signatures of snowflake riming: A modeling study.
Leinonen, Jussi; Szyrmer, Wanda
2015-08-01
The capability to detect the state of snowflake riming reliably from remote measurements would greatly expand the understanding of its global role in cloud-precipitation processes. To investigate the ability of multifrequency radars to detect riming, a three-dimensional model of snowflake growth was used to generate simulated aggregate and crystal snowflakes with various degrees of riming. Three different growth scenarios, representing different temporal relationships between aggregation and riming, were formulated. The discrete dipole approximation was then used to compute the radar backscattering properties of the snowflakes at frequencies of 9.7, 13.6, 35.6, and 94 GHz. In two of the three growth scenarios, the rimed snowflakes exhibit large differences between the backscattering cross sections of the detailed three-dimensional models and the equivalent homogeneous spheroidal models, similarly to earlier results for unrimed snowflakes. When three frequencies are used simultaneously, riming appears to be detectable in a robust manner across all three scenarios. In spite of the differences in backscattering cross sections, the triple-frequency signatures of heavily rimed particles resemble those of the homogeneous spheroids, thus explaining earlier observational results that were compatible with such spheroids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFarquhar, Greg M.
2012-09-21
We proposed to analyze data collected during the Routine Aerial Facilities (AAF) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) in order to develop an integrated product of cloud microphysical properties (number concentration of drops in different size bins, total liquid drop concentration integrated over all bin sizes, liquid water content LWC, extinction of liquid clouds, effective radius of water drops, and radar reflectivity factor) that could be used to evaluate large-eddy simulations (LES), general circulation models (GCMs) and ground-based remote sensing retrievals, and to develop cloud parameterizations with the end goal of improving the modeling ofmore » cloud processes and properties and their impact on atmospheric radiation. We have completed the development of this microphysical database. We investigated the differences in the size distributions measured by the Cloud and Aerosol Spectrometer (CAS) and the Forward Scattering Probe (FSSP), between the one dimensional cloud imaging probe (1DC) and the two-dimensional cloud imaging probe (2DC), and between the bulk LWCs measured by the Gerber probe against those derived from the size resolved probes.« less
Method of surface error visualization using laser 3D projection technology
NASA Astrophysics Data System (ADS)
Guo, Lili; Li, Lijuan; Lin, Xuezhu
2017-10-01
In the process of manufacturing large components, such as aerospace, automobile and shipping industry, some important mold or stamped metal plate requires precise forming on the surface, which usually needs to be verified, if necessary, the surface needs to be corrected and reprocessed. In order to make the correction of the machined surface more convenient, this paper proposes a method based on Laser 3D projection system, this method uses the contour form of terrain contour, directly showing the deviation between the actually measured data and the theoretical mathematical model (CAD) on the measured surface. First, measure the machined surface to get the point cloud data and the formation of triangular mesh; secondly, through coordinate transformation, unify the point cloud data to the theoretical model and calculate the three-dimensional deviation, according to the sign (positive or negative) and size of the deviation, use the color deviation band to denote the deviation of three-dimensional; then, use three-dimensional contour lines to draw and represent every coordinates deviation band, creating the projection files; finally, import the projection files into the laser projector, and make the contour line projected to the processed file with 1:1 in the form of a laser beam, compare the Full-color 3D deviation map with the projection graph, then, locate and make quantitative correction to meet the processing precision requirements. It can display the trend of the machined surface deviation clearly.
Overlap Properties of Clouds Generated by a Cloud Resolving Model
NASA Technical Reports Server (NTRS)
Oreopoulos, L.; Khairoutdinov, M.
2002-01-01
In order for General Circulation Models (GCMs), one of our most important tools to predict future climate, to correctly describe the propagation of solar and thermal radiation through the cloudy atmosphere a realistic description of the vertical distribution of cloud amount is needed. Actually, one needs not only the cloud amounts at different levels of the atmosphere, but also how these cloud amounts are related, in other words, how they overlap. Currently GCMs make some idealized assumptions about cloud overlap, for example that contiguous cloud layers overlap maximally and non-contiguous cloud layers overlap in a random fashion. Since there are difficulties in obtaining the vertical profile of cloud amount from observations, the realism of the overlap assumptions made in GCMs has not been yet rigorously investigated. Recently however, cloud observations from a relatively new type of ground radar have been used to examine the vertical distribution of cloudiness. These observations suggest that the GCM overlap assumptions are dubious. Our study uses cloud fields from sophisticated models dedicated to simulate cloud formation, maintenance, and dissipation called Cloud Resolving Models . These models are generally considered capable of producing realistic three-dimensional representation of cloudiness. Using numerous cloud fields produced by such a CRM we show that the degree of overlap between cloud layers is a function of their separation distance, and is in general described by a combination of the maximum and random overlap assumption, with random overlap dominating as separation distances increase. We show that it is possible to parameterize this behavior in a way that can eventually be incorporated in GCMs. Our results seem to have a significant resemblance to the results from the radar observations despite the completely different nature of the datasets. This consistency is encouraging and will promote development of new radiative transfer codes that will estimate the radiation effects of multi-layer cloud fields more accurately.
NASA Astrophysics Data System (ADS)
Hosseinzadeh-Nik, Zahra; Regele, Jonathan D.
2015-11-01
Dense compressible particle-laden flow, which has a complex nature, exists in various engineering applications. Shock waves impacting a particle cloud is a canonical problem to investigate this type of flow. It has been demonstrated that large flow unsteadiness is generated inside the particle cloud from the flow induced by the shock passage. It is desirable to develop models for the Reynolds stress to capture the energy contained in vortical structures so that volume-averaged models with point particles can be simulated accurately. However, the previous work used Euler equations, which makes the prediction of vorticity generation and propagation innacurate. In this work, a fully resolved two dimensional (2D) simulation using the compressible Navier-Stokes equations with a volume penalization method to model the particles has been performed with the parallel adaptive wavelet-collocation method. The results still show large unsteadiness inside and downstream of the particle cloud. A 1D model is created for the unclosed terms based upon these 2D results. The 1D model uses a two-phase simple low dissipation AUSM scheme (TSLAU) developed by coupled with the compressible two phase kinetic energy equation.
Cirrus cloud model parameterizations: Incorporating realistic ice particle generation
NASA Technical Reports Server (NTRS)
Sassen, Kenneth; Dodd, G. C.; Starr, David OC.
1990-01-01
Recent cirrus cloud modeling studies have involved the application of a time-dependent, two dimensional Eulerian model, with generalized cloud microphysical parameterizations drawn from experimental findings. For computing the ice versus vapor phase changes, the ice mass content is linked to the maintenance of a relative humidity with respect to ice (RHI) of 105 percent; ice growth occurs both with regard to the introduction of new particles and the growth of existing particles. In a simplified cloud model designed to investigate the basic role of various physical processes in the growth and maintenance of cirrus clouds, these parametric relations are justifiable. In comparison, the one dimensional cloud microphysical model recently applied to evaluating the nucleation and growth of ice crystals in cirrus clouds explicitly treated populations of haze and cloud droplets, and ice crystals. Although these two modeling approaches are clearly incompatible, the goal of the present numerical study is to develop a parametric treatment of new ice particle generation, on the basis of detailed microphysical model findings, for incorporation into improved cirrus growth models. For example, the relation between temperature and the relative humidity required to generate ice crystals from ammonium sulfate haze droplets, whose probability of freezing through the homogeneous nucleation mode are a combined function of time and droplet molality, volume, and temperature. As an example of this approach, the results of cloud microphysical simulations are presented showing the rather narrow domain in the temperature/humidity field where new ice crystals can be generated. The microphysical simulations point out the need for detailed CCN studies at cirrus altitudes and haze droplet measurements within cirrus clouds, but also suggest that a relatively simple treatment of ice particle generation, which includes cloud chemistry, can be incorporated into cirrus cloud growth.
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Lang, Stephen E.; Zeng, Xiping; Li, Xiaowen; Matsui, Toshi; Mohr, Karen; Posselt, Derek; Chern, Jiundar; Peters-Lidard, Christa; Norris, Peter M.;
2014-01-01
Convection is the primary transport process in the Earth's atmosphere. About two-thirds of the Earth's rainfall and severe floods derive from convection. In addition, two-thirds of the global rain falls in the tropics, while the associated latent heat release accounts for three-fourths of the total heat energy for the Earth's atmosphere. Cloud-resolving models (CRMs) have been used to improve our understanding of cloud and precipitation processes and phenomena from micro-scale to cloud-scale and mesoscale as well as their interactions with radiation and surface processes. CRMs use sophisticated and realistic representations of cloud microphysical processes and can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems. CRMs also allow for explicit interaction between clouds, outgoing longwave (cooling) and incoming solar (heating) radiation, and ocean and land surface processes. Observations are required to initialize CRMs and to validate their results. The Goddard Cumulus Ensemble model (GCE) has been developed and improved at NASA/Goddard Space Flight Center over the past three decades. It is amulti-dimensional non-hydrostatic CRM that can simulate clouds and cloud systems in different environments. Early improvements and testing were presented in Tao and Simpson (1993) and Tao et al. (2003a). A review on the application of the GCE to the understanding of precipitation processes can be found in Simpson and Tao (1993) and Tao (2003). In this paper, recent model improvements (microphysics, radiation and land surface processes) are described along with their impact and performance on cloud and precipitation events in different geographic locations via comparisons with observations. In addition, recent advanced applications of the GCE are presented that include understanding the physical processes responsible for diurnal variation, examining the impact of aerosols (cloud condensation nuclei or CCN and ice nuclei or IN) on precipitation processes, utilizing a satellite simulator to improve the microphysics, providing better simulations for satellite-derived latent heating retrieval, and coupling with a general circulation model to improve the representation of precipitation processes.
NASA Technical Reports Server (NTRS)
Covey, Curt; Ghan, Steven J.; Walton, John J.; Weissman, Paul R.
1989-01-01
Interception of sunlight by the high altitude worldwide dust cloud generated by impact of a large asteroid or comet would lead to substantial land surface cooling, according to our three-dimensional atmospheric general circulation model (GCM). This result is qualitatively similar to conclusions drawn from an earlier study that employed a one-dimensional atmospheric model, but in the GCM simulation the heat capacity of the oceans substantially mitigates land surface cooling, an effect that one-dimensional models cannot quantify. On the other hand, the low heat capacity of the GCM's land surface allows temperatures to drop more rapidly in the initial stage of cooling than in the one-dimensional model study. These two differences between three-dimensional and one-dimensional model simulations were noted previously in studies of nuclear winter; GCM-simulated climatic changes in the Alvarez-inspired scenario of asteroid/comet winter, however, are more severe than in nuclear winter because the assumed aerosol amount is large enough to intercept all sunlight falling on earth. Impacts of smaller objects could also lead to dramatic, though less severe, climatic changes, according to our GCM. Our conclusion is that it is difficult to imagine an asteroid or comet impact leading to anything approaching complete global freezing, but quite reasonable to assume that impacts at the Alvarez level, or even smaller, dramatically alter the climate in at least a patchy sense.
2013-01-01
Gravity Wave. A slice of the potential temperature perturbation (at y=50 km) after 700 s for 30× 30× 5 elements with 4th-order polynomials . The contour...CONSTANTINESCU ‡ Key words. cloud-resolving model; compressible flow; element-based Galerkin methods; Euler; global model; IMEX; Lagrange; Legendre ...methods in terms of accuracy and efficiency for two types of geophysical fluid dynamics problems: buoyant convection and inertia- gravity waves. These
NASA Astrophysics Data System (ADS)
Kainulainen, J.; Federrath, C.
2017-11-01
The relationship between turbulence energy and gas density variance is a fundamental prediction for turbulence-dominated media and is commonly used in analytic models of star formation. We determine this relationship for 15 molecular clouds in the solar neighbourhood. We use the line widths of the CO molecule as the probe of the turbulence energy (sonic Mach number, ℳs) and three-dimensional models to reconstruct the density probability distribution function (ρ-PDF) of the clouds, derived using near-infrared extinction and Herschel dust emission data, as the probe of the density variance (σs). We find no significant correlation between ℳs and σs among the studied clouds, but we cannot rule out a weak correlation either. In the context of turbulence-dominated gas, the range of the ℳs and σs values corresponds to the model predictions. The data cannot constrain whether the turbulence-driving parameter, b, and/or thermal-to-magnetic pressure ratio, β, vary among the sample clouds. Most clouds are not in agreement with field strengths stronger than given by β ≲ 0.05. A model with b2β/ (β + 1) = 0.30 ± 0.06 provides an adequate fit to the cloud sample as a whole. Based on the average behaviour of the sample, we can rule out three regimes: (i) strong compression combined with a weak magnetic field (b ≳ 0.7 and β ≳ 3); (ii) weak compression (b ≲ 0.35); and (iii) a strong magnetic field (β ≲ 0.1). When we include independent magnetic field strength estimates in the analysis, the data rule out solenoidal driving (b < 0.4) for the majority of the solar neighbourhood clouds. However, most clouds have b parameters larger than unity, which indicates a discrepancy with the turbulence-dominated picture; we discuss the possible reasons for this.
Multiview point clouds denoising based on interference elimination
NASA Astrophysics Data System (ADS)
Hu, Yang; Wu, Qian; Wang, Le; Jiang, Huanyu
2018-03-01
Newly emerging low-cost depth sensors offer huge potentials for three-dimensional (3-D) modeling, but existing high noise restricts these sensors from obtaining accurate results. Thus, we proposed a method for denoising registered multiview point clouds with high noise to solve that problem. The proposed method is aimed at fully using redundant information to eliminate the interferences among point clouds of different views based on an iterative procedure. In each iteration, noisy points are either deleted or moved to their weighted average targets in accordance with two cases. Simulated data and practical data captured by a Kinect v2 sensor were tested in experiments qualitatively and quantitatively. Results showed that the proposed method can effectively reduce noise and recover local features from highly noisy multiview point clouds with good robustness, compared to truncated signed distance function and moving least squares (MLS). Moreover, the resulting low-noise point clouds can be further smoothed by the MLS to achieve improved results. This study provides the feasibility of obtaining fine 3-D models with high-noise devices, especially for depth sensors, such as Kinect.
3-Dimensional simulations of storm dynamics on Saturn
NASA Astrophysics Data System (ADS)
Hueso, R.; Sanchez-Lavega, A.
2000-10-01
The formation and evolution of convective clouds in the atmosphere of Saturn is investigated using an anelastic three-dimensional time-dependent model with parameterized microphysics. The model is designed to study the development of moist convection on any of the four giant planets and has been previously used to investigate the formation of water convective storms in the jovian atmosphere. The role of water and ammonia in moist convection is investigated with varying deep concentrations. Results imply that most of the convective activity observed at Saturn may occur at the ammonia cloud deck while the formation of water moist convection may happen only when very strong constraints on the lower troposphere are met. Ammonia storms can ascend to the 300 mb level with vertical velocities around 30 ms-1. The seasonal effect on the thermal profile at the upper troposphere may have important effects on the development of ammonia storms. In the cases where water storms can develop they span many scale heights with peak vertical velocities around 160 ms-1 and cloud particles can be transported up to the 150 mb level. These predicted characteristics are similar to the Great White Spots observed in Saturn which, therefore, could be originated at the water cloud base level. This work has been supported by Gobierno Vasco PI 1997-34. R. Hueso acknowledges a PhD fellowship from Gobierno Vasco.
Study on Diagnosing Three Dimensional Cloud Region
NASA Astrophysics Data System (ADS)
Cai, M., Jr.; Zhou, Y., Sr.
2017-12-01
Cloud mask and relative humidity (RH) provided by Cloudsat products from 2007 to 2008 are statistical analyzed to get RH Threshold between cloud and clear sky and its variation with height. A diagnosis method is proposed based on reanalysis data and applied to three-dimensional cloud field diagnosis of a real case. Diagnostic cloud field was compared to satellite, radar and other cloud precipitation observation. Main results are as follows. 1.Cloud region where cloud mask is bigger than 20 has a good space and time corresponding to the high value relative humidity region, which is provide by ECWMF AUX product. Statistical analysis of the RH frequency distribution within and outside cloud indicated that, distribution of RH in cloud at different height range shows single peak type, and the peak is near a RH value of 100%. Local atmospheric environment affects the RH distribution outside cloud, which leads to TH distribution vary in different region or different height. 2. RH threshold and its vertical distribution used for cloud diagnostic was analyzed from Threat Score method. The method is applied to a three dimension cloud diagnosis case study based on NCEP reanalysis data and th diagnostic cloud field is compared to satellite, radar and cloud precipitation observation on ground. It is found that, RH gradient is very big around cloud region and diagnosed cloud area by RH threshold method is relatively stable. Diagnostic cloud area has a good corresponding to updraft region. The cloud and clear sky distribution corresponds to satellite the TBB observations overall. Diagnostic cloud depth, or sum cloud layers distribution consists with optical thickness and precipitation on ground better. The cloud vertical profile reveals the relation between cloud vertical structure and weather system clearly. Diagnostic cloud distribution correspond to cloud observations on ground very well. 3. The method is improved by changing the vertical interval from altitude to temperature. The result shows that, the five factors , including TS score for clear sky, empty forecast, missed forecast, and especially TS score for cloud region and the accurate rate increased obviously. So, the RH threshold and its vertical distribution with temperature is better than with altitude. More tests and comparision should be done to assess the diagnosis method.
Comparison of roadway roughness derived from LIDAR and SFM 3D point clouds.
DOT National Transportation Integrated Search
2015-10-01
This report describes a short-term study undertaken to investigate the potential for using dense three-dimensional (3D) point : clouds generated from light detection and ranging (LIDAR) and photogrammetry to assess roadway roughness. Spatially : cont...
Dusty Cloud Acceleration by Radiation Pressure in Rapidly Star-forming Galaxies
NASA Astrophysics Data System (ADS)
Zhang, Dong; Davis, Shane W.; Jiang, Yan-Fei; Stone, James M.
2018-02-01
We perform two-dimensional and three-dimensional radiation hydrodynamic simulations to study cold clouds accelerated by radiation pressure on dust in the environment of rapidly star-forming galaxies dominated by infrared flux. We utilize the reduced speed of light approximation to solve the frequency-averaged, time-dependent radiative transfer equation. We find that radiation pressure is capable of accelerating the clouds to hundreds of kilometers per second while remaining dense and cold, consistent with observations. We compare these results to simulations where acceleration is provided by entrainment in a hot wind, where the momentum injection of the hot flow is comparable to the momentum in the radiation field. We find that the survival time of the cloud accelerated by the radiation field is significantly longer than that of a cloud entrained in a hot outflow. We show that the dynamics of the irradiated cloud depends on the initial optical depth, temperature of the cloud, and intensity of the flux. Additionally, gas pressure from the background may limit cloud acceleration if the density ratio between the cloud and background is ≲ {10}2. In general, a 10 pc-scale optically thin cloud forms a pancake structure elongated perpendicular to the direction of motion, while optically thick clouds form a filamentary structure elongated parallel to the direction of motion. The details of accelerated cloud morphology and geometry can also be affected by other factors, such as the cloud lengthscale, reduced speed of light approximation, spatial resolution, initial cloud structure, and dimensionality of the run, but these have relatively little affect on the cloud velocity or survival time.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Zeng, X.; Shie, C.-L.; Starr, D.; Simpson, J.
2004-01-01
Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D, see a brief review by Tao 2003). Only recently have 3D experiments been performed for multi-day periods for tropical cloud systems with large horizontal domains at the National Center for Atmospheric Research, at NOAA GFDL, at the U. K. Met. Office, at Colorado State University and at NASA Goddard Space Flight Center (Tao 2003). At Goddard, a 3D Goddard Cumulus Ensemble (GCE) model was used to simulate periods during TOGA COARE (December 19-27, 1992), GATE (September 1-7, 1974), SCSMEX (June 2-11, 1998), ARM (June 26-30, 1997) and KWAJEX (August 7-13, August 18-21, and August 29-September 12, 1999) using a 512 km domain (with 2-kilometer resolution). The results indicate that surface precipitation and latent heating profiles are similar between the 2D and 3D GCE model simulations. However, there are difference in radiation, surface fluxes and precipitation characteristics. The 2D GCE model was used to perform a long-term integration on ARM/GCSS case 4 (22 days at the ARM southern Great Plains site in March 2000). Preliminary results showed a large temperature bias in the upper troposphere that had not been seen in previous tropical cases. The major objectives of this paper are: (1) to determine the sensitivities to model configuration (ie., 2D in west-east, south-north or 3D), (2) to identify the differences and similarities in the organization and entrainment rates of convection between 2D- and 3D-simulated ARM cloud systems, and (3) assess the impact of upper tropospheric forcing on tropical and ARM case 4 cases.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Zeng, X.; Shie, C.-L.; Starr, D.; Simpson, J.
2004-01-01
Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D, see a brief review by Tao 2003). Only recently have 3D experiments been performed for multi-day periods for tropical cloud systems with large horizontal domains at the National Center for Atmospheric Research, at NOAA GFDL, at the U. K. Met. Office, at Colorado State University and at NASA Goddard Space Flight Center (Tao 2003). At Goddard, a 3D Goddard Cumulus Ensemble (GCE) model was used to simulate periods during TOGA COARE (December 19-27, 1992), GATE (September 1-7, 1974), SCSMEX (June 2-11, 1998), ARM (June 26-30, 1997) and KWAJEX (August 7-13, August 18-21, and August 29-September 12, 1999) using a 512 by 512 km domain (with 2-km resolution). The results indicate that surface precipitation and latent heating profiles are similar between the 2D and 3D GCE model simulations. However, there are difference in radiation, surface fluxes and precipitation characteristics. The 2D GCE model was used to perform a long-term integration on ARM/GCSS case 4 (22 days at the ARM Southern Great Plains site in March 2000). Preliminary results showed a large temperature bias in the upper troposphere that had not been seen in previous tropical cases. The major objectives of this paper are: (1) to determine the sensitivities to model configuration (i.e., 2D in west-east, south-north or 3D), (2) to identify the differences and similarities in the organization and entrainment rates of convection between 2D- and 3D-simulated ARM cloud systems, and (3) assess the impact of upper tropospheric forcing on tropical and ARM case 4 cases.
Creating three-dimensional tooth models from tomographic images.
Lima da Silva, Isaac Newton; Barbosa, Gustavo Frainer; Soares, Rodrigo Borowski Grecco; Beltrao, Maria Cecilia Gomes; Spohr, Ana Maria; Mota, Eduardo Golcalves; Oshima, Hugo Mitsuo Silva; Burnett, Luiz Henrique
2008-01-01
The use of Finite Element Analysis (FEA) is becoming very frequent in Dentistry. However, most of the three-dimensional models presented by the literature for teeth are limited in terms of geometry. Discrepancy in shape and dimensions can cause wrong results to occur. Sharp cusps and faceted contour can produce stress concentrations, which are incoherent with the reality. The aim of this study was the processing of tomographic images in order to develop an advanced three-dimensional reconstruction of the anatomy of a molar tooth and the integration of the resulting solid with commercially available CAD/CAE software. Computed tomographic images were obtained from 0.5 mm thick slices of mandibular molar and transferred to commercial cad software. Once the point cloud data have been generated, the work on these points started to get to the solid model of the tooth with Pro/Engineer software. The obtained tooth model showed very accurate shape and dimensions, as it was obtained from real tooth data with error of 0.0 to -0.8 mm. The methodology presented was efficient for creating a biomodel of a tooth from tomographic images that realistically represented its anatomy.
NASA Astrophysics Data System (ADS)
Marchetti, Benjamin; Bergougnoux, Laurence; Guazzelli, Elisabeth
2017-11-01
We present a jointed experimental and numerical study examining the influence of vortical structures on the settling of a cloud of solid spherical particles under the action of gravity at low Stokes numbers. The two-dimensional model experiment uses electro-convection to generate a two-dimensional array of controlled vortices which mimics a simplified vortical flow. Particle image-velocimetry and tracking are used to examine the motion of the cloud within this vortical flow. The cloud motion is compared to the predictions of a two-way-coupling numerical simulation.
The VMC survey - XXV. The 3D structure of the Small Magellanic Cloud from Classical Cepheids
NASA Astrophysics Data System (ADS)
Ripepi, Vincenzo; Cioni, Maria-Rosa L.; Moretti, Maria Ida; Marconi, Marcella; Bekki, Kenji; Clementini, Gisella; de Grijs, Richard; Emerson, Jim; Groenewegen, Martin A. T.; Ivanov, Valentin D.; Molinaro, Roberto; Muraveva, Tatiana; Oliveira, Joana M.; Piatti, Andrés E.; Subramanian, Smitha; van Loon, Jacco Th.
2017-11-01
The VISTA near-infrared YJKs survey of the Magellanic System (VMC) is collecting deep Ks-band time-series photometry of pulsating stars hosted by the two Magellanic Clouds and their connecting bridge. Here, we present Y, J, Ks light curves for a sample of 717 Small Magellanic Cloud (SMC) Classical Cepheids (CCs). These data, complemented with our previous results and V magnitude from literature, allowed us to construct a variety of period-luminosity and period-Wesenheit relationships, valid for Fundamental, First and Second Overtone pulsators. These relations provide accurate individual distances to CCs in the SMC over an area of more than 40 deg2. Adopting literature relations, we estimated ages and metallicities for the majority of the investigated pulsators, finding that (i) the age distribution is bimodal, with two peaks at 120 ± 10 and 220 ± 10 Myr; (i) the more metal-rich CCs appear to be located closer to the centre of the galaxy. Our results show that the three-dimensional distribution of the CCs in the SMC is not planar but heavily elongated for more than 25-30 kpc approximately in the east/north-east towards south-west direction. The young and old CCs in the SMC show a different geometric distribution. Our data support the current theoretical scenario predicting a close encounter or a direct collision between the Clouds some 200 Myr ago and confirm the presence of a Counter-Bridge predicted by some models. The high-precision three-dimensional distribution of young stars presented in this paper provides a new test bed for future models exploring the formation and evolution of the Magellanic System.
Liu, Z; Voelger, P; Sugimoto, N
2000-06-20
We carried out a simulation study for the observation of clouds and aerosols with the Japanese Experimental Lidar in Space Equipment (ELISE), which is a two-wavelength backscatter lidar with three detection channels. The National Space Development Agency of Japan plans to launch the ELISE on the Mission Demonstrate Satellite 2 (MDS-2). In the simulations, the lidar return signals for the ELISE are calculated for an artificial, two-dimensional atmospheric model including different types of clouds and aerosols. The signal detection processes are simulated realistically by inclusion of various sources of noise. The lidar signals that are generated are then used as input for simulations of data analysis with inversion algorithms to investigate retrieval of the optical properties of clouds and aerosols. The results demonstrate that the ELISE can provide global data on the structures and optical properties of clouds and aerosols. We also conducted an analysis of the effects of cloud inhomogeneity on retrievals from averaged lidar profiles. We show that the effects are significant for space lidar observations of optically thick broken clouds.
Research on external flow field of a car based on reverse engineering
NASA Astrophysics Data System (ADS)
Hu, Shushan; Liu, Ronge
2018-05-01
In this paper, the point cloud data of FAW-VOLKSWAGEN car body shape is obtained by three coordinate measuring instrument and laser scanning method. The accurate three dimensional model of the car is obtained using CATIA software reverse modelling technology. The car body is gridded, the calculation field and boundary condition type of the car flow field are determined, and the numerical simulation is carried out in Hyper Mesh software. The pressure cloud diagram, velocity vector diagram, air resistance coefficient and lift coefficient of the car are obtained. The calculation results reflect the aerodynamic characteristics of the car's external flow field. The motion of the separation flow on the surface of the vehicle body is well simulated, and the area where the vortex motion is relatively intense has been determined. The results provide a theoretical basis for improving and optimizing the body shape.
Multilayered nonuniform sampling for three-dimensional scene representation
NASA Astrophysics Data System (ADS)
Lin, Huei-Yung; Xiao, Yu-Hua; Chen, Bo-Ren
2015-09-01
The representation of a three-dimensional (3-D) scene is essential in multiview imaging technologies. We present a unified geometry and texture representation based on global resampling of the scene. A layered data map representation with a distance-dependent nonuniform sampling strategy is proposed. It is capable of increasing the details of the 3-D structure locally and is compact in size. The 3-D point cloud obtained from the multilayered data map is used for view rendering. For any given viewpoint, image synthesis with different levels of detail is carried out using the quadtree-based nonuniformly sampled 3-D data points. Experimental results are presented using the 3-D models of reconstructed real objects.
NASA Astrophysics Data System (ADS)
Davis, Anthony; Diner, David; Yanovsky, Igor; Garay, Michael; Xu, Feng; Bal, Guillaume; Schechner, Yoav; Aides, Amit; Qu, Zheng; Emde, Claudia
2013-04-01
Remote sensing is a key tool for sorting cloud ensembles by dynamical state, aerosol environments by source region, and establishing causal relationships between aerosol amounts, type, and cloud microphysics-the so-called indirect aerosol climate impacts, and one of the main sources of uncertainty in current climate models. Current satellite imagers use data processing approaches that invariably start with cloud detection/masking to isolate aerosol air-masses from clouds, and then rely on one-dimensional (1D) radiative transfer (RT) to interpret the aerosol and cloud measurements in isolation. Not only does this lead to well-documented biases for the estimates of aerosol radiative forcing and cloud optical depths in current missions, but it is fundamentally inadequate for future missions such as EarthCARE where capturing the complex, three-dimensional (3D) interactions between clouds and aerosols is a primary objective. In order to advance the state of the art, the next generation of satellite information processing systems must incorporate technologies that will enable the treatment of the atmosphere as a fully 3D environment, represented more realistically as a continuum. At one end, there is an optically thin background dominated by aerosols and molecular scattering that is strongly stratified and relatively homogeneous in the horizontal. At the other end, there are optically thick embedded elements, clouds and aerosol plumes, which can be more or less uniform and quasi-planar or else highly 3D with boundaries in all directions; in both cases, strong internal variability may be present. To make this paradigm shift possible, we propose to combine the standard models for satellite signal prediction physically grounded in 1D and 3D RT, both scalar and vector, with technologies adapted from biomedical imaging, digital image processing, and computer vision. This will enable us to demonstrate how the 3D distribution of atmospheric constituents, and their associated microphysical properties, can be reconstructed from multi-angle/multi-spectral imaging radiometry and, more and more, polarimetry. Specific technologies of interest are computed tomography (reconstruction from projections), optical tomography (using cross-pixel radiation transport in the diffusion limit), stereoscopy (depth/height retrievals), blind source and scale separation (signal unmixing), and disocclusion (information recovery in the presence of obstructions). Later on, these potentially powerful inverse problem solutions will be fully integrated in a versatile satellite data analysis toolbox. At present, we can report substantial progress at the component level. Specifically, we will focus on the most elementary problems in atmospheric tomography with an emphasis on the vastly under-exploited class of multi-pixel techniques. One basic problem is to infer the outer shape and mean opacity of 3D clouds, along with a bulk measure of cloud particle size. Another is to separate high and low cloud layers based on their characteristically different spatial textures. Yet another is to reconstruct the 3D spatial distribution of aerosol density based on passive imaging. This suite of independent feasibility studies amounts to a compelling proofof- concept for the ambitious 3D-Tomographic Reconstruction of the Aerosol-Cloud Environment (3D-TRACE) project as a whole.
A curvature-based weighted fuzzy c-means algorithm for point clouds de-noising
NASA Astrophysics Data System (ADS)
Cui, Xin; Li, Shipeng; Yan, Xiutian; He, Xinhua
2018-04-01
In order to remove the noise of three-dimensional scattered point cloud and smooth the data without damnify the sharp geometric feature simultaneity, a novel algorithm is proposed in this paper. The feature-preserving weight is added to fuzzy c-means algorithm which invented a curvature weighted fuzzy c-means clustering algorithm. Firstly, the large-scale outliers are removed by the statistics of r radius neighboring points. Then, the algorithm estimates the curvature of the point cloud data by using conicoid parabolic fitting method and calculates the curvature feature value. Finally, the proposed clustering algorithm is adapted to calculate the weighted cluster centers. The cluster centers are regarded as the new points. The experimental results show that this approach is efficient to different scale and intensities of noise in point cloud with a high precision, and perform a feature-preserving nature at the same time. Also it is robust enough to different noise model.
Modeling marine boundary-layer clouds with a two-layer model: A one-dimensional simulation
NASA Technical Reports Server (NTRS)
Wang, Shouping
1993-01-01
A two-layer model of the marine boundary layer is described. The model is used to simulate both stratocumulus and shallow cumulus clouds in downstream simulations. Over cold sea surfaces, the model predicts a relatively uniform structure in the boundary layer with 90%-100% cloud fraction. Over warm sea surfaces, the model predicts a relatively strong decoupled and conditionally unstable structure with a cloud fraction between 30% and 60%. A strong large-scale divergence considerably limits the height of the boundary layer and decreases relative humidity in the upper part of the cloud layer; thus, a low cloud fraction results. The efffects of drizzle on the boundary-layer structure and cloud fraction are also studied with downstream simulations. It is found that drizzle dries and stabilizes the cloud layer and tends to decouple the cloud from the subcloud layer. Consequently, solid stratocumulus clouds may break up and the cloud fraction may decrease because of drizzle.
Feature-based three-dimensional registration for repetitive geometry in machine vision
Gong, Yuanzheng; Seibel, Eric J.
2016-01-01
As an important step in three-dimensional (3D) machine vision, 3D registration is a process of aligning two or multiple 3D point clouds that are collected from different perspectives together into a complete one. The most popular approach to register point clouds is to minimize the difference between these point clouds iteratively by Iterative Closest Point (ICP) algorithm. However, ICP does not work well for repetitive geometries. To solve this problem, a feature-based 3D registration algorithm is proposed to align the point clouds that are generated by vision-based 3D reconstruction. By utilizing texture information of the object and the robustness of image features, 3D correspondences can be retrieved so that the 3D registration of two point clouds is to solve a rigid transformation. The comparison of our method and different ICP algorithms demonstrates that our proposed algorithm is more accurate, efficient and robust for repetitive geometry registration. Moreover, this method can also be used to solve high depth uncertainty problem caused by little camera baseline in vision-based 3D reconstruction. PMID:28286703
Three dimensional modeling of cirrus during the 1991 FIRE IFO 2: Detailed process study
NASA Technical Reports Server (NTRS)
Jensen, Eric J.; Toon, Owen B.; Westphal, Douglas L.
1993-01-01
A three-dimensional model of cirrus cloud formation and evolution, including microphysical, dynamical, and radiative processes, was used to simulate cirrus observed in the FIRE Phase 2 Cirrus field program (13 Nov. - 7 Dec. 1991). Sulfate aerosols, solution drops, ice crystals, and water vapor are all treated as interactive elements in the model. Ice crystal size distributions are fully resolved based on calculations of homogeneous freezing of solution drops, growth by water vapor deposition, evaporation, aggregation, and vertical transport. Visible and infrared radiative fluxes, and radiative heating rates are calculated using the two-stream algorithm described by Toon et al. Wind velocities, diffusion coefficients, and temperatures were taken from the MAPS analyses and the MM4 mesoscale model simulations. Within the model, moisture is transported and converted to liquid or vapor by the microphysical processes. The simulated cloud bulk and microphysical properties are shown in detail for the Nov. 26 and Dec. 5 case studies. Comparisons with lidar, radar, and in situ data are used to determine how well the simulations reproduced the observed cirrus. The roles played by various processes in the model are described in detail. The potential modes of nucleation are evaluated, and the importance of small-scale variations in temperature and humidity are discussed. The importance of competing ice crystal growth mechanisms (water vapor deposition and aggregation) are evaluated based on model simulations. Finally, the importance of ice crystal shape for crystal growth and vertical transport of ice are discussed.
An Enduring Rapidly Moving Storm as a Guide to Saturn's Equatorial Jet's Complex Structure
NASA Technical Reports Server (NTRS)
Sanchez-Lavega, A.; Garcia-Melendo, E.; Perez-Hoyos, S.; Hueso, R.; Wong, M. H.; Simon, A.; Sanz-Requena, J. F.; Antunano, A.; Barrado-Izagirre, N.; Garate-Lopez, I.;
2016-01-01
Saturn has an intense and broad eastward equatorial jet with a complex three-dimensional structure mixed with time variability. The equatorial region experiences strong seasonal insolation variations enhanced by ring shadowing, and three of the six known giant planetary-scale storms have developed in it. These factors make Saturn's equator a natural laboratory to test models of jets in giant planets. Here we report on a bright equatorial atmospheric feature imaged in 2015 that moved steadily at a high speed of 450/ms not measured since 1980-1981 with other equatorial clouds moving within an ample range of velocities. Radiative transfer models show that these motions occur at three altitude levels within the upper haze and clouds. We find that the peak of the jet (latitudes 10degN to 10degS) suffers intense vertical shears reaching + 2.5/ms/km, two orders of magnitude higher than meridional shears, and temporal variability above 1 bar altitude level.
Higher dimensional strange quark matter solutions in self creation cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Şen, R., E-mail: ramazansen-1991@hotmail.com; Aygün, S., E-mail: saygun@comu.edu.tr
In this study, we have generalized the higher dimensional flat Friedmann-Robertson-Walker (FRW) universe solutions for a cloud of string with perfect fluid attached strange quark matter (SQM) in Self Creation Cosmology (SCC). We have obtained that the cloud of string with perfect fluid does not survive and the string tension density vanishes for this model. However, we get dark energy model for strange quark matter with positive density and negative pressure in self creation cosmology.
Feng, Sha; Vogelmann, Andrew M.; Li, Zhijin; ...
2015-01-20
Fine-resolution three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy’s Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multi-scale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scalesmore » larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 (CAM5) is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.« less
NASA Astrophysics Data System (ADS)
Zhang, Chun-Sen; Zhang, Meng-Meng; Zhang, Wei-Xing
2017-01-01
This paper outlines a low-cost, user-friendly photogrammetric technique with nonmetric cameras to obtain excavation site digital sequence images, based on photogrammetry and computer vision. Digital camera calibration, automatic aerial triangulation, image feature extraction, image sequence matching, and dense digital differential rectification are used, combined with a certain number of global control points of the excavation site, to reconstruct the high precision of measured three-dimensional (3-D) models. Using the acrobatic figurines in the Qin Shi Huang mausoleum excavation as an example, our method solves the problems of little base-to-height ratio, high inclination, unstable altitudes, and significant ground elevation changes affecting image matching. Compared to 3-D laser scanning, the 3-D color point cloud obtained by this method can maintain the same visual result and has advantages of low project cost, simple data processing, and high accuracy. Structure-from-motion (SfM) is often used to reconstruct 3-D models of large scenes and has lower accuracy if it is a reconstructed 3-D model of a small scene at close range. Results indicate that this method quickly achieves 3-D reconstruction of large archaeological sites and produces heritage site distribution of orthophotos providing a scientific basis for accurate location of cultural relics, archaeological excavations, investigation, and site protection planning. This proposed method has a comprehensive application value.
Three Dimensional Modeling Analysis of the Transpacific Transport of Aerosols During PACDEX
NASA Astrophysics Data System (ADS)
Carmichael, G. R.; Adhikary, B.; Hatch, C.; Kulkarni, S.; Moen, J.; Mena, M.
2007-12-01
Mineral dust and aerosols emitted from Asia are known to traverse long distances across the Pacific Ocean and can reach North America within a few days. A pilot field study, the PACific Dust Experiment (PACDEX), was carried out in April and May of 2007, during the peak East Asian dust emission season. The NSF/NCAR-HIAPER (High Performance Instrumented Airborne Platform for Environmental Research) platform allowed for sampling the evolution of mineral aerosol/pollution plumes and their physical and chemical characteristics as they traverse the Pacific Ocean and interact with the Pacific cloud systems en route to North America in both the upper and lower troposphere. A comprehensive 3-dimensional regional-scale model developed at The University of Iowa (Sulfur Transport dEposition Model, STEM) has been used for the analysis of aerosol interactions to help define key measurement strategies during the mission and to help interpret observations from the HIAPER platform. In this study we will present model aerosol distribution inter-comparison with cloud fields and aircraft observations. Model analysis provides further insight into cloud/pollution/dust interactions as East Asian emissions transit the Pacific Ocean en route to North America. Trajectory analysis and emission markers are used to help understand the air mass history and aerosol aging processes of the aerosols sampled by the HIAPER platform. Estimates of the fluxes of aerosol dust, BC and sulfate due to transpacific transport will also be presented.
A Voxel-Based Approach for Imaging Voids in Three-Dimensional Point Clouds
NASA Astrophysics Data System (ADS)
Salvaggio, Katie N.
Geographically accurate scene models have enormous potential beyond that of just simple visualizations in regard to automated scene generation. In recent years, thanks to ever increasing computational efficiencies, there has been significant growth in both the computer vision and photogrammetry communities pertaining to automatic scene reconstruction from multiple-view imagery. The result of these algorithms is a three-dimensional (3D) point cloud which can be used to derive a final model using surface reconstruction techniques. However, the fidelity of these point clouds has not been well studied, and voids often exist within the point cloud. Voids exist in texturally difficult areas, as well as areas where multiple views were not obtained during collection, constant occlusion existed due to collection angles or overlapping scene geometry, or in regions that failed to triangulate accurately. It may be possible to fill in small voids in the scene using surface reconstruction or hole-filling techniques, but this is not the case with larger more complex voids, and attempting to reconstruct them using only the knowledge of the incomplete point cloud is neither accurate nor aesthetically pleasing. A method is presented for identifying voids in point clouds by using a voxel-based approach to partition the 3D space. By using collection geometry and information derived from the point cloud, it is possible to detect unsampled voxels such that voids can be identified. This analysis takes into account the location of the camera and the 3D points themselves to capitalize on the idea of free space, such that voxels that lie on the ray between the camera and point are devoid of obstruction, as a clear line of sight is a necessary requirement for reconstruction. Using this approach, voxels are classified into three categories: occupied (contains points from the point cloud), free (rays from the camera to the point passed through the voxel), and unsampled (does not contain points and no rays passed through the area). Voids in the voxel space are manifested as unsampled voxels. A similar line-of-sight analysis can then be used to pinpoint locations at aircraft altitude at which the voids in the point clouds could theoretically be imaged. This work is based on the assumption that inclusion of more images of the void areas in the 3D reconstruction process will reduce the number of voids in the point cloud that were a result of lack of coverage. Voids resulting from texturally difficult areas will not benefit from more imagery in the reconstruction process, and thus are identified and removed prior to the determination of future potential imaging locations.
Influence of aerosols, clouds, and sunglint on polarization spectra of Earthshine
NASA Astrophysics Data System (ADS)
Emde, Claudia; Buras-Schnell, Robert; Sterzik, Michael; Bagnulo, Stefano
2017-08-01
Context. Ground-based observations of the Earthshine, I.e., the light scattered by Earth to the Moon, and then reflected back to Earth, simulate space observations of our planet and represent a powerful benchmark for the studies of Earth-like planets. Earthshine spectra are strongly linearly polarized, owing to scattering by molecules and small particles in the atmosphere of the Earth and surface reflection, and may allow us to measure global atmospheric and surface properties of planet Earth. Aims: We aim to interpret already published spectropolarimetric observations of the Earthshine by comparing them with new radiative transfer model simulations including a fully realistic three-dimensional (3D) surface-atmosphere model for planet Earth. Methods: We used the highly advanced Monte Carlo radiative transfer model MYSTIC to simulate polarized radiative transfer in the atmosphere of the Earth without approximations regarding the geometry, taking into account the polarization from surface reflection and multiple scattering by molecules, aerosol particles, cloud droplets, and ice crystals. Results: We have shown that Earth spectropolarimetry is highly sensitive to all these input parameters, and we have presented simulations of a fully realistic Earth atmosphere-surface model including 3D cloud fields and two-dimensional (2D) surface property maps. Our modeling results show that scattering in high ice water clouds and reflection from the ocean surface are crucial to explain the continuum polarization at longer wavelengths as has been reported in Earthshine observations taken at the Very Large Telescope in 2011 (3.8% and 6.6% at 800 nm, depending on which part of Earth was visible from the Moon at the time of the observations). We found that the relatively high degree of polarization of 6.6% can be attributed to light reflected by the ocean surface in the sunglint region. High ice-water clouds reduce the amount of absorption in the O2A band and thus explain the weak O2A band feature in the observations.
NASA Technical Reports Server (NTRS)
Genkova, I.; Long, C. N.; Heck, P. W.; Minnis, P.
2003-01-01
One of the primary Atmospheric Radiation Measurement (ARM) Program objectives is to obtain measurements applicable to the development of models for better understanding of radiative processes in the atmosphere. We address this goal by building a three-dimensional (3D) characterization of the cloud structure and properties over the ARM Southern Great Plains (SGP). We take the approach of juxtaposing the cloud properties as retrieved from independent satellite and ground-based retrievals, and looking at the statistics of the cloud field properties. Once these retrievals are well understood, they will be used to populate the 3D characterization database. As a first step we determine the relationship between surface fractional sky cover and satellite viewing angle dependent cloud fraction (CF). We elaborate on the agreement intercomparing optical depth (OD) datasets from satellite and ground using available retrieval algorithms with relation to the CF, cloud height, multi-layer cloud presence, and solar zenith angle (SZA). For the SGP Central Facility, where output from the active remote sensing cloud layer (ARSCL) valueadded product (VAP) is available, we study the uncertainty of satellite estimated cloud heights and evaluate the impact of this uncertainty for radiative studies.
NASA Astrophysics Data System (ADS)
Cornet, C.; Davies, R.
2008-02-01
Radiative transfer simulations of an isolated deep convective cloud reconstructed with stereo-techniques from the Multiangle Imaging Spectroradiometer (MISR) are compared with the reflectances measured at the nine MISR viewing angles. The simulations were done using a three dimensional Monte Carlo model, in which ocean reflectance, aerosol and Rayleigh scattering were prescribed to match the surrounding clear-sky MISR measurements. Making reasonable assumptions regarding the vertical and horizontal distribution of the volume extinction coefficient, we were able to reproduce the MISR measurements with the 3D radiative calculations. While the uniqueness of the these distributions cannot be proven, they all lead to retrievals of much larger cloud optical thickness and cloud water content than for a 1D retrieval. Averaged over the cloud, the difference was a factor of about 3, rising to 9 locally. This is a consequence of horizontal photon transport that serves to highlight the inadequacy of 1D retrievals for the case of deep convective cloud. Concerning the internal cloud properties, we noticed the angular distribution of modeled radiances did not match the measured radiances when an ice crystal phase function was applied. Better estimates of the optical depths and water contents of deep convective clouds appear to be obtainable by integrating an estimate of the extinction coefficient over the vertical cloud extent (when this can assessed) than by attempting to invert the radiance measured from a single-angle view using 1D theory.
Marine boundary layer cloud regimes and POC formation in an LES coupled to a bulk aerosol scheme
NASA Astrophysics Data System (ADS)
Berner, A. H.; Bretherton, C. S.; Wood, R.; Muhlbauer, A.
2013-07-01
A large-eddy simulation (LES) coupled to a new bulk aerosol scheme is used to study long-lived regimes of aerosol-boundary layer cloud-precipitation interaction and the development of pockets of open cells (POCs) in subtropical stratocumulus cloud layers. The aerosol scheme prognoses mass and number concentration of a single log-normal accumulation mode with surface and entrainment sources, evolving subject to processing of activated aerosol and scavenging of dry aerosol by cloud and rain. The LES with the aerosol scheme is applied to a range of steadily-forced simulations idealized from a well-observed POC case. The long-term system evolution is explored with extended two-dimensional simulations of up to 20 days, mostly with diurnally-averaged insolation. One three-dimensional two-day simulation confirms the initial development of the corresponding two-dimensional case. With weak mean subsidence, an initially aerosol-rich mixed layer deepens, the capping stratocumulus cloud slowly thickens and increasingly depletes aerosol via precipitation accretion, then the boundary layer transitions within a few hours into an open-cell regime with scattered precipitating cumuli, in which entrainment is much weaker. The inversion slowly collapses for several days until the cumulus clouds are too shallow to efficiently precipitate. Inversion cloud then reforms and radiatively drives renewed entrainment, allowing the boundary layer to deepen and become more aerosol-rich, until the stratocumulus layer thickens enough to undergo another cycle of open-cell formation. If mean subsidence is stronger, the stratocumulus never thickens enough to initiate drizzle and settles into a steady state. With lower initial aerosol concentrations, this system quickly transitions into open cells, collapses, and redevelops into a different steady state with a shallow, optically thin cloud layer. In these steady states, interstitial scavenging by cloud droplets is the main sink of aerosol number. The system is described in a reduced two-dimensional phase plane with inversion height and boundary-layer average aerosol concentrations as the state variables. Simulations with a full diurnal cycle show similar evolutions, except that open-cell formation is phase-locked into the early morning hours. The same steadily-forced modeling framework is applied to the development and evolution of a POC and the surrounding overcast boundary layer. An initial aerosol perturbation applied to a portion of the model domain leads that portion to transition into open-cell convection, forming a POC. Reduced entrainment in the POC induces a negative feedback between areal fraction covered by the POC and boundary layer depth changes. This stabilizes the system by controlling liquid water path and precipitation sinks of aerosol number in the overcast region, while also preventing boundary-layer collapse within the POC, allowing the POC and overcast to coexist indefinitely in a quasi-steady equilibrium.
A Stochastic Point Cloud Sampling Method for Multi-Template Protein Comparative Modeling.
Li, Jilong; Cheng, Jianlin
2016-05-10
Generating tertiary structural models for a target protein from the known structure of its homologous template proteins and their pairwise sequence alignment is a key step in protein comparative modeling. Here, we developed a new stochastic point cloud sampling method, called MTMG, for multi-template protein model generation. The method first superposes the backbones of template structures, and the Cα atoms of the superposed templates form a point cloud for each position of a target protein, which are represented by a three-dimensional multivariate normal distribution. MTMG stochastically resamples the positions for Cα atoms of the residues whose positions are uncertain from the distribution, and accepts or rejects new position according to a simulated annealing protocol, which effectively removes atomic clashes commonly encountered in multi-template comparative modeling. We benchmarked MTMG on 1,033 sequence alignments generated for CASP9, CASP10 and CASP11 targets, respectively. Using multiple templates with MTMG improves the GDT-TS score and TM-score of structural models by 2.96-6.37% and 2.42-5.19% on the three datasets over using single templates. MTMG's performance was comparable to Modeller in terms of GDT-TS score, TM-score, and GDT-HA score, while the average RMSD was improved by a new sampling approach. The MTMG software is freely available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/mtmg.html.
A Stochastic Point Cloud Sampling Method for Multi-Template Protein Comparative Modeling
Li, Jilong; Cheng, Jianlin
2016-01-01
Generating tertiary structural models for a target protein from the known structure of its homologous template proteins and their pairwise sequence alignment is a key step in protein comparative modeling. Here, we developed a new stochastic point cloud sampling method, called MTMG, for multi-template protein model generation. The method first superposes the backbones of template structures, and the Cα atoms of the superposed templates form a point cloud for each position of a target protein, which are represented by a three-dimensional multivariate normal distribution. MTMG stochastically resamples the positions for Cα atoms of the residues whose positions are uncertain from the distribution, and accepts or rejects new position according to a simulated annealing protocol, which effectively removes atomic clashes commonly encountered in multi-template comparative modeling. We benchmarked MTMG on 1,033 sequence alignments generated for CASP9, CASP10 and CASP11 targets, respectively. Using multiple templates with MTMG improves the GDT-TS score and TM-score of structural models by 2.96–6.37% and 2.42–5.19% on the three datasets over using single templates. MTMG’s performance was comparable to Modeller in terms of GDT-TS score, TM-score, and GDT-HA score, while the average RMSD was improved by a new sampling approach. The MTMG software is freely available at: http://sysbio.rnet.missouri.edu/multicom_toolbox/mtmg.html. PMID:27161489
NASA Technical Reports Server (NTRS)
Starr, D. OC.; Cox, S. K.
1985-01-01
A simplified cirrus cloud model is presented which may be used to investigate the role of various physical processes in the life cycle of a cirrus cloud. The model is a two-dimensional, time-dependent, Eulerian numerical model where the focus is on cloud-scale processes. Parametrizations are developed to account for phase changes of water, radiative processes, and the effects of microphysical structure on the vertical flux of ice water. The results of a simulation of a thin cirrostratus cloud are given. The results of numerical experiments performed with the model are described in order to demonstrate the important role of cloud-scale processes in determining the cloud properties maintained in response to larger scale forcing. The effects of microphysical composition and radiative processes are considered, as well as their interaction with thermodynamic and dynamic processes within the cloud. It is shown that cirrus clouds operate in an entirely different manner than liquid phase stratiform clouds.
NASA Astrophysics Data System (ADS)
Schlesinger, Robert E.
1988-05-01
An anelastic three-dimensional model is used to investigate the effects of stratospheric temperature lapse rate on cloud top height/temperature structure for strongly sheared mature isolated midlatitude thunderstorms. Three comparative experiments are performed, differing only with respect to the stratospheric stability. The assumed stratospheric lapse rate is 0 K km1 (isothermal) in the first experiment, 3 K km1 in the second, and 3 K km1 (inversion) in the third.Kinematic storm structure is very similar in all three cases, especially in the troposphere. A strong quasi-steady updraft evolves splitting into a dominant cyclonic overshooting right-mover and a weaker anticyclonic left-mover that does not reach the tropopause. Strongest downdrafts occur at low to middle levels between the updrafts, and in the lower stratosphere a few kilometers upshear and downshear of the tapering updraft summit.Each storm shows a cloud-top thermal couplet, relatively cold near and upshear of the summit, and with a `close-in' warm region downshear. Both cold and warm regions become warmer, with significant morphological changes and a lowering of the cloud summit, as stratospheric stability is increased, though the temperature spread is not greatly affected.The coldest and highest cloud-top points are nearly colocated in the absence of a stratospheric inversion, but the coldest point is offset well upshear of the summit when an inversion is present. The cold region as a whole in each case shows at least a transient `V' shape, with the arms pointing downshear, although this shape is persistent only with the inversion.In the experiment with a 3 K km1 stratospheric lapse rate (weakest stability), the warm region is small and separates into two spots with secondary cold spots downshear of them. The warm region becomes larger, and remains single, as stratospheric stability increase. In each run, the warm regions are not accompanied by corresponding cloud-top height minima except very briefly.The cold cloud-top points are near or slightly downwind of relative vertical velocity maxima, usually positive, while the warm points are imbedded in subsidence downwind of the principal cloud-top downdraft core. The storm-relative cloud-top horizontal wind fields are consistent with the `V' shape of the cold region, showing strong diffluent flow directed downshear along the flanks from an upshear stagnation zone.
NASA Astrophysics Data System (ADS)
Nayak, M.; Beck, J.; Udrea, B.
This paper focuses on the aerospace application of a single beam laser rangefinder (LRF) for 3D imaging, shape detection, and reconstruction in the context of a space-based space situational awareness (SSA) mission scenario. The primary limitation to 3D imaging from LRF point clouds is the one-dimensional nature of the single beam measurements. A method that combines relative orbital motion and scanning attitude motion to generate point clouds has been developed and the design and characterization of multiple relative motion and attitude maneuver profiles are presented. The target resident space object (RSO) has the shape of a generic telecommunications satellite. The shape and attitude of the RSO are unknown to the chaser satellite however, it is assumed that the RSO is un-cooperative and has fixed inertial pointing. All sensors in the metrology chain are assumed ideal. A previous study by the authors used pure Keplerian motion to perform a similar 3D imaging mission at an asteroid. A new baseline for proximity operations maneuvers for LRF scanning, based on a waypoint adaptation of the Hill-Clohessy-Wiltshire (HCW) equations is examined. Propellant expenditure for each waypoint profile is discussed and combinations of relative motion and attitude maneuvers that minimize the propellant used to achieve a minimum required point cloud density are studied. Both LRF strike-point coverage and point cloud density are maximized; the capability for 3D shape registration and reconstruction from point clouds generated with a single beam LRF without catalog comparison is proven. Next, a method of using edge detection algorithms to process a point cloud into a 3D modeled image containing reconstructed shapes is presented. Weighted accuracy of edge reconstruction with respect to the true model is used to calculate a qualitative “ metric” that evaluates effectiveness of coverage. Both edge recognition algorithms and the metric are independent of point cloud densit- , therefore they are utilized to compare the quality of point clouds generated by various attitude and waypoint command profiles. The RSO model incorporates diverse irregular protruding shapes, such as open sensor covers, instrument pods and solar arrays, to test the limits of the algorithms. This analysis is used to mathematically prove that point clouds generated by a single-beam LRF can achieve sufficient edge recognition accuracy for SSA applications, with meaningful shape information extractable even from sparse point clouds. For all command profiles, reconstruction of RSO shapes from the point clouds generated with the proposed method are compared to the truth model and conclusions are drawn regarding their fidelity.
Assimilation of Satellite to Improve Cloud Simulation in Wrf Model
NASA Astrophysics Data System (ADS)
Park, Y. H.; Pour Biazar, A.; McNider, R. T.
2012-12-01
A simple approach has been introduced to improve cloud simulation spatially and temporally in a meteorological model. The first step for this approach is to use Geostationary Operational Environmental Satellite (GOES) observations to identify clouds and estimate the clouds structure. Then by comparing GOES observations to model cloud field, we identify areas in which model has under-predicted or over-predicted clouds. Next, by introducing subsidence in areas with over-prediction and lifting in areas with under-prediction, erroneous clouds are removed and new clouds are formed. The technique estimates a vertical velocity needed for the cloud correction and then uses a one dimensional variation schemes (1D_Var) to calculate the horizontal divergence components and the consequent horizontal wind components needed to sustain such vertical velocity. Finally, the new horizontal winds are provided as a nudging field to the model. This nudging provides the dynamical support needed to create/clear clouds in a sustainable manner. The technique was implemented and tested in the Weather Research and Forecast (WRF) Model and resulted in substantial improvement in model simulated clouds. Some of the results are presented here.
Influence of carbon dioxide clouds on early martian climate.
Mischna, M A; Kasting, J F; Pavlov, A; Freedman, R
2000-06-01
Recent studies have shown that clouds made of carbon dioxide ice may have warmed the surface of early Mars by reflecting not only incoming solar radiation but upwelling IR radiation as well. However, these studies have not treated scattering self-consistently in the thermal IR. Our own calculations, which treat IR scattering properly, confirm these earlier calculations but show that CO2 clouds can also cool the surface, especially if they are low and optically thick. Estimating the actual effect of CO2 clouds on early martian climate will require three-dimensional models in which cloud location, height, and optical depth, as well as surface temperature and pressure, are determined self-consistently. Our calculations further confirm that CO2 clouds should extend the outer boundary of the habitable zone around a star but that there is still a finite limit beyond which above-freezing surface temperatures cannot be maintained by a CO2-H2O atmosphere. For our own Solar System, the absolute outer edge of the habitable zone is at approximately 2.4 AU.
NASA Astrophysics Data System (ADS)
Lefèvre, Maxence; Spiga, Aymeric; Lebonnois, Sébastien
2017-01-01
The impact of the cloud convective layer of the atmosphere of Venus on the global circulation remains unclear. The recent observations of gravity waves at the top of the cloud by the Venus Express mission provided some answers. These waves are not resolved at the scale of global circulation models (GCM); therefore, we developed an unprecedented 3-D turbulence-resolving large-eddy simulations (LES) Venusian model using the Weather Research and Forecast terrestrial model. The forcing consists of three different heating rates: two radiative ones for solar and infrared and one associated with the adiabatic cooling/warming of the global circulation. The rates are extracted from the Laboratoire de Météorlogie Dynamique Venus GCM using two different cloud models. Thus, we are able to characterize the convection and associated gravity waves in function of latitude and local time. To assess the impact of the global circulation on the convective layer, we used rates from a 1-D radiative-convective model. The resolved layer, taking place between 1.0 × 105 and 3.8 × 104 Pa (48-53 km), is organized as polygonal closed cells of about 10 km wide with vertical wind of several meters per second. The convection emits gravity waves both above and below the convective layer leading to temperature perturbations of several tenths of kelvin with vertical wavelength between 1 and 3 km and horizontal wavelength from 1 to 10 km. The thickness of the convective layer and the amplitudes of waves are consistent with observations, though slightly underestimated. The global dynamics heating greatly modify the convective layer.
THE LAUNCHING OF COLD CLOUDS BY GALAXY OUTFLOWS. II. THE ROLE OF THERMAL CONDUCTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brüggen, Marcus; Scannapieco, Evan
2016-05-01
We explore the impact of electron thermal conduction on the evolution of radiatively cooled cold clouds embedded in flows of hot and fast material as it occurs in outflowing galaxies. Performing a parameter study of three-dimensional adaptive mesh refinement hydrodynamical simulations, we show that electron thermal conduction causes cold clouds to evaporate, but it can also extend their lifetimes by compressing them into dense filaments. We distinguish between low column-density clouds, which are disrupted on very short times, and high-column density clouds with much longer disruption times that are set by a balance between impinging thermal energy and evaporation. Wemore » provide fits to the cloud lifetimes and velocities that can be used in galaxy-scale simulations of outflows in which the evolution of individual clouds cannot be modeled with the required resolution. Moreover, we show that the clouds are only accelerated to a small fraction of the ambient velocity because compression by evaporation causes the clouds to present a small cross-section to the ambient flow. This means that either magnetic fields must suppress thermal conduction, or that the cold clouds observed in galaxy outflows are not formed of cold material carried out from the galaxy.« less
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view from above and to the south of the visualized area, showing the entire model. The entire region is overlain by a thin, transparent haze. In places the haze is high and thick, especially to the east (to the right of) the hotspot.Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper and lower clouds are separated in the rendering by an arbitrary amount, and the height variations are exaggerated by a factor of 25.The lower cloud is colored using the same false color scheme used in previously released image products, assigning red, green, and blue to the 756, 727, and 889 nanometer mosaics, respectively. Light bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the lower cloud with an overlying thin haze.The images used cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.NASA Astrophysics Data System (ADS)
Ostriker, Eve C.; Gammie, Charles F.; Stone, James M.
1999-03-01
The molecular component of the Galaxy is comprised of turbulent, magnetized clouds, many of which are self-gravitating and form stars. To develop an understanding of how these clouds' kinetic and structural evolution may depend on their level of turbulence, mean magnetization, and degree of self-gravity, we perform a survey of direct numerical MHD simulations in which three parameters are independently varied. Our simulations consist of solutions to the time-dependent MHD equations on a two-dimensional grid with periodic boundary conditions; an additional ``half'' dimension is also incorporated as dependent variables in the third Cartesian direction. Two of our survey parameters, the mean magnetization parameter β≡c2sound/v2Alfven and the Jeans number nJ≡Lcloud/LJeans, allow us to model clouds that either meet or fail conditions for magneto-Jeans stability and magnetic criticality. Our third survey parameter, the sonic Mach number M≡σvelocity/csound, allows us to initiate turbulence of either sub- or super-Alfvénic amplitude; we employ an isothermal equation of state throughout. We evaluate the times for each cloud model to become gravitationally bound and measure each model's kinetic energy loss over the fluid-flow crossing time. We compare the evolution of density and magnetic field structural morphology and quantify the differences in the density contrast generated by internal stresses for models of differing mean magnetization. We find that the values of β and nJ, but not the initial Mach number M, determine the time for cloud gravitational binding and collapse: for mean cloud density nH2=100 cm-3, unmagnetized models collapse after ~5 Myr, and magnetically supercritical models generally collapse after 5-10 Myr (although the smallest magneto-Jeans stable clouds survive gravitational collapse until t~15 Myr), while magnetically subcritical clouds remain uncollapsed over the entire simulations; these cloud collapse times scale with the mean density as tg~n-1/2H2. We find, contrary to some previous expectations, less than a factor of 2 difference between turbulent decay times for models with varying magnetic field strength; the maximum decay time, for B~14 μG and nH2=100 cm-3, is 1.4 flow crossing times tcross=L/σvelocity (or 8 Myr for typical giant molecular cloud parameters). In all models we find turbulent amplification in the magnetic field strength up to at least the level βpert≡c2sound/δv2Alfven=0.1, with the turbulent magnetic energy between 25% and 60% of the turbulent kinetic energy after one flow crossing time. We find that for non-self-gravitating stages of evolution, when clouds have M=5-10, the mass-averaged density contrast magnitudes
Accuracy Analysis of a Dam Model from Drone Surveys
Buffi, Giulia; Venturi, Sara
2017-01-01
This paper investigates the accuracy of models obtained by drone surveys. To this end, this work analyzes how the placement of ground control points (GCPs) used to georeference the dense point cloud of a dam affects the resulting three-dimensional (3D) model. Images of a double arch masonry dam upstream face are acquired from drone survey and used to build the 3D model of the dam for vulnerability analysis purposes. However, there still remained the issue of understanding the real impact of a correct GCPs location choice to properly georeference the images and thus, the model. To this end, a high number of GCPs configurations were investigated, building a series of dense point clouds. The accuracy of these resulting dense clouds was estimated comparing the coordinates of check points extracted from the model and their true coordinates measured via traditional topography. The paper aims at providing information about the optimal choice of GCPs placement not only for dams but also for all surveys of high-rise structures. The knowledge a priori of the effect of the GCPs number and location on the model accuracy can increase survey reliability and accuracy and speed up the survey set-up operations. PMID:28771185
Accuracy Analysis of a Dam Model from Drone Surveys.
Ridolfi, Elena; Buffi, Giulia; Venturi, Sara; Manciola, Piergiorgio
2017-08-03
This paper investigates the accuracy of models obtained by drone surveys. To this end, this work analyzes how the placement of ground control points (GCPs) used to georeference the dense point cloud of a dam affects the resulting three-dimensional (3D) model. Images of a double arch masonry dam upstream face are acquired from drone survey and used to build the 3D model of the dam for vulnerability analysis purposes. However, there still remained the issue of understanding the real impact of a correct GCPs location choice to properly georeference the images and thus, the model. To this end, a high number of GCPs configurations were investigated, building a series of dense point clouds. The accuracy of these resulting dense clouds was estimated comparing the coordinates of check points extracted from the model and their true coordinates measured via traditional topography. The paper aims at providing information about the optimal choice of GCPs placement not only for dams but also for all surveys of high-rise structures. The knowledge a priori of the effect of the GCPs number and location on the model accuracy can increase survey reliability and accuracy and speed up the survey set-up operations.
First Steps to Automated Interior Reconstruction from Semantically Enriched Point Clouds and Imagery
NASA Astrophysics Data System (ADS)
Obrock, L. S.; Gülch, E.
2018-05-01
The automated generation of a BIM-Model from sensor data is a huge challenge for the modeling of existing buildings. Currently the measurements and analyses are time consuming, allow little automation and require expensive equipment. We do lack an automated acquisition of semantical information of objects in a building. We are presenting first results of our approach based on imagery and derived products aiming at a more automated modeling of interior for a BIM building model. We examine the building parts and objects visible in the collected images using Deep Learning Methods based on Convolutional Neural Networks. For localization and classification of building parts we apply the FCN8s-Model for pixel-wise Semantic Segmentation. We, so far, reach a Pixel Accuracy of 77.2 % and a mean Intersection over Union of 44.2 %. We finally use the network for further reasoning on the images of the interior room. We combine the segmented images with the original images and use photogrammetric methods to produce a three-dimensional point cloud. We code the extracted object types as colours of the 3D-points. We thus are able to uniquely classify the points in three-dimensional space. We preliminary investigate a simple extraction method for colour and material of building parts. It is shown, that the combined images are very well suited to further extract more semantic information for the BIM-Model. With the presented methods we see a sound basis for further automation of acquisition and modeling of semantic and geometric information of interior rooms for a BIM-Model.
The local environment of ice particles in arctic mixed-phase clouds
NASA Astrophysics Data System (ADS)
Schlenczek, Oliver; Fugal, Jacob P.; Schledewitz, Waldemar; Borrmann, Stephan
2015-04-01
During the RACEPAC field campaign in April and May 2014, research flights were made with the Polar 5 and Polar 6 aircraft from the Alfred Wegener Institute in Arctic clouds near Inuvik, Northwest Territories, Canada. One flight with the Polar 6 aircraft, done on May 16, 2014, flew under precipitating, stratiform, mid-level clouds with several penetrations through cloud base. Measurements with HALOHolo, an airborne digital in-line holographic instrument for cloud particles, show ice particles in a field of other cloud particles in a local three-dimensional sample volume (~14x19x130 mm3 or ~35 cm^3). Each holographic sample volume is a snapshot of a 3-dimensional piece of cloud at the cm-scale with typically thousands of cloud droplets per sample volume, so each sample volume yields a statistically significant droplet size distribution. Holograms are recorded at a rate of six times per second, which provides one volume sample approx. every 12 meters along the flight path. The size resolution limit for cloud droplets is better than 1 µm due to advanced sizing algorithms. Shown are preliminary results of, (1) the ice/liquid water partitioning at the cloud base and the distribution of water droplets around each ice particle, and (2) spatial and temporal variability of the cloud droplet size distributions at cloud base.
Application of satellite data in variational analysis for global cyclonic systems
NASA Technical Reports Server (NTRS)
Achtemeier, G. L.
1987-01-01
The research goal was a variational data assimilation method that incorporates as dynamical constraints, the primitive equations for a moist, convectively unstable atmosphere and the radiative transfer equation. Variables to be adjusted include the three-dimensional vector wind, height, temperature, and moisture from rawinsonde data, and cloud-wind vectors, moisture, and radiance from satellite data. This presents a formidable mathematical problem. In order to facilitate thorough analysis of each of the model components, four variational models that divide the problem naturally according to increasing complexity are defined. Each model is summarized.
Extension of four-dimensional atmospheric models. [and cloud cover data bank
NASA Technical Reports Server (NTRS)
Fowler, M. G.; Lisa, A. S.; Tung, S. L.
1975-01-01
The cloud data bank, the 4-D atmospheric model, and a set of computer programs designed to simulate meteorological conditions for any location above the earth are described in turns of space vehicle design and simulation of vehicle reentry trajectories. Topics discussed include: the relationship between satellite and surface observed cloud cover using LANDSAT 1 photographs and including the effects of cloud shadows; extension of the 4-D model to the altitude of 52 km; and addition of the u and v wind components to the 4-D model of means and variances at 1 km levels from the surface to 25 km. Results of the cloud cover analysis are presented along with the stratospheric model and the tropospheric wind profiles.
Ben-David, Avishai; Davidson, Charles E; Embury, Janon F
2008-11-01
We introduced a two-dimensional radiative transfer model for aerosols in the thermal infrared [Appl. Opt.45, 6860-6875 (2006)APOPAI0003-693510.1364/AO.45.006860]. In that paper we superimposed two orthogonal plane-parallel layers to compute the radiance due to a two-dimensional (2D) rectangular aerosol cloud. In this paper we revisit the model and correct an error in the interaction of the two layers. We derive new expressions relating to the signal content of the radiance from an aerosol cloud based on the concept of five directional thermal contrasts: four for the 2D diffuse radiance and one for direct radiance along the line of sight. The new expressions give additional insight on the radiative transfer processes within the cloud. Simulations for Bacillus subtilis var. niger (BG) bioaerosol and dustlike kaolin aerosol clouds are compared and contrasted for two geometries: an airborne sensor looking down and a ground-based sensor looking up. Simulation results suggest that aerosol cloud detection from an airborne platform may be more challenging than for a ground-based sensor and that the detection of an aerosol cloud in emission mode (negative direct thermal contrast) is not the same as the detection of an aerosol cloud in absorption mode (positive direct thermal contrast).
Cloud Chemistry in the United States: Problems and Prospects
NASA Astrophysics Data System (ADS)
Carlton, A. G.; Barth, M. C.; Lance, S.; Fahey, K.; McNeill, V. F.; Weber, R. J.
2017-12-01
Clouds cover 60% of the Earth's surface at a given time and are the primary means by which atmospheric trace species are lofted from the polluted boundary layer to the free troposphere. Clouds also play an important role as atmospheric aqueous phase reactors, scavenging soluble gas phase precursors and providing a medium for oxidation reactions that yield lower volatility products that contribute to increased aerosol mass when cloud drops evaporate. On a global average, most sulfate particles are formed during cloud processing, and organic particles known to form through aqueous phase pathways are found above clouds. However, atmospheric chemistry observations are generally biased for clear sky conditions. For example, aircraft field deployments typically avoid clouds. Satellite retrievals impacted by clouds are often screened from the final data products. This hinders knowledge of cloud chemistry and the impacts on tropospheric composition. In this work, we explore temporal and geospatial trends in trace species related to cloud processing in the U.S. with a focus on organic chemistry. We apply 3-dimensional and 0-dimensional models to recent campaigns and mountaintop cloud sampling sites, and compare to measurements.
2015-01-01
The Portable Document Format (PDF) allows for embedding three-dimensional (3D) models and is therefore particularly suitable to communicate respective data, especially as regards scholarly articles. The generation of the necessary model data, however, is still challenging, especially for inexperienced users. This prevents an unrestrained proliferation of 3D PDF usage in scholarly communication. This article introduces a new solution for the creation of three of types of 3D geometry (point clouds, polylines and triangle meshes), that is based on MeVisLab, a framework for biomedical image processing. This solution enables even novice users to generate the model data files without requiring programming skills and without the need for an intensive training by simply using it as a conversion tool. Advanced users can benefit from the full capability of MeVisLab to generate and export the model data as part of an overall processing chain. Although MeVisLab is primarily designed for handling biomedical image data, the new module is not restricted to this domain. It can be used for all scientific disciplines. PMID:25780759
Newe, Axel
2015-01-01
The Portable Document Format (PDF) allows for embedding three-dimensional (3D) models and is therefore particularly suitable to communicate respective data, especially as regards scholarly articles. The generation of the necessary model data, however, is still challenging, especially for inexperienced users. This prevents an unrestrained proliferation of 3D PDF usage in scholarly communication. This article introduces a new solution for the creation of three of types of 3D geometry (point clouds, polylines and triangle meshes), that is based on MeVisLab, a framework for biomedical image processing. This solution enables even novice users to generate the model data files without requiring programming skills and without the need for an intensive training by simply using it as a conversion tool. Advanced users can benefit from the full capability of MeVisLab to generate and export the model data as part of an overall processing chain. Although MeVisLab is primarily designed for handling biomedical image data, the new module is not restricted to this domain. It can be used for all scientific disciplines.
Liou, K N; Ou, Szu-Cheng; Takano, Yoshihide; Cetola, Jeffrey
2006-09-10
A satellite remote sensing methodology has been developed to retrieve 3D ice water content (IWC) and mean effective ice crystal size of cirrus clouds from satellite data on the basis of a combination of the conventional retrieval of cloud optical depth and particle size in a horizontal plane and a parameterization of the vertical cloud profile involving temperature from sounding and/or analysis. The inferred 3D cloud fields of IWC and mean effective ice crystal size associated with two impressive cirrus clouds that occurred in the vicinity of northern Oklahoma on 18 April 1997 and 9 March 2000, obtained from the Department of Energy's Atmospheric Radiation Measurement Program, have been validated against the ice crystal size distributions that were collected independently from collocated and coincident aircraft optical probe measurements. The 3D cloud results determined from satellite data have been applied to the simulation of cw laser energy propagation, and we show the significance of 3D cloud geometry and inhomogeneity and spherical atmosphere on the transmitted and backscattered laser powers. Finally, we demonstrate that the 3D cloud fields derived from satellite remote sensing can be used for the 3D laser transmission and backscattering model for tactical application.
NASA Astrophysics Data System (ADS)
Liou, K. N.; Ou, Szu-Cheng; Takano, Yoshihide; Cetola, Jeffrey
2006-09-01
A satellite remote sensing methodology has been developed to retrieve 3D ice water content (IWC) and mean effective ice crystal size of cirrus clouds from satellite data on the basis of a combination of the conventional retrieval of cloud optical depth and particle size in a horizontal plane and a parameterization of the vertical cloud profile involving temperature from sounding and/or analysis. The inferred 3D cloud fields of IWC and mean effective ice crystal size associated with two impressive cirrus clouds that occurred in the vicinity of northern Oklahoma on 18 April 1997 and 9 March 2000, obtained from the Department of Energy's Atmospheric Radiation Measurement Program, have been validated against the ice crystal size distributions that were collected independently from collocated and coincident aircraft optical probe measurements. The 3D cloud results determined from satellite data have been applied to the simulation of cw laser energy propagation, and we show the significance of 3D cloud geometry and inhomogeneity and spherical atmosphere on the transmitted and backscattered laser powers. Finally, we demonstrate that the 3D cloud fields derived from satellite remote sensing can be used for the 3D laser transmission and backscattering model for tactical application.
D Building Reconstruction by Multiview Images and the Integrated Application with Augmented Reality
NASA Astrophysics Data System (ADS)
Hwang, Jin-Tsong; Chu, Ting-Chen
2016-10-01
This study presents an approach wherein photographs with a high degree of overlap are clicked using a digital camera and used to generate three-dimensional (3D) point clouds via feature point extraction and matching. To reconstruct a building model, an unmanned aerial vehicle (UAV) is used to click photographs from vertical shooting angles above the building. Multiview images are taken from the ground to eliminate the shielding effect on UAV images caused by trees. Point clouds from the UAV and multiview images are generated via Pix4Dmapper. By merging two sets of point clouds via tie points, the complete building model is reconstructed. The 3D models are reconstructed using AutoCAD 2016 to generate vectors from the point clouds; SketchUp Make 2016 is used to rebuild a complete building model with textures. To apply 3D building models in urban planning and design, a modern approach is to rebuild the digital models; however, replacing the landscape design and building distribution in real time is difficult as the frequency of building replacement increases. One potential solution to these problems is augmented reality (AR). Using Unity3D and Vuforia to design and implement the smartphone application service, a markerless AR of the building model can be built. This study is aimed at providing technical and design skills related to urban planning, urban designing, and building information retrieval using AR.
Topographic Structure from Motion
NASA Astrophysics Data System (ADS)
Fonstad, M. A.; Dietrich, J. T.; Courville, B. C.; Jensen, J.; Carbonneau, P.
2011-12-01
The production of high-resolution topographic datasets is of increasing concern and application throughout the geomorphic sciences, and river science is no exception. Consequently, a wide range of topographic measurement methods have evolved. Despite the range of available methods, the production of high resolution, high quality digital elevation models (DEMs) generally requires a significant investment in personnel time, hardware and/or software. However, image-based methods such as digital photogrammetry have steadily been decreasing in costs. Initially developed for the purpose of rapid, inexpensive and easy three dimensional surveys of buildings or small objects, the "structure from motion" photogrammetric approach (SfM) is a purely image based method which could deliver a step-change if transferred to river remote sensing, and requires very little training and is extremely inexpensive. Using the online SfM program Microsoft Photosynth, we have created high-resolution digital elevation models (DEM) of rivers from ordinary photographs produced from a multi-step workflow that takes advantage of free and open source software. This process reconstructs real world scenes from SfM algorithms based on the derived positions of the photographs in three-dimensional space. One of the products of the SfM process is a three-dimensional point cloud of features present in the input photographs. This point cloud can be georeferenced from a small number of ground control points collected via GPS in the field. The georeferenced point cloud can then be used to create a variety of digital elevation model products. Among several study sites, we examine the applicability of SfM in the Pedernales River in Texas (USA), where several hundred images taken from a hand-held helikite are used to produce DEMs of the fluvial topographic environment. This test shows that SfM and low-altitude platforms can produce point clouds with point densities considerably better than airborne LiDAR, with horizontal and vertical precision in the centimeter range, and with very low capital and labor costs and low expertise levels. Advanced structure from motion software (such as Bundler and OpenSynther) are currently under development and should increase the density of topographic points rivaling those of terrestrial laser scanning when using images shot from low altitude platforms such as helikites, poles, remote-controlled aircraft and rotocraft, and low-flying manned aircraft. Clearly, the development of this set of inexpensive and low-required-expertise tools has the potential to fundamentally shift the production of digital fluvial topography from a capital-intensive enterprise of a low number of researchers to a low-cost exercise of many river researchers.
LSAH: a fast and efficient local surface feature for point cloud registration
NASA Astrophysics Data System (ADS)
Lu, Rongrong; Zhu, Feng; Wu, Qingxiao; Kong, Yanzi
2018-04-01
Point cloud registration is a fundamental task in high level three dimensional applications. Noise, uneven point density and varying point cloud resolutions are the three main challenges for point cloud registration. In this paper, we design a robust and compact local surface descriptor called Local Surface Angles Histogram (LSAH) and propose an effectively coarse to fine algorithm for point cloud registration. The LSAH descriptor is formed by concatenating five normalized sub-histograms into one histogram. The five sub-histograms are created by accumulating a different type of angle from a local surface patch respectively. The experimental results show that our LSAH is more robust to uneven point density and point cloud resolutions than four state-of-the-art local descriptors in terms of feature matching. Moreover, we tested our LSAH based coarse to fine algorithm for point cloud registration. The experimental results demonstrate that our algorithm is robust and efficient as well.
NASA Technical Reports Server (NTRS)
Kirkpatrick, M. P.; Mansour, N. N.; Ackerman, A. S.; Stevens, D. E.
2003-01-01
The use of large eddy simulation, or LES, to study the atmospheric boundary layer dates back to the early 1970s when Deardor (1972) used a three-dimensional simulation to determine velocity and temperature scales in the convective boundary layer. In 1974 he applied LES to the problem of mixing layer entrainment (Deardor 1974) and in 1980 to the cloud-topped boundary layer (Deardor 1980b). Since that time the LES approach has been applied to atmospheric boundary layer problems by numerous authors. While LES has been shown to be relatively robust for simple cases such as a clear, convective boundary layer (Mason 1989), simulation of the cloud-topped boundary layer has proved more of a challenge. The combination of small length scales and anisotropic turbulence coupled with cloud microphysics and radiation effects places a heavy burden on the turbulence model, especially in the cloud-top region. Consequently, over the past few decades considerable effort has been devoted to developing turbulence models that are better able to parameterize these processes. Much of this work has involved taking parameterizations developed for neutral boundary layers and deriving corrections to account for buoyancy effects associated with the background stratification and local buoyancy sources due to radiative and latent heat transfer within the cloud (see Lilly 1962; Deardor 1980a; Mason 1989; MacVean & Mason 1990, for example). In this paper we hope to contribute to this effort by presenting a number of turbulence models in which the model coefficients are calculated dynamically during the simulation rather than being prescribed a priori.
Particle velocity distribution in a three-dimensional dusty plasma under microgravity conditions
NASA Astrophysics Data System (ADS)
Liu, Bin; Goree, J.; Pustylnik, M. Y.; Thomas, H. M.; Fortov, V. E.; Lipaev, A. M.; Usachev, A. D.; Molotkov, V. I.; Petrov, O. F.; Thoma, M. H.
2018-01-01
The velocity distribution function of dust particles immersed in a plasma was investigated under microgravity conditions. A three-dimensional (3D) cloud of polymer microspheres was suspended in a neon plasma, in the PK-4 instrument onboard the International Space Station (ISS). These dust particles were tracked using video microscopy in a cross section of the 3D dust cloud. The velocity distribution function (VDF) is found to have a non-Maxwellian shape with high-energy tails; it is fit well by a combination of low-energy Maxwellian core and a high-energy non-Gaussian Kappa-distribution halo. Similar non-Maxwellian VDFs are typically observed in space plasmas.
Plenoptic Imaging of a Three Dimensional Cold Atom Cloud
NASA Astrophysics Data System (ADS)
Lott, Gordon
2017-04-01
A plenoptic imaging system is capable of sampling the rays of light in a volume, both spatially and angularly, providing information about the three dimensional (3D) volume being imaged. The extraction of the 3D structure of a cold atom cloud is demonstrated, using a single plenoptic camera and a single image. The reconstruction is tested against a reference image and the results discussed along with the capabilities and limitations of the imaging system. This capability is useful when the 3D distribution of the atoms is desired, such as determining the shape of an atom trap, particularly when there is limited optical access. Gratefully acknowledge support from AFRL.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Çağlar, Halife, E-mail: hlfcglr@gmail.com; Aygün, Sezgin, E-mail: saygun@comu.edu.tr
In this study, we have investigated bulk viscous with strange quark matter attached to the string cloud for higher dimensional Friedman-Robertson-Walker (FRW) universe in Lyra geometry. By using varying deceleration parameter and conservation equations we have solved Einstein Field Equations (EFE’s) and obtained generalized exact solutions for our model. Also we have found that string is not survived for bulk viscous with strange quark matter attached to the string cloud in framework higher dimensional FRW universe in Lyra geometry. This result agrees with Kiran and Reddy, Krori et al, Sahoo and Mishra and Mohanty et al. in four and fivemore » dimensions.« less
NASA Technical Reports Server (NTRS)
Olson, William S.; Bauer, Peter; Kummerow, Christian D.; Tao, Wei-Kuo
2000-01-01
The one-dimensional, steady-state melting layer model developed in Part I of this study is used to calculate both the microphysical and radiative properties of melting precipitation, based upon the computed concentrations of snow and graupel just above the freezing level at applicable horizontal gridpoints of 3-dimensional cloud resolving model simulations. The modified 3-dimensional distributions of precipitation properties serve as input to radiative transfer calculations of upwelling radiances and radar extinction/reflectivities at the TRMM Microwave Imager (TMI) and Precipitation Radar (PR) frequencies, respectively. At the resolution of the cloud resolving model grids (approx. 1 km), upwelling radiances generally increase if mixed-phase precipitation is included in the model atmosphere. The magnitude of the increase depends upon the optical thickness of the cloud and precipitation, as well as the scattering characteristics of ice-phase precipitation aloft. Over the set of cloud resolving model simulations utilized in this study, maximum radiance increases of 43, 28, 18, and 10 K are simulated at 10.65, 19.35 GHz, 37.0, and 85.5 GHz, respectively. The impact of melting on TMI-measured radiances is determined not only by the physics of the melting particles but also by the horizontal extent of the melting precipitation, since the lower-frequency channels have footprints that extend over 10''s of kilometers. At TMI resolution, the maximum radiance increases are 16, 15, 12, and 9 K at the same frequencies. Simulated PR extinction and reflectivities in the melting layer can increase dramatically if mixed-phase precipitation is included, a result consistent with previous studies. Maximum increases of 0.46 (-2 dB) in extinction optical depth and 5 dBZ in reflectivity are simulated based upon the set of cloud resolving model simulations.
NASA Astrophysics Data System (ADS)
Mascio, J.; Mace, G. G.
2015-12-01
CloudSat and CALIPSO, two of the satellites in the A-Train constellation, use algorithms to calculate the scattering properties of small cloud particles, such as the T-matrix method. Ice clouds (i.e. cirrus) cause problems with these cloud property retrieval algorithms because of their variability in ice mass as a function of particle size. Assumptions regarding the microphysical properties, such as mass-dimensional (m-D) relationships, are often necessary in retrieval algorithms for simplification, but these assumptions create uncertainties of their own. Therefore, ice cloud property retrieval uncertainties can be substantial and are often not well known. To investigate these uncertainties, reflectivity factors measured by CloudSat are compared to those calculated from particle size distributions (PSDs) to which different m-D relationships are applied. These PSDs are from data collected in situ during three flights of the Small Particles in Cirrus (SPartICus) campaign. We find that no specific habit emerges as preferred and instead we conclude that the microphysical characteristics of ice crystal populations tend to be distributed over a continuum and, therefore, cannot be categorized easily. To quantify the uncertainties in the mass-dimensional relationships, an optimal estimation inversion was run to retrieve the m-D relationship per SPartICus flight, as well as to calculate uncertainties of the m-D power law.
NASA Astrophysics Data System (ADS)
Schwind, Michael
Structure from Motion (SfM) is a photogrammetric technique whereby three-dimensional structures (3D) are estimated from overlapping two-dimensional (2D) image sequences. It is studied in the field of computer vision and utilized in fields such as archeology, engineering, and the geosciences. Currently, many SfM software packages exist that allow for the generation of 3D point clouds. Little work has been done to show how topographic data generated from these software differ over varying terrain types and why they might produce different results. This work aims to compare and characterize the differences between point clouds generated by three different SfM software packages: two well-known proprietary solutions (Pix4D, Agisoft PhotoScan) and one open source solution (OpenDroneMap). Five terrain types were imaged utilizing a DJI Phantom 3 Professional small unmanned aircraft system (sUAS). These terrain types include a marsh environment, a gently sloped sandy beach and jetties, a forested peninsula, a house, and a flat parking lot. Each set of imagery was processed with each software and then directly compared to each other. Before processing the sets of imagery, the software settings were analyzed and chosen in a manner that allowed for the most similar settings to be set across the three software types. This was done in an attempt to minimize point cloud differences caused by dissimilar settings. The characteristics of the resultant point clouds were then compared with each other. Furthermore, a terrestrial light detection and ranging (LiDAR) survey was conducted over the flat parking lot using a Riegl VZ- 400 scanner. This data served as ground truth in order to conduct an accuracy assessment of the sUAS-SfM point clouds. Differences were found between the different results, apparent not only in the characteristics of the clouds, but also the accuracy. This study allows for users of SfM photogrammetry to have a better understanding of how different processing software compare and the inherent sensitivity of SfM automation in 3D reconstruction. Because this study used mostly default settings within the software, it would be beneficial for further research to investigate the effects of changing parameters have on the fidelity of point cloud datasets generated from different SfM software packages.
Application of Template Matching for Improving Classification of Urban Railroad Point Clouds
Arastounia, Mostafa; Oude Elberink, Sander
2016-01-01
This study develops an integrated data-driven and model-driven approach (template matching) that clusters the urban railroad point clouds into three classes of rail track, contact cable, and catenary cable. The employed dataset covers 630 m of the Dutch urban railroad corridors in which there are four rail tracks, two contact cables, and two catenary cables. The dataset includes only geometrical information (three dimensional (3D) coordinates of the points) with no intensity data and no RGB data. The obtained results indicate that all objects of interest are successfully classified at the object level with no false positives and no false negatives. The results also show that an average 97.3% precision and an average 97.7% accuracy at the point cloud level are achieved. The high precision and high accuracy of the rail track classification (both greater than 96%) at the point cloud level stems from the great impact of the employed template matching method on excluding the false positives. The cables also achieve quite high average precision (96.8%) and accuracy (98.4%) due to their high sampling and isolated position in the railroad corridor. PMID:27973452
Simulation of Deep Convective Clouds with the Dynamic Reconstruction Turbulence Closure
NASA Astrophysics Data System (ADS)
Shi, X.; Chow, F. K.; Street, R. L.; Bryan, G. H.
2017-12-01
The terra incognita (TI), or gray zone, in simulations is a range of grid spacing comparable to the most energetic eddy diameter. Spacing in mesoscale and simulations is much larger than the eddies, and turbulence is parameterized with one-dimensional vertical-mixing. Large eddy simulations (LES) have grid spacing much smaller than the energetic eddies, and use three-dimensional models of turbulence. Studies of convective weather use convection-permitting resolutions, which are in the TI. Neither mesoscale-turbulence nor LES models are designed for the TI, so TI turbulence parameterization needs to be discussed. Here, the effects of sub-filter scale (SFS) closure schemes on the simulation of deep tropical convection are evaluated by comparing three closures, i.e. Smagorinsky model, Deardorff-type TKE model and the dynamic reconstruction model (DRM), which partitions SFS turbulence into resolvable sub-filter scales (RSFS) and unresolved sub-grid scales (SGS). The RSFS are reconstructed, and the SGS are modeled with a dynamic eddy viscosity/diffusivity model. The RSFS stresses/fluxes allow backscatter of energy/variance via counter-gradient stresses/fluxes. In high-resolution (100m) simulations of tropical convection use of these turbulence models did not lead to significant differences in cloud water/ice distribution, precipitation flux, or vertical fluxes of momentum and heat. When model resolutions are coarsened, the Smagorinsky and TKE models overestimate cloud ice and produces large-amplitude downward heat flux in the middle troposphere (not found in the high-resolution simulations). This error is a result of unrealistically large eddy diffusivities, i.e., the eddy diffusivity of the DRM is on the order of 1 for the coarse resolution simulations, the eddy diffusivity of the Smagorinsky and TKE model is on the order of 100. Splitting the eddy viscosity/diffusivity scalars into vertical and horizontal components by using different length scales and strain rate components helps to reduce the errors, but does not completely remedy the problem. In contrast, the coarse resolution simulations using the DRM produce results that are more consistent with the high-resolution results, suggesting that the DRM is a more appropriate turbulence model for simulating convection in the TI.
Model for Semantically Rich Point Cloud Data
NASA Astrophysics Data System (ADS)
Poux, F.; Neuville, R.; Hallot, P.; Billen, R.
2017-10-01
This paper proposes an interoperable model for managing high dimensional point clouds while integrating semantics. Point clouds from sensors are a direct source of information physically describing a 3D state of the recorded environment. As such, they are an exhaustive representation of the real world at every scale: 3D reality-based spatial data. Their generation is increasingly fast but processing routines and data models lack of knowledge to reason from information extraction rather than interpretation. The enhanced smart point cloud developed model allows to bring intelligence to point clouds via 3 connected meta-models while linking available knowledge and classification procedures that permits semantic injection. Interoperability drives the model adaptation to potentially many applications through specialized domain ontologies. A first prototype is implemented in Python and PostgreSQL database and allows to combine semantic and spatial concepts for basic hybrid queries on different point clouds.
Multi-year global climatic effects of atmospheric dust from large bolide impacts
NASA Technical Reports Server (NTRS)
Thompson, Starley L.
1988-01-01
The global climatic effects of dust generated by the impact of a 10 km-diameter bolide was simulated using a one-dimensional (vertical only) globally-averaged climate model by Pollack et al. The goal of the simulation is to examine the regional climate effects, including the possibility of coastal refugia, generated by a global dust cloud in a model having realistic geographic resolution. The climate model assumes the instantaneous appearance of a global stratospheric dust cloud with initial optical depth of 10,000. The time history of optical depth decreases according to the detailed calculations of Pollack et al., reaching an optical depth of unity at day 160, and subsequently decreasing with an e-folding time of 1 year. The simulation is carried out for three years in order to examine the atmospheric effects and recovery over several seasons. The simulation does not include any effects of NOx, CO2, or wildfire smoke injections that may accompany the creation of the dust cloud. The global distribution of surface temperature changes, freezing events, precipitation and soil moisture effects and sea ice increases will be discussed.
Gao, Zheng; Liu, Yangang; Li, Xiaolin; ...
2018-02-19
Here, a new particle-resolved three dimensional direct numerical simulation (DNS) model is developed that combines Lagrangian droplet tracking with the Eulerian field representation of turbulence near the Kolmogorov microscale. Six numerical experiments are performed to investigate the processes of entrainment of clear air and subsequent mixing with cloudy air and their interactions with cloud microphysics. The experiments are designed to represent different combinations of three configurations of initial cloudy area and two turbulence modes (decaying and forced turbulence). Five existing measures of microphysical homogeneous mixing degree are examined, modified, and compared in terms of their ability as a unifying measuremore » to represent the effect of various entrainment-mixing mechanisms on cloud microphysics. Also examined and compared are the conventional Damköhler number and transition scale number as a dynamical measure of different mixing mechanisms. Relationships between the various microphysical measures and dynamical measures are investigated in search for a unified parameterization of entrainment-mixing processes. The results show that even with the same cloud water fraction, the thermodynamic and microphysical properties are different, especially for the decaying cases. Further analysis confirms that despite the detailed differences in cloud properties among the six simulation scenarios, the variety of turbulent entrainment-mixing mechanisms can be reasonably represented with power-law relationships between the microphysical homogeneous mixing degrees and the dynamical measures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Zheng; Liu, Yangang; Li, Xiaolin
Here, a new particle-resolved three dimensional direct numerical simulation (DNS) model is developed that combines Lagrangian droplet tracking with the Eulerian field representation of turbulence near the Kolmogorov microscale. Six numerical experiments are performed to investigate the processes of entrainment of clear air and subsequent mixing with cloudy air and their interactions with cloud microphysics. The experiments are designed to represent different combinations of three configurations of initial cloudy area and two turbulence modes (decaying and forced turbulence). Five existing measures of microphysical homogeneous mixing degree are examined, modified, and compared in terms of their ability as a unifying measuremore » to represent the effect of various entrainment-mixing mechanisms on cloud microphysics. Also examined and compared are the conventional Damköhler number and transition scale number as a dynamical measure of different mixing mechanisms. Relationships between the various microphysical measures and dynamical measures are investigated in search for a unified parameterization of entrainment-mixing processes. The results show that even with the same cloud water fraction, the thermodynamic and microphysical properties are different, especially for the decaying cases. Further analysis confirms that despite the detailed differences in cloud properties among the six simulation scenarios, the variety of turbulent entrainment-mixing mechanisms can be reasonably represented with power-law relationships between the microphysical homogeneous mixing degrees and the dynamical measures.« less
Linking Advanced Visualization and MATLAB for the Analysis of 3D Gene Expression Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruebel, Oliver; Keranen, Soile V.E.; Biggin, Mark
Three-dimensional gene expression PointCloud data generated by the Berkeley Drosophila Transcription Network Project (BDTNP) provides quantitative information about the spatial and temporal expression of genes in early Drosophila embryos at cellular resolution. The BDTNP team visualizes and analyzes Point-Cloud data using the software application PointCloudXplore (PCX). To maximize the impact of novel, complex data sets, such as PointClouds, the data needs to be accessible to biologists and comprehensible to developers of analysis functions. We address this challenge by linking PCX and Matlab via a dedicated interface, thereby providing biologists seamless access to advanced data analysis functions and giving bioinformatics researchersmore » the opportunity to integrate their analysis directly into the visualization application. To demonstrate the usefulness of this approach, we computationally model parts of the expression pattern of the gene even skipped using a genetic algorithm implemented in Matlab and integrated into PCX via our Matlab interface.« less
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The upper haze layer has some features that match the lower cloud, such as the bright streak in the foreground of the frame. These are probably thick clouds that span several tens of vertical kilometers.Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper and lower clouds are separated in the rendering by an arbitrary amount, and the height variations are exaggerated by a factor of 25.The lower cloud is colored using the same false color scheme used in previously released image products, assigning red, green, and blue to the 756, 727, and 889 nanometer mosaics, respectively. Light bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the lower cloud with an overlying thin haze.The images used cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The hotspot is clearly visible as a deep blue feature. The cloud streaks end near the hotspot, consistent with the idea that clouds traveling along these streak lines descend and evaporate as they approach the hotspot. The upper haze layer is slightly bowed upwards above the hotspot.Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper and lower clouds are separated in the rendering by an arbitrary amount, and the height variations are exaggerated by a factor of 25.The lower cloud is colored using the same false color scheme used in previously released image products, assigning red, green, and blue to the 756, 727, and 889 nanometer mosaics, respectively. Light bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the lower cloud with an overlying thin haze.The images used cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.Studies in the use of cloud type statistics in mission simulation
NASA Technical Reports Server (NTRS)
Fowler, M. G.; Willand, J. H.; Chang, D. T.; Cogan, J. L.
1974-01-01
A study to further improve NASA's global cloud statistics for mission simulation is reported. Regional homogeneity in cloud types was examined; most of the original region boundaries defined for cloud cover amount in previous studies were supported by the statistics on cloud types and the number of cloud layers. Conditionality in cloud statistics was also examined with special emphasis on temporal and spatial dependencies, and cloud type interdependence. Temporal conditionality was found up to 12 hours, and spatial conditionality up to 200 miles; the diurnal cycle in convective cloudiness was clearly evident. As expected, the joint occurrence of different cloud types reflected the dynamic processes which form the clouds. Other phases of the study improved the cloud type statistics for several region and proposed a mission simulation scheme combining the 4-dimensional atmospheric model, sponsored by MSFC, with the global cloud model.
NASA Astrophysics Data System (ADS)
Lefèvre, Maxence; Spiga, Aymeric; Lebonnois, Sébastien
2017-04-01
The impact of the cloud convective layer of the atmosphere of Venus on the global circulation remains unclear. The recent observations of gravity waves at the top of the cloud by the Venus Express mission provided some answers. These waves are not resolved at the scale of global circulation models (GCM), therefore we developed an unprecedented 3D turbulence-resolving Large-Eddy Simulations (LES) Venusian model (Lefèvre et al, 2016 JGR Planets) using the Weather Research and Forecast terrestrial model. The forcing consists of three different heating rates : two radiative ones for solar and infrared and one associated with the adiabatic cooling/warming of the global circulation. The rates are extracted from the Laboratoire de Météorlogie Dynamique (LMD) Venus GCM using two different cloud models. Thus we are able to characterize the convection and associated gravity waves in function of latitude and local time. To assess the impact of the global circulation on the convective layer, we used rates from a 1D radiative-convective model. The resolved layer, taking place between 1.0 105 and 3.8 104 Pa (48-53 km), is organized as polygonal closed cells of about 10 km wide with vertical wind of several meters per second. The convection emits gravity waves both above and below the convective layer leading to temperature perturbations of several tenths of Kelvin with vertical wavelength between 1 and 3 km and horizontal wavelength from 1 to 10 km. The thickness of the convective layer and the amplitudes of waves are consistent with observations, though slightly underestimated. The global dynamics heating greatly modify the convective layer.
NASA Astrophysics Data System (ADS)
Roman, Michael; Rauscher, Emily
2017-11-01
Motivated by observational evidence of inhomogeneous clouds in exoplanetary atmospheres, we investigate how proposed simple cloud distributions can affect atmospheric circulations and infrared emission. We simulated temperatures and winds for the hot Jupiter Kepler-7b using a three-dimensional atmospheric circulation model that included a simplified aerosol radiative transfer model. We prescribed fixed cloud distributions and scattering properties based on results previously inferred from Kepler-7b optical phase curves, including inhomogeneous aerosols centered along the western terminator and hypothetical cases in which aerosols additionally extended across much of the planet’s nightside. In all cases, a strong jet capable of advecting aerosols from a cooler nightside to dayside was found to persist, but only at the equator. Colder temperatures at mid and polar latitudes might permit aerosol to form on the dayside without the need for advection. By altering the deposition and redistribution of heat, aerosols along the western terminator produced an asymmetric heating that effectively shifts the hottest spot further east of the substellar point than expected for a uniform distribution. The addition of opaque high clouds on the nightside can partly mitigate this enhanced shift by retaining heat that contributes to warming west of the hotspot. These expected differences in infrared phase curves could place constraints on proposed cloud distributions and their infrared opacities for brighter hot Jupiters.
New Cloud Science from the New ARM Cloud Radar Systems (Invited)
NASA Astrophysics Data System (ADS)
Wiscombe, W. J.
2010-12-01
The DOE ARM Program is deploying over $30M worth of scanning polarimetric Doppler radars at its four fixed and two mobile sites, with the object of advancing cloud lifecycle science, and cloud-aerosol-precipitation interaction science, by a quantum leap. As of 2011, there will be 13 scanning radar systems to complement its existing array of profiling cloud radars: C-band for precipitation, X-band for drizzle and precipitation, and two-frequency radars for cloud droplets and drizzle. This will make ARM the world’s largest science user of, and largest provider of data from, ground-based cloud radars. The philosophy behind this leap is actually quite simple, to wit: dimensionality really does matter. Just as 2D turbulence is fundamentally different from 3D turbulence, so observing clouds only at zenith provides a dimensionally starved, and sometimes misleading, picture of real clouds. In particular, the zenith view can say little or nothing about cloud lifecycle and the second indirect effect, nor about aerosol-precipitation interactions. It is not even particularly good at retrieving the cloud fraction (no matter how that slippery quantity is defined). This talk will review the history that led to this development and then discuss the aspirations for how this will propel cloud-aerosol-precipitation science forward. The step by step plan for translating raw radar data into information that is useful to cloud and aerosol scientists and climate modelers will be laid out, with examples from ARM’s recent scanning cloud radar deployments in the Azores and Oklahoma . In the end, the new systems should allow cloud systems to be understood as 4D coherent entities rather than dimensionally crippled 2D or 3D entities such as observed by satellites and zenith-pointing radars.
Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view from the southwest looking northeast, from an altitude just above the high haze layer. The streaks in the lower cloud leading towards the hotspot are visible. The upper haze layer is mostly flat, with notable small peaks that can be matched with features in the lower cloud. In reality, these areas may represent a continuous vertical cloud column.Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper and lower clouds are separated in the rendering by an arbitrary amount, and the height variations are exaggerated by a factor of 25.The lower cloud is colored using the same false color scheme used in previously released image products, assigning red, green, and blue to the 756, 727, and 889 nanometer mosaics, respectively. Light bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the lower cloud with an overlying thin haze.The images used cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the southeast, from between the cloud layers and over the north center of the region. The tall white clouds in the lower cloud deck are probably much like large terrestrial thunderclouds. They may be regions where atmospheric water powers vertical convection over large horizontal distances.Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper and lower clouds are separated in the rendering by an arbitrary amount, and the height variations are exaggerated by a factor of 25.The lower cloud is colored using the same false color scheme used in previously released image products, assigning red, green, and blue to the 756, 727, and 889 nanometer mosaics, respectively. Light bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the lower cloud with an overlying thin haze.The images used cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://www.jpl.nasa.gov/ galileo.Three dimensional Visualization of Jupiter's Equatorial Region
NASA Technical Reports Server (NTRS)
1997-01-01
Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.
This frame is a view to the west, from between the cloud layers and over the patchy white clouds to the east of the hotspot. This is probably an area where moist convection is occurring over large horizontal distances, similar to the atmosphere over the equatorial ocean on Earth. The clouds are high and thick, and are observed to change rapidly over short time scales.Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper and lower clouds are separated in the rendering by an arbitrary amount, and the height variations are exaggerated by a factor of 25.The lower cloud is colored using the same false color scheme used in previously released image products, assigning red, green, and blue to the 756, 727, and 889 nanometer mosaics, respectively. Light bluish clouds are high and thin, reddish clouds are low, and white clouds are high and thick. The dark blue hotspot in the center is a hole in the lower cloud with an overlying thin haze.The images used cover latitudes 1 to 10 degrees and are centered at longitude 336 degrees west. The smallest resolved features are tens of kilometers in size. These images were taken on December 17, 1996, at a range of 1.5 million kilometers (about 930,000 miles) by the Solid State Imaging (CCD) system on NASA's Galileo spacecraft.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.Cloud/climate sensitivity experiments
NASA Technical Reports Server (NTRS)
Roads, J. O.; Vallis, G. K.; Remer, L.
1982-01-01
A study of the relationships between large-scale cloud fields and large scale circulation patterns is presented. The basic tool is a multi-level numerical model comprising conservation equations for temperature, water vapor and cloud water and appropriate parameterizations for evaporation, condensation, precipitation and radiative feedbacks. Incorporating an equation for cloud water in a large-scale model is somewhat novel and allows the formation and advection of clouds to be treated explicitly. The model is run on a two-dimensional, vertical-horizontal grid with constant winds. It is shown that cloud cover increases with decreased eddy vertical velocity, decreased horizontal advection, decreased atmospheric temperature, increased surface temperature, and decreased precipitation efficiency. The cloud field is found to be well correlated with the relative humidity field except at the highest levels. When radiative feedbacks are incorporated and the temperature increased by increasing CO2 content, cloud amounts decrease at upper-levels or equivalently cloud top height falls. This reduces the temperature response, especially at upper levels, compared with an experiment in which cloud cover is fixed.
Jets and Water Clouds on Jupiter
NASA Astrophysics Data System (ADS)
Lian, Yuan; Showman, A. P.
2012-10-01
Ground-based and spacecraft observations show that Jupiter exhibits multiple banded zonal jet structures. These banded jets correlate with dark and bright clouds, often called "belts" and "zones". The mechanisms that produce these banded zonal jets and clouds are poorly understood. Our previous studies showed that the latent heat released by condensation of water vapor could produce equatorial superrotation along with multiple zonal jets in the mid-to-high latitudes. However, that previous work assumed complete and instant removal of condensate and therefore could not predict the cloud formation. Here we present an improved 3D Jupiter model to investigate some effects of cloud microphysics on large-scale dynamics using a closed water cycle that includes condensation, three-dimensional advection of cloud material by the large-scale circulation, evaporation and sedimentation. We use a dry convective adjustment scheme to adjust the temperature towards a dry adiabat when atmospheric columns become convectively unstable, and the tracers are mixed within the unstable layers accordingly. Other physics parameterizations included in our model are the bottom drag and internal heat flux as well as the choices of either Newtonian heating scheme or gray radiative transfer. Given the poorly understood cloud microphysics, we perform case studies by treating the particle size and condensation/evaporation time scale as free parameters. We find that, in some cases, the active water cycle can produce multiple banded jets and clouds. However, the equatorial jet is generally very weak in all the cases because of insufficient supply of eastward eddy momentum fluxes. These differences may result from differences in the overall vertical stratification, baroclinicity, and moisture distribution in our new models relative to the older ones; we expect to elucidate the dynamical mechanisms in continuing work.
NASA Technical Reports Server (NTRS)
Tao, W.-K.; Shie, C.-L.; Johnson, D; Simpson, J.; Starr, David OC. (Technical Monitor)
2002-01-01
A two-dimensional version of the Goddard Cumulus Ensemble (GCE) Model is used to simulate convective systems that developed in various geographic locations. Observed large-scale advective tendencies for potential temperature, water vapor mixing ratio, and horizontal momentum derived from field campaigns are used as the main forcing. By examining the surface energy budgets, the model results show that the two largest terms are net condensation (heating/drying) and imposed large-scale forcing (cooling/moistening) for tropical oceanic cases. These two terms arc opposite in sign, however. The contributions by net radiation and latent heat flux to the net condensation vary in these tropical cases, however. For cloud systems that developed over the South China Sea and eastern Atlantic, net radiation (cooling) accounts for about 20% or more of the net condensation. However, short-wave heating and long-wave cooling are in balance with each other for cloud systems over the West Pacific region such that the net radiation is very small. This is due to the thick anvil clouds simulated in the cloud systems over the Pacific region. Large-scale cooling exceeds large-scale moistening in the Pacific and Atlantic cases. For cloud systems over the South China Sea, however, there is more large-scale moistening than cooling even though the cloud systems developed in a very moist environment. though For three cloud systems that developed over a mid-latitude continent, the net radiation and sensible and latent heat fluxes play a much more important role. This means the accurate measurement of surface fluxes and radiation is crucial for simulating these mid-latitude cases.
NASA Astrophysics Data System (ADS)
Davis, A. B.; Cahalan, R. F.
2001-05-01
The Intercomparison of 3D Radiation Codes (I3RC) is an on-going initiative involving an international group of over 30 researchers engaged in the numerical modeling of three-dimensional radiative transfer as applied to clouds. Because of their strong variability and extreme opacity, clouds are indeed a major source of uncertainty in the Earth's local radiation budget (at GCM grid scales). Also 3D effects (at satellite pixel scales) invalidate the standard plane-parallel assumption made in the routine of cloud-property remote sensing at NASA and NOAA. Accordingly, the test-cases used in I3RC are based on inputs and outputs which relate to cloud effects in atmospheric heating rates and in real-world remote sensing geometries. The main objectives of I3RC are to (1) enable participants to improve their models, (2) publish results as a community, (3) archive source code, and (4) educate. We will survey the status of I3RC and its plans for the near future with a special emphasis on the mathematical models and computational approaches. We will also describe some of the prime applications of I3RC's efforts in climate models, cloud-resolving models, and remote-sensing observations of clouds, or that of the surface in their presence. In all these application areas, computational efficiency is the main concern and not accuracy. One of I3RC's main goals is to document the performance of as wide a variety as possible of three-dimensional radiative transfer models for a small but representative number of ``cases.'' However, it is dominated by modelers working at the level of linear transport theory (i.e., they solve the radiative transfer equation) and an overwhelming majority of these participants use slow-but-robust Monte Carlo techniques. This means that only a small portion of the efficiency vs. accuracy vs. flexibility domain is currently populated by I3RC participants. To balance this natural clustering the present authors have organized a systematic outreach towards modelers that have used approximate methods in radiation transport. In this context, different, presumably simpler, equations (such as diffusion) are used in order to make a significant gain on the efficiency axis. We will describe in some detail the most promising approaches to approximate 3D radiative transfer in clouds. Somewhat paradoxically, and in spite of its importance in the above-mentioned applications, approximate radiative transfer modeling lags significantly behind its exact counterpart because the required mathematical and computational culture is essentially alien to the native atmospheric radiation community. I3RC is receiving enough funding from NASA/HQ and DOE/ARM for its essential operations out of NASA/GSFC. However, this does not cover the time and effort of any of the participants; so only existing models were entered. At present, none of inherently approximate methods are represented, only severe truncations of some exact methods. We therefore welcome the Math/Geo initiative at NSF which should enable the proper consortia of experts in atmospheric radiation and in applied mathematics to fill an important niche.
NASA Astrophysics Data System (ADS)
Owers, Christopher J.; Rogers, Kerrylee; Woodroffe, Colin D.
2018-05-01
Above-ground biomass represents a small yet significant contributor to carbon storage in coastal wetlands. Despite this, above-ground biomass is often poorly quantified, particularly in areas where vegetation structure is complex. Traditional methods for providing accurate estimates involve harvesting vegetation to develop mangrove allometric equations and quantify saltmarsh biomass in quadrats. However broad scale application of these methods may not capture structural variability in vegetation resulting in a loss of detail and estimates with considerable uncertainty. Terrestrial laser scanning (TLS) collects high resolution three-dimensional point clouds capable of providing detailed structural morphology of vegetation. This study demonstrates that TLS is a suitable non-destructive method for estimating biomass of structurally complex coastal wetland vegetation. We compare volumetric models, 3-D surface reconstruction and rasterised volume, and point cloud elevation histogram modelling techniques to estimate biomass. Our results show that current volumetric modelling approaches for estimating TLS-derived biomass are comparable to traditional mangrove allometrics and saltmarsh harvesting. However, volumetric modelling approaches oversimplify vegetation structure by under-utilising the large amount of structural information provided by the point cloud. The point cloud elevation histogram model presented in this study, as an alternative to volumetric modelling, utilises all of the information within the point cloud, as opposed to sub-sampling based on specific criteria. This method is simple but highly effective for both mangrove (r2 = 0.95) and saltmarsh (r2 > 0.92) vegetation. Our results provide evidence that application of TLS in coastal wetlands is an effective non-destructive method to accurately quantify biomass for structurally complex vegetation.
West Antarctic Ice Sheet cloud cover and surface radiation budget from NASA A-Train satellites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, Ryan C.; Lubin, Dan; Vogelmann, Andrew M.
Clouds are an essential parameter of the surface energy budget influencing the West Antarctic Ice Sheet (WAIS) response to atmospheric warming and net contribution to global sea-level rise. A four-year record of NASA A-Train cloud observations is combined with surface radiation measurements to quantify the WAIS radiation budget and constrain the three-dimensional occurrence frequency, thermodynamic phase partitioning, and surface radiative effect of clouds over West Antarctica (WA). The skill of satellite-modeled radiative fluxes is confirmed through evaluation against measurements at four Antarctic sites (WAIS Divide Ice Camp, Neumayer, Syowa, and Concordia Stations). And due to perennial high-albedo snow and icemore » cover, cloud infrared emission dominates over cloud solar reflection/absorption leading to a positive net all-wave cloud radiative effect (CRE) at the surface, with all monthly means and 99.15% of instantaneous CRE values exceeding zero. The annual-mean CRE at theWAIS surface is 34 W m -2, representing a significant cloud-induced warming of the ice sheet. Low-level liquid-containing clouds, including thin liquid water clouds implicated in radiative contributions to surface melting, are widespread and most frequent in WA during the austral summer. Clouds warm the WAIS by 26 W m -2, in summer, on average, despite maximum offsetting shortwave CRE. Glaciated cloud systems are strongly linked to orographic forcing, with maximum incidence on the WAIS continuing downstream along the Transantarctic Mountains.« less
West Antarctic Ice Sheet cloud cover and surface radiation budget from NASA A-Train satellites
Scott, Ryan C.; Lubin, Dan; Vogelmann, Andrew M.; ...
2017-04-26
Clouds are an essential parameter of the surface energy budget influencing the West Antarctic Ice Sheet (WAIS) response to atmospheric warming and net contribution to global sea-level rise. A four-year record of NASA A-Train cloud observations is combined with surface radiation measurements to quantify the WAIS radiation budget and constrain the three-dimensional occurrence frequency, thermodynamic phase partitioning, and surface radiative effect of clouds over West Antarctica (WA). The skill of satellite-modeled radiative fluxes is confirmed through evaluation against measurements at four Antarctic sites (WAIS Divide Ice Camp, Neumayer, Syowa, and Concordia Stations). And due to perennial high-albedo snow and icemore » cover, cloud infrared emission dominates over cloud solar reflection/absorption leading to a positive net all-wave cloud radiative effect (CRE) at the surface, with all monthly means and 99.15% of instantaneous CRE values exceeding zero. The annual-mean CRE at theWAIS surface is 34 W m -2, representing a significant cloud-induced warming of the ice sheet. Low-level liquid-containing clouds, including thin liquid water clouds implicated in radiative contributions to surface melting, are widespread and most frequent in WA during the austral summer. Clouds warm the WAIS by 26 W m -2, in summer, on average, despite maximum offsetting shortwave CRE. Glaciated cloud systems are strongly linked to orographic forcing, with maximum incidence on the WAIS continuing downstream along the Transantarctic Mountains.« less
NASA Technical Reports Server (NTRS)
Houlahan, Padraig; Scalo, John
1992-01-01
A new method of image analysis is described, in which images partitioned into 'clouds' are represented by simplified skeleton images, called structure trees, that preserve the spatial relations of the component clouds while disregarding information concerning their sizes and shapes. The method can be used to discriminate between images of projected hierarchical (multiply nested) and random three-dimensional simulated collections of clouds constructed on the basis of observed interstellar properties, and even intermediate systems formed by combining random and hierarchical simulations. For a given structure type, the method can distinguish between different subclasses of models with different parameters and reliably estimate their hierarchical parameters: average number of children per parent, scale reduction factor per level of hierarchy, density contrast, and number of resolved levels. An application to a column density image of the Taurus complex constructed from IRAS data is given. Moderately strong evidence for a hierarchical structural component is found, and parameters of the hierarchy, as well as the average volume filling factor and mass efficiency of fragmentation per level of hierarchy, are estimated. The existence of nested structure contradicts models in which large molecular clouds are supposed to fragment, in a single stage, into roughly stellar-mass cores.
NASA Technical Reports Server (NTRS)
Pickering, Kenneth E.; Thompson, Anne M.; Tao, Wei-Kuo; Simpson, Joanne; Scala, John R.
1991-01-01
The role of convection was examined in trace gas transport and ozone production in a tropical dry season squall line sampled on August 3, 1985, during NASA Global Tropospheric Experiment/Amazon Boundary Layer Experiment 2A (NASA GTE/ABLE 2A) in Amazonia, Brazil. Two types of analyses were performed. Transient effects within the cloud are examined with a combination of two-dimensional cloud and one-dimensional photochemical modeling. Tracer analyses using the cloud model wind fields yield a series of cross sections of NO(x), CO, and O3 distribution during the lifetime of the cloud; these fields are used in the photochemical model to compute the net rate of O3 production. At noon, when the cloud was mature, the instantaneous ozone production potential in the cloud is between 50 and 60 percent less than in no-cloud conditions due to reduced photolysis and cloud scavenging of radicals. Analysis of cloud inflows and outflows is used to differentiate between air that is undisturbed and air that has been modified by the storm. These profiles are used in the photochemical model to examine the aftereffects of convective redistribution in the 24-hour period following the storm. Total tropospheric column O3 production changed little due to convection because so little NO(x) was available in the lower troposphere. However, the integrated O3 production potential in the 5- to 13-km layer changed from net destruction to net production as a result of the convection. The conditions of the August 3, 1985, event may be typical of the early part of the dry season in Amazonia, when only minimal amounts of pollution from biomass burning have been transported into the region.
View angle dependence of cloud optical thicknesses retrieved by MODIS
NASA Technical Reports Server (NTRS)
Marshak, Alexander; Varnai, Tamas
2005-01-01
This study examines whether cloud inhomogeneity influences the view angle dependence of MODIS cloud optical thickness (tau) retrieval results. The degree of cloud inhomogeneity is characterized through the local gradient in 11 microns brightness temperature. The analysis of liquid phase clouds in a one year long global dataset of Collection 4 MODIS data reveals that while optical thickness retrievals give remarkably consistent results for all view directions if clouds are homogeneous, they give much higher tau-values for oblique views than for overhead views if clouds are inhomogeneous and the sun is fairly oblique. For solar zenith angles larger than 55deg, the mean optical thickness retrieved for the most inhomogeneous third of cloudy pixels is more than 30% higher for oblique views than for overhead views. After considering a variety of possible scenarios, the paper concludes that the most likely reason for the increase lies in three-dimensional radiative interactions that are not considered in current, one-dimensional retrieval algorithms. Namely, the radiative effect of cloud sides viewed at oblique angles seems to contribute most to the enhanced tau-values. The results presented here will help understand cloud retrieval uncertainties related to cloud inhomogeneity. They complement the uncertainty estimates that will start accompanying MODIS cloud products in Collection 5 and may eventually help correct for the observed view angle dependent biases.
NASA Astrophysics Data System (ADS)
Budge, Scott E.; Badamikar, Neeraj S.; Xie, Xuan
2015-03-01
Several photogrammetry-based methods have been proposed that the derive three-dimensional (3-D) information from digital images from different perspectives, and lidar-based methods have been proposed that merge lidar point clouds and texture the merged point clouds with digital imagery. Image registration alone has difficulty with smooth regions with low contrast, whereas point cloud merging alone has difficulty with outliers and a lack of proper convergence in the merging process. This paper presents a method to create 3-D images that uses the unique properties of texel images (pixel-fused lidar and digital imagery) to improve the quality and robustness of fused 3-D images. The proposed method uses both image processing and point-cloud merging to combine texel images in an iterative technique. Since the digital image pixels and the lidar 3-D points are fused at the sensor level, more accurate 3-D images are generated because registration of image data automatically improves the merging of the point clouds, and vice versa. Examples illustrate the value of this method over other methods. The proposed method also includes modifications for the situation where an estimate of position and attitude of the sensor is known, when obtained from low-cost global positioning systems and inertial measurement units sensors.
Multiple Scattering in Clouds: Insights from Three-Dimensional Diffusion/P{sub 1} Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Anthony B.; Marshak, Alexander
2001-03-15
In the atmosphere, multiple scattering matters nowhere more than in clouds, and being a product of its turbulence, clouds are highly variable environments. This challenges three-dimensional (3D) radiative transfer theory in a way that easily swamps any available computational resources. Fortunately, the far simpler diffusion (or P{sub 1}) theory becomes more accurate as the scattering intensifies, and allows for some analytical progress as well as computational efficiency. After surveying current approaches to 3D solar cloud-radiation problems from the diffusion standpoint, a general 3D result in steady-state diffusive transport is derived relating the variability-induced change in domain-average flux (i.e., diffuse transmittance)more » to the one-point covariance of internal fluctuations in particle density and in radiative flux. These flux variations follow specific spatial patterns in deliberately hydrodynamical language: radiative channeling. The P{sub 1} theory proves even more powerful when the photon diffusion process unfolds in time as well as space. For slab geometry, characteristic times and lengths that describe normal and transverse transport phenomena are derived. This phenomenology is used to (a) explain persistent features in satellite images of dense stratocumulus as radiative channeling, (b) set limits on current cloud remote-sensing techniques, and (c) propose new ones both active and passive.« less
Global environmental effects of impact-generated aerosols: Results from a general circulation model
NASA Technical Reports Server (NTRS)
Covey, Curt; Ghan, Steven J.; Walton, John J.; Weissman, Paul R.
1989-01-01
Interception of sunlight by the high altitude worldwide dust cloud generated by impact of a large asteroid or comet would lead to substantial land surface cooling, according to the three-dimensional atmospheric general circulation model (GCM). This result is qualitatively similar to conclusions drawn from an earlier study that employed a one-dimensional atmospheric model, but in the GCM simulation the heat capacity of the oceans, not included in the one-dimensional model, substantially mitigates land surface cooling. On the other hand, the low heat capacity of the GCM's land surface allows temperatures to drop more rapidly in the initial stages of cooling than in the one-dimensional model study. GCM-simulated climatic changes in the scenario of asteroid/comet winter are more severe than in nuclear winter because the assumed aerosol amount is large enough to intercept all sunlight falling on earth. Impacts of smaller objects could also lead to dramatic, though of course less severe, climatic changes, according to the GCM. An asteroid or comet impact would not lead to anything approaching complete global freezing, but quite reasonable to assume that impacts would dramatically alter the climate in at least a patchy sense.
NASA Astrophysics Data System (ADS)
Okamura, Rintaro; Iwabuchi, Hironobu; Schmidt, K. Sebastian
2017-12-01
Three-dimensional (3-D) radiative-transfer effects are a major source of retrieval errors in satellite-based optical remote sensing of clouds. The challenge is that 3-D effects manifest themselves across multiple satellite pixels, which traditional single-pixel approaches cannot capture. In this study, we present two multi-pixel retrieval approaches based on deep learning, a technique that is becoming increasingly successful for complex problems in engineering and other areas. Specifically, we use deep neural networks (DNNs) to obtain multi-pixel estimates of cloud optical thickness and column-mean cloud droplet effective radius from multispectral, multi-pixel radiances. The first DNN method corrects traditional bispectral retrievals based on the plane-parallel homogeneous cloud assumption using the reflectances at the same two wavelengths. The other DNN method uses so-called convolutional layers and retrieves cloud properties directly from the reflectances at four wavelengths. The DNN methods are trained and tested on cloud fields from large-eddy simulations used as input to a 3-D radiative-transfer model to simulate upward radiances. The second DNN-based retrieval, sidestepping the bispectral retrieval step through convolutional layers, is shown to be more accurate. It reduces 3-D radiative-transfer effects that would otherwise affect the radiance values and estimates cloud properties robustly even for optically thick clouds.
Impact of Aerosols on Convective Clouds and Precipitation
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Chen, Jen-Ping; Li, Zhanqing; Wang, Chien; Zhang, Chidong; Li, Xiaowen
2012-01-01
Aerosols are a critical.factor in the atmospheric hydrological cycle and radiation budget. As a major agent for clouds to form and a significant attenuator of solar radiation, aerosols affect climate in several ways. Current research suggests that aerosols have a major impact on the dynamics, microphysics, and electrification properties of continental mixed-phase convective clouds. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing a significant source of cloud condensation nuclei (CCN). Such pollution . effects on precipitation potentially have enormous climatic consequences both in terms of feedbacks involving the land surface via rainfall as well as the surface energy budget and changes in latent heat input to the atmosphere. Basically, aerosol concentrations can influence cloud droplet size distributions, the warm-rain process, the cold-rain process, cloud-top heights, the depth of the mixed-phase region, and the occurrence of lightning. Recently, many cloud resolution models (CRMs) have been used to examine the role of aerosols on mixed-phase convective clouds. These modeling studies have many differences in terms of model configuration (two- or three-dimensional), domain size, grid spacing (150-3000 m), microphysics (two-moment bulk, simple or sophisticated spectral-bin), turbulence (1st or 1.5 order turbulent kinetic energy (TKE)), radiation, lateral boundary conditions (i.e., closed, radiative open or cyclic), cases (isolated convection, tropical or midlatitude squall lines) and model integration time (e.g., 2.5 to 48 hours). Among these modeling studies, the most striking difference is that cumulative precipitation can either increase or decrease in response to higher concentrations of CCN. In this presentation, we review past efforts and summarize our current understanding of the effect of aerosols on convective precipitation processes. Specifically, this paper addresses the following topics: observational evidence of the effect of aerosols on precipitation processes, and results from (CRM) simulations. Note that this presentation is mainly based on a recent paper published in Geophy. Rev. (Tao et al. 2012).
Magnetic seismology of interstellar gas clouds: Unveiling a hidden dimension
NASA Astrophysics Data System (ADS)
Tritsis, Aris; Tassis, Konstantinos
2018-05-01
Stars and planets are formed inside dense interstellar molecular clouds by processes imprinted on the three-dimensional (3D) morphology of the clouds. Determining the 3D structure of interstellar clouds remains challenging because of projection effects and difficulties measuring the extent of the clouds along the line of sight. We report the detection of normal vibrational modes in the isolated interstellar cloud Musca, allowing determination of the 3D physical dimensions of the cloud. We found that Musca is vibrating globally, with the characteristic modes of a sheet viewed edge on, not the characteristics of a filament as previously supposed. We reconstructed the physical properties of Musca through 3D magnetohydrodynamic simulations, reproducing the observed normal modes and confirming a sheetlike morphology.
NASA Astrophysics Data System (ADS)
Diehl, K.; Simmel, M.; Wurzler, S.
There is some evidence that the initiation of warm rain is suppressed in clouds over regions with vegetation fires. Thus, the ice phase becomes important as another possibility to initiate precipitation. Numerical simulations were performed to investigate heterogeneous drop freezing for a biomass-burning situation. An air parcel model with a sectional two-dimensional description of the cloud microphysics was employed with parameterizations for immersion and contact freezing which consider the different ice nucleating efficiencies of various ice nuclei. Three scenarios were simulated resulting to mixed-phase or completely glaciated clouds. According to the high insoluble fraction of the biomass-burning particles drop freezing via immersion and contact modes was very efficient. The preferential freezing of large drops followed by riming (i.e. the deposition of liquid drops on ice particles) and the evaporation of the liquid drops (Bergeron-Findeisen process) caused a further decrease of the liquid drops' effective radius in higher altitudes. In turn ice particle sizes increased so that they could serve as germs for graupel or hailstone formation. The effects of ice initiation on the vertical cloud dynamics were fairly significant leading to a development of the cloud to much higher altitudes than in a warm cloud without ice formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerstein, Alan R.; Sayler, Bentley J.; Wunsch, Scott Edward
2010-11-01
Numerical simulations using the One-Dimensional-Turbulence model are compared to water-tank measurements [B. J. Sayler and R. E. Breidenthal, J. Geophys. Res. 103 (D8), 8827 (1998)] emulating convection and entrainment in stratiform clouds driven by cloud-top cooling. Measured dependences of the entrainment rate on Richardson number, molecular transport coefficients, and other experimental parameters are reproduced. Additional parameter variations suggest more complicated dependences of the entrainment rate than previously anticipated. A simple algebraic model indicates the ways in which laboratory and cloud entrainment behaviors might be similar and different.
Cui, Xiao-Yan; Huo, Zhong-Gang; Xin, Zhong-Hua; Tian, Xiao; Zhang, Xiao-Dong
2013-07-01
Three-dimensional (3D) copying of artificial ears and pistol printing are pushing laser three-dimensional copying technique to a new page. Laser three-dimensional scanning is a fresh field in laser application, and plays an irreplaceable part in three-dimensional copying. Its accuracy is the highest among all present copying techniques. Reproducibility degree marks the agreement of copied object with the original object on geometry, being the most important index property in laser three-dimensional copying technique. In the present paper, the error of laser three-dimensional copying was analyzed. The conclusion is that the data processing to the point cloud of laser scanning is the key technique to reduce the error and increase the reproducibility degree. The main innovation of this paper is as follows. On the basis of traditional ant colony optimization, rational ant colony optimization algorithm proposed by the author was applied to the laser three-dimensional copying as a new algorithm, and was put into practice. Compared with customary algorithm, rational ant colony optimization algorithm shows distinct advantages in data processing of laser three-dimensional copying, reducing the error and increasing the reproducibility degree of the copy.
NASA Technical Reports Server (NTRS)
Perkey, Donald J.; Doty, Kevin G.; Robertson, Franklin R.
1989-01-01
A preliminary 140-km simulation of a rapid cyclogenesis, using the Limited Area Mesoscale Prediction System (LAMPS) is discussed. A three-dimensional version of LAMPS used in the simulation is described, along with a trajectory model utilizing the three-hourly output history files from the LAMPS model. Preliminary integrations of the LAMPS code as well as passive microwave digital data from SSM/I aboard the DMSP satellite are used for exploring the evolving baroclinic structure and moisture field of the cyclone event. A trajectory analysis of the model histories reveals a significant role for preconditioning of the low-level upstream air, which is then drawn into the ascending warm conveyor belt ahead of the storm.
NASA Technical Reports Server (NTRS)
Davis, Anthony B.; Marshak, Alexander
2010-01-01
The interplay of sunlight with clouds is a ubiquitous and often pleasant visual experience, but it conjures up major challenges for weather, climate, environmental science and beyond. Those engaged in the characterization of clouds (and the clear air nearby) by remote sensing methods are even more confronted. The problem comes, on the one hand, from the spatial complexity of real clouds and, on the other hand, from the dominance of multiple scattering in the radiation transport. The former ingredient contrasts sharply with the still popular representation of clouds as homogeneous plane-parallel slabs for the purposes of radiative transfer computations. In typical cloud scenes the opposite asymptotic transport regimes of diffusion and ballistic propagation coexist. We survey the three-dimensional (3D) atmospheric radiative transfer literature over the past 50 years and identify three concurrent and intertwining thrusts: first, how to assess the damage (bias) caused by 3D effects in the operational 1D radiative transfer models? Second, how to mitigate this damage? Finally, can we exploit 3D radiative transfer phenomena to innovate observation methods and technologies? We quickly realize that the smallest scale resolved computationally or observationally may be artificial but is nonetheless a key quantity that separates the 3D radiative transfer solutions into two broad and complementary classes: stochastic and deterministic. Both approaches draw on classic and contemporary statistical, mathematical and computational physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boss, Alan P., E-mail: aboss@carnegiescience.edu
Recent meteoritical analyses support an initial abundance of the short-lived radioisotope (SLRI) {sup 60}Fe that may be high enough to require nucleosynthesis in a core-collapse supernova, followed by rapid incorporation into primitive meteoritical components, rather than a scenario where such isotopes were inherited from a well-mixed region of a giant molecular cloud polluted by a variety of supernovae remnants and massive star winds. This paper continues to explore the former scenario, by calculating three-dimensional, adaptive mesh refinement, hydrodynamical code (FLASH 2.5) models of the self-gravitational, dynamical collapse of a molecular cloud core that has been struck by a thin shockmore » front with a speed of 40 km s{sup −1}, leading to the injection of shock front matter into the collapsing cloud through the formation of Rayleigh–Taylor fingers at the shock–cloud intersection. These models extend the previous work into the nonisothermal collapse regime using a polytropic approximation to represent compressional heating in the optically thick protostar. The models show that the injection efficiencies of shock front materials are enhanced compared to previous models, which were not carried into the nonisothermal regime, and so did not reach such high densities. The new models, combined with the recent estimates of initial {sup 60}Fe abundances, imply that the supernova triggering and injection scenario remains a plausible explanation for the origin of the SLRIs involved in the formation of our solar system.« less
NASA Astrophysics Data System (ADS)
Bolick, Leslie; Harguess, Josh
2016-05-01
An emerging technology in the realm of airborne intelligence, surveillance, and reconnaissance (ISR) systems is structure-from-motion (SfM), which enables the creation of three-dimensional (3D) point clouds and 3D models from two-dimensional (2D) imagery. There are several existing tools, such as VisualSFM and open source project OpenSfM, to assist in this process, however, it is well-known that pristine imagery is usually required to create meaningful 3D data from the imagery. In military applications, such as the use of unmanned aerial vehicles (UAV) for surveillance operations, imagery is rarely pristine. Therefore, we present an analysis of structure-from-motion packages on imagery that has been degraded in a controlled manner.
Rohan Benjankar; Daniele Tonina; James McKean
2014-01-01
Studies of the effects of hydrodynamic model dimensionality on simulated flow properties and derived quantities such as aquatic habitat quality are limited. It is important to close this knowledge gap especially now that entire river networks can be mapped at the microhabitat scale due to the advent of point-cloud techniques. This study compares flow properties, such...
NASA Astrophysics Data System (ADS)
Lin, Hsin-mu; Wang, Pao K.; Schlesinger, Robert E.
2005-11-01
This article presents a detailed comparison of cloud microphysical evolution among six warm-season thunderstorm simulations using a time-dependent three-dimensional model WISCDYMM. The six thunderstorms chosen for this study consist of three apiece from two contrasting climate zones, the US High Plains (one supercell and two multicells) and the humid subtropics (two in Florida, US and one in Taipei, Taiwan, all multicells). The primary goal of this study is to investigate the differences among thunderstorms in different climate regimes in terms of their microphysical structures and how differently these structures evolve in time. A subtropical case is used as an example to illustrate the general contents of a simulated storm, and two examples of the simulated storms, one humid subtropical and one northern High Plains case, are used to describe in detail the microphysical histories. The simulation results are compared with the available observational data, and the agreement between the two is shown to be at least fairly close overall. The analysis, synthesis and implications of the simulation results are then presented. The microphysical histories of the six simulated storms in terms of the domain-integrated masses of all five hydrometeor classes (cloud water, cloud ice, rain, snow, graupel/hail), along with the individual sources (and sinks) of the three precipitating hydrometeor classes (rain, snow, graupel/hail) are analyzed in detail. These analyses encompass both the absolute magnitudes and their percentage contributions to the totals, for the condensate mass and their precipitation production (and depletion) rates, respectively. Comparisons between the hydrometeor mass partitionings for the High Plains versus subtropical thunderstorms show that, in a time-averaged sense, ice hydrometeors (cloud ice, snow, graupel/hail) account for ˜ 70-80% of the total hydrometeor mass for the High Plains storms but only ˜ 50% for the subtropical storms, after the systems have reached quasi-steady mature states. This demonstrates that ice processes are highly important even in thunderstorms occurring in warm climatic regimes. The dominant rain sources are two of the graupel/hail sinks, shedding and melting, in both High Plains and subtropical storms, while the main rain sinks are accretion by hail and evaporation. The dominant graupel/hail sources are accretion of rain, snow and cloud water, while its main sinks are shedding and melting. The dominant snow sources are the Bergeron-Findeisen process and accretion of cloud water, while the main sinks are accretion by graupel/hail and sublimation. However, the rankings of the leading production and depletion mechanisms differ somewhat in different storm cases, especially for graupel/hail. The model results indicate that the same hydrometeor types in the different climates have their favored microphysical sources and sinks. These findings not only prove that thunderstorm structure depends on local dynamic and thermodynamic atmospheric conditions that are generally climate-dependent, but also provide information about the partitioning of hydrometeors in the storms. Such information is potentially useful for convective parameterization in large-scale models.
NASA Astrophysics Data System (ADS)
Spiridonov, Vlado; Curic, Mladjen
2013-11-01
The Eyjafjallajökull volcanic eruption, which occurred on April 14, 2010, caused many environmental, air traffic and health problems. An attempt has been made to demonstrate for the first time that certain improvements could be made in the quantitative prediction of the volcanic ash parameters, and in the accounting of the processes in the immediate vicinity of the volcano, using a cloud-resolving model. This type of explicit modeling by treatment of volcanic ash and sulfate chemistry parameterization, with input of a number parameters describing the volcanic source, is the way forward for understanding the complex processes in plumes and in the future plume dispersion modeling. Results imply that the most significant microphysical processes are those related to accretion of cloud water, cloud ice and rainwater by snow, and accretion of rain and snow by hail. The dominant chemical conversion rates that give a great contribution to the sulfate budget are nucleation and dynamic scavenging and oxidation processes. A three-dimensional numerical experiment has shown a very realistic simulation of volcanic ash and other chemical compounds evolution, with a sloping structure strongly influenced by the meteorological conditions. In-cloud oxidation by H2O2 is the dominant pathway for SO2 oxidation and allows sulfate to be produced within the SO2 source region. The averaged cloud water pH of about 5.8 and rainwater pH of 4.5 over simulation time show quantitatively how the oxidation may strongly influence the sulfate budget and acidity of volcanic cloud. Compared to observations, model results are close in many aspects. Information on the near field volcanic plume behavior is essential for early preparedness and evacuation. This approach demonstrates a potential improvement in quantitative predictions regarding the volcanic plume distribution at different altitudes. It could be a useful tool for modeling volcanic plumes for better emergency measures planning.
The spectral signature of cloud spatial structure in shortwave irradiance
Song, Shi; Schmidt, K. Sebastian; Pilewskie, Peter; King, Michael D.; Heidinger, Andrew K.; Walther, Andi; Iwabuchi, Hironobu; Wind, Gala; Coddington, Odele M.
2017-01-01
In this paper, we used cloud imagery from a NASA field experiment in conjunction with three-dimensional radiative transfer calculations to show that cloud spatial structure manifests itself as a spectral signature in shortwave irradiance fields – specifically in transmittance and net horizontal photon transport in the visible and near-ultraviolet wavelength range. We found a robust correlation between the magnitude of net horizontal photon transport (H) and its spectral dependence (slope), which is scale-invariant and holds for the entire pixel population of a domain. This was surprising at first given the large degree of spatial inhomogeneity. We prove that the underlying physical mechanism for this phenomenon is molecular scattering in conjunction with cloud spatial structure. On this basis, we developed a simple parameterization through a single parameter ε, which quantifies the characteristic spectral signature of spatial inhomogeneities. In the case we studied, neglecting net horizontal photon transport leads to a local transmittance bias of ±12–19 %, even at the relatively coarse spatial resolution of 20 km. Since three-dimensional effects depend on the spatial context of a given pixel in a nontrivial way, the spectral dimension of this problem may emerge as the starting point for future bias corrections. PMID:28824698
The spectral signature of cloud spatial structure in shortwave irradiance.
Song, Shi; Schmidt, K Sebastian; Pilewskie, Peter; King, Michael D; Heidinger, Andrew K; Walther, Andi; Iwabuchi, Hironobu; Wind, Gala; Coddington, Odele M
2016-11-08
In this paper, we used cloud imagery from a NASA field experiment in conjunction with three-dimensional radiative transfer calculations to show that cloud spatial structure manifests itself as a spectral signature in shortwave irradiance fields - specifically in transmittance and net horizontal photon transport in the visible and near-ultraviolet wavelength range. We found a robust correlation between the magnitude of net horizontal photon transport ( H ) and its spectral dependence (slope), which is scale-invariant and holds for the entire pixel population of a domain. This was surprising at first given the large degree of spatial inhomogeneity. We prove that the underlying physical mechanism for this phenomenon is molecular scattering in conjunction with cloud spatial structure. On this basis, we developed a simple parameterization through a single parameter ε , which quantifies the characteristic spectral signature of spatial inhomogeneities. In the case we studied, neglecting net horizontal photon transport leads to a local transmittance bias of ±12-19 %, even at the relatively coarse spatial resolution of 20 km. Since three-dimensional effects depend on the spatial context of a given pixel in a nontrivial way, the spectral dimension of this problem may emerge as the starting point for future bias corrections.
Controls on the Archean climate system investigated with a global climate model.
Wolf, E T; Toon, O B
2014-03-01
The most obvious means of resolving the faint young Sun paradox is to invoke large quantities of greenhouse gases, namely, CO2 and CH4. However, numerous changes to the Archean climate system have been suggested that may have yielded additional warming, thus easing the required greenhouse gas burden. Here, we use a three-dimensional climate model to examine some of the factors that controlled Archean climate. We examine changes to Earth's rotation rate, surface albedo, cloud properties, and total atmospheric pressure following proposals from the recent literature. While the effects of increased planetary rotation rate on surface temperature are insignificant, plausible changes to the surface albedo, cloud droplet number concentrations, and atmospheric nitrogen inventory may each impart global mean warming of 3-7 K. While none of these changes present a singular solution to the faint young Sun paradox, a combination can have a large impact on climate. Global mean surface temperatures at or above 288 K could easily have been maintained throughout the entirety of the Archean if plausible changes to clouds, surface albedo, and nitrogen content occurred.
3D Cloud Radiative Effects on Polarized Reflectances
NASA Astrophysics Data System (ADS)
Cornet, C.; Matar, C.; C-Labonnote, L.; Szczap, F.; Waquet, F.; Parol, F.; Riedi, J.
2017-12-01
As recognized in the last IPCC report, clouds have a major importance in the climate budget and need to be better characterized. Remote sensing observations are a way to obtain either global observations of cloud from satellites or a very fine description of clouds from airborne measurements. An increasing numbers of radiometers plan to measure polarized reflectances in addition to total reflectances, since this information is very helpful to obtain aerosol or cloud properties. In a near future, for example, the Multi-viewing, Multi-channel, Multi-polarization Imager (3MI) will be part the EPS-SG Eumetsat-ESA mission. It will achieve multi-angular polarimetric measurements from visible to shortwave infrared wavelengths. An airborne prototype, OSIRIS (Observing System Including Polarization in the Solar Infrared Spectrum), is also presently developed at the Laboratoire d'Optique Atmospherique and had already participated to several measurements campaigns. In order to analyze suitably the measured signal, it it necessary to have realistic and accurate models able to simulate polarized reflectances. The 3DCLOUD model (Szczap et al., 2014) was used to generate three-dimensional synthetic cloud and the 3D radiative transfer model, 3DMCPOL (Cornet et al., 2010) to compute realistic polarized reflectances. From these simulations, we investigate the effects of 3D cloud structures and heterogeneity on the polarized angular signature often used to retrieve cloud or aerosol properties. We show that 3D effects are weak for flat clouds but become quite significant for fractional clouds above ocean. The 3D effects are quite different according to the observation scale. For the airborne scale (few tens of meter), solar illumination effects can lead to polarized cloud reflectance values higher than the saturation limit predicted by the homogeneous cloud assumption. In the cloud gaps, corresponding to shadowed areas of the total reflectances, polarized signal can also be enhanced by the molecular signal at the shortest wavelength. At the satellite scale (few kilometers), depending on the wavelength and the molecular contribution, the absolute polarized signal may be increased or decreased in the forward scattering direction and is decreased in the cloudbow directions because of the plan-parallel biases.
NASA Astrophysics Data System (ADS)
Stolker, T.; Min, M.; Stam, D. M.; Mollière, P.; Dominik, C.; Waters, L. B. F. M.
2017-11-01
Context. Direct imaging has paved the way for atmospheric characterization of young and self-luminous gas giants. Scattering in a horizontally-inhomogeneous atmosphere causes the disk-integrated polarization of the thermal radiation to be linearly polarized, possibly detectable with the newest generation of high-contrast imaging instruments. Aims: We aim to investigate the effect of latitudinal and longitudinal cloud variations, circumplanetary disks, atmospheric oblateness, and cloud particle properties on the integrated degree and direction of polarization in the near-infrared. We want to understand how 3D atmospheric asymmetries affect the polarization signal in order to assess the potential of infrared polarimetry for direct imaging observations of planetary-mass companions. Methods: We have developed a three-dimensional Monte Carlo radiative transfer code (ARTES) for scattered light simulations in (exo)planetary atmospheres. The code is applicable to calculations of reflected light and thermal radiation in a spherical grid with a parameterized distribution of gas, clouds, hazes, and circumplanetary material. A gray atmosphere approximation is used for the thermal structure. Results: The disk-integrated degree of polarization of a horizontally-inhomogeneous atmosphere is maximal when the planet is flattened, the optical thickness of the equatorial clouds is large compared to the polar clouds, and the clouds are located at high altitude. For a flattened planet, the integrated polarization can both increase or decrease with respect to a spherical planet which depends on the horizontal distribution and optical thickness of the clouds. The direction of polarization can be either parallel or perpendicular to the projected direction of the rotation axis when clouds are zonally distributed. Rayleigh scattering by submicron-sized cloud particles will maximize the polarimetric signal whereas the integrated degree of polarization is significantly reduced with micron-sized cloud particles as a result of forward scattering. The presence of a cold or hot circumplanetary disk may also produce a detectable degree of polarization (≲1%) even with a uniform cloud layer in the atmosphere.
Subgrid Modeling of AGN-driven Turbulence in Galaxy Clusters
NASA Astrophysics Data System (ADS)
Scannapieco, Evan; Brüggen, Marcus
2008-10-01
Hot, underdense bubbles powered by active galactic nuclei (AGNs) are likely to play a key role in halting catastrophic cooling in the centers of cool-core galaxy clusters. We present three-dimensional simulations that capture the evolution of such bubbles, using an adaptive mesh hydrodynamic code, FLASH3, to which we have added a subgrid model of turbulence and mixing. While pure hydro simulations indicate that AGN bubbles are disrupted into resolution-dependent pockets of underdense gas, proper modeling of subgrid turbulence indicates that this is a poor approximation to a turbulent cascade that continues far beyond the resolution limit. Instead, Rayleigh-Taylor instabilities act to effectively mix the heated region with its surroundings, while at the same time preserving it as a coherent structure, consistent with observations. Thus, bubbles are transformed into hot clouds of mixed material as they move outward in the hydrostatic intracluster medium (ICM), much as large airbursts lead to a distinctive "mushroom cloud" structure as they rise in the hydrostatic atmosphere of Earth. Properly capturing the evolution of such clouds has important implications for many ICM properties. In particular, it significantly changes the impact of AGNs on the distribution of entropy and metals in cool-core clusters such as Perseus.
Dorninger, Peter; Pfeifer, Norbert
2008-01-01
Three dimensional city models are necessary for supporting numerous management applications. For the determination of city models for visualization purposes, several standardized workflows do exist. They are either based on photogrammetry or on LiDAR or on a combination of both data acquisition techniques. However, the automated determination of reliable and highly accurate city models is still a challenging task, requiring a workflow comprising several processing steps. The most relevant are building detection, building outline generation, building modeling, and finally, building quality analysis. Commercial software tools for building modeling require, generally, a high degree of human interaction and most automated approaches described in literature stress the steps of such a workflow individually. In this article, we propose a comprehensive approach for automated determination of 3D city models from airborne acquired point cloud data. It is based on the assumption that individual buildings can be modeled properly by a composition of a set of planar faces. Hence, it is based on a reliable 3D segmentation algorithm, detecting planar faces in a point cloud. This segmentation is of crucial importance for the outline detection and for the modeling approach. We describe the theoretical background, the segmentation algorithm, the outline detection, and the modeling approach, and we present and discuss several actual projects. PMID:27873931
Reflection of solar radiation by a cylindrical cloud
NASA Technical Reports Server (NTRS)
Smith, G. L.
1989-01-01
Potential applications of an analytic method for computing the solar radiation reflected by a cylindrical cloud are discussed, including studies of radiative transfer within finite clouds and evaluations of these effects on other clouds and on remote sensing problems involving finite clouds. The pattern of reflected sunlight from a cylindrical cloud as seen at a large distance has been considered and described by the bidirectional function method for finite cloud analysis, as previously studied theoretically for plane-parallel atmospheres by McKee and Cox (1974); Schmetz and Raschke (1981); and Stuhlmann et al. (1985). However, the lack of three-dimensional radiative transfer solutions for anisotropic scattering media have hampered theoretical investigations of bidirectional functions for finite clouds. The present approach permits expression of the directional variation of the radiation field as a spherical harmonic series to any desired degree and order.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asahina, Yuta; Ohsuga, Ken; Nomura, Mariko, E-mail: asahina@cfca.jp
By performing three-dimensional magnetohydrodynamics simulations of subrelativistic jets and disk winds propagating into the magnetized inhomogeneous interstellar medium (ISM), we investigate the magnetic effects on the active galactic nucleus feedback. Our simulations reveal that the magnetic tension force promotes the acceleration of the dense gas clouds, since the magnetic field lines, which are initially straight, bend around the gas clouds. In the jet models, the velocity dispersion of the clouds increases with an increase in the initial magnetic fields. The increment of the kinetic energy of the clouds is proportional to the initial magnetic fields, implying that the magnetic tensionmore » force increases the energy conversion efficiency from the jet to the gas clouds. Through simulations of the mildly collimated disk wind and the funnel-shaped disk wind, we confirm that such an enhancement of the energy conversion efficiency via the magnetic fields appears even if the energy is injected via the disk winds. The enhancement of the acceleration of the dense part of the magnetized ISM via the magnetic tension force will occur wherever the magnetized inhomogeneous matter is blown away.« less
Cloud and Radiation Mission with Active and Passive Sensing from the Space Station
NASA Technical Reports Server (NTRS)
Spinhirne, James D.
1998-01-01
A cloud and aerosol radiative forcing and physical process study involving active laser and radar profiling with a combination of passive radiometric sounders and imagers would use the space station as an observation platform. The objectives are to observe the full three dimensional cloud and aerosol structure and the associated physical parameters leading to a complete measurement of radiation forcing processes. The instruments would include specialized radar and lidar for cloud and aerosol profiling, visible, infrared and microwave imaging radiometers with comprehensive channels for cloud and aerosol observation and specialized sounders. The low altitude,. available power and servicing capability of the space station are significant advantages for the active sensors and multiple passive instruments.
3D Reconstruction of Irregular Buildings and Buddha Statues
NASA Astrophysics Data System (ADS)
Zhang, K.; Li, M.-j.
2014-04-01
Three-dimensional laser scanning could acquire object's surface data quickly and accurately. However, the post-processing of point cloud is not perfect and could be improved. Based on the study of 3D laser scanning technology, this paper describes the details of solutions to modelling irregular ancient buildings and Buddha statues in Jinshan Temple, which aiming at data acquisition, modelling and texture mapping, etc. In order to modelling irregular ancient buildings effectively, the structure of each building is extracted manually by point cloud and the textures are mapped by the software of 3ds Max. The methods clearly combine 3D laser scanning technology with traditional modelling methods, and greatly improves the efficiency and accuracy of the ancient buildings restored. On the other hand, the main idea of modelling statues is regarded as modelling objects in reverse engineering. The digital model of statues obtained is not just vivid, but also accurate in the field of surveying and mapping. On this basis, a 3D scene of Jinshan Temple is reconstructed, which proves the validity of the solutions.
NASA Astrophysics Data System (ADS)
Tsurutani, Bruce T.; Lakhina, Gurbax S.; Echer, Ezequiel; Hajra, Rajkumar; Nayak, Chinmaya; Mannucci, Anthony J.; Meng, Xing
2018-02-01
An alternative scenario to the Ngwira et al. (2014, https://doi.org/10.1002/2013JA019661) high sheath densities is proposed for modeling the Carrington magnetic storm. Typical slow solar wind densities ( 5 cm-3) and lower interplanetary magnetic cloud magnetic field intensities ( 90 nT) can be used to explain the observed initial and main phase storm features. A second point is that the fast storm recovery may be explained by ring current losses due to electromagnetic ion cyclotron wave scattering.
NASA GPM GV Science Implementation
NASA Technical Reports Server (NTRS)
Petersen, W. A.
2009-01-01
Pre-launch algorithm development & post-launch product evaluation: The GPM GV paradigm moves beyond traditional direct validation/comparison activities by incorporating improved algorithm physics & model applications (end-to-end validation) in the validation process. Three approaches: 1) National Network (surface): Operational networks to identify and resolve first order discrepancies (e.g., bias) between satellite and ground-based precipitation estimates. 2) Physical Process (vertical column): Cloud system and microphysical studies geared toward testing and refinement of physically-based retrieval algorithms. 3) Integrated (4-dimensional): Integration of satellite precipitation products into coupled prediction models to evaluate strengths/limitations of satellite precipitation producers.
NASA Astrophysics Data System (ADS)
Ham, Seung-Hee; Kato, Seiji; Barker, Howard W.; Rose, Fred G.; Sun-Mack, Sunny
2014-01-01
Three-dimensional (3-D) effects on broadband shortwave top of atmosphere (TOA) nadir radiance, atmospheric absorption, and surface irradiance are examined using 3-D cloud fields obtained from one hour's worth of A-train satellite observations and one-dimensional (1-D) independent column approximation (ICA) and full 3-D radiative transfer simulations. The 3-D minus ICA differences in TOA nadir radiance multiplied by π, atmospheric absorption, and surface downwelling irradiance, denoted as πΔI, ΔA, and ΔT, respectively, are analyzed by cloud type. At the 1 km pixel scale, πΔI, ΔA, and ΔT exhibit poor spatial correlation. Once averaged with a moving window, however, better linear relationships among πΔI, ΔA, and ΔT emerge, especially for moving windows larger than 5 km and large θ0. While cloud properties and solar geometry are shown to influence the relationships amongst πΔI, ΔA, and ΔT, once they are separated by cloud type, their linear relationships become much stronger. This suggests that ICA biases in surface irradiance and atmospheric absorption can be approximated based on ICA biases in nadir radiance as a function of cloud type.
NASA Technical Reports Server (NTRS)
Iguchi, T.; Nakajima, T.; Khain, A. P.; Saito, K.; Takemura, T.; Okamoto, H.; Nishizawa, T.; Tao, W.-K.
2012-01-01
Equivalent radar reflectivity factors (Ze) measured by W-band radars are directly compared with the corresponding values calculated from a three-dimensional non-hydrostatic meso-scale model coupled with a spectral-bin-microphysical (SBM) scheme for cloud. Three case studies are the objects of this research: one targets a part of ship-borne observation using 95 GHz Doppler radar over the Pacific Ocean near Japan in May 2001; other two are aimed at two short segments of space-borne observation by the cloud profiling radar on CloudSat in November 2006. The numerical weather prediction (NWP) simulations reproduce general features of vertical structures of Ze and Doppler velocity. A main problem in the reproducibility is an overestimation of Ze in ice cloud layers. A frequency analysis shows a strong correlation between ice water contents (IWC) and Ze in the simulation; this characteristic is similar to those shown in prior on-site studies. From comparing with the empirical correlations by the prior studies, the simulated Ze is overestimated than the corresponding values in the studies at the same IWC. Whereas the comparison of Doppler velocities suggests that large-size snowflakes are necessary for producing large velocities under the freezing level and hence rules out the possibility that an overestimation of snow size causes the overestimation of Ze. Based on the results of several sensitivity tests, we conclude that the source of the overestimation is a bias in the microphysical calculation of Ze or an overestimation of IWC. To identify the source of the problems needs further validation research with other follow-up observations.
Microphysics, Radiation and Surface Processes in the Goddard Cumulus Ensemble (GCE) Model
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Simpson, J.; Baker, D.; Braun, S.; Chou, M.-D.; Ferrier, B.; Johnson, D.; Khain, A.; Lang, S.; Lynn, B.
2001-01-01
The response of cloud systems to their environment is an important link in a chain of processes responsible for monsoons, frontal depression, El Nino Southern Oscillation (ENSO) episodes and other climate variations (e.g., 30-60 day intra-seasonal oscillations). Numerical models of cloud properties provide essential insights into the interactions of clouds with each other, with their surroundings, and with land and ocean surfaces. Significant advances are currently being made in the modeling of rainfall and rain-related cloud processes, ranging in scales from the very small up to the simulation of an extensive population of raining cumulus clouds in a tropical- or midlatitude-storm environment. The Goddard Cumulus Ensemble (GCE) model is a multi-dimensional nonhydrostatic dynamic/microphysical cloud resolving model. It has been used to simulate many different mesoscale convective systems that occurred in various geographic locations. In this paper, recent GCE model improvements (microphysics, radiation and surface processes) will be described as well as their impact on the development of precipitation events from various geographic locations. The performance of these new physical processes will be examined by comparing the model results with observations. In addition, the explicit interactive processes between cloud, radiation and surface processes will be discussed.
NASA Technical Reports Server (NTRS)
Betancourt, R. Morales; Lee, D.; Oreopoulos, L.; Sud, Y. C.; Barahona, D.; Nenes, A.
2012-01-01
The salient features of mixed-phase and ice clouds in a GCM cloud scheme are examined using the ice formation parameterizations of Liu and Penner (LP) and Barahona and Nenes (BN). The performance of LP and BN ice nucleation parameterizations were assessed in the GEOS-5 AGCM using the McRAS-AC cloud microphysics framework in single column mode. Four dimensional assimilated data from the intensive observation period of ARM TWP-ICE campaign was used to drive the fluxes and lateral forcing. Simulation experiments where established to test the impact of each parameterization in the resulting cloud fields. Three commonly used IN spectra were utilized in the BN parameterization to described the availability of IN for heterogeneous ice nucleation. The results show large similarities in the cirrus cloud regime between all the schemes tested, in which ice crystal concentrations were within a factor of 10 regardless of the parameterization used. In mixed-phase clouds there are some persistent differences in cloud particle number concentration and size, as well as in cloud fraction, ice water mixing ratio, and ice water path. Contact freezing in the simulated mixed-phase clouds contributed to transfer liquid to ice efficiently, so that on average, the clouds were fully glaciated at T approximately 260K, irrespective of the ice nucleation parameterization used. Comparison of simulated ice water path to available satellite derived observations were also performed, finding that all the schemes tested with the BN parameterization predicted 20 average values of IWP within plus or minus 15% of the observations.
High-speed three-dimensional shape measurement using GOBO projection
NASA Astrophysics Data System (ADS)
Heist, Stefan; Lutzke, Peter; Schmidt, Ingo; Dietrich, Patrick; Kühmstedt, Peter; Tünnermann, Andreas; Notni, Gunther
2016-12-01
A projector which uses a rotating slide structure to project aperiodic sinusoidal fringe patterns at high frame rates and with high radiant flux is introduced. It is used in an optical three-dimensional (3D) sensor based on coded-light projection, thus allowing the analysis of fast processes. Measurements of an inflating airbag, a rope skipper, and a soccer ball kick at a 3D frame rate of more than 1300 independent point clouds per second are presented.
Improved prediction and tracking of volcanic ash clouds
Mastin, Larry G.; Webley, Peter
2009-01-01
During the past 30??years, more than 100 airplanes have inadvertently flown through clouds of volcanic ash from erupting volcanoes. Such encounters have caused millions of dollars in damage to the aircraft and have endangered the lives of tens of thousands of passengers. In a few severe cases, total engine failure resulted when ash was ingested into turbines and coating turbine blades. These incidents have prompted the establishment of cooperative efforts by the International Civil Aviation Organization and the volcanological community to provide rapid notification of eruptive activity, and to monitor and forecast the trajectories of ash clouds so that they can be avoided by air traffic. Ash-cloud properties such as plume height, ash concentration, and three-dimensional ash distribution have been monitored through non-conventional remote sensing techniques that are under active development. Forecasting the trajectories of ash clouds has required the development of volcanic ash transport and dispersion models that can calculate the path of an ash cloud over the scale of a continent or a hemisphere. Volcanological inputs to these models, such as plume height, mass eruption rate, eruption duration, ash distribution with altitude, and grain-size distribution, must be assigned in real time during an event, often with limited observations. Databases and protocols are currently being developed that allow for rapid assignment of such source parameters. In this paper, we summarize how an interdisciplinary working group on eruption source parameters has been instigating research to improve upon the current understanding of volcanic ash cloud characterization and predictions. Improved predictions of ash cloud movement and air fall will aid in making better hazard assessments for aviation and for public health and air quality. ?? 2008 Elsevier B.V.
Atmospheric microphysical experiments on an orbital platform
NASA Technical Reports Server (NTRS)
Eaton, L. R.
1974-01-01
The Zero-Gravity Atmospheric Cloud Physics Laboratory is a Shuttle/Spacelab payload which will be capable of performing a large range of microphysics experiments. This facility will complement terrestrial cloud physics research by allowing many experiments to be performed which cannot be accomplished within the confines of a terrestrial laboratory. This paper reviews the general Cloud Physics Laboratory concept and the experiment scope. The experimental constraints are given along with details of the proposed equipment. Examples of appropriate experiments range from three-dimensional simulation of the earth and planetary atmosphere and of ocean circulation to cloud electrification processes and the effects of atmospheric pollution materials on microphysical processes.
Clouds near New Zealand photographed from Skylab space station
1973-12-12
SL4-137-3566 (12 Dec. 1973) --- A group of clouds near New Zealand, as photographed from the Skylab space station in Earth orbit by one of the Skylab 4 crew members. The camera used was a hand-held 70mm Hasselblad with SO-368 medium speed Ektachrome. This picture shows vividly how low sun angles enhance relief, giving these clouds a three-dimensional appearance. In addition to being "pretty," this photograph can be used to study the line of storms seen here at sunset. Relative heights of individuals cells can be measured, as well as their relation to the surrounding clouds. Photo credit: NASA
A technique for determining cloud free versus cloud contaminated pixels in satellite imagery
NASA Technical Reports Server (NTRS)
Wohlman, Richard A.
1994-01-01
Weather forecasting has been called the second oldest profession. To do so accurately and with some consistency requires an ability to understand the processes which create the clouds, drive the winds, and produce the ever changing atmospheric conditions. Measurement of basic parameters such as temperature, water vapor content, pressure, windspeed and wind direction throughout the three dimensional atmosphere form the foundation upon which a modern forecast is created. Doppler radar, and space borne remote sensing have provided forecasters the new tools with which to ply their trade.
A method of smoothed particle hydrodynamics using spheroidal kernels
NASA Technical Reports Server (NTRS)
Fulbright, Michael S.; Benz, Willy; Davies, Melvyn B.
1995-01-01
We present a new method of three-dimensional smoothed particle hydrodynamics (SPH) designed to model systems dominated by deformation along a preferential axis. These systems cause severe problems for SPH codes using spherical kernels, which are best suited for modeling systems which retain rough spherical symmetry. Our method allows the smoothing length in the direction of the deformation to evolve independently of the smoothing length in the perpendicular plane, resulting in a kernel with a spheroidal shape. As a result the spatial resolution in the direction of deformation is significantly improved. As a test case we present the one-dimensional homologous collapse of a zero-temperature, uniform-density cloud, which serves to demonstrate the advantages of spheroidal kernels. We also present new results on the problem of the tidal disruption of a star by a massive black hole.
Challenges in Flying Quadrotor Unmanned Aerial Vehicle for 3d Indoor Reconstruction
NASA Astrophysics Data System (ADS)
Yan, J.; Grasso, N.; Zlatanova, S.; Braggaar, R. C.; Marx, D. B.
2017-09-01
Three-dimensional modelling plays a vital role in indoor 3D tracking, navigation, guidance and emergency evacuation. Reconstruction of indoor 3D models is still problematic, in part, because indoor spaces provide challenges less-documented than their outdoor counterparts. Challenges include obstacles curtailing image and point cloud capture, restricted accessibility and a wide array of indoor objects, each with unique semantics. Reconstruction of indoor environments can be achieved through a photogrammetric approach, e.g. by using image frames, aligned using recurring corresponding image points (CIP) to build coloured point clouds. Our experiments were conducted by flying a QUAV in three indoor environments and later reconstructing 3D models which were analysed under different conditions. Point clouds and meshes were created using Agisoft PhotoScan Professional. We concentrated on flight paths from two vantage points: 1) safety and security while flying indoors and 2) data collection needed for reconstruction of 3D models. We surmised that the main challenges in providing safe flight paths are related to the physical configuration of indoor environments, privacy issues, the presence of people and light conditions. We observed that the quality of recorded video used for 3D reconstruction has a high dependency on surface materials, wall textures and object types being reconstructed. Our results show that 3D indoor reconstruction predicated on video capture using a QUAV is indeed feasible, but close attention should be paid to flight paths and conditions ultimately influencing the quality of 3D models. Moreover, it should be decided in advance which objects need to be reconstructed, e.g. bare rooms or detailed furniture.
Three-Dimensional Structures of Thermal Tides Simulated by a Venus GCM
NASA Astrophysics Data System (ADS)
Takagi, Masahiro; Sugimoto, Norihiko; Ando, Hiroki; Matsuda, Yoshihisa
2018-02-01
Thermal tides in the Venus atmosphere are investigated by using a GCM named as AFES-Venus. The three-dimensional structures of wind and temperature associated with the thermal tides obtained in our model are fully examined and compared with observations. The result shows that the wind and temperature distributions of the thermal tides depend complexly on latitude and altitude in the cloud layer, mainly because they consist of vertically propagating and trapped modes with zonal wave numbers of 1-4, each of which predominates in different latitudes and altitudes under the influence of mid- and high-latitude jets. A strong circulation between the subsolar and antisolar (SS-AS) points, which is equivalent to a diurnal component of the thermal tides, is superposed on the superrotation. The vertical velocity of SS-AS circulation is about 10 times larger than that of the zonal-mean meridional circulation (ZMMC) in 60-70 km altitudes. It is suggested that the SS-AS circulation could contribute to the material transport, and its upward motion might be related to the UV dark region observed in the subsolar and early afternoon regions in low latitudes. The terdiurnal and quaterdiurnal tides, which may be excited by the nonlinear interactions among the diurnal and semidiurnal tides in middle and high latitudes, are detected in the solar-fixed Y-shape structure formed in the vertical wind field in the upper cloud layer. The ZMMC is weak and has a complex structure in the cloud layer; the Hadley circulation is confined to latitudes equatorward of 30°, and the Ferrel-like one appears in middle and high latitudes.
Wintertime nitric acid chemistry - Implications from three-dimensional model calculations
NASA Technical Reports Server (NTRS)
Rood, Richard B.; Kaye, Jack A.; Douglass, Anne R.; Allen, Dale J.; Steenford, Stephen
1990-01-01
A three-dimensional simulation of the evolution of HNO3 has been run for the winter of 1979. Winds and temperatures are taken from a stratospheric data assimilation analysis, and the chemistry is based on Limb Infrared Monitor of the Stratosphere (LIMS) observations. The model is compared to LIMS observations to investigate the problem of 'missing' nitric acid chemistry in the winter hemisphere. Both the model and observations support the contention that a nitric acid source is needed outside of the polar vortex and north of the subtropics. Observations suggest that HNO3 is not dynamically controlled in middle latitudes. The model shows that given the time scales of conventional chemistry, dynamical control is expected. Therefore, an error exists in the conventional chemistry or additional processes are needed to bring the model and data into agreement. Since the polar vortex is dynamically isolated from the middle latitudes, and since the highest HNO3 values are observed in October and November, a source associated solely with polar stratospheric clouds cannot explain the deficiencies in the chemistry. The role of heterogeneous processes on background aerosols is reviewed in light of these results.
NASA Astrophysics Data System (ADS)
Chen, B.-Q.; Liu, X.-W.; Ren, J.-J.; Yuan, H.-B.; Huang, Y.; Yu, B.; Xiang, M.-S.; Wang, C.; Tian, Z.-J.; Zhang, H.-W.
2017-12-01
We present a three-dimensional (3D) extinction analysis in the region towards the supernova remnant (SNR) S147 (G180.0-1.7) using multiband photometric data from the Xuyi Schmidt Telescope Photometric Survey of the Galactic Anticentre (XSTPS-GAC), 2MASS and WISE. We isolate a previously unrecognized dust structure likely to be associated with SNR S147. The structure, which we term as 'S147 dust cloud', is estimated to have a distance d = 1.22 ± 0.21 kpc, consistent with the conjecture that S147 is associated with pulsar PSR J0538 + 2817. The cloud includes several dense clumps of relatively high extinction that locate on the radio shell of S147 and coincide spatially with the CO and gamma-ray emission features. We conclude that the usage of CO measurements to trace the SNR associated MCs is unavoidably limited by the detection threshold, dust depletion and the difficulty of distance estimates in the outer Galaxy. 3D dust extinction mapping may provide a better way to identify and study SNR-MC interactions.
2D Radiative Processes Near Cloud Edges
NASA Technical Reports Server (NTRS)
Varnai, T.
2012-01-01
Because of the importance and complexity of dynamical, microphysical, and radiative processes taking place near cloud edges, the transition zone between clouds and cloud free air has been the subject of intense research both in the ASR program and in the wider community. One challenge in this research is that the one-dimensional (1D) radiative models widely used in both remote sensing and dynamical simulations become less accurate near cloud edges: The large horizontal gradients in particle concentrations imply that accurate radiative calculations need to consider multi-dimensional radiative interactions among areas that have widely different optical properties. This study examines the way the importance of multidimensional shortwave radiative interactions changes as we approach cloud edges. For this, the study relies on radiative simulations performed for a multiyear dataset of clouds observed over the NSA, SGP, and TWP sites. This dataset is based on Microbase cloud profiles as well as wind measurements and ARM cloud classification products. The study analyzes the way the difference between 1D and 2D simulation results increases near cloud edges. It considers both monochromatic radiances and broadband radiative heating, and it also examines the influence of factors such as cloud type and height, and solar elevation. The results provide insights into the workings of radiative processes and may help better interpret radiance measurements and better estimate the radiative impacts of this critical region.
Accuracy Assessment of Underwater Photogrammetric Three Dimensional Modelling for Coral Reefs
NASA Astrophysics Data System (ADS)
Guo, T.; Capra, A.; Troyer, M.; Gruen, A.; Brooks, A. J.; Hench, J. L.; Schmitt, R. J.; Holbrook, S. J.; Dubbini, M.
2016-06-01
Recent advances in automation of photogrammetric 3D modelling software packages have stimulated interest in reconstructing highly accurate 3D object geometry in unconventional environments such as underwater utilizing simple and low-cost camera systems. The accuracy of underwater 3D modelling is affected by more parameters than in single media cases. This study is part of a larger project on 3D measurements of temporal change of coral cover in tropical waters. It compares the accuracies of 3D point clouds generated by using images acquired from a system camera mounted in an underwater housing and the popular GoPro cameras respectively. A precisely measured calibration frame was placed in the target scene in order to provide accurate control information and also quantify the errors of the modelling procedure. In addition, several objects (cinder blocks) with various shapes were arranged in the air and underwater and 3D point clouds were generated by automated image matching. These were further used to examine the relative accuracy of the point cloud generation by comparing the point clouds of the individual objects with the objects measured by the system camera in air (the best possible values). Given a working distance of about 1.5 m, the GoPro camera can achieve a relative accuracy of 1.3 mm in air and 2.0 mm in water. The system camera achieved an accuracy of 1.8 mm in water, which meets our requirements for coral measurement in this system.
NASA Astrophysics Data System (ADS)
Xu, Chuanpei; Niu, Junhao; Ling, Jing; Wang, Suyan
2018-03-01
In this paper, we present a parallel test strategy for bandwidth division multiplexing under the test access mechanism bandwidth constraint. The Pareto solution set is combined with a cloud evolutionary algorithm to optimize the test time and power consumption of a three-dimensional network-on-chip (3D NoC). In the proposed method, all individuals in the population are sorted in non-dominated order and allocated to the corresponding level. Individuals with extreme and similar characteristics are then removed. To increase the diversity of the population and prevent the algorithm from becoming stuck around local optima, a competition strategy is designed for the individuals. Finally, we adopt an elite reservation strategy and update the individuals according to the cloud model. Experimental results show that the proposed algorithm converges to the optimal Pareto solution set rapidly and accurately. This not only obtains the shortest test time, but also optimizes the power consumption of the 3D NoC.
Integration of Geodata in Documenting Castle Ruins
NASA Astrophysics Data System (ADS)
Delis, P.; Wojtkowska, M.; Nerc, P.; Ewiak, I.; Lada, A.
2016-06-01
Textured three dimensional models are currently the one of the standard methods of representing the results of photogrammetric works. A realistic 3D model combines the geometrical relations between the structure's elements with realistic textures of each of its elements. Data used to create 3D models of structures can be derived from many different sources. The most commonly used tool for documentation purposes, is a digital camera and nowadays terrestrial laser scanning (TLS). Integration of data acquired from different sources allows modelling and visualization of 3D models historical structures. Additional aspect of data integration is possibility of complementing of missing points for example in point clouds. The paper shows the possibility of integrating data from terrestrial laser scanning with digital imagery and an analysis of the accuracy of the presented methods. The paper describes results obtained from raw data consisting of a point cloud measured using terrestrial laser scanning acquired from a Leica ScanStation2 and digital imagery taken using a Kodak DCS Pro 14N camera. The studied structure is the ruins of the Ilza castle in Poland.
Building Facade Reconstruction by Fusing Terrestrial Laser Points and Images
Pu, Shi; Vosselman, George
2009-01-01
Laser data and optical data have a complementary nature for three dimensional feature extraction. Efficient integration of the two data sources will lead to a more reliable and automated extraction of three dimensional features. This paper presents a semiautomatic building facade reconstruction approach, which efficiently combines information from terrestrial laser point clouds and close range images. A building facade's general structure is discovered and established using the planar features from laser data. Then strong lines in images are extracted using Canny extractor and Hough transformation, and compared with current model edges for necessary improvement. Finally, textures with optimal visibility are selected and applied according to accurate image orientations. Solutions to several challenge problems throughout the collaborated reconstruction, such as referencing between laser points and multiple images and automated texturing, are described. The limitations and remaining works of this approach are also discussed. PMID:22408539
De Benedictis, Alessandro; Nocerino, Erica; Menna, Fabio; Remondino, Fabio; Barbareschi, Mattia; Rozzanigo, Umberto; Corsini, Francesco; Olivetti, Emanuele; Marras, Carlo Efisio; Chioffi, Franco; Avesani, Paolo; Sarubbo, Silvio
2018-04-13
Anatomic awareness of the structural connectivity of the brain is mandatory for neurosurgeons, to select the most effective approaches for brain resections. Although standard microdissection is a validated technique to investigate the different white matter (WM) pathways and to verify the results of tractography, the possibility of interactive exploration of the specimens and reliable acquisition of quantitative information has not been described. Photogrammetry is a well-established technique allowing an accurate metrology on highly defined three-dimensional (3D) models. The aim of this work is to propose the application of the photogrammetric technique for supporting the 3D exploration and the quantitative analysis on the cerebral WM connectivity. The main perisylvian pathways, including the superior longitudinal fascicle and the arcuate fascicle were exposed using the Klingler technique. The photogrammetric acquisition followed each dissection step. The point clouds were registered to a reference magnetic resonance image of the specimen. All the acquisitions were coregistered into an open-source model. We analyzed 5 steps, including the cortical surface, the short intergyral fibers, the indirect posterior and anterior superior longitudinal fascicle, and the arcuate fascicle. The coregistration between the magnetic resonance imaging mesh and the point clouds models was highly accurate. Multiple measures of distances between specific cortical landmarks and WM tracts were collected on the photogrammetric model. Photogrammetry allows an accurate 3D reproduction of WM anatomy and the acquisition of unlimited quantitative data directly on the real specimen during the postdissection analysis. These results open many new promising neuroscientific and educational perspectives and also optimize the quality of neurosurgical treatments. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Eckermann, S. D.; Wu, D. L.; Doyle, J. D.; Burris, J. F.; McGee, T. J.; Hostetler, C. A.; Lawrence, B. N.; Stephens, A.; McCormack, J. P.; Coy, L.; Hogan, T. F.
2006-12-01
The Advanced Microwave Sounding Unit (AMSU-A) acquires pushbroom thermal radiance imagery from the NOAA 15-18 meteorological satellites and NASA's Aqua research satellite. We develop a simplified forward model of its in-orbit radiance acquisition and use it to demonstrate that the swath-scanned Channel 9 radiances (peaking at ~60--90~hPa) can resolve and horizontally image long wavelength gravity waves. To validate these inferences, we isolate and study structure in Channel 9 radiances acquired by AMSU-A instruments over Scandinavia on 14 January 2003. On this day, mountain waves were forecast to form polar stratospheric clouds (PSCs) over southern Scandinavia during NASA's second SAGE III Ozone Loss and Validation Experiment (SOLVE II) out of Kiruna, Sweden. Based on this forecast guidance, a flight was planned with NASA's DC-8 research aircraft, in which onboard aerosol lidars measured extensive tilted layers of enhanced aerosol backscatter typical of type II PSCs formed in the cooling phases of mountain waves. We show that these PSC-forming mountain waves were imaged in AMSU-A Channel 9 radiance imagery, which shows the waves growing in amplitude from 0600-1200 UTC and then weakening slightly and changing horizontal structure from 1200-2000 UTC. Our forward model results are used to infer 90 hPa peak wave temperature amplitudes of ~6--7~K, values validated by radiosonde data and full three-dimensional in-orbit forward modeling of three-dimensional temperatures, as forecast/hindcast by a suite of global and mesoscale numerical weather prediction models. These results demonstrate that AMSU-A radiances can provide important new hemispheric information on the role of long-wavelength stratospheric mountain waves in PSC formation, denitrification and polar ozone loss.
NASA Technical Reports Server (NTRS)
Prasad, N.; Yeh, Hwa-Young M.; Adler, Robert F.; Tao, Wei-Kuo
1995-01-01
A three-dimensional cloud model, radiative transfer model-based simulation system is tested and validated against the aircraft-based radiance observations of an intense convective system in southeastern Virginia on 29 June 1986 during the Cooperative Huntsville Meteorological Experiment. NASA's ER-2, a high-altitude research aircraft with a complement of radiometers operating at 11-micrometer infrared channel and 18-, 37-, 92-, and 183-GHz microwave channels provided data for this study. The cloud model successfully simulated the cloud system with regard to aircraft- and radar-observed cloud-top heights and diameters and with regard to radar-observed reflectivity structure. For the simulation time found to correspond best with the aircraft- and radar-observed structure, brightness temperatures T(sub b) are simulated and compared with observations for all the microwave frequencies along with the 11-micrometer infrared channel. Radiance calculations at the various frequencies correspond well with the aircraft observations in the areas of deep convection. The clustering of 37-147-GHz T(sub b) observations and the isolation of the 18-GHz values over the convective cores are well simulated by the model. The radiative transfer model, in general, is able to simulate the observations reasonably well from 18 GHz through 174 GHz within all convective areas of the cloud system. When the aircraft-observed 18- and 37-GHz, and 90- and 174-GHz T(sub b) are plotted against each other, the relationships have a gradual difference in the slope due to the differences in the ice particle size in the convective and more stratiform areas of the cloud. The model is able to capture these differences observed by the aircraft. Brightness temperature-rain rate relationships compare reasonably well with the aircraft observations in terms of the slope of the relationship. The model calculations are also extended to select high-frequency channels at 220, 340, and 400 GHz to simulate the Millimeter-wave Imaging Radiometer aircraft instrument to be flown in the near future. All three of these frequencies are able to discriminate the convective and anvil portions of the system, providing useful information similar to that from the frequencies below 183 GHz but with potentially enhanced spatial resolution from a satellite platform. In thin clouds, the dominant effect of water vapor is seen at 174, 340, and 400 GHz. In thick cloudy areas, the scattering effect is dominant at 90 and 220 GHz, while the overlaying water vapor can attenuate at 174, 340, and 400 GHz. All frequencies (90-400 GHz) show strong signatures in the core.
Increased insolation threshold for runaway greenhouse processes on Earth-like planets
NASA Astrophysics Data System (ADS)
Leconte, Jérémy; Forget, Francois; Charnay, Benjamin; Wordsworth, Robin; Pottier, Alizée
2013-12-01
The increase in solar luminosity over geological timescales should warm the Earth's climate, increasing water evaporation, which will in turn enhance the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can `run away' until the oceans have completely evaporated. Through increases in stratospheric humidity, warming may also cause evaporative loss of the oceans to space before the runaway greenhouse state occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated using one-dimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of the Earth's climate. Here we use a three-dimensional global climate model to show that the insolation threshold for the runaway greenhouse state to occur is about 375 W m-2, which is significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmospheres. In contrast with previous studies, we find that clouds have a destabilizing feedback effect on the long-term warming. However, subsident, unsaturated regions created by the Hadley circulation have a stabilizing effect that is strong enough to shift the runaway greenhouse limit to higher values of insolation than are inferred from one-dimensional models. Furthermore, because of wavelength-dependent radiative effects, the stratosphere remains sufficiently cold and dry to hamper the escape of atmospheric water, even at large fluxes. This has strong implications for the possibility of liquid water existing on Venus early in its history, and extends the size of the habitable zone around other stars.
Increased insolation threshold for runaway greenhouse processes on Earth-like planets.
Leconte, Jérémy; Forget, Francois; Charnay, Benjamin; Wordsworth, Robin; Pottier, Alizée
2013-12-12
The increase in solar luminosity over geological timescales should warm the Earth's climate, increasing water evaporation, which will in turn enhance the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can 'run away' until the oceans have completely evaporated. Through increases in stratospheric humidity, warming may also cause evaporative loss of the oceans to space before the runaway greenhouse state occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated using one-dimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of the Earth's climate. Here we use a three-dimensional global climate model to show that the insolation threshold for the runaway greenhouse state to occur is about 375 W m(-2), which is significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmospheres. In contrast with previous studies, we find that clouds have a destabilizing feedback effect on the long-term warming. However, subsident, unsaturated regions created by the Hadley circulation have a stabilizing effect that is strong enough to shift the runaway greenhouse limit to higher values of insolation than are inferred from one-dimensional models. Furthermore, because of wavelength-dependent radiative effects, the stratosphere remains sufficiently cold and dry to hamper the escape of atmospheric water, even at large fluxes. This has strong implications for the possibility of liquid water existing on Venus early in its history, and extends the size of the habitable zone around other stars.
Clear-sky remote sensing in the vicinity of clouds: what can be learned about aerosol changes?
NASA Astrophysics Data System (ADS)
Marshak, Alexander; Varnai, Tamas; Wen, Guoyong
2010-05-01
Studies on aerosol direct and indirect effects require a precise separation of cloud-free and cloudy air. However, separation between cloud-free and cloudy areas from remotely-sensed measurements is ambiguous. The transition zone in the regions around clouds often stretches out tens of km, which are neither precisely clear nor precisely cloudy. We study the transition zone between cloud-free and cloudy air using MODerate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements. Both instruments show enhanced clear-sky reflectance (MODIS) and clear-sky backscatterer (CALIPSO) near clouds. Analyzing a large dataset of MODIS observations we examine the effect of three-dimensional (3D) radiative interactions between clouds and cloud-free areas, also known as a cloud adjacency effect. Comparing with CALIPSO clear-sky backscatterer measurements, we show that the cloud adjacency effect may be responsible for a large portion of the enhanced clear sky reflectance observed by MODIS. While aerosol particles are responsible for a large part of the near-cloud enhancements in CALIPSO observations, misidentified or undetected cloud particles are also likely to contribute. As a result, both the nature of these particles (cloud vs. aerosol) and the processes creating them need to be clarified using a quantitative assessment of remote sensing limitations in particle detection and identification. The width and ubiquity of the transition zone near clouds imply that studies of aerosol-cloud interactions and aerosol direct radiative effects need to account for aerosol changes near clouds. Not accounted, these changes can cause systematic biases toward smaller aerosol radiative forcing. On the other hand, including aerosol products near clouds despite their uncertainties may overestimate aerosol radiative forcing. Therefore, there is an urgent need for developing methods that can assess and account for remote sensing challenges and thus allow for including the transition zone into the study. We describe a simple model that estimates the cloud-induced enhanced reflectances of cloud-free areas in the vicinity of clouds. The model assumes that the enhancement is due entirely to Rayleigh scattering and is therefore bigger at shorter wavelengths, thus creating a so-called apparent "bluing" of aerosols in remote sensing retrievals.
Clear-sky remote sensing in the vicinity of clouds: what we learned from MODIS and CALIPSO
NASA Astrophysics Data System (ADS)
Marshak, Alexander; Varnai, Tamas; Wen, Guoyong; Cahalan, Robert
Studies on aerosol direct and indirect effects require a precise separation of cloud-free and cloudy air. However, separation between cloud-free and cloudy areas from remotely-sensed measurements is ambiguous. The transition zone in the regions around clouds often stretches out tens of km, which are neither precisely clear nor precisely cloudy. We study the transition zone between cloud-free and cloudy air using MODerate-resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements. Both instruments show enhanced clear-sky reflectance (MODIS) and clear-sky backscatterer (CALIPSO) near clouds. Analyzing a large dataset of MODIS observations we examine the effect of three-dimensional (3D) radiative interactions between clouds and cloud-free areas, also known as a cloud adjacency effect. Comparing with CALIPSO clear-sky backscatterer measurements, we show that the cloud adjacency effect may be responsible for a large portion of the enhanced clear sky reflectance observed by MODIS. While aerosol particles are responsible for a large part of the near-cloud enhancements in CALIPSO observations, misidentified or undetected cloud particles are also likely to contribute. As a result, both the nature of these particles (cloud vs. aerosol) and the processes creating them need to be clarified using a quantitative assessment of remote sensing limitations in particle detection and identification. The width and ubiquity of the transition zone near clouds imply that studies of aerosol-cloud interactions and aerosol direct radiative effects need to account for aerosol changes near clouds. Not accounted, these changes can cause systematic biases toward smaller aerosol radiative forcing. On the other hand, including aerosol products near clouds despite their uncertainties may overestimate aerosol radiative forcing. Therefore, there is an urgent need for developing methods that can assess and account for remote sensing challenges and thus allow for including the transition zone into the study. We describe a simple model that estimates the cloud-induced enhanced reflectances of cloud-free areas in the vicinity of clouds. The model assumes that the enhancement is due entirely to Rayleigh scattering and is therefore bigger at shorter wavelengths, thus creating a so-called apparent "bluing" of aerosols in remote sensing retrievals.
Diagnosing causes of cloud parameterization deficiencies using ARM measurements over SGP site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, W.; Liu, Y.; Betts, A. K.
2010-03-15
Decade-long continuous surface-based measurements at Great Southern Plains (SGP) collected by the US Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility are first used to evaluate the three major reanalyses (i.e., ERA-Interim, NCEP/NCAR Reanalysis I and NCEP/DOE Reanalysis II) to identify model biases in simulating surface shortwave cloud forcing and total cloud fraction. The results show large systematic lower biases in the modeled surface shortwave cloud forcing and cloud fraction from all the three reanalysis datasets. Then we focus on diagnosing the causes of these model biases using the Active Remote Sensing of Clouds (ARSCL) products (e.g., verticalmore » distribution of cloud fraction, cloud-base and cloud-top heights, and cloud optical depth) and meteorological measurements (temperature, humidity and stability). Efforts are made to couple cloud properties with boundary processes in the diagnosis.« less
Investigating mixed phase clouds using a synergy of ground based remote sensing measurements
NASA Astrophysics Data System (ADS)
Gierens, Rosa; Kneifel, Stefan; Löhnert, Ulrich
2017-04-01
Low level mixed phase clouds occur frequently in the Arctic, and can persist from hours to several days. However, the processes that lead to the commonality and persistence of these clouds are not well understood. The aim of our work is to get a more detailed understanding of the dynamics of and the processes in Arctic mixed phase clouds using a combination of instruments operating at the AWIPEV station in Svalbard. In addition, an aircraft campaign collecting in situ measurements inside mixed phase clouds above the station is planned for May-June 2017. The in situ data will be used for developing and validating retrievals for microphysical properties from Doppler cloud radar measurements. Once observational data for cloud properties is obtained, it can be used for evaluating model performance, for studies combining modeling and observational approaches, and eventually lead to developing model parameterizations of mixed phase microphysics. To describe the low-level mixed phase clouds, and the atmospheric conditions in which they occur, we present a case study of a persistent mixed phase cloud observed above the AWIPEV station. In the frame of the Arctic Amplification: Climate Relevant Atmospheric and Surface Processes and Feedback Mechanisms ((AC)3) -project, a millimeter wavelength cloud radar was installed at the site in June 2016. The high vertical (4 m in the lowest layer) and temporal (2.5 sec) resolution allows for a detailed description of the structure of the cloud. In addition to radar reflectivity and mean vertical velocity, we also utilize the higher moments of the Doppler spectra, such as skewness and kurtosis. To supplement the radar measurements, a ceilometer is used to detect liquid layers inside the cloud. Liquid water path and integrated water vapor are estimated using a microwave radiometer, which together with soundings can also provide temperature and humidity profiles in the lower troposphere. Moreover, a three-dimensional wind field is be obtained from a Doppler wind lidar. Furthermore, the Cloudnet scheme (www.cloud-net.org), that combines radar, lidar and microwave radiometer observations with a forecast model to provide a best estimate of cloud properties, is used for identifying mixed phase clouds. The continuous measurements carried out at AWIPEV make it possible to characterize the macro- and micro- physical properties of mixed-phase clouds on a long-term, statistical basis. The Arctic observations are compared to a 5-year observational data set from Jülich Observatory for Cloud Evolution (JOYCE) in Western Germany. The occurrence of different types of clouds (with focus on mixed-phase and super-cooled clouds), the distribution of ice and liquid within the clouds, the turbulent environment as well as the temperatures where the different phases are occurring are investigated.
An experimental investigation of hollow cathode-based plasma contactors. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Williams, John D.
1991-01-01
Experimental results are presented which describe operation of the plasma environment associated with a hollow cathod-based plasma contactor collecting electrons from or emitting them to an ambient, low density Maxwellian plasma. A one-dimensional, phenomenological model of the near-field electron collection process, which was formulated from experimental observations, is presented. It considers three regions, namely, a plasma cloud adjacent to the contactor, an ambient plasma from which electrons are collected, and a double layer region that develops between the contactor plasma cloud and the ambient plasma regions. Results of the electron emission experiments are also presented. An important observation is made using a retarding potential analyzer (RPA) which shows that high energy ions generally stream from a contactor along with the electrons being emitted. A mechanism for this phenomenon is presented and it involves a high rate of ionization induced between electrons and atoms flowing together from the hollow cathode orifice. This can result in the development of a region of high positive potential. Langmuir and RPA probe data suggest that both electrons and ions expand spherically from this hill region. In addition to experimental observations, a one-dimensional model which describes the electron emission process and predicts the phenomena just mentioned is presented and shown to agree qualitatively with these observations.
NASA Astrophysics Data System (ADS)
Endo, S.; Fridlind, A. M.; Lin, W.; Vogelmann, A. M.; Toto, T.; Liu, Y.
2013-12-01
Three cases of boundary layer clouds are analyzed in the FAst-physics System TEstbed and Research (FASTER) project, based on continental boundary-layer-cloud observations during the RACORO Campaign [Routine Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF) Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations] at the ARM Climate Research Facility's Southern Great Plains (SGP) site. The three 60-hour case study periods are selected to capture the temporal evolution of cumulus, stratiform, and drizzling boundary-layer cloud systems under a range of conditions, intentionally including those that are relatively more mixed or transitional in nature versus being of a purely canonical type. Multi-modal and temporally varying aerosol number size distribution profiles are derived from aircraft observations. Large eddy simulations (LESs) are performed for the three case study periods using the GISS Distributed Hydrodynamic Aerosol and Radiative Modeling Application (DHARMA) model and the WRF-FASTER model, which is the Weather Research and Forecasting (WRF) model implemented with forcing ingestion and other functions to constitute a flexible LES. The two LES models commonly capture the significant transitions of cloud-topped boundary layers in the three periods: diurnal evolution of cumulus layers repeating over multiple days, nighttime evolution/daytime diminution of thick stratus, and daytime breakup of stratus and stratocumulus clouds. Simulated transitions of thermodynamic structures of the cloud-topped boundary layers are examined by balloon-borne soundings and ground-based remote sensors. Aircraft observations are then used to statistically evaluate the predicted cloud droplet number size distributions under varying aerosol and cloud conditions. An ensemble approach is used to refine the model configuration for the combined use of observations with parallel LES and single-column model simulations. See Lin et al. poster for single-column model investigation.
Terminal Area Simulation System User's Guide - Version 10.0
NASA Technical Reports Server (NTRS)
Switzer, George F.; Proctor, Fred H.
2014-01-01
The Terminal Area Simulation System (TASS) is a three-dimensional, time-dependent, large eddy simulation model that has been developed for studies of wake vortex and weather hazards to aviation, along with other atmospheric turbulence, and cloud-scale weather phenomenology. This document describes the source code for TASS version 10.0 and provides users with needed documentation to run the model. The source code is programed in Fortran language and is formulated to take advantage of vector and efficient multi-processor scaling for execution on massively-parallel supercomputer clusters. The code contains different initialization modules allowing the study of aircraft wake vortex interaction with the atmosphere and ground, atmospheric turbulence, atmospheric boundary layers, precipitating convective clouds, hail storms, gust fronts, microburst windshear, supercell and mesoscale convective systems, tornadic storms, and ring vortices. The model is able to operate in either two- or three-dimensions with equations numerically formulated on a Cartesian grid. The primary output from the TASS is time-dependent domain fields generated by the prognostic equations and diagnosed variables. This document will enable a user to understand the general logic of TASS, and will show how to configure and initialize the model domain. Also described are the formats of the input and output files, as well as the parameters that control the input and output.
Bifurcation and stability in a model of moist convection in a shearing environment
NASA Technical Reports Server (NTRS)
Shirer, H. N.
1980-01-01
The truncated spectral system (model I) of shallow moist two-dimensional convection discussed by Shirer and Dutton (1979) is expanded to eleven coefficients (model II) in order to include a basic wind. Cloud streets, the atmospheric analog of the solutions to model II, are typically observed in an environment containing a shearing basic motion field. Analysis of the branching behavior of solutions to mode II shows that, if the basic wind direction varies with height, very complex temporal behavior is possible as the modified Rayleigh number HR is increased sufficiently. The first convective solution is periodic, corresponding to a cloud band that propagates downwind; but secondary branching to a two-dimensional torus can occur for larger values of HR. Orientation band formulas are derived whose predictions generally agree with the results of previous studies.
GCSS Idealized Cirrus Model Comparison Project
NASA Technical Reports Server (NTRS)
Starr, David OC.; Benedetti, Angela; Boehm, Matt; Brown, Philip R. A.; Gierens, Klaus; Girard, Eric; Giraud, Vincent; Jakob, Christian; Jensen, Eric; Khvorostyanov, Vitaly;
2000-01-01
The GCSS Working Group on Cirrus Cloud Systems (WG2) is conducting a systematic comparison and evaluation of cirrus cloud models. This fundamental activity seeks to support the improvement of models used for climate simulation and numerical weather prediction through assessment and improvement of the "process" models underlying parametric treatments of cirrus cloud processes in large-scale models. The WG2 Idealized Cirrus Model Comparison Project is an initial comparison of cirrus cloud simulations by a variety of cloud models for a series of idealized situations with relatively simple initial conditions and forcing. The models (16) represent the state-of-the-art and include 3-dimensional large eddy simulation (LES) models, two-dimensional cloud resolving models (CRMs), and single column model (SCM) versions of GCMs. The model microphysical components are similarly varied, ranging from single-moment bulk (relative humidity) schemes to fully size-resolved (bin) treatments where ice crystal growth is explicitly calculated. Radiative processes are included in the physics package of each model. The baseline simulations include "warm" and "cold" cirrus cases where cloud top initially occurs at about -47C and -66C, respectively. All simulations are for nighttime conditions (no solar radiation) where the cloud is generated in an ice supersaturated layer, about 1 km in depth, with an ice pseudoadiabatic thermal stratification (neutral). Continuing cloud formation is forced via an imposed diabatic cooling representing a 3 cm/s uplift over a 4-hour time span followed by a 2-hour dissipation stage with no cooling. Variations of these baseline cases include no-radiation and stable-thermal-stratification cases. Preliminary results indicated the great importance of ice crystal fallout in determining even the gross cloud characteristics, such as average vertically-integrated ice water path (IWP). Significant inter-model differences were found. Ice water fall speed is directly related to the shape of the particle size distribution and the habits of the ice crystal population, whether assumed or explicitly calculated. In order to isolate the fall speed effect from that of the associated ice crystal population, simulations were also performed where ice water fall speed was set to the same constant value everywhere in each model. Values of 20 and 60 cm/s were assumed. Current results of the project will be described and implications will be drawn. In particular, this exercise is found to strongly focus the definition of issues resulting in observed inter-model differences and to suggest possible strategies for observational validation of the models. The next step in this project is to perform similar comparisons for well observed case studies with sufficient high quality data to adequately define model initiation and forcing specifications and to support quantitative validation of the results.
Magnetic seismology of interstellar gas clouds: Unveiling a hidden dimension.
Tritsis, Aris; Tassis, Konstantinos
2018-05-11
Stars and planets are formed inside dense interstellar molecular clouds by processes imprinted on the three-dimensional (3D) morphology of the clouds. Determining the 3D structure of interstellar clouds remains challenging because of projection effects and difficulties measuring the extent of the clouds along the line of sight. We report the detection of normal vibrational modes in the isolated interstellar cloud Musca, allowing determination of the 3D physical dimensions of the cloud. We found that Musca is vibrating globally, with the characteristic modes of a sheet viewed edge on, not the characteristics of a filament as previously supposed. We reconstructed the physical properties of Musca through 3D magnetohydrodynamic simulations, reproducing the observed normal modes and confirming a sheetlike morphology. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Damping of Bogoliubov excitations in optical lattices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuchiya, Shunji; Department of Physics, Waseda University, 3-4-1 Okubo, Tokyo 169-8555; Griffin, Allan
2004-08-01
Extending recent work to finite temperatures, we calculate the Landau damping of a Bogoliubov excitation in an optical lattice, due to the coupling to a thermal cloud of such excitations. For simplicity, we consider a one-dimensional Bose-Hubbard model and restrict ourselves to the first energy band. For energy conservation to be satisfied, the excitations in the collision processes must exhibit ''anomalous dispersion,'' analogous to phonons in superfluid {sup 4}He. This leads to the disappearance of all damping processes when Un{sup c0}{>=}6J, where U is the on-site interaction, J is the hopping matrix element, and n{sup c0}(T) is the number ofmore » condensate atoms at a lattice site. This phenomenon also occurs in two-dimensional and three-dimensional optical lattices. The disappearance of Beliaev damping above a threshold wave vector is noted.« less
NASA Astrophysics Data System (ADS)
Santagati, Cettina; Lo Turco, Massimiliano
2017-01-01
In recent years, we have witnessed a huge diffusion of building information modeling (BIM) approaches in the field of architectural design, although very little research has been undertaken to explore the value, criticalities, and advantages attributable to the application of these methodologies in the cultural heritage domain. Furthermore, the last developments in digital photogrammetry lead to the easy generation of reliable low-cost three-dimensional textured models that could be used in BIM platforms to create semantic-aware objects that could compose a specific library of historical architectural elements. In this case, the transfer between the point cloud and its corresponding parametric model is not so trivial and the level of geometrical abstraction could not be suitable with the scope of the BIM. The aim of this paper is to explore and retrace the milestone works on this crucial topic in order to identify the unsolved issues and to propose and test a unique and simple workflow practitioner centered and based on the use of the latest available solutions for point cloud managing into commercial BIM platforms.
Analysis of Uncertainty in a Middle-Cost Device for 3D Measurements in BIM Perspective
Sánchez, Alonso; Naranjo, José-Manuel; Jiménez, Antonio; González, Alfonso
2016-01-01
Medium-cost devices equipped with sensors are being developed to get 3D measurements. Some allow for generating geometric models and point clouds. Nevertheless, the accuracy of these measurements should be evaluated, taking into account the requirements of the Building Information Model (BIM). This paper analyzes the uncertainty in outdoor/indoor three-dimensional coordinate measures and point clouds (using Spherical Accuracy Standard (SAS) methods) for Eyes Map, a medium-cost tablet manufactured by e-Capture Research & Development Company, Mérida, Spain. To achieve it, in outdoor tests, by means of this device, the coordinates of targets were measured from 1 to 6 m and cloud points were obtained. Subsequently, these were compared to the coordinates of the same targets measured by a Total Station. The Euclidean average distance error was 0.005–0.027 m for measurements by Photogrammetry and 0.013–0.021 m for the point clouds. All of them satisfy the tolerance for point cloud acquisition (0.051 m) according to the BIM Guide for 3D Imaging (General Services Administration); similar results are obtained in the indoor tests, with values of 0.022 m. In this paper, we establish the optimal distances for the observations in both, Photogrammetry and 3D Photomodeling modes (outdoor) and point out some working conditions to avoid in indoor environments. Finally, the authors discuss some recommendations for improving the performance and working methods of the device. PMID:27669245
TLS for generating multi-LOD of 3D building model
NASA Astrophysics Data System (ADS)
Akmalia, R.; Setan, H.; Majid, Z.; Suwardhi, D.; Chong, A.
2014-02-01
The popularity of Terrestrial Laser Scanners (TLS) to capture three dimensional (3D) objects has been used widely for various applications. Development in 3D models has also led people to visualize the environment in 3D. Visualization of objects in a city environment in 3D can be useful for many applications. However, different applications require different kind of 3D models. Since a building is an important object, CityGML has defined a standard for 3D building models at four different levels of detail (LOD). In this research, the advantages of TLS for capturing buildings and the modelling process of the point cloud can be explored. TLS will be used to capture all the building details to generate multi-LOD. This task, in previous works, involves usually the integration of several sensors. However, in this research, point cloud from TLS will be processed to generate the LOD3 model. LOD2 and LOD1 will then be generalized from the resulting LOD3 model. Result from this research is a guiding process to generate the multi-LOD of 3D building starting from LOD3 using TLS. Lastly, the visualization for multi-LOD model will also be shown.
COSMO-PAFOG: Three-dimensional fog forecasting with the high-resolution COSMO-model
NASA Astrophysics Data System (ADS)
Hacker, Maike; Bott, Andreas
2017-04-01
The presence of fog can have critical impact on shipping, aviation and road traffic increasing the risk of serious accidents. Besides these negative impacts of fog, in arid regions fog is explored as a supplementary source of water for human settlements. Thus the improvement of fog forecasts holds immense operational value. The aim of this study is the development of an efficient three-dimensional numerical fog forecast model based on a mesoscale weather prediction model for the application in the Namib region. The microphysical parametrization of the one-dimensional fog forecast model PAFOG (PArameterized FOG) is implemented in the three-dimensional nonhydrostatic mesoscale weather prediction model COSMO (COnsortium for Small-scale MOdeling) developed and maintained by the German Meteorological Service. Cloud water droplets are introduced in COSMO as prognostic variables, thus allowing a detailed description of droplet sedimentation. Furthermore, a visibility parametrization depending on the liquid water content and the droplet number concentration is implemented. The resulting fog forecast model COSMO-PAFOG is run with kilometer-scale horizontal resolution. In vertical direction, we use logarithmically equidistant layers with 45 of 80 layers in total located below 2000 m. Model results are compared to satellite observations and synoptic observations of the German Meteorological Service for a domain in the west of Germany, before the model is adapted to the geographical and climatological conditions in the Namib desert. COSMO-PAFOG is able to represent the horizontal structure of fog patches reasonably well. Especially small fog patches typical of radiation fog can be simulated in agreement with observations. Ground observations of temperature are also reproduced. Simulations without the PAFOG microphysics yield unrealistically high liquid water contents. This in turn reduces the radiative cooling of the ground, thus inhibiting nocturnal temperature decrease. The simulated visibility agrees with observations. However, fog tends to be dissolved earlier than in the observation. As a result of the investigated fog events, it is concluded that the three-dimensional fog forecast model COSMO-PAFOG is able to simulate these fog events in accordance with observations. After the successful application of COSMO-PAFOG for fog events in the west of Germany, model simulations will be performed for coastal desert fog in the Namib region.
Robust Spacecraft Component Detection in Point Clouds.
Wei, Quanmao; Jiang, Zhiguo; Zhang, Haopeng
2018-03-21
Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.
Robust Spacecraft Component Detection in Point Clouds
Wei, Quanmao; Jiang, Zhiguo
2018-01-01
Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density. PMID:29561828
NASA Astrophysics Data System (ADS)
DeSouza-Machado, Sergio; Larrabee Strow, L.; Tangborn, Andrew; Huang, Xianglei; Chen, Xiuhong; Liu, Xu; Wu, Wan; Yang, Qiguang
2018-01-01
One-dimensional variational retrievals of temperature and moisture fields from hyperspectral infrared (IR) satellite sounders use cloud-cleared radiances (CCRs) as their observation. These derived observations allow the use of clear-sky-only radiative transfer in the inversion for geophysical variables but at reduced spatial resolution compared to the native sounder observations. Cloud clearing can introduce various errors, although scenes with large errors can be identified and ignored. Information content studies show that, when using multilayer cloud liquid and ice profiles in infrared hyperspectral radiative transfer codes, there are typically only 2-4 degrees of freedom (DOFs) of cloud signal. This implies a simplified cloud representation is sufficient for some applications which need accurate radiative transfer. Here we describe a single-footprint retrieval approach for clear and cloudy conditions, which uses the thermodynamic and cloud fields from numerical weather prediction (NWP) models as a first guess, together with a simple cloud-representation model coupled to a fast scattering radiative transfer algorithm (RTA). The NWP model thermodynamic and cloud profiles are first co-located to the observations, after which the N-level cloud profiles are converted to two slab clouds (TwoSlab; typically one for ice and one for water clouds). From these, one run of our fast cloud-representation model allows an improvement of the a priori cloud state by comparing the observed and model-simulated radiances in the thermal window channels. The retrieval yield is over 90 %, while the degrees of freedom correlate with the observed window channel brightness temperature (BT) which itself depends on the cloud optical depth. The cloud-representation and scattering package is benchmarked against radiances computed using a maximum random overlap (RMO) cloud scheme. All-sky infrared radiances measured by NASA's Atmospheric Infrared Sounder (AIRS) and NWP thermodynamic and cloud profiles from the European Centre for Medium-Range Weather Forecasts (ECMWF) forecast model are used in this paper.
Improving Pixel Level Cloud Optical Property Retrieval using Monte Carlo Simulations
NASA Technical Reports Server (NTRS)
Oreopoulos, Lazaros; Marshak, Alexander; Cahalan, Robert F.
1999-01-01
The accurate pixel-by-pixel retrieval of cloud optical properties from space is influenced by radiative smoothing due to high order photon scattering and radiative roughening due to low order scattering events. Both are caused by cloud heterogeneity and the three-dimensional nature of radiative transfer and can be studied with the aid of computer simulations. We use Monte Carlo simulations on variable 1-D and 2-D model cloud fields to seek for dependencies of smoothing and roughening phenomena on single scattering albedo, solar zenith angle, and cloud characteristics. The results are discussed in the context of high resolution satellite (such as Landsat) retrieval applications. The current work extends the investigation on the inverse NIPA (Non-local Independent Pixel Approximation) as a tool for removing smoothing and improving retrievals of cloud optical depth. This is accomplished by: (1) Delineating the limits of NIPA applicability; (2) Exploring NIPA parameter dependences on cloud macrostructural features, such as mean cloud optical depth and geometrical thickness, degree of extinction and cloud top height variability. We also compare parameter values from empirical and theoretical considerations; (3) Examining the differences between applying NIPA on radiation quantities vs direct application on optical properties; (4) Studying the radiation budget importance of the NIPA corrections as a function of scale. Finally, we discuss fundamental adjustments that need to be considered for successful radiance inversion at non-conservative wavelengths and oblique Sun angles. These adjustments are necessary to remove roughening signatures which become more prominent with increasing absorption and solar zenith angle.
NASA Astrophysics Data System (ADS)
Wong, Michael H.; Atreya, Sushil K.; Kuhn, William R.; Romani, Paul N.; Mihalka, Kristen M.
2015-01-01
Models of cloud condensation under thermodynamic equilibrium in planetary atmospheres are useful for several reasons. These equilibrium cloud condensation models (ECCMs) calculate the wet adiabatic lapse rate, determine saturation-limited mixing ratios of condensing species, calculate the stabilizing effect of latent heat release and molecular weight stratification, and locate cloud base levels. Many ECCMs trace their heritage to Lewis (Lewis, J.S. [1969]. Icarus 10, 365-378) and Weidenschilling and Lewis (Weidenschilling, S.J., Lewis, J.S. [1973]. Icarus 20, 465-476). Calculation of atmospheric structure and gas mixing ratios are correct in these models. We resolve errors affecting the cloud density calculation in these models by first calculating a cloud density rate: the change in cloud density with updraft length scale. The updraft length scale parameterizes the strength of the cloud-forming updraft, and converts the cloud density rate from the ECCM into cloud density. The method is validated by comparison with terrestrial cloud data. Our parameterized updraft method gives a first-order prediction of cloud densities in a “fresh” cloud, where condensation is the dominant microphysical process. Older evolved clouds may be better approximated by another 1-D method, the diffusive-precipitative Ackerman and Marley (Ackerman, A.S., Marley, M.S. [2001]. Astrophys. J. 556, 872-884) model, which represents a steady-state equilibrium between precipitation and condensation of vapor delivered by turbulent diffusion. We re-evaluate observed cloud densities in the Galileo Probe entry site (Ragent, B. et al. [1998]. J. Geophys. Res. 103, 22891-22910), and show that the upper and lower observed clouds at ∼0.5 and ∼3 bars are consistent with weak (cirrus-like) updrafts under conditions of saturated ammonia and water vapor, respectively. The densest observed cloud, near 1.3 bar, requires unexpectedly strong updraft conditions, or higher cloud density rates. The cloud density rate in this layer may be augmented by a composition with non-NH4SH components (possibly including adsorbed NH3).
a Method of 3d Measurement and Reconstruction for Cultural Relics in Museums
NASA Astrophysics Data System (ADS)
Zheng, S.; Zhou, Y.; Huang, R.; Zhou, L.; Xu, X.; Wang, C.
2012-07-01
Three-dimensional measurement and reconstruction during conservation and restoration of cultural relics have become an essential part of a modem museum regular work. Although many kinds of methods including laser scanning, computer vision and close-range photogrammetry have been put forward, but problems still exist, such as contradiction between cost and good result, time and fine effect. Aimed at these problems, this paper proposed a structure-light based method for 3D measurement and reconstruction of cultural relics in museums. Firstly, based on structure-light principle, digitalization hardware has been built and with its help, dense point cloud of cultural relics' surface can be easily acquired. To produce accurate 3D geometry model from point cloud data, multi processing algorithms have been developed and corresponding software has been implemented whose functions include blunder detection and removal, point cloud alignment and merge, 3D mesh construction and simplification. Finally, high-resolution images are captured and the alignment of these images and 3D geometry model is conducted and realistic, accurate 3D model is constructed. Based on such method, a complete system including hardware and software are built. Multi-kinds of cultural relics have been used to test this method and results prove its own feature such as high efficiency, high accuracy, easy operation and so on.
Does The Earth Have an Adaptive Infrared Iris?
NASA Technical Reports Server (NTRS)
Lindzen, Richard S.; Chou, Ming-Dah; Hou, Arthur
2000-01-01
Observations and analyses of water vapor and clouds in the tropics over the past decade suggest a different approach to radiative climate feedbacks: namely, that high clouds and high free-tropospheric relative humidity are largely tied to each other, and that the main feedback consists in changing the relative areas of cloudy/moist regions vis a vis clear/dry regions in response to the surface temperature of the cloudy/moist regions - as opposed to altering the humidity in either of the regions. This is an intrinsically 2-dimensional (horizontal and vertical) effect which does not readily enter simple 1-dimensional (vertical) radiative-convective schemes which emphasize average humidity, etc. Preliminary analyses of cloud data for the eastern part of the Western Pacific from the Japanese GMS-5(Geostationary Meteorological Satellite), are supportive of this suggestion - pointing to a 15% reduction in cloudy/moist area for a 1C increase of the sea surface temperature as measured by the cloud-weighted SST (sea surface temperature). The implication of this result is examined using a simple 2-dimensional radiative-convective model. The calculations show that such a change in the tropics would lead to a strong negative feedback in the global climate, with a feedback factor of about -1.7, which, if correct, would easily dominate the positive water vapor feedback found in current models. This new feedback mechanism, in effect, constitutes an adaptive infrared iris that opens and closes in order to control the OLR (outgoing longwave radiation) in response to changes in surface temperature in a manner similar to the way in which an eye's iris opens and closes in response to changing light levels. The climate sensitivity resulting from this thermostatic mechanism is consistent with the independent determination by Lindzen and Giannitisis (1998). Preliminary attempts to replicate observations with GCMs (General Circulation Models) suggest that models lack such a negative cloud/moist areal feedback.
Integrated Survey Procedures for the Virtual Reading and Fruition of Historical Buildings
NASA Astrophysics Data System (ADS)
Scandurra, S.; Pulcrano, M.; Cirillo, V.; Campi, M.; di Luggo, A.; Zerlenga, O.
2018-05-01
This paper presents the developments of research related to the integration of digital survey methodologies with reference to image-based and range-based technologies. Starting from the processing of point clouds, the data were processed for both the geometric interpretation of the space as well as production of three-dimensional models that describe the constitutive and morphological relationships. The subject of the study was the church of San Carlo all'Arena in Naples (Italy), with a HBIM model being produced that is semantically consistent with the real building. Starting from the data acquired, a visualization system was created for the virtual exploration of the building.
NASA Technical Reports Server (NTRS)
Mcdonnell, J. A. M. (Editor); Hanner, M. S. (Editor); Kessler, D. J. (Editor)
1986-01-01
These proceedings encompass topics in the fields of extraterrestrial material samples, IRAS solar system and dust model results, and earth orbit debris. Attention is given to chemical fractionation during high velocity impact, particle deceleration and survival in multiple thin foil targets, and IRAS studies of asteroids, comets, cometary tails, the zodiacal background, and the three-dimensional modeling of interplanetary dust. Also discussed are the evolution of an earth orbit debris cloud, orbital debris due to future space activities, collision probabilities in geosynchronous orbits, and a bitelescopic survey of low altitude orbital debris.
Performance of the Goddard Multiscale Modeling Framework with Goddard Ice Microphysical Schemes
NASA Technical Reports Server (NTRS)
Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen E.; Matsui, Toshihisa; Li, J.-L.; Mohr, Karen I.; Skofronick-Jackson, Gail M.; Peters-Lidard, Christa D.
2016-01-01
The multiscale modeling framework (MMF), which replaces traditional cloud parameterizations with cloud-resolving models (CRMs) within a host atmospheric general circulation model (GCM), has become a new approach for climate modeling. The embedded CRMs make it possible to apply CRM-based cloud microphysics directly within a GCM. However, most such schemes have never been tested in a global environment for long-term climate simulation. The benefits of using an MMF to evaluate rigorously and improve microphysics schemes are here demonstrated. Four one-moment microphysical schemes are implemented into the Goddard MMF and their results validated against three CloudSat/CALIPSO cloud ice products and other satellite data. The new four-class (cloud ice, snow, graupel, and frozen drops/hail) ice scheme produces a better overall spatial distribution of cloud ice amount, total cloud fractions, net radiation, and total cloud radiative forcing than earlier three-class ice schemes, with biases within the observational uncertainties. Sensitivity experiments are conducted to examine the impact of recently upgraded microphysical processes on global hydrometeor distributions. Five processes dominate the global distributions of cloud ice and snow amount in long-term simulations: (1) allowing for ice supersaturation in the saturation adjustment, (2) three additional correction terms in the depositional growth of cloud ice to snow, (3) accounting for cloud ice fall speeds, (4) limiting cloud ice particle size, and (5) new size-mapping schemes for snow and graupel. Despite the cloud microphysics improvements, systematic errors associated with subgrid processes, cyclic lateral boundaries in the embedded CRMs, and momentum transport remain and will require future improvement.
Development of a New Model for Accurate Prediction of Cloud Water Deposition on Vegetation
NASA Astrophysics Data System (ADS)
Katata, G.; Nagai, H.; Wrzesinsky, T.; Klemm, O.; Eugster, W.; Burkard, R.
2006-12-01
Scarcity of water resources in arid and semi-arid areas is of great concern in the light of population growth and food shortages. Several experiments focusing on cloud (fog) water deposition on the land surface suggest that cloud water plays an important role in water resource in such regions. A one-dimensional vegetation model including the process of cloud water deposition on vegetation has been developed to better predict cloud water deposition on the vegetation. New schemes to calculate capture efficiency of leaf, cloud droplet size distribution, and gravitational flux of cloud water were incorporated in the model. Model calculations were compared with the data acquired at the Norway spruce forest at the Waldstein site, Germany. High performance of the model was confirmed by comparisons of calculated net radiation, sensible and latent heat, and cloud water fluxes over the forest with measurements. The present model provided a better prediction of measured turbulent and gravitational fluxes of cloud water over the canopy than the Lovett model, which is a commonly used cloud water deposition model. Detailed calculations of evapotranspiration and of turbulent exchange of heat and water vapor within the canopy and the modifications are necessary for accurate prediction of cloud water deposition. Numerical experiments to examine the dependence of cloud water deposition on the vegetation species (coniferous and broad-leaved trees, flat and cylindrical grasses) and structures (Leaf Area Index (LAI) and canopy height) are performed using the presented model. The results indicate that the differences of leaf shape and size have a large impact on cloud water deposition. Cloud water deposition also varies with the growth of vegetation and seasonal change of LAI. We found that the coniferous trees whose height and LAI are 24 m and 2.0 m2m-2, respectively, produce the largest amount of cloud water deposition in all combinations of vegetation species and structures in the experiments.
NASA Technical Reports Server (NTRS)
Valero, Francisco P. J.; Cess, Robert D.; Zhang, Minghua; Pope, Shelly K.; Bucholtz, Anthony; Bush, Brett; Vitko, John, Jr.
1997-01-01
As part of the Atmospheric Radiation Measurement (ARM) Enhanced Shortwave Experiment (ARESE), we have obtained and analyzed measurements made from collocated aircraft of the absorption of solar radiation within the atmospheric column between the two aircraft. The measurements were taken during October 1995 at the ARM site in Oklahoma. Relative to a theoretical radiative transfer model, we find no evidence for excess solar absorption in the clear atmosphere and significant evidence for its existence in the cloudy atmosphere. This excess cloud solar absorption appears to occur in both visible (0.224-0.68 microns) and near-infrared (0.68-3.30 microns) spectral regions, although not at 0.5 microns for the visible contribution, and it is shown to be true absorption rather than an artifact of sampling errors caused by measuring three-dimensional clouds.
Liu, Yong-Kuo; Chao, Nan; Xia, Hong; Peng, Min-Jun; Ayodeji, Abiodun
2018-05-17
This paper presents an improved and efficient virtual reality-based adaptive dose assessment method (VRBAM) applicable to the cutting and dismantling tasks in nuclear facility decommissioning. The method combines the modeling strength of virtual reality with the flexibility of adaptive technology. The initial geometry is designed with the three-dimensional computer-aided design tools, and a hybrid model composed of cuboids and a point-cloud is generated automatically according to the virtual model of the object. In order to improve the efficiency of dose calculation while retaining accuracy, the hybrid model is converted to a weighted point-cloud model, and the point kernels are generated by adaptively simplifying the weighted point-cloud model according to the detector position, an approach that is suitable for arbitrary geometries. The dose rates are calculated with the Point-Kernel method. To account for radiation scattering effects, buildup factors are calculated with the Geometric-Progression formula in the fitting function. The geometric modeling capability of VRBAM was verified by simulating basic geometries, which included a convex surface, a concave surface, a flat surface and their combination. The simulation results show that the VRBAM is more flexible and superior to other approaches in modeling complex geometries. In this paper, the computation time and dose rate results obtained from the proposed method were also compared with those obtained using the MCNP code and an earlier virtual reality-based method (VRBM) developed by the same authors. © 2018 IOP Publishing Ltd.
Impact of Aerosol Processing on Orographic Clouds
NASA Astrophysics Data System (ADS)
Pousse-Nottelmann, Sara; Zubler, Elias M.; Lohmann, Ulrike
2010-05-01
Aerosol particles undergo significant modifications during their residence time in the atmosphere. Physical processes like coagulation, coating and water uptake, and aqueous surface chemistry alter the aerosol size distribution and composition. At this, clouds play a primary role as physical and chemical processing inside cloud droplets contributes considerably to the changes in aerosol particles. A previous study estimates that on global average atmospheric particles are cycled three times through a cloud before being removed from the atmosphere [1]. An explicit and detailed treatment of cloud-borne particles has been implemented in the regional weather forecast and climate model COSMO-CLM. The employed model version includes a two-moment cloud microphysical scheme [2] that has been coupled to the aerosol microphysical scheme M7 [3] as described by Muhlbauer and Lohmann, 2008 [4]. So far, the formation, transfer and removal of cloud-borne aerosol number and mass were not considered in the model. Following the parameterization for cloud-borne particles developed by Hoose et al., 2008 [5], distinction between in-droplet and in-crystal particles is made to more physically account for processes in mixed-phase clouds, such as the Wegener-Bergeron-Findeisen process and contact and immersion freezing. In our model, this approach has been extended to allow for aerosol particles in five different hydrometeors: cloud droplets, rain drops, ice crystals, snow flakes and graupel. We account for nucleation scavenging, freezing and melting processes, autoconversion, accretion, aggregation, riming and selfcollection, collisions between interstitial aerosol particles and hydrometeors, ice multiplication, sedimentation, evaporation and sublimation. The new scheme allows an evaluation of the cloud cycling of aerosol particles by tracking the particles even when scavenged into hydrometeors. Global simulations of aerosol processing in clouds have recently been conducted by Hoose et al. [6]. Our investigation regarding the influence of aerosol processing will focus on the regional scale using a cloud-system resolving model with a much higher resolution. Emphasis will be placed on orographic mixed-phase precipitation. Different two-dimensional simulations of idealized orographic clouds will be conducted to estimate the effect of aerosol processing on orographic cloud formation and precipitation. Here, cloud lifetime, location and extent as well as the cloud type will be of particular interest. In a supplementary study, the new parameterization will be compared to observations of total and interstitial aerosol concentrations and size distribution at the remote high alpine research station Jungfraujoch in Switzerland. In addition, our simulations will be compared to recent simulations of aerosol processing in warm, mixed-phase and cold clouds, which have been carried out at the location of Jungfraujoch station [5]. References: [1] Pruppacher & Jaenicke (1995), The processing of water vapor and aerosols by atmospheric clouds, a global estimate, Atmos. Res., 38, 283295. [2] Seifert & Beheng (2006), A two-moment microphysics parameterization for mixed-phase clouds. Part 1: Model description, Meteorol. Atmos. Phys., 92, 4566. [3] Vignati et al. (2004), An efficient size-resolved aerosol microphysics module for large-scale transport models, J. Geophys. Res., 109, D22202 [4] Muhlbauer & Lohmann (2008), Sensitivity studies of the role of aerosols in warm-phase orographic precipitation in different flow regimes, J. Atmos. Sci., 65, 25222542. [5] Hoose et al. (2008), Aerosol processing in mixed-phase clouds in ECHAM5HAM: Model description and comparison to observations, J. Geophys. Res., 113, D071210. [6] Hoose et al. (2008), Global simulations of aerosol processing in clouds, Atmos. Chem. Phys., 8, 69396963.
Effects of Implementing Subgrid-Scale Cloud-Radiation Interactions in a Regional Climate Model
NASA Astrophysics Data System (ADS)
Herwehe, J. A.; Alapaty, K.; Otte, T.; Nolte, C. G.
2012-12-01
Interactions between atmospheric radiation, clouds, and aerosols are the most important processes that determine the climate and its variability. In regional scale models, when used at relatively coarse spatial resolutions (e.g., larger than 1 km), convective cumulus clouds need to be parameterized as subgrid-scale clouds. Like many groups, our regional climate modeling group at the EPA uses the Weather Research & Forecasting model (WRF) as a regional climate model (RCM). One of the findings from our RCM studies is that the summertime convective systems simulated by the WRF model are highly energetic, leading to excessive surface precipitation. We also found that the WRF model does not consider the interactions between convective clouds and radiation, thereby omitting an important process that drives the climate. Thus, the subgrid-scale cloudiness associated with convective clouds (from shallow cumuli to thunderstorms) does not exist and radiation passes through the atmosphere nearly unimpeded, potentially leading to overly energetic convection. This also has implications for air quality modeling systems that are dependent upon cloud properties from the WRF model, as the failure to account for subgrid-scale cloudiness can lead to problems such as the underrepresentation of aqueous chemistry processes within clouds and the overprediction of ozone from overactive photolysis. In an effort to advance the climate science of the cloud-aerosol-radiation (CAR) interactions in RCM systems, as a first step we have focused on linking the cumulus clouds with the radiation processes. To this end, our research group has implemented into WRF's Kain-Fritsch (KF) cumulus parameterization a cloudiness formulation that is widely used in global earth system models (e.g., CESM/CAM5). Estimated grid-scale cloudiness and associated condensate are adjusted to account for the subgrid clouds and then passed to WRF's Rapid Radiative Transfer Model - Global (RRTMG) radiation schemes to affect the shortwave and longwave radiative processes. To evaluate the effects of implementing the subgrid-scale cloud-radiation interactions on WRF regional climate simulations, a three-year study period (1988-1990) was simulated over the CONUS using two-way nested domains with 108 km and 36 km horizontal grid spacing, without and with the cumulus feedbacks to radiation, and without and with some form of four dimensional data assimilation (FDDA). Initial and lateral boundary conditions (as well as data for the FDDA, when enabled) were supplied from downscaled NCEP-NCAR Reanalysis II (R2) data sets. Evaluation of the simulation results will be presented comparing regional surface precipitation and temperature statistics with North American Regional Reanalysis (NARR) data and Climate Forecast System Reanalysis (CFSR) data, respectively, as well as comparison with available surface radiation (SURFRAD) and satellite (CERES) observations. This research supports improvements in the EPA's WRF-CMAQ modeling system, leading to better predictions of present and future air quality and climate interactions in order to protect human health and the environment.
Application of satellite data in variational analysis for global cyclonic systems
NASA Technical Reports Server (NTRS)
Achtemeier, G. L.
1988-01-01
The goal of the research is a variational data assimilation method that incorporates as dynamical constraints, the primitive equations for a moist, convectively unstable atmosphere and the radiative transfer equation. Variables to be adjusted include the three-dimensional vector wind, height, temperature, and moisture from rawinsonde data, and cloud-wind vectors, moisture, and radiance from satellite data. In order to facilitate thorough analysis of each of the model components, four variational models that divide the problem naturally according to increasing complexity were defined. The research performed during the second year fall into four areas: sensitivity studies involving Model 1; evaluation of Model 2; reformation of Model 1 for greater compatibility with Model 2; development of Model 3 (radiative transfer equation); and making the model more responsive to the observations.
NASA Technical Reports Server (NTRS)
Taylor, Gregory E.; Zack, John W.; Manobianco, John
1994-01-01
NASA funded Mesoscale Environmental Simulations and Operations (MESO), Inc. to develop a version of the Mesoscale Atmospheric Simulation System (MASS). The model has been modified specifically for short-range forecasting in the vicinity of KSC/CCAS. To accomplish this, the model domain has been limited to increase the number of horizontal grid points (and therefore grid resolution) and the model' s treatment of precipitation, radiation, and surface hydrology physics has been enhanced to predict convection forced by local variations in surface heat, moisture fluxes, and cloud shading. The objective of this paper is to (1) provide an overview of MASS including the real-time initialization and configuration for running the data pre-processor and model, and (2) to summarize the preliminary evaluation of the model's forecasts of temperature, moisture, and wind at selected rawinsonde station locations during February 1994 and July 1994. MASS is a hydrostatic, three-dimensional modeling system which includes schemes to represent planetary boundary layer processes, surface energy and moisture budgets, free atmospheric long and short wave radiation, cloud microphysics, and sub-grid scale moist convection.
Applications of low altitude photogrammetry for morphometry, displacements, and landform modeling
NASA Astrophysics Data System (ADS)
Gomez, F. G.; Polun, S. G.; Hickcox, K.; Miles, C.; Delisle, C.; Beem, J. R.
2016-12-01
Low-altitude aerial surveying is emerging as a tool that greatly improves the ease and efficiency of measuring landforms for quantitative geomorphic analyses. High-resolution, close-range photogrammetry produces dense, 3-dimensional point clouds that facilitate the construction of digital surface models, as well as a potential means of classifying ground targets using spatial structure. This study presents results from recent applications of UAS-based photogrammetry, including high resolution surface morphometry of a lava flow, repeat-pass applications to mass movements, and fault scarp degradation modeling. Depending upon the desired photographic resolution and the platform/payload flown, aerial photos are typically acquired at altitudes of 40 - 100 meters above the ground surface. In all cases, high-precision ground control points are key for accurate (and repeatable) orientation - relying on low-precision GPS coordinates (whether on the ground or geotags in the aerial photos) typically results in substantial rotations (tilt) of the reference frame. Using common ground control points between repeat surveys results in matching point clouds with RMS residuals better than 10 cm. In arid regions, the point cloud is used to assess lava flow surface roughness using multi-scale measurements of point cloud dimensionality. For the landslide study, the point cloud provides a basis for assessing possible displacements. In addition, the high resolution orthophotos facilitate mapping of fractures and their growth. For neotectonic applications, we compare fault scarp modeling results from UAV-derived point clouds versus field-based surveys (kinematic GPS and electronic distance measurements). In summary, there is a wide ranging toolbox of low-altitude aerial platforms becoming available for field geoscientists. In many instances, these tools will present convenience and reduced cost compared with the effort and expense to contract acquisitions of aerial imagery.
NASA Astrophysics Data System (ADS)
Fan, Jiwen; Ghan, Steven; Ovchinnikov, Mikhail; Liu, Xiaohong; Rasch, Philip J.; Korolev, Alexei
2011-01-01
Two types of Arctic mixed-phase clouds observed during the ISDAC and M-PACE field campaigns are simulated using a 3-dimensional cloud-resolving model (CRM) with size-resolved cloud microphysics. The modeled cloud properties agree reasonably well with aircraft measurements and surface-based retrievals. Cloud properties such as the probability density function (PDF) of vertical velocity (w), cloud liquid and ice, regimes of cloud particle growth, including the Wegener-Bergeron-Findeisen (WBF) process, and the relationships among properties/processes in mixed-phase clouds are examined to gain insights for improving their representation in General Circulation Models (GCMs). The PDF of the simulated w is well represented by a Gaussian function, validating, at least for arctic clouds, the subgrid treatment used in GCMs. The PDFs of liquid and ice water contents can be approximated by Gamma functions, and a Gaussian function can describe the total water distribution, but a fixed variance assumption should be avoided in both cases. The CRM results support the assumption frequently used in GCMs that mixed phase clouds maintain water vapor near liquid saturation. Thus, ice continues to grow throughout the stratiform cloud but the WBF process occurs in about 50% of cloud volume where liquid and ice co-exist, predominantly in downdrafts. In updrafts, liquid and ice particles grow simultaneously. The relationship between the ice depositional growth rate and cloud ice strongly depends on the capacitance of ice particles. The simplified size-independent capacitance of ice particles used in GCMs could lead to large deviations in ice depositional growth.
NASA Astrophysics Data System (ADS)
Boss, Alan P.
2002-04-01
Recent observations of star-forming regions suggest that binary and multiple young stars are the rule rather than the exception and implicate fragmentation as the likely mechanism for their formation. Most numerical hydrodynamic calculations of fragmentation have neglected the possibly deleterious effects of magnetic fields, despite ample evidence for the importance of magnetic support of precollapse clouds. We present here the first numerical hydrodynamic survey of the collapse and fragmentation of initially magnetically supported clouds that takes into account several magnetic field effects in an approximate manner. The models are calculated with a three-dimensional, finite differences code that solves the equations of hydrodynamics, gravitation, and radiative transfer in the Eddington and diffusion approximations. Magnetic field effects are included through two simple approximations: magnetic pressure is added to the gas pressure, and magnetic tension is approximated by gravity dilution once collapse is well underway. Ambipolar diffusion of the magnetic field leading to cloud collapse is treated approximately as well. Models are calculated for a variety of initial cloud density profiles, shapes, and rotation rates. We find that in spite of the inclusion of magnetic field effects, dense cloud cores are capable of fragmenting into binary and multiple protostar systems. Initially prolate clouds tend to fragment into binary protostars, while initially oblate clouds tend to fragment into multiple protostar systems containing a small number (of the order of 4) of fragments. The latter are likely to be subject to rapid orbital evolution, with close encounters possibly leading to the ejection of fragments. Contrary to expectation, magnetic tension effects appear to enhance fragmentation, allowing lower mass fragments to form than would otherwise be possible, because magnetic tension helps to prevent a central density singularity from forming and producing a dominant single object. Magnetically supported dense cloud cores thus seem to be capable of collapsing and fragmenting into sufficient numbers of binary and multiple protostar systems to be compatible with observations of the relative rarity of single protostars.
Assessment of engineered surfaces roughness by high-resolution 3D SEM photogrammetry.
Gontard, L C; López-Castro, J D; González-Rovira, L; Vázquez-Martínez, J M; Varela-Feria, F M; Marcos, M; Calvino, J J
2017-06-01
We describe a methodology to obtain three-dimensional models of engineered surfaces using scanning electron microscopy and multi-view photogrammetry (3DSEM). For the reconstruction of the 3D models of the surfaces we used freeware available in the cloud. The method was applied to study the surface roughness of metallic samples patterned with parallel grooves by means of laser. The results are compared with measurements obtained using stylus profilometry (PR) and SEM stereo-photogrammetry (SP). The application of 3DSEM is more time demanding than PR or SP, but it provides a more accurate representation of the surfaces. The results obtained with the three techniques are compared by investigating the influence of sampling step on roughness parameters. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Zhuocan; Mace, Jay; Avalone, Linnea; Wang, Zhien
2015-04-01
The extreme variability of ice particle habits in precipitating clouds affects our understanding of these cloud systems in every aspect (i.e. radiation transfer, dynamics, precipitation rate, etc) and largely contributes to the uncertainties in the model representation of related processes. Ice particle mass-dimensional power law relationships, M=a*(D ^ b), are commonly assumed in models and retrieval algorithms, while very little knowledge exists regarding the uncertainties of these M-D parameters in real-world situations. In this study, we apply Optimal Estimation (OE) methodology to infer ice particle mass-dimensional relationship from ice particle size distributions and bulk water contents independently measured on board the University of Wyoming King Air during the Colorado Airborne Multi-Phase Cloud Study (CAMPS). We also utilize W-band radar reflectivity obtained on the same platform (King Air) offering a further constraint to this ill-posed problem (Heymsfield et al. 2010). In addition to the values of retrieved M-D parameters, the associated uncertainties are conveniently acquired in the OE framework, within the limitations of assumed Gaussian statistics. We find, given the constraints provided by the bulk water measurement and in situ radar reflectivity, that the relative uncertainty of mass-dimensional power law prefactor (a) is approximately 80% and the relative uncertainty of exponent (b) is 10-15%. With this level of uncertainty, the forward model uncertainty in radar reflectivity would be on the order of 4 dB or a factor of approximately 2.5 in ice water content. The implications of this finding are that inferences of bulk water from either remote or in situ measurements of particle spectra cannot be more certain than this when the mass-dimensional relationships are not known a priori which is almost never the case.
Are CO Observations of Interstellar Clouds Tracing the H2?
NASA Astrophysics Data System (ADS)
Federrath, Christoph; Glover, S. C. O.; Klessen, R. S.; Mac Low, M.
2010-01-01
Interstellar clouds are commonly observed through the emission of rotational transitions from carbon monoxide (CO). However, the abundance ratio of CO to molecular hydrogen (H2), which is the most abundant molecule in molecular clouds is only about 10-4. This raises the important question of whether the observed CO emission is actually tracing the bulk of the gas in these clouds, and whether it can be used to derive quantities like the total mass of the cloud, the gas density distribution function, the fractal dimension, and the velocity dispersion--size relation. To evaluate the usability and accuracy of CO as a tracer for H2 gas, we generate synthetic observations of hydrodynamical models that include a detailed chemical network to follow the formation and photo-dissociation of H2 and CO. These three-dimensional models of turbulent interstellar cloud formation self-consistently follow the coupled thermal, dynamical and chemical evolution of 32 species, with a particular focus on H2 and CO (Glover et al. 2009). We find that CO primarily traces the dense gas in the clouds, however, with a significant scatter due to turbulent mixing and self-shielding of H2 and CO. The H2 probability distribution function (PDF) is well-described by a log-normal distribution. In contrast, the CO column density PDF has a strongly non-Gaussian low-density wing, not at all consistent with a log-normal distribution. Centroid velocity statistics show that CO is more intermittent than H2, leading to an overestimate of the velocity scaling exponent in the velocity dispersion--size relation. With our systematic comparison of H2 and CO data from the numerical models, we hope to provide a statistical formula to correct for the bias of CO observations. CF acknowledges financial support from a Kade Fellowship of the American Museum of Natural History.
NASA Technical Reports Server (NTRS)
Churchill, Dean D.; Houze, Robert A., Jr.
1991-01-01
A twi-dimensional kinematic model has been used to diagnose the thermodynamic, water vapor, and hydrometeor fields of the stratiform clouds associated with a mesoscale tropical cloud cluster. The model incorporates ice- and water-cloud microphysics, visible and infrared radiation, and convective adjustment. It is intended to determine the relative contributions of radiation, mycrophysics, and turbulence to diabatic heating, and the effects that radiation has on the water budget of the cluster in the absence of dynamical interactions. The model has been initialized with thermodynamic fields and wind velocities diagnosed from a GATE tropical squall line. It is found that radiation does not directly affect the water budget of the stratiform region, and any radiative effect on hydrometeors must involve interaction with dynamics.
Three-Dimensional Recording of Bastion Middleburg Monument Using Terrestrial Laser Scanner
NASA Astrophysics Data System (ADS)
Majid, Z.; Lau, C. L.; Yusoff, A. R.
2016-06-01
This paper describes the use of terrestrial laser scanning for the full three-dimensional (3D) recording of historical monument, known as the Bastion Middleburg. The monument is located in Melaka, Malaysia, and was built by the Dutch in 1660. This monument serves as a major hub for the community when conducting commercial activities in estuaries Malacca and the Dutch build this monument as a control tower or fortress. The monument is located on the banks of the Malacca River was built between Stadhuys or better known as the Red House and Mill Quayside. The breakthrough fort on 25 November 2006 was a result of the National Heritage Department through in-depth research on the old map. The recording process begins with the placement of measuring targets at strategic locations around the monument. Spherical target was used in the point cloud data registration. The scanning process is carried out using a laser scanning system known as a terrestrial scanner Leica C10. This monument was scanned at seven scanning stations located surrounding the monument with medium scanning resolution mode. Images of the monument have also been captured using a digital camera that is setup in the scanner. For the purposes of proper registration process, the entire spherical target was scanned separately using a high scanning resolution mode. The point cloud data was pre-processed using Leica Cyclone software. The pre-processing process starting with the registration of seven scan data set through overlapping spherical targets. The post-process involved in the generation of coloured point cloud model of the monument using third-party software. The orthophoto of the monument was also produced. This research shows that the method of laser scanning provides an excellent solution for recording historical monuments with true scale of and texture.
NASA Astrophysics Data System (ADS)
Loftus, Adrian; Tsay, Si-Chee; Nguyen, Xuan Anh
2016-04-01
Low-level stratocumulus (Sc) clouds cover more of the Earth's surface than any other cloud type rendering them critical for Earth's energy balance, primarily via reflection of solar radiation, as well as their role in the global hydrological cycle. Stratocumuli are particularly sensitive to changes in aerosol loading on both microphysical and macrophysical scales, yet the complex feedbacks involved in aerosol-cloud-precipitation interactions remain poorly understood. Moreover, research on these clouds has largely been confined to marine environments, with far fewer studies over land where major sources of anthropogenic aerosols exist. The aerosol burden over Southeast Asia (SEA) in boreal spring, attributed to biomass burning (BB), exhibits highly consistent spatiotemporal distribution patterns, with major variability due to changes in aerosol loading mediated by processes ranging from large-scale climate factors to diurnal meteorological events. Downwind from source regions, the transported BB aerosols often overlap with low-level Sc cloud decks associated with the development of the region's pre-monsoon system, providing a unique, natural laboratory for further exploring their complex micro- and macro-scale relationships. Compared to other locations worldwide, studies of springtime biomass-burning aerosols and the predominately Sc cloud systems over SEA and their ensuing interactions are underrepresented in scientific literature. Measurements of aerosol and cloud properties, whether ground-based or from satellites, generally lack information on microphysical processes; thus cloud-resolving models are often employed to simulate the underlying physical processes in aerosol-cloud-precipitation interactions. The Goddard Cumulus Ensemble (GCE) cloud model has recently been enhanced with a triple-moment (3M) bulk microphysics scheme as well as the Regional Atmospheric Modeling System (RAMS) version 6 aerosol module. Because the aerosol burden not only affects cloud droplet size and number concentration, but also the spectral width of the cloud droplet size distribution, the 3M scheme is well suited to simulate aerosol-cloud-precipitation interactions within a three-dimensional regional cloud model. Moreover, the additional variability predicted on the hydrometeor distributions provides beneficial input for forward models to link the simulated microphysical processes with observations as well as to assess both ground-based and satellite retrieval methods. In this presentation, we provide an overview of the 7 South East Asian Studies / Biomass-burning Aerosols and Stratocumulus Environment: Lifecycles and Interactions Experiment (7-SEAS/BASELInE) operations during the spring of 2013. Preliminary analyses of pre-monsoon Sc system lifecycles observed during the first-ever deployment of a ground-based cloud radar to northern Vietnam will be also be presented. Initial results from GCE model simulations of these Sc using double-moment and the new 3M bulk microphysics schemes under various aerosol loadings will be used to showcase the 3M scheme as well as provide insight into how the impact of aerosols on cloud and precipitation processes in stratocumulus over land may manifest themselves in simulated remote-sensing signals. Applications and future work involving ongoing 7-SEAS campaigns aimed at improving our understanding of aerosol-cloud-precipitation interactions of will also be discussed.
NASA Technical Reports Server (NTRS)
Ott, Lesley E.; Pickering, Kenneth E.; Stenchikov, Georgiy L.; Huntrieser, Heidi; Schumann, Ulrich
2006-01-01
The July 21,1998 thunderstonn observed during the European Lightning Nitrogen Oxides Project (EULINOX) project was simulated using the three-dimensional Goddard Cumulus Ensemble (GCE) model. The simulation successfully reproduced a number of observed storm features including the splitting of the original cell into a southern cell which developed supercell characteristics, and a northern cell which became multicellular. Output from the GCE simulation was used to drive an offline cloud-scale chemical transport model which calculates tracer transport and includes a parameterization of lightning NO(x) production which uses observed flash rates as input. Estimates of lightning NO(x) production were deduced by assuming various values of production per intracloud and production per cloud-to-ground flash and comparing the results with in-cloud aircraft observations. The assumption that both types of flashes produce 360 moles of NO per flash on average compared most favorably with column mass and probability distribution functions calculated from observations. This assumed production per flash corresponds to a global annual lightning NOx source of 7 Tg N per yr. Chemical reactions were included in the model to evaluate the impact of lightning NO(x), on ozone. During the storm, the inclusion of lightning NOx in the model results in a small loss of ozone (on average less than 4 ppbv) at all model levels. Simulations of the chemical environment in the 24 hours following the storm show on average a small increase in the net production of ozone at most levels resulting from lightning NO(x), maximizing at approximately 5 ppbv per day at 5.5 km. Between 8 and 10.5 km, lightning NO(x) causes decreased net ozone production.
Impact of convection on stratospheric humidity and upper tropospheric clouds
NASA Astrophysics Data System (ADS)
Ueyama, R.; Schoeberl, M. R.; Jensen, E. J.; Pfister, L.; Avery, M. A.
2017-12-01
The role of convection on stratospheric water vapor and upper tropospheric cloud fraction is investigated using two sets of complementary transport and microphysical models driven by MERRA-2 and ERA-Interim meteorological analyses: (1) computationally efficient ensembles of forward trajectories with simplified cloud microphysics, and (2) one-dimensional simulations with detailed microphysics along back trajectories. Convective influence along the trajectories is diagnosed based on TRMM/GPM rainfall products and geostationary infrared satellite cloud-top measurements, with convective cloud-top height adjusted to match the CloudSat, CALIPSO, and CATS measurements. We evaluate and constrain the model results by comparison with satellite observations (e.g., Aura MLS, CALIPSO CALIOP) and high-altitude aircraft campaigns (e.g., ATTREX, POSIDON). Convection moistens the lower stratosphere by approximately 10-15% and increases the cloud fraction in the upper troposphere by 35-50%. Convective moistening is dominated by the saturating effect of parcels; convectively-lofted ice has a negligible impact on lower stratospheric humidity. We also find that the highest convective clouds have a disproportionately large impact on stratospheric water vapor because stratospheric relative humidity is low. Implications of these model results on the role of convection on present and future climate will be discussed.
3D indoor modeling using a hand-held embedded system with multiple laser range scanners
NASA Astrophysics Data System (ADS)
Hu, Shaoxing; Wang, Duhu; Xu, Shike
2016-10-01
Accurate three-dimensional perception is a key technology for many engineering applications, including mobile mapping, obstacle detection and virtual reality. In this article, we present a hand-held embedded system designed for constructing 3D representation of structured indoor environments. Different from traditional vehicle-borne mobile mapping methods, the system presented here is capable of efficiently acquiring 3D data while an operator carrying the device traverses through the site. It consists of a simultaneous localization and mapping(SLAM) module, a 3D attitude estimate module and a point cloud processing module. The SLAM is based on a scan matching approach using a modern LIDAR system, and the 3D attitude estimate is generated by a navigation filter using inertial sensors. The hardware comprises three 2D time-flight laser range finders and an inertial measurement unit(IMU). All the sensors are rigidly mounted on a body frame. The algorithms are developed on the frame of robot operating system(ROS). The 3D model is constructed using the point cloud library(PCL). Multiple datasets have shown robust performance of the presented system in indoor scenarios.
Formation of massive clouds and dwarf galaxies during tidal encounters
NASA Technical Reports Server (NTRS)
Kaufman, Michele; Elmegreen, Bruce G.; Thomasson, Magnus; Elmegreen, Debra M.
1993-01-01
Gerola et al. (1983) propose that isolated dwarf galaxies can form during galaxy interactions. As evidence of this process, Mirabel et al. (1991) find 10(exp 9) solar mass clouds and star formation complexes at the outer ends of the tidal arms in the Antennae and Superantennae galaxies. We describe observations of HI clouds with mass greater than 10(exp 8) solar mass in the interacting galaxy pair IC 2163/NGC 2207. This pair is important because we believe it represents an early stage in the formation of giant clouds during an encounter. We use a gravitational instability model to explain why the observed clouds are so massive and discuss a two-dimensional N-body simulation of an encounter that produces giant clouds.
NASA Astrophysics Data System (ADS)
Voitcu, Gabriel; Echim, Marius
2014-05-01
The dynamics of collisionless plasma jets/clouds in magnetic field configurations typical for the terrestrial magnetotail and frontside magnetosheath is a topic of interest for understanding the physics of the magnetosphere and its interaction with the solar wind. The presence of high-speed jets in the frontside magnetosheath has been recently proved experimentally by Cluster and THEMIS spacecrafts. There is increasing evidence that the bursty bulk flows in the magnetotail have jet-like features. In the present paper we use fully electromagnetic 3D explicit particle-in-cell (PIC) simulations to investigate the interaction of a localized three-dimensional plasma element/jet/cloud with a transverse magnetic field. We consider a plasma jet/cloud that moves in vacuum and perpendicular to an ambient magnetic field. Ampère and Faraday's laws are used to compute the self-consistent electric and magnetic fields on a three-dimensional spatial grid having a step-size of the order of the Debye length and using a time-step that resolves the plasma frequency. The initial magnetic field inside the simulation domain is uniform and the plasma bulk velocity at the beginning of the simulation is normal to the magnetic field direction. The total time scale of the simulation is of the order of few ion Larmor periods. Space and time variations of the plasma parameters and of the electromagnetic field are analyzed and discussed. We emphasize non-MHD effects like the energy-dispersion signatures at the edges of the plasma element, similar to results previously reported by Voitcu and Echim (2012) using test-kinetic simulations. Acknowledgments: Research supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 313038/STORM, and a grant of the Romanian Ministry of National Education, CNCS - UEFISCDI, project number PN-II-ID-PCE-2012-4-0418.
Study on super-resolution three-dimensional range-gated imaging technology
NASA Astrophysics Data System (ADS)
Guo, Huichao; Sun, Huayan; Wang, Shuai; Fan, Youchen; Li, Yuanmiao
2018-04-01
Range-gated three dimensional imaging technology is a hotspot in recent years, because of the advantages of high spatial resolution, high range accuracy, long range, and simultaneous reflection of target reflectivity information. Based on the study of the principle of intensity-related method, this paper has carried out theoretical analysis and experimental research. The experimental system adopts the high power pulsed semiconductor laser as light source, gated ICCD as the imaging device, can realize the imaging depth and distance flexible adjustment to achieve different work mode. The imaging experiment of small imaging depth is carried out aiming at building 500m away, and 26 group images were obtained with distance step 1.5m. In this paper, the calculation method of 3D point cloud based on triangle method is analyzed, and 15m depth slice of the target 3D point cloud are obtained by using two frame images, the distance precision is better than 0.5m. The influence of signal to noise ratio, illumination uniformity and image brightness on distance accuracy are analyzed. Based on the comparison with the time-slicing method, a method for improving the linearity of point cloud is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tselioudis, George
2016-03-04
From its location on the subtropics-midlatitude boundary, the Azores is influenced by both the subtropical high pressure and the midlatitude baroclinic storm regimes, and therefore experiences a wide range of cloud structures, from fair-weather scenes to stratocumulus sheets to deep convective systems. This project combined three types of data sets to study cloud variability in the Azores: a satellite analysis of cloud regimes, a reanalysis characterization of storminess, and a 19-month field campaign that occurred on Graciosa Island. Combined analysis of the three data sets provides a detailed picture of cloud variability and the respective dynamic influences, with emphasis onmore » low clouds that constitute a major uncertainty source in climate model simulations. The satellite cloud regime analysis shows that the Azores cloud distribution is similar to the mean global distribution and can therefore be used to evaluate cloud simulation in global models. Regime analysis of low clouds shows that stratocumulus decks occur under the influence of the Azores high-pressure system, while shallow cumulus clouds are sustained by cold-air outbreaks, as revealed by their preference for post-frontal environments and northwesterly flows. An evaluation of CMIP5 climate model cloud regimes over the Azores shows that all models severely underpredict shallow cumulus clouds, while most models also underpredict the occurrence of stratocumulus cloud decks. It is demonstrated that carefully selected case studies can be related through regime analysis to climatological cloud distributions, and a methodology is suggested utilizing process-resolving model simulations of individual cases to better understand cloud-dynamics interactions and attempt to explain and correct climate model cloud deficiencies.« less
Simulations of NLC formation using a microphysical model driven by three-dimensional dynamics
NASA Astrophysics Data System (ADS)
Kirsch, Annekatrin; Becker, Erich; Rapp, Markus; Megner, Linda; Wilms, Henrike
2014-05-01
Noctilucent clouds (NLCs) represent an optical phenomenon occurring in the polar summer mesopause region. These clouds have been known since the late 19th century. Current physical understanding of NLCs is based on numerous observational and theoretical studies, in recent years especially observations from satellites and by lidars from ground. Theoretical studies based on numerical models that simulate NLCs with the underlying microphysical processes are uncommon. Up to date no three-dimensional numerical simulations of NLCs exist that take all relevant dynamical scales into account, i.e., from the planetary scale down to gravity waves and turbulence. Rather, modeling is usually restricted to certain flow regimes. In this study we make a more rigorous attempt and simulate NLC formation in the environment of the general circulation of the mesopause region by explicitly including gravity waves motions. For this purpose we couple the Community Aerosol and Radiation Model for Atmosphere (CARMA) to gravity-wave resolving dynamical fields simulated beforehand with the Kuehlungsborn Mechanistic Circulation Model (KMCM). In our case, the KMCM is run with a horizontal resolution of T120 which corresponds to a minimum horizontal wavelength of 350 km. This restriction causes the resolved gravity waves to be somewhat biased to larger scales. The simulated general circulation is dynamically controlled by these waves in a self-consitent fashion and provides realistic temperatures and wind-fields for July conditions. Assuming a water vapor mixing ratio profile in agreement with current observations results in reasonable supersaturations of up to 100. In a first step, CARMA is applied to a horizontal section covering the Northern hemisphere. The vertical resolution is 120 levels ranging from 72 to 101 km. In this paper we will present initial results of this coupled dynamical microphysical model focussing on the interaction of waves and turbulent diffusion with NLC-microphysics.
Correlation buildup during recrystallization in three-dimensional dusty plasma clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schella, André; Mulsow, Matthias; Melzer, André
2014-05-15
The recrystallization process of finite three-dimensional dust clouds after laser heating is studied experimentally. The time-dependent Coulomb coupling parameter is presented, showing that the recrystallization starts with an exponential cooling phase where cooling is slower than damping by the neutral gas friction. At later times, the coupling parameter oscillates into equilibrium. It is found that a large fraction of cluster states after recrystallization experiments is in metastable states. The temporal evolution of the correlation buildup shows that correlation occurs on even slower time scale than cooling.
Computational Aerodynamic Analysis of Three-Dimensional Ice Shapes on a NACA 23012 Airfoil
NASA Technical Reports Server (NTRS)
Jun, GaRam; Oliden, Daniel; Potapczuk, Mark G.; Tsao, Jen-Ching
2014-01-01
The present study identifies a process for performing computational fluid dynamic calculations of the flow over full three-dimensional (3D) representations of complex ice shapes deposited on aircraft surfaces. Rime and glaze icing geometries formed on a NACA23012 airfoil were obtained during testing in the NASA Glenn Research Centers Icing Research Tunnel (IRT). The ice shape geometries were scanned as a cloud of data points using a 3D laser scanner. The data point clouds were meshed using Geomagic software to create highly accurate models of the ice surface. The surface data was imported into Pointwise grid generation software to create the CFD surface and volume grids. It was determined that generating grids in Pointwise for complex 3D icing geometries was possible using various techniques that depended on the ice shape. Computations of the flow fields over these ice shapes were performed using the NASA National Combustion Code (NCC). Results for a rime ice shape for angle of attack conditions ranging from 0 to 10 degrees and for freestream Mach numbers of 0.10 and 0.18 are presented. For validation of the computational results, comparisons were made to test results from rapid-prototype models of the selected ice accretion shapes, obtained from a separate study in a subsonic wind tunnel at the University of Illinois at Urbana-Champaign. The computational and experimental results were compared for values of pressure coefficient and lift. Initial results show fairly good agreement for rime ice accretion simulations across the range of conditions examined. The glaze ice results are promising but require some further examination.
Computational Aerodynamic Analysis of Three-Dimensional Ice Shapes on a NACA 23012 Airfoil
NASA Technical Reports Server (NTRS)
Jun, Garam; Oliden, Daniel; Potapczuk, Mark G.; Tsao, Jen-Ching
2014-01-01
The present study identifies a process for performing computational fluid dynamic calculations of the flow over full three-dimensional (3D) representations of complex ice shapes deposited on aircraft surfaces. Rime and glaze icing geometries formed on a NACA23012 airfoil were obtained during testing in the NASA Glenn Research Center's Icing Research Tunnel (IRT). The ice shape geometries were scanned as a cloud of data points using a 3D laser scanner. The data point clouds were meshed using Geomagic software to create highly accurate models of the ice surface. The surface data was imported into Pointwise grid generation software to create the CFD surface and volume grids. It was determined that generating grids in Pointwise for complex 3D icing geometries was possible using various techniques that depended on the ice shape. Computations of the flow fields over these ice shapes were performed using the NASA National Combustion Code (NCC). Results for a rime ice shape for angle of attack conditions ranging from 0 to 10 degrees and for freestream Mach numbers of 0.10 and 0.18 are presented. For validation of the computational results, comparisons were made to test results from rapid-prototype models of the selected ice accretion shapes, obtained from a separate study in a subsonic wind tunnel at the University of Illinois at Urbana-Champaign. The computational and experimental results were compared for values of pressure coefficient and lift. Initial results show fairly good agreement for rime ice accretion simulations across the range of conditions examined. The glaze ice results are promising but require some further examination.
A Coupled fcGCM-GCE Modeling System: A 3D Cloud Resolving Model and a Regional Scale Model
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2005-01-01
Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and ore sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (21CE, several 31CE), Goddard radiation (including explicity calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generation regional scale model, WRF. In this talk, I will present: (1) A Brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), (3) A discussion on the Goddard WRF version (its developments and applications), and (4) The characteristics of the four-dimensional cloud data sets (or cloud library) stored at Goddard.
NASA Technical Reports Server (NTRS)
Haggerty, Julie; McDonough, Frank; Black, Jennifer; Landott, Scott; Wolff, Cory; Mueller, Steven; Minnis, Patrick; Smith, William, Jr.
2008-01-01
Operational products used by the U.S. Federal Aviation Administration to alert pilots of hazardous icing provide nowcast and short-term forecast estimates of the potential for the presence of supercooled liquid water and supercooled large droplets. The Current Icing Product (CIP) system employs basic satellite-derived information, including a cloud mask and cloud top temperature estimates, together with multiple other data sources to produce a gridded, three-dimensional, hourly depiction of icing probability and severity. Advanced satellite-derived cloud products developed at the NASA Langley Research Center (LaRC) provide a more detailed description of cloud properties (primarily at cloud top) compared to the basic satellite-derived information used currently in CIP. Cloud hydrometeor phase, liquid water path, cloud effective temperature, and cloud top height as estimated by the LaRC algorithms are into the CIP fuzzy logic scheme and a confidence value is determined. Examples of CIP products before and after the integration of the LaRC satellite-derived products will be presented at the conference.
Cloud cover archiving on a global scale - A discussion of principles
NASA Technical Reports Server (NTRS)
Henderson-Sellers, A.; Hughes, N. A.; Wilson, M.
1981-01-01
Monitoring of climatic variability and climate modeling both require a reliable global cloud data set. Examination is made of the temporal and spatial variability of cloudiness in light of recommendations made by GARP in 1975 (and updated by JOC in 1978 and 1980) for cloud data archiving. An examination of the methods of comparing cloud cover frequency curves suggests that the use of the beta distribution not only facilitates objective comparison, but also reduces overall storage requirements. A specific study of the only current global cloud climatology (the U.S. Air Force's 3-dimensional nephanalysis) over the United Kingdom indicates that discussion of methods of validating satellite-based data sets is urgently required.
The effect of extreme ionization rates during the initial collapse of a molecular cloud core
NASA Astrophysics Data System (ADS)
Wurster, James; Bate, Matthew R.; Price, Daniel J.
2018-05-01
What cosmic ray ionization rate is required such that a non-ideal magnetohydrodynamics (MHD) simulation of a collapsing molecular cloud will follow the same evolutionary path as an ideal MHD simulation or as a purely hydrodynamics simulation? To investigate this question, we perform three-dimensional smoothed particle non-ideal MHD simulations of the gravitational collapse of rotating, one solar mass, magnetized molecular cloud cores, which include Ohmic resistivity, ambipolar diffusion, and the Hall effect. We assume a uniform grain size of ag = 0.1 μm, and our free parameter is the cosmic ray ionization rate, ζcr. We evolve our models, where possible, until they have produced a first hydrostatic core. Models with ζcr ≳ 10-13 s-1 are indistinguishable from ideal MHD models, and the evolution of the model with ζcr = 10-14 s-1 matches the evolution of the ideal MHD model within 1 per cent when considering maximum density, magnetic energy, and maximum magnetic field strength as a function of time; these results are independent of ag. Models with very low ionization rates (ζcr ≲ 10-24 s-1) are required to approach hydrodynamical collapse, and even lower ionization rates may be required for larger ag. Thus, it is possible to reproduce ideal MHD and purely hydrodynamical collapses using non-ideal MHD given an appropriate cosmic ray ionization rate. However, realistic cosmic ray ionization rates approach neither limit; thus, non-ideal MHD cannot be neglected in star formation simulations.
Atmospheric Radiative Transfer for Satellite Remote Sensing
NASA Technical Reports Server (NTRS)
Marshak, Alexander
2008-01-01
I will discuss the science of satellite remote sensing which involves the interpretation and inversion of radiometric measurements made from space. The goal of remote sensing is to retrieve some physical aspects of the medium which are sensitive to the radiation at specific wavelengths. This requires the use of fundamentals of atmospheric radiative transfer. I will talk about atmospheric radiation or, more specifically, about the interactions of solar radiation with aerosols and cloud particles. The focus will be more on cloudy atmospheres. I will also show how a standard one-dimensional approach, that is traced back at least 100 years, can fail to interpret the complexity of real clouds. I n these cases, three-dimensional radiative transfer should be used. Examples of satellite retrievals will illustrate the cases.
The three-dimensional structure of cumulus clouds over the ocean. 1: Structural analysis
NASA Technical Reports Server (NTRS)
Kuo, Kwo-Sen; Welch, Ronald M.; Weger, Ronald C.; Engelstad, Mark A.; Sengupta, S. K.
1993-01-01
Thermal channel (channel 6, 10.4-12.5 micrometers) images of five Landsat thematic mapper cumulus scenes over the ocean are examined. These images are thresholded using the standard International Satellite Cloud Climatology Project (ISCCP) thermal threshold algorithm. The individual clouds in the cloud fields are segmented to obtain their structural statistics which include size distribution, orientation angle, horizontal aspect ratio, and perimeter-to-area (PtA) relationship. The cloud size distributions exhibit a double power law with the smaller clouds having a smaller absolute exponent. The cloud orientation angles, horizontal aspect ratios, and PtA exponents are found in good agreement with earlier studies. A technique also is developed to recognize individual cells within a cloud so that statistics of cloud cellular structure can be obtained. Cell structural statistics are computed for each cloud. Unicellular clouds are generally smaller (less than or equal to 1 km) and have smaller PtA exponents, while multicellular clouds are larger (greater than or equal to 1 km) and have larger PtA exponents. Cell structural statistics are similar to those of the smaller clouds. When each cell is approximated as a quadric surface using a linear least squares fit, most cells have the shape of a hyperboloid of one sheet, but about 15% of the cells are best modeled by a hyperboloid of two sheets. Less than 1% of the clouds are ellipsoidal. The number of cells in a cloud increases slightly faster than linearly with increasing cloud size. The mean nearest neighbor distance between cells in a cloud, however, appears to increase linearly with increasing cloud size and to reach a maximum when the cloud effective diameter is about 10 km; then it decreases with increasing cloud size. Sensitivity studies of threshold and lapse rate show that neither has a significant impact upon the results. A goodness-of-fit ratio is used to provide a quantitative measure of the individual cloud results. Significantly improved results are obtained after applying a smoothing operator, suggesting the eliminating subresolution scale variations with higher spatial resolution may yield even better shape analyses.
Spectroscopy of Dipolar Fermions in Layered Two-Dimensional and Three-Dimensional Lattices
2011-09-06
Moreover, we consider other sources of spectral broadening: interaction-induced quasiparticle lifetimes and the different polarizabilities of the...and study Cooper pair binding [7,8], polaron quasiparticle residue [9], and pseudogap behavior of ultracold fermions across the BEC/BCS crossover [10...imaginary part of this energy is the quasiparticle lifetime, and the only source of quasiparticle decay is the p-wave particle loss. Thus the cloud
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, William L.; Yang, Ping; Schluessel, Peter; Strow, Larrabee
2007-01-01
An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. This physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multivariable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. This retrieval algorithm is applied to the MetOp satellite Infrared Atmospheric Sounding Interferometer (IASI) launched on October 19, 2006. IASI possesses an ultra-spectral resolution of 0.25 cm(exp -1) and a spectral coverage from 645 to 2760 cm(exp -1). Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI measurements are obtained and presented.
NASA Technical Reports Server (NTRS)
Bartkus, Tadas P.; Struk, Peter M.; Tsao, Jen-Ching
2017-01-01
This paper builds on previous work that compares numerical simulations of mixed-phase icing clouds with experimental data. The model couples the thermal interaction between ice particles and water droplets of the icing cloud with the flowing air of an icing wind tunnel for simulation of NASA Glenn Research Centers (GRC) Propulsion Systems Laboratory (PSL). Measurements were taken during the Fundamentals of Ice Crystal Icing Physics Tests at the PSL tunnel in March 2016. The tests simulated ice-crystal and mixed-phase icing that relate to ice accretions within turbofan engines. Experimentally measured air temperature, humidity, total water content, liquid and ice water content, as well as cloud particle size, are compared with model predictions. The model showed good trend agreement with experimentally measured values, but often over-predicted aero-thermodynamic changes. This discrepancy is likely attributed to radial variations that this one-dimensional model does not address. One of the key findings of this work is that greater aero-thermodynamic changes occur when humidity conditions are low. In addition a range of mixed-phase clouds can be achieved by varying only the tunnel humidity conditions, but the range of humidities to generate a mixed-phase cloud becomes smaller when clouds are composed of smaller particles. In general, the model predicted melt fraction well, in particular with clouds composed of larger particle sizes.
Anatomical evaluation and stress distribution of intact canine femur.
Verim, Ozgur; Tasgetiren, Suleyman; Er, Mehmet S; Ozdemir, Vural; Yuran, Ahmet F
2013-03-01
In the biomedical field, three-dimensional (3D) modeling and analysis of bones and tissues has steadily gained in importance. The aim of this study was to produce more accurate 3D models of the canine femur derived from computed tomography (CT) data by using several modeling software programs and two different methods. The accuracy of the analysis depends on the modeling process and the right boundary conditions. Solidworks, Rapidform, Inventor, and 3DsMax software programs were used to create 3D models. Data derived from CT were converted into 3D models using two different methods: in the first, 3D models were generated using boundary lines, while in the second, 3D models were generated using point clouds. Stress analyses in the models were made by ANSYS v12, also considering any muscle forces acting on the canine femur. When stress values and statistical values were taken into consideration, more accurate models were obtained with the point cloud method. It was found that the maximum von Mises stress on the canine femur shaft was 34.8 MPa. Stress and accuracy values were obtained from the model formed using the Rapidform software. The values obtained were similar to those in other studies in the literature. Copyright © 2012 John Wiley & Sons, Ltd.
The effect of clouds on the earth's radiation budget
NASA Technical Reports Server (NTRS)
Ziskin, Daniel; Strobel, Darrell F.
1991-01-01
The radiative fluxes from the Earth Radiation Budget Experiment (ERBE) and the cloud properties from the International Satellite Cloud Climatology Project (ISCCP) over Indonesia for the months of June and July of 1985 and 1986 were analyzed to determine the cloud sensitivity coefficients. The method involved a linear least squares regression between co-incident flux and cloud coverage measurements. The calculated slope is identified as the cloud sensitivity. It was found that the correlations between the total cloud fraction and radiation parameters were modest. However, correlations between cloud fraction and IR flux were improved by separating clouds by height. Likewise, correlations between the visible flux and cloud fractions were improved by distinguishing clouds based on optical depth. Calculating correlations between the net fluxes and either height or optical depth segregated cloud fractions were somewhat improved. When clouds were classified in terms of their height and optical depth, correlations among all the radiation components were improved. Mean cloud sensitivities based on the regression of radiative fluxes against height and optical depth separated cloud types are presented. Results are compared to a one-dimensional radiation model with a simple cloud parameterization scheme.
Impacts of Large-Scale Circulation on Convection: A 2-D Cloud Resolving Model Study
NASA Technical Reports Server (NTRS)
Li, X; Sui, C.-H.; Lau, K.-M.
1999-01-01
Studies of impacts of large-scale circulation on convection, and the roles of convection in heat and water balances over tropical region are fundamentally important for understanding global climate changes. Heat and water budgets over warm pool (SST=29.5 C) and cold pool (SST=26 C) were analyzed based on simulations of the two-dimensional cloud resolving model. Here the sensitivity of heat and water budgets to different sizes of warm and cold pools is examined.
NASA Technical Reports Server (NTRS)
Gerrard, Andrew J.; Kane, Timothy J.; Eckermann, Stephen D.; Thayer, Jeffrey P.
2004-01-01
We conducted gravity wave ray-tracing experiments within an atmospheric region centered near the ARCLITE lidar system at Sondrestrom, Greenland (67N, 310 deg E), in efforts to understand lidar observations of both upper stratospheric gravity wave activity and mesospheric clouds during August 1996 and the summer of 2001. The ray model was used to trace gravity waves through realistic three-dimensional daily-varying background atmospheres in the region, based on forecasts and analyses in the troposphere and stratosphere and climatologies higher up. Reverse ray tracing based on upper stratospheric lidar observations at Sondrestrom was also used to try to objectively identify wave source regions in the troposphere. A source spectrum specified by reverse ray tracing experiments in early August 1996 (when atmospheric flow patterns produced enhanced transmission of waves into the upper stratosphere) yielded model results throughout the remainder of August 1996 that agreed best with the lidar observations. The model also simulated increased vertical group propagation of waves between 40 km and 80 km due to intensifying mean easterlies, which allowed many of the gravity waves observed at 40 km over Sondrestrom to propagate quasi-vertically from 40-80 km and then interact with any mesospheric clouds at 80 km near Sondrestrom, supporting earlier experimentally-inferred correlations between upper stratospheric gravity wave activity and mesospheric cloud backscatter from Sondrestrom lidar observations. A pilot experiment of real-time runs with the model in 2001 using weather forecast data as a low-level background produced less agreement with lidar observations. We believe this is due to limitations in our specified tropospheric source spectrum, the use of climatological winds and temperatures in the upper stratosphere and mesosphere, and missing lidar data from important time periods.
2017-05-25
Waves of clouds at 37.8 degrees latitude dominate this three-dimensional Jovian cloudscape, courtesy of NASA's Juno spacecraft. JunoCam obtained this enhanced-color picture on May 19, 2017, at 5:50 UTC from an altitude of 5,500 miles (8,900 kilometers). Details as small as 4 miles (6 kilometers) across can be identified in this image. The small bright high clouds are about 16 miles (25 kilometers) across and in some areas appear to form "squall lines" (a narrow band of high winds and storms associated with a cold front). On Jupiter, clouds this high are almost certainly composed of water and/or ammonia ice. https://photojournal.jpl.nasa.gov/catalog/PIA21646
Trade-Wind Cloudiness and Climate
NASA Technical Reports Server (NTRS)
Randall, David A.
1997-01-01
Closed Mesoscale Cellular Convection (MCC) consists of mesoscale cloud patches separated by narrow clear regions. Strong radiative cooling occurs at the cloud top. A dry two-dimensional Bousinesq model is used to study the effects of cloud-top cooling on convection. Wide updrafts and narrow downdrafts are used to indicate the asymmetric circulations associated with the mesoscale cloud patches. Based on the numerical results, a conceptual model was constructed to suggest a mechanism for the formation of closed MCC over cool ocean surfaces. A new method to estimate the radioative and evaporative cooling in the entrainment layer of a stratocumulus-topped boundary layer has been developed. The method was applied to a set of Large-Eddy Simulation (LES) results and to a set of tethered-balloon data obtained during FIRE. We developed a statocumulus-capped marine mixed layer model which includes a parameterization of drizzle based on the use of a predicted Cloud Condensation Nuclei (CCN) number concentration. We have developed, implemented, and tested a very elaborate new stratiform cloudiness parameterization for use in GCMs. Finally, we have developed a new, mechanistic parameterization of the effects of cloud-top cooling on the entrainment rate.
Three-dimension reconstruction based on spatial light modulator
NASA Astrophysics Data System (ADS)
Deng, Xuejiao; Zhang, Nanyang; Zeng, Yanan; Yin, Shiliang; Wang, Weiyu
2011-02-01
Three-dimension reconstruction, known as an important research direction of computer graphics, is widely used in the related field such as industrial design and manufacture, construction, aerospace, biology and so on. Via such technology we can obtain three-dimension digital point cloud from a two-dimension image, and then simulate the three-dimensional structure of the physical object for further study. At present, the obtaining of three-dimension digital point cloud data is mainly based on the adaptive optics system with Shack-Hartmann sensor and phase-shifting digital holography. Referring to surface fitting, there are also many available methods such as iterated discrete fourier transform, convolution and image interpolation, linear phase retrieval. The main problems we came across in three-dimension reconstruction are the extraction of feature points and arithmetic of curve fitting. To solve such problems, we can, first of all, calculate the relevant surface normal vector information of each pixel in the light source coordinate system, then these vectors are to be converted to the coordinates of image through the coordinate conversion, so the expectant 3D point cloud get arise. Secondly, after the following procedures of de-noising, repairing, the feature points can later be selected and fitted to get the fitting function of the surface topography by means of Zernike polynomial, so as to reconstruct the determinand's three-dimensional topography. In this paper, a new kind of three-dimension reconstruction algorithm is proposed, with the assistance of which, the topography can be estimated from its grayscale at different sample points. Moreover, the previous stimulation and the experimental results prove that the new algorithm has a strong capability to fit, especially for large-scale objects .
High Ice Water Concentrations in the 19 August 2015 Coastal Mesoconvective System
NASA Technical Reports Server (NTRS)
Proctor, Fred H.; Harrah, Steven; Switzer, George F.; Strickland, Justin K.; Hunt, Patricia J.
2017-01-01
During August 2015, NASA's DC-8 research aircraft was flown into High Ice Water Content (HIWC) events as part of a three-week campaign to collect airborne radar data and to obtain measurements from microphysical probes. Goals for this flight campaign included improved characterization of HIWC events, especially from an airborne radar perspective. This paper focuses on one of the flight days, in which a coastal mesoscale convective system (MCS) was investigated for HIWC conditions. The system appears to have been maintained by bands of convection flowing in from the Gulf of Mexico. These convective bands were capped by a large cloud canopy, which masks the underlying structure if viewed from an infrared sensing satellite. The DC-8 was equipped with an IsoKinetic Probe that measured ice concentrations of up to 2.3 g m(exp -3) within the cloud canopy of this system. Sustained measurements of ice crystals with concentrations exceeding 1 g m(exp -3) were encountered for up to ten minutes of flight time. Airborne Radar reflectivity factors were found to be weak within these regions of high ice water concentrations, suggesting that Radar detection of HIWC would be a challenging endeavor. This case is then investigated using a three-dimensional numerical cloud model. Profiles of ice water concentrations and radar reflectivity factor demonstrate similar magnitudes and scales between the flight measurements and model simulation. Also discussed are recent modifications to the numerical model's ice-microphysics that are based on measurements during the flight campaign. The numerical model and its updated ice-microphysics are further validated with a simulation of a well-known case of a supercell hailstorm measured during the Cooperative Convective Precipitation Experiment. Differences in HIWC between the continental supercell and the coastal MCS are discussed.
Parametric behaviors of CLUBB in simulations of low clouds in the Community Atmosphere Model (CAM)
Guo, Zhun; Wang, Minghuai; Qian, Yun; ...
2015-07-03
In this study, we investigate the sensitivity of simulated low clouds to 14 selected tunable parameters of Cloud Layers Unified By Binormals (CLUBB), a higher order closure (HOC) scheme, and 4 parameters of the Zhang-McFarlane (ZM) deep convection scheme in the Community Atmosphere Model version 5 (CAM5). A quasi-Monte Carlo (QMC) sampling approach is adopted to effectively explore the high-dimensional parameter space and a generalized linear model is applied to study the responses of simulated cloud fields to tunable parameters. Our results show that the variance in simulated low-cloud properties (cloud fraction and liquid water path) can be explained bymore » the selected tunable parameters in two different ways: macrophysics itself and its interaction with microphysics. First, the parameters related to dynamic and thermodynamic turbulent structure and double Gaussians closure are found to be the most influential parameters for simulating low clouds. The spatial distributions of the parameter contributions show clear cloud-regime dependence. Second, because of the coupling between cloud macrophysics and cloud microphysics, the coefficient of the dissipation term in the total water variance equation is influential. This parameter affects the variance of in-cloud cloud water, which further influences microphysical process rates, such as autoconversion, and eventually low-cloud fraction. Furthermore, this study improves understanding of HOC behavior associated with parameter uncertainties and provides valuable insights for the interaction of macrophysics and microphysics.« less
Magnetic Fields and Multiple Protostar Formation
NASA Astrophysics Data System (ADS)
Boss, A. P.
2001-12-01
Recent observations of star-forming regions suggest that binary and multiple young stars are the rule rather than the exception, and implicate fragmentation as the likely mechanism for their formation. Most numerical hydrodynamical calculations of fragmentation have neglected the possibly deleterious effects of magnetic fields, in spite of ample evidence for the importance of magnetic support of pre-collapse clouds. We present here the first numerical hydrodynamical survey of the full effects of magnetic fields on the collapse and fragmentation of dense cloud cores. The models are calculated with a three dimensional, finite differences code which solves the equations of hydrodynamics, gravitation, and radiative transfer in the Eddington and diffusion approximations. Magnetic field effects are included through two simple approximations: magnetic pressure is added to the gas pressure, and magnetic tension is approximated by gravity dilution once collapse is well underway. Ambipolar diffusion of the magnetic field leading to cloud collapse is treated approximately as well. Models are calculated for a variety of initial cloud density profiles, shapes, and rotation rates. We find that in spite of the inclusion of magnetic field effects, dense cloud cores are capable of fragmenting into binary and multiple protostar systems. Initially prolate clouds tend to fragment into binary protostars, while initially oblate clouds tend to fragment into multiple protostar systems containing a small number (of order four) of fragments. The latter are likely to be subject to rapid orbital evolution, with close encounters possibly leading to the ejection of fragments. Contrary to expectation, magnetic tension effects appear to enhance fragmentation, allowing lower mass fragments to form than would otherwise be possible, because magnetic tension helps to prevent a central density singularity from forming and producing a dominant single object. Magnetically-supported dense cloud cores thus seem to be capable of collapsing and fragmenting into sufficient numbers of binary and multiple protostar systems to be compatible with observations of the relative rarity of single protostars. This work was partially supported by NSF grants AST-9983530 and MRI-9976645.
Pickup ion processes associated with spacecraft thrusters: Implications for solar probe plus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clemens, Adam, E-mail: a.j.clemens@qmul.ac.uk; Burgess, David
2016-03-15
Chemical thrusters are widely used in spacecraft for attitude control and orbital manoeuvres. They create an exhaust plume of neutral gas which produces ions via photoionization and charge exchange. Measurements of local plasma properties will be affected by perturbations caused by the coupling between the newborn ions and the plasma. A model of neutral expansion has been used in conjunction with a fully three-dimensional hybrid code to study the evolution and ionization over time of the neutral cloud produced by the firing of a mono-propellant hydrazine thruster as well as the interactions of the resulting ion cloud with the ambientmore » solar wind. Results are presented which show that the plasma in the region near to the spacecraft will be perturbed for an extended period of time with the formation of an interaction region around the spacecraft, a moderate amplitude density bow wave bounding the interaction region and evidence of an instability at the forefront of the interaction region which causes clumps of ions to be ejected from the main ion cloud quasi-periodically.« less
NASA Astrophysics Data System (ADS)
Yoshimura, K.; Oki, T.; Ohte, N.; Kanae, S.; Ichiyanagi, K.
2004-12-01
A simple water isotope circulation model on a global scale that includes a Rayleigh equation and the use of _grealistic_h external meteorological forcings estimates short-term variability of precipitation 18O. The results are validated by Global Network of Isotopes in Precipitation (GNIP) monthly observations and by daily observations at three sites in Thailand. This good agreement highlights the importance of large scale transport and mixing of vapor masses as a control factor for spatial and temporal variability of precipitation isotopes, rather than in-cloud micro processes. It also indicates the usefulness of the model and the isotopes observation databases for evaluation of two-dimensional atmospheric water circulation fields in forcing datasets. In this regard, two offline simulations for 1978-1993 with major reanalyses, i.e. NCEP and ERA15, were implemented, and the results show that, over Europe ERA15 better matched observations at both monthly and interannual time scales, mainly owing to better precipitation fields in ERA15, while in the tropics both produced similarly accurate isotopic fields. The isotope analyses diagnose accuracy of two-dimensional water circulation fields in datasets with a particular focus on precipitation processes.
Agglomeration of dust in convective clouds initialized by nuclear bursts
NASA Astrophysics Data System (ADS)
Bacon, D. P.; Sarma, R. A.
Convective clouds initialized by nuclear bursts are modeled using a two-dimensional axisymmetric cloud model. Dust transport through the atmosphere is studied using five different sizes ranging from 1 to 10,000 μm in diameter. Dust is transported in the model domain by advection and sedimentation. Water is allowed to condense onto dust particles in regions of supersaturation in the cloud. The agglomeration of dust particles resulting from the collision of different size dust particles is modeled. The evolution of the dust mass spectrum due to agglomeration is modeled using a numerical scheme which is mass conserving and has low implicit diffusion. Agglomeration moves mass from the small particles with very small fall velocity to the larger sizes which fall to the ground more readily. Results indicate that the dust fallout can be increased significantly due to this process. In preliminary runs using stable and unstable environmental soundings, at 30 min after detonation the total dust in the domain was 11 and 30%, respectively, less than a control case without agglomeration.
On predicting contamination levels of HALOE optics aboard UARS using direct simulation Monte Carlo
NASA Technical Reports Server (NTRS)
Woronowicz, Michael S.; Rault, Didier F. G.
1993-01-01
A three-dimensional version of the direct simulation Monte Carlo method is adapted to assess the contamination environment surrounding a highly detailed model of the Upper Atmosphere Research Satellite. Emphasis is placed on simulating a realistic, worst-case set of flowfield and surface conditions and geometric orientations in order to estimate an upper limit for the cumulative level of volatile organic molecular deposits at the aperture of the Halogen Occultation Experiment. Problems resolving species outgassing and vent flux rates that varied over many orders of magnitude were handled using species weighting factors. Results relating to contaminant cloud structure, cloud composition, and statistics of simulated molecules impinging on the target surface are presented, along with data related to code performance. Using procedures developed in standard contamination analyses, the cumulative level of volatile organic deposits on HALOE's aperture over the instrument's 35-month nominal data collection period is estimated to be about 2700A.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Michael; Kollias, Pavlos; Giangrande, Scott
The Mid-latitude Continental Convective Clouds Experiment (MC3E) took place from April 22 through June 6, 2011, centered at the ARM Southern Great Plains site (http://www.arm.gov/sites/sgp) in northcentral Oklahoma. MC3E was a collaborative effort between the ARM Climate Research Facility and the National Aeronautics and Space Administration’s (NASA’s) Global Precipitation Measurement (GPM) mission Ground Validation (GV) program. The campaign leveraged the largest ground-based observing infrastructure available in the central United States, including recent upgrades through the American Recovery and Reinvestment Act of 2009, combined with an extensive sounding array, remote sensing and in situ aircraft observations, and additional radar and inmore » situ precipitation instrumentation. The overarching goal of the campaign was to provide a three-dimensional characterization of convective clouds and precipitation for the purpose of improving the representation of convective lifecycle in atmospheric models and the reliability of satellite-based retrievals of precipitation.« less
Significant Features Found in Simulated Tropical Climates Using a Cloud Resolving Model
NASA Technical Reports Server (NTRS)
Shie, C.-L.; Tao, W.-K.; Simpson, J.; Sui, C.-H.
2000-01-01
Cloud resolving model (CRM) has widely been used in recent years for simulations involving studies of radiative-convective systems and their role in determining the tropical regional climate. The growing popularity of CRMs usage can be credited for their inclusion of crucial and realistic features such like explicit cloud-scale dynamics, sophisticated microphysical processes, and explicit radiative-convective interaction. For example, by using a two-dimensional cloud model with radiative-convective interaction process, found a QBO-like (quasibiennial oscillation) oscillation of mean zonal wind that affected the convective system. Accordingly, the model-generated rain band corresponding to convective activity propagated in the direction of the low-level zonal mean winds; however, the precipitation became "localized" (limited within a small portion of the domain) as zonal mean winds were removed. Two other CRM simulations by S94 and Grabowski et al. (1996, hereafter G96), respectively that produced distinctive quasi-equilibrium ("climate") states on both tropical water and energy, i.e., a cold/dry state in S94 and a warm/wet state in G96, have later been investigated by T99. They found that the pattern of the imposed large-scale horizontal wind and the magnitude of the imposed surface fluxes were the two crucial mechanisms in determining the tropical climate states. The warm/wet climate was found associated with prescribed strong surface winds, or with maintained strong vertical wind shears that well-organized convective systems prevailed. On the other hand, the cold/dry climate was produced due to imposed weak surface winds and weak wind shears throughout a vertically mixing process by convection. In this study, considered as a sequel of T99, the model simulations to be presented are generally similar to those of T99 (where a detailed model setup can be found), except for a more detailed discussion along with few more simulated experiments. There are twelve major experiments chosen for presentations that are introduced in section two. Several significant feature analyses regarding the rainfall properties, CAPE (Convective Available Potential Energy), cloud-scale eddies, the stability issue, the convective system propagation, relative humidity, and the effect on the quasi-equilibrium state by the imposed constant. radiation or constant surface fluxes, and etc. will be presented in the meeting. However, only three of the subjects are discussed in section three. A brief summary is concluded in the end section.
NASA Astrophysics Data System (ADS)
Tremblin, P.; Anderson, L. D.; Didelon, P.; Raga, A. C.; Minier, V.; Ntormousi, E.; Pettitt, A.; Pinto, C.; Samal, M. R.; Schneider, N.; Zavagno, A.
2014-08-01
Aims: This work aims to improve the current understanding of the interaction between H ii regions and turbulent molecular clouds. We propose a new method to determine the age of a large sample of OB associations by investigating the development of their associated H ii regions in the surrounding turbulent medium. Methods: Using analytical solutions, one-dimensional (1D), and three-dimensional (3D) simulations, we constrained the expansion of the ionized bubble depending on the turbulence level of the parent molecular cloud. A grid of 1D simulations was then computed in order to build isochrone curves for H ii regions in a pressure-size diagram. This grid of models allowed us to date a large sample of OB associations that we obtained from the H ii Region Discovery Survey (HRDS). Results: Analytical solutions and numerical simulations showed that the expansion of H ii regions is slowed down by the turbulence up to the point where the pressure of the ionized gas is in a quasi-equilibrium with the turbulent ram pressure. Based on this result, we built a grid of 1D models of the expansion of H ii regions in a profile based on Larson's laws. We take the 3D turbulence into account with an effective 1D temperature profile. The ages estimated by the isochrones of this grid agree well with literature values of well known regions such as Rosette, RCW 36, RCW 79, and M 16. We thus propose that this method can be used to find ages of young OB associations through the Galaxy and also in nearby extra-galactic sources.
Qian, Yun; Yan, Huiping; Hou, Zhangshuan; ...
2015-04-10
We investigate the sensitivity of precipitation characteristics (mean, extreme and diurnal cycle) to a set of uncertain parameters that influence the qualitative and quantitative behavior of the cloud and aerosol processes in the Community Atmosphere Model (CAM5). We adopt both the Latin hypercube and quasi-Monte Carlo sampling approaches to effectively explore the high-dimensional parameter space and then conduct two large sets of simulations. One set consists of 1100 simulations (cloud ensemble) perturbing 22 parameters related to cloud physics and convection, and the other set consists of 256 simulations (aerosol ensemble) focusing on 16 parameters related to aerosols and cloud microphysics.more » Results show that for the 22 parameters perturbed in the cloud ensemble, the six having the greatest influences on the global mean precipitation are identified, three of which (related to the deep convection scheme) are the primary contributors to the total variance of the phase and amplitude of the precipitation diurnal cycle over land. The extreme precipitation characteristics are sensitive to a fewer number of parameters. The precipitation does not always respond monotonically to parameter change. The influence of individual parameters does not depend on the sampling approaches or concomitant parameters selected. Generally the GLM is able to explain more of the parametric sensitivity of global precipitation than local or regional features. The total explained variance for precipitation is primarily due to contributions from the individual parameters (75-90% in total). The total variance shows a significant seasonal variability in the mid-latitude continental regions, but very small in tropical continental regions.« less
Example MODIS Global Cloud Optical and Microphysical Properties: Comparisons between Terra and Aqua
NASA Technical Reports Server (NTRS)
Hubanks, P. A.; Platnick, S.; King, M. D.; Ackerman, S. A.; Frey, R. A.
2003-01-01
MODIS observations from the NASA EOS Terra spacecraft (launched in December 1999, 1030 local time equatorial crossing) have provided a unique data set of Earth observations. With the launch of the NASA Aqua spacecraft in May 2002 (1330 local time), two MODIS daytime (sunlit) and nighttime observations are now available in a 24 hour period, allowing for some measure of diurnal variability. We report on an initial analysis of several operational global (Level-3) cloud products from the two platforms. The MODIS atmosphere Level-3 products, which include clear-sky and aerosol products in addition to cloud products, are available as three separate files providing daily, eight-day, and monthly aggregations; each temporal aggregation is spatially aggregated to a 1 degree grid. The files contain approximately 600 statisitical datasets (from simple means and standard deviations to 1 - and 2-dimensional histograms). Operational cloud products include detection (cloud fraction), cloud-top properties, and daytimeonly cloud optical thickness and particle effective radius for both water and ice clouds. We will compare example global Terra and Aqua cloud fraction, optical thickness, and effective radius aggregations.
A comparison of food crispness based on the cloud model.
Wang, Minghui; Sun, Yonghai; Hou, Jumin; Wang, Xia; Bai, Xue; Wu, Chunhui; Yu, Libo; Yang, Jie
2018-02-01
The cloud model is a typical model which transforms the qualitative concept into the quantitative description. The cloud model has been used less extensively in texture studies before. The purpose of this study was to apply the cloud model in food crispness comparison. The acoustic signals of carrots, white radishes, potatoes, Fuji apples, and crystal pears were recorded during compression. And three time-domain signal characteristics were extracted, including sound intensity, maximum short-time frame energy, and waveform index. The three signal characteristics and the cloud model were used to compare the crispness of the samples mentioned above. The crispness based on the Ex value of the cloud model, in a descending order, was carrot > potato > white radish > Fuji apple > crystal pear. To verify the results of the acoustic signals, mechanical measurement and sensory evaluation were conducted. The results of the two verification experiments confirmed the feasibility of the cloud model. The microstructures of the five samples were also analyzed. The microstructure parameters were negatively related with crispness (p < .01). The cloud model method can be used for crispness comparison of different kinds of foods. The method is more accurate than the traditional methods such as mechanical measurement and sensory evaluation. The cloud model method can also be applied to other texture studies extensively. © 2017 Wiley Periodicals, Inc.
Numerical simulation of small-scale thermal convection in the atmosphere
NASA Technical Reports Server (NTRS)
Somerville, R. C. J.
1973-01-01
A Boussinesq system is integrated numerically in three dimensions and time in a study of nonhydrostatic convection in the atmosphere. Simulation of cloud convection is achieved by the inclusion of parametrized effects of latent heat and small-scale turbulence. The results are compared with the cell structure observed in Rayleigh-Benard laboratory conversion experiments in air. At a Rayleigh number of 4000, the numerical model adequately simulates the experimentally observed evolution, including some prominent transients of a flow from a randomly perturbed initial conductive state into the final state of steady large-amplitude two-dimensional rolls. At Rayleigh number 9000, the model reproduces the experimentally observed unsteady equilibrium of vertically coherent oscillatory waves superimposed on rolls.
Cloud Service Provider Methods for Managing Insider Threats: Analysis Phase 1
2013-11-01
of Standards and Technology (NIST) Special Publication 800-145 (NIST SP 800-145) defines three types of cloud services : Software as a Service ( SaaS ...among these three models. NIST SP 800-145 describes the three service models as follows: SaaS —The capability provided to the consumer is to use the...Cloud Service Provider Methods for Managing Insider Threats: Analysis Phase I Greg Porter November 2013 TECHNICAL NOTE CMU/SEI-2013-TN-020
Mirzabozorg, H.; Hariri-Ardebili, M. A.; Shirkhan, M.; Seyed-Kolbadi, S. M.
2014-01-01
The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams. PMID:24695817
Mirzabozorg, H; Hariri-Ardebili, M A; Shirkhan, M; Seyed-Kolbadi, S M
2014-01-01
The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams.
STRONG DEPENDENCE OF THE INNER EDGE OF THE HABITABLE ZONE ON PLANETARY ROTATION RATE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jun; Abbot, Dorian S.; Boué, Gwenaël
2014-05-20
Planetary rotation rate is a key parameter in determining atmospheric circulation and hence the spatial pattern of clouds. Since clouds can exert a dominant control on planetary radiation balance, rotation rate could be critical for determining the mean planetary climate. Here we investigate this idea using a three-dimensional general circulation model with a sophisticated cloud scheme. We find that slowly rotating planets (like Venus) can maintain an Earth-like climate at nearly twice the stellar flux as rapidly rotating planets (like Earth). This suggests that many exoplanets previously believed to be too hot may actually be habitable, depending on their rotationmore » rate. The explanation for this behavior is that slowly rotating planets have a weak Coriolis force and long daytime illumination, which promotes strong convergence and convection in the substellar region. This produces a large area of optically thick clouds, which greatly increases the planetary albedo. In contrast, on rapidly rotating planets a much narrower belt of clouds form in the deep tropics, leading to a relatively low albedo. A particularly striking example of the importance of rotation rate suggested by our simulations is that a planet with modern Earth's atmosphere, in Venus' orbit, and with modern Venus' (slow) rotation rate would be habitable. This would imply that if Venus went through a runaway greenhouse, it had a higher rotation rate at that time.« less
An explicit microphysics thunderstorm model.
R. Solomon; C.M. Medaglia; C. Adamo; S. Dietrick; A. Mugnai; U. Biader Ceipidor
2005-01-01
The authors present a brief description of a 1.5-dimensional thunderstorm model with a lightning parameterization that utilizes an explicit microphysical scheme to model lightning-producing clouds. The main intent of this work is to describe the basic microphysical and electrical properties of the model, with a small illustrative section to show how the model may be...
NASA Technical Reports Server (NTRS)
Wen, Guo-Yong; Marshak, Alexander; Cahalan, Robert F.
2004-01-01
Aerosol amount in clear regions of a cloudy atmosphere is a critical parameter in studying the interaction between aerosols and clouds. Since the global cloud cover is about 50%, cloudy scenes are often encountered in any satellite images. Aerosols are more or less transparent, while clouds are extremely reflective in the visible spectrum of solar radiation. The radiative transfer in clear-cloudy condition is highly three- dimensional (3D). This paper focuses on estimating the 3D effects on aerosol optical thickness retrievals using Monte Carlo simulations. An ASTER image of cumulus cloud fields in the biomass burning region in Brazil is simulated in this study. The MODIS products (i-e., cloud optical thickness, particle effective radius, cloud top pressure, surface reflectance, etc.) are used to construct the cloud property and surface reflectance fields. To estimate the cloud 3-D effects, we assume a plane-parallel stratification of aerosol properties in the 60 km x 60 km ASTER image. The simulated solar radiation at the top of the atmosphere is compared with plane-parallel calculations. Furthermore, the 3D cloud radiative effects on aerosol optical thickness retrieval are estimated.
Close-range laser scanning in forests: towards physically based semantics across scales.
Morsdorf, F; Kükenbrink, D; Schneider, F D; Abegg, M; Schaepman, M E
2018-04-06
Laser scanning with its unique measurement concept holds the potential to revolutionize the way we assess and quantify three-dimensional vegetation structure. Modern laser systems used at close range, be it on terrestrial, mobile or unmanned aerial platforms, provide dense and accurate three-dimensional data whose information just waits to be harvested. However, the transformation of such data to information is not as straightforward as for airborne and space-borne approaches, where typically empirical models are built using ground truth of target variables. Simpler variables, such as diameter at breast height, can be readily derived and validated. More complex variables, e.g. leaf area index, need a thorough understanding and consideration of the physical particularities of the measurement process and semantic labelling of the point cloud. Quantified structural models provide a framework for such labelling by deriving stem and branch architecture, a basis for many of the more complex structural variables. The physical information of the laser scanning process is still underused and we show how it could play a vital role in conjunction with three-dimensional radiative transfer models to shape the information retrieval methods of the future. Using such a combined forward and physically based approach will make methods robust and transferable. In addition, it avoids replacing observer bias from field inventories with instrument bias from different laser instruments. Still, an intensive dialogue with the users of the derived information is mandatory to potentially re-design structural concepts and variables so that they profit most of the rich data that close-range laser scanning provides.
Applications of Panoramic Images: from 720° Panorama to Interior 3d Models of Augmented Reality
NASA Astrophysics Data System (ADS)
Lee, I.-C.; Tsai, F.
2015-05-01
A series of panoramic images are usually used to generate a 720° panorama image. Although panoramic images are typically used for establishing tour guiding systems, in this research, we demonstrate the potential of using panoramic images acquired from multiple sites to create not only 720° panorama, but also three-dimensional (3D) point clouds and 3D indoor models. Since 3D modeling is one of the goals of this research, the location of the panoramic sites needed to be carefully planned in order to maintain a robust result for close-range photogrammetry. After the images are acquired, panoramic images are processed into 720° panoramas, and these panoramas which can be used directly as panorama guiding systems or other applications. In addition to these straightforward applications, interior orientation parameters can also be estimated while generating 720° panorama. These parameters are focal length, principle point, and lens radial distortion. The panoramic images can then be processed with closerange photogrammetry procedures to extract the exterior orientation parameters and generate 3D point clouds. In this research, VisaulSFM, a structure from motion software is used to estimate the exterior orientation, and CMVS toolkit is used to generate 3D point clouds. Next, the 3D point clouds are used as references to create building interior models. In this research, Trimble Sketchup was used to build the model, and the 3D point cloud was added to the determining of locations of building objects using plane finding procedure. In the texturing process, the panorama images are used as the data source for creating model textures. This 3D indoor model was used as an Augmented Reality model replacing a guide map or a floor plan commonly used in an on-line touring guide system. The 3D indoor model generating procedure has been utilized in two research projects: a cultural heritage site at Kinmen, and Taipei Main Station pedestrian zone guidance and navigation system. The results presented in this paper demonstrate the potential of using panoramic images to generate 3D point clouds and 3D models. However, it is currently a manual and labor-intensive process. A research is being carried out to Increase the degree of automation of these procedures.
Photogrammetric point cloud compression for tactical networks
NASA Astrophysics Data System (ADS)
Madison, Andrew C.; Massaro, Richard D.; Wayant, Clayton D.; Anderson, John E.; Smith, Clint B.
2017-05-01
We report progress toward the development of a compression schema suitable for use in the Army's Common Operating Environment (COE) tactical network. The COE facilitates the dissemination of information across all Warfighter echelons through the establishment of data standards and networking methods that coordinate the readout and control of a multitude of sensors in a common operating environment. When integrated with a robust geospatial mapping functionality, the COE enables force tracking, remote surveillance, and heightened situational awareness to Soldiers at the tactical level. Our work establishes a point cloud compression algorithm through image-based deconstruction and photogrammetric reconstruction of three-dimensional (3D) data that is suitable for dissimination within the COE. An open source visualization toolkit was used to deconstruct 3D point cloud models based on ground mobile light detection and ranging (LiDAR) into a series of images and associated metadata that can be easily transmitted on a tactical network. Stereo photogrammetric reconstruction is then conducted on the received image stream to reveal the transmitted 3D model. The reported method boasts nominal compression ratios typically on the order of 250 while retaining tactical information and accurate georegistration. Our work advances the scope of persistent intelligence, surveillance, and reconnaissance through the development of 3D visualization and data compression techniques relevant to the tactical operations environment.
Ice Cloud Formation and Dehydration in the Tropical Tropopause Layer
NASA Technical Reports Server (NTRS)
Jensen, Eric; Gore, Warren J. (Technical Monitor)
2002-01-01
Stratospheric water vapor is important not only for its greenhouse forcing, but also because it plays a significant role in stratospheric chemistry. Several recent studies have focused on the potential for dehydration due to ice cloud formation in air rising slowly through the tropical tropopause layer (TTL). Holton and Gettelman showed that temperature variations associated with horizontal transport of air in the TTL can drive ice cloud formation and dehydration, and Gettelman et al. recently examined the cloud formation and dehydration along kinematic trajectories using simple assumptions about the cloud properties. In this study, a Lagrangian, one-dimensional cloud model has been used to further investigate cloud formation and dehydration as air is transported horizontally and vertically through the TTL. Time-height curtains of temperature are extracted from meteorological analyses. The model tracks the growth, advection, and sedimentation of individual cloud particles. The regional distribution of clouds simulated in the model is comparable to the subvisible cirrus distribution indicated by SAGE II. The simulated cloud properties and cloud frequencies depend strongly on the assumed supersaturation threshold for ice nucleation. The clouds typically do not dehydrate the air along trajectories down to the temperature minimum saturation mixing ratio. Rather the water vapor mixing ratio crossing the tropopause along trajectories is 10-50% larger than the saturation mixing ratio. I will also discuss the impacts of Kelvin waves and gravity waves on cloud properties and dehydration efficiency. These simulations can be used to determine whether observed lower stratospheric water vapor mixing ratios can be explained by dehydration associated with in situ TTL cloud formation alone.
Extraction and representation of common feature from uncertain facial expressions with cloud model.
Wang, Shuliang; Chi, Hehua; Yuan, Hanning; Geng, Jing
2017-12-01
Human facial expressions are key ingredient to convert an individual's innate emotion in communication. However, the variation of facial expressions affects the reliable identification of human emotions. In this paper, we present a cloud model to extract facial features for representing human emotion. First, the uncertainties in facial expression are analyzed in the context of cloud model. The feature extraction and representation algorithm is established under cloud generators. With forward cloud generator, facial expression images can be re-generated as many as we like for visually representing the extracted three features, and each feature shows different roles. The effectiveness of the computing model is tested on Japanese Female Facial Expression database. Three common features are extracted from seven facial expression images. Finally, the paper is concluded and remarked.
A moist Boussinesq shallow water equations set for testing atmospheric models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zerroukat, M., E-mail: mohamed.zerroukat@metoffice.gov.uk; Allen, T.
The shallow water equations have long been used as an initial test for numerical methods applied to atmospheric models with the test suite of Williamson et al. being used extensively for validating new schemes and assessing their accuracy. However the lack of physics forcing within this simplified framework often requires numerical techniques to be reworked when applied to fully three dimensional models. In this paper a novel two-dimensional shallow water equations system that retains moist processes is derived. This system is derived from three-dimensional Boussinesq approximation of the hydrostatic Euler equations where, unlike the classical shallow water set, we allowmore » the density to vary slightly with temperature. This results in extra (or buoyancy) terms for the momentum equations, through which a two-way moist-physics dynamics feedback is achieved. The temperature and moisture variables are advected as separate tracers with sources that interact with the mean-flow through a simplified yet realistic bulk moist-thermodynamic phase-change model. This moist shallow water system provides a unique tool to assess the usually complex and highly non-linear dynamics–physics interactions in atmospheric models in a simple yet realistic way. The full non-linear shallow water equations are solved numerically on several case studies and the results suggest quite realistic interaction between the dynamics and physics and in particular the generation of cloud and rain. - Highlights: • Novel shallow water equations which retains moist processes are derived from the three-dimensional hydrostatic Boussinesq equations. • The new shallow water set can be seen as a more general one, where the classical equations are a special case of these equations. • This moist shallow water system naturally allows a feedback mechanism from the moist physics increments to the momentum via buoyancy. • Like full models, temperature and moistures are advected as tracers that interact through a simplified yet realistic phase-change model. • This model is a unique tool to test numerical methods for atmospheric models, and physics–dynamics coupling, in a very realistic and simple way.« less
Photoionization of High-altitude Gas in a Supernova-driven Turbulent Interstellar Medium
NASA Astrophysics Data System (ADS)
Wood, Kenneth; Hill, Alex S.; Joung, M. Ryan; Mac Low, Mordecai-Mark; Benjamin, Robert A.; Haffner, L. Matthew; Reynolds, R. J.; Madsen, G. J.
2010-10-01
We investigate models for the photoionization of the widespread diffuse ionized gas (DIG) in galaxies. In particular, we address the long standing question of the penetration of Lyman continuum photons from sources close to the galactic midplane to large heights in the galactic halo. We find that recent hydrodynamical simulations of a supernova-driven interstellar medium (ISM) have low-density paths and voids that allow for ionizing photons from midplane OB stars to reach and ionize gas many kiloparsecs above the midplane. We find that ionizing fluxes throughout our simulation grids are larger than predicted by one-dimensional slab models, thus allowing for photoionization by O stars of low altitude neutral clouds in the Galaxy that are also detected in Hα. In previous studies of such clouds, the photoionization scenario had been rejected and the Hα had been attributed to enhanced cosmic ray ionization or scattered light from midplane H II regions. We do find that the emission measure distributions in our simulations are wider than those derived from Hα observations in the Milky Way. In addition, the horizontally averaged height dependence of the gas density in the hydrodynamical models is lower than inferred in the Galaxy. These discrepancies are likely due to the absence of magnetic fields in the hydrodynamic simulations and we discuss how magnetohydrodynamic effects may reconcile models and observations. Nevertheless, we anticipate that the inclusion of magnetic fields in the dynamical simulations will not alter our primary finding that midplane OB stars are capable of producing high-altitude DIG in a realistic three-dimensional ISM.
NASA Astrophysics Data System (ADS)
Neggers, R.
2017-12-01
Recent advances in supercomputing have introduced a "grey zone" in the representation of cumulus convection in general circulation models, in which this process is partially resolved. Cumulus parameterizations need to be made scale-aware and scale-adaptive to be able to conceptually and practically deal with this situation. A potential way forward are schemes formulated in terms of discretized Cloud Size Densities, or CSDs. Advantages include i) the introduction of scale-awareness at the foundation of the scheme, and ii) the possibility to apply size-filtering of parameterized convective transport and clouds. The CSD is a new variable that requires closure; this concerns its shape, its range, but also variability in cloud number that can appear due to i) subsampling effects and ii) organization in a cloud field. The goal of this study is to gain insight by means of sub-domain analyses of various large-domain LES realizations of cumulus cloud populations. For a series of three-dimensional snapshots, each with a different degree of organization, the cloud size distribution is calculated in all subdomains, for a range of subdomain sizes. The standard deviation of the number of clouds of a certain size is found to decrease with the subdomain size, following a powerlaw scaling corresponding to an inverse-linear dependence. Cloud number variability also increases with cloud size; this reflects that subsampling affects the largest clouds first, due to their typically larger neighbor spacing. Rewriting this dependence in terms of two dimensionless groups, by dividing by cloud number and cloud size respectively, yields a data collapse. Organization in the cloud field is found to act on top of this primary dependence, by enhancing the cloud number variability at the smaller sizes. This behavior reflects that small clouds start to "live" on top of larger structures such as cold pools, favoring or inhibiting their formation (as illustrated by the attached figure of cloud mask). Powerlaw scaling is still evident, but with a reduced exponent, suggesting that this behavior could be parameterized.
NASA Astrophysics Data System (ADS)
Oikarinen, L.
Solar UV and visible radiation scattered at the limb of the Earth's atmosphere is used for measuring density profiles of atmosperic trace gases. For example, the OSIRIS instrument on Odin and SCIAMACHY on Envisat use this technique. A limb-viewing instrument does not see Earth's surface or tropospheric clouds directly. However, in- direct light reflected from the surface or low altitude clouds can make up tens of per cents of the signal. Furthermore, the surface area that contributes to limb intensity ex- tends over 1000 km along the instrument line-of-sight and 200 km across it. Over this area surface reflectivity can vary from almost 0% to 100%. Inaccurate modelling of reflected intensity is a potential source of error in the trace gas retrieval. Generally, radiative transfer models used for analysing limb measure- ments have to assume that the surface has a constant albedo. We have used a three- dimensional Monte Carlo radiative transfer model to study the effects of surface vari- ation to limb radiance. Based on the simulations, we have developed an approximate method for averaging surface albedo for limb scattering measurements with the help of a simple single scattering radiative transfer model.
NASA Astrophysics Data System (ADS)
Mróz, Przemek; Poleski, Radosław
2018-04-01
We use three-dimensional distributions of classical Cepheids and RR Lyrae stars in the Small Magellanic Cloud (SMC) to model the stellar density distribution of a young and old stellar population in that galaxy. We use these models to estimate the microlensing self-lensing optical depth to the SMC, which is in excellent agreement with the observations. Our models are consistent with the total stellar mass of the SMC of about 1.0× {10}9 {M}ȯ under the assumption that all microlensing events toward this galaxy are caused by self-lensing. We also calculate the expected event rates and estimate that future large-scale surveys, like the Large Synoptic Survey Telescope (LSST), will be able to detect up to a few dozen microlensing events in the SMC annually. If the planet frequency in the SMC is similar to that in the Milky Way, a few extragalactic planets can be detected over the course of the LSST survey, provided significant changes in the SMC observing strategy are devised. A relatively small investment of LSST resources can give us a unique probe of the population of extragalactic exoplanets.
Automated Classification of Heritage Buildings for As-Built Bim Using Machine Learning Techniques
NASA Astrophysics Data System (ADS)
Bassier, M.; Vergauwen, M.; Van Genechten, B.
2017-08-01
Semantically rich three dimensional models such as Building Information Models (BIMs) are increasingly used in digital heritage. They provide the required information to varying stakeholders during the different stages of the historic buildings life cyle which is crucial in the conservation process. The creation of as-built BIM models is based on point cloud data. However, manually interpreting this data is labour intensive and often leads to misinterpretations. By automatically classifying the point cloud, the information can be proccesed more effeciently. A key aspect in this automated scan-to-BIM process is the classification of building objects. In this research we look to automatically recognise elements in existing buildings to create compact semantic information models. Our algorithm efficiently extracts the main structural components such as floors, ceilings, roofs, walls and beams despite the presence of significant clutter and occlusions. More specifically, Support Vector Machines (SVM) are proposed for the classification. The algorithm is evaluated using real data of a variety of existing buildings. The results prove that the used classifier recognizes the objects with both high precision and recall. As a result, entire data sets are reliably labelled at once. The approach enables experts to better document and process heritage assets.
NASA Astrophysics Data System (ADS)
Sánchez-Lavega, A.; Chen-Chen, H.; Ordoñez-Etxeberria, I.; Hueso, R.; del Río-Gaztelurrutia, T.; Garro, A.; Cardesín-Moinelo, A.; Titov, D.; Wood, S.
2018-01-01
The Visual Monitoring Camera (VMC) onboard the Mars Express (MEx) spacecraft is a simple camera aimed to monitor the release of the Beagle-2 lander on Mars Express and later used for public outreach. Here, we employ VMC as a scientific instrument to study and characterize high altitude aerosols events (dust and condensates) observed at the Martian limb. More than 21,000 images taken between 2007 and 2016 have been examined to detect and characterize elevated layers of dust in the limb, dust storms and clouds. We report a total of 18 events for which we give their main properties (areographic location, maximum altitude, limb projected size, Martian solar longitude and local time of occurrence). The top altitudes of these phenomena ranged from 40 to 85 km and their horizontal extent at the limb ranged from 120 to 2000 km. They mostly occurred at Equatorial and Tropical latitudes (between ∼30°N and 30°S) at morning and afternoon local times in the southern fall and northern winter seasons. None of them are related to the orographic clouds that typically form around volcanoes. Three of these events have been studied in detail using simultaneous images taken by the MARCI instrument onboard Mars Reconnaissance Orbiter (MRO) and studying the properties of the atmosphere using the predictions from the Mars Climate Database (MCD) General Circulation Model. This has allowed us to determine the three-dimensional structure and nature of these events, with one of them being a regional dust storm and the two others water ice clouds. Analyses based on MCD and/or MARCI images for the other cases studied indicate that the rest of the events correspond most probably to water ice clouds.
Understanding the impact of saharan dust aerosols on tropical cyclones
NASA Astrophysics Data System (ADS)
Naeger, Aaron
Genesis of Tropical Cyclones (TCs) in the main development region for Atlantic hurricanes is tied to convection initiated by African easterly waves (AEWs) during Northern hemisphere summer and fall seasons. The main development region is also impacted by dust aerosols transported from the Sahara. It has been hypothesized that dust aerosols can modulate the development of TCs through aerosol-radiation and aerosol-cloud interaction processes. In this study, we investigate the impact of dust aerosols on TC development using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). We first develop a technique to constrain the WRF-Chem model with a realistic three-dimensional spatial distribution of dust aerosols. The horizontal distribution of dust is specified using the Moderate Resolution Imaging Spectroradiometer (MODIS) derived aerosol products and output from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model. The vertical distribution of dust is constrained using the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). We validate our technique through in situ aircraft measurements where both showed aerosol number concentrations from 20-30 cm-3 in the atmosphere for Saharan dust moving over the eastern Atlantic Ocean. Then, we use the satellite data constraint technique to nudge the WRF-Chem aerosol fields throughout the simulation of TC Florence developing over the eastern Atlantic Ocean during September 2006. Three different experiments are conducted where the aerosol-radiation and aerosol-cloud interaction processes are either activated or deactivated in the model while all other model options are identical between the experiments. By comparing the model experiment results, the impact of the aerosol interaction processes on TC development can be understood. The results indicate that dust aerosols can delay or prevent the development of a TC as the minimum sea level pressure of TC Florence was 13 hPa higher when the aerosols interactions were activated as opposed to deactivated in the model.
NASA Astrophysics Data System (ADS)
Moran, Michael D.; Pielke, Roger A.
1996-03-01
The Colorado State University mesoscale atmospheric dispersion (MAD) numerical modeling system, which consists of a prognostic mesoscale meteorological model coupled to a mesoscale Lagrangian particle dispersion model, has been used to simulate the transport and diffusion of a perfluorocarbon tracer-gas cloud for one afternoon surface release during the July 1980 Great Plains mesoscale tracer field experiment. Ground-level concentration (GLC) measurements taken along arcs of samplers 100 and 600 km downwind of the release site at Norman, Oklahoma, up to three days after the tracer release were available for comparison. Quantitative measures of a number of significant dispersion characteristics obtained from analysis of the observed tracer cloud's moving GLC `footprint' have been used to evaluate the modeling system's skill in simulating this MAD case.MAD is more dependent upon the spatial and temporal structure of the transport wind field than is short-range atmospheric dispersion. For the Great Plains mesoscale tracer experiment, the observations suggest that the Great Plains nocturnal low-level jet played an important role in transporting and deforming the tracer cloud. A suite of ten two- and three-dimensional numerical meteorological experiments was devised to investigate the relative contributions of topography, other surface inhomogeneities, atmospheric baroclinicity, synoptic-scale flow evolution, and meteorological model initialization time to the structure and evolution of the low-level mesoscale flow field and thus to MAD. Results from the ten mesoscale meteorological simulations are compared in this part of the paper. The predicted wind fields display significant differences, which give rise in turn to significant differences in predicted low-level transport. The presence of an oscillatory ageostrophic component in the observed synoptic low-level winds for this case is shown to complicate initialization of the meteorological model considerably and is the likely cause of directional errors in the predicted mean tracer transport. A companion paper describes the results from the associated dispersion simulations.
Infrared radiative properties of tropical cirrus clouds inferred with aircraft measurements
NASA Technical Reports Server (NTRS)
Griffith, K. T.; Cox, S. K.; Knollenberg, R. G.
1980-01-01
Longwave emissivities and the vertical profile of cooling rates of tropical cirrus clouds are determined using broadband hemispheric irradiance data. Additionally, a broadband mass absorption coefficient is defined and used to relate emissivity to water content. The data used were collected by the National Center for Atmospheric Research (NCAR) Sabreliner during the GARP Atlantic Tropical Experiment (GATE) in the summer of 1974. Three case studies are analyzed showing that these tropical cirrus clouds approached an emissivity of 1.0 within a vertical distance of 1.0 km. Broadband mass absorption coefficients ranging from 0.076 to 0.096 sq m per g are derived. A comparison of these results with other work suggests that tropical cirrus cloud emissivities may be significantly larger than heretofore believed. Ice water content of the clouds were deduced from data collected by a one-dimensional particle spectrometer. Analyses of the ice water content and the observed particle size distributions are presented.
NASA Astrophysics Data System (ADS)
Peralta, J.; Lee, Y. J.; Hueso, R.; Clancy, R. T.; Sandor, B. J.; Sánchez-Lavega, A.; Lellouch, E.; Rengel, M.; Machado, P.; Omino, M.; Piccialli, A.; Imamura, T.; Horinouchi, T.; Murakami, S.; Ogohara, K.; Luz, D.; Peach, D.
2017-09-01
The atmosphere of the Earth or Mars globally rotates with a speed similar to the rotation of the planet (approximately 24 h). The rotation of Venus is of about 243 days, much slower than the Earth, but when scientists measured the winds by tracking the clouds of Venus, they discovered that the atmosphere rotates 60 times faster! No one has explained yet what originates this "superrotation", and we do not know well what happens either above or below the clouds. The technique of "Doppler shift" has been used to measure winds above the clouds, but results are "chaotic" and different to interpret. Thanks to a worldwide collaboration in June 2007 between NASA (MESSENGER), ESA (Venus Express), and many observatories (VLT in Chile, JCMT in Hawaii, HHSMT in Arizona, or IRAM in Spain), the authors combined the different data to obtain, for the first time, the instantaneous 3-D structure of the winds on Venus at the clouds and also above, very important for new Venus models to start "forecasts" of the Venus weather with "data assimilation". We also discovered that the superrotation seems unexpectedly different on the night of Venus and that it varies its altitude depending on the day.
Vertical profiles for SO2 and SO on Venus from different one-dimensional simulations
NASA Astrophysics Data System (ADS)
Mills, Franklin P.; Jessup, Kandis-Lea; Yung, Yuk
2017-10-01
Sulfur dioxide (SO2) plays many roles in Venus’ atmosphere. It is a precursor for the sulfuric acid that condenses to form the global cloud layers and is likely a precursor for the unidentified UV absorber, which, along with CO2 near the tops of the clouds, appears to be responsible for absorbing about half of the energy deposited in Venus’ atmosphere [1]. Most published simulations of Venus’ mesospheric chemistry have used one-dimensional numerical models intended to represent global-average or diurnal-average conditions [eg, 2, 3, 4]. Observations, however, have found significant variations of SO and SO2 with latitude and local time throughout the mesosphere [eg, 5, 6]. Some recent simulations have examined local time variations of SO and SO2 using analytical models [5], one-dimensional steady-state solar-zenith-angle-dependent numerical models [6], and three-dimensional general circulation models (GCMs) [7]. As an initial step towards a quantitative comparison among these different types of models, this poster compares simulated SO, SO2, and SO/SO2 from global-average, diurnal-average, and solar-zenith-angle (SZA) dependent steady-state models for the mesosphere.The Caltech/JPL photochemical model [8] was used with vertical transport via eddy diffusion set based on observations and observationally-defined lower boundary conditions for HCl, CO, and OCS. Solar fluxes are based on SORCE SOLSTICE and SORCE SIM measurements from 26 December 2010 [9, 10]. The results indicate global-average and diurnal-average models may have significant limitations when used to interpret latitude- and local-time-dependent observations of SO2 and SO.[1] Titov D et al (2007) in Exploring Venus as a Terrestrial Planet, 121-138. [2] Zhang X et al (2012) Icarus, 217, 714-739. [3] Krasnopolsky V A (2012) Icarus, 218, 230-246. [4] Parkinson C D et al (2015) Planet Space Sci, 113-114, 226-236. [5] Sandor B J et al (2010) Icarus, 208, 49-60. [6] Jessup K-L et al (2015) Icarus, 258, 309-336. [7] Stolzenbach A et al (2014) EGU General Assembly 2014, 16, EGU2014-5315. [8] Allen M et al (1981) J Geophys Res, 86, 3617-3627. [9] Harder J W et al (2010) Sol Phys, 263, 3-24. [10] Snow M et al (2005) Sol Phys, 230, 295-324.
Robust point cloud classification based on multi-level semantic relationships for urban scenes
NASA Astrophysics Data System (ADS)
Zhu, Qing; Li, Yuan; Hu, Han; Wu, Bo
2017-07-01
The semantic classification of point clouds is a fundamental part of three-dimensional urban reconstruction. For datasets with high spatial resolution but significantly more noises, a general trend is to exploit more contexture information to surmount the decrease of discrimination of features for classification. However, previous works on adoption of contexture information are either too restrictive or only in a small region and in this paper, we propose a point cloud classification method based on multi-level semantic relationships, including point-homogeneity, supervoxel-adjacency and class-knowledge constraints, which is more versatile and incrementally propagate the classification cues from individual points to the object level and formulate them as a graphical model. The point-homogeneity constraint clusters points with similar geometric and radiometric properties into regular-shaped supervoxels that correspond to the vertices in the graphical model. The supervoxel-adjacency constraint contributes to the pairwise interactions by providing explicit adjacent relationships between supervoxels. The class-knowledge constraint operates at the object level based on semantic rules, guaranteeing the classification correctness of supervoxel clusters at that level. International Society of Photogrammetry and Remote Sensing (ISPRS) benchmark tests have shown that the proposed method achieves state-of-the-art performance with an average per-area completeness and correctness of 93.88% and 95.78%, respectively. The evaluation of classification of photogrammetric point clouds and DSM generated from aerial imagery confirms the method's reliability in several challenging urban scenes.
CHOLLA: A New Massively Parallel Hydrodynamics Code for Astrophysical Simulation
NASA Astrophysics Data System (ADS)
Schneider, Evan E.; Robertson, Brant E.
2015-04-01
We present Computational Hydrodynamics On ParaLLel Architectures (Cholla ), a new three-dimensional hydrodynamics code that harnesses the power of graphics processing units (GPUs) to accelerate astrophysical simulations. Cholla models the Euler equations on a static mesh using state-of-the-art techniques, including the unsplit Corner Transport Upwind algorithm, a variety of exact and approximate Riemann solvers, and multiple spatial reconstruction techniques including the piecewise parabolic method (PPM). Using GPUs, Cholla evolves the fluid properties of thousands of cells simultaneously and can update over 10 million cells per GPU-second while using an exact Riemann solver and PPM reconstruction. Owing to the massively parallel architecture of GPUs and the design of the Cholla code, astrophysical simulations with physically interesting grid resolutions (≳2563) can easily be computed on a single device. We use the Message Passing Interface library to extend calculations onto multiple devices and demonstrate nearly ideal scaling beyond 64 GPUs. A suite of test problems highlights the physical accuracy of our modeling and provides a useful comparison to other codes. We then use Cholla to simulate the interaction of a shock wave with a gas cloud in the interstellar medium, showing that the evolution of the cloud is highly dependent on its density structure. We reconcile the computed mixing time of a turbulent cloud with a realistic density distribution destroyed by a strong shock with the existing analytic theory for spherical cloud destruction by describing the system in terms of its median gas density.
THE GLOBAL IMPLICATIONS OF THE HARD EXCESS. II. ANALYSIS OF THE LOCAL POPULATION OF RADIO-QUIET AGNs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tatum, M. M.; Turner, T. J.; Reeves, J. N.
2016-02-10
Active galactic nuclei (AGNs) show evidence for reprocessing gas, outflowing from the accreting black hole. The combined effects of absorption and scattering from the circumnuclear material likely explain the “hard excess” of X-ray emission above 20 keV, compared with the extrapolation of spectra from lower X-ray energies. In a recent Suzaku study, we established that the ubiquitous hard excess in hard, X-ray-selected, radio-quiet type 1 AGNs is consistent with a reprocessing of the X-ray continuum in an ensemble of clouds, located tens to hundreds of gravitational radii from the nuclear black hole. Here we add hard X-ray-selected, type 2 AGNsmore » to extend our original study and show that the gross X-ray spectral properties of the entire local population of radio-quiet AGNs may be described by a simple unified scheme. We find a broad, continuous distribution of spectral hardness ratio and Fe Kα equivalent width across all AGN types, which can be reproduced by varying the observer's sightline through a single, simple model cloud ensemble, provided that the radiative transfer through the model cloud distribution includes not only photoelectric absorption but also three-dimensional (3D) Compton scattering. Variation in other parameters of the cloud distribution, such as column density or ionization, should be expected between AGNs, but such variation is not required to explain the gross X-ray spectral properties.« less
The effect of clouds on photolysis rates and ozone formation in the unpolluted troposphere
NASA Technical Reports Server (NTRS)
Thompson, A. M.
1984-01-01
The photochemistry of the lower atmosphere is sensitive to short- and long-term meteorological effects; accurate modeling therefore requires photolysis rates for trace gases which reflect this variability. As an example, the influence of clouds on the production of tropospheric ozone has been investigated, using a modification of Luther's two-stream radiation scheme to calculate cloud-perturbed photolysis rates in a one-dimensional photochemical transport model. In the unpolluted troposphere, where stratospheric inputs of odd nitrogen appear to represent the photochemical source of O3, strong cloud reflectance increases the concentration of NO in the upper troposphere, leading to greatly enhanced rates of ozone formation. Although the rate of these processes is too slow to verify by observation, the calculation is useful in distinguishing some features of the chemistry of regions of differing mean cloudiness.
Ring structure of a neutral gas cloud studied in a one-dimensional expansion into space
NASA Technical Reports Server (NTRS)
Davidson, R. E.
1972-01-01
A one dimensional treatment of the expansion of a gas cloud of uncharged particles into vacuum is discussed. It is determined that the whole cloud does not change from continuum to free molecular flow at the same time. Some regions of the cloud make the transition sooner than others. An explanation of the ring structure observed during barium cloud experiments is presented using this conclusion. An analysis of the velocity distributions for the two kinds of flow yields a velocity distribution for the whole cloud that exhibits ring structure.
NASA Astrophysics Data System (ADS)
Lee, Yueh-Ning; Hennebelle, Patrick
2016-06-01
Context. Most stars are born in the gaseous protocluster environment where the gas is reprocessed after the global collapse from the diffuse molecular cloud. The knowledge of this intermediate step gives more accurate constraints on star formation characteristics. Aims: We demonstrate that a virialized globally supported structure, in which star formation happens, is formed out of a collapsing molecular cloud, and we derive a mapping from the parent cloud parameters to the protocluster to predict its properties with a view to confront analytical calculations with observations and simulations. Methods: We decomposed the virial theorem into two dimensions to account for the rotation and the flattened geometry. Equilibrium was found by balancing rotation, turbulence, and self-gravity, while turbulence was maintained through accretion driving and it dissipates in one crossing time. We estimated the angular momentum and the accretion rate of the protocluster from the parent cloud properties. Results: The two-dimensional virial model predicts the size and velocity dispersion given the mass of the protocluster and that of the parent cloud. The gaseous protoclusters lie on a sequence of equilibrium with the trend R ~ M0.5 with limited variations, depending on the evolutionary stage, parent cloud, and parameters that are not well known, such as turbulence driving efficiency by accretion and turbulence anisotropy. The model reproduces observations and simulation results successfully. Conclusions: The properties of protoclusters follow universal relations and they can be derived from that of the parent cloud. The gaseous protocluster is an important primary stage of stellar cluster formation, and should be taken into account when studying star formation. Using simple estimates to infer the peak position of the core mass function (CMF) we find a weak dependence on the cluster mass, suggesting that the physical conditions inside protoclusters may contribute to set a CMF, and by extension an initial mass function (IMF), that appears to be independent of the environment.
Trace gas exchanges and transports over the Amazonian rain forest
NASA Technical Reports Server (NTRS)
Garstang, Michael; Greco, Steve; Scala, John; Harriss, Robert; Browell, Edward; Sachse, Glenn; Simpson, Joanne; Tao, Wei-Kuo; Torres, Arnold
1986-01-01
Early results are presented from a program to model deep convective transport of chemical species by means of in situ data collection and numerical models. Data were acquired during the NASA GTE Amazon Boundary Layer Experiment in July-August 1985. Airborne instrumentation, including a UV-DIAL system, collected data on the O3, CO, NO, temperature and water vapor profiles from the surface to 400 mb altitude, while GOES imagery tracked convective clouds over the study area. A two-dimensional cloud model with small amplitude random temperature fluctuations at low levels, which simulated thermals, was used to describe the movements of the chemical species sensed in the convective atmosphere. The data was useful for evaluating the accuracy of the cloud model, which in turn was effective in describing the circulation of the chemical species.
NASA Astrophysics Data System (ADS)
Dinh, Tra; Fueglistaler, Stephan
2016-04-01
Thin cirrus clouds in the tropical tropopause layer (TTL) are of great interest due to their role in the control of water vapor and temperature in the TTL. Previous research on TTL cirrus clouds has focussed mainly on microphysical processes, specifically the ice nucleation mechanism and dehydration efficiency. Here, we use a cloud resolving model to analyse the sensitivity of TTL cirrus characteristics and impacts with respect to microphysical and radiative processes. A steady-state TTL cirrus cloud field is obtained in the model forced with dynamical conditions typical for the TTL (2-dimensional setup with a Kelvin-wave temperature perturbation). Our model results show that the dehydration efficiency (as given by the domain average relative humidity in the layer of cloud occurrence) is relatively insensitive to the ice nucleation mechanism, i.e. homogeneous versus heterogeneous nucleation. Rather, TTL cirrus affect the water vapor entering the stratosphere via an indirect effect associated with the cloud radiative heating and dynamics. Resolving the cloud radiative heating and the radiatively induced circulations approximately doubles the domain average ice mass. The cloud radiative heating is proportional to the domain average ice mass, and the observed increase in domain average ice mass induces a domain average temperature increase of a few Kelvin. The corresponding increase in water vapor entering the stratosphere is estimated to be about 30 to 40%.
A Deep Machine Learning Algorithm to Optimize the Forecast of Atmospherics
NASA Astrophysics Data System (ADS)
Russell, A. M.; Alliss, R. J.; Felton, B. D.
Space-based applications from imaging to optical communications are significantly impacted by the atmosphere. Specifically, the occurrence of clouds and optical turbulence can determine whether a mission is a success or a failure. In the case of space-based imaging applications, clouds produce atmospheric transmission losses that can make it impossible for an electro-optical platform to image its target. Hence, accurate predictions of negative atmospheric effects are a high priority in order to facilitate the efficient scheduling of resources. This study seeks to revolutionize our understanding of and our ability to predict such atmospheric events through the mining of data from a high-resolution Numerical Weather Prediction (NWP) model. Specifically, output from the Weather Research and Forecasting (WRF) model is mined using a Random Forest (RF) ensemble classification and regression approach in order to improve the prediction of low cloud cover over the Haleakala summit of the Hawaiian island of Maui. RF techniques have a number of advantages including the ability to capture non-linear associations between the predictors (in this case physical variables from WRF such as temperature, relative humidity, wind speed and pressure) and the predictand (clouds), which becomes critical when dealing with the complex non-linear occurrence of clouds. In addition, RF techniques are capable of representing complex spatial-temporal dynamics to some extent. Input predictors to the WRF-based RF model are strategically selected based on expert knowledge and a series of sensitivity tests. Ultimately, three types of WRF predictors are chosen: local surface predictors, regional 3D moisture predictors and regional inversion predictors. A suite of RF experiments is performed using these predictors in order to evaluate the performance of the hybrid RF-WRF technique. The RF model is trained and tuned on approximately half of the input dataset and evaluated on the other half. The RF approach is validated using in-situ observations of clouds. All of the hybrid RF-WRF experiments demonstrated here significantly outperform the base WRF local low cloud cover forecasts in terms of the probability of detection and the overall bias. In particular, RF experiments that use only regional three-dimensional moisture predictors from the WRF model produce the highest accuracy when compared to RF experiments that use local surface predictors only or regional inversion predictors only. Furthermore, adding multiple types of WRF predictors and additional WRF predictors to the RF algorithm does not necessarily add more value in the resulting forecasts, indicating that it is better to have a small set of meaningful predictors than to have a vast set of indiscriminately-chosen predictors. This work also reveals that the WRF-based RF approach is highly sensitive to the time period over which the algorithm is trained and evaluated. Future work will focus on developing a similar WRF-based RF model for high cloud prediction and expanding the algorithm to two-dimensions horizontally.
Gong, Yuanzheng; Seibel, Eric J.
2017-01-01
Rapid development in the performance of sophisticated optical components, digital image sensors, and computer abilities along with decreasing costs has enabled three-dimensional (3-D) optical measurement to replace more traditional methods in manufacturing and quality control. The advantages of 3-D optical measurement, such as noncontact, high accuracy, rapid operation, and the ability for automation, are extremely valuable for inline manufacturing. However, most of the current optical approaches are eligible for exterior instead of internal surfaces of machined parts. A 3-D optical measurement approach is proposed based on machine vision for the 3-D profile measurement of tiny complex internal surfaces, such as internally threaded holes. To capture the full topographic extent (peak to valley) of threads, a side-view commercial rigid scope is used to collect images at known camera positions and orientations. A 3-D point cloud is generated with multiview stereo vision using linear motion of the test piece, which is repeated by a rotation to form additional point clouds. Registration of these point clouds into a complete reconstruction uses a proposed automated feature-based 3-D registration algorithm. The resulting 3-D reconstruction is compared with x-ray computed tomography to validate the feasibility of our proposed method for future robotically driven industrial 3-D inspection. PMID:28286351
NASA Astrophysics Data System (ADS)
Gong, Yuanzheng; Seibel, Eric J.
2017-01-01
Rapid development in the performance of sophisticated optical components, digital image sensors, and computer abilities along with decreasing costs has enabled three-dimensional (3-D) optical measurement to replace more traditional methods in manufacturing and quality control. The advantages of 3-D optical measurement, such as noncontact, high accuracy, rapid operation, and the ability for automation, are extremely valuable for inline manufacturing. However, most of the current optical approaches are eligible for exterior instead of internal surfaces of machined parts. A 3-D optical measurement approach is proposed based on machine vision for the 3-D profile measurement of tiny complex internal surfaces, such as internally threaded holes. To capture the full topographic extent (peak to valley) of threads, a side-view commercial rigid scope is used to collect images at known camera positions and orientations. A 3-D point cloud is generated with multiview stereo vision using linear motion of the test piece, which is repeated by a rotation to form additional point clouds. Registration of these point clouds into a complete reconstruction uses a proposed automated feature-based 3-D registration algorithm. The resulting 3-D reconstruction is compared with x-ray computed tomography to validate the feasibility of our proposed method for future robotically driven industrial 3-D inspection.
Department of Defense Use of Commercial Cloud Computing Capabilities and Services
2015-11-01
models (Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service ( SaaS )), and four deployment models (Public...NIST defines three main models for cloud computing: IaaS, PaaS, and SaaS . These models help differentiate the implementation responsibilities that fall...and SaaS . 3. Public, Private, Community, and Hybrid Clouds Cloud services come in different forms, depending on the customer’s specific needs
NASA Technical Reports Server (NTRS)
Hoffert, Steven G.; Pearce, Matt L.
1996-01-01
Many researchers have shown that the development and evolution of electrical discharges within convective clouds is fundamentally related to the growth and dynamics of precipitation particles aloft. In the presence of strong updrafts above the freezing level collisions among mixed-phase particles (i.e., hail. ice, supercooled water) promote the necessary charge separation needed to initiate intra-cloud lightning. A precipitation core that descends below the freezing level is often accompanied by a change in the electrical structure of the cloud. Consequently, more Cloud-to-Ground (CG) than Intra-Cloud (IC) lightning flashes appear. Descending precipitation cores can also play a significant role in the evolution of mesoscale features at the surface (e.g., microbursts, downbursts) because of latent heat and mass loading effects of water and ice. For this reason, some believe that lightning and microbursts are fundamentally linked by the presence of ice particles in thunderstorms. Several radar and lightning studies of microburst thunderstorms from COHMEX in 1986 showed that the peak IC lightning systematically occurred ten minutes before the onset of a microburst. In contrast, most CG lightning occurred at the time of the microburst. Many of the preceding studies have been done using high-resolution research radars and experimental lightning detection systems in focused field projects. In addition, these studies could only determine the vertical origin or occurrence of IC lightning, and not a true three-dimensional representation. Currently, the WSR-88D radar system and a real-time, state-of-the-art lightning system (LDAR) at the Kennedy Space Center (KSC) in Florida provide an opportunity to extend these kinds of studies in a more meaningful operational setting.
Interaction of a supersonic particle with a three-dimensional complex plasma
NASA Astrophysics Data System (ADS)
Zaehringer, E.; Schwabe, M.; Zhdanov, S.; Mohr, D. P.; Knapek, C. A.; Huber, P.; Semenov, I. L.; Thomas, H. M.
2018-03-01
The influence of a supersonic projectile on a three-dimensional complex plasma is studied. Micron sized particles in a low-temperature plasma formed a large undisturbed system in the new "Zyflex" chamber during microgravity conditions. A supersonic probe particle excited a Mach cone with Mach number M ≈ 1.5-2 and double Mach cone structure in the large weakly damped particle cloud. The speed of sound is measured with different methods and particle charge estimations are compared to the calculations from standard theories. The high image resolution enables the study of Mach cones in microgravity on the single particle level of a three-dimensional complex plasma and gives insight to the dynamics. A heating of the microparticles is discovered behind the supersonic projectile but not in the flanks of the Mach cone.
Microphysical modeling of cirrus. 2: Sensitivity studies
NASA Technical Reports Server (NTRS)
Jensen, Eric J.; Toon, Owen B.; Westphal, Douglas L.; Kinne, Stefan; Heymsfield, Andrew J.
1994-01-01
The one-dimensional cirrus model described in part 1 of this issue has been used to study the sensitivity of simulated cirrus microphysical and radiative properties to poorly known model parameters, poorly understood physical processes, and environmental conditions. Model parameters and physical processes investigated include nucleation rate, mode of nucleation (e.g., homogeneous freezing of aerosols and liquid droplets or heterogeneous deposition), ice crystal shape, and coagulation. These studies suggest that the leading sources of uncertainty in the model are the phase change (liquid-solid) energy barrier and the ice-water surface energy which dominate the homogeneous freezing nucleation rate and the coagulation sticking efficiency at low temperatures which controls the production of large ice crystals (radii greater than 100 mcirons). Environmental conditions considered in sensitivity tests were CN size distribution, vertical wind speed, and cloud height. We found that (unlike stratus clouds) variations in the total number of condensation nuclei (NC) have little effect on cirrus microphysical and radiative properties, since nucleation occurs only on the largest CN at the tail of the size distribution. The total number of ice crystals which nucleate has little or no relationship to the number of CN present and depends primarily on the temperature and the cooling rate. Stronger updrafts (more rapid cooling) generate higher ice number densities, ice water content, cloud optical depth, and net radiative forcing. Increasing the height of the clouds in the model leads to an increase in ice number density, a decrease in effective radius, and a decrease in ice water content. The most prominent effect of increasing cloud height was a rapid increase in the net cloud radiative forcing which can be attributed to the change in cloud temperature as well as change in cloud ice size distributions. It has long been recognized that changes in cloud height or cloud area have the greatest potential for causing feedbacks on climate change. Our results suggest that variations in vertical velocity or cloud microphysical changes associatd with cloud height changes may also be important.
Integrated Cloud-Aerosol-Radiation Product using CERES, MODIS, CALIPSO and CloudSat Data
NASA Technical Reports Server (NTRS)
Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Gibson, Sharon; Yi, Yuhong; Trepte, Qing; Wielicki, Bruce; Kato, Seiji; Winker, Dave
2007-01-01
This paper documents the development of the first integrated data set of global vertical profiles of clouds, aerosols, and radiation using the combined NASA A-Train data from the Aqua Clouds and Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and CloudSat. As part of this effort, cloud data from the CALIPSO lidar and the CloudSat radar are merged with the integrated column cloud properties from the CERES-MODIS analyses. The active and passive datasets are compared to determine commonalities and differences in order to facilitate the development of a 3- dimensional cloud and aerosol dataset that will then be integrated into the CERES broadband radiance footprint. Preliminary results from the comparisons for April 2007 reveal that the CERES-MODIS global cloud amounts are, on average, 0.14 less and 0.15 greater than those from CALIPSO and CloudSat, respectively. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.
Integrated cloud-aerosol-radiation product using CERES, MODIS, CALIPSO, and CloudSat data
NASA Astrophysics Data System (ADS)
Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Gibson, Sharon; Yi, Yuhong; Trepte, Qing; Wielicki, Bruce; Kato, Seiji; Winker, Dave; Stephens, Graeme; Partain, Philip
2007-10-01
This paper documents the development of the first integrated data set of global vertical profiles of clouds, aerosols, and radiation using the combined NASA A-Train data from the Aqua Clouds and Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and CloudSat. As part of this effort, cloud data from the CALIPSO lidar and the CloudSat radar are merged with the integrated column cloud properties from the CERES-MODIS analyses. The active and passive datasets are compared to determine commonalities and differences in order to facilitate the development of a 3-dimensional cloud and aerosol dataset that will then be integrated into the CERES broadband radiance footprint. Preliminary results from the comparisons for April 2007 reveal that the CERES-MODIS global cloud amounts are, on average, 0.14 less and 0.15 greater than those from CALIPSO and CloudSat, respectively. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.
Combined climate and carbon-cycle effects of large-scale deforestation
Bala, G.; Caldeira, K.; Wickett, M.; Phillips, T. J.; Lobell, D. B.; Delire, C.; Mirin, A.
2007-01-01
The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO2 to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These simulations were performed by using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, because the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. Although these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate. PMID:17420463
Combined climate and carbon-cycle effects of large-scale deforestation.
Bala, G; Caldeira, K; Wickett, M; Phillips, T J; Lobell, D B; Delire, C; Mirin, A
2007-04-17
The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO(2) to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These simulations were performed by using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, because the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. Although these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.
Combined Climate and Carbon-Cycle Effects of Large-Scale Deforestation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bala, G; Caldeira, K; Wickett, M
2006-10-17
The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO{sub 2} to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These are the first such simulations performed using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has amore » net cooling influence on Earth's climate, since the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. While these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.« less
STABILIZING CLOUD FEEDBACK DRAMATICALLY EXPANDS THE HABITABLE ZONE OF TIDALLY LOCKED PLANETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Jun; Abbot, Dorian S.; Cowan, Nicolas B., E-mail: abbot@uchicago.edu
2013-07-10
The habitable zone (HZ) is the circumstellar region where a planet can sustain surface liquid water. Searching for terrestrial planets in the HZ of nearby stars is the stated goal of ongoing and planned extrasolar planet surveys. Previous estimates of the inner edge of the HZ were based on one-dimensional radiative-convective models. The most serious limitation of these models is the inability to predict cloud behavior. Here we use global climate models with sophisticated cloud schemes to show that due to a stabilizing cloud feedback, tidally locked planets can be habitable at twice the stellar flux found by previous studies.more » This dramatically expands the HZ and roughly doubles the frequency of habitable planets orbiting red dwarf stars. At high stellar flux, strong convection produces thick water clouds near the substellar location that greatly increase the planetary albedo and reduce surface temperatures. Higher insolation produces stronger substellar convection and therefore higher albedo, making this phenomenon a stabilizing climate feedback. Substellar clouds also effectively block outgoing radiation from the surface, reducing or even completely reversing the thermal emission contrast between dayside and nightside. The presence of substellar water clouds and the resulting clement surface conditions will therefore be detectable with the James Webb Space Telescope.« less
Magnetohydrodynamic Simulations of a Plunging Black Hole into a Molecular Cloud
NASA Astrophysics Data System (ADS)
Nomura, Mariko; Oka, Tomoharu; Yamada, Masaya; Takekawa, Shunya; Ohsuga, Ken; Takahashi, Hiroyuki R.; Asahina, Yuta
2018-05-01
Using two-dimensional magnetohydrodynamic simulations, we investigated the gas dynamics around a black hole (BH) plunging into a molecular cloud. In these calculations, we assumed a parallel-magnetic-field layer in the cloud. The size of the accelerated region is far larger than the Bondi–Hoyle–Lyttleton radius, being approximately inversely proportional to the Alfvén Mach number for the plunging BH. Our results successfully reproduce the “Y” shape in position–velocity maps of the “Bullet” in the W44 molecular cloud. The size of the Bullet is also reproduced within an order of magnitude using a reasonable parameter set. This consistency supports the shooting model of the Bullet, according to which an isolated BH plunged into a molecular cloud to form a compact broad-velocity-width feature.
Precision Positional Data of General Aviation Air Traffic in Terminal Air Space
NASA Technical Reports Server (NTRS)
Melson, W. E., Jr.; Parker, L. C.; Northam, A. M.; Singh, R. P.
1978-01-01
Three dimensional radar tracks of general aviation air traffic at three uncontrolled airports are considered. Contained are data which describe the position-time histories, other derived parameters, and reference data for the approximately 1200 tracks. All information was correlated such that the date, time, flight number, and runway number match the pattern type, aircraft type, wind, visibility, and cloud conditions.
NASA Astrophysics Data System (ADS)
Wang, Yueyang; Bao, Biwen; Yang, Chuyuan; Zhang, Li
2018-05-01
The dynamical properties of supernova remnants (SNRs) evolving with different interstellar medium structures are investigated through performing extensive two-dimensional magnetohydrodynamic (MHD) simulations in the cylindrical symmetry. Three cases of different interstellar medium structures are considered: the uniform medium, the turbulent medium and the cloudy medium. Large-scale density and magnetic fluctuations are calculated and mapped into the computational domain before simulations. The clouds are set by random distribution in advance. The above configuration allows us to study the time-dependent dynamical properties and morphological evolution of the SNR evolving with different ambient structures, along with the development of the instabilities at the contact discontinuity. Our simulation results indicate that remnant morphology deviates from symmetry if the interstellar medium contains clouds or turbulent density fluctuations. In the cloudy medium case, interactions between the shock wave and clouds lead to clouds' fragmentation. The magnetic field can be greatly enhanced by stretching field lines with a combination of instabilities while the width of amplification region is quite different among the three cases. Moreover, both the width of amplification region and the maximum magnetic-field strength are closely related to the clouds' density.
A model-based 3D template matching technique for pose acquisition of an uncooperative space object.
Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele
2015-03-16
This paper presents a customized three-dimensional template matching technique for autonomous pose determination of uncooperative targets. This topic is relevant to advanced space applications, like active debris removal and on-orbit servicing. The proposed technique is model-based and produces estimates of the target pose without any prior pose information, by processing three-dimensional point clouds provided by a LIDAR. These estimates are then used to initialize a pose tracking algorithm. Peculiar features of the proposed approach are the use of a reduced number of templates and the idea of building the database of templates on-line, thus significantly reducing the amount of on-board stored data with respect to traditional techniques. An algorithm variant is also introduced aimed at further accelerating the pose acquisition time and reducing the computational cost. Technique performance is investigated within a realistic numerical simulation environment comprising a target model, LIDAR operation and various target-chaser relative dynamics scenarios, relevant to close-proximity flight operations. Specifically, the capability of the proposed techniques to provide a pose solution suitable to initialize the tracking algorithm is demonstrated, as well as their robustness against highly variable pose conditions determined by the relative dynamics. Finally, a criterion for autonomous failure detection of the presented techniques is presented.
NASA Astrophysics Data System (ADS)
Zhang, Junhua; Lohmann, Ulrike
2003-08-01
The single column model of the Canadian Centre for Climate Modeling and Analysis (CCCma) climate model is used to simulate Arctic spring cloud properties observed during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment. The model is driven by the rawinsonde observations constrained European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis data. Five cloud parameterizations, including three statistical and two explicit schemes, are compared and the sensitivity to mixed phase cloud parameterizations is studied. Using the original mixed phase cloud parameterization of the model, the statistical cloud schemes produce more cloud cover, cloud water, and precipitation than the explicit schemes and in general agree better with observations. The mixed phase cloud parameterization from ECMWF decreases the initial saturation specific humidity threshold of cloud formation. This improves the simulated cloud cover in the explicit schemes and reduces the difference between the different cloud schemes. On the other hand, because the ECMWF mixed phase cloud scheme does not consider the Bergeron-Findeisen process, less ice crystals are formed. This leads to a higher liquid water path and less precipitation than what was observed.
NASA Astrophysics Data System (ADS)
Okyay, U.; Glennie, C. L.; Khan, S.
2017-12-01
Owing to the advent of terrestrial laser scanners (TLS), high-density point cloud data has become increasingly available to the geoscience research community. Research groups have started producing their own point clouds for various applications, gradually shifting their emphasis from obtaining the data towards extracting more and meaningful information from the point clouds. Extracting fracture properties from three-dimensional data in a (semi-)automated manner has been an active area of research in geosciences. Several studies have developed various processing algorithms for extracting only planar surfaces. In comparison, (semi-)automated identification of fracture traces at the outcrop scale, which could be used for mapping fracture distribution have not been investigated frequently. Understanding the spatial distribution and configuration of natural fractures is of particular importance, as they directly influence fluid-flow through the host rock. Surface roughness, typically defined as the deviation of a natural surface from a reference datum, has become an important metric in geoscience research, especially with the increasing density and accuracy of point clouds. In the study presented herein, a surface roughness model was employed to identify fracture traces and their distribution on an ophiolite outcrop in Oman. Surface roughness calculations were performed using orthogonal distance regression over various grid intervals. The results demonstrated that surface roughness could identify outcrop-scale fracture traces from which fracture distribution and density maps can be generated. However, considering outcrop conditions and properties and the purpose of the application, the definition of an adequate grid interval for surface roughness model and selection of threshold values for distribution maps are not straightforward and require user intervention and interpretation.
NASA Astrophysics Data System (ADS)
Schäfer, M.; Bierwirth, E.; Ehrlich, A.; Jäkel, E.; Wendisch, M.
2015-07-01
Based on airborne spectral imaging observations, three-dimensional (3-D) radiative effects between Arctic boundary layer clouds and highly variable Arctic surfaces were identified and quantified. A method is presented to discriminate between sea ice and open water under cloudy conditions based on airborne nadir reflectivity γλ measurements in the visible spectral range. In cloudy cases the transition of γλ from open water to sea ice is not instantaneous but horizontally smoothed. In general, clouds reduce γλ above bright surfaces in the vicinity of open water, while γλ above open sea is enhanced. With the help of observations and 3-D radiative transfer simulations, this effect was quantified to range between 0 and 2200 m distance to the sea ice edge (for a dark-ocean albedo of αwater = 0.042 and a sea-ice albedo of αice = 0.91 at 645 nm wavelength). The affected distance Δ L was found to depend on both cloud and sea ice properties. For a low-level cloud at 0-200 m altitude, as observed during the Arctic field campaign VERtical Distribution of Ice in Arctic clouds (VERDI) in 2012, an increase in the cloud optical thickness τ from 1 to 10 leads to a decrease in Δ L from 600 to 250 m. An increase in the cloud base altitude or cloud geometrical thickness results in an increase in Δ L; for τ = 1/10 Δ L = 2200 m/1250 m in case of a cloud at 500-1000 m altitude. To quantify the effect for different shapes and sizes of ice floes, radiative transfer simulations were performed with various albedo fields (infinitely long straight ice edge, circular ice floes, squares, realistic ice floe field). The simulations show that Δ L increases with increasing radius of the ice floe and reaches maximum values for ice floes with radii larger than 6 km (500-1000 m cloud altitude), which matches the results found for an infinitely long, straight ice edge. Furthermore, the influence of these 3-D radiative effects on the retrieved cloud optical properties was investigated. The enhanced brightness of a dark pixel next to an ice edge results in uncertainties of up to 90 and 30 % in retrievals of τ and effective radius reff, respectively. With the help of Δ L, an estimate of the distance to the ice edge is given, where the retrieval uncertainties due to 3-D radiative effects are negligible.
NASA Astrophysics Data System (ADS)
Juvela, Mika J.
The relationship between physical conditions of an interstellar cloud and the observed radiation is defined by the radiative transfer problem. Radiative transfer calculations are needed if, e.g., one wants to disentangle abundance variations from excitation effects or wants to model variations of dust properties inside an interstellar cloud. New observational facilities (e.g., ALMA and Herschel) will bring improved accuracy both in terms of intensity and spatial resolution. This will enable detailed studies of the densest sub-structures of interstellar clouds and star forming regions. Such observations must be interpreted with accurate radiative transfer methods and realistic source models. In many cases this will mean modelling in three dimensions. High optical depths and observed wide range of linear scales are, however, challenging for radiative transfer modelling. A large range of linear scales can be accessed only with hierarchical models. Figure 1 shows an example of the use of a hierarchical grid for radiative transfer calculations when the original model cloud (L=10 pc,
Understanding Ice Supersaturation, Particle Growth, and Number Concentration in Cirrus Clouds
NASA Technical Reports Server (NTRS)
Comstock, Jennifer M.; Lin, Ruei-Fong; Starr, David O'C.; Yang, Ping
2008-01-01
Many factors control the ice supersaturation and microphysical properties in cirrus clouds. We explore the effects of dynamic forcing, ice nucleation mechanisms, and ice crystal growth rate on the evolution and distribution of water vapor and cloud properties in nighttime cirrus clouds using a one-dimensional cloud model with bin microphysics and remote sensing measurements obtained at the Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility located near Lamont, OK. We forced the model using both large-scale vertical ascent and, for the first time, mean mesoscale velocity derived from radar Doppler velocity measurements. Both heterogeneous and homogeneous nucleation processes are explored, where a classical theory heterogeneous scheme is compared with empirical representations. We evaluated model simulations by examining both bulk cloud properties and distributions of measured radar reflectivity, lidar extinction, and water vapor profiles, as well as retrieved cloud microphysical properties. Our results suggest that mesoscale variability is the primary mechanism needed to reproduce observed quantities. Model sensitivity to the ice growth rate is also investigated. The most realistic simulations as compared with observations are forced using mesoscale waves, include fast ice crystal growth, and initiate ice by either homogeneous or heterogeneous nucleation. Simulated ice crystal number concentrations (tens to hundreds particles per liter) are typically two orders of magnitude smaller than previously published results based on aircraft measurements in cirrus clouds, although higher concentrations are possible in isolated pockets within the nucleation zone.
NASA Technical Reports Server (NTRS)
Tao, W. -K.; Halverson, J.; Adler, R.; Garstang, M.; Houze, R., Jr.; LeMone, M.; Pielke, R., Sr.; Woodley, W.; O'C.Starr, David (Technical Monitor)
2001-01-01
This AMS Meteorological Monographs is dedicated to Dr. Joanne Simpson for her many pioneering research efforts in tropical meteorology during her fifty-year career. Dr. Simpson's major areas of scientific research involved the "hot tower" hypothesis and its role in hurricanes, structure and maintenance of trade winds, air-sea interaction, and observations and the mechanism for hurricanes and waterspouts. She was also a pioneer in cloud modeling with the first one-dimensional model and had the first cumulus model on a computer. She also played a major role in planning and leading observational experiments on convective cloud systems. The launch of the Tropical Rainfall Measuring Mission (TRMM) satellite, a joint U.S.-Japan project, in November of 1997 made it possible for quantitative measurements of tropical rainfall to be obtained on a continuous basis over the entire global tropics. Dr. Simpson was the TRAM Project Scientist from 1986 until its launch in 1997. Her efforts during this crucial period ensured that the mission was both well planned scientifically and well engineered as well as within budget. In this paper, Dr. J. Simpson's nine specific accomplishments during her fifty-year career: (1) hot tower hypothesis, (2) hurricanes, (3) airflow and clouds over heated islands, (4) cloud models, (5) trade winds and their role in cumulus development, (6) air-sea interaction, (7) cloud-cloud interactions and mergers, (8) waterspouts, and (9) TRMM science, will be described and discussed.
Toward Measuring Galactic Dense Molecular Gas Properties and 3D Distribution with Hi-GAL
NASA Astrophysics Data System (ADS)
Zetterlund, Erika; Glenn, Jason; Maloney, Phil
2016-01-01
The Herschel Space Observatory's submillimeter dust continuum survey Hi-GAL provides a powerful new dataset for characterizing the structure of the dense interstellar medium of the Milky Way. Hi-GAL observed a 2° wide strip covering the entire 360° of the Galactic plane in broad bands centered at 70, 160, 250, 350, and 500 μm, with angular resolution ranging from 10 to 40 arcseconds. We are adapting a molecular cloud clump-finding algorithm and a distance probability density function distance-determination method developed for the Bolocam Galactic Plane Survey (BGPS) to the Hi-GAL data. Using these methods we expect to generate a database of 105 cloud clumps, derive distance information for roughly half the clumps, and derive precise distances for approximately 20% of them. With five-color photometry and distances, we will measure the cloud clump properties, such as luminosities, physical sizes, and masses, and construct a three-dimensional map of the Milky Way's dense molecular gas distribution.The cloud clump properties and the dense gas distribution will provide critical ground truths for comparison to theoretical models of molecular cloud structure formation and galaxy evolution models that seek to emulate spiral galaxies. For example, such models cannot resolve star formation and use prescriptive recipes, such as converting a fixed fraction of interstellar gas to stars at a specified interstellar medium density threshold. The models should be compared to observed dense molecular gas properties and galactic distributions.As a pilot survey to refine the clump-finding and distance measurement algorithms developed for BGPS, we have identified molecular cloud clumps in six 2° × 2° patches of the Galactic plane, including one in the inner Galaxy along the line of sight through the Molecular Ring and the termination of the Galactic bar and one toward the outer Galaxy. Distances have been derived for the inner Galaxy clumps and compared to Bolocam Galactic Plane Survey results. We present the pilot survey clump catalog, distances, clump properties, and a comparison to BGPS.
A Computational Fluid Dynamic Model for a Novel Flash Ironmaking Process
NASA Astrophysics Data System (ADS)
Perez-Fontes, Silvia E.; Sohn, Hong Yong; Olivas-Martinez, Miguel
A computational fluid dynamic model for a novel flash ironmaking process based on the direct gaseous reduction of iron oxide concentrates is presented. The model solves the three-dimensional governing equations including both gas-phase and gas-solid reaction kinetics. The turbulence-chemistry interaction in the gas-phase is modeled by the eddy dissipation concept incorporating chemical kinetics. The particle cloud model is used to track the particle phase in a Lagrangian framework. A nucleation and growth kinetics rate expression is adopted to calculate the reduction rate of magnetite concentrate particles. Benchmark experiments reported in the literature for a nonreacting swirling gas jet and a nonpremixed hydrogen jet flame were simulated for validation. The model predictions showed good agreement with measurements in terms of gas velocity, gas temperature and species concentrations. The relevance of the computational model for the analysis of a bench reactor operation and the design of an industrial-pilot plant is discussed.
NASA Technical Reports Server (NTRS)
Juang, Hann-Ming Henry; Tao, Wei-Kuo; Zeng, Xi-Ping; Shie, Chung-Lin; Simpson, Joanne; Lang, Steve
2004-01-01
The capability for massively parallel programming (MPP) using a message passing interface (MPI) has been implemented into a three-dimensional version of the Goddard Cumulus Ensemble (GCE) model. The design for the MPP with MPI uses the concept of maintaining similar code structure between the whole domain as well as the portions after decomposition. Hence the model follows the same integration for single and multiple tasks (CPUs). Also, it provides for minimal changes to the original code, so it is easily modified and/or managed by the model developers and users who have little knowledge of MPP. The entire model domain could be sliced into one- or two-dimensional decomposition with a halo regime, which is overlaid on partial domains. The halo regime requires that no data be fetched across tasks during the computational stage, but it must be updated before the next computational stage through data exchange via MPI. For reproducible purposes, transposing data among tasks is required for spectral transform (Fast Fourier Transform, FFT), which is used in the anelastic version of the model for solving the pressure equation. The performance of the MPI-implemented codes (i.e., the compressible and anelastic versions) was tested on three different computing platforms. The major results are: 1) both versions have speedups of about 99% up to 256 tasks but not for 512 tasks; 2) the anelastic version has better speedup and efficiency because it requires more computations than that of the compressible version; 3) equal or approximately-equal numbers of slices between the x- and y- directions provide the fastest integration due to fewer data exchanges; and 4) one-dimensional slices in the x-direction result in the slowest integration due to the need for more memory relocation for computation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez Gonzalez, R.; Petruzzi, A.; D'Auria, F.
2012-07-01
Atucha-2 is a Siemens-designed PHWR reactor under construction in the Republic of Argentina. Its geometrical complexity and (e.g., oblique Control Rods, Positive Void coefficient) required a developed and validated complex three dimensional (3D) neutron kinetics (NK) coupled thermal hydraulic (TH) model. Reactor shut-down is obtained by oblique CRs and, during accidental conditions, by an emergency shut-down system (JDJ) injecting a highly concentrated boron solution (boron clouds) in the moderator tank, the boron clouds reconstruction is obtained using a CFD (CFX) code calculation. A complete LBLOCA calculation implies the application of the RELAP5-3D{sup C} system code. Within the framework of themore » third Agreement 'NA-SA - Univ. of Pisa' a new RELAP5-3D control system for the boron injection system was developed and implemented in the validated coupled RELAP5-3D/NESTLE model of the Atucha 2 NPP. The aim of this activity is to find out the limiting case (maximum break area size) for the Peak Cladding Temperature for LOCAs under fixed boundary conditions. (authors)« less
Architectures for Rainfall Property Estimation From Polarimetric Radar
NASA Astrophysics Data System (ADS)
Collis, S. M.; Giangrande, S. E.; Helmus, J.; Troemel, S.
2014-12-01
Radars that transmit and receive signals in polarizations aligned both horizontal and vertical to the horizon collect a number of measurements. The relation both between these measurements and between measurements and desired microphysical quantities (such as rainfall rate) is complicated due to a number of scattering mechanisms. The result is that there ends up being an intractable number of often incompatible techniques for extracting geophysical insight. This presentation will discuss methods developed by the Atmospheric Measurement Climate (ARM) Research Facility to streamline the creation of application chains for retrieving rainfall properties for the purposes of fine scale model evaluation. By using a Common Data Model (CDM) approach and working in the popular open source Python scientific environment analysis techniques such as Linear Programming (LP) can be bought to bear on the task of retrieving insight from radar signals. This presentation will outline how we have used these techniques to detangle polarimetric phase signals, estimate a three-dimensional precipitation field and then objectively compare to cloud resolving model derived rainfall fields from the NASA/DoE Mid-Latitude Continental Convective Clouds Experiment (MC3E). All techniques show will be available, open source, in the Python-ARM Radar Toolkit (Py-ART).
NASA Technical Reports Server (NTRS)
Mckay, C. P.
1985-01-01
To investigate the occurrence of low temperatures and the formation of noctilucent clouds in the summer mesosphere, a one-dimensional time-dependent photochemical-thermal numerical model of the atmosphere between 50 and 120 km has been constructed. The model self-consistently solves the coupled photochemical and thermal equations as perturbation equations from a reference state assumed to be in equilibrium and is used to consider the effect of variability in water vapor in the lower mesosphere on the temperature in the region of noctilucent cloud formation. It is found that change in water vapor from an equilibrium value of 5 ppm at 50 km to a value of 10 ppm, a variation consistent with observations, can produce a roughly 15 K drop in temperature at 82 km. It is suggested that this process may produce weeks of cold temperatures and influence noctilucent cloud formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kollias, Pavlos
This is a multi-institutional, collaborative project using a three-tier modeling approach to bridge field observations and global cloud-permitting models, with emphases on cloud population structural evolution through various large-scale environments. Our contribution was in data analysis for the generation of high value cloud and precipitation products and derive cloud statistics for model validation. There are two areas in data analysis that we contributed: the development of a synergistic cloud and precipitation cloud classification that identify different cloud (e.g. shallow cumulus, cirrus) and precipitation types (shallow, deep, convective, stratiform) using profiling ARM observations and the development of a quantitative precipitation ratemore » retrieval algorithm using profiling ARM observations. Similar efforts have been developed in the past for precipitation (weather radars), but not for the millimeter-wavelength (cloud) radar deployed at the ARM sites.« less
Development of a global aerosol model using a two-dimensional sectional method: 1. Model design
NASA Astrophysics Data System (ADS)
Matsui, H.
2017-08-01
This study develops an aerosol module, the Aerosol Two-dimensional bin module for foRmation and Aging Simulation version 2 (ATRAS2), and implements the module into a global climate model, Community Atmosphere Model. The ATRAS2 module uses a two-dimensional (2-D) sectional representation with 12 size bins for particles from 1 nm to 10 μm in dry diameter and 8 black carbon (BC) mixing state bins. The module can explicitly calculate the enhancement of absorption and cloud condensation nuclei activity of BC-containing particles by aging processes. The ATRAS2 module is an extension of a 2-D sectional aerosol module ATRAS used in our previous studies within a framework of a regional three-dimensional model. Compared with ATRAS, the computational cost of the aerosol module is reduced by more than a factor of 10 by simplifying the treatment of aerosol processes and 2-D sectional representation, while maintaining good accuracy of aerosol parameters in the simulations. Aerosol processes are simplified for condensation of sulfate, ammonium, and nitrate, organic aerosol formation, coagulation, and new particle formation processes, and box model simulations show that these simplifications do not substantially change the predicted aerosol number and mass concentrations and their mixing states. The 2-D sectional representation is simplified (the number of advected species is reduced) primarily by the treatment of chemical compositions using two interactive bin representations. The simplifications do not change the accuracy of global aerosol simulations. In part 2, comparisons with measurements and the results focused on aerosol processes such as BC aging processes are shown.
Extraction of Profile Information from Cloud Contaminated Radiances. Appendixes 2
NASA Technical Reports Server (NTRS)
Smith, W. L.; Zhou, D. K.; Huang, H.-L.; Li, Jun; Liu, X.; Larar, A. M.
2003-01-01
Clouds act to reduce the signal level and may produce noise dependence on the complexity of the cloud properties and the manner in which they are treated in the profile retrieval process. There are essentially three ways to extract profile information from cloud contaminated radiances: (1) cloud-clearing using spatially adjacent cloud contaminated radiance measurements, (2) retrieval based upon the assumption of opaque cloud conditions, and (3) retrieval or radiance assimilation using a physically correct cloud radiative transfer model which accounts for the absorption and scattering of the radiance observed. Cloud clearing extracts the radiance arising from the clear air portion of partly clouded fields of view permitting soundings to the surface or the assimilation of radiances as in the clear field of view case. However, the accuracy of the clear air radiance signal depends upon the cloud height and optical property uniformity across the two fields of view used in the cloud clearing process. The assumption of opaque clouds within the field of view permits relatively accurate profiles to be retrieved down to near cloud top levels, the accuracy near the cloud top level being dependent upon the actual microphysical properties of the cloud. The use of a physically correct cloud radiative transfer model enables accurate retrievals down to cloud top levels and below semi-transparent cloud layers (e.g., cirrus). It should also be possible to assimilate cloudy radiances directly into the model given a physically correct cloud radiative transfer model using geometric and microphysical cloud parameters retrieved from the radiance spectra as initial cloud variables in the radiance assimilation process. This presentation reviews the above three ways to extract profile information from cloud contaminated radiances. NPOESS Airborne Sounder Testbed-Interferometer radiance spectra and Aqua satellite AIRS radiance spectra are used to illustrate how cloudy radiances can be used in the profile retrieval process.
Large Eddy Simulation of Cirrus Clouds
NASA Technical Reports Server (NTRS)
Wu, Ting; Cotton, William R.
1999-01-01
The Regional Atmospheric Modeling System (RAMS) with mesoscale interactive nested-grids and a Large-Eddy Simulation (LES) version of RAMS, coupled to two-moment microphysics and a new two-stream radiative code were used to investigate the dynamic, microphysical, and radiative aspects of the November 26, 1991 cirrus event. Wu (1998) describes the results of that research in full detail and is enclosed as Appendix 1. The mesoscale nested grid simulation successfully reproduced the large scale circulation as compared to the Mesoscale Analysis and Prediction System's (MAPS) analyses and other observations. Three cloud bands which match nicely to the three cloud lines identified in an observational study (Mace et al., 1995) are predicted on Grid #2 of the nested grids, even though the mesoscale simulation predicts a larger west-east cloud width than what was observed. Large-eddy simulations (LES) were performed to study the dynamical, microphysical, and radiative processes in the 26 November 1991 FIRE 11 cirrus event. The LES model is based on the RAMS version 3b developed at Colorado State University. It includes a new radiation scheme developed by Harrington (1997) and a new subgrid scale model developed by Kosovic (1996). The LES model simulated a single cloud layer for Case 1 and a two-layer cloud structure for Case 2. The simulations demonstrated that latent heat release can play a significant role in the formation and development of cirrus clouds. For the thin cirrus in Case 1, the latent heat release was insufficient for the cirrus clouds to become positively buoyant. However, in some special cases such as Case 2, positively buoyant cells can be embedded within the cirrus layers. These cells were so active that the rising updraft induced its own pressure perturbations that affected the cloud evolution. Vertical profiles of the total radiative and latent heating rates indicated that for well developed, deep, and active cirrus clouds, radiative cooling and latent heating could be comparable in magnitude in the cloudy layer. This implies that latent heating cannot be neglected in the construction of a cirrus cloud model. The probability density function (PDF) of w was analyzed to assist in the parameterization of cloud-scale velocities in large-scale models. For the more radiatively-driven, thin cirrus case, the PDFs are approximately Gaussian. However, in the interior of the deep, convectively unstable case, the PDFs of w are multi-modal and very broad, indicating that parameterizing cloud-scale motions for such clouds can be very challenging. The results of this research are described in detail in a paper submitted to the Journal of Atmospheric Science (Wu and Cotton, 1999), which is enclosed as Appendix 2. Using soundings extracted from a mesoscale simulation of the November 26, 1991 cirrus event, the radiative effects on vapor deposition/sublimation of ice crystals was studied using a two-dimensional cloud-resolving model (CRM) version of RAMS, coupled to an explicit bin-resolving microphysics. The CRM simulations of the November 26, 1991 cirrus event demonstrate that the radiative impact on the diffusional growth (or sublimation) of ice crystals is significant. In this case, the ice particles experienced radiative warming. Model results show that radiative feedbacks in the diffusional growth of ice particles can be very complex. Radiative warming of an ice particle will restrict the particle's diffusional growth. In the case of radiative warming, ice particles larger than a certain size will experience so much radiative warming that surface ice saturation vapor pressures become large enough to cause sublimation of the larger crystals, while smaller crystals are growing by vapor deposition. However, ice mass production can be enhanced in the case of radiative cooling of an ice particle. For the November 26, 1991 cirrus event, radiative feedback results in significant reduction in the total ice mass, especially in the production of large ice crystals, and consequently, both radiative and dynamic properties of the cirrus cloud are significantly affected. A complete description of this research has been submitted as a paper to the Journal of Atmospheric Science (Wu et al., 1999), and included as Appendix 3.
Motion Estimation System Utilizing Point Cloud Registration
NASA Technical Reports Server (NTRS)
Chen, Qi (Inventor)
2016-01-01
A system and method of estimation motion of a machine is disclosed. The method may include determining a first point cloud and a second point cloud corresponding to an environment in a vicinity of the machine. The method may further include generating a first extended gaussian image (EGI) for the first point cloud and a second EGI for the second point cloud. The method may further include determining a first EGI segment based on the first EGI and a second EGI segment based on the second EGI. The method may further include determining a first two dimensional distribution for points in the first EGI segment and a second two dimensional distribution for points in the second EGI segment. The method may further include estimating motion of the machine based on the first and second two dimensional distributions.
External Influences on Modeled and Observed Cloud Trends
NASA Technical Reports Server (NTRS)
Marvel, Kate; Zelinka, Mark; Klein, Stephen A.; Bonfils, Celine; Caldwell, Peter; Doutriaux, Charles; Santer, Benjamin D.; Taylor, Karl E.
2015-01-01
Understanding the cloud response to external forcing is a major challenge for climate science. This crucial goal is complicated by intermodel differences in simulating present and future cloud cover and by observational uncertainty. This is the first formal detection and attribution study of cloud changes over the satellite era. Presented herein are CMIP5 (Coupled Model Intercomparison Project - Phase 5) model-derived fingerprints of externally forced changes to three cloud properties: the latitudes at which the zonally averaged total cloud fraction (CLT) is maximized or minimized, the zonal average CLT at these latitudes, and the height of high clouds at these latitudes. By considering simultaneous changes in all three properties, the authors define a coherent multivariate fingerprint of cloud response to external forcing and use models from phase 5 of CMIP (CMIP5) to calculate the average time to detect these changes. It is found that given perfect satellite cloud observations beginning in 1983, the models indicate that a detectable multivariate signal should have already emerged. A search is then made for signals of external forcing in two observational datasets: ISCCP (International Satellite Cloud Climatology Project) and PATMOS-x (Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Atmospheres - Extended). The datasets are both found to show a poleward migration of the zonal CLT pattern that is incompatible with forced CMIP5 models. Nevertheless, a detectable multivariate signal is predicted by models over the PATMOS-x time period and is indeed present in the dataset. Despite persistent observational uncertainties, these results present a strong case for continued efforts to improve these existing satellite observations, in addition to planning for new missions.
Observations and mechanisms of GATE waterspouts
NASA Technical Reports Server (NTRS)
Simpson, J.; Mccumber, M. C.; Morton, B. R.; Penc, R. S.
1986-01-01
The present numerical and observational investigation of interacting cumulus processes implicated in the formation of waterspouts, the GATE database for days 261 and 186 is noted to imply that the existence of cumulus-scale parent vortices is a necessary (albeit not sufficient) condition for the production of waterspouts. A high resolution version of the Schlessinger (1975) three-dimensional cumulus model with a Kessler (1969) type precipitation scheme is used to analyze cumulus-scale vorticity organization, which on the two days in question exhibited contrasting thermal stratification and cloud features. The observations from both days suggest that the waterspouts formed ahead of the wind shift, due to the passage of a gust front.
Lidar Measurements of Wind and Cloud Around Venus from an Orbiting or Floating/flying Platform
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Limaye, Sanjay; Emmitt, George D.; Refaat, Tamer F.; Kavaya, Michael J.; Yu, Jirong; Petros, Mulugeta
2015-01-01
Given the presence of clouds and haze in the upper portion of the Venus atmosphere, it is reasonable to consider a Doppler wind lidar (DWL) for making remote measurements of the 3-dimensional winds within the tops of clouds and the overlying haze layer. Assuming an orbit altitude of 250 kilometers and cloud tops at 60 kilometers (within the upper cloud layer), an initial performance assessment of an orbiting DWL was made using a numerical instrument and atmospheres model developed for both Earth and Mars. It is reasonable to expect vertical profiles of the 3-dimensional wind speed with 1 kilometer vertical resolution and horizontal spacing of 25 kilometers to several 100 kilometers depending upon the desired integration times. These profiles would begin somewhere just below the tops of the highest clouds and extend into the overlying haze layer to some to-be-determined height. Getting multiple layers of cloud returns is also possible with no negative impact on velocity measurement accuracy. The knowledge and expertise for developing coherent Doppler wind lidar technologies and techniques, for Earth related mission at NASA Langley Research Center is being leveraged to develop an appropriate system suitable for wind measurement around Venus. We are considering a fiber-laser-based lidar system of high efficiency and smaller size and advancing the technology level to meet the requirements for DWL system for Venus from an orbiting or floating/flying platform. This presentation will describe the concept, simulation and technology development plan for wind and cloud measurements on Venus.
Fischer, Claudia; Voss, Andreas
2014-01-01
Hypertensive pregnancy disorders affect 6-8% of gestations representing the most common complication of pregnancy for both mother and fetus. The aim of this study was to introduce a new three-dimensional coupling analysis methods - the three-dimensional segmented Poincaré plot analyses (SPPA3) - to establish an effective approach for the detection of hypertensive pregnancy disorders and especially pre-eclampsia (PE). A cubic box model representing the three-dimensional phase space is subdivided into 12 × 12 × 12 equal predefined cubelets according to the range of the SD of each investigated signal. Additionally, we investigated the influence of rotating the cloud of points and the size of the cubelets (adapted or predefined). All single probabilities of occurring points in a specific cubelet related to the total number of points are calculated. In this study, 10 healthy non-pregnant women, 66 healthy pregnant women, and 56 hypertensive pregnant women (chronic hypertension, pregnancy-induced hypertension, and PE) were investigated. From all subjects, 30 min of beat-to-beat intervals (BBI), respiration (RESP), non-invasive systolic (SBP), and diastolic blood pressure (DBP) were continuously recorded and analyzed. Non-rotated adapted SPPA3 discriminated best between hypertensive pregnancy disorders and PE concerning coupling analysis of two or three different systems (BBI, DBP, RESP and BBI, SBP, DBP) reaching an accuracy of up to 82.9%. This could be increased to an accuracy of up to 91.2% applying multivariate analysis differentiating between all pregnant women and PE. In conclusion, SPPA3 could be a useful method for enhanced risk stratification in pregnant women.
Large-scale simulations and in-situ observations of mid-latitude and Arctic cirrus clouds
NASA Astrophysics Data System (ADS)
Rolf, Christian; Grooß, Jens-Uwe; Spichtinger, Peter; Costa, Anja; Krämer, Martina
2017-04-01
Cirrus clouds play an important role by influencing the Earth's radiation budget and the global climate (Heintzenberg and Charlson, 2009). The formation and further evolution of cirrus clouds is determined by the interplay of temperature, ice nuclei (IN) properties, relative humidity, cooling rates and ice crystal sedimentation. Thus, for a realistic simulation of cirrus clouds, a Lagrangian approach using meteorological wind fields is the best way to represent complete cirrus systems as e.g. frontal cirrus. To this end, we coupled the two moment microphysical ice model of Spichtinger and Gierens (2009) with the 3D Lagrangian model CLaMS (McKenna et al., 2002). The new CLaMS-Ice module simulates cirrus formation by including heterogeneous and homogeneous freezing as well as ice crystal sedimentation. The boxmodel is operated along CLaMS trajectories and individually initialized with the ECMWF meteorological fields. From the CLaMS-Ice three dimensional large scale cirrus simulations, we are able to assign the formation mechanism - either heterogeneous or homogeneous freezing - to specific combinations of temperatures and ice water contents. First, we compare a large mid-latitude dataset of in-situ measured cirrus microphysical properties compiled from the ML-Cirrus aircraft campaign in 2014 to ClaMS-Ice model simulations. We investigate the number of ice crystals and the ice water content with respect to temperature in a climatological way and found a good and consistent agreement between measurement and simulations. We also found that most (67 %) of the cirrus cloud cover in mid-latitude is dominated by heterogeneously formed ice crystals. Second, CLaMS-Ice model simulations in the Arctic/Polar region are performed during the POLSTRACC aircraft campaign in 2016. Higher ice crystal number concentrations are found more frequently in the Arctic region in comparison to the mid-latitude dataset. This is caused by enhanced gravity wave activity over the mountainous terrain. References: Heintzenberg, J. and Charlson, R. J.: Clouds in the perturbed climate system - Their relationship to energy balance, atmospheric dynamics, and precipitation, MIT Press, Cambridge, UK, 58-72, 2009. McKenna, D. S., Konopka, P., Grooss, J. U., Günther, G., Müller, R., Spang, R., Offermann, D.,and Orsolini, Y.: A new Chemical Lagrangian Model of the Stratosphere (CLaMS) - 1. Formulation of advection and mixing, J. Geophys. Res., 107, 4309, doi:10.1029/2000JD000114, 2002. Spichtinger, P. and Gierens, K. M.: Modelling of cirrus clouds - Part 1a: Model description and validation, Atmospheric Chemistry and Physics, 9, 685-706, 2009.
NASA Technical Reports Server (NTRS)
Papadakis, M.; Elangovan, E.; Freund, G. A., Jr.; Breer, M. D.
1987-01-01
An experimental method has been developed to determine the droplet impingement characteristics on two- and three-dimensional bodies. The experimental results provide the essential droplet impingement data required to validate particle trajectory codes, used in aircraft icing analyses and engine inlet particle separator analyses. A body whose water droplet impingement characteristics are required is covered at strategic locations by thin strips of moisture absorbing (blotter) paper, and then exposed to an air stream containing a dyed-water spray cloud. Water droplet impingement data are extracted from the dyed blotter strips, by measuring the optical reflectance of the dye deposit on the strips, using an automated reflectometer. Impingement efficiency data obtained for a NACA 65(2)015 airfoil section, a supercritical airfoil section, and Being 737-300 and axisymmetric inlet models are presented in this paper.
Ju, Jingjing; Sun, Haiyi; Sridharan, Aravindan; Wang, Tie-Jun; Wang, Cheng; Liu, Jiansheng; Li, Ruxin; Xu, Zhizhan; Chin, See Leang
2013-12-01
1 kHz, 2 mJ, 45 fs, 800 nm laser pulses were fired into a laboratory diffusion cloud chamber through a subsaturated zone (relative humidity ∼73%, T ∼ 4.3 °C). After 60 min of laser irradiation, an oval-shaped snow pile was observed right below the filament center and weighed ∼12.0 mg. The air current velocity at the edge of the vortices was estimated to be ∼16.5 cm/s. Scattering scenes recorded from the side show that filament-induced turbulence were formed inside the cloud chamber with two vortices below the filament. Two-dimensional simulations of the air flow motion in two cross sections of the cloud chamber confirm that the turbulent vortices exist below the filament. Based upon this simulation, we deduce that the vortices indeed have a three-dimensional elliptical shape. Hence, we propose that inside vortices where the humidity was supersaturated or saturated the condensation nuclei, namely, HNO(3), N(2)(+), O(2)(+) and other aerosols and impurities, were activated and grew in size. Large-sized particles would eventually be spun out along the fast moving direction towards the cold plate and formed an oval-shaped snow pile at the end.
Fractal Analyses of High-Resolution Cloud Droplet Measurements.
NASA Astrophysics Data System (ADS)
Malinowski, Szymon P.; Leclerc, Monique Y.; Baumgardner, Darrel G.
1994-02-01
Fractal analyses of individual cloud droplet distributions using aircraft measurements along one-dimensional horizontal cross sections through clouds are performed. Box counting and cluster analyses are used to determine spatial scales of inhomogeneity of cloud droplet spacing. These analyses reveal that droplet spatial distributions do not exhibit a fractal behavior. A high variability in local droplet concentration in cloud volumes undergoing mixing was found. In these regions, thin filaments of cloudy air with droplet concentration close to those observed in cloud cores were found. Results suggest that these filaments may be anisotropic. Additional box counting analyses performed for various classes of cloud droplet diameters indicate that large and small droplets are similarly distributed, except for the larger characteristic spacing of large droplets.A cloud-clear air interface defined by a certain threshold of total droplet count (TDC) was investigated. There are indications that this interface is a convoluted surface of a fractal nature, at least in actively developing cumuliform clouds. In contrast, TDC in the cloud interior does not have fractal or multifractal properties. Finally a random Cantor set (RCS) was introduced as a model of a fractal process with an ill-defined internal scale. A uniform measure associated with the RCS after several generations was introduced to simulate the TDC records. Comparison of the model with real TDC records indicates similar properties of both types of data series.
Thunderstorm observations from Space Shuttle
NASA Technical Reports Server (NTRS)
Vonnegut, B.; Vaughan, O. H., Jr.; Brook, M.
1983-01-01
Results of the Nighttime/Daytime Optical Survey of Lightning (NOSL) experiments done on the STS-2 and STS-4 flights are covered. During these two flights of the Space Shuttle Columbia, the astronaut teams of J. Engle and R. Truly, and K. Mattingly II and H. Hartsfield took motion pictures of thunderstorms with a 16 mm cine camera. Film taken during daylight showed interesting thunderstorm cloud formations, where individual frames taken tens of seconds apart, when viewed as stereo pairs, provided information on the three-dimensional structure of the cloud systems. Film taken at night showed clouds illuminated by lightning with discharges that propagated horizontally at speeds of up to 10 to the 5th m/sec and extended for distances on the order of 60 km or more.
Coaxial digital holography measures particular matter in cloud and ambient atmosphere
NASA Astrophysics Data System (ADS)
Li, Baosheng; Yu, Haonan; Jia, Yizhen; Tao, Xiaojie; Zhang, Yang
2018-02-01
In the artificially affected weather, the detection of cloud droplets particles provides an important reference for the effective impact of artificial weather. Digital holography has the unique advantages of full-field, non-contact, no damage, real-time and quantification. In this paper, coaxial digital holography is used to record the polyethylene standard particles and aluminum scrap, and some important parameters, such as three-dimensional coordinate spatial distribution and particle size, will be obtained by the means of analyzing the digital hologram of the particle. The experimental results verify the feasibility of the coaxial digital holographic device applied to the measurement of the cloud parameters, and complete the construction of the coaxial digital holographic system and the measurement of the particles.
NASA Astrophysics Data System (ADS)
Sugiyama, K.; Nakajima, K.; Odaka, M.; Kuramoto, K.; Hayashi, Y.-Y.
2014-02-01
A series of long-term numerical simulations of moist convection in Jupiter’s atmosphere is performed in order to investigate the idealized characteristics of the vertical structure of multi-composition clouds and the convective motions associated with them, varying the deep abundances of condensable gases and the autoconversion time scale, the latter being one of the most questionable parameters in cloud microphysical parameterization. The simulations are conducted using a two-dimensional cloud resolving model that explicitly represents the convective motion and microphysics of the three cloud components, H2O, NH3, and NH4SH imposing a body cooling that substitutes the net radiative cooling. The results are qualitatively similar to those reported in Sugiyama et al. (Sugiyama, K. et al. [2011]. Intermittent cumulonimbus activity breaking the three-layer cloud structure of Jupiter. Geophys. Res. Lett. 38, L13201. doi:10.1029/2011GL047878): stable layers associated with condensation and chemical reaction act as effective dynamical and compositional boundaries, intense cumulonimbus clouds develop with distinct temporal intermittency, and the active transport associated with these clouds results in the establishment of mean vertical profiles of condensates and condensable gases that are distinctly different from the hitherto accepted three-layered structure (e.g., Atreya, S.K., Romani, P.N. [1985]. Photochemistry and clouds of Jupiter, Saturn and Uranus. In: Recent Advances in Planetary Meteorology. Cambridge Univ. Press, London, pp. 17-68). Our results also demonstrate that the period of intermittent cloud activity is roughly proportional to the deep abundance of H2O gas. The autoconversion time scale does not strongly affect the results, except for the vertical profiles of the condensates. Changing the autoconversion time scale by a factor of 100 changes the intermittency period by a factor of less than two, although it causes a dramatic increase in the amount of condensates in the upper troposphere. The moist convection layer becomes potentially unstable with respect to an air parcel rising from below the H2O lifting condensation level (LCL) well before the development of cumulonimbus clouds. The instability accumulates until an appropriate trigger is provided by the H2O condensate that falls down through the H2O LCL; the H2O condensate drives a downward flow below the H2O LCL as a result of the latent cooling associated with the re-evaporation of the condensate, and the returning updrafts carry moist air from below to the moist convection layer. Active cloud development is terminated when the instability is completely exhausted. The period of intermittency is roughly equal to the time obtained by dividing the mean temperature increase, which is caused by active cumulonimbus development, by the body cooling rate.
Transverse motion of high-speed barium clouds in the ionosphere
NASA Technical Reports Server (NTRS)
Mitchell, H. G., Jr.; Fedder, J. A.; Huba, J. D.; Zalesak, S. T.
1985-01-01
Simulation results, based on a field-line-integrated, two-dimensional, electrostatic model, are presented for the motion of a barium cloud injected transverse to the geomagnetic field in the ionosphere at high speeds. It is found that the gross evaluation of injected plasma clouds depends on the initial conditions, as well as the nature of the background coupling. For a massive (mass of about 10 kg), orbital (velocity of about 5 km/s) release in the F region (350-450 km), it is found that plasma clouds can drift tens of kilometers across the magnetic field in tens of seconds after ionization. This type of release is similar to those which are planned for the Combined Release and Radiation Effects Satellite mission.
Microphysical processing of aerosol particles in orographic clouds
NASA Astrophysics Data System (ADS)
Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.
2015-08-01
An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented into COSMO-Model, the regional weather forecast and climate model of the Consortium for Small-scale Modeling (COSMO). The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed us to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen (WBF) process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snowflakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snowflakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. Thereby, the processes impact the total aerosol number and mass and additionally alter the shape of the aerosol size distributions by enhancing the internally mixed/soluble Aitken and accumulation mode and generating coarse-mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases the cloud droplet number concentration with possible implications for the ice crystal number concentration.
Cloud archiving and data mining of High-Resolution Rapid Refresh forecast model output
NASA Astrophysics Data System (ADS)
Blaylock, Brian K.; Horel, John D.; Liston, Samuel T.
2017-12-01
Weather-related research often requires synthesizing vast amounts of data that need archival solutions that are both economical and viable during and past the lifetime of the project. Public cloud computing services (e.g., from Amazon, Microsoft, or Google) or private clouds managed by research institutions are providing object data storage systems potentially appropriate for long-term archives of such large geophysical data sets. We illustrate the use of a private cloud object store developed by the Center for High Performance Computing (CHPC) at the University of Utah. Since early 2015, we have been archiving thousands of two-dimensional gridded fields (each one containing over 1.9 million values over the contiguous United States) from the High-Resolution Rapid Refresh (HRRR) data assimilation and forecast modeling system. The archive is being used for retrospective analyses of meteorological conditions during high-impact weather events, assessing the accuracy of the HRRR forecasts, and providing initial and boundary conditions for research simulations. The archive is accessible interactively and through automated download procedures for researchers at other institutions that can be tailored by the user to extract individual two-dimensional grids from within the highly compressed files. Characteristics of the CHPC object storage system are summarized relative to network file system storage or tape storage solutions. The CHPC storage system is proving to be a scalable, reliable, extensible, affordable, and usable archive solution for our research.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man
2015-01-01
Low-level clouds cover nearly half of the Earth and play a critical role in regulating the energy and hydrological cycle. Despite the fact that a great effort has been put to advance the modeling and observational capability in recent years, low-level clouds remains one of the largest uncertainties in the projection of future climate change. Low-level cloud feedbacks dominate the uncertainty in the total cloud feedback in climate sensitivity and projection studies. These clouds are notoriously difficult to simulate in climate models due to its complicated interactions with aerosols, cloud microphysics, boundary-layer turbulence and cloud dynamics. The biases in both low cloud coverage/water content and cloud radiative effects (CREs) remain large. A simultaneous reduction in both cloud and CRE biases remains elusive. This presentation first reviews the effort of implementing the higher-order turbulence closure (HOC) approach to representing subgrid-scale turbulence and low-level cloud processes in climate models. There are two HOCs that have been implemented in climate models. They differ in how many three-order moments are used. The CLUBB are implemented in both CAM5 and GDFL models, which are compared with IPHOC that is implemented in CAM5 by our group. IPHOC uses three third-order moments while CLUBB only uses one third-order moment while both use a joint double-Gaussian distribution to represent the subgrid-scale variability. Despite that HOC is more physically consistent and produces more realistic low-cloud geographic distributions and transitions between cumulus and stratocumulus regimes, GCMs with traditional cloud parameterizations outperform in CREs because tuning of this type of models is more extensively performed than those with HOCs. We perform several tuning experiments with CAM5 implemented with IPHOC in an attempt to produce the nearly balanced global radiative budgets without deteriorating the low-cloud simulation. One of the issues in CAM5-IPHOC is that cloud water content is much higher than in CAM5, which is combined with higher low-cloud coverage to produce larger shortwave CREs in some low-cloud prevailing regions. Thus, the cloud-radiative feedbacks are exaggerated there. The turning exercise is focused on microphysical parameters, which are also commonly used for tuning in climate models. The results will be discussed in this presentation.
Near-infrared scattering as a dust diagnostic
NASA Astrophysics Data System (ADS)
Saajasto, Mika; Juvela, Mika; Malinen, Johanna
2018-06-01
Context. Regarding the evolution of dust grains from diffuse regions of space to dense molecular cloud cores, many questions remain open. Scattering at near-infrared wavelengths, or "cloudshine", can provide information on cloud structure, dust properties, and the radiation field that is complementary to mid-infrared "coreshine" and observations of dust emission at longer wavelengths. Aims: We examine the possibility of using near-infrared scattering to constrain the local radiation field and the dust properties, the scattering and absorption efficiency, the size distribution of the grains, and the maximum grain size. Methods: We use radiative transfer modelling to examine the constraints provided by the J, H, and K bands in combination with mid-infrared surface brightness at 3.6 μm. We use spherical one-dimensional and elliptical three-dimensional cloud models to study the observable effects of different grain size distributions with varying absorption and scattering properties. As an example, we analyse observations of a molecular cloud in Taurus, TMC-1N. Results: The observed surface brightness ratios of the bands change when the dust properties are changed. However, even a change of ±10% in the surface brightness of one band changes the estimated power-law exponent of the size distribution γ by up to 30% and the estimated strength of the radiation field KISRF by up to 60%. The maximum grain size Amax and γ are always strongly anti-correlated. For example, overestimating the surface brightness by 10% changes the estimated radiation field strength by 20% and the exponent of the size distribution by 15%. The analysis of our synthetic observations indicates that the relative uncertainty of the parameter distributions are on average Amax, γ 25%, and the deviation between the estimated and correct values ΔQ < 15%. For the TMC-1N observations, a maximum grain size Amax > 1.5μm and a size distribution with γ > 4.0 have high probability. The mass weighted average grain size is ⟨am⟩ = 0.113μm. Conclusions: We show that scattered infrared light can be used to derive meaningful limits for the dust parameters. However, errors in the surface brightness data can result in considerable uncertainties on the derived parameters.
A Public-Private-Acadmic Partnership to Advance Solar Power Forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haupt, Sue Ellen
The National Center for Atmospheric Research (NCAR) is pleased to have led a partnership to advance the state-of-the-science of solar power forecasting by designing, developing, building, deploying, testing, and assessing the SunCast™ Solar Power Forecasting System. The project has included cutting edge research, testing in several geographically- and climatologically-diverse high penetration solar utilities and Independent System Operators (ISOs), and wide dissemination of the research results to raise the bar on solar power forecasting technology. The partners include three other national laboratories, six universities, and industry partners. This public-private-academic team has worked in concert to perform use-inspired research to advance solarmore » power forecasting through cutting-edge research to advance both the necessary forecasting technologies and the metrics for evaluating them. The project has culminated in a year-long, full-scale demonstration of provide irradiance and power forecasts to utilities and ISOs to use in their operations. The project focused on providing elements of a value chain, beginning with the weather that causes a deviation from clear sky irradiance and progresses through monitoring and observations, modeling, forecasting, dissemination and communication of the forecasts, interpretation of the forecast, and through decision-making, which produces outcomes that have an economic value. The system has been evaluated using metrics developed specifically for this project, which has provided rich information on model and system performance. Research was accomplished on the very short range (0-6 hours) Nowcasting system as well as on the longer term (6-72 hour) forecasting system. The shortest range forecasts are based on observations in the field. The shortest range system, built by Brookhaven National Laboratory (BNL) and based on Total Sky Imagers (TSIs) is TSICast, which operates on the shortest time scale with a latency of only a few minutes and forecasts that currently go out to about 15 min. This project has facilitated research in improving the hardware and software so that the new high definition cameras deployed at multiple nearby locations allow discernment of the clouds at varying levels and advection according to the winds observed at those levels. Improvements over “smart persistence” are about 29% for even these very short forecasts. StatCast is based on pyranometer data measured at the site as well as concurrent meteorological observations and forecasts. StatCast is based on regime-dependent artificial intelligence forecasting techniques and has been shown to improve on “smart persistence” forecasts by 15-50%. A second category of short-range forecasting systems employ satellite imagery and use that information to discern clouds and their motion, allowing them to project the clouds, and the resulting blockage of irradiance, in time. CIRACast (the system produced by the Cooperative Institute for Atmospheric Research [CIRA] at Colorado State University) was already one of the more advanced cloud motion systems, which is the reason that team was brought to this project. During the project timeframe, the CIRA team was able to advance cloud shadowing, parallax removal, and implementation of better advecting winds at different altitudes. CIRACast shows generally a 25-40% improvement over Smart Persistence between sunrise and approximately 1600 UTC (Coordinated Universal Time) . A second satellite-based system, MADCast (Multi-sensor Advective Diffusive foreCast system), assimilates data from multiple satellite imagers and profilers to assimilate a fully three-dimensional picture of the cloud into the dynamic core of WRF. During 2015, MADCast (provided at least 70% improvement over Smart Persistence, with most of that skill being derived during partly cloudy conditions. That allows advection of the clouds via the Weather Research and Forecasting (WRF) model dynamics directly. After WRF-Solar™ showed initial success, it was also deployed in nowcasting mode with coarser runs out to 6 hours made hourly. It provided improvements on the order of 50-60% over Smart Persistence for forecasts up to 1600 UTC. The advantages of WRF-Solar-Nowcasting and MADCast were then blended to develop the new MAD-WRF model that incorporates the most important features of each of those models, both assimilating satellite cloud fields and using WRF-So far physics to develop and dissipate clouds. MAE improvements for MAD-WRF for forecasts from 3-6 hours are improved over WRF-Solar-Now by 20%. While all the Nowcasting system components by themselves provide improvement over Smart Persistence, the largest benefit is derived when they are smartly blended together by the Nowcasting Integrator to produce an integrated forecast. The development of WRF-Solar™ under this project has provided the first numerical weather prediction (NWP) model specifically designed to meet the needs of irradiance forecasting. The first augmentation improved the solar tracking algorithm to account for deviations associated with the eccentricity of the Earth’s orbit and the obliquity of the Earth. Second, WRF-Solar™ added the direct normal irradiance (DNI) and diffuse (DIF) components from the radiation parameterization to the model output. Third, efficient parameterizations were implemented to either interpolate the irradiance in between calls to the expensive radiative transfer parameterization, or to use a fast radiative transfer code that avoids computing three-dimensional heating rates but provides the surface irradiance. Fourth, a new parameterization was developed to improve the representation of absorption and scattering of radiation by aerosols (aerosol direct effect). A fifth advance is that the aerosols now interact with the cloud microphysics, altering the cloud evolution and radiative properties, an effect that has been traditionally only implemented in atmospheric computationally costly chemistry models. A sixth development accounts for the feedbacks that sub-grid scale clouds produce in shortwave irradiance as implemented in a shallow cumulus parameterization Finally, WRF-Solar™ also allows assimilation of infrared irradiances from satellites to determine the three dimensional cloud field, allowing for an improved initialization of the cloud field that increases the performance of short-range forecasts. We find that WRF-Solar™ can improve clear sky irradiance prediction by 15-80% over a standard version of WRF, depending on location and cloud conditions. In a formal comparison to the NAM baseline, WRF-Solar™ showed improvements in the Day-Ahead forecast of 22-42%. The SunCast™ system requires substantial software engineering to blend all of the new model components as well as existing publically available NWP model runs. To do this we use an expert system for the Nowcasting blender and the Dynamic Integrated foreCast (DICast®) system for the NWP models. These two systems are then blended, we use an empirical power conversion method to convert the irradiance predictions to power, then apply an analog ensemble (AnEn) approach to further tune the forecast as well as to estimate its uncertainty. The AnEn module decreased RMSE (root mean squared error) by 17% over the blended SunCast™ power forecasts and provided skill in the probabilistic forecast with a Brier Skill Score of 0.55. In addition, we have also developed a Gridded Atmospheric Forecast System (GRAFS) in parallel, leveraging cost share funds. An economic evaluation based on Production Cost Modeling in the Public Service Company of Colorado showed that the observed 50% improvement in forecast accuracy will save their customers $819,200 with the projected MW deployment for 2024. Using econometrics, NCAR has scaled this savings to a national level and shown that an annual expected savings for this 50% forecast error reduction ranges from $11M in 2015 to $43M expected in 2040 with increased solar deployment. This amounts to a $455M discounted savings over the 26 year period of analysis.« less
Ice Cloud Formation and Dehydration in the Tropical Tropopause Layer
NASA Technical Reports Server (NTRS)
Jensen, Eric; Pfister, Leonhard; Gore, Warren J. (Technical Monitor)
2002-01-01
Stratospheric water vapor is important not only for its greenhouse forcing, but also because it plays a significant role in stratospheric chemistry. several recent studies have focused on the potential for dehydration due to ice cloud formation in air rising slowly through the tropical tropopause layer. Holton and Gettelman showed that temperature variations associated with horizontal transport of air in the tropopause layer can drive ice cloud formation and dehydration, and Gettelman et al. recently examined the cloud formation and dehydration along kinematic trajectories using simple assumptions about the cloud properties. In this study, we use a Lagrangian, one-dimensional cloud model to further investigate cloud formation and dehydration as air is transported horizontally and vertically through the tropical tropopause layer. Time-height curtains of temperature are extracted from meteorological analyses. The model tracks the growth and sedimentation of individual cloud particles. The regional distribution of clouds simulated in the model is comparable to the subvisible cirrus distribution indicated by SAGE II. The simulated cloud properties depend strongly on the assumed ice supersaturation threshold for ice nucleation. with effective nuclei present (low supersaturation threshold), ice number densities are high (0.1--10 cm(circumflex)-3), and ice crystals do not grow large enough to fall very far, resulting in limited dehydration. With higher supersaturation thresholds, ice number densities are much lower (less than 0.01 cm(circumflex)-3), and ice crystals grow large enough to fall substantially; however, supersaturated air often crosses the tropopause without cloud formation. The clouds typically do not dehydrate the air along trajectories down to the temperature minimum saturation mixing ratio. Rather the water vapor mixing ratio crossing the tropopause along trajectories is typically 10-50% larger than the saturation mixing ratio.
Global Precipitation Measurement (GPM) launch, commissioning, and early operations
NASA Astrophysics Data System (ADS)
Neeck, Steven P.; Kakar, Ramesh K.; Azarbarzin, Ardeshir A.; Hou, Arthur Y.
2014-10-01
The Global Precipitation Measurement (GPM) mission is an international partnership co-led by NASA and the Japan Aerospace Exploration Agency (JAXA). The mission centers on the GPM Core Observatory and consists of an international network, or constellation, of additional satellites that together will provide next-generation global observations of precipitation from space. The GPM constellation will provide measurements of the intensity and variability of precipitation, three-dimensional structure of cloud and storm systems, the microphysics of ice and liquid particles within clouds, and the amount of water falling to Earth's surface. Observations from the GPM constellation, combined with land surface data, will improve weather forecast models; climate models; integrated hydrologic models of watersheds; and forecasts of hurricanes/typhoons/cylcones, landslides, floods and droughts. The GPM Core Observatory carries an advanced radar/radiometer system and serves as a reference standard to unify precipitation measurements from all satellites that fly within the constellation. The GPM Core Observatory improves upon the capabilities of its predecessor, the NASA-JAXA Tropical Rainfall Measuring Mission (TRMM), with advanced science instruments and expanded coverage of Earth's surface. The GPM Core Observatory carries two instruments, the NASA-supplied GPM Microwave Imager (GMI) and the JAXA-supplied Dual-frequency Precipitation Radar (DPR). The GMI measures the amount, size, intensity and type of precipitation, from heavy-tomoderate rain to light rain and snowfall. The DPR provides three-dimensional profiles and intensities of liquid and solid precipitation. The French Centre National d'Études Spatiales (CNES), the Indian Space Research Organisation (ISRO), the U.S. National Oceanic and Atmospheric Administration (NOAA), the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), and the U.S. Department of Defense are partners with NASA and JAXA. The GPM Core Observatory was launched from JAXA's Tanegashima Space Center on an H-IIA launch vehicle on February 28, 2014 Japan Standard Time (JST). The mission has completed its checkout and commissioning phase and is in Operations Phase. The current status and early results will be discussed.
Reconstruction of 3d Models from Point Clouds with Hybrid Representation
NASA Astrophysics Data System (ADS)
Hu, P.; Dong, Z.; Yuan, P.; Liang, F.; Yang, B.
2018-05-01
The three-dimensional (3D) reconstruction of urban buildings from point clouds has long been an active topic in applications related to human activities. However, due to the structures significantly differ in terms of complexity, the task of 3D reconstruction remains a challenging issue especially for the freeform surfaces. In this paper, we present a new reconstruction algorithm which allows the 3D-models of building as a combination of regular structures and irregular surfaces, where the regular structures are parameterized plane primitives and the irregular surfaces are expressed as meshes. The extraction of irregular surfaces starts with an over-segmented method for the unstructured point data, a region growing approach based the adjacent graph of super-voxels is then applied to collapse these super-voxels, and the freeform surfaces can be clustered from the voxels filtered by a thickness threshold. To achieve these regular planar primitives, the remaining voxels with a larger flatness will be further divided into multiscale super-voxels as basic units, and the final segmented planes are enriched and refined in a mutually reinforcing manner under the framework of a global energy optimization. We have implemented the proposed algorithms and mainly tested on two point clouds that differ in point density and urban characteristic, and experimental results on complex building structures illustrated the efficacy of the proposed framework.
NASA Astrophysics Data System (ADS)
Mitchell, Jonathan
2012-04-01
Titan’s methane clouds have received much attention since they were first discovered spectroscopically (Griffith et al. 1998). Titan's seasons evolve slowly, and there is growing evidence of a seasonal response in the regions of methane cloud formation (e.g. Rodriguez et al. 2009). A complete, three-dimensional view of Titan’s clouds is possible through the determination of cloud-top heights from Cassini images (e.g., Ádámkovics et al. 2010). Even though Titan’s surface is warmed by very little sunlight, we now know Titan’s methane clouds are convective, evolving through tens of kilometers of altitude on timescales of hours to days with dynamics similar to clouds that appear on Earth (Porco et al. 2005). Cassini ISS has also shown evidence of rain storms on Titan that produce surface accumulation of methane (Turtle et al. 2009). Most recently, Cassini has revealed a 1000-km-scale, arrow-shaped cloud at the equator followed by changes that appear to be evidence of surface precipitation (Turtle et al. 2011b). Individual convective towers simulated with high fidelity indicate that surface convergence of methane humidity and dynamic lifting are required to trigger deep, precipitating convection (e.g. Barth & Rafkin 2010). The global expanses of these cloud outbursts, the evidence for surface precipitation, and the requirement of dynamic convergence and lifting at the surface to trigger deep convection motivate an analysis of storm formation in the context of Titan’s global circulation. I will review our current understanding of Titan’s methane meteorology using Cassini and ground-based observations and, in particular, global circulation model simulations of Titan’s methane cycle. When compared with cloud observations, our simulations indicate an essential role for planetary-scale atmospheric waves in organizing convective storms on large scales (Mitchell et al. 2011). I will end with predictions of Titan’s weather during the upcoming northern hemisphere summer.
Knopman, Debra S.; Voss, Clifford I.; Garabedian, Stephen P.
1991-01-01
Tests of a one-dimensional sampling design methodology on measurements of bromide concentration collected during the natural gradient tracer test conducted by the U.S. Geological Survey on Cape Cod, Massachusetts, demonstrate its efficacy for field studies of solute transport in groundwater and the utility of one-dimensional analysis. The methodology was applied to design of sparse two-dimensional networks of fully screened wells typical of those often used in engineering practice. In one-dimensional analysis, designs consist of the downstream distances to rows of wells oriented perpendicular to the groundwater flow direction and the timing of sampling to be carried out on each row. The power of a sampling design is measured by its effectiveness in simultaneously meeting objectives of model discrimination, parameter estimation, and cost minimization. One-dimensional models of solute transport, differing in processes affecting the solute and assumptions about the structure of the flow field, were considered for description of tracer cloud migration. When fitting each model using nonlinear regression, additive and multiplicative error forms were allowed for the residuals which consist of both random and model errors. The one-dimensional single-layer model of a nonreactive solute with multiplicative error was judged to be the best of those tested. Results show the efficacy of the methodology in designing sparse but powerful sampling networks. Designs that sample five rows of wells at five or fewer times in any given row performed as well for model discrimination as the full set of samples taken up to eight times in a given row from as many as 89 rows. Also, designs for parameter estimation judged to be good by the methodology were as effective in reducing the variance of parameter estimates as arbitrary designs with many more samples. Results further showed that estimates of velocity and longitudinal dispersivity in one-dimensional models based on data from only five rows of fully screened wells each sampled five or fewer times were practically equivalent to values determined from moments analysis of the complete three-dimensional set of 29,285 samples taken during 16 sampling times.
Direct simulation Monte Carlo prediction of on-orbit contaminant deposit levels for HALOE
NASA Technical Reports Server (NTRS)
Woronowicz, Michael S.; Rault, Didier F. G.
1994-01-01
A three-dimensional version of the direct simulation Monte Carlo method is adapted to assess the contamination environment surrounding a highly detailed model of the Upper Atmosphere Research Satellite. Emphasis is placed on simulating a realistic, worst-case set of flow field and surface conditions and geometric orientations for the satellite in order to estimate an upper limit for the cumulative level of volatile organic molecular deposits at the aperture of the Halogen Occultation Experiment. A detailed description of the adaptation of this solution method to the study of the satellite's environment is also presented. Results pertaining to the satellite's environment are presented regarding contaminant cloud structure, cloud composition, and statistics of simulated molecules impinging on the target surface, along with data related to code performance. Using procedures developed in standard contamination analyses, along with many worst-case assumptions, the cumulative upper-limit level of volatile organic deposits on HALOE's aperture over the instrument's 35-month nominal data collection period is estimated at about 13,350 A.
Roth, T R; Westhoff, M C; Huwald, H; Huff, J A; Rubin, J F; Barrenetxea, G; Vetterli, M; Parriaux, A; Selkeer, J S; Parlange, M B
2010-03-15
Elevated in-stream temperature has led to a surge in the occurrence of parasitic intrusion proliferative kidney disease and has resulted in fish kills throughout Switzerland's waterways. Data from distributed temperature sensing (DTS) in-stream measurements for three cloud-free days in August 2007 over a 1260 m stretch of the Boiron de Merges River in southwest Switzerland were used to calibrate and validate a physically based one-dimensional stream temperature model. Stream temperature response to three distinct riparian conditions were then modeled: open, in-stream reeds, and forest cover. Simulation predicted a mean peak stream temperature increase of 0.7 °C if current vegetation was removed, an increase of 0.1 °C if dense reeds covered the entire stream reach, and a decrease of 1.2 °C if a mature riparian forest covered the entire reach. Understanding that full vegetation canopy cover is the optimal riparian management option for limiting stream temperature, in-stream reeds, which require no riparian set-aside and grow very quickly, appear to provide substantial thermal control, potentially useful for land-use management.
Microphysics, Radiation and Surface Processes in the Goddard Cumulus Ensemble (GCE) Model
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo; Starr, David (Technical Monitor)
2002-01-01
One of the most promising methods to test the representation of cloud processes used in climate models is to use observations together with Cloud Resolving Models (CRMs). The CRMs use more sophisticated and realistic representations of cloud microphysical processes, and they can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems (size about 2-200 km). The CRMs also allow explicit interaction between out-going longwave (cooling) and in-coming solar (heating) radiation with clouds. Observations can provide the initial conditions and validation for CRM results. The Goddard Cumulus Ensemble (GCE) Model, a CRM, has been developed and improved at NASA/Goddard Space Flight Center over the past two decades. The GCE model has been used to understand the following: 1) water and energy cycles and their roles in the tropical climate system; 2) the vertical redistribution of ozone and trace constituents by individual clouds and well organized convective systems over various spatial scales; 3) the relationship between the vertical distribution of latent heating (phase change of water) and the large-scale (pre-storm) environment; 4) the validity of assumptions used in the representation of cloud processes in climate and global circulation models; and 5) the representation of cloud microphysical processes and their interaction with radiative forcing over tropical and midlatitude regions. Four-dimensional cloud and latent heating fields simulated from the GCE model have been provided to the TRMM Science Data and Information System (TSDIS) to develop and improve algorithms for retrieving rainfall and latent heating rates for TRMM and the NASA Earth Observing System (EOS). More than 90 referred papers using the GCE model have been published in the last two decades. Also, more than 10 national and international universities are currently using the GCE model for research and teaching. In this talk, five specific major GCE improvements: (1) ice microphysics, (2) longwave and shortwave radiative transfer processes, (3) land surface processes, (4) ocean surface fluxes and (5) ocean mixed layer processes are presented. The performance of these new GCE improvements will be examined. Observations are used for model validation.
A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds
Hagos, Samson; Feng, Zhe; Plant, Robert S.; ...
2018-02-20
A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii)more » the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. Finally, in addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.« less
A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds
NASA Astrophysics Data System (ADS)
Hagos, Samson; Feng, Zhe; Plant, Robert S.; Houze, Robert A.; Xiao, Heng
2018-02-01
A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii) the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. In addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.
A Stochastic Framework for Modeling the Population Dynamics of Convective Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagos, Samson; Feng, Zhe; Plant, Robert S.
A stochastic prognostic framework for modeling the population dynamics of convective clouds and representing them in climate models is proposed. The framework follows the nonequilibrium statistical mechanical approach to constructing a master equation for representing the evolution of the number of convective cells of a specific size and their associated cloud-base mass flux, given a large-scale forcing. In this framework, referred to as STOchastic framework for Modeling Population dynamics of convective clouds (STOMP), the evolution of convective cell size is predicted from three key characteristics of convective cells: (i) the probability of growth, (ii) the probability of decay, and (iii)more » the cloud-base mass flux. STOMP models are constructed and evaluated against CPOL radar observations at Darwin and convection permitting model (CPM) simulations. Multiple models are constructed under various assumptions regarding these three key parameters and the realisms of these models are evaluated. It is shown that in a model where convective plumes prefer to aggregate spatially and the cloud-base mass flux is a nonlinear function of convective cell area, the mass flux manifests a recharge-discharge behavior under steady forcing. Such a model also produces observed behavior of convective cell populations and CPM simulated cloud-base mass flux variability under diurnally varying forcing. Finally, in addition to its use in developing understanding of convection processes and the controls on convective cell size distributions, this modeling framework is also designed to serve as a nonequilibrium closure formulations for spectral mass flux parameterizations.« less
The Importance of Three Physical Processes in a Minimal Three-Dimensional Tropical Cyclone Model.
NASA Astrophysics Data System (ADS)
Zhu, Hongyan; Smith, Roger K.
2002-06-01
The minimal three-dimensional tropical cyclone model developed by Zhu et al. is used to explore the role of shallow convection, precipitation-cooled downdrafts, and the vertical transport of momentum by deep convection on the dynamics of tropical cyclone intensification. The model is formulated in coordinates and has three vertical levels, one characterizing a shallow boundary layer, and the other two representing the upper and lower troposphere, respectively. It has three options for treating cumulus convection on the subgrid scale and a simple scheme for the explicit release of latent heat on the grid scale.In the model, as in reality, shallow convection transports air with low moist static energy from the lower troposphere to the boundary layer, stabilizing the atmosphere not only to itself, but also to deep convection. Also it moistens and cools the lower troposphere. For realistic parameter values, the stabilization in the vortex core region is the primary effect: it reduces the deep convective mass flux and therefore the rate of heating and drying in the troposphere. This reduced heating, together with the direct cooling of the lower troposphere by shallow convection, diminishes the buoyancy in the vortex core and thereby the vortex intensification rate.The effects of precipitation-cooled downdrafts depend on the closure scheme chosen for deep convection. In the two closures in which the deep cloud mass flux depends on the degree of convective instability, the downdrafts do not change the total mass flux of air that subsides into the boundary layer, but they carry air with a lower moist static energy into this layer than does subsidence outside downdrafts. As a result they decrease the rate of intensification during the early development stage. Nevertheless, by reducing the deep convective mass flux and the drying effect of compensating subsidence, they enable grid scale saturation, and therefore rapid intensification, to occur earlier than in calculations where they are excluded. In the closure in which the deep cloud mass flux depends on the mass convergence in the boundary layer, downdrafts reduce the gestation period and increase the intensification rate.Convective momentum transport as represented in the model weakens both the primary and secondary circulations of the vortex. However, it does not significantly reduce the maximum intensity attained after the period of rapid development. The weakening of the secondary circulation impedes vortex development and significantly prolongs the gestation period.Where possible the results are compared with those found in other studies.
Application of the CERES Flux-by-Cloud Type Simulator to GCM Output
NASA Technical Reports Server (NTRS)
Eitzen, Zachary; Su, Wenying; Xu, Kuan-Man; Loeb, Norman G.; Sun, Moguo; Doelling, David R.; Bodas-Salcedo, Alejandro
2016-01-01
The CERES Flux By CloudType data product produces CERES top-of-atmosphere (TOA) fluxes by region and cloud type. Here, the cloud types are defined by cloud optical depth (t) and cloud top pressure (pc), with bins similar to those used by ISCCP (International Satellite Cloud Climatology Project). This data product has the potential to be a powerful tool for the evaluation of the clouds produced by climate models by helping to identify which physical parameterizations have problems (e.g., boundary-layer parameterizations, convective clouds, processes that affect surface albedo). Also, when the flux-by-cloud type and frequency of cloud types are simultaneously used to evaluate a model, the results can determine whether an unrealistically large or small occurrence of a given cloud type has an important radiative impact for a given region. A simulator of the flux-by-cloud type product has been applied to three-hourly data from the year 2008 from the UK Met Office HadGEM2-A model using the Langley Fu-Lour radiative transfer model to obtain TOA SW and LW fluxes.
Simplified ISCCP cloud regimes for evaluating cloudiness in CMIP5 models
NASA Astrophysics Data System (ADS)
Jin, Daeho; Oreopoulos, Lazaros; Lee, Dongmin
2017-01-01
We take advantage of ISCCP simulator data available for many models that participated in CMIP5, in order to introduce a framework for comparing model cloud output with corresponding ISCCP observations based on the cloud regime (CR) concept. Simplified global CRs are employed derived from the co-variations of three variables, namely cloud optical thickness, cloud top pressure and cloud fraction ( τ, p c , CF). Following evaluation criteria established in a companion paper of ours (Jin et al. 2016), we assess model cloud simulation performance based on how well the simplified CRs are simulated in terms of similarity of centroids, global values and map correlations of relative-frequency-of-occurrence, and long-term total cloud amounts. Mirroring prior results, modeled clouds tend to be too optically thick and not as extensive as in observations. CRs with high-altitude clouds from storm activity are not as well simulated here compared to the previous study, but other regimes containing near-overcast low clouds show improvement. Models that have performed well in the companion paper against CRs defined by joint τ- p c histograms distinguish themselves again here, but improvements for previously underperforming models are also seen. Averaging across models does not yield a drastically better picture, except for cloud geographical locations. Cloud evaluation with simplified regimes seems thus more forgiving than that using histogram-based CRs while still strict enough to reveal model weaknesses.
Mapping the Extinction Curve in 3D: Structure on Kiloparsec Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlafly, E. F.; Peek, J. E. G.; Finkbeiner, D. P.
Near-infrared spectroscopy from APOGEE and wide-field optical photometry from Pan-STARRS1 have recently made precise measurements of the shape of the extinction curve possible for tens of thousands of stars, parameterized by R ( V ). These measurements revealed structures in R ( V ) with large angular scales, which are challenging to explain in existing dust paradigms. In this work, we combine three-dimensional maps of dust column density with R ( V ) measurements to constrain the three-dimensional distribution of R ( V ) in the Milky Way. We find that the variations in R ( V ) are correlatedmore » on kiloparsec scales. In particular, most of the dust within one kiloparsec in the outer Galaxy, including many local molecular clouds (Orion, Taurus, Perseus, California, and Cepheus), has a significantly lower R ( V ) than more distant dust in the Milky Way. These results provide new input to models of dust evolution and processing, and complicate the application of locally derived extinction curves to more distant regions of the Milky Way and to other galaxies.« less
NASA Technical Reports Server (NTRS)
Shirer, H. N. (Editor); Dutton, J. A. (Editor)
1985-01-01
A two layer spectral quasi-geostrophic model is used to simulate the effects of topography on the equilibria, the stability, and the long term evaluation of incipient unstable waves. The flow is forced by latitudinally dependent radiational heating. The nature of the form drag instability of high index equilibria is investigated. The proximity of the equilibrium shear to a resonant value is essential for the instability, provided the equilibrium occurs at a slightly stronger shear than resonance. The properties of the steady Hadley and Rossby required for a thermally forced rotating fluid on a sphere are further explained. An objective parameterization technique is developed for general nonlinear hydrodynamical systems. The typical structure is one in which the rates of change of the dependent variables depend on homogeneous quadratic and linear forms, as well as on inhomogeneous forcing terms. Also documented is a steady, axisymmetric model of the general circulation developed as a basis for climate stability studies. The model includes the effects of heating, rotation, and internal friction, but neglects topography. Included is further research on cloud street phenomena. Orientation angles and horizontal wavelengths of boundary layer rolls and cloud streets are determined from an analysis of a truncated spectral model of three dimensional shallow moist Boussinesq convection in a shearing environment is further explained. Relatively broadly spaced roll clouds have orientations for which the Fourier component of the roll perpendicular shear is nearly zero, but the second corresponds to narrowly spaced rolls having orientations for which the Fourier coefficients of both the perpendicular and the parallel components of the shear are nearly equal.
NASA Astrophysics Data System (ADS)
Ma, Hongchao; Cai, Zhan; Zhang, Liang
2018-01-01
This paper discusses airborne light detection and ranging (LiDAR) point cloud filtering (a binary classification problem) from the machine learning point of view. We compared three supervised classifiers for point cloud filtering, namely, Adaptive Boosting, support vector machine, and random forest (RF). Nineteen features were generated from raw LiDAR point cloud based on height and other geometric information within a given neighborhood. The test datasets issued by the International Society for Photogrammetry and Remote Sensing (ISPRS) were used to evaluate the performance of the three filtering algorithms; RF showed the best results with an average total error of 5.50%. The paper also makes tentative exploration in the application of transfer learning theory to point cloud filtering, which has not been introduced into the LiDAR field to the authors' knowledge. We performed filtering of three datasets from real projects carried out in China with RF models constructed by learning from the 15 ISPRS datasets and then transferred with little to no change of the parameters. Reliable results were achieved, especially in rural area (overall accuracy achieved 95.64%), indicating the feasibility of model transfer in the context of point cloud filtering for both easy automation and acceptable accuracy.
Cloud Model-Based Artificial Immune Network for Complex Optimization Problem
Wang, Mingan; Li, Jianming; Guo, Dongliang
2017-01-01
This paper proposes an artificial immune network based on cloud model (AINet-CM) for complex function optimization problems. Three key immune operators—cloning, mutation, and suppression—are redesigned with the help of the cloud model. To be specific, an increasing half cloud-based cloning operator is used to adjust the dynamic clone multipliers of antibodies, an asymmetrical cloud-based mutation operator is used to control the adaptive evolution of antibodies, and a normal similarity cloud-based suppressor is used to keep the diversity of the antibody population. To quicken the searching convergence, a dynamic searching step length strategy is adopted. For comparative study, a series of numerical simulations are arranged between AINet-CM and the other three artificial immune systems, that is, opt-aiNet, IA-AIS, and AAIS-2S. Furthermore, two industrial applications—finite impulse response (FIR) filter design and proportional-integral-differential (PID) controller tuning—are investigated and the results demonstrate the potential searching capability and practical value of the proposed AINet-CM algorithm. PMID:28630620
Cloud Model-Based Artificial Immune Network for Complex Optimization Problem.
Wang, Mingan; Feng, Shuo; Li, Jianming; Li, Zhonghua; Xue, Yu; Guo, Dongliang
2017-01-01
This paper proposes an artificial immune network based on cloud model (AINet-CM) for complex function optimization problems. Three key immune operators-cloning, mutation, and suppression-are redesigned with the help of the cloud model. To be specific, an increasing half cloud-based cloning operator is used to adjust the dynamic clone multipliers of antibodies, an asymmetrical cloud-based mutation operator is used to control the adaptive evolution of antibodies, and a normal similarity cloud-based suppressor is used to keep the diversity of the antibody population. To quicken the searching convergence, a dynamic searching step length strategy is adopted. For comparative study, a series of numerical simulations are arranged between AINet-CM and the other three artificial immune systems, that is, opt-aiNet, IA-AIS, and AAIS-2S. Furthermore, two industrial applications-finite impulse response (FIR) filter design and proportional-integral-differential (PID) controller tuning-are investigated and the results demonstrate the potential searching capability and practical value of the proposed AINet-CM algorithm.
High fidelity 3-dimensional models of beam-electron cloud interactions in circular accelerators
NASA Astrophysics Data System (ADS)
Feiz Zarrin Ghalam, Ali
Electron cloud is a low-density electron profile created inside the vacuum chamber of circular machines with positively charged beams. Electron cloud limits the peak current of the beam and degrades the beams' quality through luminosity degradation, emittance growth and head to tail or bunch to bunch instability. The adverse effects of electron cloud on long-term beam dynamics becomes more and more important as the beams go to higher and higher energies. This problem has become a major concern in many future circular machines design like the Large Hadron Collider (LHC) under construction at European Center for Nuclear Research (CERN). Due to the importance of the problem several simulation models have been developed to model long-term beam-electron cloud interaction. These models are based on "single kick approximation" where the electron cloud is assumed to be concentrated at one thin slab around the ring. While this model is efficient in terms of computational costs, it does not reflect the real physical situation as the forces from electron cloud to the beam are non-linear contrary to this model's assumption. To address the existing codes limitation, in this thesis a new model is developed to continuously model the beam-electron cloud interaction. The code is derived from a 3-D parallel Particle-In-Cell (PIC) model (QuickPIC) originally used for plasma wakefield acceleration research. To make the original model fit into circular machines environment, betatron and synchrotron equations of motions have been added to the code, also the effect of chromaticity, lattice structure have been included. QuickPIC is then benchmarked against one of the codes developed based on single kick approximation (HEAD-TAIL) for the transverse spot size of the beam in CERN-LHC. The growth predicted by QuickPIC is less than the one predicted by HEAD-TAIL. The code is then used to investigate the effect of electron cloud image charges on the long-term beam dynamics, particularly on the transverse tune shift of the beam at CERN Super Proton Synchrotron (SPS) ring. The force from the electron cloud image charges on the beam cancels the force due to cloud compression formed on the beam axis and therefore the tune shift is mainly due to the uniform electron cloud density. (Abstract shortened by UMI.)
Laser Scanning in Engineering Surveying: Methods of Measurement and Modeling of Structures
NASA Astrophysics Data System (ADS)
Lenda, Grzegorz; Uznański, Andrzej; Strach, Michał; Lewińska, Paulina
2016-06-01
The study is devoted to the uses of laser scanning in the field of engineering surveying. It is currently one of the main trends of research which is developed at the Department of Engineering Surveying and Civil Engineering at the Faculty of Mining Surveying and Environmental Engineering of AGH University of Science and Technology in Krakow. They mainly relate to the issues associated with tower and shell structures, infrastructure of rail routes, or development of digital elevation models for a wide range of applications. These issues often require the use of a variety of scanning techniques (stationary, mobile), but the differences also regard the planning of measurement stations and methods of merging point clouds. Significant differences appear during the analysis of point clouds, especially when modeling objects. Analysis of the selected parameters is already possible basing on ad hoc measurements carried out on a point cloud. However, only the construction of three-dimensional models provides complete information about the shape of structures, allows to perform the analysis in any place and reduces the amount of the stored data. Some structures can be modeled in the form of simple axes, sections, or solids, for others it becomes necessary to create sophisticated models of surfaces, depicting local deformations. The examples selected for the study allow to assess the scope of measurement and office work for a variety of uses related to the issue set forth in the title of this study. Additionally, the latest, forward-looking technology was presented - laser scanning performed from Unmanned Aerial Vehicles (drones). Currently, it is basically in the prototype phase, but it might be expected to make a significant progress in numerous applications in the field of engineering surveying.
NASA Astrophysics Data System (ADS)
Perlwitz, J. P.; Knopf, D. A.; Fridlind, A. M.; Miller, R. L.; Pérez García-Pando, C.; DeMott, P. J.
2016-12-01
The effect of aerosol particles on the radiative properties of clouds, the so-called, indirect effect of aerosols, is recognized as one of the largest sources of uncertainty in climate prediction. The distribution of water vapor, precipitation, and ice cloud formation are influenced by the atmospheric ice formation, thereby modulating cloud albedo and thus climate. It is well known that different particle types possess different ice formation propensities with mineral dust being a superior ice nucleating particle (INP) compared to soot particles. Furthermore, some dust mineral types are more proficient INP than others, depending on temperature and relative humidity.In recent work, we have presented an improved dust aerosol module in the NASA GISS Earth System ModelE2 with prognostic mineral composition of the dust aerosols. Thus, there are regional variations in dust composition. We evaluated the predicted mineral fractions of dust aerosols by comparing them to measurements from a compilation of about 60 published literature references. Additionally, the capability of the model to reproduce the elemental composition of the simulated dusthas been tested at Izana Observatory at Tenerife, Canary Islands, which is located off-shore of Africa and where frequent dust events are observed. We have been able to show that the new approach delivers a robust improvement of the predicted mineral fractions and elemental composition of dust.In the current study, we use three-dimensional dust mineral fields and thermodynamic conditions, which are simulated using GISS ModelE, to calculate offline the INP concentrations derived using different ice nucleation parameterizations that are currently discussed. We evaluate the calculated INP concentrations from the different parameterizations by comparing them to INP concentrations from field measurements.
NASA Astrophysics Data System (ADS)
Gan, Yi; Chang, Chun-Hsiang; Wu, Ming-Chee
2016-04-01
The limestone cave, Lobster Cave, located in the Kenting National Park of southern Taiwan, is yielding numerous Pleistocene mammalian fossils buried within the continental deposits. In this study, fossil molars of clouded leopard (Neofelis nebulosa) recovered from the same horizon in the cave, were examined. Three isolated felid molars; p3, p4 and m1, having a series of progressive increase in size, were believed as belonged to the same individual. Traditional linear measurement and two-dimensional geometric morphometric analysis for the occlusal surface outlines have been conducted on the fossil molars; comparisons were also done with the extant clouded leopard. Results obtained have shown that the cave fossil clouded leopard is closer to the extant clouded leopard in molar characters; but, are slightly larger than the extant ones in their size. Nevertheless, even the clouded leopard in Taiwan was regarded as to have been extinct and its past existence has still been in doubt, the current study revealed that the clouded leopards have inhabited in Taiwan since Pleistocene, and has a larger body size than that of the recent one.
Visible/Infrared Optical Depths of Cirrus as Seen by Satellite and Scanning Lidar
NASA Technical Reports Server (NTRS)
Wylie, Donald; Wolf, Walt; Piironen, Paivi; Eloranta, Edwin
1996-01-01
The High Spectral Resolution Lidar (HSRL) and the Volume Imaging Lidar (VIL) were combined to produce a quantitative image of the visible optical depth of cirrus clouds. The HSRL was used to calibrate the VIL signal into backscatter cross sections of particulates. The backscatter cross sections were related to extinction by a constant backscatter phase function determined from the HSRL data. This produced a three dimensional image of visual extinction in the cirrus clouds over a one hour period. Two lidar images were constructed from one hour VIL cross section records.
Robotic situational awareness of actions in human teaming
NASA Astrophysics Data System (ADS)
Tahmoush, Dave
2015-06-01
When robots can sense and interpret the activities of the people they are working with, they become more of a team member and less of just a piece of equipment. This has motivated work on recognizing human actions using existing robotic sensors like short-range ladar imagers. These produce three-dimensional point cloud movies which can be analyzed for structure and motion information. We skeletonize the human point cloud and apply a physics-based velocity correlation scheme to the resulting joint motions. The twenty actions are then recognized using a nearest-neighbors classifier that achieves good accuracy.
The 1980 eruptions of Mount St. Helens - Physical and chemical processes in the stratospheric clouds
NASA Technical Reports Server (NTRS)
Turco, R. P.; Toon, O. B.; Whitten, R. C.; Hamill, P.; Keesee, R. G.
1983-01-01
The large and diverse set of observational data collected in the high-altitude plumes of the May 18, May 25, and June 13, 1980 eruptions is organized and analyzed with a view to discerning the processes at work. The data serve to guide and constrain detailed model simulations of the volcanic clouds. For this purpose, use is made of a comprehensive one-dimensional model of stratospheric sulfate aerosols, sulfur precursor gases, and volcanic ash and dust. The model takes into account gas-phase and condensed-phase (heterogeneous) chemistry in the clouds, aerosol nucleation and growth, and cloud expansion. Computational results are presented for the time histories of the gaseous species concentrations, aerosol size distributions, and ash burdens of the eruption clouds. Also investigated are the long-term buildup of stratospheric aerosols in the Northern Hemisphere and the persistent effects of injected chlorine and water vapor on stratospheric ozone. It is concluded that SO2, water vapor, and ash were probably the most important substances injected into the stratosphere by the Mount St. Helens volcano, both with respect to their widespread effects on composition and their effect on climate.
Role of Gravity Waves in Determining Cirrus Cloud Properties
NASA Technical Reports Server (NTRS)
OCStarr, David; Singleton, Tamara; Lin, Ruei-Fong
2008-01-01
Cirrus clouds are important in the Earth's radiation budget. They typically exhibit variable physical properties within a given cloud system and from system to system. Ambient vertical motion is a key factor in determining the cloud properties in most cases. The obvious exception is convectively generated cirrus (anvils), but even in this case, the subsequent cloud evolution is strongly influenced by the ambient vertical motion field. It is well know that gravity waves are ubiquitous in the atmosphere and occur over a wide range of scales and amplitudes. Moreover, researchers have found that inclusion of statistical account of gravity wave effects can markedly improve the realism of simulations of persisting large-scale cirrus cloud features. Here, we use a 1 -dimensional (z) cirrus cloud model, to systematically examine the effects of gravity waves on cirrus cloud properties. The model includes a detailed representation of cloud microphysical processes (bin microphysics and aerosols) and is run at relatively fine vertical resolution so as to adequately resolve nucleation events, and over an extended time span so as to incorporate the passage of multiple gravity waves. The prescribed gravity waves "propagate" at 15 m s (sup -1), with wavelengths from 5 to 100 km, amplitudes range up to 1 m s (sup -1)'. Despite the fact that the net gravity wave vertical motion forcing is zero, it will be shown that the bulk cloud properties, e.g., vertically-integrated ice water path, can differ quite significantly from simulations without gravity waves and that the effects do depend on the wave characteristics. We conclude that account of gravity wave effects is important if large-scale models are to generate realistic cirrus cloud property climatology (statistics).
Three-moment representation of rain in a cloud microphysics model
NASA Astrophysics Data System (ADS)
Paukert, M.; Fan, J.; Rasch, P. J.; Morrison, H.; Milbrandt, J.; Khain, A.; Shpund, J.
2017-12-01
Two-moment microphysics schemes have been commonly used for cloud simulation in models across different scales - from large-eddy simulations to global climate models. These schemes have yielded valuable insights into cloud and precipitation processes, however the size distributions are limited to two degrees of freedom, and thus the shape parameter is typically fixed or diagnosed. We have developed a three-moment approach for the rain category in order to provide an additional degree of freedom to the size distribution and thereby improve the cloud microphysics representations for more accurate weather and climate simulations. The approach is applied to the Predicted Particle Properties (P3) scheme. In addition to the rain number and mass mixing ratios predicted in the two-moment P3, we now include prognostic equations for the sixth moment of the size distribution (radar reflectivity), thus allowing the shape parameter to evolve freely. We employ the spectral bin microphysics (SBM) model to formulate the three-moment process rates in P3 for drop collisions and breakup. We first test the three-moment scheme with a maritime stratocumulus case from the VOCALS field campaign, and compare the model results with respect to cloud and precipitation properties from the new P3 scheme, original two-moment P3 scheme, SBM, and in-situ aircraft measurements. The improved simulation results by the new P3 scheme will be discussed and physically explained.
NASA Astrophysics Data System (ADS)
Lee, H.-H.; Chen, S.-H.; Kleeman, M. J.; Zhang, H.; DeNero, S. P.; Joe, D. K.
2015-11-01
The source-oriented Weather Research and Forecasting chemistry model (SOWC) was modified to include warm cloud processes and applied to investigate how aerosol mixing states influence fog formation and optical properties in the atmosphere. SOWC tracks a 6-dimensional chemical variable (X, Z, Y, Size Bins, Source Types, Species) through an explicit simulation of atmospheric chemistry and physics. A source-oriented cloud condensation nuclei module was implemented into the SOWC model to simulate warm clouds using the modified two-moment Purdue Lin microphysics scheme. The Goddard shortwave and longwave radiation schemes were modified to interact with source-oriented aerosols and cloud droplets so that aerosol direct and indirect effects could be studied. The enhanced SOWC model was applied to study a fog event that occurred on 17 January 2011, in the Central Valley of California. Tule fog occurred because an atmospheric river effectively advected high moisture into the Central Valley and nighttime drainage flow brought cold air from mountains into the valley. The SOWC model produced reasonable liquid water path, spatial distribution and duration of fog events. The inclusion of aerosol-radiation interaction only slightly modified simulation results since cloud optical thickness dominated the radiation budget in fog events. The source-oriented mixture representation of particles reduced cloud droplet number relative to the internal mixture approach that artificially coats hydrophobic particles with hygroscopic components. The fraction of aerosols activating into CCN at a supersaturation of 0.5 % in the Central Valley decreased from 94 % in the internal mixture model to 80 % in the source-oriented model. This increased surface energy flux by 3-5 W m-2 and surface temperature by as much as 0.25 K in the daytime.
a Voxel-Based Filtering Algorithm for Mobile LIDAR Data
NASA Astrophysics Data System (ADS)
Qin, H.; Guan, G.; Yu, Y.; Zhong, L.
2018-04-01
This paper presents a stepwise voxel-based filtering algorithm for mobile LiDAR data. In the first step, to improve computational efficiency, mobile LiDAR points, in xy-plane, are first partitioned into a set of two-dimensional (2-D) blocks with a given block size, in each of which all laser points are further organized into an octree partition structure with a set of three-dimensional (3-D) voxels. Then, a voxel-based upward growing processing is performed to roughly separate terrain from non-terrain points with global and local terrain thresholds. In the second step, the extracted terrain points are refined by computing voxel curvatures. This voxel-based filtering algorithm is comprehensively discussed in the analyses of parameter sensitivity and overall performance. An experimental study performed on multiple point cloud samples, collected by different commercial mobile LiDAR systems, showed that the proposed algorithm provides a promising solution to terrain point extraction from mobile point clouds.
Study of the Fine-Scale Structure of Cumulus Clouds.
NASA Astrophysics Data System (ADS)
Rodi, Alfred R.
Small cumulus clouds are studied using data from an instrumented aircraft. Two aspects of the role of turbulence and mixing in these couds are examined: (1) the effect of mixing on the droplet size distribution, and (2) the effect of turbulence on the spread of ice crystal plumes artificially generated with cloud seeding agents. The data were collected in the course of the Bureau of Reclamation's High Plains Cooperative Experiment (HIPLEX) in Montana in the summers of 1978-80 by the University of Wyoming King Air aircraft. The shape of the cloud droplet spectrum as measured by the Particle Measuring Systems (PMS) Forward Scattering Spectrometer Probe (FSSP) is found to be very sensitive to entrainment of dry environmental air into the cloud. The narrowest cloud droplet spectra, the highest droplet concentrations, and the largest sized droplets are found in the cloud parcels which are least affected by entrainment. The most dilute regions of cloud exhibit the broadest spectra which are frequently bimodal. A procedure for measuring cloud inhomogeneity from FSSP is developed. The data shows that the clouds are extremely inhomogeneous in structure. Current models of inhomogeneous mixing are shown to be inadequate in explaining droplet spectrum effects. However, the inhomogeneous models characterize the data far better than classical models of droplet spectrum evolution. High resolution measurements of ice crystals from the PMS two dimensional imaging probe are used to characterize the spread of the ice crystal plume in seeded clouds. Plume spread is found to be a very complicated process which is in some cases dominated by organized motions in the cloud. As a result, classical diffusion theory is often inadequate to predict plume growth. The turbulent diffusion that occurs is shown to be best modeled using the relative diffusion concept of Richardson. Procedures for adapting aircraft data to the relative diffusion model are developed, including techniques for converting the aircraft Eulerian data into estimates of Lagrangian correlations. Predictions of the model are compared with observations of plume growth. A detailed analysis of errors in the air motion sensing system on the aircraft is presented. A procedure is developed to estimate the errors due to aircraft gyroscope sensitivity to horizontal accelerations.
Point-based and model-based geolocation analysis of airborne laser scanning data
NASA Astrophysics Data System (ADS)
Sefercik, Umut Gunes; Buyuksalih, Gurcan; Jacobsen, Karsten; Alkan, Mehmet
2017-01-01
Airborne laser scanning (ALS) is one of the most effective remote sensing technologies providing precise three-dimensional (3-D) dense point clouds. A large-size ALS digital surface model (DSM) covering the whole Istanbul province was analyzed by point-based and model-based comprehensive statistical approaches. Point-based analysis was performed using checkpoints on flat areas. Model-based approaches were implemented in two steps as strip to strip comparing overlapping ALS DSMs individually in three subareas and comparing the merged ALS DSMs with terrestrial laser scanning (TLS) DSMs in four other subareas. In the model-based approach, the standard deviation of height and normalized median absolute deviation were used as the accuracy indicators combined with the dependency of terrain inclination. The results demonstrate that terrain roughness has a strong impact on the vertical accuracy of ALS DSMs. From the relative horizontal shifts determined and partially improved by merging the overlapping strips and comparison of the ALS, and the TLS, data were found not to be negligible. The analysis of ALS DSM in relation to TLS DSM allowed us to determine the characteristics of the DSM in detail.
Star-Forming Clouds Feed, Churn, and Fall
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-12-01
Molecular clouds, the birthplaces of stars in galaxies throughout the universe, are complicated and dynamic environments. A new series of simulations has explored how these clouds form, grow, and collapse over their lifetimes.This composite image shows part of the Taurus Molecular Cloud. [ESO/APEX (MPIfR/ESO/OSO)/A. Hacar et al./Digitized Sky Survey]Stellar BirthplacesMolecular clouds form out of the matter in between stars, evolving through constant interactions with their turbulent environments. These interactions taking the form of accretion flows and surface forces, while gravity, turbulence, and magnetic fields interplay are thought to drive the properties and evolution of the clouds.Our understanding of the details of this process, however, remains fuzzy. How does mass accretion affect these clouds as they evolve? What happens when nearby supernova explosions blast the outsides of the clouds? What makes the clouds churn, producing the motion within them that prevents them from collapsing? The answers to these questions can tellus about the gas distributed throughout galaxies, revealing information about the environments in which stars form.A still from the simulation results showing the broader population of molecular clouds that formed in the authors simulations, as well as zoom-in panels of three low-mass clouds tracked in high resolution. [Ibez-Meja et al. 2017]Models of TurbulenceIn a new study led by Juan Ibez-Meja (MPI Garching and Universities of Heidelberg and Cologne in Germany, and American Museum of Natural History), scientists have now explored these questions using a series of three-dimensional simulations of a population of molecular clouds forming and evolving in the turbulent interstellar medium.The simulations take into account a whole host of physics, including the effects of nearby supernova explosions, self-gravitation, magnetic fields, diffuse heating, and radiative cooling. After looking at the behavior of the broader population of clouds, the authors zoom in and explore three clouds in high-resolution to learn more about the details.Watching Clouds EvolveIbez-Meja and collaborators find that mass accretion occurring after the molecular clouds form plays an important role in the clouds evolution, increasing the mass available to form stars and carrying kinetic energy into the cloud. The accretion process is driven both by background turbulent flows and gravitational attraction as the cloud draws in the gas in its nearby environment.Plots of the cloud mass and radius (top) and mass accretion rate (bottom) for one of the three zoomed-in clouds, shown as a function of time over the 10-Myr simulation. [Adapted from Ibez-Meja et al. 2017]The simulations show that nearby supernovae have two opposing effects on a cloud. On one hand, the blast waves from supernovae compress the envelope of the cloud, increasing the instantaneous rate of accretion. On the other hand, the blast waves disrupt parts of the envelope and erode mass from the clouds surface, decreasing accretion overall. These events ensure that the mass accretion rate of molecular clouds is non-uniform, regularly punctuated by sporadic increases and decreases as the clouds are battered by nearby explosions.Lastly, Ibez-Meja and collaborators show that mass accretion alone isnt enough to power the turbulent internal motions we observe inside molecular clouds. Instead, they conclude, the cloud motions must be primarily powered by gravitational potential energy being converted into kinetic energy as the cloud contracts.The authors simulations therefore show that molecular clouds exist in a state of precarious balance, prevented from collapsing by internal turbulence driven by interactions with their environment and by their own contraction. These results give us an intriguing glimpse into the complex environments in which stars are born.BonusCheck out the animated figure below, which displays how the clouds in the authors simulations evolve over the span of 10 million years.http://cdn.iopscience.com/images/0004-637X/850/1/62/Full/apjaa93fef1_video.mp4CitationJuan C. Ibez-Meja et al 2017 ApJ 850 62. doi:10.3847/1538-4357/aa93fe
NASA Technical Reports Server (NTRS)
Kessinger, C. J.; Wilson, J. W.; Weisman, M.; Klemp, J.
1984-01-01
Data from three NCAR radars are used in both single and dual Doppler analyses to trace the evolution of a June 30, 1982 Colorado convective storm containing downburst-type winds and strong vortices 1-2 km in diameter. The analyses show that a series of small circulations formed along a persistent cyclonic shear boundary; at times as many as three misocyclones were present with vertical vorticity values as large as 0.1/s using a 0.25 km grid interval. The strength of the circulations suggests the possibility of accompanying tornadoes or funnels, although none were observed. Dual-Doppler analyses show that strong, small-scale downdrafts develop in close proximity to the misocyclones. A midlevel mesocyclone formed in the same general region of the storm where the misocylones later developed. The observations are compared with numerical simulations from a three-dimensional cloud model initialized with sounding data from the same day.
Dynamical Zodiacal Cloud Models Constrained by High Resolution Spectroscopy of the Zodiacal Light
NASA Technical Reports Server (NTRS)
Ipatov, S. I.; Kutyrev, A. S.; Madsen, G. J.; Mather, J. C.; Moseley, S. H.; Reynolds, R. J.
2005-01-01
We have developed a set of self-consistent dynamical models of the Zodiacal cloud, following the orbital evolution of dust particles. Three populations were considered, originating from the Kuiper belt, asteroids and comets. Using the models developed, we investigated how the solar spectrum is changed by scattering by the zodiacal cloud grains and compared the obtained spectra with the observations.
NASA Astrophysics Data System (ADS)
Griessbach, Sabine; Hoffmann, Lars; Höpfner, Michael; Riese, Martin; Spang, Reinhold
2013-09-01
The viability of a spectrally averaging model to perform radiative transfer calculations in the infrared including scattering by atmospheric particles is examined for the application of infrared limb remote sensing measurements. Here we focus on the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard the European Space Agency's Envisat. Various spectra for clear air and cloudy conditions were simulated with a spectrally averaging radiative transfer model and a line-by-line radiative transfer model for three atmospheric window regions (825-830, 946-951, 1224-1228 cm-1) and compared to each other. The results are rated in terms of the MIPAS noise equivalent spectral radiance (NESR). The clear air simulations generally agree within one NESR. The cloud simulations neglecting the scattering source term agree within two NESR. The differences between the cloud simulations including the scattering source term are generally below three and always below four NESR. We conclude that the spectrally averaging approach is well suited for fast and accurate infrared radiative transfer simulations including scattering by clouds. We found that the main source for the differences between the cloud simulations of both models is the cloud edge sampling. Furthermore we reasoned that this model comparison for clouds is also valid for atmospheric aerosol in general.
Assessing the Performance of a Machine Learning Algorithm in Identifying Bubbles in Dust Emission
NASA Astrophysics Data System (ADS)
Xu, Duo; Offner, Stella S. R.
2017-12-01
Stellar feedback created by radiation and winds from massive stars plays a significant role in both physical and chemical evolution of molecular clouds. This energy and momentum leaves an identifiable signature (“bubbles”) that affects the dynamics and structure of the cloud. Most bubble searches are performed “by eye,” which is usually time-consuming, subjective, and difficult to calibrate. Automatic classifications based on machine learning make it possible to perform systematic, quantifiable, and repeatable searches for bubbles. We employ a previously developed machine learning algorithm, Brut, and quantitatively evaluate its performance in identifying bubbles using synthetic dust observations. We adopt magnetohydrodynamics simulations, which model stellar winds launching within turbulent molecular clouds, as an input to generate synthetic images. We use a publicly available three-dimensional dust continuum Monte Carlo radiative transfer code, HYPERION, to generate synthetic images of bubbles in three Spitzer bands (4.5, 8, and 24 μm). We designate half of our synthetic bubbles as a training set, which we use to train Brut along with citizen-science data from the Milky Way Project (MWP). We then assess Brut’s accuracy using the remaining synthetic observations. We find that Brut’s performance after retraining increases significantly, and it is able to identify yellow bubbles, which are likely associated with B-type stars. Brut continues to perform well on previously identified high-score bubbles, and over 10% of the MWP bubbles are reclassified as high-confidence bubbles, which were previously marginal or ambiguous detections in the MWP data. We also investigate the influence of the size of the training set, dust model, evolutionary stage, and background noise on bubble identification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Xue; Klein, S. A.; Ma, H. -Y.
To assess marine boundary layer (MBL) cloud simulations in three versions of the Community Atmosphere Model (CAM), three sets of short-term global hindcasts are performed and compared to Atmospheric Radiation Measurement Program (ARM) observations on Graciosa Island in the Azores from June 2009 to December 2010. Here, the three versions consist of CAM5.3 with default schemes (CAM5.3), CAM5.3 with Cloud Layers Unified By Binormals (CLUBB-MG1), and CAM5.3 with CLUBB and updated microphysics scheme (CLUBB-MG2). Our results show that relative to CAM5.3 default schemes, simulations with CLUBB better represent MBL cloud base height, the height of the major cloud layer, andmore » the daily cloud cover variability. CLUBB also better simulates the relationship of cloud fraction to cloud liquid water path (LWP) most likely due to CLUBB's consistent treatment of these variables through a probability distribution function (PDF) approach. Subcloud evaporation of precipitation is substantially enhanced in simulations with CLUBB-MG2 and is more realistic based on the limited observational estimate. Despite these improvements, all model versions underestimate MBL cloud cover. CLUBB-MG2 reduces biases in in-cloud LWP (clouds are not too bright) but there are still too few of MBL clouds due to an underestimate in the frequency of overcast scenes. Thus, combining CLUBB with MG2 scheme better simulates MBL cloud processes, but because biases remain in MBL cloud cover CLUBB-MG2 does not improve the simulation of the surface shortwave cloud radiative effect (CRE SW).« less
Zheng, Xue; Klein, S. A.; Ma, H. -Y.; ...
2016-07-19
To assess marine boundary layer (MBL) cloud simulations in three versions of the Community Atmosphere Model (CAM), three sets of short-term global hindcasts are performed and compared to Atmospheric Radiation Measurement Program (ARM) observations on Graciosa Island in the Azores from June 2009 to December 2010. Here, the three versions consist of CAM5.3 with default schemes (CAM5.3), CAM5.3 with Cloud Layers Unified By Binormals (CLUBB-MG1), and CAM5.3 with CLUBB and updated microphysics scheme (CLUBB-MG2). Our results show that relative to CAM5.3 default schemes, simulations with CLUBB better represent MBL cloud base height, the height of the major cloud layer, andmore » the daily cloud cover variability. CLUBB also better simulates the relationship of cloud fraction to cloud liquid water path (LWP) most likely due to CLUBB's consistent treatment of these variables through a probability distribution function (PDF) approach. Subcloud evaporation of precipitation is substantially enhanced in simulations with CLUBB-MG2 and is more realistic based on the limited observational estimate. Despite these improvements, all model versions underestimate MBL cloud cover. CLUBB-MG2 reduces biases in in-cloud LWP (clouds are not too bright) but there are still too few of MBL clouds due to an underestimate in the frequency of overcast scenes. Thus, combining CLUBB with MG2 scheme better simulates MBL cloud processes, but because biases remain in MBL cloud cover CLUBB-MG2 does not improve the simulation of the surface shortwave cloud radiative effect (CRE SW).« less
NASA Astrophysics Data System (ADS)
Krisna, Trismono C.; Wendisch, Manfred; Ehrlich, André; Jäkel, Evelyn; Werner, Frank; Weigel, Ralf; Borrmann, Stephan; Mahnke, Christoph; Pöschl, Ulrich; Andreae, Meinrat O.; Voigt, Christiane; Machado, Luiz A. T.
2018-04-01
Solar radiation reflected by cirrus and deep convective clouds (DCCs) was measured by the Spectral Modular Airborne Radiation Measurement System (SMART) installed on the German High Altitude and Long Range Research Aircraft (HALO) during the Mid-Latitude Cirrus (ML-CIRRUS) and the Aerosol, Cloud, Precipitation, and Radiation Interaction and Dynamic of Convective Clouds System - Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modelling and to the Global Precipitation Measurement (ACRIDICON-CHUVA) campaigns. On particular flights, HALO performed measurements closely collocated with overpasses of the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua satellite. A cirrus cloud located above liquid water clouds and a DCC topped by an anvil cirrus are analyzed in this paper. Based on the nadir spectral upward radiance measured above the two clouds, the optical thickness τ and particle effective radius reff of the cirrus and DCC are retrieved using a radiance ratio technique, which considers the cloud thermodynamic phase, the vertical profile of cloud microphysical properties, the presence of multilayer clouds, and the heterogeneity of the surface albedo. For the cirrus case, the comparison of τ and reff retrieved on the basis of SMART and MODIS measurements yields a normalized mean absolute deviation of up to 1.2 % for τ and 2.1 % for reff. For the DCC case, deviations of up to 3.6 % for τ and 6.2 % for reff are obtained. The larger deviations in the DCC case are mainly attributed to the fast cloud evolution and three-dimensional (3-D) radiative effects. Measurements of spectral upward radiance at near-infrared wavelengths are employed to investigate the vertical profile of reff in the cirrus. The retrieved values of reff are compared with corresponding in situ measurements using a vertical weighting method. Compared to the MODIS observations, measurements of SMART provide more information on the vertical distribution of particle sizes, which allow reconstructing the profile of reff close to the cloud top. The comparison between retrieved and in situ reff yields a normalized mean absolute deviation, which ranges between 1.5 and 10.3 %, and a robust correlation coefficient of 0.82.
Atmospheric dispersion of a heavier-than-air gas near a two-dimensional obstacle
NASA Astrophysics Data System (ADS)
Sutton, S. B.; Brandt, H.; White, B. R.
1986-04-01
Flow over a two-dimensional obstacle and dispersion of a heavier-than-air gas near the obstacle were studied. Two species, one representing air and the other representing the heavier-than-air gas were treated. Equations for mass and momentum were cast in mass-averaged form, with turbulent Reynolds stresses and mass fluxes modeled using eddy-viscosity and diffusivity hypotheses. A two-equation k-ɛ turbulence model was used to determine the effective turbulent viscosity. Streamline curvature and buoyancy corrections were added to the basic turbulence formulation. The model equations were solved using finite difference techniques. An alternating-direction-implicit (ADI) technique was used to solve the parabolic transport equations and a direct matrix solver was used to solve the elliptic pressure equation. Mesh sensitivities were investigated to determine the optimum mesh requirements for the final calculations. It was concluded that at least 10 grid spaces were required across the obstacle width and 15 across the obstacle height to obtain valid solutions. A non-uniform mesh was used to concentrate the grid points at the top of the obstacle. Experimental measurements were made with air flow over a 7.6 by 7.6 cm obstacle in a boundary-layer wind tunnel. Smoke visualization revealed a low-frequency oscillation of the bubble downstream of the obstacle. Hot-wire anemometer data are presented for the mean velocity and turbulent kinetic energy at the mid-plane of the obstacle and the mid-plane of the downstream recirculation bubble. A single hot-wire probe was found to be suitable for determining mean streamwise velocities with an accuracy of 11 %. The downstream recirculation bubble was unsteady and had a length range from 3 to 8 obstacle lengths. The experimental results for flow over the obstacle were compared with numerical calculations to validate the numerical solution procedure. A sensitivity study on the effect of curvature correction and variation of turbulence model constants on the numerical solution was conducted. Calculations that included the curvature correction model gave a downstream recirculation bubble length of 5.9 obstacle lengths while excluding the correction reduced this length to 4.4. In the second part of the study, numerical calculations were performed for the dispersion of a heavier-than-air gas in the vicinity of the two-dimensional obstacle. Characteristics of an adiabatic boundary layer were used in these calculations. The densities of the contaminant gases were 0, 25 and 50% greater than the air density. Calculations were performed with the contaminant injection source upstream and downstream of the obstacle. Use of the pressure gradient model reduced the size of the dense gas cloud by as much as 12%. The curvature correction model also affected the cloud expanse by reducing the effective turbulent viscosity in the downstream recirculation bubble. The location of the injection source had the largest impact on the cloud size. The area of the cloud within the 5 % contour was three times larger for downstream injection than for upstream injection.
Study on Cloud Water Resources and Precipitation Efficiency Characteristic over China
NASA Astrophysics Data System (ADS)
Zhou, Y., Sr.; Cai, M., Jr.
2017-12-01
The original concept and quantitative assessment method of cloud water resource and its related physical parameters are proposed based on the atmospheric water circulation and precipitation enhancement. A diagnosis method of the three-dimensional (3-D) cloud and cloud water field are proposed , based on cloud observation and atmospheric reanalysis data. Furthermore, using analysis data and precipitation products, Chinese cloud water resources in 2008-2010 are assessed preliminarily. The results show that: 1. Atmospheric water cycle and water balance plays an important part of the climate system. Water substance includes water vapor and hydrometeors, and the water cycle is the process of phase transition of water substances. Water vapor changes its phase into solid or liquid hydrometeors by lifting and condensation, and after that, the hydrometeors grow lager through cloud physical processes and then precipitate to ground, which is the mainly resource of available fresh water .Therefore, it's far from enough to only focus on the amount of water vapor, more attention should be transfered to the hydrometeors (cloud water resources) which is formed by the process of phase transition including lifting and condensation. The core task of rainfall enhancement is to develop the cloud water resources and raise the precipitation efficiency by proper technological measures. 2. Comparing with the water vapor, the hydrometeor content is much smaller. Besides, the horizontal delivery amount also shows two orders of magnitude lower than water vapor. But the update cycle is faster and the precipitation efficiency is higher. The amount of cloud water resources in the atmosphere is determined by the instantaneous quantity, the advection transport, condensation and precipitation from the water balance.The cloud water resources vary a lot in different regions. In southeast China, hydrometeor has the fastest renewal cycle and the highest precipitation efficiency. The total amount of hydrometeor in the northwest China is relatively small, but it still has some development potential due to the low precipitation efficiency. 3. The accuracy of the assessment results can be improved and the estimation error can be reduced by using higher-resolution reanalysis data or combining of observational diagnosis and numerical model.
Modeling the Evolution of Disk Galaxies. I. The Chemodynamical Method and the Galaxy Model
NASA Astrophysics Data System (ADS)
Samland, M.; Hensler, G.; Theis, Ch.
1997-02-01
Here we present our two-dimensional chemodynamical code CoDEx, which we developed for the purpose of modeling the evolution of galaxies in a self-consistent manner. The code solves the hydrodynamical and momentum equations for three stellar components and the multiphase interstellar medium (clouds and intercloud medium), including star formation, Type I and Type II supernovae, planetary nebulae, stellar winds, evaporation and condensation, drag, cloud collisions, heating and cooling, and stellar nucleosynthesis. These processes are treated simultaneously, coupling a large range in temporal and spatial scales, to account for feedback and self-regulation processes, which play an extraordinarily important role in the galactic evolution. The evolution of galaxies of different masses and angular momenta is followed through all stages from the initial protogalactic clouds until now. In this first paper we present a representative model of the Milky Way and compare it with observations. The capability of chemodynamical models is convincingly proved by the excellent agreement with various observations. In addition, well-known problems (the G-dwarf problem, the discrepancy between local effective yields, etc.), which so far could be only explained by artificial constraints, are also solved in the global scenario. Starting from a rotating protogalactic gas cloud in virial equilibrium, which collapses owing to dissipative cloud-cloud collisions, we can follow the galactic evolution in detail. Owing to the collapse, the gas density increases, stars are forming, and the first Type II supernovae explode. The collapse time is 1 order of magnitude longer than the dynamical free-fall time because of the energy release by Type II supernovae. The supernovae also drive hot metal-rich gas ejected from massive stars into the halo, and as a consequence, the clouds in the star-forming regions have lower metallicities than the clouds in the halo. The observed negative metallicity gradients do not form before t = 6 × 109 yr. These outward gas flows prevent any clear correlation between local star formation rate and enrichment and also prevent a unique age-metallicity relation. The situation, however, is even more complicated, because the mass return of intermediate-mass stars (Type I supernovae and planetary nebulae) is delayed depending on the type of precursor. Since our chemodynamical model includes all these processes, we can calculate, e.g., the [O/H] distribution of stars and find good agreement everywhere in bulge, disk, and halo. From the galactic oxygen to iron ratio, we can determine the supernovae ([II + Ib]/Ia) ratio for different types of Type Ia supernovae (such as carbon deflagration or sub-Chandrasekhar models) and find that the ratio should be in the range 1.0-3.8. The chemodynamical model also traces other chemical elements (e.g., N + C), density distributions, gas flows, velocity dispersions of the stars and clouds, star formation, planetary nebula rates, cloud collision, condensation and evaporation rates, and the cooling due to radiation. The chemodynamical treatment of galaxy evolution should be envisaged as a necessary development, which takes those processes into account that affect the dynamical, energetical, and chemical evolution.
NASA Astrophysics Data System (ADS)
Haitjema, Henk M.
1985-10-01
A technique is presented to incorporate three-dimensional flow in a Dupuit-Forchheimer model. The method is based on superposition of approximate analytic solutions to both two- and three-dimensional flow features in a confined aquifer of infinite extent. Three-dimensional solutions are used in the domain of interest, while farfield conditions are represented by two-dimensional solutions. Approximate three- dimensional solutions have been derived for a partially penetrating well and a shallow creek. Each of these solutions satisfies the condition that no flow occurs across the confining layers of the aquifer. Because of this condition, the flow at some distance of a three-dimensional feature becomes nearly horizontal. Consequently, remotely from a three-dimensional feature, its three-dimensional solution is replaced by a corresponding two-dimensional one. The latter solution is trivial as compared to its three-dimensional counterpart, and its use greatly enhances the computational efficiency of the model. As an example, the flow is modeled between a partially penetrating well and a shallow creek that occur in a regional aquifer system.
NASA Technical Reports Server (NTRS)
Pritchett, P. L.; Schriver, D.; Ashour-Abdalla, M.
1991-01-01
A one-dimensional electromagnetic particle simulation model is constructed to study the excitation of whistler waves in the presence of a cold plasma cloud for conditions representative of those after the release of lithium in the inner plasma sheet during the Combined Release and Radiation Effect Satellite mission. The results indicate that a standing-wave pattern with discrete wave frequencies is formed within the cloud. The magnetic wave amplitude inside the cloud, which is limited by quasi-linear diffusion, is of the order of several nanoteslas. Assuming a magnetospheric loss cone of 5 deg, the observed pitch angle diffusion produced by the whistler waves is sufficient to put the electrons on strong diffusion.
NASA Technical Reports Server (NTRS)
Cargill, Peter J.; Chen, James; Spicer, D. S.; Zalesak, S. T.
1994-01-01
Two dimensional magnetohydrodynamic simulations of the distortion of a magnetic flux tube, accelerated through ambient solar wind plasma, are presented. Vortices form on the trailing edge of the flux tube, and couple strongly to its interior. If the flux tube azimuthal field is weak, it deforms into an elongated banana-like shape after a few Alfven transit times. A significant azimuthal field component inhibits this distortion. In the case of magnetic clouds in the solar wind, it is suggested that the shape observed at 1 AU was determined by distortion of the cloud in the inner heliosphere. Distortion of the cloud beyond 1 AU takes many days. It is estimated that effective drag coefficients slightly greater than unity are appropriate for modeling flux tube propagation. Synthetic magnetic field profiles as would be seen by a spacecraft traversing the cloud are presented.
NASA Astrophysics Data System (ADS)
Zhao, Wenjie; Peng, Yiran; Wang, Bin; Yi, Bingqi; Lin, Yanluan; Li, Jiangnan
2018-05-01
A newly implemented Baum-Yang scheme for simulating ice cloud optical properties is compared with existing schemes (Mitchell and Fu schemes) in a standalone radiative transfer model and in the global climate model (GCM) Community Atmospheric Model Version 5 (CAM5). This study systematically analyzes the effect of different ice cloud optical schemes on global radiation and climate by a series of simulations with a simplified standalone radiative transfer model, atmospheric GCM CAM5, and a comprehensive coupled climate model. Results from the standalone radiative model show that Baum-Yang scheme yields generally weaker effects of ice cloud on temperature profiles both in shortwave and longwave spectrum. CAM5 simulations indicate that Baum-Yang scheme in place of Mitchell/Fu scheme tends to cool the upper atmosphere and strengthen the thermodynamic instability in low- and mid-latitudes, which could intensify the Hadley circulation and dehydrate the subtropics. When CAM5 is coupled with a slab ocean model to include simplified air-sea interaction, reduced downward longwave flux to surface in Baum-Yang scheme mitigates ice-albedo feedback in the Arctic as well as water vapor and cloud feedbacks in low- and mid-latitudes, resulting in an overall temperature decrease by 3.0/1.4 °C globally compared with Mitchell/Fu schemes. Radiative effect and climate feedback of the three ice cloud optical schemes documented in this study can be referred for future improvements on ice cloud simulation in CAM5.
Galactic kinematics of molecuar clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stark, A.A.
1979-01-01
The kinematics of molecular clouds in the galactic disk are studied to determine the magnitude of cloud-to-coud velocity dispersions and systematic streaming motions. Three observational programs are reported: (i) a strip map of 1 = 180/sup 0/ from b = -9/sup 0/ to +8/sup 0/ observed in CO J = 1 greater than or equal to 0 to an rms noise level of 0.1 K in 250 kHz filters; (ii) a 20-point map of the minor axis of M31, observed in CO J = 1 greater than or equal to 0 to an rms noise level of 20 mK inmore » 1 MHz filters; (iii) three maps in the molecular ring, centered at 1 = 34/sup 0/, 1 = 36/sup 0/ and 1 = 51/sup 0/, each about one degree square, sampled every 0.05/sup 0/ in /sup 13/CO J = 1 greater than or equal to 0 to an rms noise level of 0.1 K in 250 kHz filters. Molecular clouds typically have one dimensional cloud-to-cloud velocity dispersions of about 8 km s/sup -1/. This dispersion is independent of cloud mass over a range of 10/sup 2/M /sub solar/ < M/sub C < 10/sup 5/ /sup 5/M /sub solar/. Clouds more massive than about 10 /sup 5/ /sup 5/M /sub solar/ have a markedly smaller dispersion. These most massive clouds occur preferentially in spiral arms, and result in spiral arm CO emissivities several times that of interarm regions. Also associated with spiral arms are large-scale streaming motions, which amount to 100 km s/sup -1/ in one arm in M31.« less
Processes that generate and deplete liquid water and snow in thin midlevel mixed-phase clouds
NASA Astrophysics Data System (ADS)
Smith, Adam J.; Larson, Vincent E.; Niu, Jianguo; Kankiewicz, J. Adam; Carey, Lawrence D.
2009-06-01
This paper uses a numerical model to investigate microphysical, radiative, and dynamical processes in mixed-phase altostratocumulus clouds. Three cloud cases are chosen for study, each of which was observed by aircraft during the fifth or ninth Complex Layered Cloud Experiment (CLEX). These three clouds are numerically modeled using large-eddy simulation (LES). The observed and modeled clouds consist of a mixed-phase layer with a quasi-adiabatic profile of liquid, and a virga layer below that consists of snow. A budget of cloud (liquid) water mixing ratio is constructed from the simulations. It shows that large-scale ascent/descent, radiative cooling/heating, turbulent transport, and microphysical processes are all significant. Liquid is depleted indirectly via depositional growth of snow (the Bergeron-Findeisen process). This process is more influential than depletion of liquid via accretional growth of snow. Also constructed is a budget of snow mixing ratio, which turns out to be somewhat simpler. It shows that snow grows by deposition in and below the liquid (mixed-phase) layer, and sublimates in the remainder of the virga region below. The deposition and sublimation are balanced primarily by sedimentation, which transports the snow from the growth region to the sublimation region below. In our three clouds, the vertical extent of the virga layer is influenced more by the profile of saturation ratio below the liquid (mixed-phase) layer than by the mixing ratio of snow at the top of the virga layer.
Cloud cover models derived from satellite radiation measurements
NASA Technical Reports Server (NTRS)
Bean, S. J.; Somerville, P. N.
1979-01-01
Using daily measurement of day and night infrared and incoming and absorbed solar radiation obtained from a TIROS satellite over a period of approximately 45 months, and integrated over 2.5 degree latitude-longitude grids, the proportion of cloud cover over each grid each day was derived for the entire period. For each of four three-month periods, estimates a and b of the two parameters of the best-fit beta distribution were obtained for each grid location. The (a,b) plane was divided into a number of regions. All the geographical locations whose (a,b) estimates were in the same region in the (a,b) plane were said to have the same cloud cover type for that season. For each season, the world was thus divided into separate cloud cover types. Using estimates of mean cloud cover for each season, the world was again divided into separate cloud cover types. The process was repeated for standard deviations. Thus for each season, three separate cloud cover models were obtained using the criteria of shape of frequency distribution, mean cloud cover, and variability of cloud cover. The cloud cover statistics were derived from once-a-day, near-local-noon satellite radiation measurements.
Wagner, Martin G; Hatt, Charles R; Dunkerley, David A P; Bodart, Lindsay E; Raval, Amish N; Speidel, Michael A
2018-04-16
Transcatheter aortic valve replacement (TAVR) is a minimally invasive procedure in which a prosthetic heart valve is placed and expanded within a defective aortic valve. The device placement is commonly performed using two-dimensional (2D) fluoroscopic imaging. Within this work, we propose a novel technique to track the motion and deformation of the prosthetic valve in three dimensions based on biplane fluoroscopic image sequences. The tracking approach uses a parameterized point cloud model of the valve stent which can undergo rigid three-dimensional (3D) transformation and different modes of expansion. Rigid elements of the model are individually rotated and translated in three dimensions to approximate the motions of the stent. Tracking is performed using an iterative 2D-3D registration procedure which estimates the model parameters by minimizing the mean-squared image values at the positions of the forward-projected model points. Additionally, an initialization technique is proposed, which locates clusters of salient features to determine the initial position and orientation of the model. The proposed algorithms were evaluated based on simulations using a digital 4D CT phantom as well as experimentally acquired images of a prosthetic valve inside a chest phantom with anatomical background features. The target registration error was 0.12 ± 0.04 mm in the simulations and 0.64 ± 0.09 mm in the experimental data. The proposed algorithm could be used to generate 3D visualization of the prosthetic valve from two projections. In combination with soft-tissue sensitive-imaging techniques like transesophageal echocardiography, this technique could enable 3D image guidance during TAVR procedures. © 2018 American Association of Physicists in Medicine.
Results of a zonally truncated three-dimensional model of the Venus middle atmosphere
NASA Technical Reports Server (NTRS)
Newman, M.
1992-01-01
Although the equatorial rotational speed of the solid surface of Venus is only 4 m s(exp-1), the atmospheric rotational speed reaches a maximum of approximately 100 m s(exp-1) near the equatorial cloud top level (65 to 70 km). This phenomenon, known as superrotation, is the central dynamical problem of the Venus atmosphere. We report here the results of numerical simulations aimed at clarifying the mechanism for maintaining the equatorial cloud top rotation. Maintenance of an equatorial rotational speed maximum above the surface requires waves or eddies that systematically transport angular momentum against its zonal mean gradient. The zonally symmetric Hadley circulation is driven thermally and acts to reduce the rotational speed at the equatorial cloud top level; thus wave or eddy transport must counter this tendency as well as friction. Planetary waves arising from horizontal shear instability of the zonal flow (barotropic instability) could maintain the equatorial rotation by transporting angular momentum horizontally from midlatitudes toward the equator. Alternatively, vertically propagating waves could provide the required momentum source. The relative motion between the rotating atmosphere and the pattern of solar heating, which as a maximum where solar radiation is absorbed near the cloud tops, drives diurnal and semidiurnal thermal tides that propagate vertically away from the cloud top level. The effect of this wave propagation is to transport momentum toward the cloud top level at low latitudes and accelerate the mean zonal flow there. We employ a semispectral primitive equation model with a zonal mean flow and zonal wavenumbers 1 and 2. These waves correspond to the diurnal and semidiurnal tides, but they can also be excited by barotropic or baroclinic instability. Waves of higher wavenumbers and interactions between the waves are neglected. Symmetry about the equator is assumed, so the model applies to one hemisphere and covers the altitude range 30 to 110 km. Horizontal resolution is 1.5 deg latitude, and vertical resolution is 1.5 km. Solar and thermal infrared heating, based on Venus observations and calculations drive the model flow. Dissipation is accomplished mainly by Rayleigh friction, chosen to produce strong dissipation above 85 km in order to absorb upward propagating waves and limit extreme flow velocities there, yet to give very weak Rayleigh friction below 70 km; results in the cloud layer do not appear to be sensitive to the Rayleigh friction. The model also has weak vertical diffusion, and very weak horizontal diffusion, which has a smoothing effect on the flow only at the two grid points nearest the pole.
Hurricane Isabel, AIRS Infrared and SeaWinds Scatterometer Data Combined
2003-09-20
These two images show Hurricane Isabel as viewed by AIRS and SeaWinds scatterometers on NASA ADEOS-2 and QuikScat satellites in September, 2003. AIRS data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction. http://photojournal.jpl.nasa.gov/catalog/PIA00429