Numerical Modeling of Three-Dimensional Confined Flows
NASA Technical Reports Server (NTRS)
Greywall, M. S.
1981-01-01
A three dimensional confined flow model is presented. The flow field is computed by calculating velocity and enthalpy along a set of streamlines. The finite difference equations are obtained by applying conservation principles to streamtubes constructed around the chosen streamlines. With appropriate substitutions for the body force terms, the approach computes three dimensional magnetohydrodynamic channel flows. A listing of a computer code, based on this approach is presented in FORTRAN IV language. The code computes three dimensional compressible viscous flow through a rectangular duct, with the duct cross section specified along the axis.
Suenaga, Hideyuki; Hoang Tran, Huy; Liao, Hongen; Masamune, Ken; Dohi, Takeyoshi; Hoshi, Kazuto; Mori, Yoshiyuki; Takato, Tsuyoshi
2013-01-01
To evaluate the feasibility and accuracy of a three-dimensional augmented reality system incorporating integral videography for imaging oral and maxillofacial regions, based on preoperative computed tomography data. Three-dimensional surface models of the jawbones, based on the computed tomography data, were used to create the integral videography images of a subject's maxillofacial area. The three-dimensional augmented reality system (integral videography display, computed tomography, a position tracker and a computer) was used to generate a three-dimensional overlay that was projected on the surgical site via a half-silvered mirror. Thereafter, a feasibility study was performed on a volunteer. The accuracy of this system was verified on a solid model while simulating bone resection. Positional registration was attained by identifying and tracking the patient/surgical instrument's position. Thus, integral videography images of jawbones, teeth and the surgical tool were superimposed in the correct position. Stereoscopic images viewed from various angles were accurately displayed. Change in the viewing angle did not negatively affect the surgeon's ability to simultaneously observe the three-dimensional images and the patient, without special glasses. The difference in three-dimensional position of each measuring point on the solid model and augmented reality navigation was almost negligible (<1 mm); this indicates that the system was highly accurate. This augmented reality system was highly accurate and effective for surgical navigation and for overlaying a three-dimensional computed tomography image on a patient's surgical area, enabling the surgeon to understand the positional relationship between the preoperative image and the actual surgical site, with the naked eye. PMID:23703710
Three-dimensional turbopump flowfield analysis
NASA Technical Reports Server (NTRS)
Sharma, O. P.; Belford, K. A.; Ni, R. H.
1992-01-01
A program was conducted to develop a flow prediction method applicable to rocket turbopumps. The complex nature of a flowfield in turbopumps is described and examples of flowfields are discussed to illustrate that physics based models and analytical calculation procedures based on computational fluid dynamics (CFD) are needed to develop reliable design procedures for turbopumps. A CFD code developed at NASA ARC was used as the base code. The turbulence model and boundary conditions in the base code were modified, respectively, to: (1) compute transitional flows and account for extra rates of strain, e.g., rotation; and (2) compute surface heat transfer coefficients and allow computation through multistage turbomachines. Benchmark quality data from two and three-dimensional cascades were used to verify the code. The predictive capabilities of the present CFD code were demonstrated by computing the flow through a radial impeller and a multistage axial flow turbine. Results of the program indicate that the present code operated in a two-dimensional mode is a cost effective alternative to full three-dimensional calculations, and that it permits realistic predictions of unsteady loadings and losses for multistage machines.
Three dimensional geometric modeling of processing-tomatoes
USDA-ARS?s Scientific Manuscript database
Characterizing tomato geometries with different shapes and sizes would facilitate the design of tomato processing equipments and promote computer-based engineering simulations. This research sought to develop a three-dimensional geometric model that can describe the morphological attributes of proce...
Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants
NASA Technical Reports Server (NTRS)
Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.
1996-01-01
Progress and results in the development of an integrated air quality modeling, monitoring, fault detection, and isolation system are presented. The focus was on development of distributed models of the air contaminants transport, the study of air quality monitoring techniques based on the model of transport process and on-line contaminant concentration measurements, and sensor placement. Different approaches to the modeling of spacecraft air contamination are discussed, and a three-dimensional distributed parameter air contaminant dispersion model applicable to both laminar and turbulent transport is proposed. A two-dimensional approximation of a full scale transport model is also proposed based on the spatial averaging of the three dimensional model over the least important space coordinate. A computer implementation of the transport model is considered and a detailed development of two- and three-dimensional models illustrated by contaminant transport simulation results is presented. The use of a well established Kalman filtering approach is suggested as a method for generating on-line contaminant concentration estimates based on both real time measurements and the model of contaminant transport process. It is shown that high computational requirements of the traditional Kalman filter can render difficult its real-time implementation for high-dimensional transport model and a novel implicit Kalman filtering algorithm is proposed which is shown to lead to an order of magnitude faster computer implementation in the case of air quality monitoring.
Hu, Jian; Xu, Xiang-yang; Song, En-min; Tan, Hong-bao; Wang, Yi-ning
2009-09-01
To establish a new visual educational system of virtual reality for clinical dentistry based on world wide web (WWW) webpage in order to provide more three-dimensional multimedia resources to dental students and an online three-dimensional consulting system for patients. Based on computer graphics and three-dimensional webpage technologies, the software of 3Dsmax and Webmax were adopted in the system development. In the Windows environment, the architecture of whole system was established step by step, including three-dimensional model construction, three-dimensional scene setup, transplanting three-dimensional scene into webpage, reediting the virtual scene, realization of interactions within the webpage, initial test, and necessary adjustment. Five cases of three-dimensional interactive webpage for clinical dentistry were completed. The three-dimensional interactive webpage could be accessible through web browser on personal computer, and users could interact with the webpage through rotating, panning and zooming the virtual scene. It is technically feasible to implement the visual educational system of virtual reality for clinical dentistry based on WWW webpage. Information related to clinical dentistry can be transmitted properly, visually and interactively through three-dimensional webpage.
Improving Perceptual Skills with 3-Dimensional Animations.
ERIC Educational Resources Information Center
Johns, Janet Faye; Brander, Julianne Marie
1998-01-01
Describes three-dimensional computer aided design (CAD) models for every component in a representative mechanical system; the CAD models made it easy to generate 3-D animations that are ideal for teaching perceptual skills in multimedia computer-based technical training. Fifteen illustrations are provided. (AEF)
Analysis of Aerospike Plume Induced Base-Heating Environment
NASA Technical Reports Server (NTRS)
Wang, Ten-See
1998-01-01
Computational analysis is conducted to study the effect of an aerospike engine plume on X-33 base-heating environment during ascent flight. To properly account for the effect of forebody and aftbody flowfield such as shocks and to allow for potential plume-induced flow-separation, thermo-flowfield of trajectory points is computed. The computational methodology is based on a three-dimensional finite-difference, viscous flow, chemically reacting, pressure-base computational fluid dynamics formulation, and a three-dimensional, finite-volume, spectral-line based weighted-sum-of-gray-gases radiation absorption model computational heat transfer formulation. The predicted convective and radiative base-heat fluxes are presented.
Chen, Mounter C Y; Lu, Po-Chien; Chen, James S Y; Hwang, Ned H C
2005-01-01
Coronary stents are supportive wire meshes that keep narrow coronary arteries patent, reducing the risk of restenosis. Despite the common use of coronary stents, approximately 20-35% of them fail due to restenosis. Flow phenomena adjacent to the stent may contribute to restenosis. Three-dimensional computational fluid dynamics (CFD) and reconstruction based on biplane cine angiography were used to assess coronary geometry and volumetric blood flows. A patient-specific left anterior descending (LAD) artery was reconstructed from single-plane x-ray imaging. With corresponding electrocardiographic signals, images from the same time phase were selected from the angiograms for dynamic three-dimensional reconstruction. The resultant three-dimensional LAD artery at end-diastole was adopted for detailed analysis. Both the geometries and flow fields, based on a computational model from CAE software (ANSYS and CATIA) and full three-dimensional Navier-Stroke equations in the CFD-ACE+ software, respectively, changed dramatically after stent placement. Flow fields showed a complex three-dimensional spiral motion due to arterial tortuosity. The corresponding wall shear stresses, pressure gradient, and flow field all varied significantly after stent placement. Combined angiography and CFD techniques allow more detailed investigation of flow patterns in various segments. The implanted stent(s) may be quantitatively studied from the proposed hemodynamic modeling approach.
NASA Astrophysics Data System (ADS)
Lamb, Richard L.
2016-02-01
Within the last 10 years, new tools for assisting in the teaching and learning of academic skills and content within the context of science have arisen. These new tools include multiple types of computer software and hardware to include (video) games. The purpose of this study was to examine and compare the effect of computer learning games in the form of three-dimensional serious educational games, two-dimensional online laboratories, and traditional lecture-based instruction in the context of student content learning in science. In particular, this study examines the impact of dimensionality, or the ability to move along the X-, Y-, and Z-axis in the games. Study subjects ( N = 551) were randomly selected using a stratified sampling technique. Independent strata subsamples were developed based upon the conditions of serious educational games, online laboratories, and lecture. The study also computationally models a potential mechanism of action and compares two- and three-dimensional learning environments. F test results suggest a significant difference for the main effect of condition across the factor of content gain score with large effect. Overall, comparisons using computational models suggest that three-dimensional serious educational games increase the level of success in learning as measured with content examinations through greater recruitment and attributional retraining of cognitive systems. The study supports assertions in the literature that the use of games in higher dimensions (i.e., three-dimensional versus two-dimensional) helps to increase student understanding of science concepts.
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Paris, Isbelle L.; OBrien, T. Kevin; Minguet, Pierre J.
2004-01-01
The influence of two-dimensional finite element modeling assumptions on the debonding prediction for skin-stiffener specimens was investigated. Geometrically nonlinear finite element analyses using two-dimensional plane-stress and plane-strain elements as well as three different generalized plane strain type approaches were performed. The computed skin and flange strains, transverse tensile stresses and energy release rates were compared to results obtained from three-dimensional simulations. The study showed that for strains and energy release rate computations the generalized plane strain assumptions yielded results closest to the full three-dimensional analysis. For computed transverse tensile stresses the plane stress assumption gave the best agreement. Based on this study it is recommended that results from plane stress and plane strain models be used as upper and lower bounds. The results from generalized plane strain models fall between the results obtained from plane stress and plane strain models. Two-dimensional models may also be used to qualitatively evaluate the stress distribution in a ply and the variation of energy release rates and mixed mode ratios with delamination length. For more accurate predictions, however, a three-dimensional analysis is required.
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Minguet, Pierre J.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The influence of two-dimensional finite element modeling assumptions on the debonding prediction for skin-stiffener specimens was investigated. Geometrically nonlinear finite element analyses using two-dimensional plane-stress and plane strain elements as well as three different generalized plane strain type approaches were performed. The computed deflections, skin and flange strains, transverse tensile stresses and energy release rates were compared to results obtained from three-dimensional simulations. The study showed that for strains and energy release rate computations the generalized plane strain assumptions yielded results closest to the full three-dimensional analysis. For computed transverse tensile stresses the plane stress assumption gave the best agreement. Based on this study it is recommended that results from plane stress and plane strain models be used as upper and lower bounds. The results from generalized plane strain models fall between the results obtained from plane stress and plane strain models. Two-dimensional models may also be used to qualitatively evaluate the stress distribution in a ply and the variation of energy release rates and mixed mode ratios with lamination length. For more accurate predictions, however, a three-dimensional analysis is required.
[Research progress of three-dimensional digital model for repair and reconstruction of knee joint].
Tong, Lu; Li, Yanlin; Hu, Meng
2013-01-01
To review recent advance in the application and research of three-dimensional digital knee model. The recent original articles about three-dimensional digital knee model were extensively reviewed and analyzed. The digital three-dimensional knee model can simulate the knee complex anatomical structure very well. Based on this, there are some developments of new software and techniques, and good clinical results are achieved. With the development of computer techniques and software, the knee repair and reconstruction procedure has been improved, the operation will be more simple and its accuracy will be further improved.
NASA Astrophysics Data System (ADS)
Manstetten, Paul; Filipovic, Lado; Hössinger, Andreas; Weinbub, Josef; Selberherr, Siegfried
2017-02-01
We present a computationally efficient framework to compute the neutral flux in high aspect ratio structures during three-dimensional plasma etching simulations. The framework is based on a one-dimensional radiosity approach and is applicable to simulations of convex rotationally symmetric holes and convex symmetric trenches with a constant cross-section. The framework is intended to replace the full three-dimensional simulation step required to calculate the neutral flux during plasma etching simulations. Especially for high aspect ratio structures, the computational effort, required to perform the full three-dimensional simulation of the neutral flux at the desired spatial resolution, conflicts with practical simulation time constraints. Our results are in agreement with those obtained by three-dimensional Monte Carlo based ray tracing simulations for various aspect ratios and convex geometries. With this framework we present a comprehensive analysis of the influence of the geometrical properties of high aspect ratio structures as well as of the particle sticking probability on the neutral particle flux.
Multi-GPU hybrid programming accelerated three-dimensional phase-field model in binary alloy
NASA Astrophysics Data System (ADS)
Zhu, Changsheng; Liu, Jieqiong; Zhu, Mingfang; Feng, Li
2018-03-01
In the process of dendritic growth simulation, the computational efficiency and the problem scales have extremely important influence on simulation efficiency of three-dimensional phase-field model. Thus, seeking for high performance calculation method to improve the computational efficiency and to expand the problem scales has a great significance to the research of microstructure of the material. A high performance calculation method based on MPI+CUDA hybrid programming model is introduced. Multi-GPU is used to implement quantitative numerical simulations of three-dimensional phase-field model in binary alloy under the condition of multi-physical processes coupling. The acceleration effect of different GPU nodes on different calculation scales is explored. On the foundation of multi-GPU calculation model that has been introduced, two optimization schemes, Non-blocking communication optimization and overlap of MPI and GPU computing optimization, are proposed. The results of two optimization schemes and basic multi-GPU model are compared. The calculation results show that the use of multi-GPU calculation model can improve the computational efficiency of three-dimensional phase-field obviously, which is 13 times to single GPU, and the problem scales have been expanded to 8193. The feasibility of two optimization schemes is shown, and the overlap of MPI and GPU computing optimization has better performance, which is 1.7 times to basic multi-GPU model, when 21 GPUs are used.
Asymmetric Base-Bleed Effect on Aerospike Plume-Induced Base-Heating Environment
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Droege, Alan; DAgostino, Mark; Lee, Young-Ching; Williams, Robert
2004-01-01
A computational heat transfer design methodology was developed to study the dual-engine linear aerospike plume-induced base-heating environment during one power-pack out, in ascent flight. It includes a three-dimensional, finite volume, viscous, chemically reacting, and pressure-based computational fluid dynamics formulation, a special base-bleed boundary condition, and a three-dimensional, finite volume, and spectral-line-based weighted-sum-of-gray-gases absorption computational radiation heat transfer formulation. A separate radiation model was used for diagnostic purposes. The computational methodology was systematically benchmarked. In this study, near-base radiative heat fluxes were computed, and they compared well with those measured during static linear aerospike engine tests. The base-heating environment of 18 trajectory points selected from three power-pack out scenarios was computed. The computed asymmetric base-heating physics were analyzed. The power-pack out condition has the most impact on convective base heating when it happens early in flight. The source of its impact comes from the asymmetric and reduced base bleed.
NASA Astrophysics Data System (ADS)
Haitjema, Henk M.
1985-10-01
A technique is presented to incorporate three-dimensional flow in a Dupuit-Forchheimer model. The method is based on superposition of approximate analytic solutions to both two- and three-dimensional flow features in a confined aquifer of infinite extent. Three-dimensional solutions are used in the domain of interest, while farfield conditions are represented by two-dimensional solutions. Approximate three- dimensional solutions have been derived for a partially penetrating well and a shallow creek. Each of these solutions satisfies the condition that no flow occurs across the confining layers of the aquifer. Because of this condition, the flow at some distance of a three-dimensional feature becomes nearly horizontal. Consequently, remotely from a three-dimensional feature, its three-dimensional solution is replaced by a corresponding two-dimensional one. The latter solution is trivial as compared to its three-dimensional counterpart, and its use greatly enhances the computational efficiency of the model. As an example, the flow is modeled between a partially penetrating well and a shallow creek that occur in a regional aquifer system.
NASA Technical Reports Server (NTRS)
Moin, Parviz; Spalart, Philippe R.
1987-01-01
The use of simulation data bases for the examination of turbulent flows is an effective research tool. Studies of the structure of turbulence have been hampered by the limited number of probes and the impossibility of measuring all desired quantities. Also, flow visualization is confined to the observation of passive markers with limited field of view and contamination caused by time-history effects. Computer flow fields are a new resource for turbulence research, providing all the instantaneous flow variables in three-dimensional space. Simulation data bases also provide much-needed information for phenomenological turbulence modeling. Three dimensional velocity and pressure fields from direct simulations can be used to compute all the terms in the transport equations for the Reynolds stresses and the dissipation rate. However, only a few, geometrically simple flows have been computed by direct numerical simulation, and the inventory of simulation does not fully address the current modeling needs in complex turbulent flows. The availability of three-dimensional flow fields also poses challenges in developing new techniques for their analysis, techniques based on experimental methods, some of which are used here for the analysis of direct-simulation data bases in studies of the mechanics of turbulent flows.
Tan, S; Hu, A; Wilson, T; Ladak, H; Haase, P; Fung, K
2012-04-01
(1) To investigate the efficacy of a computer-generated three-dimensional laryngeal model for laryngeal anatomy teaching; (2) to explore the relationship between students' spatial ability and acquisition of anatomical knowledge; and (3) to assess participants' opinion of the computerised model. Forty junior doctors were randomised to undertake laryngeal anatomy study supplemented by either a three-dimensional computer model or two-dimensional images. Outcome measurements comprised a laryngeal anatomy test, the modified Vandenberg and Kuse mental rotation test, and an opinion survey. Mean scores ± standard deviations for the anatomy test were 15.7 ± 2.0 for the 'three dimensions' group and 15.5 ± 2.3 for the 'standard' group (p = 0.7222). Pearson's correlation between the rotation test scores and the scores for the spatial ability questions in the anatomy test was 0.4791 (p = 0.086, n = 29). Opinion survey answers revealed significant differences in respondents' perceptions of the clarity and 'user friendliness' of, and their preferences for, the three-dimensional model as regards anatomical study. The three-dimensional computer model was equivalent to standard two-dimensional images, for the purpose of laryngeal anatomy teaching. There was no association between students' spatial ability and functional anatomy learning. However, students preferred to use the three-dimensional model.
USDA-ARS?s Scientific Manuscript database
A model to simulate radiative transfer (RT) of sun-induced chlorophyll fluorescence (SIF) of three-dimensional (3-D) canopy, FluorWPS, was proposed and evaluated. The inclusion of fluorescence excitation was implemented with the ‘weight reduction’ and ‘photon spread’ concepts based on Monte Carlo ra...
Initialization and Simulation of Three-Dimensional Aircraft Wake Vortices
NASA Technical Reports Server (NTRS)
Ash, Robert L.; Zheng, Z. C.
1997-01-01
This paper studies the effects of axial velocity profiles on vortex decay, in order to properly initialize and simulate three-dimensional wake vortex flow. Analytical relationships are obtained based on a single vortex model and computational simulations are performed for a rather practical vortex wake, which show that the single vortex analytical relations can still be applicable at certain streamwise sections of three-dimensional wake vortices.
A finite area scheme for shallow granular flows on three-dimensional surfaces
NASA Astrophysics Data System (ADS)
Rauter, Matthias
2017-04-01
Shallow granular flow models have become a popular tool for the estimation of natural hazards, such as landslides, debris flows and avalanches. The shallowness of the flow allows to reduce the three-dimensional governing equations to a quasi two-dimensional system. Three-dimensional flow fields are replaced by their depth-integrated two-dimensional counterparts, which yields a robust and fast method [1]. A solution for a simple shallow granular flow model, based on the so-called finite area method [3] is presented. The finite area method is an adaption of the finite volume method [4] to two-dimensional curved surfaces in three-dimensional space. This method handles the three dimensional basal topography in a simple way, making the model suitable for arbitrary (but mildly curved) topography, such as natural terrain. Furthermore, the implementation into the open source software OpenFOAM [4] is shown. OpenFOAM is a popular computational fluid dynamics application, designed so that the top-level code mimics the mathematical governing equations. This makes the code easy to read and extendable to more sophisticated models. Finally, some hints on how to get started with the code and how to extend the basic model will be given. I gratefully acknowledge the financial support by the OEAW project "beyond dense flow avalanches". Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics 199, 177-215. Ferziger, J. & Peric, M. 2002 Computational methods for fluid dynamics, 3rd edn. Springer. Tukovic, Z. & Jasak, H. 2012 A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Computers & fluids 55, 70-84. Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics 12(6), 620-631.
A virtual reality atlas of craniofacial anatomy.
Smith, Darren M; Oliker, Aaron; Carter, Christina R; Kirov, Miro; McCarthy, Joseph G; Cutting, Court B
2007-11-01
Head and neck anatomy is complex and represents an educational challenge to the student. Conventional two-dimensional illustrations inherently fall short in conveying intricate anatomical relationships that exist in three dimensions. A gratis three-dimensional virtual reality atlas of craniofacial anatomy is presented in an effort to address the paucity of readily accessible and customizable three-dimensional educational material available to the student of head and neck anatomy. Three-dimensional model construction was performed in Alias Maya 4.5 and 6.0. A basic three-dimensional skull model was altered to include surgical landmarks and proportions. Some of the soft tissues were adapted from previous work, whereas others were constructed de novo. Texturing was completed with Adobe Photoshop 7.0 and Maya. The Internet application was designed in Viewpoint Enliven 1.0. A three-dimensional computer model of craniofacial anatomy (bone and soft tissue) was completed. The model is compatible with many software packages and can be accessed by means of the Internet or downloaded to a personal computer. As the three-dimensional meshes are publicly available, they can be extensively manipulated by the user, even at the polygonal level. Three-dimensional computer graphics has yet to be fully exploited for head and neck anatomy education. In this context, the authors present a publicly available computer model of craniofacial anatomy. This model may also find applications beyond clinical medicine. The model can be accessed gratis at the Plastic and Reconstructive Surgery Web site or obtained as a three-dimensional mesh, also gratis, by contacting the authors.
Computational Video for Collaborative Applications
2003-03-01
Plenoptic Modeling: An Image- Based Rendering System.” SIGGRAPH 95, 39-46. [18] McMillan, L. An Image-Based Approach to Three-Dimensional Computer... Plenoptic modeling and rendering from image sequences taken by hand-held camera. Proc. DAGM 99, pages 94–101. [8] Y. Horry, K. Anjyo, and K. Arai
ERIC Educational Resources Information Center
Hansen, John; Barnett, Michael; MaKinster, James; Keating, Thomas
2004-01-01
The increased availability of computational modeling software has created opportunities for students to engage in scientific inquiry through constructing computer-based models of scientific phenomena. However, despite the growing trend of integrating technology into science curricula, educators need to understand what aspects of these technologies…
The benefits of 3D modelling and animation in medical teaching.
Vernon, Tim; Peckham, Daniel
2002-12-01
Three-dimensional models created using materials such as wax, bronze and ivory, have been used in the teaching of medicine for many centuries. Today, computer technology allows medical illustrators to create virtual three-dimensional medical models. This paper considers the benefits of using still and animated output from computer-generated models in the teaching of medicine, and examines how three-dimensional models are made.
NASA Technical Reports Server (NTRS)
Chan, S. T. K.; Lee, C. H.; Brashears, M. R.
1975-01-01
A finite element algorithm for solving unsteady, three-dimensional high velocity impact problems is presented. A computer program was developed based on the Eulerian hydroelasto-viscoplastic formulation and the utilization of the theorem of weak solutions. The equations solved consist of conservation of mass, momentum, and energy, equation of state, and appropriate constitutive equations. The solution technique is a time-dependent finite element analysis utilizing three-dimensional isoparametric elements, in conjunction with a generalized two-step time integration scheme. The developed code was demonstrated by solving one-dimensional as well as three-dimensional impact problems for both the inviscid hydrodynamic model and the hydroelasto-viscoplastic model.
Reduced-Order Modeling: New Approaches for Computational Physics
NASA Technical Reports Server (NTRS)
Beran, Philip S.; Silva, Walter A.
2001-01-01
In this paper, we review the development of new reduced-order modeling techniques and discuss their applicability to various problems in computational physics. Emphasis is given to methods ba'sed on Volterra series representations and the proper orthogonal decomposition. Results are reported for different nonlinear systems to provide clear examples of the construction and use of reduced-order models, particularly in the multi-disciplinary field of computational aeroelasticity. Unsteady aerodynamic and aeroelastic behaviors of two- dimensional and three-dimensional geometries are described. Large increases in computational efficiency are obtained through the use of reduced-order models, thereby justifying the initial computational expense of constructing these models and inotivatim,- their use for multi-disciplinary design analysis.
Hendrikson, Wim. J.; van Blitterswijk, Clemens. A.; Rouwkema, Jeroen; Moroni, Lorenzo
2017-01-01
Computational modeling has been increasingly applied to the field of tissue engineering and regenerative medicine. Where in early days computational models were used to better understand the biomechanical requirements of targeted tissues to be regenerated, recently, more and more models are formulated to combine such biomechanical requirements with cell fate predictions to aid in the design of functional three-dimensional scaffolds. In this review, we highlight how computational modeling has been used to understand the mechanisms behind tissue formation and can be used for more rational and biomimetic scaffold-based tissue regeneration strategies. With a particular focus on musculoskeletal tissues, we discuss recent models attempting to predict cell activity in relation to specific mechanical and physical stimuli that can be applied to them through porous three-dimensional scaffolds. In doing so, we review the most common scaffold fabrication methods, with a critical view on those technologies that offer better properties to be more easily combined with computational modeling. Finally, we discuss how modeling, and in particular finite element analysis, can be used to optimize the design of scaffolds for skeletal tissue regeneration. PMID:28567371
Three-dimensional head anthropometric analysis
NASA Astrophysics Data System (ADS)
Enciso, Reyes; Shaw, Alex M.; Neumann, Ulrich; Mah, James
2003-05-01
Currently, two-dimensional photographs are most commonly used to facilitate visualization, assessment and treatment of facial abnormalities in craniofacial care but are subject to errors because of perspective, projection, lack metric and 3-dimensional information. One can find in the literature a variety of methods to generate 3-dimensional facial images such as laser scans, stereo-photogrammetry, infrared imaging and even CT however each of these methods contain inherent limitations and as such no systems are in common clinical use. In this paper we will focus on development of indirect 3-dimensional landmark location and measurement of facial soft-tissue with light-based techniques. In this paper we will statistically evaluate and validate a current three-dimensional image-based face modeling technique using a plaster head model. We will also develop computer graphics tools for indirect anthropometric measurements in a three-dimensional head model (or polygonal mesh) including linear distances currently used in anthropometry. The measurements will be tested against a validated 3-dimensional digitizer (MicroScribe 3DX).
Computer-Based Learning of Neuroanatomy: A Longitudinal Study of Learning, Transfer, and Retention
ERIC Educational Resources Information Center
Chariker, Julia H.; Naaz, Farah; Pani, John R.
2011-01-01
A longitudinal experiment was conducted to evaluate the effectiveness of new methods for learning neuroanatomy with computer-based instruction. Using a three-dimensional graphical model of the human brain and sections derived from the model, tools for exploring neuroanatomy were developed to encourage "adaptive exploration". This is an…
NASA Astrophysics Data System (ADS)
Fedors, R. W.; Painter, S. L.
2004-12-01
Temperature gradients along the thermally-perturbed drifts of the potential high-level waste repository at Yucca Mountain, Nevada, will drive natural convection and associated heat and mass transfer along drifts. A three-dimensional, dual-permeability, thermohydrological model of heat and mass transfer was used to estimate the magnitude of temperature gradients along a drift. Temperature conditions along heated drifts are needed to support estimates of repository-edge cooling and as input to computational fluid dynamics modeling of in-drift axial convection and the cold-trap process. Assumptions associated with abstracted heat transfer models and two-dimensional thermohydrological models weakly coupled to mountain-scale thermal models can readily be tested using the three-dimensional thermohydrological model. Although computationally expensive, the fully coupled three-dimensional thermohydrological model is able to incorporate lateral heat transfer, including host rock processes of conduction, convection in gas phase, advection in liquid phase, and latent-heat transfer. Results from the three-dimensional thermohydrological model showed that weakly coupling three-dimensional thermal and two-dimensional thermohydrological models lead to underestimates of temperatures and underestimates of temperature gradients over large portions of the drift. The representative host rock thermal conductivity needed for abstracted heat transfer models are overestimated using the weakly coupled models. If axial flow patterns over large portions of drifts are not impeded by the strong cross-sectional flow patterns imparted by the heat rising directly off the waste package, condensation from the cold-trap process will not be limited to the extreme ends of each drift. Based on the three-dimensional thermohydrological model, axial temperature gradients occur sooner over a larger portion of the drift, though high gradients nearest the edge of the potential repository are dampened. This abstract is an independent product of CNWRA and does not necessarily reflect the view or regulatory position of the Nuclear Regulatory Commission.
Web-based segmentation and display of three-dimensional radiologic image data.
Silverstein, J; Rubenstein, J; Millman, A; Panko, W
1998-01-01
In many clinical circumstances, viewing sequential radiological image data as three-dimensional models is proving beneficial. However, designing customized computer-generated radiological models is beyond the scope of most physicians, due to specialized hardware and software requirements. We have created a simple method for Internet users to remotely construct and locally display three-dimensional radiological models using only a standard web browser. Rapid model construction is achieved by distributing the hardware intensive steps to a remote server. Once created, the model is automatically displayed on the requesting browser and is accessible to multiple geographically distributed users. Implementation of our server software on large scale systems could be of great service to the worldwide medical community.
Three-dimensional electrical impedance tomography based on the complete electrode model.
Vauhkonen, P J; Vauhkonen, M; Savolainen, T; Kaipio, J P
1999-09-01
In electrical impedance tomography an approximation for the internal resistivity distribution is computed based on the knowledge of the injected currents and measured voltages on the surface of the body. It is often assumed that the injected currents are confined to the two-dimensional (2-D) electrode plane and the reconstruction is based on 2-D assumptions. However, the currents spread out in three dimensions and, therefore, off-plane structures have significant effect on the reconstructed images. In this paper we propose a finite element-based method for the reconstruction of three-dimensional resistivity distributions. The proposed method is based on the so-called complete electrode model that takes into account the presence of the electrodes and the contact impedances. Both the forward and the inverse problems are discussed and results from static and dynamic (difference) reconstructions with real measurement data are given. It is shown that in phantom experiments with accurate finite element computations it is possible to obtain static images that are comparable with difference images that are reconstructed from the same object with the empty (saline filled) tank as a reference.
NASA Astrophysics Data System (ADS)
Aksenova, Olesya; Pachkina, Anna
2017-11-01
The article deals with the problem of necessity of educational process transformation to meet the requirements of modern miming industry; cooperative developing of new educational programs and implementation of educational process taking into account modern manufacturability. The paper proves the idea of introduction into mining professionals learning process studying of three-dimensional models of surface technological complex, ore reserves and underground digging complex as well as creating these models in different graphic editors and working with the information analysis model obtained on the basis of these three-dimensional models. The technological process of manless coal mining at the premises of the mine Polysaevskaya controlled by the information analysis models built on the basis of three-dimensional models of individual objects and technological process as a whole, and at the same time requiring the staff able to use the programs of three-dimensional positioning in the miners and equipment global frame of reference is covered.
Experimental and Computational Investigation of Triple-rotating Blades in a Mower Deck
NASA Astrophysics Data System (ADS)
Chon, Woochong; Amano, Ryoichi S.
Experimental and computational studies were performed on the 1.27m wide three-spindle lawn mower deck with side discharge arrangement. Laser Doppler Velocimetry was used to measure the air velocity at 12 different sections under the mower deck. The high-speed video camera test provided valuable visual evidence of airflow and grass discharge patterns. The strain gages were attached at several predetermined locations of the mower blades to measure the strain. In computational fluid dynamics work, computer based analytical studies were performed. During this phase of work, two different trials were attempted. First, two-dimensional blade shapes at several arbitrary radial sections were selected for flow computations around the blade model. Finally, a three-dimensional full deck model was developed and compared with the experimental results.
Teshima, Tara Lynn; Patel, Vaibhav; Mainprize, James G; Edwards, Glenn; Antonyshyn, Oleh M
2015-07-01
The utilization of three-dimensional modeling technology in craniomaxillofacial surgery has grown exponentially during the last decade. Future development, however, is hindered by the lack of a normative three-dimensional anatomic dataset and a statistical mean three-dimensional virtual model. The purpose of this study is to develop and validate a protocol to generate a statistical three-dimensional virtual model based on a normative dataset of adult skulls. Two hundred adult skull CT images were reviewed. The average three-dimensional skull was computed by processing each CT image in the series using thin-plate spline geometric morphometric protocol. Our statistical average three-dimensional skull was validated by reconstructing patient-specific topography in cranial defects. The experiment was repeated 4 times. In each case, computer-generated cranioplasties were compared directly to the original intact skull. The errors describing the difference between the prediction and the original were calculated. A normative database of 33 adult human skulls was collected. Using 21 anthropometric landmark points, a protocol for three-dimensional skull landmarking and data reduction was developed and a statistical average three-dimensional skull was generated. Our results show the root mean square error (RMSE) for restoration of a known defect using the native best match skull, our statistical average skull, and worst match skull was 0.58, 0.74, and 4.4 mm, respectively. The ability to statistically average craniofacial surface topography will be a valuable instrument for deriving missing anatomy in complex craniofacial defects and deficiencies as well as in evaluating morphologic results of surgery.
NASA Astrophysics Data System (ADS)
Validi, AbdoulAhad
2014-03-01
This study introduces a non-intrusive approach in the context of low-rank separated representation to construct a surrogate of high-dimensional stochastic functions, e.g., PDEs/ODEs, in order to decrease the computational cost of Markov Chain Monte Carlo simulations in Bayesian inference. The surrogate model is constructed via a regularized alternative least-square regression with Tikhonov regularization using a roughening matrix computing the gradient of the solution, in conjunction with a perturbation-based error indicator to detect optimal model complexities. The model approximates a vector of a continuous solution at discrete values of a physical variable. The required number of random realizations to achieve a successful approximation linearly depends on the function dimensionality. The computational cost of the model construction is quadratic in the number of random inputs, which potentially tackles the curse of dimensionality in high-dimensional stochastic functions. Furthermore, this vector-valued separated representation-based model, in comparison to the available scalar-valued case, leads to a significant reduction in the cost of approximation by an order of magnitude equal to the vector size. The performance of the method is studied through its application to three numerical examples including a 41-dimensional elliptic PDE and a 21-dimensional cavity flow.
Vaquerizo, Beatriz; Theriault-Lauzier, Pascal; Piazza, Nicolo
2015-12-01
Mitral regurgitation is the most prevalent valvular heart disease worldwide. Despite the widespread availability of curative surgical intervention, a considerable proportion of patients with severe mitral regurgitation are not referred for treatment, largely due to the presence of left ventricular dysfunction, advanced age, and comorbid illnesses. Transcatheter mitral valve replacement is a promising therapeutic alternative to traditional surgical valve replacement. The complex anatomical and pathophysiological nature of the mitral valvular complex, however, presents significant challenges to the successful design and implementation of novel transcatheter mitral replacement devices. Patient-specific 3-dimensional computer-based models enable accurate assessment of the mitral valve anatomy and preprocedural simulations for transcatheter therapies. Such information may help refine the design features of novel transcatheter mitral devices and enhance procedural planning. Herein, we describe a novel medical image-based processing tool that facilitates accurate, noninvasive assessment of the mitral valvular complex, by creating precise three-dimensional heart models. The 3-dimensional computer reconstructions are then converted to a physical model using 3-dimensional printing technology, thereby enabling patient-specific assessment of the interaction between device and patient. It may provide new opportunities for a better understanding of the mitral anatomy-pathophysiology-device interaction, which is of critical importance for the advancement of transcatheter mitral valve replacement. Copyright © 2015 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Three-Dimensional Computer-Assisted Two-Layer Elastic Models of the Face.
Ueda, Koichi; Shigemura, Yuka; Otsuki, Yuki; Fuse, Asuka; Mitsuno, Daisuke
2017-11-01
To make three-dimensional computer-assisted elastic models for the face, we decided on five requirements: (1) an elastic texture like skin and subcutaneous tissue; (2) the ability to take pen marking for incisions; (3) the ability to be cut with a surgical knife; (4) the ability to keep stitches in place for a long time; and (5) a layered structure. After testing many elastic solvents, we have made realistic three-dimensional computer-assisted two-layer elastic models of the face and cleft lip from the computed tomographic and magnetic resonance imaging stereolithographic data. The surface layer is made of polyurethane and the inner layer is silicone. Using this elastic model, we taught residents and young doctors how to make several typical local flaps and to perform cheiloplasty. They could experience realistic simulated surgery and understand three-dimensional movement of the flaps.
Least-squares finite element solutions for three-dimensional backward-facing step flow
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Hou, Lin-Jun; Lin, Tsung-Liang
1993-01-01
Comprehensive numerical solutions of the steady state incompressible viscous flow over a three-dimensional backward-facing step up to Re equals 800 are presented. The results are obtained by the least-squares finite element method (LSFEM) which is based on the velocity-pressure-vorticity formulation. The computed model is of the same size as that of Armaly's experiment. Three-dimensional phenomena are observed even at low Reynolds number. The calculated values of the primary reattachment length are in good agreement with experimental results.
Experimental, Theoretical, and Computational Investigation of Separated Nozzle Flows
NASA Technical Reports Server (NTRS)
Hunter, Craig A.
2004-01-01
A detailed experimental, theoretical, and computational study of separated nozzle flows has been conducted. Experimental testing was performed at the NASA Langley 16-Foot Transonic Tunnel Complex. As part of a comprehensive static performance investigation, force, moment, and pressure measurements were made and schlieren flow visualization was obtained for a sub-scale, non-axisymmetric, two-dimensional, convergent- divergent nozzle. In addition, two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and algebraic Reynolds stress modeling. For reference, experimental and computational results were compared with theoretical predictions based on one-dimensional gas dynamics and an approximate integral momentum boundary layer method. Experimental results from this study indicate that off-design overexpanded nozzle flow was dominated by shock induced boundary layer separation, which was divided into two distinct flow regimes; three- dimensional separation with partial reattachment, and fully detached two-dimensional separation. The test nozzle was observed to go through a marked transition in passing from one regime to the other. In all cases, separation provided a significant increase in static thrust efficiency compared to the ideal prediction. Results indicate that with controlled separation, the entire overexpanded range of nozzle performance would be within 10% of the peak thrust efficiency. By offering savings in weight and complexity over a conventional mechanical exhaust system, this may allow a fixed geometry nozzle to cover an entire flight envelope. The computational simulation was in excellent agreement with experimental data over most of the test range, and did a good job of modeling internal flow and thrust performance. An exception occurred at low nozzle pressure ratios, where the two-dimensional computational model was inconsistent with the three-dimensional separation observed in the experiment. In general, the computation captured the physics of the shock boundary layer interaction and shock induced boundary layer separation in the nozzle, though there were some differences in shock structure compared to experiment. Though minor, these differences could be important for studies involving flow control or thrust vectoring of separated nozzles. Combined with other observations, this indicates that more detailed, three-dimensional computational modeling needs to be conducted to more realistically simulate shock-separated nozzle flows.
Hierarchic plate and shell models based on p-extension
NASA Technical Reports Server (NTRS)
Szabo, Barna A.; Sahrmann, Glenn J.
1988-01-01
Formulations of finite element models for beams, arches, plates and shells based on the principle of virtual work was studied. The focus is on computer implementation of hierarchic sequences of finite element models suitable for numerical solution of a large variety of practical problems which may concurrently contain thin and thick plates and shells, stiffeners, and regions where three dimensional representation is required. The approximate solutions corresponding to the hierarchic sequence of models converge to the exact solution of the fully three dimensional model. The stopping criterion is based on: (1) estimation of the relative error in energy norm; (2) equilibrium tests, and (3) observation of the convergence of quantities of interest.
Recent development on computer aided tissue engineering--a review.
Sun, Wei; Lal, Pallavi
2002-02-01
The utilization of computer-aided technologies in tissue engineering has evolved in the development of a new field of computer-aided tissue engineering (CATE). This article reviews recent development and application of enabling computer technology, imaging technology, computer-aided design and computer-aided manufacturing (CAD and CAM), and rapid prototyping (RP) technology in tissue engineering, particularly, in computer-aided tissue anatomical modeling, three-dimensional (3-D) anatomy visualization and 3-D reconstruction, CAD-based anatomical modeling, computer-aided tissue classification, computer-aided tissue implantation and prototype modeling assisted surgical planning and reconstruction.
N = 1 supersymmetric indices and the four-dimensional A-model
NASA Astrophysics Data System (ADS)
Closset, Cyril; Kim, Heeyeon; Willett, Brian
2017-08-01
We compute the supersymmetric partition function of N = 1 supersymmetric gauge theories with an R-symmetry on M_4\\cong M_{g,p}× {S}^1 , a principal elliptic fiber bundle of degree p over a genus- g Riemann surface, Σ g . Equivalently, we compute the generalized supersymmetric index I_{M}{_{g,p}, with the supersymmetric three-manifold M_{g,p} as the spatial slice. The ordinary N = 1 supersymmetric index on the round three-sphere is recovered as a special case. We approach this computation from the point of view of a topological A-model for the abelianized gauge fields on the base Σ g . This A-model — or A-twisted two-dimensional N = (2 , 2) gauge theory — encodes all the information about the generalized indices, which are viewed as expectations values of some canonically-defined surface defects wrapped on T 2 inside Σ g × T 2. Being defined by compactification on the torus, the A-model also enjoys natural modular properties, governed by the four-dimensional 't Hooft anomalies. As an application of our results, we provide new tests of Seiberg duality. We also present a new evaluation formula for the three-sphere index as a sum over two-dimensional vacua.
Summary of mathematical models for a conventional and vertical junction photoconverter
NASA Technical Reports Server (NTRS)
Heinbockel, J. H.
1986-01-01
The geometry and computer programming for mathematical models of a one-dimensional conventional photoconverter, a one-dimensional vertical junction photoconverter, a three-dimensional conventinal photoconverter, and a three-dimensional vertical junction solar cell are discussed.
Real time markerless motion tracking using linked kinematic chains
Luck, Jason P [Arvada, CO; Small, Daniel E [Albuquerque, NM
2007-08-14
A markerless method is described for tracking the motion of subjects in a three dimensional environment using a model based on linked kinematic chains. The invention is suitable for tracking robotic, animal or human subjects in real-time using a single computer with inexpensive video equipment, and does not require the use of markers or specialized clothing. A simple model of rigid linked segments is constructed of the subject and tracked using three dimensional volumetric data collected by a multiple camera video imaging system. A physics based method is then used to compute forces to align the model with subsequent volumetric data sets in real-time. The method is able to handle occlusion of segments and accommodates joint limits, velocity constraints, and collision constraints and provides for error recovery. The method further provides for elimination of singularities in Jacobian based calculations, which has been problematic in alternative methods.
Comparison of three aids for teaching lumbar surgical anatomy.
Das, S; Mitchell, P
2013-08-01
Reduced surgeons' training time has resulted in a need to increase the speed of learning. Currently, anatomy education involves traditional (textbooks, physical models, cadaveric dissection/prosection) and recent (electronic) techniques. As yet there are no available data comparing their performance. The performance of three anatomical training aids at teaching the surgical anatomy of the lumbar spinal was compared. The aids used were paper-based images, a three-dimensional plastic model and a semitransparent computer model. Fifty one study subjects were recruited from a population of junior doctors, nurses, medical and nursing students. Three study groups were created which differed in the order of presenting the aids. For each subject, spinal anatomy was revised by the investigator, teaching them the anatomy using each aid. They were specifically taught the locations of the intervertebral disc, pedicles and nerve roots in the lateral recesses. They then drew these structures on a response sheet (three response sheets per subject). The computer model was the best at allowing subjects accurately to determine structure location followed by the paper-based images, the plastic model was the worst. Accuracy improved with successive models used but this trend was not significant. Subjects were not versed in spinal anatomy beforehand, so meaningful baseline measures were not available. The educational performance of surgical anatomical training aids can be measured and compared. A computer generated 3 dimensional model gave the best results with paper-based images second and the plastic model third.
3D Surface Reconstruction for Lower Limb Prosthetic Model using Radon Transform
NASA Astrophysics Data System (ADS)
Sobani, S. S. Mohd; Mahmood, N. H.; Zakaria, N. A.; Razak, M. A. Abdul
2018-03-01
This paper describes the idea to realize three-dimensional surfaces of objects with cylinder-based shapes where the techniques adopted and the strategy developed for a non-rigid three-dimensional surface reconstruction of an object from uncalibrated two-dimensional image sequences using multiple-view digital camera and turntable setup. The surface of an object is reconstructed based on the concept of tomography with the aid of performing several digital image processing algorithms on the two-dimensional images captured by a digital camera in thirty-six different projections and the three-dimensional structure of the surface is analysed. Four different objects are used as experimental models in the reconstructions and each object is placed on a manually rotated turntable. The results shown that the proposed method has successfully reconstruct the three-dimensional surface of the objects and practicable. The shape and size of the reconstructed three-dimensional objects are recognizable and distinguishable. The reconstructions of objects involved in the test are strengthened with the analysis where the maximum percent error obtained from the computation is approximately 1.4 % for the height whilst 4.0%, 4.79% and 4.7% for the diameters at three specific heights of the objects.
NASA Technical Reports Server (NTRS)
Gibson, S. G.
1983-01-01
A system of computer programs was developed to model general three dimensional surfaces. Surfaces are modeled as sets of parametric bicubic patches. There are also capabilities to transform coordinates, to compute mesh/surface intersection normals, and to format input data for a transonic potential flow analysis. A graphical display of surface models and intersection normals is available. There are additional capabilities to regulate point spacing on input curves and to compute surface/surface intersection curves. Input and output data formats are described; detailed suggestions are given for user input. Instructions for execution are given, and examples are shown.
[Three-dimensional computer aided design for individualized post-and-core restoration].
Gu, Xiao-yu; Wang, Ya-ping; Wang, Yong; Lü, Pei-jun
2009-10-01
To develop a method of three-dimensional computer aided design (CAD) of post-and-core restoration. Two plaster casts with extracted natural teeth were used in this study. The extracted teeth were prepared and scanned using tomography method to obtain three-dimensional digitalized models. According to the basic rules of post-and-core design, posts, cores and cavity surfaces of the teeth were designed using the tools for processing point clouds, curves and surfaces on the forward engineering software of Tanglong prosthodontic system. Then three-dimensional figures of the final restorations were corrected according to the configurations of anterior teeth, premolars and molars respectively. Computer aided design of 14 post-and-core restorations were finished, and good fitness between the restoration and the three-dimensional digital models were obtained. Appropriate retention forms and enough spaces for the full crown restorations can be obtained through this method. The CAD of three-dimensional figures of the post-and-core restorations can fulfill clinical requirements. Therefore they can be used in computer-aided manufacture (CAM) of post-and-core restorations.
A finite element approach for solution of the 3D Euler equations
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Ramakrishnan, R.; Dechaumphai, P.
1986-01-01
Prediction of thermal deformations and stresses has prime importance in the design of the next generation of high speed flight vehicles. Aerothermal load computations for complex three-dimensional shapes necessitate development of procedures to solve the full Navier-Stokes equations. This paper details the development of a three-dimensional inviscid flow approach which can be extended for three-dimensional viscous flows. A finite element formulation, based on a Taylor series expansion in time, is employed to solve the compressible Euler equations. Model generation and results display are done using a commercially available program, PATRAN, and vectorizing strategies are incorporated to ensure computational efficiency. Sample problems are presented to demonstrate the validity of the approach for analyzing high speed compressible flows.
Haro, Alexander J.; Chelminski, Michael; Dudley, Robert W.
2015-01-01
We developed two-dimensional computational fluid hydraulics-habitat suitability index (CFD-HSI) models to identify and qualitatively assess potential zones of shallow water depth and high water velocity that may present passage challenges for five major anadromous fish species in a 2.63-km reach of the main stem Penobscot River, Maine, as a result of a dam removal downstream of the reach. Suitability parameters were based on distribution of fish lengths and body depths and transformed to cruising, maximum sustained and sprint swimming speeds. Zones of potential depth and velocity challenges were calculated based on the hydraulic models; ability of fish to pass a challenge zone was based on the percent of river channel that the contiguous zone spanned and its maximum along-current length. Three river flows (low: 99.1 m3 sec-1; normal: 344.9 m3 sec-1; and high: 792.9 m3 sec-1) were modelled to simulate existing hydraulic conditions and hydraulic conditions simulating removal of a dam at the downstream boundary of the reach. Potential depth challenge zones were nonexistent for all low-flow simulations of existing conditions for deeper-bodied fishes. Increasing flows for existing conditions and removal of the dam under all flow conditions increased the number and size of potential velocity challenge zones, with the effects of zones being more pronounced for smaller species. The two-dimensional CFD-HSI model has utility in demonstrating gross effects of flow and hydraulic alteration, but may not be as precise a predictive tool as a three-dimensional model. Passability of the potential challenge zones cannot be precisely quantified for two-dimensional or three-dimensional models due to untested assumptions and incomplete data on fish swimming performance and behaviours.
Turbine endwall single cylinder program
NASA Technical Reports Server (NTRS)
Langston, L. S.
1982-01-01
Detailed measurement of the flow field in front of a large-scale single cylinder, mounted in a wind tunnel is discussed. A better understanding of the three dimensional separation occuring in front of the cylinder on the endwall, and of the vortex system that is formed is sought. A data base with which to check analytical and numerical computer models of three dimensional flows is also anticipated.
Fatone, Stefania; Johnson, William Brett; Tucker, Kerice
2016-04-01
Misalignment of an articulated ankle-foot orthosis joint axis with the anatomic joint axis may lead to discomfort, alterations in gait, and tissue damage. Theoretical, two-dimensional models describe the consequences of misalignments, but cannot capture the three-dimensional behavior of ankle-foot orthosis use. The purpose of this project was to develop a model to describe the effects of ankle-foot orthosis ankle joint misalignment in three dimensions. Computational simulation. Three-dimensional scans of a leg and ankle-foot orthosis were incorporated into a link segment model where the ankle-foot orthosis joint axis could be misaligned with the anatomic ankle joint axis. The leg/ankle-foot orthosis interface was modeled as a network of nodes connected by springs to estimate interface pressure. Motion between the leg and ankle-foot orthosis was calculated as the ankle joint moved through a gait cycle. While the three-dimensional model corroborated predictions of the previously published two-dimensional model that misalignments in the anterior -posterior direction would result in greater relative motion compared to misalignments in the proximal -distal direction, it provided greater insight showing that misalignments have asymmetrical effects. The three-dimensional model has been incorporated into a freely available computer program to assist others in understanding the consequences of joint misalignments. Models and simulations can be used to gain insight into functioning of systems of interest. We have developed a three-dimensional model to assess the effect of ankle joint axis misalignments in ankle-foot orthoses. The model has been incorporated into a freely available computer program to assist understanding of trainees and others interested in orthotics. © The International Society for Prosthetics and Orthotics 2014.
Lee, Ki-Sun; Shin, Sang-Wan; Lee, Sang-Pyo; Kim, Jong-Eun; Kim, Jee-Hwan; Lee, Jeong-Yol
The purpose of this pilot study was to evaluate and compare polyetherketoneketone (PEKK) with different framework materials for implant-supported prostheses by means of a three-dimensional finite element analysis (3D-FEA) based on cone beam computed tomography (CBCT) and computer-aided design (CAD) data. A geometric model that consisted of four maxillary implants supporting a prosthesis framework was constructed from CBCT and CAD data of a treated patient. Three different materials (zirconia, titanium, and PEKK) were selected, and their material properties were simulated using FEA software in the generated geometric model. In the PEKK framework (ie, low elastic modulus) group, the stress transferred to the implant and simulated adjacent tissue was reduced when compressive stress was dominant, but increased when tensile stress was dominant. This study suggests that the shock-absorbing effects of a resilient implant-supported framework are limited in some areas and that rigid framework material shows a favorable stress distribution and safety of overall components of the prosthesis.
Li, Zhongke; Yang, Huifang; Lü, Peijun; Wang, Yong; Sun, Yuchun
2015-01-01
Background and Objective To develop a real-time recording system based on computer binocular vision and two-dimensional image feature extraction to accurately record mandibular movement in three dimensions. Methods A computer-based binocular vision device with two digital cameras was used in conjunction with a fixed head retention bracket to track occlusal movement. Software was developed for extracting target spatial coordinates in real time based on two-dimensional image feature recognition. A plaster model of a subject’s upper and lower dentition were made using conventional methods. A mandibular occlusal splint was made on the plaster model, and then the occlusal surface was removed. Temporal denture base resin was used to make a 3-cm handle extending outside the mouth connecting the anterior labial surface of the occlusal splint with a detection target with intersecting lines designed for spatial coordinate extraction. The subject's head was firmly fixed in place, and the occlusal splint was fully seated on the mandibular dentition. The subject was then asked to make various mouth movements while the mandibular movement target locus point set was recorded. Comparisons between the coordinate values and the actual values of the 30 intersections on the detection target were then analyzed using paired t-tests. Results The three-dimensional trajectory curve shapes of the mandibular movements were consistent with the respective subject movements. Mean XYZ coordinate values and paired t-test results were as follows: X axis: -0.0037 ± 0.02953, P = 0.502; Y axis: 0.0037 ± 0.05242, P = 0.704; and Z axis: 0.0007 ± 0.06040, P = 0.952. The t-test result showed that the coordinate values of the 30 cross points were considered statistically no significant. (P<0.05) Conclusions Use of a real-time recording system of three-dimensional mandibular movement based on computer binocular vision and two-dimensional image feature recognition technology produced a recording accuracy of approximately ± 0.1 mm, and is therefore suitable for clinical application. Certainly, further research is necessary to confirm the clinical applications of the method. PMID:26375800
NASA Astrophysics Data System (ADS)
Aigner, M.; Köpplmayr, T.; Kneidinger, C.; Miethlinger, J.
2014-05-01
Barrier screws are widely used in the plastics industry. Due to the extreme diversity of their geometries, describing the flow behavior is difficult and rarely done in practice. We present a systematic approach based on networks that uses tensor algebra and numerical methods to model and calculate selected barrier screw geometries in terms of pressure, mass flow, and residence time. In addition, we report the results of three-dimensional simulations using the commercially available ANSYS Polyflow software. The major drawbacks of three-dimensional finite-element-method (FEM) simulations are that they require vast computational power and, large quantities of memory, and consume considerable time to create a geometric model created by computer-aided design (CAD) and complete a flow calculation. Consequently, a modified 2.5-dimensional finite volume method, termed network analysis is preferable. The results obtained by network analysis and FEM simulations correlated well. Network analysis provides an efficient alternative to complex FEM software in terms of computing power and memory consumption. Furthermore, typical barrier screw geometries can be parameterized and used for flow calculations without timeconsuming CAD-constructions.
NASA Astrophysics Data System (ADS)
Mohammed, F.
2016-12-01
Landslide hazards such as fast-moving debris flows, slow-moving landslides, and other mass flows cause numerous fatalities, injuries, and damage. Landslide occurrences in fjords, bays, and lakes can additionally generate tsunamis with locally extremely high wave heights and runups. Two-dimensional depth-averaged models can successfully simulate the entire lifecycle of the three-dimensional landslide dynamics and tsunami propagation efficiently and accurately with the appropriate assumptions. Landslide rheology is defined using viscous fluids, visco-plastic fluids, and granular material to account for the possible landslide source materials. Saturated and unsaturated rheologies are further included to simulate debris flow, debris avalanches, mudflows, and rockslides respectively. The models are obtained by reducing the fully three-dimensional Navier-Stokes equations with the internal rheological definition of the landslide material, the water body, and appropriate scaling assumptions to obtain the depth-averaged two-dimensional models. The landslide and tsunami models are coupled to include the interaction between the landslide and the water body for tsunami generation. The reduced models are solved numerically with a fast semi-implicit finite-volume, shock-capturing based algorithm. The well-balanced, positivity preserving algorithm accurately accounts for wet-dry interface transition for the landslide runout, landslide-water body interface, and the tsunami wave flooding on land. The models are implemented as a General-Purpose computing on Graphics Processing Unit-based (GPGPU) suite of models, either coupled or run independently within the suite. The GPGPU implementation provides up to 1000 times speedup over a CPU-based serial computation. This enables simulations of multiple scenarios of hazard realizations that provides a basis for a probabilistic hazard assessment. The models have been successfully validated against experiments, past studies, and field data for landslides and tsunamis.
GEO3D - Three-Dimensional Computer Model of a Ground Source Heat Pump System
James Menart
2013-06-07
This file is the setup file for the computer program GEO3D. GEO3D is a computer program written by Jim Menart to simulate vertical wells in conjunction with a heat pump for ground source heat pump (GSHP) systems. This is a very detailed three-dimensional computer model. This program produces detailed heat transfer and temperature field information for a vertical GSHP system.
The assessment of virtual reality for human anatomy instruction
NASA Technical Reports Server (NTRS)
Benn, Karen P.
1994-01-01
This research project seeks to meet the objective of science training by developing, assessing, and validating virtual reality as a human anatomy training medium. In ideal situations, anatomic models, computer-based instruction, and cadaver dissection are utilized to augment the traditional methods of instruction. At many institutions, lack of financial resources limits anatomy instruction to textbooks and lectures. However, human anatomy is three dimensional, unlike the one dimensional depiction found in textbooks and the two dimensional depiction found on the computer. Virtual reality is a breakthrough technology that allows one to step through the computer screen into a three dimensional world. This technology offers many opportunities to enhance science education. Therefore, a virtual testing environment of the abdominopelvic region of a human cadaver was created to study the placement of body parts within the nine anatomical divisions of the abdominopelvic region and the four abdominal quadrants.
Reaction time for trimolecular reactions in compartment-based reaction-diffusion models
NASA Astrophysics Data System (ADS)
Li, Fei; Chen, Minghan; Erban, Radek; Cao, Yang
2018-05-01
Trimolecular reaction models are investigated in the compartment-based (lattice-based) framework for stochastic reaction-diffusion modeling. The formulae for the first collision time and the mean reaction time are derived for the case where three molecules are present in the solution under periodic boundary conditions. For the case of reflecting boundary conditions, similar formulae are obtained using a computer-assisted approach. The accuracy of these formulae is further verified through comparison with numerical results. The presented derivation is based on the first passage time analysis of Montroll [J. Math. Phys. 10, 753 (1969)]. Montroll's results for two-dimensional lattice-based random walks are adapted and applied to compartment-based models of trimolecular reactions, which are studied in one-dimensional or pseudo one-dimensional domains.
Image formation of thick three-dimensional objects in differential-interference-contrast microscopy.
Trattner, Sigal; Kashdan, Eugene; Feigin, Micha; Sochen, Nir
2014-05-01
The differential-interference-contrast (DIC) microscope is of widespread use in life sciences as it enables noninvasive visualization of transparent objects. The goal of this work is to model the image formation process of thick three-dimensional objects in DIC microscopy. The model is based on the principles of electromagnetic wave propagation and scattering. It simulates light propagation through the components of the DIC microscope to the image plane using a combined geometrical and physical optics approach and replicates the DIC image of the illuminated object. The model is evaluated by comparing simulated images of three-dimensional spherical objects with the recorded images of polystyrene microspheres. Our computer simulations confirm that the model captures the major DIC image characteristics of the simulated object, and it is sensitive to the defocusing effects.
NASA Astrophysics Data System (ADS)
Parvin, Salma; Sultana, Aysha
2017-06-01
The influence of High Intensity Focused Ultrasound (HIFU) on the obstacle through blood vessel is studied numerically. A three-dimensional acoustics-thermal-fluid coupling model is employed to compute the temperature field around the obstacle through blood vessel. The model construction is based on the linear Westervelt and conjugate heat transfer equations for the obstacle through blood vessel. The system of equations is solved using Finite Element Method (FEM). We found from this three-dimensional numerical study that the rate of heat transfer is increasing from the obstacle and both the convective cooling and acoustic streaming can considerably change the temperature field.
Simulation of radiation effects on three-dimensional computer optical memories
NASA Technical Reports Server (NTRS)
Moscovitch, M.; Emfietzoglou, D.
1997-01-01
A model was developed to simulate the effects of heavy charged-particle (HCP) radiation on the information stored in three-dimensional computer optical memories. The model is based on (i) the HCP track radial dose distribution, (ii) the spatial and temporal distribution of temperature in the track, (iii) the matrix-specific radiation-induced changes that will affect the response, and (iv) the kinetics of transition of photochromic molecules from the colored to the colorless isomeric form (bit flip). It is shown that information stored in a volume of several nanometers radius around the particle's track axis may be lost. The magnitude of the effect is dependent on the particle's track structure.
Matta, Ragai-Edward; Bergauer, Bastian; Adler, Werner; Wichmann, Manfred; Nickenig, Hans-Joachim
2017-06-01
The use of a surgical template is a well-established method in advanced implantology. In addition to conventional fabrication, computer-aided design and computer-aided manufacturing (CAD/CAM) work-flow provides an opportunity to engineer implant drilling templates via a three-dimensional printer. In order to transfer the virtual planning to the oral situation, a highly accurate surgical guide is needed. The aim of this study was to evaluate the impact of the fabrication method on the three-dimensional accuracy. The same virtual planning based on a scanned plaster model was used to fabricate a conventional thermo-formed and a three-dimensional printed surgical guide for each of 13 patients (single tooth implants). Both templates were acquired individually on the respective plaster model using an optical industrial white-light scanner (ATOS II, GOM mbh, Braunschweig, Germany), and the virtual datasets were superimposed. Using the three-dimensional geometry of the implant sleeve, the deviation between both surgical guides was evaluated. The mean discrepancy of the angle was 3.479° (standard deviation, 1.904°) based on data from 13 patients. Concerning the three-dimensional position of the implant sleeve, the highest deviation was in the Z-axis at 0.594 mm. The mean deviation of the Euclidian distance, dxyz, was 0.864 mm. Although the two different fabrication methods delivered statistically significantly different templates, the deviations ranged within a decimillimeter span. Both methods are appropriate for clinical use. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Knight, Doyle D.; Badekas, Dias
1991-01-01
The swept oblique shock-wave/turbulent-boundary-layer interaction generated by a 20-deg sharp fin at Mach 4 and Reynolds number 21,000 is investigated via a series of computations using both conical and three-dimensional Reynolds-averaged Navier-Stokes equations with turbulence incorporated through the algebraic turbulent eddy viscosity model of Baldwin-Lomax. Results are compared with known experimental data, and it is concluded that the computed three-dimensional flowfield is quasi-conical (in agreement with the experimental data), the computed three-dimensional and conical surface pressure and surface flow direction are in good agreement with the experiment, and the three-dimensional and conical flows significantly underpredict the peak experimental skin friction. It is pointed out that most of the features of the conical flowfield model in the experiment are observed in the conical computation which also describes the complete conical streamline pattern not included in the model of the experiment.
SUPIN: A Computational Tool for Supersonic Inlet Design
NASA Technical Reports Server (NTRS)
Slater, John W.
2016-01-01
A computational tool named SUPIN is being developed to design and analyze the aerodynamic performance of supersonic inlets. The inlet types available include the axisymmetric pitot, three-dimensional pitot, axisymmetric outward-turning, two-dimensional single-duct, two-dimensional bifurcated-duct, and streamline-traced inlets. The aerodynamic performance is characterized by the flow rates, total pressure recovery, and drag. The inlet flow-field is divided into parts to provide a framework for the geometry and aerodynamic modeling. Each part of the inlet is defined in terms of geometric factors. The low-fidelity aerodynamic analysis and design methods are based on analytic, empirical, and numerical methods which provide for quick design and analysis. SUPIN provides inlet geometry in the form of coordinates, surface angles, and cross-sectional areas. SUPIN can generate inlet surface grids and three-dimensional, structured volume grids for use with higher-fidelity computational fluid dynamics (CFD) analysis. Capabilities highlighted in this paper include the design and analysis of streamline-traced external-compression inlets, modeling of porous bleed, and the design and analysis of mixed-compression inlets. CFD analyses are used to verify the SUPIN results.
Creating Body Shapes From Verbal Descriptions by Linking Similarity Spaces.
Hill, Matthew Q; Streuber, Stephan; Hahn, Carina A; Black, Michael J; O'Toole, Alice J
2016-11-01
Brief verbal descriptions of people's bodies (e.g., "curvy," "long-legged") can elicit vivid mental images. The ease with which these mental images are created belies the complexity of three-dimensional body shapes. We explored the relationship between body shapes and body descriptions and showed that a small number of words can be used to generate categorically accurate representations of three-dimensional bodies. The dimensions of body-shape variation that emerged in a language-based similarity space were related to major dimensions of variation computed directly from three-dimensional laser scans of 2,094 bodies. This relationship allowed us to generate three-dimensional models of people in the shape space using only their coordinates on analogous dimensions in the language-based description space. Human descriptions of photographed bodies and their corresponding models matched closely. The natural mapping between the spaces illustrates the role of language as a concise code for body shape that captures perceptually salient global and local body features. © The Author(s) 2016.
Development of computational methods for heavy lift launch vehicles
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Ryan, James S.
1993-01-01
The research effort has been focused on the development of an advanced flow solver for complex viscous turbulent flows with shock waves. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. A new computer program named CENS3D has been developed for viscous turbulent flows with discontinuities. Details of the code are described in Appendix A and Appendix B. With the developments of the numerical algorithm and dissipation model, the simulation of three-dimensional viscous compressible flows has become more efficient and accurate. The results of the research are expected to yield a direct impact on the design process of future liquid fueled launch systems.
Improved numerical methods for turbulent viscous flows aerothermal modeling program, phase 2
NASA Technical Reports Server (NTRS)
Karki, K. C.; Patankar, S. V.; Runchal, A. K.; Mongia, H. C.
1988-01-01
The details of a study to develop accurate and efficient numerical schemes to predict complex flows are described. In this program, several discretization schemes were evaluated using simple test cases. This assessment led to the selection of three schemes for an in-depth evaluation based on two-dimensional flows. The scheme with the superior overall performance was incorporated in a computer program for three-dimensional flows. To improve the computational efficiency, the selected discretization scheme was combined with a direct solution approach in which the fluid flow equations are solved simultaneously rather than sequentially.
Office-Based Three-Dimensional Printing Workflow for Craniomaxillofacial Fracture Repair.
Elegbede, Adekunle; Diaconu, Silviu C; McNichols, Colton H L; Seu, Michelle; Rasko, Yvonne M; Grant, Michael P; Nam, Arthur J
2018-03-08
Three-dimensional printing of patient-specific models is being used in various aspects of craniomaxillofacial reconstruction. Printing is typically outsourced to off-site vendors, with the main disadvantages being increased costs and time for production. Office-based 3-dimensional printing has been proposed as a means to reduce costs and delays, but remains largely underused because of the perception among surgeons that it is futuristic, highly technical, and prohibitively expensive. The goal of this report is to demonstrate the feasibility and ease of incorporating in-office 3-dimensional printing into the standard workflow for facial fracture repair.Patients with complex mandible fractures requiring open repair were identified. Open-source software was used to create virtual 3-dimensional skeletal models of the, initial injury pattern, and then the ideally reduced fractures based on preoperative computed tomography (CT) scan images. The virtual 3-dimensional skeletal models were then printed in our office using a commercially available 3-dimensional printer and bioplastic filament. The 3-dimensional skeletal models were used as templates to bend and shape titanium plates that were subsequently used for intraoperative fixation.Average print time was 6 hours. Excluding the 1-time cost of the 3-dimensional printer of $2500, roughly the cost of a single commercially produced model, the average material cost to print 1 model mandible was $4.30. Postoperative CT imaging demonstrated precise, predicted reduction in all patients.Office-based 3-dimensional printing of skeletal models can be routinely used in repair of facial fractures in an efficient and cost-effective manner.
NASA Technical Reports Server (NTRS)
Povinelli, L. A.
1984-01-01
An assessment of several three dimensional inviscid turbine aerodynamic computer codes and loss models used at the NASA Lewis Research Center is presented. Five flow situations are examined, for which both experimental data and computational results are available. The five flows form a basis for the evaluation of the computational procedures. It was concluded that stator flows may be calculated with a high degree of accuracy, whereas, rotor flow fields are less accurately determined. Exploitation of contouring, learning, bowing, and sweeping will require a three dimensional viscous analysis technique.
NASA Technical Reports Server (NTRS)
Beyer, J.; Jacobus, C.; Mitchell, B.
1987-01-01
Range imagery from a laser scanner can be used to provide sufficient information for docking and obstacle avoidance procedures to be performed automatically. Three dimensional model-based computer vision algorithms in development can perform these tasks even with targets which may not be cooperative (that is, objects without special targets or markers to provide unambiguous location points). Roll, pitch and yaw of the vehicle can be taken into account as image scanning takes place, so that these can be corrected when the image is converted from egocentric to world coordinates. Other attributes of the sensor, such as the registered reflectence and texture channels, provide additional data sources for algorithm robustness. Temporal fusion of sensor immages can take place in the work coordinate domain, allowing for the building of complex maps in three dimensional space.
Computational techniques to enable visualizing shapes of objects of extra spatial dimensions
NASA Astrophysics Data System (ADS)
Black, Don Vaughn, II
Envisioning extra dimensions beyond the three of common experience is a daunting challenge for three dimensional observers. Intuition relies on experience gained in a three dimensional environment. Gaining experience with virtual four dimensional objects and virtual three manifolds in four-space on a personal computer may provide the basis for an intuitive grasp of four dimensions. In order to enable such a capability for ourselves, it is first necessary to devise and implement a computationally tractable method to visualize, explore, and manipulate objects of dimension beyond three on the personal computer. A technology is described in this dissertation to convert a representation of higher dimensional models into a format that may be displayed in realtime on graphics cards available on many off-the-shelf personal computers. As a result, an opportunity has been created to experience the shape of four dimensional objects on the desktop computer. The ultimate goal has been to provide the user a tangible and memorable experience with mathematical models of four dimensional objects such that the user can see the model from any user selected vantage point. By use of a 4D GUI, an arbitrary convex hull or 3D silhouette of the 4D model can be rotated, panned, scrolled, and zoomed until a suitable dimensionally reduced view or Aspect is obtained. The 4D GUI then allows the user to manipulate a 3-flat hyperplane cutting tool to slice the model at an arbitrary orientation and position to extract or "pluck" an embedded 3D slice or "aspect" from the embedding four-space. This plucked 3D aspect can be viewed from all angles via a conventional 3D viewer using three multiple POV viewports, and optionally exported to a third party CAD viewer for further manipulation. Plucking and Manipulating the Aspect provides a tangible experience for the end-user in the same manner as any 3D Computer Aided Design viewing and manipulation tool does for the engineer or a 3D video game provides for the nascent student.
Teaching Anatomy and Physiology Using Computer-Based, Stereoscopic Images
ERIC Educational Resources Information Center
Perry, Jamie; Kuehn, David; Langlois, Rick
2007-01-01
Learning real three-dimensional (3D) anatomy for the first time can be challenging. Two-dimensional drawings and plastic models tend to over-simplify the complexity of anatomy. The approach described uses stereoscopy to create 3D images of the process of cadaver dissection and to demonstrate the underlying anatomy related to the speech mechanisms.…
ERIC Educational Resources Information Center
Codd, Anthony M.; Choudhury, Bipasha
2011-01-01
The use of cadavers to teach anatomy is well established, but limitations with this approach have led to the introduction of alternative teaching methods. One such method is the use of three-dimensional virtual reality computer models. An interactive, three-dimensional computer model of human forearm anterior compartment musculoskeletal anatomy…
ERIC Educational Resources Information Center
Keating, Thomas; Barnett, Michael; Barab, Sasha A.; Hay, Kenneth E.
2002-01-01
Describes the Virtual Solar System (VSS) course which is one of the first attempts to integrate three-dimensional (3-D) computer modeling as a central component of introductory undergraduate education. Assesses changes in student understanding of astronomy concepts as a result of participating in an experimental introductory astronomy course in…
Development of an Aeroelastic Analysis Including a Viscous Flow Model
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Bakhle, Milind A.
2001-01-01
Under this grant, Version 4 of the three-dimensional Navier-Stokes aeroelastic code (TURBO-AE) has been developed and verified. The TURBO-AE Version 4 aeroelastic code allows flutter calculations for a fan, compressor, or turbine blade row. This code models a vibrating three-dimensional bladed disk configuration and the associated unsteady flow (including shocks, and viscous effects) to calculate the aeroelastic instability using a work-per-cycle approach. Phase-lagged (time-shift) periodic boundary conditions are used to model the phase lag between adjacent vibrating blades. The direct-store approach is used for this purpose to reduce the computational domain to a single interblade passage. A disk storage option, implemented using direct access files, is available to reduce the large memory requirements of the direct-store approach. Other researchers have implemented 3D inlet/exit boundary conditions based on eigen-analysis. Appendix A: Aeroelastic calculations based on three-dimensional euler analysis. Appendix B: Unsteady aerodynamic modeling of blade vibration using the turbo-V3.1 code.
Continuum modeling of three-dimensional truss-like space structures
NASA Technical Reports Server (NTRS)
Nayfeh, A. H.; Hefzy, M. S.
1978-01-01
A mathematical and computational analysis capability has been developed for calculating the effective mechanical properties of three-dimensional periodic truss-like structures. Two models are studied in detail. The first, called the octetruss model, is a three-dimensional extension of a two-dimensional model, and the second is a cubic model. Symmetry considerations are employed as a first step to show that the specific octetruss model has four independent constants and that the cubic model has two. The actual values of these constants are determined by averaging the contributions of each rod element to the overall structure stiffness. The individual rod member contribution to the overall stiffness is obtained by a three-dimensional coordinate transformation. The analysis shows that the effective three-dimensional elastic properties of both models are relatively close to each other.
A multiscale MDCT image-based breathing lung model with time-varying regional ventilation
Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long
2012-01-01
A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C1 continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung. PMID:23794749
ERIC Educational Resources Information Center
Kucukozer, Huseyin; Korkusuz, M. Emin; Kucukozer, H. Asuman; Yurumezoglu, Kemal
2009-01-01
This study has examined the impact of teaching certain basic concepts of astronomy through a predict-observe-explain strategy, which includes three-dimensional (3D) computer modeling and observations on conceptual changes seen in sixth-grade elementary school children (aged 11-13; number of students: 131). A pre- and postastronomy instruction…
Erdenebat, Munkh-Uchral; Kim, Byeong-Jun; Piao, Yan-Ling; Park, Seo-Yeon; Kwon, Ki-Chul; Piao, Mei-Lan; Yoo, Kwan-Hee; Kim, Nam
2017-10-01
A mobile three-dimensional image acquisition and reconstruction system using a computer-generated integral imaging technique is proposed. A depth camera connected to the mobile device acquires the color and depth data of a real object simultaneously, and an elemental image array is generated based on the original three-dimensional information for the object, with lens array specifications input into the mobile device. The three-dimensional visualization of the real object is reconstructed on the mobile display through optical or digital reconstruction methods. The proposed system is implemented successfully and the experimental results certify that the system is an effective and interesting method of displaying real three-dimensional content on a mobile device.
Computer modelling of grain microstructure in three dimensions
NASA Astrophysics Data System (ADS)
Narayan, K. Lakshmi
We present a program that generates the two-dimensional micrographs of a three dimensional grain microstructure. The code utilizes a novel scanning, pixel mapping technique to secure statistical distributions of surface areas, grain sizes, aspect ratios, perimeters, number of nearest neighbors and volumes of the randomly nucleated particles. The program can be used for comparing the existing theories of grain growth, and interpretation of two-dimensional microstructure of three-dimensional samples. Special features have been included to minimize the computation time and resource requirements.
On a 3-D singularity element for computation of combined mode stress intensities
NASA Technical Reports Server (NTRS)
Atluri, S. N.; Kathiresan, K.
1976-01-01
A special three-dimensional singularity element is developed for the computation of combined modes 1, 2, and 3 stress intensity factors, which vary along an arbitrarily curved crack front in three dimensional linear elastic fracture problems. The finite element method is based on a displacement-hybrid finite element model, based on a modified variational principle of potential energy, with arbitrary element interior displacements, interelement boundary displacements, and element boundary tractions as variables. The special crack-front element used in this analysis contains the square root singularity in strains and stresses, where the stress-intensity factors K(1), K(2), and K(3) are quadratically variable along the crack front and are solved directly along with the unknown nodal displacements.
NASA Technical Reports Server (NTRS)
Hamilton, H. H., II
1980-01-01
A theoretical method was developed for computing approximate laminar heating rates on three dimensional configurations at angle of attack. The method is based on the axisymmetric analogue which is used to reduce the three dimensional boundary layer equations along surface streamlines to an equivalent axisymmetric form by using the metric coefficient which describes streamline divergence (or convergence). The method was coupled with a three dimensional inviscid flow field program for computing surface streamline paths, metric coefficients, and boundary layer edge conditions.
Transient Two-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2004-01-01
Two-dimensional planar and axisymmetric numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to develop a computational methodology to identify nozzle side load physics using simplified two-dimensional geometries, in order to come up with a computational strategy to eventually predict the three-dimensional side loads. The computational methodology is based on a multidimensional, finite-volume, viscous, chemically reacting, unstructured-grid, and pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system modeling. The side load physics captured in the low aspect-ratio, two-dimensional planar nozzle include the Coanda effect, afterburning wave, and the associated lip free-shock oscillation. Results of parametric studies indicate that equivalence ratio, combustion and ramp rate affect the side load physics. The side load physics inferred in the high aspect-ratio, axisymmetric nozzle study include the afterburning wave; transition from free-shock to restricted-shock separation, reverting back to free-shock separation, and transforming to restricted-shock separation again; and lip restricted-shock oscillation. The Mach disk loci and wall pressure history studies reconfirm that combustion and the associated thermodynamic properties affect the formation and duration of the asymmetric flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flathers, M.B.; Bache, G.E.; Rainsberger, R.
1996-04-01
The flow field of a complex three-dimensional radial inlet for an industrial pipeline centrifugal compressor has been experimentally determined on a half-scale model. Based on the experimental results, inlet guide vanes have been designed to correct pressure and swirl angle distribution deficiencies. The unvaned and vaned inlets are analyzed with a commercially available fully three-dimensional viscous Navier-Stokes code. Since experimental results were available prior to the numerical study, the unvaned analysis is considered a postdiction while the vaned analysis is considered a prediction. The computational results of the unvaned inlet have been compared to the previously obtained experimental results. Themore » experimental method utilized for the unvaned inlet is repeated for the vaned inlet and the data have been used to verify the computational results. The paper will discuss experimental, design, and computational procedures, grid generation, boundary conditions, and experimental versus computational methods. Agreement between experimental and computational results is very good, both in prediction and postdiction modes. The results of this investigation indicate that CFD offers a measurable advantage in design, schedule, and cost and can be applied to complex, three-dimensional radial inlets.« less
On the Solution of the Three-Dimensional Flowfield About a Flow-Through Nacelle. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Compton, William Bernard
1985-01-01
The solution of the three dimensional flow field for a flow through nacelle was studied. Both inviscid and viscous inviscid interacting solutions were examined. Inviscid solutions were obtained with two different computational procedures for solving the three dimensional Euler equations. The first procedure employs an alternating direction implicit numerical algorithm, and required the development of a complete computational model for the nacelle problem. The second computational technique employs a fourth order Runge-Kutta numerical algorithm which was modified to fit the nacelle problem. Viscous effects on the flow field were evaluated with a viscous inviscid interacting computational model. This model was constructed by coupling the explicit Euler solution procedure with a flag entrainment boundary layer solution procedure in a global iteration scheme. The computational techniques were used to compute the flow field for a long duct turbofan engine nacelle at free stream Mach numbers of 0.80 and 0.94 and angles of attack of 0 and 4 deg.
Using Three-Dimensional Interactive Graphics To Teach Equipment Procedures.
ERIC Educational Resources Information Center
Hamel, Cheryl J.; Ryan-Jones, David L.
1997-01-01
Focuses on how three-dimensional graphical and interactive features of computer-based instruction can enhance learning and support human cognition during technical training of equipment procedures. Presents guidelines for using three-dimensional interactive graphics to teach equipment procedures based on studies of the effects of graphics, motion,…
Naaz, Farah; Chariker, Julia H.; Pani, John R.
2013-01-01
A study was conducted to test the hypothesis that instruction with graphically integrated representations of whole and sectional neuroanatomy is especially effective for learning to recognize neural structures in sectional imagery (such as MRI images). Neuroanatomy was taught to two groups of participants using computer graphical models of the human brain. Both groups learned whole anatomy first with a three-dimensional model of the brain. One group then learned sectional anatomy using two-dimensional sectional representations, with the expectation that there would be transfer of learning from whole to sectional anatomy. The second group learned sectional anatomy by moving a virtual cutting plane through the three-dimensional model. In tests of long-term retention of sectional neuroanatomy, the group with graphically integrated representation recognized more neural structures that were known to be challenging to learn. This study demonstrates the use of graphical representation to facilitate a more elaborated (deeper) understanding of complex spatial relations. PMID:24563579
Three Dimensional Explicit Model for Cometary Tail Ions Interactions with Solar Wind
NASA Astrophysics Data System (ADS)
Al Bermani, M. J. F.; Alhamed, S. A.; Khalaf, S. Z.; Ali, H. Sh.; Selman, A. A.
2009-06-01
The different interactions between cometary tail and solar wind ions are studied in the present paper based on three-dimensional Lax explicit method. The model used in this research is based on the continuity equations describing the cometary tail-solar wind interactions. Three dimensional system was considered in this paper. Simulation of the physical system was achieved using computer code written using Matlab 7.0. The parameters studied here assumed Halley comet type and include the particle density rho, the particles velocity v, the magnetic field strength B, dynamic pressure p and internal energy E. The results of the present research showed that the interaction near the cometary nucleus is mainly affected by the new ions added to the plasma of the solar wind, which increases the average molecular weight and result in many unique characteristics of the cometary tail. These characteristics were explained in the presence of the IMF.
[Nasolabial muscle finite-element study and clinical application].
Yin, Ningbei; Wu, Jiajun; Chen, Bo; Wang, Yongqian; Song, Tao; Ma, Hengyuan
2015-05-01
To investigate the nasolabial muscle anatomy and biomechanical characteristics. Micro-computed tomography scan was performed in 8 cases of spontaneous abortion fetus lip nasal specimens to construct a three-dimensional model. The nasolabial muscle structure was analyzed using Mimics software. The three-dimensional configuration model of nasolabial muscle was established based on local anatomy and tissue section, and compared with tissue section. Three dimensional finite element analysis was performed on lip nasal muscle related biomechanics and surface deformation in Application verification was carried out in 263 cases of microform cleft lip surgery. There was close relationship between nasolabial muscle. The nasolabial muscle tension system was constituted, based on which a new cleft lip repair surgery was designed and satisfied results were achieved. There is close relationship among nasolabial muscle in anatomy, histology and biomechanics. To obtain better effect, cleft lip repair should be performed on the basis of recovering muscle tension system.
NASA Technical Reports Server (NTRS)
Anderson, O. L.; Chiappetta, L. M.; Edwards, D. E.; Mcvey, J. B.
1982-01-01
A model for predicting the distribution of liquid fuel droplets and fuel vapor in premixing-prevaporizing fuel-air mixing passages of the direct injection type is reported. This model consists of three computer programs; a calculation of the two dimensional or axisymmetric air flow field neglecting the effects of fuel; a calculation of the three dimensional fuel droplet trajectories and evaporation rates in a known, moving air flow; a calculation of fuel vapor diffusing into a moving three dimensional air flow with source terms dependent on the droplet evaporation rates. The fuel droplets are treated as individual particle classes each satisfying Newton's law, a heat transfer, and a mass transfer equation. This fuel droplet model treats multicomponent fuels and incorporates the physics required for the treatment of elastic droplet collisions, droplet shattering, droplet coalescence and droplet wall interactions. The vapor diffusion calculation treats three dimensional, gas phase, turbulent diffusion processes. The analysis includes a model for the autoignition of the fuel air mixture based upon the rate of formation of an important intermediate chemical species during the preignition period.
ERIC Educational Resources Information Center
Hansen, John; Barnett, Michael; MaKinster, James; Keating, Thomas
2004-01-01
In this study, we explore an alternate mode for teaching and learning the dynamic, three-dimensional (3D) relationships that are central to understanding astronomical concepts. To this end, we implemented an innovative undergraduate course in which we used inexpensive computer modeling tools. As the second of a two-paper series, this report…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lue Xing; Sun Kun; Wang Pan
In the framework of Bell-polynomial manipulations, under investigation hereby are three single-field bilinearizable equations: the (1+1)-dimensional shallow water wave model, Boiti-Leon-Manna-Pempinelli model, and (2+1)-dimensional Sawada-Kotera model. Based on the concept of scale invariance, a direct and unifying Bell-polynomial scheme is employed to achieve the Baecklund transformations and Lax pairs associated with those three soliton equations. Note that the Bell-polynomial expressions and Bell-polynomial-typed Baecklund transformations for those three soliton equations can be, respectively, cast into the bilinear equations and bilinear Baecklund transformations with symbolic computation. Consequently, it is also shown that the Bell-polynomial-typed Baecklund transformations can be linearized into the correspondingmore » Lax pairs.« less
Accurate complex scaling of three dimensional numerical potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerioni, Alessandro; Genovese, Luigi; Duchemin, Ivan
2013-05-28
The complex scaling method, which consists in continuing spatial coordinates into the complex plane, is a well-established method that allows to compute resonant eigenfunctions of the time-independent Schroedinger operator. Whenever it is desirable to apply the complex scaling to investigate resonances in physical systems defined on numerical discrete grids, the most direct approach relies on the application of a similarity transformation to the original, unscaled Hamiltonian. We show that such an approach can be conveniently implemented in the Daubechies wavelet basis set, featuring a very promising level of generality, high accuracy, and no need for artificial convergence parameters. Complex scalingmore » of three dimensional numerical potentials can be efficiently and accurately performed. By carrying out an illustrative resonant state computation in the case of a one-dimensional model potential, we then show that our wavelet-based approach may disclose new exciting opportunities in the field of computational non-Hermitian quantum mechanics.« less
Powers, Christopher M; Chen, Yu-Jen; Scher, Irving; Lee, Thay Q
2006-01-01
The purpose of this study was to determine the influence of patellofemoral joint contact geometry on the modeling of three-dimensional patellofemoral joint forces. To achieve this goal, patellofemoral joint reaction forces (PFJRFs) that were measured from an in-vitro cadaveric set-up were compared to PFJRFs estimated from a computer model that did not consider patellofemoral joint contact geometry. Ten cadaver knees were used in this study. Each was mounted on a custom jig that was fixed to an Instron frame. Quadriceps muscle loads were accomplished using a pulley system and weights. The force in the patellar ligament was obtained using a buckle transducer. To quantify the magnitude and direction of the PFJRF, a six-axis load cell was incorporated into the femoral fixation system so that a rigid body assumption could be made. PFJRF data were obtained at 0 degrees , 20 degrees , 40 degrees and 60 degrees of knee flexion. Following in vitro testing, SIMM modeling software was used to develop computational models based on the three-dimensional coordinates (Microscribe digitizer) of individual muscle and patellar ligament force vectors obtained from the cadaver knees. The overall magnitude of the PFJRF estimated from the computer generated models closely matched the direct measurements from the in vitro set-up (Pearson's correlation coefficient, R(2)=0.91, p<0.001). Although the computational model accurately estimated the posteriorly directed forces acting on the joint, some discrepancies were noted in the forces acting in the superior and lateral directions. These differences however, were relatively small when expressed as a total of the overall PFJRF magnitude.
Tsoukias, Nikolaos M; Goldman, Daniel; Vadapalli, Arjun; Pittman, Roland N; Popel, Aleksander S
2007-10-21
A detailed computational model is developed to simulate oxygen transport from a three-dimensional (3D) microvascular network to the surrounding tissue in the presence of hemoglobin-based oxygen carriers. The model accounts for nonlinear O(2) consumption, myoglobin-facilitated diffusion and nonlinear oxyhemoglobin dissociation in the RBCs and plasma. It also includes a detailed description of intravascular resistance to O(2) transport and is capable of incorporating realistic 3D microvascular network geometries. Simulations in this study were performed using a computer-generated microvascular architecture that mimics morphometric parameters for the hamster cheek pouch retractor muscle. Theoretical results are presented next to corresponding experimental data. Phosphorescence quenching microscopy provided PO(2) measurements at the arteriolar and venular ends of capillaries in the hamster retractor muscle before and after isovolemic hemodilution with three different hemodilutents: a non-oxygen-carrying plasma expander and two hemoglobin solutions with different oxygen affinities. Sample results in a microvascular network show an enhancement of diffusive shunting between arterioles, venules and capillaries and a decrease in hemoglobin's effectiveness for tissue oxygenation when its affinity for O(2) is decreased. Model simulations suggest that microvascular network anatomy can affect the optimal hemoglobin affinity for reducing tissue hypoxia. O(2) transport simulations in realistic representations of microvascular networks should provide a theoretical framework for choosing optimal parameter values in the development of hemoglobin-based blood substitutes.
An Energy Model of Place Cell Network in Three Dimensional Space.
Wang, Yihong; Xu, Xuying; Wang, Rubin
2018-01-01
Place cells are important elements in the spatial representation system of the brain. A considerable amount of experimental data and classical models are achieved in this area. However, an important question has not been addressed, which is how the three dimensional space is represented by the place cells. This question is preliminarily surveyed by energy coding method in this research. Energy coding method argues that neural information can be expressed by neural energy and it is convenient to model and compute for neural systems due to the global and linearly addable properties of neural energy. Nevertheless, the models of functional neural networks based on energy coding method have not been established. In this work, we construct a place cell network model to represent three dimensional space on an energy level. Then we define the place field and place field center and test the locating performance in three dimensional space. The results imply that the model successfully simulates the basic properties of place cells. The individual place cell obtains unique spatial selectivity. The place fields in three dimensional space vary in size and energy consumption. Furthermore, the locating error is limited to a certain level and the simulated place field agrees to the experimental results. In conclusion, this is an effective model to represent three dimensional space by energy method. The research verifies the energy efficiency principle of the brain during the neural coding for three dimensional spatial information. It is the first step to complete the three dimensional spatial representing system of the brain, and helps us further understand how the energy efficiency principle directs the locating, navigating, and path planning function of the brain.
Taylor, Emily M.; Sweetkind, Donald S.
2014-01-01
Understanding the subsurface geologic framework of the Cenozoic basin fill that underlies the Amargosa Desert in southern Nevada and southeastern California has been improved by using borehole data to construct three-dimensional lithologic and interpreted facies models. Lithologic data from 210 boreholes from a 20-kilometer (km) by 90-km area were reduced to a limited suite of descriptors based on geologic knowledge of the basin and distributed in three-dimensional space using interpolation methods. The resulting lithologic model of the Amargosa Desert basin portrays a complex system of interfingered coarse- to fine-grained alluvium, playa and palustrine deposits, eolian sands, and interbedded volcanic units. Lithologic units could not be represented in the model as a stacked stratigraphic sequence due to the complex interfingering of lithologic units and the absence of available time-stratigraphic markers. Instead, lithologic units were grouped into interpreted genetic classes, such as playa or alluvial fan, to create a three-dimensional model of the interpreted facies data. Three-dimensional facies models computed from these data portray the alluvial infilling of a tectonically formed basin with intermittent internal drainage and localized regional groundwater discharge. The lithologic and interpreted facies models compare favorably to resistivity, aeromagnetic, and geologic map data, lending confidence to the interpretation.
Superimposition of 3-dimensional cone-beam computed tomography models of growing patients
Cevidanes, Lucia H. C.; Heymann, Gavin; Cornelis, Marie A.; DeClerck, Hugo J.; Tulloch, J. F. Camilla
2009-01-01
Introduction The objective of this study was to evaluate a new method for superimposition of 3-dimensional (3D) models of growing subjects. Methods Cone-beam computed tomography scans were taken before and after Class III malocclusion orthopedic treatment with miniplates. Three observers independently constructed 18 3D virtual surface models from cone-beam computed tomography scans of 3 patients. Separate 3D models were constructed for soft-tissue, cranial base, maxillary, and mandibular surfaces. The anterior cranial fossa was used to register the 3D models of before and after treatment (about 1 year of follow-up). Results Three-dimensional overlays of superimposed models and 3D color-coded displacement maps allowed visual and quantitative assessment of growth and treatment changes. The range of interobserver errors for each anatomic region was 0.4 mm for the zygomatic process of maxilla, chin, condyles, posterior border of the rami, and lower border of the mandible, and 0.5 mm for the anterior maxilla soft-tissue upper lip. Conclusions Our results suggest that this method is a valid and reproducible assessment of treatment outcomes for growing subjects. This technique can be used to identify maxillary and mandibular positional changes and bone remodeling relative to the anterior cranial fossa. PMID:19577154
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stein, Joshua S.; Rautman, Christopher Arthur
2004-02-01
The geologic model implicit in the original site characterization report for the Bayou Choctaw Strategic Petroleum Reserve Site near Baton Rouge, Louisiana, has been converted to a numerical, computer-based three-dimensional model. The original site characterization model was successfully converted with minimal modifications and use of new information. The geometries of the salt diapir, selected adjacent sedimentary horizons, and a number of faults have been modeled. Models of a partial set of the several storage caverns that have been solution-mined within the salt mass are also included. Collectively, the converted model appears to be a relatively realistic representation of the geologymore » of the Bayou Choctaw site as known from existing data. A small number of geometric inconsistencies and other problems inherent in 2-D vs. 3-D modeling have been noted. Most of the major inconsistencies involve faults inferred from drill hole data only. Modem computer software allows visualization of the resulting site model and its component submodels with a degree of detail and flexibility that was not possible with conventional, two-dimensional and paper-based geologic maps and cross sections. The enhanced visualizations may be of particular value in conveying geologic concepts involved in the Bayou Choctaw Strategic Petroleum Reserve site to a lay audience. A Microsoft WindowsTM PC-based viewer and user-manipulable model files illustrating selected features of the converted model are included in this report.« less
Vampola, Tomáš; Horáček, Jaromír; Laukkanen, Anne-Maria; Švec, Jan G
2015-04-01
Resonance frequencies of the vocal tract have traditionally been modelled using one-dimensional models. These cannot accurately represent the events in the frequency region of the formant cluster around 2.5-4.5 kHz, however. Here, the vocal tract resonance frequencies and their mode shapes are studied using a three-dimensional finite element model obtained from computed tomography measurements of a subject phonating on vowel [a:]. Instead of the traditional five, up to eight resonance frequencies of the vocal tract were found below the prominent antiresonance around 4.7 kHz. The three extra resonances were found to correspond to modes which were axially asymmetric and involved the piriform sinuses, valleculae, and transverse vibrations in the oral cavity. The results therefore suggest that the phenomenon of speaker's and singer's formant clustering may be more complex than originally thought.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui
2017-09-03
Mixing, thermal-stratification, and mass transport phenomena in large pools or enclosures play major roles for the safety of reactor systems. Depending on the fidelity requirement and computational resources, various modeling methods, from the 0-D perfect mixing model to 3-D Computational Fluid Dynamics (CFD) models, are available. Each is associated with its own advantages and shortcomings. It is very desirable to develop an advanced and efficient thermal mixing and stratification modeling capability embedded in a modern system analysis code to improve the accuracy of reactor safety analyses and to reduce modeling uncertainties. An advanced system analysis tool, SAM, is being developedmore » at Argonne National Laboratory for advanced non-LWR reactor safety analysis. While SAM is being developed as a system-level modeling and simulation tool, a reduced-order three-dimensional module is under development to model the multi-dimensional flow and thermal mixing and stratification in large enclosures of reactor systems. This paper provides an overview of the three-dimensional finite element flow model in SAM, including the governing equations, stabilization scheme, and solution methods. Additionally, several verification and validation tests are presented, including lid-driven cavity flow, natural convection inside a cavity, laminar flow in a channel of parallel plates. Based on the comparisons with the analytical solutions and experimental results, it is demonstrated that the developed 3-D fluid model can perform very well for a wide range of flow problems.« less
Optimal segmentation and packaging process
Kostelnik, Kevin M.; Meservey, Richard H.; Landon, Mark D.
1999-01-01
A process for improving packaging efficiency uses three dimensional, computer simulated models with various optimization algorithms to determine the optimal segmentation process and packaging configurations based on constraints including container limitations. The present invention is applied to a process for decontaminating, decommissioning (D&D), and remediating a nuclear facility involving the segmentation and packaging of contaminated items in waste containers in order to minimize the number of cuts, maximize packaging density, and reduce worker radiation exposure. A three-dimensional, computer simulated, facility model of the contaminated items are created. The contaminated items are differentiated. The optimal location, orientation and sequence of the segmentation and packaging of the contaminated items is determined using the simulated model, the algorithms, and various constraints including container limitations. The cut locations and orientations are transposed to the simulated model. The contaminated items are actually segmented and packaged. The segmentation and packaging may be simulated beforehand. In addition, the contaminated items may be cataloged and recorded.
Three-Dimensional Computational Model for Flow in an Over-Expanded Nozzle With Porous Surfaces
NASA Technical Reports Server (NTRS)
Abdol-Hamid, K. S.; Elmiligui, Alaa; Hunter, Craig A.; Massey, Steven J.
2006-01-01
A three-Dimensional computational model is used to simulate flow in a non-axisymmetric, convergent-divergent nozzle incorporating porous cavities for shock-boundary layer interaction control. The nozzle has an expansion ratio (exit area/throat area) of 1.797 and a design nozzle pressure ratio of 8.78. Flow fields for the baseline nozzle (no porosity) and for the nozzle with porous surfaces of 10% openness are computed for Nozzle Pressure Ratio (NPR) varying from 1.29 to 9.54. The three dimensional computational results indicate that baseline (no porosity) nozzle performance is dominated by unstable, shock-induced, boundary-layer separation at over-expanded conditions. For NPR less than or equal to 1.8, the separation is three dimensional, somewhat unsteady, and confined to a bubble (with partial reattachment over the nozzle flap). For NPR greater than or equal to 2.0, separation is steady and fully detached, and becomes more two dimensional as NPR increased. Numerical simulation of porous configurations indicates that a porous patch is capable of controlling off design separation in the nozzle by either alleviating separation or by encouraging stable separation of the exhaust flow. In the present paper, computational simulation results, wall centerline pressure, mach contours, and thrust efficiency ratio are presented, discussed and compared with experimental data. Results indicate that comparisons are in good agreement with experimental data. The three-dimensional simulation improves the comparisons for over-expanded flow conditions as compared with two-dimensional assumptions.
1D-3D hybrid modeling-from multi-compartment models to full resolution models in space and time.
Grein, Stephan; Stepniewski, Martin; Reiter, Sebastian; Knodel, Markus M; Queisser, Gillian
2014-01-01
Investigation of cellular and network dynamics in the brain by means of modeling and simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling and simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in their level of detail, in order to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing the spatial aspect of each cell. For single cell or networks with relatively small numbers of neurons, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the full three-dimensional morphology of cells and organelles into three-dimensional, space and time-dependent, simulations. While every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. In this paper we present a hybrid simulation approach, that makes use of reduced 1D-models using e.g., the NEURON simulator-which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed three-dimensional morphology of neurons and organelles. In order to couple 1D- and 3D-simulations, we present a geometry-, membrane potential- and intracellular concentration mapping framework, with which graph- based morphologies, e.g., in the swc- or hoc-format, are mapped to full surface and volume representations of the neuron and computational data from 1D-simulations can be used as boundary conditions for full 3D simulations and vice versa. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to the emerging field of fully resolved, highly detailed 3D-modeling approaches. We present the developed general framework for 1D/3D hybrid modeling and apply it to investigate electrically active neurons and their intracellular spatio-temporal calcium dynamics.
Modeling snow-crystal growth: a three-dimensional mesoscopic approach.
Gravner, Janko; Griffeath, David
2009-01-01
We introduce a three-dimensional, computationally feasible, mesoscopic model for snow-crystal growth, based on diffusion of vapor, anisotropic attachment, and a boundary layer. Several case studies are presented that faithfully replicate most observed snow-crystal morphology, an unusual achievement for a mathematical model. In particular, many of the most striking physical specimens feature both facets and branches, and our model provides an explanation for this phenomenon. We also duplicate many other observed traits, including ridges, ribs, sandwich plates, and hollow columns, as well as various dynamic instabilities. The concordance of observed phenomena suggests that the ingredients in our model are the most important ones in the development of physical snow crystals.
Hypersonic Combustor Model Inlet CFD Simulations and Experimental Comparisons
NASA Technical Reports Server (NTRS)
Venkatapathy, E.; TokarcikPolsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)
1995-01-01
Numerous two-and three-dimensional computational simulations were performed for the inlet associated with the combustor model for the hypersonic propulsion experiment in the NASA Ames 16-Inch Shock Tunnel. The inlet was designed to produce a combustor-inlet flow that is nearly two-dimensional and of sufficient mass flow rate for large scale combustor testing. The three-dimensional simulations demonstrated that the inlet design met all the design objectives and that the inlet produced a very nearly two-dimensional combustor inflow profile. Numerous two-dimensional simulations were performed with various levels of approximations such as in the choice of chemical and physical models, as well as numerical approximations. Parametric studies were conducted to better understand and to characterize the inlet flow. Results from the two-and three-dimensional simulations were used to predict the mass flux entering the combustor and a mass flux correlation as a function of facility stagnation pressure was developed. Surface heat flux and pressure measurements were compared with the computed results and good agreement was found. The computational simulations helped determine the inlet low characteristics in the high enthalpy environment, the important parameters that affect the combustor-inlet flow, and the sensitivity of the inlet flow to various modeling assumptions.
A ferrofluid based energy harvester: Computational modeling, analysis, and experimental validation
NASA Astrophysics Data System (ADS)
Liu, Qi; Alazemi, Saad F.; Daqaq, Mohammed F.; Li, Gang
2018-03-01
A computational model is described and implemented in this work to analyze the performance of a ferrofluid based electromagnetic energy harvester. The energy harvester converts ambient vibratory energy into an electromotive force through a sloshing motion of a ferrofluid. The computational model solves the coupled Maxwell's equations and Navier-Stokes equations for the dynamic behavior of the magnetic field and fluid motion. The model is validated against experimental results for eight different configurations of the system. The validated model is then employed to study the underlying mechanisms that determine the electromotive force of the energy harvester. Furthermore, computational analysis is performed to test the effect of several modeling aspects, such as three-dimensional effect, surface tension, and type of the ferrofluid-magnetic field coupling on the accuracy of the model prediction.
Web-Based Learning in the Computer-Aided Design Curriculum.
ERIC Educational Resources Information Center
Sung, Wen-Tsai; Ou, S. C.
2002-01-01
Applies principles of constructivism and virtual reality (VR) to computer-aided design (CAD) curriculum, particularly engineering, by integrating network, VR and CAD technologies into a Web-based learning environment that expands traditional two-dimensional computer graphics into a three-dimensional real-time simulation that enhances user…
Nakamura, Keiko; Tajima, Kiyoshi; Chen, Ker-Kong; Nagamatsu, Yuki; Kakigawa, Hiroshi; Masumi, Shin-ich
2013-12-01
This study focused on the application of novel finite-element analysis software for constructing a finite-element model from the computed tomography data of a human dentulous mandible. The finite-element model is necessary for evaluating the mechanical response of the alveolar part of the mandible, resulting from occlusal force applied to the teeth during biting. Commercially available patient-specific general computed tomography-based finite-element analysis software was solely applied to the finite-element analysis for the extraction of computed tomography data. The mandibular bone with teeth was extracted from the original images. Both the enamel and the dentin were extracted after image processing, and the periodontal ligament was created from the segmented dentin. The constructed finite-element model was reasonably accurate using a total of 234,644 nodes and 1,268,784 tetrahedral and 40,665 shell elements. The elastic moduli of the heterogeneous mandibular bone were determined from the bone density data of the computed tomography images. The results suggested that the software applied in this study is both useful and powerful for creating a more accurate three-dimensional finite-element model of a dentulous mandible from the computed tomography data without the need for any other software.
L. Linsen; B.J. Karis; E.G. McPherson; B. Hamann
2005-01-01
In computer graphics, models describing the fractal branching structure of trees typically exploit the modularity of tree structures. The models are based on local production rules, which are applied iteratively and simultaneously to create a complex branching system. The objective is to generate three-dimensional scenes of often many realistic- looking and non-...
Principles of three-dimensional printing and clinical applications within the abdomen and pelvis.
Bastawrous, Sarah; Wake, Nicole; Levin, Dmitry; Ripley, Beth
2018-04-04
Improvements in technology and reduction in costs have led to widespread interest in three-dimensional (3D) printing. 3D-printed anatomical models contribute to personalized medicine, surgical planning, and education across medical specialties, and these models are rapidly changing the landscape of clinical practice. A physical object that can be held in one's hands allows for significant advantages over standard two-dimensional (2D) or even 3D computer-based virtual models. Radiologists have the potential to play a significant role as consultants and educators across all specialties by providing 3D-printed models that enhance clinical care. This article reviews the basics of 3D printing, including how models are created from imaging data, clinical applications of 3D printing within the abdomen and pelvis, implications for education and training, limitations, and future directions.
Three-dimensional magnetic induction model of an octagonal edge-defined film-fed growth system
NASA Astrophysics Data System (ADS)
Rajendran, S.; Holmes, K.; Menna, A.
1994-03-01
Silicon wafers for the photovoltaic industry are produced by growing thin octagonal tubes by the edge-defined film-fed growth (EFG) process. The thermal origin of the wafer thickness variations was studied with a three-dimensional (3D) magnetic induction model. The implementation of the computer code and the significance of the computed results for improving the thickness uniformity are discussed.
Topology Optimization of Lightweight Lattice Structural Composites Inspired by Cuttlefish Bone
NASA Astrophysics Data System (ADS)
Hu, Zhong; Gadipudi, Varun Kumar; Salem, David R.
2018-03-01
Lattice structural composites are of great interest to various industries where lightweight multifunctionality is important, especially aerospace. However, strong coupling among the composition, microstructure, porous topology, and fabrication of such materials impedes conventional trial-and-error experimental development. In this work, a discontinuous carbon fiber reinforced polymer matrix composite was adopted for structural design. A reliable and robust design approach for developing lightweight multifunctional lattice structural composites was proposed, inspired by biomimetics and based on topology optimization. Three-dimensional periodic lattice blocks were initially designed, inspired by the cuttlefish bone microstructure. The topologies of the three-dimensional periodic blocks were further optimized by computer modeling, and the mechanical properties of the topology optimized lightweight lattice structures were characterized by computer modeling. The lattice structures with optimal performance were identified.
1D-3D hybrid modeling—from multi-compartment models to full resolution models in space and time
Grein, Stephan; Stepniewski, Martin; Reiter, Sebastian; Knodel, Markus M.; Queisser, Gillian
2014-01-01
Investigation of cellular and network dynamics in the brain by means of modeling and simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling and simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in their level of detail, in order to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing the spatial aspect of each cell. For single cell or networks with relatively small numbers of neurons, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the full three-dimensional morphology of cells and organelles into three-dimensional, space and time-dependent, simulations. While every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. In this paper we present a hybrid simulation approach, that makes use of reduced 1D-models using e.g., the NEURON simulator—which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed three-dimensional morphology of neurons and organelles. In order to couple 1D- and 3D-simulations, we present a geometry-, membrane potential- and intracellular concentration mapping framework, with which graph- based morphologies, e.g., in the swc- or hoc-format, are mapped to full surface and volume representations of the neuron and computational data from 1D-simulations can be used as boundary conditions for full 3D simulations and vice versa. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to the emerging field of fully resolved, highly detailed 3D-modeling approaches. We present the developed general framework for 1D/3D hybrid modeling and apply it to investigate electrically active neurons and their intracellular spatio-temporal calcium dynamics. PMID:25120463
Biomanufacturing: a US-China National Science Foundation-sponsored workshop.
Sun, Wei; Yan, Yongnian; Lin, Feng; Spector, Myron
2006-05-01
A recent US-China National Science Foundation-sponsored workshop on biomanufacturing reviewed the state-of-the-art of an array of new technologies for producing scaffolds for tissue engineering, providing precision multi-scale control of material, architecture, and cells. One broad category of such techniques has been termed solid freeform fabrication. The techniques in this category include: stereolithography, selected laser sintering, single- and multiple-nozzle deposition and fused deposition modeling, and three-dimensional printing. The precise and repetitive placement of material and cells in a three-dimensional construct at the micrometer length scale demands computer control. These novel computer-controlled scaffold production techniques, when coupled with computer-based imaging and structural modeling methods for the production of the templates for the scaffolds, define an emerging field of computer-aided tissue engineering. In formulating the questions that remain to be answered and discussing the knowledge required to further advance the field, the Workshop provided a basis for recommendations for future work.
NASA Technical Reports Server (NTRS)
Gibson, A. F.
1983-01-01
A system of computer programs has been developed to model general three-dimensional surfaces. Surfaces are modeled as sets of parametric bicubic patches. There are also capabilities to transform coordinate to compute mesh/surface intersection normals, and to format input data for a transonic potential flow analysis. A graphical display of surface models and intersection normals is available. There are additional capabilities to regulate point spacing on input curves and to compute surface intersection curves. Internal details of the implementation of this system are explained, and maintenance procedures are specified.
NASA Astrophysics Data System (ADS)
La Mura, Cristina; Gholami, Vahid; Panza, Giuliano F.
2013-04-01
In order to enable realistic and reliable earthquake hazard assessment and reliable estimation of the ground motion response to an earthquake, three-dimensional velocity models have to be considered. The propagation of seismic waves in complex laterally varying 3D layered structures is a complicated process. Analytical solutions of the elastodynamic equations for such types of media are not known. The most common approaches to the formal description of seismic wavefields in such complex structures are methods based on direct numerical solutions of the elastodynamic equations, e.g. finite-difference, finite-element method, and approximate asymptotic methods. In this work, we present an innovative methodology for computing synthetic seismograms, complete of the main direct, refracted, converted phases and surface waves in three-dimensional anelastic models based on the combination of the Modal Summation technique with the Asymptotic Ray Theory in the framework of the WKBJ - approximation. The three - dimensional models are constructed using a set of vertically heterogeneous sections (1D structures) that are juxtaposed on a regular grid. The distribution of these sections in the grid is done in such a way to fulfill the requirement of weak lateral inhomogeneity in order to satisfy the condition of applicability of the WKBJ - approximation, i.e. the lateral gradient of the parameters characterizing the 1D structure has to be small with respect to the prevailing wavelength. The new method has been validated comparing synthetic seismograms with the records available of three different earthquakes in three different regions: Kanto basin (Japan) triggered by the 1990 Odawara earthquake Mw= 5.1, Romanian territory triggered by the 30 May 1990 Vrancea intermediate-depth earthquake Mw= 6.9 and Iranian territory affected by the 26 December 2003 Bam earthquake Mw= 6.6. Besides the advantage of being a useful tool for assessment of seismic hazard and seismic risk reduction, it is characterized by high efficiency, in fact, once the study region is identified and the 3D model is constructed, the computation, at each station, of the three components of the synthetic signal (displacement, velocity, and acceleration) takes less than 3 hours on a 2 GHz CPU.
Development of a three dimensional numerical water quality model for continental shelf applications
NASA Technical Reports Server (NTRS)
Spaulding, M.; Hunter, D.
1975-01-01
A model to predict the distribution of water quality parameters in three dimensions was developed. The mass transport equation was solved using a non-dimensional vertical axis and an alternating-direction-implicit finite difference technique. The reaction kinetics of the constituents were incorporated into a matrix method which permits computation of the interactions of multiple constituents. Methods for the computation of dispersion coefficients and coliform bacteria decay rates were determined. Numerical investigations of dispersive and dissipative effects showed that the three-dimensional model performs as predicted by analysis of simpler cases. The model was then applied to a two dimensional vertically averaged tidal dynamics model for the Providence River. It was also extended to a steady state application by replacing the time step with an iteration sequence. This modification was verified by comparison to analytical solutions and applied to a river confluence situation.
Argyros, A; Manos, S; Large, M C J; McKenzie, D R; Cox, G C; Dwarte, D M
2002-01-01
A combination of transmission electron tomography and computer modelling has been used to determine the three-dimensional structure of the photonic crystals found in the wing-scales of the Kaiser-I-Hind butterfly (Teinopalpus imperialis). These scales presented challenges for electron microscopy because the periodicity of the structure was comparable to the thickness of a section and because of the complex connectivity of the object. The structure obtained has been confirmed by taking slices of the three-dimensional computer model constructed from the tomography and comparing these with transmission electron microscope (TEM) images of microtomed sections of the actual scale. The crystal was found to have chiral tetrahedral repeating units packed in a triclinic lattice.
NASA Astrophysics Data System (ADS)
Greco, Angelo; Cao, Dongpu; Jiang, Xi; Yang, Hong
2014-07-01
A simplified one-dimensional transient computational model of a prismatic lithium-ion battery cell is developed using thermal circuit approach in conjunction with the thermal model of the heat pipe. The proposed model is compared to an analytical solution based on variable separation as well as three-dimensional (3D) computational fluid dynamics (CFD) simulations. The three approaches, i.e. the 1D computational model, analytical solution, and 3D CFD simulations, yielded nearly identical results for the thermal behaviours. Therefore the 1D model is considered to be sufficient to predict the temperature distribution of lithium-ion battery thermal management using heat pipes. Moreover, a maximum temperature of 27.6 °C was predicted for the design of the heat pipe setup in a distributed configuration, while a maximum temperature of 51.5 °C was predicted when forced convection was applied to the same configuration. The higher surface contact of the heat pipes allows a better cooling management compared to forced convection cooling. Accordingly, heat pipes can be used to achieve effective thermal management of a battery pack with confined surface areas.
Three-dimensional computational aerodynamics in the 1980's
NASA Technical Reports Server (NTRS)
Lomax, H.
1978-01-01
The future requirements for constructing codes that can be used to compute three-dimensional flows about aerodynamic shapes should be assessed in light of the constraints imposed by future computer architectures and the reality of usable algorithms that can provide practical three-dimensional simulations. On the hardware side, vector processing is inevitable in order to meet the CPU speeds required. To cope with three-dimensional geometries, massive data bases with fetch/store conflicts and transposition problems are inevitable. On the software side, codes must be prepared that: (1) can be adapted to complex geometries, (2) can (at the very least) predict the location of laminar and turbulent boundary layer separation, and (3) will converge rapidly to sufficiently accurate solutions.
Kim, Hak-Jin; Kim, Bong Chul; Kim, Jin-Geun; Zhengguo, Piao; Kang, Sang Hoon; Lee, Sang-Hwy
2014-03-01
The objective of this study was to determine the reliable midsagittal (MS) reference plane in practical ways for the three-dimensional craniofacial analysis on three-dimensional computed tomography images. Five normal human dry skulls and 20 normal subjects without any dysmorphoses or asymmetries were used. The accuracies and stability on repeated plane construction for almost every possible candidate MS plane based on the skull base structures were examined by comparing the discrepancies in distances and orientations from the reference points and planes of the skull base and facial bones on three-dimensional computed tomography images. The following reference points of these planes were stable, and their distribution was balanced: nasion and foramen cecum at the anterior part of the skull base, sella at the middle part, and basion and opisthion at the posterior part. The candidate reference planes constructed using the aforementioned reference points were thought to be reliable for use as an MS reference plane for the three-dimensional analysis of maxillofacial dysmorphosis.
Vauhkonen, P J; Vauhkonen, M; Kaipio, J P
2000-02-01
In electrical impedance tomography (EIT), an approximation for the internal resistivity distribution is computed based on the knowledge of the injected currents and measured voltages on the surface of the body. The currents spread out in three dimensions and therefore off-plane structures have a significant effect on the reconstructed images. A question arises: how far from the current carrying electrodes should the discretized model of the object be extended? If the model is truncated too near the electrodes, errors are produced in the reconstructed images. On the other hand if the model is extended very far from the electrodes the computational time may become too long in practice. In this paper the model truncation problem is studied with the extended finite element method. Forward solutions obtained using so-called infinite elements, long finite elements and separable long finite elements are compared to the correct solution. The effects of the truncation of the computational domain on the reconstructed images are also discussed and results from the three-dimensional (3D) sensitivity analysis are given. We show that if the finite element method with ordinary elements is used in static 3D EIT, the dimension of the problem can become fairly large if the errors associated with the domain truncation are to be avoided.
A computational model for three-dimensional incompressible wall jets with large cross flow
NASA Technical Reports Server (NTRS)
Murphy, W. D.; Shankar, V.; Malmuth, N. D.
1979-01-01
A computational model for the flow field of three dimensional incompressible wall jets prototypic of thrust augmenting ejectors with large cross flow is presented. The formulation employs boundary layer equations in an orthogonal curvilinear coordinate system. Simulation of laminar as well as turbulen wall jets is reported. Quantification of jet spreading, jet growth, nominal separation, and jet shrink effects due to corss flow are discussed.
Three-dimensional surface reconstruction for industrial computed tomography
NASA Technical Reports Server (NTRS)
Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.
1985-01-01
Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.
USDA-ARS?s Scientific Manuscript database
This chapter presents the development and application of a three-dimensional water quality model for predicting the distributions of nutrients, phytoplankton, dissolved oxygen, etc., in natural lakes. In this model, the computational domain was divided into two parts: the water column and the bed se...
NASA Astrophysics Data System (ADS)
Aksenova, Olesya; Nikolaeva, Evgenia; Cehlár, Michal
2017-11-01
This work aims to investigate the effectiveness of mathematical and three-dimensional computer modeling tools in the planning of processes of fuel and energy complexes at the planning and design phase of a thermal power plant (TPP). A solution for purification of gas emissions at the design development phase of waste treatment systems is proposed employing mathematical and three-dimensional computer modeling - using the E-nets apparatus and the development of a 3D model of the future gas emission purification system. Which allows to visualize the designed result, to select and scientifically prove economically feasible technology, as well as to ensure the high environmental and social effect of the developed waste treatment system. The authors present results of a treatment of planned technological processes and the system for purifying gas emissions in terms of E-nets. using mathematical modeling in the Simulink application. What allowed to create a model of a device from the library of standard blocks and to perform calculations. A three-dimensional model of a system for purifying gas emissions has been constructed. It allows to visualize technological processes and compare them with the theoretical calculations at the design phase of a TPP and. if necessary, make adjustments.
Design and implementation of space physics multi-model application integration based on web
NASA Astrophysics Data System (ADS)
Jiang, Wenping; Zou, Ziming
With the development of research on space environment and space science, how to develop network online computing environment of space weather, space environment and space physics models for Chinese scientific community is becoming more and more important in recent years. Currently, There are two software modes on space physics multi-model application integrated system (SPMAIS) such as C/S and B/S. the C/S mode which is traditional and stand-alone, demands a team or workshop from many disciplines and specialties to build their own multi-model application integrated system, that requires the client must be deployed in different physical regions when user visits the integrated system. Thus, this requirement brings two shortcomings: reducing the efficiency of researchers who use the models to compute; inconvenience of accessing the data. Therefore, it is necessary to create a shared network resource access environment which could help users to visit the computing resources of space physics models through the terminal quickly for conducting space science research and forecasting spatial environment. The SPMAIS develops high-performance, first-principles in B/S mode based on computational models of the space environment and uses these models to predict "Space Weather", to understand space mission data and to further our understanding of the solar system. the main goal of space physics multi-model application integration system (SPMAIS) is to provide an easily and convenient user-driven online models operating environment. up to now, the SPMAIS have contained dozens of space environment models , including international AP8/AE8 IGRF T96 models and solar proton prediction model geomagnetic transmission model etc. which are developed by Chinese scientists. another function of SPMAIS is to integrate space observation data sets which offers input data for models online high-speed computing. In this paper, service-oriented architecture (SOA) concept that divides system into independent modules according to different business needs is applied to solve the problem of the independence of the physical space between multiple models. The classic MVC(Model View Controller) software design pattern is concerned to build the architecture of space physics multi-model application integrated system. The JSP+servlet+javabean technology is used to integrate the web application programs of space physics multi-model. It solves the problem of multi-user requesting the same job of model computing and effectively balances each server computing tasks. In addition, we also complete follow tasks: establishing standard graphical user interface based on Java Applet application program; Designing the interface between model computing and model computing results visualization; Realizing three-dimensional network visualization without plug-ins; Using Java3D technology to achieve a three-dimensional network scene interaction; Improved ability to interact with web pages and dynamic execution capabilities, including rendering three-dimensional graphics, fonts and color control. Through the design and implementation of the SPMAIS based on Web, we provide an online computing and application runtime environment of space physics multi-model. The practical application improves that researchers could be benefit from our system in space physics research and engineering applications.
A 3-D turbulent flow analysis using finite elements with k-ɛ model
NASA Astrophysics Data System (ADS)
Okuda, H.; Yagawa, G.; Eguchi, Y.
1989-03-01
This paper describes the finite element turbulent flow analysis, which is suitable for three-dimensional large scale problems. The k-ɛ turbulence model as well as the conservation equations of mass and momentum are discretized in space using rather low order elements. Resulting coefficient matrices are evaluated by one-point quadrature in order to reduce the computational storage and the CPU cost. The time integration scheme based on the velocity correction method is employed to obtain steady state solutions. For the verification of this FEM program, two-dimensional plenum flow is simulated and compared with experiment. As the application to three-dimensional practical problems, the turbulent flows in the upper plenum of the fast breeder reactor are calculated for various boundary conditions.
An Accurate and Dynamic Computer Graphics Muscle Model
NASA Technical Reports Server (NTRS)
Levine, David Asher
1997-01-01
A computer based musculo-skeletal model was developed at the University in the departments of Mechanical and Biomedical Engineering. This model accurately represents human shoulder kinematics. The result of this model is the graphical display of bones moving through an appropriate range of motion based on inputs of EMGs and external forces. The need existed to incorporate a geometric muscle model in the larger musculo-skeletal model. Previous muscle models did not accurately represent muscle geometries, nor did they account for the kinematics of tendons. This thesis covers the creation of a new muscle model for use in the above musculo-skeletal model. This muscle model was based on anatomical data from the Visible Human Project (VHP) cadaver study. Two-dimensional digital images from the VHP were analyzed and reconstructed to recreate the three-dimensional muscle geometries. The recreated geometries were smoothed, reduced, and sliced to form data files defining the surfaces of each muscle. The muscle modeling function opened these files during run-time and recreated the muscle surface. The modeling function applied constant volume limitations to the muscle and constant geometry limitations to the tendons.
Zhang, Dongxia; Gan, Yangzhou; Xiong, Jing; Xia, Zeyang
2017-02-01
Complete three-dimensional(3D) tooth model provides essential information to assist orthodontists for diagnosis and treatment planning. Currently, 3D tooth model is mainly obtained by segmentation and reconstruction from dental computed tomography(CT) images. However, the accuracy of 3D tooth model reconstructed from dental CT images is low and not applicable for invisalign design. And another serious problem also occurs, i.e. frequentative dental CT scan during different intervals of orthodontic treatment often leads to radiation to the patients. Hence, this paper proposed a method to reconstruct tooth model based on fusion of dental CT images and laser-scanned images. A complete3 D tooth model was reconstructed with the registration and fusion between the root reconstructed from dental CT images and the crown reconstructed from laser-scanned images. The crown of the complete 3D tooth model reconstructed with the proposed method has higher accuracy. Moreover, in order to reconstruct complete 3D tooth model of each orthodontic treatment interval, only one pre-treatment CT scan is needed and in the orthodontic treatment process only the laser-scan is required. Therefore, radiation to the patients can be reduced significantly.
ERIC Educational Resources Information Center
Hakerem, Gita; And Others
This study reports the efforts of the Water and Molecular Networks Project (WAMNet), a program in which high school chemistry students use computer simulations developed at Boston University (Massachusetts) to model the three-dimensional structure of molecules and the hydrogen bond network that holds water molecules together. This case study…
A Three-Dimensional Kinematic and Kinetic Study of the College-Level Female Softball Swing
Milanovich, Monica; Nesbit, Steven M.
2014-01-01
This paper quantifies and discusses the three-dimensional kinematic and kinetic characteristics of the female softball swing as performed by fourteen female collegiate amateur subjects. The analyses were performed using a three-dimensional computer model. The model was driven kinematically from subject swings data that were recorded with a multi-camera motion analysis system. Each subject used two distinct bats with significantly different inertial properties. Model output included bat trajectories, subject/bat interaction forces and torques, work, and power. These data formed the basis for a detailed analysis and description of fundamental swing kinematic and kinetic quantities. The analyses revealed that the softball swing is a highly coordinated and individual three-dimensional motion and subject-to-subject variations were significant in all kinematic and kinetic quantities. In addition, the potential effects of bat properties on swing mechanics are discussed. The paths of the hands and the centre-of-curvature of the bat relative to the horizontal plane appear to be important trajectory characteristics of the swing. Descriptions of the swing mechanics and practical implications are offered based upon these findings. Key Points The female softball swing is a highly coordinated and individual three-dimensional motion and subject-to-subject variations were significant in all kinematic and kinetic quantities. The paths of the grip point, bat centre-of-curvature, CG, and COP are complex yet reveal consistent patterns among subjects indicating that these patterns are fundamental components of the swing. The most important mechanical quantity relative to generating bat speed is the total work applied to the bat from the batter. Computer modeling of the softball swing is a viable means for study of the fundamental mechanics of the swing motion, the interactions between the batter and the bat, and the energy transfers between the two. PMID:24570623
A three-dimensional kinematic and kinetic study of the college-level female softball swing.
Milanovich, Monica; Nesbit, Steven M
2014-01-01
This paper quantifies and discusses the three-dimensional kinematic and kinetic characteristics of the female softball swing as performed by fourteen female collegiate amateur subjects. The analyses were performed using a three-dimensional computer model. The model was driven kinematically from subject swings data that were recorded with a multi-camera motion analysis system. Each subject used two distinct bats with significantly different inertial properties. Model output included bat trajectories, subject/bat interaction forces and torques, work, and power. These data formed the basis for a detailed analysis and description of fundamental swing kinematic and kinetic quantities. The analyses revealed that the softball swing is a highly coordinated and individual three-dimensional motion and subject-to-subject variations were significant in all kinematic and kinetic quantities. In addition, the potential effects of bat properties on swing mechanics are discussed. The paths of the hands and the centre-of-curvature of the bat relative to the horizontal plane appear to be important trajectory characteristics of the swing. Descriptions of the swing mechanics and practical implications are offered based upon these findings. Key PointsThe female softball swing is a highly coordinated and individual three-dimensional motion and subject-to-subject variations were significant in all kinematic and kinetic quantities.The paths of the grip point, bat centre-of-curvature, CG, and COP are complex yet reveal consistent patterns among subjects indicating that these patterns are fundamental components of the swing.The most important mechanical quantity relative to generating bat speed is the total work applied to the bat from the batter.Computer modeling of the softball swing is a viable means for study of the fundamental mechanics of the swing motion, the interactions between the batter and the bat, and the energy transfers between the two.
Gradient gravitational search: An efficient metaheuristic algorithm for global optimization.
Dash, Tirtharaj; Sahu, Prabhat K
2015-05-30
The adaptation of novel techniques developed in the field of computational chemistry to solve the concerned problems for large and flexible molecules is taking the center stage with regard to efficient algorithm, computational cost and accuracy. In this article, the gradient-based gravitational search (GGS) algorithm, using analytical gradients for a fast minimization to the next local minimum has been reported. Its efficiency as metaheuristic approach has also been compared with Gradient Tabu Search and others like: Gravitational Search, Cuckoo Search, and Back Tracking Search algorithms for global optimization. Moreover, the GGS approach has also been applied to computational chemistry problems for finding the minimal value potential energy of two-dimensional and three-dimensional off-lattice protein models. The simulation results reveal the relative stability and physical accuracy of protein models with efficient computational cost. © 2015 Wiley Periodicals, Inc.
The virtual craniofacial patient: 3D jaw modeling and animation.
Enciso, Reyes; Memon, Ahmed; Fidaleo, Douglas A; Neumann, Ulrich; Mah, James
2003-01-01
In this paper, we present new developments in the area of 3D human jaw modeling and animation. CT (Computed Tomography) scans have traditionally been used to evaluate patients with dental implants, assess tumors, cysts, fractures and surgical procedures. More recently this data has been utilized to generate models. Researchers have reported semi-automatic techniques to segment and model the human jaw from CT images and manually segment the jaw from MRI images. Recently opto-electronic and ultrasonic-based systems (JMA from Zebris) have been developed to record mandibular position and movement. In this research project we introduce: (1) automatic patient-specific three-dimensional jaw modeling from CT data and (2) three-dimensional jaw motion simulation using jaw tracking data from the JMA system (Zebris).
Thermal History and Mantle Dynamics of Venus
NASA Technical Reports Server (NTRS)
Hsui, Albert T.
1997-01-01
One objective of this research proposal is to develop a 3-D thermal history model for Venus. The basis of our study is a finite-element computer model to simulate thermal convection of fluids with highly temperature- and pressure-dependent viscosities in a three-dimensional spherical shell. A three-dimensional model for thermal history studies is necessary for the following reasons. To study planetary thermal evolution, one needs to consider global heat budgets of a planet throughout its evolution history. Hence, three-dimensional models are necessary. This is in contrasts to studies of some local phenomena or local structures where models of lower dimensions may be sufficient. There are different approaches to treat three-dimensional thermal convection problems. Each approach has its own advantages and disadvantages. Therefore, the choice of the various approaches is subjective and dependent on the problem addressed. In our case, we are interested in the effects of viscosities that are highly temperature dependent and that their magnitudes within the computing domain can vary over many orders of magnitude. In order to resolve the rapid change of viscosities, small grid spacings are often necessary. To optimize the amount of computing, variable grids become desirable. Thus, the finite-element numerical approach is chosen for its ability to place grid elements of different sizes over the complete computational domain. For this research proposal, we did not start from scratch and develop the finite element codes from the beginning. Instead, we adopted a finite-element model developed by Baumgardner, a collaborator of this research proposal, for three-dimensional thermal convection with constant viscosity. Over the duration supported by this research proposal, a significant amount of advancements have been accomplished.
Multi-GPU three dimensional Stokes solver for simulating glacier flow
NASA Astrophysics Data System (ADS)
Licul, Aleksandar; Herman, Frédéric; Podladchikov, Yuri; Räss, Ludovic; Omlin, Samuel
2016-04-01
Here we present how we have recently developed a three-dimensional Stokes solver on the GPUs and apply it to a glacier flow. We numerically solve the Stokes momentum balance equations together with the incompressibility equation, while also taking into account strong nonlinearities for ice rheology. We have developed a fully three-dimensional numerical MATLAB application based on an iterative finite difference scheme with preconditioning of residuals. Differential equations are discretized on a regular staggered grid. We have ported it to C-CUDA to run it on GPU's in parallel, using MPI. We demonstrate the accuracy and efficiency of our developed model by manufactured analytical solution test for three-dimensional Stokes ice sheet models (Leng et al.,2013) and by comparison with other well-established ice sheet models on diagnostic ISMIP-HOM benchmark experiments (Pattyn et al., 2008). The results show that our developed model is capable to accurately and efficiently solve Stokes system of equations in a variety of different test scenarios, while preserving good parallel efficiency on up to 80 GPU's. For example, in 3D test scenarios with 250000 grid points our solver converges in around 3 minutes for single precision computations and around 10 minutes for double precision computations. We have also optimized the developed code to efficiently run on our newly acquired state-of-the-art GPU cluster octopus. This allows us to solve our problem on more than 20 million grid points, by just increasing the number of GPU used, while keeping the computation time the same. In future work we will apply our solver to real world applications and implement the free surface evolution capabilities. REFERENCES Leng,W.,Ju,L.,Gunzburger,M. & Price,S., 2013. Manufactured solutions and the verification of three-dimensional stokes ice-sheet models. Cryosphere 7,19-29. Pattyn, F., Perichon, L., Aschwanden, A., Breuer, B., de Smedt, B., Gagliardini, O., Gudmundsson,G.H., Hindmarsh, R.C.A., Hubbard, A., Johnson, J.V., Kleiner, T., Konovalov,Y., Martin, C., Payne, A.J., Pollard, D., Price, S., Rckamp, M., Saito, F., Souk, O.,Sugiyama, S. & Zwinger, T., 2008. Benchmark experiments for higher-order and full-stokes ice sheet models (ismiphom). The Cryosphere 2, 95-108.
NASA Astrophysics Data System (ADS)
Fernholz, H. H.; Krause, E.
Papers are presented on recent research concerning three-dimensional turbulent boundary layers. Topics examined include experimental techniques in three-dimensional turbulent boundary layers, turbulence measurements in ship-model flow, measurements of Reynolds-stress profiles in the stern region of a ship model, the effects of crossflow on the vortex-layer-type three-dimensional flow separation, and wind tunnel investigations of some three-dimensional separated turbulent boundary layers. Also examined are three-dimensional boundary layers in turbomachines, the boundary layers on bodies of revolution spinning in axial flows, the effect on a developed turbulent boundary layer of a sudden local wall motion, three-dimensional turbulent boundary layer along a concave wall, the numerical computation of three-dimensional boundary layers, a numerical study of corner flows, three-dimensional boundary calculations in design aerodynamics, and turbulent boundary-layer calculations in design aerodynamics. For individual items see A83-47012 to A83-47036
Mendonca, Derick A; Naidoo, Sybill D; Skolnick, Gary; Skladman, Rachel; Woo, Albert S
2013-07-01
Craniofacial anthropometry by direct caliper measurements is a common method of quantifying the morphology of the cranial vault. New digital imaging modalities including computed tomography and three-dimensional photogrammetry are similarly being used to obtain craniofacial surface measurements. This study sought to compare the accuracy of anthropometric measurements obtained by calipers versus 2 methods of digital imaging.Standard anterior-posterior, biparietal, and cranial index measurements were directly obtained on 19 participants with an age range of 1 to 20 months. Computed tomographic scans and three-dimensional photographs were both obtained on each child within 2 weeks of the clinical examination. Two analysts measured the anterior-posterior and biparietal distances on the digital images. Measures of reliability and bias between the modalities were calculated and compared.Caliper measurements were found to underestimate the anterior-posterior and biparietal distances as compared with those of the computed tomography and the three-dimensional photogrammetry (P < 0.001). Cranial index measurements between the computed tomography and the calipers differed by up to 6%. The difference between the 2 modalities was statistically significant (P = 0.021). The biparietal and cranial index results were similar between the digital modalities, but the anterior-posterior measurement was greater with the three-dimensional photogrammetry (P = 0.002). The coefficients of variation for repeated measures based on the computed tomography and the three-dimensional photogrammetry were 0.008 and 0.007, respectively.In conclusion, measurements based on digital modalities are generally reliable and interchangeable. Caliper measurements lead to underestimation of anterior-posterior and biparietal values compared with digital imaging.
A novel method for designing and fabricating low-cost facepiece prototypes.
Joe, Paula S; Shum, Phillip C; Brown, David W; Lungu, Claudiu T
2014-01-01
In 2010, the National Institute for Occupational Safety and Health (NIOSH) published new digital head form models based on their recently updated fit-test panel. The new panel, based on the 2000 census to better represent the modern work force, created two additional sizes: Short/Wide and Long/Narrow. While collecting the anthropometric data that comprised the panel, additional three-dimensional data were collected on a subset of the subjects. Within each sizing category, five individuals' three-dimensional data were used to create the new head form models. While NIOSH has recommended a switch to a five-size system for designing respirators, little has been done in assessing the potential benefits of this change. With commercially available elastomeric facepieces available in only three or four size systems, it was necessary to develop the facepieces to enable testing. This study aims to develop a method for designing and fabricating elastomeric facepieces tailored to the new head form designs for use in fit-testing studies. This novel method used computed tomography of a solid silicone facepiece and a number of computer-aided design programs (VolView, ParaView, MEGG3D, and RapidForm XOR) to develop a facepiece model to accommodate the Short/Wide head form. The generated model was given a physical form by means of three-dimensional printing using stereolithography (SLA). The printed model was then used to create a silicone mold from which elastomeric prototypes can be cast. The prototype facepieces were cast in two types of silicone for use in future fit-testing.
NASA Astrophysics Data System (ADS)
Chen, Hui; Deng, Ju-Zhi; Yin, Min; Yin, Chang-Chun; Tang, Wen-Wu
2017-03-01
To speed up three-dimensional (3D) DC resistivity modeling, we present a new multigrid method, the aggregation-based algebraic multigrid method (AGMG). We first discretize the differential equation of the secondary potential field with mixed boundary conditions by using a seven-point finite-difference method to obtain a large sparse system of linear equations. Then, we introduce the theory behind the pairwise aggregation algorithms for AGMG and use the conjugate-gradient method with the V-cycle AGMG preconditioner (AGMG-CG) to solve the linear equations. We use typical geoelectrical models to test the proposed AGMG-CG method and compare the results with analytical solutions and the 3DDCXH algorithm for 3D DC modeling (3DDCXH). In addition, we apply the AGMG-CG method to different grid sizes and geoelectrical models and compare it to different iterative methods, such as ILU-BICGSTAB, ILU-GCR, and SSOR-CG. The AGMG-CG method yields nearly linearly decreasing errors, whereas the number of iterations increases slowly with increasing grid size. The AGMG-CG method is precise and converges fast, and thus can improve the computational efficiency in forward modeling of three-dimensional DC resistivity.
A THREE-DIMENSIONAL AIR FLOW MODEL FOR SOIL VENTING: SUPERPOSITION OF ANLAYTICAL FUNCTIONS
A three-dimensional computer model was developed for the simulation of the soil-air pressure distribution at steady state and specific discharge vectors during soil venting with multiple wells in unsaturated soil. The Kirchhoff transformation of dependent variables and coordinate...
NASA Astrophysics Data System (ADS)
Ivanova, Violeta M.; Sousa, Rita; Murrihy, Brian; Einstein, Herbert H.
2014-06-01
This paper presents results from research conducted at MIT during 2010-2012 on modeling of natural rock fracture systems with the GEOFRAC three-dimensional stochastic model. Following a background summary of discrete fracture network models and a brief introduction of GEOFRAC, the paper provides a thorough description of the newly developed mathematical and computer algorithms for fracture intensity, aperture, and intersection representation, which have been implemented in MATLAB. The new methods optimize, in particular, the representation of fracture intensity in terms of cumulative fracture area per unit volume, P32, via the Poisson-Voronoi Tessellation of planes into polygonal fracture shapes. In addition, fracture apertures now can be represented probabilistically or deterministically whereas the newly implemented intersection algorithms allow for computing discrete pathways of interconnected fractures. In conclusion, results from a statistical parametric study, which was conducted with the enhanced GEOFRAC model and the new MATLAB-based Monte Carlo simulation program FRACSIM, demonstrate how fracture intensity, size, and orientations influence fracture connectivity.
NASA Astrophysics Data System (ADS)
Grah, Aleksander; Dreyer, Michael E.
2010-01-01
Spacecraft technology provides a series of applications for capillary channel flow. It can serve as a reliable means for positioning and transport of liquids under low gravity conditions. Basically, capillary channels provide liquid paths with one or more free surfaces. A problem may be flow instabilities leading to a collapse of the liquid surfaces. A result is undesired gas ingestion and a two phase flow which can in consequence cause several technical problems. The presented capillary channel consists of parallel plates with two free liquid surfaces. The flow rate is established by a pump at the channel outlet, creating a lower pressure within the channel. Owing to the pressure difference between the liquid phase and the ambient gas phase the free surfaces bend inwards and remain stable as long as they are able to resist the steady and unsteady pressure effects. For the numerical prediction of the flow stability two very different models are used. The one-dimensional unsteady model is mainly based on the Bernoulli equation, the continuity equation, and the Gauss-Laplace equation. For three-dimensional evaluations an open source computational fluid dynamics (CFD) tool is applied. For verifications the numerical results are compared with quasisteady and unsteady data of a sounding rocket experiment. Contrary to previous experiments this one results in a significantly longer observation sequence. Furthermore, the critical point of the steady flow instability could be approached by a quasisteady technique. As in previous experiments the comparison to the numerical model evaluation shows a very good agreement for the movement of the liquid surfaces and for the predicted flow instability. The theoretical prediction of the flow instability is related to the speed index, based on characteristic velocities of the capillary channel flow. Stable flow regimes are defined by stability criteria for steady and unsteady flow. The one-dimensional computation of the speed index is based on the technique of the equivalent steady system, which is published for the first time in the present paper. This approach assumes that for every unsteady state an equivalent steady state with a special boundary condition can be formulated. The equivalent steady state technique enables a reformulation of the equation system and an efficient and reliable speed index computation. Furthermore, the existence of the numerical singularity at the critical point of the steady flow instability, postulated in previous publication, is demonstrated in detail. The numerical singularity is related to the stability criterion for steady flow and represents the numerical consequence of the liquid surface collapse. The evaluation and generation of the pressure diagram is demonstrated in detail with a series of numerical dynamic flow studies. The stability diagram, based on one-dimensional computation, gives a detailed overview of the stable and instable flow regimes. This prediction is in good agreement with the experimentally observed critical flow conditions and results of three-dimensional CFD computations.
Computer-aided light sheet flow visualization using photogrammetry
NASA Technical Reports Server (NTRS)
Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.
1994-01-01
A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and a visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) results, was chosen to interactively display the reconstructed light sheet images with the numerical surface geometry for the model or aircraft under study. The photogrammetric reconstruction technique and the image processing and computer graphics techniques and equipment are described. Results of the computer-aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images with CFD solutions in the same graphics environment is also demonstrated.
Computer-Aided Light Sheet Flow Visualization
NASA Technical Reports Server (NTRS)
Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.
1993-01-01
A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.
Computer-aided light sheet flow visualization
NASA Technical Reports Server (NTRS)
Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.
1993-01-01
A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.
Fractional Steps methods for transient problems on commodity computer architectures
NASA Astrophysics Data System (ADS)
Krotkiewski, M.; Dabrowski, M.; Podladchikov, Y. Y.
2008-12-01
Fractional Steps methods are suitable for modeling transient processes that are central to many geological applications. Low memory requirements and modest computational complexity facilitates calculations on high-resolution three-dimensional models. An efficient implementation of Alternating Direction Implicit/Locally One-Dimensional schemes for an Opteron-based shared memory system is presented. The memory bandwidth usage, the main bottleneck on modern computer architectures, is specially addressed. High efficiency of above 2 GFlops per CPU is sustained for problems of 1 billion degrees of freedom. The optimized sequential implementation of all 1D sweeps is comparable in execution time to copying the used data in the memory. Scalability of the parallel implementation on up to 8 CPUs is close to perfect. Performing one timestep of the Locally One-Dimensional scheme on a system of 1000 3 unknowns on 8 CPUs takes only 11 s. We validate the LOD scheme using a computational model of an isolated inclusion subject to a constant far field flux. Next, we study numerically the evolution of a diffusion front and the effective thermal conductivity of composites consisting of multiple inclusions and compare the results with predictions based on the differential effective medium approach. Finally, application of the developed parabolic solver is suggested for a real-world problem of fluid transport and reactions inside a reservoir.
NASA Astrophysics Data System (ADS)
Hermann, A. J.; Moore, C.; Soreide, N. N.
2002-12-01
Ocean circulation is irrefutably three dimensional, and powerful new measurement technologies and numerical models promise to expand our three-dimensional knowledge of the dynamics further each year. Yet, most ocean data and model output is still viewed using two-dimensional maps. Immersive visualization techniques allow the investigator to view their data as a three dimensional world of surfaces and vectors which evolves through time. The experience is not unlike holding a part of the ocean basin in one's hand, turning and examining it from different angles. While immersive, three dimensional visualization has been possible for at least a decade, the technology was until recently inaccessible (both physically and financially) for most researchers. It is not yet fully appreciated by practicing oceanographers how new, inexpensive computing hardware and software (e.g. graphics cards and controllers designed for the huge PC gaming market) can be employed for immersive, three dimensional, color visualization of their increasingly huge datasets and model output. In fact, the latest developments allow immersive visualization through web servers, giving scientists the ability to "fly through" three-dimensional data stored half a world away. Here we explore what additional insight is gained through immersive visualization, describe how scientists of very modest means can easily avail themselves of the latest technology, and demonstrate its implementation on a web server for Pacific Ocean model output.
Three-dimensional vector modeling and restoration of flat finite wave tank radiometric measurements
NASA Technical Reports Server (NTRS)
Truman, W. M.; Balanis, C. A.
1977-01-01
The three-dimensional vector interaction between a microwave radiometer and a wave tank was modeled. Computer programs for predicting the response of the radiometer to the brightness temperature characteristics of the surroundings were developed along with a computer program that can invert (restore) the radiometer measurements. It is shown that the computer programs can be used to simulate the viewing of large bodies of water, and is applicable to radiometer measurements received from satellites monitoring the ocean. The water temperature, salinity, and wind speed can be determined.
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Minguet, Pierre J.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The debonding of a skin/stringer specimen subjected to tension was studied using three-dimensional volume element modeling and computational fracture mechanics. Mixed mode strain energy release rates were calculated from finite element results using the virtual crack closure technique. The simulations revealed an increase in total energy release rate in the immediate vicinity of the free edges of the specimen. Correlation of the computed mixed-mode strain energy release rates along the delamination front contour with a two-dimensional mixed-mode interlaminar fracture criterion suggested that in spite of peak total energy release rates at the free edge the delamination would not advance at the edges first. The qualitative prediction of the shape of the delamination front was confirmed by X-ray photographs of a specimen taken during testing. The good correlation between prediction based on analysis and experiment demonstrated the efficiency of a mixed-mode failure analysis for the investigation of skin/stiffener separation due to delamination in the adherents. The application of a shell/3D modeling technique for the simulation of skin/stringer debond in a specimen subjected to three-point bending is also demonstrated. The global structure was modeled with shell elements. A local three-dimensional model, extending to about three specimen thicknesses on either side of the delamination front was used to capture the details of the damaged section. Computed total strain energy release rates and mixed-mode ratios obtained from shell/3D simulations were in good agreement with results obtained from full solid models. The good correlations of the results demonstrated the effectiveness of the shell/3D modeling technique for the investigation of skin/stiffener separation due to delamination in the adherents.
NASA Technical Reports Server (NTRS)
Dorsey, D. R., Jr.
1975-01-01
A mathematical model was developed of the three-dimensional dynamics of a high-altitude scientific research balloon system perturbed from its equilibrium configuration by an arbitrary gust loading. The platform is modelled as a system of four coupled pendula, and the equations of motion were developed in the Lagrangian formalism assuming a small-angle approximation. Three-dimensional pendulation, torsion, and precessional motion due to Coriolis forces are considered. Aerodynamic and viscous damping effects on the pendulatory and torsional motions are included. A general model of the gust field incident upon the balloon system was developed. The digital computer simulation program is described, and a guide to its use is given.
A computer program for fitting smooth surfaces to three-dimensional aircraft configurations
NASA Technical Reports Server (NTRS)
Craidon, C. B.; Smith, R. E., Jr.
1975-01-01
A computer program developed to fit smooth surfaces to the component parts of three-dimensional aircraft configurations was described. The resulting equation definition of an aircraft numerical model is useful in obtaining continuous two-dimensional cross section plots in arbitrarily defined planes, local tangents, enriched surface plots and other pertinent geometric information; the geometry organization used as input to the program has become known as the Harris Wave Drag Geometry.
Wei, Xuelei; Dong, Fuhui
2011-12-01
To review recent advance in the research and application of computer aided forming techniques for constructing bone tissue engineering scaffolds. The literature concerning computer aided forming techniques for constructing bone tissue engineering scaffolds in recent years was reviewed extensively and summarized. Several studies over last decade have focused on computer aided forming techniques for bone scaffold construction using various scaffold materials, which is based on computer aided design (CAD) and bone scaffold rapid prototyping (RP). CAD include medical CAD, STL, and reverse design. Reverse design can fully simulate normal bone tissue and could be very useful for the CAD. RP techniques include fused deposition modeling, three dimensional printing, selected laser sintering, three dimensional bioplotting, and low-temperature deposition manufacturing. These techniques provide a new way to construct bone tissue engineering scaffolds with complex internal structures. With rapid development of molding and forming techniques, computer aided forming techniques are expected to provide ideal bone tissue engineering scaffolds.
Development of advanced Navier-Stokes solver
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan
1994-01-01
The objective of research was to develop and validate new computational algorithms for solving the steady and unsteady Euler and Navier-Stokes equations. The end-products are new three-dimensional Euler and Navier-Stokes codes that are faster, more reliable, more accurate, and easier to use. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible/incompressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. Convergence rates and the robustness of the codes are enhanced by the use of an implicit full approximation storage multigrid method.
A Novel Deployment Scheme Based on Three-Dimensional Coverage Model for Wireless Sensor Networks
Xiao, Fu; Yang, Yang; Wang, Ruchuan; Sun, Lijuan
2014-01-01
Coverage pattern and deployment strategy are directly related to the optimum allocation of limited resources for wireless sensor networks, such as energy of nodes, communication bandwidth, and computing power, and quality improvement is largely determined by these for wireless sensor networks. A three-dimensional coverage pattern and deployment scheme are proposed in this paper. Firstly, by analyzing the regular polyhedron models in three-dimensional scene, a coverage pattern based on cuboids is proposed, and then relationship between coverage and sensor nodes' radius is deduced; also the minimum number of sensor nodes to maintain network area's full coverage is calculated. At last, sensor nodes are deployed according to the coverage pattern after the monitor area is subdivided into finite 3D grid. Experimental results show that, compared with traditional random method, sensor nodes number is reduced effectively while coverage rate of monitor area is ensured using our coverage pattern and deterministic deployment scheme. PMID:25045747
Three dimensional ray tracing of the Jovian magnetosphere in the low frequency range
NASA Technical Reports Server (NTRS)
Menietti, J. D.
1984-01-01
Ray tracing studies of Jovian low frequency emissions were studied. A comprehensive three-dimensional ray tracing computer code for examination of model Jovian decametric (DAM) emission was developed. The improvements to the computer code are outlined and described. The results of the ray tracings of Jovian emissions will be presented in summary form.
Flow through three-dimensional arrangements of cylinders with alternating streamwise planar tilt
NASA Astrophysics Data System (ADS)
Sahraoui, M.; Marshall, H.; Kaviany, M.
1993-09-01
In this report, fluid flow through a three-dimensional model for the fibrous filters is examined. In this model, the three-dimensional Stokes equation with the appropriate periodic boundary conditions is solved using the finite volume method. In addition to the numerical solution, we attempt to model this flow analytically by using the two-dimensional extended analytic solution in each of the unit cells of the three-dimensional structure. Particle trajectories computed using the superimposed analytic solution of the flow field are closed to those computed using the numerical solution of the flow field. The numerical results show that the pressure drop is not affected significantly by the relative angle of rotation of the cylinders for the high porosity used in this study (epsilon = 0.8 and epsilon = 0.95). The numerical solution and the superimposed analytic solution are also compared in terms of the particle capture efficiency. The results show that the efficiency predictions using the two methods are within 10% for St = 0.01 and 5% for St = 100. As the the porosity decreases, the three-dimensional effect becomes more significant and a difference of 35% is obtained for epsilon = 0.8.
NASA Technical Reports Server (NTRS)
Kumar, A.; Rudy, D. H.; Drummond, J. P.; Harris, J. E.
1982-01-01
Several two- and three-dimensional external and internal flow problems solved on the STAR-100 and CYBER-203 vector processing computers are described. The flow field was described by the full Navier-Stokes equations which were then solved by explicit finite-difference algorithms. Problem results and computer system requirements are presented. Program organization and data base structure for three-dimensional computer codes which will eliminate or improve on page faulting, are discussed. Storage requirements for three-dimensional codes are reduced by calculating transformation metric data in each step. As a result, in-core grid points were increased in number by 50% to 150,000, with a 10% execution time increase. An assessment of current and future machine requirements shows that even on the CYBER-205 computer only a few problems can be solved realistically. Estimates reveal that the present situation is more storage limited than compute rate limited, but advancements in both storage and speed are essential to realistically calculate three-dimensional flow.
KRISSY: user's guide to modeling three-dimensional wind flow in complex terrain
Michael A. Fosberg; Michael L. Sestak
1986-01-01
KRISSY is a computer model for generating three-dimensional wind flows in complex terrain from data that were not or perhaps cannot be collected. The model is written in FORTRAN IV This guide describes data requirements, modeling, and output from an applications viewpoint rather than that of programming or theoretical modeling. KRISSY is designed to minimize...
A knowledge-based approach to automated flow-field zoning for computational fluid dynamics
NASA Technical Reports Server (NTRS)
Vogel, Alison Andrews
1989-01-01
An automated three-dimensional zonal grid generation capability for computational fluid dynamics is shown through the development of a demonstration computer program capable of automatically zoning the flow field of representative two-dimensional (2-D) aerodynamic configurations. The applicability of a knowledge-based programming approach to the domain of flow-field zoning is examined. Several aspects of flow-field zoning make the application of knowledge-based techniques challenging: the need for perceptual information, the role of individual bias in the design and evaluation of zonings, and the fact that the zoning process is modeled as a constructive, design-type task (for which there are relatively few examples of successful knowledge-based systems in any domain). Engineering solutions to the problems arising from these aspects are developed, and a demonstration system is implemented which can design, generate, and output flow-field zonings for representative 2-D aerodynamic configurations.
Automatic Reconstruction of Spacecraft 3D Shape from Imagery
NASA Astrophysics Data System (ADS)
Poelman, C.; Radtke, R.; Voorhees, H.
We describe a system that computes the three-dimensional (3D) shape of a spacecraft from a sequence of uncalibrated, two-dimensional images. While the mathematics of multi-view geometry is well understood, building a system that accurately recovers 3D shape from real imagery remains an art. A novel aspect of our approach is the combination of algorithms from computer vision, photogrammetry, and computer graphics. We demonstrate our system by computing spacecraft models from imagery taken by the Air Force Research Laboratory's XSS-10 satellite and DARPA's Orbital Express satellite. Using feature tie points (each identified in two or more images), we compute the relative motion of each frame and the 3D location of each feature using iterative linear factorization followed by non-linear bundle adjustment. The "point cloud" that results from this traditional shape-from-motion approach is typically too sparse to generate a detailed 3D model. Therefore, we use the computed motion solution as input to a volumetric silhouette-carving algorithm, which constructs a solid 3D model based on viewpoint consistency with the image frames. The resulting voxel model is then converted to a facet-based surface representation and is texture-mapped, yielding realistic images from arbitrary viewpoints. We also illustrate other applications of the algorithm, including 3D mensuration and stereoscopic 3D movie generation.
Low-order modeling of internal heat transfer in biomass particle pyrolysis
Wiggins, Gavin M.; Daw, C. Stuart; Ciesielski, Peter N.
2016-05-11
We present a computationally efficient, one-dimensional simulation methodology for biomass particle heating under conditions typical of fast pyrolysis. Our methodology is based on identifying the rate limiting geometric and structural factors for conductive heat transport in biomass particle models with realistic morphology to develop low-order approximations that behave appropriately. Comparisons of transient temperature trends predicted by our one-dimensional method with three-dimensional simulations of woody biomass particles reveal good agreement, if the appropriate equivalent spherical diameter and bulk thermal properties are used. Here, we conclude that, for particle sizes and heating regimes typical of fast pyrolysis, it is possible to simulatemore » biomass particle heating with reasonable accuracy and minimal computational overhead, even when variable size, aspherical shape, anisotropic conductivity, and complex, species-specific internal pore geometry are incorporated.« less
Low-Order Modeling of Internal Heat Transfer in Biomass Particle Pyrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiggins, Gavin M.; Ciesielski, Peter N.; Daw, C. Stuart
2016-06-16
We present a computationally efficient, one-dimensional simulation methodology for biomass particle heating under conditions typical of fast pyrolysis. Our methodology is based on identifying the rate limiting geometric and structural factors for conductive heat transport in biomass particle models with realistic morphology to develop low-order approximations that behave appropriately. Comparisons of transient temperature trends predicted by our one-dimensional method with three-dimensional simulations of woody biomass particles reveal good agreement, if the appropriate equivalent spherical diameter and bulk thermal properties are used. We conclude that, for particle sizes and heating regimes typical of fast pyrolysis, it is possible to simulate biomassmore » particle heating with reasonable accuracy and minimal computational overhead, even when variable size, aspherical shape, anisotropic conductivity, and complex, species-specific internal pore geometry are incorporated.« less
NASA Technical Reports Server (NTRS)
Louis, P.; Gokhale, A. M.
1996-01-01
Computer simulation is a powerful tool for analyzing the geometry of three-dimensional microstructure. A computer simulation model is developed to represent the three-dimensional microstructure of a two-phase particulate composite where particles may be in contact with one another but do not overlap significantly. The model is used to quantify the "connectedness" of the particulate phase of a polymer matrix composite containing hollow carbon particles in a dielectric polymer resin matrix. The simulations are utilized to estimate the morphological percolation volume fraction for electrical conduction, and the effective volume fraction of the particles that actually take part in the electrical conduction. The calculated values of the effective volume fraction are used as an input for a self-consistent physical model for electrical conductivity. The predicted values of electrical conductivity are in very good agreement with the corresponding experimental data on a series of specimens having different particulate volume fraction.
Sato, Y; Wadamoto, M; Tsuga, K; Teixeira, E R
1999-04-01
More validity of finite element analysis in implant biomechanics requires element downsizing. However, excess downsizing needs computer memory and calculation time. To investigate the effectiveness of element downsizing on the construction of a three-dimensional finite element bone trabeculae model, with different element sizes (600, 300, 150 and 75 microm) models were constructed and stress induced by vertical 10 N loading was analysed. The difference in von Mises stress values between the models with 600 and 300 microm element sizes was larger than that between 300 and 150 microm. On the other hand, no clear difference of stress values was detected among the models with 300, 150 and 75 microm element sizes. Downsizing of elements from 600 to 300 microm is suggested to be effective in the construction of a three-dimensional finite element bone trabeculae model for possible saving of computer memory and calculation time in the laboratory.
Optimal segmentation and packaging process
Kostelnik, K.M.; Meservey, R.H.; Landon, M.D.
1999-08-10
A process for improving packaging efficiency uses three dimensional, computer simulated models with various optimization algorithms to determine the optimal segmentation process and packaging configurations based on constraints including container limitations. The present invention is applied to a process for decontaminating, decommissioning (D and D), and remediating a nuclear facility involving the segmentation and packaging of contaminated items in waste containers in order to minimize the number of cuts, maximize packaging density, and reduce worker radiation exposure. A three-dimensional, computer simulated, facility model of the contaminated items are created. The contaminated items are differentiated. The optimal location, orientation and sequence of the segmentation and packaging of the contaminated items is determined using the simulated model, the algorithms, and various constraints including container limitations. The cut locations and orientations are transposed to the simulated model. The contaminated items are actually segmented and packaged. The segmentation and packaging may be simulated beforehand. In addition, the contaminated items may be cataloged and recorded. 3 figs.
NASA Astrophysics Data System (ADS)
Tsivilskiy, I. V.; Nagulin, K. Yu.; Gilmutdinov, A. Kh.
2016-02-01
A full three-dimensional nonstationary numerical model of graphite electrothermal atomizers of various types is developed. The model is based on solution of a heat equation within solid walls of the atomizer with a radiative heat transfer and numerical solution of a full set of Navier-Stokes equations with an energy equation for a gas. Governing equations for the behavior of a discrete phase, i.e., atomic particles suspended in a gas (including gas-phase processes of evaporation and condensation), are derived from the formal equations molecular kinetics by numerical solution of the Hertz-Langmuir equation. The following atomizers test the model: a Varian standard heated electrothermal vaporizer (ETV), a Perkin Elmer standard THGA transversely heated graphite tube with integrated platform (THGA), and the original double-stage tube-helix atomizer (DSTHA). The experimental verification of computer calculations is carried out by a method of shadow spectral visualization of the spatial distributions of atomic and molecular vapors in an analytical space of an atomizer.
Software for Building Models of 3D Objects via the Internet
NASA Technical Reports Server (NTRS)
Schramer, Tim; Jensen, Jeff
2003-01-01
The Virtual EDF Builder (where EDF signifies Electronic Development Fixture) is a computer program that facilitates the use of the Internet for building and displaying digital models of three-dimensional (3D) objects that ordinarily comprise assemblies of solid models created previously by use of computer-aided-design (CAD) programs. The Virtual EDF Builder resides on a Unix-based server computer. It is used in conjunction with a commercially available Web-based plug-in viewer program that runs on a client computer. The Virtual EDF Builder acts as a translator between the viewer program and a database stored on the server. The translation function includes the provision of uniform resource locator (URL) links to other Web-based computer systems and databases. The Virtual EDF builder can be used in two ways: (1) If the client computer is Unix-based, then it can assemble a model locally; the computational load is transferred from the server to the client computer. (2) Alternatively, the server can be made to build the model, in which case the server bears the computational load and the results are downloaded to the client computer or workstation upon completion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Cheng-Hsien; Department of Water Resources and Environmental Engineering, Tamkang University, New Taipei City 25137, Taiwan; Low, Ying Min, E-mail: ceelowym@nus.edu.sg
2016-05-15
Sediment transport is fundamentally a two-phase phenomenon involving fluid and sediments; however, many existing numerical models are one-phase approaches, which are unable to capture the complex fluid-particle and inter-particle interactions. In the last decade, two-phase models have gained traction; however, there are still many limitations in these models. For example, several existing two-phase models are confined to one-dimensional problems; in addition, the existing two-dimensional models simulate only the region outside the sand bed. This paper develops a new three-dimensional two-phase model for simulating sediment transport in the sheet flow condition, incorporating recently published rheological characteristics of sediments. The enduring-contact, inertial,more » and fluid viscosity effects are considered in determining sediment pressure and stresses, enabling the model to be applicable to a wide range of particle Reynolds number. A k − ε turbulence model is adopted to compute the Reynolds stresses. In addition, a novel numerical scheme is proposed, thus avoiding numerical instability caused by high sediment concentration and allowing the sediment dynamics to be computed both within and outside the sand bed. The present model is applied to two classical problems, namely, sheet flow and scour under a pipeline with favorable results. For sheet flow, the computed velocity is consistent with measured data reported in the literature. For pipeline scour, the computed scour rate beneath the pipeline agrees with previous experimental observations. However, the present model is unable to capture vortex shedding; consequently, the sediment deposition behind the pipeline is overestimated. Sensitivity analyses reveal that model parameters associated with turbulence have strong influence on the computed results.« less
TRIM—3D: a three-dimensional model for accurate simulation of shallow water flow
Casulli, Vincenzo; Bertolazzi, Enrico; Cheng, Ralph T.
1993-01-01
A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is discussed. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that the resulting algorithm permits the use of large time steps at a minimal computational cost. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers. The high computational efficiency of this method has made it possible to provide the fine details of circulation structure in complex regions that previous studies were unable to obtain. For proper interpretation of the model results suitable interactive graphics is also an essential tool.
Recent trends in digital human modeling and the concurrent issues that face human modeling approach
NASA Technical Reports Server (NTRS)
Rajulu, Sudhakar; Gonzalez, L. Javier; Margerum, Sarah; Clowers, Kurt; Moreny, Richard; Abercomby, Andrew; Velasquez, Luis
2006-01-01
Tremendous strides have been made in the recent years to digitally represent human beings in computer simulation models ranging from assembly plant maintenance operations to occupants getting in and out of vehicles to action movie scenarios. While some of these tools are being actively pursued by the engineering communities, there is still a lot of work that remains to be done for the newly planned planetary exploration missions. For example, certain unique and several common challenges are seen in developing computer generated suited human models for designing the next generation space vehicle. The purpose of this presentation is to discuss NASA s potential needs for better human models and to show also many of the inherent yet not too obvious pitfalls that still are left unresolved in this new arena of digital human modeling. As part of NASA s Habitability and Human Factors Branch, the Anthropometry and Biomechanics Facility has been engaged in studying the various facets of computer generated human physical performance models; for instance, it has been engaged in utilizing three-dimensional laser scan data along with three dimensional video based motion and reach data to gather suited anthropometric and shape and size information that are not available yet in the form of computer mannequins. Our goal is to bring in new approaches to deal with heavily clothed humans (such as, suited astronauts) and to overcome the current limitations of wrongly identifying humans (either real or virtual) as univariate percentiles. We are looking at whole-body posture based anthropometric models as a means to identify humans of significantly different shapes and sizes to arrive at mathematically sound computer models for analytical purposes.
Guo, L-X; Li, J; Zeng, H
2009-11-01
We present an investigation of the electromagnetic scattering from a three-dimensional (3-D) object above a two-dimensional (2-D) randomly rough surface. A Message Passing Interface-based parallel finite-difference time-domain (FDTD) approach is used, and the uniaxial perfectly matched layer (UPML) medium is adopted for truncation of the FDTD lattices, in which the finite-difference equations can be used for the total computation domain by properly choosing the uniaxial parameters. This makes the parallel FDTD algorithm easier to implement. The parallel performance with different number of processors is illustrated for one rough surface realization and shows that the computation time of our parallel FDTD algorithm is dramatically reduced relative to a single-processor implementation. Finally, the composite scattering coefficients versus scattered and azimuthal angle are presented and analyzed for different conditions, including the surface roughness, the dielectric constants, the polarization, and the size of the 3-D object.
Transforming Clinical Imaging Data for Virtual Reality Learning Objects
ERIC Educational Resources Information Center
Trelease, Robert B.; Rosset, Antoine
2008-01-01
Advances in anatomical informatics, three-dimensional (3D) modeling, and virtual reality (VR) methods have made computer-based structural visualization a practical tool for education. In this article, the authors describe streamlined methods for producing VR "learning objects," standardized interactive software modules for anatomical sciences…
The Use of a Parametric Feature Based CAD System to Teach Introductory Engineering Graphics.
ERIC Educational Resources Information Center
Howell, Steven K.
1995-01-01
Describes the use of a parametric-feature-based computer-aided design (CAD) System, AutoCAD Designer, in teaching concepts of three dimensional geometrical modeling and design. Allows engineering graphics to go beyond the role of documentation and communication and allows an engineer to actually build a virtual prototype of a design idea and…
Optimization of a Boiling Water Reactor Loading Pattern Using an Improved Genetic Algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Yoko; Aiyoshi, Eitaro
2003-08-15
A search method based on genetic algorithms (GA) using deterministic operators has been developed to generate optimized boiling water reactor (BWR) loading patterns (LPs). The search method uses an Improved GA operator, that is, crossover, mutation, and selection. The handling of the encoding technique and constraint conditions is designed so that the GA reflects the peculiar characteristics of the BWR. In addition, some strategies such as elitism and self-reproduction are effectively used to improve the search speed. LP evaluations were performed with a three-dimensional diffusion code that coupled neutronic and thermal-hydraulic models. Strong axial heterogeneities and three-dimensional-dependent constraints have alwaysmore » necessitated the use of three-dimensional core simulators for BWRs, so that an optimization method is required for computational efficiency. The proposed algorithm is demonstrated by successfully generating LPs for an actual BWR plant applying the Haling technique. In test calculations, candidates that shuffled fresh and burned fuel assemblies within a reasonable computation time were obtained.« less
ERIC Educational Resources Information Center
Sander, Ian M.; McGoldrick, Matthew T.; Helms, My N.; Betts, Aislinn; van Avermaete, Anthony; Owers, Elizabeth; Doney, Evan; Liepert, Taimi; Niebur, Glen; Liepert, Douglas; Leevy, W. Matthew
2017-01-01
Advances in three-dimensional (3D) printing allow for digital files to be turned into a "printed" physical product. For example, complex anatomical models derived from clinical or pre-clinical X-ray computed tomography (CT) data of patients or research specimens can be constructed using various printable materials. Although 3D printing…
NASA Technical Reports Server (NTRS)
Dodge, W. G.
1968-01-01
Computer program determines the forced vibration in three dimensional space of a multiple degree of freedom beam type structural system. Provision is made for the longitudinal axis of the analytical model to change orientation at any point along its length. This program is used by industries in which structural design dynamic analyses are performed.
A GPU-based calculation using the three-dimensional FDTD method for electromagnetic field analysis.
Nagaoka, Tomoaki; Watanabe, Soichi
2010-01-01
Numerical simulations with the numerical human model using the finite-difference time domain (FDTD) method have recently been performed frequently in a number of fields in biomedical engineering. However, the FDTD calculation runs too slowly. We focus, therefore, on general purpose programming on the graphics processing unit (GPGPU). The three-dimensional FDTD method was implemented on the GPU using Compute Unified Device Architecture (CUDA). In this study, we used the NVIDIA Tesla C1060 as a GPGPU board. The performance of the GPU is evaluated in comparison with the performance of a conventional CPU and a vector supercomputer. The results indicate that three-dimensional FDTD calculations using a GPU can significantly reduce run time in comparison with that using a conventional CPU, even a native GPU implementation of the three-dimensional FDTD method, while the GPU/CPU speed ratio varies with the calculation domain and thread block size.
Mobile robots IV; Proceedings of the Meeting, Philadelphia, PA, Nov. 6, 7, 1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, W.J.; Chun, W.H.
1990-01-01
The present conference on mobile robot systems discusses high-speed machine perception based on passive sensing, wide-angle optical ranging, three-dimensional path planning for flying/crawling robots, navigation of autonomous mobile intelligence in an unstructured natural environment, mechanical models for the locomotion of a four-articulated-track robot, a rule-based command language for a semiautonomous Mars rover, and a computer model of the structured light vision system for a Mars rover. Also discussed are optical flow and three-dimensional information for navigation, feature-based reasoning trail detection, a symbolic neural-net production system for obstacle avoidance and navigation, intelligent path planning for robot navigation in an unknown environment,more » behaviors from a hierarchical control system, stereoscopic TV systems, the REACT language for autonomous robots, and a man-amplifying exoskeleton.« less
NASA Astrophysics Data System (ADS)
Hu, Long; Tao, Guoquan; Liu, Zhenguo; Wang, Yibo; Ya, Jixuan
2018-04-01
The influence of yarn squeezing effect on the geometric morphology and mechanical property of the three dimensional full five directional (3DF5D) braided composites is explored. Spatial path and cross-section shape of the yarns in the braided structure are characterized based on the micro computed tomography (micro CT) scanning images. The yarn distortion due to the squeezing effect is discussed and mathematical morphology of the yarn geometry is established. A new repeated unit cell (RUC) model of 3DF5D braided composites considering yarn squeezing effect is developed. Based on this model, mechanical properties of 3DF5D braided composites are analyzed. Good agreement is obtained between the predicted and experiment results. Moreover, the stress distribution of the new RUC model are compared with original RUC model, showing that the squeezing effect significantly increases the stress concentration level of the axial yarns.
Several examples where turbulence models fail in inlet flow field analysis
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.
1993-01-01
Computational uncertainties in turbulence modeling for three dimensional inlet flow fields include flows approaching separation, strength of secondary flow field, three dimensional flow predictions of vortex liftoff, and influence of vortex-boundary layer interactions; computational uncertainties in vortex generator modeling include representation of generator vorticity field and the relationship between generator and vorticity field. The objectives of the inlet flow field studies presented in this document are to advance the understanding, prediction, and control of intake distortion and to study the basic interactions that influence this design problem.
Implications of a quadratic stream definition in radiative transfer theory.
NASA Technical Reports Server (NTRS)
Whitney, C.
1972-01-01
An explicit definition of the radiation-stream concept is stated and applied to approximate the integro-differential equation of radiative transfer with a set of twelve coupled differential equations. Computational efficiency is enhanced by distributing the corresponding streams in three-dimensional space in a totally symmetric way. Polarization is then incorporated in this model. A computer program based on the model is briefly compared with a Monte Carlo program for simulation of horizon scans of the earth's atmosphere. It is found to be considerably faster.
Development of the Patient-specific Cardiovascular Modeling System Using Immersed Boundary Technique
NASA Astrophysics Data System (ADS)
Tay, Wee-Beng; Lin, Liang-Yu; Tseng, Wen-Yih; Tseng, Yu-Heng
2010-05-01
A computational fluid dynamics (CFD) based, patient-specific cardiovascular modeling system is under-developed. The system can identify possible diseased conditions and facilitate physicians' diagnosis at early stage through the hybrid CFD simulation and time-resolved magnetic resonance imaging (MRI). The CFD simulation is initially based on the three-dimensional heart model developed by McQueen and Peskin, which can simultaneously compute fluid motions and elastic boundary motions using the immersed boundary method. We extend and improve the three-dimensional heart model for the clinical application by including the patient-specific hemodynamic information. The flow features in the ventricles and their responses are investigated under different inflow and outflow conditions during diastole and systole phases based on the quasi-realistic heart model, which takes advantage of the observed flow scenarios. Our results indicate distinct differences between the two groups of participants, including the vortex formation process in the left ventricle (LV), as well as the flow rate distributions at different identified sources such as the aorta, vena cava and pulmonary veins/artery. We further identify some key parameters which may affect the vortex formation in the LV. Thus it is hypothesized that disease-related dysfunctions in intervals before complete heart failure can be observed in the dynamics of transmitral blood flow during early LV diastole.
Variational asymptotic modeling of composite dimensionally reducible structures
NASA Astrophysics Data System (ADS)
Yu, Wenbin
A general framework to construct accurate reduced models for composite dimensionally reducible structures (beams, plates and shells) was formulated based on two theoretical foundations: decomposition of the rotation tensor and the variational asymptotic method. Two engineering software systems, Variational Asymptotic Beam Sectional Analysis (VABS, new version) and Variational Asymptotic Plate and Shell Analysis (VAPAS), were developed. Several restrictions found in previous work on beam modeling were removed in the present effort. A general formulation of Timoshenko-like cross-sectional analysis was developed, through which the shear center coordinates and a consistent Vlasov model can be obtained. Recovery relations are given to recover the asymptotic approximations for the three-dimensional field variables. A new version of VABS has been developed, which is a much improved program in comparison to the old one. Numerous examples are given for validation. A Reissner-like model being as asymptotically correct as possible was obtained for composite plates and shells. After formulating the three-dimensional elasticity problem in intrinsic form, the variational asymptotic method was used to systematically reduce the dimensionality of the problem by taking advantage of the smallness of the thickness. The through-the-thickness analysis is solved by a one-dimensional finite element method to provide the stiffnesses as input for the two-dimensional nonlinear plate or shell analysis as well as recovery relations to approximately express the three-dimensional results. The known fact that there exists more than one theory that is asymptotically correct to a given order is adopted to cast the refined energy into a Reissner-like form. A two-dimensional nonlinear shell theory consistent with the present modeling process was developed. The engineering computer code VAPAS was developed and inserted into DYMORE to provide an efficient and accurate analysis of composite plates and shells. Numerical results are compared with the exact solutions, and the excellent agreement proves that one can use VAPAS to analyze composite plates and shells efficiently and accurately. In conclusion, rigorous modeling approaches were developed for composite beams, plates and shells within a general framework. No such consistent and general treatment is found in the literature. The associated computer programs VABS and VAPAS are envisioned to have many applications in industry.
NASA Astrophysics Data System (ADS)
Kunz, Robert; Haworth, Daniel; Dogan, Gulkiz; Kriete, Andres
2006-11-01
Three-dimensional, unsteady simulations of multiphase flow, gas exchange, and particle/aerosol deposition in the human lung are reported. Surface data for human tracheo-bronchial trees are derived from CT scans, and are used to generate three- dimensional CFD meshes for the first several generations of branching. One-dimensional meshes for the remaining generations down to the respiratory units are generated using branching algorithms based on those that have been proposed in the literature, and a zero-dimensional respiratory unit (pulmonary acinus) model is attached at the end of each terminal bronchiole. The process is automated to facilitate rapid model generation. The model is exercised through multiple breathing cycles to compute the spatial and temporal variations in flow, gas exchange, and particle/aerosol deposition. The depth of the 3D/1D transition (at branching generation n) is a key parameter, and can be varied. High-fidelity models (large n) are run on massively parallel distributed-memory clusters, and are used to generate physical insight and to calibrate/validate the 1D and 0D models. Suitably validated lower-order models (small n) can be run on single-processor PC’s with run times that allow model-based clinical intervention for individual patients.
Rapid prototyping and stereolithography in dentistry
Nayar, Sanjna; Bhuminathan, S.; Bhat, Wasim Manzoor
2015-01-01
The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena. PMID:26015715
Rapid prototyping and stereolithography in dentistry.
Nayar, Sanjna; Bhuminathan, S; Bhat, Wasim Manzoor
2015-04-01
The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena.
On the Development of a Deterministic Three-Dimensional Radiation Transport Code
NASA Technical Reports Server (NTRS)
Rockell, Candice; Tweed, John
2011-01-01
Since astronauts on future deep space missions will be exposed to dangerous radiations, there is a need to accurately model the transport of radiation through shielding materials and to estimate the received radiation dose. In response to this need a three dimensional deterministic code for space radiation transport is now under development. The new code GRNTRN is based on a Green's function solution of the Boltzmann transport equation that is constructed in the form of a Neumann series. Analytical approximations will be obtained for the first three terms of the Neumann series and the remainder will be estimated by a non-perturbative technique . This work discusses progress made to date and exhibits some computations based on the first two Neumann series terms.
Discharge Chamber Primary Electron Modeling Activities in Three-Dimensions
NASA Technical Reports Server (NTRS)
Steuber, Thomas J.
2004-01-01
Designing discharge chambers for ion thrusters involves many geometric configuration decisions. Various decisions will impact discharge chamber performance with respect to propellant utilization efficiency, ion production costs, and grid lifetime. These hardware design decisions can benefit from the assistance of computational modeling. Computational modeling for discharge chambers has been limited to two-dimensional codes that leveraged symmetry for interpretation into three-dimensional analysis. This paper presents model development activities towards a three-dimensional discharge chamber simulation to aid discharge chamber design decisions. Specifically, of the many geometric configuration decisions toward attainment of a worthy discharge chamber, this paper focuses on addressing magnetic circuit considerations with a three-dimensional discharge chamber simulation as a tool. With this tool, candidate discharge chamber magnetic circuit designs can be analyzed computationally to gain insight into factors that may influence discharge chamber performance such as: primary electron loss width in magnetic cusps, cathode tip position with respect to the low magnetic field volume, definition of a low magnetic field region, and maintenance of a low magnetic field region across the grid span. Corroborating experimental data will be obtained from mockup hardware tests. Initially, simulated candidate magnetic circuit designs will resemble previous successful thruster designs. To provide opportunity to improve beyond previous performance benchmarks, off-design modifications will be simulated and experimentally tested.
NASA Astrophysics Data System (ADS)
Chen, Tao; Clauser, Christoph; Marquart, Gabriele; Willbrand, Karen; Hiller, Thomas
2018-02-01
Upscaling permeability of grid blocks is crucial for groundwater models. A novel upscaling method for three-dimensional fractured porous rocks is presented. The objective of the study was to compare this method with the commonly used Oda upscaling method and the volume averaging method. First, the multiple boundary method and its computational framework were defined for three-dimensional stochastic fracture networks. Then, the different upscaling methods were compared for a set of rotated fractures, for tortuous fractures, and for two discrete fracture networks. The results computed by the multiple boundary method are comparable with those of the other two methods and fit best the analytical solution for a set of rotated fractures. The errors in flow rate of the equivalent fracture model decrease when using the multiple boundary method. Furthermore, the errors of the equivalent fracture models increase from well-connected fracture networks to poorly connected ones. Finally, the diagonal components of the equivalent permeability tensors tend to follow a normal or log-normal distribution for the well-connected fracture network model with infinite fracture size. By contrast, they exhibit a power-law distribution for the poorly connected fracture network with multiple scale fractures. The study demonstrates the accuracy and the flexibility of the multiple boundary upscaling concept. This makes it attractive for being incorporated into any existing flow-based upscaling procedures, which helps in reducing the uncertainty of groundwater models.
Source Term Model for Steady Micro Jets in a Navier-Stokes Computer Code
NASA Technical Reports Server (NTRS)
Waithe, Kenrick A.
2005-01-01
A source term model for steady micro jets was implemented into a non-proprietary Navier-Stokes computer code, OVERFLOW. The source term models the mass flow and momentum created by a steady blowing micro jet. The model is obtained by adding the momentum and mass flow created by the jet to the Navier-Stokes equations. The model was tested by comparing with data from numerical simulations of a single, steady micro jet on a flat plate in two and three dimensions. The source term model predicted the velocity distribution well compared to the two-dimensional plate using a steady mass flow boundary condition, which was used to simulate a steady micro jet. The model was also compared to two three-dimensional flat plate cases using a steady mass flow boundary condition to simulate a steady micro jet. The three-dimensional comparison included a case with a grid generated to capture the circular shape of the jet and a case without a grid generated for the micro jet. The case without the jet grid mimics the application of the source term. The source term model compared well with both of the three-dimensional cases. Comparisons of velocity distribution were made before and after the jet and Mach and vorticity contours were examined. The source term model allows a researcher to quickly investigate different locations of individual or several steady micro jets. The researcher is able to conduct a preliminary investigation with minimal grid generation and computational time.
Performance Modeling of Experimental Laser Lightcrafts
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Chen, Yen-Sen; Liu, Jiwen; Myrabo, Leik N.; Mead, Franklin B., Jr.; Turner, Jim (Technical Monitor)
2001-01-01
A computational plasma aerodynamics model is developed to study the performance of a laser propelled Lightcraft. The computational methodology is based on a time-accurate, three-dimensional, finite-difference, chemically reacting, unstructured grid, pressure-based formulation. The underlying physics are added and tested systematically using a building-block approach. The physics modeled include non-equilibrium thermodynamics, non-equilibrium air-plasma finite-rate kinetics, specular ray tracing, laser beam energy absorption and refraction by plasma, non-equilibrium plasma radiation, and plasma resonance. A series of transient computations are performed at several laser pulse energy levels and the simulated physics are discussed and compared with those of tests and literatures. The predicted coupling coefficients for the Lightcraft compared reasonably well with those of tests conducted on a pendulum apparatus.
NASA Astrophysics Data System (ADS)
Zhou, H.; Yu, X.; Chen, C.; Zeng, L.; Lu, S.; Wu, L.
2016-12-01
In this research, we combined synchrotron-based X-ray micro-computed tomography (SR-mCT), with three-dimensional lattice Bolzmann (LB) method, to quantify how the change in pore space architecture affected macroscopic hydraulic of two clayey soils amended with biochar. SR-mCT was used to characterize pore structures of the soils before and after biochar addition. The high-resolution soil pore structures were then directly used as internal boundary conditions for three-dimensional water flow simulations with the LB method, which was accelerated by graphics processing unit (GPU) parallel computing. It was shown that, due to the changes in soil pore geometry, the application of biochar increased the soil permeability by at least 1 order of magnitude, and decreased the tortuosity by 20-30%. This work was the first physics based modeling study on the effect of biochar amendment on soil hydraulic properties. The developed theories and techniques have promising potential in understanding the mechanisms of water and nutrient transport in soil at the pore scale.
Construction of a three-dimensional interactive model of the skull base and cranial nerves.
Kakizawa, Yukinari; Hongo, Kazuhiro; Rhoton, Albert L
2007-05-01
The goal was to develop an interactive three-dimensional (3-D) computerized anatomic model of the skull base for teaching microneurosurgical anatomy and for operative planning. The 3-D model was constructed using commercially available software (Maya 6.0 Unlimited; Alias Systems Corp., Delaware, MD), a personal computer, four cranial specimens, and six dry bones. Photographs from at least two angles of the superior and lateral views were imported to the 3-D software. Many photographs were needed to produce the model in anatomically complex areas. Careful dissection was needed to expose important structures in the two views. Landmarks, including foramen, bone, and dura mater, were used as reference points. The 3-D model of the skull base and related structures was constructed using more than 300,000 remodeled polygons. The model can be viewed from any angle. It can be rotated 360 degrees in any plane using any structure as the focal point of rotation. The model can be reduced or enlarged using the zoom function. Variable transparencies could be assigned to any structures so that the structures at any level can be seen. Anatomic labels can be attached to the structures in the 3-D model for educational purposes. This computer-generated 3-D model can be observed and studied repeatedly without the time limitations and stresses imposed by surgery. This model may offer the potential to create interactive surgical exercises useful in evaluating multiple surgical routes to specific target areas in the skull base.
Kong, Xiangxue; Nie, Lanying; Zhang, Huijian; Wang, Zhanglin; Ye, Qiang; Tang, Lei; Li, Jianyi; Huang, Wenhua
2016-01-01
Hepatic segment anatomy is difficult for medical students to learn. Three-dimensional visualization (3DV) is a useful tool in anatomy teaching, but current models do not capture haptic qualities. However, three-dimensional printing (3DP) can produce highly accurate complex physical models. Therefore, in this study we aimed to develop a novel 3DP hepatic segment model and compare the teaching effectiveness of a 3DV model, a 3DP model, and a traditional anatomical atlas. A healthy candidate (female, 50-years old) was recruited and scanned with computed tomography. After three-dimensional (3D) reconstruction, the computed 3D images of the hepatic structures were obtained. The parenchyma model was divided into 8 hepatic segments to produce the 3DV hepatic segment model. The computed 3DP model was designed by removing the surrounding parenchyma and leaving the segmental partitions. Then, 6 experts evaluated the 3DV and 3DP models using a 5-point Likert scale. A randomized controlled trial was conducted to evaluate the educational effectiveness of these models compared with that of the traditional anatomical atlas. The 3DP model successfully displayed the hepatic segment structures with partitions. All experts agreed or strongly agreed that the 3D models provided good realism for anatomical instruction, with no significant differences between the 3DV and 3DP models in each index (p > 0.05). Additionally, the teaching effects show that the 3DV and 3DP models were significantly better than traditional anatomical atlas in the first and second examinations (p < 0.05). Between the first and second examinations, only the traditional method group had significant declines (p < 0.05). A novel 3DP hepatic segment model was successfully developed. Both the 3DV and 3DP models could improve anatomy teaching significantly. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Gibbs, Robert; Moreton, Gregory; Meydan, Turgut; Williams, Paul
2018-03-21
The investigation of planar coils of differing topologies, when combined with a magnetostrictive amorphous ribbon to form a stress-sensitive self-inductor, is an active research area for applications as stress or pressure sensors. Four topologies of planar coil (Circular, Mesh, Meander, and Square) have been constructed using copper track on 30 mm wide PCB substrate. The coils are energized to draw 0.4 A and the resulting magnetic field distribution is observed with a newly developed three-dimensional magnetic field scanner. The system is based on a variably angled Micromagnetics ® STJ-020 tunneling magneto-resistance sensor with a spatial resolution of 5-10 µm and sensitivity to fields of less than 10 A/m. These experimental results are compared with the fields computed by ANSYS Maxwell ® finite element modelling of the same topologies. Measured field shape and strength correspond well with the results of modelling, including direct observation of corner and edge effects. Three-dimensional analysis of the field shape produced by the square coil, isolating the components H ( x ) and H ( z ) , is compared with the three-dimensional field solutions from modelling. The finite element modelling is validated and the accuracy and utility of the new system for three-dimensional scanning of general stray fields is confirmed.
Moreton, Gregory
2018-01-01
The investigation of planar coils of differing topologies, when combined with a magnetostrictive amorphous ribbon to form a stress-sensitive self-inductor, is an active research area for applications as stress or pressure sensors. Four topologies of planar coil (Circular, Mesh, Meander, and Square) have been constructed using copper track on 30 mm wide PCB substrate. The coils are energized to draw 0.4 A and the resulting magnetic field distribution is observed with a newly developed three-dimensional magnetic field scanner. The system is based on a variably angled Micromagnetics® STJ-020 tunneling magneto-resistance sensor with a spatial resolution of 5–10 µm and sensitivity to fields of less than 10 A/m. These experimental results are compared with the fields computed by ANSYS Maxwell® finite element modelling of the same topologies. Measured field shape and strength correspond well with the results of modelling, including direct observation of corner and edge effects. Three-dimensional analysis of the field shape produced by the square coil, isolating the components H(x) and H(z), is compared with the three-dimensional field solutions from modelling. The finite element modelling is validated and the accuracy and utility of the new system for three-dimensional scanning of general stray fields is confirmed. PMID:29561809
Transient Three-Dimensional Side Load Analysis of a Film Cooled Nozzle
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Guidos, Mike
2008-01-01
Transient three-dimensional numerical investigations on the side load physics for an engine encompassing a film cooled nozzle extension and a regeneratively cooled thrust chamber, were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Ultimately, the computational results will be provided to the nozzle designers for estimating of effect of the peak side load on the nozzle structure. Computations simulating engine startup at ambient pressures corresponding to sea level and three high altitudes were performed. In addition, computations for both engine startup and shutdown transients were also performed for a stub nozzle, operating at sea level. For engine with the full nozzle extension, computational result shows starting up at sea level, the peak side load occurs when the lambda shock steps into the turbine exhaust flow, while the side load caused by the transition from free-shock separation to restricted-shock separation comes at second; and the side loads decreasing rapidly and progressively as the ambient pressure decreases. For the stub nozzle operating at sea level, the computed side loads during both startup and shutdown becomes very small due to the much reduced flow area.
Computational Performance of a Parallelized Three-Dimensional High-Order Spectral Element Toolbox
NASA Astrophysics Data System (ADS)
Bosshard, Christoph; Bouffanais, Roland; Clémençon, Christian; Deville, Michel O.; Fiétier, Nicolas; Gruber, Ralf; Kehtari, Sohrab; Keller, Vincent; Latt, Jonas
In this paper, a comprehensive performance review of an MPI-based high-order three-dimensional spectral element method C++ toolbox is presented. The focus is put on the performance evaluation of several aspects with a particular emphasis on the parallel efficiency. The performance evaluation is analyzed with help of a time prediction model based on a parameterization of the application and the hardware resources. A tailor-made CFD computation benchmark case is introduced and used to carry out this review, stressing the particular interest for clusters with up to 8192 cores. Some problems in the parallel implementation have been detected and corrected. The theoretical complexities with respect to the number of elements, to the polynomial degree, and to communication needs are correctly reproduced. It is concluded that this type of code has a nearly perfect speed up on machines with thousands of cores, and is ready to make the step to next-generation petaflop machines.
Zhang, Sheng; Zhang, Kairui; Wang, Yimin; Feng, Wei; Wang, Bowei; Yu, Bin
2013-01-01
The aim of this study was to use three-dimensional (3D) computational modeling to compare the geometric fitness of these two kinds of proximal femoral intramedullary nails in the Chinese femurs. Computed tomography (CT) scans of a total of 120 normal adult Chinese cadaveric femurs were collected for analysis. With the three-dimensional (3D) computational technology, the anatomical fitness between the nail and bone was quantified according to the impingement incidence, maximum thicknesses and lengths by which the nail was protruding into the cortex in the virtual bone model, respectively, at the proximal, middle, and distal portions of the implant in the femur. The results showed that PFNA-II may fit better for the Chinese proximal femurs than InterTan, and the distal portion of InterTan may perform better than that of PFNA-II; the anatomic fitness of both nails for Chinese patients may not be very satisfactory. As a result, both implants need further modifications to meet the needs of the Chinese population.
Multitasking a three-dimensional Navier-Stokes algorithm on the Cray-2
NASA Technical Reports Server (NTRS)
Swisshelm, Julie M.
1989-01-01
A three-dimensional computational aerodynamics algorithm has been multitasked for efficient parallel execution on the Cray-2. It provides a means for examining the multitasking performance of a complete CFD application code. An embedded zonal multigrid scheme is used to solve the Reynolds-averaged Navier-Stokes equations for an internal flow model problem. The explicit nature of each component of the method allows a spatial partitioning of the computational domain to achieve a well-balanced task load for MIMD computers with vector-processing capability. Experiments have been conducted with both two- and three-dimensional multitasked cases. The best speedup attained by an individual task group was 3.54 on four processors of the Cray-2, while the entire solver yielded a speedup of 2.67 on four processors for the three-dimensional case. The multiprocessing efficiency of various types of computational tasks is examined, performance on two Cray-2s with different memory access speeds is compared, and extrapolation to larger problems is discussed.
BioSig3D: High Content Screening of Three-Dimensional Cell Culture Models
Bilgin, Cemal Cagatay; Fontenay, Gerald; Cheng, Qingsu; Chang, Hang; Han, Ju; Parvin, Bahram
2016-01-01
BioSig3D is a computational platform for high-content screening of three-dimensional (3D) cell culture models that are imaged in full 3D volume. It provides an end-to-end solution for designing high content screening assays, based on colony organization that is derived from segmentation of nuclei in each colony. BioSig3D also enables visualization of raw and processed 3D volumetric data for quality control, and integrates advanced bioinformatics analysis. The system consists of multiple computational and annotation modules that are coupled together with a strong use of controlled vocabularies to reduce ambiguities between different users. It is a web-based system that allows users to: design an experiment by defining experimental variables, upload a large set of volumetric images into the system, analyze and visualize the dataset, and either display computed indices as a heatmap, or phenotypic subtypes for heterogeneity analysis, or download computed indices for statistical analysis or integrative biology. BioSig3D has been used to profile baseline colony formations with two experiments: (i) morphogenesis of a panel of human mammary epithelial cell lines (HMEC), and (ii) heterogeneity in colony formation using an immortalized non-transformed cell line. These experiments reveal intrinsic growth properties of well-characterized cell lines that are routinely used for biological studies. BioSig3D is being released with seed datasets and video-based documentation. PMID:26978075
Parallel computation of three-dimensional aeroelastic fluid-structure interaction
NASA Astrophysics Data System (ADS)
Sadeghi, Mani
This dissertation presents a numerical method for the parallel computation of aeroelasticity (ParCAE). A flow solver is coupled to a structural solver by use of a fluid-structure interface method. The integration of the three-dimensional unsteady Navier-Stokes equations is performed in the time domain, simultaneously to the integration of a modal three-dimensional structural model. The flow solution is accelerated by using a multigrid method and a parallel multiblock approach. Fluid-structure coupling is achieved by subiteration. A grid-deformation algorithm is developed to interpolate the deformation of the structural boundaries onto the flow grid. The code is formulated to allow application to general, three-dimensional, complex configurations with multiple independent structures. Computational results are presented for various configurations, such as turbomachinery blade rows and aircraft wings. Investigations are performed on vortex-induced vibrations, effects of cascade mistuning on flutter, and cases of nonlinear cascade and wing flutter.
The Performance Evaluation of Multi-Image 3d Reconstruction Software with Different Sensors
NASA Astrophysics Data System (ADS)
Mousavi, V.; Khosravi, M.; Ahmadi, M.; Noori, N.; Naveh, A. Hosseini; Varshosaz, M.
2015-12-01
Today, multi-image 3D reconstruction is an active research field and generating three dimensional model of the objects is one the most discussed issues in Photogrammetry and Computer Vision that can be accomplished using range-based or image-based methods. Very accurate and dense point clouds generated by range-based methods such as structured light systems and laser scanners has introduced them as reliable tools in the industry. Image-based 3D digitization methodologies offer the option of reconstructing an object by a set of unordered images that depict it from different viewpoints. As their hardware requirements are narrowed down to a digital camera and a computer system, they compose an attractive 3D digitization approach, consequently, although range-based methods are generally very accurate, image-based methods are low-cost and can be easily used by non-professional users. One of the factors affecting the accuracy of the obtained model in image-based methods is the software and algorithm used to generate three dimensional model. These algorithms are provided in the form of commercial software, open source and web-based services. Another important factor in the accuracy of the obtained model is the type of sensor used. Due to availability of mobile sensors to the public, popularity of professional sensors and the advent of stereo sensors, a comparison of these three sensors plays an effective role in evaluating and finding the optimized method to generate three-dimensional models. Lots of research has been accomplished to identify a suitable software and algorithm to achieve an accurate and complete model, however little attention is paid to the type of sensors used and its effects on the quality of the final model. The purpose of this paper is deliberation and the introduction of an appropriate combination of a sensor and software to provide a complete model with the highest accuracy. To do this, different software, used in previous studies, were compared and the most popular ones in each category were selected (Arc 3D, Visual SfM, Sure, Agisoft). Also four small objects with distinct geometric properties and especial complexities were chosen and their accurate models as reliable true data was created using ATOS Compact Scan 2M 3D scanner. Images were taken using Fujifilm Real 3D stereo camera, Apple iPhone 5 and Nikon D3200 professional camera and three dimensional models of the objects were obtained using each of the software. Finally, a comprehensive comparison between the detailed reviews of the results on the data set showed that the best combination of software and sensors for generating three-dimensional models is directly related to the object shape as well as the expected accuracy of the final model. Generally better quantitative and qualitative results were obtained by using the Nikon D3200 professional camera, while Fujifilm Real 3D stereo camera and Apple iPhone 5 were the second and third respectively in this comparison. On the other hand, three software of Visual SfM, Sure and Agisoft had a hard competition to achieve the most accurate and complete model of the objects and the best software was different according to the geometric properties of the object.
Modeling the Chagas’ disease after stem cell transplantation
NASA Astrophysics Data System (ADS)
Galvão, Viviane; Miranda, José Garcia Vivas
2009-04-01
A recent model for Chagas’ disease after stem cell transplantation is extended for a three-dimensional multi-agent-based model. The computational model includes six different types of autonomous agents: inflammatory cell, fibrosis, cardiomyocyte, proinflammatory cytokine tumor necrosis factor- α, Trypanosoma cruzi, and bone marrow stem cell. Only fibrosis is fixed and the other types of agents can move randomly through the empty spaces using the three-dimensional Moore neighborhood. Bone marrow stem cells can promote apoptosis in inflammatory cells, fibrosis regression and can differentiate in cardiomyocyte. T. cruzi can increase the number of inflammatory cells. Inflammatory cells and tumor necrosis factor- α can increase the quantity of fibrosis. Our results were compared with experimental data giving a fairly fit and they suggest that the inflammatory cells are important for the development of fibrosis.
Begum, M. Sameena; Dinesh, M. R.; Tan, Kenneth F. H.; Jairaj, Vani; Md Khalid, K.; Singh, Varun Pratap
2015-01-01
The finite element method (FEM) is a powerful computational tool for solving stress-strain problems; its ability to handle material inhomogeneity and complex shapes makes the FEM, the most suitable method for the analysis of internal stress levels in the tooth, periodontium, and alveolar bone. This article intends to explain the steps involved in the generation of a three-dimensional finite element model of tooth, periodontal ligament (PDL) and alveolar bone, as the procedure of modeling is most important because the result is based on the nature of the modeling systems. Finite element analysis offers a means of determining strain-stress levels in the tooth, ligament, and bone structures for a broad range of orthodontic loading scenarios without producing tissue damage. PMID:26538895
Computational simulation of extravehicular activity dynamics during a satellite capture attempt.
Schaffner, G; Newman, D J; Robinson, S K
2000-01-01
A more quantitative approach to the analysis of astronaut extravehicular activity (EVA) tasks is needed because of their increasing complexity, particularly in preparation for the on-orbit assembly of the International Space Station. Existing useful EVA computer analyses produce either high-resolution three-dimensional computer images based on anthropometric representations or empirically derived predictions of astronaut strength based on lean body mass and the position and velocity of body joints but do not provide multibody dynamic analysis of EVA tasks. Our physics-based methodology helps fill the current gap in quantitative analysis of astronaut EVA by providing a multisegment human model and solving the equations of motion in a high-fidelity simulation of the system dynamics. The simulation work described here improves on the realism of previous efforts by including three-dimensional astronaut motion, incorporating joint stops to account for the physiological limits of range of motion, and incorporating use of constraint forces to model interaction with objects. To demonstrate the utility of this approach, the simulation is modeled on an actual EVA task, namely, the attempted capture of a spinning Intelsat VI satellite during STS-49 in May 1992. Repeated capture attempts by an EVA crewmember were unsuccessful because the capture bar could not be held in contact with the satellite long enough for the capture latches to fire and successfully retrieve the satellite.
Iterative Refinement of a Binding Pocket Model: Active Computational Steering of Lead Optimization
2012-01-01
Computational approaches for binding affinity prediction are most frequently demonstrated through cross-validation within a series of molecules or through performance shown on a blinded test set. Here, we show how such a system performs in an iterative, temporal lead optimization exercise. A series of gyrase inhibitors with known synthetic order formed the set of molecules that could be selected for “synthesis.” Beginning with a small number of molecules, based only on structures and activities, a model was constructed. Compound selection was done computationally, each time making five selections based on confident predictions of high activity and five selections based on a quantitative measure of three-dimensional structural novelty. Compound selection was followed by model refinement using the new data. Iterative computational candidate selection produced rapid improvements in selected compound activity, and incorporation of explicitly novel compounds uncovered much more diverse active inhibitors than strategies lacking active novelty selection. PMID:23046104
Calculation of three-dimensional, inviscid, supersonic, steady flows
NASA Technical Reports Server (NTRS)
Moretti, G.
1981-01-01
A detailed description of a computational program for the evaluation of three dimensional supersonic, inviscid, steady flow past airplanes is presented. Emphasis was put on how a powerful, automatic mapping technique is coupled to the fluid mechanical analysis. Each of the three constituents of the analysis (body geometry, mapping technique, and gas dynamical effects) was carefully coded and described. Results of computations based on sample geometrics and discussions are also presented.
Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Wenzel, Sally E.; Lin, Ching-Long
2016-01-01
We propose a method to construct three-dimensional airway geometric models based on airway skeletons, or centerlines (CLs). Given a CT-segmented airway skeleton and surface, the proposed CL-based method automatically constructs subject-specific models that contain anatomical information regarding branches, include bifurcations and trifurcations, and extend from the trachea to terminal bronchioles. The resulting model can be anatomically realistic with the assistance of an image-based surface; alternatively a model with an idealized skeleton and/or branch diameters is also possible. This method systematically identifies and classifies trifurcations to successfully construct the models, which also provides the number and type of trifurcations for the analysis of the airways from an anatomical point of view. We applied this method to 16 normal and 16 severe asthmatic subjects using their computed tomography images. The average distance between the surface of the model and the image-based surface was 11% of the average voxel size of the image. The four most frequent locations of trifurcations were the left upper division bronchus, left lower lobar bronchus, right upper lobar bronchus, and right intermediate bronchus. The proposed method automatically constructed accurate subject-specific three-dimensional airway geometric models that contain anatomical information regarding branches using airway skeleton, diameters, and image-based surface geometry. The proposed method can construct (i) geometry automatically for population-based studies, (ii) trifurcations to retain the original airway topology, (iii) geometry that can be used for automatic generation of computational fluid dynamics meshes, and (iv) geometry based only on a skeleton and diameters for idealized branches. PMID:27704229
Dutilleul, Pierre; Han, Liwen; Smith, Donald L
2008-01-01
Light interception by the leaf canopy is a key aspect of plant photosynthesis, which helps mitigate the greenhouse effect via atmospheric CO(2) recycling. The relationship between plant light interception and leaf area was traditionally modelled with the Beer-Lambert law, until the spatial distribution of leaves was incorporated through the fractal dimension of leafless plant structure photographed from the side allowing maximum appearance of branches and petioles. However, photographs of leafless plants are two-dimensional projections of three-dimensional structures, and sampled plants were cut at the stem base before leaf blades were detached manually, so canopy development could not be followed for individual plants. Therefore, a new measurement and modelling approach were developed to explain plant light interception more completely and precisely, based on appropriate processing of computed tomography (CT) scanning data collected for developing canopies. Three-dimensional images of canopies were constructed from CT scanning data. Leaf volumes (LV) were evaluated from complete canopy images, and fractal dimensions (FD) were estimated from skeletonized leafless images. The experimental plant species is pyramidal cedar (Thuja occidentalis, Fastigiata). The three-dimensional version of the Beer-Lambert law based on FD alone provided a much better explanation of plant light interception (R(2) = 0.858) than those using the product LV*FD (0.589) or LV alone (0.548). While values of all three regressors were found to increase over time, FD in the Beer-Lambert law followed the increase in light interception the most closely. The delayed increase of LV reflected the appearance of new leaves only after branches had lengthened and ramified. The very strong correlation obtained with FD demonstrates that CT scanning data contain fundamental information about the canopy architecture geometry. The model can be used to identify crops and plantation trees with improved light interception and productivity.
Dutilleul, Pierre; Han, Liwen; Smith, Donald L.
2008-01-01
Background and Aims Light interception by the leaf canopy is a key aspect of plant photosynthesis, which helps mitigate the greenhouse effect via atmospheric CO2 recycling. The relationship between plant light interception and leaf area was traditionally modelled with the Beer–Lambert law, until the spatial distribution of leaves was incorporated through the fractal dimension of leafless plant structure photographed from the side allowing maximum appearance of branches and petioles. However, photographs of leafless plants are two-dimensional projections of three-dimensional structures, and sampled plants were cut at the stem base before leaf blades were detached manually, so canopy development could not be followed for individual plants. Therefore, a new measurement and modelling approach were developed to explain plant light interception more completely and precisely, based on appropriate processing of computed tomography (CT) scanning data collected for developing canopies. Methods Three-dimensional images of canopies were constructed from CT scanning data. Leaf volumes (LV) were evaluated from complete canopy images, and fractal dimensions (FD) were estimated from skeletonized leafless images. The experimental plant species is pyramidal cedar (Thuja occidentalis, Fastigiata). Key Results The three-dimensional version of the Beer–Lambert law based on FD alone provided a much better explanation of plant light interception (R2 = 0·858) than those using the product LV*FD (0·589) or LV alone (0·548). While values of all three regressors were found to increase over time, FD in the Beer–Lambert law followed the increase in light interception the most closely. The delayed increase of LV reflected the appearance of new leaves only after branches had lengthened and ramified. Conclusions The very strong correlation obtained with FD demonstrates that CT scanning data contain fundamental information about the canopy architecture geometry. The model can be used to identify crops and plantation trees with improved light interception and productivity. PMID:17981879
NASA Astrophysics Data System (ADS)
Dong, S.; Yan, Q.; Xu, Y.; Bai, J.
2018-04-01
In order to promote the construction of digital geo-spatial framework in China and accelerate the construction of informatization mapping system, three-dimensional geographic information model emerged. The three-dimensional geographic information model based on oblique photogrammetry technology has higher accuracy, shorter period and lower cost than traditional methods, and can more directly reflect the elevation, position and appearance of the features. At this stage, the technology of producing three-dimensional geographic information models based on oblique photogrammetry technology is rapidly developing. The market demand and model results have been emerged in a large amount, and the related quality inspection needs are also getting larger and larger. Through the study of relevant literature, it is found that there are a lot of researches on the basic principles and technical characteristics of this technology, and relatively few studies on quality inspection and analysis. On the basis of summarizing the basic principle and technical characteristics of oblique photogrammetry technology, this paper introduces the inspection contents and inspection methods of three-dimensional geographic information model based on oblique photogrammetry technology. Combined with the actual inspection work, this paper summarizes the quality problems of three-dimensional geographic information model based on oblique photogrammetry technology, analyzes the causes of the problems and puts forward the quality control measures. It provides technical guidance for the quality inspection of three-dimensional geographic information model data products based on oblique photogrammetry technology in China and provides technical support for the vigorous development of three-dimensional geographic information model based on oblique photogrammetry technology.
An empirically derived three-dimensional Laplace resonance in the Gliese 876 planetary system
NASA Astrophysics Data System (ADS)
Nelson, Benjamin E.; Robertson, Paul M.; Payne, Matthew J.; Pritchard, Seth M.; Deck, Katherine M.; Ford, Eric B.; Wright, Jason T.; Isaacson, Howard T.
2016-01-01
We report constraints on the three-dimensional orbital architecture for all four planets known to orbit the nearby M dwarf Gliese 876 based solely on Doppler measurements and demanding long-term orbital stability. Our data set incorporates publicly available radial velocities taken with the ELODIE and CORALIE spectrographs, High Accuracy Radial velocity Planet Searcher (HARPS), and Keck HIgh Resolution Echelle Spectrometer (HIRES) as well as previously unpublished HIRES velocities. We first quantitatively assess the validity of the planets thought to orbit GJ 876 by computing the Bayes factors for a variety of different coplanar models using an importance sampling algorithm. We find that a four-planet model is preferred over a three-planet model. Next, we apply a Newtonian Markov chain Monte Carlo algorithm to perform a Bayesian analysis of the planet masses and orbits using an N-body model in three-dimensional space. Based on the radial velocities alone, we find that a 99 per cent credible interval provides upper limits on the mutual inclinations for the three resonant planets (Φcb < 6.20° for the {c} and {b} pair and Φbe < 28.5° for the {b} and {e} pair). Subsequent dynamical integrations of our posterior sample find that the GJ 876 planets must be roughly coplanar (Φcb < 2.60° and Φbe < 7.87°, suggesting that the amount of planet-planet scattering in the system has been low. We investigate the distribution of the respective resonant arguments of each planet pair and find that at least one argument for each planet pair and the Laplace argument librate. The libration amplitudes in our three-dimensional orbital model support the idea of the outer three planets having undergone significant past disc migration.
Intraoperative 3-Dimensional Computed Tomography and Navigation in Foot and Ankle Surgery.
Chowdhary, Ashwin; Drittenbass, Lisca; Dubois-Ferrière, Victor; Stern, Richard; Assal, Mathieu
2016-09-01
Computer-assisted orthopedic surgery has developed dramatically during the past 2 decades. This article describes the use of intraoperative 3-dimensional computed tomography and navigation in foot and ankle surgery. Traditional imaging based on serial radiography or C-arm-based fluoroscopy does not provide simultaneous real-time 3-dimensional imaging, and thus leads to suboptimal visualization and guidance. Three-dimensional computed tomography allows for accurate intraoperative visualization of the position of bones and/or navigation implants. Such imaging and navigation helps to further reduce intraoperative complications, leads to improved surgical outcomes, and may become the gold standard in foot and ankle surgery. [Orthopedics.2016; 39(5):e1005-e1010.]. Copyright 2016, SLACK Incorporated.
Recent developments in multidimensional transport methods for the APOLLO 2 lattice code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zmijarevic, I.; Sanchez, R.
1995-12-31
A usual method of preparation of homogenized cross sections for reactor coarse-mesh calculations is based on two-dimensional multigroup transport treatment of an assembly together with an appropriate leakage model and reaction-rate-preserving homogenization technique. The actual generation of assembly spectrum codes based on collision probability methods is capable of treating complex geometries (i.e., irregular meshes of arbitrary shape), thus avoiding the modeling error that was introduced in codes with traditional tracking routines. The power and architecture of current computers allow the treatment of spatial domains comprising several mutually interacting assemblies using fine multigroup structure and retaining all geometric details of interest.more » Increasing safety requirements demand detailed two- and three-dimensional calculations for very heterogeneous problems such as control rod positioning, broken Pyrex rods, irregular compacting of mixed- oxide (MOX) pellets at an MOX-UO{sub 2} interface, and many others. An effort has been made to include accurate multi- dimensional transport methods in the APOLLO 2 lattice code. These include extension to three-dimensional axially symmetric geometries of the general-geometry collision probability module TDT and the development of new two- and three-dimensional characteristics methods for regular Cartesian meshes. In this paper we discuss the main features of recently developed multidimensional methods that are currently being tested.« less
Fabrication of dielectric elastomer stack transducers (DEST) by liquid deposition modeling
NASA Astrophysics Data System (ADS)
Klug, Florian; Solano-Arana, Susana; Mößinger, Holger; Förster-Zügel, Florentine; Schlaak, Helmut F.
2017-04-01
Established fabrication methods for dielectric elastomer stack transducers (DEST) are mostly based on twodimensional thin-film technology. Because of this, DEST are based on simple two-dimensionally structured shapes. For certain applications, like valves or Braille displays, these structures are suited well enough. However, a more flexible fabrication method allows for more complex actuator designs, which would otherwise require extra processing steps. Fabrication methods with the possibility of three-dimensional structuring allow e.g. the integration of electrical connections, cavities, channels, sensor and other structural elements during the fabrication. This opens up new applications, as well as the opportunity for faster prototype production of individually designed DEST for a given application. In this work, a manufacturing system allowing three dimensional structuring is described. It enables the production of multilayer and three-dimensional structured DEST by liquid deposition modelling. The system is based on a custom made dual extruder, connected to a commercial threeaxis positioning system. It allows a computer controlled liquid deposition of two materials. After tuning the manufacturing parameters the production of thin layers with at thickness of less than 50 μm, as well as stacking electrode and dielectric materials is feasible. With this setup a first DEST with dielectric layer thickness less than 50 μm is build successfully and its performance is evaluated.
Computational chemistry in 25 years
NASA Astrophysics Data System (ADS)
Abagyan, Ruben
2012-01-01
Here we are making some predictions based on three methods: a straightforward extrapolations of the existing trends; a self-fulfilling prophecy; and picking some current grievances and predicting that they will be addressed or solved. We predict the growth of multicore computing and dramatic growth of data, as well as the improvements in force fields and sampling methods. We also predict that effects of therapeutic and environmental molecules on human body, as well as complex natural chemical signalling will be understood in terms of three dimensional models of their binding to specific pockets.
Server-based Approach to Web Visualization of Integrated Three-dimensional Brain Imaging Data
Poliakov, Andrew V.; Albright, Evan; Hinshaw, Kevin P.; Corina, David P.; Ojemann, George; Martin, Richard F.; Brinkley, James F.
2005-01-01
The authors describe a client-server approach to three-dimensional (3-D) visualization of neuroimaging data, which enables researchers to visualize, manipulate, and analyze large brain imaging datasets over the Internet. All computationally intensive tasks are done by a graphics server that loads and processes image volumes and 3-D models, renders 3-D scenes, and sends the renderings back to the client. The authors discuss the system architecture and implementation and give several examples of client applications that allow visualization and analysis of integrated language map data from single and multiple patients. PMID:15561787
A 3D visualization and simulation of the individual human jaw.
Muftić, Osman; Keros, Jadranka; Baksa, Sarajko; Carek, Vlado; Matković, Ivo
2003-01-01
A new biomechanical three-dimensional (3D) model for the human mandible based on computer-generated virtual model is proposed. Using maps obtained from the special kinds of photos of the face of the real subject, it is possible to attribute personality to the virtual character, while computer animation offers movements and characteristics within the confines of space and time of the virtual world. A simple two-dimensional model of the jaw cannot explain the biomechanics, where the muscular forces through occlusion and condylar surfaces are in the state of 3D equilibrium. In the model all forces are resolved into components according to a selected coordinate system. The muscular forces act on the jaw, along with the necessary force level for chewing as some kind of mandible balance, preventing dislocation and loading of nonarticular tissues. In the work is used new approach to computer-generated animation of virtual 3D characters (called "Body SABA"), using in one object package of minimal costs and easy for operation.
Multiscale modelling of palisade formation in gliobastoma multiforme.
Caiazzo, Alfonso; Ramis-Conde, Ignacio
2015-10-21
Palisades are characteristic tissue aberrations that arise in glioblastomas. Observation of palisades is considered as a clinical indicator of the transition from a noninvasive to an invasive tumour. In this paper we propose a computational model to study the influence of the hypoxic switch in palisade formation. For this we produced three-dimensional realistic simulations, based on a multiscale hybrid model, coupling the evolution of tumour cells and the oxygen diffusion in tissue, that depict the shape of palisades during its formation. Our results can be summarized as follows: (1) the presented simulations can provide clinicians and biologists with a better understanding of three-dimensional structure of palisades as well as of glioblastomas growth dynamics; (2) we show that heterogeneity in cell response to hypoxia is a relevant factor in palisade and pseudopalisade formation; (3) we show how selective processes based on the hypoxia switch influence the tumour proliferation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Modeling and analysis of visual digital impact model for a Chinese human thorax.
Zhu, Jin; Wang, Kai-Ming; Li, Shu; Liu, Hai-Yan; Jing, Xiao; Li, Xiao-Fang; Liu, Yi-He
2017-01-01
To establish a three-dimensional finite element model of the human chest for engineering research on individual protection. Computed tomography (CT) scanning data were used for three-dimensional reconstruction with the medical image reconstruction software Mimics. The finite element method (FEM) preprocessing software ANSYS ICEM CFD was used for cell mesh generation, and the relevant material behavior parameters of all of the model's parts were specified. The finite element model was constructed with the FEM software, and the model availability was verified based on previous cadaver experimental data. A finite element model approximating the anatomical structure of the human chest was established, and the model's simulation results conformed to the results of the cadaver experiment overall. Segment data of the human body and specialized software can be utilized for FEM model reconstruction to satisfy the need for numerical analysis of shocks to the human chest in engineering research on body mechanics.
Computing Shapes Of Cascade Diffuser Blades
NASA Technical Reports Server (NTRS)
Tran, Ken; Prueger, George H.
1993-01-01
Computer program generates sizes and shapes of cascade-type blades for use in axial or radial turbomachine diffusers. Generates shapes of blades rapidly, incorporating extensive cascade data to determine optimum incidence and deviation angle for blade design based on 65-series data base of National Advisory Commission for Aeronautics and Astronautics (NACA). Allows great variability in blade profile through input variables. Also provides for design of three-dimensional blades by allowing variable blade stacking. Enables designer to obtain computed blade-geometry data in various forms: as input for blade-loading analysis; as input for quasi-three-dimensional analysis of flow; or as points for transfer to computer-aided design.
A theoretical study of mixing downstream of transverse injection into a supersonic boundary layer
NASA Technical Reports Server (NTRS)
Baker, A. J.; Zelazny, S. W.
1972-01-01
A theoretical and analytical study was made of mixing downstream of transverse hydrogen injection, from single and multiple orifices, into a Mach 4 air boundary layer over a flat plate. Numerical solutions to the governing three-dimensional, elliptic boundary layer equations were obtained using a general purpose computer program. Founded upon a finite element solution algorithm. A prototype three-dimensional turbulent transport model was developed using mixing length theory in the wall region and the mass defect concept in the outer region. Excellent agreement between the computed flow field and experimental data for a jet/freestream dynamic pressure ratio of unity was obtained in the centerplane region of the single-jet configuration. Poorer agreement off centerplane suggests an inadequacy of the extrapolated two-dimensional turbulence model. Considerable improvement in off-centerplane computational agreement occured for a multi-jet configuration, using the same turbulent transport model.
NASA Technical Reports Server (NTRS)
Streett, C. L.
1981-01-01
A viscous-inviscid interaction method has been developed by using a three-dimensional integral boundary-layer method which produces results in good agreement with a finite-difference method in a fraction of the computer time. The integral method is stable and robust and incorporates a model for computation in a small region of streamwise separation. A locally two-dimensional wake model, accounting for thickness and curvature effects, is also included in the interaction procedure. Computation time spent in converging an interacted result is, many times, only slightly greater than that required to converge an inviscid calculation. Results are shown from the interaction method, run at experimental angle of attack, Reynolds number, and Mach number, on a wing-body test case for which viscous effects are large. Agreement with experiment is good; in particular, the present wake model improves prediction of the spanwise lift distribution and lower surface cove pressure.
Dynamic Fracture Simulations of Explosively Loaded Cylinders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arthur, Carly W.; Goto, D. M.
2015-11-30
This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.
Liacouras, Peter C; Wayne, Jennifer S
2007-12-01
Computational models of musculoskeletal joints and limbs can provide useful information about joint mechanics. Validated models can be used as predictive devices for understanding joint function and serve as clinical tools for predicting the outcome of surgical procedures. A new computational modeling approach was developed for simulating joint kinematics that are dictated by bone/joint anatomy, ligamentous constraints, and applied loading. Three-dimensional computational models of the lower leg were created to illustrate the application of this new approach. Model development began with generating three-dimensional surfaces of each bone from CT images and then importing into the three-dimensional solid modeling software SOLIDWORKS and motion simulation package COSMOSMOTION. Through SOLIDWORKS and COSMOSMOTION, each bone surface file was filled to create a solid object and positioned necessary components added, and simulations executed. Three-dimensional contacts were added to inhibit intersection of the bones during motion. Ligaments were represented as linear springs. Model predictions were then validated by comparison to two different cadaver studies, syndesmotic injury and repair and ankle inversion following ligament transection. The syndesmotic injury model was able to predict tibial rotation, fibular rotation, and anterior/posterior displacement. In the inversion simulation, calcaneofibular ligament extension and angles of inversion compared well. Some experimental data proved harder to simulate accurately, due to certain software limitations and lack of complete experimental data. Other parameters that could not be easily obtained experimentally can be predicted and analyzed by the computational simulations. In the syndesmotic injury study, the force generated in the tibionavicular and calcaneofibular ligaments reduced with the insertion of the staple, indicating how this repair technique changes joint function. After transection of the calcaneofibular ligament in the inversion stability study, a major increase in force was seen in several of the ligaments on the lateral aspect of the foot and ankle, indicating the recruitment of other structures to permit function after injury. Overall, the computational models were able to predict joint kinematics of the lower leg with particular focus on the ankle complex. This same approach can be taken to create models of other limb segments such as the elbow and wrist. Additional parameters can be calculated in the models that are not easily obtained experimentally such as ligament forces, force transmission across joints, and three-dimensional movement of all bones. Muscle activation can be incorporated in the model through the action of applied forces within the software for future studies.
A semi-implicit finite difference model for three-dimensional tidal circulation,
Casulli, V.; Cheng, R.T.
1992-01-01
A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is presented. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that in the absence of horizontal viscosity the resulting algorithm is unconditionally stable at a minimal computational cost. When only one vertical layer is specified this method reduces, as a particular case, to a semi-implicit scheme for the solutions of the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm is fast, accurate and mass conservative. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers.
Dynamics of an HIV-1 infection model with cell mediated immunity
NASA Astrophysics Data System (ADS)
Yu, Pei; Huang, Jianing; Jiang, Jiao
2014-10-01
In this paper, we study the dynamics of an improved mathematical model on HIV-1 virus with cell mediated immunity. This new 5-dimensional model is based on the combination of a basic 3-dimensional HIV-1 model and a 4-dimensional immunity response model, which more realistically describes dynamics between the uninfected cells, infected cells, virus, the CTL response cells and CTL effector cells. Our 5-dimensional model may be reduced to the 4-dimensional model by applying a quasi-steady state assumption on the variable of virus. However, it is shown in this paper that virus is necessary to be involved in the modeling, and that a quasi-steady state assumption should be applied carefully, which may miss some important dynamical behavior of the system. Detailed bifurcation analysis is given to show that the system has three equilibrium solutions, namely the infection-free equilibrium, the infectious equilibrium without CTL, and the infectious equilibrium with CTL, and a series of bifurcations including two transcritical bifurcations and one or two possible Hopf bifurcations occur from these three equilibria as the basic reproduction number is varied. The mathematical methods applied in this paper include characteristic equations, Routh-Hurwitz condition, fluctuation lemma, Lyapunov function and computation of normal forms. Numerical simulation is also presented to demonstrate the applicability of the theoretical predictions.
Three-Dimensional Simulation of Base Bleed Unit with AP/HTPB Propellant in Fast Cook-off Conditions
NASA Astrophysics Data System (ADS)
Li, Wen-feng; Yu, Yong-gang; Ye, Rui; Yang, Hou-wen
2017-07-01
In this work, a three-dimensional unsteady heat transfer model of base bleed unit with trilobite ammonium perchlorate (AP)/hydroxyl-terminated polybutadiene (HTPB) composite solid propellant is presented to analyze the cook-off characteristics. According to the two-step chemical reaction of AP/HTPB propellant, a small-scale cook-off test is established. A comparison of the experimental and calculated results is made to verify the rationality of the computation model. On this basis, a cook-off numerical simulation of the base bleed unit at the heating rates of 0.33, 0.58 and 0.83 K/s is presented to investigate the ignition and initiation characteristics. The results show that the ignitions occur on the head face of the AP/HTPB propellant and near the internal gas chamber in these conditions. As the heating rate increases, the runaway time decreases and the ignition temperature rises.
Modeling of Unsteady Three-dimensional Flows in Multistage Machines
NASA Technical Reports Server (NTRS)
Hall, Kenneth C.; Pratt, Edmund T., Jr.; Kurkov, Anatole (Technical Monitor)
2003-01-01
Despite many years of development, the accurate and reliable prediction of unsteady aerodynamic forces acting on turbomachinery blades remains less than satisfactory, especially when viewed next to the great success investigators have had in predicting steady flows. Hall and Silkowski (1997) have proposed that one of the main reasons for the discrepancy between theory and experiment and/or industrial experience is that many of the current unsteady aerodynamic theories model a single blade row in an infinitely long duct, ignoring potentially important multistage effects. However, unsteady flows are made up of acoustic, vortical, and entropic waves. These waves provide a mechanism for the rotors and stators of multistage machines to communicate with one another. In other words, wave behavior makes unsteady flows fundamentally a multistage (and three-dimensional) phenomenon. In this research program, we have has as goals (1) the development of computationally efficient computer models of the unsteady aerodynamic response of blade rows embedded in a multistage machine (these models will ultimately be capable of analyzing three-dimensional viscous transonic flows), and (2) the use of these computer codes to study a number of important multistage phenomena.
Development of a thermal and structural analysis procedure for cooled radial turbines
NASA Technical Reports Server (NTRS)
Kumar, Ganesh N.; Deanna, Russell G.
1988-01-01
A procedure for computing the rotor temperature and stress distributions in a cooled radial turbine are considered. Existing codes for modeling the external mainstream flow and the internal cooling flow are used to compute boundary conditions for the heat transfer and stress analysis. The inviscid, quasi three dimensional code computes the external free stream velocity. The external velocity is then used in a boundary layer analysis to compute the external heat transfer coefficients. Coolant temperatures are computed by a viscous three dimensional internal flow cade for the momentum and energy equation. These boundary conditions are input to a three dimensional heat conduction code for the calculation of rotor temperatures. The rotor stress distribution may be determined for the given thermal, pressure and centrifugal loading. The procedure is applied to a cooled radial turbine which will be tested at the NASA Lewis Research Center. Representative results are given.
NASA Technical Reports Server (NTRS)
Palmer, Grant
1989-01-01
This study presents a three-dimensional explicit, finite-difference, shock-capturing numerical algorithm applied to viscous hypersonic flows in thermochemical nonequilibrium. The algorithm employs a two-temperature physical model. Equations governing the finite-rate chemical reactions are fully-coupled to the gas dynamic equations using a novel coupling technique. The new coupling method maintains stability in the explicit, finite-rate formulation while allowing relatively large global time steps. The code uses flux-vector accuracy. Comparisons with experimental data and other numerical computations verify the accuracy of the present method. The code is used to compute the three-dimensional flowfield over the Aeroassist Flight Experiment (AFE) vehicle at one of its trajectory points.
Teaching Science: Eclipse Seasons.
ERIC Educational Resources Information Center
Leyden, Michael B.
1995-01-01
Demonstrates the need for a three-dimensional model as an aid for teaching students why eclipses do not occur every two weeks, as falsely indicated by two-dimensional models such as books, chalkboards, and computer screens. Describes procedure to construct the model. Indicates question related to seasons likely to arise from such a model and…
Modeling Physiological Systems in the Human Body as Networks of Quasi-1D Fluid Flows
NASA Astrophysics Data System (ADS)
Staples, Anne
2008-11-01
Extensive research has been done on modeling human physiology. Most of this work has been aimed at developing detailed, three-dimensional models of specific components of physiological systems, such as a cell, a vein, a molecule, or a heart valve. While efforts such as these are invaluable to our understanding of human biology, if we were to construct a global model of human physiology with this level of detail, computing even a nanosecond in this computational being's life would certainly be prohibitively expensive. With this in mind, we derive the Pulsed Flow Equations, a set of coupled one-dimensional partial differential equations, specifically designed to capture two-dimensional viscous, transport, and other effects, and aimed at providing accurate and fast-to-compute global models for physiological systems represented as networks of quasi one-dimensional fluid flows. Our goal is to be able to perform faster-than-real time simulations of global processes in the human body on desktop computers.
Flame-Generated Vorticity Production in Premixed Flame-Vortex Interactions
NASA Technical Reports Server (NTRS)
Patnaik, G.; Kailasanath, K.
2003-01-01
In this study, we use detailed time-dependent, multi-dimensional numerical simulations to investigate the relative importance of the processes leading to FGV in flame-vortex interactions in normal gravity and microgravity and to determine if the production of vorticity in flames in gravity is the same as that in zero gravity except for the contribution of the gravity term. The numerical simulations will be performed using the computational model developed at NRL, FLAME3D. FLAME3D is a parallel, multi-dimensional (either two- or three-dimensional) flame model based on FLIC2D, which has been used extensively to study the structure and stability of premixed hydrogen and methane flames.
Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2013-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.
Analysis of thermo-chemical nonequilibrium models for carbon dioxide flows
NASA Technical Reports Server (NTRS)
Rock, Stacey G.; Candler, Graham V.; Hornung, Hans G.
1992-01-01
The aerothermodynamics of thermochemical nonequilibrium carbon dioxide flows is studied. The chemical kinetics models of McKenzie and Park are implemented in separate three-dimensional computational fluid dynamics codes. The codes incorporate a five-species gas model characterized by a translational-rotational and a vibrational temperature. Solutions are obtained for flow over finite length elliptical and circular cylinders. The computed flowfields are then employed to calculate Mach-Zehnder interferograms for comparison with experimental data. The accuracy of the chemical kinetics models is determined through this comparison. Also, the methodology of the three-dimensional thermochemical nonequilibrium code is verified by the reproduction of the experiments.
Fulford, Janice M.
2003-01-01
A numerical computer model, Transient Inundation Model for Rivers -- 2 Dimensional (TrimR2D), that solves the two-dimensional depth-averaged flow equations is documented and discussed. The model uses a semi-implicit, semi-Lagrangian finite-difference method. It is a variant of the Trim model and has been used successfully in estuarine environments such as San Francisco Bay. The abilities of the model are documented for three scenarios: uniform depth flows, laboratory dam-break flows, and large-scale riverine flows. The model can start computations from a ?dry? bed and converge to accurate solutions. Inflows are expressed as source terms, which limits the use of the model to sufficiently long reaches where the flow reaches equilibrium with the channel. The data sets used by the investigation demonstrate that the model accurately propagates flood waves through long river reaches and simulates dam breaks with abrupt water-surface changes.
Computational models for the analysis of three-dimensional internal and exhaust plume flowfields
NASA Technical Reports Server (NTRS)
Dash, S. M.; Delguidice, P. D.
1977-01-01
This paper describes computational procedures developed for the analysis of three-dimensional supersonic ducted flows and multinozzle exhaust plume flowfields. The models/codes embodying these procedures cater to a broad spectrum of geometric situations via the use of multiple reference plane grid networks in several coordinate systems. Shock capturing techniques are employed to trace the propagation and interaction of multiple shock surfaces while the plume interface, separating the exhaust and external flows, and the plume external shock are discretely analyzed. The computational grid within the reference planes follows the trace of streamlines to facilitate the incorporation of finite-rate chemistry and viscous computational capabilities. Exhaust gas properties consist of combustion products in chemical equilibrium. The computational accuracy of the models/codes is assessed via comparisons with exact solutions, results of other codes and experimental data. Results are presented for the flows in two-dimensional convergent and divergent ducts, expansive and compressive corner flows, flow in a rectangular nozzle and the plume flowfields for exhausts issuing out of single and multiple rectangular nozzles.
Augmented Computer Mouse Would Measure Applied Force
NASA Technical Reports Server (NTRS)
Li, Larry C. H.
1993-01-01
Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.
NASA Astrophysics Data System (ADS)
Sawicki, J.; Siedlaczek, P.; Staszczyk, A.
2018-03-01
A numerical three-dimensional model for computing residual stresses generated in cross section of steel 42CrMo4 after nitriding is presented. The diffusion process is analyzed by the finite-element method. The internal stresses are computed using the obtained profile of the distribution of the nitrogen concentration. The special features of the intricate geometry of the treated articles including edges and angles are considered. Comparative analysis of the results of the simulation and of the experimental measurement of residual stresses is performed by the Waisman-Philips method.
Virtual Cerebral Ventricular System: An MR-Based Three-Dimensional Computer Model
ERIC Educational Resources Information Center
Adams, Christina M.; Wilson, Timothy D.
2011-01-01
The inherent spatial complexity of the human cerebral ventricular system, coupled with its deep position within the brain, poses a problem for conceptualizing its anatomy. Cadaveric dissection, while considered the gold standard of anatomical learning, may be inadequate for learning the anatomy of the cerebral ventricular system; even with…
Three-Dimensional Space to Assess Cloud Interoperability
2013-03-01
12 1. Portability and Mobility ...collection of network-enabled services that guarantees to provide a scalable, easy accessible, reliable, and personalized computing infrastructure , based on...are used in research to describe cloud models, such as SaaS (Software as a Service), PaaS (Platform as a service), IaaS ( Infrastructure as a Service
Analysis of HRCT-derived xylem network reveals reverse flow in some vessels
USDA-ARS?s Scientific Manuscript database
Flow in xylem vessels is modeled based on constructions of three dimensional xylem networks derived from High Resolution Computed Tomography (HRCT) images of grapevine (Vitis vinifera) stems. Flow in 6-14% of the vessels was found to be oriented in the opposite direction to the bulk flow under norma...
Exploiting symmetries in the modeling and analysis of tires
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Andersen, Carl M.; Tanner, John A.
1987-01-01
A simple and efficient computational strategy for reducing both the size of a tire model and the cost of the analysis of tires in the presence of symmetry-breaking conditions (unsymmetry in the tire material, geometry, or loading) is presented. The strategy is based on approximating the unsymmetric response of the tire with a linear combination of symmetric and antisymmetric global approximation vectors (or modes). Details are presented for the three main elements of the computational strategy, which include: use of special three-field mixed finite-element models, use of operator splitting, and substantial reduction in the number of degrees of freedom. The proposed computational stategy is applied to three quasi-symmetric problems of tires: linear analysis of anisotropic tires, through use of semianalytic finite elements, nonlinear analysis of anisotropic tires through use of two-dimensional shell finite elements, and nonlinear analysis of orthotropic tires subjected to unsymmetric loading. Three basic types of symmetry (and their combinations) exhibited by the tire response are identified.
Performance Modeling of an Experimental Laser Propelled Lightcraft
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Chen, Yen-Sen; Liu, Jiwen; Myrabo, Leik N.; Mead, Franklin B., Jr.
2000-01-01
A computational plasma aerodynamics model is developed to study the performance of an experimental laser propelled lightcraft. The computational methodology is based on a time-accurate, three-dimensional, finite-difference, chemically reacting, unstructured grid, pressure- based formulation. The underlying physics are added and tested systematically using a building-block approach. The physics modeled include non-equilibn'um thermodynamics, non-equilibrium air-plasma finite-rate kinetics, specular ray tracing, laser beam energy absorption and equi refraction by plasma, non-equilibrium plasma radiation, and plasma resonance. A series of transient computations are performed at several laser pulse energy levels and the simulated physics are discussed and compared with those of tests and literature. The predicted coupling coefficients for the lightcraft compared reasonably well with those of tests conducted on a pendulum apparatus.
A k-space method for acoustic propagation using coupled first-order equations in three dimensions.
Tillett, Jason C; Daoud, Mohammad I; Lacefield, James C; Waag, Robert C
2009-09-01
A previously described two-dimensional k-space method for large-scale calculation of acoustic wave propagation in tissues is extended to three dimensions. The three-dimensional method contains all of the two-dimensional method features that allow accurate and stable calculation of propagation. These features are spectral calculation of spatial derivatives, temporal correction that produces exact propagation in a homogeneous medium, staggered spatial and temporal grids, and a perfectly matched boundary layer. Spectral evaluation of spatial derivatives is accomplished using a fast Fourier transform in three dimensions. This computational bottleneck requires all-to-all communication; execution time in a parallel implementation is therefore sensitive to node interconnect latency and bandwidth. Accuracy of the three-dimensional method is evaluated through comparisons with exact solutions for media having spherical inhomogeneities. Large-scale calculations in three dimensions were performed by distributing the nearly 50 variables per voxel that are used to implement the method over a cluster of computers. Two computer clusters used to evaluate method accuracy are compared. Comparisons of k-space calculations with exact methods including absorption highlight the need to model accurately the medium dispersion relationships, especially in large-scale media. Accurately modeled media allow the k-space method to calculate acoustic propagation in tissues over hundreds of wavelengths.
Development and verification of global/local analysis techniques for laminated composites
NASA Technical Reports Server (NTRS)
Thompson, Danniella Muheim; Griffin, O. Hayden, Jr.
1991-01-01
A two-dimensional to three-dimensional global/local finite element approach was developed, verified, and applied to a laminated composite plate of finite width and length containing a central circular hole. The resulting stress fields for axial compression loads were examined for several symmetric stacking sequences and hole sizes. Verification was based on comparison of the displacements and the stress fields with those accepted trends from previous free edge investigations and a complete three-dimensional finite element solution of the plate. The laminates in the compression study included symmetric cross-ply, angle-ply and quasi-isotropic stacking sequences. The entire plate was selected as the global model and analyzed with two-dimensional finite elements. Displacements along a region identified as the global/local interface were applied in a kinematically consistent fashion to independent three-dimensional local models. Local areas of interest in the plate included a portion of the straight free edge near the hole, and the immediate area around the hole. Interlaminar stress results obtained from the global/local analyses compares well with previously reported trends, and some new conclusions about interlaminar stress fields in plates with different laminate orientations and hole sizes are presented for compressive loading. The effectiveness of the global/local procedure in reducing the computational effort required to solve these problems is clearly demonstrated through examination of the computer time required to formulate and solve the linear, static system of equations which result for the global and local analyses to those required for a complete three-dimensional formulation for a cross-ply laminate. Specific processors used during the analyses are described in general terms. The application of this global/local technique is not limited software system, and was developed and described in as general a manner as possible.
Valentin, J; Sprenger, M; Pflüger, D; Röhrle, O
2018-05-01
Investigating the interplay between muscular activity and motion is the basis to improve our understanding of healthy or diseased musculoskeletal systems. To be able to analyze the musculoskeletal systems, computational models are used. Albeit some severe modeling assumptions, almost all existing musculoskeletal system simulations appeal to multibody simulation frameworks. Although continuum-mechanical musculoskeletal system models can compensate for some of these limitations, they are essentially not considered because of their computational complexity and cost. The proposed framework is the first activation-driven musculoskeletal system model, in which the exerted skeletal muscle forces are computed using 3-dimensional, continuum-mechanical skeletal muscle models and in which muscle activations are determined based on a constraint optimization problem. Numerical feasibility is achieved by computing sparse grid surrogates with hierarchical B-splines, and adaptive sparse grid refinement further reduces the computational effort. The choice of B-splines allows the use of all existing gradient-based optimization techniques without further numerical approximation. This paper demonstrates that the resulting surrogates have low relative errors (less than 0.76%) and can be used within forward simulations that are subject to constraint optimization. To demonstrate this, we set up several different test scenarios in which an upper limb model consisting of the elbow joint, the biceps and triceps brachii, and an external load is subjected to different optimization criteria. Even though this novel method has only been demonstrated for a 2-muscle system, it can easily be extended to musculoskeletal systems with 3 or more muscles. Copyright © 2018 John Wiley & Sons, Ltd.
Intercomparison of 3D pore-scale flow and solute transport simulation methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.
2016-09-01
Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include methods that 1) explicitly model the three-dimensional geometry of pore spaces and 2) those that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of class 1, based on direct numerical simulation using computational fluid dynamics (CFD) codes, against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of class 1 based on the immersed-boundary method (IMB),more » lattice Boltzmann method (LBM), smoothed particle hydrodynamics (SPH), as well as a model of class 2 (a pore-network model or PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and nonreactive solute transport, and intercompare the model results with previously reported experimental observations. Experimental observations are limited to measured pore-scale velocities, so solute transport comparisons are made only among the various models. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations).« less
Mathematical modeling of heat transfer problems in the permafrost
NASA Astrophysics Data System (ADS)
Gornov, V. F.; Stepanov, S. P.; Vasilyeva, M. V.; Vasilyev, V. I.
2014-11-01
In this work we present results of numerical simulation of three-dimensional temperature fields in soils for various applied problems: the railway line in the conditions of permafrost for different geometries, the horizontal tunnel underground storage and greenhouses of various designs in the Far North. Mathematical model of the process is described by a nonstationary heat equation with phase transitions of pore water. The numerical realization of the problem is based on the finite element method using a library of scientific computing FEniCS. For numerical calculations we use high-performance computing systems.
Automated method for structural segmentation of nasal airways based on cone beam computed tomography
NASA Astrophysics Data System (ADS)
Tymkovych, Maksym Yu.; Avrunin, Oleg G.; Paliy, Victor G.; Filzow, Maksim; Gryshkov, Oleksandr; Glasmacher, Birgit; Omiotek, Zbigniew; DzierŻak, RóŻa; Smailova, Saule; Kozbekova, Ainur
2017-08-01
The work is dedicated to the segmentation problem of human nasal airways using Cone Beam Computed Tomography. During research, we propose a specialized approach of structured segmentation of nasal airways. That approach use spatial information, symmetrisation of the structures. The proposed stages can be used for construction a virtual three dimensional model of nasal airways and for production full-scale personalized atlases. During research we build the virtual model of nasal airways, which can be used for construction specialized medical atlases and aerodynamics researches.
NASA Technical Reports Server (NTRS)
Wang, Ten-See
1993-01-01
The objective of this study is to benchmark a four-engine clustered nozzle base flowfield with a computational fluid dynamics (CFD) model. The CFD model is a three-dimensional pressure-based, viscous flow formulation. An adaptive upwind scheme is employed for the spatial discretization. The upwind scheme is based on second and fourth order central differencing with adaptive artificial dissipation. Qualitative base flow features such as the reverse jet, wall jet, recompression shock, and plume-plume impingement have been captured. The computed quantitative flow properties such as the radial base pressure distribution, model centerline Mach number and static pressure variation, and base pressure characteristic curve agreed reasonably well with those of the measurement. Parametric study on the effect of grid resolution, turbulence model, inlet boundary condition and difference scheme on convective terms has been performed. The results showed that grid resolution had a strong influence on the accuracy of the base flowfield prediction.
ePlant and the 3D data display initiative: integrative systems biology on the world wide web.
Fucile, Geoffrey; Di Biase, David; Nahal, Hardeep; La, Garon; Khodabandeh, Shokoufeh; Chen, Yani; Easley, Kante; Christendat, Dinesh; Kelley, Lawrence; Provart, Nicholas J
2011-01-10
Visualization tools for biological data are often limited in their ability to interactively integrate data at multiple scales. These computational tools are also typically limited by two-dimensional displays and programmatic implementations that require separate configurations for each of the user's computing devices and recompilation for functional expansion. Towards overcoming these limitations we have developed "ePlant" (http://bar.utoronto.ca/eplant) - a suite of open-source world wide web-based tools for the visualization of large-scale data sets from the model organism Arabidopsis thaliana. These tools display data spanning multiple biological scales on interactive three-dimensional models. Currently, ePlant consists of the following modules: a sequence conservation explorer that includes homology relationships and single nucleotide polymorphism data, a protein structure model explorer, a molecular interaction network explorer, a gene product subcellular localization explorer, and a gene expression pattern explorer. The ePlant's protein structure explorer module represents experimentally determined and theoretical structures covering >70% of the Arabidopsis proteome. The ePlant framework is accessed entirely through a web browser, and is therefore platform-independent. It can be applied to any model organism. To facilitate the development of three-dimensional displays of biological data on the world wide web we have established the "3D Data Display Initiative" (http://3ddi.org).
Yang, C; Jiang, W; Chen, D-H; Adiga, U; Ng, E G; Chiu, W
2009-03-01
The three-dimensional reconstruction of macromolecules from two-dimensional single-particle electron images requires determination and correction of the contrast transfer function (CTF) and envelope function. A computational algorithm based on constrained non-linear optimization is developed to estimate the essential parameters in the CTF and envelope function model simultaneously and automatically. The application of this estimation method is demonstrated with focal series images of amorphous carbon film as well as images of ice-embedded icosahedral virus particles suspended across holes.
Two-dimensional Lagrangian simulation of suspended sediment
Schoellhamer, David H.
1988-01-01
A two-dimensional laterally averaged model for suspended sediment transport in steady gradually varied flow that is based on the Lagrangian reference frame is presented. The layered Lagrangian transport model (LLTM) for suspended sediment performs laterally averaged concentration. The elevations of nearly horizontal streamlines and the simulation time step are selected to optimize model stability and efficiency. The computational elements are parcels of water that are moved along the streamlines in the Lagrangian sense and are mixed with neighboring parcels. Three applications show that the LLTM can accurately simulate theoretical and empirical nonequilibrium suspended sediment distributions and slug injections of suspended sediment in a laboratory flume.
LaFleur, Karl; Cassady, Kaitlin; Doud, Alexander; Shades, Kaleb; Rogin, Eitan; He, Bin
2013-01-01
Objective At the balanced intersection of human and machine adaptation is found the optimally functioning brain-computer interface (BCI). In this study, we report a novel experiment of BCI controlling a robotic quadcopter in three-dimensional physical space using noninvasive scalp EEG in human subjects. We then quantify the performance of this system using metrics suitable for asynchronous BCI. Lastly, we examine the impact that operation of a real world device has on subjects’ control with comparison to a two-dimensional virtual cursor task. Approach Five human subjects were trained to modulate their sensorimotor rhythms to control an AR Drone navigating a three-dimensional physical space. Visual feedback was provided via a forward facing camera on the hull of the drone. Individual subjects were able to accurately acquire up to 90.5% of all valid targets presented while travelling at an average straight-line speed of 0.69 m/s. Significance Freely exploring and interacting with the world around us is a crucial element of autonomy that is lost in the context of neurodegenerative disease. Brain-computer interfaces are systems that aim to restore or enhance a user’s ability to interact with the environment via a computer and through the use of only thought. We demonstrate for the first time the ability to control a flying robot in the three-dimensional physical space using noninvasive scalp recorded EEG in humans. Our work indicates the potential of noninvasive EEG based BCI systems to accomplish complex control in three-dimensional physical space. The present study may serve as a framework for the investigation of multidimensional non-invasive brain-computer interface control in a physical environment using telepresence robotics. PMID:23735712
Fiber Composite Sandwich Thermostructural Behavior: Computational Simulation
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Aiello, R. A.; Murthy, P. L. N.
1986-01-01
Several computational levels of progressive sophistication/simplification are described to computationally simulate composite sandwich hygral, thermal, and structural behavior. The computational levels of sophistication include: (1) three-dimensional detailed finite element modeling of the honeycomb, the adhesive and the composite faces; (2) three-dimensional finite element modeling of the honeycomb assumed to be an equivalent continuous, homogeneous medium, the adhesive and the composite faces; (3) laminate theory simulation where the honeycomb (metal or composite) is assumed to consist of plies with equivalent properties; and (4) derivations of approximate, simplified equations for thermal and mechanical properties by simulating the honeycomb as an equivalent homogeneous medium. The approximate equations are combined with composite hygrothermomechanical and laminate theories to provide a simple and effective computational procedure for simulating the thermomechanical/thermostructural behavior of fiber composite sandwich structures.
Research in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Murman, Earll M.
1987-01-01
The numerical integration of quasi-one-dimensional unsteady flow problems which involve finite rate chemistry are discussed, and are expressed in terms of conservative form Euler and species conservation equations. Hypersonic viscous calculations for delta wing geometries is also examined. The conical Navier-Stokes equations model was selected in order to investigate the effects of viscous-inviscid interations. The more complete three-dimensional model is beyond the available computing resources. The flux vector splitting method with van Leer's MUSCL differencing is being used. Preliminary results were computed for several conditions.
Liu, Jian-Guo; Du, Jian-Qiang; Zeng, Zhi-Fang; Ai, Guo-Ping
2016-10-01
The Korteweg-de Vries (KdV)-type models have been shown to describe many important physical situations such as fluid flows, plasma physics, and solid state physics. In this paper, a new (2 + 1)-dimensional KdV equation is discussed. Based on the Hirota's bilinear form and a generalized three-wave approach, we obtain new exact solutions for the new (2 + 1)-dimensional KdV equation. With the help of symbolic computation, the properties for some new solutions are presented with some figures.
Nava, Michele M; Raimondi, Manuela T; Pietrabissa, Riccardo
2013-11-01
The main challenge in engineered cartilage consists in understanding and controlling the growth process towards a functional tissue. Mathematical and computational modelling can help in the optimal design of the bioreactor configuration and in a quantitative understanding of important culture parameters. In this work, we present a multiphysics computational model for the prediction of cartilage tissue growth in an interstitial perfusion bioreactor. The model consists of two separate sub-models, one two-dimensional (2D) sub-model and one three-dimensional (3D) sub-model, which are coupled between each other. These sub-models account both for the hydrodynamic microenvironment imposed by the bioreactor, using a model based on the Navier-Stokes equation, the mass transport equation and the biomass growth. The biomass, assumed as a phase comprising cells and the synthesised extracellular matrix, has been modelled by using a moving boundary approach. In particular, the boundary at the fluid-biomass interface is moving with a velocity depending from the local oxygen concentration and viscous stress. In this work, we show that all parameters predicted, such as oxygen concentration and wall shear stress, by the 2D sub-model with respect to the ones predicted by the 3D sub-model are systematically overestimated and thus the tissue growth, which directly depends on these parameters. This implies that further predictive models for tissue growth should take into account of the three dimensionality of the problem for any scaffold microarchitecture.
NASA Astrophysics Data System (ADS)
Jones, R. M.; Riley, J. P.; Georges, T. M.
1986-08-01
The modular FORTRAN 77 computer program traces the three-dimensional paths of acoustic rays through continuous model atmospheres by numerically integrating Hamilton's equations (a differential expression of Fermat's principle). The user specifies an atmospheric model by writing closed-form formulas for its three-dimensional wind and temperature (or sound speed) distribution, and by defining the height of the reflecting terrain vs. geographic latitude and longitude. Some general-purpose models are provided, or users can readily design their own. In addition to computing the geometry of each raypath, HARPA can calculate pulse travel time, phase time, Doppler shift (if the medium varies in time), absorption, and geometrical path length. The program prints a step-by-step account of a ray's progress. The 410-page documentation describes the ray-tracing equations and the structure of the program, and provides complete instructions, illustrated by a sample case.
Pan, Yijie; Wang, Yongtian; Liu, Juan; Li, Xin; Jia, Jia
2014-03-01
Previous research [Appl. Opt.52, A290 (2013)] has revealed that Fourier analysis of three-dimensional affine transformation theory can be used to improve the computation speed of the traditional polygon-based method. In this paper, we continue our research and propose an improved full analytical polygon-based method developed upon this theory. Vertex vectors of primitive and arbitrary triangles and the pseudo-inverse matrix were used to obtain an affine transformation matrix representing the spatial relationship between the two triangles. With this relationship and the primitive spectrum, we analytically obtained the spectrum of the arbitrary triangle. This algorithm discards low-level angular dependent computations. In order to add diffusive reflection to each arbitrary surface, we also propose a whole matrix computation approach that takes advantage of the affine transformation matrix and uses matrix multiplication to calculate shifting parameters of similar sub-polygons. The proposed method improves hologram computation speed for the conventional full analytical approach. Optical experimental results are demonstrated which prove that the proposed method can effectively reconstruct three-dimensional scenes.
An Integrated Magnetic Circuit Model and Finite Element Model Approach to Magnetic Bearing Design
NASA Technical Reports Server (NTRS)
Provenza, Andrew J.; Kenny, Andrew; Palazzolo, Alan B.
2003-01-01
A code for designing magnetic bearings is described. The code generates curves from magnetic circuit equations relating important bearing performance parameters. Bearing parameters selected from the curves by a designer to meet the requirements of a particular application are input directly by the code into a three-dimensional finite element analysis preprocessor. This means that a three-dimensional computer model of the bearing being developed is immediately available for viewing. The finite element model solution can be used to show areas of magnetic saturation and make more accurate predictions of the bearing load capacity, current stiffness, position stiffness, and inductance than the magnetic circuit equations did at the start of the design process. In summary, the code combines one-dimensional and three-dimensional modeling methods for designing magnetic bearings.
A three-dimensional, time-dependent model of Mobile Bay
NASA Technical Reports Server (NTRS)
Pitts, F. H.; Farmer, R. C.
1976-01-01
A three-dimensional, time-variant mathematical model for momentum and mass transport in estuaries was developed and its solution implemented on a digital computer. The mathematical model is based on state and conservation equations applied to turbulent flow of a two-component, incompressible fluid having a free surface. Thus, bouyancy effects caused by density differences between the fresh and salt water, inertia from thare river and tidal currents, and differences in hydrostatic head are taken into account. The conservation equations, which are partial differential equations, are solved numerically by an explicit, one-step finite difference scheme and the solutions displayed numerically and graphically. To test the validity of the model, a specific estuary for which scaled model and experimental field data are available, Mobile Bay, was simulated. Comparisons of velocity, salinity and water level data show that the model is valid and a viable means of simulating the hydrodynamics and mass transport in non-idealized estuaries.
Viability of Cross-Flow Fan with Helical Blades for Vertical Take-off and Landing Aircraft
2012-09-01
fluid dynamics (CFD) software, ANSYS - CFX , a three-dimensional (3-D) straight-bladed model was validated against previous study’s experimental results...computational fluid dynamics software (CFD), ANSYS - CFX , a three-dimensional (3-D) straight-bladed model was validated against previous study’s experimental...37 B. SIZING PARAMETERS AND ILLUSTRATION ................................. 37 APPENDIX B. ANSYS CFX PARAMETERS
3D simulations of early blood vessel formation
NASA Astrophysics Data System (ADS)
Cavalli, F.; Gamba, A.; Naldi, G.; Semplice, M.; Valdembri, D.; Serini, G.
2007-08-01
Blood vessel networks form by spontaneous aggregation of individual cells migrating toward vascularization sites (vasculogenesis). A successful theoretical model of two-dimensional experimental vasculogenesis has been recently proposed, showing the relevance of percolation concepts and of cell cross-talk (chemotactic autocrine loop) to the understanding of this self-aggregation process. Here we study the natural 3D extension of the computational model proposed earlier, which is relevant for the investigation of the genuinely three-dimensional process of vasculogenesis in vertebrate embryos. The computational model is based on a multidimensional Burgers equation coupled with a reaction diffusion equation for a chemotactic factor and a mass conservation law. The numerical approximation of the computational model is obtained by high order relaxed schemes. Space and time discretization are performed by using TVD schemes and, respectively, IMEX schemes. Due to the computational costs of realistic simulations, we have implemented the numerical algorithm on a cluster for parallel computation. Starting from initial conditions mimicking the experimentally observed ones, numerical simulations produce network-like structures qualitatively similar to those observed in the early stages of in vivo vasculogenesis. We develop the computation of critical percolative indices as a robust measure of the network geometry as a first step towards the comparison of computational and experimental data.
NASA Astrophysics Data System (ADS)
Yamazaki, Y. H.; Skeet, D. R.; Read, P. L.
2004-04-01
We have been developing a new three-dimensional general circulation model for the stratosphere and troposphere of Jupiter based on the dynamical core of a portable version of the Unified Model of the UK Meteorological Office. Being one of the leading terrestrial GCMs, employed for operational weather forecasting and climate research, the Unified Model has been thoroughly tested and performance tuned for both vector and parallel computers. It is formulated as a generalized form of the standard primitive equations to handle a thick atmosphere, using a scaled pressure as the vertical coordinate. It is able to accurately simulate the dynamics of a three-dimensional fully compressible atmosphere on the whole or a part of a spherical shell at high spatial resolution in all three directions. Using the current version of the GCM, we examine the characteristics of the Jovian winds in idealized configurations based on the observed vertical structure of temperature. Our initial focus is on the evolution of isolated eddies in the mid-latitudes. Following a brief theoretical investigation of the vertical structure of the atmosphere, limited-area cyclic channel domains are used to numerically investigate the nonlinear evolution of the mid-latitude winds. First, the evolution of deep and shallow cyclones and anticyclones are tested in the atmosphere at rest to identify a preferred horizontal and vertical structure of the vortices. Then, the dependency of the migration characteristics of the vortices are investigated against modelling parameters to find that it is most sensitive to the horizontal diffusion. We also examine the hydrodynamical stability of observed subtropical jets in both northern and southern hemispheres in the three-dimensional nonlinear model as initial value problems. In both cases, it was found that the prominent jets are unstable at various scales and that vorteces of various sizes are generated including those comparable to the White Ovals and the Great Red Spot.
The IRGen infrared data base modeler
NASA Technical Reports Server (NTRS)
Bernstein, Uri
1993-01-01
IRGen is a modeling system which creates three-dimensional IR data bases for real-time simulation of thermal IR sensors. Starting from a visual data base, IRGen computes the temperature and radiance of every data base surface with a user-specified thermal environment. The predicted gray shade of each surface is then computed from the user specified sensor characteristics. IRGen is based on first-principles models of heat transport and heat flux sources, and it accurately simulates the variations of IR imagery with time of day and with changing environmental conditions. The starting point for creating an IRGen data base is a visual faceted data base, in which every facet has been labeled with a material code. This code is an index into a material data base which contains surface and bulk thermal properties for the material. IRGen uses the material properties to compute the surface temperature at the specified time of day. IRGen also supports image generator features such as texturing and smooth shading, which greatly enhance image realism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Nan; Battaglia, Francine; Pannala, Sreekanth
2008-01-01
Simulations of fluidized beds are performed to study and determine the effect on the use of coordinate systems and geometrical configurations to model fluidized bed reactors. Computational fluid dynamics is employed for an Eulerian-Eulerian model, which represents each phase as an interspersed continuum. The transport equation for granular temperature is solved and a hyperbolic tangent function is used to provide a smooth transition between the plastic and viscous regimes for the solid phase. The aim of the present work is to show the range of validity for employing simulations based on a 2D Cartesian coordinate system to approximate both cylindricalmore » and rectangular fluidized beds. Three different fluidization regimes, bubbling, slugging and turbulent regimes, are investigated and the results of 2D and 3D simulations are presented for both cylindrical and rectangular domains. The results demonstrate that a 2D Cartesian system can be used to successfully simulate and predict a bubbling regime. However, caution must be exercised when using 2D Cartesian coordinates for other fluidized regimes. A budget analysis that explains all the differences in detail is presented in Part II [N. Xie, F. Battaglia, S. Pannala, Effects of Using Two-Versus Three-Dimensional Computational Modeling of Fluidized Beds: Part II, budget analysis, 182 (1) (2007) 14] to complement the hydrodynamic theory of this paper.« less
An intermediate-scale model for thermal hydrology in low-relief permafrost-affected landscapes
Jan, Ahmad; Coon, Ethan T.; Painter, Scott L.; ...
2017-07-10
Integrated surface/subsurface models for simulating the thermal hydrology of permafrost-affected regions in a warming climate have recently become available, but computational demands of those new process-rich simu- lation tools have thus far limited their applications to one-dimensional or small two-dimensional simulations. We present a mixed-dimensional model structure for efficiently simulating surface/subsurface thermal hydrology in low-relief permafrost regions at watershed scales. The approach replaces a full three-dimensional system with a two-dimensional overland thermal hydrology system and a family of one-dimensional vertical columns, where each column represents a fully coupled surface/subsurface thermal hydrology system without lateral flow. The system is then operatormore » split, sequentially updating the overland flow system without sources and the one-dimensional columns without lateral flows. We show that the app- roach is highly scalable, supports subcycling of different processes, and compares well with the corresponding fully three-dimensional representation at significantly less computational cost. Those advances enable recently developed representations of freezing soil physics to be coupled with thermal overland flow and surface energy balance at scales of 100s of meters. Furthermore developed and demonstrated for permafrost thermal hydrology, the mixed-dimensional model structure is applicable to integrated surface/subsurface thermal hydrology in general.« less
NASA Technical Reports Server (NTRS)
Gassaway, J. D.; Mahmood, Q.; Trotter, J. D.
1980-01-01
Quarterly report describes progress in three programs: dc sputtering machine for aluminum and aluminum alloys; two dimensional computer modeling of MOS transistors; and development of computer techniques for calculating redistribution diffusion of dopants in silicon on sapphire films.
The investigation of tethered satellite system dynamics
NASA Technical Reports Server (NTRS)
Lorenzini, E.
1985-01-01
The tether control law to retrieve the satellite was modified in order to have a smooth retrieval trajectory of the satellite that minimizes the thruster activation. The satellite thrusters were added to the rotational dynamics computer code and a preliminary control logic was implemented to simulate them during the retrieval maneuver. The high resolution computer code for modelling the three dimensional dynamics of untensioned tether, SLACK3, was made fully operative and a set of computer simulations of possible tether breakages was run. The distribution of the electric field around an electrodynamic tether in vacuo severed at some length from the shuttle was computed with a three dimensional electrodynamic computer code.
Olejník, Peter; Nosal, Matej; Havran, Tomas; Furdova, Adriana; Cizmar, Maros; Slabej, Michal; Thurzo, Andrej; Vitovic, Pavol; Klvac, Martin; Acel, Tibor; Masura, Jozef
2017-01-01
To evaluate the accuracy of the three-dimensional (3D) printing of cardiovascular structures. To explore whether utilisation of 3D printed heart replicas can improve surgical and catheter interventional planning in patients with complex congenital heart defects. Between December 2014 and November 2015 we fabricated eight cardiovascular models based on computed tomography data in patients with complex spatial anatomical relationships of cardiovascular structures. A Bland-Altman analysis was used to assess the accuracy of 3D printing by comparing dimension measurements at analogous anatomical locations between the printed models and digital imagery data, as well as between printed models and in vivo surgical findings. The contribution of 3D printed heart models for perioperative planning improvement was evaluated in the four most representative patients. Bland-Altman analysis confirmed the high accuracy of 3D cardiovascular printing. Each printed model offered an improved spatial anatomical orientation of cardiovascular structures. Current 3D printers can produce authentic copies of patients` cardiovascular systems from computed tomography data. The use of 3D printed models can facilitate surgical or catheter interventional procedures in patients with complex congenital heart defects due to better preoperative planning and intraoperative orientation.
Modeling axisymmetric flow and transport
Langevin, C.D.
2008-01-01
Unmodified versions of common computer programs such as MODFLOW, MT3DMS, and SEAWAT that use Cartesian geometry can accurately simulate axially symmetric ground water flow and solute transport. Axisymmetric flow and transport are simulated by adjusting several input parameters to account for the increase in flow area with radial distance from the injection or extraction well. Logarithmic weighting of interblock transmissivity, a standard option in MODFLOW, can be used for axisymmetric models to represent the linear change in hydraulic conductance within a single finite-difference cell. Results from three test problems (ground water extraction, an aquifer push-pull test, and upconing of saline water into an extraction well) show good agreement with analytical solutions or with results from other numerical models designed specifically to simulate the axisymmetric geometry. Axisymmetric models are not commonly used but can offer an efficient alternative to full three-dimensional models, provided the assumption of axial symmetry can be justified. For the upconing problem, the axisymmetric model was more than 1000 times faster than an equivalent three-dimensional model. Computational gains with the axisymmetric models may be useful for quickly determining appropriate levels of grid resolution for three-dimensional models and for estimating aquifer parameters from field tests.
Three dimensional hair model by means particles using Blender
NASA Astrophysics Data System (ADS)
Alvarez-Cedillo, Jesús Antonio; Almanza-Nieto, Roberto; Herrera-Lozada, Juan Carlos
2010-09-01
The simulation and modeling of human hair is a process whose computational complexity is very large, this due to the large number of factors that must be calculated to give a realistic appearance. Generally, the method used in the film industry to simulate hair is based on particle handling graphics. In this paper we present a simple approximation of how to model human hair using particles in Blender. [Figure not available: see fulltext.
Effect of Shear Deformation and Continuity on Delamination Modelling with Plate Elements
NASA Technical Reports Server (NTRS)
Glaessgen, E. H.; Riddell, W. T.; Raju, I. S.
1998-01-01
The effects of several critical assumptions and parameters on the computation of strain energy release rates for delamination and debond configurations modeled with plate elements have been quantified. The method of calculation is based on the virtual crack closure technique (VCCT), and models that model the upper and lower surface of the delamination or debond with two-dimensional (2D) plate elements rather than three-dimensional (3D) solid elements. The major advantages of the plate element modeling technique are a smaller model size and simpler geometric modeling. Specific issues that are discussed include: constraint of translational degrees of freedom, rotational degrees of freedom or both in the neighborhood of the crack tip; element order and assumed shear deformation; and continuity of material properties and section stiffness in the vicinity of the debond front, Where appropriate, the plate element analyses are compared with corresponding two-dimensional plane strain analyses.
Particle Hydrodynamics with Material Strength for Multi-Layer Orbital Debris Shield Design
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.
1999-01-01
Three dimensional simulation of oblique hypervelocity impact on orbital debris shielding places extreme demands on computer resources. Research to date has shown that particle models provide the most accurate and efficient means for computer simulation of shield design problems. In order to employ a particle based modeling approach to the wall plate impact portion of the shield design problem, it is essential that particle codes be augmented to represent strength effects. This report describes augmentation of a Lagrangian particle hydrodynamics code developed by the principal investigator, to include strength effects, allowing for the entire shield impact problem to be represented using a single computer code.
Three-Dimensional Modeling May Improve Surgical Education and Clinical Practice.
Jones, Daniel B; Sung, Robert; Weinberg, Crispin; Korelitz, Theodore; Andrews, Robert
2016-04-01
Three-dimensional (3D) printing has been used in the manufacturing industry for rapid prototyping and product testing. The aim of our study was to assess the feasibility of creating anatomical 3D models from a digital image using 3D printers. Furthermore, we sought face validity of models and explored potential opportunities for using 3D printing to enhance surgical education and clinical practice. Computed tomography and magnetic resonance images were reviewed, converted to computer models, and printed by stereolithography to create near exact replicas of human organs. Medical students and surgeons provided feedback via survey at the 2014 Surgical Education Week conference. There were 51 respondents, and 95.8% wanted these models for their patients. Cost was a concern, but 82.6% found value in these models at a price less than $500. All respondents thought the models would be useful for integration into the medical school curriculum. Three-dimensional printing is a potentially disruptive technology to improve both surgical education and clinical practice. As the technology matures and cost decreases, we envision 3D models being increasingly used in surgery. © The Author(s) 2015.
Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.
Decker, Gifford Z; Thomson, Scott L
2007-05-01
The use of the mechanical energy (ME) equation for fluid flow, an extension of the Bernoulli equation, to predict the aerodynamic loading on a two-dimensional finite element vocal fold model is examined. Three steady, one-dimensional ME flow models, incorporating different methods of flow separation point prediction, were compared. For two models, determination of the flow separation point was based on fixed ratios of the glottal area at separation to the minimum glottal area; for the third model, the separation point determination was based on fluid mechanics boundary layer theory. Results of flow rate, separation point, and intraglottal pressure distribution were compared with those of an unsteady, two-dimensional, finite element Navier-Stokes model. Cases were considered with a rigid glottal profile as well as with a vibrating vocal fold. For small glottal widths, the three ME flow models yielded good predictions of flow rate and intraglottal pressure distribution, but poor predictions of separation location. For larger orifice widths, the ME models were poor predictors of flow rate and intraglottal pressure, but they satisfactorily predicted separation location. For the vibrating vocal fold case, all models resulted in similar predictions of mean intraglottal pressure, maximum orifice area, and vibration frequency, but vastly different predictions of separation location and maximum flow rate.
Unsteady three-dimensional thermal field prediction in turbine blades using nonlinear BEM
NASA Technical Reports Server (NTRS)
Martin, Thomas J.; Dulikravich, George S.
1993-01-01
A time-and-space accurate and computationally efficient fully three dimensional unsteady temperature field analysis computer code has been developed for truly arbitrary configurations. It uses boundary element method (BEM) formulation based on an unsteady Green's function approach, multi-point Gaussian quadrature spatial integration on each panel, and a highly clustered time-step integration. The code accepts either temperatures or heat fluxes as boundary conditions that can vary in time on a point-by-point basis. Comparisons of the BEM numerical results and known analytical unsteady results for simple shapes demonstrate very high accuracy and reliability of the algorithm. An example of computed three dimensional temperature and heat flux fields in a realistically shaped internally cooled turbine blade is also discussed.
Three-dimensional deformable-model-based localization and recognition of road vehicles.
Zhang, Zhaoxiang; Tan, Tieniu; Huang, Kaiqi; Wang, Yunhong
2012-01-01
We address the problem of model-based object recognition. Our aim is to localize and recognize road vehicles from monocular images or videos in calibrated traffic scenes. A 3-D deformable vehicle model with 12 shape parameters is set up as prior information, and its pose is determined by three parameters, which are its position on the ground plane and its orientation about the vertical axis under ground-plane constraints. An efficient local gradient-based method is proposed to evaluate the fitness between the projection of the vehicle model and image data, which is combined into a novel evolutionary computing framework to estimate the 12 shape parameters and three pose parameters by iterative evolution. The recovery of pose parameters achieves vehicle localization, whereas the shape parameters are used for vehicle recognition. Numerous experiments are conducted in this paper to demonstrate the performance of our approach. It is shown that the local gradient-based method can evaluate accurately and efficiently the fitness between the projection of the vehicle model and the image data. The evolutionary computing framework is effective for vehicles of different types and poses is robust to all kinds of occlusion.
Dunne, James R; McDonald, Claudia L
2010-07-01
Pulse!! The Virtual Clinical Learning Lab at Texas A&M University-Corpus Christi, in collaboration with the United States Navy, has developed a model for research and technological development that they believe is an essential element in the future of military and civilian medical education. The Pulse!! project models a strategy for providing cross-disciplinary expertise and resources to educational, governmental, and business entities challenged with meeting looming health care crises. It includes a three-dimensional virtual learning platform that provides unlimited, repeatable, immersive clinical experiences without risk to patients, and is available anywhere there is a computer. Pulse!! utilizes expertise in the fields of medicine, medical education, computer science, software engineering, physics, computer animation, art, and architecture. Lab scientists collaborate with the commercial virtual-reality simulation industry to produce research-based learning platforms based on cutting-edge computer technology.
NASA Technical Reports Server (NTRS)
Thomas, P. D.
1980-01-01
A computer implemented numerical method for predicting the flow in and about an isolated three dimensional jet exhaust nozzle is summarized. The approach is based on an implicit numerical method to solve the unsteady Navier-Stokes equations in a boundary conforming curvilinear coordinate system. Recent improvements to the original numerical algorithm are summarized. Equations are given for evaluating nozzle thrust and discharge coefficient in terms of computed flowfield data. The final formulation of models that are used to simulate flow turbulence effect is presented. Results are presented from numerical experiments to explore the effect of various quantities on the rate of convergence to steady state and on the final flowfield solution. Detailed flowfield predictions for several two and three dimensional nozzle configurations are presented and compared with wind tunnel experimental data.
A two-dimensional model of water: Theory and computer simulations
NASA Astrophysics Data System (ADS)
Urbič, T.; Vlachy, V.; Kalyuzhnyi, Yu. V.; Southall, N. T.; Dill, K. A.
2000-02-01
We develop an analytical theory for a simple model of liquid water. We apply Wertheim's thermodynamic perturbation theory (TPT) and integral equation theory (IET) for associative liquids to the MB model, which is among the simplest models of water. Water molecules are modeled as 2-dimensional Lennard-Jones disks with three hydrogen bonding arms arranged symmetrically, resembling the Mercedes-Benz (MB) logo. The MB model qualitatively predicts both the anomalous properties of pure water and the anomalous solvation thermodynamics of nonpolar molecules. IET is based on the orientationally averaged version of the Ornstein-Zernike equation. This is one of the main approximations in the present work. IET correctly predicts the pair correlation function of the model water at high temperatures. Both TPT and IET are in semi-quantitative agreement with the Monte Carlo values of the molar volume, isothermal compressibility, thermal expansion coefficient, and heat capacity. A major advantage of these theories is that they require orders of magnitude less computer time than the Monte Carlo simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, IIftekhar; Husain, Tausif; Uddin, Md Wasi
2015-08-24
This paper presents a nonlinear analytical model of a novel double-sided flux concentrating Transverse Flux Machine (TFM) based on the Magnetic Equivalent Circuit (MEC) model. The analytical model uses a series-parallel combination of flux tubes to predict the flux paths through different parts of the machine including air gaps, permanent magnets, stator, and rotor. The two-dimensional MEC model approximates the complex three-dimensional flux paths of the TFM and includes the effects of magnetic saturation. The model is capable of adapting to any geometry that makes it a good alternative for evaluating prospective designs of TFM compared to finite element solversmore » that are numerically intensive and require more computation time. A single-phase, 1-kW, 400-rpm machine is analytically modeled, and its resulting flux distribution, no-load EMF, and torque are verified with finite element analysis. The results are found to be in agreement, with less than 5% error, while reducing the computation time by 25 times.« less
Analytical Modeling of a Novel Transverse Flux Machine for Direct Drive Wind Turbine Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, IIftekhar; Husain, Tausif; Uddin, Md Wasi
2015-09-02
This paper presents a nonlinear analytical model of a novel double sided flux concentrating Transverse Flux Machine (TFM) based on the Magnetic Equivalent Circuit (MEC) model. The analytical model uses a series-parallel combination of flux tubes to predict the flux paths through different parts of the machine including air gaps, permanent magnets (PM), stator, and rotor. The two-dimensional MEC model approximates the complex three-dimensional flux paths of the TFM and includes the effects of magnetic saturation. The model is capable of adapting to any geometry which makes it a good alternative for evaluating prospective designs of TFM as compared tomore » finite element solvers which are numerically intensive and require more computation time. A single phase, 1 kW, 400 rpm machine is analytically modeled and its resulting flux distribution, no-load EMF and torque, verified with Finite Element Analysis (FEA). The results are found to be in agreement with less than 5% error, while reducing the computation time by 25 times.« less
NASA Astrophysics Data System (ADS)
Babulin, A. A.; Bosnyakov, S. M.; Vlasenko, V. V.; Engulatova, M. F.; Matyash, S. V.; Mikhailov, S. V.
2016-06-01
Modern differential turbulence models are validated by computing a separation zone generated in the supersonic flow past a compression wedge lying on a plate of finite width. The results of three- and two-dimensional computations based on the ( q-ω), SST, and Spalart-Allmaras turbulence models are compared with experimental data obtained for 8°, 25°, and 45° wedges by A.A. Zheltovodov at the Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences. An original law-of-the-wall boundary condition and modifications of the SST model intended for improving the quality of the computed separation zone are described.
Kang, Beom Sik; Pugalendhi, GaneshKumar; Kim, Ku-Jin
2017-10-13
Interactions between protein molecules are essential for the assembly, function, and regulation of proteins. The contact region between two protein molecules in a protein complex is usually complementary in shape for both molecules and the area of the contact region can be used to estimate the binding strength between two molecules. Although the area is a value calculated from the three-dimensional surface, it cannot represent the three-dimensional shape of the surface. Therefore, we propose an original concept of two-dimensional contact area which provides further information such as the ruggedness of the contact region. We present a novel algorithm for calculating the binding direction between two molecules in a protein complex, and then suggest a method to compute the two-dimensional flattened area of the contact region between two molecules based on the binding direction.
Kido, Masamitsu; Ikoma, Kazuya; Hara, Yusuke; Imai, Kan; Maki, Masahiro; Ikeda, Takumi; Fujiwara, Hiroyoshi; Tokunaga, Daisaku; Inoue, Nozomu; Kubo, Toshikazu
2014-12-01
Insoles are frequently used in orthotic therapy as the standard conservative treatment for symptomatic flatfoot deformity to rebuild the arch and stabilize the foot. However, the effectiveness of therapeutic insoles remains unclear. In this study, we assessed the effectiveness of therapeutic insoles for flatfoot deformity using subject-based three-dimensional (3D) computed tomography (CT) models by evaluating the load responses of the bones in the medial longitudinal arch in vivo in 3D. We studied eight individuals (16 feet) with mild flatfoot deformity. CT scans were performed on both feet under non-loaded and full-body-loaded conditions, first with accessory insoles and then with therapeutic insoles under the same conditions. Three-dimensional CT models were constructed for the tibia and the tarsal and metatarsal bones of the medial longitudinal arch (i.e., first metatarsal bone, cuneiforms, navicular, talus, and calcaneus). The rotational angles between the tarsal bones were calculated under loading with accessory insoles or therapeutic insoles and compared. Compared with the accessory insoles, the therapeutic insoles significantly suppressed the eversion of the talocalcaneal joint. This is the first study to precisely verify the usefulness of therapeutic insoles (arch support and inner wedges) in vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.
1997-01-01
The NASA Lewis Research Center is developing analytical methods and software tools to create a bridge between the controls and computational fluid dynamics (CFD) disciplines. Traditionally, control design engineers have used coarse nonlinear simulations to generate information for the design of new propulsion system controls. However, such traditional methods are not adequate for modeling the propulsion systems of complex, high-speed vehicles like the High Speed Civil Transport. To properly model the relevant flow physics of high-speed propulsion systems, one must use simulations based on CFD methods. Such CFD simulations have become useful tools for engineers that are designing propulsion system components. The analysis techniques and software being developed as part of this effort are an attempt to evolve CFD into a useful tool for control design as well. One major aspect of this research is the generation of linear models from steady-state CFD results. CFD simulations, often used during the design of high-speed inlets, yield high resolution operating point data. Under a NASA grant, the University of Akron has developed analytical techniques and software tools that use these data to generate linear models for control design. The resulting linear models have the same number of states as the original CFD simulation, so they are still very large and computationally cumbersome. Model reduction techniques have been successfully applied to reduce these large linear models by several orders of magnitude without significantly changing the dynamic response. The result is an accurate, easy to use, low-order linear model that takes less time to generate than those generated by traditional means. The development of methods for generating low-order linear models from steady-state CFD is most complete at the one-dimensional level, where software is available to generate models with different kinds of input and output variables. One-dimensional methods have been extended somewhat so that linear models can also be generated from two- and three-dimensional steady-state results. Standard techniques are adequate for reducing the order of one-dimensional CFD-based linear models. However, reduction of linear models based on two- and three-dimensional CFD results is complicated by very sparse, ill-conditioned matrices. Some novel approaches are being investigated to solve this problem.
Aeroelastic Modeling of a Nozzle Startup Transient
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen
2014-01-01
Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a tightly coupled aeroelastic modeling algorithm by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed under the framework of modal analysis. Transient aeroelastic nozzle startup analyses at sea level were performed, and the computed transient nozzle fluid-structure interaction physics presented,
Automatic creation of three-dimensional avatars
NASA Astrophysics Data System (ADS)
Villa-Uriol, Maria-Cruz; Sainz, Miguel; Kuester, Falko; Bagherzadeh, Nader
2003-01-01
Highly accurate avatars of humans promise a new level of realism in engineering and entertainment applications, including areas such as computer animated movies, computer game development interactive virtual environments and tele-presence. In order to provide high-quality avatars, new techniques for the automatic acquisition and creation are required. A framework for the capture and construction of arbitrary avatars from image data is presented in this paper. Avatars are automatically reconstructed from multiple static images of a human subject by utilizing image information to reshape a synthetic three-dimensional articulated reference model. A pipeline is presented that combines a set of hardware-accelerated stages into one seamless system. Primary stages in this pipeline include pose estimation, skeleton fitting, body part segmentation, geometry construction and coloring, leading to avatars that can be animated and included into interactive environments. The presented system removes traditional constraints in the initial pose of the captured subject by using silhouette-based modification techniques in combination with a reference model. Results can be obtained in near-real time with very limited user intervention.
A Review of Recent Aeroelastic Analysis Methods for Propulsion at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Bakhle, Milind A.; Srivastava, R.; Mehmed, Oral; Stefko, George L.
1993-01-01
This report reviews aeroelastic analyses for propulsion components (propfans, compressors and turbines) being developed and used at NASA LeRC. These aeroelastic analyses include both structural and aerodynamic models. The structural models include a typical section, a beam (with and without disk flexibility), and a finite-element blade model (with plate bending elements). The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation to the three-dimensional Euler equations for multibladed configurations. Typical calculated results are presented for each aeroelastic model. Suggestions for further research are made. Many of the currently available aeroelastic models and analysis methods are being incorporated in a unified computer program, APPLE (Aeroelasticity Program for Propulsion at LEwis).
McKee, Edwin H.; Hildenbrand, Thomas G.; Anderson, Megan L.; Rowley, Peter D.; Sawyer, David A.
1999-01-01
The structural framework of Pahute Mesa, Nevada, is dominated by the Silent Canyon caldera complex, a buried, multiple collapse caldera complex. Using the boundary surface between low density Tertiary volcanogenic rocks and denser granitic and weakly metamorphosed sedimentary rocks (basement) as the outer fault surfaces for the modeled collapse caldera complex, it is postulated that the caldera complex collapsed on steeply- dipping arcuate faults two, possibly three, times following eruption of at least two major ash-flow tuffs. The caldera and most of its eruptive products are now deeply buried below the surface of Pahute Mesa. Relatively low-density rocks in the caldera complex produce one of the largest gravity lows in the western conterminous United States. Gravity modeling defines a steep sided, cup-shaped depression as much as 6,000 meters (19,800 feet) deep that is surrounded and floored by denser rocks. The steeply dipping surface located between the low-density basin fill and the higher density external rocks is considered to be the surface of the ring faults of the multiple calderas. Extrapolation of this surface upward to the outer, or topographic rim, of the Silent Canyon caldera complex defines the upper part of the caldera collapse structure. Rock units within and outside the Silent Canyon caldera complex are combined into seven hydrostratigraphic units based on their predominant hydrologic characteristics. The caldera structures and other faults on Pahute Mesa are used with the seven hydrostratigraphic units to make a three-dimensional geologic model of Pahute Mesa using the "EarthVision" (Dynamic Graphics, Inc.) modeling computer program. This method allows graphic representation of the geometry of the rocks and produces computer generated cross sections, isopach maps, and three-dimensional oriented diagrams. These products have been created to aid in visualizing and modeling the ground-water flow system beneath Pahute Mesa.
Three-dimensional computational model of a blood oxygenator reconstructed from micro-CT scans.
D'Onofrio, C; van Loon, R; Rolland, S; Johnston, R; North, L; Brown, S; Phillips, R; Sienz, J
2017-09-01
Cardiopulmonary bypass procedures are one of the most common operations and blood oxygenators are the centre piece for the heart-lung machines. Blood oxygenators have been tested as entire devices but intricate details on the flow field inside the oxygenators remain unknown. In this study, a novel method is presented to analyse the flow field inside oxygenators based on micro Computed Tomography (μCT) scans. Two Hollow Fibre Membrane (HFM) oxygenator prototypes were scanned and three-dimensional full scale models that capture the device-specific fibre distributions are set up for computational fluid dynamics analysis. The blood flow through the oxygenator is modelled as a non-Newtonian fluid. The results were compared against the flow solution through an ideal fibre distribution and show the importance of a uniform distribution of fibres and that the oxygenators analysed are not susceptible to flow directionality as mass flow versus area remain the same. However the pressure drop across the oxygenator is dependent on flow rate and direction. By comparing residence time of blood against the time frame to fully saturate blood with oxygen we highlight the potential of this method as design optimisation tool. In conclusion, image-based reconstruction is found to be a feasible route to assess oxygenator performance through flow modelling. It offers the possibility to review a product as manufactured rather than as designed, which is a valuable insight as a precursor to the approval processes. Finally, the flow analysis presented may be extended, at computational cost, to include species transport in further studies. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Computational And Experimental Studies Of Three-Dimensional Flame Spread Over Liquid Fuel Pools
NASA Technical Reports Server (NTRS)
Ross, Howard D. (Technical Monitor); Cai, Jinsheng; Liu, Feng; Sirignano, William A.; Miller, Fletcher J.
2003-01-01
Schiller, Ross, and Sirignano (1996) studied ignition and flame spread above liquid fuels initially below the flashpoint temperature by using a two-dimensional computational fluid dynamics code that solves the coupled equations of both the gas and the liquid phases. Pulsating flame spread was attributed to the establishment of a gas-phase recirculation cell that forms just ahead of the flame leading edge because of the opposing effect of buoyancy-driven flow in the gas phase and the thermocapillary-driven flow in the liquid phase. Schiller and Sirignano (1996) extended the same study to include flame spread with forced opposed flow in the gas phase. A transitional flow velocity was found above which an originally uniform spreading flame pulsates. The same type of gas-phase recirculation cell caused by the combination of forced opposed flow, buoyancy-driven flow, and thermocapillary-driven concurrent flow was responsible for the pulsating flame spread. Ross and Miller (1998) and Miller and Ross (1998) performed experimental work that corroborates the computational findings of Schiller, Ross, and Sirignano (1996) and Schiller and Sirignano (1996). Cai, Liu, and Sirignano (2002) developed a more comprehensive three-dimensional model and computer code for the flame spread problem. Many improvements in modeling and numerical algorithms were incorporated in the three-dimensional model. Pools of finite width and length were studied in air channels of prescribed height and width. Significant three-dimensional effects around and along the pool edge were observed. The same three-dimensional code is used to study the detailed effects of pool depth, pool width, opposed air flow velocity, and different levels of air oxygen concentration (Cai, Liu, and Sirignano, 2003). Significant three-dimensional effects showing an unsteady wavy flame front for cases of wide pool width are found for the first time in computation, after being noted previously by experimental observers (Ross and Miller, 1999). Regions of uniform and pulsating flame spread are mapped for the flow conditions of pool depth, opposed flow velocity, initial pool temperature, and air oxygen concentration under both normal and microgravity conditions. Details can be found in Cai et al. (2002, 2003). Experimental results recently performed at NASA Glenn of flame spread across a wide, shallow pool as a function of liquid temperature are also presented here.
Computational fluid dynamics (CFD) study on the fetal aortic coarctation
NASA Astrophysics Data System (ADS)
Zhou, Yue; Zhang, Yutao; Wang, Jingying
2018-03-01
Blood flows in normal and coarctate fetal aortas are simulated by the CFD technique using T-rex grids. The three-dimensional (3-D) digital model of the fetal arota is reconstructed by the computer-aided design (CAD) software based on two-dimensional (2-D) ultrasono tomographic images. Simulation results displays the development and enhancement of the secondary flow structure in the coarctate fetal arota. As the diameter narrow ratio rises greater than 45%, the pressure and wall shear stress (WSS) of the aorta arch increase exponentially, which is consistent with the conventional clinical concept. The present study also demonstrates that CFD is a very promising assistant technique to investigate human cardiovascular diseases.
Unsteady Aerodynamic Modeling of A Maneuvering Aircraft Using Indicial Functions
2016-03-30
indicial functions are directly calculated using the results of unsteady Reynolds-averaged Navier - Stokes simulation and a grid-movement tool. Results are...but meanwhile, the full-order model based on Unsteady Reynolds-averaged Navier - Stokes (URANS) equation is too computationally expensive to be used...The flow solver used in this study solves the unsteady, three-dimensional and compressible Navier - Stokes equations. The equations in terms of
NASA Astrophysics Data System (ADS)
Owens, Mathew J.; Riley, Pete
2017-11-01
Long lead-time space-weather forecasting requires accurate prediction of the near-Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near-Sun solar wind and magnetic field conditions provide the inner boundary condition to three-dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics-based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near-Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near-Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near-Sun solar wind speed at a range of latitudes about the sub-Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun-Earth line. Propagating these conditions to Earth by a three-dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one-dimensional "upwind" scheme is used. The variance in the resulting near-Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996-2016, the upwind ensemble is found to provide a more "actionable" forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large).
Owens, Mathew J; Riley, Pete
2017-11-01
Long lead-time space-weather forecasting requires accurate prediction of the near-Earth solar wind. The current state of the art uses a coronal model to extrapolate the observed photospheric magnetic field to the upper corona, where it is related to solar wind speed through empirical relations. These near-Sun solar wind and magnetic field conditions provide the inner boundary condition to three-dimensional numerical magnetohydrodynamic (MHD) models of the heliosphere out to 1 AU. This physics-based approach can capture dynamic processes within the solar wind, which affect the resulting conditions in near-Earth space. However, this deterministic approach lacks a quantification of forecast uncertainty. Here we describe a complementary method to exploit the near-Sun solar wind information produced by coronal models and provide a quantitative estimate of forecast uncertainty. By sampling the near-Sun solar wind speed at a range of latitudes about the sub-Earth point, we produce a large ensemble (N = 576) of time series at the base of the Sun-Earth line. Propagating these conditions to Earth by a three-dimensional MHD model would be computationally prohibitive; thus, a computationally efficient one-dimensional "upwind" scheme is used. The variance in the resulting near-Earth solar wind speed ensemble is shown to provide an accurate measure of the forecast uncertainty. Applying this technique over 1996-2016, the upwind ensemble is found to provide a more "actionable" forecast than a single deterministic forecast; potential economic value is increased for all operational scenarios, but particularly when false alarms are important (i.e., where the cost of taking mitigating action is relatively large).
The development of the Canadian Mobile Servicing System Kinematic Simulation Facility
NASA Technical Reports Server (NTRS)
Beyer, G.; Diebold, B.; Brimley, W.; Kleinberg, H.
1989-01-01
Canada will develop a Mobile Servicing System (MSS) as its contribution to the U.S./International Space Station Freedom. Components of the MSS will include a remote manipulator (SSRMS), a Special Purpose Dexterous Manipulator (SPDM), and a mobile base (MRS). In order to support requirements analysis and the evaluation of operational concepts related to the use of the MSS, a graphics based kinematic simulation/human-computer interface facility has been created. The facility consists of the following elements: (1) A two-dimensional graphics editor allowing the rapid development of virtual control stations; (2) Kinematic simulations of the space station remote manipulators (SSRMS and SPDM), and mobile base; and (3) A three-dimensional graphics model of the space station, MSS, orbiter, and payloads. These software elements combined with state of the art computer graphics hardware provide the capability to prototype MSS workstations, evaluate MSS operational capabilities, and investigate the human-computer interface in an interactive simulation environment. The graphics technology involved in the development and use of this facility is described.
Cross Validation Through Two-Dimensional Solution Surface for Cost-Sensitive SVM.
Gu, Bin; Sheng, Victor S; Tay, Keng Yeow; Romano, Walter; Li, Shuo
2017-06-01
Model selection plays an important role in cost-sensitive SVM (CS-SVM). It has been proven that the global minimum cross validation (CV) error can be efficiently computed based on the solution path for one parameter learning problems. However, it is a challenge to obtain the global minimum CV error for CS-SVM based on one-dimensional solution path and traditional grid search, because CS-SVM is with two regularization parameters. In this paper, we propose a solution and error surfaces based CV approach (CV-SES). More specifically, we first compute a two-dimensional solution surface for CS-SVM based on a bi-parameter space partition algorithm, which can fit solutions of CS-SVM for all values of both regularization parameters. Then, we compute a two-dimensional validation error surface for each CV fold, which can fit validation errors of CS-SVM for all values of both regularization parameters. Finally, we obtain the CV error surface by superposing K validation error surfaces, which can find the global minimum CV error of CS-SVM. Experiments are conducted on seven datasets for cost sensitive learning and on four datasets for imbalanced learning. Experimental results not only show that our proposed CV-SES has a better generalization ability than CS-SVM with various hybrids between grid search and solution path methods, and than recent proposed cost-sensitive hinge loss SVM with three-dimensional grid search, but also show that CV-SES uses less running time.
Multi-GPU accelerated three-dimensional FDTD method for electromagnetic simulation.
Nagaoka, Tomoaki; Watanabe, Soichi
2011-01-01
Numerical simulation with a numerical human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the numerical human model, we adapt three-dimensional FDTD code to a multi-GPU environment using Compute Unified Device Architecture (CUDA). In this study, we used NVIDIA Tesla C2070 as GPGPU boards. The performance of multi-GPU is evaluated in comparison with that of a single GPU and vector supercomputer. The calculation speed with four GPUs was approximately 3.5 times faster than with a single GPU, and was slightly (approx. 1.3 times) slower than with the supercomputer. Calculation speed of the three-dimensional FDTD method using GPUs can significantly improve with an expanding number of GPUs.
Peng, Kuan; He, Ling; Zhu, Ziqiang; Tang, Jingtian; Xiao, Jiaying
2013-12-01
Compared with commonly used analytical reconstruction methods, the frequency-domain finite element method (FEM) based approach has proven to be an accurate and flexible algorithm for photoacoustic tomography. However, the FEM-based algorithm is computationally demanding, especially for three-dimensional cases. To enhance the algorithm's efficiency, in this work a parallel computational strategy is implemented in the framework of the FEM-based reconstruction algorithm using a graphic-processing-unit parallel frame named the "compute unified device architecture." A series of simulation experiments is carried out to test the accuracy and accelerating effect of the improved method. The results obtained indicate that the parallel calculation does not change the accuracy of the reconstruction algorithm, while its computational cost is significantly reduced by a factor of 38.9 with a GTX 580 graphics card using the improved method.
Schiek, Richard [Albuquerque, NM
2006-06-20
A method of generating two-dimensional masks from a three-dimensional model comprises providing a three-dimensional model representing a micro-electro-mechanical structure for manufacture and a description of process mask requirements, reducing the three-dimensional model to a topological description of unique cross sections, and selecting candidate masks from the unique cross sections and the cross section topology. The method further can comprise reconciling the candidate masks based on the process mask requirements description to produce two-dimensional process masks.
Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2005-01-01
Three-dimensional numerical investigations on the start-up side load physics for a regeneratively cooled, high-aspect-ratio nozzle were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system simulation. Computations were performed for both the adiabatic and cooled walls in order to understand the effect of boundary conditions. Finite-rate chemistry was used throughout the study so that combustion effect is always included. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with oscillation of shocks across the lip. Wall boundary conditions drastically affect the computed side load physics: the adiabatic nozzle prefers free-shock separation while the cooled nozzle favors restricted-shock separation, resulting in higher peak side load for the cooled nozzle than that of the adiabatic nozzle. By comparing the computed physics with those of test observations, it is concluded that cooled wall is a more realistic boundary condition, and the oscillation of the restricted-shock separation flow pattern across the lip along with its associated tangential shock motion are the dominant side load physics for a regeneratively cooled, high aspect-ratio rocket engine.
An Empirically Derived Three-Dimensional Laplace Resonance in the GJ 876 Planetary System
NASA Astrophysics Data System (ADS)
Nelson, Benjamin Earl; Robertson, Paul; Pritchard, Seth
2015-08-01
We report constraints on the three-dimensional orbital architecture for all four planets known to orbit the nearby M dwarf Gliese 876 (=GJ 876) based solely on Doppler measurements and demanding long-term orbital stability. Our dataset incorporates publicly available radial velocities taken with the ELODIE and CORALIE spectrographs, HARPS, and Keck HIRES as well as previously unpublished HIRES RVs. We first quantitatively assess the validity of the planets thought to orbit GJ 876 by computing the Bayes factors for a variety of different coplanar models using an importance sampling algorithm. We confirm that a four-planet model is indeed preferred over a three-planet model. Next, we apply a Newtonian MCMC algorithm (RUN DMC, B. Nelson et al. 2014) to perform a Bayesian analysis of the planet masses and orbits using an n-body model that allows each planet to take on its own orbit in three-dimensional space. Based on the radial velocities alone, the mutual inclinations for the outer three resonant planets are constrained to Φcb = 2.8±1.71.3 degrees for the "c" and "b" pair and Φbe = 10.3±6.35.1 degrees for the "b" and "e" pair. We integrate the equations of motion of a sample of initial conditions drawn from our posterior for 107 years. We identify dynamically unstable models and find that the GJ 876 planets must be roughly coplanar (Φcb = 1.41±0.620.57 degrees) and (Φbe = 3.9±2.01.9 degrees), indicating the amount of planet-planet scattering in the system has been low. We investigate the distribution of the respective resonant arguments of each planet pair and find that at least one resonant argument for each planet pair and the Laplace argument librate. The libration amplitudes in our three-dimensional orbital model supports the idea of the outer-three planets having undergone significant past disk migration.
A computer program for uncertainty analysis integrating regression and Bayesian methods
Lu, Dan; Ye, Ming; Hill, Mary C.; Poeter, Eileen P.; Curtis, Gary
2014-01-01
This work develops a new functionality in UCODE_2014 to evaluate Bayesian credible intervals using the Markov Chain Monte Carlo (MCMC) method. The MCMC capability in UCODE_2014 is based on the FORTRAN version of the differential evolution adaptive Metropolis (DREAM) algorithm of Vrugt et al. (2009), which estimates the posterior probability density function of model parameters in high-dimensional and multimodal sampling problems. The UCODE MCMC capability provides eleven prior probability distributions and three ways to initialize the sampling process. It evaluates parametric and predictive uncertainties and it has parallel computing capability based on multiple chains to accelerate the sampling process. This paper tests and demonstrates the MCMC capability using a 10-dimensional multimodal mathematical function, a 100-dimensional Gaussian function, and a groundwater reactive transport model. The use of the MCMC capability is made straightforward and flexible by adopting the JUPITER API protocol. With the new MCMC capability, UCODE_2014 can be used to calculate three types of uncertainty intervals, which all can account for prior information: (1) linear confidence intervals which require linearity and Gaussian error assumptions and typically 10s–100s of highly parallelizable model runs after optimization, (2) nonlinear confidence intervals which require a smooth objective function surface and Gaussian observation error assumptions and typically 100s–1,000s of partially parallelizable model runs after optimization, and (3) MCMC Bayesian credible intervals which require few assumptions and commonly 10,000s–100,000s or more partially parallelizable model runs. Ready access allows users to select methods best suited to their work, and to compare methods in many circumstances.
ERIC Educational Resources Information Center
Wee, Loo Kang
2012-01-01
We develop an Easy Java Simulation (EJS) model for students to experience the physics of idealized one-dimensional collision carts. The physics model is described and simulated by both continuous dynamics and discrete transition during collision. In designing the simulations, we discuss briefly three pedagogical considerations namely (1) a…
An Invitation to the Mathematics of Topological Quantum Computation
NASA Astrophysics Data System (ADS)
Rowell, E. C.
2016-03-01
Two-dimensional topological states of matter offer a route to quantum computation that would be topologically protected against the nemesis of the quantum circuit model: decoherence. Research groups in industry, government and academic institutions are pursuing this approach. We give a mathematician's perspective on some of the advantages and challenges of this model, highlighting some recent advances. We then give a short description of how we might extend the theory to three-dimensional materials.
NASA Astrophysics Data System (ADS)
Mohib Ur Rehman, M.; Qu, Z. G.; Fu, R. P.
2016-10-01
This Article presents a three dimensional numerical model investigating thermal performance and hydrodynamics features of the confined slot jet impingement using slurry of Nano Encapsulated Phase Change Material (NEPCM) as a coolant. The slurry is composed of water as a base fluid and n-octadecane NEPCM particles with mean diameter of 100nm suspended in it. A single phase fluid approach is employed to model the NEPCM slurry.The thermo physical properties of the NEPCM slurry are computed using modern approaches being proposed recently and governing equations are solved with a commercial Finite Volume based code. The effects of jet Reynolds number varying from 100 to 600 and particle volume fraction ranging from 0% to 28% are considered. The computed results are validated by comparing Nusselt number values at stagnation point with the previously published results with water as working fluid. It was found that adding NEPCM to the base fluid results with considerable amount of heat transfer enhancement.The highest values of heat transfer coefficients are observed at H/W=4 and Cm=0.28. However, due to the higher viscosity of slurry compared with the base fluid, the slurry can produce drastic increase in pressure drop of the system that increases with NEPCM particle loading and jet Reynolds number.
Computational fluid dynamic modelling of cavitation
NASA Technical Reports Server (NTRS)
Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.
1993-01-01
Models in sheet cavitation in cryogenic fluids are developed for use in Euler and Navier-Stokes codes. The models are based upon earlier potential-flow models but enable the cavity inception point, length, and shape to be determined as part of the computation. In the present paper, numerical solutions are compared with experimental measurements for both pressure distribution and cavity length. Comparisons between models are also presented. The CFD model provides a relatively simple modification to an existing code to enable cavitation performance predictions to be included. The analysis also has the added ability of incorporating thermodynamic effects of cryogenic fluids into the analysis. Extensions of the current two-dimensional steady state analysis to three-dimensions and/or time-dependent flows are, in principle, straightforward although geometrical issues become more complicated. Linearized models, however offer promise of providing effective cavitation modeling in three-dimensions. This analysis presents good potential for improved understanding of many phenomena associated with cavity flows.
Jian, Jhih-Wei; Elumalai, Pavadai; Pitti, Thejkiran; Wu, Chih Yuan; Tsai, Keng-Chang; Chang, Jeng-Yih; Peng, Hung-Pin; Yang, An-Suei
2016-01-01
Predicting ligand binding sites (LBSs) on protein structures, which are obtained either from experimental or computational methods, is a useful first step in functional annotation or structure-based drug design for the protein structures. In this work, the structure-based machine learning algorithm ISMBLab-LIG was developed to predict LBSs on protein surfaces with input attributes derived from the three-dimensional probability density maps of interacting atoms, which were reconstructed on the query protein surfaces and were relatively insensitive to local conformational variations of the tentative ligand binding sites. The prediction accuracy of the ISMBLab-LIG predictors is comparable to that of the best LBS predictors benchmarked on several well-established testing datasets. More importantly, the ISMBLab-LIG algorithm has substantial tolerance to the prediction uncertainties of computationally derived protein structure models. As such, the method is particularly useful for predicting LBSs not only on experimental protein structures without known LBS templates in the database but also on computationally predicted model protein structures with structural uncertainties in the tentative ligand binding sites. PMID:27513851
A combined direct/inverse three-dimensional transonic wing design method for vector computers
NASA Technical Reports Server (NTRS)
Weed, R. A.; Carlson, L. A.; Anderson, W. K.
1984-01-01
A three-dimensional transonic-wing design algorithm for vector computers is developed, and the results of sample computations are presented graphically. The method incorporates the direct/inverse scheme of Carlson (1975), a Cartesian grid system with boundary conditions applied at a mean plane, and a potential-flow solver based on the conservative form of the full potential equation and using the ZEBRA II vectorizable solution algorithm of South et al. (1980). The accuracy and consistency of the method with regard to direct and inverse analysis and trailing-edge closure are verified in the test computations.
NASA Astrophysics Data System (ADS)
Gillet, Jean-Numa; Degorce, Jean-Yves; Belisle, Jonathan; Meunier, Michel
2004-03-01
Three-dimensional modeling of n^+-ν -n^+ and p^+-π -p^+ semiconducting devices for analog ULSI microelectronics Jean-Numa Gillet,^a,b Jean-Yves Degorce,^a Jonathan Bélisle^a and Michel Meunier.^a,c ^a École Polytechnique de Montréal, Dept. of Engineering Physics, CP 6079, Succ. Centre-vile, Montréal, Québec H3C 3A7, Canada. ^b Corresponding author. Email: Jean-Numa.Gillet@polymtl.ca ^c Also with LTRIM Technologies, 140-440, boul. A.-Frappier, Laval, Québec H7V 4B4, Canada. We present for the first time three-dimensional (3-D) modeling of n^+-ν -n^+ and p^+-π -p^+ semiconducting resistors, which are fabricated by laser-induced doping in a gateless MOSFET and present significant applications for analog ULSI microelectronics. Our modeling software is made up of three steps. The two first concerns modeling of a new laser-trimming fabrication process. With the molten-silicon temperature distribution obtained from the first, we compute in the second the 3-D dopant distribution, which creates the electrical link through the device gap. In this paper the emphasis is on the third step, which concerns 3-D modeling of the resistor electronic behavior with a new tube multiplexing algorithm (TMA). The device current-voltage (I-V) curve is usually obtained by solving three coupled partial differential equations with a finite-element method. A 3-D device as our resistor cannot be modeled with this classical method owing to its prohibitive computational cost in three dimensions. This problem is however avoided by our TMA, which divides the 3-D device into one-dimensional (1-D) multiplexed tubes. In our TMA 1-D systems of three ordinary differential equations are solved to determine the 3-D device I-V curve, which substantially increases computation speed compared with the classical method. Numerical results show a good agreement with experiments.
NASA Technical Reports Server (NTRS)
Groves, Curtis Edward
2014-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional "validation by test only" mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system. Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.
NASA Technical Reports Server (NTRS)
Groves, Curtis Edward
2014-01-01
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional validation by test only mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions.Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations. This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System spacecraft system.Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.
Karasick, Michael S.; Strip, David R.
1996-01-01
A parallel computing system is described that comprises a plurality of uniquely labeled, parallel processors, each processor capable of modelling a three-dimensional object that includes a plurality of vertices, faces and edges. The system comprises a front-end processor for issuing a modelling command to the parallel processors, relating to a three-dimensional object. Each parallel processor, in response to the command and through the use of its own unique label, creates a directed-edge (d-edge) data structure that uniquely relates an edge of the three-dimensional object to one face of the object. Each d-edge data structure at least includes vertex descriptions of the edge and a description of the one face. As a result, each processor, in response to the modelling command, operates upon a small component of the model and generates results, in parallel with all other processors, without the need for processor-to-processor intercommunication.
NASA Astrophysics Data System (ADS)
Davis, L. J.; Boggess, M.; Kodpuak, E.; Deutsch, M.
2012-11-01
We report on a model for the deposition of three dimensional, aggregated nanocrystalline silver films, and an efficient numerical simulation method developed for visualizing such structures. We compare our results to a model system comprising chemically deposited silver films with morphologies ranging from dilute, uniform distributions of nanoparticles to highly porous aggregated networks. Disordered silver films grown in solution on silica substrates are characterized using digital image analysis of high resolution scanning electron micrographs. While the latter technique provides little volume information, plane-projected (two dimensional) island structure and surface coverage may be reliably determined. Three parameters governing film growth are evaluated using these data and used as inputs for the deposition model, greatly reducing computing requirements while still providing direct access to the complete (bulk) structure of the films throughout the growth process. We also show how valuable three dimensional characteristics of the deposited materials can be extracted using the simulated structures.
Numerical modeling of local scour around hydraulic structure in sandy beds by dynamic mesh method
NASA Astrophysics Data System (ADS)
Fan, Fei; Liang, Bingchen; Bai, Yuchuan; Zhu, Zhixia; Zhu, Yanjun
2017-10-01
Local scour, a non-negligible factor in hydraulic engineering, endangers the safety of hydraulic structures. In this work, a numerical model for simulating local scour was constructed, based on the open source code computational fluid dynamics model OpenFOAM. We consider both the bedload and suspended load sediment transport in the scour model and adopt the dynamic mesh method to simulate the evolution of the bed elevation. We use the finite area method to project data between the three-dimensional flow model and the two-dimensional (2D) scour model. We also improved the 2D sand slide method and added it to the scour model to correct the bed bathymetry when the bed slope angle exceeds the angle of repose. Moreover, to validate our scour model, we conducted and compared the results of three experiments with those of the developed model. The validation results show that our developed model can reliably simulate local scour.
NASA Astrophysics Data System (ADS)
Miller, K. L.; Berg, S. J.; Davison, J. H.; Sudicky, E. A.; Forsyth, P. A.
2018-01-01
Although high performance computers and advanced numerical methods have made the application of fully-integrated surface and subsurface flow and transport models such as HydroGeoSphere common place, run times for large complex basin models can still be on the order of days to weeks, thus, limiting the usefulness of traditional workhorse algorithms for uncertainty quantification (UQ) such as Latin Hypercube simulation (LHS) or Monte Carlo simulation (MCS), which generally require thousands of simulations to achieve an acceptable level of accuracy. In this paper we investigate non-intrusive polynomial chaos for uncertainty quantification, which in contrast to random sampling methods (e.g., LHS and MCS), represents a model response of interest as a weighted sum of polynomials over the random inputs. Once a chaos expansion has been constructed, approximating the mean, covariance, probability density function, cumulative distribution function, and other common statistics as well as local and global sensitivity measures is straightforward and computationally inexpensive, thus making PCE an attractive UQ method for hydrologic models with long run times. Our polynomial chaos implementation was validated through comparison with analytical solutions as well as solutions obtained via LHS for simple numerical problems. It was then used to quantify parametric uncertainty in a series of numerical problems with increasing complexity, including a two-dimensional fully-saturated, steady flow and transient transport problem with six uncertain parameters and one quantity of interest; a one-dimensional variably-saturated column test involving transient flow and transport, four uncertain parameters, and two quantities of interest at 101 spatial locations and five different times each (1010 total); and a three-dimensional fully-integrated surface and subsurface flow and transport problem for a small test catchment involving seven uncertain parameters and three quantities of interest at 241 different times each. Numerical experiments show that polynomial chaos is an effective and robust method for quantifying uncertainty in fully-integrated hydrologic simulations, which provides a rich set of features and is computationally efficient. Our approach has the potential for significant speedup over existing sampling based methods when the number of uncertain model parameters is modest ( ≤ 20). To our knowledge, this is the first implementation of the algorithm in a comprehensive, fully-integrated, physically-based three-dimensional hydrosystem model.
Computer Applications in the Design Process.
ERIC Educational Resources Information Center
Winchip, Susan
Computer Assisted Design (CAD) and Computer Assisted Manufacturing (CAM) are emerging technologies now being used in home economics and interior design applications. A microcomputer in a computer network system is capable of executing computer graphic functions such as three-dimensional modeling, as well as utilizing office automation packages to…
Three-dimensional marginal separation
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1988-01-01
The three dimensional marginal separation of a boundary layer along a line of symmetry is considered. The key equation governing the displacement function is derived, and found to be a nonlinear integral equation in two space variables. This is solved iteratively using a pseudo-spectral approach, based partly in double Fourier space, and partly in physical space. Qualitatively, the results are similar to previously reported two dimensional results (which are also computed to test the accuracy of the numerical scheme); however quantitatively the three dimensional results are much different.
Direct numerical simulation of human phonation
NASA Astrophysics Data System (ADS)
Bodony, Daniel; Saurabh, Shakti
2017-11-01
The generation and propagation of the human voice in three-dimensions is studied using direct numerical simulation. A full body domain is employed for the purpose of directly computing the sound in the region past the speaker's mouth. The air in the vocal tract is modeled as a compressible and viscous fluid interacting with the elastic vocal folds. The vocal fold tissue material properties are multi-layered, with varying stiffness, and a linear elastic transversely isotropic model is utilized and implemented in a quadratic finite element code. The fluid-solid domains are coupled through a boundary-fitted interface and utilize a Poisson equation-based mesh deformation method. A kinematic constraint based on a specified minimum gap between the vocal folds is applied to prevent collision during glottal closure. Both near VF flow dynamics and far-field acoustics have been studied. A comparison is drawn to current two-dimensional simulations as well as to data from the literature. Near field vocal fold dynamics and glottal flow results are studied and in good agreement with previous three-dimensional phonation studies. Far-field acoustic characteristics, when compared to their two-dimensional counterpart, are shown to be sensitive to the dimensionality. Supported by the National Science Foundation (CAREER Award Number 1150439).
Xue, Qian; Zheng, Xudong; Mittal, Rajat; Bielamowicz, Steven
2014-07-01
The present study explores the use of a continuum-based computational model to investigate the effect of left-right tension imbalance on vocal fold (VF) vibrations and glottal aerodynamics, as well as its implication on phonation. The study allows us to gain new insights into the underlying physical mechanism of irregularities induced by VF tension imbalance associated with unilateral cricothyroid muscle paralysis. A three-dimensional simulation of glottal flow and VF dynamics in a tubular laryngeal model with tension imbalance was conducted by using a coupled flow-structure interaction computational model. Tension imbalance was modeled by reducing by 20% the Young's modulus of one of the VFs, while holding VF length constant. Effects of tension imbalance on vibratory characteristic of the VFs and on the time-varying properties of glottal airflow as well as the aerodynamic energy transfer are comprehensively analyzed. The analysis demonstrates that the continuum-based biomechanical model can provide a good description of phonatory dynamics in tension imbalance conditions. It is found that although 20% tension imbalance does not have noticeable effects on the fundamental frequency, it does lead to a larger glottal flow leakage and asymmetric vibrations of the two VFs. A detailed analysis of the energy transfer suggests that the majority of the energy is consumed by the lateral motion of the VFs and the net energy transferred to the softer fold is less than the one transferred to the normal fold. Copyright © 2014 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Scene analysis for effective visual search in rough three-dimensional-modeling scenes
NASA Astrophysics Data System (ADS)
Wang, Qi; Hu, Xiaopeng
2016-11-01
Visual search is a fundamental technology in the computer vision community. It is difficult to find an object in complex scenes when there exist similar distracters in the background. We propose a target search method in rough three-dimensional-modeling scenes based on a vision salience theory and camera imaging model. We give the definition of salience of objects (or features) and explain the way that salience measurements of objects are calculated. Also, we present one type of search path that guides to the target through salience objects. Along the search path, when the previous objects are localized, the search region of each subsequent object decreases, which is calculated through imaging model and an optimization method. The experimental results indicate that the proposed method is capable of resolving the ambiguities resulting from distracters containing similar visual features with the target, leading to an improvement of search speed by over 50%.
Leahy, P.P.
1982-01-01
The Trescott computer program for modeling groundwater flow in three dimensions has been modified to (1) treat aquifer and confining bed pinchouts more realistically and (2) reduce the computer memory requirements needed for the input data. Using the original program, simulation of aquifer systems with nonrectangular external boundaries may result in a large number of nodes that are not involved in the numerical solution of the problem, but require computer storage. (USGS)
APPLE - An aeroelastic analysis system for turbomachines and propfans
NASA Technical Reports Server (NTRS)
Reddy, T. S. R.; Bakhle, Milind A.; Srivastava, R.; Mehmed, Oral
1992-01-01
This paper reviews aeroelastic analysis methods for propulsion elements (advanced propellers, compressors and turbines) being developed and used at NASA Lewis Research Center. These aeroelastic models include both structural and aerodynamic components. The structural models include the typical section model, the beam model with and without disk flexibility, and the finite element blade model with plate bending elements. The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation for a cascade to the three-dimensional Euler equations for multi-blade configurations. Typical results are presented for each aeroelastic model. Suggestions for further research are indicated. All the available aeroelastic models and analysis methods are being incorporated into a unified computer program named APPLE (Aeroelasticity Program for Propulsion at LEwis).
NASA Astrophysics Data System (ADS)
Sizov, Gennadi Y.
In this dissertation, a model-based multi-objective optimal design of permanent magnet ac machines, supplied by sine-wave current regulated drives, is developed and implemented. The design procedure uses an efficient electromagnetic finite element-based solver to accurately model nonlinear material properties and complex geometric shapes associated with magnetic circuit design. Application of an electromagnetic finite element-based solver allows for accurate computation of intricate performance parameters and characteristics. The first contribution of this dissertation is the development of a rapid computational method that allows accurate and efficient exploration of large multi-dimensional design spaces in search of optimum design(s). The computationally efficient finite element-based approach developed in this work provides a framework of tools that allow rapid analysis of synchronous electric machines operating under steady-state conditions. In the developed modeling approach, major steady-state performance parameters such as, winding flux linkages and voltages, average, cogging and ripple torques, stator core flux densities, core losses, efficiencies and saturated machine winding inductances, are calculated with minimum computational effort. In addition, the method includes means for rapid estimation of distributed stator forces and three-dimensional effects of stator and/or rotor skew on the performance of the machine. The second contribution of this dissertation is the development of the design synthesis and optimization method based on a differential evolution algorithm. The approach relies on the developed finite element-based modeling method for electromagnetic analysis and is able to tackle large-scale multi-objective design problems using modest computational resources. Overall, computational time savings of up to two orders of magnitude are achievable, when compared to current and prevalent state-of-the-art methods. These computational savings allow one to expand the optimization problem to achieve more complex and comprehensive design objectives. The method is used in the design process of several interior permanent magnet industrial motors. The presented case studies demonstrate that the developed finite element-based approach practically eliminates the need for using less accurate analytical and lumped parameter equivalent circuit models for electric machine design optimization. The design process and experimental validation of the case-study machines are detailed in the dissertation.
Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model
Warner, J.C.; Sherwood, C.R.; Signell, R.P.; Harris, C.K.; Arango, H.G.
2008-01-01
We are developing a three-dimensional numerical model that implements algorithms for sediment transport and evolution of bottom morphology in the coastal-circulation model Regional Ocean Modeling System (ROMS v3.0), and provides a two-way link between ROMS and the wave model Simulating Waves in the Nearshore (SWAN) via the Model-Coupling Toolkit. The coupled model is applicable for fluvial, estuarine, shelf, and nearshore (surfzone) environments. Three-dimensional radiation-stress terms have been included in the momentum equations, along with effects of a surface wave roller model. The sediment-transport algorithms are implemented for an unlimited number of user-defined non-cohesive sediment classes. Each class has attributes of grain diameter, density, settling velocity, critical stress threshold for erosion, and erodibility constant. Suspended-sediment transport in the water column is computed with the same advection-diffusion algorithm used for all passive tracers and an additional algorithm for vertical settling that is not limited by the CFL criterion. Erosion and deposition are based on flux formulations. A multi-level bed framework tracks the distribution of every size class in each layer and stores bulk properties including layer thickness, porosity, and mass, allowing computation of bed morphology and stratigraphy. Also tracked are bed-surface properties including active-layer thickness, ripple geometry, and bed roughness. Bedload transport is calculated for mobile sediment classes in the top layer. Bottom-boundary layer submodels parameterize wave-current interactions that enhance bottom stresses and thereby facilitate sediment transport and increase bottom drag, creating a feedback to the circulation. The model is demonstrated in a series of simple test cases and a realistic application in Massachusetts Bay.
Advanced numerical methods for three dimensional two-phase flow calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toumi, I.; Caruge, D.
1997-07-01
This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses anmore » extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.« less
Giesel, Frederik L; Mehndiratta, Amit; von Tengg-Kobligk, Hendrik; Schaeffer, A; Teh, Kevin; Hoffman, E A; Kauczor, Hans-Ulrich; van Beek, E J R; Wild, Jim M
2009-04-01
Three-dimensional image reconstruction by volume rendering and rapid prototyping has made it possible to visualize anatomic structures in three dimensions for interventional planning and academic research. Volumetric chest computed tomography was performed on a healthy volunteer. Computed tomographic images of the larger bronchial branches were segmented by an extended three-dimensional region-growing algorithm, converted into a stereolithography file, and used for computer-aided design on a laser sintering machine. The injection of gases for respiratory flow modeling and measurements using magnetic resonance imaging were done on a hollow cast. Manufacturing the rapid prototype took about 40 minutes and included the airway tree from trackea to segmental bronchi (fifth generation). The branching of the airways are clearly visible in the (3)He images, and the radial imaging has the potential to elucidate the airway dimensions. The results for flow patterns in the human bronchial tree using the rapid-prototype model with hyperpolarized helium-3 magnetic resonance imaging show the value of this model for flow phantom studies.
Olszewski, Raphael; Szymor, Piotr; Kozakiewicz, Marcin
2014-12-01
Our study aimed to determine the accuracy of a low-cost, paper-based 3D printer by comparing a dry human mandible to its corresponding three-dimensional (3D) model using a 3D measuring arm. One dry human mandible and its corresponding printed model were evaluated. The model was produced using DICOM data from cone beam computed tomography. The data were imported into Maxilim software, wherein automatic segmentation was performed, and the STL file was saved. These data were subsequently analysed, repaired, cut and prepared for printing with netfabb software. These prepared data were used to create a paper-based model of a mandible with an MCor Matrix 300 printer. Seventy-six anatomical landmarks were chosen and measured 20 times on the mandible and the model using a MicroScribe G2X 3D measuring arm. The distances between all the selected landmarks were measured and compared. Only landmarks with a point inaccuracy less than 30% were used in further analyses. The mean absolute difference for the selected 2016 measurements was 0.36 ± 0.29 mm. The mean relative difference was 1.87 ± 3.14%; however, the measurement length significantly influenced the relative difference. The accuracy of the 3D model printed using the paper-based, low-cost 3D Matrix 300 printer was acceptable. The average error was no greater than that measured with other types of 3D printers. The mean relative difference should not be considered the best way to compare studies. The point inaccuracy methodology proposed in this study may be helpful in future studies concerned with evaluating the accuracy of 3D rapid prototyping models. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Unsteady Thick Airfoil Aerodynamics: Experiments, Computation, and Theory
NASA Technical Reports Server (NTRS)
Strangfeld, C.; Rumsey, C. L.; Mueller-Vahl, H.; Greenblatt, D.; Nayeri, C. N.; Paschereit, C. O.
2015-01-01
An experimental, computational and theoretical investigation was carried out to study the aerodynamic loads acting on a relatively thick NACA 0018 airfoil when subjected to pitching and surging, individually and synchronously. Both pre-stall and post-stall angles of attack were considered. Experiments were carried out in a dedicated unsteady wind tunnel, with large surge amplitudes, and airfoil loads were estimated by means of unsteady surface mounted pressure measurements. Theoretical predictions were based on Theodorsen's and Isaacs' results as well as on the relatively recent generalizations of van der Wall. Both two- and three-dimensional computations were performed on structured grids employing unsteady Reynolds-averaged Navier-Stokes (URANS). For pure surging at pre-stall angles of attack, the correspondence between experiments and theory was satisfactory; this served as a validation of Isaacs theory. Discrepancies were traced to dynamic trailing-edge separation, even at low angles of attack. Excellent correspondence was found between experiments and theory for airfoil pitching as well as combined pitching and surging; the latter appears to be the first clear validation of van der Wall's theoretical results. Although qualitatively similar to experiment at low angles of attack, two-dimensional URANS computations yielded notable errors in the unsteady load effects of pitching, surging and their synchronous combination. The main reason is believed to be that the URANS equations do not resolve wake vorticity (explicitly modeled in the theory) or the resulting rolled-up un- steady flow structures because high values of eddy viscosity tend to \\smear" the wake. At post-stall angles, three-dimensional computations illustrated the importance of modeling the tunnel side walls.
Transient Three-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2004-01-01
Three-dimensional numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, and pressure-based computational fluid dynamics formulation, and a simulated inlet condition based on a system calculation. Finite-rate chemistry was used throughout the study so that combustion effect is always included, and the effect of wall cooling on side load physics is studied. The side load physics captured include the afterburning wave, transition from free- shock to restricted-shock separation, and lip Lambda shock oscillation. With the adiabatic nozzle, free-shock separation reappears after the transition from free-shock separation to restricted-shock separation, and the subsequent flow pattern of the simultaneous free-shock and restricted-shock separations creates a very asymmetric Mach disk flow. With the cooled nozzle, the more symmetric restricted-shock separation persisted throughout the start-up transient after the transition, leading to an overall lower side load than that of the adiabatic nozzle. The tepee structures corresponding to the maximum side load were addressed.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Baaklini, George Y.; Bhatt, Ramakrishna T.
2003-01-01
Most reverse engineering approaches involve imaging or digitizing an object and then creating a computerized reconstruction that can be integrated, in three dimensions, into a particular design environment. The rapid prototyping technique builds high-quality physical prototypes directly from computer-aided design files. This fundamental technique for interpreting and interacting with large data sets is being used here via Velocity2 (an integrated image-processing software, ref. 1) using computed tomography (CT) data to produce a prototype three-dimensional test specimen model for analyses. A study at the NASA Glenn Research Center proposes to use these capabilities to conduct a combined nondestructive evaluation (NDE) and finite element analysis (FEA) to screen pretest and posttest structural anomalies in structural components. A tensile specimen made of silicon nitrite (Si3N4) ceramic matrix composite was considered to evaluate structural durability and deformity. Ceramic matrix composites are being sought as candidate materials to replace nickel-base superalloys for turbine engine applications. They have the unique characteristics of being able to withstand higher operating temperatures and harsh combustion environments. In addition, their low densities relative to metals help reduce component mass (ref. 2). Detailed three-dimensional volume rendering of the tensile test specimen was successfully carried out with Velocity2 (ref. 1) using two-dimensional images that were generated via computed tomography. Subsequent, three-dimensional finite element analyses were performed, and the results obtained were compared with those predicted by NDE-based calculations and experimental tests. It was shown that Velocity2 software can be used to render a three-dimensional object from a series of CT scan images with a minimum level of complexity. The analytical results (ref. 3) show that the high-stress regions correlated well with the damage sites identified by the CT scans and the experimental data. Furthermore, modeling of the voids collected via NDE offered an analytical advantage that resulted in more accurate assessments of the material s structural strength. The top figure shows a CT scan image of the specimen test section illustrating various hidden structural entities in the material and an optical image of the test specimen considered in this study. The bottom figure represents the stress response predicted from the finite element analyses (ref .3 ) for a selected CT slice where it clearly illustrates the correspondence of the high stress risers due to voids in the material with those predicted by the NDE. This study is continuing, and efforts are concentrated on improving the modeling capabilities to imitate the structural anomalies as detected.
COMOC 2: Two-dimensional aerodynamics sequence, computer program user's guide
NASA Technical Reports Server (NTRS)
Manhardt, P. D.; Orzechowski, J. A.; Baker, A. J.
1977-01-01
The COMOC finite element fluid mechanics computer program system is applicable to diverse problem classes. The two dimensional aerodynamics sequence was established for solution of the potential and/or viscous and turbulent flowfields associated with subsonic flight of elementary two dimensional isolated airfoils. The sequence is constituted of three specific flowfield options in COMOC for two dimensional flows. These include the potential flow option, the boundary layer option, and the parabolic Navier-Stokes option. By sequencing through these options, it is possible to computationally construct a weak-interaction model of the aerodynamic flowfield. This report is the user's guide to operation of COMOC for the aerodynamics sequence.
NASA Astrophysics Data System (ADS)
Sivasubramaniam, Kiruba
This thesis makes advances in three dimensional finite element analysis of electrical machines and the quantification of their parameters and performance. The principal objectives of the thesis are: (1)the development of a stable and accurate method of nonlinear three-dimensional field computation and application to electrical machinery and devices; and (2)improvement in the accuracy of determination of performance parameters, particularly forces and torque computed from finite elements. Contributions are made in two general areas: a more efficient formulation for three dimensional finite element analysis which saves time and improves accuracy, and new post-processing techniques to calculate flux density values from a given finite element solution. A novel three-dimensional magnetostatic solution based on a modified scalar potential method is implemented. This method has significant advantages over the traditional total scalar, reduced scalar or vector potential methods. The new method is applied to a 3D geometry of an iron core inductor and a permanent magnet motor. The results obtained are compared with those obtained from traditional methods, in terms of accuracy and speed of computation. A technique which has been observed to improve force computation in two dimensional analysis using a local solution of Laplace's equation in the airgap of machines is investigated and a similar method is implemented in the three dimensional analysis of electromagnetic devices. A new integral formulation to improve force calculation from a smoother flux-density profile is also explored and implemented. Comparisons are made and conclusions drawn as to how much improvement is obtained and at what cost. This thesis also demonstrates the use of finite element analysis to analyze torque ripples due to rotor eccentricity in permanent magnet BLDC motors. A new method for analyzing torque harmonics based on data obtained from a time stepping finite element analysis of the machine is explored and implemented.
Development of a thermal and structural analysis procedure for cooled radial turbines
NASA Technical Reports Server (NTRS)
Kumar, Ganesh N.; Deanna, Russell G.
1988-01-01
A procedure for computing the rotor temperature and stress distributions in a cooled radial turbine is considered. Existing codes for modeling the external mainstream flow and the internal cooling flow are used to compute boundary conditions for the heat transfer and stress analyses. An inviscid, quasi three-dimensional code computes the external free stream velocity. The external velocity is then used in a boundary layer analysis to compute the external heat transfer coefficients. Coolant temperatures are computed by a viscous one-dimensional internal flow code for the momentum and energy equation. These boundary conditions are input to a three-dimensional heat conduction code for calculation of rotor temperatures. The rotor stress distribution may be determined for the given thermal, pressure and centrifugal loading. The procedure is applied to a cooled radial turbine which will be tested at the NASA Lewis Research Center. Representative results from this case are included.
Numerical Validation of the N3S-NATUR Code for Supersonic Nozzles and Afterbody Flows
NASA Astrophysics Data System (ADS)
Perrot, Y.; Hadjadj, A.
2005-02-01
A numerical investigation was conducted to assess the ability of the three-dimensional Navier-Stokes solver, N3S-Natur [1], using the k-ω SST turbulence model when computing nozzle-afterbody flows with propulsive jets. Three nozzle configurations were selected as test cases for the computational method: the first is the ONERA TIC nozzle, the second is an axisymmetric boat-tailed afterbody configuration and the third is a fully 3D transonic nozzle. In most situations, internal and external flow-field regions are modeled. The obtained results are carefully analyzed and compared to the experimental data. A three-dimensional computation was done to make evidence of 3D phenomena which are not negligible. A particular attention was payed to the appearance of a recirculation zone on the afterbody.
Duct flow nonuniformities study for space shuttle main engine
NASA Technical Reports Server (NTRS)
Thoenes, J.
1985-01-01
To improve the Space Shuttle Main Engine (SSME) design and for future use in the development of generation rocket engines, a combined experimental/analytical study was undertaken with the goals of first, establishing an experimental data base for the flow conditions in the SSME high pressure fuel turbopump (HPFTP) hot gas manifold (HGM) and, second, setting up a computer model of the SSME HGM flow field. Using the test data to verify the computer model it should be possible in the future to computationally scan contemplated advanced design configurations and limit costly testing to the most promising design. The effort of establishing and using the computer model is detailed. The comparison of computational results and experimental data observed clearly demonstrate that computational fluid mechanics (CFD) techniques can be used successfully to predict the gross features of three dimensional fluid flow through configurations as intricate as the SSME turbopump hot gas manifold.
Direct 3-D morphological measurements of silicone rubber impression using micro-focus X-ray CT.
Kamegawa, Masayuki; Nakamura, Masayuki; Fukui, Yu; Tsutsumi, Sadami; Hojo, Masaki
2010-01-01
Three-dimensional computer models of dental arches play a significant role in prosthetic dentistry. The microfocus X-ray CT scanner has the advantage of capturing precise 3D shapes of deep fossa, and we propose a new method of measuring the three-dimensional morphology of a dental impression directly, which will eliminate the conversion process to dental casts. Measurement precision and accuracy were evaluated using a standard gage comprised of steel balls which simulate the dental arch. Measurement accuracy, standard deviation of distance distribution of superimposed models, was determined as +/-0.050 mm in comparison with a CAD model. Impressions and casts of an actual dental arch were scanned by microfocus X-ray CT and three-dimensional models were compared. The impression model had finer morphology, especially around the cervical margins of teeth. Within the limitations of the current study, direct three-dimensional impression modeling was successfully demonstrated using microfocus X-ray CT.
Physics-based Entry, Descent and Landing Risk Model
NASA Technical Reports Server (NTRS)
Gee, Ken; Huynh, Loc C.; Manning, Ted
2014-01-01
A physics-based risk model was developed to assess the risk associated with thermal protection system failures during the entry, descent and landing phase of a manned spacecraft mission. In the model, entry trajectories were computed using a three-degree-of-freedom trajectory tool, the aerothermodynamic heating environment was computed using an engineering-level computational tool and the thermal response of the TPS material was modeled using a one-dimensional thermal response tool. The model was capable of modeling the effect of micrometeoroid and orbital debris impact damage on the TPS thermal response. A Monte Carlo analysis was used to determine the effects of uncertainties in the vehicle state at Entry Interface, aerothermodynamic heating and material properties on the performance of the TPS design. The failure criterion was set as a temperature limit at the bondline between the TPS and the underlying structure. Both direct computation and response surface approaches were used to compute the risk. The model was applied to a generic manned space capsule design. The effect of material property uncertainty and MMOD damage on risk of failure were analyzed. A comparison of the direct computation and response surface approach was undertaken.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mereghetti, Paolo; Martinez, M.; Wade, Rebecca C.
Brownian dynamics (BD) simulations can be used to study very large molecular systems, such as models of the intracellular environment, using atomic-detail structures. Such simulations require strategies to contain the computational costs, especially for the computation of interaction forces and energies. A common approach is to compute interaction forces between macromolecules by precomputing their interaction potentials on three-dimensional discretized grids. For long-range interactions, such as electrostatics, grid-based methods are subject to finite size errors. We describe here the implementation of a Debye-Hückel correction to the grid-based electrostatic potential used in the SDA BD simulation software that was applied to simulatemore » solutions of bovine serum albumin and of hen egg white lysozyme.« less
[New simulation technologies in neurosurgery].
Byvaltsev, V A; Belykh, E G; Konovalov, N A
2016-01-01
The article presents a literature review on the current state of simulation technologies in neurosurgery, a brief description of the basic technology and the classification of simulation models, and examples of simulation models and skills simulators used in neurosurgery. Basic models for the development of physical skills, the spectrum of available computer virtual simulators, and their main characteristics are described. It would be instructive to include microneurosurgical training and a cadaver course of neurosurgical approaches in neurosurgery training programs and to extend the use of three-dimensional imaging. Technologies for producing three-dimensional anatomical models and patient-specific computer simulators as well as improvement of tactile feedback systems and display quality of virtual models are promising areas. Continued professional education necessitates further research for assessing the validity and practical use of simulators and physical models.
Naghibi Beidokhti, Hamid; Janssen, Dennis; van de Groes, Sebastiaan; Hazrati, Javad; Van den Boogaard, Ton; Verdonschot, Nico
2017-12-08
In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on segmentations. Continuum models closer approximate the anatomy, and facilitate ligament wrapping, while spring models are computationally less expensive. The mechanical properties of ligaments can be based on literature, or adjusted specifically for the subject. In the current study we investigated the effect of ligament modelling strategy on the predictive capability of FE models of the human knee joint. The effect of literature-based versus specimen-specific optimized material parameters was evaluated. Experiments were performed on three human cadaver knees, which were modelled in FE models with ligaments represented either using springs, or using continuum representations. In spring representation collateral ligaments were each modelled with three and cruciate ligaments with two single-element bundles. Stiffness parameters and pre-strains were optimized based on laxity tests for both approaches. Validation experiments were conducted to evaluate the outcomes of the FE models. Models (both spring and continuum) with subject-specific properties improved the predicted kinematics and contact outcome parameters. Models incorporating literature-based parameters, and particularly the spring models (with the representations implemented in this study), led to relatively high errors in kinematics and contact pressures. Using a continuum modelling approach resulted in more accurate contact outcome variables than the spring representation with two (cruciate ligaments) and three (collateral ligaments) single-element-bundle representations. However, when the prediction of joint kinematics is of main interest, spring ligament models provide a faster option with acceptable outcome. Copyright © 2017 Elsevier Ltd. All rights reserved.
Computations of Combustion-Powered Actuation for Dynamic Stall Suppression
NASA Technical Reports Server (NTRS)
Jee, Solkeun; Bowles, Patrick O.; Matalanis, Claude G.; Min, Byung-Young; Wake, Brian E.; Crittenden, Tom; Glezer, Ari
2016-01-01
A computational framework for the simulation of dynamic stall suppression with combustion-powered actuation (COMPACT) is validated against wind tunnel experimental results on a VR-12 airfoil. COMPACT slots are located at 10% chord from the leading edge of the airfoil and directed tangentially along the suction-side surface. Helicopter rotor-relevant flow conditions are used in the study. A computationally efficient two-dimensional approach, based on unsteady Reynolds-averaged Navier-Stokes (RANS), is compared in detail against the baseline and the modified airfoil with COMPACT, using aerodynamic forces, pressure profiles, and flow-field data. The two-dimensional RANS approach predicts baseline static and dynamic stall very well. Most of the differences between the computational and experimental results are within two standard deviations of the experimental data. The current framework demonstrates an ability to predict COMPACT efficacy across the experimental dataset. Enhanced aerodynamic lift on the downstroke of the pitching cycle due to COMPACT is well predicted, and the cycleaveraged lift enhancement computed is within 3% of the test data. Differences with experimental data are discussed with a focus on three-dimensional features not included in the simulations and the limited computational model for COMPACT.
NASA Technical Reports Server (NTRS)
Luckring, J. M.
1985-01-01
A theory is presented for calculating the flow in the core of a separation-induced leading-edge vortex. The method is based on matching inner and outer representations of the vortex. The inner model of the vortex is based on the quasicylindrical Navier-Stokes equations; the flow is assumed to be steady, axially symmetric, and incompressible and in addition, gradients in the radial direction are assumed to be much larger then gradients in the axial direction. The outer model is based on the three-dimensional free-vortex-sheet theory, a higher-order panel method which solves the Prandtl-Glauert equation including nonlinear boundary conditions pertinent to the concentrated vorticity representation of the leading edge vortex. The resultant flow is evaluated a posteriori for evidence of incipient vortex breakdown and the critical helix angle concept, in conjunction with an adverse longitudinal pressure gradient, is found to correlate well with the occurrence of vortex breakdown at the trailing edge of delta, arrow, and diamond wings.
NASA Astrophysics Data System (ADS)
Su, Yun-Ting; Hu, Shuowen; Bethel, James S.
2017-05-01
Light detection and ranging (LIDAR) has become a widely used tool in remote sensing for mapping, surveying, modeling, and a host of other applications. The motivation behind this work is the modeling of piping systems in industrial sites, where cylinders are the most common primitive or shape. We focus on cylinder parameter estimation in three-dimensional point clouds, proposing a mathematical formulation based on angular distance to determine the cylinder orientation. We demonstrate the accuracy and robustness of the technique on synthetically generated cylinder point clouds (where the true axis orientation is known) as well as on real LIDAR data of piping systems. The proposed algorithm is compared with a discrete space Hough transform-based approach as well as a continuous space inlier approach, which iteratively discards outlier points to refine the cylinder parameter estimates. Results show that the proposed method is more computationally efficient than the Hough transform approach and is more accurate than both the Hough transform approach and the inlier method.
Use of Transition Modeling to Enable the Computation of Losses for Variable-Speed Power Turbine
NASA Technical Reports Server (NTRS)
Ameri, Ali A.
2012-01-01
To investigate the penalties associated with using a variable speed power turbine (VSPT) in a rotorcraft capable of vertical takeoff and landing, various analysis tools are required. Such analysis tools must be able to model the flow accurately within the operating envelope of VSPT. For power turbines low Reynolds numbers and a wide range of the incidence angles, positive and negative, due to the variation in the shaft speed at relatively fixed corrected flows, characterize this envelope. The flow in the turbine passage is expected to be transitional and separated at high incidence. The turbulence model of Walters and Leylek was implemented in the NASA Glenn-HT code to enable a more accurate analysis of such flows. Two-dimensional heat transfer predictions of flat plate flow and two-dimensional and three-dimensional heat transfer predictions on a turbine blade were performed and reported herein. Heat transfer computations were performed because it is a good marker for transition. The final goal is to be able to compute the aerodynamic losses. Armed with the new transition model, total pressure losses for three-dimensional flow of an Energy Efficient Engine (E3) tip section cascade for a range of incidence angles were computed in anticipation of the experimental data. The results obtained form a loss bucket for the chosen blade.
NASA Technical Reports Server (NTRS)
VanZandt, John
1994-01-01
The usage model of supercomputers for scientific applications, such as computational fluid dynamics (CFD), has changed over the years. Scientific visualization has moved scientists away from looking at numbers to looking at three-dimensional images, which capture the meaning of the data. This change has impacted the system models for computing. This report details the model which is used by scientists at NASA's research centers.
Panthee, Nirmal; Okada, Jun-ichi; Washio, Takumi; Mochizuki, Youhei; Suzuki, Ryohei; Koyama, Hidekazu; Ono, Minoru; Hisada, Toshiaki; Sugiura, Seiryo
2016-07-01
Despite extensive studies on clinical indices for the selection of patient candidates for cardiac resynchronization therapy (CRT), approximately 30% of selected patients do not respond to this therapy. Herein, we examined whether CRT simulations based on individualized realistic three-dimensional heart models can predict the therapeutic effect of CRT in a canine model of heart failure with left bundle branch block. In four canine models of failing heart with dyssynchrony, individualized three-dimensional heart models reproducing the electromechanical activity of each animal were created based on the computer tomographic images. CRT simulations were performed for 25 patterns of three ventricular pacing lead positions. Lead positions producing the best and the worst therapeutic effects were selected in each model. The validity of predictions was tested in acute experiments in which hearts were paced from the sites identified by simulations. We found significant correlations between the experimentally observed improvement in ejection fraction (EF) and the predicted improvements in ejection fraction (P<0.01) or the maximum value of the derivative of left ventricular pressure (P<0.01). The optimal lead positions produced better outcomes compared with the worst positioning in all dogs studied, although there were significant variations in responses. Variations in ventricular wall thickness among the dogs may have contributed to these responses. Thus CRT simulations using the individualized three-dimensional heart models can predict acute hemodynamic improvement, and help determine the optimal positions of the pacing lead. Copyright © 2016 Elsevier B.V. All rights reserved.
Clinical application of three-dimensional printing technology in craniofacial plastic surgery.
Choi, Jong Woo; Kim, Namkug
2015-05-01
Three-dimensional (3D) printing has been particularly widely adopted in medical fields. Application of the 3D printing technique has even been extended to bio-cell printing for 3D tissue/organ development, the creation of scaffolds for tissue engineering, and actual clinical application for various medical parts. Of various medical fields, craniofacial plastic surgery is one of areas that pioneered the use of the 3D printing concept. Rapid prototype technology was introduced in the 1990s to medicine via computer-aided design, computer-aided manufacturing. To investigate the current status of 3D printing technology and its clinical application, a systematic review of the literature was conducted. In addition, the benefits and possibilities of the clinical application of 3D printing in craniofacial surgery are reviewed, based on personal experiences with more than 500 craniofacial cases conducted using 3D printing tactile prototype models.
Hinton, Thomas J.; Jallerat, Quentin; Palchesko, Rachelle N.; Park, Joon Hyung; Grodzicki, Martin S.; Shue, Hao-Jan; Ramadan, Mohamed H.; Hudson, Andrew R.; Feinberg, Adam W.
2015-01-01
We demonstrate the additive manufacturing of complex three-dimensional (3D) biological structures using soft protein and polysaccharide hydrogels that are challenging or impossible to create using traditional fabrication approaches. These structures are built by embedding the printed hydrogel within a secondary hydrogel that serves as a temporary, thermoreversible, and biocompatible support. This process, termed freeform reversible embedding of suspended hydrogels, enables 3D printing of hydrated materials with an elastic modulus <500 kPa including alginate, collagen, and fibrin. Computer-aided design models of 3D optical, computed tomography, and magnetic resonance imaging data were 3D printed at a resolution of ~200 μm and at low cost by leveraging open-source hardware and software tools. Proof-of-concept structures based on femurs, branched coronary arteries, trabeculated embryonic hearts, and human brains were mechanically robust and recreated complex 3D internal and external anatomical architectures. PMID:26601312
Clinical Application of Three-Dimensional Printing Technology in Craniofacial Plastic Surgery
Kim, Namkug
2015-01-01
Three-dimensional (3D) printing has been particularly widely adopted in medical fields. Application of the 3D printing technique has even been extended to bio-cell printing for 3D tissue/organ development, the creation of scaffolds for tissue engineering, and actual clinical application for various medical parts. Of various medical fields, craniofacial plastic surgery is one of areas that pioneered the use of the 3D printing concept. Rapid prototype technology was introduced in the 1990s to medicine via computer-aided design, computer-aided manufacturing. To investigate the current status of 3D printing technology and its clinical application, a systematic review of the literature was conducted. In addition, the benefits and possibilities of the clinical application of 3D printing in craniofacial surgery are reviewed, based on personal experiences with more than 500 craniofacial cases conducted using 3D printing tactile prototype models. PMID:26015880
NASA Technical Reports Server (NTRS)
Kavsaoglu, Mehmet S.; Kaynak, Unver; Van Dalsem, William R.
1989-01-01
The Johnson-King turbulence model as extended to three-dimensional flows was evaluated using finite-difference boundary-layer direct method. Calculations were compared against the experimental data of the well-known Berg-Elsenaar incompressible flow over an infinite swept-wing. The Johnson-King model, which includes the nonequilibrium effects in a developing turbulent boundary-layer, was found to significantly improve the predictive quality of a direct boundary-layer method. The improvement was especially visible in the computations with increased three-dimensionality of the mean flow, larger integral parameters, and decreasing eddy-viscosity and shear stress magnitudes in the streamwise direction; all in better agreement with the experiment than simple mixing-length methods.
Khalil, Wael; EzEldeen, Mostafa; Van De Casteele, Elke; Shaheen, Eman; Sun, Yi; Shahbazian, Maryam; Olszewski, Raphael; Politis, Constantinus; Jacobs, Reinhilde
2016-03-01
Our aim was to determine the accuracy of 3-dimensional reconstructed models of teeth compared with the natural teeth by using 4 different 3-dimensional printers. This in vitro study was carried out using 2 intact, dry adult human mandibles, which were scanned with cone beam computed tomography. Premolars were selected for this study. Dimensional differences between natural teeth and the printed models were evaluated directly by using volumetric differences and indirectly through optical scanning. Analysis of variance, Pearson correlation, and Bland Altman plots were applied for statistical analysis. Volumetric measurements from natural teeth and fabricated models, either by the direct method (the Archimedes principle) or by the indirect method (optical scanning), showed no statistical differences. The mean volume difference ranged between 3.1 mm(3) (0.7%) and 4.4 mm(3) (1.9%) for the direct measurement, and between -1.3 mm(3) (-0.6%) and 11.9 mm(3) (+5.9%) for the optical scan. A surface part comparison analysis showed that 90% of the values revealed a distance deviation within the interval 0 to 0.25 mm. Current results showed a high accuracy of all printed models of teeth compared with natural teeth. This outcome opens perspectives for clinical use of cost-effective 3-dimensional printed teeth for surgical procedures, such as tooth autotransplantation. Copyright © 2016 Elsevier Inc. All rights reserved.
Lim, Se-Ho; Kim, Yeon-Ho; Kim, Moon-Key; Nam, Woong; Kang, Sang-Hoon
2016-12-01
We examined whether cutting a fibula graft with a surgical guide template, prepared with computer-aided design/computer-aided manufacturing (CAD/CAM), would improve the precision and accuracy of mandibular reconstruction. Thirty mandibular rapid prototype (RP) models were allocated to experimental (N = 15) and control (N = 15) groups. Thirty identical fibular RP models were assigned randomly, 15 to each group. For reference, we prepared a reconstructed mandibular RP model with a three-dimensional printer, based on surgical simulation. In the experimental group, a stereolithography (STL) surgical guide template, based on simulation, was used for cutting the fibula graft. In the control group, the fibula graft was cut manually, with reference to the reconstructed RP mandible model. The mandibular reconstructions were compared to the surgical simulation, and errors were calculated for both the STL surgical guide and the manual methods. The average differences in three-dimensional, minimum distances between the reconstruction and simulation were 9.87 ± 6.32 mm (mean ± SD) for the STL surgical guide method and 14.76 ± 10.34 mm (mean ± SD) for the manual method. The STL surgical guide method incurred less error than the manual method in mandibular reconstruction. A fibula cutting guide improved the precision of reconstructing the mandible with a fibula graft.
SOMAR-LES: A framework for multi-scale modeling of turbulent stratified oceanic flows
NASA Astrophysics Data System (ADS)
Chalamalla, Vamsi K.; Santilli, Edward; Scotti, Alberto; Jalali, Masoud; Sarkar, Sutanu
2017-12-01
A new multi-scale modeling technique, SOMAR-LES, is presented in this paper. Localized grid refinement gives SOMAR (the Stratified Ocean Model with Adaptive Resolution) access to small scales of the flow which are normally inaccessible to general circulation models (GCMs). SOMAR-LES drives a LES (Large Eddy Simulation) on SOMAR's finest grids, forced with large scale forcing from the coarser grids. Three-dimensional simulations of internal tide generation, propagation and scattering are performed to demonstrate this multi-scale modeling technique. In the case of internal tide generation at a two-dimensional bathymetry, SOMAR-LES is able to balance the baroclinic energy budget and accurately model turbulence losses at only 10% of the computational cost required by a non-adaptive solver running at SOMAR-LES's fine grid resolution. This relative cost is significantly reduced in situations with intermittent turbulence or where the location of the turbulence is not known a priori because SOMAR-LES does not require persistent, global, high resolution. To illustrate this point, we consider a three-dimensional bathymetry with grids adaptively refined along the tidally generated internal waves to capture remote mixing in regions of wave focusing. The computational cost in this case is found to be nearly 25 times smaller than that of a non-adaptive solver at comparable resolution. In the final test case, we consider the scattering of a mode-1 internal wave at an isolated two-dimensional and three-dimensional topography, and we compare the results with Legg (2014) numerical experiments. We find good agreement with theoretical estimates. SOMAR-LES is less dissipative than the closure scheme employed by Legg (2014) near the bathymetry. Depending on the flow configuration and resolution employed, a reduction of more than an order of magnitude in computational costs is expected, relative to traditional existing solvers.
NASA Astrophysics Data System (ADS)
Song, Huimin
In the aerospace and automotive industries, many finite element analyses use lower-dimensional finite elements such as beams, plates and shells, to simplify the modeling. These simplified models can greatly reduce the computation time and cost; however, reduced-dimensional models may introduce inaccuracies, particularly near boundaries and near portions of the structure where reduced-dimensional models may not apply. Another factor in creation of such models is that beam-like structures frequently have complex geometry, boundaries and loading conditions, which may make them unsuitable for modeling with single type of element. The goal of this dissertation is to develop a method that can accurately and efficiently capture the response of a structure by rigorous combination of a reduced-dimensional beam finite element model with a model based on full two-dimensional (2D) or three-dimensional (3D) finite elements. The first chapter of the thesis gives the background of the present work and some related previous work. The second chapter is focused on formulating a system of equations that govern the joining of a 2D model with a beam model for planar deformation. The essential aspect of this formulation is to find the transformation matrices to achieve deflection and load continuity on the interface. Three approaches are provided to obtain the transformation matrices. An example based on joining a beam to a 2D finite element model is examined, and the accuracy of the analysis is studied by comparing joint results with the full 2D analysis. The third chapter is focused on formulating the system of equations for joining a beam to a 3D finite element model for static and free-vibration problems. The transition between the 3D elements and beam elements is achieved by use of the stress recovery technique of the variational-asymptotic method as implemented in VABS (the Variational Asymptotic Beam Section analysis). The formulations for an interface transformation matrix and the generalized Timoshenko beam are discussed in this chapter. VABS is also used to obtain the beam constitutive properties and warping functions for stress recovery. Several 3D-beam joint examples are presented to show the convergence and accuracy of the analysis. Accuracy is accessed by comparing the joint results with the full 3D analysis. The fourth chapter provides conclusions from present studies and recommendations for future work.
ERIC Educational Resources Information Center
Nowinski, Wieslaw L.; Thirunavuukarasuu, Arumugam; Ananthasubramaniam, Anand; Chua, Beng Choon; Qian, Guoyu; Nowinska, Natalia G.; Marchenko, Yevgen; Volkau, Ihar
2009-01-01
Preparation of tests and student's assessment by the instructor are time consuming. We address these two tasks in neuroanatomy education by employing a digital media application with a three-dimensional (3D), interactive, fully segmented, and labeled brain atlas. The anatomical and vascular models in the atlas are linked to "Terminologia…
Survey of Methods and Algorithms of Robot Swarm Aggregation
NASA Astrophysics Data System (ADS)
E Shlyakhov, N.; Vatamaniuk, I. V.; Ronzhin, A. L.
2017-01-01
The paper considers the problem of swarm aggregation of autonomous robots with the use of three methods based on the analogy of the behavior of biological objects. The algorithms substantiating the requirements for hardware realization of sensor, computer and network resources and propulsion devices are presented. Techniques for efficiency estimation of swarm aggregation via space-time characteristics are described. The developed model of the robot swarm reconfiguration into a predetermined three-dimensional shape is presented.
FPCAS3D User's guide: A three dimensional full potential aeroelastic program, version 1
NASA Technical Reports Server (NTRS)
Bakhle, Milind A.
1995-01-01
The FPCAS3D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady three-dimensional full potential equation which is solved for a blade row. The structural analysis is based on a finite-element model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS3D code. A complete description of the input data is provided in this report. In addition, six examples, including inputs and outputs, are provided.
Deterministic Stress Modeling of Hot Gas Segregation in a Turbine
NASA Technical Reports Server (NTRS)
Busby, Judy; Sondak, Doug; Staubach, Brent; Davis, Roger
1998-01-01
Simulation of unsteady viscous turbomachinery flowfields is presently impractical as a design tool due to the long run times required. Designers rely predominantly on steady-state simulations, but these simulations do not account for some of the important unsteady flow physics. Unsteady flow effects can be modeled as source terms in the steady flow equations. These source terms, referred to as Lumped Deterministic Stresses (LDS), can be used to drive steady flow solution procedures to reproduce the time-average of an unsteady flow solution. The goal of this work is to investigate the feasibility of using inviscid lumped deterministic stresses to model unsteady combustion hot streak migration effects on the turbine blade tip and outer air seal heat loads using a steady computational approach. The LDS model is obtained from an unsteady inviscid calculation. The LDS model is then used with a steady viscous computation to simulate the time-averaged viscous solution. Both two-dimensional and three-dimensional applications are examined. The inviscid LDS model produces good results for the two-dimensional case and requires less than 10% of the CPU time of the unsteady viscous run. For the three-dimensional case, the LDS model does a good job of reproducing the time-averaged viscous temperature migration and separation as well as heat load on the outer air seal at a CPU cost that is 25% of that of an unsteady viscous computation.
An Improved Treatment of External Boundary for Three-Dimensional Flow Computations
NASA Technical Reports Server (NTRS)
Tsynkov, Semyon V.; Vatsa, Veer N.
1997-01-01
We present an innovative numerical approach for setting highly accurate nonlocal boundary conditions at the external computational boundaries when calculating three-dimensional compressible viscous flows over finite bodies. The approach is based on application of the difference potentials method by V. S. Ryaben'kii and extends our previous technique developed for the two-dimensional case. The new boundary conditions methodology has been successfully combined with the NASA-developed code TLNS3D and used for the analysis of wing-shaped configurations in subsonic and transonic flow regimes. As demonstrated by the computational experiments, the improved external boundary conditions allow one to greatly reduce the size of the computational domain while still maintaining high accuracy of the numerical solution. Moreover, they may provide for a noticeable speedup of convergence of the multigrid iterations.
NASA Astrophysics Data System (ADS)
Zahid, F.; Paulsson, M.; Polizzi, E.; Ghosh, A. W.; Siddiqui, L.; Datta, S.
2005-08-01
We present a transport model for molecular conduction involving an extended Hückel theoretical treatment of the molecular chemistry combined with a nonequilibrium Green's function treatment of quantum transport. The self-consistent potential is approximated by CNDO (complete neglect of differential overlap) method and the electrostatic effects of metallic leads (bias and image charges) are included through a three-dimensional finite element method. This allows us to capture spatial details of the electrostatic potential profile, including effects of charging, screening, and complicated electrode configurations employing only a single adjustable parameter to locate the Fermi energy. As this model is based on semiempirical methods it is computationally inexpensive and flexible compared to ab initio models, yet at the same time it is able to capture salient qualitative features as well as several relevant quantitative details of transport. We apply our model to investigate recent experimental data on alkane dithiol molecules obtained in a nanopore setup. We also present a comparison study of single molecule transistors and identify electronic properties that control their performance.
Comparison of RCS prediction techniques, computations and measurements
NASA Astrophysics Data System (ADS)
Brand, M. G. E.; Vanewijk, L. J.; Klinker, F.; Schippers, H.
1992-07-01
Three calculation methods to predict radar cross sections (RCS) of three dimensional objects are evaluated by computing the radar cross sections of a generic wing inlet configuration. The following methods are applied: a three dimensional high frequency method, a three dimensional boundary element method, and a two dimensional finite difference time domain method. The results of the computations are compared with the data of measurements.
A Comparison of Three Navier-Stokes Solvers for Exhaust Nozzle Flowfields
NASA Technical Reports Server (NTRS)
Georgiadis, Nicholas J.; Yoder, Dennis A.; Debonis, James R.
1999-01-01
A comparison of the NPARC, PAB, and WIND (previously known as NASTD) Navier-Stokes solvers is made for two flow cases with turbulent mixing as the dominant flow characteristic, a two-dimensional ejector nozzle and a Mach 1.5 elliptic jet. The objective of the work is to determine if comparable predictions of nozzle flows can be obtained from different Navier-Stokes codes employed in a multiple site research program. A single computational grid was constructed for each of the two flows and used for all of the Navier-Stokes solvers. In addition, similar k-e based turbulence models were employed in each code, and boundary conditions were specified as similarly as possible across the codes. Comparisons of mass flow rates, velocity profiles, and turbulence model quantities are made between the computations and experimental data. The computational cost of obtaining converged solutions with each of the codes is also documented. Results indicate that all of the codes provided similar predictions for the two nozzle flows. Agreement of the Navier-Stokes calculations with experimental data was good for the ejector nozzle. However, for the Mach 1.5 elliptic jet, the calculations were unable to accurately capture the development of the three dimensional elliptic mixing layer.
Three-dimensional spiral CT during arterial portography: comparison of three rendering techniques.
Heath, D G; Soyer, P A; Kuszyk, B S; Bliss, D F; Calhoun, P S; Bluemke, D A; Choti, M A; Fishman, E K
1995-07-01
The three most common techniques for three-dimensional reconstruction are surface rendering, maximum-intensity projection (MIP), and volume rendering. Surface-rendering algorithms model objects as collections of geometric primitives that are displayed with surface shading. The MIP algorithm renders an image by selecting the voxel with the maximum intensity signal along a line extended from the viewer's eye through the data volume. Volume-rendering algorithms sum the weighted contributions of all voxels along the line. Each technique has advantages and shortcomings that must be considered during selection of one for a specific clinical problem and during interpretation of the resulting images. With surface rendering, sharp-edged, clear three-dimensional reconstruction can be completed on modest computer systems; however, overlapping structures cannot be visualized and artifacts are a problem. MIP is computationally a fast technique, but it does not allow depiction of overlapping structures, and its images are three-dimensionally ambiguous unless depth cues are provided. Both surface rendering and MIP use less than 10% of the image data. In contrast, volume rendering uses nearly all of the data, allows demonstration of overlapping structures, and engenders few artifacts, but it requires substantially more computer power than the other techniques.
NASA Technical Reports Server (NTRS)
Anderson, B. H.
1983-01-01
A broad program to develop advanced, reliable, and user oriented three-dimensional viscous design techniques for supersonic inlet systems, and encourage their transfer into the general user community is discussed. Features of the program include: (1) develop effective methods of computing three-dimensional flows within a zonal modeling methodology; (2) ensure reasonable agreement between said analysis and selective sets of benchmark validation data; (3) develop user orientation into said analysis; and (4) explore and develop advanced numerical methodology.
Handa, Koichi; Nakagome, Izumi; Yamaotsu, Noriyuki; Gouda, Hiroaki; Hirono, Shuichi
2015-01-01
The pregnane X receptor [PXR (NR1I2)] induces the expression of xenobiotic metabolic genes and transporter genes. In this study, we aimed to establish a computational method for quantifying the enzyme-inducing potencies of different compounds via their ability to activate PXR, for the application in drug discovery and development. To achieve this purpose, we developed a three-dimensional quantitative structure-activity relationship (3D-QSAR) model using comparative molecular field analysis (CoMFA) for predicting enzyme-inducing potencies, based on computer-ligand docking to multiple PXR protein structures sampled from the trajectory of a molecular dynamics simulation. Molecular mechanics-generalized born/surface area scores representing the ligand-protein-binding free energies were calculated for each ligand. As a result, the predicted enzyme-inducing potencies for compounds generated by the CoMFA model were in good agreement with the experimental values. Finally, we concluded that this 3D-QSAR model has the potential to predict the enzyme-inducing potencies of novel compounds with high precision and therefore has valuable applications in the early stages of the drug discovery process. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Chen, Zhaoxue; Chen, Hao
2014-01-01
A deconvolution method based on the Gaussian radial basis function (GRBF) interpolation is proposed. Both the original image and Gaussian point spread function are expressed as the same continuous GRBF model, thus image degradation is simplified as convolution of two continuous Gaussian functions, and image deconvolution is converted to calculate the weighted coefficients of two-dimensional control points. Compared with Wiener filter and Lucy-Richardson algorithm, the GRBF method has an obvious advantage in the quality of restored images. In order to overcome such a defect of long-time computing, the method of graphic processing unit multithreading or increasing space interval of control points is adopted, respectively, to speed up the implementation of GRBF method. The experiments show that based on the continuous GRBF model, the image deconvolution can be efficiently implemented by the method, which also has a considerable reference value for the study of three-dimensional microscopic image deconvolution.
Multiscale solute transport upscaling for a three-dimensional hierarchical porous medium
NASA Astrophysics Data System (ADS)
Zhang, Mingkan; Zhang, Ye
2015-03-01
A laboratory-generated hierarchical, fully heterogeneous aquifer model (FHM) provides a reference for developing and testing an upscaling approach that integrates large-scale connectivity mapping with flow and transport modeling. Based on the FHM, three hydrostratigraphic models (HSMs) that capture lithological (static) connectivity at different resolutions are created, each corresponding to a sedimentary hierarchy. Under increasing system lnK variances (0.1, 1.0, 4.5), flow upscaling is first conducted to calculate equivalent hydraulic conductivity for individual connectivity (or unit) of the HSMs. Given the computed flow fields, an instantaneous, conservative tracer test is simulated by all models. For the HSMs, two upscaling formulations are tested based on the advection-dispersion equation (ADE), implementing space versus time-dependent macrodispersivity. Comparing flow and transport predictions of the HSMs against those of the reference model, HSMs capturing connectivity at increasing resolutions are more accurate, although upscaling errors increase with system variance. Results suggest: (1) by explicitly modeling connectivity, an enhanced degree of freedom in representing dispersion can improve the ADE-based upscaled models by capturing non-Fickian transport of the FHM; (2) when connectivity is sufficiently resolved, the type of data conditioning used to model transport becomes less critical. Data conditioning, however, is influenced by the prediction goal; (3) when aquifer is weakly-to-moderately heterogeneous, the upscaled models adequately capture the transport simulation of the FHM, despite the existence of hierarchical heterogeneity at smaller scales. When aquifer is strongly heterogeneous, the upscaled models become less accurate because lithological connectivity cannot adequately capture preferential flows; (4) three-dimensional transport connectivities of the hierarchical aquifer differ quantitatively from those analyzed for two-dimensional systems. This article was corrected on 7 MAY 2015. See the end of the full text for details.
Physical Webbing: Collaborative Kinesthetic Three-Dimensional Mind Maps[R
ERIC Educational Resources Information Center
Williams, Marian H.
2012-01-01
Mind Mapping has predominantly been used by individuals or collaboratively in groups as a paper-based or computer-generated learning strategy. In an effort to make Mind Mapping kinesthetic, collaborative, and three-dimensional, an innovative pedagogical strategy, termed Physical Webbing, was devised. In the Physical Web activity, groups…
On explicit algebraic stress models for complex turbulent flows
NASA Technical Reports Server (NTRS)
Gatski, T. B.; Speziale, C. G.
1992-01-01
Explicit algebraic stress models that are valid for three-dimensional turbulent flows in noninertial frames are systematically derived from a hierarchy of second-order closure models. This represents a generalization of the model derived by Pope who based his analysis on the Launder, Reece, and Rodi model restricted to two-dimensional turbulent flows in an inertial frame. The relationship between the new models and traditional algebraic stress models -- as well as anistropic eddy visosity models -- is theoretically established. The need for regularization is demonstrated in an effort to explain why traditional algebraic stress models have failed in complex flows. It is also shown that these explicit algebraic stress models can shed new light on what second-order closure models predict for the equilibrium states of homogeneous turbulent flows and can serve as a useful alternative in practical computations.
Abbasi, Mostafa; Barakat, Mohammed S; Vahidkhah, Koohyar; Azadani, Ali N
2016-09-01
Computational modeling has an important role in design and assessment of medical devices. In computational simulations, considering accurate constitutive models is of the utmost importance to capture mechanical response of soft tissue and biomedical materials under physiological loading conditions. Lack of comprehensive three-dimensional constitutive models for soft tissue limits the effectiveness of computational modeling in research and development of medical devices. The aim of this study was to use inverse finite element (FE) analysis to determine three-dimensional mechanical properties of bovine pericardial leaflets of a surgical bioprosthesis under dynamic loading condition. Using inverse parameter estimation, 3D anisotropic Fung model parameters were estimated for the leaflets. The FE simulations were validated using experimental in-vitro measurements, and the impact of different constitutive material models was investigated on leaflet stress distribution. The results of this study showed that the anisotropic Fung model accurately simulated the leaflet deformation and coaptation during valve opening and closing. During systole, the peak stress reached to 3.17MPa at the leaflet boundary while during diastole high stress regions were primarily observed in the commissures with the peak stress of 1.17MPa. In addition, the Rayleigh damping coefficient that was introduced to FE simulations to simulate viscous damping effects of surrounding fluid was determined. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Blair, M. F.
1991-01-01
A combined experimental and computational program was conducted to examine the heat transfer distribution in a turbine rotor passage geometrically similar to the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump (HPFTP). Heat transfer was measured and computed for both the full span suction and pressure surfaces of the rotor airfoil as well as for the hub endwall surface. The objective of the program was to provide a benchmark-quality database for the assessment of rotor heat transfer computational techniques. The experimental portion of the study was conducted in a large scale, ambient temperature, rotating turbine model. The computational portion consisted of the application of a well-posed parabolized Navier-Stokes analysis of the calculation of the three-dimensional viscous flow through ducts simulating a gas turbine package. The results of this assessment indicate that the procedure has the potential to predict the aerodynamics and the heat transfer in a gas turbine passage and can be used to develop detailed three dimensional turbulence models for the prediction of skin friction and heat transfer in complex three dimensional flow passages.
Holographic entanglement and Poincaré blocks in three-dimensional flat space
NASA Astrophysics Data System (ADS)
Hijano, Eliot; Rabideau, Charles
2018-05-01
We propose a covariant prescription to compute holographic entanglement entropy and Poincaré blocks (Global BMS blocks) in the context of three-dimensional Einstein gravity in flat space. We first present a prescription based on worldline methods in the probe limit, inspired by recent analog calculations in AdS/CFT. Building on this construction, we propose a full extrapolate dictionary and use it to compute holographic correlators and blocks away from the probe limit.
Program of research in severe storms
NASA Technical Reports Server (NTRS)
1979-01-01
Two modeling areas, the development of a mesoscale chemistry-meteorology interaction model, and the development of a combined urban chemical kinetics-transport model are examined. The problems associated with developing a three dimensional combined meteorological-chemical kinetics computer program package are defined. A similar three dimensional hydrostatic real time model which solves the fundamental Navier-Stokes equations for nonviscous flow is described. An urban air quality simulation model, developed to predict the temporal and spatial distribution of reactive and nonreactive gases in and around an urban area and to support a remote sensor evaluation program is reported.
Model-based surgical planning and simulation of cranial base surgery.
Abe, M; Tabuchi, K; Goto, M; Uchino, A
1998-11-01
Plastic skull models of seven individual patients were fabricated by stereolithography from three-dimensional data based on computed tomography bone images. Skull models were utilized for neurosurgical planning and simulation in the seven patients with cranial base lesions that were difficult to remove. Surgical approaches and areas of craniotomy were evaluated using the fabricated skull models. In preoperative simulations, hand-made models of the tumors, major vessels and nerves were placed in the skull models. Step-by-step simulation of surgical procedures was performed using actual surgical tools. The advantages of using skull models to plan and simulate cranial base surgery include a better understanding of anatomic relationships, preoperative evaluation of the proposed procedure, increased understanding by the patient and family, and improved educational experiences for residents and other medical staff. The disadvantages of using skull models include the time and cost of making the models. The skull models provide a more realistic tool that is easier to handle than computer-graphic images. Surgical simulation using models facilitates difficult cranial base surgery and may help reduce surgical complications.
Evaluating the effects of modeling errors for isolated finite three-dimensional targets
NASA Astrophysics Data System (ADS)
Henn, Mark-Alexander; Barnes, Bryan M.; Zhou, Hui
2017-10-01
Optical three-dimensional (3-D) nanostructure metrology utilizes a model-based metrology approach to determine critical dimensions (CDs) that are well below the inspection wavelength. Our project at the National Institute of Standards and Technology is evaluating how to attain key CD and shape parameters from engineered in-die capable metrology targets. More specifically, the quantities of interest are determined by varying the input parameters for a physical model until the simulations agree with the actual measurements within acceptable error bounds. As in most applications, establishing a reasonable balance between model accuracy and time efficiency is a complicated task. A well-established simplification is to model the intrinsically finite 3-D nanostructures as either periodic or infinite in one direction, reducing the computationally expensive 3-D simulations to usually less complex two-dimensional (2-D) problems. Systematic errors caused by this simplified model can directly influence the fitting of the model to the measurement data and are expected to become more apparent with decreasing lengths of the structures. We identify these effects using selected simulation results and present experimental setups, e.g., illumination numerical apertures and focal ranges, that can increase the validity of the 2-D approach.
Combined Experimental and Numerical Simulations of Thermal Barrier Coated Turbine Blades Erosion
NASA Technical Reports Server (NTRS)
Hamed, Awate; Tabakoff, Widen; Swar, Rohan; Shin, Dongyun; Woggon, Nthanial; Miller, Robert
2013-01-01
A combined experimental and computational study was conducted to investigate the erosion of thermal barrier coated (TBC) blade surfaces by alumina particles ingestion in a single stage turbine. In the experimental investigation, tests of particle surface interactions were performed in specially designed tunnels to determine the erosion rates and particle restitution characteristics under different impact conditions. The experimental results show that the erosion rates increase with increased impingement angle, impact velocity and temperature. In the computational simulations, an Euler-Lagrangian two stage approach is used in obtaining numerical solutions to the three-dimensional compressible Reynolds Averaged Navier-Stokes equations and the particles equations of motion in each blade passage reference frame. User defined functions (UDF) were developed to represent experimentally-based correlations for particle surface interaction models which were employed in the three-dimensional particle trajectory simulations to determine the particle rebound characteristics after each surface impact. The experimentally based erosion UDF model was used to predict the TBC erosion rates on the turbine blade surfaces based on the computed statistical data of the particles impact locations, velocities and angles relative to the blade surface. Computational results are presented for the predicted TBC blade erosion in a single stage commercial APU turbine, for a NASA designed automotive turbine, and for the NASA turbine scaled for modern rotorcraft operating conditions. The erosion patterns in the turbines are discussed for uniform particle ingestion and for particle ingestion concentrated in the inner and outer 5 percent of the stator blade span representing the flow cooling the combustor liner.
Nomura, Tsutomu; Ushio, Munetaka; Kondo, Kenji; Yamasoba, Tatsuya
2015-11-01
The purpose of this research is to determine the cause of nasal perforation symptoms and to predict post-operative function after nasal perforation repair surgery. A realistic three-dimensional (3D) model of the nose with a septal perforation was reconstructed using a computed tomography (CT) scan from a patient with nasal septal defect. The numerical simulation was carried out using ANSYS CFX V13.0. Pre- and post-operative models were compared by their velocity, pressure gradient (PG), wall shear (WS), shear strain rate (SSR) and turbulence kinetic energy in three plains. In the post-operative state, the crossflows had disappeared, and stream lines bound to the olfactory cleft area had appeared. After surgery, almost all of high-shear stress areas were disappeared comparing pre-operative model. In conclusion, the effects of surgery to correct nasal septal perforation were evaluated using a three-dimensional airflow evaluation. Following the surgery, crossflows disappeared, and WS, PG and SSR rate were decreased. A high WS.PG and SSR were suspected as causes of nasal perforation symptoms.
Evaluation of the three-dimensional parabolic flow computer program SHIP
NASA Technical Reports Server (NTRS)
Pan, Y. S.
1978-01-01
The three-dimensional parabolic flow program SHIP designed for predicting supersonic combustor flow fields is evaluated to determine its capabilities. The mathematical foundation and numerical procedure are reviewed; simplifications are pointed out and commented upon. The program is then evaluated numerically by applying it to several subsonic and supersonic, turbulent, reacting and nonreacting flow problems. Computational results are compared with available experimental or other analytical data. Good agreements are obtained when the simplifications on which the program is based are justified. Limitations of the program and the needs for improvement and extension are pointed out. The present three dimensional parabolic flow program appears to be potentially useful for the development of supersonic combustors.
Geometric Detection Algorithms for Cavities on Protein Surfaces in Molecular Graphics: A Survey
Simões, Tiago; Lopes, Daniel; Dias, Sérgio; Fernandes, Francisco; Pereira, João; Jorge, Joaquim; Bajaj, Chandrajit; Gomes, Abel
2017-01-01
Detecting and analyzing protein cavities provides significant information about active sites for biological processes (e.g., protein-protein or protein-ligand binding) in molecular graphics and modeling. Using the three-dimensional structure of a given protein (i.e., atom types and their locations in 3D) as retrieved from a PDB (Protein Data Bank) file, it is now computationally viable to determine a description of these cavities. Such cavities correspond to pockets, clefts, invaginations, voids, tunnels, channels, and grooves on the surface of a given protein. In this work, we survey the literature on protein cavity computation and classify algorithmic approaches into three categories: evolution-based, energy-based, and geometry-based. Our survey focuses on geometric algorithms, whose taxonomy is extended to include not only sphere-, grid-, and tessellation-based methods, but also surface-based, hybrid geometric, consensus, and time-varying methods. Finally, we detail those techniques that have been customized for GPU (Graphics Processing Unit) computing. PMID:29520122
Flocks, James
2006-01-01
Scientific knowledge from the past century is commonly represented by two-dimensional figures and graphs, as presented in manuscripts and maps. Using today's computer technology, this information can be extracted and projected into three- and four-dimensional perspectives. Computer models can be applied to datasets to provide additional insight into complex spatial and temporal systems. This process can be demonstrated by applying digitizing and modeling techniques to valuable information within widely used publications. The seminal paper by D. Frazier, published in 1967, identified 16 separate delta lobes formed by the Mississippi River during the past 6,000 yrs. The paper includes stratigraphic descriptions through geologic cross-sections, and provides distribution and chronologies of the delta lobes. The data from Frazier's publication are extensively referenced in the literature. Additional information can be extracted from the data through computer modeling. Digitizing and geo-rectifying Frazier's geologic cross-sections produce a three-dimensional perspective of the delta lobes. Adding the chronological data included in the report provides the fourth-dimension of the delta cycles, which can be visualized through computer-generated animation. Supplemental information can be added to the model, such as post-abandonment subsidence of the delta-lobe surface. Analyzing the regional, net surface-elevation balance between delta progradations and land subsidence is computationally intensive. By visualizing this process during the past 4,500 yrs through multi-dimensional animation, the importance of sediment compaction in influencing both the shape and direction of subsequent delta progradations becomes apparent. Visualization enhances a classic dataset, and can be further refined using additional data, as well as provide a guide for identifying future areas of study.
Impact of turbulence anisotropy near walls in room airflow.
Schälin, A; Nielsen, P V
2004-06-01
The influence of different turbulence models used in computational fluid dynamics predictions is studied in connection with room air movement. The turbulence models used are the high Re-number kappa-epsilon model and the high Re-number Reynolds stress model (RSM). The three-dimensional wall jet is selected for the work. The growth rate parallel to the wall in a three-dimensional wall jet is large compared with the growth rate perpendicular to the wall, and it is large compared with the growth rate in a free circular jet. It is shown that it is not possible to predict the high growth rate parallel with a surface in a three-dimensional wall jet by the kappa-epsilon turbulence model. Furthermore, it is shown that the growth rate can be predicted to a certain extent by the RSM with wall reflection terms. The flow in a deep room can be strongly influenced by details as the growth rate of a three-dimensional wall jet. Predictions by a kappa-epsilon model and RSM show large deviations in the occupied zone. Measurements and observations of streamline patterns in model experiments indicate that a reasonable solution is obtained by the RSM compared with the solution obtained by the kappa-epsilon model. Computational fluid dynamics (CFD) is often used for the prediction of air distribution in rooms and for the evaluation of thermal comfort and indoor air quality. The most used turbulence model in CFD is the kappa-epsilon model. This model often produces good results; however, some cases require more sophisticated models. The prediction of a three-dimensional wall jet is improved if it is made by a Reynolds stress model (RSM). This model improves the prediction of the velocity level in the jet and in some special cases it may influence the entire flow in the occupied zone.
Two-dimensional airflow modeling underpredicts the wind velocity over dunes
Michelsen, Britt; Strobl, Severin; Parteli, Eric J. R.; Pöschel, Thorsten
2015-01-01
We investigate the average turbulent wind field over a barchan dune by means of Computational Fluid Dynamics. We find that the fractional speed-up ratio of the wind velocity over the three-dimensional barchan shape differs from the one obtained from two-dimensional calculations of the airflow over the longitudinal cut along the dune’s symmetry axis — that is, over the equivalent transverse dune of same size. This finding suggests that the modeling of the airflow over the central slice of barchan dunes is insufficient for the purpose of the quantitative description of barchan dune dynamics as three-dimensional flow effects cannot be neglected. PMID:26572966
More-Realistic Digital Modeling of a Human Body
NASA Technical Reports Server (NTRS)
Rogge, Renee
2010-01-01
A MATLAB computer program has been written to enable improved (relative to an older program) modeling of a human body for purposes of designing space suits and other hardware with which an astronaut must interact. The older program implements a kinematic model based on traditional anthropometric measurements that do provide important volume and surface information. The present program generates a three-dimensional (3D) whole-body model from 3D body-scan data. The program utilizes thin-plate spline theory to reposition the model without need for additional scans.
An Application of Overset Grids to Payload/Fairing Three-Dimensional Internal Flow CFD Analysis
NASA Technical Reports Server (NTRS)
Kandula, Max; Nallasamy, R.; Schallhorn, P.; Duncil, L.
2007-01-01
The application of overset grids to the computational fluid dynamics analysis of three-dimensional internal flow in the payload/fairing of an expendable launch vehicle is described. In conjunction with the overset grid system, the flowfield in the payload/fairing configuration is obtained with the aid of OVERFLOW Navier-Stokes code. The solution exhibits a highly three dimensional complex flowfield with swirl, separation, and vortices. Some of the computed flow features are compared with the measured Laser-Doppler Velocimetry (LDV) data on a 1/5th scale model of the payload/fairing configuration. The counter-rotating vortex structures and the location of the saddle point predicted by the CFD analysis are in general agreement with the LDV data. Comparisons of the computed (CFD) velocity profiles on horizontal and vertical lines in the LDV measurement plane in the faring nose region show reasonable agreement with the LDV data.
Analysis of spatial thermal field in a magnetic bearing
NASA Astrophysics Data System (ADS)
Wajnert, Dawid; Tomczuk, Bronisław
2018-03-01
This paper presents two mathematical models for temperature field analysis in a new hybrid magnetic bearing. Temperature distributions have been calculated using a three dimensional simulation and a two dimensional one. A physical model for temperature testing in the magnetic bearing has been developed. Some results obtained from computer simulations were compared with measurements.
A three-dimensional non-isothermal model for a membraneless direct methanol redox fuel cell
NASA Astrophysics Data System (ADS)
Wei, Lin; Yuan, Xianxia; Jiang, Fangming
2018-05-01
In the membraneless direct methanol redox fuel cell (DMRFC), three-dimensional electrodes contribute to the reduction of methanol crossover and the open separator design lowers the system cost and extends its service life. In order to better understand the mechanisms of this configuration and further optimize its performance, the development of a three-dimensional numerical model is reported in this work. The governing equations of the multi-physics field are solved based on computational fluid dynamics methodology, and the influence of the CO2 gas is taken into consideration through the effective diffusivities. The numerical results are in good agreement with experimental data, and the deviation observed for cases of large current density may be related to the single-phase assumption made. The three-dimensional electrode is found to be effective in controlling methanol crossover in its multi-layer structure, while it also increases the flow resistance for the discharging products. It is found that the current density distribution is affected by both the electronic conductivity and the concentration of reactants, and the temperature rise can be primarily attributed to the current density distribution. The sensitivity and reliability of the model are analyzed through the investigation of the effects of cell parameters, including porosity values of gas diffusion layers and catalyst layers, methanol concentration and CO2 volume fraction, on the polarization characteristics.
NASA Astrophysics Data System (ADS)
Ovaysi, S.; Piri, M.
2009-12-01
We present a three-dimensional fully dynamic parallel particle-based model for direct pore-level simulation of incompressible viscous fluid flow in disordered porous media. The model was developed from scratch and is capable of simulating flow directly in three-dimensional high-resolution microtomography images of naturally occurring or man-made porous systems. It reads the images as input where the position of the solid walls are given. The entire medium, i.e., solid and fluid, is then discretized using particles. The model is based on Moving Particle Semi-implicit (MPS) technique. We modify this technique in order to improve its stability. The model handles highly irregular fluid-solid boundaries effectively. It takes into account viscous pressure drop in addition to the gravity forces. It conserves mass and can automatically detect any false connectivity with fluid particles in the neighboring pores and throats. It includes a sophisticated algorithm to automatically split and merge particles to maintain hydraulic connectivity of extremely narrow conduits. Furthermore, it uses novel methods to handle particle inconsistencies and open boundaries. To handle the computational load, we present a fully parallel version of the model that runs on distributed memory computer clusters and exhibits excellent scalability. The model is used to simulate unsteady-state flow problems under different conditions starting from straight noncircular capillary tubes with different cross-sectional shapes, i.e., circular/elliptical, square/rectangular and triangular cross-sections. We compare the predicted dimensionless hydraulic conductances with the data available in the literature and observe an excellent agreement. We then test the scalability of our parallel model with two samples of an artificial sandstone, samples A and B, with different volumes and different distributions (non-uniform and uniform) of solid particles among the processors. An excellent linear scalability is obtained for sample B that has more uniform distribution of solid particles leading to a superior load balancing. The model is then used to simulate fluid flow directly in REV size three-dimensional x-ray images of a naturally occurring sandstone. We analyze the quality and consistency of the predicted flow behavior and calculate absolute permeability, which compares well with the available network modeling and Lattice-Boltzmann permeabilities available in the literature for the same sandstone. We show that the model conserves mass very well and is stable computationally even at very narrow fluid conduits. The transient- and the steady-state fluid flow patterns are presented as well as the steady-state flow rates to compute absolute permeability. Furthermore, we discuss the vital role of our adaptive particle resolution scheme in preserving the original pore connectivity of the samples and their narrow channels through splitting and merging of fluid particles.
Reduced order surrogate modelling (ROSM) of high dimensional deterministic simulations
NASA Astrophysics Data System (ADS)
Mitry, Mina
Often, computationally expensive engineering simulations can prohibit the engineering design process. As a result, designers may turn to a less computationally demanding approximate, or surrogate, model to facilitate their design process. However, owing to the the curse of dimensionality, classical surrogate models become too computationally expensive for high dimensional data. To address this limitation of classical methods, we develop linear and non-linear Reduced Order Surrogate Modelling (ROSM) techniques. Two algorithms are presented, which are based on a combination of linear/kernel principal component analysis and radial basis functions. These algorithms are applied to subsonic and transonic aerodynamic data, as well as a model for a chemical spill in a channel. The results of this thesis show that ROSM can provide a significant computational benefit over classical surrogate modelling, sometimes at the expense of a minor loss in accuracy.
Montessori, A; Falcucci, G; Prestininzi, P; La Rocca, M; Succi, S
2014-05-01
We investigate the accuracy and performance of the regularized version of the single-relaxation-time lattice Boltzmann equation for the case of two- and three-dimensional lid-driven cavities. The regularized version is shown to provide a significant gain in stability over the standard single-relaxation time, at a moderate computational overhead.
Four-dimensional reconstruction of cultural heritage sites based on photogrammetry and clustering
NASA Astrophysics Data System (ADS)
Voulodimos, Athanasios; Doulamis, Nikolaos; Fritsch, Dieter; Makantasis, Konstantinos; Doulamis, Anastasios; Klein, Michael
2017-01-01
A system designed and developed for the three-dimensional (3-D) reconstruction of cultural heritage (CH) assets is presented. Two basic approaches are presented. The first one, resulting in an "approximate" 3-D model, uses images retrieved in online multimedia collections; it employs a clustering-based technique to perform content-based filtering and eliminate outliers that significantly reduce the performance of 3-D reconstruction frameworks. The second one is based on input image data acquired through terrestrial laser scanning, as well as close range and airborne photogrammetry; it follows a sophisticated multistep strategy, which leads to a "precise" 3-D model. Furthermore, the concept of change history maps is proposed to address the computational limitations involved in four-dimensional (4-D) modeling, i.e., capturing 3-D models of a CH landmark or site at different time instances. The system also comprises a presentation viewer, which manages the display of the multifaceted CH content collected and created. The described methods have been successfully applied and evaluated in challenging real-world scenarios, including the 4-D reconstruction of the historic Market Square of the German city of Calw in the context of the 4-D-CH-World EU project.
Computer aided photographic engineering
NASA Technical Reports Server (NTRS)
Hixson, Jeffrey A.; Rieckhoff, Tom
1988-01-01
High speed photography is an excellent source of engineering data but only provides a two-dimensional representation of a three-dimensional event. Multiple cameras can be used to provide data for the third dimension but camera locations are not always available. A solution to this problem is to overlay three-dimensional CAD/CAM models of the hardware being tested onto a film or photographic image, allowing the engineer to measure surface distances, relative motions between components, and surface variations.
Olszewski, R; Tranduy, K; Reychler, H
2010-07-01
The authors present a new procedure of computer-assisted genioplasty. They determined the anterior, posterior and inferior limits of the chin in relation to the skull and face with the newly developed and validated three-dimensional cephalometric planar analysis (ACRO 3D). Virtual planning of the osteotomy lines was carried out with Mimics (Materialize) software. The authors built a three-dimensional rapid-prototyping multi-position model of the chin area from a medical low-dose CT scan. The transfer of virtual information to the operating room consisted of two elements. First, the titanium plates on the 3D RP model were pre-bent. Second, a surgical guide for the transfer of the osteotomy lines and the positions of the screws to the operating room was manufactured. The authors present the first case of the use of this model on a patient. The postoperative results are promising, and the technique is fast and easy-to-use. More patients are needed for a definitive clinical validation of this procedure. Copyright 2010 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kiani, Keivan
2014-06-01
Novel nonlocal discrete and continuous models are proposed for dynamic analysis of two- and three-dimensional ensembles of single-walled carbon nanotubes (SWCNTs). The generated extra van der Waals forces between adjacent SWCNTs due to their lateral motions are evaluated via Lennard-Jones potential function. Using a nonlocal Rayleigh beam model, the discrete and continuous models are developed for both two- and three-dimensional ensembles of SWCNTs acted upon by transverse dynamic loads. The capabilities of the proposed continuous models in capturing the vibration behavior of SWCNTs ensembles are then examined through various numerical simulations. A reasonably good agreement between the results of the continuous models and those of the discrete ones is also reported. The effects of the applied load frequency, intertube spaces, and small-scale parameter on the transverse dynamic responses of both two- and three-dimensional ensembles of SWCNTs are explained. The proposed continuous models would be very useful for dynamic analyses of large populated ensembles of SWCNTs whose discrete models suffer from both computational efforts and labor costs.
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1994-01-01
A fast algorithm has been developed for accurately generating boundary-conforming, three-dimensional consecutively refined computational grids applicable to arbitrary wing-body and axial turbomachinery geometries. This algorithm has been incorporated into the GRID3O computer program. The method employed in GRID3O is based on using an analytic function to generate two-dimensional grids on a number of coaxial axisymmetric surfaces positioned between the centerbody and the outer radial boundary. These grids are of the O-type and are characterized by quasi-orthogonality, geometric periodicity, and an adequate resolution throughout the flow field. Because the built-in nonorthogonal coordinate stretching and shearing cause the grid lines leaving the blade or wing trailing-edge to end at downstream infinity, use of the generated grid simplifies the numerical treatment of three-dimensional trailing vortex sheets. The GRID3O program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 450K of 8 bit bytes. The GRID3O program was developed in 1981.
Octree-based Global Earthquake Simulations
NASA Astrophysics Data System (ADS)
Ramirez-Guzman, L.; Juarez, A.; Bielak, J.; Salazar Monroy, E. F.
2017-12-01
Seismological research has motivated recent efforts to construct more accurate three-dimensional (3D) velocity models of the Earth, perform global simulations of wave propagation to validate models, and also to study the interaction of seismic fields with 3D structures. However, traditional methods for seismogram computation at global scales are limited by computational resources, relying primarily on traditional methods such as normal mode summation or two-dimensional numerical methods. We present an octree-based mesh finite element implementation to perform global earthquake simulations with 3D models using topography and bathymetry with a staircase approximation, as modeled by the Carnegie Mellon Finite Element Toolchain Hercules (Tu et al., 2006). To verify the implementation, we compared the synthetic seismograms computed in a spherical earth against waveforms calculated using normal mode summation for the Preliminary Earth Model (PREM) for a point source representation of the 2014 Mw 7.3 Papanoa, Mexico earthquake. We considered a 3 km-thick ocean layer for stations with predominantly oceanic paths. Eigen frequencies and eigen functions were computed for toroidal, radial, and spherical oscillations in the first 20 branches. Simulations are valid at frequencies up to 0.05 Hz. Matching among the waveforms computed by both approaches, especially for long period surface waves, is excellent. Additionally, we modeled the Mw 9.0 Tohoku-Oki earthquake using the USGS finite fault inversion. Topography and bathymetry from ETOPO1 are included in a mesh with more than 3 billion elements; constrained by the computational resources available. We compared estimated velocity and GPS synthetics against observations at regional and teleseismic stations of the Global Seismological Network and discuss the differences among observations and synthetics, revealing that heterogeneity, particularly in the crust, needs to be considered.
Three Dimensional Measurements And Display Using A Robot Arm
NASA Astrophysics Data System (ADS)
Swift, Thomas E.
1984-02-01
The purpose of this paper is to describe a project which makes three dimensional measurements of an object using a robot arm. A program was written to determine the X-Y-Z coordinates of the end point of a Minimover-5 robot arm which was interfaced to a TRS-80 Model III microcomputer. This program was used in conjunction with computer graphics subroutines that draw a projected three dimensional object.. The robot arm was direc-ted to touch points on an object and then lines were drawn on the screen of the microcomputer between consecutive points as they were entered. A representation of the entire object is in this way constructed on the screen. The three dimensional graphics subroutines have the ability to rotate the projected object about any of the three axes, and to scale the object to any size. This project has applications in the computer-aided design and manufacturing fields because it can accurately measure the features of an irregularly shaped object.
Automated Reconstruction of Three-Dimensional Fish Motion, Forces, and Torques
Voesenek, Cees J.; Pieters, Remco P. M.; van Leeuwen, Johan L.
2016-01-01
Fish can move freely through the water column and make complex three-dimensional motions to explore their environment, escape or feed. Nevertheless, the majority of swimming studies is currently limited to two-dimensional analyses. Accurate experimental quantification of changes in body shape, position and orientation (swimming kinematics) in three dimensions is therefore essential to advance biomechanical research of fish swimming. Here, we present a validated method that automatically tracks a swimming fish in three dimensions from multi-camera high-speed video. We use an optimisation procedure to fit a parameterised, morphology-based fish model to each set of video images. This results in a time sequence of position, orientation and body curvature. We post-process this data to derive additional kinematic parameters (e.g. velocities, accelerations) and propose an inverse-dynamics method to compute the resultant forces and torques during swimming. The presented method for quantifying 3D fish motion paves the way for future analyses of swimming biomechanics. PMID:26752597
NASA Astrophysics Data System (ADS)
Bag, S.; de, A.
2010-09-01
The transport phenomena based heat transfer and fluid flow calculations in weld pool require a number of input parameters. Arc efficiency, effective thermal conductivity, and viscosity in weld pool are some of these parameters, values of which are rarely known and difficult to assign a priori based on the scientific principles alone. The present work reports a bi-directional three-dimensional (3-D) heat transfer and fluid flow model, which is integrated with a real number based genetic algorithm. The bi-directional feature of the integrated model allows the identification of the values of a required set of uncertain model input parameters and, next, the design of process parameters to achieve a target weld pool dimension. The computed values are validated with measured results in linear gas-tungsten-arc (GTA) weld samples. Furthermore, a novel methodology to estimate the overall reliability of the computed solutions is also presented.
NASA Astrophysics Data System (ADS)
García-Moreno, Angel-Iván; González-Barbosa, José-Joel; Ramírez-Pedraza, Alfonso; Hurtado-Ramos, Juan B.; Ornelas-Rodriguez, Francisco-Javier
2016-04-01
Computer-based reconstruction models can be used to approximate urban environments. These models are usually based on several mathematical approximations and the usage of different sensors, which implies dependency on many variables. The sensitivity analysis presented in this paper is used to weigh the relative importance of each uncertainty contributor into the calibration of a panoramic camera-LiDAR system. Both sensors are used for three-dimensional urban reconstruction. Simulated and experimental tests were conducted. For the simulated tests we analyze and compare the calibration parameters using the Monte Carlo and Latin hypercube sampling techniques. Sensitivity analysis for each variable involved into the calibration was computed by the Sobol method, which is based on the analysis of the variance breakdown, and the Fourier amplitude sensitivity test method, which is based on Fourier's analysis. Sensitivity analysis is an essential tool in simulation modeling and for performing error propagation assessments.
A Linear Bicharacteristic FDTD Method
NASA Technical Reports Server (NTRS)
Beggs, John H.
2001-01-01
The linear bicharacteristic scheme (LBS) was originally developed to improve unsteady solutions in computational acoustics and aeroacoustics [1]-[7]. It is a classical leapfrog algorithm, but is combined with upwind bias in the spatial derivatives. This approach preserves the time-reversibility of the leapfrog algorithm, which results in no dissipation, and it permits more flexibility by the ability to adopt a characteristic based method. The use of characteristic variables allows the LBS to treat the outer computational boundaries naturally using the exact compatibility equations. The LBS offers a central storage approach with lower dispersion than the Yee algorithm, plus it generalizes much easier to nonuniform grids. It has previously been applied to two and three-dimensional freespace electromagnetic propagation and scattering problems [3], [6], [7]. This paper extends the LBS to model lossy dielectric and magnetic materials. Results are presented for several one-dimensional model problems, and the FDTD algorithm is chosen as a convenient reference for comparison.
Nagaoka, Tomoaki; Watanabe, Soichi
2012-01-01
Electromagnetic simulation with anatomically realistic computational human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the computational human model, we adapt three-dimensional FDTD code to a multi-GPU cluster environment with Compute Unified Device Architecture and Message Passing Interface. Our multi-GPU cluster system consists of three nodes. The seven GPU boards (NVIDIA Tesla C2070) are mounted on each node. We examined the performance of the FDTD calculation on multi-GPU cluster environment. We confirmed that the FDTD calculation on the multi-GPU clusters is faster than that on a multi-GPU (a single workstation), and we also found that the GPU cluster system calculate faster than a vector supercomputer. In addition, our GPU cluster system allowed us to perform the large-scale FDTD calculation because were able to use GPU memory of over 100 GB.
A dental vision system for accurate 3D tooth modeling.
Zhang, Li; Alemzadeh, K
2006-01-01
This paper describes an active vision system based reverse engineering approach to extract the three-dimensional (3D) geometric information from dental teeth and transfer this information into Computer-Aided Design/Computer-Aided Manufacture (CAD/CAM) systems to improve the accuracy of 3D teeth models and at the same time improve the quality of the construction units to help patient care. The vision system involves the development of a dental vision rig, edge detection, boundary tracing and fast & accurate 3D modeling from a sequence of sliced silhouettes of physical models. The rig is designed using engineering design methods such as a concept selection matrix and weighted objectives evaluation chart. Reconstruction results and accuracy evaluation are presented on digitizing different teeth models.
NASA Astrophysics Data System (ADS)
Riegel, H. B.; Zambrano, M.; Jablonska, D.; Emanuele, T.; Agosta, F.; Mattioni, L.; Rustichelli, A.
2017-12-01
The hydraulic properties of fault zones depend upon the individual contributions of the damage zone and the fault core. In the case of the damage zone, it is generally characterized by means of fracture analysis and modelling implementing multiple approaches, for instance the discrete fracture network model, the continuum model, and the channel network model. Conversely, the fault core is more difficult to characterize because it is normally composed of fine grain material generated by friction and wear. If the dimensions of the fault core allows it, the porosity and permeability are normally studied by means of laboratory analysis or in the other case by two dimensional microporosity analysis and in situ measurements of permeability (e.g. micro-permeameter). In this study, a combined approach consisting of fracture modeling, three-dimensional microporosity analysis, and computational fluid dynamics was applied to characterize the hydraulic properties of fault zones. The studied fault zones crosscut a well-cemented heterolithic succession (sandstone and mudstones) and may vary in terms of fault core thickness and composition, fracture properties, kinematics (normal or strike-slip), and displacement. These characteristics produce various splay and fault core behavior. The alternation of sandstone and mudstone layers is responsible for the concurrent occurrence of brittle (fractures) and ductile (clay smearing) deformation. When these alternating layers are faulted, they produce corresponding fault cores which act as conduits or barriers for fluid migration. When analyzing damage zones, accurate field and data acquisition and stochastic modeling was used to determine the hydraulic properties of the rock volume, in relation to the surrounding, undamaged host rock. In the fault cores, the three-dimensional pore network quantitative analysis based on X-ray microtomography images includes porosity, pore connectivity, and specific surface area. In addition, images were used to perform computational fluid simulation (Lattice-Boltzmann multi relaxation time method) and estimate the permeability. These results will be useful for understanding the deformation process and hydraulic properties across meter-scale damage zones.
Articulatory speech synthesis and speech production modelling
NASA Astrophysics Data System (ADS)
Huang, Jun
This dissertation addresses the problem of speech synthesis and speech production modelling based on the fundamental principles of human speech production. Unlike the conventional source-filter model, which assumes the independence of the excitation and the acoustic filter, we treat the entire vocal apparatus as one system consisting of a fluid dynamic aspect and a mechanical part. We model the vocal tract by a three-dimensional moving geometry. We also model the sound propagation inside the vocal apparatus as a three-dimensional nonplane-wave propagation inside a viscous fluid described by Navier-Stokes equations. In our work, we first propose a combined minimum energy and minimum jerk criterion to estimate the dynamic vocal tract movements during speech production. Both theoretical error bound analysis and experimental results show that this method can achieve very close match at the target points and avoid the abrupt change in articulatory trajectory at the same time. Second, a mechanical vocal fold model is used to compute the excitation signal of the vocal tract. The advantage of this model is that it is closely coupled with the vocal tract system based on fundamental aerodynamics. As a result, we can obtain an excitation signal with much more detail than the conventional parametric vocal fold excitation model. Furthermore, strong evidence of source-tract interaction is observed. Finally, we propose a computational model of the fricative and stop types of sounds based on the physical principles of speech production. The advantage of this model is that it uses an exogenous process to model the additional nonsteady and nonlinear effects due to the flow mode, which are ignored by the conventional source- filter speech production model. A recursive algorithm is used to estimate the model parameters. Experimental results show that this model is able to synthesize good quality fricative and stop types of sounds. Based on our dissertation work, we carefully argue that the articulatory speech production model has the potential to flexibly synthesize natural-quality speech sounds and to provide a compact computational model for speech production that can be beneficial to a wide range of areas in speech signal processing.
PARTIAL RESTRAINING FORCE INTRODUCTION METHOD FOR DESIGNING CONSTRUCTION COUNTERMESURE ON ΔB METHOD
NASA Astrophysics Data System (ADS)
Nishiyama, Taku; Imanishi, Hajime; Chiba, Noriyuki; Ito, Takao
Landslide or slope failure is a three-dimensional movement phenomenon, thus a three-dimensional treatment makes it easier to understand stability. The ΔB method (simplified three-dimensional slope stability analysis method) is based on the limit equilibrium method and equals to an approximate three-dimensional slope stability analysis that extends two-dimensional cross-section stability analysis results to assess stability. This analysis can be conducted using conventional spreadsheets or two-dimensional slope stability computational software. This paper describes the concept of the partial restraining force in-troduction method for designing construction countermeasures using the distribution of the restraining force found along survey lines, which is based on the distribution of survey line safety factors derived from the above-stated analysis. This paper also presents the transverse distributive method of restraining force used for planning ground stabilizing on the basis of the example analysis.
Three-dimensional printing in cardiology: Current applications and future challenges.
Luo, Hongxing; Meyer-Szary, Jarosław; Wang, Zhongmin; Sabiniewicz, Robert; Liu, Yuhao
2017-01-01
Three-dimensional (3D) printing has attracted a huge interest in recent years. Broadly speaking, it refers to the technology which converts a predesigned virtual model to a touchable object. In clinical medicine, it usually converts a series of two-dimensional medical images acquired through computed tomography, magnetic resonance imaging or 3D echocardiography into a physical model. Medical 3D printing consists of three main steps: image acquisition, virtual reconstruction and 3D manufacturing. It is a promising tool for preoperative evaluation, medical device design, hemodynamic simulation and medical education, it is also likely to reduce operative risk and increase operative success. However, the most relevant studies are case reports or series which are underpowered in testing its actual effect on patient outcomes. The decision of making a 3D cardiac model may seem arbitrary since it is mostly based on a cardiologist's perceived difficulty in performing an interventional procedure. A uniform consensus is urgently necessary to standardize the key steps of 3D printing from imaging acquisition to final production. In the future, more clinical trials of rigorous design are possible to further validate the effect of 3D printing on the treatment of cardiovascular diseases. (Cardiol J 2017; 24, 4: 436-444).
A Computational Fluid Dynamic Model for a Novel Flash Ironmaking Process
NASA Astrophysics Data System (ADS)
Perez-Fontes, Silvia E.; Sohn, Hong Yong; Olivas-Martinez, Miguel
A computational fluid dynamic model for a novel flash ironmaking process based on the direct gaseous reduction of iron oxide concentrates is presented. The model solves the three-dimensional governing equations including both gas-phase and gas-solid reaction kinetics. The turbulence-chemistry interaction in the gas-phase is modeled by the eddy dissipation concept incorporating chemical kinetics. The particle cloud model is used to track the particle phase in a Lagrangian framework. A nucleation and growth kinetics rate expression is adopted to calculate the reduction rate of magnetite concentrate particles. Benchmark experiments reported in the literature for a nonreacting swirling gas jet and a nonpremixed hydrogen jet flame were simulated for validation. The model predictions showed good agreement with measurements in terms of gas velocity, gas temperature and species concentrations. The relevance of the computational model for the analysis of a bench reactor operation and the design of an industrial-pilot plant is discussed.
A novel method to acquire 3D data from serial 2D images of a dental cast
NASA Astrophysics Data System (ADS)
Yi, Yaxing; Li, Zhongke; Chen, Qi; Shao, Jun; Li, Xinshe; Liu, Zhiqin
2007-05-01
This paper introduced a newly developed method to acquire three-dimensional data from serial two-dimensional images of a dental cast. The system consists of a computer and a set of data acquiring device. The data acquiring device is used to take serial pictures of the a dental cast; an artificial neural network works to translate two-dimensional pictures to three-dimensional data; then three-dimensional image can reconstruct by the computer. The three-dimensional data acquiring of dental casts is the foundation of computer-aided diagnosis and treatment planning in orthodontics.
Concept and development of an orthotropic FE model of the proximal femur.
Wirtz, Dieter Christian; Pandorf, Thomas; Portheine, Frank; Radermacher, Klaus; Schiffers, Norbert; Prescher, Andreas; Weichert, Dieter; Niethard, Fritz Uwe
2003-02-01
In contrast to many isotropic finite-element (FE) models of the femur in literature, it was the object of our study to develop an orthotropic FE "model femur" to realistically simulate three-dimensional bone remodelling. The three-dimensional geometry of the proximal femur was reconstructed by CT scans of a pair of cadaveric femurs at equal distances of 2mm. These three-dimensional CT models were implemented into an FE simulation tool. Well-known "density-determined" bony material properties (Young's modulus; Poisson's ratio; ultimate strength in pressure, tension and torsion; shear modulus) were assigned to each FE of the same "CT-density-characterized" volumetric group. In order to fix the principal directions of stiffness in FE areas with the same "density characterization", the cadaveric femurs were cut in 2mm slices in frontal (left femur) and sagittal plane (right femur). Each femoral slice was scanned into a computer-based image processing system. On these images, the principal directions of stiffness of cancellous and cortical bone were determined manually using the orientation of the trabecular structures and the Haversian system. Finally, these geometric data were matched with the "CT-density characterized" three-dimensional femur model. In addition, the time and density-dependent adaptive behaviour of bone remodelling was taken into account by implementation of Carter's criterion. In the constructed "model femur", each FE is characterized by the principal directions of the stiffness and the "CT-density-determined" material properties of cortical and cancellous bone. Thus, on the basis of anatomic data a three-dimensional FE simulation reference model of the proximal femur was realized considering orthotropic conditions of bone behaviour. With the orthotropic "model femur", the fundamental basis has been formed to realize realistic simulations of the dynamical processes of bone remodelling under different loading conditions or operative procedures (osteotomies, total hip replacements, etc).
NASA Astrophysics Data System (ADS)
DelGrande, Nancy; Dolan, Kenneth W.; Durbin, Philip F.; Gorvad, Michael R.; Kornblum, B. T.; Perkins, Dwight E.; Schneberk, Daniel J.; Shapiro, Arthur B.
1993-11-01
We discuss three-dimensional dynamic thermal imaging of structural flaws using dual-band infrared (DBIR) computed tomography. Conventional (single-band) thermal imaging is difficult to interpret. It yields imprecise or qualitative information (e.g., when subsurface flaws produce weak heat flow anomalies masked by surface clutter). We use the DBIR imaging technique to clarify interpretation. We capture the time history of surface temperature difference patterns at the epoxy-glue disbond site of a flash-heated lap joint. This type of flawed structure played a significant role in causing damage to the Aloha Aircraft fuselage on the aged Boeing 737 jetliner. The magnitude of surface-temperature differences versus time for 0.1 mm air layer compared to 0.1 mm glue layer, varies from 0.2 to 1.6 degree(s)C, for simultaneously scanned front and back surfaces. The scans are taken every 42 ms from 0 to 8 s after the heat flash. By ratioing 3 - 5 micrometers and 8 - 12 micrometers DBIR images, we located surface temperature patterns from weak heat flow anomalies at the disbond site and remove the emissivity mask from surface paint of roughness variations. Measurements compare well with calculations based on TOPAX3D, a three-dimensional, finite element computer model. We combine infrared, ultrasound and x-ray imaging methods to study heat transfer, bond quality and material differences associated with the lap joint disbond site.
Design and Implementation of 3D Model Data Management System Based on SQL
NASA Astrophysics Data System (ADS)
Li, Shitao; Zhang, Shixin; Zhang, Zhanling; Li, Shiming; Jia, Kun; Hu, Zhongxu; Ping, Liang; Hu, Youming; Li, Yanlei
CAD/CAM technology plays an increasingly important role in the machinery manufacturing industry. As an important means of production, the accumulated three-dimensional models in many years of design work are valuable. Thus the management of these three-dimensional models is of great significance. This paper gives detailed explanation for a method to design three-dimensional model databases based on SQL and to implement the functions such as insertion, modification, inquiry, preview and so on.
THR-TH: a high-temperature gas-cooled nuclear reactor core thermal hydraulics code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vondy, D.R.
1984-07-01
The ORNL version of PEBBLE, the (RZ) pebble bed thermal hydraulics code, has been extended for application to a prismatic gas cooled reactor core. The supplemental treatment is of one-dimensional coolant flow in up to a three-dimensional core description. Power density data from a neutronics and exposure calculation are used as the basic information for the thermal hydraulics calculation of heat removal. Two-dimensional neutronics results may be expanded for a three-dimensional hydraulics calculation. The geometric description for the hydraulics problem is the same as used by the neutronics code. A two-dimensional thermal cell model is used to predict temperatures inmore » the fuel channel. The capability is available in the local BOLD VENTURE computation system for reactor core analysis with capability to account for the effect of temperature feedback by nuclear cross section correlation. Some enhancements have also been added to the original code to add pebble bed modeling flexibility and to generate useful auxiliary results. For example, an estimate is made of the distribution of fuel temperatures based on average and extreme conditions regularly calculated at a number of locations.« less
A fuzzy structural matching scheme for space robotics vision
NASA Technical Reports Server (NTRS)
Naka, Masao; Yamamoto, Hiromichi; Homma, Khozo; Iwata, Yoshitaka
1994-01-01
In this paper, we propose a new fuzzy structural matching scheme for space stereo vision which is based on the fuzzy properties of regions of images and effectively reduces the computational burden in the following low level matching process. Three dimensional distance images of a space truss structural model are estimated using this scheme from stereo images sensed by Charge Coupled Device (CCD) TV cameras.
Fast multiview three-dimensional reconstruction method using cost volume filtering
NASA Astrophysics Data System (ADS)
Lee, Seung Joo; Park, Min Ki; Jang, In Yeop; Lee, Kwan H.
2014-03-01
As the number of customers who want to record three-dimensional (3-D) information using a mobile electronic device increases, it becomes more and more important to develop a method which quickly reconstructs a 3-D model from multiview images. A fast multiview-based 3-D reconstruction method is presented, which is suitable for the mobile environment by constructing a cost volume of the 3-D height field. This method consists of two steps: the construction of a reliable base surface and the recovery of shape details. In each step, the cost volume is constructed using photoconsistency and then it is filtered according to the multiscale. The multiscale-based cost volume filtering allows the 3-D reconstruction to maintain the overall shape and to preserve the shape details. We demonstrate the strength of the proposed method in terms of computation time, accuracy, and unconstrained acquisition environment.
On solving three-dimensional open-dimension rectangular packing problems
NASA Astrophysics Data System (ADS)
Junqueira, Leonardo; Morabito, Reinaldo
2017-05-01
In this article, a recently proposed three-dimensional open-dimension rectangular packing problem is considered, in which the objective is to find a minimal volume rectangular container that packs a set of rectangular boxes. The literature has tackled small-sized instances of this problem by means of optimization solvers, position-free mixed-integer programming (MIP) formulations and piecewise linearization approaches. In this study, the problem is alternatively addressed by means of grid-based position MIP formulations, whereas still considering optimization solvers and the same piecewise linearization techniques. A comparison of the computational performance of both models is then presented, when tested with benchmark problem instances and with new instances, and it is shown that the grid-based position MIP formulation can be competitive, depending on the characteristics of the instances. The grid-based position MIP formulation is also embedded with real-world practical constraints, such as cargo stability, and results are additionally presented.
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Woodard, Brian S.; Diebold, Jeffrey M.; Moens, Frederic
2017-01-01
Aerodynamic assessment of icing effects on swept wings is an important component of a larger effort to improve three-dimensional icing simulation capabilities. An understanding of ice-shape geometric fidelity and Reynolds and Mach number effects on the iced-wing aerodynamics is needed to guide the development and validation of ice-accretion simulation tools. To this end, wind-tunnel testing and computational flow simulations were carried out for an 8.9%-scale semispan wing based upon the Common Research Model airplane configuration. The wind-tunnel testing was conducted at the Wichita State University 7 ft x 10 ft Beech wind tunnel from Reynolds numbers of 0.8×10(exp 6) to 2.4×10(exp 6) and corresponding Mach numbers of 0.09 to 0.27. This paper presents the results of initial studies investigating the model mounting configuration, clean-wing aerodynamics and effects of artificial ice roughness. Four different model mounting configurations were considered and a circular splitter plate combined with a streamlined shroud was selected as the baseline geometry for the remainder of the experiments and computational simulations. A detailed study of the clean-wing aerodynamics and stall characteristics was made. In all cases, the flow over the outboard sections of the wing separated as the wing stalled with the inboard sections near the root maintaining attached flow. Computational flow simulations were carried out with the ONERA elsA software that solves the compressible, three-dimensional RANS equations. The computations were carried out in either fully turbulent mode or with natural transition. Better agreement between the experimental and computational results was obtained when considering computations with free transition compared to turbulent solutions. These results indicate that experimental evolution of the clean wing performance coefficients were due to the effect of three-dimensional transition location and that this must be taken into account for future data analysis. This research also confirmed that artificial ice roughness created with rapid-prototype manufacturing methods can generate aerodynamic performance effects comparable to grit roughness of equivalent size when proper care is exercised in design and installation. The conclusions of this combined experimental and computational study contributed directly to the successful implementation of follow-on test campaigns with numerous artificial ice-shape configurations for this 8.9% scale model.
NASA Technical Reports Server (NTRS)
Bathel, Brett F.; Danehy, Paul M.; Johansen, Craig T.; Ashcraft, Scott W.; Novak, Luke A.
2013-01-01
Numerical predictions of the Mars Science Laboratory reaction control system jets interacting with a Mach 10 hypersonic flow are compared to experimental nitric oxide planar laser-induced fluorescence data. The steady Reynolds Averaged Navier Stokes equations using the Baldwin-Barth one-equation turbulence model were solved using the OVERFLOW code. The experimental fluorescence data used for comparison consists of qualitative two-dimensional visualization images, qualitative reconstructed three-dimensional flow structures, and quantitative two-dimensional distributions of streamwise velocity. Through modeling of the fluorescence signal equation, computational flow images were produced and directly compared to the qualitative fluorescence data.
Ikeda, Norihiko; Yoshimura, Akinobu; Hagiwara, Masaru; Akata, Soichi; Saji, Hisashi
2013-01-01
The number of minimally invasive operations, such as video-assisted thoracoscopic surgery (VATS) lobectomy or segmentectomy, has enormously increased in recent years. These operations require extreme knowledge of the anatomy of pulmonary vessels and bronchi in each patient, and surgeons must carefully dissect the branches of pulmonary vessels during operation. Thus, foreknowledge of the anatomy of each patient would greatly contribute to the safety and accuracy of the operation. The development of multi-detector computed tomography (MDCT) has promoted three dimensional (3D) images of lung structures. It is possible to see the vascular and bronchial structures from the view of the operator; therefore, it is employed for preoperative simulation as well as navigation during operation. Due to advances in software, even small vessels can be accurately imaged, which is useful in performing segmentectomy. Surgical simulation and navigation systems based on high quality 3D lung modeling, including vascular and bronchial structures, can be used routinely to enhance the safety operation, education of junior staff, as well as providing a greater sense of security to the operators.
The recovery and utilization of space suit range-of-motion data
NASA Technical Reports Server (NTRS)
Reinhardt, AL; Walton, James S.
1988-01-01
A technique for recovering data for the range of motion of a subject wearing a space suit is described along with the validation of this technique on an EVA space suit. Digitized data are automatically acquired from video images of the subject; three-dimensional trajectories are recovered from these data, and can be displayed using three-dimensional computer graphics. Target locations are recovered using a unique video processor and close-range photogrammetry. It is concluded that such data can be used in such applications as the animation of anthropometric computer models.
Karasick, M.S.; Strip, D.R.
1996-01-30
A parallel computing system is described that comprises a plurality of uniquely labeled, parallel processors, each processor capable of modeling a three-dimensional object that includes a plurality of vertices, faces and edges. The system comprises a front-end processor for issuing a modeling command to the parallel processors, relating to a three-dimensional object. Each parallel processor, in response to the command and through the use of its own unique label, creates a directed-edge (d-edge) data structure that uniquely relates an edge of the three-dimensional object to one face of the object. Each d-edge data structure at least includes vertex descriptions of the edge and a description of the one face. As a result, each processor, in response to the modeling command, operates upon a small component of the model and generates results, in parallel with all other processors, without the need for processor-to-processor intercommunication. 8 figs.
Rathnayaka, C M; Karunasena, H C P; Senadeera, W; Gu, Y T
2018-03-14
Numerical modelling has gained popularity in many science and engineering streams due to the economic feasibility and advanced analytical features compared to conventional experimental and theoretical models. Food drying is one of the areas where numerical modelling is increasingly applied to improve drying process performance and product quality. This investigation applies a three dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) and Coarse-Grained (CG) numerical approach to predict the morphological changes of different categories of food-plant cells such as apple, grape, potato and carrot during drying. To validate the model predictions, experimental findings from in-house experimental procedures (for apple) and sources of literature (for grape, potato and carrot) have been utilised. The subsequent comaprison indicate that the model predictions demonstrate a reasonable agreement with the experimental findings, both qualitatively and quantitatively. In this numerical model, a higher computational accuracy has been maintained by limiting the consistency error below 1% for all four cell types. The proposed meshfree-based approach is well-equipped to predict the morphological changes of plant cellular structure over a wide range of moisture contents (10% to 100% dry basis). Compared to the previous 2-D meshfree-based models developed for plant cell drying, the proposed model can draw more useful insights on the morphological behaviour due to the 3-D nature of the model. In addition, the proposed computational modelling approach has a high potential to be used as a comprehensive tool in many other tissue morphology related investigations.
Representative volume element model of lithium-ion battery electrodes based on X-ray nano-tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashkooli, Ali Ghorbani; Amirfazli, Amir; Farhad, Siamak
For this, a new model that keeps all major advantages of the single-particle model of lithium-ion batteries (LIBs) and includes three-dimensional structure of the electrode was developed. Unlike the single spherical particle, this model considers a small volume element of an electrode, called the Representative Volume Element (RVE), which represent the real electrode structure. The advantages of using RVE as the model geometry was demonstrated for a typical LIB electrode consisting of nano-particle LiFePO 4 (LFP) active material. The three-dimensional morphology of the LFP electrode was reconstructed using a synchrotron X-ray nano-computed tomography at the Advanced Photon Source of themore » Argonne National. A 27 μm 3 cube from reconstructed structure was chosen as the RVE for the simulation purposes. The model was employed to predict the voltage curve in a half-cell during galvanostatic operations and validated with experimental data. The simulation results showed that the distribution of lithium inside the electrode microstructure is very different from the results obtained based on the single-particle model. The range of lithium concentration is found to be much greater, successfully illustrates the effect of microstructure heterogeneity.« less
Representative volume element model of lithium-ion battery electrodes based on X-ray nano-tomography
Kashkooli, Ali Ghorbani; Amirfazli, Amir; Farhad, Siamak; ...
2017-01-28
For this, a new model that keeps all major advantages of the single-particle model of lithium-ion batteries (LIBs) and includes three-dimensional structure of the electrode was developed. Unlike the single spherical particle, this model considers a small volume element of an electrode, called the Representative Volume Element (RVE), which represent the real electrode structure. The advantages of using RVE as the model geometry was demonstrated for a typical LIB electrode consisting of nano-particle LiFePO 4 (LFP) active material. The three-dimensional morphology of the LFP electrode was reconstructed using a synchrotron X-ray nano-computed tomography at the Advanced Photon Source of themore » Argonne National. A 27 μm 3 cube from reconstructed structure was chosen as the RVE for the simulation purposes. The model was employed to predict the voltage curve in a half-cell during galvanostatic operations and validated with experimental data. The simulation results showed that the distribution of lithium inside the electrode microstructure is very different from the results obtained based on the single-particle model. The range of lithium concentration is found to be much greater, successfully illustrates the effect of microstructure heterogeneity.« less
Taylor, Susan; Ringelberg, David B; Dontsova, Katerina; Daghlian, Charles P; Walsh, Marianne E; Walsh, Michael R
2013-11-01
Two compounds, 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO) are the main ingredients in a suite of explosive formulations that are being, or soon will be, fielded at military training ranges. We aim to understand the dissolution characteristics of DNAN and NTO and three insensitive muntions (IM) formulations that contain them. This information is needed to accurately predict the environmental fate of IM constituents, some of which may be toxic to people and the environment. We used Raman spectroscopy to identify the different constituents in the IM formulations and micro computed tomography to image their three-dimensional structure. These are the first three-dimensional images of detonated explosive particles. For multi-component explosives the solubility of the individual constituents and the fraction of each constituent wetted by water controls the dissolution. We found that the order of magnitude differences in solubility amongst the constituents of these IM formulations quickly produced hole-riddled particles when these were exposed to water. Micro-computed tomography showed that particles resulting from field detonations were fractured, producing conduits by which water could access the interior of the particle. We think that micro-computed tomography can also be used to determine the initial composition of IM particles and to track how their compositions change as the particles dissolve. This information is critical to quantifying dissolution and developing physically based dissolution models. Published by Elsevier Ltd.
Biomimetic optimization research on wind noise reduction of an asymmetric cross-section bar.
Zhang, Yingchao; Meng, Weijiang; Fan, Bing; Tang, Wenhui
2016-01-01
In this paper, we used the principle of biomimetics to design two-dimensional and three-dimensional bar sections, and used computational fluid dynamics software to numerically simulate and analyse the aerodynamic noise, to reduce drag and noise. We used the principle of biomimetics to design the cross-section of a bar. An owl wing shape was used for the initial design of the section geometry; then the feathered form of an owl wing, the v-shaped micro-grooves of a shark's skin, the tubercles of a humpback whale's flipper, and the stripy surface of a scallop's shell were used to inspire surface features, added to the initial section and three-dimensional shape. Through computational aeroacoustic simulations, we obtained the aerodynamic characteristics and the noise levels of the models. These biomimetic models dramatically decreased noise levels.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Nwadike, E. V.; Sinha, S. E.
1982-01-01
The theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model are described. Model verification at two sites, a separate user's manual for each model are included. The 3-D model has two forms: free surface and rigid lid. The former allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth, estuaries and coastal regions. The latter is suited for small surface wave heights compared to depth because surface elevation was removed as a parameter. These models allow computation of time dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions. The free surface model also provides surface height variations with time.
Computer Vision Assisted Virtual Reality Calibration
NASA Technical Reports Server (NTRS)
Kim, W.
1999-01-01
A computer vision assisted semi-automatic virtual reality (VR) calibration technology has been developed that can accurately match a virtual environment of graphically simulated three-dimensional (3-D) models to the video images of the real task environment.
Conformational Sampling in Template-Free Protein Loop Structure Modeling: An Overview
Li, Yaohang
2013-01-01
Accurately modeling protein loops is an important step to predict three-dimensional structures as well as to understand functions of many proteins. Because of their high flexibility, modeling the three-dimensional structures of loops is difficult and is usually treated as a “mini protein folding problem” under geometric constraints. In the past decade, there has been remarkable progress in template-free loop structure modeling due to advances of computational methods as well as stably increasing number of known structures available in PDB. This mini review provides an overview on the recent computational approaches for loop structure modeling. In particular, we focus on the approaches of sampling loop conformation space, which is a critical step to obtain high resolution models in template-free methods. We review the potential energy functions for loop modeling, loop buildup mechanisms to satisfy geometric constraints, and loop conformation sampling algorithms. The recent loop modeling results are also summarized. PMID:24688696
Conformational sampling in template-free protein loop structure modeling: an overview.
Li, Yaohang
2013-01-01
Accurately modeling protein loops is an important step to predict three-dimensional structures as well as to understand functions of many proteins. Because of their high flexibility, modeling the three-dimensional structures of loops is difficult and is usually treated as a "mini protein folding problem" under geometric constraints. In the past decade, there has been remarkable progress in template-free loop structure modeling due to advances of computational methods as well as stably increasing number of known structures available in PDB. This mini review provides an overview on the recent computational approaches for loop structure modeling. In particular, we focus on the approaches of sampling loop conformation space, which is a critical step to obtain high resolution models in template-free methods. We review the potential energy functions for loop modeling, loop buildup mechanisms to satisfy geometric constraints, and loop conformation sampling algorithms. The recent loop modeling results are also summarized.
Experimental and Numerical Study of Ammonium Perchlorate Counterflow Diffusion Flames
NASA Technical Reports Server (NTRS)
Smooke, M. D.; Yetter, R. A.; Parr, T. P.; Hanson-Parr, D. M.; Tanoff, M. A.
1999-01-01
Many solid rocket propellants are based on a composite mixture of ammonium perchlorate (AP) oxidizer and polymeric binder fuels. In these propellants, complex three-dimensional diffusion flame structures between the AP and binder decomposition products, dependent upon the length scales of the heterogeneous mixture, drive the combustion via heat transfer back to the surface. Changing the AP crystal size changes the burn rate of such propellants. Large AP crystals are governed by the cooler AP self-deflagration flame and burn slowly, while small AP crystals are governed more by the hot diffusion flame with the binder and burn faster. This allows control of composite propellant ballistic properties via particle size variation. Previous measurements on these diffusion flames in the planar two-dimensional sandwich configuration yielded insight into controlling flame structure, but there are several drawbacks that make comparison with modeling difficult. First, the flames are two-dimensional and this makes modeling much more complex computationally than with one-dimensional problems, such as RDX self- and laser-supported deflagration. In addition, little is known about the nature, concentration, and evolution rates of the gaseous chemical species produced by the various binders as they decompose. This makes comparison with models quite difficult. Alternatively, counterflow flames provide an excellent geometric configuration within which AP/binder diffusion flames can be studied both experimentally and computationally.
Matta, Ragai-Edward; von Wilmowsky, Cornelius; Neuhuber, Winfried; Lell, Michael; Neukam, Friedrich W; Adler, Werner; Wichmann, Manfred; Bergauer, Bastian
2016-05-01
Multi-slice computed tomography (MSCT) and cone beam computed tomography (CBCT) are indispensable imaging techniques in advanced medicine. The possibility of creating virtual and corporal three-dimensional (3D) models enables detailed planning in craniofacial and oral surgery. The objective of this study was to evaluate the impact of different scan protocols for CBCT and MSCT on virtual 3D model accuracy using a software-based evaluation method that excludes human measurement errors. MSCT and CBCT scans with different manufacturers' predefined scan protocols were obtained from a human lower jaw and were superimposed with a master model generated by an optical scan of an industrial noncontact scanner. To determine the accuracy, the mean and standard deviations were calculated, and t-tests were used for comparisons between the different settings. Averaged over 10 repeated X-ray scans per method and 19 measurement points per scan (n = 190), it was found that the MSCT scan protocol 140 kV delivered the most accurate virtual 3D model, with a mean deviation of 0.106 mm compared to the master model. Only the CBCT scans with 0.2-voxel resolution delivered a similar accurate 3D model (mean deviation 0.119 mm). Within the limitations of this study, it was demonstrated that the accuracy of a 3D model of the lower jaw depends on the protocol used for MSCT and CBCT scans. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Nonlinear Analysis and Modeling of Tires
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.
1996-01-01
The objective of the study was to develop efficient modeling techniques and computational strategies for: (1) predicting the nonlinear response of tires subjected to inflation pressure, mechanical and thermal loads; (2) determining the footprint region, and analyzing the tire pavement contact problem, including the effect of friction; and (3) determining the sensitivity of the tire response (displacements, stresses, strain energy, contact pressures and contact area) to variations in the different material and geometric parameters. Two computational strategies were developed. In the first strategy the tire was modeled by using either a two-dimensional shear flexible mixed shell finite elements or a quasi-three-dimensional solid model. The contact conditions were incorporated into the formulation by using a perturbed Lagrangian approach. A number of model reduction techniques were applied to substantially reduce the number of degrees of freedom used in describing the response outside the contact region. The second strategy exploited the axial symmetry of the undeformed tire, and uses cylindrical coordinates in the development of three-dimensional elements for modeling each of the different parts of the tire cross section. Model reduction techniques are also used with this strategy.
Plontke, Stefan K; Siedow, Norbert; Wegener, Raimund; Zenner, Hans-Peter; Salt, Alec N
2007-01-01
Cochlear fluid pharmacokinetics can be better represented by three-dimensional (3D) finite-element simulations of drug dispersal. Local drug deliveries to the round window membrane are increasingly being used to treat inner ear disorders. Crucial to the development of safe therapies is knowledge of drug distribution in the inner ear with different delivery methods. Computer simulations allow application protocols and drug delivery systems to be evaluated, and may permit animal studies to be extrapolated to the larger cochlea of the human. A finite-element 3D model of the cochlea was constructed based on geometric dimensions of the guinea pig cochlea. Drug propagation along and between compartments was described by passive diffusion. To demonstrate the potential value of the model, methylprednisolone distribution in the cochlea was calculated for two clinically relevant application protocols using pharmacokinetic parameters derived from a prior one-dimensional (1D) model. In addition, a simplified geometry was used to compare results from 3D with 1D simulations. For the simplified geometry, calculated concentration profiles with distance were in excellent agreement between the 1D and the 3D models. Different drug delivery strategies produce very different concentration time courses, peak concentrations and basal-apical concentration gradients of drug. In addition, 3D computations demonstrate the existence of substantial gradients across the scalae in the basal turn. The 3D model clearly shows the presence of drug gradients across the basal scalae of guinea pigs, demonstrating the necessity of a 3D approach to predict drug movements across and between scalae with larger cross-sectional areas, such as the human, with accuracy. This is the first model to incorporate the volume of the spiral ligament and to calculate diffusion through this structure. Further development of the 3D model will have to incorporate a more accurate geometry of the entire inner ear and incorporate more of the specific processes that contribute to drug removal from the inner ear fluids. Appropriate computer models may assist in both drug and drug delivery system design and can thus accelerate the development of a rationale-based local drug delivery to the inner ear and its successful establishment in clinical practice. Copyright 2007 S. Karger AG, Basel.
Plontke, Stefan K.; Siedow, Norbert; Wegener, Raimund; Zenner, Hans-Peter; Salt, Alec N.
2006-01-01
Hypothesis: Cochlear fluid pharmacokinetics can be better represented by three-dimensional (3D) finite-element simulations of drug dispersal. Background: Local drug deliveries to the round window membrane are increasingly being used to treat inner ear disorders. Crucial to the development of safe therapies is knowledge of drug distribution in the inner ear with different delivery methods. Computer simulations allow application protocols and drug delivery systems to be evaluated, and may permit animal studies to be extrapolated to the larger cochlea of the human. Methods: A finite-element 3D model of the cochlea was constructed based on geometric dimensions of the guinea pig cochlea. Drug propagation along and between compartments was described by passive diffusion. To demonstrate the potential value of the model, methylprednisolone distribution in the cochlea was calculated for two clinically relevant application protocols using pharmacokinetic parameters derived from a prior one-dimensional (1D) model. In addition, a simplified geometry was used to compare results from 3D with 1D simulations. Results: For the simplified geometry, calculated concentration profiles with distance were in excellent agreement between the 1D and the 3D models. Different drug delivery strategies produce very different concentration time courses, peak concentrations and basal-apical concentration gradients of drug. In addition, 3D computations demonstrate the existence of substantial gradients across the scalae in the basal turn. Conclusion: The 3D model clearly shows the presence of drug gradients across the basal scalae of guinea pigs, demonstrating the necessity of a 3D approach to predict drug movements across and between scalae with larger cross-sectional areas, such as the human, with accuracy. This is the first model to incorporate the volume of the spiral ligament and to calculate diffusion through this structure. Further development of the 3D model will have to incorporate a more accurate geometry of the entire inner ear and incorporate more of the specific processes that contribute to drug removal from the inner ear fluids. Appropriate computer models may assist in both drug and drug delivery system design and can thus accelerate the development of a rationale-based local drug delivery to the inner ear and its successful establishment in clinical practice. PMID:17119332
Duda, Timothy F; Lin, Ying-Tsong; Reeder, D Benjamin
2011-09-01
A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional parabolic equation computational code, and the results are compared to measured propagation along fixed 3 and 6 km source/receiver paths. The measurements were made on the shelf of the South China Sea northeast of Tung-Sha Island. Construction of the time-varying three-dimensional sound-speed fields used in the modeling simulations was guided by environmental data collected concurrently with the acoustic data. Computed three-dimensional propagation results compare well with field observations. The simulations allow identification of time-dependent sound forward scattering and ducting processes within the curved internal gravity waves. Strong acoustic intensity enhancement was observed during passage of high-amplitude nonlinear waves over the source/receiver paths, and is replicated in the model. The waves were typical of the region (35 m vertical displacement). Two types of ducting are found in the model, which occur asynchronously. One type is three-dimensional modal trapping in deep ducts within the wave crests (shallow thermocline zones). The second type is surface ducting within the wave troughs (deep thermocline zones). © 2011 Acoustical Society of America
NASA Technical Reports Server (NTRS)
2000-01-01
Dr. Marc Pusey (seated) and Dr. Craig Kundrot use computers to analyze x-ray maps and generate three-dimensional models of protein structures. With this information, scientists at Marshall Space Flight Center can learn how proteins are made and how they work. The computer screen depicts a proten structure as a ball-and-stick model. Other models depict the actual volume occupied by the atoms, or the ribbon-like structures that are crucial to a protein's function.
NASA Technical Reports Server (NTRS)
Bergsten, D. E.; Fleeter, S.
1983-01-01
To be of quantitative value to the designer and analyst, it is necessary to experimentally verify the flow modeling and the numerics inherent in calculation codes being developed to predict the three dimensional flow through turbomachine blade rows. This experimental verification requires that predicted flow fields be correlated with three dimensional data obtained in experiments which model the fundamental phenomena existing in the flow passages of modern turbomachines. The Purdue Annular Cascade Facility was designed specifically to provide these required three dimensional data. The overall three dimensional aerodynamic performance of an instrumented classical airfoil cascade was determined over a range of incidence angle values. This was accomplished utilizing a fully automated exit flow data acquisition and analysis system. The mean wake data, acquired at two downstream axial locations, were analyzed to determine the effect of incidence angle, the three dimensionality of the cascade exit flow field, and the similarity of the wake profiles. The hub, mean, and tip chordwise airfoil surface static pressure distributions determined at each incidence angle are correlated with predictions from the MERIDL and TSONIC computer codes.
Rapid Prototyping Integrated With Nondestructive Evaluation and Finite Element Analysis
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Baaklini, George Y.
2001-01-01
Most reverse engineering approaches involve imaging or digitizing an object then creating a computerized reconstruction that can be integrated, in three dimensions, into a particular design environment. Rapid prototyping (RP) refers to the practical ability to build high-quality physical prototypes directly from computer aided design (CAD) files. Using rapid prototyping, full-scale models or patterns can be built using a variety of materials in a fraction of the time required by more traditional prototyping techniques (refs. 1 and 2). Many software packages have been developed and are being designed to tackle the reverse engineering and rapid prototyping issues just mentioned. For example, image processing and three-dimensional reconstruction visualization software such as Velocity2 (ref. 3) are being used to carry out the construction process of three-dimensional volume models and the subsequent generation of a stereolithography file that is suitable for CAD applications. Producing three-dimensional models of objects from computed tomography (CT) scans is becoming a valuable nondestructive evaluation methodology (ref. 4). Real components can be rendered and subjected to temperature and stress tests using structural engineering software codes. For this to be achieved, accurate high-resolution images have to be obtained via CT scans and then processed, converted into a traditional file format, and translated into finite element models. Prototyping a three-dimensional volume of a composite structure by reading in a series of two-dimensional images generated via CT and by using and integrating commercial software (e.g. Velocity2, MSC/PATRAN (ref. 5), and Hypermesh (ref. 6)) is being applied successfully at the NASA Glenn Research Center. The building process from structural modeling to the analysis level is outlined in reference 7. Subsequently, a stress analysis of a composite cooling panel under combined thermomechanical loading conditions was performed to validate this process.
Three-dimensional computer model for the atmospheric general circulation experiment
NASA Technical Reports Server (NTRS)
Roberts, G. O.
1984-01-01
An efficient, flexible, three-dimensional, hydrodynamic, computer code has been developed for a spherical cap geometry. The code will be used to simulate NASA's Atmospheric General Circulation Experiment (AGCE). The AGCE is a spherical, baroclinic experiment which will model the large-scale dynamics of our atmosphere; it has been proposed to NASA for future Spacelab flights. In the AGCE a radial dielectric body force will simulate gravity, with hot fluid tending to move outwards. In order that this force be dominant, the AGCE must be operated in a low gravity environment such as Spacelab. The full potential of the AGCE will only be realized by working in conjunction with an accurate computer model. Proposed experimental parameter settings will be checked first using model runs. Then actual experimental results will be compared with the model predictions. This interaction between experiment and theory will be very valuable in determining the nature of the AGCE flows and hence their relationship to analytical theories and actual atmospheric dynamics.
Computer-Generated, Three-Dimensional Character Animation.
ERIC Educational Resources Information Center
Van Baerle, Susan Lynn
This master's thesis begins by discussing the differences between 3-D computer animation of solid three-dimensional, or monolithic, objects, and the animation of characters, i.e., collections of movable parts with soft pliable surfaces. Principles from two-dimensional character animation that can be transferred to three-dimensional character…
Computational Flow Modeling of Human Upper Airway Breathing
NASA Astrophysics Data System (ADS)
Mylavarapu, Goutham
Computational modeling of biological systems have gained a lot of interest in biomedical research, in the recent past. This thesis focuses on the application of computational simulations to study airflow dynamics in human upper respiratory tract. With advancements in medical imaging, patient specific geometries of anatomically accurate respiratory tracts can now be reconstructed from Magnetic Resonance Images (MRI) or Computed Tomography (CT) scans, with better and accurate details than traditional cadaver cast models. Computational studies using these individualized geometrical models have advantages of non-invasiveness, ease, minimum patient interaction, improved accuracy over experimental and clinical studies. Numerical simulations can provide detailed flow fields including velocities, flow rates, airway wall pressure, shear stresses, turbulence in an airway. Interpretation of these physical quantities will enable to develop efficient treatment procedures, medical devices, targeted drug delivery etc. The hypothesis for this research is that computational modeling can predict the outcomes of a surgical intervention or a treatment plan prior to its application and will guide the physician in providing better treatment to the patients. In the current work, three different computational approaches Computational Fluid Dynamics (CFD), Flow-Structure Interaction (FSI) and Particle Flow simulations were used to investigate flow in airway geometries. CFD approach assumes airway wall as rigid, and relatively easy to simulate, compared to the more challenging FSI approach, where interactions of airway wall deformations with flow are also accounted. The CFD methodology using different turbulence models is validated against experimental measurements in an airway phantom. Two case-studies using CFD, to quantify a pre and post-operative airway and another, to perform virtual surgery to determine the best possible surgery in a constricted airway is demonstrated. The unsteady Large Eddy simulations (LES) and a steady Reynolds Averaged Navier Stokes (RANS) approaches in CFD modeling are discussed. The more challenging FSI approach is modeled first in simple two-dimensional anatomical geometry and then extended to simplified three dimensional geometry and finally in three dimensionally accurate geometries. The concepts of virtual surgery and the differences to CFD are discussed. Finally, the influence of various drug delivery parameters on particle deposition efficiency in airway anatomy are investigated through particle-flow simulations in a nasal airway model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Dali; Zhang, Keke; Schubert, Gerald
2013-02-15
We present a new three-dimensional numerical method for calculating the non-spherical shape and internal structure of a model of a rapidly rotating gaseous body with a polytropic index of unity. The calculation is based on a finite-element method and accounts for the full effects of rotation. After validating the numerical approach against the asymptotic solution of Chandrasekhar that is valid only for a slowly rotating gaseous body, we apply it to models of Jupiter and a rapidly rotating, highly flattened star ({alpha} Eridani). In the case of Jupiter, the two-dimensional distributions of density and pressure are determined via a hybridmore » inverse approach by adjusting an a priori unknown coefficient in the equation of state until the model shape matches the observed shape of Jupiter. After obtaining the two-dimensional distribution of density, we then compute the zonal gravity coefficients and the total mass from the non-spherical model that takes full account of rotation-induced shape change. Our non-spherical model with a polytropic index of unity is able to produce the known mass of Jupiter with about 4% accuracy and the zonal gravitational coefficient J {sub 2} of Jupiter with better than 2% accuracy, a reasonable result considering that there is only one parameter in the model. For {alpha} Eridani, we calculate its rotationally distorted shape and internal structure based on the observationally deduced rotation rate and size of the star by using a similar hybrid inverse approach. Our model of the star closely approximates the observed flattening.« less
LANDMARK-BASED SPEECH RECOGNITION: REPORT OF THE 2004 JOHNS HOPKINS SUMMER WORKSHOP.
Hasegawa-Johnson, Mark; Baker, James; Borys, Sarah; Chen, Ken; Coogan, Emily; Greenberg, Steven; Juneja, Amit; Kirchhoff, Katrin; Livescu, Karen; Mohan, Srividya; Muller, Jennifer; Sonmez, Kemal; Wang, Tianyu
2005-01-01
Three research prototype speech recognition systems are described, all of which use recently developed methods from artificial intelligence (specifically support vector machines, dynamic Bayesian networks, and maximum entropy classification) in order to implement, in the form of an automatic speech recognizer, current theories of human speech perception and phonology (specifically landmark-based speech perception, nonlinear phonology, and articulatory phonology). All three systems begin with a high-dimensional multiframe acoustic-to-distinctive feature transformation, implemented using support vector machines trained to detect and classify acoustic phonetic landmarks. Distinctive feature probabilities estimated by the support vector machines are then integrated using one of three pronunciation models: a dynamic programming algorithm that assumes canonical pronunciation of each word, a dynamic Bayesian network implementation of articulatory phonology, or a discriminative pronunciation model trained using the methods of maximum entropy classification. Log probability scores computed by these models are then combined, using log-linear combination, with other word scores available in the lattice output of a first-pass recognizer, and the resulting combination score is used to compute a second-pass speech recognition output.
ERIC Educational Resources Information Center
Ihme, Jan Marten; Senkbeil, Martin; Goldhammer, Frank; Gerick, Julia
2017-01-01
The combination of different item formats is found quite often in large scale assessments, and analyses on the dimensionality often indicate multi-dimensionality of tests regarding the task format. In ICILS 2013, three different item types (information-based response tasks, simulation tasks, and authoring tasks) were used to measure computer and…
Computational simulation of laser heat processing of materials
NASA Astrophysics Data System (ADS)
Shankar, Vijaya; Gnanamuthu, Daniel
1987-04-01
A computational model simulating the laser heat treatment of AISI 4140 steel plates with a CW CO2 laser beam has been developed on the basis of the three-dimensional, time-dependent heat equation (subject to the appropriate boundary conditions). The solution method is based on Newton iteration applied to a triple-approximate factorized form of the equation. The method is implicit and time-accurate; the maintenance of time-accuracy in the numerical formulation is noted to be critical for the simulation of finite length workpieces with a finite laser beam dwell time.
NASA Astrophysics Data System (ADS)
Smith, Katharine A.; Schlag, Zachary; North, Elizabeth W.
2018-07-01
Coupled three-dimensional circulation and biogeochemical models predict changes in water properties that can be used to define fish habitat, including physiologically important parameters such as temperature, salinity, and dissolved oxygen. However, methods for calculating the volume of habitat defined by the intersection of multiple water properties are not well established for coupled three-dimensional models. The objectives of this research were to examine multiple methods for calculating habitat volume from three-dimensional model predictions, select the most robust approach, and provide an example application of the technique. Three methods were assessed: the "Step," "Ruled Surface", and "Pentahedron" methods, the latter of which was developed as part of this research. Results indicate that the analytical Pentahedron method is exact, computationally efficient, and preserves continuity in water properties between adjacent grid cells. As an example application, the Pentahedron method was implemented within the Habitat Volume Model (HabVol) using output from a circulation model with an Arakawa C-grid and physiological tolerances of juvenile striped bass (Morone saxatilis). This application demonstrates that the analytical Pentahedron method can be successfully applied to calculate habitat volume using output from coupled three-dimensional circulation and biogeochemical models, and it indicates that the Pentahedron method has wide application to aquatic and marine systems for which these models exist and physiological tolerances of organisms are known.
An optical flow-based state-space model of the vocal folds.
Granados, Alba; Brunskog, Jonas
2017-06-01
High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters.
Research on three-dimensional visualization based on virtual reality and Internet
NASA Astrophysics Data System (ADS)
Wang, Zongmin; Yang, Haibo; Zhao, Hongling; Li, Jiren; Zhu, Qiang; Zhang, Xiaohong; Sun, Kai
2007-06-01
To disclose and display water information, a three-dimensional visualization system based on Virtual Reality (VR) and Internet is researched for demonstrating "digital water conservancy" application and also for routine management of reservoir. To explore and mine in-depth information, after completion of modeling high resolution DEM with reliable quality, topographical analysis, visibility analysis and reservoir volume computation are studied. And also, some parameters including slope, water level and NDVI are selected to classify easy-landslide zone in water-level-fluctuating zone of reservoir area. To establish virtual reservoir scene, two kinds of methods are used respectively for experiencing immersion, interaction and imagination (3I). First virtual scene contains more detailed textures to increase reality on graphical workstation with virtual reality engine Open Scene Graph (OSG). Second virtual scene is for internet users with fewer details for assuring fluent speed.
A method for the computational modeling of the physics of heart murmurs
NASA Astrophysics Data System (ADS)
Seo, Jung Hee; Bakhshaee, Hani; Garreau, Guillaume; Zhu, Chi; Andreou, Andreas; Thompson, William R.; Mittal, Rajat
2017-05-01
A computational method for direct simulation of the generation and propagation of blood flow induced sounds is proposed. This computational hemoacoustic method is based on the immersed boundary approach and employs high-order finite difference methods to resolve wave propagation and scattering accurately. The current method employs a two-step, one-way coupled approach for the sound generation and its propagation through the tissue. The blood flow is simulated by solving the incompressible Navier-Stokes equations using the sharp-interface immersed boundary method, and the equations corresponding to the generation and propagation of the three-dimensional elastic wave corresponding to the murmur are resolved with a high-order, immersed boundary based, finite-difference methods in the time-domain. The proposed method is applied to a model problem of aortic stenosis murmur and the simulation results are verified and validated by comparing with known solutions as well as experimental measurements. The murmur propagation in a realistic model of a human thorax is also simulated by using the computational method. The roles of hemodynamics and elastic wave propagation on the murmur are discussed based on the simulation results.
Three-dimensional propagation in near-field tomographic X-ray phase retrieval
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruhlandt, Aike, E-mail: aruhlan@gwdg.de; Salditt, Tim
An extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions is presented, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. This paper presents an extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. The approach is based on a novel three-dimensional propagator and is derived for the case of optically weak objects. It can be easily implemented in current phase retrieval architectures, is computationally efficient and reduces the need for restrictive prior assumptions, resultingmore » in superior reconstruction quality.« less
[Rapid prototyping: a very promising method].
Haverman, T M; Karagozoglu, K H; Prins, H-J; Schulten, E A J M; Forouzanfar, T
2013-03-01
Rapid prototyping is a method which makes it possible to produce a three-dimensional model based on two-dimensional imaging. Various rapid prototyping methods are available for modelling, such as stereolithography, selective laser sintering, direct laser metal sintering, two-photon polymerization, laminated object manufacturing, three-dimensional printing, three-dimensional plotting, polyjet inkjet technology,fused deposition modelling, vacuum casting and milling. The various methods currently being used in the biomedical sector differ in production, materials and properties of the three-dimensional model which is produced. Rapid prototyping is mainly usedforpreoperative planning, simulation, education, and research into and development of bioengineering possibilities.
Delta Clipper-Experimental In-Ground Effect on Base-Heating Environment
NASA Technical Reports Server (NTRS)
Wang, Ten-See
1998-01-01
A quasitransient in-ground effect method is developed to study the effect of vertical landing on a launch vehicle base-heating environment. This computational methodology is based on a three-dimensional, pressure-based, viscous flow, chemically reacting, computational fluid dynamics formulation. Important in-ground base-flow physics such as the fountain-jet formation, plume growth, air entrainment, and plume afterburning are captured with the present methodology. Convective and radiative base-heat fluxes are computed for comparison with those of a flight test. The influence of the laminar Prandtl number on the convective heat flux is included in this study. A radiative direction-dependency test is conducted using both the discrete ordinate and finite volume methods. Treatment of the plume afterburning is found to be very important for accurate prediction of the base-heat fluxes. Convective and radiative base-heat fluxes predicted by the model using a finite rate chemistry option compared reasonably well with flight-test data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cary, J.R.
During the most recent funding period the authors obtained results important for helical confinement systems and in the use of modern computational methods for modeling of fusion systems. The most recent results include showing that the set of magnetic field functions that are omnigenous (i.e., the bounce-average drift lies within the flux surface) and, therefore, have good transport properties, is much larger than the set of quasihelical systems. This is important as quasihelical systems exist only for large aspect ratio. The authors have also carried out extensive earlier work on developing integrable three-dimensional magnetic fields, on trajectories in three-dimensional configurations,more » and on the existence of three-dimensional MHD equilibria close to vacuum integrable fields. At the same time they have been investigating the use of object oriented methods for scientific computing.« less
Preece, Daniel; Williams, Sarah B; Lam, Richard; Weller, Renate
2013-01-01
Three-dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their comparative efficacies remains scarce in the literature. This study developed and evaluated the use of a physical model in demonstrating the complex spatial relationships of the equine foot. It was hypothesized that the newly developed physical model would be more effective for students to learn magnetic resonance imaging (MRI) anatomy of the foot than textbooks or computer-based 3D models. Third year veterinary medicine students were randomly assigned to one of three teaching aid groups (physical model; textbooks; 3D computer model). The comparative efficacies of the three teaching aids were assessed through students' abilities to identify anatomical structures on MR images. Overall mean MRI assessment scores were significantly higher in students utilizing the physical model (86.39%) compared with students using textbooks (62.61%) and the 3D computer model (63.68%) (P < 0.001), with no significant difference between the textbook and 3D computer model groups (P = 0.685). Student feedback was also more positive in the physical model group compared with both the textbook and 3D computer model groups. Our results suggest that physical models may hold a significant advantage over alternative learning resources in enhancing visuospatial and 3D understanding of complex anatomical architecture, and that 3D computer models have significant limitations with regards to 3D learning. © 2013 American Association of Anatomists.
Overview of aerothermodynamic loads definition study
NASA Technical Reports Server (NTRS)
Gaugler, Raymond E.
1991-01-01
The objective of the Aerothermodynamic Loads Definition Study is to develop methods of accurately predicting the operating environment in advanced Earth-to-Orbit (ETO) propulsion systems, such as the Space Shuttle Main Engine (SSME) powerhead. Development of time averaged and time dependent three dimensional viscous computer codes as well as experimental verification and engine diagnostic testing are considered to be essential in achieving that objective. Time-averaged, nonsteady, and transient operating loads must all be well defined in order to accurately predict powerhead life. Described here is work in unsteady heat flow analysis, improved modeling of preburner flow, turbulence modeling for turbomachinery, computation of three dimensional flow with heat transfer, and unsteady viscous multi-blade row turbine analysis.
Investigation of water droplet trajectories within the NASA icing research tunnel
NASA Technical Reports Server (NTRS)
Reehorst, Andrew; Ibrahim, Mounir
1995-01-01
Water droplet trajectories within the NASA Lewis Research Center's Icing Research Tunnel (IRT) were studied through computer analysis. Of interest was the influence of the wind tunnel contraction and wind tunnel model blockage on the water droplet trajectories. The computer analysis was carried out with a program package consisting of a three-dimensional potential panel code and a three-dimensional droplet trajectory code. The wind tunnel contraction was found to influence the droplet size distribution and liquid water content distribution across the test section from that at the inlet. The wind tunnel walls were found to have negligible influence upon the impingement of water droplets upon a wing model.
The current status and future prospects of computer-assisted hip surgery.
Inaba, Yutaka; Kobayashi, Naomi; Ike, Hiroyuki; Kubota, So; Saito, Tomoyuki
2016-03-01
The advances in computer assistance technology have allowed detailed three-dimensional preoperative planning and simulation of preoperative plans. The use of a navigation system as an intraoperative assistance tool allows more accurate execution of the preoperative plan, compared to manual operation without assistance of the navigation system. In total hip arthroplasty using CT-based navigation, three-dimensional preoperative planning with computer software allows the surgeon to determine the optimal angle of implant placement at which implant impingement is unlikely to occur in the range of hip joint motion necessary for daily activities of living, and to determine the amount of three-dimensional correction for leg length and offset. With the use of computer navigation for intraoperative assistance, the preoperative plan can be precisely executed. In hip osteotomy using CT-based navigation, the navigation allows three-dimensional preoperative planning, intraoperative confirmation of osteotomy sites, safe performance of osteotomy even under poor visual conditions, and a reduction in exposure doses from intraoperative fluoroscopy. Positions of the tips of chisels can be displayed on the computer monitor during surgery in real time, and staff other than the operator can also be aware of the progress of surgery. Thus, computer navigation also has an educational value. On the other hand, its limitations include the need for placement of trackers, increased radiation exposure from preoperative CT scans, and prolonged operative time. Moreover, because the position of a bone fragment cannot be traced after osteotomy, methods to find its precise position after its movement need to be developed. Despite the need to develop methods for the postoperative evaluation of accuracy for osteotomy, further application and development of these systems are expected in the future. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Smith, R. E.
1981-01-01
A grid generation technique called the two boundary technique is developed and applied for the solution of the three dimensional Navier-Stokes equations. The Navier-Stokes equations are transformed from a cartesian coordinate system to a computational coordinate system, and the grid generation technique provides the Jacobian matrix describing the transformation. The two boundary technique is based on algebraically defining two distinct boundaries of a flow domain and the distribution of the grid is achieved by applying functions to the uniform computational grid which redistribute the computational independent variables and consequently concentrate or disperse the grid points in the physical domain. The Navier-Stokes equations are solved using a MacCormack time-split technique. Grids and supersonic laminar flow solutions are obtained for a family of three dimensional corners and two spike-nosed bodies.
NASA Technical Reports Server (NTRS)
Pan, Y. S.
1978-01-01
A three dimensional, partially elliptic, computer program was developed. Without requiring three dimensional computer storage locations for all flow variables, the partially elliptic program is capable of predicting three dimensional combustor flow fields with large downstream effects. The program requires only slight increase of computer storage over the parabolic flow program from which it was developed. A finite difference formulation for a three dimensional, fully elliptic, turbulent, reacting, flow field was derived. Because of the negligible diffusion effects in the main flow direction in a supersonic combustor, the set of finite-difference equations can be reduced to a partially elliptic form. Only the pressure field was governed by an elliptic equation and requires three dimensional storage; all other dependent variables are governed by parabolic equations. A numerical procedure which combines a marching integration scheme with an iterative scheme for solving the elliptic pressure was adopted.
NASA Astrophysics Data System (ADS)
Crivori, Patrizia; Zamora, Ismael; Speed, Bill; Orrenius, Christian; Poggesi, Italo
2004-03-01
A number of computational approaches are being proposed for an early optimization of ADME (absorption, distribution, metabolism and excretion) properties to increase the success rate in drug discovery. The present study describes the development of an in silico model able to estimate, from the three-dimensional structure of a molecule, the stability of a compound with respect to the human cytochrome P450 (CYP) 3A4 enzyme activity. Stability data were obtained by measuring the amount of unchanged compound remaining after a standardized incubation with human cDNA-expressed CYP3A4. The computational method transforms the three-dimensional molecular interaction fields (MIFs) generated from the molecular structure into descriptors (VolSurf and Almond procedures). The descriptors were correlated to the experimental metabolic stability classes by a partial least squares discriminant procedure. The model was trained using a set of 1800 compounds from the Pharmacia collection and was validated using two test sets: the first one including 825 compounds from the Pharmacia collection and the second one consisting of 20 known drugs. This model correctly predicted 75% of the first and 85% of the second test set and showed a precision above 86% to correctly select metabolically stable compounds. The model appears a valuable tool in the design of virtual libraries to bias the selection toward more stable compounds. Abbreviations: ADME - absorption, distribution, metabolism and excretion; CYP - cytochrome P450; MIFs - molecular interaction fields; HTS - high throughput screening; DDI - drug-drug interactions; 3D - three-dimensional; PCA - principal components analysis; CPCA - consensus principal components analysis; PLS - partial least squares; PLSD - partial least squares discriminant; GRIND - grid independent descriptors; GRID - software originally created and developed by Professor Peter Goodford.
Numerical aerodynamic simulation facility. [for flows about three-dimensional configurations
NASA Technical Reports Server (NTRS)
Bailey, F. R.; Hathaway, A. W.
1978-01-01
Critical to the advancement of computational aerodynamics capability is the ability to simulate flows about three-dimensional configurations that contain both compressible and viscous effects, including turbulence and flow separation at high Reynolds numbers. Analyses were conducted of two solution techniques for solving the Reynolds averaged Navier-Stokes equations describing the mean motion of a turbulent flow with certain terms involving the transport of turbulent momentum and energy modeled by auxiliary equations. The first solution technique is an implicit approximate factorization finite-difference scheme applied to three-dimensional flows that avoids the restrictive stability conditions when small grid spacing is used. The approximate factorization reduces the solution process to a sequence of three one-dimensional problems with easily inverted matrices. The second technique is a hybrid explicit/implicit finite-difference scheme which is also factored and applied to three-dimensional flows. Both methods are applicable to problems with highly distorted grids and a variety of boundary conditions and turbulence models.
D Tracking Based Augmented Reality for Cultural Heritage Data Management
NASA Astrophysics Data System (ADS)
Battini, C.; Landi, G.
2015-02-01
The development of contactless documentation techniques is allowing researchers to collect high volumes of three-dimensional data in a short time but with high levels of accuracy. The digitalisation of cultural heritage opens up the possibility of using image processing and analysis, and computer graphics techniques, to preserve this heritage for future generations; augmenting it with additional information or with new possibilities for its enjoyment and use. The collection of precise datasets about cultural heritage status is crucial for its interpretation, its conservation and during the restoration processes. The application of digital-imaging solutions for various feature extraction, image data-analysis techniques, and three-dimensional reconstruction of ancient artworks, allows the creation of multidimensional models that can incorporate information coming from heterogeneous data sets, research results and historical sources. Real objects can be scanned and reconstructed virtually, with high levels of data accuracy and resolution. Real-time visualisation software and hardware is rapidly evolving and complex three-dimensional models can be interactively visualised and explored on applications developed for mobile devices. This paper will show how a 3D reconstruction of an object, with multiple layers of information, can be stored and visualised through a mobile application that will allow interaction with a physical object for its study and analysis, using 3D Tracking based Augmented Reality techniques.
On a model of three-dimensional bursting and its parallel implementation
NASA Astrophysics Data System (ADS)
Tabik, S.; Romero, L. F.; Garzón, E. M.; Ramos, J. I.
2008-04-01
A mathematical model for the simulation of three-dimensional bursting phenomena and its parallel implementation are presented. The model consists of four nonlinearly coupled partial differential equations that include fast and slow variables, and exhibits bursting in the absence of diffusion. The differential equations have been discretized by means of a second-order accurate in both space and time, linearly-implicit finite difference method in equally-spaced grids. The resulting system of linear algebraic equations at each time level has been solved by means of the Preconditioned Conjugate Gradient (PCG) method. Three different parallel implementations of the proposed mathematical model have been developed; two of these implementations, i.e., the MPI and the PETSc codes, are based on a message passing paradigm, while the third one, i.e., the OpenMP code, is based on a shared space address paradigm. These three implementations are evaluated on two current high performance parallel architectures, i.e., a dual-processor cluster and a Shared Distributed Memory (SDM) system. A novel representation of the results that emphasizes the most relevant factors that affect the performance of the paralled implementations, is proposed. The comparative analysis of the computational results shows that the MPI and the OpenMP implementations are about twice more efficient than the PETSc code on the SDM system. It is also shown that, for the conditions reported here, the nonlinear dynamics of the three-dimensional bursting phenomena exhibits three stages characterized by asynchronous, synchronous and then asynchronous oscillations, before a quiescent state is reached. It is also shown that the fast system reaches steady state in much less time than the slow variables.
An initial investigation into methods of computing transonic aerodynamic sensitivity coefficients
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1994-01-01
The primary accomplishments of the project are as follows: (1) Using the transonic small perturbation equation as a flowfield model, the project demonstrated that the quasi-analytical method could be used to obtain aerodynamic sensitivity coefficients for airfoils at subsonic, transonic, and supersonic conditions for design variables such as Mach number, airfoil thickness, maximum camber, angle of attack, and location of maximum camber. It was established that the quasi-analytical approach was an accurate method for obtaining aerodynamic sensitivity derivatives for airfoils at transonic conditions and usually more efficient than the finite difference approach. (2) The usage of symbolic manipulation software to determine the appropriate expressions and computer coding associated with the quasi-analytical method for sensitivity derivatives was investigated. Using the three dimensional fully conservative full potential flowfield model, it was determined that symbolic manipulation along with a chain rule approach was extremely useful in developing a combined flowfield and quasi-analytical sensitivity derivative code capable of considering a large number of realistic design variables. (3) Using the three dimensional fully conservative full potential flowfield model, the quasi-analytical method was applied to swept wings (i.e. three dimensional) at transonic flow conditions. (4) The incremental iterative technique has been applied to the three dimensional transonic nonlinear small perturbation flowfield formulation, an equivalent plate deflection model, and the associated aerodynamic and structural discipline sensitivity equations; and coupled aeroelastic results for an aspect ratio three wing in transonic flow have been obtained.
Computation of transonic flow past projectiles at angle of attack
NASA Technical Reports Server (NTRS)
Reklis, R. P.; Sturek, W. B.; Bailey, F. R.
1978-01-01
Aerodynamic properties of artillery shell such as normal force and pitching moment reach peak values in a narrow transonic Mach number range. In order to compute these quantities, numerical techniques have been developed to obtain solutions to the three-dimensional transonic small disturbance equation about slender bodies at angle of attack. The computation is based on a plane relaxation technique involving Fourier transforms to partially decouple the three-dimensional difference equations. Particular care is taken to assure accurate solutions near corners found in shell designs. Computed surface pressures are compared to experimental measurements for circular arc and cone cylinder bodies which have been selected as test cases. Computed pitching moments are compared to range measurements for a typical projectile shape.
Detailed model for practical pulverized coal furnaces and gasifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, P.J.; Smoot, L.D.
1989-08-01
This study has been supported by a consortium of nine industrial and governmental sponsors. Work was initiated on May 1, 1985 and completed August 31, 1989. The central objective of this work was to develop, evaluate and apply a practical combustion model for utility boilers, industrial furnaces and gasifiers. Key accomplishments have included: Development of an advanced first-generation, computer model for combustion in three dimensional furnaces; development of a new first generation fouling and slagging submodel; detailed evaluation of an existing NO{sub x} submodel; development and evaluation of an improved radiation submodel; preparation and distribution of a three-volume final report:more » (a) Volume 1: General Technical Report; (b) Volume 2: PCGC-3 User's Manual; (c) Volume 3: Data Book for Evaluation of Three-Dimensional Combustion Models; and organization of a user's workshop on the three-dimensional code. The furnace computer model developed under this study requires further development before it can be applied generally to all applications; however, it can be used now by specialists for many specific applications, including non-combusting systems and combusting geseous systems. A new combustion center was organized and work was initiated to continue the important research effort initiated by this study. 212 refs., 72 figs., 38 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betin, A Yu; Bobrinev, V I; Verenikina, N M
A multiplex method of recording computer-synthesised one-dimensional Fourier holograms intended for holographic memory devices is proposed. The method potentially allows increasing the recording density in the previously proposed holographic memory system based on the computer synthesis and projection recording of data page holograms. (holographic memory)
[Veneer computer aided design based on reverse engineering technology].
Liu, Ming-li; Chen, Xiao-dong; Wang, Yong
2012-03-01
To explore the computer aided design (CAD) method of veneer restoration, and to assess if the solution can help prosthesis meet morphology esthetics standard. A volunteer's upper right central incisor needed to be restored with veneer. Super hard stone models of patient's dentition (before and after tooth preparation) were scanned with the three-dimensional laser scanner. The veneer margin was designed as butt-to-butt type. The veneer was constructed using reverse engineering (RE) software. The technique guideline of veneers CAD was explore based on RE software, and the veneers was smooth, continuous and symmetrical, which met esthetics construction needs. It was a feasible method to reconstruct veneer restoration based on RE technology.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Roth, D. J.; Cotton, R.; Studor, George F.; Christiansen, Eric; Young, P. C.
2011-01-01
This study utilizes microfocus x-ray computed tomography (CT) slice sets to model and characterize the damage locations and sizes in thermal protection system materials that underwent impact testing. ScanIP/FE software is used to visualize and process the slice sets, followed by mesh generation on the segmented volumetric rendering. Then, the local stress fields around several of the damaged regions are calculated for realistic mission profiles that subject the sample to extreme temperature and other severe environmental conditions. The resulting stress fields are used to quantify damage severity and make an assessment as to whether damage that did not penetrate to the base material can still result in catastrophic failure of the structure. It is expected that this study will demonstrate that finite element modeling based on an accurate three-dimensional rendered model from a series of CT slices is an essential tool to quantify the internal macroscopic defects and damage of a complex system made out of thermal protection material. Results obtained showing details of segmented images; three-dimensional volume-rendered models, finite element meshes generated, and the resulting thermomechanical stress state due to impact loading for the material are presented and discussed. Further, this study is conducted to exhibit certain high-caliber capabilities that the nondestructive evaluation (NDE) group at NASA Glenn Research Center can offer to assist in assessing the structural durability of such highly specialized materials so improvements in their performance and capacities to handle harsh operating conditions can be made.
Kasaven, C P; McIntyre, G T; Mossey, P A
2017-01-01
Our objective was to assess the accuracy of virtual and printed 3-dimensional models derived from cone-beam computed tomographic (CT) scans to measure the volume of alveolar clefts before bone grafting. Fifteen subjects with unilateral cleft lip and palate had i-CAT cone-beam CT scans recorded at 0.2mm voxel and sectioned transversely into slices 0.2mm thick using i-CAT Vision. Volumes of alveolar clefts were calculated using first a validated algorithm; secondly, commercially-available virtual 3-dimensional model software; and finally 3-dimensional printed models, which were scanned with microCT and analysed using 3-dimensional software. For inter-observer reliability, a two-way mixed model intraclass correlation coefficient (ICC) was used to evaluate the reproducibility of identification of the cranial and caudal limits of the clefts among three observers. We used a Friedman test to assess the significance of differences among the methods, and probabilities of less than 0.05 were accepted as significant. Inter-observer reliability was almost perfect (ICC=0.987). There were no significant differences among the three methods. Virtual and printed 3-dimensional models were as precise as the validated computer algorithm in the calculation of volumes of the alveolar cleft before bone grafting, but virtual 3-dimensional models were the most accurate with the smallest 95% CI and, subject to further investigation, could be a useful adjunct in clinical practice. Copyright © 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jha, Pradeep Kumar
Capturing the effects of detailed-chemistry on turbulent combustion processes is a central challenge faced by the numerical combustion community. However, the inherent complexity and non-linear nature of both turbulence and chemistry require that combustion models rely heavily on engineering approximations to remain computationally tractable. This thesis proposes a computationally efficient algorithm for modelling detailed-chemistry effects in turbulent diffusion flames and numerically predicting the associated flame properties. The cornerstone of this combustion modelling tool is the use of parallel Adaptive Mesh Refinement (AMR) scheme with the recently proposed Flame Prolongation of Intrinsic low-dimensional manifold (FPI) tabulated-chemistry approach for modelling complex chemistry. The effect of turbulence on the mean chemistry is incorporated using a Presumed Conditional Moment (PCM) approach based on a beta-probability density function (PDF). The two-equation k-w turbulence model is used for modelling the effects of the unresolved turbulence on the mean flow field. The finite-rate of methane-air combustion is represented here by using the GRI-Mech 3.0 scheme. This detailed mechanism is used to build the FPI tables. A state of the art numerical scheme based on a parallel block-based solution-adaptive algorithm has been developed to solve the Favre-averaged Navier-Stokes (FANS) and other governing partial-differential equations using a second-order accurate, fully-coupled finite-volume formulation on body-fitted, multi-block, quadrilateral/hexahedral mesh for two-dimensional and three-dimensional flow geometries, respectively. A standard fourth-order Runge-Kutta time-marching scheme is used for time-accurate temporal discretizations. Numerical predictions of three different diffusion flames configurations are considered in the present work: a laminar counter-flow flame; a laminar co-flow diffusion flame; and a Sydney bluff-body turbulent reacting flow. Comparisons are made between the predicted results of the present FPI scheme and Steady Laminar Flamelet Model (SLFM) approach for diffusion flames. The effects of grid resolution on the predicted overall flame solutions are also assessed. Other non-reacting flows have also been considered to further validate other aspects of the numerical scheme. The present schemes predict results which are in good agreement with published experimental results and reduces the computational cost involved in modelling turbulent diffusion flames significantly, both in terms of storage and processing time.
Updated Panel-Method Computer Program
NASA Technical Reports Server (NTRS)
Ashby, Dale L.
1995-01-01
Panel code PMARC_12 (Panel Method Ames Research Center, version 12) computes potential-flow fields around complex three-dimensional bodies such as complete aircraft models. Contains several advanced features, including internal mathematical modeling of flow, time-stepping wake model for simulating either steady or unsteady motions, capability for Trefftz computation of drag induced by plane, and capability for computation of off-body and on-body streamlines, and capability of computation of boundary-layer parameters by use of two-dimensional integral boundary-layer method along surface streamlines. Investigators interested in visual representations of phenomena, may want to consider obtaining program GVS (ARC-13361), General visualization System. GVS is Silicon Graphics IRIS program created to support scientific-visualization needs of PMARC_12. GVS available separately from COSMIC. PMARC_12 written in standard FORTRAN 77, with exception of NAMELIST extension used for input.
NASA Astrophysics Data System (ADS)
Clemo, T. M.; Ramarao, B.; Kelly, V. A.; Lavenue, M.
2011-12-01
Capture is a measure of the impact of groundwater pumping upon groundwater and surface water systems. The computation of capture through analytical or numerical methods has been the subject of articles in the literature for several decades (Bredehoeft et al., 1982). Most recently Leake et al. (2010) described a systematic way to produce capture maps in three-dimensional systems using a numerical perturbation approach in which capture from streams was computed using unit rate pumping at many locations within a MODFLOW model. The Leake et al. (2010) method advances the current state of computing capture. A limitation stems from the computational demand required by the perturbation approach wherein days or weeks of computational time might be required to obtain a robust measure of capture. In this paper, we present an efficient method to compute capture in three-dimensional systems based upon adjoint states. The efficiency of the adjoint method will enable uncertainty analysis to be conducted on capture calculations. The USGS and INTERA have collaborated to extend the MODFLOW Adjoint code (Clemo, 2007) to include stream-aquifer interaction and have applied it to one of the examples used in Leake et al. (2010), the San Pedro Basin MODFLOW model. With five layers and 140,800 grid blocks per layer, the San Pedro Basin model, provided an ideal example data set to compare the capture computed from the perturbation and the adjoint methods. The capture fraction map produced from the perturbation method for the San Pedro Basin model required significant computational time to compute and therefore the locations for the pumping wells were limited to 1530 locations in layer 4. The 1530 direct simulations of capture require approximately 76 CPU hours. Had capture been simulated in each grid block in each layer, as is done in the adjoint method, the CPU time would have been on the order of 4 years. The MODFLOW-Adjoint produced the capture fraction map of the San Pedro Basin model at 704,000 grid blocks (140,800 grid blocks x 5 layers) in just 6 minutes. The capture fraction maps from the perturbation and adjoint methods agree closely. The results of this study indicate that the adjoint capture method and its associated computational efficiency will enable scientists and engineers facing water resource management decisions to evaluate the sensitivity and uncertainty of impacts to regional water resource systems as part of groundwater supply strategies. Bredehoeft, J.D., S.S. Papadopulos, and H.H. Cooper Jr, Groundwater: The water budget myth. In Scientific Basis of Water-Resources Management, ed. National Research Council (U.S.), Geophysical Study Committee, 51-57. Washington D.C.: National Academy Press, 1982. Clemo, Tom, MODFLOW-2005 Ground-Water Model-Users Guide to Adjoint State based Sensitivity Process (ADJ), BSU CGISS 07-01, Center for the Geophysical Investigation of the Shallow Subsurface, Boise State University, 2007. Leake, S.A., H.W. Reeves, and J.E. Dickinson, A New Capture Fraction Method to Map How Pumpage Affects Surface Water Flow, Ground Water, 48(5), 670-700, 2010.
Design applications for supercomputers
NASA Technical Reports Server (NTRS)
Studerus, C. J.
1987-01-01
The complexity of codes for solutions of real aerodynamic problems has progressed from simple two-dimensional models to three-dimensional inviscid and viscous models. As the algorithms used in the codes increased in accuracy, speed and robustness, the codes were steadily incorporated into standard design processes. The highly sophisticated codes, which provide solutions to the truly complex flows, require computers with large memory and high computational speed. The advent of high-speed supercomputers, such that the solutions of these complex flows become more practical, permits the introduction of the codes into the design system at an earlier stage. The results of several codes which either were already introduced into the design process or are rapidly in the process of becoming so, are presented. The codes fall into the area of turbomachinery aerodynamics and hypersonic propulsion. In the former category, results are presented for three-dimensional inviscid and viscous flows through nozzle and unducted fan bladerows. In the latter category, results are presented for two-dimensional inviscid and viscous flows for hypersonic vehicle forebodies and engine inlets.
Naumovich, S S; Naumovich, S A; Goncharenko, V G
2015-01-01
The objective of the present study was the development and clinical testing of a three-dimensional (3D) reconstruction method of teeth and a bone tissue of the jaw on the basis of CT images of the maxillofacial region. 3D reconstruction was performed using the specially designed original software based on watershed transformation. Computed tomograms in digital imaging and communications in medicine format obtained on multispiral CT and CBCT scanners were used for creation of 3D models of teeth and the jaws. The processing algorithm is realized in the stepwise threshold image segmentation with the placement of markers in the mode of a multiplanar projection in areas relating to the teeth and a bone tissue. The developed software initially creates coarse 3D models of the entire dentition and the jaw. Then, certain procedures specify the model of the jaw and cut the dentition into separate teeth. The proper selection of the segmentation threshold is very important for CBCT images having a low contrast and high noise level. The developed semi-automatic algorithm of multispiral and cone beam computed tomogram processing allows 3D models of teeth to be created separating them from a bone tissue of the jaws. The software is easy to install in a dentist's workplace, has an intuitive interface and takes little time in processing. The obtained 3D models can be used for solving a wide range of scientific and clinical tasks.
NASA Technical Reports Server (NTRS)
Tatom, F. B.; King, R. L.
1977-01-01
The proper application of constant-volume balloons (CVB) for measurement of atmospheric phenomena was determined. And with the proper interpretation of the resulting data. A literature survey covering 176 references is included. the governing equations describing the three-dimensional motion of a CVB immersed in a flow field are developed. The flowfield model is periodic, three-dimensional, and nonhomogeneous, with mean translational motion. The balloon motion and flow field equations are cast into dimensionless form for greater generality, and certain significant dimensionless groups are identified. An alternate treatment of the balloon motion, based on first-order perturbation analysis, is also presented. A description of the digital computer program, BALLOON, used for numerically integrating the governing equations is provided.
Growth oscillation in larger foraminifera.
Briguglio, Antonino; Hohenegger, Johann
2014-01-01
This work shows the potential for applying three-dimensional biometry to studying cell growth in larger benthic foraminifera. The volume of each test chamber was measured from the three-dimensional model obtained by means of computed tomography. Analyses of cell growth based on the sequence of chamber volumes revealed constant and significant oscillations for all investigated specimens, characterized by periods of approximately 15, 30, 90, and 360 days. Possible explanations for these periods are connected to tides, lunar cycles, and seasonality. The potential to record environmental oscillations or fluctuations during the lifetime of larger foraminifera is pivotal for reconstructing short-term paleoenvironmental variations or for gaining insight into the influence of tides or tidal current on the shallow-water benthic fauna in both recent and fossil environments.
Newton, Peter O; Hahn, Gregory W; Fricka, Kevin B; Wenger, Dennis R
2002-04-15
A retrospective radiographic review of 31 patients with congenital spine abnormalities who underwent conventional radiography and advanced imaging studies was conducted. To analyze the utility of three-dimensional computed tomography with multiplanar reformatted images for congenital spine anomalies, as compared with plain radiographs and axial two-dimensional computed tomography imaging. Conventional radiographic imaging for congenital spine disorders often are difficult to interpret because of the patient's small size, the complexity of the disorder, a deformity not in the plane of the radiographs, superimposed structures, and difficulty in forming a mental three-dimensional image. Multiplanar reformatted and three-dimensional computed tomographic imaging offers many potential advantages for defining congenital spine anomalies including visualization of the deformity in any plane, from any angle, with the overlying structures subtracted. The imaging studies of patients who had undergone a three-dimensional computed tomography for congenital deformities of the spine between 1992 and 1998 were reviewed (31 cases). All plain radiographs and axial two-dimensional computed tomography images performed before the three-dimensional computed tomography were reviewed and the findings documented. This was repeated for the three-dimensional reconstructions and, when available, the multiplanar reformatted images (15 cases). In each case, the utility of the advanced imaging was graded as one of the following: Grade A (substantial new information obtained), Grade B (confirmatory with improved visualization and understanding of the deformity), and Grade C (no added useful information obtained). In 17 of 31 cases, the multiplanar reformatted and three-dimensional images allowed identification of unrecognized malformations. In nine additional cases, the advanced imaging was helpful in better visualizing and understanding previously identified deformities. In five cases, no new information was gained. The standard and curved multiplanar reformatted images were best for defining the occiput-C1-C2 anatomy and the extent of segmentation defects. The curved multiplanar reformatted images were especially helpful in keeping the spine from "coming in" and "going out" of the plane of the image when there was significant spine deformity in the sagittal or coronal plane. The three-dimensional reconstructions proved valuable in defining failures of formation. Advanced computed tomography imaging (three-dimensional computed tomography and curved/standard multiplanar reformatted images) allows better definition of congenital spine anomalies. More than 50% of the cases showed additional abnormalities not appreciated on plain radiographs or axial two-dimensional computed tomography images. Curved multiplanar reformatted images allowed imaging in the coronal and sagittal planes of the entire deformity.
Computation of Reacting Flows in Combustion Processes
NASA Technical Reports Server (NTRS)
Keith, Theo G., Jr.; Chen, Kuo-Huey
1997-01-01
The main objective of this research was to develop an efficient three-dimensional computer code for chemically reacting flows. The main computer code developed is ALLSPD-3D. The ALLSPD-3D computer program is developed for the calculation of three-dimensional, chemically reacting flows with sprays. The ALL-SPD code employs a coupled, strongly implicit solution procedure for turbulent spray combustion flows. A stochastic droplet model and an efficient method for treatment of the spray source terms in the gas-phase equations are used to calculate the evaporating liquid sprays. The chemistry treatment in the code is general enough that an arbitrary number of reaction and species can be defined by the users. Also, it is written in generalized curvilinear coordinates with both multi-block and flexible internal blockage capabilities to handle complex geometries. In addition, for general industrial combustion applications, the code provides both dilution and transpiration cooling capabilities. The ALLSPD algorithm, which employs the preconditioning and eigenvalue rescaling techniques, is capable of providing efficient solution for flows with a wide range of Mach numbers. Although written for three-dimensional flows in general, the code can be used for two-dimensional and axisymmetric flow computations as well. The code is written in such a way that it can be run in various computer platforms (supercomputers, workstations and parallel processors) and the GUI (Graphical User Interface) should provide a user-friendly tool in setting up and running the code.
ERIC Educational Resources Information Center
Jacob, Laura Beth
2012-01-01
Virtual world environments have evolved from object-oriented, text-based online games to complex three-dimensional immersive social spaces where the lines between reality and computer-generated begin to blur. Educators use virtual worlds to create engaging three-dimensional learning spaces for students, but the impact of virtual worlds in…
AstroBlend: An astrophysical visualization package for Blender
NASA Astrophysics Data System (ADS)
Naiman, J. P.
2016-04-01
The rapid growth in scale and complexity of both computational and observational astrophysics over the past decade necessitates efficient and intuitive methods for examining and visualizing large datasets. Here, I present AstroBlend, an open-source Python library for use within the three dimensional modeling software, Blender. While Blender has been a popular open-source software among animators and visual effects artists, in recent years it has also become a tool for visualizing astrophysical datasets. AstroBlend combines the three dimensional capabilities of Blender with the analysis tools of the widely used astrophysical toolset, yt, to afford both computational and observational astrophysicists the ability to simultaneously analyze their data and create informative and appealing visualizations. The introduction of this package includes a description of features, work flow, and various example visualizations. A website - www.astroblend.com - has been developed which includes tutorials, and a gallery of example images and movies, along with links to downloadable data, three dimensional artistic models, and various other resources.
González, Janneth; Gálvez, Angela; Morales, Ludis; Barreto, George E.; Capani, Francisco; Sierra, Omar; Torres, Yolima
2013-01-01
Three-dimensional models of the alpha- and beta-1 subunits of the calcium-activated potassium channel (BK) were predicted by threading modeling. A recursive approach comprising of sequence alignment and model building based on three templates was used to build these models, with the refinement of non-conserved regions carried out using threading techniques. The complex formed by the subunits was studied by means of docking techniques, using 3D models of the two subunits, and an approach based on rigid-body structures. Structural effects of the complex were analyzed with respect to hydrogen-bond interactions and binding-energy calculations. Potential interaction sites of the complex were determined by referencing a study of the difference accessible surface area (DASA) of the protein subunits in the complex. PMID:23492851
Parameters analysis of a porous medium model for treatment with hyperthermia using OpenMP
NASA Astrophysics Data System (ADS)
Freitas Reis, Ruy; dos Santos Loureiro, Felipe; Lobosco, Marcelo
2015-09-01
Cancer is the second cause of death in the world so treatments have been developed trying to work around this world health problem. Hyperthermia is not a new technique, but its use in cancer treatment is still at early stage of development. This treatment is based on overheat the target area to a threshold temperature that causes cancerous cell necrosis and apoptosis. To simulate this phenomenon using magnetic nanoparticles in an under skin cancer treatment, a three-dimensional porous medium model was adopted. This study presents a sensibility analysis of the model parameters such as the porosity and blood velocity. To ensure a second-order solution approach, a 7-points centered finite difference method was used for space discretization while a predictor-corrector method was used to time evolution. Due to the massive computations required to find the solution of a three-dimensional model, this paper also presents a first attempt to improve performance using OpenMP, a parallel programming API.
Oshiro, Yukio; Ohkohchi, Nobuhiro
2017-06-01
To perform accurate hepatectomy without injury, it is necessary to understand the anatomical relationship among the branches of Glisson's sheath, hepatic veins, and tumor. In Japan, three-dimensional (3D) preoperative simulation for liver surgery is becoming increasingly common, and liver 3D modeling and 3D hepatectomy simulation by 3D analysis software for liver surgery have been covered by universal healthcare insurance since 2012. Herein, we review the history of virtual hepatectomy using computer-assisted surgery (CAS) and our research to date, and we discuss the future prospects of CAS. We have used the SYNAPSE VINCENT medical imaging system (Fujifilm Medical, Tokyo, Japan) for 3D visualization and virtual resection of the liver since 2010. We developed a novel fusion imaging technique combining 3D computed tomography (CT) with magnetic resonance imaging (MRI). The fusion image enables us to easily visualize anatomic relationships among the hepatic arteries, portal veins, bile duct, and tumor in the hepatic hilum. In 2013, we developed an original software, called Liversim, which enables real-time deformation of the liver using physical simulation, and a randomized control trial has recently been conducted to evaluate the use of Liversim and SYNAPSE VINCENT for preoperative simulation and planning. Furthermore, we developed a novel hollow 3D-printed liver model whose surface is covered with frames. This model is useful for safe liver resection, has better visibility, and the production cost is reduced to one-third of a previous model. Preoperative simulation and navigation with CAS in liver resection are expected to help planning and conducting a surgery and surgical education. Thus, a novel CAS system will contribute to not only the performance of reliable hepatectomy but also to surgical education.
NASA Technical Reports Server (NTRS)
Ryan, Deirdre A.; Luebbers, Raymond J.; Nguyen, Truong X.; Kunz, Karl S.; Steich, David J.
1992-01-01
Prediction of anechoic chamber performance is a difficult problem. Electromagnetic anechoic chambers exist for a wide range of frequencies but are typically very large when measured in wavelengths. Three dimensional finite difference time domain (FDTD) modeling of anechoic chambers is possible with current computers but at frequencies lower than most chamber design frequencies. However, two dimensional FDTD (2D-FTD) modeling enables much greater detail at higher frequencies and offers significant insight into compact anechoic chamber design and performance. A major subsystem of an anechoic chamber for which computational electromagnetic analyses exist is the reflector. First, an analysis of the quiet zone fields of a low frequency anechoic chamber produced by a uniform source and a reflector in two dimensions using the FDTD method is presented. The 2D-FDTD results are compared with results from a three dimensional corrected physical optics calculation and show good agreement. Next, a directional source is substituted for the uniform radiator. Finally, a two dimensional anechoic chamber geometry, including absorbing materials, is considered, and the 2D-FDTD results for these geometries appear reasonable.
NASA Technical Reports Server (NTRS)
Ferris, J. C.
1986-01-01
A wind-tunnel investigation was made to determine the longitudinal aerodynamic characteristics of a fixed-wing generic fighter model with a wing designed for sustained transonic maneuver conditions. The airfoil sections on the wing were designed with a two-dimensional nonlinear computer code, and the root and tip section were modified with a three-dimensional code. The wing geometric characteristics were as follows: a leading-edge sweep of 45 degrees, a taper ratio of 0.2141, an aspect ratio of 3.30, and a thickness ratio of 0.044. The model was investigated at Mach numbers from 0.600 to 1.200, at Reynolds numbers, based on the model reference length, from 2,560,000 to 3,970,000, and through a model angle-of-attack range from -5 to +18 degrees.