Processing And Display Of Medical Three Dimensional Arrays Of Numerical Data Using Octree Encoding
NASA Astrophysics Data System (ADS)
Amans, Jean-Louis; Darier, Pierre
1986-05-01
imaging modalities such as X-Ray computerized Tomography (CT), Nuclear Medecine and Nuclear Magnetic Resonance can produce three-dimensional (3-D) arrays of numerical data of medical object internal structures. The analysis of 3-D data by synthetic generation of realistic images is an important area of computer graphics and imaging.
Kao, S Y; Chou, J; Lo, J; Yang, J; Chou, A P; Joe, C J; Chang, R C
1999-04-01
Roentgenographic examination has long been a useful diagnostic tool for temporo-mandibular joint (TMJ) disease. The methods include TMJ tomography, panoramic radiography and computerized tomography (CT) scan with or without injection of contrast media. Recently, three-dimensional CT (3D-CT), reconstructed from the two-dimensional image of a CT scan to simulate the soft tissue or bony structure of the real target, was proposed. In this report, a case of TMJ ankylosis due to traumatic injury is presented. 3D-CT was employed as one of the presurgical roentgenographic diagnostic tools. The conventional radiographic examination including panoramic radiography and tomography showed lesions in both sides of the mandible. CT scanning further suggested that the right-sided lesion was more severe than that on the left. With 3D-CT image reconstruction the size and extent of the lesions were clearly observable. The decision was made to proceed with an initial surgical approach on the right side. With condylectomy and condylar replacement using an autogenous costochondral graft on the right side, the range of mouth opening improved significantly. In this case report, 3D-CT demonstrates its advantages as a tool for the correct and precise diagnosis of TMJ ankylosis.
The New Approach to Sport Medicine: 3-D Reconstruction
ERIC Educational Resources Information Center
Ince, Alparslan
2015-01-01
The aim of this study is to present a new approach to sport medicine. Comparative analysis of the Vertebrae Lumbales was done in sedentary group and Muay Thai athletes. It was done by acquiring three dimensional (3-D) data and models through photogrammetric methods from the Multi-detector Computerized Tomography (MDCT) images of the Vertebrae…
NASA Astrophysics Data System (ADS)
Teng, Dongdong; Liu, Lilin; Zhang, Yueli; Pang, Zhiyong; Wang, Biao
2014-09-01
Through the creative usage of a shiftable cylindrical lens, a wide-view-angle holographic display system is developed for medical object display in real three-dimensional (3D) space based on a time-multiplexing method. The two-dimensional (2D) source images for all computer generated holograms (CGHs) needed by the display system are only one group of computerized tomography (CT) or magnetic resonance imaging (MRI) slices from the scanning device. Complicated 3D message reconstruction on the computer is not necessary. A pelvis is taken as the target medical object to demonstrate this method and the obtained horizontal viewing angle reaches 28°.
NASA Astrophysics Data System (ADS)
Zhou, Chen; Lei, Yong; Li, Bofeng; An, Jiachun; Zhu, Peng; Jiang, Chunhua; Zhao, Zhengyu; Zhang, Yuannong; Ni, Binbin; Wang, Zemin; Zhou, Xuhua
2015-12-01
Global Positioning System (GPS) computerized ionosphere tomography (CIT) and ionospheric sky wave ground backscatter radar are both capable of measuring the large-scale, two-dimensional (2-D) distributions of ionospheric electron density (IED). Here we report the spatial and temporal electron density results obtained by GPS CIT and backscatter ionogram (BSI) inversion for three individual experiments. Both the GPS CIT and BSI inversion techniques demonstrate the capability and the consistency of reconstructing large-scale IED distributions. To validate the results, electron density profiles obtained from GPS CIT and BSI inversion are quantitatively compared to the vertical ionosonde data, which clearly manifests that both methods output accurate information of ionopsheric electron density and thereby provide reliable approaches to ionospheric soundings. Our study can improve current understanding of the capability and insufficiency of these two methods on the large-scale IED reconstruction.
Brachytherapy of prostate cancer after colectomy for colorectal cancer: pilot experience.
Koutrouvelis, Panos G; Theodorescu, Dan; Katz, Stuart; Lailas, Niko; Hendricks, Fred
2005-01-01
We present a method of brachytherapy for prostate cancer using a 3-dimensional stereotactic system and computerized tomography guidance in patients without a rectum due to previous treatment for colorectal cancer. From June 1994 to November 2003 a cohort of 800 patients were treated with brachytherapy for prostate cancer. Four patients had previously been treated for colorectal cancer with 4,500 cGy external beam radiation therapy, abdominoperineal resection and chemotherapy, while 1 underwent abdominoperineal resection alone for ulcerative colitis. Because of previous radiation therapy, these patients were not candidates for salvage external beam radiation therapy or radical prostatectomy and they had no rectum for transrectal ultrasound guided transperineal brachytherapy or cryotherapy. A previously described, 3-dimensional stereotactic system was used for brachytherapy in these patients. The prescribed radiation dose was 120 to 144 Gy with iodine seeds in rapid strand format. Patient followup included clinical examination and serum prostate specific antigen measurement. Average followup was 18.6 months. Four patients had excellent biochemical control, while 1 had biochemical failure. Patients did not experience any gastrointestinal morbidity. One patient had a stricture of the distal ureter, requiring a stent. Three-dimensional computerized tomography guided brachytherapy for prostate cancer in patients with a history of colorectal cancer who have no rectum is a feasible method of treatment.
Zhao, Shijie; Liu, Hui; Sun, Zhipeng; Wang, Jianwei
2017-01-01
Objective To obtain anatomical data of maxillary-zygomatic complex based on simulating the zygomatic implantation using cadaver heads and three-dimensional computerized tomography (3D-CT). Methods Simulating zygomatic implantation was performed using seven cadaver heads and 3D-CT images from forty-eight adults. After measuring the maxillary-zygomatic complex, we analyzed the position between the implantation path and the maxillary sinus cavity as well as the distance between the implantation path and the zygomatic nerve. Results The distance from the starting point to the endpoint of the implant was 56.85 ± 5.35 mm in cadaver heads and 58.15 ± 7.37 mm in 3D-CT images. For the most common implantation path (80.20%), the implant went through the maxillary sinus cavity completely. The projecting points of the implant axis (IA) on the surface of zygoma were mainly located in the region of frontal process of zygomatic bone close to the lateral orbital wall. The distances between IA and zygomatic nerve in 53 sides were shorter than 2 mm. Conclusion The simulating zygomatic implantation on cadaver skulls and 3D-CT imaging provided useful anatomical data of the maxillary-zygomatic complex. It is necessary to take care to avoid the zygomatic nerve injury during implantation, because it frequently appears on the route of implantation. PMID:29376077
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cover, Keith S.; Lagerwaard, Frank J.; Senan, Suresh
2006-03-01
Purpose: Four-dimensional computerized tomography scans (4DCT) enable intrafractional motion to be determined. Because more than 1500 images can be generated with each 4DCT study, tools for efficient data visualization and evaluation are needed. We describe the use of color intensity projections (CIP) for visualizing mobility. Methods: Four-dimensional computerized tomography images of each patient slice were combined into a CIP composite image. Pixels largely unchanged over the component images appear unchanged in the CIP image. However, pixels whose intensity changes over the phases of the 4DCT appear in the CIP image as colored pixels, and the hue encodes the percentage ofmore » time the tissue was in each location. CIPs of 18 patients were used to study tumor and surrogate markers, namely the diaphragm and an abdominal marker block. Results: Color intensity projections permitted mobility of high-contrast features to be quickly visualized and measured. In three selected expiratory phases ('gating phases') that were reviewed in the sagittal plane, gating would have reduced mean tumor mobility from 6.3 {+-} 2.0 mm to 1.4 {+-} 0.5 mm. Residual tumor mobility in gating phases better correlated with residual mobility of the marker block than that of the diaphragm. Conclusion: CIPs permit immediate visualization of mobility in 4DCT images and simplify the selection of appropriate surrogates for gated radiotherapy.« less
Checking the possibility of controlling fuel element by X-ray computerized tomography
NASA Astrophysics Data System (ADS)
Trinh, V. B.; Zhong, Y.; Osipov, S. P.; Batranin, A. V.
2017-08-01
The article considers the possibility of checking fuel elements by X-ray computerized tomography. The checking tasks are based on the detection of particles of active material, evaluation of the heterogeneity of the distribution of uranium salts and the detection of clusters of uranium particles. First of all, scheme of scanning improve the performance and quality of the resulting three-dimensional images of the internal structure is determined. Further, the possibility of detecting clusters of uranium particles having the size of 1 mm3 and measuring the coordinates of clusters of uranium particles in the middle layer with the accuracy of within a voxel size (for the considered experiments of about 80 μm) is experimentally proved in the main part. The problem of estimating the heterogeneity of the distribution of the active material in the middle layer and the detection of particles of active material with a nominal diameter of 0.1 mm in the “blank” is solved.
NASA Technical Reports Server (NTRS)
Kittleson, John K.; Yu, Yung H.
1987-01-01
Holographic interferometry and computerized aided tomography (CAT) are used to determine the transonic velocity field of a model rotor blade in hover. A pulsed ruby laser recorded 40 interferograms with a 2 ft dia view field near the model rotor blade tip operating at a tip Mach number of 0.90. After digitizing the interferograms and extracting the fringe order functions, the data are transferred to a CAT code. The CAT code then calculates the perturbation velocity in several planes above the blade surface. The values from the holography-CAT method compare favorably with previously obtained numerical computations in most locations near the blade tip. The results demonstrate the technique's potential for three dimensional transonic rotor flow studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinney, J.
This session is comprised of two articles by John Kinney describing biomedical and other uses for computerized tomography. In the first article, Kinney describes the use of a three-dimensional x-ray tomographic microscope to image the trabecular bone architecture of the proximal tibias of rats in vivo. Research in this field may help to detect the earliest stages of hypoestrogenemic bone loss and may help to more rapidly test the effectiveness of new clinical treatments for this major public health problem. The second article describes recent advances in X-ray tomography using synchrotron radiation to evaluate microstructures in ceramic matrix composites, bonemore » loss in osteoporosis, and the development of carries lesions in teeth.« less
Ionospheric tomography using ADS-B signals
NASA Astrophysics Data System (ADS)
Cushley, A. C.; Noël, J.-M.
2014-07-01
Numerical modeling has demonstrated that Automatic Dependent Surveillance Broadcast (ADS-B) signals can be used to reconstruct two-dimensional (2-D) electron density maps of the ionosphere using techniques for computerized tomography. Ray tracing techniques were used to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modeled Faraday rotation was computed and converted to total electron content (TEC) along the raypaths. The resulting TEC was used as input for computerized ionospheric tomography (CIT) using algebraic reconstruction technique. This study concentrated on reconstructing mesoscale structures 25-100 km in horizontal extent. The primary scientific interest of this study was to show that ADS-B signals can be used as a new source of data for CIT to image the ionosphere and to obtain a better understanding of magneto-ionic wave propagation.
Mu, Zhiping; Hong, Baoming; Li, Shimin; Liu, Yi-Hwa
2009-01-01
Coded aperture imaging for two-dimensional (2D) planar objects has been investigated extensively in the past, whereas little success has been achieved in imaging 3D objects using this technique. In this article, the authors present a novel method of 3D single photon emission computerized tomography (SPECT) reconstruction for near-field coded aperture imaging. Multiangular coded aperture projections are acquired and a stack of 2D images is reconstructed separately from each of the projections. Secondary projections are subsequently generated from the reconstructed image stacks based on the geometry of parallel-hole collimation and the variable magnification of near-field coded aperture imaging. Sinograms of cross-sectional slices of 3D objects are assembled from the secondary projections, and the ordered subset expectation and maximization algorithm is employed to reconstruct the cross-sectional image slices from the sinograms. Experiments were conducted using a customized capillary tube phantom and a micro hot rod phantom. Imaged at approximately 50 cm from the detector, hot rods in the phantom with diameters as small as 2.4 mm could be discerned in the reconstructed SPECT images. These results have demonstrated the feasibility of the authors’ 3D coded aperture image reconstruction algorithm for SPECT, representing an important step in their effort to develop a high sensitivity and high resolution SPECT imaging system. PMID:19544769
Computerized Doppler Tomography and Spectrum Analysis of Carotid Artery Flow
Morton, Paul; Goldman, Dave; Nichols, W. Kirt
1981-01-01
Contrast angiography remains the definitive study in the evaluation of atherosclerotic occlusive vascular disease. However, a safer technique for serial screening of symptomatic patients and for routine follow up is necessary. Computerized pulsed Doppler ultrasonic arteriography is a noninvasive technique developed by Miles6 for imaging lateral, antero-posterior and transverse sections of the carotid artery. We [ill] this system with new software and hardware to analyze the three-dimensional blood flow data. The system now provides information about the location of the occlusive process in the artery and a semi-quantitative evaluation of the degree of obstruction. In addition, we interfaced a digital signal analyzer to the system which permits spectrum analysis of the pulsed Doppler signal. This addition has allowed us to identify lesions which are not yet hemodynamically significant. ImagesFig. 2bFig. 2c
The use of microtomography in bone tissue and biomaterial three-dimensional analysis.
Bedini, Rossella; Meleo, Deborah; Pecci, Raffaella; Pacifici, Luciano
2009-01-01
X-ray computed microtomography (micro-CT, microComputerised Tomography) is a miniaturized form of conventional computerized axial tomography (CAT ). This sophisticated technology enables 3D riconstruction of the internal structure of small X-ray opaque objects without sample destruction or preparation. The aim of this study is to show the possible applications of micro-CT in the analysis of bone graft materials of different origins (i.e. homologous, heterologous, alloplastic) in order to define their morphometric properties by means of SkyScan 1072 3D microtomography system. Since there is a close relationship between the properties of the materials and their microstructure, it is necessary to examine them using the highest levels of resolution before being able to improve existing materials or create new products.
ERIC Educational Resources Information Center
Wong, S. Godwin
This report describes the APL (Accountable unit, Program, and line item) budget system, a computerized three-dimensional program budget system that has been implemented in the Cambridge (Massachusetts) School Department. Various chapters discuss the differences between traditional budgeting and program budgeting, present an overview of te APL…
Ventura Ferreira, Nuno; Leal, Nuno; Correia Sá, Inês; Reis, Ana; Marques, Marisa
2014-01-01
The fabrication of digital prostheses has acquired growing importance not only for the possibility for the patient to overcome psychosocial trauma but also to promote grip functionality. An application method of three dimensional-computer-aided design technologies for the production of passive prostheses is presented by means of a fifth finger amputee clinical case following bilateral hand replantation.Three-dimensional-computerized tomography was used for the collection of anthropometric images of the hands. Computer-aided design techniques were used to develop the digital file-based prosthesis from the reconstruction images by inversion and superimposing the contra-lateral finger images. The rapid prototyping manufacturing method was used for the production of a silicone bandage prosthesis prototype. This approach replaces the traditional manual method by a virtual method that is basis for the optimization of a high speed, accurate and innovative process.
An Application of Computerized Axial Tomography (CAT) Technology to Mass Raid Tracking
1989-08-01
ESD-TR-89-305 MTR-10542 An Application of Computerized Axial Tomography ( CAT ) Technology to Mass Raid Tracking By John K. Barr August 1989...NO 11. TITLE (Include Security Classification) An Application of Computerized Axial Tomography ( CAT ) Technology to Mass Raid Tracking 12...by block number) Computerized Axial Tomography ( CAT ) Scanner Electronic Support Measures (ESM) Fusion (continued) 19. ABSTRACT (Continue on
Enciso, R; Memon, A; Mah, J
2003-01-01
The research goal at the Craniofacial Virtual Reality Laboratory of the School of Dentistry in conjunction with the Integrated Media Systems Center, School of Engineering, University of Southern California, is to develop computer methods to accurately visualize patients in three dimensions using advanced imaging and data acquisition devices such as cone-beam computerized tomography (CT) and mandibular motion capture. Data from these devices were integrated for three-dimensional (3D) patient-specific visualization, modeling and animation. Generic methods are in development that can be used with common CT image format (DICOM), mesh format (STL) and motion data (3D position over time). This paper presents preliminary descriptive studies on: 1) segmentation of the lower and upper jaws with two types of CT data--(a) traditional whole head CT data and (b) the new dental Newtom CT; 2) manual integration of accurate 3D tooth crowns with the segmented lower jaw 3D model; 3) realistic patient-specific 3D animation of the lower jaw.
Can computerized tomography accurately stage childhood renal tumors?
Abdelhalim, Ahmed; Helmy, Tamer E; Harraz, Ahmed M; Abou-El-Ghar, Mohamed E; Dawaba, Mohamed E; Hafez, Ashraf T
2014-07-01
Staging of childhood renal tumors is crucial for treatment planning and outcome prediction. We sought to identify whether computerized tomography could accurately predict the local stage of childhood renal tumors. We retrospectively reviewed our database for patients diagnosed with childhood renal tumors and treated surgically between 1990 and 2013. Inability to retrieve preoperative computerized tomography, intraoperative tumor spillage and nonWilms childhood renal tumors were exclusion criteria. Local computerized tomography stage was assigned by a single experienced pediatric radiologist blinded to the pathological stage, using a consensus similar to the Children's Oncology Group Wilms tumor staging system. Tumors were stratified into up-front surgery and preoperative chemotherapy groups. The radiological stage of each tumor was compared to the pathological stage. A total of 189 tumors in 179 patients met inclusion criteria. Computerized tomography staging matched pathological staging in 68% of up-front surgery (70 of 103), 31.8% of pre-chemotherapy (21 of 66) and 48.8% of post-chemotherapy scans (42 of 86). Computerized tomography over staged 21.4%, 65.2% and 46.5% of tumors in the up-front surgery, pre-chemotherapy and post-chemotherapy scans, respectively, and under staged 10.7%, 3% and 4.7%. Computerized tomography staging was more accurate in tumors managed by up-front surgery (p <0.001) and those without extracapsular extension (p <0.001). The validity of computerized tomography staging of childhood renal tumors remains doubtful. This staging is more accurate for tumors treated with up-front surgery and those without extracapsular extension. Preoperative computerized tomography can help to exclude capsular breach. Treatment strategy should be based on surgical and pathological staging to avoid the hazards of inaccurate staging. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Renal calyceal anatomy characterization with 3-dimensional in vivo computerized tomography imaging.
Miller, Joe; Durack, Jeremy C; Sorensen, Mathew D; Wang, James H; Stoller, Marshall L
2013-02-01
Calyceal selection for percutaneous renal access is critical for safe, effective performance of percutaneous nephrolithotomy. Available anatomical evidence is contradictory and incomplete. We present detailed renal calyceal anatomy obtained from in vivo 3-dimentional computerized tomography renderings. A total of 60 computerized tomography urograms were randomly selected. The renal collecting system was isolated and 3-dimensional renderings were constructed. The primary plane of each calyceal group of 100 kidneys was determined. A coronal maximum intensity projection was used for simulated percutaneous access. The most inferior calyx was designated calyx 1. Moving superiorly, the subsequent calyces were designated calyx 2 and, when present, calyx 3. The surface rendering was rotated to assess the primary plane of the calyceal group and the orientation of the select calyx. The primary plane of the upper pole calyceal group was mediolateral in 95% of kidneys and the primary plane of the lower pole calyceal group was anteroposterior in 95%. Calyx 2 was chosen in 90 of 97 simulations and it was appropriate in 92%. Calyx 3 was chosen in 7 simulations but it was appropriate in only 57%. Calyx 1 was not selected in any simulation and it was anteriorly oriented in 75% of kidneys. Appropriate lower pole calyceal access can be reliably accomplished with an understanding of the anatomical relationship between individual calyceal orientation and the primary plane of the calyceal group. Calyx 2 is most often appropriate for accessing the anteroposterior primary plane of the lower pole. Calyx 1 is most commonly oriented anterior. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Ren, Jiayin; Zhou, Zhongwei; Li, Peng; Tang, Wei; Guo, Jixiang; Wang, Hu; Tian, Weidong
2016-09-01
This study aimed to evaluate an innovative workflow for maxillofacial fracture surgery planning and surgical splint designing. The maxillofacial multislice computerized tomography (MSCT) data and dental cone beam computerized tomography (CBCT) data both were obtained from 40 normal adults and 58 adults who suffered fractures. The each part of the CBCT dentition image was registered into MSCT image by the use of the iterative closest point algorithm. Volume evaluation of the virtual splints that were designed by the registered MSCT images and MSCT images of the same object was performed. Eighteen patients (group 1) were operated without any splint. Twenty-one (group 2) and 19 patients (group 3) used the splints designed according to the MSCT images and registered MSCT images, respectively. The authors' results showed that the mean errors between the 2 models ranged from 0.53 to 0.92 mm and the RMS errors ranged from 0.38 to 0.69 mm in fracture patients. The mean errors between the 2 models ranged from 0.47 to 0.85 mm and the RMS errors ranged from 0.33 to 0.71 mm in normal adults. 72.22% patients in group 1 recovered occlusion. 85.71% patients in group 2, and 94.73% patients in group 3 reconstructed occlusion. There was a statistically significant difference between the MSCT images based splints' volume and the registered MSCT splints' volume in patients (P <0.05). The MSCT images based splints' volume was statistically significantly distinct from the registered MSCT splints' volume in normal adults (P <0.05). There was a statistically significant difference between the MSCT images based splints' volume and the registered MSCT splints' volume in patients and normal adults (P <0.05). The occlusion recovery rate of group 3 was better than that of group 1 and group 2. The way of integrating CBCT images into MSCT images for splints designing was feasible. The volume of the splints designed by MSCT images tended to be smaller than the splints designed by the integrated MSCT images. The patients operated with splints tended to regain occlusion. The patients who were operated with the splints which were designed according to registered MSCT images tended to get occlusal recovered.
The classification of frontal sinus pneumatization patterns by CT-based volumetry.
Yüksel Aslier, Nesibe Gül; Karabay, Nuri; Zeybek, Gülşah; Keskinoğlu, Pembe; Kiray, Amaç; Sütay, Semih; Ecevit, Mustafa Cenk
2016-10-01
We aimed to define the classification of frontal sinus pneumatization patterns according to three-dimensional volume measurements. Datasets of 148 sides of 74 dry skulls were generated by the computerized tomography-based volumetry to measure frontal sinus volumes. The cutoff points for frontal sinus hypoplasia and hyperplasia were tested by ROC curve analysis and the validity of the diagnostic points was measured. The overall frequencies were 4.1, 14.2, 37.2 and 44.5 % for frontal sinus aplasia, hypoplasia, medium size and hyperplasia, respectively. The aplasia was bilateral in all three skulls. Hypoplasia was seen 76 % at the right side and hyperplasia was seen 56 % at the left side. The cutoff points for diagnosing frontal sinus hypoplasia and hyperplasia were '1131.25 mm(3)' (95.2 % sensitivity and 100 % specificity) and '3328.50 mm(3)' (88 % sensitivity and 86 % specificity), respectively. The findings provided in the present study, which define frontal sinus pneumatization patterns by CT-based volumetry, proved that two opposite sides of the frontal sinuses are asymmetric and three-dimensional classification should be developed by CT-based volumetry, because two-dimensional evaluations lack depth measurement.
Intravenous leiomyomatosis of the uterus with extension to the right heart
2011-01-01
A 42-year-old woman admitted with debilitation and engorgement both lower extremities. Transthoracic two-dimensional echocardiography, abdominal ultrasound and computerized tomography revealed a lobulated pelvic mass, a mass within right internal iliac vein, both common iliac vein, as well as the inferior vena cava, extending into the right atrium. In addition, echocardiography and abdominal ultrasound showed the tumor of right atrium and inferior vena cave has no stalk and has well-demarcated borders with the wall of right atrium and inferior vena cave. Hence, the presumptive diagnosis of IVL was made by echocardiography and abdominal ultrasound and the presumptive diagnosis of sarcoma with invasion in right internal iliac vein, both common iliac vein, the inferior vena cava, as well as the right atrium was made by multi-detector-row computerized tomography. The patient underwent a one-stage combined multidisciplinary thoraco-abdominal operation under general anaesthetic. Subsequently the pathologic report confirmed IVL. PMID:21943238
River, Yaron; Aharony, Shelly; Bracha, Jillian; Levital, Tamir; Gerwin, Robert
2014-07-01
Manual therapies for chronic neck pain are imprecise, inconsistent, and brief due to therapist fatigue. A previous study showed that computerized mobilization of the cervical spine in the sagittal plane is a safe and potentially effective treatment of chronic neck pain. To investigate the safety and efficacy of computerized mobilization of the cervical spine in a three-dimensional space for the treatment of chronic neck pain. Pilot, open trial. Physical therapy outpatient department. Nine patients with chronic neck pain. A computerized cradle capable of three-dimensional neck mobilizations was used. Treatment sessions lasted 20 minutes, biweekly, for six weeks. Visual analog scale (VAS) for pain, cervical range of motion (CROM), neck disability index (NDI), joint position error (JPE), and muscle algometry. Comparing baseline at week one with week six (end of treatment), the VAS scores dropped by 2.9 points (P < 0.01). The six directions of movement studied by the CROM showed a combined increase of 11% (P = 0.01). The NDI decreased significantly from 16 to 10 (P = 0.03), and the JPE decreased significantly from 3.7° to 1.9° (P = 0.047). There was no change in the pressure pain threshold in any muscle tested. There were no significant adverse effects. These preliminary results demonstrate that this novel, computerized, three-dimensional cervical mobilization device is probably safe. The data also suggest that this method is effective in alleviating neck pain and associated headache, and in increasing the CROM, although the sample size was small in this open trial. Wiley Periodicals, Inc.
Camera calibration for multidirectional flame chemiluminescence tomography
NASA Astrophysics Data System (ADS)
Wang, Jia; Zhang, Weiguang; Zhang, Yuhong; Yu, Xun
2017-04-01
Flame chemiluminescence tomography (FCT), which combines computerized tomography theory and multidirectional chemiluminescence emission measurements, can realize instantaneous three-dimensional (3-D) diagnostics for flames with high spatial and temporal resolutions. One critical step of FCT is to record the projections by multiple cameras from different view angles. For high accuracy reconstructions, it requires that extrinsic parameters (the positions and orientations) and intrinsic parameters (especially the image distances) of cameras be accurately calibrated first. Taking the focus effect of the camera into account, a modified camera calibration method was presented for FCT, and a 3-D calibration pattern was designed to solve the parameters. The precision of the method was evaluated by reprojections of feature points to cameras with the calibration results. The maximum root mean square error of the feature points' position is 1.42 pixels and 0.0064 mm for the image distance. An FCT system with 12 cameras was calibrated by the proposed method and the 3-D CH* intensity of a propane flame was measured. The results showed that the FCT system provides reasonable reconstruction accuracy using the camera's calibration results.
Hirschmann, Michael T.; Schmid, Rahel; Dhawan, Ranju; Skarvan, Jiri; Rasch, Helmut; Friederich, Niklaus F.; Emery, Roger
2011-01-01
With the cases described, we strive to introduce single photon emission computerized tomography in combination with conventional computer tomography (SPECT/CT) to shoulder surgeons, illustrate the possible clinical value it may offer as new diagnostic radiologic modality, and discuss its limitations. SPECT/CT may facilitate the establishment of diagnosis, process of decision making, and further treatment for complex shoulder pathologies. Some of these advantages were highlighted in cases that are frequently seen in most shoulder clinics. PMID:22058640
Webb, S M; Ruscalleda, J; Schwarzstein, D; Calaf-Alsina, J; Rovira, A; Matos, G; Puig-Domingo, M; de Leiva, A
1992-05-01
We wished to analyse the relative value of computerized tomography and magnetic resonance in patients referred for evaluation of pituitary and parasellar lesions. We performed a separate evaluation by two independent neuroradiologists of computerized tomography and magnetic resonance images ordered numerically and anonymously, with no clinical data available. We studied 40 patients submitted for hypothalamic-pituitary study; 31 were carried out preoperatively, of which histological confirmation later became available in 14. The remaining nine patients were evaluated postoperatively. Over 40 parameters relating to the bony margins, cavernous sinuses, carotid arteries, optic chiasm, suprasellar cisterns, pituitary, pituitary stalk and extension of the lesion were evaluated. These reports were compared with the initial ones offered when the scans were ordered, and with the final diagnosis. Concordance between initial computerized tomography and magnetic resonance was observed in 27 cases (67.5%); among the discordant cases computerized tomography showed the lesion in two, magnetic resonance in 10, while in the remaining case reported to harbour a microadenoma on computerized tomography the differential diagnosis between a true TSH-secreting microadenoma and pituitary resistance to thyroid hormones is still unclear. Both neuroradiologists coincided in their reports in 32 patients (80%); when the initial report was compared with those of the neuroradiologists, concordance was observed with at least one of them in 34 instances (85%). Discordant results were observed principally in microadenomas secreting ACTH or PRL and in delayed puberty. In the eight patients with Cushing's disease (histologically confirmed in six) magnetic resonance was positive in five and computerized tomography in two; the abnormal image correctly identified the side of the lesion at surgery. In patients referred for evaluation of Cushing's syndrome or hyperprolactinaemia (due to microadenomas) or after surgery, magnetic resonance is clearly preferable to computerized tomography. In macroadenomas both scans are equally diagnostic but magnetic resonance offers more information on pituitary morphology and neighbouring structures. Nevertheless, there are cases in which the results of computerized tomography and magnetic resonance will complement each other, since different parameters are analysed with each examination and discordant results are encountered.
Identifying and classifying hyperostosis frontalis interna via computerized tomography.
May, Hila; Peled, Nathan; Dar, Gali; Hay, Ori; Abbas, Janan; Masharawi, Youssef; Hershkovitz, Israel
2010-12-01
The aim of this study was to recognize the radiological characteristics of hyperostosis frontalis interna (HFI) and to establish a valid and reliable method for its identification and classification. A reliability test was carried out on 27 individuals who had undergone a head computerized tomography (CT) scan. Intra-observer reliability was obtained by examining the images three times, by the same researcher, with a 2-week interval between each sample ranking. The inter-observer test was performed by three independent researchers. A validity test was carried out using two methods for identifying and classifying HFI: 46 cadaver skullcaps were ranked twice via computerized tomography scans and then by direct observation. Reliability and validity were calculated using Kappa test (SPSS 15.0). Reliability tests of ranking HFI via CT scans demonstrated good results (K > 0.7). As for validity, a very good consensus was obtained between the CT and direct observation, when moderate and advanced types of HFI were present (K = 0.82). The suggested classification method for HFI, using CT, demonstrated a sensitivity of 84%, specificity of 90.5%, and positive predictive value of 91.3%. In conclusion, volume rendering is a reliable and valid tool for identifying HFI. The suggested three-scale classification is most suitable for radiological diagnosis of the phenomena. Considering the increasing awareness of HFI as an early indicator of a developing malady, this study may assist radiologists in identifying and classifying the phenomena.
Computerized ionospheric tomography based on geosynchronous SAR
NASA Astrophysics Data System (ADS)
Hu, Cheng; Tian, Ye; Dong, Xichao; Wang, Rui; Long, Teng
2017-02-01
Computerized ionospheric tomography (CIT) based on spaceborne synthetic aperture radar (SAR) is an emerging technique to construct the three-dimensional (3-D) image of ionosphere. The current studies are all based on the Low Earth Orbit synthetic aperture radar (LEO SAR) which is limited by long repeat period and small coverage. In this paper, a novel ionospheric 3-D CIT technique based on geosynchronous SAR (GEO SAR) is put forward. First, several influences of complex atmospheric environment on GEO SAR focusing are detailedly analyzed, including background ionosphere and multiple scattering effects (induced by turbulent ionosphere), tropospheric effects, and random noises. Then the corresponding GEO SAR signal model is constructed with consideration of the temporal-variant background ionosphere within the GEO SAR long integration time (typically 100 s to 1000 s level). Concurrently, an accurate total electron content (TEC) retrieval method based on GEO SAR data is put forward through subband division in range and subaperture division in azimuth, obtaining variant TEC value with respect to the azimuth time. The processing steps of GEO SAR CIT are given and discussed. Owing to the short repeat period and large coverage area, GEO SAR CIT has potentials of covering the specific space continuously and completely and resultantly has excellent real-time performance. Finally, the TEC retrieval and GEO SAR CIT construction are performed by employing a numerical study based on the meteorological data. The feasibility and correctness of the proposed methods are verified.
Gerloni, Alessandro; Cavalli, Fabio; Costantinides, Fulvio; Costantinides, Fulvia; Bonetti, Stefano; Paganelli, Corrado
2009-06-01
The aim of the study was to provide a paleopathologic and radiologic overview of the jaws and teeth of 3 Egyptian mummies preserved in the Civic Museum of History and Art in Trieste. Computerized tomography (CT) imaging and postprocessing techniques were used to examine the oral structures. A 16-slice CT scanner was used (Aquilion 16; Toshiba Medical Systems Europe, Zoetermeer, The Netherlands). Scans were obtained at high resolution. Orthogonal-plane and 3-dimensional (3D) reconstructions were created along with curved reconstructions of the lower and upper jaws. Determination of decayed/missing teeth (DMT) and decayed/missing/tooth surfaces (DMTs) were made with 3D images. Analyses revealed differences in the embalming techniques and state of preservation of the bodies. Marked wear of the occlusal surfaces was a characteristic finding in all of the mummies. The DMT and DMTs were low compared with values for contemporary populations. Two mummies had fully erupted third molars. All mummies exhibited bone changes consistent with periodontitis. The CT evaluations of the oral structures of the mummies provided insight into the dental status and oral diseases of these ancient Egyptians. The low DMT and DMTs values and indications of periodontitis may be associated with the lifestyle of these Egyptians. The fully erupted and well aligned third molars may represent a morphologic adaptation of the arches to the muscular activity associated with grinding tough foods.
Varma, Hari M.; Valdes, Claudia P.; Kristoffersen, Anna K.; Culver, Joseph P.; Durduran, Turgut
2014-01-01
A novel tomographic method based on the laser speckle contrast, speckle contrast optical tomography (SCOT) is introduced that allows us to reconstruct three dimensional distribution of blood flow in deep tissues. This method is analogous to the diffuse optical tomography (DOT) but for deep tissue blood flow. We develop a reconstruction algorithm based on first Born approximation to generate three dimensional distribution of flow using the experimental data obtained from tissue simulating phantoms. PMID:24761306
Newton, Peter O; Hahn, Gregory W; Fricka, Kevin B; Wenger, Dennis R
2002-04-15
A retrospective radiographic review of 31 patients with congenital spine abnormalities who underwent conventional radiography and advanced imaging studies was conducted. To analyze the utility of three-dimensional computed tomography with multiplanar reformatted images for congenital spine anomalies, as compared with plain radiographs and axial two-dimensional computed tomography imaging. Conventional radiographic imaging for congenital spine disorders often are difficult to interpret because of the patient's small size, the complexity of the disorder, a deformity not in the plane of the radiographs, superimposed structures, and difficulty in forming a mental three-dimensional image. Multiplanar reformatted and three-dimensional computed tomographic imaging offers many potential advantages for defining congenital spine anomalies including visualization of the deformity in any plane, from any angle, with the overlying structures subtracted. The imaging studies of patients who had undergone a three-dimensional computed tomography for congenital deformities of the spine between 1992 and 1998 were reviewed (31 cases). All plain radiographs and axial two-dimensional computed tomography images performed before the three-dimensional computed tomography were reviewed and the findings documented. This was repeated for the three-dimensional reconstructions and, when available, the multiplanar reformatted images (15 cases). In each case, the utility of the advanced imaging was graded as one of the following: Grade A (substantial new information obtained), Grade B (confirmatory with improved visualization and understanding of the deformity), and Grade C (no added useful information obtained). In 17 of 31 cases, the multiplanar reformatted and three-dimensional images allowed identification of unrecognized malformations. In nine additional cases, the advanced imaging was helpful in better visualizing and understanding previously identified deformities. In five cases, no new information was gained. The standard and curved multiplanar reformatted images were best for defining the occiput-C1-C2 anatomy and the extent of segmentation defects. The curved multiplanar reformatted images were especially helpful in keeping the spine from "coming in" and "going out" of the plane of the image when there was significant spine deformity in the sagittal or coronal plane. The three-dimensional reconstructions proved valuable in defining failures of formation. Advanced computed tomography imaging (three-dimensional computed tomography and curved/standard multiplanar reformatted images) allows better definition of congenital spine anomalies. More than 50% of the cases showed additional abnormalities not appreciated on plain radiographs or axial two-dimensional computed tomography images. Curved multiplanar reformatted images allowed imaging in the coronal and sagittal planes of the entire deformity.
Rectus sheath hematoma: three case reports
Kapan, Selin; Turhan, Ahmet N; Alis, Halil; Kalayci, Mustafa U; Hatipoglu, Sinan; Yigitbas, Hakan; Aygun, Ersan
2008-01-01
Introduction Rectus sheath hematoma is an uncommon cause of acute abdominal pain. It is an accumulation of blood in the sheath of the rectus abdominis, secondary to rupture of an epigastric vessel or muscle tear. It could occur spontaneously or after trauma. They are usually located infraumblically and often misdiagnosed as acute abdomen, inflammatory diseases or tumours of the abdomen. Case presentation We reported three cases of rectus sheath hematoma presenting with a mass in the abdomen and diagnosed by computerized tomography. The patients recovered uneventfully after bed rest, intravenous fluid replacement, blood transfusion and analgesic treatment. Conclusion Rectus sheath hematoma is a rarely seen pathology often misdiagnosed as acute abdomen that may lead to unnecessary laparotomies. Computerized tomography must be chosen for definitive diagnosis since ultrasonography is subject to error due to misinterpretation of the images. Main therapy is conservative management. PMID:18221529
Edirisinghe, Y; Troupis, J M; Patel, M; Smith, J; Crossett, M
2014-05-01
We used a dynamic three-dimensional (3D) mapping method to model the wrist in dynamic unrestricted dart throwers motion in three men and four women. With the aid of precision landmark identification, a 3D coordinate system was applied to the distal radius and the movement of the carpus was described. Subsequently, with dynamic 3D reconstructions and freedom to position the camera viewpoint anywhere in space, we observed the motion pathways of all carpal bones in dart throwers motion and calculated its axis of rotation. This was calculated to lie in 27° of anteversion from the coronal plane and 44° of varus angulation relative to the transverse plane. This technique is a safe and a feasible carpal imaging method to gain key information for decision making in future hand surgical and rehabilitative practices.
Chapla, Marie E; Nowacek, Douglas P; Rommel, Sentiel A; Sadler, Valerie M
2007-06-01
The auditory anatomy of the Florida manatee (Trichechus manatus latirostris) was investigated using computerized tomography (CT), three-dimensional reconstructions, and traditional dissection of heads removed during necropsy. The densities (kg/m3) of the soft tissues of the head were measured directly using the displacement method and those of the soft tissues and bone were calculated from CT measurements (Hounsfield units). The manatee's fatty tissue was significantly less dense than the other soft tissues within the head (p<0.05). The squamosal bone was significantly less dense than the other bones of the head (p<0.05). Measurements of the ear bones (tympanic, periotic, malleus, incus, and stapes) collected during dissection revealed that the ossicular chain was overly massive for the mass of the tympanoperiotic complex.
Akten, H Serpil; Kilic, Hatice; Celik, Bulent; Erbas, Gonca; Isikdogan, Zeynep; Turktas, Haluk; Kokturk, Nurdan
2018-04-25
This study aimed to evaluate the diagnostic yield of fiberoptic bronchoscopic (FOB) transbronchial biopsy and its relation with quantitative findings of high resolution computerized tomography (HRCT). A total of 83 patients, 19 males and 64 females with a mean age of 45.1 years diagnosed with sarcoidosis with complete records of high resolution computerized tomography were retrospectively recruited during the time period from Feb 2005 to Jan 2015. High resolution computerized tomography scans were retrospectively assessed in random order by an experienced observer without knowledge of the bronchoscopic results or lung function tests. According to the radiological staging with HRCT, 2.4% of the patients (n=2) were stage 0, 19.3% (n=16) were stage 1, 72.3% (n=60) were stage 2 and 6.0% (n=5) were stage 3. This study showed that transbronchial lung biopsy showed positive results in 39.7% of the stage I or II sarcoidosis patients who were diagnosed by bronchoscopy. Different high resolution computerized tomography patterns and different scores of involvement did make a difference in the diagnostic accuracy of transbronchial biopsy (p=0.007). Creative Commons Attribution License
Rapid Prototyping Integrated With Nondestructive Evaluation and Finite Element Analysis
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Baaklini, George Y.
2001-01-01
Most reverse engineering approaches involve imaging or digitizing an object then creating a computerized reconstruction that can be integrated, in three dimensions, into a particular design environment. Rapid prototyping (RP) refers to the practical ability to build high-quality physical prototypes directly from computer aided design (CAD) files. Using rapid prototyping, full-scale models or patterns can be built using a variety of materials in a fraction of the time required by more traditional prototyping techniques (refs. 1 and 2). Many software packages have been developed and are being designed to tackle the reverse engineering and rapid prototyping issues just mentioned. For example, image processing and three-dimensional reconstruction visualization software such as Velocity2 (ref. 3) are being used to carry out the construction process of three-dimensional volume models and the subsequent generation of a stereolithography file that is suitable for CAD applications. Producing three-dimensional models of objects from computed tomography (CT) scans is becoming a valuable nondestructive evaluation methodology (ref. 4). Real components can be rendered and subjected to temperature and stress tests using structural engineering software codes. For this to be achieved, accurate high-resolution images have to be obtained via CT scans and then processed, converted into a traditional file format, and translated into finite element models. Prototyping a three-dimensional volume of a composite structure by reading in a series of two-dimensional images generated via CT and by using and integrating commercial software (e.g. Velocity2, MSC/PATRAN (ref. 5), and Hypermesh (ref. 6)) is being applied successfully at the NASA Glenn Research Center. The building process from structural modeling to the analysis level is outlined in reference 7. Subsequently, a stress analysis of a composite cooling panel under combined thermomechanical loading conditions was performed to validate this process.
Model-based registration for assessment of spinal deformities in idiopathic scoliosis
NASA Astrophysics Data System (ADS)
Forsberg, Daniel; Lundström, Claes; Andersson, Mats; Knutsson, Hans
2014-01-01
Detailed analysis of spinal deformity is important within orthopaedic healthcare, in particular for assessment of idiopathic scoliosis. This paper addresses this challenge by proposing an image analysis method, capable of providing a full three-dimensional spine characterization. The proposed method is based on the registration of a highly detailed spine model to image data from computed tomography. The registration process provides an accurate segmentation of each individual vertebra and the ability to derive various measures describing the spinal deformity. The derived measures are estimated from landmarks attached to the spine model and transferred to the patient data according to the registration result. Evaluation of the method provides an average point-to-surface error of 0.9 mm ± 0.9 (comparing segmentations), and an average target registration error of 2.3 mm ± 1.7 (comparing landmarks). Comparing automatic and manual measurements of axial vertebral rotation provides a mean absolute difference of 2.5° ± 1.8, which is on a par with other computerized methods for assessing axial vertebral rotation. A significant advantage of our method, compared to other computerized methods for rotational measurements, is that it does not rely on vertebral symmetry for computing the rotational measures. The proposed method is fully automatic and computationally efficient, only requiring three to four minutes to process an entire image volume covering vertebrae L5 to T1. Given the use of landmarks, the method can be readily adapted to estimate other measures describing a spinal deformity by changing the set of employed landmarks. In addition, the method has the potential to be utilized for accurate segmentations of the vertebrae in routine computed tomography examinations, given the relatively low point-to-surface error.
A three-dimensional computerized isometric strength measurement system.
Black, Nancy L; Das, Biman
2007-05-01
The three-dimensional Computerized Isometric Strength Measurement System (CISMS) reliably and accurately measures isometric pull and push strengths in work spaces of paraplegic populations while anticipating comparative studies with other populations. The main elements of the system were: an extendable arm, a vertical supporting track, a rotating platform, a force transducer, stability sensors and a computerized data collection interface. The CISMS with minor modification was successfully used to measure isometric push-up and pull-down strengths of paraplegics and isometric push, pull, push-up and pull-down strength in work spaces for seated and standing able-bodied populations. The instrument has satisfied criteria of versatility, safety and comfort, ease of operation, and durability. Results are accurate within 2N for aligned forces. Costing approximately $1,500 (US) including computer, the system is affordable and accurate for aligned isometric strength measurements.
Tan, A C; Richards, R
1989-01-01
Three-dimensional (3D) medical graphics is becoming popular in clinical use on tomographic scanners. Research work in 3D reconstructive display of computerized tomography (CT) and magnetic resonance imaging (MRI) scans on conventional computers has produced many so-called pseudo-3D images. The quality of these images depends on the rendering algorithm, the coarseness of the digitized object, the number of grey levels and the image screen resolution. CT and MRI data are fundamentally voxel based and they produce images that are coarse because of the resolution of the data acquisition system. 3D images produced by the Z-buffer depth shading technique suffer loss of detail when complex objects with fine textural detail need to be displayed. Attempts have been made to improve the display of voxel objects, and existing techniques have shown the improvement possible using these post-processing algorithms. The improved rendering technique works on the Z-buffer image to generate a shaded image using a single light source in any direction. The effectiveness of the technique in generating a shaded image has been shown to be a useful means of presenting 3D information for clinical use.
Multifunctional, three-dimensional tomography for analysis of eletrectrohydrodynamic jetting
NASA Astrophysics Data System (ADS)
Nguyen, Xuan Hung; Gim, Yeonghyeon; Ko, Han Seo
2015-05-01
A three-dimensional optical tomography technique was developed to reconstruct three-dimensional objects using a set of two-dimensional shadowgraphic images and normal gray images. From three high-speed cameras, which were positioned at an offset angle of 45° between each other, number, size, and location of electrohydrodynamic jets with respect to the nozzle position were analyzed using shadowgraphic tomography employing multiplicative algebraic reconstruction technique (MART). Additionally, a flow field inside a cone-shaped liquid (Taylor cone) induced under an electric field was observed using a simultaneous multiplicative algebraic reconstruction technique (SMART), a tomographic method for reconstructing light intensities of particles, combined with three-dimensional cross-correlation. Various velocity fields of circulating flows inside the cone-shaped liquid caused by various physico-chemical properties of liquid were also investigated.
ART 3.5D: an algorithm to label arteries and veins from three-dimensional angiography.
Barra, Beatrice; De Momi, Elena; Ferrigno, Giancarlo; Pero, Guglielmo; Cardinale, Francesco; Baselli, Giuseppe
2016-10-01
Preoperative three-dimensional (3-D) visualization of brain vasculature by digital subtraction angiography from computerized tomography (CT) in neurosurgery is gaining more and more importance, since vessels are the primary landmarks both for organs at risk and for navigation. Surgical embolization of cerebral aneurysms and arteriovenous malformations, epilepsy surgery, and stereoelectroencephalography are a few examples. Contrast-enhanced cone-beam computed tomography (CE-CBCT) represents a powerful facility, since it is capable of acquiring images in the operation room, shortly before surgery. However, standard 3-D reconstructions do not provide a direct distinction between arteries and veins, which is of utmost importance and is left to the surgeon's inference so far. Pioneering attempts by true four-dimensional (4-D) CT perfusion scans were already described, though at the expense of longer acquisition protocols, higher dosages, and sensible resolution losses. Hence, space is open to approaches attempting to recover the contrast dynamics from standard CE-CBCT, on the basis of anomalies overlooked in the standard 3-D approach. This paper aims at presenting algebraic reconstruction technique (ART) 3.5D, a method that overcomes the clinical limitations of 4-D CT, from standard 3-D CE-CBCT scans. The strategy works on the 3-D angiography, previously segmented in the standard way, and reprocesses the dynamics hidden in the raw data to recover an approximate dynamics in each segmented voxel. Next, a classification algorithm labels the angiographic voxels and artery or vein. Numerical simulations were performed on a digital phantom of a simplified 3-D vasculature with contrast transit. CE-CBCT projections were simulated and used for ART 3.5D testing. We achieved up to 90% classification accuracy in simulations, proving the feasibility of the presented approach for dynamic information recovery for arteries and veins segmentation.
Acar, Buket; Kamburoğlu, Kıvanç; Tatar, İlkan; Arıkan, Volkan; Çelik, Hakan Hamdi; Yüksel, Selcen; Özen, Tuncer
2015-12-01
This study was performed to compare the accuracy of micro-computed tomography (CT) and cone-beam computed tomography (CBCT) in detecting accessory canals in primary molars. Forty-one extracted human primary first and second molars were embedded in wax blocks and scanned using micro-CT and CBCT. After the images were taken, the samples were processed using a clearing technique and examined under a stereomicroscope in order to establish the gold standard for this study. The specimens were classified into three groups: maxillary molars, mandibular molars with three canals, and mandibular molars with four canals. Differences between the gold standard and the observations made using the imaging methods were calculated using Spearman's rho correlation coefficient test. The presence of accessory canals in micro-CT images of maxillary and mandibular root canals showed a statistically significant correlation with the stereomicroscopic images used as a gold standard. No statistically significant correlation was found between the CBCT findings and the stereomicroscopic images. Although micro-CT is not suitable for clinical use, it provides more detailed information about minor anatomical structures. However, CBCT is convenient for clinical use but may not be capable of adequately analyzing the internal anatomy of primary teeth.
Kosterhon, Michael; Gutenberg, Angelika; Kantelhardt, Sven R; Conrad, Jens; Nimer Amr, Amr; Gawehn, Joachim; Giese, Alf
2017-08-01
A feasibility study. To develop a method based on the DICOM standard which transfers complex 3-dimensional (3D) trajectories and objects from external planning software to any navigation system for planning and intraoperative guidance of complex spinal procedures. There have been many reports about navigation systems with embedded planning solutions but only few on how to transfer planning data generated in external software. Patients computerized tomography and/or magnetic resonance volume data sets of the affected spinal segments were imported to Amira software, reconstructed to 3D images and fused with magnetic resonance data for soft-tissue visualization, resulting in a virtual patient model. Objects needed for surgical plans or surgical procedures such as trajectories, implants or surgical instruments were either digitally constructed or computerized tomography scanned and virtually positioned within the 3D model as required. As crucial step of this method these objects were fused with the patient's original diagnostic image data, resulting in a single DICOM sequence, containing all preplanned information necessary for the operation. By this step it was possible to import complex surgical plans into any navigation system. We applied this method not only to intraoperatively adjustable implants and objects under experimental settings, but also planned and successfully performed surgical procedures, such as the percutaneous lateral approach to the lumbar spine following preplanned trajectories and a thoracic tumor resection including intervertebral body replacement using an optical navigation system. To demonstrate the versatility and compatibility of the method with an entirely different navigation system, virtually preplanned lumbar transpedicular screw placement was performed with a robotic guidance system. The presented method not only allows virtual planning of complex surgical procedures, but to export objects and surgical plans to any navigation or guidance system able to read DICOM data sets, expanding the possibilities of embedded planning software.
The association of malocclusion and trumpet performance.
Kula, Katherine; Cilingir, H Zeynep; Eckert, George; Dagg, Jack; Ghoneima, Ahmed
2016-01-01
To determine whether trumpet performance skills are associated with malocclusion. Following institutional review board approval, 70 university trumpet students (54 male, 16 female; aged 20-38.9 years) were consented. After completing a survey, the students were evaluated while playing a scripted performance skills test (flexibility, articulation, range, and endurance exercises) on their instrument in a soundproof music practice room. One investigator (trumpet teacher) used a computerized metronome and a decibel meter during evaluation. A three-dimensional (3D) cone-beam computerized tomography scan (CBCT) was taken of each student the same day as the skills test. Following reliability studies, multiple dental parameters were measured on the 3D CBCT. Nonparametric correlations (Spearman), accepting P < .05 as significant, were used to determine if there were significant associations between dental parameters and the performance skills. Intrarater reliability was excellent (intraclass correlations; all r values > .94). Although associations were weak to moderate, significant negative associations (r ≤ -.32) were found between Little's irregularity index, interincisal inclination, maxillary central incisor rotation, and various flexibility and articulation performance skills, whereas significant positive associations (r ≤ .49) were found between arch widths and various skills. Specific malocclusions are associated with trumpet performance of experienced young musicians.
Six-dimensional real and reciprocal space small-angle X-ray scattering tomography
NASA Astrophysics Data System (ADS)
Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz
2015-11-01
When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres—for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.
Six-dimensional real and reciprocal space small-angle X-ray scattering tomography.
Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz
2015-11-19
When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres--for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.
Effect of foot shape on the three-dimensional position of foot bones.
Ledoux, William R; Rohr, Eric S; Ching, Randal P; Sangeorzan, Bruce J
2006-12-01
To eliminate some of the ambiguity in describing foot shape, we developed three-dimensional (3D), objective measures of foot type based on computerized tomography (CT) scans. Feet were classified via clinical examination as pes cavus (high arch), neutrally aligned (normal arch), asymptomatic pes planus (flat arch with no pain), or symptomatic pes planus (flat arch with pain). We enrolled 10 subjects of each foot type; if both feet were of the same foot type, then each foot was scanned (n=65 total). Partial weightbearing (20% body weight) CT scans were performed. We generated embedded coordinate systems for each foot bone by assuming uniform density and calculating the inertial matrix. Cardan angles were used to describe five bone-to-bone relationships, resulting in 15 angular measurements. Significant differences were found among foot types for 12 of the angles. The angles were also used to develop a classification tree analysis, which determined the correct foot type for 64 of the 65 feet. Our measure provides insight into how foot bone architecture differs between foot types. The classification tree analysis demonstrated that objective measures can be used to discriminate between feet with high, normal, and low arches. Copyright (c) 2006 Orthopaedic Research Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arinilhaq,; Widita, Rena
2014-09-30
Optical Coherence Tomography is often used in medical image acquisition to diagnose that change due easy to use and low price. Unfortunately, this type of examination produces a two-dimensional retinal image of the point of acquisition. Therefore, this study developed a method that combines and reconstruct 2-dimensional retinal images into three-dimensional images to display volumetric macular accurately. The system is built with three main stages: data acquisition, data extraction and 3-dimensional reconstruction. At data acquisition step, Optical Coherence Tomography produced six *.jpg images of each patient were further extracted with MATLAB 2010a software into six one-dimensional arrays. The six arraysmore » are combined into a 3-dimensional matrix using a kriging interpolation method with SURFER9 resulting 3-dimensional graphics of macula. Finally, system provides three-dimensional color graphs based on the data distribution normal macula. The reconstruction system which has been designed produces three-dimensional images with size of 481 × 481 × h (retinal thickness) pixels.« less
NASA Astrophysics Data System (ADS)
Wan, Weibing; Shi, Pengfei; Li, Shuguang
2009-10-01
Given the potential demonstrated by research into bone-tissue engineering, the use of medical image data for the rapid prototyping (RP) of scaffolds is a subject worthy of research. Computer-aided design and manufacture and medical imaging have created new possibilities for RP. Accurate and efficient design and fabrication of anatomic models is critical to these applications. We explore the application of RP computational methods to the repair of a pediatric skull defect. The focus of this study is the segmentation of the defect region seen in computerized tomography (CT) slice images of this patient's skull and the three-dimensional (3-D) surface rendering of the patient's CT-scan data. We see if our segmentation and surface rendering software can improve the generation of an implant model to fill a skull defect.
ERIC Educational Resources Information Center
Balottin, Umberto; And Others
1989-01-01
The study of computerized tomography brain-scan findings with 45 autistic and 19 control subjects concluded that autism is nonspecifically associated with brain-scan abnormalities, and that other nonorganic, as well as organic, factors should be taken into account. (Author/DB)
[The clinical economic analysis of the methods of ischemic heart disease diagnostics].
Kalashnikov, V Iu; Mitriagina, S N; Syrkin, A L; Poltavskaia, M G; Sorokina, E G
2007-01-01
The clinical economical analysis was applied to assess the application of different techniques of ischemic heart disease diagnostics - the electro-cardiographic monitoring, the treadmill-testing, the stress-echo cardiographic with dobutamine, the single-photon computerized axial tomography with load, the multi-spiral computerized axial tomography with coronary arteries staining in patients with different initial probability of disease occurrence. In all groups, the best value of "cost-effectiveness" had the treadmill-test. The patients with low risk needed 17.4 rubles to precise the probability of ischemic heart disease occurrence at 1%. In the group with medium and high risk this indicator was 9.4 and 24.7 rubles correspondingly. It is concluded that to precise the probability of ischemic heart disease occurrence after tredmil-test in the patients with high probability it is appropriate to use the single-photon computerized axial tomography with load and in the case of patients with low probability the multi-spiral computerized axial tomography with coronary arteries staining.
Miranda, Geraldo Elias; Wilkinson, Caroline; Roughley, Mark; Beaini, Thiago Leite; Melani, Rodolfo Francisco Haltenhoff
2018-01-01
Facial reconstruction is a technique that aims to reproduce the individual facial characteristics based on interpretation of the skull, with the objective of recognition leading to identification. The aim of this paper was to evaluate the accuracy and recognition level of three-dimensional (3D) computerized forensic craniofacial reconstruction (CCFR) performed in a blind test on open-source software using computed tomography (CT) data from live subjects. Four CCFRs were produced by one of the researchers, who was provided with information concerning the age, sex, and ethnic group of each subject. The CCFRs were produced using Blender® with 3D models obtained from the CT data and templates from the MakeHuman® program. The evaluation of accuracy was carried out in CloudCompare, by geometric comparison of the CCFR to the subject 3D face model (obtained from the CT data). A recognition level was performed using the Picasa® recognition tool with a frontal standardized photography, images of the subject CT face model and the CCFR. Soft-tissue depth and nose, ears and mouth were based on published data, observing Brazilian facial parameters. The results were presented from all the points that form the CCFR model, with an average for each comparison between 63% and 74% with a distance -2.5 ≤ x ≤ 2.5 mm from the skin surface. The average distances were 1.66 to 0.33 mm and greater distances were observed around the eyes, cheeks, mental and zygomatic regions. Two of the four CCFRs were correctly matched by the Picasa® tool. Free software programs are capable of producing 3D CCFRs with plausible levels of accuracy and recognition and therefore indicate their value for use in forensic applications.
Wilkinson, Caroline; Roughley, Mark; Beaini, Thiago Leite; Melani, Rodolfo Francisco Haltenhoff
2018-01-01
Facial reconstruction is a technique that aims to reproduce the individual facial characteristics based on interpretation of the skull, with the objective of recognition leading to identification. The aim of this paper was to evaluate the accuracy and recognition level of three-dimensional (3D) computerized forensic craniofacial reconstruction (CCFR) performed in a blind test on open-source software using computed tomography (CT) data from live subjects. Four CCFRs were produced by one of the researchers, who was provided with information concerning the age, sex, and ethnic group of each subject. The CCFRs were produced using Blender® with 3D models obtained from the CT data and templates from the MakeHuman® program. The evaluation of accuracy was carried out in CloudCompare, by geometric comparison of the CCFR to the subject 3D face model (obtained from the CT data). A recognition level was performed using the Picasa® recognition tool with a frontal standardized photography, images of the subject CT face model and the CCFR. Soft-tissue depth and nose, ears and mouth were based on published data, observing Brazilian facial parameters. The results were presented from all the points that form the CCFR model, with an average for each comparison between 63% and 74% with a distance -2.5 ≤ x ≤ 2.5 mm from the skin surface. The average distances were 1.66 to 0.33 mm and greater distances were observed around the eyes, cheeks, mental and zygomatic regions. Two of the four CCFRs were correctly matched by the Picasa® tool. Free software programs are capable of producing 3D CCFRs with plausible levels of accuracy and recognition and therefore indicate their value for use in forensic applications. PMID:29718983
Femoral articular shape and geometry. A three-dimensional computerized analysis of the knee.
Siu, D; Rudan, J; Wevers, H W; Griffiths, P
1996-02-01
An average, three-dimensional anatomic shape and geometry of the distal femur were generated from x-ray computed tomography data of five fresh asymptomatic cadaver knees using AutoCAD (AutoDesk, Sausalito, CA), a computer-aided design and drafting software. Each femur model was graphically repositioned to a standardized orientation using a series of alignment templates and scaled to a nominal size of 85 mm in mediolateral and 73 mm in anteroposterior dimensions. An average generic shape of the distal femur was synthesized by combining these pseudosolid models and reslicing the composite structure at different elevations using clipping and smoothing techniques in interactive computer graphics. The resulting distal femoral geometry was imported into a computer-aided manufacturing system, and anatomic prototypes of the distal femur were produced. Quantitative geometric analyses of the generic femur in the coronal and transverse planes revealed definite condylar camber (3 degrees-6 degrees) and toe-in (8 degrees-10 degrees) with an oblique patellofemoral groove (15 degrees) with respect to the mechanical axis of the femur. In the sagittal plane, each condyle could be approximated by three concatenated circular arcs (anterior, distal, and posterior) with slope continuity and a single arc for the patellofemoral groove. The results of this study may have important implications in future femoral prosthesis design and clinical applications.
Anthropometric and computerized tomographic measurements of lower extremity lean body mass.
Buckley, D C; Kudsk, K A; Rose, B S; Fatzinger, P; Koetting, C A; Schlatter, M
1987-02-01
The loss of lean muscle mass is one of the hallmarks of protein-calorie malnutrition. Anthropometry is a standardized technique used to assess the response of muscle mass to nutrition therapy by quantifying the muscle and fat compartments. That technique does not accurately reflect actual limb composition, whereas computerized tomography does. Twenty lower extremities on randomly chosen men and women patients were evaluated by anthropometry and computerized tomography. Total area, muscle plus bone area, total volume, and muscle plus bone volume were correlated, using Heymsfield's equation and computerized tomography-generated areas. Anthropometrics overestimated total and muscle plus bone cross-sectional areas at almost every level. Anthropometry overestimated total area and total volume by 5% to 10% but overestimated muscle plus bone area and muscle plus bone volume by as much as 40%. Anthropometry, while easily performed and useful in large population groups for epidemiological studies, offers a poor assessment of lower extremity composition. On the other hand, computerized tomography is also easily performed and, while impractical for large population groups, does offer an accurate assessment of the lower extremity tissue compartments and is an instrument that might be used in research on lean muscle mass.
NASA Astrophysics Data System (ADS)
Tang, Jun; Yuan, Yunbin
2017-10-01
Ionospheric anomalies possibly associated with large earthquakes, particularly coseismic ionospheric disturbances, have been detected by global positioning system (GPS). A large Nepal earthquake with magnitude Mw7.8 occurred on April 25, 2015. In this paper, we investigate the multi-dimensional distribution of near-field coseismic ionospheric disturbances (CIDs) using total electron content (TEC) and computerized ionospheric tomography (CIT) from regional GPS observational data. The results show significant ionospheric TEC disturbances and interesting multi-dimensional structures around the main shock. Regarding the TEC changes, coseismic ionospheric disturbances occur approximately 10-20 min after the earthquake northeast and northwest of epicentre. The maximum ridge-to-trough amplitude of CIDs is up to approximately 0.90 TECU/min. Propagation velocities of the TEC disturbances are 1.27 ± 0.06 km/s and 1.91 ± 0.38 km/s. It is believed that the ionospheric disturbances are triggered by acoustic and Rayleigh waves. Tomographic results show that the three-dimensional distribution of ionospheric disturbances obviously increases at an altitude of 300 km above the surrounding epicentre, predominantly in the entire region between 200 km and 400 km. Significant ionospheric disturbances appear at 06:30 UT from tomographic images. This study reveals characteristics of an ionospheric anomaly caused by the Nepal earthquake.
Initial clinical experience with computerized tomography of the body.
Stephens, D H; Sheedy, P F; Hattery, R R; Hartman, G W
1976-04-01
Computerized tomography of the body, now possible with an instrument that can complete a scan rapidly enough to permit patients to suspend respiration, adds an important new dimension to radiologic diagnosis. Cross-sectional antomy is uniquely reconstructed to provide accurate diagnostic information for various disorders throughout the body.
Janoff, Daniel M; Davol, Patrick; Hazzard, James; Lemmers, Michael J; Paduch, Darius A; Barry, John M
2004-01-01
Computerized tomography (CT) with 3-dimensional (3-D) reconstruction has gained acceptance as an imaging study to evaluate living renal donors. We report our experience with this technique in 199 consecutive patients to validate its predictions of arterial anatomy and kidney volumes. Between January 1997 and March 2002, 199 living donor nephrectomies were performed at our institution using an open technique. During the operation arterial anatomy was recorded as well as kidney weight in 98 patients and displacement volume in 27. Each donor had been evaluated preoperatively by CT angiography with 3-D reconstruction. Arterial anatomy described by a staff radiologist was compared with intraoperative findings. CT estimated volumes were reported. Linear correlation graphs were generated to assess the reliability of CT volume predictions. The accuracy of CT angiography for predicting arterial anatomy was 90.5%. However, as the number of renal arteries increased, predictive accuracy decreased. The ability of CT to predict multiple arteries remained high with a positive predictive value of 95.2%. Calculated CT volume and kidney weight significantly correlated (0.654). However, the coefficient of variation index (how much average CT volume differed from measured intraoperative volume) was 17.8%. CT angiography with 3-D reconstruction accurately predicts arterial vasculature in more than 90% of patients and it can be used to compare renal volumes. However, accuracy decreases with multiple renal arteries and volume comparisons may be inaccurate when the difference in kidney volumes is within 17.8%.
Suenaga, Hideyuki; Hoang Tran, Huy; Liao, Hongen; Masamune, Ken; Dohi, Takeyoshi; Hoshi, Kazuto; Mori, Yoshiyuki; Takato, Tsuyoshi
2013-01-01
To evaluate the feasibility and accuracy of a three-dimensional augmented reality system incorporating integral videography for imaging oral and maxillofacial regions, based on preoperative computed tomography data. Three-dimensional surface models of the jawbones, based on the computed tomography data, were used to create the integral videography images of a subject's maxillofacial area. The three-dimensional augmented reality system (integral videography display, computed tomography, a position tracker and a computer) was used to generate a three-dimensional overlay that was projected on the surgical site via a half-silvered mirror. Thereafter, a feasibility study was performed on a volunteer. The accuracy of this system was verified on a solid model while simulating bone resection. Positional registration was attained by identifying and tracking the patient/surgical instrument's position. Thus, integral videography images of jawbones, teeth and the surgical tool were superimposed in the correct position. Stereoscopic images viewed from various angles were accurately displayed. Change in the viewing angle did not negatively affect the surgeon's ability to simultaneously observe the three-dimensional images and the patient, without special glasses. The difference in three-dimensional position of each measuring point on the solid model and augmented reality navigation was almost negligible (<1 mm); this indicates that the system was highly accurate. This augmented reality system was highly accurate and effective for surgical navigation and for overlaying a three-dimensional computed tomography image on a patient's surgical area, enabling the surgeon to understand the positional relationship between the preoperative image and the actual surgical site, with the naked eye. PMID:23703710
Topical Review: Polymer gel dosimetry
Baldock, C; De Deene, Y; Doran, S; Ibbott, G; Jirasek, A; Lepage, M; McAuley, K B; Oldham, M; Schreiner, L J
2010-01-01
Polymer gel dosimeters are fabricated from radiation sensitive chemicals which, upon irradiation, polymerize as a function of the absorbed radiation dose. These gel dosimeters, with the capacity to uniquely record the radiation dose distribution in three-dimensions (3D), have specific advantages when compared to one-dimensional dosimeters, such as ion chambers, and two-dimensional dosimeters, such as film. These advantages are particularly significant in dosimetry situations where steep dose gradients exist such as in intensity-modulated radiation therapy (IMRT) and stereotactic radiosurgery. Polymer gel dosimeters also have specific advantages for brachytherapy dosimetry. Potential dosimetry applications include those for low-energy x-rays, high-linear energy transfer (LET) and proton therapy, radionuclide and boron capture neutron therapy dosimetries. These 3D dosimeters are radiologically soft-tissue equivalent with properties that may be modified depending on the application. The 3D radiation dose distribution in polymer gel dosimeters may be imaged using magnetic resonance imaging (MRI), optical-computerized tomography (optical-CT), x-ray CT or ultrasound. The fundamental science underpinning polymer gel dosimetry is reviewed along with the various evaluation techniques. Clinical dosimetry applications of polymer gel dosimetry are also presented. PMID:20150687
A three-dimensional thermal and electromagnetic model of whole limb heating with a MAPA.
Charny, C K; Levin, R L
1991-10-01
Previous studies by the authors have shown that if properly implemented, the Pennes assumptions can be applied to quantify bioheat transfer during extremity heating. Given its relative numerical simplicity and its ability to predict temperatures in thermoregulated tissue, the Pennes model of bioheat transfer was utilized in a three-dimensional thermal model of limb heating. While the arterial blood temperature was assumed to be radially uniform within a cross section of the limb, axial gradients in the arterial and venous blood temperatures were computed with this three-dimensional model. A realistically shaped, three-dimensional finite element model of a tumor-bearing human lower leg was constructed and was "attached" mathematically to the whole body thermal model of man described in previous studies by the authors. The central as well as local thermoregulatory feedback control mechanisms which determine blood perfusion to the various tissues and rate of evaporation by sweating were input into the limb model. In addition, the temperature of the arterial blood which feeds into the most proximal section of the lower leg was computed by the whole body thermal model. The variations in the shape of the tissues which comprise the limb were obtained from computerized tomography scans. Axial variations in the energy deposition patterns along the length of the limb exposed to a miniannular phased array (MAPA) applicator were also input into this model of limb heating. Results indicate that proper positioning of the limb relative to the MAPA is a significant factor in determining the effectiveness of the treatment. A patient-specific hyperthermia protocol can be designed using this coupled electromagnetic and thermal model.
Maletha, Madhukar; Kureel, S N; Khan, Tanvir Roshan; Wakhlu, Ashish
2010-12-01
Congenital pouch colon (CPC) is a pouch-like dilatation of shortened colon associated with anorectal malformation (ARM). The disease is prevalent in northern India. Postoperatively, the continence results are not as good as in other ARMs and there is higher incidence of incontinence and perineal soiling in these patients. The present study aimed to evaluate the pelvic floor and sphincter muscle characteristics in patients of CPC with the help of 64-slice computerized tomography with three-dimensional (3D) volumetric reconstructions of images, thus, to know the overall quality of these muscles in the patients. The study was conducted in patients admitted over a period of July 2007 to November 2008 in our department. Totally, eight patients of CPC were subjected to 64-slice CT with three-dimensional reconstructions of images and different parameters such as quality of pelvic floor muscles, configuration of vertical and parasagittal fibres, shape and thickness of sphincter muscle complex, attenuation values of sphincters were studied. The 3D reconstructed images of pelvis in patients of CPC showed a well-developed pelvic floor and sphincter muscle complex. The length of the parasagittal fibres, transverse width of the vertical fibres and CT attenuation values of these structures with overall muscle quality were found to be good in these patients. In cases of CPC, the pelvic floor muscles including striated muscle complex (vertical and parasagittal fibres) are well developed. Higher rates of incontinence and soiling in CPC are not because of poorly developed pelvic floor and sphincter muscles. Three-dimensional CT can also provide important anatomical information that can help the operating surgeon while performing surgery.
Analysis of eletrectrohydrodynamic jetting using multifunctional and three-dimensional tomography
NASA Astrophysics Data System (ADS)
Ko, Han Seo; Nguyen, Xuan Hung; Lee, Soo-Hong; Kim, Young Hyun
2013-11-01
Three-dimensional optical tomography technique was developed to reconstruct three-dimensional flow fields using a set of two-dimensional shadowgraphic images and normal gray images. From three high speed cameras, which were positioned at an offset angle of 45° relative to one another, number, size and location of electrohydrodynamic jets with respect to the nozzle position were analyzed using shadowgraphic tomography employing a multiplicative algebraic reconstruction technique (MART). Additionally, a flow field inside cone-shaped liquid (Taylor cone) which was induced under electric field was also observed using a simultaneous multiplicative algebraic reconstruction technique (SMART) for reconstructing intensities of particle light and combining with a three-dimensional cross correlation. Various velocity fields of a circulating flow inside the cone-shaped liquid due to different physico-chemical properties of liquid and applied voltages were also investigated. This work supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Korean government (MEST) (No. S-2011-0023457).
Dos Santos, Denise Takehana; Costa e Silva, Adriana Paula Andrade; Vannier, Michael Walter; Cavalcanti, Marcelo Gusmão Paraiso
2004-12-01
The purpose of this study was to demonstrate the sensitivity and specificity of multislice computerized tomography (CT) for diagnosis of maxillofacial fractures following specific protocols using an independent workstation. The study population consisted of 56 patients with maxillofacial fractures who were submitted to a multislice CT. The original data were transferred to an independent workstation using volumetric imaging software to generate axial images and simultaneous multiplanar (MPR) and 3-dimensional (3D-CT) volume rendering reconstructed images. The images were then processed and interpreted by 2 examiners using the following protocols independently of each other: axial, MPR/axial, 3D-CT images, and the association of axial/MPR/3D images. The clinical/surgical findings were considered the gold standard corroborating the diagnosis of the fractures and their anatomic localization. The statistical analysis was carried out using validity and chi-squared tests. The association of axial/MPR/3D images indicated a higher sensitivity (range 95.8%) and specificity (range 99%) than the other methods regarding the analysis of all regions. CT imaging demonstrated high specificity and sensitivity for maxillofacial fractures. The association of axial/MPR/3D-CT images added important information in relationship to other CT protocols.
Mendonca, Derick A; Naidoo, Sybill D; Skolnick, Gary; Skladman, Rachel; Woo, Albert S
2013-07-01
Craniofacial anthropometry by direct caliper measurements is a common method of quantifying the morphology of the cranial vault. New digital imaging modalities including computed tomography and three-dimensional photogrammetry are similarly being used to obtain craniofacial surface measurements. This study sought to compare the accuracy of anthropometric measurements obtained by calipers versus 2 methods of digital imaging.Standard anterior-posterior, biparietal, and cranial index measurements were directly obtained on 19 participants with an age range of 1 to 20 months. Computed tomographic scans and three-dimensional photographs were both obtained on each child within 2 weeks of the clinical examination. Two analysts measured the anterior-posterior and biparietal distances on the digital images. Measures of reliability and bias between the modalities were calculated and compared.Caliper measurements were found to underestimate the anterior-posterior and biparietal distances as compared with those of the computed tomography and the three-dimensional photogrammetry (P < 0.001). Cranial index measurements between the computed tomography and the calipers differed by up to 6%. The difference between the 2 modalities was statistically significant (P = 0.021). The biparietal and cranial index results were similar between the digital modalities, but the anterior-posterior measurement was greater with the three-dimensional photogrammetry (P = 0.002). The coefficients of variation for repeated measures based on the computed tomography and the three-dimensional photogrammetry were 0.008 and 0.007, respectively.In conclusion, measurements based on digital modalities are generally reliable and interchangeable. Caliper measurements lead to underestimation of anterior-posterior and biparietal values compared with digital imaging.
Kuusk, Teele; De Bruijn, Roderick; Brouwer, Oscar R; De Jong, Jeroen; Donswijk, Maarten; Grivas, Nikolaos; Hendricksen, Kees; Horenblas, Simon; Prevoo, Warner; Valdés Olmos, Renato A; Van Der Poel, Henk G; Van Rhijn, Bas W G; Wit, Esther M; Bex, Axel
2018-06-01
Lymphatic drainage from renal tumors is unpredictable. In vivo drainage studies of primary lymphatic landing sites may reveal the variability and dynamics of lymphatic connections. The purpose of this study was to investigate the lymphatic drainage pattern of renal tumors in vivo with single photon emission/computerized tomography after intratumor radiotracer injection. We performed a phase II, prospective, single arm study to investigate the distribution of sentinel nodes from renal tumors on single photon emission/computerized tomography. Patients with cT1-3 (less than 10 cm) cN0M0 renal tumors of any subtype were enrolled in analysis. After intratumor ultrasound guided injection of 0.4 ml 99m Tc-nanocolloid we performed preoperative imaging of sentinel nodes with lymphoscintigraphy and single photon emission/computerized tomography. Sentinel and locoregional nonsentinel nodes were resected with a γ probe combined with a mobile γ camera. The primary study end point was the location of sentinel nodes outside the locoregional retroperitoneal templates on single photon emission/computerized tomography. Using a Simon minimax 2-stage design to detect a 25% extralocoregional retroperitoneal template location of sentinel nodes on imaging at α = 0.05 and 80% power at least 40 patients with sentinel node imaging on single photon emission/computerized tomography were needed. Of the 68 patients 40 underwent preoperative single photon emission/computerized tomography of sentinel nodes and were included in primary end point analysis. Lymphatic drainage outside the locoregional retroperitoneal templates was observed in 14 patients (35%). Eight patients (20%) had supradiaphragmatic sentinel nodes. Sentinel nodes from renal tumors were mainly located in the respective locoregional retroperitoneal templates. Simultaneous sentinel nodes were located outside the suggested lymph node dissection templates, including supradiaphragmatic sentinel nodes in more than a third of the patients. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bian, Weiguo; Qin, Lian; Li, Dichen; Wang, Jin; Jin, Zhongmin
2010-09-01
The artificial biodegradable osteochondral construct is one of mostly promising lifetime substitute in the joint replacement. And the complex hierarchical structure of natural joint is important in developing the osteochondral construct. However, the architecture features of the interface between cartilage and bone, in particular those at the micro-and nano-structural level, remain poorly understood. This paper investigates these structural data of the cartilage-bone interface by micro computerized tomography (μCT) and Scanning Electron Microscope (SEM). The result of μCT shows that important bone parameters and the density of articular cartilage are all related to the position in the hierarchical structure. The conjunctions of bone and cartilage were defined by SEM. All of the study results would be useful for the design of osteochondral construct further manufactured by nano-tech. A three-dimensional model with gradient porous structure is constructed in the environment of Pro/ENGINEERING software.
Vertical structure of medium-scale traveling ionospheric disturbances
NASA Astrophysics Data System (ADS)
Ssessanga, Nicholas; Kim, Yong Ha; Kim, Eunsol
2015-11-01
We develop an algorithm of computerized ionospheric tomography (CIT) to infer information on the vertical and horizontal structuring of electron density during nighttime medium-scale traveling ionospheric disturbances (MSTIDs). To facilitate digital CIT we have adopted total electron contents (TEC) from a dense Global Positioning System (GPS) receiver network, GEONET, which contains more than 1000 receivers. A multiplicative algebraic reconstruction technique was utilized with a calibrated IRI-2012 model as an initial solution. The reconstructed F2 peak layer varied in altitude with average peak-to-peak amplitude of ~52 km. In addition, the F2 peak layer anticorrelated with TEC variations. This feature supports a theory in which nighttime MSTID is composed of oscillating electric fields due to conductivity variations. Moreover, reconstructed TEC variations over two stations were reasonably close to variations directly derived from the measured TEC data set. Our tomographic analysis may thus help understand three-dimensional structure of MSTIDs in a quantitative way.
Preliminary study of rib articulated model based on dynamic fluoroscopy images
NASA Astrophysics Data System (ADS)
Villard, Pierre-Frederic; Escamilla, Pierre; Kerrien, Erwan; Gorges, Sebastien; Trousset, Yves; Berger, Marie-Odile
2014-03-01
We present in this paper a preliminary study of rib motion tracking during Interventional Radiology (IR) fluoroscopy guided procedures. It consists in providing a physician with moving rib three-dimensional (3D) models projected in the fluoroscopy plane during a treatment. The strategy is to help to quickly recognize the target and the no-go areas i.e. the tumor and the organs to avoid. The method consists in i) elaborating a kinematic model of each rib from a preoperative computerized tomography (CT) scan, ii) processing the on-line fluoroscopy image and iii) optimizing the parameters of the kinematic law such as the transformed 3D rib projected on the medical image plane fit well with the previously processed image. The results show a visually good rib tracking that has been quantitatively validated by showing a periodic motion as well as a good synchronism between ribs.
Fang, Luo; Jingjing, Lu; Ying, Shen; Lan, Meng; Tao, Wang; Nan, Ji
2016-02-01
Sphenopalatine ganglion percutaneous radiofrequency thermocoagulation treatment can improve the symptoms of cluster headaches to some extent. However, as an ablation treatment, radiofrequency thermocoagulation treatment also has side effects. To preliminarily evaluate the efficacy and safety of a non-ablative computerized tomography-guided pulsed radiofrequency treatment of sphenopalatine ganglion in patients with refractory cluster headaches. We included and analysed 16 consecutive cluster headache patients who failed to respond to conservative therapy from the Pain Management Center at the Beijing Tiantan Hospital between April 2012 and September 2013 treated with pulsed radiofrequency treatment of sphenopalatine ganglion. Eleven of 13 episodic cluster headaches patients and one of three chronic cluster headaches patient were completely relieved of the headache within an average of 6.3 ± 6.0 days following the treatment. Two episodic cluster headache patients and two chronic cluster headache patients showed no pain relief following the treatment. The mean follow-up time was 17.0 ± 5.5 months. All patients enrolled in this study showed no treatment-related side effects or complications. Our data show that patients with refractory episodic cluster headaches were quickly, effectively and safely relieved from the cluster period after computerized tomography-guided pulsed radiofrequency treatment of sphenopalatine ganglion, suggesting that it may be a therapeutic option if conservative treatments fail. © International Headache Society 2015.
Three-dimensional multifunctional optical coherence tomography for skin imaging
NASA Astrophysics Data System (ADS)
Li, En; Makita, Shuichi; Hong, Young-Joo; Kasaragod, Deepa; Sasaoka, Tomoko; Yamanari, Masahiro; Sugiyama, Satoshi; Yasuno, Yoshiaki
2016-02-01
Optical coherence tomography (OCT) visualizes cross-sectional microstructures of biological tissues. Recent developments of multifunctional OCT (MF-OCT) provides multiple optical contrasts which can reveal currently unknown tissue properties. In this contribution we demonstrate multifunctional OCT specially designed for dermatological investigation. And by utilizing it to measure four different body parts of in vivo human skin, three-dimensional scattering OCT, OCT angiography, polarization uniformity tomography, and local birefringence tomography images were obtained by a single scan. They respectively contrast the structure and morphology, vasculature, melanin content and collagen traits of the tissue.
The association of malocclusion and trumpet performance.
Kula, Katherine; Cilingir, H Zeynep; Eckert, George; Dagg, Jack; Ghoneima, Ahmed
2015-04-20
To determine whether trumpet performance skills are associated with malocclusion. Following institutional review board approval, 70 university trumpet students (54 male, 16 female; aged 20-38.9 years) were consented. After completing a survey, the students were evaluated while playing a scripted performance skills test (flexibility, articulation, range, and endurance exercises) on their instrument in a soundproof music practice room. One investigator (trumpet teacher) used a computerized metronome and a decibel meter during evaluation. A three-dimensional (3D) cone-beam computerized tomography scan (CBCT) was taken of each student the same day as the skills test. Following reliability studies, multiple dental parameters were measured on the 3D CBCT. Nonparametric correlations (Spearman), accepting P < .05 as significant, were used to determine if there were significant associations between dental parameters and the performance skills. Intrarater reliability was excellent (intraclass correlations; all r values > .94). Although associations were weak to moderate, significant negative associations (r ≤ -.32) were found between Little's irregularity index, interincisal inclination, maxillary central incisor rotation, and various flexibility and articulation performance skills, whereas significant positive associations (r ≤ .49) were found between arch widths and various skills. Specific malocclusions are associated with trumpet performance of experienced young musicians. (Angle Orthod. 0000;00:000-000.).
NASA Astrophysics Data System (ADS)
Sun, Xiuzhen; Yu, Chi; Wang, Yuefang; Liu, Yingxi
2007-08-01
In this paper, the authors present airflow field characteristics of human upper airway and soft palate movement attitude during breathing. On the basis of the data taken from the spiral computerized tomography images of a healthy person and a patient with Obstructive Sleep Apnea-Hypopnea Syndrome (OSAHS), three-dimensional models of upper airway cavity and soft palate are reconstructed by the method of surface rendering. Numerical simulation is performed for airflow in the upper airway and displacement of soft palate by fluid-structure interaction analysis. The reconstructed three-dimensional models precisely preserve the original configuration of upper airways and soft palate. The results of the pressure and velocity distributions in the airflow field are quantitatively determined, and the displacement of soft palate is presented. Pressure gradients of airway are lower for the healthy person and the airflow distribution is quite uniform in the case of free breathing. However, the OSAHS patient remarkably escalates both the pressure and velocity in the upper airway, and causes higher displacement of the soft palate. The present study is useful in revealing pathogenesis and quantitative mutual relationship between configuration and function of the upper airway as well as in diagnosing diseases related to anatomical structure and function of the upper airway.
Simulation studies promote technological development of radiofrequency phased array hyperthermia.
Wust, P; Seebass, M; Nadobny, J; Deuflhard, P; Mönich, G; Felix, R
1996-01-01
A treatment planning program package for radiofrequency hyperthermia has been developed. It consists of software modules for processing three-dimensional computerized tomography (CT) data sets, manual segmentation, generation of tetrahedral grids, numerical calculation and optimisation of three-dimensional E field distributions using a volume surface integral equation algorithm as well as temperature distributions using an adaptive multilevel finite-elements code, and graphical tools for simultaneous representation of CT data and simulation results. Heat treatments are limited by hot spots in healthy tissues caused by E field maxima at electrical interfaces (bone/muscle). In order to reduce or avoid hot spots suitable objective functions are derived from power deposition patterns and temperature distributions, and are utilised to optimise antenna parameters (phases, amplitudes). The simulation and optimisation tools have been applied to estimate the improvements that could be reached by upgrades of the clinically used SIGMA-60 applicator (consisting of a single ring of four antenna pairs). The investigated upgrades are increased number of antennas and channels (triple-ring of 3 x 8 antennas and variation of antenna inclination. Significant improvement of index temperatures (1-2 degrees C) is achieved by upgrading the single ring to a triple ring with free phase selection for every antenna or antenna pair. Antenna amplitudes and inclinations proved as less important parameters.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Baaklini, George Y.; Bhatt, Ramakrishna T.
2003-01-01
Most reverse engineering approaches involve imaging or digitizing an object and then creating a computerized reconstruction that can be integrated, in three dimensions, into a particular design environment. The rapid prototyping technique builds high-quality physical prototypes directly from computer-aided design files. This fundamental technique for interpreting and interacting with large data sets is being used here via Velocity2 (an integrated image-processing software, ref. 1) using computed tomography (CT) data to produce a prototype three-dimensional test specimen model for analyses. A study at the NASA Glenn Research Center proposes to use these capabilities to conduct a combined nondestructive evaluation (NDE) and finite element analysis (FEA) to screen pretest and posttest structural anomalies in structural components. A tensile specimen made of silicon nitrite (Si3N4) ceramic matrix composite was considered to evaluate structural durability and deformity. Ceramic matrix composites are being sought as candidate materials to replace nickel-base superalloys for turbine engine applications. They have the unique characteristics of being able to withstand higher operating temperatures and harsh combustion environments. In addition, their low densities relative to metals help reduce component mass (ref. 2). Detailed three-dimensional volume rendering of the tensile test specimen was successfully carried out with Velocity2 (ref. 1) using two-dimensional images that were generated via computed tomography. Subsequent, three-dimensional finite element analyses were performed, and the results obtained were compared with those predicted by NDE-based calculations and experimental tests. It was shown that Velocity2 software can be used to render a three-dimensional object from a series of CT scan images with a minimum level of complexity. The analytical results (ref. 3) show that the high-stress regions correlated well with the damage sites identified by the CT scans and the experimental data. Furthermore, modeling of the voids collected via NDE offered an analytical advantage that resulted in more accurate assessments of the material s structural strength. The top figure shows a CT scan image of the specimen test section illustrating various hidden structural entities in the material and an optical image of the test specimen considered in this study. The bottom figure represents the stress response predicted from the finite element analyses (ref .3 ) for a selected CT slice where it clearly illustrates the correspondence of the high stress risers due to voids in the material with those predicted by the NDE. This study is continuing, and efforts are concentrated on improving the modeling capabilities to imitate the structural anomalies as detected.
Lhuaire, Martin; Tonnelet, Romain; Renard, Yohann; Piardi, Tullio; Sommacale, Daniele; Duparc, Fabrice; Braun, Marc; Labrousse, Marc
2015-07-01
Some aspects of human embryogenesis and organogenesis remain unclear, especially concerning the development of the liver and its vasculature. The purpose of this study was to investigate, from a descriptive standpoint, the evolutionary morphogenesis of the human liver and its vasculature by computerized three-dimensional reconstructions of human embryos. Serial histological sections of four human embryos at successive stages of development belonging to three prestigious French historical collections were digitized and reconstructed in 3D using software commonly used in medical radiology. Manual segmentation of the hepatic anatomical regions of interest was performed section by section. In this study, human liver organogenesis was examined at Carnegie stages 14, 18, 21 and 23. Using a descriptive and an analytical method, we showed that these stages correspond to the implementation of the large hepatic vascular patterns (the portal system, the hepatic artery and the hepatic venous system) and the biliary system. To our knowledge, our work is the first descriptive morphological study using 3D computerized reconstructions from serial histological sections of the embryonic development of the human liver between Carnegie stages 14 and 23. Copyright © 2015 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Cushley, A. C.
2013-12-01
The proposed launch of a satellite carrying the first space-borne ADS-B receiver by the Royal Military College of Canada (RMCC) will create a unique opportunity to study the modification of the 1090 MHz radio waves following propagation through the ionosphere from the transmitting aircraft to the passive satellite receiver(s). Experimental work successfully demonstrated that ADS-B data can be used to reconstruct two dimensional (2D) electron density maps of the ionosphere using computerized tomography (CT). The goal of this work is to evaluate the feasibility of CT reconstruction. The data is modelled using Ray-tracing techniques. This allows us to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modelled Faraday rotation (FR) is determined and converted to total electron content (TEC) along the ray-paths. The resulting TEC is used as input for computerized ionospheric tomography (CIT) using algebraic reconstruction technique (ART). This study concentrated on meso-scale structures 100-1000 km in horizontal extent. The primary scientific interest of this thesis was to show the feasibility of a new method to image the ionosphere and obtain a better understanding of magneto-ionic wave propagation. Multiple feature input electron density profile to ray-tracing program. Top: reconstructed relative electron density map of ray-trace input (Fig. 1) using TEC measurements and line-of-sight path. Bottom: reconstructed electron density map of ray-trace input using quiet background a priori estimate.
Laser interference fringe tomography: a novel 3D imaging technique for pathology
NASA Astrophysics Data System (ADS)
Kazemzadeh, Farnoud; Haylock, Thomas M.; Chifman, Lev M.; Hajian, Arsen R.; Behr, Bradford B.; Cenko, Andrew T.; Meade, Jeff T.; Hendrikse, Jan
2011-03-01
Laser interference fringe tomography (LIFT) is within the class of optical imaging devices designed for in vivo and ex vivo medical imaging applications. LIFT is a very simple and cost-effective three-dimensional imaging device with performance rivaling some of the leading three-dimensional imaging devices used for histology. Like optical coherence tomography (OCT), it measures the reflectivity as a function of depth within a sample and is capable of producing three-dimensional images from optically scattering media. LIFT has the potential capability to produce high spectral resolution, full-color images. The optical design of LIFT along with the planned iterations for improvements and miniaturization are presented and discussed in addition to the theoretical concepts and preliminary imaging results of the device.
Argyros, A; Manos, S; Large, M C J; McKenzie, D R; Cox, G C; Dwarte, D M
2002-01-01
A combination of transmission electron tomography and computer modelling has been used to determine the three-dimensional structure of the photonic crystals found in the wing-scales of the Kaiser-I-Hind butterfly (Teinopalpus imperialis). These scales presented challenges for electron microscopy because the periodicity of the structure was comparable to the thickness of a section and because of the complex connectivity of the object. The structure obtained has been confirmed by taking slices of the three-dimensional computer model constructed from the tomography and comparing these with transmission electron microscope (TEM) images of microtomed sections of the actual scale. The crystal was found to have chiral tetrahedral repeating units packed in a triclinic lattice.
NASA Astrophysics Data System (ADS)
Zhou, Chao; Yu, Guoqiang; Furuya, Daisuke; Greenberg, Joel; Yodh, Arjun; Durduran, Turgut
2006-02-01
Diffuse optical correlation methods were adapted for three-dimensional (3D) tomography of cerebral blood flow (CBF) in small animal models. The image reconstruction was optimized using a noise model for diffuse correlation tomography which enabled better data selection and regularization. The tomographic approach was demonstrated with simulated data and during in-vivo cortical spreading depression (CSD) in rat brain. Three-dimensional images of CBF were obtained through intact skull in tissues(~4mm) deep below the cortex.
Morphometry of the ear in Down's syndrome subjects. A three-dimensional computerized assessment.
Sforza, C; Dellavia, C; Tartaglia, G M; Ferrario, V F
2005-07-01
The three-dimensional coordinates of 13 soft-tissue landmarks on the ears were obtained by a computerized digitizer in 28 subjects with Down's syndrome aged 12-45 years, and in 449 sex, age and ethnic group matched controls. From the landmarks, left and right linear distances (ear width and length), ratios (ear width-to-ear length), areas (ear area), angles (angle of the auricle versus the facial midplane) and the three-dimensional symmetry index were calculated. For both males and females, all linear dimensions and areas were significantly (Analysis of Variance, P < 0.001) larger in the reference subjects than in the subjects with Down's syndrome. All values significantly increased as a function of age (P < 0.05); the increment was larger in the reference subjects than in the subjects with Down's syndrome. On both sides of the face, the subjects with Down's syndrome had larger ear width-to-ear length ratios, and larger angles of the auricle versus the facial midplane than the reference subjects. The three-dimensional symmetry index was significantly larger in the reference subjects and in the older persons. In conclusion, ear dimensions, position and shape significantly differed in subjects with Down's syndrome when compared to sex, age and ethnic group matched controls. Some of the differences were sex and age related.
Gan, Yu; Fleming, Christine P.
2013-01-01
Abnormal changes in orientation of myofibers are associated with various cardiac diseases such as arrhythmia, irregular contraction, and cardiomyopathy. To extract fiber information, we present a method of quantifying fiber orientation and reconstructing three-dimensional tractography of myofibers using optical coherence tomography (OCT). A gradient based algorithm was developed to quantify fiber orientation in three dimensions and particle filtering technique was employed to track myofibers. Prior to image processing, three-dimensional image data set were acquired from all cardiac chambers and ventricular septum of swine hearts using OCT system without optical clearing. The algorithm was validated through rotation test and comparison with manual measurements. The experimental results demonstrate that we are able to visualize three-dimensional fiber tractography in myocardium tissues. PMID:24156071
Offset-electrode profile acquisition strategy for electrical resistivity tomography
NASA Astrophysics Data System (ADS)
Robbins, Austin R.; Plattner, Alain
2018-04-01
We present an electrode layout strategy that allows electrical resistivity profiles to image the third dimension close to the profile plane. This "offset-electrode profile" approach involves laterally displacing electrodes away from the profile line in an alternating fashion and then inverting the resulting data using three-dimensional electrical resistivity tomography software. In our synthetic and field surveys, the offset-electrode method succeeds in revealing three-dimensional structures in the vicinity of the profile plane, which we could not achieve using three-dimensional inversions of linear profiles. We confirm and explain the limits of linear electrode profiles through a discussion of the three-dimensional sensitivity patterns: For a homogeneous starting model together with a linear electrode layout, all sensitivities remain symmetric with respect to the profile plane through each inversion step. This limitation can be overcome with offset-electrode layouts by breaking the symmetry pattern among the sensitivities. Thanks to freely available powerful three-dimensional resistivity tomography software and cheap modern computing power, the requirement for full three-dimensional calculations does not create a significant burden and renders the offset-electrode approach a cost-effective method. By offsetting the electrodes in an alternating pattern, as opposed to laying the profile out in a U-shape, we minimize shortening the profile length.
Ganesan, Vishnu; De, Shubha; Shkumat, Nicholas; Marchini, Giovanni; Monga, Manoj
2018-02-01
Preoperative determination of uric acid stones from computerized tomography imaging would be of tremendous clinical use. We sought to design a software algorithm that could apply data from noncontrast computerized tomography to predict the presence of uric acid stones. Patients with pure uric acid and calcium oxalate stones were identified from our stone registry. Only stones greater than 4 mm which were clearly traceable from initial computerized tomography to final composition were included in analysis. A semiautomated computer algorithm was used to process image data. Average and maximum HU, eccentricity (deviation from a circle) and kurtosis (peakedness vs flatness) were automatically generated. These parameters were examined in several mathematical models to predict the presence of uric acid stones. A total of 100 patients, of whom 52 had calcium oxalate and 48 had uric acid stones, were included in the final analysis. Uric acid stones were significantly larger (12.2 vs 9.0 mm, p = 0.03) but calcium oxalate stones had higher mean attenuation (457 vs 315 HU, p = 0.001) and maximum attenuation (918 vs 553 HU, p <0.001). Kurtosis was significantly higher in each axis for calcium oxalate stones (each p <0.001). A composite algorithm using attenuation distribution pattern, average attenuation and stone size had overall 89% sensitivity, 91% specificity, 91% positive predictive value and 89% negative predictive value to predict uric acid stones. A combination of stone size, attenuation intensity and attenuation pattern from conventional computerized tomography can distinguish uric acid stones from calcium oxalate stones with high sensitivity and specificity. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Sander, Ian M.; McGoldrick, Matthew T.; Helms, My N.; Betts, Aislinn; van Avermaete, Anthony; Owers, Elizabeth; Doney, Evan; Liepert, Taimi; Niebur, Glen; Liepert, Douglas; Leevy, W. Matthew
2017-01-01
Advances in three-dimensional (3D) printing allow for digital files to be turned into a "printed" physical product. For example, complex anatomical models derived from clinical or pre-clinical X-ray computed tomography (CT) data of patients or research specimens can be constructed using various printable materials. Although 3D printing…
Exertional headache as unusual presentation of the syndrome of an elongated styloid process.
Maggioni, Ferdinando; Marchese-Ragona, Rosario; Mampreso, Edoardo; Mainardi, Federico; Zanchin, Giorgio
2009-05-01
We present the case of a 34-year-old man with a 2-year history of pain related to efforts in heavy lifting, beginning in the right ear and radiating to the neck and to the vertex. He underwent multiple negative neuroimaging examinations, until a 3-dimensional computerized tomography scan of the pharyngeal region evidenced an elongated styloid process. A diagnosis of Eagle's syndrome was made. The excision of the elongated styloid process was performed, resulting in complete and lasting pain relief. We focus on Eagle's syndrome and in particular on this atypical presentation.
Electrical Capacitance Volume Tomography: Design and Applications
Wang, Fei; Marashdeh, Qussai; Fan, Liang-Shih; Warsito, Warsito
2010-01-01
This article reports recent advances and progress in the field of electrical capacitance volume tomography (ECVT). ECVT, developed from the two-dimensional electrical capacitance tomography (ECT), is a promising non-intrusive imaging technology that can provide real-time three-dimensional images of the sensing domain. Images are reconstructed from capacitance measurements acquired by electrodes placed on the outside boundary of the testing vessel. In this article, a review of progress on capacitance sensor design and applications to multi-phase flows is presented. The sensor shape, electrode configuration, and the number of electrodes that comprise three key elements of three-dimensional capacitance sensors are illustrated. The article also highlights applications of ECVT sensors on vessels of various sizes from 1 to 60 inches with complex geometries. Case studies are used to show the capability and validity of ECVT. The studies provide qualitative and quantitative real-time three-dimensional information of the measuring domain under study. Advantages of ECVT render it a favorable tool to be utilized for industrial applications and fundamental multi-phase flow research. PMID:22294905
Computerized tomography as a diagnostic aid in acute hemorrhagic leukoencephalitis.
Rothstein, T L; Shaw, C M
1983-03-01
Computerized tomography (CT) in a pathologically proven case of acute hemorrhagic leukoencephalitis (AHL) showed a mass effect and increased absorption coefficient in the right hemisphere within 18 hours of the onset of neurological symptoms. The changes corresponded to the site of white matter edema, necrosis, and petechial hemorrhages demonstrated postmortem. The early changes of CT reflect the hyperacute nature of AHL and differ from those of herpes simplex encephalitis.
Is the cervical spine clear? Undetected cervical fractures diagnosed only at autopsy.
Sweeney, J F; Rosemurgy, A S; Gill, S; Albrink, M H
1992-10-01
Undetected cervical-spine injuries are a nemesis to both trauma surgeons and emergency physicians. Radiographic protocols have been developed to avoid missing cervical-spine fractures but are not fail-safe. Three case reports of occult cervical fractures documented at autopsy in the face of normal cervical-spine radiographs and computerized tomography scans are presented.
Kübel, Christian; Voigt, Andreas; Schoenmakers, Remco; Otten, Max; Su, David; Lee, Tan-Chen; Carlsson, Anna; Bradley, John
2005-10-01
Electron tomography is a well-established technique for three-dimensional structure determination of (almost) amorphous specimens in life sciences applications. With the recent advances in nanotechnology and the semiconductor industry, there is also an increasing need for high-resolution three-dimensional (3D) structural information in physical sciences. In this article, we evaluate the capabilities and limitations of transmission electron microscopy (TEM) and high-angle-annular-dark-field scanning transmission electron microscopy (HAADF-STEM) tomography for the 3D structural characterization of partially crystalline to highly crystalline materials. Our analysis of catalysts, a hydrogen storage material, and different semiconductor devices shows that features with a diameter as small as 1-2 nm can be resolved in three dimensions by electron tomography. For partially crystalline materials with small single crystalline domains, bright-field TEM tomography provides reliable 3D structural information. HAADF-STEM tomography is more versatile and can also be used for high-resolution 3D imaging of highly crystalline materials such as semiconductor devices.
Comprehensive Digital Imaging Network Project At Georgetown University Hospital
NASA Astrophysics Data System (ADS)
Mun, Seong K.; Stauffer, Douglas; Zeman, Robert; Benson, Harold; Wang, Paul; Allman, Robert
1987-10-01
The radiology practice is going through rapid changes due to the introduction of state-of-the-art computed based technologies. For the last twenty years we have witnessed the introduction of many new medical diagnostic imaging systems such as x-ray computed tomo-graphy, digital subtraction angiography (DSA), computerized nuclear medicine, single pho-ton emission computed tomography (SPECT), positron emission tomography (PET) and more re-cently, computerized digital radiography and nuclear magnetic resonance imaging (MRI). Other than the imaging systems, there has been a steady introduction of computed based information systems for radiology departments and hospitals.
Three-dimensional surface reconstruction for industrial computed tomography
NASA Technical Reports Server (NTRS)
Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.
1985-01-01
Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.
Image matrix processor for fast multi-dimensional computations
Roberson, George P.; Skeate, Michael F.
1996-01-01
An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Lei, Dongsheng; Smith, Jessica M.; Zhang, Meng; Tong, Huimin; Zhang, Xing; Lu, Zhuoyang; Liu, Jiankang; Alivisatos, A. Paul; Ren, Gang
2016-03-01
DNA base pairing has been used for many years to direct the arrangement of inorganic nanocrystals into small groupings and arrays with tailored optical and electrical properties. The control of DNA-mediated assembly depends crucially on a better understanding of three-dimensional structure of DNA-nanocrystal-hybridized building blocks. Existing techniques do not allow for structural determination of these flexible and heterogeneous samples. Here we report cryo-electron microscopy and negative-staining electron tomography approaches to image, and three-dimensionally reconstruct a single DNA-nanogold conjugate, an 84-bp double-stranded DNA with two 5-nm nanogold particles for potential substrates in plasmon-coupling experiments. By individual-particle electron tomography reconstruction, we obtain 14 density maps at ~2-nm resolution. Using these maps as constraints, we derive 14 conformations of dsDNA by molecular dynamics simulations. The conformational variation is consistent with that from liquid solution, suggesting that individual-particle electron tomography could be an expected approach to study DNA-assembling and flexible protein structure and dynamics.
Gosnell, Jordan; Pietila, Todd; Samuel, Bennett P; Kurup, Harikrishnan K N; Haw, Marcus P; Vettukattil, Joseph J
2016-12-01
Three-dimensional (3D) printing is an emerging technology aiding diagnostics, education, and interventional, and surgical planning in congenital heart disease (CHD). Three-dimensional printing has been derived from computed tomography, cardiac magnetic resonance, and 3D echocardiography. However, individually the imaging modalities may not provide adequate visualization of complex CHD. The integration of the strengths of two or more imaging modalities has the potential to enhance visualization of cardiac pathomorphology. We describe the feasibility of hybrid 3D printing from two imaging modalities in a patient with congenitally corrected transposition of the great arteries (L-TGA). Hybrid 3D printing may be useful as an additional tool for cardiologists and cardiothoracic surgeons in planning interventions in children and adults with CHD.
Hand skin reconstruction from skeletal landmarks.
Lefèvre, P; Van Sint Jan, S; Beauthier, J P; Rooze, M
2007-11-01
Many studies related to three-dimensional facial reconstruction have been previously reported. On the other hand, no extensive work has been found in the literature about hand reconstruction as an identification method. In this paper, the feasibility of virtual reconstruction of hand skin based on (1) its skeleton and (2) another hand skin and skeleton used as template was assessed. One cadaver hand and one volunteer's hand have been used. For the two hands, computer models of the bones and skin were obtained from computerized tomography. A customized software allowed locating spatial coordinates of bony anatomical landmarks on the models. From these landmarks, the spatial relationships between the models were determined and used to interpolate the missing hand skin. The volume of the interpolated skin was compared to the real skin obtained from medical imaging for validation. Results seem to indicate that such a method is of interest to give forensic investigators morphological clues related to an individual hand skin based on its skeleton. Further work is in progress to finalize the method.
Use of the Uro Dyna-CT in endourology – the new frontier
Vicentini, Fabio C.; Botelho, Luiz A. A.; Braz, José L. M.; Almeida, Ernane de S.; Hisano, Marcelo
2017-01-01
ABSTRACT We describe the use of the Uro Dyna-CT, an imaging system used in the operating room that produces real-time three-dimensional (3D) imaging and cross-sectional image reconstructions similar to an intraoperative computerized tomography, during a percutaneous nephrolithotomy and a contralateral flexible ureteroscopy in a complete supine position. A 65 year-old female patient had an incomplete calyceal staghorn stone in the right kidney and a 10mm in the left one. The procedure was uneventful and the intraoperative use of the Uro Dyna-CT identified 2 residual stones that were not found by digital fluoroscopy and flexible nephroscopy at the end of surgery, helping us to render the patient stone-free in one procedure, which was confirmed by a postoperative CT scan. Prospective studies will define the real role of the Uro Dyna-CT for endourological procedures, but its use seems to be a very promising tool for improving stone free rates and decreasing auxiliary procedures, especially for complex cases. PMID:28338302
Otolaryngology and ophthalmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanafee, W.N.
A literature review with 227 references of the diagnostic use of computerized tomography for head and neck problems is presented. The anatomy, congenital malformations, infectious diseases, and nioplasms of the auditory organs, paranasal sinuses, pharynx, larynx and salivary glands are examined in detail. A major impetus to the use of computerized tomography has been the realization by the health care industry that CT scanning offers details of tumors in the head and neck area that are not available by other modalities. (KRM)
Development and Assessment of a New 3D Neuroanatomy Teaching Tool for MRI Training
ERIC Educational Resources Information Center
Drapkin, Zachary A.; Lindgren, Kristen A.; Lopez, Michael J.; Stabio, Maureen E.
2015-01-01
A computerized three-dimensional (3D) neuroanatomy teaching tool was developed for training medical students to identify subcortical structures on a magnetic resonance imaging (MRI) series of the human brain. This program allows the user to transition rapidly between two-dimensional (2D) MRI slices, 3D object composites, and a combined model in…
Virtual reality simulation: using three-dimensional technology to teach nursing students.
Jenson, Carole E; Forsyth, Diane McNally
2012-06-01
The use of computerized technology is rapidly growing in the classroom and in healthcare. An emerging computer technology strategy for nursing education is the use of virtual reality simulation. This computer-based three-dimensional educational tool simulates real-life patient experiences in a risk-free environment, allows for repeated practice sessions, requires clinical decision making, exposes students to diverse patient conditions, provides immediate feedback, and is portable. The purpose of this article was to review the importance of virtual reality simulation as a computerized teaching strategy. In addition, a project to explore readiness of nursing faculty at one major Midwestern university for the use of virtual reality simulation as a computerized teaching strategy is described where faculty thought virtual reality simulation would increase students' knowledge of an intravenous line insertion procedure. Faculty who practiced intravenous catheter insertion via virtual reality simulation expressed a wide range of learning experiences from using virtual reality simulation that is congruent with the literature regarding the barriers to student learning. Innovative teaching strategies, such as virtual reality simulation, address barriers of increasing patient acuity, high student-to-faculty ratio, patient safety concerns from faculty, and student anxiety and can offer rapid feedback to students.
Three-dimensional evaluation of the facet joints
NASA Astrophysics Data System (ADS)
Folio, Les R.
1990-04-01
Computerized tomography and magnetic resonance imaging nave revolurionalized analysis of vertebral anatomy and pathology. Further advances with 3-dimensional imaging have recently become an important adjunct for diagnosis and treatment in structural abnormalities. Facets are intimately related to their surrounding musculature and malalignment may cause pain directly or indirectly. High resolution 3-dimensional reformations of CT Scans give us new insight on structure and function of facet joints, since their motion and architecture are ever complex. It is well documented in the literature that facet joint biomecnanics is a partial contributor to the myriad at causes of low back The term "facet Joint syndrome" was coined in 1933 by GhorMley.3 The osteopathic lesion complex is well defined by LeRoy and McCole and comparison of roentgenographic findings before and after manipulation has teen described by Long and Lioyd.4,5 since alterations in facet biamechanics are an important aspect of osteopathic manipulative therapy (OT), 3-dimensional hign resolution imaging will prove to be a great asset in osteopathic research. Rotating the spine allows for different viewing perspectives to provide optimal and consistent measurements of the facet joint. Rotations are performed on the X, Y and 7, axis and measurements pre and post-manipulation are performed and compared on matching axis and perspectives. Rotation about the X, Y and Z axis help appreciate the 3-dimensionality of the vertebral column to project to the viewer a feeling that the spine is floating in space before them. This does give the viewer a 3-D understanding of the object however, only at a perspective at a Lime.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Yunyun; Li Zhenhua; Song Yang
2009-05-01
An extended model of the original Gladstone-Dale (G-D) equation is proposed for optical computerized tomography (OCT) diagnosis of flame flow fields. For the purpose of verifying the newly established model, propane combustion is used as a practical example for experiment, and moire deflection tomography is introduced with the probe wavelength 808 nm. The results indicate that the temperature based on the extended model is more accurate than that based on the original G-D equation. In a word, the extended model can be suitable for all kinds of flame flow fields whatever the components, temperature, and ionization are.
Caprioglio, Alberto; Siani, Lea; Caprioglio, Claudia
2007-01-01
The permanent maxillary canine has a high incidence of impaction. In the clinical treatment of impaction, the first problem is diagnosis and localization. The new diagnostic 3-dimensional systems shown in this article provide valid support in understanding anatomic connections and planning the movements needed for orthodontic correction. Thus, the clinician can reduce the incidence of iatrogenic damage of adjacent structures. This article reviews several biomedical systems for guided eruption of palatally impacted canines and discusses a new device for guided eruption of the surgically disimpacted tooth. This device, called Easy Cuspid, is designed to reduce recognized problems with reaction forces through a simple method. A clinical case of bilateral impaction of the permanent maxillary canines shows the application of the diagnostic method and the biomechanical system, Easy Cuspid.
Computerized tomography using video recorded fluoroscopic images
NASA Technical Reports Server (NTRS)
Kak, A. C.; Jakowatz, C. V., Jr.; Baily, N. A.; Keller, R. A.
1975-01-01
A computerized tomographic imaging system is examined which employs video-recorded fluoroscopic images as input data. By hooking the video recorder to a digital computer through a suitable interface, such a system permits very rapid construction of tomograms.
Technology in the Assessment of Learning Disability.
ERIC Educational Resources Information Center
Bigler, Erin D.; Lajiness-O'Neill, Renee; Howes, Nancy-Louise
1998-01-01
Reviews recent neuroradiologic and brain imaging techniques in the assessment of learning disability. Technologies reviewed include computerized tomography; magnetic resonance imaging; electrophysiological and metabolic imaging; computerized electroencepholographic studies of evoked potentials, event-related potentials, spectral analysis, and…
Nishida, Tomoki; Yoshimura, Ryoichi; Endo, Yasuhisa
2017-09-01
Neurite varicosities are highly specialized compartments that are involved in neurotransmitter/ neuromodulator release and provide a physiological platform for neural functions. However, it remains unclear how microtubule organization contributes to the form of varicosity. Here, we examine the three-dimensional structure of microtubules in varicosities of a differentiated PC12 neural cell line using ultra-high voltage electron microscope tomography. Three-dimensional imaging showed that a part of the varicosities contained an accumulation of organelles that were separated from parallel microtubule arrays. Further detailed analysis using serial sections and whole-mount tomography revealed microtubules running in a spindle shape of swelling in some other types of varicosities. These electron tomographic results showed that the structural diversity and heterogeneity of microtubule organization supported the form of varicosities, suggesting that a different distribution pattern of microtubules in varicosities is crucial to the regulation of varicosities development.
Computerized tomography platform using beta rays
NASA Astrophysics Data System (ADS)
Paetkau, Owen; Parsons, Zachary; Paetkau, Mark
2017-12-01
A computerized tomography (CT) system using a 0.1 μCi Sr-90 beta source, Geiger counter, and low density foam samples was developed. A simple algorithm was used to construct images from the data collected with the beta CT scanner. The beta CT system is analogous to X-ray CT as both types of radiation are sensitive to density variations. This system offers a platform for learning opportunities in an undergraduate laboratory, covering topics such as image reconstruction algorithms, radiation exposure, and the energy dependence of absorption.
LUNGx Challenge for computerized lung nodule classification
Armato, Samuel G.; Drukker, Karen; Li, Feng; ...
2016-12-19
The purpose of this work is to describe the LUNGx Challenge for the computerized classification of lung nodules on diagnostic computed tomography (CT) scans as benign or malignant and report the performance of participants’ computerized methods along with that of six radiologists who participated in an observer study performing the same Challenge task on the same dataset. The Challenge provided sets of calibration and testing scans, established a performance assessment process, and created an infrastructure for case dissemination and result submission. We present ten groups that applied their own methods to 73 lung nodules (37 benign and 36 malignant) thatmore » were selected to achieve approximate size matching between the two cohorts. Area under the receiver operating characteristic curve (AUC) values for these methods ranged from 0.50 to 0.68; only three methods performed statistically better than random guessing. The radiologists’ AUC values ranged from 0.70 to 0.85; three radiologists performed statistically better than the best-performing computer method. The LUNGx Challenge compared the performance of computerized methods in the task of differentiating benign from malignant lung nodules on CT scans, placed in the context of the performance of radiologists on the same task. Lastly, the continued public availability of the Challenge cases will provide a valuable resource for the medical imaging research community.« less
LUNGx Challenge for computerized lung nodule classification
Armato, Samuel G.; Drukker, Karen; Li, Feng; Hadjiiski, Lubomir; Tourassi, Georgia D.; Engelmann, Roger M.; Giger, Maryellen L.; Redmond, George; Farahani, Keyvan; Kirby, Justin S.; Clarke, Laurence P.
2016-01-01
Abstract. The purpose of this work is to describe the LUNGx Challenge for the computerized classification of lung nodules on diagnostic computed tomography (CT) scans as benign or malignant and report the performance of participants’ computerized methods along with that of six radiologists who participated in an observer study performing the same Challenge task on the same dataset. The Challenge provided sets of calibration and testing scans, established a performance assessment process, and created an infrastructure for case dissemination and result submission. Ten groups applied their own methods to 73 lung nodules (37 benign and 36 malignant) that were selected to achieve approximate size matching between the two cohorts. Area under the receiver operating characteristic curve (AUC) values for these methods ranged from 0.50 to 0.68; only three methods performed statistically better than random guessing. The radiologists’ AUC values ranged from 0.70 to 0.85; three radiologists performed statistically better than the best-performing computer method. The LUNGx Challenge compared the performance of computerized methods in the task of differentiating benign from malignant lung nodules on CT scans, placed in the context of the performance of radiologists on the same task. The continued public availability of the Challenge cases will provide a valuable resource for the medical imaging research community. PMID:28018939
LUNGx Challenge for computerized lung nodule classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armato, Samuel G.; Drukker, Karen; Li, Feng
The purpose of this work is to describe the LUNGx Challenge for the computerized classification of lung nodules on diagnostic computed tomography (CT) scans as benign or malignant and report the performance of participants’ computerized methods along with that of six radiologists who participated in an observer study performing the same Challenge task on the same dataset. The Challenge provided sets of calibration and testing scans, established a performance assessment process, and created an infrastructure for case dissemination and result submission. We present ten groups that applied their own methods to 73 lung nodules (37 benign and 36 malignant) thatmore » were selected to achieve approximate size matching between the two cohorts. Area under the receiver operating characteristic curve (AUC) values for these methods ranged from 0.50 to 0.68; only three methods performed statistically better than random guessing. The radiologists’ AUC values ranged from 0.70 to 0.85; three radiologists performed statistically better than the best-performing computer method. The LUNGx Challenge compared the performance of computerized methods in the task of differentiating benign from malignant lung nodules on CT scans, placed in the context of the performance of radiologists on the same task. Lastly, the continued public availability of the Challenge cases will provide a valuable resource for the medical imaging research community.« less
Liu, Yu-Ying; Ishikawa, Hiroshi; Chen, Mei; Wollstein, Gadi; Duker, Jay S; Fujimoto, James G; Schuman, Joel S; Rehg, James M
2011-10-21
To develop an automated method to identify the normal macula and three macular pathologies (macular hole [MH], macular edema [ME], and age-related macular degeneration [AMD]) from the fovea-centered cross sections in three-dimensional (3D) spectral-domain optical coherence tomography (SD-OCT) images. A sample of SD-OCT macular scans (macular cube 200 × 200 or 512 × 128 scan protocol; Cirrus HD-OCT; Carl Zeiss Meditec, Inc., Dublin, CA) was obtained from healthy subjects and subjects with MH, ME, and/or AMD (dataset for development: 326 scans from 136 subjects [193 eyes], and dataset for testing: 131 scans from 37 subjects [58 eyes]). A fovea-centered cross-sectional slice for each of the SD-OCT images was encoded using spatially distributed multiscale texture and shape features. Three ophthalmologists labeled each fovea-centered slice independently, and the majority opinion for each pathology was used as the ground truth. Machine learning algorithms were used to identify the discriminative features automatically. Two-class support vector machine classifiers were trained to identify the presence of normal macula and each of the three pathologies separately. The area under the receiver operating characteristic curve (AUC) was calculated to assess the performance. The cross-validation AUC result on the development dataset was 0.976, 0.931, 0939, and 0.938, and the AUC result on the holdout testing set was 0.978, 0.969, 0.941, and 0.975, for identifying normal macula, MH, ME, and AMD, respectively. The proposed automated data-driven method successfully identified various macular pathologies (all AUC > 0.94). This method may effectively identify the discriminative features without relying on a potentially error-prone segmentation module.
Liu, Yu-Ying; Chen, Mei; Wollstein, Gadi; Duker, Jay S.; Fujimoto, James G.; Schuman, Joel S.; Rehg, James M.
2011-01-01
Purpose. To develop an automated method to identify the normal macula and three macular pathologies (macular hole [MH], macular edema [ME], and age-related macular degeneration [AMD]) from the fovea-centered cross sections in three-dimensional (3D) spectral-domain optical coherence tomography (SD-OCT) images. Methods. A sample of SD-OCT macular scans (macular cube 200 × 200 or 512 × 128 scan protocol; Cirrus HD-OCT; Carl Zeiss Meditec, Inc., Dublin, CA) was obtained from healthy subjects and subjects with MH, ME, and/or AMD (dataset for development: 326 scans from 136 subjects [193 eyes], and dataset for testing: 131 scans from 37 subjects [58 eyes]). A fovea-centered cross-sectional slice for each of the SD-OCT images was encoded using spatially distributed multiscale texture and shape features. Three ophthalmologists labeled each fovea-centered slice independently, and the majority opinion for each pathology was used as the ground truth. Machine learning algorithms were used to identify the discriminative features automatically. Two-class support vector machine classifiers were trained to identify the presence of normal macula and each of the three pathologies separately. The area under the receiver operating characteristic curve (AUC) was calculated to assess the performance. Results. The cross-validation AUC result on the development dataset was 0.976, 0.931, 0939, and 0.938, and the AUC result on the holdout testing set was 0.978, 0.969, 0.941, and 0.975, for identifying normal macula, MH, ME, and AMD, respectively. Conclusions. The proposed automated data-driven method successfully identified various macular pathologies (all AUC > 0.94). This method may effectively identify the discriminative features without relying on a potentially error-prone segmentation module. PMID:21911579
Eisner, Brian H; Kambadakone, Avinash; Monga, Manoj; Anderson, James K; Thoreson, Andrew A; Lee, Hang; Dretler, Stephen P; Sahani, Dushyant V
2009-04-01
We determined the most accurate method of measuring urinary stones on computerized tomography. For the in vitro portion of the study 24 calculi, including 12 calcium oxalate monohydrate and 12 uric acid stones, that had been previously collected at our clinic were measured manually with hand calipers as the gold standard measurement. The calculi were then embedded into human kidney-sized potatoes and scanned using 64-slice multidetector computerized tomography. Computerized tomography measurements were performed at 4 window settings, including standard soft tissue windows (window width-320 and window length-50), standard bone windows (window width-1120 and window length-300), 5.13x magnified soft tissue windows and 5.13x magnified bone windows. Maximum stone dimensions were recorded. For the in vivo portion of the study 41 patients with distal ureteral stones who underwent noncontrast computerized tomography and subsequently spontaneously passed the stones were analyzed. All analyzed stones were 100% calcium oxalate monohydrate or mixed, calcium based stones. Stones were prospectively collected at the clinic and the largest diameter was measured with digital calipers as the gold standard. This was compared to computerized tomography measurements using 4.0x magnified soft tissue windows and 4.0x magnified bone windows. Statistical comparisons were performed using Pearson's correlation and paired t test. In the in vitro portion of the study the most accurate measurements were obtained using 5.13x magnified bone windows with a mean 0.13 mm difference from caliper measurement (p = 0.6). Measurements performed in the soft tissue window with and without magnification, and in the bone window without magnification were significantly different from hand caliper measurements (mean difference 1.2, 1.9 and 1.4 mm, p = 0.003, <0.001 and 0.0002, respectively). When comparing measurement errors between stones of different composition in vitro, the error for calcium oxalate calculi was significantly different from the gold standard for all methods except bone window settings with magnification. For uric acid calculi the measurement error was observed only in standard soft tissue window settings. In vivo 4.0x magnified bone windows was superior to 4.0x magnified soft tissue windows in measurement accuracy. Magnified bone window measurements were not statistically different from digital caliper measurements (mean underestimation vs digital caliper 0.3 mm, p = 0.4), while magnified soft tissue windows were statistically distinct (mean underestimation 1.4 mm, p = 0.001). In this study magnified bone windows were the most accurate method of stone measurements in vitro and in vivo. Therefore, we recommend the routine use of magnified bone windows for computerized tomography measurement of stones. In vitro the measurement error in calcium oxalate stones was greater than that in uric acid stones, suggesting that stone composition may be responsible for measurement inaccuracies.
Zhang, Lei; Lei, Dongsheng; Smith, Jessica M.; ...
2016-03-30
DNA base pairing has been used for many years to direct the arrangement of inorganic nanocrystals into small groupings and arrays with tailored optical and electrical properties. The control of DNA-mediated assembly depends crucially on a better understanding of three-dimensional structure of DNA-nanocrystal-hybridized building blocks. Existing techniques do not allow for structural determination of these flexible and heterogeneous samples. Here we report cryo-electron microscopy and negative-staining electron tomography approaches to image, and three-dimensionally reconstruct a single DNA-nanogold conjugate, an 84-bp double-stranded DNA with two 5-nm nanogold particles for potential substrates in plasmon-coupling experiments. By individual-particle electron tomography reconstruction, we obtainmore » 14 density maps at ~ 2-nm resolution . Using these maps as constraints, we derive 14 conformations of dsDNA by molecular dynamics simulations. The conformational variation is consistent with that from liquid solution, suggesting that individual-particle electron tomography could be an expected approach to study DNA-assembling and flexible protein structure and dynamics.« less
Evaluation of cavity size, kind, and filling technique of composite shrinkage by finite element.
Jafari, Toloo; Alaghehmad, Homayoon; Moodi, Ehsan
2018-01-01
Cavity preparation reduces the rigidity of tooth and its resistance to deformation. The purpose of this study was to evaluate the dimensional changes of the repaired teeth using two types of light cure composite and two methods of incremental and bulk filling by the use of finite element method. In this computerized in vitro experimental study, an intact maxillary premolar was scanned using cone beam computed tomography instrument (SCANORA, Switzerland), then each section of tooth image was transmitted to Ansys software using AUTOCAD. Then, eight sizes of cavity preparations and two methods of restoration (bulk and incremental) using two different types of composite resin materials (Heliomolar, Brilliant) were proposed on software and analysis was completed with Ansys software. Dimensional change increased by widening and deepening of the cavities. It was also increased using Brilliant composite resin and incremental filling technique. Increase in depth and type of filling technique has the greatest role of dimensional change after curing, but the type of composite resin does not have a significant role.
Intraoperative 3-Dimensional Computed Tomography and Navigation in Foot and Ankle Surgery.
Chowdhary, Ashwin; Drittenbass, Lisca; Dubois-Ferrière, Victor; Stern, Richard; Assal, Mathieu
2016-09-01
Computer-assisted orthopedic surgery has developed dramatically during the past 2 decades. This article describes the use of intraoperative 3-dimensional computed tomography and navigation in foot and ankle surgery. Traditional imaging based on serial radiography or C-arm-based fluoroscopy does not provide simultaneous real-time 3-dimensional imaging, and thus leads to suboptimal visualization and guidance. Three-dimensional computed tomography allows for accurate intraoperative visualization of the position of bones and/or navigation implants. Such imaging and navigation helps to further reduce intraoperative complications, leads to improved surgical outcomes, and may become the gold standard in foot and ankle surgery. [Orthopedics.2016; 39(5):e1005-e1010.]. Copyright 2016, SLACK Incorporated.
Diagnostic ability of computed tomography using DentaScan software in endodontics: case reports.
Siotia, Jaya; Gupta, Sunil K; Acharya, Shashi R; Saraswathi, Vidya
2011-01-01
Radiographic examination is essential in diagnosis and treatment planning in endodontics. Conventional radiographs depict structures in two dimensions only. The ability to assess the area of interest in three dimensions is advantageous. Computed tomography is an imaging technique which produces three-dimensional images of an object by taking a series of two-dimensional sectional X-ray images. DentaScan is a computed tomography software program that allows the mandible and maxilla to be imaged in three planes: axial, panoramic, and cross-sectional. As computed tomography is used in endodontics, DentaScan can play a wider role in endodontic diagnosis. It provides valuable information in the assessment of the morphology of the root canal, diagnosis of root fractures, internal and external resorptions, pre-operative assessment of anatomic structures etc. The aim of this article is to explore the clinical usefulness of computed tomography and DentaScan in endodontic diagnosis, through a series of four cases of different endodontic problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martins de Oliveira, Jose Jr.; Germano Martins, Antonio Cesar
X-ray computed tomography (CT) refers to the cross-sectional imaging of an object measuring the transmitted radiation at different directions. In this work, we describe a non-conventional application of computerized tomography: visualization and improvements in the understanding of some internal structural features of solid dosage forms. A micro-CT X-ray scanner, with a minimum resolution of 30 mum was used to characterize some pharmaceutical tablets, granules, controlled-release osmotic tablet and liquid-filled soft-gelatin capsules. The analysis presented in this work are essentially qualitative, but quantitative parameters, such as porosity, density distribution, tablets dimensions, etc. could also be obtained using the related CT techniques.
Image matrix processor for fast multi-dimensional computations
Roberson, G.P.; Skeate, M.F.
1996-10-15
An apparatus for multi-dimensional computation is disclosed which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination. 10 figs.
Gomes, Manuel; Aldridge, Robert W; Wylie, Peter; Bell, James; Epstein, Owen
2013-04-01
When symptomatic gastroenterology patients have an indication for colonic imaging, clinicians have a choice between optical colonoscopy (OC) and computerized tomography colonography with three-dimensional reconstruction (3-D CTC). 3-D CTC provides a minimally invasive and rapid evaluation of the entire colon, and it can be an efficient modality for diagnosing symptoms. It allows for a more targeted use of OC, which is associated with a higher risk of major adverse events and higher procedural costs. A case can be made for 3-D CTC as a primary test for colonic imaging followed if necessary by targeted therapeutic OC; however, the relative long-term costs and benefits of introducing 3-D CTC as a first-line investigation are unknown. The aim of this study was to assess the cost effectiveness of 3-D CTC versus OC for colonic imaging of symptomatic gastroenterology patients in the UK NHS. We used a Markov model to follow a cohort of 100,000 symptomatic gastroenterology patients, aged 50 years or older, and estimate the expected lifetime outcomes, life years (LYs) and quality-adjusted life years (QALYs), and costs (£, 2010-2011) associated with 3-D CTC and OC. Sensitivity analyses were performed to assess the robustness of the base-case cost-effectiveness results to variation in input parameters and methodological assumptions. 3D-CTC provided a similar number of LYs (7.737 vs 7.739) and QALYs (7.013 vs 7.018) per individual compared with OC, and it was associated with substantially lower mean costs per patient (£467 vs £583), leading to a positive incremental net benefit. After accounting for the overall uncertainty, the probability of 3-D CTC being cost effective was around 60 %, at typical willingness-to-pay values of £20,000-£30,000 per QALY gained. 3-D CTC is a cost-saving and cost-effective option for colonic imaging of symptomatic gastroenterology patients compared with OC.
Pathapati, Deepti; Shinkar, Pawan Gulabrao; kumar, Satya Awadhesh; Jha; Dattatreya, Palanki Satya; Chigurupati, Namrata; Chigurupati, Mohana Vamsy; Rao, Vatturi Venkata Satya Prabhakar
2017-01-01
The authors report an interesting coincidental unearthing by 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) of a potentially serious medical condition of emphysematous pyelonephritis in a case of nasopharyngeal carcinoma. The management by conservative ureteric stenting and antibiotics was done with gratifying clinical outcome. PMID:28242985
Toward atomic-scale bright-field electron tomography for the study of fullerene-like nanostructures.
Bar Sadan, Maya; Houben, Lothar; Wolf, Sharon G; Enyashin, Andrey; Seifert, Gotthard; Tenne, Reshef; Urban, Knut
2008-03-01
We present the advancement of electron tomography for three-dimensional structure reconstruction of fullerene-like particles toward atomic-scale resolution. The three-dimensional reconstruction of nested molybdenum disulfide nanooctahedra is achieved by the combination of low voltage operation of the electron microscope with aberration-corrected phase contrast imaging. The method enables the study of defects and irregularities in the three-dimensional structure of individual fullerene-like particles on the scale of 2-3 A. Control over shape, size, and atomic architecture is a key issue in synthesis and design of functional nanoparticles. Transmission electron microscopy (TEM) is the primary technique to characterize materials down to the atomic level, albeit the images are two-dimensional projections of the studied objects. Recent advancements in aberration-corrected TEM have demonstrated single atom sensitivity for light elements at subångström resolution. Yet, the resolution of tomographic schemes for three-dimensional structure reconstruction has not surpassed 1 nm3, preventing it from becoming a powerful tool for characterization in the physical sciences on the atomic scale. Here we demonstrate that negative spherical aberration imaging at low acceleration voltage enables tomography down to the atomic scale at reduced radiation damage. First experimental data on the three-dimensional reconstruction of nested molybdenum disulfide nanooctahedra is presented. The method is applicable to the analysis of the atomic architecture of a wide range of nanostructures where strong electron channeling is absent, in particular to carbon fullerenes and inorganic fullerenes.
Liebi, Marianne; Georgiadis, Marios; Kohlbrecher, Joachim; Holler, Mirko; Raabe, Jörg; Usov, Ivan; Menzel, Andreas; Schneider, Philipp; Bunk, Oliver; Guizar-Sicairos, Manuel
2018-01-01
Small-angle X-ray scattering tensor tomography, which allows reconstruction of the local three-dimensional reciprocal-space map within a three-dimensional sample as introduced by Liebi et al. [Nature (2015), 527, 349-352], is described in more detail with regard to the mathematical framework and the optimization algorithm. For the case of trabecular bone samples from vertebrae it is shown that the model of the three-dimensional reciprocal-space map using spherical harmonics can adequately describe the measured data. The method enables the determination of nanostructure orientation and degree of orientation as demonstrated previously in a single momentum transfer q range. This article presents a reconstruction of the complete reciprocal-space map for the case of bone over extended ranges of q. In addition, it is shown that uniform angular sampling and advanced regularization strategies help to reduce the amount of data required.
Allan Cormack, Computerized Axial Tomography (CAT), and Magnetic Resonance
Radiopharmaceuticals, DOE Technical Report, 1977 Emission Computed Tomography: A New Technique for the Quantitative Extending the Power of Nuclear Magnetic Resonance Techniques Magnetic Resonance Imaging Research Top Some
Research on ionospheric tomography based on variable pixel height
NASA Astrophysics Data System (ADS)
Zheng, Dunyong; Li, Peiqing; He, Jie; Hu, Wusheng; Li, Chaokui
2016-05-01
A novel ionospheric tomography technique based on variable pixel height was developed for the tomographic reconstruction of the ionospheric electron density distribution. The method considers the height of each pixel as an unknown variable, which is retrieved during the inversion process together with the electron density values. In contrast to conventional computerized ionospheric tomography (CIT), which parameterizes the model with a fixed pixel height, the variable-pixel-height computerized ionospheric tomography (VHCIT) model applies a disturbance to the height of each pixel. In comparison with conventional CIT models, the VHCIT technique achieved superior results in a numerical simulation. A careful validation of the reliability and superiority of VHCIT was performed. According to the results of the statistical analysis of the average root mean square errors, the proposed model offers an improvement by 15% compared with conventional CIT models.
NASA Astrophysics Data System (ADS)
Aleshin, I. M.; Alpatov, V. V.; Vasil'ev, A. E.; Burguchev, S. S.; Kholodkov, K. I.; Budnikov, P. A.; Molodtsov, D. A.; Koryagin, V. N.; Perederin, F. V.
2014-07-01
A service is described that makes possible the effective construction of a three-dimensional ionospheric model based on the data of ground receivers of signals from global navigation satellite positioning systems (GNSS). The obtained image has a high resolution, mainly because data from the IPG GNSS network of the Federal Service for Hydrometeorology and Environmental Monitoring (Rosgidromet) are used. A specially developed format and its implementation in the form of SQL structures are used to collect, transmit, and store data. The method of high-altitude radio tomography is used to construct the three-dimensional model. The operation of all system components (from registration point organization to the procedure for constructing the electron density three-dimensional distribution and publication of the total electron content map on the Internet) has been described in detail. The three-dimensional image of the ionosphere, obtained automatically, is compared with the ionosonde measurements, calculated using the two-dimensional low-altitude tomography method and averaged by the ionospheric model.
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Izen, Steven H.
1992-01-01
A theory to determine the properties of a fluid from measurements of its projections was developed and tested. Viewing cones as small as 10 degrees were evaluated, with the only assumption being that the property was space limited. The results of applying the theory to numerical and actual interferograms of a spherical discontinuity of refractive index are presented. The theory was developed to test the practicality and limits of using three dimensional computer tomography in internal fluid dynamics.
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Izen, Steven H.
1991-01-01
A theory to determine the properties of a fluid from measurements of its projections was developed and tested. Viewing cones as small as 10 degrees were evaluated, with the only assumption being that the property was space limited. The results of applying the theory to numerical and actual interferograms of a spherical discontinuity of refractive index are presented. The theory was developed to test the practicality and limits of using three-dimensional computer tomography in internal fluid dynamics.
McClellan, Taylor; Allen, Brian C; Kappus, Matthew; Bhatti, Lubna; Dafalla, Randa A; Snyder, Laurie D; Bashir, Mustafa R
To determine interreader and intrareader repeatability and correlations among measurements of computerized tomography-based anthropomorphic measurements in patients with pulmonary fibrosis undergoing lung transplantation. This was an institutional review board-approved, Health Insurance Portability and Accountability Act-compliant retrospective study of 23 randomly selected subjects (19 male and 4 female; median age = 69 years; range: 66-77 years) with idiopathic pulmonary fibrosis undergoing pulmonary transplantation, who had also undergone preoperative thoracoabdominal computerized tomography. Five readers of varying imaging experience independently performed the following cross-sectional area measurements at the inferior endplate of the L3 vertebral body: right and left psoas muscles, right and left paraspinal muscles, total abdominal musculature, and visceral and subcutaneous fat. The following measurements were obtained at the inferior endplate of T6: right and left paraspinal muscles with and without including the trapezius muscles and subcutaneous fat. Three readers repeated all measurements to assess intrareader repeatability. Intrareader repeatability was nearly perfect (interclass correlation coefficients = 0.99, P < 0.001). Interreader agreement was excellent across all 5 readers (interclass correlation coefficients: 0.71-0.99, P < 0.001). Coefficients of variance between measures ranged from 3.2%-6.8% for abdominal measurements, but were higher for thoracic measurements, up to 23.9%. Correlation between total paraspinal and total psoas muscle area was strong (r 2 = 0.67, P < 0.001). Thoracic and abdominal musculature had a weaker correlation (r 2 = 0.35-0.38, P < 0.001). Measures of thoracic and abdominal muscle and fat area are highly repeatable in patients with pulmonary fibrosis undergoing lung transplantation. Measures of muscle area are strongly correlated among abdominal locations, but inversely correlated between abdominal and thoracic locations. Copyright © 2017 Elsevier Inc. All rights reserved.
Benazzi, S; Stansfield, E; Milani, C; Gruppioni, G
2009-07-01
The process of forensic identification of missing individuals is frequently reliant on the superimposition of cranial remains onto an individual's picture and/or facial reconstruction. In the latter, the integrity of the skull or a cranium is an important factor in successful identification. Here, we recommend the usage of computerized virtual reconstruction and geometric morphometrics for the purposes of individual reconstruction and identification in forensics. We apply these methods to reconstruct a complete cranium from facial remains that allegedly belong to the famous Italian humanist of the fifteenth century, Angelo Poliziano (1454-1494). Raw data was obtained by computed tomography scans of the Poliziano face and a complete reference skull of a 37-year-old Italian male. Given that the amount of distortion of the facial remains is unknown, two reconstructions are proposed: The first calculates the average shape between the original and its reflection, and the second discards the less preserved left side of the cranium under the assumption that there is no deformation on the right. Both reconstructions perform well in the superimposition with the original preserved facial surface in a virtual environment. The reconstruction by means of averaging between the original and reflection yielded better results during the superimposition with portraits of Poliziano. We argue that the combination of computerized virtual reconstruction and geometric morphometric methods offers a number of advantages over traditional plastic reconstruction, among which are speed, reproducibility, easiness of manipulation when superimposing with pictures in virtual environment, and assumptions control.
Phenylpropanolamine and cerebral hemorrhage
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDowell, J.R.; LeBlanc, H.J.
1985-05-01
Computerized tomography, carotid angiograms, and arteriography were used to diagnose several cases of cerebral hemorrhage following the use of phenylpropanolamine. The angiographic picture in one of the three cases was similar to that previously described in association with amphetamine abuse and pseudoephedrine overdose, both substances being chemically and pharmacologically similar to phenylpropanolamine. The study suggests that the arterial change responsible for symptoms may be due to spasm rather than arteriopathy. 14 references, 5 figures.
Pasricha, Neel D; Bhullar, Paramjit K; Shieh, Christine; Carrasco-Zevallos, Oscar M; Keller, Brenton; Izatt, Joseph A; Toth, Cynthia A; Freedman, Sharon F; Kuo, Anthony N
2017-02-14
The authors report the use of swept-source microscope-integrated optical coherence tomography (SS-MIOCT), capable of live four-dimensional (three-dimensional across time) intraoperative imaging, to directly visualize suture depth during lateral rectus resection. Key surgical steps visualized in this report included needle depth during partial and full-thickness muscle passes along with scleral passes. [J Pediatr Ophthalmol Strabismus. 2017;54:e1-e5.]. Copyright 2017, SLACK Incorporated.
Computerized tomography calibrator
NASA Technical Reports Server (NTRS)
Engel, Herbert P. (Inventor)
1991-01-01
A set of interchangeable pieces comprising a computerized tomography calibrator, and a method of use thereof, permits focusing of a computerized tomographic (CT) system. The interchangeable pieces include a plurality of nestable, generally planar mother rings, adapted for the receipt of planar inserts of predetermined sizes, and of predetermined material densities. The inserts further define openings therein for receipt of plural sub-inserts. All pieces are of known sizes and densities, permitting the assembling of different configurations of materials of known sizes and combinations of densities, for calibration (i.e., focusing) of a computerized tomographic system through variation of operating variables thereof. Rather than serving as a phanton, which is intended to be representative of a particular workpiece to be tested, the set of interchangeable pieces permits simple and easy standardized calibration of a CT system. The calibrator and its related method of use further includes use of air or of particular fluids for filling various openings, as part of a selected configuration of the set of pieces.
Regional model-based computerized ionospheric tomography using GPS measurements: IONOLAB-CIT
NASA Astrophysics Data System (ADS)
Tuna, Hakan; Arikan, Orhan; Arikan, Feza
2015-10-01
Three-dimensional imaging of the electron density distribution in the ionosphere is a crucial task for investigating the ionospheric effects. Dual-frequency Global Positioning System (GPS) satellite signals can be used to estimate the slant total electron content (STEC) along the propagation path between a GPS satellite and ground-based receiver station. However, the estimated GPS-STEC is very sparse and highly nonuniformly distributed for obtaining reliable 3-D electron density distributions derived from the measurements alone. Standard tomographic reconstruction techniques are not accurate or reliable enough to represent the full complexity of variable ionosphere. On the other hand, model-based electron density distributions are produced according to the general trends of ionosphere, and these distributions do not agree with measurements, especially for geomagnetically active hours. In this study, a regional 3-D electron density distribution reconstruction method, namely, IONOLAB-CIT, is proposed to assimilate GPS-STEC into physical ionospheric models. The proposed method is based on an iterative optimization framework that tracks the deviations from the ionospheric model in terms of F2 layer critical frequency and maximum ionization height resulting from the comparison of International Reference Ionosphere extended to Plasmasphere (IRI-Plas) model-generated STEC and GPS-STEC. The suggested tomography algorithm is applied successfully for the reconstruction of electron density profiles over Turkey, during quiet and disturbed hours of ionosphere using Turkish National Permanent GPS Network.
Matityahu, Amir; Kahler, David; Krettek, Christian; Stöckle, Ulrich; Grutzner, Paul Alfred; Messmer, Peter; Ljungqvist, Jan; Gebhard, Florian
2014-12-01
To evaluate the accuracy of computer-assisted sacral screw fixation compared with conventional techniques in the dysmorphic versus normal sacrum. Review of a previous study database. Database of a multinational study with 9 participating trauma centers. The reviewed group included 130 patients, 72 from the navigated group and 58 from the conventional group. Of these, 109 were in the nondysmorphic group and 21 in the dysmorphic group. Placement of sacroiliac (SI) screws was performed using standard fluoroscopy for the conventional group and BrainLAB navigation software with either 2-dimensional or 3-dimensional (3D) navigation for the navigated group. Accuracy of SI screw placement by 2-dimensional and 3D navigation versus conventional fluoroscopy in dysmorphic and nondysmorphic patients, as evaluated by 6 observers using postoperative computerized tomography imaging at least 1 year after initial surgery. Intraobserver agreement was also evaluated. There were 11.9% (13/109) of patients with misplaced screws in the nondysmorphic group and 28.6% (6/21) of patients with misplaced screws in the dysmorphic group, none of which were in the 3D navigation group. Raw agreement between the 6 observers regarding misplaced screws was 32%. However, the percent overall agreement was 69.0% (kappa = 0.38, P < 0.05). The use of 3D navigation to improve intraoperative imaging for accurate insertion of SI screws is magnified in the dysmorphic proximal sacral segment. We recommend the use of 3D navigation, where available, for insertion of SI screws in patients with normal and dysmorphic proximal sacral segments. Therapeutic level I.
Kim, Hak-Jin; Kim, Bong Chul; Kim, Jin-Geun; Zhengguo, Piao; Kang, Sang Hoon; Lee, Sang-Hwy
2014-03-01
The objective of this study was to determine the reliable midsagittal (MS) reference plane in practical ways for the three-dimensional craniofacial analysis on three-dimensional computed tomography images. Five normal human dry skulls and 20 normal subjects without any dysmorphoses or asymmetries were used. The accuracies and stability on repeated plane construction for almost every possible candidate MS plane based on the skull base structures were examined by comparing the discrepancies in distances and orientations from the reference points and planes of the skull base and facial bones on three-dimensional computed tomography images. The following reference points of these planes were stable, and their distribution was balanced: nasion and foramen cecum at the anterior part of the skull base, sella at the middle part, and basion and opisthion at the posterior part. The candidate reference planes constructed using the aforementioned reference points were thought to be reliable for use as an MS reference plane for the three-dimensional analysis of maxillofacial dysmorphosis.
Muselaers, Constantijn H J; Rijpkema, Mark; Bos, Desirée L; Langenhuijsen, Johan F; Oyen, Wim J G; Mulders, Peter F A; Oosterwijk, Egbert; Boerman, Otto C
2015-08-01
Tumor targeted optical imaging using antibodies labeled with near infrared fluorophores is a sensitive imaging modality that might be used during surgery to assure complete removal of malignant tissue. We evaluated the feasibility of dual modality imaging and image guided surgery with the dual labeled anti-carbonic anhydrase IX antibody preparation (111)In-DTPA-G250-IRDye800CW in mice with intraperitoneal clear cell renal cell carcinoma. BALB/c nu/nu mice with intraperitoneal SK-RC-52 lesions received 10 μg DTPA-G250-IRDye800CW labeled with 15 MBq (111)In or 10 μg of the dual labeled irrelevant control antibody NUH-82 (20 mice each). To evaluate when tumors could be detected, 4 mice per group were imaged weekly during 5 weeks with single photon emission computerized tomography/computerized tomography and the fluorescence imaging followed by ex vivo biodistribution studies. As early as 1 week after tumor cell inoculation single photon emission computerized tomography and fluorescence images showed clear delineation of intraperitoneal clear cell renal cell carcinoma with good concordance between single photon emission computerized tomography/computerized tomography and fluorescence images. The high and specific accumulation of the dual labeled antibody conjugate in tumors was confirmed in the biodistribution studies. Maximum tumor uptake was observed 1 week after inoculation (mean ± SD 58.5% ± 18.7% vs 5.6% ± 2.3% injected dose per gm for DTPA-G250-IRDye800CW vs NUH-82, respectively). High tumor uptake was also observed at other time points. This study demonstrates the feasibility of dual modality imaging with dual labeled antibody (111)In-DTPA-G250-IRDye800CW in a clear cell renal cell carcinoma model. Results indicate that preoperative and intraoperative detection of carbonic anhydrase IX expressing tumors, positive resection margins and metastasis might be feasible with this approach. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segal-Peretz, Tamar; Winterstein, Jonathan; Doxastakis, Manolis
Understanding and controlling the three-dimensional structure of block copolymer (BCP) thin films is critical for utilizing these materials for sub-20 nm nanopatterning in semiconductor devices, as well as in membranes and solar cell applications. Combining an atomic layer deposition (ALD) based technique for enhancing the contrast of BCPs in transmission electron microscopy (TEM) together with scanning TEM (STEM) tomography reveals and characterizes the three-dimensional structures of poly(styrene-block-methyl methacrylate) (PS-b-PMMA) thin films with great clarity. Sequential infiltration synthesis (SIS), a block-selective technique for growing inorganic materials in BCPs films in ALD, and an emerging tool for enhancing the etch contrast ofmore » BCPs, was harnessed to significantly enhance the high-angle scattering from the polar domains of BCP films in the TEM. The power of combining SIS and STEM tomography for three dimensional (3D) characterization of BCPs films was demonstrated with the following cases: self-assembled cylindrical, lamellar, and spherical PS-PMMA thin films. In all cases, STEM tomography has revealed 3D structures that were hidden underneath the surface, including: 1) the 3D structure of defects in cylindrical and lamellar phases, 2) non-perpendicular 3D surface of grain boundaries in the cylindrical phase, and 3) the 3D arrangement of spheres in body centered cubic (BCC) and hexagonal closed pack (HCP) morphologies in the spherical phase. The 3D data of the spherical morphologies was compared to coarse-grained simulations and assisted in validating the simulations’ parameters. STEM tomography of SIS-treated BCP films enables the characterization of the exact structure used for pattern transfer, and can lead to better understating of the physics which is utilized in BCP lithography.« less
The poppy seed test for colovesical fistula: big bang, little bucks!
Kwon, Eric O; Armenakas, Noel A; Scharf, Stephen C; Panagopoulos, Georgia; Fracchia, John A
2008-04-01
Diagnosis of a colovesical fistula is often challenging, and usually involves numerous invasive and expensive tests and procedures. The poppy seed test stands out as an exception to this rule. We evaluated the accuracy and cost-effectiveness of various established diagnostic tests used to evaluate a suspected colovesical fistula. We identified 20 prospectively entered patients with surgically confirmed colovesical fistulas between 2000 and 2006. Each patient was evaluated preoperatively with a (51)chromium nuclear study, computerized tomography of the abdomen and pelvis with oral and intravenous contrast medium, and the poppy seed test. Costs were calculated using institutional charges, 2006 Medicare limiting approved charges and the market price, respectively. The z test was used to compare the proportion of patients who tested positive for a fistula with each of these modalities. The chromium study was positive in 16 of 20 patients (80%) at a cost of $490.83 per study. Computerized tomography was positive in 14 of 20 patients (70%) at a cost of $652.92 per study. The poppy seed test was positive in 20 of 20 patients (100%) at a cost of $5.37 per study. The difference in the proportion of patients who tested positive for a fistula on computerized tomography and the poppy seed test was statistically significant (p = 0.03). There was no difference between the chromium group and the computerized tomography or poppy seed group (p = 0.72 and 0.12, respectively). The poppy seed test is an accurate, convenient and inexpensive diagnostic test. It is an ideal initial consideration for evaluating a suspected colovesical fistula.
Positron emission tomography/computerized tomography in lung cancer
Vural, Gulin Ucmak
2014-01-01
Positron emission tomography (PET) using 2-(18F)-flouro-2-deoxy-D-glucose (FDG) has emerged as a useful tool in the clinical work-up of lung cancer. This review article provides an overview of applications of PET in diagnosis, staging, treatment response evaluation, radiotherapy planning, recurrence assessment and prognostication of lung cancer. PMID:24914421
Prosa, T J; Alvis, R; Tsakalakos, L; Smentkowski, V S
2010-08-01
Three-dimensional quantitative compositional analysis of nanowires is a challenge for standard techniques such as secondary ion mass spectrometry because of specimen size and geometry considerations; however, it is precisely the size and geometry of nanowires that makes them attractive candidates for analysis via atom probe tomography. The resulting boron composition of various trimethylboron vapour-liquid-solid grown silicon nanowires were measured both with time-of-flight secondary ion mass spectrometry and pulsed-laser atom probe tomography. Both characterization techniques yielded similar results for relative composition. Specialized specimen preparation for pulsed-laser atom probe tomography was utilized and is described in detail whereby individual silicon nanowires are first protected, then lifted out, trimmed, and finally wet etched to remove the protective layer for subsequent three-dimensional analysis.
Three-dimensional imaging of adherent cells using FIB/SEM and STEM.
Villinger, Clarissa; Schauflinger, Martin; Gregorius, Heiko; Kranz, Christine; Höhn, Katharina; Nafeey, Soufi; Walther, Paul
2014-01-01
In this chapter we describe three different approaches for three-dimensional imaging of electron microscopic samples: serial sectioning transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) tomography, and focused ion beam/scanning electron microscopy (FIB/SEM) tomography. With these methods, relatively large volumes of resin-embedded biological structures can be analyzed at resolutions of a few nm within a reasonable expenditure of time. The traditional method is serial sectioning and imaging the same area in all sections. Another method is TEM tomography that involves tilting a section in the electron beam and then reconstruction of the volume by back projection of the images. When the scanning transmission (STEM) mode is used, thicker sections (up to 1 μm) can be analyzed. The third approach presented here is focused ion beam/scanning electron microscopy (FIB/SEM) tomography, in which a sample is repeatedly milled with a focused ion beam (FIB) and each newly produced block face is imaged with the scanning electron microscope (SEM). This process can be repeated ad libitum in arbitrary small increments allowing 3D analysis of relatively large volumes such as eukaryotic cells. We show that resolution of this approach is considerably improved when the secondary electron signal is used. However, the most important prerequisite for three-dimensional imaging is good specimen preparation. For all three imaging methods, cryo-fixed (high-pressure frozen) and freeze-substituted samples have been used.
Satriano, Alessandro; Guenther, Zachary; White, James A; Merchant, Naeem; Di Martino, Elena S; Al-Qoofi, Faisal; Lydell, Carmen P; Fine, Nowell M
2018-05-02
Functional impairment of the aorta is a recognized complication of aortic and aortic valve disease. Aortic strain measurement provides effective quantification of mechanical aortic function, and 3-dimenional (3D) approaches may be desirable for serial evaluation. Computerized tomographic angiography (CTA) is routinely performed for various clinical indications, and offers the unique potential to study 3D aortic deformation. We sought to investigate the feasibility of performing 3D aortic strain analysis in a candidate population of patients undergoing transcatheter aortic valve replacement (TAVR). Twenty-one patients with severe aortic valve stenosis (AS) referred for TAVR underwent ECG-gated CTA and echocardiography. CTA images were analyzed using a 3D feature-tracking based technique to construct a dynamic aortic mesh model to perform peak principal strain amplitude (PPSA) analysis. Segmental strain values were correlated against clinical, hemodynamic and echocardiographic variables. Reproducibility analysis was performed. The mean patient age was 81±6 years. Mean left ventricular ejection fraction was 52±14%, aortic valve area (AVA) 0.6±0.3 cm 2 and mean AS pressure gradient (MG) 44±11 mmHg. CTA-based 3D PPSA analysis was feasible in all subjects. Mean PPSA values for the global thoracic aorta, ascending aorta, aortic arch and descending aorta segments were 6.5±3.0, 10.2±6.0, 6.1±2.9 and 3.3±1.7%, respectively. 3D PSSA values demonstrated significantly more impairment with measures of worsening AS severity, including AVA and MG for the global thoracic aorta and ascending segment (p<0.001 for all). 3D PSSA was independently associated with AVA by multivariable modelling. Coefficients of variation for intra- and inter-observer variability were 5.8 and 7.2%, respectively. Three-dimensional aortic PPSA analysis is clinically feasible from routine ECG-gated CTA. Appropriate reductions in PSSA were identified with increasing AS hemodynamic severity. Expanded study of 3D aortic PSSA for patients with various forms of aortic disease is warranted.
NASA Astrophysics Data System (ADS)
Johnson, Kristina Mary
In 1973 the computerized tomography (CT) scanner revolutionized medical imaging. This machine can isolate and display in two-dimensional cross-sections, internal lesions and organs previously impossible to visualize. The possibility of three-dimensional imaging however is not yet exploited by present tomographic systems. Using multiple-exposure holography, three-dimensional displays can be synthesizing from two-dimensional CT cross -sections. A multiple-exposure hologram is an incoherent superposition of many individual holograms. Intuitively it is expected that holograms recorded with equal energy will reconstruct images with equal brightness. It is found however, that holograms recorded first are brighter than holograms recorded later in the superposition. This phenomena is called Holographic Reciprocity Law Failure (HRLF). Computer simulations of latent image formation in multiple-exposure holography are one of the methods used to investigate HRLF. These simulations indicate that it is the time between individual exposures in the multiple -exposure hologram that is responsible for HRLF. This physical parameter introduces an asymmetry into the latent image formation process that favors the signal of previously recorded holograms over holograms recorded later in the superposition. The origin of this asymmetry lies in the dynamics of latent image formation, and in particular in the decay of single-atom latent image specks, which have lifetimes that are short compared to typical times between exposures. An analytical model is developed for a double exposure hologram that predicts a decrease in the brightness of the second exposure as compared to the first exposure as the time between exposures increases. These results are consistent with the computer simulations. Experiments investigating the influence of this parameter on the diffraction efficiency of reconstructed images in a double exposure hologram are also found to be consistent with the computer simulations and analytical results. From this information, two techniques are presented that correct for HRLF, and succeed in reconstructing multiple holographic images of CT cross-sections with equal brightness. The multiple multiple-exposure hologram is a new hologram that increases the number of equally bright images that can be superimposed on one photographic plate.
NASA Technical Reports Server (NTRS)
Drury, H. A.; Van Essen, D. C.; Anderson, C. H.; Lee, C. W.; Coogan, T. A.; Lewis, J. W.
1996-01-01
We present a new method for generating two-dimensional maps of the cerebral cortex. Our computerized, two-stage flattening method takes as its input any well-defined representation of a surface within the three-dimensional cortex. The first stage rapidly converts this surface to a topologically correct two-dimensional map, without regard for the amount of distortion introduced. The second stage reduces distortions using a multiresolution strategy that makes gross shape changes on a coarsely sampled map and further shape refinements on progressively finer resolution maps. We demonstrate the utility of this approach by creating flat maps of the entire cerebral cortex in the macaque monkey and by displaying various types of experimental data on such maps. We also introduce a surface-based coordinate system that has advantages over conventional stereotaxic coordinates and is relevant to studies of cortical organization in humans as well as non-human primates. Together, these methods provide an improved basis for quantitative studies of individual variability in cortical organization.
The role of preoperative CT scan in patients with tracheoesophageal fistula: a review.
Garge, Saurabh; Rao, K L N; Bawa, Monika
2013-09-01
The morbidity and mortality associated with esophageal atresia with or without a fistula make it a challenging congenital abnormality for the pediatric surgeon. Anatomic factors like inter-pouch gap and origin of fistula are not taken into consideration in various prognostic classifications. The preoperative evaluation of these cases with computerized tomography (CT) has been used by various investigators to delineate these factors. We reviewed these studies to evaluate the usefulness of this investigation in the intra operative and post operative period. A literature search was done on all peer-reviewed articles published on preoperative computed tomography (CT) in cases of tracheoesophageal fistula using the PUBMED and MEDLINE search engines. Key words included tracheoesophageal fistula, computerized tomography, virtual bronchoscopy, and 3D computerized tomography reconstruction. Further, additional articles were selected from the list of references obtained from the retrieved publications. A total of 8 articles were selected for analysis. In most of the studies, comprising 96 patients, observations noted in preoperative CT were confirmed during surgery. In a study by Mahalik et al [Mahalik SK, Sodhi KS, Narasimhan KL, Rao KL. Role of preoperative 3D CT reconstruction for evaluation of patients with esophageal atresia and tracheoesophageal fistula. Pediatr Surg Int. 2012 Jun 22. [Epub ahead of print
Akiba, Tadashi; Marushima, Hideki; Harada, Junta; Kobayashi, Susumu; Morikawa, Toshiaki
2009-01-01
Video-assisted thoracic surgery (VATS) has recently been adopted for complicated anatomical lung resections. During these thoracoscopic procedures, surgeons view the operative field on a two-dimensional (2-D) video monitor and cannot palpate the organ directly, thus frequently encountering anatomical difficulties. This study aimed to estimate the usefulness of preoperative three-dimensional (3-D) imaging of thoracic organs. We compared the preoperative 64-row three-dimensional multidetector computed tomography (3DMDCT) findings of lung cancer-affected thoracic organs to the operative findings. In comparison to the operative findings, the branches of pulmonary arteries, veins, and bronchi were well defined in the 3D-MDCT images of 27 patients. 3D-MDCT imaging is useful for preoperatively understanding the individual thoracic anatomy in lung cancer surgery. This modality can therefore contribute to safer anatomical pulmonary operations, especially in VATS.
Park, Sang Cheol; Leader, Joseph Ken; Tan, Jun; Lee, Guee Sang; Kim, Soo Hyung; Na, In Seop; Zheng, Bin
2011-01-01
This article presents a new computerized scheme that aims to accurately and robustly separate left and right lungs on computed tomography (CT) examinations. We developed and tested a method to separate the left and right lungs using sequential CT information and a guided dynamic programming algorithm using adaptively and automatically selected start point and end point with especially severe and multiple connections. The scheme successfully identified and separated all 827 connections on the total 4034 CT images in an independent testing data set of CT examinations. The proposed scheme separated multiple connections regardless of their locations, and the guided dynamic programming algorithm reduced the computation time to approximately 4.6% in comparison with the traditional dynamic programming and avoided the permeation of the separation boundary into normal lung tissue. The proposed method is able to robustly and accurately disconnect all connections between left and right lungs, and the guided dynamic programming algorithm is able to remove redundant processing.
The possible usability of three-dimensional cone beam computed dental tomography in dental research
NASA Astrophysics Data System (ADS)
Yavuz, I.; Rizal, M. F.; Kiswanjaya, B.
2017-08-01
The innovations and advantages of three-dimensional cone beam computed dental tomography (3D CBCT) are continually growing for its potential use in dental research. Imaging techniques are important for planning research in dentistry. Newly improved 3D CBCT imaging systems and accessory computer programs have recently been proven effective for use in dental research. The aim of this study is to introduce 3D CBCT and open a window for future research possibilities that should be given attention in dental research.
Álvarez-Murga, M; Perrillat, J P; Le Godec, Y; Bergame, F; Philippe, J; King, A; Guignot, N; Mezouar, M; Hodeau, J L
2017-01-01
X-ray tomography is a non-destructive three-dimensional imaging/microanalysis technique selective to a wide range of properties such as density, chemical composition, chemical states and crystallographic structure with extremely high sensitivity and spatial resolution. Here the development of in situ high-pressure high-temperature micro-tomography using a rotating module for the Paris-Edinburgh cell combined with synchrotron radiation is described. By rotating the sample chamber by 360°, the limited angular aperture of ordinary high-pressure cells is surmounted. Such a non-destructive high-resolution probe provides three-dimensional insight on the morphological and structural evolution of crystalline as well as amorphous phases during high pressure and temperature treatment. To demonstrate the potentials of this new experimental technique the compression behavior of a basalt glass is investigated by X-ray absorption tomography, and diffraction/scattering tomography imaging of the structural changes during the polymerization of C 60 molecules under pressure is performed. Small size and weight of the loading frame and rotating module means that this apparatus is portable, and can be readily installed on most synchrotron facilities to take advantage of the diversity of three-dimensional imaging techniques available at beamlines. This experimental breakthrough should open new ways for in situ imaging of materials under extreme pressure-temperature-stress conditions, impacting diverse areas in physics, chemistry, geology or materials sciences.
Mehmet, Rifaioglu Murat; Rustu, Yalcinkaya Fatih; Hanefi, Bayarogullari; Mursel, Davarci; Fusun, Aydogan; Mehmet, Inci
2013-01-01
Percutaneous nephrolithotomy (PNL) is an effective procedure for the treatment of patients with large or complex stones. PNL is challenging in anomalous kidneys, certain patients, such as those with renal ectopia. It is unable to undergo PNL in conventional technique safely in these cases. We presented a case report of laparoscopic-assisted PNL via direct pelvic puncture in a pelvic kidney stone and discussed previous published literature. A 49-year-old man presented with right lower quadrant pain and hematuria. Intravenous pyelography and three-dimensional computerized tomography revealed an opaque 2.7 × 1.7 cm pelvis renalis stone in a right side ectopic pelvic kidney with grade III hydronephrosis. Laparoscopic-assisted tubeless PNL was performed to remove the calculus. Laparoscopic-assisted PNL as a minimally invasive therapy in ectopic kidney has many advantages. Our case showed that, in pelvic ectopic kidney with pelvic stones greater than 1.5 cm in size, laparoscopic-assisted PNL via direct pelvis puncture is a safe and effective technique.
NASA Astrophysics Data System (ADS)
Chang Chien, Kuang-Che; Fetita, Catalin; Brillet, Pierre-Yves; Prêteux, Françoise; Chang, Ruey-Feng
2009-02-01
Multi-detector computed tomography (MDCT) has high accuracy and specificity on volumetrically capturing serial images of the lung. It increases the capability of computerized classification for lung tissue in medical research. This paper proposes a three-dimensional (3D) automated approach based on mathematical morphology and fuzzy logic for quantifying and classifying interstitial lung diseases (ILDs) and emphysema. The proposed methodology is composed of several stages: (1) an image multi-resolution decomposition scheme based on a 3D morphological filter is used to detect and analyze the different density patterns of the lung texture. Then, (2) for each pattern in the multi-resolution decomposition, six features are computed, for which fuzzy membership functions define a probability of association with a pathology class. Finally, (3) for each pathology class, the probabilities are combined up according to the weight assigned to each membership function and two threshold values are used to decide the final class of the pattern. The proposed approach was tested on 10 MDCT cases and the classification accuracy was: emphysema: 95%, fibrosis/honeycombing: 84% and ground glass: 97%.
Synaptic changes in rat maculae in space and medical imaging: the link
NASA Technical Reports Server (NTRS)
Ross, M. D.
1998-01-01
Two different space life sciences missions (SLS-1 and SLS-2) have demonstrated that the synapses of the hair cells of rat vestibular maculae increase significantly in microgravity. The results also indicate that macular synapses are sensitive to stress. These findings argue that vestibular maculae exhibit neuroplasticity to macroenvironmental and microenvironmental changes. This capability should be clinically relevant to rehabilitative training and/or pharmacological treatments for vestibular disease. The results of this ultrastructural research also demonstrated that type I and type II hair cells are integrated into the same neuronal circuitry. The findings were the basis for development of three-dimensional reconstruction software to learn details of macular wiring. This software, produced for scientific research, has now been adapted to reconstruct the face and skull directly from computerized tomography scans. In collaboration with craniofacial reconstructive surgeons at Stanford University Medical Center, an effort is under way to produce a virtual environment workbench for complex craniofacial surgery. When completed, the workbench will help surgeons train for and simulate surgery. The methods are patient specific. This research illustrates the value of basic research in leading to unanticipated medical applications.
Use of the Uro Dyna-CT in endourology - the new frontier.
Vicentini, Fabio C; Botelho, Luiz A A; Braz, José L M; Almeida, Ernane S; Hisano, Marcelo
2017-01-01
We describe the use of the Uro Dyna-CT, an imaging system used in the operating room that produces real-time three-dimensional (3D) imaging and cross-sectional image reconstructions similar to an intraoperative computerized tomography, during a percutaneous nephrolithotomy and a contralateral flexible ureteroscopy in a complete supine position. A 65 year-old female patient had an incomplete calyceal staghorn stone in the right kidney and a 10mm in the left one. The procedure was uneventful and the intraoperative use of the Uro Dyna-CT identified 2 residual stones that were not found by digital fluoroscopy and flexible nephroscopy at the end of surgery, helping us to render the patient stone-free in one procedure, which was confirmed by a postoperative CT scan. Prospective studies will define the real role of the Uro Dyna-CT for endourological procedures, but its use seems to be a very promising tool for improving stone free rates and decreasing auxiliary procedures, especially for complex cases. Copyright® by the International Brazilian Journal of Urology.
[The role of multidetector computer tomography in diagnosis of acute pancreatitis].
Lohanikhina, K Iu; Hordiienko, K P; Kozarenko, T M
2014-10-01
With the objective to improve the diagnostic semiotics of an acute pancreatitis (AP) 35 patients were examined, using 64-cut computeric tomograph Lightspeed VCT (GE, USA) with intravenous augmentation in arterial and portal phases. Basing on analysis of the investigations conducted, using multidetector computeric tomography (MDCT), the AP semiotics was systematized, which is characteristic for oedematous and destructive forms, diagnosed in 19 (44.2%) and 16 (45.8%) patients, accordingly. The procedure for estimation of preservation of the organ functional capacity in pancreonecrosis pres- ence was elaborated, promoting rising of the method diagnostic efficacy by 5.3 - 9.4%.
Ferreira, F J O; Crispim, V R; Silva, A X
2010-06-01
In this study the development of a methodology to detect illicit drugs and plastic explosives is described with the objective of being applied in the realm of public security. For this end, non-destructive assay with neutrons was used and the technique applied was the real time neutron radiography together with computerized tomography. The system is endowed with automatic responses based upon the application of an artificial intelligence technique. In previous tests using real samples, the system proved capable of identifying 97% of the inspected materials. Copyright 2010 Elsevier Ltd. All rights reserved.
An Analysis of the Need for a Whole-Body CT Scanner at US Darnall Army Community Hospital
1980-05-01
TASK IWORK UNIT ELEMENT NO. I NO.JC NO. rSSION NO. Ij6T’,WAM ’"Aa1W% A WHOLE BODY CT SCANNER AT DARNALL ARMY COMUNITY HOSPITAL 16PTR3OAL tUTHOR(S)* a...computerized axial tomography or CT. Computerized tomography experiments "were conducted by Godfrey Hounsfield at Central Research Laboratories, EMI, Ltd. in...remained the same, with clinical and nursing unit facilities to support a one division post. Presently, Fort Hood is the home of the III US Army Corps, the
NASA Astrophysics Data System (ADS)
Guo, J.; Bücherl, T.; Zou, Y.; Guo, Z.
2011-09-01
Investigations on the fast neutron beam geometry for the NECTAR facility are presented. The results of MCNP simulations and experimental measurements of the beam distributions at NECTAR are compared. Boltzmann functions are used to describe the beam profile in the detection plane assuming the area source to be set up of large number of single neutron point sources. An iterative algebraic reconstruction algorithm is developed, realized and verified by both simulated and measured projection data. The feasibility for improved reconstruction in fast neutron computerized tomography at the NECTAR facility is demonstrated.
Three-dimensional reciprocal space x-ray coherent scattering tomography of two-dimensional object.
Zhu, Zheyuan; Pang, Shuo
2018-04-01
X-ray coherent scattering tomography is a powerful tool in discriminating biological tissues and bio-compatible materials. Conventional x-ray scattering tomography framework can only resolve isotropic scattering profile under the assumption that the material is amorphous or in powder form, which is not true especially for biological samples with orientation-dependent structure. Previous tomography schemes based on x-ray coherent scattering failed to preserve the scattering pattern from samples with preferred orientations, or required elaborated data acquisition scheme, which could limit its application in practical settings. Here, we demonstrate a simple imaging modality to preserve the anisotropic scattering signal in three-dimensional reciprocal (momentum transfer) space of a two-dimensional sample layer. By incorporating detector movement along the direction of x-ray beam, combined with a tomographic data acquisition scheme, we match the five dimensions of the measurements with the five dimensions (three in momentum transfer domain, and two in spatial domain) of the object. We employed a collimated pencil beam of a table-top copper-anode x-ray tube, along with a panel detector to investigate the feasibility of our method. We have demonstrated x-ray coherent scattering tomographic imaging at a spatial resolution ~2 mm and momentum transfer resolution 0.01 Å -1 for the rotation-invariant scattering direction. For any arbitrary, non-rotation-invariant direction, the same spatial and momentum transfer resolution can be achieved based on the spatial information from the rotation-invariant direction. The reconstructed scattering profile of each pixel from the experiment is consistent with the x-ray diffraction profile of each material. The three-dimensional scattering pattern recovered from the measurement reveals the partially ordered molecular structure of Teflon wrap in our sample. We extend the applicability of conventional x-ray coherent scattering tomography to the reconstruction of two-dimensional samples with anisotropic scattering profile by introducing additional degree of freedom on the detector. The presented method has the potential to achieve low-cost, high-specificity material discrimination based on x-ray coherent scattering. © 2018 American Association of Physicists in Medicine.
Leemreize, Hanna; Almer, Jonathan D.; Stock, Stuart R.; Birkedal, Henrik
2013-01-01
Biological materials display complicated three-dimensional hierarchical structures. Determining these structures is essential in understanding the link between material design and properties. Herein, we show how diffraction tomography can be used to determine the relative placement of the calcium carbonate polymorphs calcite and aragonite in the highly mineralized holdfast system of the bivalve Anomia simplex. In addition to high fidelity and non-destructive mapping of polymorphs, we use detailed analysis of X-ray diffraction peak positions in reconstructed powder diffraction data to determine the local degree of Mg substitution in the calcite phase. These data show how diffraction tomography can provide detailed multi-length scale information on complex materials in general and of biomineralized tissues in particular. PMID:23804437
Three-dimensional structural analysis of eukaryotic flagella/cilia by electron cryo-tomography
Bui, Khanh Huy; Pigino, Gaia; Ishikawa, Takashi
2011-01-01
Electron cryo-tomography is a potential approach to analyzing the three-dimensional conformation of frozen hydrated biological macromolecules using electron microscopy. Since projections of each individual object illuminated from different orientations are merged, electron tomography is capable of structural analysis of such heterogeneous environments as in vivo or with polymorphism, although radiation damage and the missing wedge are severe problems. Here, recent results on the structure of eukaryotic flagella, which is an ATP-driven bending organelle, from green algae Chlamydomonas are presented. Tomographic analysis reveals asymmetric molecular arrangements, especially that of the dynein motor proteins, in flagella, giving insight into the mechanism of planar asymmetric bending motion. Methodological challenges to obtaining higher-resolution structures from this technique are also discussed. PMID:21169680
Gómez Palacios, Angel; Gómez Zábala, Jesús; Gutiérrez, María Teresa; Expósito, Amaya; Barrios, Borja; Zorraquino, Angel; Taibo, Miguel Angel; Iturburu, Ignacio
2006-12-01
1. To assess the sensitivity of scintigraphy using methoxy isobutyl isonitrile (MIBI). 2. To compare its resolution with that of ultrasound (US) and computerized axial tomography (CAT). 3. To use its diagnostic reliability to determine whether selective approaches can be used to treat hyperparathyroidism (HPT). A study of 76 patients who underwent surgery for HPT between 1996 and 2005 was performed. MIBI scintigraphy and cervical US were used for whole-body scanning in all patients; CAT was used in 47 patients. Intraoperative and postoperative biopsies were used for final evaluation of the tests, after visualization and surgical extirpation. The results of scintigraphy were positive in 65 patients (85.52%). The diagnosis was correct in all of the single images. Multiple images were due to hyperplasia and parathyroid adenomas with thyroid disease (5.2%). Three images, incorrectly classified as negative (3.94%), were positive. The sensitivity of US was 63% and allowed detection of three MIBI-negative adenomas (4%). CAT was less sensitive (55%), but detected a further three MIBI-negative adenomas (4%). 1. The sensitivity of MIBI reached 89.46%. In the absence of thyroid nodules, MIBI diagnosed 100% of single lesions. Pathological thyroid processes produced false-positive results (5.2%) and there were diagnostic errors (4%). 2. MIBI scintigraphy was more sensitive than US and CAT. 3. Positive, single image scintigraphy allows a selective cervical approach. US and CAT may help to save a further 8% of patients (with negative scintigraphy).
Tomographic techniques for the study of exceptionally preserved fossils
Sutton, Mark D
2008-01-01
Three-dimensional fossils, especially those preserving soft-part anatomy, are a rich source of palaeontological information; they can, however, be difficult to work with. Imaging of serial planes through an object (tomography) allows study of both the inside and outside of three-dimensional fossils. Tomography may be performed using physical grinding or sawing coupled with photography, through optical techniques of serial focusing, or using a variety of scanning technologies such as neutron tomography, magnetic resonance imaging and most usefully X-ray computed tomography. This latter technique is applicable at a variety of scales, and when combined with a synchrotron X-ray source can produce very high-quality data that may be augmented by phase-contrast information to enhance contrast. Tomographic data can be visualized in several ways, the most effective of which is the production of isosurface-based ‘virtual fossils’ that can be manipulated and dissected interactively. PMID:18426749
Jini service to reconstruct tomographic data
NASA Astrophysics Data System (ADS)
Knoll, Peter; Mirzaei, S.; Koriska, K.; Koehn, H.
2002-06-01
A number of imaging systems rely on the reconstruction of a 3- dimensional model from its projections through the process of computed tomography (CT). In medical imaging, for example magnetic resonance imaging (MRI), positron emission tomography (PET), and Single Computer Tomography (SPECT) acquire two-dimensional projections of a three dimensional projections of a three dimensional object. In order to calculate the 3-dimensional representation of the object, i.e. its voxel distribution, several reconstruction algorithms have been developed. Currently, mainly two reconstruct use: the filtered back projection(FBP) and iterative methods. Although the quality of iterative reconstructed SPECT slices is better than that of FBP slices, such iterative algorithms are rarely used for clinical routine studies because of their low availability and increased reconstruction time. We used Jini and a self-developed iterative reconstructions algorithm to design and implement a Jini reconstruction service. With this service, the physician selects the patient study from a database and a Jini client automatically discovers the registered Jini reconstruction services in the department's Intranet. After downloading the proxy object the this Jini service, the SPECT acquisition data are reconstructed. The resulting transaxial slices are visualized using a Jini slice viewer, which can be used for various imaging modalities.
Evaluation of cavity size, kind, and filling technique of composite shrinkage by finite element
Jafari, Toloo; Alaghehmad, Homayoon; Moodi, Ehsan
2018-01-01
Background: Cavity preparation reduces the rigidity of tooth and its resistance to deformation. The purpose of this study was to evaluate the dimensional changes of the repaired teeth using two types of light cure composite and two methods of incremental and bulk filling by the use of finite element method. Materials and Methods: In this computerized in vitro experimental study, an intact maxillary premolar was scanned using cone beam computed tomography instrument (SCANORA, Switzerland), then each section of tooth image was transmitted to Ansys software using AUTOCAD. Then, eight sizes of cavity preparations and two methods of restoration (bulk and incremental) using two different types of composite resin materials (Heliomolar, Brilliant) were proposed on software and analysis was completed with Ansys software. Results: Dimensional change increased by widening and deepening of the cavities. It was also increased using Brilliant composite resin and incremental filling technique. Conclusion: Increase in depth and type of filling technique has the greatest role of dimensional change after curing, but the type of composite resin does not have a significant role. PMID:29497445
Computerized tomography of the otic capsule and otoliths in the oyster toadfish, Opsanus tau.
Edds-Walton, Peggy L; Arruda, Julie; Fay, Richard R; Ketten, Darlene R
2015-02-01
The neurocranium of the toadfish (Opsanus tau) exhibits a distinct translucent region in the otic capsule (OC) that may have functional significance for the auditory pathway. This study used ultrahigh resolution computerized tomography (100 µm voxels) to compare the relative density of three sites along the OC (dorsolateral, midlateral, and ventromedial) and two reference sites (dorsal: supraoccipital crest; ventral: parasphenoid bone) in the neurocranium. Higher attenuation occurs where structural density is greater; thus, we compared the X-ray attenuations measured, which provided a measure of relative density. The maximum attenuation value was recorded for each of the five sites (x and y) on consecutive sections throughout the OC and for each of the three calcareous otoliths associated with the sensory maculae (lagena, saccule, and utricle) in the OC. All three otoliths had higher attenuations than any sites in the neurocranium. Both dorsal and ventral reference sites (supraoccipital crest and parasphenoid bone, respectively) had attenuation levels consistent with calcified bone and had relatively small, irregular variations along the length of the OC in all individuals. The lowest relative attenuations (lowest densities) occurred consistently at the three sites along the OC. In addition, the lowest attenuations measured along the OC occurred at the ventromedial site around the saccular otolith for all seven fish. The decrease in bone density along the OC is consistent with the hypothesis that there is a low-density channel in the skull to facilitate transmission of acoustic stimuli to the auditory endorgans of the ear. © 2014 Wiley Periodicals, Inc.
Kim, Se-Ho; Kang, Phil Woong; Park, O Ok; Seol, Jae-Bok; Ahn, Jae-Pyoung; Lee, Ji Yeong; Choi, Pyuck-Pa
2018-07-01
We present a new method of preparing needle-shaped specimens for atom probe tomography from freestanding Pd and C-supported Pt nanoparticles. The method consists of two steps, namely electrophoresis of nanoparticles on a flat Cu substrate followed by electrodeposition of a Ni film acting as an embedding matrix for the nanoparticles. Atom probe specimen preparation can be subsequently carried out by means of focused-ion-beam milling. Using this approach, we have been able to perform correlative atom probe tomography and transmission electron microscopy analyses on both nanoparticle systems. Reliable mass spectra and three-dimensional atom maps could be obtained for Pd nanoparticle specimens. In contrast, atom probe samples prepared from C-supported Pt nanoparticles showed uneven field evaporation and hence artifacts in the reconstructed atom maps. Our developed method is a viable means of mapping the three-dimensional atomic distribution within nanoparticles and is expected to contribute to an improved understanding of the structure-composition-property relationships of various nanoparticle systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Design and Construction of Detector and Data Acquisition Elements for Proton Computed Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fermi Research Alliance; Northern Illinois University
2015-07-15
Proton computed tomography (pCT) offers an alternative to x-ray imaging with potential for three-dimensional imaging, reduced radiation exposure, and in-situ imaging. Northern Illinois University (NIU) is developing a second-generation proton computed tomography system with a goal of demonstrating the feasibility of three-dimensional imaging within clinically realistic imaging times. The second-generation pCT system is comprised of a tracking system, a calorimeter, data acquisition, a computing farm, and software algorithms. The proton beam encounters the upstream tracking detectors, the patient or phantom, the downstream tracking detectors, and a calorimeter. The schematic layout of the PCT system is shown. The data acquisition sendsmore » the proton scattering information to an offline computing farm. Major innovations of the second generation pCT project involve an increased data acquisition rate ( MHz range) and development of three-dimensional imaging algorithms. The Fermilab Particle Physics Division and Northern Illinois Center for Accelerator and Detector Development at Northern Illinois University worked together to design and construct the tracking detectors, calorimeter, readout electronics and detector mounting system.« less
NASA Astrophysics Data System (ADS)
Kajiwara, K.; Shobu, T.; Toyokawa, H.; Sato, M.
2014-04-01
A technique for three-dimensional visualization of grain boundaries was developed at BL28B2 at SPring-8. The technique uses white X-ray microbeam diffraction and a rotating slit. Three-dimensional images of small silicon single crystals filled in a plastic tube were successfully obtained using this technique for demonstration purposes. The images were consistent with those obtained by X-ray computed tomography.
Doğan, Mehmet-Sinan; Callea, Michele; Aksoy, Orhan; Clarich, Gabriella; Günay, Ayşe; Günay, Ahmet; Güven, Sedat; Maglione, Michele; Akkuş, Zeki
2015-01-01
Background This study aimed to review the results related to head and jaw disorders in cases of ectodermal dysplasia. The evaluation of ectodermal dysplasia cases was made by clincal examination and examination of the jaw and facial areas radiologically and on cone-beam 3-dimensional dental tomography (CBCT) images. Material and Methods In the 36 cases evaluated in the study, typical clinical findings of pure hypohidrotic ectodermal displasia (HED) were seen, such as missing teeth, dry skin, hair and nail disorders. CBCT images were obtained from 12 of the 36 cases, aged 1.5- 45 years, and orthodontic analyses were made on these images. Results The clinical and radiological evaluations determined, hypodontia or oligodontia, breathing problems, sweating problems, a history of fever, sparse hair, saddle nose, skin peeling, hypopigmentation, hyperpigmentation, finger and nail deformities, conical teeth anomalies, abnormal tooth root formation, tooth resorption in the root, gingivitis, history of epilepsy, absent lachrymal canals and vision problems in the cases which included to the study. Conclusions Ectodermal dysplasia cases have a particular place in dentistry and require a professional, multi-disciplinary approach in respect of the chewing function, orthognathic problems, growth, oral and dental health. It has been understood that with data obtained from modern technologies such as three-dimensional dental tomography and the treatments applied, the quality of life of these cases can be improved. Key words: Ectodermal dysplasia, three-dimensional dental tomography. PMID:25662550
Gose, Shinichi; Sakai, Takashi; Shibata, Toru; Akiyama, Keisuke; Yoshikawa, Hideki; Sugamoto, Kazuomi
2011-12-01
We evaluated the validity of the Robin and Graham classification system of hip disease in cerebral palsy (CP) using three-dimensional computed tomography in young people with CP. A total of 91 hips in 91 consecutive children with bilateral spastic CP (57 males, 34 females; nine classified at Gross Motor Function Classification System level II, 42 at level III, 32 at level IV, and eight at level V; mean age 5 y 2 mo, SD 11 mo; range 2-6 y) were investigated retrospectively using anteroposterior plain radiographs and three-dimensional computed tomography (3D-CT) of the hip. The migration percentage was calculated on plain radiographs and all participants were classified into four groups according to migration percentage: grade II, migration percentage ≥ 10% but ≤ 15%, (four hips), grade III, migration percentage >15% but ≤ 30%, (20 hips); grade IV, migration percentage >30% but <100%, (63 hips); and grade V, migration percentage ≥ 100%, (four hips). The lateral opening angle and the sagittal inclination angle of the acetabulum, the neck-shaft angle, and the femoral anteversion of the femur were measured on 3D-CT. The three-dimensional quantitative evaluation indicated that there were significant differences in the lateral opening angle and the neck-shaft angle between the four groups (Kruskal-Wallis test, p ≤ 0.001). This three-dimensional evaluation supports the validation of the Robin and Graham classification system for hip disease in 2- to 7-year-olds with CP. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.
Anastasi, Giuseppe; Cutroneo, Giuseppina; Bruschetta, Daniele; Trimarchi, Fabio; Ielitro, Giuseppe; Cammaroto, Simona; Duca, Antonio; Bramanti, Placido; Favaloro, Angelo; Vaccarino, Gianluigi; Milardi, Demetrio
2009-11-01
We have applied high-quality medical imaging techniques to study the structure of the human ankle. Direct volume rendering, using specific algorithms, transforms conventional two-dimensional (2D) magnetic resonance image (MRI) series into 3D volume datasets. This tool allows high-definition visualization of single or multiple structures for diagnostic, research, and teaching purposes. No other image reformatting technique so accurately highlights each anatomic relationship and preserves soft tissue definition. Here, we used this method to study the structure of the human ankle to analyze tendon-bone-muscle relationships. We compared ankle MRI and computerized tomography (CT) images from 17 healthy volunteers, aged 18-30 years (mean 23 years). An additional subject had a partial rupture of the Achilles tendon. The MRI images demonstrated superiority in overall quality of detail compared to the CT images. The MRI series accurately rendered soft tissue and bone in simultaneous image acquisition, whereas CT required several window-reformatting algorithms, with loss of image data quality. We obtained high-quality digital images of the human ankle that were sufficiently accurate for surgical and clinical intervention planning, as well as for teaching human anatomy. Our approach demonstrates that complex anatomical structures such as the ankle, which is rich in articular facets and ligaments, can be easily studied non-invasively using MRI data.
Anastasi, Giuseppe; Cutroneo, Giuseppina; Bruschetta, Daniele; Trimarchi, Fabio; Ielitro, Giuseppe; Cammaroto, Simona; Duca, Antonio; Bramanti, Placido; Favaloro, Angelo; Vaccarino, Gianluigi; Milardi, Demetrio
2009-01-01
We have applied high-quality medical imaging techniques to study the structure of the human ankle. Direct volume rendering, using specific algorithms, transforms conventional two-dimensional (2D) magnetic resonance image (MRI) series into 3D volume datasets. This tool allows high-definition visualization of single or multiple structures for diagnostic, research, and teaching purposes. No other image reformatting technique so accurately highlights each anatomic relationship and preserves soft tissue definition. Here, we used this method to study the structure of the human ankle to analyze tendon–bone–muscle relationships. We compared ankle MRI and computerized tomography (CT) images from 17 healthy volunteers, aged 18–30 years (mean 23 years). An additional subject had a partial rupture of the Achilles tendon. The MRI images demonstrated superiority in overall quality of detail compared to the CT images. The MRI series accurately rendered soft tissue and bone in simultaneous image acquisition, whereas CT required several window-reformatting algorithms, with loss of image data quality. We obtained high-quality digital images of the human ankle that were sufficiently accurate for surgical and clinical intervention planning, as well as for teaching human anatomy. Our approach demonstrates that complex anatomical structures such as the ankle, which is rich in articular facets and ligaments, can be easily studied non-invasively using MRI data. PMID:19678857
USDA-ARS?s Scientific Manuscript database
High resolution x-ray computed tomography (HRCT) is a non-destructive diagnostic imaging technique with sub-micron resolution capability that is now being used to evaluate the structure and function of plant xylem network in three dimensions (3D). HRCT imaging is based on the same principles as medi...
Vrtovec, Tomaž; Pernuš, Franjo; Likar, Boštjan
2014-10-01
In this study, sagittal vertebral inclination (SVI) was systematically evaluated for 28 vertebrae (segments between T4 and L5) in magnetic resonance (MR) images of one normal and one scoliotic subject to compare the performance of manual and computerized measurements, and identify the most reproducible and reliable measurements. Manual measurements were performed by three observers, who identified on two occasions the distinctive anatomical landmarks required to evaluate SVI by six measurement methods, i.e. the superior tangents, inferior tangents, anterior tangents, posterior tangents, mid-endplate lines and mid-wall lines. Computerized measurements were performed by automatically evaluating SVI from the symmetry of vertebral anatomical structures in two-dimensional (2D) sagittal cross-sections and in three-dimensional (3D) volumetric images. The mid-wall lines and posterior tangents proved to be the manual measurements with the lowest intra-observer (standard deviation, SD, of 1.4° and 1.7°, respectively) and inter-observer variability (SD of 1.9° and 2.4°, respectively). The strongest inter-method agreement was found between the mid-wall lines and posterior tangents (SD of 2.0°). Computerized measurements in 2D and in 3D resulted in intra-observer (SD of 2.8° and 3.1°, respectively) and inter-observer variability (SD of 3.8° and 5.2°, respectively) that were comparable to those of the superior tangents (SD of 2.6° and 3.7°) and inferior tangents (SD of 3.2° and 4.5°), which represent standard Cobb angle measurements. It can be concluded that computerized measurements of SVI should be based on the inclination of vertebral body walls. Copyright © 2014 Elsevier Ltd. All rights reserved.
Analysis of rocket beacon transmissions for computerized reconstruction of ionospheric densities
NASA Technical Reports Server (NTRS)
Bernhardt, P. A.; Huba, J. D.; Chaturvedi, P. K.; Fulford, J. A.; Forsyth, P. A.; Anderson, D. N.; Zalesak, S. T.
1993-01-01
Three methods are described to obtain ionospheric electron densities from transionospheric, rocket-beacon TEC data. First, when the line-of-sight from a ground receiver to the rocket beacon is tangent to the flight trajectory, the electron concentration can be obtained by differentiating the TEC with respect to the distance to the rocket. A similar method may be used to obtain the electron-density profile if the layer is horizontally stratified. Second, TEC data obtained during chemical release experiments may be interpreted with the aid of physical models of the disturbed ionosphere to yield spatial maps of the modified regions. Third, computerized tomography (CT) can be used to analyze TEC data obtained along a chain of ground-based receivers aligned along the plane of the rocket trajectory. CT analysis of TEC data is used to reconstruct a 2D image of a simulated equatorial plume. TEC data is computed for a linear chain of nine receivers with adjacent spacings of either 100 or 200 km. The simulation data are analyzed to provide an F region reconstruction on a grid with 15 x 15 km pixels. Ionospheric rocket tomography may also be applied to rocket-assisted measurements of amplitude and phase scintillations and airglow intensities.
Morphology-based three-dimensional segmentation of coronary artery tree from CTA scans
NASA Astrophysics Data System (ADS)
Banh, Diem Phuc T.; Kyprianou, Iacovos S.; Paquerault, Sophie; Myers, Kyle J.
2007-03-01
We developed an algorithm based on a rule-based threshold framework to segment the coronary arteries from angiographic computed tomography (CTA) data. Computerized segmentation of the coronary arteries is a challenging procedure due to the presence of diverse anatomical structures surrounding the heart on cardiac CTA data. The proposed algorithm incorporates various levels of image processing and organ information including region, connectivity and morphology operations. It consists of three successive stages. The first stage involves the extraction of the three-dimensional scaffold of the heart envelope. This stage is semiautomatic requiring a reader to review the CTA scans and manually select points along the heart envelope in slices. These points are further processed using a surface spline-fitting technique to automatically generate the heart envelope. The second stage consists of segmenting the left heart chambers and coronary arteries using grayscale threshold, size and connectivity criteria. This is followed by applying morphology operations to further detach the left and right coronary arteries from the aorta. In the final stage, the 3D vessel tree is reconstructed and labeled using an Isolated Connected Threshold technique. The algorithm was developed and tested on a patient coronary artery CTA that was graciously shared by the Department of Radiology of the Massachusetts General Hospital. The test showed that our method constantly segmented the vessels above 79% of the maximum gray-level and automatically extracted 55 of the 58 coronary segments that can be seen on the CTA scan by a reader. These results are an encouraging step toward our objective of generating high resolution models of the male and female heart that will be subsequently used as phantoms for medical imaging system optimization studies.
Airway growth and development: a computerized 3-dimensional analysis.
Schendel, Stephen A; Jacobson, Richard; Khalessi, Sadri
2012-09-01
The present study was undertaken to investigate the changes in the normal upper airway during growth and development using 3-dimensional computer analysis from cone-beam computed tomography (CBCT) data to provide a normative reference. The airway size and respiratory mode are known to have a relationship to facial morphology and the development of a malocclusion. The use of CBCT, 3-dimensional imaging, and automated computer analysis in treatment planning allows the upper airway to be precisely evaluated. In the present study, we evaluated the growth of the airway using 3-dimensional analysis and CBCT data from age 6 through old age, in 1300 normal individuals. The airway size and length increase until age 20 at which time a variable period of stability occurs. Next, the airway at first decreases slowly in size and then, after age 40, more rapidly. Normative data are provided in the present study for age groups from 6 to 60 years in relation to the airway total volume, smallest cross-sectional area and vertical length of the airway. This 3-dimensional data of the upper airway will provide a normative reference as an aid in the early understanding of respiration and dentofacial anatomy, which will help in early treatment planning. Copyright © 2012 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
2014-01-01
Background Sinusitis is a common disease in the horse. In human medicine it is described, that obstruction of the sinonasal communication plays a major role in the development of sinusitis. To get spatial sense of the equine specific communication ways between the nasal cavity and the paranasal sinuses, heads of 19 horses, aged 2 to 26 years, were analyzed using three-dimensional (3D) reformatted renderings of CT-datasets. Three-dimensional models were generated following manual and semi-automated segmentation. Before segmentation, the two-dimensional (2D) CT-images were verified against corresponding frozen sections of cadaveric heads. Results Three-dimensional analysis of the paranasal sinuses showed the bilateral existence of seven sinus compartments: rostral maxillary sinus, ventral conchal sinus, caudal maxillary sinus, dorsal conchal sinus, frontal sinus, sphenopalatine sinus and middle conchal sinus. The maxillary septum divides these seven compartments into two sinus systems: a rostral paranasal sinus system composed of the rostral maxillary sinus and the ventral conchal sinus and a caudal paranasal sinus system which comprises all other sinuses. The generated 3D models revealed a typically configuration of the sinonasal communication ways. The sinonasal communication started within the middle nasal meatus at the nasomaxillary aperture (Apertura nasomaxillaris), which opens in a common sinonasal channel (Canalis sinunasalis communis). This common sinonasal channel ramifies into a rostral sinonasal channel (Canalis sinunasalis rostralis) and a caudo-lateral sinonasal channel (Canalis sinunasalis caudalis). The rostral sinonasal channel ventilated the rostral paranasal sinus system, the caudo-lateral sinonasal channel opened into the caudal paranasal sinus system. The rostral sinonasal channel was connected to the rostral paranasal sinuses in various ways. Whereas, the caudal channel showed less anatomical variations and was in all cases connected to the caudal maxillary sinus. Volumetric measurements of the sinonasal channels showed no statistically significant differences (P <0.05) between the right and left side of the head. Conclusions Under physiologic conditions both paranasal sinus systems are connected to the nasal cavity by equine specific sinonasal channels. To resolve sinus disease it is aimed to maintain or even reconstruct the normal anatomy of the sinonasal communication by surgical intervention. Therefore, the presented 3D analyses may provide a useful basis. PMID:24646003
Technological Advances in the Study of Reading: An Introduction.
ERIC Educational Resources Information Center
Henk, William A.
1991-01-01
Describes the purpose and functional operation of new computer-driven technologies such as computerized axial tomography, positron emissions transaxial tomography, regional cerebral blood flow monitoring, magnetic resonance imaging, and brain electrical activity mapping. Outlines their current contribution to the knowledge base. Speculates on the…
Emission computerized axial tomography from multiple gamma-camera views using frequency filtering.
Pelletier, J L; Milan, C; Touzery, C; Coitoux, P; Gailliard, P; Budinger, T F
1980-01-01
Emission computerized axial tomography is achievable in any nuclear medicine department from multiple gamma camera views. Data are collected by rotating the patient in front of the camera. A simple fast algorithm is implemented, known as the convolution technique: first the projection data are Fourier transformed and then an original filter designed for optimizing resolution and noise suppression is applied; finally the inverse transform of the latter operation is back-projected. This program, which can also take into account the attenuation for single photon events, was executed with good results on phantoms and patients. We think that it can be easily implemented for specific diagnostic problems.
Software for visualization, analysis, and manipulation of laser scan images
NASA Astrophysics Data System (ADS)
Burnsides, Dennis B.
1997-03-01
The recent introduction of laser surface scanning to scientific applications presents a challenge to computer scientists and engineers. Full utilization of this two- dimensional (2-D) and three-dimensional (3-D) data requires advances in techniques and methods for data processing and visualization. This paper explores the development of software to support the visualization, analysis and manipulation of laser scan images. Specific examples presented are from on-going efforts at the Air Force Computerized Anthropometric Research and Design (CARD) Laboratory.
Moreira, Wagner; Hermann, Caio; Pereira, Jucélio Tomás; Balbinoti, Jean Anacleto; Tiossi, Rodrigo
2013-10-01
The purpose of this study was to evaluate the mechanical behavior of two different straight prosthetic abutments (one- and two-piece) for external hex butt-joint connection implants using three-dimensional finite element analysis (3D-FEA). Two 3D-FEA models were designed, one for the two-piece prosthetic abutment (2 mm in height, two-piece mini-conical abutment, Neodent) and another one for the one-piece abutment (2 mm in height, Slim Fit one-piece mini-conical abutment, Neodent), with their corresponding screws and implants (Titamax Ti, 3.75 diameter by 13 mm in length, Neodent). The model simulated the single restoration of a lower premolar using data from a computerized tomography of a mandible. The preload (20 N) after torque application for installation of the abutment and an occlusal loading were simulated. The occlusal load was simulated using average physiological bite force and direction (114.6 N in the axial direction, 17.1 N in the lingual direction and 23.4 N toward the mesial at an angle of 75° to the occlusal plan). The regions with the highest von Mises stress results were at the bottom of the initial two threads of both prosthetic abutments that were tested. The one-piece prosthetic abutment presented a more homogeneous behavior of stress distribution when compared with the two-piece abutment. Under the simulated chewing loads, the von Mises stresses for both tested prosthetic-abutments were within the tensile strength values of the materials analyzed which thus supports the clinical use of both prosthetic abutments.
Three-dimensional brain arteriovenous malformation models for clinical use and resident training.
Dong, Mengqi; Chen, Guangzhong; Li, Jianyi; Qin, Kun; Ding, Xiaowen; Peng, Chao; Zhou, Dong; Lin, Xiaofeng
2018-01-01
To fabricate three-dimensional (3D) models of brain arteriovenous malformation (bAVM) and report our experience with customized 3D printed models of patients with bAVM as an educational and clinical tool for patients, doctors, and surgical residents. Using computerized tomography angiography (CTA) or digital subtraction angiography (DSA) images, the rapid prototyping process was completed with specialized software and "in-house" 3D printing service. Intraoperative validation of model fidelity was performed by comparing to DSA images of the same patient during the endovascular treatment process. 3D bAVM models were used for preoperative patient education and consultation, surgical planning, and resident training. 3D printed bAVM models were successful made. By neurosurgeons' evaluation, the printed models precisely replicated the actual bAVM structure of the same patients (n = 7, 97% concordance, range 95%-99% with average of < 2 mm variation). The use of 3D models was associated shorter time for preoperative patient education and consultation, higher acceptable of the procedure for patients and relatives, shorter time between obtaining intraoperative DSA data and the start of endovascular treatment. Thirty surgical residents from residency programs tested the bAVM models and provided feedback on their resemblance to real bAVM structures and the usefulness of printed solid model as an educational tool. Patient-specific 3D printed models of bAVM can be constructed with high fidelity. 3D printed bAVM models were proven to be helpful in preoperative patient consultation, surgical planning, and resident training. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
Nemanic, Sarah; Mills, Serena; Viehdorfer, Matt; Clark, Terri; Bailey, Mike
Teaching the anatomy of the canine larynx and hyoid apparatus is challenging because dissection disassembles and/or damages these structures, making it difficult to understand their three-dimensional (3D) anatomy and spatial interrelationships. This study assessed the effectiveness of an interactive, computerized 3D tutorial for teaching the anatomy of the canine larynx and hyoid apparatus using a randomized control design with students enrolled in the first-year professional program at Oregon State University College of Veterinary Medicine. All first-year students from 2 consecutive years were eligible. All students received the traditional methods of didactic teaching and dissection to learn the anatomy of the canine larynx and hyoid apparatus, after which they were divided into two statistically equal groups based on their cumulative anatomy test scores from the prior term. The tutorial group received an interactive, computerized tutorial developed by the investigators containing 3D images of the canine larynx and hyoid apparatus, while the control group received the same 3D images without the computerized tutorial. Both groups received the same post-learning assessment and survey. Sixty-three first-year students participated in the study, 28 in the tutorial group, and 35 in the control group. Post-learning assessment and survey scores were both significantly higher among students in the computerized tutorial group than those in the control group. This study demonstrates that a 3D computerized tutorial is more effective in teaching the anatomy of the canine hyoid apparatus and larynx than 3D images without a tutorial. Students likewise rated their learning experience higher when using the 3D computerized tutorial.
Correlated Light and Electron Microscopy/Electron Tomography of Mitochondria In Situ
Perkins, Guy A.; Sun, Mei G.; Frey, Terrence G.
2009-01-01
Three-dimensional light microscopy and three-dimensional electron microscopy (electron tomography) separately provide very powerful tools to study cellular structure and physiology, including the structure and physiology of mitochondria. Fluorescence microscopy allows one to study processes in live cells with specific labels and stains that follow the movement of labeled proteins and changes within cellular compartments but does not have sufficient resolution to define the ultrastructure of intracellular organelles such as mitochondria. Electron microscopy and electron tomography provide the highest resolution currently available to study mitochondrial ultrastructure but cannot follow processes in living cells. We describe the combination of these two techniques in which fluorescence confocal microscopy is used to study structural and physiologic changes in mitochondria within apoptotic HeLa cells to define the apoptotic timeframe. Cells can then be selected at various stages of the apoptotic timeframe for examination at higher resolution by electron microscopy and electron tomography. This is a form of “virtual” 4-dimensional electron microscopy that has revealed interesting structural changes in the mitochondria of HeLa cells during apoptosis. The same techniques can be applied, with modification, to study other dynamic processes within cells in other experimental contexts. PMID:19348881
Mahesh, B S; P Shastry, Shilpa; S Murthy, Padmashree; Jyotsna, T R
2017-01-01
To report a rare case of large radicular cyst-associated deciduous tooth and to discuss the importance of cone beam computed tomography (CBCT) in diagnosing the condition. Radicular cyst is the most common cyst affecting the permanent teeth, but its occurrence in deciduous teeth is rare. Most of the radicular cysts are asymptomatic and are discovered accidentally when radiographs are taken. Conventional radiographs show two-dimensional images of three-dimensional objects. Cone beam computed tomography provides undistorted three-dimensional information of hard tissues and gives adequate spatial resolution. A 7-year-old child, with a complaint of swelling in the maxillary anterior region, was diagnosed with radicular cyst in relation to primary maxillary right central incisor based on CBCT and histopathological features. Early diagnosis and prompt treatment of radicular cyst in primary dentition is important to prevent damage to permanent tooth. Mahesh BS, Shastry SP, Murthy PS, Jyotsna TR. Role of Cone Beam Computed Tomography in Evaluation of Radicular Cyst mimicking Dentigerous Cyst in a 7-year-old Child: A Case Report and Literature Review. Int J Clin Pediatr Dent 2017;10(2):213-216.
Comparison of 3DCRT,VMAT and IMRT techniques in metastatic vertebra radiotherapy: A phantom Study
NASA Astrophysics Data System (ADS)
Gedik, Sonay; Tunc, Sema; Kahraman, Arda; Kahraman Cetintas, Sibel; Kurt, Meral
2017-09-01
Vertebra metastases can be seen during the prognosis of cancer patients. Treatment ways of the metastasis are radiotherapy, chemotherapy and surgery. Three-dimensional conformal therapy (3D-CRT) is widely used in the treatment of vertebra metastases. Also, Intensity Modulated Radiotherapy (IMRT) and Volumetric Arc Therapy (VMAT) are used too. The aim of this study is to examine the advantages and disadvantages of the different radiotherapy techniques. In the aspect of this goal, it is studied with a randophantom in Uludag University Medicine Faculty, Radiation Oncology Department. By using a computerized tomography image of the phantom, one 3DCRT plan, two VMAT and three IMRT plans for servical vertebra and three different 3DCRT plans, two VMAT and two IMRT plans for lomber vertebra are calculated. To calculate 3DCRT plans, CMS XiO Treatment System is used and to calculate VMAT and IMRT plans Monaco Treatment Planning System is used in the department. The study concludes with the dosimetric comparison of the treatment plans in the spect of critical organ doses, homogeneity and conformity index. As a result of this study, all critical organ doses are suitable for QUANTEC Dose Limit Report and critical organ doses depend on the techniques which used in radiotherapy. According to homogeneity and conformity indices, VMAT and IMRT plans are better than one in 3DCRT plans in servical and lomber vertebra radiotherapy plans.
NASA Astrophysics Data System (ADS)
Castellano, Isabel; Geleijns, Jacob
After its clinical introduction in 1973, computed tomography developed from an x-ray modality for axial imaging in neuroradiology into a versatile three dimensional imaging modality for a wide range of applications in for example oncology, vascular radiology, cardiology, traumatology and even in interventional radiology. Computed tomography is applied for diagnosis, follow-up studies and screening of healthy subpopulations with specific risk factors. This chapter provides a general introduction in computed tomography, covering a short history of computed tomography, technology, image quality, dosimetry, room shielding, quality control and quality criteria.
NASA Technical Reports Server (NTRS)
Vest, C. M.
1982-01-01
The use of holographic interferometry to measure two and threedimensional flows and the interpretation of multiple-view interferograms with computer tomography are discussed. Computational techniques developed for tomography are reviewed. Current research topics are outlined including the development of an automated fringe readout system, optimum reconstruction procedures for when an opaque test model is present in the field, and interferometry and tomography with strongly refracting fields and shocks.
Multiscale tomographic analysis of heterogeneous cast Al-Si-X alloys.
Asghar, Z; Requena, G; Sket, F
2015-07-01
The three-dimensional microstructure of cast AlSi12Ni and AlSi10Cu5Ni2 alloys is investigated by laboratory X-ray computed tomography, synchrotron X-ray computed microtomography, light optical tomography and synchrotron X-ray computed microtomography with submicrometre resolution. The results obtained with each technique are correlated with the size of the scanned volumes and resolved microstructural features. Laboratory X-ray computed tomography is sufficient to resolve highly absorbing aluminides but eutectic and primary Si remain unrevealed. Synchrotron X-ray computed microtomography at ID15/ESRF gives better spatial resolution and reveals primary Si in addition to aluminides. Synchrotron X-ray computed microtomography at ID19/ESRF reveals all the phases ≥ ∼1 μm in volumes about 80 times smaller than laboratory X-ray computed tomography. The volumes investigated by light optical tomography and submicrometre synchrotron X-ray computed microtomography are much smaller than laboratory X-ray computed tomography but both techniques provide local chemical information on the types of aluminides. The complementary techniques applied enable a full three-dimensional characterization of the microstructure of the alloys at length scales ranging over six orders of magnitude. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Wei, Xu-Biao; Xu, Jie; Li, Nan; Yu, Ying; Shi, Jie; Guo, Wei-Xing; Cheng, Hong-Yan; Wu, Meng-Chao; Lau, Wan-Yee; Cheng, Shu-Qun
2016-03-01
Accurate assessment of characteristics of tumor and portal vein tumor thrombus is crucial in the management of hepatocellular carcinoma. Comparison of the three-dimensional imaging with multiple-slice computed tomography in the diagnosis and treatment of hepatocellular carcinoma with portal vein tumor thrombus. Patients eligible for surgical resection were divided into the three-dimensional imaging group or the multiple-slice computed tomography group according to the type of preoperative assessment. The clinical data were collected and compared. 74 patients were enrolled into this study. The weighted κ values for comparison between the thrombus type based on preoperative evaluation and intraoperative findings were 0.87 for the three-dimensional reconstruction group (n = 31) and 0.78 for the control group (n = 43). Three-dimensional reconstruction was significantly associated with a higher rate of en-bloc resection of tumor and thrombus (P = 0.025). Using three-dimensional reconstruction, significant correlation existed between the predicted and actual volumes of the resected specimens (r = 0.82, P < 0.01), as well as the predicted and actual resection margins (r = 0.97, P < 0.01). Preoperative three-dimensional reconstruction significantly decreased tumor recurrence and tumor-related death, with hazard ratios of 0.49 (95% confidential interval, 0.27-0.90) and 0.41 (95% confidential interval, 0.21-0.78), respectively. For hepatocellular carcinoma with portal vein tumor thrombus, three-dimensional imaging was efficient in facilitating surgical treatment and benefiting postoperative survivals. Copyright © 2015 International Hepato-Pancreato-Biliary Association Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Guo; Xia, Jun; Li, Lei; Wang, Lidai; Wang, Lihong V.
2015-03-01
Linear transducer arrays are readily available for ultrasonic detection in photoacoustic computed tomography. They offer low cost, hand-held convenience, and conventional ultrasonic imaging. However, the elevational resolution of linear transducer arrays, which is usually determined by the weak focus of the cylindrical acoustic lens, is about one order of magnitude worse than the in-plane axial and lateral spatial resolutions. Therefore, conventional linear scanning along the elevational direction cannot provide high-quality three-dimensional photoacoustic images due to the anisotropic spatial resolutions. Here we propose an innovative method to achieve isotropic resolutions for three-dimensional photoacoustic images through combined linear and rotational scanning. In each scan step, we first elevationally scan the linear transducer array, and then rotate the linear transducer array along its center in small steps, and scan again until 180 degrees have been covered. To reconstruct isotropic three-dimensional images from the multiple-directional scanning dataset, we use the standard inverse Radon transform originating from X-ray CT. We acquired a three-dimensional microsphere phantom image through the inverse Radon transform method and compared it with a single-elevational-scan three-dimensional image. The comparison shows that our method improves the elevational resolution by up to one order of magnitude, approaching the in-plane lateral-direction resolution. In vivo rat images were also acquired.
Li, Yanqiu; Liu, Shi; Inaki, Schlaberg H.
2017-01-01
Accuracy and speed of algorithms play an important role in the reconstruction of temperature field measurements by acoustic tomography. Existing algorithms are based on static models which only consider the measurement information. A dynamic model of three-dimensional temperature reconstruction by acoustic tomography is established in this paper. A dynamic algorithm is proposed considering both acoustic measurement information and the dynamic evolution information of the temperature field. An objective function is built which fuses measurement information and the space constraint of the temperature field with its dynamic evolution information. Robust estimation is used to extend the objective function. The method combines a tunneling algorithm and a local minimization technique to solve the objective function. Numerical simulations show that the image quality and noise immunity of the dynamic reconstruction algorithm are better when compared with static algorithms such as least square method, algebraic reconstruction technique and standard Tikhonov regularization algorithms. An effective method is provided for temperature field reconstruction by acoustic tomography. PMID:28895930
NASA Astrophysics Data System (ADS)
Ohtani, Tomoyuki; Nakano, Tsukasa; Nakashima, Yoshito; Muraoka, Hirofumi
2001-11-01
Three-dimensional shape analysis of miarolitic cavities and enclaves from the Kakkonda granite, NE Japan, was performed by X-ray computed tomography (CT) and image analysis. The three-dimensional shape of the miarolitic cavities and enclaves was reconstructed by stacked two-dimensional CT slice images with an in-plane resolution of 0.3 mm and an inter-slice spacing of 1 mm. An ellipsoid was fitted to each reconstructed object by the image processing programs. The shortest, intermediate, and longest axes of the ellipsoids fitted to miarolitic cavities had E-W, N-S, and vertical directions, respectively. The shortest axes of the ellipsoids fitted to enclaves were sub-vertical to vertical. Three-dimensional strains calculated from miarolitic cavities and enclaves have E-W and vertical shortening, respectively. The shape characteristics of miarolitic cavities probably reflect regional stress during the late magmatic stage, and those of enclaves reflect shortening by later-intruded magma or body rotation during the early magmatic stage. The miarolitic cavities may not be strained homogeneously with the surrounding granite, because the competence of minerals is different from that of the fluid-filled cavities. Although the strain markers require sufficient contrast between their CT numbers and those of the surrounding minerals, this method has several advantages over conventional methods, including the fact that it is non-destructive, expedient, and allows direct three-dimensional observation of each object.
Cho, Jae-Hoon; Cho, Dae-Chul; Sung, Joo-Kyung
2012-01-01
We report the case of a 47-year-old man who presented with progressive paraparesis and sphincter changes over 2 weeks. Magnetic resonance imaging revealed a spinal epidural mass from T9 to L2. We performed a decompressive laminectomy and mass removal. The histopathology was consistent with a small lymphocytic lymphoma. No metastatic lesion was noted in the chest and abdomen-pelvic computerized tomography (CT) and positron emission tomography computerized tomography (PET-CT) scan. The final diagnosis was primary spinal lymphoma, so we performed chemotherapy combined with radiotherapy. At one year follow-up, he had no neurological deficit and no recurrence on neurologic and radiologic exams. Primary spinal cord lymphomas should be considered in the differential diagnosis of spinal cord tumors. Early surgical management is mandatory to achieve a recovery of neurologic function, especially if the patient has a neurological deficit. PMID:25983828
NASA Astrophysics Data System (ADS)
Klyen, Blake R.; Shavlakadze, Thea; Radley-Crabb, Hannah G.; Grounds, Miranda D.; Sampson, David D.
2011-07-01
Three-dimensional optical coherence tomography (3D-OCT) was used to image the structure and pathology of skeletal muscle tissue from the treadmill-exercised mdx mouse model of human Duchenne muscular dystrophy. Optical coherence tomography (OCT) images of excised muscle samples were compared with co-registered hematoxylin and eosin-stained and Evans blue dye fluorescence histology. We show, for the first time, structural 3D-OCT images of skeletal muscle dystropathology well correlated with co-located histology. OCT could identify morphological features of interest and necrotic lesions within the muscle tissue samples based on intrinsic optical contrast. These findings demonstrate the utility of 3D-OCT for the evaluation of small-animal skeletal muscle morphology and pathology, particularly for studies of mouse models of muscular dystrophy.
Julian, B.R.; Prisk, A.; Foulger, G.R.; Evans, J.R.; ,
1993-01-01
Local earthquake tomography - the use of earthquake signals to form a 3-dimensional structural image - is now a mature geophysical analysis method, particularly suited to the study of geothermal reservoirs, which are often seismically active and severely laterally inhomogeneous. Studies have been conducted of the Hengill (Iceland), Krafla (Iceland) and The Geysers (California) geothermal areas. All three systems are exploited for electricity and/or heat production, and all are highly seismically active. Tomographic studies of volumes a few km in dimension were conducted for each area using the method of Thurber (1983).
Verheijen, Marcel A; Algra, Rienk E; Borgström, Magnus T; Immink, George; Sourty, Erwan; Enckevort, Willem J P van; Vlieg, Elias; Bakkers, Erik P A M
2007-10-01
We have investigated the morphology of heterostructured GaP-GaAs nanowires grown by metal-organic vapor-phase epitaxy as a function of growth temperature and V/III precursor ratio. The study of heterostructured nanowires with transmission electron microscopy tomography allowed the three-dimensional morphology to be resolved, and discrimination between the effect of axial (core) and radial (shell) growth on the morphology. A temperature- and precursor-dependent structure diagram for the GaP nanowire core morphology and the evolution of the different types of side facets during GaAs and GaP shell growth were constituted.
Three-dimensional ophthalmic optical coherence tomography with a refraction correction algorithm
NASA Astrophysics Data System (ADS)
Zawadzki, Robert J.; Leisser, Christoph; Leitgeb, Rainer; Pircher, Michael; Fercher, Adolf F.
2003-10-01
We built an optical coherence tomography (OCT) system with a rapid scanning optical delay (RSOD) line, which allows probing full axial eye length. The system produces Three-dimensional (3D) data sets that are used to generate 3D tomograms of the model eye. The raw tomographic data were processed by an algorithm, which is based on Snell"s law to correct the interface positions. The Zernike polynomials representation of the interfaces allows quantitative wave aberration measurements. 3D images of our results are presented to illustrate the capabilities of the system and the algorithm performance. The system allows us to measure intra-ocular distances.
A Head in Virtual Reality: Development of A Dynamic Head and Neck Model
ERIC Educational Resources Information Center
Nguyen, Ngan; Wilson, Timothy D.
2009-01-01
Advances in computer and interface technologies have made it possible to create three-dimensional (3D) computerized models of anatomical structures for visualization, manipulation, and interaction in a virtual 3D environment. In the past few decades, a multitude of digital models have been developed to facilitate complex spatial learning of the…
Congenital Anomaly of Single Dominant Right Coronary Artery with Hypoplastic Left Coronary Artery.
Chuang, Cheng-Yen; Chen, Yen-Chou; Cheng, Ho-Shun; Hsieh, Ming-Hsiung
2015-11-01
With the popularization of new imaging technology, more people are deciding to undergo non-invasive studies such as multidetector computerized tomography (MDCT) before receiving coronary angiography. For this reason, coronary anomalies of coronary artery are being encountered more frequently. We here report a 68-year-old male presenting with typical angina. The MDCT images suggested chronic total occlusion of the left anterior descending (LAD) artery with collateral circulation from the right coronary artery (RCA). The patient's coronary angiography showed a congenital coronary anomaly with a single dominant RCA supplying the entire coronary circulation of the heart with both LAD and left circumflex artery hypoplasia. Angiography; Anomaly; Computerized tomography; Coronary artery.
NASA Astrophysics Data System (ADS)
Cushley, Alex Clay
The proposed launch of a CubeSat carrying the first space-borne ADS-B receiver by RMCC will create a unique opportunity to study the modification of radio waves following propagation through the ionosphere as the signals propagate from the transmitting aircraft to the passive satellite receiver(s). Experimental work is described which successfully demonstrated that ADS-B data can be used to reconstruct two-dimensional electron density maps of the ionosphere using techniques from computerized tomography. Ray-tracing techniques are used to determine the characteristics of individual waves, including the wave path and the state of polarization at the satellite receiver. The modelled Faraday rotation is determined and converted to TEC along the ray-paths. The resulting TEC is used as input for CIT using ART. This study concentrated on meso-scale structures 100--1000 km in horizontal extent. The primary scientific interest of this thesis was to show the feasibility of a new method to image the ionosphere and obtain a better understanding of magneto-ionic wave propagation. Keywords: Automatic Dependent Surveillance-Broadcast (ADS-B), Faraday rotation, electromagnetic (EM) waves, radio frequency (RF) propagation, ionosphere (auroral, irregularities, instruments and techniques), electron density profile, total electron content (TEC), computer ionospheric tomography (CIT), algebraic reconstruction technique (ART).
[The importance of neurological examinations in the age of the technological revolution].
Berbel-García, A; González-Spínola, J; Martínez-Salio, A; Porta-Etessam, J; Pérez-Martínez, D A; de Toledo, M; Sáiz-Díaz, R A
Neurologic practice and care have been modified in many important ways during the past ten years, to adapt to the explosion of new information and new technology. Students, residents and practicing physicians have been continuing programs to a model that focuses almost exclusively on the applications to neurologic disorders of the new knowledge obtained from biomedical research. On the other hand high demand for outpatient neurologic care prevents adequate patient's evaluation. Case 1: 65 years old female. Occipital headache diagnosed of tensional origin (normal computerized tomography). Two months later is re-evaluated due to intractable pain and hypoglossal lesion. An amplified computerized tomography revealed a occipital condyle metastasis. Case 2: 21 years old female. Clinical suspicion of demyelinating disease due to repeated facial paresis and sensitive disorder. General exploration and computerized tomography revealed temporo-mandibular joint. Case 3: 60 years old female. Valuation of anticoagulant therapy due to repeated transient ischemic attacks. She suffered from peripheral facial palsy related to auditory cholesteatoma. Neurologic education is nowadays orientated to new technologies. On the other hand, excessive demand prevents adequate valuation and a minute exploration is substituted by complementary evaluations. These situations generate diagnostic mistakes or iatrogenic. It would be important a consideration of the neurologic education profiles and fulfillment of consultations time recommendations for outpatients care.
Vafaei, Fariborz; Khoshhal, Masoumeh; Bayat-Movahed, Saeed; Ahangary, Ahmad Hassan; Firooz, Farnaz; Izady, Alireza; Rakhshan, Vahid
2011-08-01
Implant-retained mandibular ball-supported and bar-supported overlay dentures are the two most common treatment options for the edentulous mandible. The superior option in terms of strain distribution should be determined. The three-dimensional model of mandible (based on computerized tomography scan) and its overlying implant-retained bar-supported and ball-supported overlay dentures were simulated using SolidWorks, NURBS, and ANSYS Workbench. Loads A (60 N) and B (60 N) were exerted, respectively, in protrusive and laterotrusive motions, on second molar mesial, first molar mesial, and first premolar. The strain distribution patterns were assessed on (1) implant tissue, (2) first implant-bone, and (3) second implant-bone interfaces. Protrusive: Strain was mostly detected in the apical of the fixtures and least in the cervical when bar design was used. On the nonworking side, however, strain was higher in the cervical and lower in the apical compared with the working side implant. Laterotrusive: The strain values were closely similar in the two designs. It seems that both designs are acceptable in terms of stress distribution, although a superior pattern is associated with the application of bar design in protrusive motion.
NASA Astrophysics Data System (ADS)
Kim, Kyoohyun; Yoon, HyeOk; Diez-Silva, Monica; Dao, Ming; Dasari, Ramachandra R.; Park, YongKeun
2014-01-01
We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed by recourse to a diffraction algorithm from multiple two-dimensional holograms with various angles of illumination. These 3-D RI tomograms of Pf-RBCs show cellular and subcellular structures of host RBCs and invaded parasites in fine detail. Full asexual intraerythrocytic stages of parasite maturation (ring to trophozoite to schizont stages) are then systematically investigated using optical diffraction tomography algorithms. These analyses provide quantitative information on the structural and chemical characteristics of individual host Pf-RBCs, parasitophorous vacuole, and cytoplasm. The in situ structural evolution and chemical characteristics of subcellular hemozoin crystals are also elucidated.
Kim, Kyoohyun; Yoon, HyeOk; Diez-Silva, Monica; Dao, Ming; Dasari, Ramachandra R.
2013-01-01
Abstract. We present high-resolution optical tomographic images of human red blood cells (RBC) parasitized by malaria-inducing Plasmodium falciparum (Pf)-RBCs. Three-dimensional (3-D) refractive index (RI) tomograms are reconstructed by recourse to a diffraction algorithm from multiple two-dimensional holograms with various angles of illumination. These 3-D RI tomograms of Pf-RBCs show cellular and subcellular structures of host RBCs and invaded parasites in fine detail. Full asexual intraerythrocytic stages of parasite maturation (ring to trophozoite to schizont stages) are then systematically investigated using optical diffraction tomography algorithms. These analyses provide quantitative information on the structural and chemical characteristics of individual host Pf-RBCs, parasitophorous vacuole, and cytoplasm. The in situ structural evolution and chemical characteristics of subcellular hemozoin crystals are also elucidated. PMID:23797986
Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.
Wojtkowski, Maciej; Srinivasan, Vivek; Fujimoto, James G; Ko, Tony; Schuman, Joel S; Kowalczyk, Andrzej; Duker, Jay S
2005-10-01
To demonstrate high-speed, ultrahigh-resolution, 3-dimensional optical coherence tomography (3D OCT) and new protocols for retinal imaging. Ultrahigh-resolution OCT using broadband light sources achieves axial image resolutions of approximately 2 microm compared with standard 10-microm-resolution OCT current commercial instruments. High-speed OCT using spectral/Fourier domain detection enables dramatic increases in imaging speeds. Three-dimensional OCT retinal imaging is performed in normal human subjects using high-speed ultrahigh-resolution OCT. Three-dimensional OCT data of the macula and optic disc are acquired using a dense raster scan pattern. New processing and display methods for generating virtual OCT fundus images; cross-sectional OCT images with arbitrary orientations; quantitative maps of retinal, nerve fiber layer, and other intraretinal layer thicknesses; and optic nerve head topographic parameters are demonstrated. Three-dimensional OCT imaging enables new imaging protocols that improve visualization and mapping of retinal microstructure. An OCT fundus image can be generated directly from the 3D OCT data, which enables precise and repeatable registration of cross-sectional OCT images and thickness maps with fundus features. Optical coherence tomography images with arbitrary orientations, such as circumpapillary scans, can be generated from 3D OCT data. Mapping of total retinal thickness and thicknesses of the nerve fiber layer, photoreceptor layer, and other intraretinal layers is demonstrated. Measurement of optic nerve head topography and disc parameters is also possible. Three-dimensional OCT enables measurements that are similar to those of standard instruments, including the StratusOCT, GDx, HRT, and RTA. Three-dimensional OCT imaging can be performed using high-speed ultrahigh-resolution OCT. Three-dimensional OCT provides comprehensive visualization and mapping of retinal microstructures. The high data acquisition speeds enable high-density data sets with large numbers of transverse positions on the retina, which reduces the possibility of missing focal pathologies. In addition to providing image information such as OCT cross-sectional images, OCT fundus images, and 3D rendering, quantitative measurement and mapping of intraretinal layer thickness and topographic features of the optic disc are possible. We hope that 3D OCT imaging may help to elucidate the structural changes associated with retinal disease as well as improve early diagnosis and monitoring of disease progression and response to treatment.
NASA Astrophysics Data System (ADS)
Li, Xun; Li, Xu; Zhu, Shanan; He, Bin
2009-05-01
Magnetoacoustic tomography with magnetic induction (MAT-MI) is a recently proposed imaging modality to image the electrical impedance of biological tissue. It combines the good contrast of electrical impedance tomography with the high spatial resolution of sonography. In this paper, a three-dimensional MAT-MI forward problem was investigated using the finite element method (FEM). The corresponding FEM formulae describing the forward problem are introduced. In the finite element analysis, magnetic induction in an object with conductivity values close to biological tissues was first carried out. The stimulating magnetic field was simulated as that generated from a three-dimensional coil. The corresponding acoustic source and field were then simulated. Computer simulation studies were conducted using both concentric and eccentric spherical conductivity models with different geometric specifications. In addition, the grid size for finite element analysis was evaluated for the model calibration and evaluation of the corresponding acoustic field.
Medium-scale traveling ionospheric disturbances by three-dimensional ionospheric GPS tomography
NASA Astrophysics Data System (ADS)
Chen, C. H.; Saito, A.; Lin, C. H.; Yamamoto, M.; Suzuki, S.; Seemala, G. K.
2016-02-01
In this study, we develop a three-dimensional ionospheric tomography with the ground-based global position system (GPS) total electron content observations. Because of the geometric limitation of GPS observation path, it is difficult to solve the ill-posed inverse problem for the ionospheric electron density. Different from methods given by pervious studies, we consider an algorithm combining the least-square method with a constraint condition, in which the gradient of electron density tends to be smooth in the horizontal direction and steep in the vicinity of the ionospheric F2 peak. This algorithm is designed to be independent of any ionospheric or plasmaspheric electron density models as the initial condition. An observation system simulation experiment method is applied to evaluate the performance of the GPS ionospheric tomography in detecting ionospheric electron density perturbation at the scale size of around 200 km in wavelength, such as the medium-scale traveling ionospheric disturbances.
Li, Xun; Li, Xu; Zhu, Shanan; He, Bin
2010-01-01
Magnetoacoustic Tomography with Magnetic Induction (MAT-MI) is a recently proposed imaging modality to image the electrical impedance of biological tissue. It combines the good contrast of electrical impedance tomography with the high spatial resolution of sonography. In this paper, three-dimensional MAT-MI forward problem was investigated using the finite element method (FEM). The corresponding FEM formulas describing the forward problem are introduced. In the finite element analysis, magnetic induction in an object with conductivity values close to biological tissues was first carried out. The stimulating magnetic field was simulated as that generated from a three-dimensional coil. The corresponding acoustic source and field were then simulated. Computer simulation studies were conducted using both concentric and eccentric spherical conductivity models with different geometric specifications. In addition, the grid size for finite element analysis was evaluated for model calibration and evaluation of the corresponding acoustic field. PMID:19351978
Entropic Comparison of Atomic-Resolution Electron Tomography of Crystals and Amorphous Materials.
Collins, S M; Leary, R K; Midgley, P A; Tovey, R; Benning, M; Schönlieb, C-B; Rez, P; Treacy, M M J
2017-10-20
Electron tomography bears promise for widespread determination of the three-dimensional arrangement of atoms in solids. However, it remains unclear whether methods successful for crystals are optimal for amorphous solids. Here, we explore the relative difficulty encountered in atomic-resolution tomography of crystalline and amorphous nanoparticles. We define an informational entropy to reveal the inherent importance of low-entropy zone-axis projections in the reconstruction of crystals. In turn, we propose considerations for optimal sampling for tomography of ordered and disordered materials.
Computer-assisted surgical planning and automation of laser delivery systems
NASA Astrophysics Data System (ADS)
Zamorano, Lucia J.; Dujovny, Manuel; Dong, Ada; Kadi, A. Majeed
1991-05-01
This paper describes a 'real time' surgical treatment planning interactive workstation, utilizing multimodality imaging (computer tomography, magnetic resonance imaging, digital angiography) that has been developed to provide the neurosurgeon with two-dimensional multiplanar and three-dimensional 'display' of a patient's lesion.
Witcomb, Luci A; Czupryna, Julie; Francis, Kevin P; Frankel, Gad; Taylor, Peter W
2017-08-15
In contrast to two-dimensional bioluminescence imaging, three dimensional diffuse light imaging tomography with integrated micro-computed tomography (DLIT-μCT) has the potential to realise spatial variations in infection patterns when imaging experimental animals dosed with derivatives of virulent bacteria carrying bioluminescent reporter genes such as the lux operon from the bacterium Photorhabdus luminescens. The method provides an opportunity to precisely localise the bacterial infection sites within the animal and enables the generation of four-dimensional movies of the infection cycle. Here, we describe the use of the PerkinElmer IVIS SpectrumCT in vivo imaging system to investigate progression of lethal systemic infection in neonatal rats following colonisation of the gastrointestinal tract with the neonatal pathogen Escherichia coli K1. We confirm previous observations that these bacteria stably colonize the colon and small intestine following feeding of the infectious dose from a micropipette; invading bacteria migrate across the gut epithelium into the blood circulation and establish foci of infection in major organs, including the brain. DLIT-μCT revealed novel multiple sites of colonisation within the alimentary canal, including the tongue, oesophagus and stomach, with penetration of the non-keratinised oesophageal epithelial surface, providing strong evidence of a further major site for bacterial dissemination. We highlight technical issues associated with imaging of infections in new born rat pups and show that the whole-body and organ bioburden correlates with disease severity. Copyright © 2017 Elsevier Inc. All rights reserved.
Carlton, Holly D.; Elmer, John W.; Li, Yan; ...
2016-04-13
For this study synchrotron radiation micro-tomography, a non-destructive three-dimensional imaging technique, is employed to investigate an entire microelectronic package with a cross-sectional area of 16 x 16 mm. Due to the synchrotron’s high flux and brightness the sample was imaged in just 3 minutes with an 8.7 μm spatial resolution.
Compton imaging tomography technique for NDE of large nonuniform structures
NASA Astrophysics Data System (ADS)
Grubsky, Victor; Romanov, Volodymyr; Patton, Ned; Jannson, Tomasz
2011-09-01
In this paper we describe a new nondestructive evaluation (NDE) technique called Compton Imaging Tomography (CIT) for reconstructing the complete three-dimensional internal structure of an object, based on the registration of multiple two-dimensional Compton-scattered x-ray images of the object. CIT provides high resolution and sensitivity with virtually any material, including lightweight structures and organics, which normally pose problems in conventional x-ray computed tomography because of low contrast. The CIT technique requires only one-sided access to the object, has no limitation on the object's size, and can be applied to high-resolution real-time in situ NDE of large aircraft/spacecraft structures and components. Theoretical and experimental results will be presented.
Nakamura, Keiko; Tajima, Kiyoshi; Chen, Ker-Kong; Nagamatsu, Yuki; Kakigawa, Hiroshi; Masumi, Shin-ich
2013-12-01
This study focused on the application of novel finite-element analysis software for constructing a finite-element model from the computed tomography data of a human dentulous mandible. The finite-element model is necessary for evaluating the mechanical response of the alveolar part of the mandible, resulting from occlusal force applied to the teeth during biting. Commercially available patient-specific general computed tomography-based finite-element analysis software was solely applied to the finite-element analysis for the extraction of computed tomography data. The mandibular bone with teeth was extracted from the original images. Both the enamel and the dentin were extracted after image processing, and the periodontal ligament was created from the segmented dentin. The constructed finite-element model was reasonably accurate using a total of 234,644 nodes and 1,268,784 tetrahedral and 40,665 shell elements. The elastic moduli of the heterogeneous mandibular bone were determined from the bone density data of the computed tomography images. The results suggested that the software applied in this study is both useful and powerful for creating a more accurate three-dimensional finite-element model of a dentulous mandible from the computed tomography data without the need for any other software.
X-ray tomographic image magnification process, system and apparatus therefor
Kinney, J.H.; Bonse, U.K.; Johnson, Q.C.; Nichols, M.C.; Saroyan, R.A.; Massey, W.N.; Nusshardt, R.
1993-09-14
A computerized three-dimensional x-ray tomographic microscopy system is disclosed, comprising: (a) source means for providing a source of parallel x-ray beams, (b) staging means for staging and sequentially rotating a sample to be positioned in the path of the (c) x-ray image magnifier means positioned in the path of the beams downstream from the sample, (d) detecting means for detecting the beams after being passed through and magnified by the image magnifier means, and (e) computing means for analyzing values received from the detecting means, and converting the values into three-dimensional representations. Also disclosed is a process for magnifying an x-ray image, and apparatus therefor. 25 figures.
X-ray tomographic image magnification process, system and apparatus therefor
Kinney, John H.; Bonse, Ulrich K.; Johnson, Quintin C.; Nichols, Monte C.; Saroyan, Ralph A.; Massey, Warren N.; Nusshardt, Rudolph
1993-01-01
A computerized three-dimensional x-ray tomographic microscopy system is disclosed, comprising: a) source means for providing a source of parallel x-ray beams, b) staging means for staging and sequentially rotating a sample to be positioned in the path of the c) x-ray image magnifier means positioned in the path of the beams downstream from the sample, d) detecting means for detecting the beams after being passed through and magnified by the image magnifier means, and e) computing means for analyzing values received from the detecting means, and converting the values into three-dimensional representations. Also disclosed is a process for magnifying an x-ray image, and apparatus therefor.
Motion Estimation and Compensation Strategies in Dynamic Computerized Tomography
NASA Astrophysics Data System (ADS)
Hahn, Bernadette N.
2017-12-01
A main challenge in computerized tomography consists in imaging moving objects. Temporal changes during the measuring process lead to inconsistent data sets, and applying standard reconstruction techniques causes motion artefacts which can severely impose a reliable diagnostics. Therefore, novel reconstruction techniques are required which compensate for the dynamic behavior. This article builds on recent results from a microlocal analysis of the dynamic setting, which enable us to formulate efficient analytic motion compensation algorithms for contour extraction. Since these methods require information about the dynamic behavior, we further introduce a motion estimation approach which determines parameters of affine and certain non-affine deformations directly from measured motion-corrupted Radon-data. Our methods are illustrated with numerical examples for both types of motion.
Larrieu, A J; Puglia, E; Allen, P
1982-08-01
The case of a patient who survived strut fracture and embolization of a Björk-Shiley mitral prosthetic disc is presented. Prompt surgical treatment was directly responsible for survival. In addition, computerized axial tomography of the abdomen aided in localizing and retrieving the embolized disc, which was lodged at the origin of the superior mesenteric artery. A review of similar case reports from the literature supports our conclusions that the development of acute heart failure and absent or muffled prosthetic heart sounds in a patient with a Björk-Shiley prosthetic heart valve inserted prior to 1978 should raise the possibility of valve dysfunction and lead to early reoperation.
Synchrotron radiation CT from the micro to nanoscale for the investigation of bone tissue
NASA Astrophysics Data System (ADS)
Peyrin, Francoise; Dong, Pei; Pacureanu, Alexandra; Zuluaga, Maria; Olivier, Cécile; Langer, Max; Cloetens, Peter
2012-10-01
During the last decade, X-ray micro Computerized Tomography (CT) has become a conventional technique for the three-dimensional (3D) investigation of trabecular bone micro-architecture. Coupling micro-CT to synchrotron sources possesses significant advantages in terms of image quality and gives access to information on bone mineralization which is an important factor of bone quality. We present an overview of the investigation of bone using Synchrotron Radiation (SR) CT from the micro to the nano scale. We introduce two synchrotron CT systems developed at the ESRF based on SR parallel-beam micro-CT and magnified phase CT respectively, achieving down to submicrometric and nanometric spatial resolution. In the latter, by using phase retrieval prior to tomographic reconstruction, the system provides maps of the 3D refractive index distribution. Parallel-beam SR micro-CT has extensively been used for the analysis of trabecular or cortical bone in human or small animals with spatial resolution in the range [3-10] μm. However, the characterization of the bone properties at the cellular scale is also of major interest. At the micrometric scale, the shape, density and morphology of osteocyte lacunae can be studied on statistically representative volumes. At the nanometric scale, unprecedented 3D displays of the canaliculi network have been obtained on fields of views including a large number of interconnected osteocyte lacunae. Finally SR magnified phase CT provides a detailed analysis of the lacuno-canalicular network and in addition information on the organization of the collagen fibers. These findings open new perspectives for three-dimensional quantitative assessment of bone tissue at the cellular scale.
Chung, Hyemoon; Jeon, Byunghwan; Chang, Hyuk-Jae; Han, Dongjin; Shim, Hackjoon; Cho, In Jeong; Shim, Chi Young; Hong, Geu-Ru; Kim, Jung-Sun; Jang, Yangsoo; Chung, Namsik
2015-12-01
After left atrial appendage (LAA) device closure, peri-device leakage into the LAA persists due to incomplete occlusion. We hypothesized that pre-procedural three-dimensional (3D) geometric analysis of the interatrial septum (IAS) and LAA orifice can predict this leakage. We investigated the predictive parameters of LAA device closure obtained from baseline cardiac computerized tomography (CT) using a novel 3D analysis system. We conducted a retrospective study of 22 patients who underwent LAA device closure. We defined peri-device leakage as the presence of a Doppler signal inside the LAA after device deployment (group 2, n = 5) compared with patients without peri-device leakage (group 1, n = 17). Conventional parameters were measured by cardiac CT. Angles θ and φ were defined between the IAS plane and the line, linking the LAA orifice center and foramen ovale. Group 2 exhibited significantly better left atrial (LA) function than group 1 (p = 0.031). Pre-procedural θ was also larger in this group (41.9° vs. 52.3°, p = 0.019). The LAA cauliflower-type morphology was more common in group 2. Overall, the patients' LA reserve significantly decreased after the procedure (21.7 mm(3) vs. 17.8 mm(3), p = 0.035). However, we observed no significant interval changes in pre- and post-procedural values of θ and φ in either group (all p > 0.05). Angles between the IAS and LAA orifice might be a novel anatomical parameter for predicting peri-device leakage after LAA device closure. In addition, 3D CT analysis of the LA and LAA orifice could be used to identify clinically favorable candidates for LAA device closure.
I, Zarei; S, Khajehpour; A, Sabouri; AZ, Haghnegahdar; K, Jafari
2016-01-01
Statement of Problem: Impacts and accidents are considered as the main fac- tors in losing the teeth, so the analysis and design of the implants that they can be more resistant against impacts is very important. One of the important nu- merical methods having widespread application in various fields of engineering sciences is the finite element method. Among its wide applications, the study of distribution of power in complex structures can be noted. Objectives: The aim of this research was to assess the geometric effect and the type of implant thread on its performance; we also made an attempt to determine the created stress using finite element method. Materials and Methods: In this study, the three dimensional model of bone by using Cone Beam Computerized Tomography (CBCT) of the patient has been provided. The implants in this study are designed by Solid Works software. Loading is simulated in explicit dynamic, by struck of a rigid body with the speed of 1 mm/s to implant vertically and horizontally; and the maximum level of induced stress for the cortical and trabecular bone in the ANSYS Workbench software was calculated. Results: By considering the results of this study, it was identified that, among the designed samples, the maximum imposed stress in the cortical bone layer occurred in the first group (straight threads) and the maximum stress value in the trabecular bone layer and implant occurred in the second group (tapered threads). Conclusions: Due to the limitations of this study, the implants with more depth thread, because of the increased contact surface of the implant with the bone, caused more stability; also, the implant with smaller thread and shorter pitch length caused more stress to the bone. PMID:28959748
Tissue Engineering Applications of Three-Dimensional Bioprinting.
Zhang, Xiaoying; Zhang, Yangde
2015-07-01
Recent advances in tissue engineering have adapted the additive manufacturing technology, also known as three-dimensional printing, which is used in several industrial applications, for the fabrication of bioscaffolds and viable tissue and/or organs to overcome the limitations of other in vitro conventional methods. 3D bioprinting technology has gained enormous attention as it enabled 3D printing of a multitude of biocompatible materials, different types of cells and other supporting growth factors into complex functional living tissues in a 3D format. A major advantage of this technology is its ability for simultaneously 3D printing various cell types in defined spatial locations, which makes this technology applicable to regenerative medicine to meet the need for suitable for transplantation suitable organs and tissues. 3D bioprinting is yet to successfully overcome the many challenges related to building 3D structures that closely resemble native organs and tissues, which are complex structures with defined microarchitecture and a variety of cell types in a confined area. An integrated approach with a combination of technologies from the fields of engineering, biomaterials science, cell biology, physics, and medicine is required to address these complexities. Meeting this challenge is being made possible by directing the 3D bioprinting to manufacture biomimetic-shaped 3D structures, using organ/tissue images, obtained from magnetic resonance imaging and computerized tomography, and employing computer-aided design and manufacturing technologies. Applications of 3D bioprinting include the generation of multilayered skin, bone, vascular grafts, heart valves, etc. The current 3D bioprinting technologies need to be improved with respect to the mechanical strength and integrity in the manufactured constructs as the presently used biomaterials are not of optimal viscosity. A better understanding of the tissue/organ microenvironment, which consists of multiple types of cells, is imperative for successful 3D bioprinting.
Becker, Kathrin; Klitzsch, Inka; Stauber, Martin; Schwarz, Frank
2017-06-01
To (i) assess the impact of insertion depth and abutment microstructure on the three-dimensional crestal bone-level changes at endosseous titanium implant using μCT and computerized image processing and (ii) to correlate the findings with previously reported histology. Titanium implants (conical abutment connection) were inserted in each hemimandible of n = 6 foxhounds with the implant shoulder (IS) located either in epicrestal (0 mm), supracrestal (+1 mm) or subcrestal (-1 mm) positions and randomly (split-mouth design) connected with machined or partially micro-grooved healing abutments. At 20 weeks, the tissue biopsies were processed for μCT and histological (HI) analyses. The volumetric dehiscence profile around the implants was computed as distance between the implant shoulder (IS) and the most coronal bone-to-implant contact (CBI) using MATLAB. The respective buccal and oral values were averaged, and agreement with the respective IS-CBI scores from HI was assessed using Bland-Altman plots. A median net bone gain was observed for supracrestal insertion depths at both abutment types, but lower bounds of the 75% quartile experienced net bone losses. Epicrestal and subcrestal insertion depths were linked to slight bone losses, and the buccal and oral dehiscences were smaller compared to supracrestal positioning. Bland-Altman plots yielded a moderate agreement of IS-CBI values measured with μCT and HI. The novel image processing method allowed reliable evaluations and pointed to a direct impact of insertion depths on crestal bone-level changes. Additionally, it demonstrated that HI morphometry crucially depends on the chosen cutting position. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Parallelized Bayesian inversion for three-dimensional dental X-ray imaging.
Kolehmainen, Ville; Vanne, Antti; Siltanen, Samuli; Järvenpää, Seppo; Kaipio, Jari P; Lassas, Matti; Kalke, Martti
2006-02-01
Diagnostic and operational tasks based on dental radiology often require three-dimensional (3-D) information that is not available in a single X-ray projection image. Comprehensive 3-D information about tissues can be obtained by computerized tomography (CT) imaging. However, in dental imaging a conventional CT scan may not be available or practical because of high radiation dose, low-resolution or the cost of the CT scanner equipment. In this paper, we consider a novel type of 3-D imaging modality for dental radiology. We consider situations in which projection images of the teeth are taken from a few sparsely distributed projection directions using the dentist's regular (digital) X-ray equipment and the 3-D X-ray attenuation function is reconstructed. A complication in these experiments is that the reconstruction of the 3-D structure based on a few projection images becomes an ill-posed inverse problem. Bayesian inversion is a well suited framework for reconstruction from such incomplete data. In Bayesian inversion, the ill-posed reconstruction problem is formulated in a well-posed probabilistic form in which a priori information is used to compensate for the incomplete information of the projection data. In this paper we propose a Bayesian method for 3-D reconstruction in dental radiology. The method is partially based on Kolehmainen et al. 2003. The prior model for dental structures consist of a weighted l1 and total variation (TV)-prior together with the positivity prior. The inverse problem is stated as finding the maximum a posteriori (MAP) estimate. To make the 3-D reconstruction computationally feasible, a parallelized version of an optimization algorithm is implemented for a Beowulf cluster computer. The method is tested with projection data from dental specimens and patient data. Tomosynthetic reconstructions are given as reference for the proposed method.
I, Zarei; S, Khajehpour; A, Sabouri; Az, Haghnegahdar; K, Jafari
2016-06-01
Impacts and accidents are considered as the main fac- tors in losing the teeth, so the analysis and design of the implants that they can be more resistant against impacts is very important. One of the important nu- merical methods having widespread application in various fields of engineering sciences is the finite element method. Among its wide applications, the study of distribution of power in complex structures can be noted. The aim of this research was to assess the geometric effect and the type of implant thread on its performance; we also made an attempt to determine the created stress using finite element method. In this study, the three dimensional model of bone by using Cone Beam Computerized Tomography (CBCT) of the patient has been provided. The implants in this study are designed by Solid Works software. Loading is simulated in explicit dynamic, by struck of a rigid body with the speed of 1 mm/s to implant vertically and horizontally; and the maximum level of induced stress for the cortical and trabecular bone in the ANSYS Workbench software was calculated. By considering the results of this study, it was identified that, among the designed samples, the maximum imposed stress in the cortical bone layer occurred in the first group (straight threads) and the maximum stress value in the trabecular bone layer and implant occurred in the second group (tapered threads). Due to the limitations of this study, the implants with more depth thread, because of the increased contact surface of the implant with the bone, caused more stability; also, the implant with smaller thread and shorter pitch length caused more stress to the bone.
NASA Astrophysics Data System (ADS)
Sikorski, B. L.; Szkulmowski, M.; Kałużny, J. J.; Bajraszewski, T.; Kowalczyk, A.; Wojtkowski, M.
2008-02-01
The ability to obtain reliable information on functional status of photoreceptor layer is essential for assessing vision impairment in patients with macular diseases. The reconstruction of three-dimensional retinal structure in vivo using Spectral Optical Coherence Tomography (Spectral OCT) became possible with a recent progress of the OCT field. Three-dimensional data collected by Spectral OCT devices comprise information on light intensity back-reflected from the junction between photoreceptor outer and inner segments (IS/OS) and thus can be used for evaluating photoreceptors impairment. In this paper, we introduced so called Spectral OCT reflectivity maps - a new method of selecting and displaying the spatial distribution of reflectivity of individual retinal layers. We analyzed the reflectivity of the IS/OS layer in various macular diseases. We have measured eyes of 49 patients with photoreceptor dysfunction in course of age-related macular degeneration, macular holes, central serous chorioretinopathy, acute zonal occult outer retinopathy, multiple evanescent white dot syndrome, acute posterior multifocal placoid pigment epitheliopathy, drug-induced retinopathy and congenital disorders.
Three-Dimensional Optical Coherence Tomography
NASA Technical Reports Server (NTRS)
Gutin, Mikhail; Wang, Xu-Ming; Gutin, Olga
2009-01-01
Three-dimensional (3D) optical coherence tomography (OCT) is an advanced method of noninvasive infrared imaging of tissues in depth. Heretofore, commercial OCT systems for 3D imaging have been designed principally for external ophthalmological examination. As explained below, such systems have been based on a one-dimensional OCT principle, and in the operation of such a system, 3D imaging is accomplished partly by means of a combination of electronic scanning along the optical (Z) axis and mechanical scanning along the two axes (X and Y) orthogonal to the optical axis. In 3D OCT, 3D imaging involves a form of electronic scanning (without mechanical scanning) along all three axes. Consequently, the need for mechanical adjustment is minimal and the mechanism used to position the OCT probe can be correspondingly more compact. A 3D OCT system also includes a probe of improved design and utilizes advanced signal- processing techniques. Improvements in performance over prior OCT systems include finer resolution, greater speed, and greater depth of field.
Three-dimensional concentration mapping of organic blends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roehling, John D.; Batenburg, Kees J.; Swain, F. B.
2013-05-06
We quantitatively measure the three-dimensional morphology of mixed organic layers using high-angle annular darkfield scanning transmission electron microscopy (HAADF-STEM) with electron tomography for the first time. The mixed organic layers used for organic photovoltaic applications have not been previously imaged using STEM tomography as there is insufficient contrast between donor and acceptor components. We generate contrast by substituting fullerenes with endohedral fullerenes that contain a Lu3N cluster within the fullerene cage. The high contrast and signal-to-noise ratio, in combination with use of the discrete algebraic reconstruction technique (DART), allowed us to generate the most detailed and accurate three-dimensional map ofmore » BHJ morphology to date. From the STEM tomography reconstructions we determined that three distinct material phases are present within the BHJs. By observation of the changes to morphology and mixing ratio that occur during thermal and solvent annealing, we are able to determine how mutual solubility and fullerene crystallization affect the formation of morphology and long term stability of the material mixture. This material/technique combination shows itself as a powerful tool for examining morphology in detail and allows for observation of nanoscopic changes in local concentration. This research was supported in part by Laboratory Directed Research & Development program at PNNL. The Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy under contract DE-AC05-76RL01830.« less
Measurement of impinging butane flame using combined optical system with digital speckle tomography
NASA Astrophysics Data System (ADS)
Ko, Han Seo; Ahn, Seong Soo; Kim, Hyun Jung
2011-11-01
Three-dimensional density distributions of an impinging and eccentric flame were measured experimentally using a combined optical system with digital speckle tomography. In addition, a three-dimensional temperature distribution of the flame was reconstructed from an ideal gas equation based on the reconstructed density data. The flame was formed by the ignition of premixed butane/air from air holes and impinged upward against a plate located 24 mm distance from the burner nozzle. In order to verify the reconstruction process for the experimental measurements, numerically synthesized phantoms of impinging and eccentric flames were derived and reconstructed using a developed three-dimensional multiplicative algebraic reconstruction technique (MART). A new scanning technique was developed for the accurate analysis of speckle displacements necessary for investigating the wall jet regions of the impinging flame at which a sharp variation of the flow direction and pressure gradient occur. The reconstructed temperatures by the digital speckle tomography were applied to the boundary condition for numerical analysis of a flame impinged plate. Then, the numerically calculated temperature distribution of the upper side of the flame impinged plate was compared to temperature data taken by an infrared camera. The absolute average uncertainty between the numerical and infrared camera data was 3.7%.
Sakakibara, Shunsuke; Onishi, Hiroyuki; Hashikawa, Kazunobu; Akashi, Masaya; Sakakibara, Akiko; Nomura, Tadashi; Terashi, Hiroto
2015-05-01
Most free flap reconstruction complications involve vascular compromise. Evaluation of vascular anatomy provides considerable information that can potentially minimize these complications. Previous reports have shown that contrast-enhanced computed tomography is effective for understanding three-dimensional arterial anatomy. However, most vascular complications result from venous thromboses, making imaging of venous anatomy highly desirable. The phase-lag computed tomography angiography (pl-CTA) technique involves 64-channel (virtually, 128-channel) multidetector CT and is used to acquire arterial images using conventional CTA. Venous images are three-dimensionally reconstructed using a subtraction technique involving combined venous phase and arterial phase images, using a computer workstation. This technique was used to examine 48 patients (12 lower leg reconstructions, 34 head and neck reconstructions, and 2 upper extremity reconstructions) without complications. The pl-CTA technique can be used for three-dimensional visualization of peripheral veins measuring approximately 1 mm in diameter. The pl-CTA information was especially helpful for secondary free flap reconstructions in the head and neck region after malignant tumor recurrence. In such cases, radical dissection of the neck was performed as part of the first operation, and many vessels, including veins, were resected and used in the first free-tissue transfer. The pl-CTA images also allowed visualization of varicose changes in the lower leg region and helped us avoid selecting those vessels for anastomosis. Thus, the pl-CTA-derived venous anatomy information was useful for exact evaluations during the planning of free-tissue transfers. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
DOT National Transportation Integrated Search
2013-04-01
This report covers the work performed under the FRA High-Speed BAA 20102011 program to demonstrate the technology of ultrasonic tomography for 3-D imaging of internal rail flaws. There is a need to develop new technologies that are able to quantif...
Computed tomography guided localization of clinically occult breast carcinoma-the ''N'' skin guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopans, D.B.; Meyer, J.E.
1982-10-01
Standard computed tomography (CT) can be used for the three-dimensional localization of clinically occult suspicious breast lesions whose exact position cannot be determined by standard mammographic views. A method is described that facilitates accurate preoperative needle localization using CT guidance, once the position of these lesions is defined.
NASA Astrophysics Data System (ADS)
Netzeband, Christian; Arlt, Tobias; Wippermann, Klaus; Lehnert, Werner; Manke, Ingo
2016-09-01
This study investigates the ageing effects on the microstructure of the anode catalyst layer of direct methanol fuel cells (DMFC) after complete methanol starvation. To this end the samples of two methanol-depleted membrane electrode assemblies (MEA) have been compared with a pristine reference sample. A three-dimensional characterization of the anode catalyst layer (ACL) structure on a nanometer scale has been conducted by focused ion beam (FIB)/scanning electron microscope (SEM) tomography. The FIB/SEM tomography allows for a detailed analysis of statistic parameters of micro-structured materials, such as porosity, tortuosity and pore size distributions. Furthermore, the SEM images displayed a high material contrast between the heavy catalyst metals (Pt/Ru) and the relatively light carbon support, which made it possible to map the catalyst distribution in the acquired FIB/SEM tomographies. Additional synchrotron X-ray tomographies have been conducted in order to obtain an overview of the structural changes of all the components of a section of the MEAs after methanol depletion.
NASA Astrophysics Data System (ADS)
Galmed, A. H.; du Plessis, A.; le Roux, S. G.; Hartnick, E.; Von Bergmann, H.; Maaza, M.
2018-01-01
Laboratory X-ray computed tomography is an emerging technology for the 3D characterization and dimensional analysis of many types of materials. In this work we demonstrate the usefulness of this characterization method for the full three dimensional analysis of laser ablation craters, in the context of a laser induced breakdown spectroscopy setup. Laser induced breakdown spectroscopy relies on laser ablation for sampling the material of interest. We demonstrate here qualitatively (in images) and quantitatively (in terms of crater cone angles, depths, diameters and volume) laser ablation crater analysis in 3D for metal (aluminum) and rock (false gold ore). We show the effect of a Gaussian beam profile on the resulting crater geometry, as well as the first visual evidence of undercutting in the rock sample, most likely due to ejection of relatively large grains. The method holds promise for optimization of laser ablation setups especially for laser induced breakdown spectroscopy.
Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography.
Yu, Young-Sang; Farmand, Maryam; Kim, Chunjoong; Liu, Yijin; Grey, Clare P; Strobridge, Fiona C; Tyliszczak, Tolek; Celestre, Rich; Denes, Peter; Joseph, John; Krishnan, Harinarayan; Maia, Filipe R N C; Kilcoyne, A L David; Marchesini, Stefano; Leite, Talita Perciano Costa; Warwick, Tony; Padmore, Howard; Cabana, Jordi; Shapiro, David A
2018-03-02
Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a set of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices.
Li, Changqing; Zhao, Hongzhi; Anderson, Bonnie; Jiang, Huabei
2006-03-01
We describe a compact diffuse optical tomography system specifically designed for breast imaging. The system consists of 64 silicon photodiode detectors, 64 excitation points, and 10 diode lasers in the near-infrared region, allowing multispectral, three-dimensional optical imaging of breast tissue. We also detail the system performance and optimization through a calibration procedure. The system is evaluated using tissue-like phantom experiments and an in vivo clinic experiment. Quantitative two-dimensional (2D) and three-dimensional (3D) images of absorption and reduced scattering coefficients are obtained from these experiments. The ten-wavelength spectra of the extracted reduced scattering coefficient enable quantitative morphological images to be reconstructed with this system. From the in vivo clinic experiment, functional images including deoxyhemoglobin, oxyhemoglobin, and water concentration are recovered and tumors are detected with correct size and position compared with the mammography.
Young, Michael C; Theis, Jake R; Hodges, James S; Dunn, Ty B; Pruett, Timothy L; Chinnakotla, Srinath; Walker, Sidney P; Freeman, Martin L; Trikudanathan, Guru; Arain, Mustafa; Robertson, Paul R; Wilhelm, Joshua J; Schwarzenberg, Sarah J; Bland, Barbara; Beilman, Gregory J; Bellin, Melena D
2016-08-01
Approximately two thirds of patients will remain on insulin therapy after total pancreatectomy with islet autotransplant (TPIAT) for chronic pancreatitis. We investigated the relationship between measured pancreas volume on computerized tomography or magnetic resonance imaging and features of chronic pancreatitis on imaging, with subsequent islet isolation and diabetes outcomes. Computerized tomography or magnetic resonance imaging was reviewed for pancreas volume (Vitrea software) and presence or absence of calcifications, atrophy, and dilated pancreatic duct in 97 patients undergoing TPIAT. Relationship between these features and (1) islet mass isolated and (2) diabetes status at 1-year post-TPIAT were evaluated. Pancreas volume correlated with islet mass measured as total islet equivalents (r = 0.50, P < 0.0001). Mean islet equivalents were reduced by more than half if any one of calcifications, atrophy, or ductal dilatation were observed. Pancreatic calcifications increased the odds of insulin dependence 4.0 fold (1.1, 15). Collectively, the pancreas volume and 3 imaging features strongly associated with 1-year insulin use (P = 0.07), islet graft failure (P = 0.003), hemoglobin A1c (P = 0.0004), fasting glucose (P = 0.027), and fasting C-peptide level (P = 0.008). Measures of pancreatic parenchymal destruction on imaging, including smaller pancreas volume and calcifications, associate strongly with impaired islet mass and 1-year diabetes outcomes.
Computerized tomography in neuro-ophthalmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moseley, I.F.; Sanders, M.D.
This highly specialized text is organized into sections that cover anatomy, diseases of the orbit, visual loss, optic nerve disease, disorders of eye movement, and heredofamilial, developmental, and metabolic disorders.
Time-resolved seismic tomography detects magma intrusions at Mount Etna.
Patanè, D; Barberi, G; Cocina, O; De Gori, P; Chiarabba, C
2006-08-11
The continuous volcanic and seismic activity at Mount Etna makes this volcano an important laboratory for seismological and geophysical studies. We used repeated three-dimensional tomography to detect variations in elastic parameters during different volcanic cycles, before and during the October 2002-January 2003 flank eruption. Well-defined anomalous low P- to S-wave velocity ratio volumes were revealed. Absent during the pre-eruptive period, the anomalies trace the intrusion of volatile-rich (>/=4 weight percent) basaltic magma, most of which rose up only a few months before the onset of eruption. The observed time changes of velocity anomalies suggest that four-dimensional tomography provides a basis for more efficient volcano monitoring and short- and midterm eruption forecasting of explosive activity.
Fractal Dimensionality of Pore and Grain Volume of a Siliciclastic Marine Sand
NASA Astrophysics Data System (ADS)
Reed, A. H.; Pandey, R. B.; Lavoie, D. L.
Three-dimensional (3D) spatial distributions of pore and grain volumes were determined from high-resolution computer tomography (CT) images of resin-impregnated marine sands. Using a linear gradient extrapolation method, cubic three-dimensional samples were constructed from two-dimensional CT images. Image porosity (0.37) was found to be consistent with the estimate of porosity by water weight loss technique (0.36). Scaling of the pore volume (Vp) with the linear size (L), V~LD provides the fractal dimensionalities of the pore volume (D=2.74+/-0.02) and grain volume (D=2.90+/-0.02) typical for sedimentary materials.
Experimental validation of a linear model for data reduction in chirp-pulse microwave CT.
Miyakawa, M; Orikasa, K; Bertero, M; Boccacci, P; Conte, F; Piana, M
2002-04-01
Chirp-pulse microwave computerized tomography (CP-MCT) is an imaging modality developed at the Department of Biocybernetics, University of Niigata (Niigata, Japan), which intends to reduce the microwave-tomography problem to an X-ray-like situation. We have recently shown that data acquisition in CP-MCT can be described in terms of a linear model derived from scattering theory. In this paper, we validate this model by showing that the theoretically computed response function is in good agreement with the one obtained from a regularized multiple deconvolution of three data sets measured with the prototype of CP-MCT. Furthermore, the reliability of the model as far as image restoration in concerned, is tested in the case of space-invariant conditions by considering the reconstruction of simple on-axis cylindrical phantoms.
Computerized PET/CT image analysis in the evaluation of tumour response to therapy
Wang, J; Zhang, H H
2015-01-01
Current cancer therapy strategy is mostly population based, however, there are large differences in tumour response among patients. It is therefore important for treating physicians to know individual tumour response. In recent years, many studies proposed the use of computerized positron emission tomography/CT image analysis in the evaluation of tumour response. Results showed that computerized analysis overcame some major limitations of current qualitative and semiquantitative analysis and led to improved accuracy. In this review, we summarize these studies in four steps of the analysis: image registration, tumour segmentation, image feature extraction and response evaluation. Future works are proposed and challenges described. PMID:25723599
Three-dimensional Architecture of Hair-bundle Linkages Revealed by Electron-microscopic Tomography
Auer, Manfred; Koster, Abrahram J.; Ziese, Ulrike; Bajaj, Chandrajit; Volkmann, Niels; Wang, Da Neng
2008-01-01
The senses of hearing and balance rest upon mechanoelectrical transduction by the hair bundles of hair cells in the inner ear. Located at the apical cellular surface, each hair bundle comprises several tens of stereocilia and a single kinocilium that are interconnected by extracellular proteinaceous links. Using electron-microscopic tomography of bullfrog saccular sensory epithelia, we examined the three-dimensional structures of basal links, kinociliary links, and tip links. We observed significant differences in the appearances and dimensions of these three structures and found two distinct populations of tip links suggestive of the involvement of different proteins, splice variants, or protein–protein interactions. We noted auxiliary links connecting the upper portions of tip links to the taller stereocilia. Tip links and auxiliary links show a tendency to adopt a globular conformation when disconnected from the membrane surface. PMID:18421501
Mochizuki, Yumi; Omura, Ken; Nakamura, Shin; Harada, Hiroyuki; Shibuya, Hitoshi; Kurabayashi, Toru
2012-02-01
This study aimed to construct a preoperative predictive model of cervical lymph node metastasis using fluorine-18 fluorodeoxyglucose positron-emission tomography/computerized tomography ((18)F-FDG PET/CT) findings in patients with oral or oropharyngeal squamous cell carcinoma (SCC). Forty-nine such patients undergoing preoperative (18)F-FDG PET/CT and neck dissection or lymph node biopsy were enrolled. Retrospective comparisons with spatial correlation between PET/CT and the anatomical sites based on histopathological examinations of surgical specimens were performed. We calculated a logistic regression model, including the SUVmax-related variable. When using the optimal cutoff point criterion of probabilities calculated from the model that included either clinical factors and delayed-phase SUVmax ≥0.087 or clinical factors and maximum standardized uptake (SUV) increasing rate (SUV-IR) ≥ 0.100, it significantly increased the sensitivity, specificity, and accuracy (87.5%, 65.7%, and 75.2%, respectively). The use of predictive models that include clinical factors and delayed-phase SUVmax and SUV-IR improve preoperative nodal diagnosis. Copyright © 2012 Elsevier Inc. All rights reserved.
... monitor the brain's activity and detect abnormalities. Single-photon emission computerized tomography (SPECT). The scan image varies ... off anti-seizure drugs after a year or two. By Mayo Clinic Staff . Mayo Clinic Footer Legal ...
... your doctor might order additional imaging called single-photon emission computerized tomography (SPECT). This imaging can help ... radioactivity from the tracers is usually completely eliminated two days after the scan. Results A doctor who ...
Huo, Jun; Liu, Zhong-Yuan; Wang, Ke-Feng; Xu, Zhen-Qun
2015-09-01
This study was conducted to evaluate the chemical composition of eight types of urinary calculi using spiral computerized tomography (CT) in vivo. From October 2011 to February 2013, upper urinary tract calculi were obtained from 122 patients in the department of urinary surgery of the First Affiliated Hospital of Soochow University. All patients were scanned with a 64-detector row helical CT scanner using 6.50 mm collimation before ureterorenoscopy. Data from the preoperative spiral CT scans and postoperative chemical composition of urinary calculi were collected. The chemical composition analysis indicates that there were five types of pure calculi and three types of mixed calculi, including 39 calcium oxalate calculi, 12 calcium phosphate calculi, 10 calcium carbonate calculi, 8 magnesium ammonium phosphate calculi, 6 carbonated apatite, 21 uric acid/ammonium urate calculi, 10 uric acid/calcium oxalate calculi, and 16 calcium oxalate/calcium phosphate calculi. There were significant differences in the mean CT values among the five types of pure calculi (P < 0.001). Furthermore, we also observed significant differences in the mean CT values among three types of mixed calculi (P < 0.001). Significant differences in the mean CT values were also found among eight types of urinary calculi (P < 0.001). However, no statistically significant difference was observed between the mean CT values of magnesium ammonium phosphate calculi and uric acid/calcium oxalate calculi (P = 0.262). Our findings suggest that spiral CT could be a promising tool for determining the chemical composition of upper urinary tract calculi. © 2014 Wiley Periodicals, Inc.
Three-dimensional imaging modalities in endodontics
Mao, Teresa
2014-01-01
Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337
Miura, Masahiro; Hong, Young-Joo; Yasuno, Yoshiaki; Muramatsu, Daisuke; Iwasaki, Takuya; Goto, Hiroshi
2015-03-01
To evaluate the 3-dimensional architecture of neovascularization in proliferative diabetic retinopathy using Doppler optical coherence tomography (OCT). Prospective, nonrandomized clinical trial. Seventeen eyes of 14 patients with proliferative diabetic retinopathy were prospectively studied. Prototype Doppler OCT was used to evaluate the 3-dimensional vascular architecture at vitreoretinal adhesions. Proliferative membranes were detected in all eyes with proliferative diabetic retinopathy by standard OCT images. Doppler OCT images detected blood flow by neovascularization of the disc in 12 eyes and neovascularization elsewhere in 11 eyes. Doppler OCT images showed the 3-dimensional extent of new vessels at various stages of neovascularization, and the extent of new vessels could be clearly confirmed at vitreoretinal adhesions. Doppler OCT is useful for the detection and evaluation of the 3-dimensional vascular structure of neovascularization, and can assist in the noninvasive assessment of proliferative diabetic retinopathy. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Direct coupling of tomography and ptychography
Gürsoy, Doğa
2017-08-09
We present a generalization of the ptychographic phase problem for recovering refractive properties of a three-dimensional object in a tomography setting. Our approach, which ignores the lateral overlapping probe requirements in existing ptychography algorithms, can enable the reconstruction of objects using highly flexible acquisition patterns and pave the way for sparse and rapid data collection with lower radiation exposure.
Grubsky, Victor; Romanoov, Volodymyr; Shoemaker, Keith; Patton, Edward Matthew; Jannson, Tomasz
2016-02-02
A Compton tomography system comprises an x-ray source configured to produce a planar x-ray beam. The beam irradiates a slice of an object to be imaged, producing Compton-scattered x-rays. The Compton-scattered x-rays are imaged by an x-ray camera. Translation of the object with respect to the source and camera or vice versa allows three-dimensional object imaging.
Institute for Science and Engineering Simulation (ISES)
2015-12-18
performance and other functionalities such as electrical , magnetic, optical, thermal, biological, chemical, and so forth. Structural integrity...transmission electron microscopy (HRSTEM) and three-dimensional atom probe (3DAP) tomography , the true atomic scale structure and change in chemical...atom probe tomography (3DAP) techniques, has permitted characterizing and quantifying the multimodal size distribution of different generations of γ
Fractal tomography and its application in 3D vision
NASA Astrophysics Data System (ADS)
Trubochkina, N.
2018-01-01
A three-dimensional artistic fractal tomography method that implements a non-glasses 3D visualization of fractal worlds in layered media is proposed. It is designed for the glasses-free 3D vision of digital art objects and films containing fractal content. Prospects for the development of this method in art galleries and the film industry are considered.
Cystic lung disease in birt-hogg-dubé syndrome: a case series of three patients.
Kilincer, Abidin; Ariyurek, Orhan Macit; Karabulut, Nevzat
2014-06-01
Birt-Hogg-Dubé syndrome is characterized by clinical manifestations such as hamartomas of the skin, renal tumors and lung cysts with spontaneous pneumothoraces. Patients with Birt-Hogg-Dubé syndrome may present with only multiple lung cysts. We report the chest computerized tomography (CT) features of three patients with Birt-Hogg-Dubé syndrome. Each patient had multiple lung cysts of various sizes according to chest CT evaluation, most of which were located in lower lobes and related to pleura. The identification of unique characteristics in the chest CT of patients with Birt-Hogg-Dubé syndrome may provide an efficient mechanism for diagnosis.
NASA Astrophysics Data System (ADS)
Cao, Liji; Peter, Jörg
2013-06-01
The adoption of axially oriented line illumination patterns for fluorescence excitation in small animals for fluorescence surface imaging (FSI) and fluorescence optical tomography (FOT) is being investigated. A trimodal single-photon-emission-computed-tomography/computed-tomography/optical-tomography (SPECT-CT-OT) small animal imaging system is being modified for employment of point- and line-laser excitation sources. These sources can be arbitrarily positioned around the imaged object. The line source is set to illuminate the object along its entire axial direction. Comparative evaluation of point and line illumination patterns for FSI and FOT is provided involving phantom as well as mouse data. Given the trimodal setup, CT data are used to guide the optical approaches by providing boundary information. Furthermore, FOT results are also being compared to SPECT. Results show that line-laser illumination yields a larger axial field of view (FOV) in FSI mode, hence faster data acquisition, and practically acceptable FOT reconstruction throughout the whole animal. Also, superimposed SPECT and FOT data provide additional information on similarities as well as differences in the distribution and uptake of both probe types. Fused CT data enhance further the anatomical localization of the tracer distribution in vivo. The feasibility of line-laser excitation for three-dimensional fluorescence imaging and tomography is demonstrated for initiating further research, however, not with the intention to replace one by the other.
Intact Imaging of Human Heart Structure Using X-ray Phase-Contrast Tomography.
Kaneko, Yukihiro; Shinohara, Gen; Hoshino, Masato; Morishita, Hiroyuki; Morita, Kiyozo; Oshima, Yoshihiro; Takahashi, Masashi; Yagi, Naoto; Okita, Yutaka; Tsukube, Takuro
2017-02-01
Structural examination of human heart specimens at the microscopic level is a prerequisite for understanding congenital heart diseases. It is desirable not to destroy or alter the properties of such specimens because of their scarcity. However, many of the currently available imaging techniques either destroy the specimen through sectioning or alter the chemical and mechanical properties of the specimen through staining and contrast agent injection. As a result, subsequent studies may not be possible. X-ray phase-contrast tomography is an imaging modality for biological soft tissues that does not destroy or alter the properties of the specimen. The feasibility of X-ray phase-contrast tomography for the structural examination of heart specimens was tested using infantile and fetal heart specimens without congenital diseases. X-ray phase-contrast tomography was carried out at the SPring-8 synchrotron radiation facility using the Talbot grating interferometer at the bending magnet beamline BL20B2 to visualize the structure of five non-pretreated whole heart specimens obtained by autopsy. High-resolution, three-dimensional images were obtained for all specimens. The images clearly showed the myocardial structure, coronary vessels, and conduction bundle. X-ray phase-contrast tomography allows high-resolution, three-dimensional imaging of human heart specimens. Intact imaging using X-ray phase-contrast tomography can contribute to further structural investigation of heart specimens with congenital heart diseases.
2014-09-01
to develop an optimized system design and associated image reconstruction algorithms for a hybrid three-dimensional (3D) breast imaging system that...research is to develop an optimized system design and associated image reconstruction algorithms for a hybrid three-dimensional (3D) breast imaging ...i) developed time-of- flight extraction algorithms to perform USCT, (ii) developing image reconstruction algorithms for USCT, (iii) developed
... seen on a brain-imaging test, such as magnetic resonance imaging (MRI) or computerized tomography (CT). On ... A cohort study. PLOS One. 2013;8:e71467. Magnetic resonance imaging (MRI). National Multiple Sclerosis Society. http:// ...
... tests Chest x-ray CT (computerized tomography, or advanced imaging) scan EKG (electrocardiogram, or heart tracing) Fluids ... Stanton BF, St. Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; ...
CT stands for computerized tomography. In this procedure, a thin X-ray beam is rotated around the ... D image of a section through the body. CT scans are very detailed and provide excellent information ...
CT stands for computerized tomography. In this procedure, a thin X-ray beam is rotated around the ... D image of a section through the body. CT scans are very detailed and provide excellent information ...
NASA Astrophysics Data System (ADS)
Gurbani, Saumya S.; Wilkening, Paul; Zhao, Mingtao; Gonenc, Berk; Cheon, Gyeong Woo; Iordachita, Iulian I.; Chien, Wade; Taylor, Russell H.; Niparko, John K.; Kang, Jin U.
2014-05-01
Cochlear implantation offers the potential to restore sensitive hearing in patients with severe to profound deafness. However, surgical placement of the electrode array within the cochlea can produce trauma to sensorineural components, particularly if the initial turn of the cochlea is not successfully navigated as the array is advanced. In this work, we present a robot-mounted common-path swept-source optical coherence tomography endoscopic platform for three-dimensional (3-D) optical coherence tomography (OCT) registration and preoperative surgical planning for cochlear implant surgery. The platform is composed of a common-path 600-μm diameter fiber optic rotary probe attached to a five degrees of freedom robot capable of 1 μm precision movement. The system is tested on a dry fixed ex vivo human temporal bone, and we demonstrate the feasibility of a 3-D OCT registration of the cochlea to accurately describe the spatial and angular profiles of the canal formed by the scala tympani into the first cochlear turn.
Three-dimensional visualization of gammaherpesvirus life cycle in host cells by electron tomography.
Peng, Li; Ryazantsev, Sergey; Sun, Ren; Zhou, Z Hong
2010-01-13
Gammaherpesviruses are etiologically associated with human tumors. A three-dimensional (3D) examination of their life cycle in the host is lacking, significantly limiting our understanding of the structural and molecular basis of virus-host interactions. Here, we report the first 3D visualization of key stages of the murine gammaherpesvirus 68 life cycle in NIH 3T3 cells, including viral attachment, entry, assembly, and egress, by dual-axis electron tomography. In particular, we revealed the transient processes of incoming capsids injecting viral DNA through nuclear pore complexes and nascent DNA being packaged into progeny capsids in vivo as a spool coaxial with the putative portal vertex. We discovered that intranuclear invagination of both nuclear membranes is involved in nuclear egress of herpesvirus capsids. Taken together, our results provide the structural basis for a detailed mechanistic description of gammaherpesvirus life cycle and also demonstrate the advantage of electron tomography in dissecting complex cellular processes of viral infection.
Carotid Angioplasty and Stenting
... and of the blood flow to the brain. Magnetic resonance angiography (MRA) or computerized tomography angiography (CTA). ... vessels by using either radiofrequency waves in a magnetic field or by using X-rays with contrast ...
... tests Chest x-ray CT (computerized tomography, or advanced imaging) scan EKG (electrocardiogram, or heart tracing) Fluids ... Stanton BF, St. Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; ...
... either using computerized axial tomography (CAT) scans or magnetic resonance imaging (MRI) – can help to identify strokes and tumors, which can sometimes cause memory loss. “The goal is to rule out factors ...
Taylor, Susan; Ringelberg, David B; Dontsova, Katerina; Daghlian, Charles P; Walsh, Marianne E; Walsh, Michael R
2013-11-01
Two compounds, 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO) are the main ingredients in a suite of explosive formulations that are being, or soon will be, fielded at military training ranges. We aim to understand the dissolution characteristics of DNAN and NTO and three insensitive muntions (IM) formulations that contain them. This information is needed to accurately predict the environmental fate of IM constituents, some of which may be toxic to people and the environment. We used Raman spectroscopy to identify the different constituents in the IM formulations and micro computed tomography to image their three-dimensional structure. These are the first three-dimensional images of detonated explosive particles. For multi-component explosives the solubility of the individual constituents and the fraction of each constituent wetted by water controls the dissolution. We found that the order of magnitude differences in solubility amongst the constituents of these IM formulations quickly produced hole-riddled particles when these were exposed to water. Micro-computed tomography showed that particles resulting from field detonations were fractured, producing conduits by which water could access the interior of the particle. We think that micro-computed tomography can also be used to determine the initial composition of IM particles and to track how their compositions change as the particles dissolve. This information is critical to quantifying dissolution and developing physically based dissolution models. Published by Elsevier Ltd.
Diffraction mode terahertz tomography
Ferguson, Bradley; Wang, Shaohong; Zhang, Xi-Cheng
2006-10-31
A method of obtaining a series of images of a three-dimensional object. The method includes the steps of transmitting pulsed terahertz (THz) radiation through the entire object from a plurality of angles, optically detecting changes in the transmitted THz radiation using pulsed laser radiation, and constructing a plurality of imaged slices of the three-dimensional object using the detected changes in the transmitted THz radiation. The THz radiation is transmitted through the object as a two-dimensional array of parallel rays. The optical detection is an array of detectors such as a CCD sensor.
Wu, Yuefeng Rose; Rego, Lauren L; Christie, Alana L; Lavelle, Rebecca S; Alhalabi, Feras; Zimmern, Philippe E
2016-08-01
We compared the rates of upper tract imaging abnormalities of recurrent urinary tract infections due to bacterial persistence or reinfection. Following institutional review board approval we reviewed a prospectively maintained database of women with documented recurrent urinary tract infections (3 or more per year) and trigonitis. We searched for demographic data, urine culture findings and findings on radiology interpreted upper tract imaging, including renal ultrasound, computerized tomography or excretory urogram. Patients with irretrievable images, absent or incomplete urine culture results for review, no imaging performed, an obvious source of recurrent urinary tract infections or a history of pyelonephritis were excluded from analysis. Of 289 women from 2006 to 2014 with symptomatic recurrent urinary tract infections 116 met study inclusion criteria. Mean ± SD age was 65.0 ± 14.4 years. Of the women 95% were white and 81% were postmenopausal. Almost a third were sexually active and none had prolapse stage 2 or greater. Of the 116 women 48 (41%) had persistent and 68 (59%) had reinfection recurrent urinary tract infection. Imaging included ultrasound in 52 patients, computerized tomography in 26, ultrasound and computerized tomography in 31, and excretory urogram with ultrasound/computerized tomography in 7. Of the total of 58 imaging findings in 55 women 57 (98%) were noncontributory. One case (0.9%) of mild hydronephrosis was noted in the persistent recurrent urinary tract infection group but it was not related to any clinical parameters. Escherichia coli was the dominant bacteria in 71% of persistent and 47% of reinfection recurrent urinary tract infections in the most recently reported urine culture. This study reaffirms that upper tract imaging is not indicated for bacterial reinfection, recurrent urinary tract infections. However, the same conclusion can be extended to recurrent urinary tract infections secondary to bacterial persistence, thus, questioning the routine practice of upper tract studies in white postmenopausal women with recurrent urinary tract infections and trigonitis. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Three dimensional rock microstructures: insights from FIB-SEM tomography
NASA Astrophysics Data System (ADS)
Drury, Martyn; Pennock, Gill; de Winter, Matthijs
2016-04-01
Most studies of rock microstructures investigate two-dimensional sections or thin slices of three dimensional grain structures. With advances of X-ray and electron tomography methods the 3-D microstructure can be(relatively) routinely investigated on scales from a few microns to cm. 3D studies are needed to investigate the connectivity of microstructures and to test the assumptions we use to calculate 3D properties from 2D sections. We have used FIB-SEM tomography to study the topology of melts in synthetic olivine rocks, 3D crystal growth microstructures, pore networks and subgrain structures. The technique uses a focused ion beam to make serial sections with a spacing of tens to hundreds of nanometers. Each section is then imaged or mapped using the electron beam. The 3D geometry of grains and subgrains can be investigated using orientation contrast or EBSD mapping. FIB-SEM tomography of rocks and minerals can be limited by charging of the uncoated surfaces exposed by the ion beam. The newest generation of FIB-SEMs have much improved low voltage imaging capability allowing high resolution charge free imaging. Low kV FIB-SEM tomography is now widely used to study the connectivity of pore networks. In-situ fluids can also be studied using cryo-FIB-SEM on frozen samples, although special freezing techniques are needed to avoid artifacts produced by ice crystallization. FIB-SEM tomography is complementary, in terms of spatial resolution and sampled volume, to TEM tomography and X-ray tomography, and the combination of these methods can cover a wide range of scales. Our studies on melt topology in synthetic olivine rocks with a high melt content show that many grain boundaries are wetted by nanometre scale melt layers that are too thin to resolve by X-ray tomography. A variety of melt layer geometries occur consistent with several mechanisms of melt layer formation. The nature of melt geometries along triple line junctions and quadruple points can be resolved. Quadruple point junctions between four grains cannot be investigated in 2D studies. 3D microstructural studies suggest that triple lines and quadruple points are important sites for the initiation of recrystallization, reaction and fracture.
Computerized Dead-Space Volume Measurement of Face Masks Applied to Simulated Faces.
Amirav, Israel; Luder, Anthony S; Halamish, Asaf; Marzuk, Chatib; Daitzchman, Marcelo; Newhouse, Michael T
2015-09-01
The dead-space volume (VD) of face masks for metered-dose inhaler treatments is particularly important in infants and young children with asthma, who have relatively low tidal volumes. Data about VD have been traditionally obtained from water displacement measurements, in which masks are held against a flat surface. Because, in real life, masks are placed against the face, VD is likely to differ considerably between masks depending upon their contour and fit. The aim of this study was to develop an accurate and reliable way to measure VD electronically and to apply this technique by comparing the electronic VD of commonly available face masks. Average digital faces were obtained from 3-dimensional images of 270 infants and children. Commonly used face masks (small and medium) from various manufacturers (Monaghan Medical, Pari Respiratory Equipment, Philips Respironics, and InspiRx) were scanned and digitized by means of computed tomography. Each mask was electronically applied to its respective digital face, and the VD enclosed (mL) was computerized and precisely measured. VD varied between 22.6 mL (SootherMask, InspiRx) and 43.1 mL (Vortex, Pari) for small masks and between 41.7 mL (SootherMask) and 71.5 mL (AeroChamber, Monaghan Medical) for medium masks. These values were significantly lower and less variable than measurements obtained by water displacement. Computerized techniques provide an innovative and relatively simple way of accurately measuring the VD of face masks applied to digital faces. As determined by computerized measurement using average-size virtual faces, the InspiRx masks had a significantly smaller VD for both small and medium masks compared with the other masks. This is of considerable importance with respect to aerosol dose and delivery time, particularly in young children. (ClinicalTrials.gov registration NCT01274299.). Copyright © 2015 by Daedalus Enterprises.
DOE R&D Accomplishments Database
Hansche, B. D.
1983-01-01
Computed tomography (CT) is a relatively new radiographic technique which has become widely used in the medical field, where it is better known as computerized axial tomographic (CAT) scanning. This technique is also being adopted by the industrial radiographic community, although the greater range of densities, variation in samples sizes, plus possible requirement for finer resolution make it difficult to duplicate the excellent results that the medical scanners have achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Dario Ferreira; Weleguela, Monica Larissa Djomeni; Audoit, Guillaume
2014-10-28
Here, white X-ray μ-beam Laue diffraction is developed and applied to investigate elastic strain distributions in three-dimensional (3D) materials, more specifically, for the study of strain in Cu 10 μm diameter–80 μm deep through-silicon vias (TSVs). Two different approaches have been applied: (i) two-dimensional μ-Laue scanning and (ii) μ-beam Laue tomography. 2D μ-Laue scans provided the maps of the deviatoric strain tensor integrated along the via length over an array of TSVs in a 100 μm thick sample prepared by Focused Ion Beam. The μ-beam Laue tomography analysis enabled to obtain the 3D grain and elemental distribution of both Cu and Si. Themore » position, size (about 3 μm), shape, and orientation of Cu grains were obtained. Radial profiles of the equivalent deviatoric strain around the TSVs have been derived through both approaches. The results from both methods are compared and discussed.« less
Cone beam computed tomography in Endodontics - a review.
Patel, S; Durack, C; Abella, F; Shemesh, H; Roig, M; Lemberg, K
2015-01-01
Cone beam computed tomography (CBCT) produces undistorted three-dimensional information of the maxillofacial skeleton, including the teeth and their surrounding tissues with a lower effective radiation dose than computed tomography. The aim of this paper is to: (i) review the current literature on the applications and limitations of CBCT; (ii) make recommendations for the use of CBCT in Endodontics; (iii) highlight areas of further research of CBCT in Endodontics. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Peng, Wei; Wang, Fei; Liu, Jun-yan; Xiao, Peng; Wang, Yang; Dai, Jing-min
2018-04-01
Pulse phase dynamic thermal tomography (PP-DTT) was introduced as a nondestructive inspection technique to detect the defects of the solid-propellant missile engine cladding layer. One-dimensional thermal wave mathematical model stimulated by pulse signal was developed and employed to investigate the thermal wave transmission characteristics. The pulse phase algorithm was used to extract the thermal wave characteristic of thermal radiation. Depth calibration curve was obtained by fuzzy c-means algorithm. Moreover, PP-DTT, a depth-resolved photothermal imaging modality, was employed to enable three-dimensional (3D) visualization of cladding layer defects. The comparison experiment between PP-DTT and classical dynamic thermal tomography was investigated. The results showed that PP-DTT can reconstruct the 3D topography of defects in a high quality.
Compton imaging tomography for nondestructive evaluation of spacecraft thermal protection systems
NASA Astrophysics Data System (ADS)
Romanov, Volodymyr; Burke, Eric; Grubsky, Victor
2017-02-01
Here we present new results of in situ nondestructive evaluation (NDE) of spacecraft thermal protection system materials obtained with POC-developed NDE tool based on a novel Compton Imaging Tomography (CIT) technique recently pioneered and patented by Physical Optics Corporation (POC). In general, CIT provides high-resolution three-dimensional Compton scattered X-ray imaging of the internal structure of evaluated objects, using a set of acquired two-dimensional Compton scattered X-ray images of consecutive cross sections of these objects. Unlike conventional computed tomography, CIT requires only one-sided access to objects, has no limitation on the dimensions and geometry of the objects, and can be applied to large multilayer non-uniform objects with complicated geometries. Also, CIT does not require any contact with the objects being imaged during its application.
Men, Kuo; Dai, Jianrong
2017-12-01
To develop a projection quality-driven tube current modulation method in cone-beam computed tomography for image-guided radiotherapy based on the prior attenuation information obtained by the planning computed tomography and then evaluate its effect on a reduction in the imaging dose. The QCKV-1 phantom with different thicknesses (0-400 mm) of solid water upon it was used to simulate different attenuation (μ). Projections were acquired with a series of tube current-exposure time product (mAs) settings, and a 2-dimensional contrast to noise ratio was analyzed for each projection to create a lookup table of mAs versus 2-dimensional contrast to noise ratio, μ. Before a patient underwent computed tomography, the maximum attenuation [Formula: see text] within the 95% range of each projection angle (θ) was estimated according to the planning computed tomography images. Then, a desired 2-dimensional contrast to noise ratio value was selected, and the mAs setting at θ was calculated with the lookup table of mAs versus 2-dimensional contrast to noise ratio,[Formula: see text]. Three-dimensional cone-beam computed tomography images were reconstructed using the projections acquired with the selected mAs. The imaging dose was evaluated with a polymethyl methacrylate dosimetry phantom in terms of volume computed tomography dose index. Image quality was analyzed using a Catphan 503 phantom with an oval body annulus and a pelvis phantom. For the Catphan 503 phantom, the cone-beam computed tomography image obtained by the projection quality-driven tube current modulation method had a similar quality to that of conventional cone-beam computed tomography . However, the proposed method could reduce the imaging dose by 16% to 33% to achieve an equivalent contrast to noise ratio value. For the pelvis phantom, the structural similarity index was 0.992 with a dose reduction of 39.7% for the projection quality-driven tube current modulation method. The proposed method could reduce the additional dose to the patient while not degrading the image quality for cone-beam computed tomography. The projection quality-driven tube current modulation method could be especially beneficial to patients who undergo cone-beam computed tomography frequently during a treatment course.
Castorina, Sergio; Luca, Tonia; Privitera, Giovanna; Riccioli, Vincenzo
2010-01-01
In this paper, we describe two cases of anomalous origin of the left coronary artery and two cases of aneurysm on the left coronary artery. Detailed three-dimensional images were acquired by the multislice computed tomography (MSCT) SOMATOM Sensation Cardiac 64 during clinical studies of cardiac diseases. Copyright 2010. Published by Elsevier Inc.
Akhtar, Saeed; Alkhalaf, Mousa; Khan, Adnan A; Almubrad, Turki M
2016-08-01
We report ultrastructural features and transmission electron tomography of the dhub lizard (Uromastyx aegyptia) cornea and its adaptation to hot and dry environments. Six corneas of dhub lizards were fixed in 2.5% glutaraldehyde and processed for electron microscopy and tomography. The ultrathin sections were observed with a JEOL 1400 transmission electron microscope. The cornea of the dhub lizard is very thin (~28-30 µm). The epithelium constitutes ~14% of the cornea, whereas the stroma constitutes 80% of the cornea. The middle stromal lamellae are significantly thicker than anterior and posterior stromal lamellae. Collagen fibril (CF) diameters in the anterior stroma are variable in size (25-75 nm). Proteoglycans (PGs) are very large in the middle and posterior stroma, whereas they are small in the anterior stroma. Three-dimensional electron tomography was carried out to understand the structure and arrangement of the PG and CFs. The presence of large PGs in the posterior and middle stroma might help the animal retain a large amount of water to protect it from dryness. The dhub corneal structure is equipped to adapt to the dry and hot desert environment.
Three-dimensional electrical impedance tomography based on the complete electrode model.
Vauhkonen, P J; Vauhkonen, M; Savolainen, T; Kaipio, J P
1999-09-01
In electrical impedance tomography an approximation for the internal resistivity distribution is computed based on the knowledge of the injected currents and measured voltages on the surface of the body. It is often assumed that the injected currents are confined to the two-dimensional (2-D) electrode plane and the reconstruction is based on 2-D assumptions. However, the currents spread out in three dimensions and, therefore, off-plane structures have significant effect on the reconstructed images. In this paper we propose a finite element-based method for the reconstruction of three-dimensional resistivity distributions. The proposed method is based on the so-called complete electrode model that takes into account the presence of the electrodes and the contact impedances. Both the forward and the inverse problems are discussed and results from static and dynamic (difference) reconstructions with real measurement data are given. It is shown that in phantom experiments with accurate finite element computations it is possible to obtain static images that are comparable with difference images that are reconstructed from the same object with the empty (saline filled) tank as a reference.
NASA Astrophysics Data System (ADS)
Hori, Yasuaki; Yasuno, Yoshiaki; Sakai, Shingo; Matsumoto, Masayuki; Sugawara, Tomoko; Madjarova, Violeta; Yamanari, Masahiro; Makita, Shuichi; Yasui, Takeshi; Araki, Tsutomu; Itoh, Masahide; Yatagai, Toyohiko
2006-03-01
A set of fully automated algorithms that is specialized for analyzing a three-dimensional optical coherence tomography (OCT) volume of human skin is reported. The algorithm set first determines the skin surface of the OCT volume, and a depth-oriented algorithm provides the mean epidermal thickness, distribution map of the epidermis, and a segmented volume of the epidermis. Subsequently, an en face shadowgram is produced by an algorithm to visualize the infundibula in the skin with high contrast. The population and occupation ratio of the infundibula are provided by a histogram-based thresholding algorithm and a distance mapping algorithm. En face OCT slices at constant depths from the sample surface are extracted, and the histogram-based thresholding algorithm is again applied to these slices, yielding a three-dimensional segmented volume of the infundibula. The dermal attenuation coefficient is also calculated from the OCT volume in order to evaluate the skin texture. The algorithm set examines swept-source OCT volumes of the skins of several volunteers, and the results show the high stability, portability and reproducibility of the algorithm.
Three-Dimensional Computer Graphics Brain-Mapping Project
1988-03-24
1975-76, one of these brains was hand digitized. It was then reconstructed three dimensionally, using an Evans and Sutherland Picture System 2. This...Yakovlev Collection, we use the Evans and Sutherland Picture System 2 which we have been employing for this purpose for a dozen years. Its virtue is...careful, experimentally designed new protocol (See Figure 20). Most of these heads were imaged with Computed Tomography, thanks to Clint Stiles of Picker
Haberfehlner, Georg; Thaler, Philipp; Knez, Daniel; Volk, Alexander; Hofer, Ferdinand; Ernst, Wolfgang E.; Kothleitner, Gerald
2015-01-01
Structure, shape and composition are the basic parameters responsible for properties of nanoscale materials, distinguishing them from their bulk counterparts. To reveal these in three dimensions at the nanoscale, electron tomography is a powerful tool. Advancing electron tomography to atomic resolution in an aberration-corrected transmission electron microscope remains challenging and has been demonstrated only a few times using strong constraints or extensive filtering. Here we demonstrate atomic resolution electron tomography on silver/gold core/shell nanoclusters grown in superfluid helium nanodroplets. We reveal morphology and composition of a cluster identifying gold- and silver-rich regions in three dimensions and we estimate atomic positions without using any prior information and with minimal filtering. The ability to get full three-dimensional information down to the atomic scale allows understanding the growth and deposition process of the nanoclusters and demonstrates an approach that may be generally applicable to all types of nanoscale materials. PMID:26508471
Wawrzynek, Wojciech; Siemianowicz, Anna; Koczy, Bogdan; Kasprowska, Sabina; Besler, Krzysztof
2005-01-01
The Sprengel's deformity is a congenital anomaly of the shoulder girdle with an elevation of the scapula and limitation of movement of the shoulder. Sprengel's deformity is frequently associated with cervical spine malformations such as: spinal synostosis, spina bifida and an abnormal omovertebral fibrous, cartilaginous or osseus connection. The diagnosis of Sprengel's deformity is based on a clinical examination and radiological procedures. In every case of Sprengel's deformity plain radiography and computed tomography should be performed. Three-dimensional (3D) reconstructions allow to visualize precise topography and spatial proportions of examined bone structures. 3D reconstruction also enables an optional rotation of visualized bone structures in order to clarify the anatomical abnormalities and to plan surgical treatment.
Shin, Seungwoo; Kim, Doyeon; Kim, Kyoohyun; Park, YongKeun
2018-06-15
We present a multimodal approach for measuring the three-dimensional (3D) refractive index (RI) and fluorescence distributions of live cells by combining optical diffraction tomography (ODT) and 3D structured illumination microscopy (SIM). A digital micromirror device is utilized to generate structured illumination patterns for both ODT and SIM, which enables fast and stable measurements. To verify its feasibility and applicability, the proposed method is used to measure the 3D RI distribution and 3D fluorescence image of various samples, including a cluster of fluorescent beads, and the time-lapse 3D RI dynamics of fluorescent beads inside a HeLa cell, from which the trajectory of the beads in the HeLa cell is analyzed using spatiotemporal correlations.
Quantitative three-dimensional photoacoustic tomography of the finger joints: an in vivo study
NASA Astrophysics Data System (ADS)
Sun, Yao; Sobel, Eric; Jiang, Huabei
2009-11-01
We present for the first time in vivo full three-dimensional (3-D) photoacoustic tomography (PAT) of the distal interphalangeal joint in a human subject. Both absorbed energy density and absorption coefficient images of the joint are quantitatively obtained using our finite-element-based photoacoustic image reconstruction algorithm coupled with the photon diffusion equation. The results show that major anatomical features in the joint along with the side arteries can be imaged with a 1-MHz transducer in a spherical scanning geometry. In addition, the cartilages associated with the joint can be quantitatively differentiated from the phalanx. This in vivo study suggests that the 3-D PAT method described has the potential to be used for early diagnosis of joint diseases such as osteoarthritis and rheumatoid arthritis.
NASA Astrophysics Data System (ADS)
Goud, Bujagouni Karthik; Udupa, Dinesh Venkatesh; Prathap, Chilakala; Shinde, Deepak Dilip; Rao, Kompalli Divakar; Sahoo, Naba Kishore
2016-12-01
The use of optical coherence tomography (OCT) for noncontact three-dimensional aspheric lens profiling and retrieval of aspheric surface parameters is demonstrated. Two commercially available aspheric lenses with different focal length-to-diameter ratio have been imaged using OCT, and the measured optical path length distribution has been least square fitted with the aspheric lens surface retrieving the radius of curvature, aspheric constant, and conic constants. The refractive index of these lenses has also been measured referencing with a standard Zerodur glass flat. The fitted aspheric surface coefficients of the lenses are in close agreement with the manufacturer's values, thus, envisaging the potential of OCT in rapid screening, testing of aspheric lenses, and other micro-optical components such as those used in illumination optics.
Yap, Felix Y; Hwang, Darryl H; Cen, Steven Y; Varghese, Bino A; Desai, Bhushan; Quinn, Brian D; Gupta, Megha Nayyar; Rajarubendra, Nieroshan; Desai, Mihir M; Aron, Manju; Liang, Gangning; Aron, Monish; Gill, Inderbir S; Duddalwar, Vinay A
2018-04-01
To investigate whether morphologic analysis can differentiate between benign and malignant renal tumors on clinically acquired imaging. Between 2009 and 2014, 3-dimensional tumor volumes were manually segmented from contrast-enhanced computerized tomography (CT) images from 150 patients with predominantly solid, nonmacroscopic fat-containing renal tumors: 100 renal cell carcinomas and 50 benign lesions (eg, oncocytoma and lipid-poor angiomyolipoma). Tessellated 3-dimensional tumor models were created from segmented voxels using MATLAB code. Eleven shape descriptors were calculated: sphericity, compactness, mean radial distance, standard deviation of the radial distance, radial distance area ratio, zero crossing, entropy, Feret ratio, convex hull area and convex hull perimeter ratios, and elliptic compactness. Morphometric parameters were compared using the Wilcoxon rank-sum test to investigate whether malignant renal masses demonstrate more morphologic irregularity than benign ones. Only CHP in sagittal orientation (median 0.96 vs 0.97) and EC in coronal orientation (median 0.92 vs 0.93) differed significantly between malignant and benign masses (P = .04). When comparing these 2 metrics between coronal and sagittal orientations, similar but nonsignificant trends emerged (P = .07). Other metrics tested were not significantly different in any imaging plane. Computerized image analysis is feasible using shape descriptors that otherwise cannot be visually assessed and used without quantification. Shape analysis via the transverse orientation may be reasonable, but encompassing all 3 planar dimensions to characterize tumor contour can achieve a more comprehensive evaluation. Two shape metrics (CHP and EC) may help distinguish benign from malignant renal tumors, an often challenging goal to achieve on imaging and biopsy. Copyright © 2017 Elsevier Inc. All rights reserved.
Few CT Scan Abnormalities Found Even in Neurologically Impaired Learning Disabled Children.
ERIC Educational Resources Information Center
Denckla, Martha Bridge; And Others
1985-01-01
Most of 32 learning disabled children (seven to 14 years old) with neurological lateralization characteristics marked by right and left hemispheres had a normal CT (computerized tomography) scan. (CL)
Prostate Enlargement: Benign Prostatic Hyperplasia (BPH)
... such as ultrasound, a computerized tomography scan, or magnetic resonance imaging to guide the biopsy needle into ... heats and destroys selected portions of prostate tissue. Shields protect the urethra from heat damage. Transurethral microwave ...
SPECT (Single-Photon Emission Computerized Tomography) Scan
... can become damaged or even die. Reduced pumping efficiency. SPECT can show how completely your heart chambers ... radioactive tracer SPECT scans aren't safe for women who are pregnant or breast-feeding because the ...
Non-Hodgkin Lymphoma (For Parents)
... chest X-ray a computerized tomography (CT or CAT) scan , which rotates around the patient and creates an ... ray (Video) Getting an MRI (Video) Getting a CAT Scan (Video) Chemotherapy Hodgkin Lymphoma Stem Cell Transplants Can ...
The mobile hospital technology industry: focus on the computerized tomography scanner.
Hartley, D; Moscovice, I
1996-01-01
This study of firms offering mobile hospital technology to rural hospitals in eight northwestern states found that several permanently parked computerized tomography (CT) units were found where mobile routes had atrophied due to the purchase of fixed units by former mobile CT hospital clients. Based on a criterion of 140 scans per month per unit as a threshold of profitable production, units owned by larger firms (those that operate five or more units) were more likely to be profitable than units owned by smaller firms (71% versus 20%, P = 0.03). A substantial number of rural hospitals lose money on mobile CT due to low Medicare reimbursement. In some areas, mobile hospital technology is a highly competitive industry. Evidence was found that several firms compete in some geographic areas and that some firms have lost hospital clients to competing vendors.
Magnetic resonance imaging and computerized tomography in malignant external otitis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gherini, S.G.; Brackmann, D.E.; Bradley, W.G.
1986-05-01
In malignant external otitis (MEO), determining the anatomic extent of disease and evaluating the physiologic response to therapy remain a problem. Magnetic resonance imaging (MRI) has recently become available in limited clinical settings. Four patients with MEO were evaluated using MRI, computerized tomography (CT), technetium-99 (Tc-99) bone scanning, and gallium-67 citrate (Ga-67 citrate) scanning. MRI is superior to CT, Tc-99 bone scanning, and Ga-67 citrate scanning in evaluating the anatomic extent of soft tissue changes in MEO. MRI alone cannot be relied upon to determine the physiologic response to therapy. MRI can, however, serve as a valuable guide to themore » interpretation of Tc-99 bone and Ga-67 citrate scans, and in this respect, MRI is extremely useful in the treatment of MEO.« less
Uroradiographic manifestations of Burkitt's lymphoma in children
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernbach, S.K.; Glass, R.B.
1986-05-01
The radiological studies of 18 children with biopsy proved Burkitt's lymphoma were analyzed retrospectively. Before therapy the genitourinary tract was evaluated in 15 children by excretory urography, sonography, computerized tomography and/or gallium citrate scintigraphy. Genitourinary abnormalities were detected in 9 children. Changes due to tumor included renal or ureteral displacement in 4 children, hydronephrosis in 3 and intraparenchymal masses in 4. Extrinsic compression of the bladder causing no compromise of function was seen in only 2 children. Gonadal involvement occurred in 2 boys and 1 girl. The modality of choice for evaluating the genitourinary tract in patients with Burkitt's lymphomamore » has been excretory urography. Since ultrasound and computerized tomography provide more direct information about tumor deposits within the kidney and retroperitoneum, either should be performed in this population before initiation of chemotherapy.« less
[Vertebral aneurysmatic bone cyst: study of three cases].
Vale, Benjamim Pessoa; Alencar, Francisco José; de Aguiar, Guilherme Brasileiro; de Almeida, Bruno Ribeiro
2005-12-01
Aneurysmatic bone cyst is a hypervascularized, benign lesion locally destructive by its progressive growth with greater incidence in the second decade of life. It lodges preferably in the long bones and vertebrae. The clinical picture varies from pain to local edema and even neurological symptoms when in vertebral location. Three cases of vertebral aneurysmatic bone cyst occurring in childhood and all with neurologic deficit symptoms are described. Computerized tomography and/or magnetic resonance imaging confirmed the diagnosis. Patients underwent surgery to remove the tumor. In one of the cases, pre-operative selective arterial embolization of the lesion was performed. The three patients progressed satisfactorily with neurological improvement, which demonstrated the efficiency of the microsurgical technique for the resection of the spinal tumor. The evolution of the cases and the current treatment are discussed.
Roumeliotis, Grayson; Willing, Ryan; Neuert, Mark; Ahluwalia, Romy; Jenkyn, Thomas; Yazdani, Arjang
2015-09-01
The accurate assessment of symmetry in the craniofacial skeleton is important for cosmetic and reconstructive craniofacial surgery. Although there have been several published attempts to develop an accurate system for determining the correct plane of symmetry, all are inaccurate and time consuming. Here, the authors applied a novel semi-automatic method for the calculation of craniofacial symmetry, based on principal component analysis and iterative corrective point computation, to a large sample of normal adult male facial computerized tomography scans obtained clinically (n = 32). The authors hypothesized that this method would generate planes of symmetry that would result in less error when one side of the face was compared to the other than a symmetry plane generated using a plane defined by cephalometric landmarks. When a three-dimensional model of one side of the face was reflected across the semi-automatic plane of symmetry there was less error than when reflected across the cephalometric plane. The semi-automatic plane was also more accurate when the locations of bilateral cephalometric landmarks (eg, frontozygomatic sutures) were compared across the face. The authors conclude that this method allows for accurate and fast measurements of craniofacial symmetry. This has important implications for studying the development of the facial skeleton, and clinical application for reconstruction.
Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education.
Bernhard, Jean-Christophe; Isotani, Shuji; Matsugasumi, Toru; Duddalwar, Vinay; Hung, Andrew J; Suer, Evren; Baco, Eduard; Satkunasivam, Raj; Djaladat, Hooman; Metcalfe, Charles; Hu, Brian; Wong, Kelvin; Park, Daniel; Nguyen, Mike; Hwang, Darryl; Bazargani, Soroush T; de Castro Abreu, Andre Luis; Aron, Monish; Ukimura, Osamu; Gill, Inderbir S
2016-03-01
To assess the impact of 3D printed models of renal tumor on patient's understanding of their conditions. Patient understanding of their medical condition and treatment satisfaction has gained increasing attention in medicine. Novel technologies such as additive manufacturing [also termed three-dimensional (3D) printing] may play a role in patient education. A prospective pilot study was conducted, and seven patients with a primary diagnosis of kidney tumor who were being considered for partial nephrectomy were included after informed consent. All patients underwent four-phase multi-detector computerized tomography (MDCT) scanning from which renal volume data were extracted to create life-size patient-specific 3D printed models. Patient knowledge and understanding were evaluated before and after 3D model presentation. Patients' satisfaction with their specific 3D printed model was also assessed through a visual scale. After viewing their personal 3D kidney model, patients demonstrated an improvement in understanding of basic kidney physiology by 16.7 % (p = 0.018), kidney anatomy by 50 % (p = 0.026), tumor characteristics by 39.3 % (p = 0.068) and the planned surgical procedure by 44.6 % (p = 0.026). Presented herein is the initial clinical experience with 3D printing to facilitate patient's pre-surgical understanding of their kidney tumor and surgery.
Scherer, Michael D; Kattadiyil, Mathew T; Parciak, Ewa; Puri, Shweta
2014-01-01
Three-dimensional radiographic imaging for dental implant treatment planning is gaining widespread interest and popularity. However, application of the data from 30 imaging can be a complex and daunting process initially. The purpose of this article is to describe features of three software packages and the respective computerized guided surgical templates (GST) fabricated from them. A step-by-step method of interpreting and ordering a GST to simplify the process of the surgical planning and implant placement is discussed.
Comparison of sound speed measurements on two different ultrasound tomography devices
NASA Astrophysics Data System (ADS)
Sak, Mark; Duric, Neb; Littrup, Peter; Bey-Knight, Lisa; Sherman, Mark; Gierach, Gretchen; Malyarenko, Antonina
2014-03-01
Ultrasound tomography (UST) employs sound waves to produce three-dimensional images of breast tissue and precisely measures the attenuation of sound speed secondary to breast tissue composition. High breast density is a strong breast cancer risk factor and sound speed is directly proportional to breast density. UST provides a quantitative measure of breast density based on three-dimensional imaging without compression, thereby overcoming the shortcomings of many other imaging modalities. The quantitative nature of the UST breast density measures are tied to an external standard, so sound speed measurement in breast tissue should be independent of specific hardware. The work presented here compares breast sound speed measurement obtained with two different UST devices. The Computerized Ultrasound Risk Evaluation (CURE) system located at the Karmanos Cancer Institute in Detroit, Michigan was recently replaced with the SoftVue ultrasound tomographic device. Ongoing clinical trials have used images generated from both sets of hardware, so maintaining consistency in sound speed measurements is important. During an overlap period when both systems were in the same exam room, a total of 12 patients had one or both of their breasts imaged on both systems on the same day. There were 22 sound speed scans analyzed from each system and the average breast sound speeds were compared. Images were either reconstructed using saved raw data (for both CURE and SoftVue) or were created during the image acquisition (saved in DICOM format for SoftVue scans only). The sound speed measurements from each system were strongly and positively correlated with each other. The average difference in sound speed between the two sets of data was on the order of 1-2 m/s and this result was not statistically significant. The only sets of images that showed a statistical difference were the DICOM images created during the SoftVue scan compared to the SoftVue images reconstructed from the raw data. However, the discrepancy between the sound speed values could be easily handled by uniformly increasing the DICOM sound speed by approximately 0.5 m/s. These results suggest that there is no fundamental difference in sound speed measurement for the two systems and support combining data generated with these instruments in future studies.
Compact cold stage for micro-computerized tomography imaging of chilled or frozen samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hullar, Ted; Anastasio, Cort, E-mail: canastasio@ucdavis.edu; Paige, David F.
2014-04-15
High resolution X-ray microCT (computerized tomography) can be used to image a variety of objects, including temperature-sensitive materials. In cases where the sample must be chilled or frozen to maintain sample integrity, either the microCT machine itself must be placed in a refrigerated chamber, or a relatively expensive commercial cold stage must be purchased. We describe here the design and construction of a low-cost custom cold stage suitable for use in a microCT imaging system. Our device uses a boron nitride sample holder, two-stage Peltier cooler, fan-cooled heat sink, and electronic controller to maintain sample temperatures as low as −25 °Cmore » ± 0.2 °C for the duration of a tomography acquisition. The design does not require modification to the microCT machine, and is easily installed and removed. Our custom cold stage represents a cost-effective solution for refrigerating CT samples for imaging, and is especially useful for shared equipment or machines unsuitable for cold room use.« less
Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography
Yu, Young-Sang; Farmand, Maryam; Kim, Chunjoong; ...
2018-03-02
Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here in this paper, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a setmore » of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices.« less
Three-Dimensional Computed Tomography as a Method for Finding Die Attach Voids in Diodes
NASA Technical Reports Server (NTRS)
Brahm, E. N.; Rolin, T. D.
2010-01-01
NASA analyzes electrical, electronic, and electromechanical (EEE) parts used in space vehicles to understand failure modes of these components. The diode is an EEE part critical to NASA missions that can fail due to excessive voiding in the die attach. Metallography, one established method for studying the die attach, is a time-intensive, destructive, and equivocal process whereby mechanical grinding of the diodes is performed to reveal voiding in the die attach. Problems such as die attach pull-out tend to complicate results and can lead to erroneous conclusions. The objective of this study is to determine if three-dimensional computed tomography (3DCT), a nondestructive technique, is a viable alternative to metallography for detecting die attach voiding. The die attach voiding in two- dimensional planes created from 3DCT scans was compared to several physical cross sections of the same diode to determine if the 3DCT scan accurately recreates die attach volumetric variability
Three-dimensional localization of nanoscale battery reactions using soft X-ray tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Young-Sang; Farmand, Maryam; Kim, Chunjoong
Battery function is determined by the efficiency and reversibility of the electrochemical phase transformations at solid electrodes. The microscopic tools available to study the chemical states of matter with the required spatial resolution and chemical specificity are intrinsically limited when studying complex architectures by their reliance on two-dimensional projections of thick material. Here in this paper, we report the development of soft X-ray ptychographic tomography, which resolves chemical states in three dimensions at 11 nm spatial resolution. We study an ensemble of nano-plates of lithium iron phosphate extracted from a battery electrode at 50% state of charge. Using a setmore » of nanoscale tomograms, we quantify the electrochemical state and resolve phase boundaries throughout the volume of individual nanoparticles. These observations reveal multiple reaction points, intra-particle heterogeneity, and size effects that highlight the importance of multi-dimensional analytical tools in providing novel insight to the design of the next generation of high-performance devices.« less
Lei, Dongsheng; Marras, Alexander E.; Liu, Jianfang; ...
2018-02-09
Scaffolded DNA origami has proven to be a powerful and efficient technique to fabricate functional nanomachines by programming the folding of a single-stranded DNA template strand into three-dimensional (3D) nanostructures, designed to be precisely motion-controlled. Although two-dimensional (2D) imaging of DNA nanomachines using transmission electron microscopy and atomic force microscopy suggested these nanomachines are dynamic in 3D, geometric analysis based on 2D imaging was insufficient to uncover the exact motion in 3D. In this paper, we use the individual-particle electron tomography method and reconstruct 129 density maps from 129 individual DNA origami Bennett linkage mechanisms at ~6-14 nm resolution. The statisticalmore » analyses of these conformations lead to understanding the 3D structural dynamics of Bennett linkage mechanisms. Moreover, our effort provides experimental verification of a theoretical kinematics model of DNA origami, which can be used as feedback to improve the design and control of motion via optimized DNA sequences and routing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Dongsheng; Marras, Alexander E.; Liu, Jianfang
Scaffolded DNA origami has proven to be a powerful and efficient technique to fabricate functional nanomachines by programming the folding of a single-stranded DNA template strand into three-dimensional (3D) nanostructures, designed to be precisely motion-controlled. Although two-dimensional (2D) imaging of DNA nanomachines using transmission electron microscopy and atomic force microscopy suggested these nanomachines are dynamic in 3D, geometric analysis based on 2D imaging was insufficient to uncover the exact motion in 3D. In this paper, we use the individual-particle electron tomography method and reconstruct 129 density maps from 129 individual DNA origami Bennett linkage mechanisms at ~6-14 nm resolution. The statisticalmore » analyses of these conformations lead to understanding the 3D structural dynamics of Bennett linkage mechanisms. Moreover, our effort provides experimental verification of a theoretical kinematics model of DNA origami, which can be used as feedback to improve the design and control of motion via optimized DNA sequences and routing.« less
Six dimensional X-ray Tensor Tomography with a compact laboratory setup
NASA Astrophysics Data System (ADS)
Sharma, Y.; Wieczorek, M.; Schaff, F.; Seyyedi, S.; Prade, F.; Pfeiffer, F.; Lasser, T.
2016-09-01
Attenuation based X-ray micro computed tomography (XCT) provides three-dimensional images with micrometer resolution. However, there is a trade-off between the smallest size of the structures that can be resolved and the measurable sample size. In this letter, we present an imaging method using a compact laboratory setup that reveals information about micrometer-sized structures within samples that are several orders of magnitudes larger. We combine the anisotropic dark-field signal obtained in a grating interferometer and advanced tomographic reconstruction methods to reconstruct a six dimensional scattering tensor at every spatial location in three dimensions. The scattering tensor, thus obtained, encodes information about the orientation of micron-sized structures such as fibres in composite materials or dentinal tubules in human teeth. The sparse acquisition schemes presented in this letter enable the measurement of the full scattering tensor at every spatial location and can be easily incorporated in a practical, commercially feasible laboratory setup using conventional X-ray tubes, thus allowing for widespread industrial applications.
Chen, Ning-Hung; Li, Kasey K; Li, Shia-Yu; Wong, Chao-Reng; Chuang, Ming-Lung; Hwang, Chung-Chi; Wu, Yao-Kaung
2002-04-01
To evaluate the airway dimension of simple snorers and subjects with obstructive sleep apnea (OSA) in a Far-East Asian population (Chinese). Prospective study of 117 near-consecutive patients evaluated for snoring and possible OSA from January 1998 to December 1998 in a sleep laboratory. Overnight polysomnography (PSG) was performed on all patients and the sleep parameters, including respiratory disturbance index (RDI), snoring index, minimal oxygen saturation (min O2), percentage of slow wave sleep (SWS), and rapid eye movement (REM) were recorded. Three-dimensional computerized tomography (CT) during awake periods was performed. The anteroposterior (AP) and the lateral distance of the retropalatal (RP) region in the oropharynx, the smallest area of RP, and retroglossal (RG) regions, and the total volume of the oropharynx were measured. Ninety-eight patients were diagnosed with OSA (mean RDI, 41.48 +/- 26.45 events per hour; min O2, 72.82 +/- 12.86%), whereas 19 were simple snorers. The AP and the lateral distance of the RP region, as well as the smallest area of the RP region, are significantly smaller in subjects with OSA. However, no differences in the RG region and the total volume of the oropharynx were found between the two groups. Linear regression analysis demonstrated that the lateral dimension and the smallest RP area in overweight subjects inversely correlated with the RDI, but only the AP dimension of the RP area was found to have an inverse correlation with the RDI in the underweight subjects. In Far-East Asians (Chinese), the RP airway was found to be the primary site of narrowing in subjects with OSA, and the narrowest RP area was inversely correlated with RDI. Furthermore, weight may influence the pattern of RP narrowing by contributing to lateral collapse.
Soler, Zachary M; Pallanch, John F; Sansoni, Eugene Ritter; Jones, Cameron S; Lawrence, Lauren A; Schlosser, Rodney J; Mace, Jess C; Smith, Timothy L
2015-09-01
Commonly used computed tomography (CT) staging systems for chronic rhinosinusitis (CRS) focus on the sinuses and do not quantify disease in the olfactory cleft. The goal of the current study was to determine whether precise measurements of olfactory cleft opacification better correlate with olfaction in patients with CRS. Olfaction was assessed using the 40-item Smell Identification Test (SIT-40) before and after sinus surgery in adult patients. Olfactory cleft opacification was quantified precisely using three-dimensional (3D), computerized volumetric analysis, as well as via semiquantitative Likert scale estimations at predetermined anatomic sites. Sinus opacification was also quantified using the Lund-Mackay staging system. The overall cohort (n = 199) included 89 (44.7%) patients with CRS with nasal polyposis (CRSwNP) and 110 (55.3%) with CRS without nasal polyposis (CRSsNP). The olfactory cleft opacified volume correlated with objective olfaction as determined by the SIT-40 (Spearman's rank correlation coefficient [Rs ] = -0.461; p < 0.001). The correlation was significantly stronger in the CRSwNP subgroup (Rs = -0.573; p < 0.001), whereas no appreciable correlation was found in the CRSsNP group (Rs = -0.141; p = 0.141). Correlations between sinus-specific Lund-Mackay CT scoring and SIT-40 scores were weaker in the CRSwNP (Rs = -0.377; p < 0.001) subgroup but stronger in the CRSsNP (Rs = -0.225; p = 0.018) group when compared to olfactory cleft correlations. Greater intraclass correlations (ICCs) were found between quantitative volumetric measures of olfactory cleft opacification (ICC = 0.844; p < 0.001) as compared with semiquantitative Likert grading (ICC = 0.627; p < 0.001). Quantitative measures of olfactory cleft opacification correlate with objective olfaction, with the strongest correlations seen in patients with nasal polyps. © 2015 ARS-AAOA, LLC.
Superimposition of 3-dimensional cone-beam computed tomography models of growing patients
Cevidanes, Lucia H. C.; Heymann, Gavin; Cornelis, Marie A.; DeClerck, Hugo J.; Tulloch, J. F. Camilla
2009-01-01
Introduction The objective of this study was to evaluate a new method for superimposition of 3-dimensional (3D) models of growing subjects. Methods Cone-beam computed tomography scans were taken before and after Class III malocclusion orthopedic treatment with miniplates. Three observers independently constructed 18 3D virtual surface models from cone-beam computed tomography scans of 3 patients. Separate 3D models were constructed for soft-tissue, cranial base, maxillary, and mandibular surfaces. The anterior cranial fossa was used to register the 3D models of before and after treatment (about 1 year of follow-up). Results Three-dimensional overlays of superimposed models and 3D color-coded displacement maps allowed visual and quantitative assessment of growth and treatment changes. The range of interobserver errors for each anatomic region was 0.4 mm for the zygomatic process of maxilla, chin, condyles, posterior border of the rami, and lower border of the mandible, and 0.5 mm for the anterior maxilla soft-tissue upper lip. Conclusions Our results suggest that this method is a valid and reproducible assessment of treatment outcomes for growing subjects. This technique can be used to identify maxillary and mandibular positional changes and bone remodeling relative to the anterior cranial fossa. PMID:19577154
Assessment of Severity of Ovine Smoke Inhalation Injury by Analysis of Computed Tomographic Scans
2003-09-01
Computerized analysis of three- dimensional reconstructed scans was also performed, based on Hounsfield unit ranges: hyperinflated, 1,000 to 900; normal...the interactive segmentation function of the software. The pulmonary parenchyma was separated into four regions based on the Hounsfield unit (HU...SII) severity. Methods: Twenty anesthetized sheep underwent graded SII: group I, no smoke; group II, 5 smoke units ; group III, 10 units ; and group IV
Mini-Stroke vs. Regular Stroke: What's the Difference?
... may need various diagnostic tests, such as a magnetic resonance imaging (MRI) scan or a computerized tomography ( ... org," "Mayo Clinic Healthy Living," and the triple-shield Mayo Clinic logo are trademarks of Mayo Foundation ...
Mineral & Bone Disorder in Chronic Kidney Disease
... stages of CKD. Slowed bone growth leads to short stature, which may remain with a child into adulthood. ... and local anesthetic. The health care provider uses imaging techniques such as ultrasound or a computerized tomography ...
Yuruk, Emrah; Tuken, Murat; Sulejman, Suhejb; Colakerol, Aykut; Serefoglu, Ege Can; Sarica, Kemal; Muslumanoglu, Ahmet Yaser
2017-03-01
To determine the diagnostic value of computerized tomography (CT) in differentiating pyonephrosis from hydronephrosis on the basis of attenuation values (Hounsfield unit-HU). Data of the patients with grades 1-3 hydronephrosis on abdominopelvic CT, who underwent nephrostomy tube placement for decompression of the collecting system, were retrospectively analyzed. Patient demographics and CT findings were recorded along with the first access urine culture results. Three physicians calculated the surface areas and the attenuation values of the dilated collecting systems using the system software. Mean HU of pyonephrosis and hydronephrosis cases was compared. A total of 105 patients with the mean age of 47.7 ± 15.5 (range 20-80) were included. The interclass correlation coefficient of three physicians was 0.981 for HU measurement and 0.999 for calculation of collecting system surface area. Of the patients, 47 (44.8 %) had pyonephrosis. Mean surface areas of the collecting system were similar in patients with pyonephrosis and hydronephrosis (1481.13 ± 1562.94 vs. 1612.94 ± 2261.4 mm 2 , p = 0.735). Urine cultures were positive in all patients with pyonephrosis, whereas 12.7 % of hydronephrosis cases had bacterial in first access urine culture. The HU of the patients with pyonephrosis was significantly higher that that of patients with hydronephrosis (13.51 ± 13.29 vs. 4.67 ± 5.37, p = 0.0001). Having a HU of 9.21 or over diagnosed pyonephrosis accurately with 65.96 % sensitivity and 87.93 % specificity. Measuring attenuation values of the collecting system may be useful to differentiate pyonephrosis from hydronephrosis. Diagnosing pyonephrosis accurately may avoid septic complications.
Scapula fractures: interobserver reliability of classification and treatment.
Neuhaus, Valentin; Bot, Arjan G J; Guitton, Thierry G; Ring, David C; Abdel-Ghany, Mahmoud I; Abrams, Jeffrey; Abzug, Joshua M; Adolfsson, Lars E; Balfour, George W; Bamberger, H Brent; Barquet, Antonio; Baskies, Michael; Batson, W Arnold; Baxamusa, Taizoon; Bayne, Grant J; Begue, Thierry; Behrman, Michael; Beingessner, Daphne; Biert, Jan; Bishop, Julius; Alves, Mateus Borges Oliveira; Boyer, Martin; Brilej, Drago; Brink, Peter R G; Brunton, Lance M; Buckley, Richard; Cagnone, Juan Carlos; Calfee, Ryan P; Campinhos, Luiz Augusto B; Cassidy, Charles; Catalano, Louis; Chivers, Karel; Choudhari, Pradeep; Cimerman, Matej; Conflitti, Joseph M; Costanzo, Ralph M; Crist, Brett D; Cross, Brian J; Dantuluri, Phani; Darowish, Michael; de Bedout, Ramon; DeCoster, Thomas; Dennison, David G; DeNoble, Peter H; DeSilva, Gregory; Dienstknecht, Thomas; Duncan, Scott F; Duralde, Xavier A; Durchholz, Holger; Egol, Kenneth; Ekholm, Carl; Elias, Nelson; Erickson, John M; Esparza, J Daniel Espinosa; Fernandes, C H; Fischer, Thomas J; Fischmeister, Martin; Forigua Jaime, E; Getz, Charles L; Gilbert, Richard S; Giordano, Vincenzo; Glaser, David L; Gosens, Taco; Grafe, Michael W; Filho, Jose Eduardo Grandi Ribeiro; Gray, Robert R L; Gulotta, Lawrence V; Gummerson, Nigel William; Hammerberg, Eric Mark; Harvey, Edward; Haverlag, R; Henry, Patrick D G; Hobby, Jonathan L; Hofmeister, Eric P; Hughes, Thomas; Itamura, John; Jebson, Peter; Jenkinson, Richard; Jeray, Kyle; Jones, Christopher M; Jones, Jedediah; Jubel, Axel; Kaar, Scott G; Kabir, K; Kaplan, F Thomas D; Kennedy, Stephen A; Kessler, Michael W; Kimball, Hervey L; Kloen, Peter; Klostermann, Cyrus; Kohut, Georges; Kraan, G A; Kristan, Anze; Loebenberg, Mark I; Malone, Kevin J; Marsh, L; Martineau, Paul A; McAuliffe, John; McGraw, Iain; Mehta, Samir; Merchant, Milind; Metzger, Charles; Meylaerts, S A; Miller, Anna N; Wolf, Jennifer Moriatis; Murachovsky, Joel; Murthi, Anand; Nancollas, Michael; Nolan, Betsy M; Omara, Timothy; Omid, Reza; Ortiz, Jose A; Overbeck, Joachim P; Castillo, Alberto Pérez; Pesantez, Rodrigo; Polatsch, Daniel; Porcellini, G; Prayson, Michael; Quell, M; Ragsdell, Matthew M; Reid, James G; Reuver, J M; Richard, Marc J; Richardson, Martin; Rizzo, Marco; Rowinski, Sergio; Rubio, Jorge; Guerrero, Carlos G Sánchez; Satora, Wojciech; Schandelmaier, Peter; Scheer, Johan H; Schmidt, Andrew; Schubkegel, Todd A; Schulte, Leah M; Schumer, Evan D; Sears, Benjamin W; Shafritz, Adam B; Shortt, Nicholas L; Siff, Todd; Silva, Dario Mejia; Smith, Raymond Malcolm; Spruijt, Sander; Stein, Jason A; Pemovska, Emilija Stojkovska; Streubel, Philipp N; Swigart, Carrie; Swiontkowski, Marc; Thomas, George; Tolo, Eric T; Turina, Matthias; Tyllianakis, Minos; van den Bekerom, Michel P J; van der Heide, Huub; van de Sande, M A J; van Eerten, P V; Verbeek, Diederik O F; Hoffmann, David Victoria; Vochteloo, A J H; Wagenmakers, Robert; Wall, Christopher J; Wallensten, Richard; Wascher, Daniel C; Weiss, Lawrence; Wiater, J Michael; Wills, Brian P D; Wint, Jeffrey; Wright, Thomas; Young, Jason P; Zalavras, Charalampos; Zura, Robert D; Zyto, Karol
2014-03-01
There is substantial variation in the classification and management of scapula fractures. The first purpose of this study was to analyze the interobserver reliability of the OTA/AO classification and the New International Classification for Scapula Fractures. The second purpose was to assess the proportion of agreement among orthopaedic surgeons on operative or nonoperative treatment. Web-based reliability study. Independent orthopaedic surgeons from several countries were invited to classify scapular fractures in an online survey. One hundred three orthopaedic surgeons evaluated 35 movies of three-dimensional computerized tomography reconstruction of selected scapular fractures, representing a full spectrum of fracture patterns. Fleiss kappa (κ) was used to assess the reliability of agreement between the surgeons. The overall agreement on the OTA/AO classification was moderate for the types (A, B, and C, κ = 0.54) with a 71% proportion of rater agreement (PA) and for the 9 groups (A1 to C3, κ = 0.47) with a 57% PA. For the New International Classification, the agreement about the intraarticular extension of the fracture (Fossa (F), κ = 0.79) was substantial and the agreement about a fractured body (Body (B), κ = 0.57) or process was moderate (Process (P), κ = 0.53); however, PAs were more than 81%. The agreement on the treatment recommendation was moderate (κ = 0.57) with a 73% PA. The New International Classification was more reliable. Body and process fractures generated more disagreement than intraarticular fractures and need further clear definitions.
Kim, Jo-Eun; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul; Huh, Kyung-Hoe
2015-12-01
To evaluate the potential feasibility of cone beam computed tomography (CBCT) in the assessment of trabecular bone microarchitecture. Sixty-eight specimens from four pairs of human jaw were scanned using both micro-computed tomography (micro-CT) of 19.37-μm voxel size and CBCT of 100-μm voxel size. The correlation of 3-dimensional parameters between CBCT and micro-CT was evaluated. All parameters, except bone-specific surface and trabecular thickness, showed linear correlations between the 2 imaging modalities (P < .05). Among the parameters, bone volume, percent bone volume, trabecular separation, and degree of anisotropy (DA) of CBCT images showed strong correlations with those of micro-CT images. DA showed the strongest correlation (r = 0.693). Most microarchitectural parameters from CBCT were correlated with those from micro-CT. Some microarchitectural parameters, especially DA, could be used as strong predictors of bone quality in the human jaw. Copyright © 2015 Elsevier Inc. All rights reserved.
Osmani, Feroz A; Thakkar, Savyasachi; Ramme, Austin; Elbuluk, Ameer; Wojack, Paul; Vigdorchik, Jonathan M
2017-12-01
Preoperative total hip arthroplasty templating can be performed with radiographs using acetate prints, digital viewing software, or with computed tomography (CT) images. Our hypothesis is that 3D templating is more precise and accurate with cup size prediction as compared to 2D templating with acetate prints and digital templating software. Data collected from 45 patients undergoing robotic-assisted total hip arthroplasty compared cup sizes templated on acetate prints and OrthoView software to MAKOplasty software that uses CT scan. Kappa analysis determined strength of agreement between each templating modality and the final size used. t tests compared mean cup-size variance from the final size for each templating technique. Interclass correlation coefficient (ICC) determined reliability of digital and acetate planning by comparing predictions of the operating surgeon and a blinded adult reconstructive fellow. The Kappa values for CT-guided, digital, and acetate templating with the final size was 0.974, 0.233, and 0.262, respectively. Both digital and acetate templating significantly overpredicted cup size, compared to CT-guided methods ( P < .001). There was no significant difference between digital and acetate templating ( P = .117). Interclass correlation coefficient value for digital and acetate templating was 0.928 and 0.931, respectively. CT-guided planning more accurately predicts hip implant cup size when compared to the significant overpredictions of digital and acetate templating. CT-guided templating may also lead to better outcomes due to bone stock preservation from a smaller and more accurate cup size predicted than that of digital and acetate predictions.
ERIC Educational Resources Information Center
Lau, Che-Ming Allen; And Others
This study focused on the robustness of unidimensional item response theory (UIRT) models in computerized classification testing against violation of the unidimensionality assumption. The study addressed whether UIRT models remain acceptable under various testing conditions and dimensionality strengths. Monte Carlo simulation techniques were used…
ECAT: A New Computerized Tomographic Imaging System for Position-Emitting Radiopharmaceuticals
DOE R&D Accomplishments Database
Phelps, M. E.; Hoffman, E. J.; Huang, S. C.; Kuhl, D. E.
1977-01-01
The ECAT was designed and developed as a complete computerized positron radionuclide imaging system capable of providing high contrast, high resolution, quantitative images in 2 dimensional and tomographic formats. Flexibility, in its various image mode options, allows it to be used for a wide variety of imaging problems.
Grating interferometry-based phase microtomography of atherosclerotic human arteries
NASA Astrophysics Data System (ADS)
Buscema, Marzia; Holme, Margaret N.; Deyhle, Hans; Schulz, Georg; Schmitz, Rüdiger; Thalmann, Peter; Hieber, Simone E.; Chicherova, Natalia; Cattin, Philippe C.; Beckmann, Felix; Herzen, Julia; Weitkamp, Timm; Saxer, Till; Müller, Bert
2014-09-01
Cardiovascular diseases are the number one cause of death and morbidity in the world. Understanding disease development in terms of lumen morphology and tissue composition of constricted arteries is essential to improve treatment and patient outcome. X-ray tomography provides non-destructive three-dimensional data with micrometer-resolution. However, a common problem is simultaneous visualization of soft and hard tissue-containing specimens, such as atherosclerotic human coronary arteries. Unlike absorption based techniques, where X-ray absorption strongly depends on atomic number and tissue density, phase contrast methods such as grating interferometry have significant advantages as the phase shift is only a linear function of the atomic number. We demonstrate that grating interferometry-based phase tomography is a powerful method to three-dimensionally visualize a variety of anatomical features in atherosclerotic human coronary arteries, including plaque, muscle, fat, and connective tissue. Three formalin-fixed, human coronary arteries were measured using advanced laboratory μCT. While this technique gives information about plaque morphology, it is impossible to extract the lumen morphology. Therefore, selected regions were measured using grating based phase tomography, sinograms were treated with a wavelet-Fourier filter to remove ring artifacts, and reconstructed data were processed to allow extraction of vessel lumen morphology. Phase tomography data in combination with conventional laboratory μCT data of the same specimen shows potential, through use of a joint histogram, to identify more tissue types than either technique alone. Such phase tomography data was also rigidly registered to subsequently decalcified arteries that were histologically sectioned, although the quality of registration was insufficient for joint histogram analysis.
[Three-dimensional computer aided design for individualized post-and-core restoration].
Gu, Xiao-yu; Wang, Ya-ping; Wang, Yong; Lü, Pei-jun
2009-10-01
To develop a method of three-dimensional computer aided design (CAD) of post-and-core restoration. Two plaster casts with extracted natural teeth were used in this study. The extracted teeth were prepared and scanned using tomography method to obtain three-dimensional digitalized models. According to the basic rules of post-and-core design, posts, cores and cavity surfaces of the teeth were designed using the tools for processing point clouds, curves and surfaces on the forward engineering software of Tanglong prosthodontic system. Then three-dimensional figures of the final restorations were corrected according to the configurations of anterior teeth, premolars and molars respectively. Computer aided design of 14 post-and-core restorations were finished, and good fitness between the restoration and the three-dimensional digital models were obtained. Appropriate retention forms and enough spaces for the full crown restorations can be obtained through this method. The CAD of three-dimensional figures of the post-and-core restorations can fulfill clinical requirements. Therefore they can be used in computer-aided manufacture (CAM) of post-and-core restorations.
Olfactory cleft computed tomography analysis and olfaction in chronic rhinosinusitis
Kohli, Preeti; Schlosser, Rodney J.; Storck, Kristina
2016-01-01
Background: Volumetric analysis of the olfactory cleft by using computed tomography has been associated with olfaction in patients with chronic rhinosinusitis (CRS). However, existing studies have not comprehensively measured olfaction, and it thus remains unknown whether correlations differ across specific dimensions of odor perception. Objective: To use comprehensive measures of patient-reported and objective olfaction to evaluate the relationship between volumetric olfactory cleft opacification and olfaction. Methods: Olfaction in patients with CRS was evaluated by using “Sniffin' Sticks” tests and a modified version of the Questionnaire of Olfactory Disorders. Olfactory cleft opacification was quantified by using two- and three-dimensional, computerized volumetric analysis. Correlations between olfactory metrics and olfactory cleft opacification were then calculated. Results: The overall CRS cohort included 26 patients without nasal polyposis (CRSsNP) (68.4%) and 12 patients with nasal polyposis (CRSwNP) (31.6%). Across the entire cohort, total olfactory cleft opacification was 82.8%, with greater opacification in the CRSwNP subgroup compared with CRSsNP (92.3 versus 78.4%, p < 0.001). The percent total volume opacification correlated with the total Sniffin' Sticks score (r = −0.568, p < 0.001) as well as individual threshold, discrimination, and identification scores (p < 0.001 for all). Within the CRSwNP subgroup, threshold (r = −0.616, p = 0.033) and identification (r = −0.647, p = 0.023) remained highly correlated with total volume opacification. In patients with CRSsNP, the threshold correlated with total volume scores (r = −0.457, p = 0.019), with weaker and nonsignificant correlations for discrimination and identification. Correlations between total volume opacification and the Questionnaire of Olfactory Disorders were qualitatively similar to objective olfactory findings in both CRSwNP (r = −0.566, p = 0.070) and CRSsNP (r = −0.310, p = 0.141) subgroups, although neither reached significance. When examined by two-dimensional planes, the percent opacification of the anterior plane had the strongest correlations with objective olfaction. Conclusion: Olfactory cleft opacification correlated with objective measures of olfaction in patients with CRS, which correlated with threshold values in patients with CRSsNP and all dimensions of olfaction in those with CRSwNP. PMID:28124650
X-ray coherent scattering tomography of textured material (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zhu, Zheyuan; Pang, Shuo
2017-05-01
Small-angle X-ray scattering (SAXS) measures the signature of angular-dependent coherently scattered X-rays, which contains richer information in material composition and structure compared to conventional absorption-based computed tomography. SAXS image reconstruction method of a 2 or 3 dimensional object based on computed tomography, termed as coherent scattering computed tomography (CSCT), enables the detection of spatially-resolved, material-specific isotropic scattering signature inside an extended object, and provides improved contrast for medical diagnosis, security screening, and material characterization applications. However, traditional CSCT methods assumes materials are fine powders or amorphous, and possess isotropic scattering profiles, which is not generally true for all materials. Anisotropic scatters cannot be captured using conventional CSCT method and result in reconstruction errors. To obtain correct information from the sample, we designed new imaging strategy which incorporates extra degree of detector motion into X-ray scattering tomography for the detection of anisotropic scattered photons from a series of two-dimensional intensity measurements. Using a table-top, narrow-band X-ray source and a panel detector, we demonstrate the anisotropic scattering profile captured from an extended object and the reconstruction of a three-dimensional object. For materials possessing a well-organized crystalline structure with certain symmetry, the scatter texture is more predictable. We will also discuss the compressive schemes and implementation of data acquisition to improve the collection efficiency and accelerate the imaging process.
Peng, Kuan; He, Ling; Zhu, Ziqiang; Tang, Jingtian; Xiao, Jiaying
2013-12-01
Compared with commonly used analytical reconstruction methods, the frequency-domain finite element method (FEM) based approach has proven to be an accurate and flexible algorithm for photoacoustic tomography. However, the FEM-based algorithm is computationally demanding, especially for three-dimensional cases. To enhance the algorithm's efficiency, in this work a parallel computational strategy is implemented in the framework of the FEM-based reconstruction algorithm using a graphic-processing-unit parallel frame named the "compute unified device architecture." A series of simulation experiments is carried out to test the accuracy and accelerating effect of the improved method. The results obtained indicate that the parallel calculation does not change the accuracy of the reconstruction algorithm, while its computational cost is significantly reduced by a factor of 38.9 with a GTX 580 graphics card using the improved method.
NASA Astrophysics Data System (ADS)
Poggio, Andrew J.
1988-10-01
This issue of Energy and Technology Review contains: Neutron Penumbral Imaging of Laser-Fusion Targets--using our new penumbral-imaging diagnostic, we have obtained the first images that can be used to measure directly the deuterium-tritium burn region in laser-driven fusion targets; Computed Tomography for Nondestructive Evaluation--various computed tomography systems and computational techniques are used in nondestructive evaluation; Three-Dimensional Image Analysis for Studying Nuclear Chromatin Structure--we have developed an optic-electronic system for acquiring cross-sectional views of cell nuclei, and computer codes to analyze these images and reconstruct the three-dimensional structures they represent; Imaging in the Nuclear Test Program--advanced techniques produce images of unprecedented detail and resolution from Nevada Test Site data; and Computational X-Ray Holography--visible-light experiments and numerically simulated holograms test our ideas about an X-ray microscope for biological research.
3D Reconstruction of SPM Probes by Electron Tomography
NASA Astrophysics Data System (ADS)
Xu, X.; Peng, Y.; Saghi, Z.; Gay, R.; Inkson, B. J.; Möbus, G.
2007-04-01
Three-dimensional morphological and compositional structures of tungsten tips consisting of layered amorphous oxide shell and crystalline W core are reconstructed by electron tomography using both coherent and incoherent imaging modes. The fidelity of the reconstruction is dependent on three criteria, suppression of unwanted crystal orientation contrast in the crystalline core, nonlinear intensity-thickness relations above a certain thickness limit, and artefacts due to missing angular ranges when acquiring a tilt series of images. Annular dark field (ADF), and EDX chemical mapping are discussed as alternatives to standard bright field (BF) TEM imaging.
Torrens, Carlos; Corrales, Monica; Gonzalez, Gemma; Solano, Alberto; Cáceres, Enrique
2008-01-01
Purpose The purpose of this study is to analyze the morphology of the scapula with reference to the glenoid component implantation in reversed shoulder prosthesis, in order to improve primary fixation of the component. Methods Seventy-three 3-dimensional computed tomography of the scapula and 108 scapular dry specimens were analyzed to determine the anterior and posterior length of the glenoid neck, the angle between the glenoid surface and the upper posterior column of the scapula and the angle between the major craneo-caudal glenoid axis and the base of the coracoid process and the upper posterior column. Results The anterior and posterior length of glenoid neck was classified into two groups named "short-neck" and "long-neck" with significant differences between them. The angle between the glenoid surface and the upper posterior column of the scapula was also classified into two different types: type I (mean 50°–52°) and type II (mean 62,50°–64°), with significant differences between them (p < 0,001). The angle between the major craneo-caudal glenoid axis and the base of the coracoid process averaged 18,25° while the angle with the upper posterior column of the scapula averaged 8°. Conclusion Scapular morphological variability advices for individual adjustments of glenoid component implantation in reversed total shoulder prosthesis. Three-dimensional computed tomography of the scapula constitutes an important tool when planning reversed prostheses implantation. PMID:18847487
Torrens, Carlos; Corrales, Monica; Gonzalez, Gemma; Solano, Alberto; Cáceres, Enrique
2008-10-10
The purpose of this study is to analyze the morphology of the scapula with reference to the glenoid component implantation in reversed shoulder prosthesis, in order to improve primary fixation of the component. Seventy-three 3-dimensional computed tomography of the scapula and 108 scapular dry specimens were analyzed to determine the anterior and posterior length of the glenoid neck, the angle between the glenoid surface and the upper posterior column of the scapula and the angle between the major craneo-caudal glenoid axis and the base of the coracoid process and the upper posterior column. The anterior and posterior length of glenoid neck was classified into two groups named "short-neck" and "long-neck" with significant differences between them. The angle between the glenoid surface and the upper posterior column of the scapula was also classified into two different types: type I (mean 50 degrees-52 degrees ) and type II (mean 62.50 degrees-64 degrees ), with significant differences between them (p < 0.001). The angle between the major craneo-caudal glenoid axis and the base of the coracoid process averaged 18,25 degrees while the angle with the upper posterior column of the scapula averaged 8 degrees . Scapular morphological variability advices for individual adjustments of glenoid component implantation in reversed total shoulder prosthesis. Three-dimensional computed tomography of the scapula constitutes an important tool when planning reversed prostheses implantation.
Phase-contrast x-ray computed tomography for observing biological specimens and organic materials
NASA Astrophysics Data System (ADS)
Momose, Atsushi; Takeda, Tohoru; Itai, Yuji
1995-02-01
A novel three-dimensional x-ray imaging method has been developed by combining a phase-contrast x-ray imaging technique with x-ray computed tomography. This phase-contrast x-ray computed tomography (PCX-CT) provides sectional images of organic specimens that would produce absorption-contrast x-ray CT images with little contrast. Comparing PCX-CT images of rat cerebellum and cancerous rabbit liver specimens with corresponding absorption-contrast CT images shows that PCX-CT is much more sensitive to the internal structure of organic specimens.
Biopsy: Types of Biopsy Procedures Used to Diagnose Cancer
... procedure — such as X-ray, computerized tomography (CT), magnetic resonance imaging (MRI) or ultrasound — with a needle ... org," "Mayo Clinic Healthy Living," and the triple-shield Mayo Clinic logo are trademarks of Mayo Foundation ...
A motion artefact study and locally deforming objects in computerized tomography
NASA Astrophysics Data System (ADS)
Hahn, Bernadette N.
2017-11-01
Movements of the object during the data collection in computerized tomography can introduce motion artefacts in the reconstructed image. They can be reduced by employing information about the dynamic behaviour within the reconstruction step. However, inaccuracies concerning the movement are inevitable in practice. In this article, we give an explicit characterization of what is visible in an image obtained by a reconstruction algorithm with incorrect motion information. Then, we use this result to study in detail the situation of locally deforming objects, i.e. individual parts of the object have a different dynamic behaviour. In this context, we prove that additional artefacts arise due to the global nature of the Radon transform, even if the motion is exactly known. Based on our analysis, we propose a numerical scheme to reduce these artefacts in the reconstructed image. All our results are illustrated by numerical examples.
NASA Astrophysics Data System (ADS)
Guerrero Prado, Patricio; Nguyen, Mai K.; Dumas, Laurent; Cohen, Serge X.
2017-01-01
Characterization and interpretation of flat ancient material objects, such as those found in archaeology, paleoenvironments, paleontology, and cultural heritage, have remained a challenging task to perform by means of conventional x-ray tomography methods due to their anisotropic morphology and flattened geometry. To overcome the limitations of the mentioned methodologies for such samples, an imaging modality based on Compton scattering is proposed in this work. Classical x-ray tomography treats Compton scattering data as noise in the image formation process, while in Compton scattering tomography the conditions are set such that Compton data become the principal image contrasting agent. Under these conditions, we are able, first, to avoid relative rotations between the sample and the imaging setup, and second, to obtain three-dimensional data even when the object is supported by a dense material by exploiting backscattered photons. Mathematically this problem is addressed by means of a conical Radon transform and its inversion. The image formation process and object reconstruction model are presented. The feasibility of this methodology is supported by numerical simulations.
Ibrahim, Zuhaib; Tong, Dedi; Zhu, Shan; Mao, Qi; Pang, John; Andrew Lee, Wei Ping; Brandacher, Gerald; Kang, Jin U.
2013-01-01
Abstract. Vascular and microvascular anastomoses are critical components of reconstructive microsurgery, vascular surgery, and transplant surgery. Intraoperative surgical guidance using a surgical imaging modality that provides an in-depth view and three-dimensional (3-D) imaging can potentially improve outcome following both conventional and innovative anastomosis techniques. Objective postoperative imaging of the anastomosed vessel can potentially improve the salvage rate when combined with other clinical assessment tools, such as capillary refill, temperature, blanching, and skin turgor. Compared to other contemporary postoperative monitoring modalities—computed tomography angiograms, magnetic resonance (MR) angiograms, and ultrasound Doppler—optical coherence tomography (OCT) is a noninvasive high-resolution (micron-level), high-speed, 3-D imaging modality that has been adopted widely in biomedical and clinical applications. For the first time, to the best of our knowledge, the feasibility of real-time 3-D phase-resolved Doppler OCT (PRDOCT) as an assisted intra- and postoperative imaging modality for microvascular anastomosis of rodent femoral vessels is demonstrated, which will provide new insights and a potential breakthrough to microvascular and supermicrovascular surgery. PMID:23856833
Radiation Hard Sensors for Surveillance.
1988-03-11
track position measurements were noted. E. Heijne (CERN) reported on the degradation of silicon detectors for doses larger than 2x10 11 muons /cm 2...Workshop on Transmission and Emission Computerized Tomography , July 1978, Seoul, Korea Nahmias C., Kenyon D.B., Garnett E.S.: Optimization of...crystal size in emission computed tomography . IEEE Trans ,.-.e Nucl Sci NS-27: 529-532, 1980. Mullani N.A., Ficke D.C., Ter-Pogossian M.M.: Cesium Fluoride
Three-Dimensional Printing in Orthopedic Surgery.
Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H
2015-11-01
Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions. Copyright 2015, SLACK Incorporated.
An overview of contemporary nuclear cardiology.
Lewin, Howard C; Sciammarella, Maria G; Watters, Thomas A; Alexander, Herbert G
2004-01-01
Myocardial perfusion single photon emission computed tomography (SPECT) is a widely utilized noninvasive imaging modality for the diagnosis, prognosis, and risk stratification of coronary artery disease. It is clearly superior to the traditional planar technique in terms of imaging contrast and consequent diagnostic and prognostic yield. The strength of SPECT images is largely derived from the three-dimensional, volumetric nature of its image. Thus, this modality permits three-dimensional assessment and quantitation of the perfused myocardium and functional assessment through electrocardiographic gating of the perfusion images.
Three Dimensional Assembly in Directed Self-assembly of Block Copolymers
Segal-Peretz, Tamar; Zhou, Chun; Ren, Jiaxing; ...
2016-09-02
The three-dimensional assembly of poly (styrene-b-methyl methacrylate) (PS-b-PMMA) in chemoepitaxy and graphoepitaxy directed self-assembly (DSA) was investigated using scanning transmission electron microscopy (STEM) tomography. The tomographic characterization revealed hidden morphologies and defects at the BCP- chemical pattern interface in lamellar DSA, and probed the formation of cylinders at the bottom of cylindrical DSA for contact hole shrink. Lastly, future work will include control over 3D assembly in sub-10 nm processes.
Three-dimensional quantitative flow diagnostics
NASA Technical Reports Server (NTRS)
Miles, Richard B.; Nosenchuck, Daniel M.
1989-01-01
The principles, capabilities, and practical implementation of advanced measurement techniques for the quantitative characterization of three-dimensional flows are reviewed. Consideration is given to particle, Rayleigh, and Raman scattering; fluorescence; flow marking by H2 bubbles, photochromism, photodissociation, and vibrationally excited molecules; light-sheet volume imaging; and stereo imaging. Also discussed are stereo schlieren methods, holographic particle imaging, optical tomography, acoustic and magnetic-resonance imaging, and the display of space-filling data. Extensive diagrams, graphs, photographs, sample images, and tables of numerical data are provided.
The Impact of Computed Tomography on Decision Making in Tibial Plateau Fractures.
Castiglia, Marcello Teixeira; Nogueira-Barbosa, Marcello Henrique; Messias, Andre Marcio Vieira; Salim, Rodrigo; Fogagnolo, Fabricio; Schatzker, Joseph; Kfuri, Mauricio
2018-02-14
Schatzker introduced one of the most used classification systems for tibial plateau fractures, based on plain radiographs. Computed tomography brought to attention the importance of coronal plane-oriented fractures. The goal of our study was to determine if the addition of computed tomography would affect the decision making of surgeons who usually use the Schatzker classification to assess tibial plateau fractures. Image studies of 70 patients who sustained tibial plateau fractures were uploaded to a dedicated homepage. Every patient was linked to a folder which contained two radiographic projections (anteroposterior and lateral), three interactive videos of computed tomography (axial, sagittal, and coronal), and eight pictures depicting tridimensional reconstructions of the tibial plateau. Ten attending orthopaedic surgeons, who were blinded to the cases, were granted access to the homepage and assessed each set of images in two different rounds, separated to each other by an interval of 2 weeks. Each case was evaluated in three steps, where surgeons had access, respectively to radiographs, two-dimensional videos of computed tomography, and three-dimensional reconstruction images. After every step, surgeons were asked to present how would they classify the case using the Schatzker system and which surgical approaches would be appropriate. We evaluated the inter- and intraobserver reliability of the Schatzker classification using the Kappa concordance coefficient, as well as the impact of computed tomography in the decision making regarding the surgical approach for each case, by using the chi-square test and likelihood ratio. The interobserver concordance kappa coefficients after each assessment step were, respectively, 0.58, 0.62, and 0.64. For the intraobserver analysis, the coefficients were, respectively, 0.76, 0.75, and 0.78. Computed tomography changed the surgical approach selection for the types II, V, and VI of Schatzker ( p < 0.01). The addition of computed tomography scans to plain radiographs improved the interobserver reliability of Schatzker classification. Computed tomography had a statistically significant impact in the selection of surgical approaches for the lateral tibial plateau. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Pathogenesis of the dry eye syndrome observed by optical coherence tomography in vitro
NASA Astrophysics Data System (ADS)
Kray, Oya; Lenz, Markus; Spöler, Felix; Kray, Stefan; Kurz, Heinrich
2011-06-01
Three dimensional optical coherence tomography (OCT) is introduced as a valuable tool to analyze the pathogenesis of corneal diseases. Here, OCT in combination with a novel in vitro model for the dry eye syndrome enables an improved understanding of the underlying damaging process of the ocular surface. En-face OCT projections indicate a deep structural damage of the epithelium and anterior stroma by osmotic forces.
Peterson, Diana Coomes; Mlynarczyk, Gregory S A
2016-11-01
This study examined whether student learning outcome measures are influenced by the addition of three-dimensional and digital teaching tools to a traditional dissection and lecture learning format curricula. The study was performed in a semester long graduate level course that incorporated both gross anatomy and neuroanatomy curricula. Methods compared student examination performance on material taught using lecture and cadaveric dissection teaching tools alone or lecture and cadaveric dissection augmented with computerized three-dimensional teaching tools. Additional analyses were performed to examine potential correlations between question difficulty and format, previous student performance (i.e., undergraduate grade point average), and a student perception survey. The results indicated that students performed better on material in which three-dimensional (3D) technologies are utilized in conjunction with lecture and dissection methodologies. The improvement in performance was observed across the student population primarily on laboratory examinations. Although, student performance was increased, students did not perceive that the use of the additional 3D technology significantly influenced their learning. The results indicate that the addition of 3D learning tools can influence long-term retention of gross anatomy material and should be considered as a beneficial supplement for anatomy courses. Anat Sci Educ 9: 529-536. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.
Sharma, Giriraj K.; Loy, Anthony Chin; Su, Erica; Jing, Joe; Chen, Zhongping; Wong, Brian J-F.; Verma, Sunil
2016-01-01
Objectives To determine the feasibility of long-range optical coherence tomography (LR-OCT) as a tool to intraoperatively image and measure the subglottis and trachea during suspension microlaryngoscopy before and after endoscopic treatment of subglottic stenosis (SGS). Methods Long-range optical coherence tomography of the adult subglottis and trachea was performed during suspension microlaryngoscopy before and after endoscopic treatment for SGS. The anteroposterior and transverse diameters, cross-sectional area (CSA), distance from the vocal cords, and length of the SGS were measured using a MATLAB software. Pre-intervention and postintervention airway dimensions were compared. Three-dimensional volumetric airway reconstructions were generated using medical image processing software (MIMICS). Results Intraoperative LR-OCT imaging was performed in 3 patients undergoing endoscopic management of SGS. Statistically significant differences in mean anteroposterior diameter (P < .01), transverse diameter (P < .001), and CSA (P < .001) were noted between pre-intervention and postintervention data. Three-dimensional airway models were viewed in cross-sectional format and via virtual “fly through” bronchoscopy. Conclusions This is the first report of intraoperative LR-OCT of the subglottic and tracheal airway before and after surgical management of SGS in humans. Long-range optical coherence tomography offers a practical means to measure the dimensions of SGS and acquire objective data on the response to endoscopic treatment of SGS. PMID:27354215
NASA Astrophysics Data System (ADS)
Yin, Xin; Liu, Aiping; Thornburg, Kent L.; Wang, Ruikang K.; Rugonyi, Sandra
2012-09-01
Recent advances in optical coherence tomography (OCT), and the development of image reconstruction algorithms, enabled four-dimensional (4-D) (three-dimensional imaging over time) imaging of the embryonic heart. To further analyze and quantify the dynamics of cardiac beating, segmentation procedures that can extract the shape of the heart and its motion are needed. Most previous studies analyzed cardiac image sequences using manually extracted shapes and measurements. However, this is time consuming and subject to inter-operator variability. Automated or semi-automated analyses of 4-D cardiac OCT images, although very desirable, are also extremely challenging. This work proposes a robust algorithm to semi automatically detect and track cardiac tissue layers from 4-D OCT images of early (tubular) embryonic hearts. Our algorithm uses a two-dimensional (2-D) deformable double-line model (DLM) to detect target cardiac tissues. The detection algorithm uses a maximum-likelihood estimator and was successfully applied to 4-D in vivo OCT images of the heart outflow tract of day three chicken embryos. The extracted shapes captured the dynamics of the chick embryonic heart outflow tract wall, enabling further analysis of cardiac motion.
The Mundrabilla Meteorite in Three-Dimensions
NASA Technical Reports Server (NTRS)
Gillies, D. C.; Carpenter, P. K.; Engel, H. P.
2003-01-01
Computed tomography (CT) using gamma radiation has revealed the interior structure of the anomalous iron meteorite, Mundrabilla. This meteorite is composed of 25 volume percent of iron sulfide with the remainder being iron-nickel. Both phases have been shown to be contiguous, and three dimensional models have been constructed using rapid prototyping techniques.
Guzman, Marco; Miranda, Gonzalo; Olavarria, Christian; Madrid, Sofia; Muñoz, Daniel; Leiva, Miguel; Lopez, Lorena; Bortnem, Cori
2017-01-01
The present study aimed to observe the effect of two types of tubes on vocal tract bidimensional and tridimensional images. Ten participants with hyperfunctional dysphonia were included. Computerized tomography was performed during production of sustained [a:], followed by sustained phonation into a drinking straw, and then repetition of sustained [a:]. A similar procedure was performed with a stirring straw after 15 minutes of vocal rest. Anatomic distances and area measures were obtained from computerized tomography midsagittal and transversal images. Vocal tract total volume was also calculated. During tube phonation, increases were measured in the vertical length of the vocal tract, oropharyngeal area, hypopharyngeal area, outlet of the epilaryngeal tube, and inlet to the lower pharynx. Also, the larynx was lower, and more closure was noted between the velum and the nasal passage. Tube phonation causes an increased total vocal tract volume, mostly because of the increased cross-sectional areas in the pharyngeal region. This change is more prominent when the tube offers more airflow resistance (stirring straw) compared with less airflow resistance (drinking straw). Based on our data and previous studies, it seems that vocal tract changes are not dependent on the voice condition (vocally trained, untrained, or disordered voices), but on the exercise itself and the type of instructions given to subjects. Tube phonation is a good option to reach therapeutic goals (eg, wide pharynx and low larynx) without giving biomechanical instructions, but only asking patients to feel easy voice and vibratory sensations. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Human Factors Research Under Ground-Based and Space Conditions. Part 2
NASA Technical Reports Server (NTRS)
1997-01-01
In this session, Session WP2, the discussion focuses on the following topics: Training Astronauts Using Three-Dimensional Visualizations of the International Space Station; Measurement and Validation of Bidirectional Reflectance of Shuttle and Space Station Materials for Computerized Lighting Models; Effects of Environmental Color on Mood and Performance of Astronauts in ISS; Psychophysical Measures of Motion and Orientation, Implications for Human Interface Design; and the Sopite Syndrome Revisited, Drowsiness and Mood Changes in Student Aviators.
3D Surface Reconstruction for Lower Limb Prosthetic Model using Radon Transform
NASA Astrophysics Data System (ADS)
Sobani, S. S. Mohd; Mahmood, N. H.; Zakaria, N. A.; Razak, M. A. Abdul
2018-03-01
This paper describes the idea to realize three-dimensional surfaces of objects with cylinder-based shapes where the techniques adopted and the strategy developed for a non-rigid three-dimensional surface reconstruction of an object from uncalibrated two-dimensional image sequences using multiple-view digital camera and turntable setup. The surface of an object is reconstructed based on the concept of tomography with the aid of performing several digital image processing algorithms on the two-dimensional images captured by a digital camera in thirty-six different projections and the three-dimensional structure of the surface is analysed. Four different objects are used as experimental models in the reconstructions and each object is placed on a manually rotated turntable. The results shown that the proposed method has successfully reconstruct the three-dimensional surface of the objects and practicable. The shape and size of the reconstructed three-dimensional objects are recognizable and distinguishable. The reconstructions of objects involved in the test are strengthened with the analysis where the maximum percent error obtained from the computation is approximately 1.4 % for the height whilst 4.0%, 4.79% and 4.7% for the diameters at three specific heights of the objects.
Dynamic-focusing microscope objective for optical coherence tomography
NASA Astrophysics Data System (ADS)
Murali, Supraja; Rolland, Jannick
2007-01-01
Optical Coherence Tomography (OCT) is a novel optical imaging technique that has assumed significant importance in bio-medical imaging in the last two decades because it is non-invasive and provides accurate, high resolution images of three dimensional cross-sections of body tissue, exceeding the capabilities of the current predominant imaging technique - ultrasound. In this paper, the application of high resolution OCT, known as optical coherence microscopy (OCM) is investigated for in vivo detection of abnormal skin pathology for the early diagnosis of cancer. A main challenge in OCM is maintaining invariant resolution throughout the sample. The technology presented is based on a dynamic focusing microscope imaging probe conceived for skin imaging and the detection of abnormalities in the epithelium. A novel method for dynamic focusing in the biological sample is presented using variable-focus lens technology to obtain three dimensional images with invariant resolution throughout the cross-section and depth of the sample is presented and discussed. A low coherence broadband source centered at near IR wavelengths is used to illuminate the sample. The design, analysis and predicted performance of the dynamic focusing microscope objective designed for dynamic three dimensional imaging at 5μm resolution for the chosen broadband spectrum is presented.
Kim, Sang-Rok; Lee, Kyung-Min; Cho, Jin-Hyoung; Hwang, Hyeon-Shik
2016-04-01
An anatomical relationship between the hard and soft tissues of the face is mandatory for facial reconstruction. The purpose of this study was to investigate the positions of the eyeball and canthi three-dimensionally from the relationships between the facial hard and soft tissues using cone-beam computed tomography (CBCT). CBCT scan data of 100 living subjects were used to obtain the measurements of facial hard and soft tissues. Stepwise multiple regression analyses were carried out using the hard tissue measurements in the orbit, nasal bone, nasal cavity and maxillary canine to predict the most probable positions of the eyeball and canthi within the orbit. Orbital width, orbital height, and orbital depth were strong predictors of the eyeball and canthi position. Intercanine width was also a predictor of the mediolateral position of the eyeball. Statistically significant regression models for the positions of the eyeball and canthi could be derived from the measurements of orbit and maxillary canine. These results suggest that CBCT data can be useful in predicting the positions of the eyeball and canthi three-dimensionally. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Use of cone beam computed tomography in periodontology
Acar, Buket; Kamburoğlu, Kıvanç
2014-01-01
Diagnosis of periodontal disease mainly depends on clinical signs and symptoms. However, in the case of bone destruction, radiographs are valuable diagnostic tools as an adjunct to the clinical examination. Two dimensional periapical and panoramic radiographs are routinely used for diagnosing periodontal bone levels. In two dimensional imaging, evaluation of bone craters, lamina dura and periodontal bone level is limited by projection geometry and superpositions of adjacent anatomical structures. Those limitations of 2D radiographs can be eliminated by three-dimensional imaging techniques such as computed tomography. Cone beam computed tomography (CBCT) generates 3D volumetric images and is also commonly used in dentistry. All CBCT units provide axial, coronal and sagittal multi-planar reconstructed images without magnification. Also, panoramic images without distortion and magnification can be generated with curved planar reformation. CBCT displays 3D images that are necessary for the diagnosis of intra bony defects, furcation involvements and buccal/lingual bone destructions. CBCT applications provide obvious benefits in periodontics, however; it should be used only in correct indications considering the necessity and the potential hazards of the examination. PMID:24876918
A simple three-dimensional stent for proper placement of mini-implant
2013-01-01
Background This paper deals with the fabrication of a three-dimensional stent which is simple in design but provides an accurate placement of a mini-implant in three planes of space, namely, sagittal (root proximity), vertical (attached gingiva/alveolar mucosa) and transverse (angulation). Findings The stent is made of 0.018 × 0.025 in. stainless steel archwire which consists of a ‘u loop’ angulated at 20°, a vertical limb, a horizontal limb and a stop. The angulation of the ‘u’ helps in the placement of the mini-implant at 70° to the long axis of the tooth. The vertical height is determined such that the mini-implant is placed at the mucogingival junction. The mini-implant is placed with the aid of the stent, and its angulation and proximity to the adjacent roots are checked with a cone beam computed tomography image. The cone beam computed tomography image showed the mini-implant at an angle of 70° to the long axis of the tooth. There is no contact between mini-implant and the roots of the adjacent teeth. Conclusion This stent is simple, easy to fabricate, cost-effective, and provides ease of insertion/removal, and three-dimensional orientation of the mini-implant. PMID:24326158
Kim, Yoon Jeong; Henkin, Jeffrey
2015-04-01
Micro-computed tomography (micro-CT) is a valuable means to evaluate and secure information related to bone density and quality in human necropsy samples and small live animals. The aim of this study was to assess the bone density of the alveolar jaw bones in human cadaver, using micro-CT. The correlation between bone density and three-dimensional micro architecture of trabecular bone was evaluated. Thirty-four human cadaver jaw bone specimens were harvested. Each specimen was scanned with micro-CT at resolution of 10.5 μm. The bone volume fraction (BV/TV) and the bone mineral density (BMD) value within a volume of interest were measured. The three-dimensional micro architecture of trabecular bone was assessed. All the parameters in the maxilla and the mandible were subject to comparison. The variables for the bone density and the three-dimensional micro architecture were analyzed for nonparametric correlation using Spearman's rho at the significance level of p < .05. A wide range of bone density was observed. There was a significant difference between the maxilla and mandible. All micro architecture parameters were consistently higher in the mandible, up to 3.3 times greater than those in the maxilla. The most linear correlation was observed between BV/TV and BMD, with Spearman's rho = 0.99 (p = .01). Both BV/TV and BMD were highly correlated with all micro architecture parameters with Spearman's rho above 0.74 (p = .01). Two aspects of bone density using micro-CT, the BV/TV and BMD, are highly correlated with three-dimensional micro architecture parameters, which represent the quality of trabecular bone. This noninvasive method may adequately enhance evaluation of the alveolar bone. © 2013 Wiley Periodicals, Inc.
Integrated Nondestructive Evaluation and Finite Element Analysis Predicts Crack Location and Shape
NASA Technical Reports Server (NTRS)
Abdul-Azia, Ali; Baaklini, George Y.; Trudell, Jeffrey J.
2002-01-01
This study describes the finite-element analyses and the NDE modality undertaken on two flywheel rotors that were spun to burst speed. Computed tomography and dimensional measurements were used to nondestructively evaluate the rotors before and/or after they were spun to the first crack detection. Computed tomography data findings of two- and three-dimensional crack formation were used to conduct finite-element (FEA) and fracture mechanics analyses. A procedure to extend these analyses to estimate the life of these components is also outlined. NDE-FEA results for one of the rotors are presented in the figures. The stress results, which represent the radial stresses in the rim, clearly indicate that the maximum stress region is within the section defined by the computed tomography scan. Furthermore, the NDE data correlate well with the FEA results. In addition, the measurements reported show that the NDE and FEA data are in parallel.
Thali, Michael J; Schweitzer, Wolf; Yen, Kathrin; Vock, Peter; Ozdoba, Christoph; Spielvogel, Elke; Dirnhofer, Richard
2003-03-01
The goal of this study was the full-body documentation of a gunshot wound victim with multislice helical computed tomography for subsequent comparison with the findings of the standard forensic autopsy. Complete volume data of the head, neck, and trunk were acquired by use of two acquisitions of less than 1 minute of total scanning time. Subsequent two-dimensional multiplanar reformations and three-dimensional shaded surface display reconstructions helped document the gunshot-created skull fractures and brain injuries, including the wound track, and the intracerebral bone fragments. Computed tomography also demonstrated intracardiac air embolism and pulmonary aspiration of blood resulting from bullet wound-related trauma. The "digital autopsy," even when postprocessing time was added, was more rapid than the classic forensic autopsy and, based on the nondestructive approach, offered certain advantages in comparison with the forensic autopsy.
The effect of cement on hip stem fixation: a biomechanical study.
Çelik, Talip; Mutlu, İbrahim; Özkan, Arif; Kişioğlu, Yasin
2017-06-01
This study presents the numerical analysis of stem fixation in hip surgery using with/without cement methods since the use of cement is still controversial based on the clinical studies in the literature. Many different factors such as stress shielding, aseptic loosening, material properties of the stem, surgeon experiences etc. play an important role in the failure of the stem fixations. The stem fixation methods, cemented and uncemented, were evaluated in terms of mechanical failure aspects using computerized finite element method. For the modeling processes, three dimensional (3D) femur model was generated from computerized tomography (CT) images taken from a patient using the MIMICS Software. The design of the stem was also generated as 3D CAD model using the design parameters taken from the manufacturer catalogue. These 3D CAD models were generated and combined with/without cement considering the surgical procedure using SolidWorks program and then imported into ANSYS Workbench Software. Two different material properties, CoCrMo and Ti6Al4V, for the stem model and Poly Methyl Methacrylate (PMMA) for the cement were assigned. The material properties of the femur were described according to a density calculated from the CT images. Body weight and muscle forces were applied on the femur and the distal femur was fixed for the boundary conditions. The calculations of the stress distributions of the models including cement and relative movements of the contacts examined to evaluate the effects of the cement and different stem material usage on the failure of stem fixation. According to the results, the use of cement for the stem fixation reduces the stress shielding but increases the aseptic loosening depending on the cement crack formations. Additionally, using the stiffer material for the stem reduces the cement stress but increases the stress shielding. Based on the results obtained in the study, even when taking the disadvantages into account, the cement usage is more suitable for the hip fixations.
Quantum Storage of Three-Dimensional Orbital-Angular-Momentum Entanglement in a Crystal.
Zhou, Zong-Quan; Hua, Yi-Lin; Liu, Xiao; Chen, Geng; Xu, Jin-Shi; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can
2015-08-14
Here we present the quantum storage of three-dimensional orbital-angular-momentum photonic entanglement in a rare-earth-ion-doped crystal. The properties of the entanglement and the storage process are confirmed by the violation of the Bell-type inequality generalized to three dimensions after storage (S=2.152±0.033). The fidelity of the memory process is 0.993±0.002, as determined through complete quantum process tomography in three dimensions. An assessment of the visibility of the stored weak coherent pulses in higher-dimensional spaces demonstrates that the memory is highly reliable for 51 spatial modes. These results pave the way towards the construction of high-dimensional and multiplexed quantum repeaters based on solid-state devices. The multimode capacity of rare-earth-based optical processors goes beyond the temporal and the spectral degree of freedom, which might provide a useful tool for photonic information processing.
NASA Astrophysics Data System (ADS)
Krueger, Alexander; Knels, Lilla; Meissner, Sven; Wendel, Martina; Heller, Axel R.; Lambeck, Thomas; Koch, Thea; Koch, Edmund
2007-07-01
Fourier domain optical coherence tomography (FD-OCT) was used to acquire three-dimensional image stacks of isolated and perfused rabbit lungs (n = 4) at different constant pulmonary airway pressures (CPAP) and during vascular fixation. After despeckling and applying a threshold, the images were segmented into air and tissue, and registered to each other to compensate for movement between CPAP steps. The air-filled cross-sectional areas were quantified using a semi-automatic algorithm. The cross-sectional area of alveolar structures taken at all three perpendicular planes increased with increasing CPAP. Between the minimal CPAP of 3 mbar and the maximum of 25 mbar the areas increased to about 140% of their initial value. There was no systematic dependency of inflation rate on initial size of the alveolar structure. During the perfusion fixation of the lungs with glutaraldehyde morphometric changes of the alveolar geometry measured with FD-OCT were negligible.
Quantification of eggshell microstructure using X-ray micro computed tomography
Riley, A.; Sturrock, C. J.; Mooney, S. J.
2014-01-01
1. X-ray microcomputed tomography can be used to produce rapid, fully analysable, three-dimensional images of biological and other materials without the need for complex or tedious sample preparation and sectioning. We describe the use of this technique to visualise and analyse the microstructure of fragments of shell taken from three regions of chicken eggs (sharp pole, blunt pole and equatorial region). 2. Two- and three-dimensional images and data were obtained at a resolution of 1.5 microns. The images were analysed to provide measurements of shell thickness, the spacial density of mammillary bodies, the frequency, shape, volume and effective diameter of individual pore spaces, and the intrinsic sponginess (proportion of non-X-ray dense material formed by vesicles) of the shell matrix. Measurements of these parameters were comparable with those derived by traditional methods and reported in the literature. 3. The advantages of using this technology for the quantification of eggshell microstructural parameters and its potential application for commercial, research and other purposes are discussed. PMID:24875292
Selcuk, Adin; Ozer, Tulay; Esen, Erkan; Ozdogan, Fatih; Ozel, Halil Erdem; Yuce, Turgut; Caliskan, Sebla; Dasli, Sinem; Bilal, Nagihan; Genc, Gulden; Genc, Selahattin
2017-05-01
To investigate changes in upper airway volume parameters measured by computerized tomography scans in patients with surgically treated by anterior palatoplasty of whom having pure snoring and mild-moderate obstructive sleep apnea. A prospective study on consecutively anterior palatoplasty performed pure snoring and obstructive sleep apnea patients. Computerized tomography scans were obtained preoperatively and following anterior palatoplasty procedure to measure changes in upper airway volume. Patients underwent diagnostic drug induced sleep endoscopy to assess the site of obstruction. Preoperative and postoperative measurements were compared using student's t test and Chi-square test. Twenty-two patients (16 men and 6 women, age 48.22 ± 9.23, body mass index 25.85 ± 2.57) completed the trial. Anterior palatoplasty was associated with an increase in total upper airway volume from 4.81 ± 1.73 cm 3 before treatment to 6.57 ± 2.03 cm 3 after treatment (p < 0.005). Change in soft palate thickness did not vary significantly (p < 0.039). The mean soft palate length has changed from 4.13 ± 0.41 to 3.93 ± 0.51 cm (p < 0.001). The preoperative and postoperative measurements of cross-sectional areas and volumes all showed significant difference except velopharynx minimal lateral airway dimension. The operational procedure increased the total upper airway volume much more in men than in women (p < 0.05). Results of this study indicate that anterior palatoplasty operation appears to produce significant increase in upper airway volume and cross sectional area. It does not seem to have an effect on lateral airway dimension. Computerized tomography is a quick and noninvasive imaging technique that allows for quantitative assessment of the velopharyngeal patency changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raynaud, C.; Rancurel, G.; Samson, Y.
1987-01-01
Seventeen chronic cerebral infarcts were investigated by a highly sensitive, dedicated brain single photon emission computerized tomography system using /sup 123/I-isopropyl iodoamphetamine (IMP) and /sup 133/Xe. IMP uptake was measured 10 minutes, 2 hours, and 5 hours after injection, and regional cerebral blood flow was measured with 133Xe. In 4 cases a positron emission tomography system was used to measure the rCBF and the regional metabolic rate of oxygen with C15O2 and 15O2. The results obtained allowed us to identify 2 abnormal zones. One, the central area, was characterized by a severe decrease in IMP uptake and rCBF averaging 34%more » and 46% respectively and by a hypodense image on the x-ray computerized tomography scan. The second, the periinfarct or ''peripheral area'' was characterized by a moderate decrease in IMP uptake and regional cerebral blood flow averaging 13 and 19% respectively; this area extended around the central area and had a normal density on computerized tomography scan. The IMP hypofixation of the peripheral area observed at the 10th minute tended to disappear at the 5th hour. The volume of this area was often found to be quite large, covering more than 30% of a hemisphere whereas the central area did not exceed 25%. Volume appeared to be correlated with the neurological status of the patient. The nature of the peripheral area is not established with certainty. It may be caused by deafferentation of areas not directly affected by the ischemic insult and/or selective ischemic neuronal loss. The results stress the important role played by the peripheral area, which may be useful in establishing the prognosis and evaluating the efficacy of therapy in individual stroke cases.« less
Sheriff, Hemin Oathman; Mahmood, Kawa Abdullah; Hamawandi, Nzar; Mirza, Aram Jamal; Hawas, Jawad; Moreno, Esther Granell; Clavero, Juan Antonio; Hankins, Christopher; Masia, Jaume
2018-05-18
The supraclavicular artery flap is an excellent flap for head and neck reconstruction. The aim of this study is to assess imaging techniques to define the precise vascular boundaries of this flap. Six imaging techniques were used for supraclavicular artery mapping in 65 cases; handheld Doppler, triplex ultrasound, computed tomography angiography, magnetic resonance angiography, digital subtraction angiography, and indocyanine green angiography. We checked the site of the perforators, the course of a supraclavicular artery, and anatomical mapping of the supraclavicular artery. Handheld Doppler identified perforators' sites in 80% of the cases but showed no results for the course of the vessel. Triplex ultrasound identified the site of perforators in 52.9%, and partial mapping of the course of a supraclavicular artery in 64.7% of the cases. Computerized tomography angiography showed the site of perforators in 60%, and the course of supraclavicular artery completely in 45%, and partially in an additional 30%of the cases examined. Magnetic resonance angiography showed negative results for all parameters. Digital subtraction angiography showed the partial course of a supraclavicular artery in 62.5%, but showed no perforators. Indocyanine green angiography showed the site of perforators in 60% and a partial course of supraclavicular artery distal to perforators in 60%.Anatomical mapping of the vessel was possible with computerized tomography angiogram completely in 45%, and partially in 30%, and was also possible with indocyanine green angiography partially in 60%. Computerized tomography angiography showed best results in the mapping of the supraclavicular artery, but with an inability to define the perforator perfusion territories, and also with risks of irradiation, while indocyanine green angiography is a good alternative as it could precisely map the superficial course of the artery and angiosomes, with no radiation exposure. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Forget, Benoît-Claude; Ramaz, François; Atlan, Michaël; Selb, Juliette; Boccara, Albert-Claude
2003-03-01
We report new results on acousto-optical tomography in phantom tissues using a frequency chirp modulation and a CCD camera. This technique allows quick recording of three-dimensional images of the optical contrast with a two-dimensional scan of the ultrasound source in a plane perpendicular to the ultrasonic path. The entire optical contrast along the ultrasonic path is concurrently obtained from the capture of a film sequence at a rate of 200 Hz. This technique reduces the acquisition time, and it enhances the axial resolution and thus the contrast, which are usually poor owing to the large volume of interaction of the ultrasound perturbation.
Clinical results of computerized tomography-based simulation with laser patient marking.
Ragan, D P; Forman, J D; He, T; Mesina, C F
1996-02-01
Accuracy of a patient treatment portal marking device and computerized tomography (CT) simulation have been clinically tested. A CT-based simulator has been assembled based on a commercial CT scanner. This includes visualization software and a computer-controlled laser drawing device. This laser drawing device is used to transfer the setup, central axis, and/or radiation portals from the CT simulator to the patient for appropriate patient skin marking. A protocol for clinical testing is reported. Twenty-five prospectively, sequentially accessioned patients have been analyzed. The simulation process can be completed in an average time of 62 min. Under many cases, the treatment portals can be designed and the patient marked in one session. Mechanical accuracy of the system was found to be within +/- 1mm. The portal projection accuracy in clinical cases is observed to be better than +/- 1.2 mm. Operating costs are equivalent to the conventional simulation process it replaces. Computed tomography simulation is a clinical accurate substitute for conventional simulation when used with an appropriate patient marking system and digitally reconstructed radiographs. Personnel time spent in CT simulation is equivalent to time in conventional simulation.
Evaluation of computed tomography numbers for treatment planning of lung cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mira, J.G.; Fullerton, G.D.; Ezekiel, J.
1982-09-01
Computerized tomography numbers (CTN) were evaluated in 32 computerized tomography scans performed on patients with carcinoma of the lung, with the aim of evaluating CTN in normal (lung, blood, muscle, etc) and pathologic tissues (tumor, atelectasis, effusion, post-radiation fibrosis). Our main findings are: 1. Large individual CTN variations are encountered in both normal and pathologic tissues, above and below mean values. Hence, absolute numbers are meaningless. Measurements of any abnormal intrathoracic structure should be compared in relation to normal tissue CTN values in the same scan. 2. Tumor and complete atelectasis have CTN basically similar to soft tissue. Hence, thesemore » numbers are not useful for differential diagnosis. 3. Effusions usually have lower CTN and can be distinguished from previous situations. 4. Dosimetry based on uniform lung density assumptions (i.e., 300 mg/cm/sup 3/) might produce substantial dose errors as lung CTN exhibit variations indicating densities well above and below this value. 5. Preliminary information indicates that partial atelectasis and incipient post-radiation fibrosis can have very low CTN. Hence, they can be differentiated from solid tumors in certain cases, and help in differential diagnosis of post radiation recurrence within the radiotherapy field versus fibrosis.« less
Sarcoidosis Occurring After Lymphoma
London, Jonathan; Grados, Aurélie; Fermé, Christophe; Charmillon, Alexandre; Maurier, François; Deau, Bénédicte; Crickx, Etienne; Brice, Pauline; Chapelon-Abric, Catherine; Haioun, Corinne; Burroni, Barbara; Alifano, Marco; Le Jeunne, Claire; Guillevin, Loïc; Costedoat-Chalumeau, Nathalie; Schleinitz, Nicolas; Mouthon, Luc; Terrier, Benjamin
2014-01-01
Abstract Sarcoidosis is a granulomatous disease that most frequently affects the lungs with pulmonary infiltrates and/or bilateral hilar and mediastinal lymphadenopathy. An association of sarcoidosis and lymphoproliferative disease has previously been reported as the sarcoidosis-lymphoma syndrome. Although this syndrome is characterized by sarcoidosis preceding lymphoma, very few cases of sarcoidosis following lymphoma have been reported. We describe the clinical, biological, and radiological characteristics and outcome of 39 patients presenting with sarcoidosis following lymphoproliferative disease, including 14 previously unreported cases and 25 additional patients, after performing a literature review. Hodgkin lymphoma and non-Hodgkin lymphoma were equally represented. The median delay between lymphoma and sarcoidosis was 18 months. Only 16 patients (41%) required treatment. Sarcoidosis was of mild intensity or self-healing in most cases, and overall clinical response to sarcoidosis was excellent with complete clinical response in 91% of patients. Sarcoidosis was identified after a follow-up computerized tomography scan (CT-scan) or 18fluorodeoxyglucose-positron emission tomography/computerized tomography (18FDG-PET/CT) evaluation in 18/34 patients (53%). Sarcoidosis is therefore a differential diagnosis to consider when lymphoma relapse is suspected on a CT-scan or 18FDG-PET/CT, emphasizing the necessity to rely on histological confirmation of lymphoma relapse. PMID:25380084
Doğan, Mehmet-Sinan; Callea, Michele; Yavuz, Ìzzet; Aksoy, Orhan; Clarich, Gabriella; Günay, Ayse; Günay, Ahmet; Güven, Sedat; Maglione, Michele; Akkuş, Zeki
2015-05-01
This study aimed to review the results related to head and jaw disorders in cases of ectodermal dysplasia. The evaluation of ectodermal dysplasia cases was made by clinical examination and examination of the jaw and facial areas radiologically and on cone-beam 3-dimensional dental tomography (CBCT) images. In the 36 cases evaluated in the study, typical clinical findings of pure hypohidrotic ectodermal displasia (HED) were seen, such as missing teeth, dry skin, hair and nail disorders. CBCT images were obtained from 12 of the 36 cases, aged 1.5- 45 years, and orthodontic analyses were made on these images. The clinical and radiological evaluations determined, hypodontia or oligodontia, breathing problems, sweating problems, a history of fever, sparse hair, saddle nose, skin peeling, hypopigmentation, hyperpigmentation, finger and nail deformities, conical teeth anomalies, abnormal tooth root formation, tooth resorption in the root, gingivitis, history of epilepsy, absent lachrymal canals and vision problems in the cases which included to the study. Ectodermal dysplasia cases have a particular place in dentistry and require a professional, multi-disciplinary approach in respect of the chewing function, orthognathic problems, growth, oral and dental health. It has been understood that with data obtained from modern technologies such as three-dimensional dental tomography and the treatments applied, the quality of life of these cases can be improved.
Batchelor, Connor; Pordeli, Pooneh; d'Esterre, Christopher D; Najm, Mohamed; Al-Ajlan, Fahad S; Boesen, Mari E; McDougall, Connor; Hur, Lisa; Fainardi, Enrico; Shankar, Jai Jai Shiva; Rubiera, Marta; Khaw, Alexander V; Hill, Michael D; Demchuk, Andrew M; Sajobi, Tolulope T; Goyal, Mayank; Lee, Ting-Yim; Aviv, Richard I; Menon, Bijoy K
2017-06-01
Intracerebral hemorrhage is a feared complication of intravenous alteplase therapy in patients with acute ischemic stroke. We explore the use of multimodal computed tomography in predicting this complication. All patients were administered intravenous alteplase with/without intra-arterial therapy. An age- and sex-matched case-control design with classic and conditional logistic regression techniques was chosen for analyses. Outcome was parenchymal hemorrhage on 24- to 48-hour imaging. Exposure variables were imaging (noncontrast computed tomography hypoattenuation degree, relative volume of very low cerebral blood volume, relative volume of cerebral blood flow ≤7 mL/min·per 100 g, relative volume of T max ≥16 s with all volumes standardized to z axis coverage, mean permeability surface area product values within T max ≥8 s volume, and mean permeability surface area product values within ipsilesional hemisphere) and clinical variables (NIHSS [National Institutes of Health Stroke Scale], onset to imaging time, baseline systolic blood pressure, blood glucose, serum creatinine, treatment type, and reperfusion status). One-hundred eighteen subjects (22 patients with parenchymal hemorrhage versus 96 without, median baseline NIHSS score of 15) were included in the final analysis. In multivariable regression, noncontrast computed tomography hypoattenuation grade ( P <0.006) and computerized tomography perfusion white matter relative volume of very low cerebral blood volume ( P =0.04) were the only significant variables associated with parenchymal hemorrhage on follow-up imaging (area under the curve, 0.73; 95% confidence interval, 0.63-0.83). Interrater reliability for noncontrast computed tomography hypoattenuation grade was moderate (κ=0.6). Baseline hypoattenuation on noncontrast computed tomography and very low cerebral blood volume on computerized tomography perfusion are associated with development of parenchymal hemorrhage in patients with acute ischemic stroke receiving intravenous alteplase. © 2017 American Heart Association, Inc.
Play dough as an educational tool for visualization of complicated cerebral aneurysm anatomy.
Eftekhar, Behzad; Ghodsi, Mohammad; Ketabchi, Ebrahim; Ghazvini, Arman Rakan
2005-05-10
Imagination of the three-dimensional (3D) structure of cerebral vascular lesions using two-dimensional (2D) angiograms is one of the skills that neurosurgical residents should achieve during their training. Although ongoing progress in computer software and digital imaging systems has facilitated viewing and interpretation of cerebral angiograms enormously, these facilities are not always available. We have presented the use of play dough as an adjunct to the teaching armamentarium for training in visualization of cerebral aneurysms in some cases. The advantages of play dough are low cost, availability and simplicity of use, being more efficient and realistic in training the less experienced resident in comparison with the simple drawings and even angiographic views from different angles without the need for computers and similar equipment. The disadvantages include the psychological resistance of residents to the use of something in surgical training that usually is considered to be a toy, and not being as clean as drawings or computerized images. Although technology and computerized software using the patients' own imaging data seems likely to become more advanced in the future, use of play dough in some complicated cerebral aneurysm cases may be helpful in 3D reconstruction of the real situation.
Yamashiro, Keisuke; Nakano, Makoto; Sawaki, Koichi; Okazaki, Fumihiko; Hirata, Yasuhisa; Takashiba, Shogo
2016-08-01
It is sometimes difficult to determine during the preoperative period whether patients have oral infections; these patients need treatment to prevent oral infection-related complications from arising during medical therapies, such as cancer therapy and surgery. One of the reasons for this difficulty is that basic medical tests do not identify oral infections, including periodontitis and periapical periodontitis. In this report, we investigated the potential of positron emission tomography/computerized tomography (PET/CT) as a diagnostic tool in these patients. We evaluated eight patients during the preoperative period. All patients underwent PET/CT scanning and were identified as having the signs of oral infection, as evidenced by (18)F-fludeoxyglucose (FDG) localization in the oral regions. Periodontal examination and orthopantomogram evaluation showed severe infection or bone resorption in the oral regions. (18)F-FDG was localized in oral lesions, such as severe periodontitis, apical periodontitis, and pericoronitis of the third molar. The densities of (18)F-FDG were proportional to the degree of inflammation. PET/CT is a potential diagnostic tool for oral infections. It may be particularly useful in patients during preoperative staging, as they frequently undergo scanning at this time, and those identified as having oral infections at this time require treatment before cancer therapy or surgery. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Balasubramanian, Priya S.; Guo, Jiaqi; Yao, Xinwen; Qu, Dovina; Lu, Helen H.; Hendon, Christine P.
2017-02-01
The directionality of collagen fibers across the anterior cruciate ligament (ACL) as well as the insertion of this key ligament into bone are important for understanding the mechanical integrity and functionality of this complex tissue. Quantitative analysis of three-dimensional fiber directionality is of particular interest due to the physiological, mechanical, and biological heterogeneity inherent across the ACL-to-bone junction, the behavior of the ligament under mechanical stress, and the usefulness of this information in designing tissue engineered grafts. We have developed an algorithm to characterize Optical Coherence Tomography (OCT) image volumes of the ACL. We present an automated algorithm for measuring ligamentous fiber angles, and extracting attenuation and backscattering coefficients of ligament, interface, and bone regions within mature and immature bovine ACL insertion samples. Future directions include translating this algorithm for real time processing to allow three-dimensional volumetric analysis within dynamically moving samples.
NASA Astrophysics Data System (ADS)
Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein
2017-11-01
We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness.
Chromatin organization regulates viral egress dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aho, Vesa; Myllys, Markko; Ruokolainen, Visa
Various types of DNA viruses are known to elicit the formation of a large nuclear viral replication compartment and marginalization of the cell chromatin. We used three-dimensional soft x-ray tomography, confocal and electron microscopy, combined with numerical modelling of capsid diffusion to analyse the molecular organization of chromatin in herpes simplex virus 1 infection and its effect on the transport of progeny viral capsids to the nuclear envelope. Our data showed that the formation of the viral replication compartment at late infection resulted in the enrichment of heterochromatin in the nuclear periphery accompanied by the compaction of chromatin. Random walkmore » modelling of herpes simplex virus 1–sized particles in a three-dimensional soft x-ray tomography reconstruction of an infected cell nucleus demonstrated that the peripheral, compacted chromatin restricts viral capsid diffusion, but due to interchromatin channels capsids are able to reach the nuclear envelope, the site of their nuclear egress.« less
Optical computed tomography in PRESAGE® three-dimensional dosimetry: Challenges and prospective.
Khezerloo, Davood; Nedaie, Hassan Ali; Farhood, Bagher; Zirak, Alireza; Takavar, Abbas; Banaee, Nooshin; Ahmadalidokht, Isa; Kron, Tomas
2017-01-01
With the advent of new complex but precise radiotherapy techniques, the demands for an accurate, feasible three-dimensional (3D) dosimetry system have been increased. A 3D dosimeter system generally should not only have accurate and precise results but should also feasible, inexpensive, and time consuming. Recently, one of the new candidates for 3D dosimetry is optical computed tomography (CT) with a radiochromic dosimeter such as PRESAGE®. Several generations of optical CT have been developed since the 90s. At the same time, a large attempt has been also done to introduce the robust dosimeters that compatible with optical CT scanners. In 2004, PRESAGE® dosimeter as a new radiochromic solid plastic dosimeters was introduced. In this decade, a large number of efforts have been carried out to enhance optical scanning methods. This article attempts to review and reflect on the results of these investigations.
Comparison of face types in Chinese women using three-dimensional computed tomography.
Zhou, Rong-Rong; Zhao, Qi-Ming; Liu, Miao
2015-04-01
This study compared inverted triangle and square faces of 21 young Chinese Han women (18-25 years old) using three-dimensional computed tomography images retrieved from a records database. In this study, 11 patients had inverted triangle faces and 10 had square faces. The anatomic features were examined and compared. There were significant differences in lower face width, lower face height, masseter thickness, middle/lower face width ratio, and lower face width/height ratio between the two facial types (p < 0.01). Lower face width was positively correlated with masseter thickness and negatively correlated with gonial angle. Lower face height was positively correlated with gonial angle and negatively correlated with masseter thickness, and gonial angle was negatively correlated with masseter thickness. In young Chinese Han women, inverted triangle faces and square faces differ significantly in masseter thickness and lower face height. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Automated three-dimensional quantification of myocardial perfusion and brain SPECT.
Slomka, P J; Radau, P; Hurwitz, G A; Dey, D
2001-01-01
To allow automated and objective reading of nuclear medicine tomography, we have developed a set of tools for clinical analysis of myocardial perfusion tomography (PERFIT) and Brain SPECT/PET (BRASS). We exploit algorithms for image registration and use three-dimensional (3D) "normal models" for individual patient comparisons to composite datasets on a "voxel-by-voxel basis" in order to automatically determine the statistically significant abnormalities. A multistage, 3D iterative inter-subject registration of patient images to normal templates is applied, including automated masking of the external activity before final fit. In separate projects, the software has been applied to the analysis of myocardial perfusion SPECT, as well as brain SPECT and PET data. Automatic reading was consistent with visual analysis; it can be applied to the whole spectrum of clinical images, and aid physicians in the daily interpretation of tomographic nuclear medicine images.
Gao, Yuan; Peters, Ove A; Wu, Hongkun; Zhou, Xuedong
2009-02-01
The purpose of this study was to customize an application framework by using the MeVisLab image processing and visualization platform for three-dimensional reconstruction and assessment of tooth and root canal morphology. One maxillary first molar was scanned before and after preparation with ProTaper by using micro-computed tomography. With a customized application framework based on MeVisLab, internal and external anatomy was reconstructed. Furthermore, the dimensions of root canal and radicular dentin were quantified, and effects of canal preparation were assessed. Finally, a virtual preparation with risk analysis was performed to simulate the removal of a broken instrument. This application framework provided an economical platform and met current requirements of endodontic research. The broad-based use of high-quality free software and the resulting exchange of experience might help to improve the quality of endodontic research with micro-computed tomography.
NASA Astrophysics Data System (ADS)
Pankhurst, M. J.; Fowler, R.; Courtois, L.; Nonni, S.; Zuddas, F.; Atwood, R. C.; Davis, G. R.; Lee, P. D.
2018-01-01
We present new software allowing significantly improved quantitative mapping of the three-dimensional density distribution of objects using laboratory source polychromatic X-rays via a beam characterisation approach (c.f. filtering or comparison to phantoms). One key advantage is that a precise representation of the specimen material is not required. The method exploits well-established, widely available, non-destructive and increasingly accessible laboratory-source X-ray tomography. Beam characterisation is performed in two stages: (1) projection data are collected through a range of known materials utilising a novel hardware design integrated into the rotation stage; and (2) a Python code optimises a spectral response model of the system. We provide hardware designs for use with a rotation stage able to be tilted, yet the concept is easily adaptable to virtually any laboratory system and sample, and implicitly corrects the image artefact known as beam hardening.
Chromatin organization regulates viral egress dynamics
Aho, Vesa; Myllys, Markko; Ruokolainen, Visa; ...
2017-06-16
Various types of DNA viruses are known to elicit the formation of a large nuclear viral replication compartment and marginalization of the cell chromatin. We used three-dimensional soft x-ray tomography, confocal and electron microscopy, combined with numerical modelling of capsid diffusion to analyse the molecular organization of chromatin in herpes simplex virus 1 infection and its effect on the transport of progeny viral capsids to the nuclear envelope. Our data showed that the formation of the viral replication compartment at late infection resulted in the enrichment of heterochromatin in the nuclear periphery accompanied by the compaction of chromatin. Random walkmore » modelling of herpes simplex virus 1–sized particles in a three-dimensional soft x-ray tomography reconstruction of an infected cell nucleus demonstrated that the peripheral, compacted chromatin restricts viral capsid diffusion, but due to interchromatin channels capsids are able to reach the nuclear envelope, the site of their nuclear egress.« less
Nomoto, Rie; Takayama, Yasuko; Tsuchida, Fujio; Nakajima, Hiroyuki
2010-12-01
The purpose of this study was to measure the porosity in different laser welded cast alloys non-destructively using X-ray micro-focus computerized tomography (micro-CT) and to evaluate the effect of porosity on the tensile strength of the welded joints. The welding procedure was conducted in rectangular cast metals, CoCr, Ti and platinum added gold alloy (AuPt). The metal plates were butted CoCr to CoCr (CoCr/CoCr) or Ti to Ti (Ti/Ti) for welding of similar metals and Ti to AuPt (Ti/AuPt) for welding of dissimilar metals. Specimens were welded under several laser-welding conditions; with groove (normal), without groove (no groove), spatter, crack, or no overlapped welding (no overlap) (n=5). Porosity in the welded area was evaluated using a micro-CT. Tensile strength of the welded specimens was measured at a crosshead speed of 1mm/min. Multiple comparisons of the group means were performed using ANOVA and Fisher's multiple comparisons test (α=.05). The relationship between the porosity and the tensile strength was investigated with a regression analysis. Three-dimensional images of Ti/AuPt could not be obtained due to metal artifacts and the tensile specimens of Ti/AuPt were debonded prior to the tensile test. All other welded specimens had porosity in the welded area and the porosities ranged from 0.01% to 0.17%. The fractures of most of the CoCr/CoCr and Ti/Ti specimens occurred in the parent metals. Joint strength had no relationship with the porosity in the welded area (R(2)=0.148 for CoCr/CoCr, R(2)=0.088 for Ti/Ti, respectively). The small amount of porosity caused by the laser-welding procedures did not affect the joint strength. The joint strength of Ti/AuPt was too weak to be used clinically. Copyright © 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Use of Cone Beam Computed Tomography in Endodontics
Scarfe, William C.; Levin, Martin D.; Gane, David; Farman, Allan G.
2009-01-01
Cone Beam Computed Tomography (CBCT) is a diagnostic imaging modality that provides high-quality, accurate three-dimensional (3D) representations of the osseous elements of the maxillofacial skeleton. CBCT systems are available that provide small field of view images at low dose with sufficient spatial resolution for applications in endodontic diagnosis, treatment guidance, and posttreatment evaluation. This article provides a literature review and pictorial demonstration of CBCT as an imaging adjunct for endodontics. PMID:20379362
NASA Astrophysics Data System (ADS)
Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; Glover, B. B.; Duque, A. L. Higginbotham; Perry, W. L.; Patterson, B. M.; Dalvit, D. A. R.; Moore, D. S.
2016-04-01
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. We analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.
NASA Astrophysics Data System (ADS)
Bouma, Brett E.
1998-09-01
The pace of technological advancement of Optical Coherence Tomography (OCT) over the last several years has been extremely rapid. The field has progressed from one-dimensional low-coherence ranging to full three-dimensional imaging with individual two-dimensional images aquired at near video rate in a span of less than eight years. Imaging applications have included polymers and advanced composites, Ophthalmology, Developmental Biology, Gastroenterology, Urology, Cardiology, Neurology, and Gynecology. These preliminary studies indicate the great potential for OCT to make a significant impact, especially in clinical medicine.
Myelography and cytology in the treatment of medulloblastoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deutsch, M.; Reigel, D.H.
1981-06-01
Eight of 22 children with newly diagnosed medulloblastoma had asymptomatic spinal cord involvement detected by myelography. Two additional patients had demonstrable spinal cord lesions at the time of relapse in the posterior fossa. Cerebral spinal fluid (CSF) cytology results were inaccurate in predicting cord involvement. Seven patients have relapsed 9 to 69 months from completion of radiotherapy. Three had initial cord involvement and also had subsequent cord involvement at the time of intracranial relapse or afterwards. Frontal lobe involvement as the initial site of relapse occurred in 3 patients. Computerized tomography has been valuable in the early detection of intracranialmore » relapse. Three children are alive and well 10, 18 and 19 months, respectively, from time of relapse. All were retreated with radiotherapy in conjunction with misonidazole and subsequent chemotherapy.« less
NASA Astrophysics Data System (ADS)
Liu, Lu; Kamm, Paul; García-Moreno, Francisco; Banhart, John; Pasini, Damiano
2017-10-01
This paper examines three-dimensional metallic lattices with regular octet and rhombicuboctahedron units fabricated with geometric imperfections via Selective Laser Sintering. We use X-ray computed tomography to capture morphology, location, and distribution of process-induced defects with the aim of studying their role in the elastic response, damage initiation, and failure evolution under quasi-static compression. Testing results from in-situ compression tomography show that each lattice exhibits a distinct failure mechanism that is governed not only by cell topology but also by geometric defects induced by additive manufacturing. Extracted from X-ray tomography images, the statistical distributions of three sets of defects, namely strut waviness, strut thickness variation, and strut oversizing, are used to develop numerical models of statistically representative lattices with imperfect geometry. Elastic and failure responses are predicted within 10% agreement from the experimental data. In addition, a computational study is presented to shed light into the relationship between the amplitude of selected defects and the reduction of elastic properties compared to their nominal values. The evolution of failure mechanisms is also explained with respect to strut oversizing, a parameter that can critically cause failure mode transitions that are not visible in defect-free lattices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Sudhanshu S.; Loza, Jose J.
2016-08-15
The size and distribution of precipitates in Al 7075 alloys affects both the mechanical and corrosion behavior (including stress corrosion cracking and fatigue corrosion) of the alloy. Three dimensional (3D) quantitative microstructural analysis of Al 7075 in the peak aged condition (T651) allows for a better understanding of these behaviors. In this study, Focused ion beam (FIB) tomography was used to characterize the microstructure in three dimensions. Analysis of grains and precipitates was performed in terms of volume, size, and morphology. It was found that the precipitates at the grain boundaries are larger in size, higher in aspect ratios andmore » maximum Feret diameter compared to the precipitates inside the grains, due to earlier nucleation of the precipitates at the grain boundaries. Our data on the precipitates at the interface between grains and Mg{sub 2}Si inclusion show that the surfaces of inclusion (impurity) particles can serve as a location for heterogeneous nucleation of precipitates. - Highlights: •Focused ion beam (FIB) tomography was used to characterize the microstructure of Al 7075 in three dimensions. •Analysis of grains and precipitates was performed in terms of volume, size, and morphology. •Precipitates at the grain boundaries have larger size and aspect ratio compared to the precipitates inside the grains.« less
Anthropometry of the Human Scaphoid Waist by Three-Dimensional Computed Tomography.
Smith, Jennifer; Hofmeister, Eric P; Renninger, Christopher; Kroonen, Leo T
2015-01-01
Published measurements for the scaphoid are scarce. The purpose of this study is to define anthropometric norms for the waist of the scaphoid to assist in optimizing bone graft quantity and implant use. Computed tomography images of the wrist were reviewed by three surgeons. Anthropometric data were gathered, including the scaphoid waist diameter in two dimensions and the scaphoid waist volume. Each study was measured twice, allowing for determination of inter- and intraobserver reliability. Forty-three studies were examined (23 female and 20 male). Average measurements of the scaphoid waist were 11.28 ± 0.26 mm in the sagittal plane and 8.70 ± 0.17 mm in the coronal plane, and the waist volume was 715 ± 33.0 mm3. Specific measures of the narrowest portion of the scaphoid are provided by this study. Measurements of the scaphoid waist through the use of three-dimensional imaging are an accurate method with good inter- and intraobserver reliability. The measurements obtained from this study can be applied to guide graft and implant selection for treatment of scaphoid waist fractures and nonunions.
Singh, S. S.; Williams, J. J.; Lin, M. F.; ...
2014-05-14
In situ X-ray synchrotron tomography was used to investigate the stress corrosion cracking behavior of under-aged Al–Zn–Mg–Cu alloy in moisture. The discontinuous surface cracks (crack jumps) mentioned in the literature are actually a single continuous and tortuous crack when observed in three dimension (3D). Contrary to 2D measurements made at the surface which suggest non-uniform crack growth rates, 3D measurements of the crack length led to a much more accurate measurement of crack growth rates.
Computer-aided mechanogenesis of skeletal muscle organs from single cells in vitro
NASA Technical Reports Server (NTRS)
Vanderburgh, Herman H.; Swasdison, Somporn; Karlisch, Patricia
1991-01-01
Complex mechanical forces generated in the growing embryo play an important role in organogenesis. Computerized application of similar forces to differentiating skeletal muscle myoblasts in vitro generate three dimensional artificial muscle organs. These organs contain parallel networks of long unbranched myofibers organized into fascicle-like structures. Tendon development is initiated and the muscles are capable of performing directed, functional work. Kinetically engineered organs provide a new method for studying the growth and development of normal and diseased skeletal muscle.
Computer aided mechanogenesis of skeletal muscle organs from single cells in vitro
NASA Technical Reports Server (NTRS)
Vandenburgh, Herman H.; Swasdison, Somporn; Karlisch, Patricia
1990-01-01
Complex mechanical forces generated in the growing embryo play an important role in organogenesis. Computerized application of similar forces to differentiating skeletal muscle myoblasts in vitro generate three dimensional artificial muscle organs. These organs contain parallel networks of long unbranched myofibers organized into fascicle-like structures. Tendon development is initiated and the muscles are capable of performing directed, functional work. Kinetically engineered organs provide a new method for studying the growth and development of normal and diseased skeletal muscle.
Effect of a Starting Model on the Solution of a Travel Time Seismic Tomography Problem
NASA Astrophysics Data System (ADS)
Yanovskaya, T. B.; Medvedev, S. V.; Gobarenko, V. S.
2018-03-01
In the problems of three-dimensional (3D) travel time seismic tomography where the data are travel times of diving waves and the starting model is a system of plane layers where the velocity is a function of depth alone, the solution turns out to strongly depend on the selection of the starting model. This is due to the fact that in the different starting models, the rays between the same points can intersect different layers, which makes the tomography problem fundamentally nonlinear. This effect is demonstrated by the model example. Based on the same example, it is shown how the starting model should be selected to ensure a solution close to the true velocity distribution. The starting model (the average dependence of the seismic velocity on depth) should be determined by the method of successive iterations at each step of which the horizontal velocity variations in the layers are determined by solving the two-dimensional tomography problem. An example illustrating the application of this technique to the P-wave travel time data in the region of the Black Sea basin is presented.
Beattie, Bradley J; Klose, Alexander D; Le, Carl H; Longo, Valerie A; Dobrenkov, Konstantine; Vider, Jelena; Koutcher, Jason A; Blasberg, Ronald G
2009-01-01
The procedures we propose make possible the mapping of two-dimensional (2-D) bioluminescence image (BLI) data onto a skin surface derived from a three-dimensional (3-D) anatomical modality [magnetic resonance (MR) or computed tomography (CT)] dataset. This mapping allows anatomical information to be incorporated into bioluminescence tomography (BLT) reconstruction procedures and, when applied using sources visible to both optical and anatomical modalities, can be used to evaluate the accuracy of those reconstructions. Our procedures, based on immobilization of the animal and a priori determined fixed projective transforms, should be more robust and accurate than previously described efforts, which rely on a poorly constrained retrospectively determined warping of the 3-D anatomical information. Experiments conducted to measure the accuracy of the proposed registration procedure found it to have a mean error of 0.36+/-0.23 mm. Additional experiments highlight some of the confounds that are often overlooked in the BLT reconstruction process, and for two of these confounds, simple corrections are proposed.
NASA Astrophysics Data System (ADS)
Barnea, Nitza; Dori, Yehudit J.
1999-12-01
Computerized molecular modeling (CMM) contributes to the development of visualization skills via vivid animation of three dimensional representations. Its power to illustrate and explore phenomena in chemistry teaching stems from the convenience and simplicity of building molecules of any size and color in a number of presentation styles. A new CMM-based learning environment for teaching and learning chemistry in Israeli high schools has been designed and implemented. Three tenth grade experimental classes used this discovery CMM approach, while two other classes, who studied the same topic in the customary approach, served as a control group. We investigated the effects of using molecular modeling on students' spatial ability, understanding of new concepts related to geometric and symbolic representations and students' perception of the model concept. Each variable was examined for gender differences. Students of the experimental group performed better than control group students in all three performance aspects. Experimental group students scored higher than the control group students in the achievement test on structure and bonding. Students' spatial ability improved in both groups, but students from the experimental group scored higher. For the average students in the two groups the improvement in all three spatial ability sub-tests —paper folding, card rotation, and cube comparison—was significantly higher for the experimental group. Experimental group students gained better insight into the model concept than the control group and could explain more phenomena with the aid of a variety of models. Hence, CMM helps in particular to improve the examined cognitive aspects of the average student population. In most of the achievement and spatial ability tests no significant differences between the genders were found, but in some aspects of model perception and verbal argumentation differences still exist. Experimental group females improved their model perception more than the control group females in understanding ways to create models and in the role of models as mental structures and prediction tools. Teachers' and students' feedback on the CMM learning environment was found to be positive, as it helped them understand concepts in molecular geometry and bonding. The results of this study suggest that teaching/learning of topics in chemistry that are related to three dimensional structures can be improved by using a discovery approach in a computerized learning environment.
NASA Astrophysics Data System (ADS)
Vogelgesang, Jonas; Schorr, Christian
2016-12-01
We present a semi-discrete Landweber-Kaczmarz method for solving linear ill-posed problems and its application to Cone Beam tomography and laminography. Using a basis function-type discretization in the image domain, we derive a semi-discrete model of the underlying scanning system. Based on this model, the proposed method provides an approximate solution of the reconstruction problem, i.e. reconstructing the density function of a given object from its projections, in suitable subspaces equipped with basis function-dependent weights. This approach intuitively allows the incorporation of additional information about the inspected object leading to a more accurate model of the X-rays through the object. Also, physical conditions of the scanning geometry, like flat detectors in computerized tomography as used in non-destructive testing applications as well as non-regular scanning curves e.g. appearing in computed laminography (CL) applications, are directly taken into account during the modeling process. Finally, numerical experiments of a typical CL application in three dimensions are provided to verify the proposed method. The introduction of geometric prior information leads to a significantly increased image quality and superior reconstructions compared to standard iterative methods.
Three-dimensional morphology of heel fat pad: an in vivo computed tomography study.
Campanelli, Valentina; Fantini, Massimiliano; Faccioli, Niccolò; Cangemi, Alessio; Pozzo, Antonio; Sbarbati, Andrea
2011-11-01
Heel fat pad cushioning efficiency is the result of its structure, shape and thickness. However, while a number of studies have investigated heel fat pad (HFP) anatomy, structural behavior and material properties, no previous study has described its three-dimensional morphology in situ. The assessment of the healthy, unloaded, three-dimensional morphology of heel pad may contribute to deepen the understanding of its role and behavior during locomotion. It is the basis for the assessment of possible HFP morphological modifications due to changes in the amount or distribution of the loads normally sustained by the foot. It may also help in guiding the surgical reconstruction of the pad and in improving footwear design, as well as in developing a correct heel pad geometry for finite element models of the foot. Therefore the purpose of this study was to obtain a complete analysis of HFP three-dimensional morphology in situ. The right foot of nine healthy volunteers was scanned with computed tomography. A methodological approach that maximizes reliability and repeatability of the data was developed by building a device to lock the foot in a neutral position with respect to the scan planes during image acquisition. Scan data were used to reconstruct virtual three-dimensional models for both the calcaneus and HFP. A set of virtual coronal and axial sections were extracted from the three-dimensional model of each HFP and processed to extract a set of one- and two-dimensional morphometrical measurements for a detailed description of heel pad morphology. The tissue exhibited a consistent and sophisticated morphology that may reflect the biomechanics of the foot support. HFP was found to be have a crest on its anterior dorsal surface, flanges on the sides and posteriorly, and a thick portion that reached and covered the posterior surface of the calcaneus and the achilles tendon insertion. Its anterior internal portion was thinner and a lump of fat was consistently present in this region. Finally, HFP was found to be thicker in males than in females. © 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland.
Three-dimensional morphology of heel fat pad: an in vivo computed tomography study
Campanelli, Valentina; Fantini, Massimiliano; Faccioli, Niccolò; Cangemi, Alessio; Pozzo, Antonio; Sbarbati, Andrea
2011-01-01
Heel fat pad cushioning efficiency is the result of its structure, shape and thickness. However, while a number of studies have investigated heel fat pad (HFP) anatomy, structural behavior and material properties, no previous study has described its three-dimensional morphology in situ. The assessment of the healthy, unloaded, three-dimensional morphology of heel pad may contribute to deepen the understanding of its role and behavior during locomotion. It is the basis for the assessment of possible HFP morphological modifications due to changes in the amount or distribution of the loads normally sustained by the foot. It may also help in guiding the surgical reconstruction of the pad and in improving footwear design, as well as in developing a correct heel pad geometry for finite element models of the foot. Therefore the purpose of this study was to obtain a complete analysis of HFP three-dimensional morphology in situ. The right foot of nine healthy volunteers was scanned with computed tomography. A methodological approach that maximizes reliability and repeatability of the data was developed by building a device to lock the foot in a neutral position with respect to the scan planes during image acquisition. Scan data were used to reconstruct virtual three-dimensional models for both the calcaneus and HFP. A set of virtual coronal and axial sections were extracted from the three-dimensional model of each HFP and processed to extract a set of one- and two-dimensional morphometrical measurements for a detailed description of heel pad morphology. The tissue exhibited a consistent and sophisticated morphology that may reflect the biomechanics of the foot support. HFP was found to be have a crest on its anterior dorsal surface, flanges on the sides and posteriorly, and a thick portion that reached and covered the posterior surface of the calcaneus and the achilles tendon insertion. Its anterior internal portion was thinner and a lump of fat was consistently present in this region. Finally, HFP was found to be thicker in males than in females. PMID:21848602
Serial block face scanning electron microscopy--the future of cell ultrastructure imaging.
Hughes, Louise; Hawes, Chris; Monteith, Sandy; Vaughan, Sue
2014-03-01
One of the major drawbacks in transmission electron microscopy has been the production of three-dimensional views of cells and tissues. Currently, there is no one suitable 3D microscopy technique that answers all questions and serial block face scanning electron microscopy (SEM) fills the gap between 3D imaging using high-end fluorescence microscopy and the high resolution offered by electron tomography. In this review, we discuss the potential of the serial block face SEM technique for studying the three-dimensional organisation of animal, plant and microbial cells.
Neurologic applications of positron emission tomography.
Lenzi, G L; Pantano, P
1984-11-01
The impact of computerized neuroimaging in the neurologic sciences has been so dramatic that it has completely changed our approach to the individual patient. Further changes may be expected from the newborn positron emission tomography (PET) and nuclear magnetic resonance (NMR) in order to help the reader digest a large bulk of data and fully realize the present state of the art of PET, the authors have shaped this review mainly on results rather than on methods and on published reports rather than on future potential.
Fan, Jiabing; Park, Hyejin; Lee, Matthew K; Bezouglaia, Olga; Fartash, Armita; Kim, Jinku; Aghaloo, Tara; Lee, Min
2014-08-01
Reconstructing segmental mandiblular defects remains a challenge in the clinic. Tissue engineering strategies provide an alternative option to resolve this problem. The objective of the present study was to determine the effects of adipose-derived stem cells (ASCs) and bone morphogenetic proteins-2 (BMP-2) in three-dimensional (3D) scaffolds on mandibular repair in a small animal model. Noggin expression levels in ASCs were downregulated by a lentiviral short hairpin RNA strategy to enhance ASC osteogenesis (ASCs(Nog-)). Chitosan (CH) and chondroitin sulfate (CS), natural polysaccharides, were fabricated into 3D porous scaffolds, which were further modified with apatite coatings for enhanced cellular responses and efficient delivery of BMP-2. The efficacy of 3D apatite-coated CH/CS scaffolds supplemented with ASCs(Nog-) and BMP-2 were evaluated in a rat critical-sized mandibular defect model. After 8 weeks postimplantation, the scaffolds treated with ASCs(Nog-) and BMP-2 significantly promoted rat mandibular regeneration as demonstrated by micro-computerized tomography, histology, and immunohistochemistry, compared with the groups treated with ASCs(Nog-) or BMP-2 alone. These results suggest that our combinatorial strategy of ASCs(Nog-)+BMP-2 in 3D apatite microenvironments can significantly promote mandibular regeneration, and these may provide a potential tissue engineering approach to repair large bony defects.
Detection, 3-D positioning, and sizing of small pore defects using digital radiography and tracking
NASA Astrophysics Data System (ADS)
Lindgren, Erik
2014-12-01
This article presents an algorithm that handles the detection, positioning, and sizing of submillimeter-sized pores in welds using radiographic inspection and tracking. The possibility to detect, position, and size pores which have a low contrast-to-noise ratio increases the value of the nondestructive evaluation of welds by facilitating fatigue life predictions with lower uncertainty. In this article, a multiple hypothesis tracker with an extended Kalman filter is used to track an unknown number of pore indications in a sequence of radiographs as an object is rotated. Each pore is not required to be detected in all radiographs. In addition, in the tracking step, three-dimensional (3-D) positions of pore defects are calculated. To optimize, set up, and pre-evaluate the algorithm, the article explores a design of experimental approach in combination with synthetic radiographs of titanium laser welds containing pore defects. The pre-evaluation on synthetic radiographs at industrially reasonable contrast-to-noise ratios indicate less than 1% false detection rates at high detection rates and less than 0.1 mm of positioning errors for more than 90% of the pores. A comparison between experimental results of the presented algorithm and a computerized tomography reference measurement shows qualitatively good agreement in the 3-D positions of approximately 0.1-mm diameter pores in 5-mm-thick Ti-6242.
Image-based path planning for automated virtual colonoscopy navigation
NASA Astrophysics Data System (ADS)
Hong, Wei
2008-03-01
Virtual colonoscopy (VC) is a noninvasive method for colonic polyp screening, by reconstructing three-dimensional models of the colon using computerized tomography (CT). In virtual colonoscopy fly-through navigation, it is crucial to generate an optimal camera path for efficient clinical examination. In conventional methods, the centerline of the colon lumen is usually used as the camera path. In order to extract colon centerline, some time consuming pre-processing algorithms must be performed before the fly-through navigation, such as colon segmentation, distance transformation, or topological thinning. In this paper, we present an efficient image-based path planning algorithm for automated virtual colonoscopy fly-through navigation without the requirement of any pre-processing. Our algorithm only needs the physician to provide a seed point as the starting camera position using 2D axial CT images. A wide angle fisheye camera model is used to generate a depth image from the current camera position. Two types of navigational landmarks, safe regions and target regions are extracted from the depth images. Camera position and its corresponding view direction are then determined using these landmarks. The experimental results show that the generated paths are accurate and increase the user comfort during the fly-through navigation. Moreover, because of the efficiency of our path planning algorithm and rendering algorithm, our VC fly-through navigation system can still guarantee 30 FPS.
Alam, Md Shahid; Sugavaneswaran, M; Arumaikkannu, G; Mukherjee, Bipasha
2017-08-01
Ocular prosthesis is either a readymade stock shell or custom made prosthesis (CMP). Presently, there is no other technology available, which is either superior or even comparable to the conventional CMP. The present study was designed to fabricate ocular prosthesis using computer aided design (CAD) and rapid manufacturing (RM) technology and to compare it with custom made prosthesis (CMP). The ocular prosthesis prepared by CAD was compared with conventional CMP in terms of time taken for fabrication, weight, cosmesis, comfort, and motility. Two eyes of two patients were included. Computerized tomography scan of wax model of socket was converted into three dimensional format using Materialize Interactive Medical Image Control System (MIMICS)software and further refined. This was given as an input to rapid manufacturing machine (Polyjet 3-D printer). The final painting on prototype was done by an ocularist. The average effective time required for fabrication of CAD prosthesis was 2.5 hours; and weight 2.9 grams. The same for CMP were 10 hours; and 4.4 grams. CAD prosthesis was more comfortable for both the patients. The study demonstrates the first ever attempt of fabricating a complete ocular prosthesis using CAD and rapid manufacturing and comparing it with conventional CMP. This prosthesis takes lesser time for fabrication, and is more comfortable. Studies with larger sample size will be required to further validate this technique.
Retinal Optical Coherence Tomography Imaging
NASA Astrophysics Data System (ADS)
Drexler, Wolfgang; Fujimoto, James G.
The eye is essentially transparent, transmitting light with only minimal optical attenuation and scattering providing easy optical access to the anterior segment as well as the retina. For this reason, ophthalmic and especially retinal imaging has been not only the first but also most successful clinical application for optical coherence tomography (OCT). This chapter focuses on the development of OCT technology for retinal imaging. OCT has significantly improved the potential for early diagnosis, understanding of retinal disease pathogenesis, as well as monitoring disease progression and response to therapy. Development of ultrabroad bandwidth light sources and high-speed detection techniques has enabled significant improvements in ophthalmic OCT imaging performance, demonstrating the potential of three-dimensional, ultrahigh-resolution OCT (UHR OCT) to perform noninvasive optical biopsy of the living human retina, i.e., the in vivo visualization of microstructural, intraretinal morphology in situ approaching the resolution of conventional histopathology. Significant improvements in axial resolution and speed not only enable three-dimensional rendering of retinal volumes but also high-definition, two-dimensional tomograms, topographic thickness maps of all major intraretinal layers, as well as volumetric quantification of pathologic intraretinal changes. These advances in OCT technology have also been successfully applied in several animal models of retinal pathologies. The development of light sources emitting at alternative wavelengths, e.g., around #1,060 nm, not only enabled three-dimensional OCT imaging with enhanced choroidal visualization but also improved OCT performance in cataract patients due to reduced scattering losses in this wavelength region. Adaptive optics using deformable mirror technology, with unique high stroke to correct higher-order ocular aberrations, with specially designed optics to compensate chromatic aberration of the human eye, in combination with three-dimensional UHR OCT, recently enabled in vivo cellular resolution retinal imaging.
Babu, Kalpana; Shukla, Sai Bhakti; Philips, Mariamma
2017-04-01
To review the role of high resolution chest computed tomography (HRCT) in ocular sarcoidosis in a high TB endemic population. This was a retrospective study. Out of 140 cases, 54 had ocular sarcoidosis, while 86 cases had ocular tuberculosis. Abnormal HRCT findings was noted in 52 cases (96.3%) of ocular sarcoidosis compared with 55 cases (64.7%) of ocular tuberculosis (p = 0.001). Mediastinal lymphadenopathy was the most common finding in both groups (p = 0.544). Hilar lymphadenopathy and fissural nodules were significantly seen in ocular sarcoidosis (p = 0.001). Necrosis was seen in three cases of ocular sarcoidosis. In nearly half of the cases, it was not possible to differentiate between sarcoidosis and tuberculosis on HRCT. HRCT is a useful diagnostic tool in ocular sarcoidosis. Bilateral hilar lymphadenopathy and fissural nodules are significant findings in ocular sarcoidosis. A confident diagnosis of ocular sarcoidosis is made by the amalgamation of results of clinical, radiologic, and other laboratory investigations.
Accuracy of patient-specific guided glenoid baseplate positioning for reverse shoulder arthroplasty.
Levy, Jonathan C; Everding, Nathan G; Frankle, Mark A; Keppler, Louis J
2014-10-01
The accuracy of reproducing a surgical plan during shoulder arthroplasty is improved by computer assistance. Intraoperative navigation, however, is challenged by increased surgical time and additional technically difficult steps. Patient-matched instrumentation has the potential to reproduce a similar degree of accuracy without the need for additional surgical steps. The purpose of this study was to examine the accuracy of patient-specific planning and a patient-specific drill guide for glenoid baseplate placement in reverse shoulder arthroplasty. A patient-specific glenoid baseplate drill guide for reverse shoulder arthroplasty was produced for 14 cadaveric shoulders based on a plan developed by a virtual preoperative 3-dimensional planning system using thin-cut computed tomography images. Using this patient-specific guide, high-volume shoulder surgeons exposed the glenoid through a deltopectoral approach and drilled the bicortical pathway defined by the guide. The trajectory of the drill path was compared with the virtual preoperative planned position using similar thin-cut computed tomography images to define accuracy. The drill pathway defined by the patient-matched guide was found to be highly accurate when compared with the preoperative surgical plan. The translational accuracy was 1.2 ± 0.7 mm. The accuracy of inferior tilt was 1.2° ± 1.2°. The accuracy of glenoid version was 2.6° ± 1.7°. The use of patient-specific glenoid baseplate guides is highly accurate in reproducing a virtual 3-dimensional preoperative plan. This technique delivers the accuracy observed using computerized navigation without any additional surgical steps or technical challenges. Copyright © 2014 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
Schryvers, D; Cao, S; Tirry, W; Idrissi, H; Van Aert, S
2013-01-01
After a short review of electron tomography techniques for materials science, this overview will cover some recent results on different shape memory and nanostructured metallic systems obtained by various three-dimensional (3D) electron imaging techniques. In binary Ni–Ti, the 3D morphology and distribution of Ni4Ti3 precipitates are investigated by using FIB/SEM slice-and-view yielding 3D data stacks. Different quantification techniques will be presented including the principal ellipsoid for a given precipitate, shape classification following a Zingg scheme, particle distribution function, distance transform and water penetration. The latter is a novel approach to quantifying the expected matrix transformation in between the precipitates. The different samples investigated include a single crystal annealed with and without compression yielding layered and autocatalytic precipitation, respectively, and a polycrystal revealing different densities and sizes of the precipitates resulting in a multistage transformation process. Electron tomography was used to understand the interaction between focused ion beam-induced Frank loops and long dislocation structures in nanobeams of Al exhibiting special mechanical behaviour measured by on-chip deposition. Atomic resolution electron tomography is demonstrated on Ag nanoparticles in an Al matrix. PMID:27877554
Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography
Wang, Kun; Su, Richard; Oraevsky, Alexander A; Anastasio, Mark A
2012-01-01
Iterative image reconstruction algorithms for optoacoustic tomography (OAT), also known as photoacoustic tomography, have the ability to improve image quality over analytic algorithms due to their ability to incorporate accurate models of the imaging physics, instrument response, and measurement noise. However, to date, there have been few reported attempts to employ advanced iterative image reconstruction algorithms for improving image quality in three-dimensional (3D) OAT. In this work, we implement and investigate two iterative image reconstruction methods for use with a 3D OAT small animal imager: namely, a penalized least-squares (PLS) method employing a quadratic smoothness penalty and a PLS method employing a total variation norm penalty. The reconstruction algorithms employ accurate models of the ultrasonic transducer impulse responses. Experimental data sets are employed to compare the performances of the iterative reconstruction algorithms to that of a 3D filtered backprojection (FBP) algorithm. By use of quantitative measures of image quality, we demonstrate that the iterative reconstruction algorithms can mitigate image artifacts and preserve spatial resolution more effectively than FBP algorithms. These features suggest that the use of advanced image reconstruction algorithms can improve the effectiveness of 3D OAT while reducing the amount of data required for biomedical applications. PMID:22864062
Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; ...
2016-04-01
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.
Ge, Jiajia; Zhu, Banghe; Regalado, Steven; Godavarty, Anuradha
2008-01-01
Hand-held based optical imaging systems are a recent development towards diagnostic imaging of breast cancer. To date, all the hand-held based optical imagers are used to perform only surface mapping and target localization, but are not capable of demonstrating tomographic imaging. Herein, a novel hand-held probe based optical imager is developed towards three-dimensional (3-D) optical tomography studies. The unique features of this optical imager, which primarily consists of a hand-held probe and an intensified charge coupled device detector, are its ability to; (i) image large tissue areas (5×10 sq. cm) in a single scan, (ii) perform simultaneous multiple point illumination and collection, thus reducing the overall imaging time; and (iii) adapt to varying tissue curvatures, from a flexible probe head design. Experimental studies are performed in the frequency domain on large slab phantoms (∼650 ml) using fluorescence target(s) under perfect uptake (1:0) contrast ratios, and varying target depths (1–2 cm) and X-Y locations. The effect of implementing simultaneous over sequential multiple point illumination towards 3-D tomography is experimentally demonstrated. The feasibility of 3-D optical tomography studies has been demonstrated for the first time using a hand-held based optical imager. Preliminary fluorescence-enhanced optical tomography studies are able to reconstruct 0.45 ml target(s) located at different target depths (1–2 cm). However, the depth recovery was limited as the actual target depth increased, since only reflectance measurements were acquired. Extensive tomography studies are currently carried out to determine the resolution and performance limits of the imager on flat and curved phantoms. PMID:18697559
Ge, Jiajia; Zhu, Banghe; Regalado, Steven; Godavarty, Anuradha
2008-07-01
Hand-held based optical imaging systems are a recent development towards diagnostic imaging of breast cancer. To date, all the hand-held based optical imagers are used to perform only surface mapping and target localization, but are not capable of demonstrating tomographic imaging. Herein, a novel hand-held probe based optical imager is developed towards three-dimensional (3-D) optical tomography studies. The unique features of this optical imager, which primarily consists of a hand-held probe and an intensified charge coupled device detector, are its ability to; (i) image large tissue areas (5 x 10 sq. cm) in a single scan, (ii) perform simultaneous multiple point illumination and collection, thus reducing the overall imaging time; and (iii) adapt to varying tissue curvatures, from a flexible probe head design. Experimental studies are performed in the frequency domain on large slab phantoms (approximately 650 ml) using fluorescence target(s) under perfect uptake (1:0) contrast ratios, and varying target depths (1-2 cm) and X-Y locations. The effect of implementing simultaneous over sequential multiple point illumination towards 3-D tomography is experimentally demonstrated. The feasibility of 3-D optical tomography studies has been demonstrated for the first time using a hand-held based optical imager. Preliminary fluorescence-enhanced optical tomography studies are able to reconstruct 0.45 ml target(s) located at different target depths (1-2 cm). However, the depth recovery was limited as the actual target depth increased, since only reflectance measurements were acquired. Extensive tomography studies are currently carried out to determine the resolution and performance limits of the imager on flat and curved phantoms.
Into the decomposed body-forensic digital autopsy using multislice-computed tomography.
Thali, M J; Yen, K; Schweitzer, W; Vock, P; Ozdoba, C; Dirnhofer, R
2003-07-08
It is impossible to obtain a representative anatomical documentation of an entire body using classical X-ray methods, they subsume three-dimensional bodies into a two-dimensional level. We used the novel multislice-computed tomography (MSCT) technique in order to evaluate a case of homicide with putrefaction of the corpse before performing a classical forensic autopsy. This non-invasive method showed gaseous distension of the decomposing organs and tissues in detail as well as a complex fracture of the calvarium. MSCT also proved useful in screening for foreign matter in decomposing bodies, and full-body scanning took only a few minutes. In conclusion, we believe postmortem MSCT imaging is an excellent vizualisation tool with great potential for forensic documentation and evaluation of decomposed bodies.
Defect inspection of actuator lenses using swept-source optical coherence tomography
NASA Astrophysics Data System (ADS)
Lee, Jaeyul; Shirazi, Muhammad Faizan; Park, Kibeom; Jeon, Mansik; Kim, Jeehyun
2017-12-01
Actuator lens industries have gained an enormous interest with the enhancement of various latest communication devices, such as mobile phone and notebooks. The quality of the aforementioned devices can be degraded due to the internal defects of actuator lenses. Therefore, in this study, we implemented swept-source optical coherence tomography (SS-OCT) system to inspect defects of actuator lenses. Owing to the high-resolution of the SS-OCT system, defected foreign substances between the actuator lenses, defective regions of lenses and surface stains were more clearly distinguished through three-dimensional (3D) and two-dimensional (2D) cross-sectional OCT images. Therefore, the implemented SS-OCT system can be considered as a potential application to defect inspection of actuator lens.
Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba
NASA Astrophysics Data System (ADS)
Charrière, Florian; Pavillon, Nicolas; Colomb, Tristan; Depeursinge, Christian; Heger, Thierry J.; Mitchell, Edward A. D.; Marquet, Pierre; Rappaz, Benjamin
2006-08-01
This paper presents an optical diffraction tomography technique based on digital holographic microscopy. Quantitative 2-dimensional phase images are acquired for regularly-spaced angular positions of the specimen covering a total angle of π, allowing to built 3-dimensional quantitative refractive index distributions by an inverse Radon transform. A 20x magnification allows a resolution better than 3 μm in all three dimensions, with accuracy better than 0.01 for the refractive index measurements. This technique is for the first time to our knowledge applied to living specimen (testate amoeba, Protista). Morphometric measurements are extracted from the tomographic reconstructions, showing that the commonly used method for testate amoeba biovolume evaluation leads to systematic under evaluations by about 50%.
Childhood Psychosis and Computed Tomographic Brain Scan Findings.
ERIC Educational Resources Information Center
Gillberg, Christopher; Svendsen, Pal
1983-01-01
Computerized tomography (CT) of the brain was used to examine 27 infantile autistic children, 9 children with other kinds of childhood psychoses, 23 children with mental retardation, and 16 normal children. Gross abnormalities were seen in 26 percent of the autism cases. (Author/SEW)
Skeletal maturity assessment with the use of cone-beam computerized tomography.
Joshi, Vajendra; Yamaguchi, Tetsutaro; Matsuda, Yukiko; Kaneko, Norikazu; Maki, Kotarou; Okano, Tomohiro
2012-06-01
The aim of the study was to compare cervical vertebrae maturity assessed with the use of cone-beam computerized tomography (CBCT) with the hand-wrist maturation method and cervical vertebrae maturation assessed with the use of lateral cephalography for the assessment of skeletal maturity. Assessment of skeletal maturation was done using skeletal maturity indicators (SMI) from hand-wrist radiography, cervical vertebrae maturity index (CVMI) from CBCT and lateral cephalography (cephalo-CVMI). The Spearman correlation coefficient was used for statistical analysis. We observed a significant relationship between CBCT-CVMI and cephalo-CVMI as well as between CBCT-CVMI and SMI stages. The Spearman correlation coefficient value between CBCT-CVMI and cephalo-CVMI was 0.975 (P < .0001) and between CBCT-CVMI and SMI was 0.961(P < .0001). Cervical vertebrae maturity assessment with CBCT provided a reliable assessment of pubertal growth spurt, and therefore CBCT can be used to assess skeletal maturity. Copyright © 2012 Elsevier Inc. All rights reserved.
Kakimoto, Naoya; Chindasombatjaroen, Jira; Tomita, Seiki; Shimamoto, Hiroaki; Uchiyama, Yuka; Hasegawa, Yoko; Kishino, Mitsunobu; Murakami, Shumei; Furukawa, Souhei
2013-01-01
The purpose of this study was to investigate the usefulness of computerized tomography (CT), particularly contrast-enhanced CT, in differentiation of jaw cysts and cystic-appearing tumors. We retrospectively analyzed contrast-enhanced CT images of 90 patients with odontogenic jaw cysts or cystic-appearing tumors. The lesion size and CT values were measured and the short axis to long axis (S/L) ratio, contrast enhancement (CE) ratio, and standard deviation ratio were calculated. The lesion size and the S/L ratio of keratocystic odontogenic tumors were significantly different from those of radicular cysts and follicular cysts. There were no significant differences in the CE ratio among the lesions. Multidetector CT provided diagnostic information about the size of odontogenic cysts and cystic-appearing tumors of the jaws that was related to the lesion type, but showed no relation between CE ratio and the type of these lesions. Copyright © 2013 Elsevier Inc. All rights reserved.
Qu, Xing-min; Li, Gang; Ludlow, John B; Zhang, Zu-yan; Ma, Xu-chen
2010-12-01
The aim of this study was to compare effective doses resulting from different scan protocols for cone-beam computerized tomography (CBCT) using International Commission on Radiological Protection (ICRP) 1990 and 2007 calculations of dose. Average tissue-absorbed dose, equivalent dose, and effective dose for a ProMax 3D CBCT with different dental protocols were calculated using thermoluminescent dosimeter chips in a human equivalent phantom. Effective doses were derived using ICRP 1990 and the superseding 2007 recommendations. Effective doses (ICRP 2007) for default patient sizes from small to large ranged from 102 to 298 μSv. The coefficient of determination (R(2)) between tube current and effective dose (ICRP 2007) was 0.90. When scanning with lower resolution settings, the effective doses were reduced significantly (P < .05). ProMax 3D can provide a wide range of radiation dose levels. Reduction in radiation dose can be achieved when using lower settings of exposure parameters. Copyright © 2010 Mosby, Inc. All rights reserved.
Albuquerque, Marco Antonio; Gaia, Bruno Felipe; Cavalcanti, Marcelo Gusmão Paraíso
2011-08-01
The aim of this study was to determine the applicability of multislice and cone-beam computerized tomography (CT) in the assessment of bone defects in patients with oral clefts. Bone defects were produced in 9 dry skulls to mimic oral clefts. All defects were modeled with wax. The skulls were submitted to multislice and cone-beam CT. Subsequently, physical measurements were obtained by the Archimedes principle of water displacement of wax models. The results demonstrated that multislice and cone-beam CT showed a high efficiency rate and were considered to be effective for volumetric assessment of bone defects. It was also observed that both CT modalities showed excellent results with high reliability in the study of the volume of bone defects, with no difference in performance between them. The clinical applicability of our research has shown these CT modalities to be immediate and direct, and they is important for the diagnosis and therapeutic process of patients with oral cleft. Copyright © 2011 Mosby, Inc. All rights reserved.
Kido, Masamitsu; Ikoma, Kazuya; Hara, Yusuke; Imai, Kan; Maki, Masahiro; Ikeda, Takumi; Fujiwara, Hiroyoshi; Tokunaga, Daisaku; Inoue, Nozomu; Kubo, Toshikazu
2014-12-01
Insoles are frequently used in orthotic therapy as the standard conservative treatment for symptomatic flatfoot deformity to rebuild the arch and stabilize the foot. However, the effectiveness of therapeutic insoles remains unclear. In this study, we assessed the effectiveness of therapeutic insoles for flatfoot deformity using subject-based three-dimensional (3D) computed tomography (CT) models by evaluating the load responses of the bones in the medial longitudinal arch in vivo in 3D. We studied eight individuals (16 feet) with mild flatfoot deformity. CT scans were performed on both feet under non-loaded and full-body-loaded conditions, first with accessory insoles and then with therapeutic insoles under the same conditions. Three-dimensional CT models were constructed for the tibia and the tarsal and metatarsal bones of the medial longitudinal arch (i.e., first metatarsal bone, cuneiforms, navicular, talus, and calcaneus). The rotational angles between the tarsal bones were calculated under loading with accessory insoles or therapeutic insoles and compared. Compared with the accessory insoles, the therapeutic insoles significantly suppressed the eversion of the talocalcaneal joint. This is the first study to precisely verify the usefulness of therapeutic insoles (arch support and inner wedges) in vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.
Boundary acquisition for setup of numerical simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diegert, C.
1997-12-31
The author presents a work flow diagram that includes a path that begins with taking experimental measurements, and ends with obtaining insight from results produced by numerical simulation. Two examples illustrate this path: (1) Three-dimensional imaging measurement at micron scale, using X-ray tomography, provides information on the boundaries of irregularly-shaped alumina oxide particles held in an epoxy matrix. A subsequent numerical simulation predicts the electrical field concentrations that would occur in the observed particle configurations. (2) Three-dimensional imaging measurement at meter scale, again using X-ray tomography, provides information on the boundaries fossilized bone fragments in a Parasaurolophus crest recently discoveredmore » in New Mexico. A subsequent numerical simulation predicts acoustic response of the elaborate internal structure of nasal passageways defined by the fossil record. The author must both add value, and must change the format of the three-dimensional imaging measurements before the define the geometric boundary initial conditions for the automatic mesh generation, and subsequent numerical simulation. The author applies a variety of filters and statistical classification algorithms to estimate the extents of the structures relevant to the subsequent numerical simulation, and capture these extents as faceted geometries. The author will describe the particular combination of manual and automatic methods used in the above two examples.« less
NASA Astrophysics Data System (ADS)
Polydorides, Nick; Lionheart, William R. B.
2002-12-01
The objective of the Electrical Impedance and Diffuse Optical Reconstruction Software project is to develop freely available software that can be used to reconstruct electrical or optical material properties from boundary measurements. Nonlinear and ill posed problems such as electrical impedance and optical tomography are typically approached using a finite element model for the forward calculations and a regularized nonlinear solver for obtaining a unique and stable inverse solution. Most of the commercially available finite element programs are unsuitable for solving these problems because of their conventional inefficient way of calculating the Jacobian, and their lack of accurate electrode modelling. A complete package for the two-dimensional EIT problem was officially released by Vauhkonen et al at the second half of 2000. However most industrial and medical electrical imaging problems are fundamentally three-dimensional. To assist the development we have developed and released a free toolkit of Matlab routines which can be employed to solve the forward and inverse EIT problems in three dimensions based on the complete electrode model along with some basic visualization utilities, in the hope that it will stimulate further development. We also include a derivation of the formula for the Jacobian (or sensitivity) matrix based on the complete electrode model.
Facile multi-dimensional profiling of chemical gradients at the millimetre scale.
Chen, Chih-Lin; Hsieh, Kai-Ta; Hsu, Ching-Fong; Urban, Pawel L
2016-01-07
A vast number of conventional physicochemical methods are suitable for the analysis of homogeneous samples. However, in various cases, the samples exhibit intrinsic heterogeneity. Tomography allows one to record approximate distributions of chemical species in the three-dimensional space. Here we develop a simple optical tomography system which enables performing scans of non-homogeneous samples at different wavelengths. It takes advantage of inexpensive open-source electronics and simple algorithms. The analysed samples are illuminated by a miniature LCD/LED screen which emits light at three wavelengths (598, 547 and 455 nm, corresponding to the R, G, and B channels, respectively). On presentation of every wavelength, the sample vial is rotated by ∼180°, and videoed at 30 frames per s. The RGB values of pixels in the obtained digital snapshots are subsequently collated, and processed to produce sinograms. Following the inverse Radon transform, approximate quasi-three-dimensional images are reconstructed for each wavelength. Sample components with distinct visible light absorption spectra (myoglobin, methylene blue) can be resolved. The system was used to follow dynamic changes in non-homogeneous samples in real time, to visualize binary mixtures, to reconstruct reaction-diffusion fronts formed during the reduction of 2,6-dichlorophenolindophenol by ascorbic acid, and to visualize the distribution of fungal mycelium grown in a semi-solid medium.
Three-dimensional light-tissue interaction models for bioluminescence tomography
NASA Astrophysics Data System (ADS)
Côté, D.; Allard, M.; Henkelman, R. M.; Vitkin, I. A.
2005-09-01
Many diagnostic and therapeutic approaches in medical physics today take advantage of the unique properties of light and its interaction with tissues. Because light scatters in tissue, our ability to develop these techniques depends critically on our knowledge of the distribution of light in tissue. Solutions to the diffusion equation can provide such information, but often lack the flexibility required for more general problems that involve, for instance, inhomogeneous optical properties, light polarization, arbitrary three-dimensional geometries, or arbitrary scattering. Monte Carlo techniques, which statistically sample the light distribution in tissue, offer a better alternative to analytical models. First, we discuss our implementation of a validated three-dimensional polarization-sensitive Monte Carlo algorithm and demonstrate its generality with respect to the geometry and scattering models it can treat. Second, we apply our model to bioluminescence tomography. After appropriate genetic modifications to cell lines, bioluminescence can be used as an indicator of cell activity, and is often used to study tumour growth and treatment in animal models. However, the amount of light escaping the animal is strongly dependent on the position and size of the tumour. Using forward models and structural data from magnetic resonance imaging, we show how the models can help to determine the location and size of tumour made of bioluminescent cancer cells in the brain of a mouse.
NASA Astrophysics Data System (ADS)
Kobayashi, M.; Miura, H.; Toda, H.
2015-08-01
Anisotropy of mechanical responses depending on crystallographic orientation causes inhomogeneous deformation on the mesoscopic scale (grain size scale). Investigation of the local plastic strain development is important for discussing recrystallization mechanisms, because the sites with higher local plastic strain may act as potential nucleation sites for recrystallization. Recently, high-resolution X-ray tomography, which is non-destructive inspection method, has been utilized for observation of the materials structure. In synchrotron radiation X-ray tomography, more than 10,000 microstructural features, like precipitates, dispersions, compounds and hydrogen pores, can be observed in aluminium alloys. We have proposed employing these microstructural features as marker gauges to measure local strains, and then have developed a method to calculate the three-dimensional strain distribution by tracking the microstructural features. In this study, we report the development of local plastic strain as a function of the grain microstructure in an aluminium alloy by means of this three-dimensional strain measurement technique. Strongly heterogeneous strain development was observed during tensile loading to 30%. In other words, some parts of the sample deform little whereas another deforms a lot. However, strain in the whole specimen was keeping harmony. Comparing the microstructure with the strain concentration that is obtained by this method has a potential to reveal potential nucleation sites of recrystallization.
Enhanced mixing and spatial instability in concentrated bacterial suspensions
NASA Astrophysics Data System (ADS)
Sokolov, Andrey; Goldstein, Raymond E.; Feldchtein, Felix I.; Aranson, Igor S.
2009-09-01
High-resolution optical coherence tomography is used to study the onset of a large-scale convective motion in free-standing thin films of adjustable thickness containing suspensions of swimming aerobic bacteria. Clear evidence is found that beyond a threshold film thickness there exists a transition from quasi-two-dimensional collective swimming to three-dimensional turbulent behavior. The latter state, qualitatively different from bioconvection in dilute bacterial suspensions, is characterized by enhanced diffusivities of oxygen and bacteria. These results emphasize the impact of self-organized bacterial locomotion on the onset of three-dimensional dynamics, and suggest key ingredients necessary to extend standard models of bioconvection to incorporate effects of large-scale collective motion.
Liao, Zhipeng; Yoda, Nobuhiro; Chen, Junning; Zheng, Keke; Sasaki, Keiichi; Swain, Michael V; Li, Qing
2017-04-01
This paper aimed to develop a clinically validated bone remodeling algorithm by integrating bone's dynamic properties in a multi-stage fashion based on a four-year clinical follow-up of implant treatment. The configurational effects of fixed partial dentures (FPDs) were explored using a multi-stage remodeling rule. Three-dimensional real-time occlusal loads during maximum voluntary clenching were measured with a piezoelectric force transducer and were incorporated into a computerized tomography-based finite element mandibular model. Virtual X-ray images were generated based on simulation and statistically correlated with clinical data using linear regressions. The strain energy density-driven remodeling parameters were regulated over the time frame considered. A linear single-stage bone remodeling algorithm, with a single set of constant remodeling parameters, was found to poorly fit with clinical data through linear regression (low [Formula: see text] and R), whereas a time-dependent multi-stage algorithm better simulated the remodeling process (high [Formula: see text] and R) against the clinical results. The three-implant-supported and distally cantilevered FPDs presented noticeable and continuous bone apposition, mainly adjacent to the cervical and apical regions. The bridged and mesially cantilevered FPDs showed bone resorption or no visible bone formation in some areas. Time-dependent variation of bone remodeling parameters is recommended to better correlate remodeling simulation with clinical follow-up. The position of FPD pontics plays a critical role in mechanobiological functionality and bone remodeling. Caution should be exercised when selecting the cantilever FPD due to the risk of overloading bone resorption.
An application of principal component analysis to the clavicle and clavicle fixation devices.
Daruwalla, Zubin J; Courtis, Patrick; Fitzpatrick, Clare; Fitzpatrick, David; Mullett, Hannan
2010-03-26
Principal component analysis (PCA) enables the building of statistical shape models of bones and joints. This has been used in conjunction with computer assisted surgery in the past. However, PCA of the clavicle has not been performed. Using PCA, we present a novel method that examines the major modes of size and three-dimensional shape variation in male and female clavicles and suggests a method of grouping the clavicle into size and shape categories. Twenty-one high-resolution computerized tomography scans of the clavicle were reconstructed and analyzed using a specifically developed statistical software package. After performing statistical shape analysis, PCA was applied to study the factors that account for anatomical variation. The first principal component representing size accounted for 70.5 percent of anatomical variation. The addition of a further three principal components accounted for almost 87 percent. Using statistical shape analysis, clavicles in males have a greater lateral depth and are longer, wider and thicker than in females. However, the sternal angle in females is larger than in males. PCA confirmed these differences between genders but also noted that men exhibit greater variance and classified clavicles into five morphological groups. This unique approach is the first that standardizes a clavicular orientation. It provides information that is useful to both, the biomedical engineer and clinician. Other applications include implant design with regard to modifying current or designing future clavicle fixation devices. Our findings support the need for further development of clavicle fixation devices and the questioning of whether gender-specific devices are necessary.
Terahertz Computed Tomography of NASA Thermal Protection System Materials
NASA Technical Reports Server (NTRS)
Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.
2011-01-01
A terahertz axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three-dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 cubic meters (1 cubic foot) with no safety concerns as for x-ray computed tomography. In this study, the system is evaluated for its ability to detect and characterize flat bottom holes, drilled holes, and embedded voids in foam materials utilized as thermal protection on the external fuel tanks for the Space Shuttle. X-ray micro-computed tomography was also performed on the samples to compare against the terahertz computed tomography results and better define embedded voids. Limits of detectability based on depth and size for the samples used in this study are loosely defined. Image sharpness and morphology characterization ability for terahertz computed tomography are qualitatively described.
Elsayed, Mahmoud; Bulur, Serkan; Kalla, Aditi; Ahmed, Mustafa I; Hsiung, Ming C; Uygur, Begum; Alagic, Nermina; Sungur, Aylin; Singh, Satinder; Nanda, Navin C
2016-08-01
We present two cases in whom live/real time three-dimensional transesophageal echocardiography (3DTEE) provided incremental value in the assessment of atherosclerotic disease in the aorta. In one patient, it identified additional atherosclerotic ulcers as well as thrombi within them which were missed by two-dimensional (2D) TEE. In both cases, the size of the large mobile atherosclerotic plaque was underestimated by 2DTEE as compared with 3DTEE. Furthermore, 3DTEE provided volume quantification of the thrombi and ulcers which is not possible by 2DTEE. The echocardiographic findings of atherosclerotic plaques were confirmed by computed tomography in one patient and by surgery in the other. © 2016, Wiley Periodicals, Inc.
Feasibility of four-dimensional preoperative simulation for elbow debridement arthroplasty.
Yamamoto, Michiro; Murakami, Yukimi; Iwatsuki, Katsuyuki; Kurimoto, Shigeru; Hirata, Hitoshi
2016-04-02
Recent advances in imaging modalities have enabled three-dimensional preoperative simulation. A four-dimensional preoperative simulation system would be useful for debridement arthroplasty of primary degenerative elbow osteoarthritis because it would be able to detect the impingement lesions. We developed a four-dimensional simulation system by adding the anatomical axis to the three-dimensional computed tomography scan data of the affected arm in one position. Eleven patients with primary degenerative elbow osteoarthritis were included. A "two rings" method was used to calculate the flexion-extension axis of the elbow by converting the surface of the trochlea and capitellum into two rings. A four-dimensional simulation movie was created and showed the optimal range of motion and the impingement area requiring excision. To evaluate the reliability of the flexion-extension axis, interobserver and intraobserver reliabilities regarding the assessment of bony overlap volumes were calculated twice for each patient by two authors. Patients were treated by open or arthroscopic debridement arthroplasties. Pre- and postoperative examinations included elbow range of motion measurement, and completion of the patient-rated questionnaire Hand20, Japanese Orthopaedic Association-Japan Elbow Society Elbow Function Score, and the Mayo Elbow Performance Score. Measurement of the bony overlap volume showed an intraobserver intraclass correlation coefficient of 0.93 and 0.90, and an interobserver intraclass correlation coefficient of 0.94. The mean elbow flexion-extension arc significantly improved from 101° to 125°. The mean Hand20 score significantly improved from 52 to 22. The mean Japanese Orthopaedic Association-Japan Elbow Society Elbow Function Score significantly improved from 67 to 88. The mean Mayo Elbow Performance Score significantly improved from 71 to 91 at the final follow-up evaluation. We showed that four-dimensional, preoperative simulation can be generated by adding the rotation axis to the one-position, three-dimensional computed tomography image of the affected arm. This method is feasible for elbow debridement arthroplasty.
Three-Dimensional Cataract Crystalline Lens Imaging With Swept-Source Optical Coherence Tomography.
de Castro, Alberto; Benito, Antonio; Manzanera, Silvestre; Mompeán, Juan; Cañizares, Belén; Martínez, David; Marín, Jose María; Grulkowski, Ireneusz; Artal, Pablo
2018-02-01
To image, describe, and characterize different features visible in the crystalline lens of older adults with and without cataract when imaged three-dimensionally with a swept-source optical coherence tomography (SS-OCT) system. We used a new SS-OCT laboratory prototype designed to enhance the visualization of the crystalline lens and imaged the entire anterior segment of both eyes in two groups of participants: patients scheduled to undergo cataract surgery, n = 17, age range 36 to 91 years old, and volunteers without visual complains, n = 14, age range 20 to 81 years old. Pre-cataract surgery patients were also clinically graded according to the Lens Opacification Classification System III. The three-dimensional location and shape of the visible opacities were compared with the clinical grading. Hypo- and hyperreflective features were visible in the lens of all pre-cataract surgery patients and in some of the older adults in the volunteer group. When the clinical examination revealed cortical or subcapsular cataracts, hyperreflective features were visible either in the cortex parallel to the surfaces of the lens or in the posterior pole. Other type of opacities that appeared as hyporeflective localized features were identified in the cortex of the lens. The OCT signal in the nucleus of the crystalline lens correlated with the nuclear cataract clinical grade. A dedicated OCT is a useful tool to study in vivo the subtle opacities in the cataractous crystalline lens, revealing its position and size three-dimensionally. The use of these images allows obtaining more detailed information on the age-related changes leading to cataract.
Olszewski, R; Frison, L; Wisniewski, M; Denis, J M; Vynckier, S; Cosnard, G; Zech, F; Reychler, H
2013-01-01
The purpose of this study is to compare the reproducibility of three-dimensional cephalometric landmarks on three-dimensional computed tomography (3D-CT) surface rendering using clinical protocols based on low-dose (35-mAs) spiral CT and cone-beam CT (I-CAT). The absorbed dose levels for radiosensitive organs in the maxillofacial region during exposure in both 3D-CT protocols were also assessed. The study population consisted of ten human dry skulls examined with low-dose CT and cone-beam CT. Two independent observers identified 24 cephalometric anatomic landmarks at 13 sites on the 3D-CT surface renderings using both protocols, with each observer repeating the identification 1 month later. A total of 1,920 imaging measurements were performed. Thermoluminescent dosimeters were placed at six sites around the thyroid gland, the submandibular glands, and the eyes in an Alderson phantom to measure the absorbed dose levels. When comparing low-dose CT and cone-beam CT protocols, the cone-beam CT protocol proved to be significantly more reproducible for four of the 13 anatomical sites. There was no significant difference between the protocols for the other nine anatomical sites. Both low-dose and cone-beam CT protocols were equivalent in dose absorption to the eyes and submandibular glands. However, thyroid glands were more irradiated with low-dose CT. Cone-beam CT was more reproducible and procured less irradiation to the thyroid gland than low-dose CT. Cone-beam CT should be preferred over low-dose CT for developing three-dimensional bony cephalometric analyses.
Chan, Ernest G; Landreneau, James R; Schuchert, Matthew J; Odell, David D; Gu, Suicheng; Pu, Jiantao; Luketich, James D; Landreneau, Rodney J
2015-09-01
Accurate cancer localization and negative resection margins are necessary for successful segmentectomy. In this study, we evaluate a newly developed software package that permits automated segmentation of the pulmonary parenchyma, allowing 3-dimensional assessment of tumor size, location, and estimates of surgical margins. A pilot study using a newly developed 3-dimensional computed tomography analytic software package was performed to retrospectively evaluate preoperative computed tomography images of patients who underwent segmentectomy (n = 36) or lobectomy (n = 15) for stage 1 non-small cell lung cancer. The software accomplishes an automated reconstruction of anatomic pulmonary segments of the lung based on bronchial arborization. Estimates of anticipated surgical margins and pulmonary segmental volume were made on the basis of 3-dimensional reconstruction. Autosegmentation was achieved in 72.7% (32/44) of preoperative computed tomography images with slice thicknesses of 3 mm or less. Reasons for segmentation failure included local severe emphysema or pneumonitis, and lower computed tomography resolution. Tumor segmental localization was achieved in all autosegmented studies. The 3-dimensional computed tomography analysis provided a positive predictive value of 87% in predicting a marginal clearance greater than 1 cm and a 75% positive predictive value in predicting a margin to tumor diameter ratio greater than 1 in relation to the surgical pathology assessment. This preoperative 3-dimensional computed tomography analysis of segmental anatomy can confirm the tumor location within an anatomic segment and aid in predicting surgical margins. This 3-dimensional computed tomography information may assist in the preoperative assessment regarding the suitability of segmentectomy for peripheral lung cancers. Published by Elsevier Inc.
Lemieux, Genevieve; Carey, Jason P; Flores-Mir, Carlos; Secanell, Marc; Hart, Adam; Lagravère, Manuel O
2016-01-01
Our objective was to identify and evaluate the accuracy and precision (intrarater and interrater reliabilities) of various anatomic landmarks for use in 3-dimensional maxillary and mandibular regional superimpositions. We used cone-beam computed tomography reconstructions of 10 human dried skulls to locate 10 landmarks in the maxilla and the mandible. Precision and accuracy were assessed with intrarater and interrater readings. Three examiners located these landmarks in the cone-beam computed tomography images 3 times with readings scheduled at 1-week intervals. Three-dimensional coordinates were determined (x, y, and z coordinates), and the intraclass correlation coefficient was computed to determine intrarater and interrater reliabilities, as well as the mean error difference and confidence intervals for each measurement. Bilateral mental foramina, bilateral infraorbital foramina, anterior nasal spine, incisive canal, and nasion showed the highest precision and accuracy in both intrarater and interrater reliabilities. Subspinale and bilateral lingulae had the lowest precision and accuracy in both intrarater and interrater reliabilities. When choosing the most accurate and precise landmarks for 3-dimensional cephalometric analysis or plane-derived maxillary and mandibular superimpositions, bilateral mental and infraorbital foramina, landmarks in the anterior region of the maxilla, and nasion appeared to be the best options of the analyzed landmarks. Caution is needed when using subspinale and bilateral lingulae because of their higher mean errors in location. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Sarcoidosis Occurring After Solid Cancer: A Nonfortuitous Association
Grados, Aurélie; Ebbo, Mikael; Bernit, Emmanuelle; Veit, Véronique; Mazodier, Karin; Jean, Rodolphe; Coso, Diane; Aurran-Schleinitz, Thérèse; Broussais, Florence; Bouabdallah, Reda; Gravis, Gwenaelle; Goncalves, Anthony; Giovaninni, Marc; Sève, Pascal; Chetaille, Bruno; Gavet-Bongo, Florence; Weitten, Thierry; Pavic, Michel; Harlé, Jean-Robert; Schleinitz, Nicolas
2015-01-01
Abstract The association between cancer and sarcoidosis is controversial. Some epidemiological studies show an increase of the incidence of cancer in patients with sarcoidosis but only few cases of sarcoidosis following cancer treatment have been reported. We conducted a retrospective case study from internal medicine and oncology departments for patients presenting sarcoidosis after solid cancer treatment. We also performed a literature review to search for patients who developed sarcoidosis after solid cancer. We describe the clinical, biological, and radiological characteristics and outcome of these patients. Twelve patients were included in our study. Various cancers were observed with a predominance of breast cancer. Development of sarcoidosis appeared in the 3 years following cancer and was asymptomatic in half of the patients. The disease was frequently identified after a follow-up positron emission tomography computerized tomography evaluation. Various manifestations were observed but all patients presented lymph node involvement. Half of the patients required systemic therapy. With a median follow-up of 73 months, no patient developed cancer relapse. Review of the literature identified 61 other patients for which the characteristics of both solid cancer and sarcoidosis were similar to those observed in our series. This report demonstrates that sarcoidosis must be considered in the differential diagnosis of patients with a history of malignancy who have developed lymphadenopathy or other lesions on positron emission tomography computerized tomography. Histological confirmation of cancer relapse is mandatory in order to avoid unjustified treatments. This association should be consider as a protective factor against cancer relapse. PMID:26181571
NASA Astrophysics Data System (ADS)
Bastin, Sophie; Champollion, Cédric; Bock, Olivier; Drobinski, Philippe; Masson, Frédéric
2005-03-01
Global Positioning System (GPS) tomography analyses of water vapor, complemented by high-resolution numerical simulations are used to investigate a Mistral/sea breeze event in the region of Marseille, France, during the ESCOMPTE experiment. This is the first time GPS tomography has been used to validate the three-dimensional water vapor concentration from numerical simulation, and to analyze a small-scale meteorological event. The high spatial and temporal resolution of GPS analyses provides a unique insight into the evolution of the vertical and horizontal distribution of water vapor during the Mistral/sea-breeze transition.
The Applications of Cone-Beam Computed Tomography in Endodontics: A Review of Literature
Kiarudi, Amir Hosein; Eghbal, Mohammad Jafar; Safi, Yaser; Aghdasi, Mohammad Mehdi; Fazlyab, Mahta
2015-01-01
By producing undistorted three-dimensional images of the area under examination, cone-beam computed tomography (CBCT) systems have met many of the limitations of conventional radiography. These systems produce images with small field of view at low radiation doses with adequate spatial resolution that are suitable for many applications in endodontics from diagnosis to treatment and follow-up. This review article comprehensively assembles all the data from literature regarding the potential applications of CBCT in endodontics. PMID:25598804
NASA Astrophysics Data System (ADS)
Nagano, Yuta; Kohno, Hideo
2017-11-01
Multiwalled carbon nanotubes with tetragonal cross section frequently form junctions with flattened multi-walled carbon nanotubes, a kind of carbon nanoribbon. The three-dimensional structure of the junctions is revealed by transmission-electron-microscopy-based tomography. Two types of junction, parallel and diagonal, are found. The formation mechanism of these two types of junction is discussed in terms of the origami mechanism that was previously proposed to explain the formation of carbon nanoribbons and nanotetrahedra.
Hyper-spectrum scanning laser optical tomography
NASA Astrophysics Data System (ADS)
Chen, Lingling; Li, Guiye; Li, Yingchao; Liu, Lina; Liu, Ang; Hu, Xuejuan; Ruan, Shuangchen
2018-02-01
We describe a quantitative fluorescence projection tomography technique which measures the three-dimensional fluorescence spectrum in biomedical samples with size up to several millimeters. This is achieved by acquiring a series of hyperspectral images, by using laser scanning scheme, at different projection angles. We demonstrate that this technique provide a quantitative measure of the fluorescence signal by comparing the spectrum and intensity profile of a fluorescent bead phantom and also demonstrate its application to differentiating the extrinsic label and the autofluorescence in a mouse embryo.
Ohba, Seigo; Yoshimura, Hitoshi; Ishimaru, Kyoko; Awara, Kousuke; Sano, Kazuo
2015-09-01
The aim of this study was to confirm the effectiveness of a real-time three-dimensional navigation system for use during various oral and maxillofacial surgeries. Five surgeries were performed with this real-time three-dimensional navigation system. For mandibular surgery, patients wore acrylic surgical splints when they underwent computed tomography examinations and the operation to maintain the mandibular position. The incidence of complications during and after surgery was assessed. No connection with the nasal cavity or maxillary sinus was observed at the maxilla during the operation. The inferior alveolar nerve was not injured directly, and any paresthesia around the lower lip and mental region had disappeared within several days after the surgery. In both maxillary and mandibular cases, there was no abnormal hemorrhage during or after the operation. Real-time three-dimensional computer-navigated surgery allows minimally invasive, safe procedures to be performed with precision. It results in minimal complications and early recovery.
Broadband Terahertz Computed Tomography Using a 5k-pixel Real-time THz Camera
NASA Astrophysics Data System (ADS)
Trichopoulos, Georgios C.; Sertel, Kubilay
2015-07-01
We present a novel THz computed tomography system that enables fast 3-dimensional imaging and spectroscopy in the 0.6-1.2 THz band. The system is based on a new real-time broadband THz camera that enables rapid acquisition of multiple cross-sectional images required in computed tomography. Tomographic reconstruction is achieved using digital images from the densely-packed large-format (80×64) focal plane array sensor located behind a hyper-hemispherical silicon lens. Each pixel of the sensor array consists of an 85 μm × 92 μm lithographically fabricated wideband dual-slot antenna, monolithically integrated with an ultra-fast diode tuned to operate in the 0.6-1.2 THz regime. Concurrently, optimum impedance matching was implemented for maximum pixel sensitivity, enabling 5 frames-per-second image acquisition speed. As such, the THz computed tomography system generates diffraction-limited resolution cross-section images as well as the three-dimensional models of various opaque and partially transparent objects. As an example, an over-the-counter vitamin supplement pill is imaged and its material composition is reconstructed. The new THz camera enables, for the first time, a practical application of THz computed tomography for non-destructive evaluation and biomedical imaging.
3D imaging of nanomaterials by discrete tomography.
Batenburg, K J; Bals, S; Sijbers, J; Kübel, C; Midgley, P A; Hernandez, J C; Kaiser, U; Encina, E R; Coronado, E A; Van Tendeloo, G
2009-05-01
The field of discrete tomography focuses on the reconstruction of samples that consist of only a few different materials. Ideally, a three-dimensional (3D) reconstruction of such a sample should contain only one grey level for each of the compositions in the sample. By exploiting this property in the reconstruction algorithm, either the quality of the reconstruction can be improved significantly, or the number of required projection images can be reduced. The discrete reconstruction typically contains fewer artifacts and does not have to be segmented, as it already contains one grey level for each composition. Recently, a new algorithm, called discrete algebraic reconstruction technique (DART), has been proposed that can be used effectively on experimental electron tomography datasets. In this paper, we propose discrete tomography as a general reconstruction method for electron tomography in materials science. We describe the basic principles of DART and show that it can be applied successfully to three different types of samples, consisting of embedded ErSi(2) nanocrystals, a carbon nanotube grown from a catalyst particle and a single gold nanoparticle, respectively.
Lee, Ki-Sun; Shin, Sang-Wan; Lee, Sang-Pyo; Kim, Jong-Eun; Kim, Jee-Hwan; Lee, Jeong-Yol
The purpose of this pilot study was to evaluate and compare polyetherketoneketone (PEKK) with different framework materials for implant-supported prostheses by means of a three-dimensional finite element analysis (3D-FEA) based on cone beam computed tomography (CBCT) and computer-aided design (CAD) data. A geometric model that consisted of four maxillary implants supporting a prosthesis framework was constructed from CBCT and CAD data of a treated patient. Three different materials (zirconia, titanium, and PEKK) were selected, and their material properties were simulated using FEA software in the generated geometric model. In the PEKK framework (ie, low elastic modulus) group, the stress transferred to the implant and simulated adjacent tissue was reduced when compressive stress was dominant, but increased when tensile stress was dominant. This study suggests that the shock-absorbing effects of a resilient implant-supported framework are limited in some areas and that rigid framework material shows a favorable stress distribution and safety of overall components of the prosthesis.
Giesel, Frederik L; Mehndiratta, Amit; von Tengg-Kobligk, Hendrik; Schaeffer, A; Teh, Kevin; Hoffman, E A; Kauczor, Hans-Ulrich; van Beek, E J R; Wild, Jim M
2009-04-01
Three-dimensional image reconstruction by volume rendering and rapid prototyping has made it possible to visualize anatomic structures in three dimensions for interventional planning and academic research. Volumetric chest computed tomography was performed on a healthy volunteer. Computed tomographic images of the larger bronchial branches were segmented by an extended three-dimensional region-growing algorithm, converted into a stereolithography file, and used for computer-aided design on a laser sintering machine. The injection of gases for respiratory flow modeling and measurements using magnetic resonance imaging were done on a hollow cast. Manufacturing the rapid prototype took about 40 minutes and included the airway tree from trackea to segmental bronchi (fifth generation). The branching of the airways are clearly visible in the (3)He images, and the radial imaging has the potential to elucidate the airway dimensions. The results for flow patterns in the human bronchial tree using the rapid-prototype model with hyperpolarized helium-3 magnetic resonance imaging show the value of this model for flow phantom studies.
Identification of dynamic load for prosthetic structures.
Zhang, Dequan; Han, Xu; Zhang, Zhongpu; Liu, Jie; Jiang, Chao; Yoda, Nobuhiro; Meng, Xianghua; Li, Qing
2017-12-01
Dynamic load exists in numerous biomechanical systems, and its identification signifies a critical issue for characterizing dynamic behaviors and studying biomechanical consequence of the systems. This study aims to identify dynamic load in the dental prosthetic structures, namely, 3-unit implant-supported fixed partial denture (I-FPD) and teeth-supported fixed partial denture. The 3-dimensional finite element models were constructed through specific patient's computerized tomography images. A forward algorithm and regularization technique were developed for identifying dynamic load. To verify the effectiveness of the identification method proposed, the I-FPD and teeth-supported fixed partial denture structures were investigated to determine the dynamic loads. For validating the results of inverse identification, an experimental force-measuring system was developed by using a 3-dimensional piezoelectric transducer to measure the dynamic load in the I-FPD structure in vivo. The computationally identified loads were presented with different noise levels to determine their influence on the identification accuracy. The errors between the measured load and identified counterpart were calculated for evaluating the practical applicability of the proposed procedure in biomechanical engineering. This study is expected to serve as a demonstrative role in identifying dynamic loading in biomedical systems, where a direct in vivo measurement may be rather demanding in some areas of interest clinically. Copyright © 2017 John Wiley & Sons, Ltd.
Sonnaert, Maarten; Kerckhofs, Greet; Papantoniou, Ioannis; Van Vlierberghe, Sandra; Boterberg, Veerle; Dubruel, Peter; Luyten, Frank P; Schrooten, Jan; Geris, Liesbet
2015-01-01
To progress the fields of tissue engineering (TE) and regenerative medicine, development of quantitative methods for non-invasive three dimensional characterization of engineered constructs (i.e. cells/tissue combined with scaffolds) becomes essential. In this study, we have defined the most optimal staining conditions for contrast-enhanced nanofocus computed tomography for three dimensional visualization and quantitative analysis of in vitro engineered neo-tissue (i.e. extracellular matrix containing cells) in perfusion bioreactor-developed Ti6Al4V constructs. A fractional factorial 'design of experiments' approach was used to elucidate the influence of the staining time and concentration of two contrast agents (Hexabrix and phosphotungstic acid) and the neo-tissue volume on the image contrast and dataset quality. Additionally, the neo-tissue shrinkage that was induced by phosphotungstic acid staining was quantified to determine the operating window within which this contrast agent can be accurately applied. For Hexabrix the staining concentration was the main parameter influencing image contrast and dataset quality. Using phosphotungstic acid the staining concentration had a significant influence on the image contrast while both staining concentration and neo-tissue volume had an influence on the dataset quality. The use of high concentrations of phosphotungstic acid did however introduce significant shrinkage of the neo-tissue indicating that, despite sub-optimal image contrast, low concentrations of this staining agent should be used to enable quantitative analysis. To conclude, design of experiments allowed us to define the most optimal staining conditions for contrast-enhanced nanofocus computed tomography to be used as a routine screening tool of neo-tissue formation in Ti6Al4V constructs, transforming it into a robust three dimensional quality control methodology.
Morgalla, Matthias; Fortunato, Marcos; Azam, Ala; Tatagiba, Marcos; Lepski, Guillherme
2016-07-01
The assessment of the functionality of intrathecal drug delivery (IDD) systems remains difficult and time-consuming. Catheter-related problems are still very common, and sometimes difficult to diagnose. The aim of the present study is to investigate the accuracy of high-resolution three-dimensional computed tomography (CT) in order to detect catheter-related pump dysfunction. An observational, retrospective investigation. Academic medical center in Germany. We used high-resolution three dimensional (3D) computed tomography with volume rendering technique (VRT) or fluoroscopy and conventional axial-CT to assess IDD-related complications in 51 patients from our institution who had IDD systems implanted for the treatment of chronic pain or spasticity. Twelve patients (23.5%) presented a total of 22 complications. The main type of complication in our series was catheter-related (50%), followed by pump failure, infection, and inappropriate refilling. Fluoroscopy and conventional CT were used in 12 cases. High-resolution 3D CT VRT scan was used in 35 instances with suspected yet unclear complications. Using 3D-CT (VRT) the sensitivity was 58.93% - 100% (CI 95%) and the specificity 87.54% - 100% (CI 95%).The positive predictive value was 58.93% - 100% (CI 95%) and the negative predictive value: 87.54% - 100% (CI 95%).Fluoroscopy and axial CT as a combined diagnostic tool had a sensitivity of 8.3% - 91.7% (CI 95%) and a specificity of 62.9% - 100% (CI 95%). The positive predictive value was 19.29% - 100% (CI 95%) and the negative predictive value: 44.43% - 96.89% (CI 95%). This study is limited by its observational design and the small number of cases. High-resolution 3D CT VRT is a non- invasive method that can identify IDD-related complications with more precision than axial CT and fluoroscopy.
NASA Astrophysics Data System (ADS)
Syha, M.; Rheinheimer, W.; Loedermann, B.; Graff, A.; Trenkle, A.; Baeurer, M.; Weygand, D.; Ludwig, W.; Gumbsch, P.
The microstructural evolution of polycrystalline strontium titanate was investigated in three dimensions (3D) using X-ray diffraction contrast tomography (DCT) before and after ex-situ annealing at 1600°C. Post-annealing, the specimen was additionally subjected to phase contrast tomography (PCT) in order to finely resolve the porosities. The resulting microstructure reconstructions were studied with special emphasis on morphology and interface orientation during microstructure evolution. Subsequently, cross-sections of the specimen were studied using electron backscatter diffraction (EBSD). Corresponding cross-sections through the 3D reconstruction were identified and the quality of the reconstruction is validated with special emphasis on the spatial resolution at the grain boundaries, the size and location of pores contained in the material and the accuracy of the orientation determination.
ERIC Educational Resources Information Center
Davison, Mark L.; Semmes, Robert; Huang, Lan; Close, Catherine N.
2012-01-01
Data from 181 college students were used to assess whether math reasoning item response times in computerized testing can provide valid and reliable measures of a speed dimension. The alternate forms reliability of the speed dimension was .85. A two-dimensional structural equation model suggests that the speed dimension is related to the accuracy…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopatiuk-Tirpak, O.; Langen, K. M.; Meeks, S. L.
2008-09-15
The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly amore » factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated.« less
Play dough as an educational tool for visualization of complicated cerebral aneurysm anatomy
Eftekhar, Behzad; Ghodsi, Mohammad; Ketabchi, Ebrahim; Ghazvini, Arman Rakan
2005-01-01
Background Imagination of the three-dimensional (3D) structure of cerebral vascular lesions using two-dimensional (2D) angiograms is one of the skills that neurosurgical residents should achieve during their training. Although ongoing progress in computer software and digital imaging systems has facilitated viewing and interpretation of cerebral angiograms enormously, these facilities are not always available. Methods We have presented the use of play dough as an adjunct to the teaching armamentarium for training in visualization of cerebral aneurysms in some cases. Results The advantages of play dough are low cost, availability and simplicity of use, being more efficient and realistic in training the less experienced resident in comparison with the simple drawings and even angiographic views from different angles without the need for computers and similar equipment. The disadvantages include the psychological resistance of residents to the use of something in surgical training that usually is considered to be a toy, and not being as clean as drawings or computerized images. Conclusion Although technology and computerized software using the patients' own imaging data seems likely to become more advanced in the future, use of play dough in some complicated cerebral aneurysm cases may be helpful in 3D reconstruction of the real situation. PMID:15885141
Llamas, José M.; Cibrián, Rosa; Gandia, José L.; Paredes, Vanessa
2012-01-01
Objectives: Cone Beam Computerized Tomography (CBCT) allows the possibility of modifying some of the diagnostic tools used in orthodontics, such as cephalometry. The first step must be to study the characteristics of these devices in terms of accuracy and reliability of the most commonly used landmarks. The aims were 1- To assess intra and inter-observer reliability in the location of anatomical landmarks belonging to hard tissues of the skull in images taken with a CBCT device, 2- To determine which of those landmarks are more vs. less reliable and 3- To introduce planes of reference so as to create cephalometric analyses appropriated to the 3D reality. Study design: Fifteen patients who had a CBCT (i-CAT®) as a diagnostic register were selected. To assess the reproducibility on landmark location and the differences in the measurements of two observers at different times, 41 landmarks were defined on the three spatial axes (X,Y,Z) and located. 3.690 measurements were taken and, as each determination has 3 coordinates, 11.070 data were processed with SPSS® statistical package. To discover the reproducibility of the method on landmark location, an ANOVA was undertaken using two variation factors: time (t1, t2 and t3) and observer (Ob1 and Ob2) for each axis (X, Y and Z) and landmark. The order of the CBCT scans submitted to the observers (Ob1, Ob2) at t1, t2, and t3, were different and randomly allocated. Multiple comparisons were undertaken using the Bonferroni test. The intra- and inter-examiner ICC´s were calculated. Results: Intra- and inter-examiner reliability was high, both being ICC ≥ 0.99, with the best frequency on axis Z. Conclusions: The most reliable landmarks were: Nasion, Sella, Basion, left Porion, point A, anterior nasal spine, Pogonion, Gnathion, Menton, frontozygomatic sutures, first lower molars and upper and lower incisors. Those with less reliability were the supraorbitals, right zygion and posterior nasal spine. Key words:Cone Beam Computed Tomography, cephalometry, landmark, orthodontics, reliability. PMID:22322503
A COMPUTER MODEL OF LUNG MORPHOLOGY TO ANALYZE SPECT IMAGES
Measurement of the three-dimensional (3-D) spatial distribution of aerosol deposition can be performed using Single Photon Emission Computed Tomography (SPECT). The advantage of using 3-D techniques over planar gamma imaging is that deposition patterns can be related to real lun...
Ali, Amir Monir
2018-01-01
The aim of the study was to evaluate the commercially available orthopedic metal artifact reduction (OMAR) technique in postoperative three-dimensional computed tomography (3DCT) reconstruction studies after spinal instrumentation and to investigate its clinical application. One hundred and twenty (120) patients with spinal metallic implants were included in the study. All had 3DCT reconstruction examinations using the OMAR software after obtaining the informed consents and approval of the Institution Ethical Committee. The degree of the artifacts, the related muscular density, the clearness of intermuscular fat planes, and definition of the adjacent vertebrae were qualitatively evaluated. The diagnostic satisfaction and quality of the 3D reconstruction images were thoroughly assessed. The majority (96.7%) of 3DCT reconstruction images performed were considered satisfactory to excellent for diagnosis. Only 3.3% of the reconstructed images had rendered unacceptable diagnostic quality. OMAR can effectively reduce metallic artifacts in patients with spinal instrumentation with highly diagnostic 3DCT reconstruction images.
Three-dimensional nanoscale characterisation of materials by atom probe tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devaraj, Arun; Perea, Daniel E.; Liu, Jia
The development of three-dimensional (3D), characterization techniques with high spatial and mass resolution is crucial for understanding and developing advanced materials for many engineering applications as well as for understanding natural materials. In recent decades, atom probe tomography (APT) which combines a point projection microscope and time-of-flight mass spectrometer has evolved to be an excellent characterization technique capable of providing 3D nanoscale characterization of materials with sub-nanometer scale spatial resolution, with equal sensitivity for all elements. This review discusses the current state as of beginning of the year 2016 of APT instrumentation, new developments in sample preparation methods, experimental proceduresmore » for different material classes, reconstruction of APT results, the current status of correlative microscopy, and application of APT for microstructural characterization in established scientific areas like structural materials as well as new applications in semiconducting nanowires, semiconductor devices, battery materials, catalyst materials, geological materials and biological materials. Finally, a brief perspective is given regarding the future of APT.« less
Anatomic Optical Coherence Tomography of Upper Airways
NASA Astrophysics Data System (ADS)
Chin Loy, Anthony; Jing, Joseph; Zhang, Jun; Wang, Yong; Elghobashi, Said; Chen, Zhongping; Wong, Brian J. F.
The upper airway is a complex and intricate system responsible for respiration, phonation, and deglutition. Obstruction of the upper airways afflicts an estimated 12-18 million Americans. Pharyngeal size and shape are important factors in the pathogenesis of airway obstructions. In addition, nocturnal loss in pharyngeal muscular tone combined with high pharyngeal resistance can lead to collapse of the airway and periodic partial or complete upper airway obstruction. Anatomical optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images of the airway lumen without the use of ionizing radiation. In this chapter we describe the methods behind endoscopic OCT imaging and processing to generate full three dimensional anatomical models of the human airway which can be used in conjunction with numerical simulation methods to assess areas of airway obstruction. Combining this structural information with flow dynamic simulations, we can better estimate the site and causes of airway obstruction and better select and design surgery for patients with obstructive sleep apnea.
Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein
2017-11-01
We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Cost-Effective and High-Resolution Subsurface Characterization Using Hydraulic Tomography
2017-08-28
implementation and compare costs associated with HT and conventional methods. TECHNOLOGY DESCRIPTION The HT concept is analogous to the Computerized...develop guidance for HT field implementation and compare costs associated with HT and conventional methods. 15. SUBJECT TERMS Subsurface...3 2.1 TECHNOLOGY DESCRIPTION
32 CFR Appendix A to Part 199 - Acronyms
Code of Federal Regulations, 2014 CFR
2014-07-01
... 199—Acronyms AFR—Air Force Regulation AR—Army Regulation ASD (HA)—Assistant Secretary of Defense... Renal Disease CT—Computerized Tomography DASD (A)—Deputy Assistant Secretary of Defense (Administration....—Licensed Practical Nurse L.V.N.—Licensed Vocational Nurse MBD—Minimal Brain Dysfunction MCO—Marine Corps...
32 CFR Appendix A to Part 199 - Acronyms
Code of Federal Regulations, 2013 CFR
2013-07-01
... 199—Acronyms AFR—Air Force Regulation AR—Army Regulation ASD (HA)—Assistant Secretary of Defense... Renal Disease CT—Computerized Tomography DASD (A)—Deputy Assistant Secretary of Defense (Administration....—Licensed Practical Nurse L.V.N.—Licensed Vocational Nurse MBD—Minimal Brain Dysfunction MCO—Marine Corps...
32 CFR Appendix A to Part 199 - Acronyms
Code of Federal Regulations, 2012 CFR
2012-07-01
... 199—Acronyms AFR—Air Force Regulation AR—Army Regulation ASD (HA)—Assistant Secretary of Defense... Renal Disease CT—Computerized Tomography DASD (A)—Deputy Assistant Secretary of Defense (Administration....—Licensed Practical Nurse L.V.N.—Licensed Vocational Nurse MBD—Minimal Brain Dysfunction MCO—Marine Corps...
Non-Invasive Visualization and Quantitation of Cardiovascular Structure and Function.
ERIC Educational Resources Information Center
Ritman, E. L.; And Others
1979-01-01
Described is a new approach to investigative physiology based on computerized transaxial tomography, in which visualization and measurement of the internal structure of the cardiopulmonary system is possible without postmortem, biopsy, or vivisection procedures. Examples are given for application of the Dynamic Spatial Reconstructor (DSR). (CS)
Sora, Mircea-Constantin; Jilavu, Radu; Matusz, Petru
2012-10-01
The aim of this study was to describe a method of developing a computerized model of the human female pelvis using plastinated slices. Computerized reconstruction of anatomical structures is becoming very useful for developing anatomical teaching, research modules and animations. Although databases consisting of serial sections derived from frozen cadaver material exist, plastination represents an alternative method for developing anatomical data useful for computerized reconstruction. A slice anatomy study, using plastinated transparent pelvis cross sections, was performed to obtain a 3D reconstruction. One female human pelvis used for this study, first plastinated as a block, then sliced into thin slices and in the end subjected to 3D computerized reconstruction using WinSURF modeling system (SURFdriver Software). To facilitate the understanding of the complex pelvic floor anatomy on sectional images obtained through MR imaging, and to make the representation more vivid, a female pelvis computer-aided 3D model was created. Qualitative observations revealed that the morphological features of the model were consistent with those displayed by typical cadaveric specimens. The quality of the reconstructed images appeared distinct, especially the spatial positions and complicated relationships of contiguous structures of the female pelvis. All reconstructed structures can be displayed in groups or as a whole and interactively rotated in 3D space. The utilization of plastinates for generating tissue sections is useful for 3D computerized modeling. The 3D model of the female pelvis presented in this paper provides a stereoscopic view to study the adjacent relationship and arrangement of respective pelvis sections. A better understanding of the pelvic floor anatomy is relevant to gynaecologists, radiologists, surgeons, urologists, physical therapists and all professionals who take care of women with pelvic floor dysfunction.
Bigler, E D
1999-08-01
Contemporary neuorimaging techniques in child traumatic brain injury are reviewed, with an emphasis on computerized tomography (CT) and magnetic resonance (MR) imaging. A brief overview of MR spectroscopy (MRS), functional MR imaging (fMRI), single-photon emission computed tomography (SPECT), and magnetoencephalography (MEG) is also provided because these techniques will likely constitute important neuroimaging techniques of the future. Numerous figures are provided to illustrate the multifaceted manner in which traumatic deficits can be imaged and the role of neuroimaging information as it relates to TBI outcome.
Yun, Yifeng; Zou, Xiaodong; Hovmöller, Sven; Wan, Wei
2015-03-01
Phase identification and structure determination are important and widely used techniques in chemistry, physics and materials science. Recently, two methods for automated three-dimensional electron diffraction (ED) data collection, namely automated diffraction tomography (ADT) and rotation electron diffraction (RED), have been developed. Compared with X-ray diffraction (XRD) and two-dimensional zonal ED, three-dimensional ED methods have many advantages in identifying phases and determining unknown structures. Almost complete three-dimensional ED data can be collected using the ADT and RED methods. Since each ED pattern is usually measured off the zone axes by three-dimensional ED methods, dynamic effects are much reduced compared with zonal ED patterns. Data collection is easy and fast, and can start at any arbitrary orientation of the crystal, which facilitates automation. Three-dimensional ED is a powerful technique for structure identification and structure solution from individual nano- or micron-sized particles, while powder X-ray diffraction (PXRD) provides information from all phases present in a sample. ED suffers from dynamic scattering, while PXRD data are kinematic. Three-dimensional ED methods and PXRD are complementary and their combinations are promising for studying multiphase samples and complicated crystal structures. Here, two three-dimensional ED methods, ADT and RED, are described. Examples are given of combinations of three-dimensional ED methods and PXRD for phase identification and structure determination over a large number of different materials, from Ni-Se-O-Cl crystals, zeolites, germanates, metal-organic frameworks and organic compounds to intermetallics with modulated structures. It is shown that three-dimensional ED is now as feasible as X-ray diffraction for phase identification and structure solution, but still needs further development in order to be as accurate as X-ray diffraction. It is expected that three-dimensional ED methods will become crucially important in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devaraj, Arun; Colby, Robert J.; Vurpillot, F.
2014-03-26
Metal-dielectric composite materials, specifically metal nanoparticles supported on or embedded in metal oxides, are widely used in catalysis. The accurate optimization of such nanostructures warrants the need for detailed three-dimensional characterization. Atom probe tomography is uniquely capable of generating sub-nanometer structural and compositional data with part-per-million mass sensitivity, but there are reconstruction artifacts for composites containing materials with strongly differing fields of evaporation, as for oxide-supported metal nanoparticles. By correlating atom probe tomography with scanning transmission electron microscopy for Au nanoparticles embedded in an MgO support, deviations from an ideal topography during evaporation are demonstrated directly, and correlated with compositionalmore » errors in the reconstructed data. Finite element simulations of the field evaporation process confirm that protruding Au nanoparticles will evolve on the tip surface, and that evaporation field variations lead to an inaccurate assessment of the local composition, effectively lowering the spatial resolution of the final reconstructed dataset. Cross-correlating the experimental data with simulations results in a more detailed understanding of local evaporation aberrations during APT analysis of metal-oxide composites, paving the way towards a more accurate three-dimensional characterization of this technologically important class of materials.« less
Inci, Ercan; Ekizoglu, Oguzhan; Turkay, Rustu; Aksoy, Sema; Can, Ismail Ozgur; Solmaz, Dilek; Sayin, Ibrahim
2016-10-01
Morphometric analysis of the mandibular ramus (MR) provides highly accurate data to discriminate sex. The objective of this study was to demonstrate the utility and accuracy of MR morphometric analysis for sex identification in a Turkish population.Four hundred fifteen Turkish patients (18-60 y; 201 male and 214 female) who had previously had multidetector computed tomography scans of the cranium were included in the study. Multidetector computed tomography images were obtained using three-dimensional reconstructions and a volume-rendering technique, and 8 linear and 3 angular values were measured. Univariate, bivariate, and multivariate discriminant analyses were performed, and the accuracy rates for determining sex were calculated.Mandibular ramus values produced high accuracy rates of 51% to 95.6%. Upper ramus vertical height had the highest rate at 95.6%, and bivariate analysis showed 89.7% to 98.6% accuracy rates with the highest ratios of mandibular flexure upper border and maximum ramus breadth. Stepwise discrimination analysis gave a 99% accuracy rate for all MR variables.Our study showed that the MR, in particular morphometric measures of the upper part of the ramus, can provide valuable data to determine sex in a Turkish population. The method combines both anthropological and radiologic studies.
NASA Astrophysics Data System (ADS)
Pokhrel, A.; El Hannach, M.; Orfino, F. P.; Dutta, M.; Kjeang, E.
2016-10-01
X-ray computed tomography (XCT), a non-destructive technique, is proposed for three-dimensional, multi-length scale characterization of complex failure modes in fuel cell electrodes. Comparative tomography data sets are acquired for a conditioned beginning of life (BOL) and a degraded end of life (EOL) membrane electrode assembly subjected to cathode degradation by voltage cycling. Micro length scale analysis shows a five-fold increase in crack size and 57% thickness reduction in the EOL cathode catalyst layer, indicating widespread action of carbon corrosion. Complementary nano length scale analysis shows a significant reduction in porosity, increased pore size, and dramatically reduced effective diffusivity within the remaining porous structure of the catalyst layer at EOL. Collapsing of the structure is evident from the combination of thinning and reduced porosity, as uniquely determined by the multi-length scale approach. Additionally, a novel image processing based technique developed for nano scale segregation of pore, ionomer, and Pt/C dominated voxels shows an increase in ionomer volume fraction, Pt/C agglomerates, and severe carbon corrosion at the catalyst layer/membrane interface at EOL. In summary, XCT based multi-length scale analysis enables detailed information needed for comprehensive understanding of the complex failure modes observed in fuel cell electrodes.
Cheutin, Thierry; O'Donohue, Marie-Françoise; Beorchia, Adrien; Klein, Christophe; Kaplan, Hervé; Ploton, Dominique
2003-01-01
The monoclonal antibody (MAb) Ki-67 is routinely used in clinical studies to estimate the growth fraction of tumors. However, the role of pKi-67, the protein detected by the Ki-67 MAb, remains elusive, although some biochemical data strongly suggest that it might organize chromatin. To better understand the functional organization of pKi-67, we studied its three-dimensional distribution in interphase cells by confocal microscopy and electron tomography. FluoroNanogold, a single probe combining a dense marker with a fluorescent dye, was used to investigate pKi-67 organization at the optical and ultrastructural levels. Observation by confocal microscopy followed by 3D reconstruction showed that pKi-67 forms a shell around the nucleoli. Double labeling experiments revealed that pKi-67 co-localizes with perinucleolar heterochromatin. Electron microscopy studies confirmed this close association and demonstrated that pKi-67 is located neither in the fibrillar nor in the granular components of the nucleolus. Finally, spatial analyses by electron tomography showed that pKi-67 forms cords 250–300 nm in diameter, which are themselves composed of 30–50-nm-thick fibers. These detailed comparative in situ analyses strongly suggest the involvement of pKi-67 in the higher-order organization of perinucleolar chromatin. PMID:14566014
Cheutin, Thierry; O'Donohue, Marie-Françoise; Beorchia, Adrien; Klein, Christophe; Kaplan, Hervé; Ploton, Dominique
2003-11-01
The monoclonal antibody (MAb) Ki-67 is routinely used in clinical studies to estimate the growth fraction of tumors. However, the role of pKi-67, the protein detected by the Ki-67 MAb, remains elusive, although some biochemical data strongly suggest that it might organize chromatin. To better understand the functional organization of pKi-67, we studied its three-dimensional distribution in interphase cells by confocal microscopy and electron tomography. FluoroNanogold, a single probe combining a dense marker with a fluorescent dye, was used to investigate pKi-67 organization at the optical and ultrastructural levels. Observation by confocal microscopy followed by 3D reconstruction showed that pKi-67 forms a shell around the nucleoli. Double labeling experiments revealed that pKi-67 co-localizes with perinucleolar heterochromatin. Electron microscopy studies confirmed this close association and demonstrated that pKi-67 is located neither in the fibrillar nor in the granular components of the nucleolus. Finally, spatial analyses by electron tomography showed that pKi-67 forms cords 250-300 nm in diameter, which are themselves composed of 30-50-nm-thick fibers. These detailed comparative in situ analyses strongly suggest the involvement of pKi-67 in the higher-order organization of perinucleolar chromatin.
Iwasawa, Tae; Kanauchi, Tetsu; Hoshi, Toshiko; Ogura, Takashi; Baba, Tomohisa; Gotoh, Toshiyuki; Oba, Mari S
2016-01-01
To evaluate the feasibility of automated quantitative analysis with a three-dimensional (3D) computer-aided system (i.e., Gaussian histogram normalized correlation, GHNC) of computed tomography (CT) images from different scanners. Each institution's review board approved the research protocol. Informed patient consent was not required. The participants in this multicenter prospective study were 80 patients (65 men, 15 women) with idiopathic pulmonary fibrosis. Their mean age was 70.6 years. Computed tomography (CT) images were obtained by four different scanners set at different exposures. We measured the extent of fibrosis using GHNC, and used Pearson's correlation analysis, Bland-Altman plots, and kappa analysis to directly compare the GHNC results with manual scoring by radiologists. Multiple linear regression analysis was performed to determine the association between the CT data and forced vital capacity (FVC). For each scanner, the extent of fibrosis as determined by GHNC was significantly correlated with the radiologists' score. In multivariate analysis, the extent of fibrosis as determined by GHNC was significantly correlated with FVC (p < 0.001). There was no significant difference between the results obtained using different CT scanners. Gaussian histogram normalized correlation was feasible, irrespective of the type of CT scanner used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sano, Ryuichi; Iwama, Naofumi; Peterson, Byron J.
A three-dimensional (3D) tomography system using four InfraRed imaging Video Bolometers (IRVBs) has been designed with a helical periodicity assumption for the purpose of plasma radiation measurement in the large helical device. For the spatial inversion of large sized arrays, the system has been numerically and experimentally examined using the Tikhonov regularization with the criterion of minimum generalized cross validation, which is the standard solver of inverse problems. The 3D transport code EMC3-EIRENE for impurity behavior and related radiation has been used to produce phantoms for numerical tests, and the relative calibration of the IRVB images has been carried outmore » with a simple function model of the decaying plasma in a radiation collapse. The tomography system can respond to temporal changes in the plasma profile and identify the 3D dynamic behavior of radiation, such as the radiation enhancement that starts from the inboard side of the torus, during the radiation collapse. The reconstruction results are also consistent with the output signals of a resistive bolometer. These results indicate that the designed 3D tomography system is available for the 3D imaging of radiation. The first 3D direct tomographic measurement of a magnetically confined plasma has been achieved.« less
Takashima, Kenta; Hoshino, Masato; Uesugi, Kentaro; Yagi, Naoto; Matsuda, Shojiro; Nakahira, Atsushi; Osumi, Noriko; Kohzuki, Masahiro; Onodera, Hiroshi
2015-01-01
Tissue engineering strategies for spinal cord repair are a primary focus of translational medicine after spinal cord injury (SCI). Many tissue engineering strategies employ three-dimensional scaffolds, which are made of biodegradable materials and have microstructure incorporated with viable cells and bioactive molecules to promote new tissue generation and functional recovery after SCI. It is therefore important to develop an imaging system that visualizes both the microstructure of three-dimensional scaffolds and their degradation process after SCI. Here, X-ray phase-contrast computed tomography imaging based on the Talbot grating interferometer is described and it is shown how it can visualize the polyglycolic acid scaffold, including its microfibres, after implantation into the injured spinal cord. Furthermore, X-ray phase-contrast computed tomography images revealed that degradation occurred from the end to the centre of the braided scaffold in the 28 days after implantation into the injured spinal cord. The present report provides the first demonstration of an imaging technique that visualizes both the microstructure and degradation of biodegradable scaffolds in SCI research. X-ray phase-contrast imaging based on the Talbot grating interferometer is a versatile technique that can be used for a broad range of preclinical applications in tissue engineering strategies. PMID:25537600
Three-dimensional imaging of artificial fingerprint by optical coherence tomography
NASA Astrophysics Data System (ADS)
Larin, Kirill V.; Cheng, Yezeng
2008-03-01
Fingerprint recognition is one of the popular used methods of biometrics. However, due to the surface topography limitation, fingerprint recognition scanners are easily been spoofed, e.g. using artificial fingerprint dummies. Thus, biometric fingerprint identification devices need to be more accurate and secure to deal with different fraudulent methods including dummy fingerprints. Previously, we demonstrated that Optical Coherence Tomography (OCT) images revealed the presence of the artificial fingerprints (made from different household materials, such as cement and liquid silicone rubber) at all times, while the artificial fingerprints easily spoofed the commercial fingerprint reader. Also we demonstrated that an analysis of the autocorrelation of the OCT images could be used in automatic recognition systems. Here, we exploited the three-dimensional (3D) imaging of the artificial fingerprint by OCT to generate vivid 3D image for both the artificial fingerprint layer and the real fingerprint layer beneath. With the reconstructed 3D image, it could not only point out whether there exists an artificial material, which is intended to spoof the scanner, above the real finger, but also could provide the hacker's fingerprint. The results of these studies suggested that Optical Coherence Tomography could be a powerful real-time noninvasive method for accurate identification of artificial fingerprints real fingerprints as well.
Iwasaki, Tomonori; Takemoto, Yoshihiko; Inada, Emi; Sato, Hideo; Saitoh, Issei; Kakuno, Eriko; Kanomi, Ryuzo; Yamasaki, Youichi
2014-12-01
Pharyngeal airway size is increasingly recognized as an important factor in obstructive sleep apnea. However, few studies have examined the changes of pharyngeal airway form after dental procedures for treating obstructive sleep apnea during growth. The purpose of this study was to evaluate the effect of the Herbst appliance on the 3-dimensional form of the pharyngeal airway using cone-beam computed tomography. Twenty-four Class II subjects (ANB, ≥5°; 11 boys; mean age, 11.6 years) who required Herbst therapy with edgewise treatment had cone-beam computed tomography images taken before and after Herbst treatment. Twenty Class I control subjects (9 boys; mean age, 11.5 years) received edgewise treatment only. The volume, depth, and width of the pharyngeal airway were compared between the groups using measurements from 3-dimensional cone-beam computed tomography images of the entire pharyngeal airway. The increase of the oropharyngeal airway volume in the Herbst group (5000.2 mm(3)) was significantly greater than that of the control group (2451.6 mm(3)). Similarly, the increase of the laryngopharyngeal airway volume in the Herbst group (1941.8 mm(3)) was significantly greater than that of the control group (1060.1 mm(3)). The Herbst appliance enlarges the oropharyngeal and laryngopharyngeal airways. These results may provide a useful assessment of obstructive sleep apnea treatment during growth. Copyright © 2014 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Neurosurgical applications of ion beams
NASA Astrophysics Data System (ADS)
Fabrikant, Jacob I.; Levy, Richard P.; Phillips, Mark H.; Frankel, Kenneth A.; Lyman, John T.
1989-04-01
The program at Donner Pavilion has applied nuclear medicine research to the diagnosis and radiosurgical treatment of life-threatening intracranial vascular disorders that affect more than half a million Americans. Stereotactic heavy-charged-particle Bragg peak radiosurgery, using narrow beams of heavy ions, demonstrates superior biological and physical characteristics in brain over X-and γ-rays, viz., improved dose distribution in the Bragg peak and sharp lateral and distal borders and less scattering of the beam. Examination of CNS tissue response and alteration of cerebral blood-flow dynamics related to heavy-ion Bragg peak radiosurgery is carried out using three-dimensional treatment planning and quantitative imaging utilizing cerebral angiography, computerized tomography (CT), magnetic resonance imaging (MRI), cine-CT, xenon X-ray CT and positron emission tomography (PET). Also under examination are the physical properties of narrow heavy-ion beams for improving methods of dose delivery and dose distribution and for establishing clinical RBE/LET and dose-response relationships for human CNS tissues. Based on the evaluation and treatment with stereotactically directed narrow beams of heavy charged particles of over 300 patients, with cerebral angiography, CT scanning and MRI and PET scanning of selected patients, plus extensive clinical and neuroradiological followup, it appears that Stereotactic charged-particle Bragg peak radiosurgery obliterates intracranial arteriovenous malformations or protects against rebleeding with reduced morbidity and no mortality. Discussion will include the method of evaluation, the clinical research protocol, the Stereotactic neuroradiological preparation, treatment planning, the radiosurgery procedure and the protocol for followup. Emphasis will be placed on the neurological results, including the neuroradiological and clinical response and early and late delayed injury in brain leading to complications (including vasogenic edema, arterial occlusion, venous thrombosis and radiation necrosis). Clinical results in both children and adults will be illustrated and health outcome will be related to the advantages of charged-particle treatment planning, the radiosurgical procedure, dose distribution and dose localization.
The development and role of megavoltage cone beam computerized tomography in radiation oncology
NASA Astrophysics Data System (ADS)
Morin, Olivier
External beam radiation therapy has now the ability to deliver doses that conform tightly to a tumor volume. The steep dose gradients planned in these treatments make it increasingly important to reproduce the patient position and anatomy at each treatment fraction. For this reason, considerable research now focuses on in-room three-dimensional imaging. This thesis describes the first clinical megavoltage cone beam computed tomography (MVCBCT) system, which utilizes a conventional linear accelerator equipped with an amorphous silicon flat panel detector. The document covers the system development and investigation of its clinical applications over the last 4-5 years. The physical performance of the system was evaluated and optimized for soft-tissue contrast resolution leading to recommendations of imaging protocols to use for specific clinical applications and body sites. MVCBCT images can resolve differences of 5% in electron density for a mean dose of 9 cGy. Hence, the image quality of this system is sufficient to differentiate some soft-tissue structures. The absolute positioning accuracy with MVCBCT is better than 1 mm. The accuracy of isodose lines calculated using MVCBCT images of head and neck patients is within 3% and 3 mm. The system shows excellent stability in image quality, CT# calibration, radiation exposure and absolute positioning over a period of 8 months. A procedure for MVCBCT quality assurance was developed. In our clinic, MVCBCT has been used to detect non rigid spinal cord distortions, to position a patient with a paraspinous tumor close to metallic hardware, to position prostate cancer patients using gold markers or soft-tissue landmarks, to monitor head and neck anatomical changes and their dosimetric consequences, and to complement the convention CT for treatment planning in presence of metallic implants. MVCBCT imaging is changing the clinical practice of our department by increasingly revealing patient-specific errors. New verification protocols are being developed to minimize those errors thus moving the practice of radiation therapy one step closer to personalized medicine.
Three-Dimensional Printed Prosthesis for Repair of Superior Canal Dehiscence.
Kozin, Elliott D; Remenschneider, Aaron K; Cheng, Song; Nakajima, Hideko Heidi; Lee, Daniel J
2015-10-01
Outcomes following repair of superior canal dehiscence (SCD) are variable, and surgery carries a risk of persistent or recurrent SCD symptoms, as well as a risk of hearing loss and vestibulopathy. Poor outcomes may occur from inadequate repair of the SCD or mechanical insult to the membranous labyrinth. Repair of SCD using a customized, fixed-length prosthesis may address current operative limitations and improve surgical outcomes. We aim to 3-dimensionally print customized prostheses to resurface or occlude bony SCD defects. Dehiscences were created along the arcuate eminence of superior semicircular canals in cadaveric temporal bones. Prostheses were designed and created using computed tomography and a 3-dimensional printer. The prostheses occupied the superior semicircular canal defect, reflected in postrepair computed tomography scans. This novel approach to SCD repair could have advantages over current techniques. Refinement of prosthesis design and materials will be important if this approach is translated into clinical use. © American Academy of Otolaryngology-Head and Neck Surgery Foundation 2015.
Darwish, Ragaa T; Abdel-Aziz, Manal H; El Nekiedy, Abdel-Aziz M; Sobh, Zahraa K
2017-11-01
In forensic sciences to determine one's sex is quite important during the identity defining stage. The reliability of sex determination depends on the completeness of the remains and the degree of sexual dimorphism inherent in the population. Computed Tomography is the imaging modality of choice for two- and three-dimensional documentation and analysis of many autopsy findings. The aim of the present work was to assess the reliability of Three-dimensional Multislice Computed Tomography (3D MSCT) to determine sexual dimorphism from certain chest measurements; sternum and fourth rib using the 3D MSCT and to develop equations for sex determination from these bones among adult Egyptians sample. The present study was performed on 60 adult Egyptians. Their age ranged from 21 up to 74 years and they were equally divided between both sexes. Sixty virtual chests (reconstructed Multislice Computed Tomography 3D images) were examined for detection of Sternal measurements; Manubrium length (ML), Sternal body length (BL), Manubrium width (MW), Sternal body widths(BWa&BWb), Sternal area (SA) [(ML + BL) × (MW + BWa + BWb)/3]and Fourth rib width (FRW). All the studied measurements were significantly higher in males than in females. Multiple regression analysis was used to and three significant regression equations were developed for predicting sex using the different studied chest measurements; the sternal measurements, the sternal area and the widths of the right and left fourth ribs with their accuracies 96.67%.95.0%.72.68% respectively. Sterunm and fourth rib width revealed significant metric sex differences with the use of Multislice Computed Tomography 3D images thus provide a great advantage in the analysis of skeletal remains and badly decomposed bodies. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
NASA Technical Reports Server (NTRS)
Drury, H. A.; Van Essen, D. C.
1997-01-01
We used surface-based representations to analyze functional specializations in the human cerebral cortex. A computerized reconstruction of the cortical surface of the Visible Man digital atlas was generated and transformed to the Talairach coordinate system. This surface was also flattened and used to establish a surface-based coordinate system that respects the topology of the cortical sheet. The linkage between two-dimensional and three-dimensional representations allows the locations of published neuroimaging activation foci to be stereotaxically projected onto the Visible Man cortical flat map. An analysis of two activation studies related to the hearing and reading of music and of words illustrates how this approach permits the systematic estimation of the degree of functional segregation and of potential functional overlap for different aspects of sensory processing.
Gulati, Mittul; Dermendjian, Harout; Gómez, Ana M; Tan, Nelly; Margolis, Daniel J; Lu, David S; Gritsch, H Albin; Raman, Steven S
2016-01-01
Most living related donor (LRD) kidneys are harvested laparoscopically. Renal vascular anatomy helps determine donor suitability for laparoscopic nephrectomy. Computed tomography angiography (CTA) is the current gold standard for preoperative imaging; magnetic resonance angiography (MRA) offers advantages including lack of ionizing radiation and lower incidence of contrast reactions. We evaluated 3.0T MRA for assessing renal anatomy of LRDs. Thirty consecutive LRDs underwent CTA followed by 3.0T MRA. Data points included number and branching of vessels, incidental findings, and urothelial opacification. Studies were individually evaluated by three readers blinded to patient data. Studies were reevaluated in consensus with discrepancies revealed, and final consensus results were labeled "truth". Compared with consensus "truth", both computed tomography (CT) and magnetic resonance imaging were highly accurate for assessment of arterial and venous anatomy, although CT was superior for detection of late venous confluence as well as detection of renal stones. Both modalities were comparable in opacification of lower ureters and bladder; MRA underperformed CTA for opacification of upper urinary tracts. 3.0T MRA enabled excellent detection of comprehensive renal anatomy compared to CTA in LRDs. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
DelGrande, Nancy; Dolan, Kenneth W.; Durbin, Philip F.; Gorvad, Michael R.; Kornblum, B. T.; Perkins, Dwight E.; Schneberk, Daniel J.; Shapiro, Arthur B.
1993-11-01
We discuss three-dimensional dynamic thermal imaging of structural flaws using dual-band infrared (DBIR) computed tomography. Conventional (single-band) thermal imaging is difficult to interpret. It yields imprecise or qualitative information (e.g., when subsurface flaws produce weak heat flow anomalies masked by surface clutter). We use the DBIR imaging technique to clarify interpretation. We capture the time history of surface temperature difference patterns at the epoxy-glue disbond site of a flash-heated lap joint. This type of flawed structure played a significant role in causing damage to the Aloha Aircraft fuselage on the aged Boeing 737 jetliner. The magnitude of surface-temperature differences versus time for 0.1 mm air layer compared to 0.1 mm glue layer, varies from 0.2 to 1.6 degree(s)C, for simultaneously scanned front and back surfaces. The scans are taken every 42 ms from 0 to 8 s after the heat flash. By ratioing 3 - 5 micrometers and 8 - 12 micrometers DBIR images, we located surface temperature patterns from weak heat flow anomalies at the disbond site and remove the emissivity mask from surface paint of roughness variations. Measurements compare well with calculations based on TOPAX3D, a three-dimensional, finite element computer model. We combine infrared, ultrasound and x-ray imaging methods to study heat transfer, bond quality and material differences associated with the lap joint disbond site.
Choe, Regine; Konecky, Soren D.; Corlu, Alper; Lee, Kijoon; Durduran, Turgut; Busch, David R.; Pathak, Saurav; Czerniecki, Brian J.; Tchou, Julia; Fraker, Douglas L.; DeMichele, Angela; Chance, Britton; Arridge, Simon R.; Schweiger, Martin; Culver, Joseph P.; Schnall, Mitchell D.; Putt, Mary E.; Rosen, Mark A.; Yodh, Arjun G.
2009-01-01
We have developed a novel parallel-plate diffuse optical tomography (DOT) system for three-dimensional in vivo imaging of human breast tumor based on large optical data sets. Images of oxy-, deoxy-, total-hemoglobin concentration, blood oxygen saturation, and tissue scattering were reconstructed. Tumor margins were derived using the optical data with guidance from radiology reports and Magnetic Resonance Imaging. Tumor-to-normal ratios of these endogenous physiological parameters and an optical index were computed for 51 biopsy-proven lesions from 47 subjects. Malignant cancers (N=41) showed statistically significant higher total hemoglobin, oxy-hemoglobin concentration, and scattering compared to normal tissue. Furthermore, malignant lesions exhibited a two-fold average increase in optical index. The influence of core biopsy on DOT results was also explored; the difference between the malignant group measured before core biopsy and the group measured more than one week after core biopsy was not significant. Benign tumors (N=10) did not exhibit statistical significance in the tumor-to-normal ratios of any parameter. Optical index and tumor-to-normal ratios of total hemoglobin, oxy-hemoglobin concentration, and scattering exhibited high area under the receiver operating characteristic curve values from 0.90 to 0.99, suggesting good discriminatory power. The data demonstrate that benign and malignant lesions can be distinguished by quantitative three-dimensional DOT. PMID:19405750
Takeuchi, Akihiko; Yamamoto, Norio; Shirai, Toshiharu; Nishida, Hideji; Hayashi, Katsuhiro; Watanabe, Koji; Miwa, Shinji; Tsuchiya, Hiroyuki
2015-12-07
In a previous report, we described a method of reconstruction using tumor-bearing autograft treated by liquid nitrogen for malignant bone tumor. Here we present the first case of bone deformity correction following a tumor-bearing frozen autograft via three-dimensional computerized reconstruction after multiple surgeries. A 16-year-old female student presented with pain in the left lower leg and was diagnosed with a low-grade central tibial osteosarcoma. Surgical bone reconstruction was performed using a tumor-bearing frozen autograft. Bone union was achieved at 7 months after the first surgical procedure. However, local tumor recurrence and lung metastases occurred 2 years later, at which time a second surgical procedure was performed. Five years later, the patient developed a 19° varus deformity and underwent a third surgical procedure, during which an osteotomy was performed using the Taylor Spatial Frame three-dimensional external fixation technique. A fourth corrective surgical procedure was performed in which internal fixation was achieved with a locking plate. Two years later, and 10 years after the initial diagnosis of tibial osteosarcoma, the bone deformity was completely corrected, and the patient's limb function was good. We present the first report in which a bone deformity due to a primary osteosarcoma was corrected using a tumor-bearing frozen autograft, followed by multiple corrective surgical procedures that included osteotomy, three-dimensional external fixation, and internal fixation.
High resolution IVEM tomography of biological specimens
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sedat, J.W.; Agard, D.A.
Electron tomography is a powerful tool for elucidating the three-dimensional architecture of large biological complexes and subcellular organelles. The introduction of intermediate voltage electron microscopes further extended the technique by providing the means to examine very large and non-symmetrical subcellular organelles, at resolutions beyond what would be possible using light microscopy. Recent studies using electron tomography on a variety of cellular organelles and assemblies such as centrosomes, kinetochores, and chromatin have clearly demonstrated the power of this technique for obtaining 3D structural information on non-symmetric cell components. When combined with biochemical and molecular observations, these 3D reconstructions have provided significantmore » new insights into biological function.« less
Manubriosternal dislocation with spinal fracture: A rare cause for delayed haemothorax.
Kothari, Manish; Saini, Pramod; Shethna, Sunny; Dalvie, Samir
2015-01-01
Type 2 manubriosternal dislocations with concomitant spinal fracture are rare and may be associated with thoracic visceral injuries. The complication of delayed haemothorax has not been reported yet. We report a case of a young male who suffered manubriosternal dislocation with chance type thoracic spine fracture due to fall of a tree branch over his back. The haemothorax presented late on day three. The possible injury mechanism is discussed along with review of literature. We conclude that a lateral chest radiograph is indicated in spinal fracture patients complaining of midsternal pain. Computerized axial tomography scan of chest with contrast is indicated to rule out visceral injuries and a chest radiograph should be repeated before the patient is discharged to look for delayed haemothorax.
Nishiyama, T; Kaneko, K; Yamada, K; Teranishi, R; Kato, T; Hirayama, T; Tobita, H; Izumi, T; Shiohara, Y
2014-11-01
IntroductionSince the discovery of REBa2Cu3O7-y (RE: Rare Earth element, REBCO) superconductors, they have been expected as the best candidates for the power cable application due to its high critical temperature (Tc) and critical current density (Jc). Among those REBCO superconductors, GdBa2Cu3O7-y (GdBCO) have been receiving great interest because they have higher Tc and Jc than YBa2Cu3O7-y [1].GdBCO with various types of precipitates as artificial pinning centers (APCs) have been proposed to minimize the anisotropy of Jc characteristics under the magnetic field. Among those precipitates, BaHfO3 (BHO) was found most effective precipitates as APCs in GdBCO film prepared by pulsed laser deposition (PLD) method [2]. It is therefore necessary to investigate not only the morphologies but also the dispersion of BHO precipitates within the GdBCO, to understand the role of BHO for the superconducting characteristics. In this study, morphologies and dispersions of BHO precipitates were characterized three-dimensional by scanning transmission electron tomography ExperimentalBHO dispersed GdBCO films were fabricated on Hastelloy C-276TM substrates with buffer layers of CeO2/LaMnO3/MgO/ Gd2ZrO7 by PLD method.To observe microstructure of GdBCO film with BHO precipitates, cross-section TEM specimens were prepared by FIB method using Quanta 3D-200 (FEI, USA) with acceleration voltage from 2 to 30 kV. Three-dimensional information such as morphology and dispersion, of BHO precipitates were characterized by electron tomography using STEM-HAADF. Result and discussionFigure 1 shows three-dimensional reconstructed volume of BHO precipitates in GdBCO, which revealed that fine BHO precipitates have rod- and plate-like morphologies with homogeneous dispersion in GdBCO. In addition, growth directions of these precipitates were found with wide angular distributions from growth direction of GdBCO. Anisotropy of Jc in the magnetic fields was probably enhanced by various growth directions and homogeneous dispersion of nanosized BHO within GdBCO.jmicro;63/suppl_1/i26/DFU080F1F1DFU080F1Fig. 1.Three-dimensional reconstructed volume of BHO. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Rare Forms of Castleman Disease Mimicking Malignancy: Mesenteric and Pancreatic Involvement.
Ozsoy, Mustafa; Ozsoy, Zehra; Sahin, Suleyman; Arıkan, Yuksel
2018-03-12
Castleman disease is a lymphoproliferative disorder with unknown etiology and pathogenesis. While the disease may involve all parts of the body, the mediastinum appears to be the most common part of involvement. In this study, we present two cases of Castleman disease with different localizations that mimicked malignancy. A 62-year-old female patient presented with jaundice. Laboratory analysis indicated aspartate aminotransferase: 250 U/L, total bilirubin: 4 mg/dl, and carbohydrate antigen (CA) 19-9: 900 U/ml. Computerized tomography (CT) of the abdomen showed a mass originating from the pancreas head which resulted in a biliary tract obstruction. A positron emission tomography-computed tomography (PET/CT) showed that the only site of involvement was the pancreas head. A decision was made to perform pancreaticoduodenectomy. During intra-abdominal exploration, lymphadenopathies were identified in the surroundings of the retropancreatic portal vein and the hepatic artery. Histopathological investigation of the dissected lymph nodes demonstrated findings consistent with granulomatous plasma-cell-rich Castleman disease. A 55-year-old female patient presented with abdominal pain, nausea, and vomiting. Computerized tomography of the abdomen showed an abdominal mass of 7 cm, originating from the mesenterium, with high-contrast uptake in the mesenterium in the lower abdominal quadrant. The mesenteric mass was resected along with segmentary small intestine resection. Histopathological investigation of the mass showed a giant granulomatous structure that consisted of plasma cells consistent with Castleman disease. Castleman disease should be kept in mind during differential diagnosis of locally advanced lymph nodes observed during preoperative investigations and intraoperative exploration.
Three-dimensional analysis of the microstructure and bio-corrosion of Mg–Zn and Mg–Zn–Ca alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Y.; Chiu, Y.L.; Jones, I.P.
2016-02-15
The effects of the morphology and the distribution of secondary phases on the bio-corrosion properties of magnesium (Mg) alloys are significant. Focused Ion Beam (FIB) tomography and Micro X-Ray computed tomography (Micro-CT) have been used to characterise the morphology and distribution of (α-Mg + MgZn) and (α-Mg + Ca{sub 2} + Mg{sub 6} + Zn{sub 3}) eutectic phase mixtures in as-cast Mg–3Zn and Mg–3Zn–0.3Ca alloys, respectively. There were two different 3D distributions: (i) an interconnected network and (ii) individual spheres. The tomography informed our understanding of the relationship between the distribution of secondary phases and the development of localized corrosionmore » in magnesium alloys. - Highlights: • Multi-scale tomography was used to characterise the morphology and distribution of secondary phases in Mg alloys. • The development of localized corrosion was investigated using tomography. • An improved understanding of the microstructure and corrosion was achieved using Micro-CT tomography.« less
Quantitative 3D reconstruction of airway and pulmonary vascular trees using HRCT
NASA Astrophysics Data System (ADS)
Wood, Susan A.; Hoford, John D.; Hoffman, Eric A.; Zerhouni, Elias A.; Mitzner, Wayne A.
1993-07-01
Accurate quantitative measurements of airway and vascular dimensions are essential to evaluate function in the normal and diseased lung. In this report, a novel method is described for three-dimensional extraction and analysis of pulmonary tree structures using data from High Resolution Computed Tomography (HRCT). Serially scanned two-dimensional slices of the lower left lobe of isolated dog lungs were stacked to create a volume of data. Airway and vascular trees were three-dimensionally extracted using a three dimensional seeded region growing algorithm based on difference in CT number between wall and lumen. To obtain quantitative data, we reduced each tree to its central axis. From the central axis, branch length is measured as the distance between two successive branch points, branch angle is measured as the angle produced by two daughter branches, and cross sectional area is measured from a plane perpendicular to the central axis point. Data derived from these methods can be used to localize and quantify structural differences both during changing physiologic conditions and in pathologic lungs.
Jiménez Varo, Ignacio; Gros Herguido, Noelia; Parejo Campos, Juana; Tatay Domínguez, Dolores; Pereira Cunill, José Luis; Serrano Aguayo, Pilar; Socas Macías, María; García-Luna, Pedro Pablo
2014-02-01
Percutaneous gastrostomy, is the procedure of choice to provide enteral access in patients requiring nutritional support in this way in the long run, relegating the surgical gastrostomy. We present three patients requiring percutaneous gastrostomy for nutritional support. In two cases was performed endoscopic gastrostomy and another one using interventional radiology. While performing percutaneous gastrostomy clinical incidents were not detected, but when trying the replacement of gastrostomy tubes, showed the presence of gastrocolic fistula that caused failure or turnover in one case, or abdominal pain and diarrhea in the two other cases. Despite being a safe technique, should be done a proper patient selection in order to minimize the potential complications that may occur, as gastrocolic fistula, recommending in doubtful cases test of image such CT (computerized Tomography). Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Robust Spatial Autoregressive Modeling for Hardwood Log Inspection
Dongping Zhu; A.A. Beex
1994-01-01
We explore the application of a stochastic texture modeling method toward a machine vision system for log inspection in the forest products industry. This machine vision system uses computerized tomography (CT) imaging to locate and identify internal defects in hardwood logs. The application of CT to such industrial vision problems requires efficient and robust image...
Letter to the Editor: Use of Publicly Available Image Resources
Armato, Samuel G.; Drukker, Karen; Li, Feng; ...
2017-05-11
Here we write with regard to the Academic Radiology article entitled, “Computer-aided Diagnosis for Lung Cancer: Usefulness of Nodule Heterogeneity” by Drs. Nishio and Nagashima (1). The authors also report on a computerized method to classify as benign or malignant lung nodules present in computed tomography (CT) scans.
Femtosecond laser micro-inscription of optical coherence tomography resolution test artifacts.
Tomlins, Peter H; Smith, Graham N; Woolliams, Peter D; Rasakanthan, Janarthanan; Sugden, Kate
2011-04-25
Optical coherence tomography (OCT) systems are becoming more commonly used in biomedical imaging and, to enable continued uptake, a reliable method of characterizing their performance and validating their operation is required. This paper outlines the use of femtosecond laser subsurface micro-inscription techniques to fabricate an OCT test artifact for validating the resolution performance of a commercial OCT system. The key advantage of this approach is that by utilizing the nonlinear absorption a three dimensional grid of highly localized point and line defects can be written in clear fused silica substrates.
Digital holographic tomography based on spectral interferometry.
Yu, Lingfeng; Chen, Zhongping
2007-10-15
A digital holographic tomography system has been developed with the use of an inexpensive broadband light source and a fiber-based spectral interferometer. Multiple synthesized holograms (or object wave fields) of different wavelengths are obtained by transversely scanning a probe beam. The acquisition speed is improved compared with conventional wavelength-scanning digital holographic systems. The optical field of a volume around the object location is calculated by numerical diffraction from each synthesized hologram, and all such field volumes are numerically superposed to create the three-dimensional tomographic image. Experiments were performed to demonstrate the idea.