3-Dimensional Marine CSEM Modeling by Employing TDFEM with Parallel Solvers
NASA Astrophysics Data System (ADS)
Wu, X.; Yang, T.
2013-12-01
In this paper, parallel fulfillment is developed for forward modeling of the 3-Dimensional controlled source electromagnetic (CSEM) by using time-domain finite element method (TDFEM). Recently, a greater attention rises on research of hydrocarbon (HC) reservoir detection mechanism in the seabed. Since China has vast ocean resources, seeking hydrocarbon reservoirs become significant in the national economy. However, traditional methods of seismic exploration shown a crucial obstacle to detect hydrocarbon reservoirs in the seabed with a complex structure, due to relatively high acquisition costs and high-risking exploration. In addition, the development of EM simulations typically requires both a deep knowledge of the computational electromagnetics (CEM) and a proper use of sophisticated techniques and tools from computer science. However, the complexity of large-scale EM simulations often requires large memory because of a large amount of data, or solution time to address problems concerning matrix solvers, function transforms, optimization, etc. The objective of this paper is to present parallelized implementation of the time-domain finite element method for analysis of three-dimensional (3D) marine controlled source electromagnetic problems. Firstly, we established a three-dimensional basic background model according to the seismic data, then electromagnetic simulation of marine CSEM was carried out by using time-domain finite element method, which works on a MPI (Message Passing Interface) platform with exact orientation to allow fast detecting of hydrocarbons targets in ocean environment. To speed up the calculation process, SuperLU of an MPI (Message Passing Interface) version called SuperLU_DIST is employed in this approach. Regarding the representation of three-dimension seabed terrain with sense of reality, the region is discretized into an unstructured mesh rather than a uniform one in order to reduce the number of unknowns. Moreover, high-order Whitney vector basis functions are used for spatial discretization within the finite element approach to approximate the electric field. A horizontal electric dipole was used as a source, and an array of the receiver located at the seabed. To capture the presence of the hydrocarbon layer, the forward responses at water depths from 100m to 3000m are calculated. The normalized Magnitude Versus Offset (N-MVO) and Phase Versus Offset (PVO) curve can reflect resistive characteristics of hydrocarbon layers. For future work, Graphics Process Unit (GPU) acceleration algorithm would be carried out to multiply the calculation efficiency greatly.
NASA Astrophysics Data System (ADS)
Wang, Kunpeng; Tan, Handong
2017-11-01
Controlled-source audio-frequency magnetotellurics (CSAMT) has developed rapidly in recent years and are widely used in the area of mineral and oil resource exploration as well as other fields. The current theory, numerical simulation, and inversion research are based on the assumption that the underground media have resistivity isotropy. However a large number of rock and mineral physical property tests show the resistivity of underground media is generally anisotropic. With the increasing application of CSAMT, the demand for probe accuracy of practical exploration to complex targets continues to increase. The question of how to evaluate the influence of anisotropic resistivity to CSAMT response is becoming important. To meet the demand for CSAMT response research of resistivity anisotropic media, this paper examines the CSAMT electric equations, derives and realizes a three-dimensional (3D) staggered-grid finite difference numerical simulation method of CSAMT resistivity axial anisotropy. Through building a two-dimensional (2D) resistivity anisotropy geoelectric model, we validate the 3D computation result by comparing it to the result of controlled-source electromagnetic method (CSEM) resistivity anisotropy 2D finite element program. Through simulating a 3D resistivity axial anisotropy geoelectric model, we compare and analyze the responses of equatorial configuration, axial configuration, two oblique sources and tensor source. The research shows that the tensor source is suitable for CSAMT to recognize the anisotropic effect of underground structure.
NASA Astrophysics Data System (ADS)
Lindsey, Martin Forrester
Sustained hypersonic flight using scramjet propulsion is the key technology bridging the gap between turbojets and the exoatmospheric environment where a rocket is required. Recent efforts have focused on electromagnetic (EM) flow control to mitigate the problems of high thermomechanical loads and low propulsion efficiencies associated with scramjet propulsion. This research effort is the first flight-scale, three-dimensional computational analysis of a realistic scramjet to determine how EM flow control can improve scramjet performance. Development of a quasi-one dimensional design tool culminated in the first open source geometry of an entire scramjet flowpath. This geometry was then tested extensively with the Air Force Research Laboratory's three-dimensional Navier-Stokes and EM coupled computational code. As part of improving the model fidelity, a loosely coupled algorithm was developed to incorporate thermochemistry. This resulted in the only open-source model of fuel injection, mixing and combustion in a magnetogasdynamic (MGD) flow controlled engine. In addition, a control volume analysis tool with an electron beam ionization model was presented for the first time in the context of the established computational method used. Local EM flow control within the internal inlet greatly impacted drag forces and wall heat transfer but was only marginally successful in raising the average pressure entering the combustor. The use of an MGD accelerator to locally increase flow momentum was an effective approach to improve flow into the scramjet's isolator. Combustor-based MGD generators proved superior to the inlet generator with respect to power density and overall engine efficiency. MGD acceleration was shown to be ineffective in improving overall performance, with all of the bypass engines having approximately 33% more drag than baseline and none of them achieving a self-powered state.
Applications of three-dimensional modeling in electromagnetic exploration
NASA Astrophysics Data System (ADS)
Pellerin, Louise Donna
Numerical modeling is used in geophysical exploration to understand physical mechanisms of a geophysical method, compare different exploration techniques, and interpret field data. Exploring the physics of a geophysical response enhances the geophysicist's insight, resulting in better survey design and interpretation. Comparing exploration methods numerically can eliminate the use of a technique that cannot resolve the exploration target. Interpreting field data to determine the structure of the earth is the ultimate goal of the exploration geophysicist. Applications of three-dimensional (3-D) electromagnetic (EM) modeling in mining, geothermal and environmental exploration demonstrate the importance of numerical modeling as a geophysical tool. Detection of a confined, conductive target with a vertical electric source (VES) can be an effective technique if properly used. The vertical magnetic field response is due solely to multi-dimensional structures, and current channeling is the dominant mechanism. A VES is deployed in a bore hole, hence the orientation of the hole is critical to the response. A deviation of more than a degree from the vertical can result in a host response that overwhelms the target response. Only the in-phase response at low frequencies can be corrected to a purely vertical response. The geothermal system studied consists of a near-surface clay cap and a deep reservoir. The magnetotelluric (MT), controlled-source audio magnetotelluric (CSAMT), long-offset time-domain electromagnetic (LOTEM) and central-loop transient electromagnetic (TEM) methods are appraised for their ability to detect the reservoir and delineate the cap. The reservoir anomaly is supported by boundary charges and therefore is detectable only with deep sounding electric field measurement MT and LOTEM. The cap is easily delineated with all techniques. For interpretation I developed an approximate 3-D inversion that refines a 1-D interpretation by removing lateral distortions. An iterative inverse procedure invokes EM reciprocity while operating on a localized portion of the survey area thereby greatly reducing the computational requirements. The scheme is illustrated with three synthetic data sets representative of problems in environmental geophysics.
NASA Astrophysics Data System (ADS)
Sasaki, Yutaka; Yi, Myeong-Jong; Choi, Jihyang; Son, Jeong-Sul
2015-01-01
We present frequency- and time-domain three-dimensional (3-D) inversion approaches that can be applied to transient electromagnetic (TEM) data from a grounded-wire source using a PC. In the direct time-domain approach, the forward solution and sensitivity were obtained in the frequency domain using a finite-difference technique, and the frequency response was then Fourier-transformed using a digital filter technique. In the frequency-domain approach, TEM data were Fourier-transformed using a smooth-spectrum inversion method, and the recovered frequency response was then inverted. The synthetic examples show that for the time derivative of magnetic field, frequency-domain inversion of TEM data performs almost as well as time-domain inversion, with a significant reduction in computational time. In our synthetic studies, we also compared the resolution capabilities of the ground and airborne TEM and controlled-source audio-frequency magnetotelluric (CSAMT) data resulting from a common grounded wire. An airborne TEM survey at 200-m elevation achieved a resolution for buried conductors almost comparable to that of the ground TEM method. It is also shown that the inversion of CSAMT data was able to detect a 3-D resistivity structure better than the TEM inversion, suggesting an advantage of electric-field measurements over magnetic-field-only measurements.
Shao, Xuan-Min
2016-04-12
The fundamental electromagnetic equations used by lightning researchers were introduced in a seminal paper by Uman, McLain, and Krider in 1975. However, these equations were derived for an infinitely thin, one-dimensional source current, and not for a general three-dimensional current distribution. In this paper, we introduce a corresponding pair of generalized equations that are determined from a three-dimensional, time-dependent current density distribution based on Jefimenko's original electric and magnetic equations. To do this, we derive the Jefimenko electric field equation into a new form that depends only on the time-dependent current density similar to that of Uman, McLain, and Krider,more » rather than on both the charge and current densities in its original form. The original Jefimenko magnetic field equation depends only on current, so no further derivation is needed. We show that the equations of Uman, McLain, and Krider can be readily obtained from the generalized equations if a one-dimensional source current is considered. For the purpose of practical applications, we discuss computational implementation of the new equations and present electric field calculations for a three-dimensional, conical-shape discharge.« less
NASA Technical Reports Server (NTRS)
Ryan, Deirdre A.; Luebbers, Raymond J.; Nguyen, Truong X.; Kunz, Karl S.; Steich, David J.
1992-01-01
Prediction of anechoic chamber performance is a difficult problem. Electromagnetic anechoic chambers exist for a wide range of frequencies but are typically very large when measured in wavelengths. Three dimensional finite difference time domain (FDTD) modeling of anechoic chambers is possible with current computers but at frequencies lower than most chamber design frequencies. However, two dimensional FDTD (2D-FTD) modeling enables much greater detail at higher frequencies and offers significant insight into compact anechoic chamber design and performance. A major subsystem of an anechoic chamber for which computational electromagnetic analyses exist is the reflector. First, an analysis of the quiet zone fields of a low frequency anechoic chamber produced by a uniform source and a reflector in two dimensions using the FDTD method is presented. The 2D-FDTD results are compared with results from a three dimensional corrected physical optics calculation and show good agreement. Next, a directional source is substituted for the uniform radiator. Finally, a two dimensional anechoic chamber geometry, including absorbing materials, is considered, and the 2D-FDTD results for these geometries appear reasonable.
NASA Astrophysics Data System (ADS)
Commer, M.; Kowalsky, M. B.; Dafflon, B.; Wu, Y.; Hubbard, S. S.
2013-12-01
Geologic carbon sequestration is being evaluated as a means to mitigate the effects of greenhouse gas emissions. Efforts are underway to identify adequate reservoirs and to evaluate the behavior of injected CO2 over time; time-lapse geophysical methods are considered effective tools for these purposes. Pilot studies have shown that the invasion of CO2 into a background pore fluid can alter the electrical resistivity, with increases from CO2 in the super-critical or gaseous phase, and decreases from CO2 dissolved in groundwater (especially when calcite dissolution is occurring). Because of their sensitivity to resistivity changes, electrical and electromagnetic (EM) methods have been used in such studies for indirectly assessing CO2 saturation changes. While the electrical resistance tomography (ERT) method is a well-established technique for both crosswell and surface applications, its usefulness is limited by the relatively low-resolution information it provides. Controlled-source EM methods, including both frequency-domain and time-domain (transient EM) methods, can offer improved resolution. We report on three studies that aim to maximize the information content of electrical and electromagnetic measurements in inverse modeling applications that target the monitoring of resistivity changes due to CO2 migration and/or leakage. The first study considers a three-dimensional crosswell data set collected at an analogue site used for investigating CO2 distribution and geochemical reactivity within a shallow formation. We invert both resistance and phase data using a gradient-weighting method for descent-based inversion algorithms. This method essentially steers the search direction in the model space using low-cost non-linear conjugate gradient methods towards the more computationally expensive Gauss-Newton direction. The second study involves ERT data that were collected at the SECARB Cranfield site near Natchez, Mississippi, at depths exceeding 3000 m. We employ a ratio data inversion scheme, where the time-lapse input data are given by the measured ERT data normalized by their baseline values. We investigate whether three-dimensional time-lapse inversions yield improved results compared to two-dimensional results that were previously reported. Finally, we present a synthetic study that investigates a novel time-domain controlled-source EM method that has the potential for exploiting the resolution properties of vertically oriented source antennas while avoiding their logistical difficulties. A vertical source is replaced by an array of multiple horizontal dipoles arranged in a circle such that all dipoles have a common endpoint in the center. Overall, this study presents significant advances in developing adequate geophysical techniques to monitor CO2 migration and/or potential leaks in geological reservoirs.
Applying TM-polarization geoelectric exploration for study of low-contrast three-dimensional targets
NASA Astrophysics Data System (ADS)
Zlobinskiy, Arkadiy; Mogilatov, Vladimir; Shishmarev, Roman
2018-03-01
With using new field and theoretical data, it has been shown that applying the electromagnetic field of transverse magnetic (TM) polarization will give new opportunities for electrical prospecting by the method of transient processes. Only applying a pure field of the TM polarization permits poor three-dimensional objects (required metalliferous deposits) to be revealed in a host horizontally-layered medium. This position has good theoretical grounds. There is given the description of the transient electromagnetic method, that uses only the TM polarization field. The pure TM mode is excited by a special source, which is termed as a circular electric dipole (CED). The results of three-dimensional simulation (by the method of finite elements) are discussed for three real geological situations for which applying electromagnetic fields of transverse electric (TE) and transverse magnetic (TM) polarizations are compared. It has been shown that applying the TE mode gives no positive results, while applying the TM polarization field permits the problem to be tackled. Finally, the results of field works are offered, which showed inefficiency of application of the classical TEM method, whereas in contrast, applying the field of TM polarization makes it easy to identify the target.
Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces
Hashemi, Mohammed Reza M.; Yang, Shang-Hua; Wang, Tongyu; Sepúlveda, Nelson; Jarrahi, Mona
2016-01-01
Engineered metamaterials offer unique functionalities for manipulating the spectral and spatial properties of electromagnetic waves in unconventional ways. Here, we report a novel approach for making reconfigurable metasurfaces capable of deflecting electromagnetic waves in an electronically controllable fashion. This is accomplished by tilting the phase front of waves through a two-dimensional array of resonant metasurface unit-cells with electronically-controlled phase-change materials embedded inside. Such metasurfaces can be placed at the output facet of any electromagnetic radiation source to deflect electromagnetic waves at a desired frequency, ranging from millimeter-wave to far-infrared frequencies. Our design does not use any mechanical elements, external light sources, or reflectarrays, creating, for the first time, a highly robust and fully-integrated beam-steering device solution. We demonstrate a proof-of-concept beam-steering metasurface optimized for operation at 100 GHz, offering up to 44° beam deflection in both horizontal and vertical directions. Dynamic control of electromagnetic wave propagation direction through this unique platform could be transformative for various imaging, sensing, and communication applications, among others. PMID:27739471
Synthetic electromagnetic knot in a three-dimensional skyrmion
Lee, Wonjae; Gheorghe, Andrei H.; Tiurev, Konstantin; Ollikainen, Tuomas; Möttönen, Mikko; Hall, David S.
2018-01-01
Classical electromagnetism and quantum mechanics are both central to the modern understanding of the physical world and its ongoing technological development. Quantum simulations of electromagnetic forces have the potential to provide information about materials and systems that do not have conveniently solvable theoretical descriptions, such as those related to quantum Hall physics, or that have not been physically observed, such as magnetic monopoles. However, quantum simulations that simultaneously implement all of the principal features of classical electromagnetism have thus far proved elusive. We experimentally realize a simulation in which a charged quantum particle interacts with the knotted electromagnetic fields peculiar to a topological model of ball lightning. These phenomena are induced by precise spatiotemporal control of the spin field of an atomic Bose-Einstein condensate, simultaneously creating a Shankar skyrmion—a topological excitation that was theoretically predicted four decades ago but never before observed experimentally. Our results reveal the versatile capabilities of synthetic electromagnetism and provide the first experimental images of topological three-dimensional skyrmions in a quantum system. PMID:29511735
NASA Technical Reports Server (NTRS)
Eyre, Francis B. (Inventor); Fink, Wolfgang (Inventor)
2011-01-01
Disclosed herein is a method of making a three dimensional mold comprising the steps of providing a mold substrate; exposing the substrate with an electromagnetic radiation source for a period of time sufficient to render the portion of the mold substrate susceptible to a developer to produce a modified mold substrate; and developing the modified mold with one or more developing reagents to remove the portion of the mold substrate rendered susceptible to the developer from the mold substrate, to produce the mold having a desired mold shape, wherein the electromagnetic radiation source has a fixed position, and wherein during the exposing step, the mold substrate is manipulated according to a manipulation algorithm in one or more dimensions relative to the electromagnetic radiation source; and wherein the manipulation algorithm is determined using stochastic optimization computations.
NASA Astrophysics Data System (ADS)
Farquharson, Colin G.; Craven, James A.
2009-08-01
Shallow exploration targets are becoming scarce, meaning interest is turning towards deeper targets. The magnetotelluric method has the necessary depth capability, unlike many of the controlled-source electromagnetic prospecting techniques traditionally used. The geological setting of ore deposits is usually complex, requiring three-dimensional Earth models for their representation. An example of the applicability of three-dimensional inversion of magnetotelluric data to mineral exploration is presented here. Inversions of an audio-magnetotelluric data-set from the McArthur River uranium mine in the Athabasca Basin were carried out. A sub-set comprising data from eleven frequencies distributed over almost three decades was inverted. The form of the data used in the inversion was impedance. All four elements of the tensor were included. No decompositions of the data were done, nor rotation to a preferred strike direction, nor correction for static shifts. The inversions were successful: the observations were adequately reproduced and the main features in the conductivity model corresponded to known geological features. These included the graphitic basement fault along which the McArthur River uranium deposit is located.
Analysis of Transient Electromagnetic Scattering from Three Dimensional Cavities
2014-01-01
New York, 2002. [24] J. Jin and J. L. Volakis, A hybrid finite element method for scattering and radiation by micro strip patch antennas and arrays...applications such as the design of cavity-backed conformal antennas and the deliberate control in the form of enhancement or reduction of radar cross...electromagnetic scattering analysis, IEEE Trans. Antennas Propagat., 50 (2002), pp. 1192–1202. [22] J. Jin, Electromagnetic scattering from large, deep, and
Three-dimensional control of Tetrahymena pyriformis using artificial magnetotaxis
NASA Astrophysics Data System (ADS)
Hyung Kim, Dal; Seung Soo Kim, Paul; Agung Julius, Anak; Jun Kim, Min
2012-01-01
We demonstrate three-dimensional control with the eukaryotic cell Tetrahymena pyriformis (T. pyriformis) using two sets of Helmholtz coils for xy-plane motion and a single electromagnet for z-direction motion. T. pyriformis is modified to have artificial magnetotaxis with internalized magnetite. To track the cell's z-axis position, intensity profiles of non-motile cells at varying distances from the focal plane are used. During vertical motion along the z-axis, the intensity difference is used to determine the position of the cell. The three-dimensional control of the live microorganism T. pyriformis as a cellular robot shows great potential for practical applications in microscale tasks, such as target transport and cell therapy.
1987-03-01
the VLSI Implementation of the Electromagnetic Field of an Arbitrary Current Source" B.A. Hoyt, A.J. Terzuoli, A.V. Lair ., Air Force Institute of...method is that cavities of arbitrary three dimensional shapes and nonuniform lossy materials can be analyzed. THEORY OF VECTOR POTENTIAL FINITE...elements used to model the cavity. The method includes the effects of nonuniform lossy materials and can analyze cavities of a wide variety of two- and
Equivalent radiation source of 3D package for electromagnetic characteristics analysis
NASA Astrophysics Data System (ADS)
Li, Jun; Wei, Xingchang; Shu, Yufei
2017-10-01
An equivalent radiation source method is proposed to characterize electromagnetic emission and interference of complex three dimensional integrated circuits (IC) in this paper. The method utilizes amplitude-only near-field scanning data to reconstruct an equivalent magnetic dipole array, and the differential evolution optimization algorithm is proposed to extract the locations, orientation and moments of those dipoles. By importing the equivalent dipoles model into a 3D full-wave simulator together with the victim circuit model, the electromagnetic interference issues in mixed RF/digital systems can be well predicted. A commercial IC is used to validate the accuracy and efficiency of this proposed method. The coupled power at the victim antenna port calculated by the equivalent radiation source is compared with the measured data. Good consistency is obtained which confirms the validity and efficiency of the method. Project supported by the National Nature Science Foundation of China (No. 61274110).
A three-dimensional study of 30- to 300-MeV atmospheric gamma rays
NASA Technical Reports Server (NTRS)
Thompson, D. J.
1974-01-01
A three-dimensional study of atmospheric gamma rays with energy greater than 30 MeV has been carried out. A knowledge of these atmospheric secondaries has significant applications to the study of cosmic gamma rays. For detectors carried on balloons, atmospherically produced gamma rays are the major source of background. For satellite detectors, atmospheric secondaries provide a calibration source. Experimental results were obtained from four balloon flights from Palestine, Texas, with a 15 cm by 15 cm digitized wire grid spark chamber. The energy spectrum for downward-moving gamma rays steepens with increasing atmospheric depth. Near the top of the atmosphere, the spectrum steepens with increasing zenith angle. A new model of atmospheric secondary production has calculated the depth, the energy, and the zenith angle dependence of gamma rays above 30 MeV, using a comprehensive three-dimensional Monte Carlo model of the nucleon-meson-electromagnetic cascade.
Elastic metamaterials for tuning circular polarization of electromagnetic waves
Zárate, Yair; Babaee, Sahab; Kang, Sung H.; Neshev, Dragomir N.; Shadrivov, Ilya V.; Bertoldi, Katia; Powell, David A.
2016-01-01
Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed. PMID:27320212
Elastic metamaterials for tuning circular polarization of electromagnetic waves.
Zárate, Yair; Babaee, Sahab; Kang, Sung H; Neshev, Dragomir N; Shadrivov, Ilya V; Bertoldi, Katia; Powell, David A
2016-06-20
Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed.
Black Hole Accretion Discs on a Moving Mesh
NASA Astrophysics Data System (ADS)
Ryan, Geoffrey
2017-01-01
We present multi-dimensional numerical simulations of black hole accretion disks relevant for the production of electromagnetic counterparts to gravitational wave sources. We perform these simulations with a new general relativistic version of the moving-mesh magnetohydrodynamics code DISCO which we will present. This open-source code, GR-DISCO uses an orbiting and shearing mesh which moves with the dominant flow velocity, greatly improving the numerical accuracy of the thermodynamic variables in supersonic flows while also reducing numerical viscosity and greatly increasing computational efficiency by allowing for a larger time step. We have used GR-DISCO to study black hole accretion discs subject to gravitational torques from a binary companion, relevant for both current and future supermassive binary black hole searches and also as a possible electromagnetic precursor mechanism for LIGO events. Binary torques in these discs excite spiral shockwaves which effectively transport angular momentum in the disc and propagate through the innermost stable orbit, leading to stress corresponding to an alpha-viscosity of 10-2. We also present three-dimensional GRMHD simulations of neutrino dominated accretion flows (NDAFs) occurring after a binary neutron star merger in order to elucidate the conditions for electromagnetic transient production accompanying these gravitational waves sources expected to be detected by LIGO in the near future.
NASA Astrophysics Data System (ADS)
Eremin, Yu. A.; Sveshnikov, A. G.
2018-04-01
The discrete source method is used to develop and implement a mathematical model for solving the problem of scattering electromagnetic waves by a three-dimensional plasmonic scatterer with nonlocal effects taken into account. Numerical results are presented whereby the features of the scattering properties of plasmonic particles with allowance for nonlocal effects are demonstrated depending on the direction and polarization of the incident wave.
NASA Astrophysics Data System (ADS)
Gong, Z. R.; Ian, H.; Zhou, Lan; Sun, C. P.
2008-11-01
We study the coherent scattering process of a single photon confined in an one-dimensional (1D) coupled cavity-array, where a Λ -type three-level atom is placed inside one of the cavities in the array and behaves as a functional quantum node (FQN). We show that, through the electromagnetically-induced-transparency mechanism, the Λ -type FQN bears complete control over the reflection and transmission of the incident photon along the cavity array. We also demonstrate the emergence of a quasibound state of the single photon inside a secondary cavity constructed by two distant FQN’s as two end mirrors, from which we are motivated to design an all-optical single photon storage device of quantum coherence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fathi Boukadi
2011-02-05
In this report, technologies for petroleum production and exploration enhancement in deepwater and mature fields are developed through basic and applied research by: (1) Designing new fluids to efficiently drill deepwater wells that can not be cost-effectively drilled with current technologies. The new fluids will be heavy liquid foams that have low-density at shallow dept to avoid formation breakdown and high density at drilling depth to control formation pressure. The goal of this project is to provide industry with formulations of new fluids for reducing casing programs and thus well construction cost in deepwater development. (2) Studying the effects ofmore » flue gas/CO{sub 2} huff n puff on incremental oil recovery in Louisiana oilfields bearing light oil. An artificial neural network (ANN) model will be developed and used to map recovery efficiencies for candidate reservoirs in Louisiana. (3) Arriving at a quantitative understanding for the three-dimensional controlled-source electromagnetic (CSEM) geophysical response of typical Gulf of Mexico hydrocarbon reservoirs. We will seek to make available tools for the qualitative, rapid interpretation of marine CSEM signatures, and tools for efficient, three-dimensional subsurface conductivity modeling.« less
NASA Astrophysics Data System (ADS)
Goswami, Bedanta K.; Weitemeyer, Karen A.; Bünz, Stefan; Minshull, Timothy A.; Westbrook, Graham K.; Ker, Stephan; Sinha, Martin C.
2017-03-01
The Vestnesa Ridge marks the northern boundary of a known submarine gas hydrate province in the west Svalbard margin. Several seafloor pockmarks at the eastern segment of the ridge are sites of active methane venting. Until recently, seismic reflection data were the main tool for imaging beneath the ridge. Coincident controlled source electromagnetic (CSEM), high-resolution two-dimensional (2-D) airgun, sweep frequency SYSIF, and three-dimensional (3-D) p-cable seismic reflection data were acquired at the south-eastern part of the ridge between 2011 and 2013. The CSEM and seismic data contain profiles across and along the ridge, passing several active and inactive pockmarks. Joint interpretation of resistivity models obtained from CSEM and seismic reflection data provides new information regarding the fluid composition beneath the pockmarks. There is considerable variation in transverse resistance and seismic reflection characteristics of the gas hydrate stability zone (GHSZ) between the ridge flanks and chimneys beneath pockmarks. Layered seismic reflectors on the flanks are associated with around 300 Ωm2 transverse resistance, whereas the seismic reflectors within the chimneys exhibit amplitude blanking and chaotic patterns. The transverse resistance of the GHSZ within the chimneys vary between 400 and 1200 Ωm2. Variance attributes obtained from the 3-D p-cable data also highlight faults and chimneys, which coincide with the resistivity anomalies. Based on the joint data interpretation, widespread gas hydrate presence is likely at the ridge, with both hydrates and free gas contained within the faults and chimneys. However, at the active chimneys the effect of gas likely dominates the resistive anomalies.
Radiofrequency radiation effects on the common bean
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomkins, K.; Griggs, L.; Myles, E.L.
Our environment is bombarded daily with thousands of objects we can visually detect. However, invisible to humans are the electromagnetic waves that penetrate our environment. Electromagnetic waves consist of a large spectrum of waves including the harmful gamma rays, x-rays, and ultraviolet rays. The question that has increased tremendously is: can low energy electromagnetic waves become harmful to living organisms? The purpose of this study is to determine the effect of radiofrequency radiation on protein synthesis of the common bean. Phaseolus vulgaris (kidney bean) was surface-sterilized and allowed to germinate on Mushurage and Skoog`s medium for 1 week. Hypocotyls weremore » wounded and placed on media to initiate callus production. Six petri dishes containing 1 g of callus were used in the experiment. Three dishes were exposed to 100kH in a Crawford cell for 24h. The remaining three petri dishes with callus were used as a control. After the exposure period, the protein from callus was extracted and analyzed by one-dimensional gel electrophoresis. The results show that hypocotyl growth was not different between control and experimental groups after 24 h. The result of one-dimensional gel electrophoresis did not show observable differences in protein synthesized by the control and experimental groups. Analysis of protein synthesis is still ongoing.« less
Microwave imaging by three-dimensional Born linearization of electromagnetic scattering
NASA Astrophysics Data System (ADS)
Caorsi, S.; Gragnani, G. L.; Pastorino, M.
1990-11-01
An approach to microwave imaging is proposed that uses a three-dimensional vectorial form of the Born approximation to linearize the equation of electromagnetic scattering. The inverse scattering problem is numerically solved for three-dimensional geometries by means of the moment method. A pseudoinversion algorithm is adopted to overcome ill conditioning. Results show that the method is well suited for qualitative imaging purposes, while its capability for exactly reconstructing the complex dielectric permittivity is affected by the limitations inherent in the Born approximation and in ill conditioning.
Li, Xiangping; Lan, Tzu-Hsiang; Tien, Chung-Hao; Gu, Min
2012-01-01
The interplay between light polarization and matter is the basis of many fundamental physical processes and applications. However, the electromagnetic wave nature of light in free space sets a fundamental limit on the three-dimensional polarization orientation of a light beam. Although a high numerical aperture objective can be used to bend the wavefront of a radially polarized beam to generate the longitudinal polarization state in the focal volume, the arbitrary three-dimensional polarization orientation of a beam has not been achieved yet. Here we present a novel technique for generating arbitrary three-dimensional polarization orientation by a single optically configured vectorial beam. As a consequence, by applying this technique to gold nanorods, orientation-unlimited polarization encryption with ultra-security is demonstrated. These results represent a new landmark of the orientation-unlimited three-dimensional polarization control of the light-matter interaction.
Bayesian resolution of TEM, CSEM and MT soundings: a comparative study
NASA Astrophysics Data System (ADS)
Blatter, D. B.; Ray, A.; Key, K.
2017-12-01
We examine the resolution of three electromagnetic exploration methods commonly used to map the electrical conductivity of the shallow crust - the magnetotelluric (MT) method, the controlled-source electromagnetic (CSEM) method and the transient electromagnetic (TEM) method. TEM and CSEM utilize an artificial source of EM energy, while MT makes use of natural variations in the Earth's electromagnetic field. For a given geological setting and acquisition parameters, each of these methods will have a different resolution due to differences in the source field polarization and the frequency range of the measurements. For example, the MT and TEM methods primarily rely on induced horizontal currents and are most sensitive to conductive layers while the CSEM method generates vertical loops of current and is more sensitive to resistive features. Our study seeks to provide a robust resolution comparison that can help inform exploration geophysicists about which technique is best suited for a particular target. While it is possible to understand and describe a difference in resolution qualitatively, it remains challenging to fully describe it quantitatively using optimization based approaches. Part of the difficulty here stems from the standard electromagnetic inversion toolkit, which makes heavy use of regularization (often in the form of smoothing) to constrain the non-uniqueness inherent in the inverse problem. This regularization makes it difficult to accurately estimate the uncertainty in estimated model parameters - and therefore obscures their true resolution. To overcome this difficulty, we compare the resolution of CSEM, airborne TEM, and MT data quantitatively using a Bayesian trans-dimensional Markov chain Monte Carlo (McMC) inversion scheme. Noisy synthetic data for this study are computed from various representative 1D test models: a conductive anomaly under a conductive/resistive overburden; and a resistive anomaly under a conductive/resistive overburden. In addition to obtaining the full posterior probability density function of the model parameters, we develop a metric to more directly compare the resolution of each method as a function of depth.
Propagation in and scattering from a matched metamaterial having a zero index of refraction.
Ziolkowski, Richard W
2004-10-01
Planar metamaterials that exhibit a zero index of refraction have been realized experimentally by several research groups. Their existence stimulated the present investigation, which details the properties of a passive, dispersive metamaterial that is matched to free space and has an index of refraction equal to zero. Thus, unlike previous zero-index investigations, both the permittivity and permeability are zero here at a specified frequency. One-, two-, and three-dimensional source problems are treated analytically. The one- and two-dimensional source problem results are confirmed numerically with finite difference time domain (FDTD) simulations. The FDTD simulator is also used to treat the corresponding one- and two-dimensional scattering problems. It is shown that in both the source and scattering configurations the electromagnetic fields in a matched zero-index medium take on a static character in space, yet remain dynamic in time, in such a manner that the underlying physics remains associated with propagating fields. Zero phase variation at various points in the zero-index medium is demonstrated once steady-state conditions are obtained. These behaviors are used to illustrate why a zero-index metamaterial, such as a zero-index electromagnetic band-gap structured medium, significantly narrows the far-field pattern associated with an antenna located within it. They are also used to show how a matched zero-index slab could be used to transform curved wave fronts into planar ones.
Yttrium oxide based three dimensional metamaterials for visible light cloaking
NASA Astrophysics Data System (ADS)
Rai, Pratyush; Kumar, Prashanth S.; Varadan, Vijay K.; Ruffin, Paul; Brantley, Christina; Edwards, Eugene
2014-04-01
Metamaterial with negative refractive index is the key phenomenon behind the concept of a cloaking device to hide an object from light in visible spectrum. Metamaterials made of two and three dimensional lattices of periodically placed electromagnetic resonant cells can achieve absorption and propagation of incident electromagnetic radiation as confined electromagnetic fields confined to a waveguide as surface plasmon polaritons, which can be used for shielding an object from in-tune electromagnetic radiation. The periodicity and dimensions of resonant cavity determine the frequency, which are very small as compared to the wavelength of incident light. Till now the phenomena have been demonstrated only for lights in near infrared spectrum. Recent advancements in fabrication techniques have made it possible to fabricate array of three dimensional nanostructures with cross-sections as small as 25 nm that are required for negative refractive index for wavelengths in visible light spectrum of 400-700 nm and for wider view angle. Two types of metamaterial designs, three dimensional concentric split ring and fishnet, are considered. Three dimensional structures consisted of metal-dielectric-metal stacks. The metal is silver and dielectric is yttrium oxide, other than conventional materials such as FR4 and Duroid. High κ dielectric and high refractive index as well as large crystal symmetry of Yttrium oxide has been investigated as encapsulating medium. Dependence of refractive index on wavelength and bandwidth of negative refractive index region are analyzed for application towards cloaking from light in visible spectrum.
High-frequency electromagnetic scarring in three-dimensional axisymmetric convex cavities
Warne, Larry K.; Jorgenson, Roy E.
2016-04-13
Here, this article examines the localization of high-frequency electromagnetic fields in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. When these orbits lead to unstable localized modes, they are known as scars. This article treats the case where the opposing sides, or mirrors, are convex. Particular attention is focused on the normalization through the electromagnetic energy theorem. Both projections of the field along the scarred orbit as well as field point statistics are examined. Statistical comparisons are made with a numerical calculation of the scars run with an axisymmetric simulation.
Invisibility Cloak Printed on a Photonic Chip
Feng, Zhen; Wu, Bing-Hong; Zhao, Yu-Xi; Gao, Jun; Qiao, Lu-Feng; Yang, Ai-Lin; Lin, Xiao-Feng; Jin, Xian-Min
2016-01-01
Invisibility cloak capable of hiding an object can be achieved by properly manipulating electromagnetic field. Such a remarkable ability has been shown in transformation and ray optics. Alternatively, it may be realistic to create a spatial cloak by means of confining electromagnetic field in three-dimensional arrayed waveguides and introducing appropriate collective curvature surrounding an object. We realize the artificial structure in borosilicate by femtosecond laser direct writing, where we prototype up to 5,000 waveguides to conceal millimeter-scale volume. We characterize the performance of the cloak by normalized cross correlation, tomography analysis and continuous three-dimensional viewing angle scan. Our results show invisibility cloak can be achieved in waveguide optics. Furthermore, directly printed invisibility cloak on a photonic chip may enable controllable study and novel applications in classical and quantum integrated photonics, such as invisualising a coupling or swapping operation with on-chip circuits of their own. PMID:27329510
Invisibility Cloak Printed on a Photonic Chip
NASA Astrophysics Data System (ADS)
Feng, Zhen; Wu, Bing-Hong; Zhao, Yu-Xi; Gao, Jun; Qiao, Lu-Feng; Yang, Ai-Lin; Lin, Xiao-Feng; Jin, Xian-Min
2016-06-01
Invisibility cloak capable of hiding an object can be achieved by properly manipulating electromagnetic field. Such a remarkable ability has been shown in transformation and ray optics. Alternatively, it may be realistic to create a spatial cloak by means of confining electromagnetic field in three-dimensional arrayed waveguides and introducing appropriate collective curvature surrounding an object. We realize the artificial structure in borosilicate by femtosecond laser direct writing, where we prototype up to 5,000 waveguides to conceal millimeter-scale volume. We characterize the performance of the cloak by normalized cross correlation, tomography analysis and continuous three-dimensional viewing angle scan. Our results show invisibility cloak can be achieved in waveguide optics. Furthermore, directly printed invisibility cloak on a photonic chip may enable controllable study and novel applications in classical and quantum integrated photonics, such as invisualising a coupling or swapping operation with on-chip circuits of their own.
Origami-Based Reconfigurable Metamaterials for Tunable Chirality.
Wang, Zuojia; Jing, Liqiao; Yao, Kan; Yang, Yihao; Zheng, Bin; Soukoulis, Costas M; Chen, Hongsheng; Liu, Yongmin
2017-07-01
Origami is the art of folding two-dimensional (2D) materials, such as a flat sheet of paper, into complex and elaborate three-dimensional (3D) objects. This study reports origami-based metamaterials whose electromagnetic responses are dynamically controllable via switching the folding state of Miura-ori split-ring resonators. The deformation of the Miura-ori unit along the third dimension induces net electric and magnetic dipoles of split-ring resonators parallel or anti-parallel to each other, leading to the strong chiral responses. Circular dichroism as high as 0.6 is experimentally observed while the chirality switching is realized by controlling the deformation direction and kinematics. In addition, the relative density of the origami metamaterials can be dramatically reduced to only 2% of that of the unfolded structure. These results open a new avenue toward lightweight, reconfigurable, and deployable metadevices with simultaneously customized electromagnetic and mechanical properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Does three-dimensional electromagnetic field inherit the spacetime symmetries?
NASA Astrophysics Data System (ADS)
Cvitan, M.; Dominis Prester, P.; Smolić, I.
2016-04-01
We prove that the electromagnetic field in a (1+2)-dimensional spacetime necessarily inherits the symmetries of the spacetime metric in a large class of generalized Einstein-Maxwell theories. The Lagrangians of the studied theories have general diff-covariant gravitational part and include both the gravitational and the gauge Chern-Simons terms.
NASA Astrophysics Data System (ADS)
Froger, Etienne
1993-05-01
A description of the electromagnetic behavior of a satellite subjected to an electric discharge is given using a specially developed numerical code. One of the particularities of vacuum discharges, obtained by irradiation of polymers, is the intense emission of electrons into the spacecraft environment. Electromagnetic radiation, associated with the trajectories of the particles around the spacecraft, is considered as the main source of the interference observed. In the absence of accurate orbital data and realistic ground tests, the assessment of these effects requires numerical simulation of the interaction between this electron source and the spacecraft. This is done by the GEODE particle code which is applied to characteristic configurations in order to estimate the spacecraft response to a discharge, which is simulated from a vacuum discharge model designed in laboratory. The spacecraft response to a current injection is simulated by the ALICE numerical three dimensional code. The comparison between discharge and injection effects, from the results given by the two codes, illustrates the representativity of electromagnetic susceptibility tests and the main parameters for their definition.
Burton, Bethany L.; Ball, Lyndsay B.
2011-01-01
Red Devil Mine, located in southwestern Alaska near the Village of Red Devil, was the state's largest producer of mercury and operated from 1933 to 1971. Throughout the lifespan of the mine, various generations of mills and retort buildings existed on both sides of Red Devil Creek, and the tailings and waste rock were deposited across the site. The mine was located on public Bureau of Land Management property, and the Bureau has begun site remediation by addressing mercury, arsenic, and antimony contamination caused by the minerals associated with the ore deposit (cinnabar, stibnite, realgar, and orpiment). In August 2010, the U.S. Geological Survey completed a geophysical survey at the site using direct-current resistivity and electromagnetic induction surface methods. Eight two-dimensional profiles and one three-dimensional grid of direct-current resistivity data as well as about 5.7 kilometers of electromagnetic induction profile data were acquired across the site. On the basis of the geophysical data and few available soil borings, there is not sufficient electrical or electromagnetic contrast to confidently distinguish between tailings, waste rock, and weathered bedrock. A water table is interpreted along the two-dimensional direct-current resistivity profiles based on correlation with monitoring well water levels and a relatively consistent decrease in resistivity typically at 2-6 meters depth. Three settling ponds used in the last few years of mine operation to capture silt and sand from a flotation ore processing technique possessed conductive values above the interpreted water level but more resistive values below the water level. The cause of the increased resistivity below the water table is unknown, but the increased resistivity may indicate that a secondary mechanism is affecting the resistivity structure under these ponds if the depth of the ponds is expected to extend below the water level. The electromagnetic induction data clearly identified the three monofills and indicate, in conjunction with the three-dimensional resistivity data, additional possible landfill features on the north side of Red Devil Creek. No obvious shallow feature was identified as a possible source for a spring that is feeding into Red Devil Creek from the north bank. However, a discrete, nearly vertical conductive feature observed on the direct-current resistivity line that passes within 5 meters of the spring may be worth investigating. Additional deep soil borings that better differentiate between tailings, waste rock, and weathered bedrock may be very useful in more confidently identifying these rock types in the direct-current resistivity data.
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Wilson, Jeffrey D.
1993-01-01
The three-dimensional, electromagnetic circuit analysis code, Micro-SOS, can be used to reduce expensive time-consuming experimental 'cold-testing' of traveling-wave tube (TWT) circuits. The frequency-phase dispersion characteristics and beam interaction impedance of a TunneLadder traveling-wave tube slow-wave structure were simulated using the code. When reasonable dimensional adjustments are made, computer results agree closely with experimental data. Modifications to the circuit geometry that would make the TunneLadder TWT easier to fabricate for higher frequency operation are explored.
Electromagnetic density of modes for a finite-size three-dimensional structure.
D'Aguanno, Giuseppe; Mattiucci, Nadia; Centini, Marco; Scalora, Michael; Bloemer, Mark J
2004-05-01
The concept of the density of modes has been lacking a precise mathematical definition for a finite-size structure. With the explosive growth in the fabrication of photonic crystals and nanostructures, which are inherently finite in size, a workable definition is imperative. We give a simple and physically intuitive definition of the electromagnetic density of modes based on the Green's function for a generic three-dimensional open cavity filled with a linear, isotropic, dielectric material.
Controlling of the electromagnetic solitary waves generation in the wake of a two-color laser
NASA Astrophysics Data System (ADS)
Pan, K. Q.; Li, S. W.; Guo, L.; Yang, D.; Li, Z. C.; Zheng, C. Y.; Jiang, S. E.; Zhang, B. H.; He, X. T.
2018-05-01
Electromagnetic solitary waves generated by a two-color laser interaction with an underdense plasma are investigated. It is shown that, when the former wave packet of the two-color laser is intense enough, it will excite nonlinear wakefields and generate electron density cavities. The latter wave packets will beat with the nonlinear wakefield and generate both high-frequency and low-frequency components. When the peak density of the cavities exceeds the critical density of the low-frequency component, this part of the electromagnetic field will be trapped to generate electromagnetic solitary waves. By changing the laser and plasma parameters, we can control the wakefield generation, which will also control the generation of the solitary waves. One-dimensional particle-in-cell simulations are performed to prove the controlling of the solitary waves. The simulation results also show that solitary waves generated by higher laser intensities will become moving solitary waves. The two-dimensional particle-in-cell also shows the generation of the solitary waves. In the two-dimensional case, solitary waves are distributed in the transverse directions because of the filamentation instability.
Enhanced control of light and sound trajectories with three-dimensional gradient index lenses
NASA Astrophysics Data System (ADS)
Chang, T. M.; Dupont, G.; Enoch, S.; Guenneau, S.
2012-03-01
We numerically study the focusing and bending effects of light and sound waves through heterogeneous isotropic cylindrical and spherical devices. We first point out that transformation optics and acoustics show that the control of light requires spatially varying anisotropic permittivity and permeability, while the control of sound is achieved via spatially anisotropic density and isotropic compressibility. Moreover, homogenization theory applied to electromagnetic and acoustic periodic structures leads to such artificial (although not spatially varying) anisotropic permittivity, permeability and density. We stress that homogenization is thus a natural mathematical tool for the design of structured metamaterials. To illustrate the two-step geometric transform-homogenization approach, we consider the design of cylindrical and spherical electromagnetic and acoustic lenses displaying some artificial anisotropy along their optical axis (direction of periodicity of the structural elements). Applications are sought in the design of Eaton and Luneburg lenses bending light at angles ranging from 90° to 360°, or mimicking a Schwartzchild metric, i.e. a black hole. All of these spherical metamaterials are characterized by a refractive index varying inversely with the radius which is approximated by concentric layers of homogeneous material. We finally propose some structured cylindrical metamaterials consisting of infinitely conducting or rigid toroidal channels in a homogeneous bulk material focusing light or sound waves. The functionality of these metamaterials is demonstrated via full-wave three-dimensional computations using nodal elements in the context of acoustics, and finite edge-elements in electromagnetics.
NASA Astrophysics Data System (ADS)
Fedorov, Eduard G.; Zhukov, Alexander V.; Bouffanais, Roland; Timashkov, Alexander P.; Malomed, Boris A.; Leblond, Hervé; Mihalache, Dumitru; Rosanov, Nikolay N.; Belonenko, Mikhail B.
2018-04-01
We study the propagation of three-dimensional (3D) bipolar ultrashort electromagnetic pulses in an inhomogeneous array of semiconductor carbon nanotubes. The heterogeneity is represented by a planar region with an increased concentration of conduction electrons. The evolution of the electromagnetic field and electron concentration in the sample are governed by the Maxwell's equations and continuity equation. In particular, nonuniformity of the electromagnetic field along the axis of the nanotubes is taken into account. We demonstrate that depending on values of the parameters of the electromagnetic pulse approaching the region with the higher electron concentration, the pulse is either reflected from the region or passes it. Specifically, our simulations demonstrate that after interacting with the higher-concentration area, the pulse can propagate steadily, without significant spreading. The possibility of such ultrashort electromagnetic pulses propagating in arrays of carbon nanotubes over distances significantly exceeding characteristic dimensions of the pulses makes it possible to consider them as 3D solitons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Accioly, Antonio; Dias, Marco
2004-11-15
The problem of computing the effective nonrelativistic potential U{sub D} for the interaction of charged-scalar bosons, within the context of D-dimensional electromagnetism with a cutoff, is reduced to quadratures. It is shown that U{sub 3} cannot bind a pair of identical charged-scalar bosons; nevertheless, numerical calculations indicate that boson-boson bound states do exist in the framework of three-dimensional higher-derivative electromagnetism augmented by a topological Chern-Simons term.
A new unified theory of electromagnetic and gravitational interactions
NASA Astrophysics Data System (ADS)
Li, Li-Xin
2016-12-01
In this paper we present a new unified theory of electromagnetic and gravitational interactions. By considering a four-dimensional spacetime as a hypersurface embedded in a five-dimensional bulk spacetime, we derive the complete set of field equations in the four-dimensional spacetime from the fivedimensional Einstein field equation. Besides the Einstein field equation in the four-dimensional spacetime, an electromagnetic field equation is obtained: ∇a F ab - ξ R b a A a = -4π J b with ξ = -2, where F ab is the antisymmetric electromagnetic field tensor defined by the potential vector A a , R ab is the Ricci curvature tensor of the hypersurface, and J a is the electric current density vector. The electromagnetic field equation differs from the Einstein-Maxwell equation by a curvature-coupled term ξ R b a A a , whose presence addresses the problem of incompatibility of the Einstein-Maxwell equation with a universe containing a uniformly distributed net charge, as discussed in a previous paper by the author [L.-X. Li, Gen. Relativ. Gravit. 48, 28 (2016)]. Hence, the new unified theory is physically different from Kaluza-Klein theory and its variants in which the Einstein-Maxwell equation is derived. In the four-dimensional Einstein field equation derived in the new theory, the source term includes the stress-energy tensor of electromagnetic fields as well as the stress-energy tensor of other unidentified matter. Under certain conditions the unidentified matter can be interpreted as a cosmological constant in the four-dimensional spacetime. We argue that, the electromagnetic field equation and hence the unified theory presented in this paper can be tested in an environment with a high mass density, e.g., inside a neutron star or a white dwarf, and in the early epoch of the universe.
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J.
2003-01-01
The present investigation details the development of model systems for growing two- and three-dimensional human neural progenitor cells within a culture medium facilitated by a time-varying electromagnetic field (TVEMF). The cells and culture medium are contained within a two- or three-dimensional culture vessel, and the electromagnetic field is emitted from an electrode or coil. These studies further provide methods to promote neural tissue regeneration by means of culturing the neural cells in either configuration. Grown in two dimensions, neuronal cells extended longitudinally, forming tissue strands extending axially along and within electrodes comprising electrically conductive channels or guides through which a time-varying electrical current was conducted. In the three-dimensional aspect, exposure to TVEMF resulted in the development of three-dimensional aggregates, which emulated organized neural tissues. In both experimental configurations, the proliferation rate of the TVEMF cells was 2.5 to 4.0 times the rate of the non-waveform cells. Each of the experimental embodiments resulted in similar molecular genetic changes regarding the growth potential of the tissues as measured by gene chip analyses, which measured more than 10,000 human genes simultaneously.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.
1991-01-01
The Finite Difference Time Domain Electromagnetic Scattering Code Version A is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). This manual provides a description of the code and corresponding results for the default scattering problem. In addition to the description, the operation, resource requirements, version A code capabilities, a description of each subroutine, a brief discussion of the radar cross section computations, and a discussion of the scattering results.
Passive Super-Low Frequency electromagnetic prospecting technique
NASA Astrophysics Data System (ADS)
Wang, Nan; Zhao, Shanshan; Hui, Jian; Qin, Qiming
2017-03-01
The Super-Low Frequency (SLF) electromagnetic prospecting technique, adopted as a non-imaging remote sensing tool for depth sounding, is systematically proposed for subsurface geological survey. In this paper, we propose and theoretically illustrate natural source magnetic amplitudes as SLF responses for the first step. In order to directly calculate multi-dimensional theoretical SLF responses, modeling algorithms were developed and evaluated using the finite difference method. The theoretical results of three-dimensional (3-D) models show that the average normalized SLF magnetic amplitude responses were numerically stable and appropriate for practical interpretation. To explore the depth resolution, three-layer models were configured. The modeling results prove that the SLF technique is more sensitive to conductive objective layers than high resistive ones, with the SLF responses of conductive objective layers obviously showing uprising amplitudes in the low frequency range. Afterwards, we proposed an improved Frequency-Depth transformation based on Bostick inversion to realize the depth sounding by empirically adjusting two parameters. The SLF technique has already been successfully applied in geothermal exploration and coalbed methane (CBM) reservoir interpretation, which demonstrates that the proposed methodology is effective in revealing low resistive distributions. Furthermore, it siginificantly contributes to reservoir identification with electromagnetic radiation anomaly extraction. Meanwhile, the SLF interpretation results are in accordance with dynamic production status of CBM reservoirs, which means it could provide an economical, convenient and promising method for exploring and monitoring subsurface geo-objects.
Three-dimensional cell to tissue development process
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J. (Inventor); Parker, Clayton R. (Inventor)
2008-01-01
An improved three-dimensional cell to tissue development process using a specific time varying electromagnetic force, pulsed, square wave, with minimum fluid shear stress, freedom for 3-dimensional spatial orientation of the suspended particles and localization of particles with differing or similar sedimentation properties in a similar spatial region.
THREE-DIMENSIONAL MODEL FOR HYPERTHERMIA CALCULATIONS
Realistic three-dimensional models that predict temperature distributions with a high degree of spatial resolution in bodies exposed to electromagnetic (EM) fields are required in the application of hyperthermia for cancer treatment. To ascertain the thermophysiologic response of...
NASA Astrophysics Data System (ADS)
Leukhin, R. I.; Shaykhutdinov, D. V.; Shirokov, K. M.; Narakidze, N. D.; Vlasov, A. S.
2017-02-01
Developing the experimental design of new electromagnetic constructions types in engineering industry enterprises requires solutions of two major problems: regulator’s parameters setup and comprehensive testing of electromagnets. A weber-ampere characteristic as a data source for electromagnet condition identification was selected. Present article focuses on development and implementation of the software for electromagnetic drive control system based on the weber-ampere characteristic measuring. The software for weber-ampere characteristic data processing based on artificial neural network is developed. Results of the design have been integrated into the program code in LabVIEW environment. The license package of LabVIEW graphic programming was used. The hardware is chosen and possibility of its use for control system implementation was proved. The trained artificial neural network defines electromagnetic drive effector position with minimal error. Developed system allows to control the electromagnetic drive powered by the voltage source, the current source and hybrid sources.
Assessment and control of spacecraft electromagnetic interference
NASA Technical Reports Server (NTRS)
1972-01-01
Design criteria are presented to provide guidance in assessing electromagnetic interference from onboard sources and establishing requisite control in spacecraft design, development, and testing. A comprehensive state-of-the-art review is given which covers flight experience, sources and transmission of electromagnetic interference, susceptible equipment, design procedure, control techniques, and test methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauvin, N.; Fiore, A.; Nedel, P.
2009-07-15
We demonstrate the coupling of a single InAs/InP quantum, emitting around 1.55 {mu}m, to a slow-light mode in a two-dimensional photonic crystal on Bragg reflector. These surface addressable 2.5D photonic crystal band-edge modes present the advantages of a vertical emission and the mode area and localization may be controlled, leading to a less critical spatial alignment with the emitter. An increase in the spontaneous emission rate by a factor of 1.5-2 is measured at low temperature and is compared to the Purcell factor predicted by three-dimensional time-domain electromagnetic simulations.
Three-dimensional Fréchet sensitivity kernels for electromagnetic wave propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strickland, C. E.; Johnson, T. C.; Odom, R. I.
2015-08-28
Electromagnetic imaging methods are useful tools for monitoring subsurface changes in pore-fluid content and the associated changes in electrical permittivity and conductivity. The most common method for georadar tomography uses a high frequency ray-theoretic approximation that is valid when material variations are sufficiently small relative to the wavelength of the propagating wave. Georadar methods, however, often utilize electromagnetic waves that propagate within heterogeneous media at frequencies where ray theory may not be applicable. In this paper we describe the 3-D Fréchet sensitivity kernels for EM wave propagation. Various data functional types are formulated that consider all three components of themore » electric wavefield and incorporate near-, intermediate-, and far-field contributions. We show that EM waves exhibit substantial variations for different relative source-receiver component orientations. The 3-D sensitivities also illustrate out-of-plane effects that are not captured in 2-D sensitivity kernels and can influence results obtained using 2-D inversion methods to image structures that are in reality 3-D.« less
NASA Astrophysics Data System (ADS)
Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; Glover, B. B.; Duque, A. L. Higginbotham; Perry, W. L.; Patterson, B. M.; Dalvit, D. A. R.; Moore, D. S.
2016-04-01
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. We analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.
NASA Technical Reports Server (NTRS)
Cwik, Tom; Zuffada, Cinzia; Jamnejad, Vahraz
1996-01-01
Finite element modeling has proven useful for accurtely simulating scattered or radiated fields from complex three-dimensional objects whose geometry varies on the scale of a fraction of a wavelength.
Sun, Jin; Kelbert, Anna; Egbert, G.D.
2015-01-01
Long-period global-scale electromagnetic induction studies of deep Earth conductivity are based almost exclusively on magnetovariational methods and require accurate models of external source spatial structure. We describe approaches to inverting for both the external sources and three-dimensional (3-D) conductivity variations and apply these methods to long-period (T≥1.2 days) geomagnetic observatory data. Our scheme involves three steps: (1) Observatory data from 60 years (only partly overlapping and with many large gaps) are reduced and merged into dominant spatial modes using a scheme based on frequency domain principal components. (2) Resulting modes are inverted for corresponding external source spatial structure, using a simplified conductivity model with radial variations overlain by a two-dimensional thin sheet. The source inversion is regularized using a physically based source covariance, generated through superposition of correlated tilted zonal (quasi-dipole) current loops, representing ionospheric source complexity smoothed by Earth rotation. Free parameters in the source covariance model are tuned by a leave-one-out cross-validation scheme. (3) The estimated data modes are inverted for 3-D Earth conductivity, assuming the source excitation estimated in step 2. Together, these developments constitute key components in a practical scheme for simultaneous inversion of the catalogue of historical and modern observatory data for external source spatial structure and 3-D Earth conductivity.
Han, Song; Cong, Longqing; Lin, Hai; Xiao, Boxun; Yang, Helin; Singh, Ranjan
2016-01-01
Metamaterials have recently enabled coupling induced transparency due to interference effects in coupled subwavelength resonators. In this work, we present a three dimensional (3-D) metamaterial design with six-fold rotational symmetry that shows electromagnetically induced transparency with a strong polarization dependence to the incident electromagnetic wave due to the ultra-sharp resonance line width as a result of interaction between the constituent meta-atoms. However, when the six-fold rotationally symmetric unit cell design was re-arranged into a fourfold rotational symmetry, we observed the excitation of a polarization insensitive dual-band transparency. Thus, the 3-D split-ring resonators allow new schemes to observe single and multi-band classical analogues of electromagnetically induced transparencies that has huge potential applications in slowing down light, sensing modalities, and filtering functionalities either in the passive mode or the active mode where such effects could be tuned by integrating materials with dynamic properties. PMID:26857034
NASA Astrophysics Data System (ADS)
Ayaz, M. Q.; Waqas, Mohsin; Qamar, Sajid; Qamar, Shahid
2018-02-01
In this paper we propose a scheme for coherent control and storage of a microwave pulse in superconducting circuits exploiting the idea of electromagnetically induced transparency (EIT) and the Aulter-Townes (AT) effect. We show that superconducting artificial atoms in a four-level tripod configuration act as EIT based coherent microwave (μ w ) memories with gain features, when they are attached to a one-dimensional transmission line. These atoms are allowed to interact with three microwave fields, such that there are two control fields and one probe field. Our proposed system works in such a way that one control field with large Rabi frequency when interacting with atoms, produces the AT effect. While the second control field with relatively small Rabi frequency produces EIT in one of the absorption windows produced due to the AT splitting for the weak probe field. The group velocity of the probe pulse reduces significantly through this EIT window. Interestingly, the output intensity of the probe pulse increases as we increase the number of artificial atoms. Our results show that the probe microwave pulse can be stored and retrieved with high fidelity.
NASA Astrophysics Data System (ADS)
Abbasabadi, Majid; Sahrai, Mostafa
2018-01-01
We investigated the propagation of an electromagnetic pulse through a one-dimensional photonic crystal doped with quantum-dot (QD) molecules in a defect layer. The QD molecules behave as a three-level quantum system and are driven by a coherent probe laser field and an incoherent pump field. No coherent coupling laser fields were introduced, and the coherence was created by the interdot tunnel effect. Further studied was the effect of tunneling and incoherent pumping on the group velocity of the transmitted and reflected probe pulse.
A comparison of lightning and nuclear electromagnetic pulse response of tactical shelters
NASA Technical Reports Server (NTRS)
Perala, R. A.; Rudolph, T. H.; Mckenna, P. M.
1984-01-01
The internal response (electromagnetic fields and cable responses) of tactical shelters is addressed. Tactical shelters are usually well-shielded systems. Apart from penetrations by signal and power lines, the main leakage paths to the interior are via seams and the environment control unit (ECU) honeycomb filter. The time domain in three-dimensional finite-difference technique is employed to determine the external and internal coupling to a shelter excited by nuclear electromagnetic pulses (NEMP) and attached lightning. The responses of interest are the internal electromagnetic fields and the voltage, current, power, and energy coupled to internal cables. Leakage through the seams and ECU filter is accomplished by their transfer impedances which relate internal electric fields to external current densities. Transfer impedances which were experimentally measured are used in the analysis. The internal numerical results are favorably compared to actual shelter test data under simulated NEMP illumination.
Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; ...
2016-04-01
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.
1992-01-01
The Penn State Finite Difference Time Domain Electromagnetic Code Version B is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). The supplied version of the code is one version of our current three dimensional FDTD code set. This manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into 14 sections: introduction, description of the FDTD method, operation, resource requirements, Version B code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file, a discussion of radar cross section computations, a discussion of some scattering results, a sample problem setup section, a new problem checklist, references and figure titles.
A memory-efficient staining algorithm in 3D seismic modelling and imaging
NASA Astrophysics Data System (ADS)
Jia, Xiaofeng; Yang, Lu
2017-08-01
The staining algorithm has been proven to generate high signal-to-noise ratio (S/N) images in poorly illuminated areas in two-dimensional cases. In the staining algorithm, the stained wavefield relevant to the target area and the regular source wavefield forward propagate synchronously. Cross-correlating these two wavefields with the backward propagated receiver wavefield separately, we obtain two images: the local image of the target area and the conventional reverse time migration (RTM) image. This imaging process costs massive computer memory for wavefield storage, especially in large scale three-dimensional cases. To make the staining algorithm applicable to three-dimensional RTM, we develop a method to implement the staining algorithm in three-dimensional acoustic modelling in a standard staggered grid finite difference (FD) scheme. The implementation is adaptive to the order of spatial accuracy of the FD operator. The method can be applied to elastic, electromagnetic, and other wave equations. Taking the memory requirement into account, we adopt a random boundary condition (RBC) to backward extrapolate the receiver wavefield and reconstruct it by reverse propagation using the final wavefield snapshot only. Meanwhile, we forward simulate the stained wavefield and source wavefield simultaneously using the nearly perfectly matched layer (NPML) boundary condition. Experiments on a complex geologic model indicate that the RBC-NPML collaborative strategy not only minimizes the memory consumption but also guarantees high quality imaging results. We apply the staining algorithm to three-dimensional RTM via the proposed strategy. Numerical results show that our staining algorithm can produce high S/N images in the target areas with other structures effectively muted.
Park, Jae-Hyeung; Kim, Hak-Rin; Kim, Yunhee; Kim, Joohwan; Hong, Jisoo; Lee, Sin-Doo; Lee, Byoungho
2004-12-01
A depth-enhanced three-dimensional-two-dimensional convertible display that uses a polymer-dispersed liquid crystal based on the principle of integral imaging is proposed. In the proposed method, a lens array is located behind a transmission-type display panel to form an array of point-light sources, and a polymer-dispersed liquid crystal is electrically controlled to pass or to scatter light coming from these point-light sources. Therefore, three-dimensional-two-dimensional conversion is accomplished electrically without any mechanical movement. Moreover, the nonimaging structure of the proposed method increases the expressible depth range considerably. We explain the method of operation and present experimental results.
Benchmark radar targets for the validation of computational electromagnetics programs
NASA Technical Reports Server (NTRS)
Woo, Alex C.; Wang, Helen T. G.; Schuh, Michael J.; Sanders, Michael L.
1993-01-01
Results are presented of a set of computational electromagnetics validation measurements referring to three-dimensional perfectly conducting smooth targets, performed for the Electromagnetic Code Consortium. Plots are presented for both the low- and high-frequency measurements of the NASA almond, an ogive, a double ogive, a cone-sphere, and a cone-sphere with a gap.
Grell, Kathrine; Diggle, Peter J; Frederiksen, Kirsten; Schüz, Joachim; Cardis, Elisabeth; Andersen, Per K
2015-10-15
We study methods for how to include the spatial distribution of tumours when investigating the relation between brain tumours and the exposure from radio frequency electromagnetic fields caused by mobile phone use. Our suggested point process model is adapted from studies investigating spatial aggregation of a disease around a source of potential hazard in environmental epidemiology, where now the source is the preferred ear of each phone user. In this context, the spatial distribution is a distribution over a sample of patients rather than over multiple disease cases within one geographical area. We show how the distance relation between tumour and phone can be modelled nonparametrically and, with various parametric functions, how covariates can be included in the model and how to test for the effect of distance. To illustrate the models, we apply them to a subset of the data from the Interphone Study, a large multinational case-control study on the association between brain tumours and mobile phone use. Copyright © 2015 John Wiley & Sons, Ltd.
Microwave metamaterials—from passive to digital and programmable controls of electromagnetic waves
NASA Astrophysics Data System (ADS)
Cui, Tie Jun
2017-08-01
Since 2004, my group at Southeast University has been carrying out research into microwave metamaterials, which are classified into three catagories: metamaterials based on the effective medium model, plasmonic metamaterials for spoof surface plasmon polaritons (SPPs), and coding and programmable metamaterials. For effective-medium metamaterials, we have developed a general theory to accurately describe effective permittivity and permeability in semi-analytical forms, from which we have designed and realized a three dimensional (3D) wideband ground-plane invisibility cloak, a free-space electrostatic invisibility cloak, an electromagnetic black hole, optical/radar illusions, and radially anisotropic zero-index metamaterial for omni-directional radiation and a nearly perfect power combination of source array, etc. We have also considered the engineering applications of microwave metamaterials, such as a broadband and low-loss 3D transformation-optics lens for wide-angle scanning, a 3D planar gradient-index lens for high-gain radiations, and a random metasurface for reducing radar cross sections. In the area of plasmonic metamaterials, we proposed an ultrathin, narrow, and flexible corrugated metallic strip to guide SPPs with a small bending loss and radiation loss, from which we designed and realized a series of SPP passive devices (e.g. power divider, coupler, filter, and resonator) and active devices (e.g. amplifier and duplexer). We also showed a significant feature of the ultrathin SPP waveguide in overcoming the challenge of signal integrity in traditional integrated circuits, which will help build a high-performance SPP wireless communication system. In the area of coding and programmable metamaterials, we proposed a new measure to describe a metamaterial from the viewpoint of information theory. We have illustrated theoretically and experimentally that coding metamaterials composed of digital units can be controlled by coding sequences, leading to different functions. We realised that when the digital state of a coding unit is controlled by a field programmable gate array, the programmable metamaterial, which is capable of manipulating electromagnetic waves in real time, can generate many different functions.
NASA Astrophysics Data System (ADS)
Grigoriev, V. F.; Korotaev, S. M.; Kruglyakov, M. S.; Orekhova, D. A.; Popova, I. V.; Tereshchenko, E. D.; Tereshchenko, P. E.; Schors, Yu. G.
2013-05-01
The first Russian six-component seafloor electromagnetic (EM) receivers were tested in an experiment carried out in Kola Bay in the Barents Sea. The signals transmitted by a remote high-power ELF source at several frequencies in the decahertz range were recorded by six receivers deployed on the seafloor along the profile crossing the Kola Bay. Although not all the stations successfully recorded all the six components due to technical failures, the quality of the data overall is quite suitable for interpretation. The interpretation was carried out by the three-dimensional (3D) modeling of an electromagnetic field with neural network inversion. The a priori geoelectrical model of Kola Bay, which was reconstructed by generalizing the previous geological and geophysical data, including the data of the ground magnetotelluric sounding and magnetovariational profiling, provided the EM fields that are far from those measured in the experiment. However, by a step-by-step modification of the initial model, we achieved quite a satisfactory fit. The resulting model provides the basis for introducing the corrections into the previous notions concerning the regional geological and geophysical structure of the region and particularly the features associated with fault tectonics.
NASA Astrophysics Data System (ADS)
Oshikane, Yasushi; Murai, Kensuke; Nakano, Motohiro
2015-09-01
Numerical analysis of three dimensional optical electro-magnetic field in a circular-truncated conical optical fiber covered by asymmetric MIM structure has been performed by a commercial finite element method package, COMSOL Multiphysics coupled with Wave Optics Module. The outermost thick metallic layer has twin nano-hole, and the waveguiding twin-hole could draw surface plasmon polaritions (SPPs) excited in the MIM structure to the surface. Finally the guided two SPPs could unite each other and may create a single bright spot. The systematic simulation is continuing, and the results will give us valuable counsel for control of surface plasmon polaritons (SPPs) appearing around the MIM structure and twin nano-hole. (1) Optimal design of the 3D FEM model for 8-core Xeon server and rational approach for the FEM analysis, (2) behavior of SPPs affected by wavelength and polarization of light travel through fiber, (3) change in excitation condition of SPPs caused by shape of the MIM structure and twin-hole, (4) effectiveness of additional nanostructures that are aimed at focusing control of two SPPs come out from the corners of twin-hole, (5) scanning ability of the MIM/twin-hole probe at nanostructured sample surface (i.e. amount of forward and backward scattering of SPPs) will be presented and discussed. Several FIBed prototypes and their characteristic of light emission will also reported.
NASA Astrophysics Data System (ADS)
Matveev, V. I.; Makarov, D. N.
2017-01-01
The effect of defects in nanostructured targets on interference spectra at the reemission of attosecond electromagnetic pulses has been considered. General expressions have been obtained for calculations of spectral distributions for one-, two-, and three-dimensional multiatomic nanosystems consisting of identical complex atoms with defects such as bends, vacancies, and breaks. Changes in interference spectra by a linear chain with several removed atoms (chain with breaks) and by a linear chain with a bend have been calculated as examples allowing a simple analytical representation. Generalization to two- and three-dimensional nanosystems has been developed.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.
1991-01-01
The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Version C is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). The supplied version of the code is one version of our current three dimensional FDTD code set. This manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into fourteen sections: introduction, description of the FDTD method, operation, resource requirements, Version C code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMONC.FOR), a section briefly discussing Radar Cross Section (RCS) computations, a section discussing some scattering results, a sample problem setup section, a new problem checklist, references and figure titles.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.
1991-01-01
The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Version D is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). The supplied version of the code is one version of our current three dimensional FDTD code set. This manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into fourteen sections: introduction, description of the FDTD method, operation, resource requirements, Version D code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMOND.FOR), a section briefly discussing Radar Cross Section (RCS) computations, a section discussing some scattering results, a sample problem setup section, a new problem checklist, references and figure titles.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.
1992-01-01
The Penn State Finite Difference Time Domain (FDTD) Electromagnetic Scattering Code Version A is a three dimensional numerical electromagnetic scattering code based on the Finite Difference Time Domain technique. The supplied version of the code is one version of our current three dimensional FDTD code set. The manual provides a description of the code and the corresponding results for the default scattering problem. The manual is organized into 14 sections: introduction, description of the FDTD method, operation, resource requirements, Version A code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMONA.FOR), a section briefly discussing radar cross section (RCS) computations, a section discussing the scattering results, a sample problem setup section, a new problem checklist, references, and figure titles.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.
1992-01-01
The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Version C is a three-dimensional numerical electromagnetic scattering code based on the Finite Difference Time Domain (FDTD) technique. The supplied version of the code is one version of our current three-dimensional FDTD code set. The manual given here provides a description of the code and corresponding results for several scattering problems. The manual is organized into 14 sections: introduction, description of the FDTD method, operation, resource requirements, Version C code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMONC.FOR), a section briefly discussing radar cross section computations, a section discussing some scattering results, a new problem checklist, references, and figure titles.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.
1991-01-01
The Penn State Finite Difference Time Domain Electromagnetic Scattering Code Version B is a three dimensional numerical electromagnetic scattering code based upon the Finite Difference Time Domain Technique (FDTD). The supplied version of the code is one version of our current three dimensional FDTD code set. This manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into fourteen sections: introduction, description of the FDTD method, operation, resource requirements, Version B code capabilities, a brief description of the default scattering geometry, a brief description of each subroutine, a description of the include file (COMMONB.FOR), a section briefly discussing Radar Cross Section (RCS) computations, a section discussing some scattering results, a sample problem setup section, a new problem checklist, references and figure titles.
NASA Astrophysics Data System (ADS)
Han, B.; Li, Y.
2016-12-01
We present a three-dimensional (3D) forward and inverse modeling code for marine controlled-source electromagnetic (CSEM) surveys in anisotropic media. The forward solution is based on a primary/secondary field approach, in which secondary fields are solved using a staggered finite-volume (FV) method and primary fields are solved for 1D isotropic background models analytically. It is shown that it is rather straightforward to extend the isotopic 3D FV algorithm to a triaxial anisotropic one, while additional coefficients are required to account for full tensor conductivity. To solve the linear system resulting from FV discretization of Maxwell' s equations, both iterative Krylov solvers (e.g. BiCGSTAB) and direct solvers (e.g. MUMPS) have been implemented, makes the code flexible for different computing platforms and different problems. For iterative soloutions, the linear system in terms of electromagnetic potentials (A-Phi) is used to precondition the original linear system, transforming the discretized Curl-Curl equations to discretized Laplace-like equations, thus much more favorable numerical properties can be obtained. Numerical experiments suggest that this A-Phi preconditioner can dramatically improve the convergence rate of an iterative solver and high accuracy can be achieved without divergence correction even for low frequencies. To efficiently calculate the sensitivities, i.e. the derivatives of CSEM data with respect to tensor conductivity, the adjoint method is employed. For inverse modeling, triaxial anisotropy is taken into account. Since the number of model parameters to be resolved of triaxial anisotropic medias is twice or thrice that of isotropic medias, the data-space version of the Gauss-Newton (GN) minimization method is preferred due to its lower computational cost compared with the traditional model-space GN method. We demonstrate the effectiveness of the code with synthetic examples.
Flat Lens Focusing Demonstrated With Left-Handed Metamaterial
NASA Technical Reports Server (NTRS)
Wilson, Jeffrey D.; Schwartz, Zachary D.; Chevalier, Christine T.; Downey, Alan N.; Vaden, Karl R.
2004-01-01
Left-handed metamaterials (LHM's) are a new media engineered to possess an effective negative index of refraction over a selected frequency range. This characteristic enables LHM's to exhibit physical properties never before observed. In particular, a negative index of refraction should cause electromagnetic radiation to refract or bend at a negative angle when entering an LHM, as shown in the figure above on the left. The figure on the right shows that this property could be used to bring radiation to a focus with a flat LHM lens. The advantage of a flat lens in comparison to a conventional curved lens is that the focal length could be varied simply by adjusting the distance between the lens and the electromagnetic wave source. In this in-house work, researchers at the NASA Glenn Research Center developed a computational model for LHM's with the three-dimensional electromagnetic commercial code Microwave Studio, constructed an LHM flat lens, and used it to experimentally demonstrate the reversed refraction and flat lens focusing of microwave radiation.
Deng, Yongbo; Korvink, Jan G
2016-05-01
This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.
Korvink, Jan G.
2016-01-01
This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable. PMID:27279766
Song, Wei-Li; Zhou, Zhili; Wang, Li-Chen; Cheng, Xiao-Dong; Chen, Mingji; He, Rujie; Chen, Haosen; Yang, Yazheng; Fang, Daining
2017-12-13
Ultra-broad-band electromagnetic absorption materials and structures are increasingly attractive for their critical role in competing with the advanced broad-band electromagnetic detection systems. Mechanically soft and weak wax-based materials composites are known to be insufficient to serve in practical electromagnetic absorption applications. To break through such barriers, here we developed an innovative strategy to enable the wax-based composites to be robust and repairable meta-structures by employing a three-dimensional (3D) printed polymeric patterned shell. Because of the integrated merits from both the dielectric loss wax-based composites and mechanically robust 3D printed shells, the as-fabricated meta-structures enable bear mechanical collision and compression, coupled with ultra-broad-band absorption (7-40 and 75-110 GHz, reflection loss smaller than -10 dB) approaching state-of-the-art electromagnetic absorption materials. With the assistance of experiment and simulation methods, the design advantages and mechanism of employing such 3D printed shells for substantially promoting the electromagnetic absorption performance have been demonstrated. Therefore, such universal strategy that could be widely extended to other categories of wax-based composites highlights a smart stage on which high-performance practical multifunction meta-structures with ultra-broad-band electromagnetic absorption could be envisaged.
Development of an interpretive simulation tool for the proton radiography technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, M. C., E-mail: levymc@stanford.edu; Lawrence Livermore National Laboratory, Livermore, California 94551; Ryutov, D. D.
2015-03-15
Proton radiography is a useful diagnostic of high energy density (HED) plasmas under active theoretical and experimental development. In this paper, we describe a new simulation tool that interacts realistic laser-driven point-like proton sources with three dimensional electromagnetic fields of arbitrary strength and structure and synthesizes the associated high resolution proton radiograph. The present tool’s numerical approach captures all relevant physics effects, including effects related to the formation of caustics. Electromagnetic fields can be imported from particle-in-cell or hydrodynamic codes in a streamlined fashion, and a library of electromagnetic field “primitives” is also provided. This latter capability allows users tomore » add a primitive, modify the field strength, rotate a primitive, and so on, while quickly generating a high resolution radiograph at each step. In this way, our tool enables the user to deconstruct features in a radiograph and interpret them in connection to specific underlying electromagnetic field elements. We show an example application of the tool in connection to experimental observations of the Weibel instability in counterstreaming plasmas, using ∼10{sup 8} particles generated from a realistic laser-driven point-like proton source, imaging fields which cover volumes of ∼10 mm{sup 3}. Insights derived from this application show that the tool can support understanding of HED plasmas.« less
NASA Astrophysics Data System (ADS)
Wang, Kunpeng; Tan, Handong; Zhang, Zhiyong; Li, Zhiqiang; Cao, Meng
2017-05-01
Resistivity anisotropy and full-tensor controlled-source audio-frequency magnetotellurics (CSAMT) have gradually become hot research topics. However, much of the current anisotropy research for tensor CSAMT only focuses on the one-dimensional (1D) solution. As the subsurface is rarely 1D, it is necessary to study three-dimensional (3D) model response. The staggered-grid finite difference method is an effective simulation method for 3D electromagnetic forward modelling. Previous studies have suggested using the divergence correction to constrain the iterative process when using a staggered-grid finite difference model so as to accelerate the 3D forward speed and enhance the computational accuracy. However, the traditional divergence correction method was developed assuming an isotropic medium. This paper improves the traditional isotropic divergence correction method and derivation process to meet the tensor CSAMT requirements for anisotropy using the volume integral of the divergence equation. This method is more intuitive, enabling a simple derivation of a discrete equation and then calculation of coefficients related to the anisotropic divergence correction equation. We validate the result of our 3D computational results by comparing them to the results computed using an anisotropic, controlled-source 2.5D program. The 3D resistivity anisotropy model allows us to evaluate the consequences of using the divergence correction at different frequencies and for two orthogonal finite length sources. Our results show that the divergence correction plays an important role in 3D tensor CSAMT resistivity anisotropy research and offers a solid foundation for inversion of CSAMT data collected over an anisotropic body.
Detailed electromagnetic simulation for the structural color of butterfly wings.
Lee, R Todd; Smith, Glenn S
2009-07-20
Many species of butterflies exhibit interesting optical phenomena due to structural color. The physical reason for this color is subwavelength features on the surface of a single scale. The exposed surface of a scale is covered with a ridge structure. The fully three-dimensional, periodic, finite-difference time-domain method is used to create a detailed electromagnetic model of a generic ridge. A novel method for presenting the three-dimensional observed color pattern is developed. Using these tools, the change in color that is a result of varying individual features of the scale is explored. Computational models are developed that are similar to three butterflies: Morpho rhetenor, Troides magellanus, and Ancyluris meliboeus.
Turbulence in Three Dimensional Simulations of Magnetopause Reconnection
NASA Astrophysics Data System (ADS)
Drake, J. F.; Price, L.; Swisdak, M.; Burch, J. L.; Cassak, P.; Dahlin, J. T.; Ergun, R.
2017-12-01
We present two- and three-dimensional particle-in-cell simulations of the 16 October 2015 MMS magnetopause reconnection event. While the two-dimensional simulation is laminar, turbulence develops at both the x-line and along the magnetic separatrices in the three-dimensional simulation. This turbulence is electromagnetic in nature, is characterized by a wavevector k given by kρ e ˜(m_e/m_i)0.25 with ρ e the electron Larmor radius, and appears to have the ion pressure gradient as its source of free energy. Taken together, these results suggest the instability is a variant of the lower-hybrid drift instability. The turbulence produces electric field fluctuations in the out-of-plane direction (the direction of the reconnection electric field) with an amplitude of around ± 10 mV/m, which is much greater than the reconnection electric field of around 0.1 mV/m. Such large values of the out-of-plane electric field have been identified in the MMS data. The turbulence in the simulation controls the scale lengths of the density profile and current layers in asymmetric reconnection, driving them closer to √ {ρ eρ_i } than the ρ e or de scalings seen in 2D reconnection simulations, where de is the electron inertial length. The turbulence is strong enough to make the magnetic field around the reconnection island chaotic and produces both anomalous resistivity and anomalous viscosity. Each contribute significantly to breaking the frozen-in condition in the electron diffusion region. The crescent-shaped features in velocity space seen both in MMS observations and in two-dimensional simulations survive, even in the turbulent environment of the three-dimensional system. We compare and contrast these results to a three-dimensional simulation of the 8 December 2015 MMS magnetopause reconnection event in which the reconnecting and out-of-plane guide fields are comparable. LHDI is still present in this event, although its appearance is modified by the presence of the guide field. The crescents also survive although, as is also observed by MMS, their intensity decreases. Nevertheless, the turbulence that develops remains strong.
An accessible four-dimensional treatment of Maxwell's equations in terms of differential forms
NASA Astrophysics Data System (ADS)
Sá, Lucas
2017-03-01
Maxwell’s equations are derived in terms of differential forms in the four-dimensional Minkowski representation, starting from the three-dimensional vector calculus differential version of these equations. Introducing all the mathematical and physical concepts needed (including the tool of differential forms), using only knowledge of elementary vector calculus and the local vector version of Maxwell’s equations, the equations are reduced to a simple and elegant set of two equations for a unified quantity, the electromagnetic field. The treatment should be accessible for students taking a first course on electromagnetism.
NASA Technical Reports Server (NTRS)
Cunefare, K. A.; Koopmann, G. H.
1991-01-01
This paper presents the theoretical development of an approach to active noise control (ANC) applicable to three-dimensional radiators. The active noise control technique, termed ANC Optimization Analysis, is based on minimizing the total radiated power by adding secondary acoustic sources on the primary noise source. ANC Optimization Analysis determines the optimum magnitude and phase at which to drive the secondary control sources in order to achieve the best possible reduction in the total radiated power from the noise source/control source combination. For example, ANC Optimization Analysis predicts a 20 dB reduction in the total power radiated from a sphere of radius at a dimensionless wavenumber ka of 0.125, for a single control source representing 2.5 percent of the total area of the sphere. ANC Optimization Analysis is based on a boundary element formulation of the Helmholtz Integral Equation, and thus, the optimization analysis applies to a single frequency, while multiple frequencies can be treated through repeated analyses.
Step-off, vertical electromagnetic responses of a deep resistivity layer buried in marine sediments
NASA Astrophysics Data System (ADS)
Jang, Hangilro; Jang, Hannuree; Lee, Ki Ha; Kim, Hee Joon
2013-04-01
A frequency-domain, marine controlled-source electromagnetic (CSEM) method has been applied successfully in deep water areas for detecting hydrocarbon (HC) reservoirs. However, a typical technique with horizontal transmitters and receivers requires large source-receiver separations with respect to the target depth. A time-domain EM system with vertical transmitters and receivers can be an alternative because vertical electric fields are sensitive to deep resistive layers. In this paper, a time-domain modelling code, with multiple source and receiver dipoles that are finite in length, has been written to investigate transient EM problems. With the use of this code, we calculate step-off responses for one-dimensional HC reservoir models. Although the vertical electric field has much smaller amplitude of signal than the horizontal field, vertical currents resulting from a vertical transmitter are sensitive to resistive layers. The modelling shows a significant difference between step-off responses of HC- and water-filled reservoirs, and the contrast can be recognized at late times at relatively short offsets. A maximum contrast occurs at more than 4 s, being delayed with the depth of the HC layer.
Three-Dimensional Electromagnetic High Frequency Axisymmetric Cavity Scars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warne, Larry Kevin; Jorgenson, Roy Eberhardt
This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through themore » electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank« less
Three-dimensional wideband electromagnetic modeling on massively parallel computers
NASA Astrophysics Data System (ADS)
Alumbaugh, David L.; Newman, Gregory A.; Prevost, Lydie; Shadid, John N.
1996-01-01
A method is presented for modeling the wideband, frequency domain electromagnetic (EM) response of a three-dimensional (3-D) earth to dipole sources operating at frequencies where EM diffusion dominates the response (less than 100 kHz) up into the range where propagation dominates (greater than 10 MHz). The scheme employs the modified form of the vector Helmholtz equation for the scattered electric fields to model variations in electrical conductivity, dielectric permitivity and magnetic permeability. The use of the modified form of the Helmholtz equation allows for perfectly matched layer ( PML) absorbing boundary conditions to be employed through the use of complex grid stretching. Applying the finite difference operator to the modified Helmholtz equation produces a linear system of equations for which the matrix is sparse and complex symmetrical. The solution is obtained using either the biconjugate gradient (BICG) or quasi-minimum residual (QMR) methods with preconditioning; in general we employ the QMR method with Jacobi scaling preconditioning due to stability. In order to simulate larger, more realistic models than has been previously possible, the scheme has been modified to run on massively parallel (MP) computer architectures. Execution on the 1840-processor Intel Paragon has indicated a maximum model size of 280 × 260 × 200 cells with a maximum flop rate of 14.7 Gflops. Three different geologic models are simulated to demonstrate the use of the code for frequencies ranging from 100 Hz to 30 MHz and for different source types and polarizations. The simulations show that the scheme is correctly able to model the air-earth interface and the jump in the electric and magnetic fields normal to discontinuities. For frequencies greater than 10 MHz, complex grid stretching must be employed to incorporate absorbing boundaries while below this normal (real) grid stretching can be employed.
Three dimensional α-tunneling in intense laser fields
NASA Astrophysics Data System (ADS)
Kis, Daniel P.; Szilvasi, Reka
2018-04-01
The width and life-time of the quasibound state of the α cluster in intense monochromatic electromagnetic (laser) field are discussed in details. The laser modified three dimensional potential barrier felt by the α particle is investigated analytically in long wave approximation and zero-order approximations with some different nuclear models: Coulomb potential with rectangular well, and with Woods-Saxon type potential. We show that the circularly polarized electromagnetic field and the special parameters of the nuclear potentials determine an enhancement of the decay probability, so the life-time of the quasibound state decreases in few times compared to the case of free field.
NASA Astrophysics Data System (ADS)
Ellis, Jeremy
On temporal, spatial and spectral scales which are small enough, all fields are fully polarized. In the optical regime, however, instantaneous fields can rarely be examined, and, instead, only average quantities are accessible. The study of polarimetry is concerned with both the description of electromagnetic fields and the characterization of media a field has interacted with. The polarimetric information is conventionally presented in terms of second order field correlations which are averaged over the ensemble of field realizations. Motivated by the deficiencies of classical polarimetry in dealing with specific practical situations, this dissertation expands the traditional polarimetric approaches to include higher order field correlations and the description of fields fluctuating in three dimensions. In relation to characterization of depolarizing media, a number of fourth-order correlations are introduced in this dissertation. Measurements of full polarization distributions, and the subsequent evaluation of Stokes vector element correlations and Complex Degree of Mutual Polarization demonstrate the use of these quantities for material discrimination and characterization. Recent advancements in detection capabilities allow access to fields near their sources and close to material boundaries, where a unique direction of propagation is not evident. Similarly, there exist classical situations such as overlapping beams, focusing, or diffusive scattering in which there is no unique transverse direction. In this dissertation, the correlation matrix formalism is expanded to describe three dimensional electromagnetic fields, providing a definition for the degree of polarization of such a field. It is also shown that, because of the dimensionality of the problem, a second parameter is necessary to fully describe the polarimetric properties of three dimensional fields. Measurements of second-order correlations of a three dimensional field are demonstrated, allowing the determination of both the degree of polarization and the state of polarization. These new theoretical concepts and innovative experimental approaches introduced in this dissertation are expected to impact scientific areas as diverse as near field optics, remote sensing, high energy laser physics, fluorescence microscopy, and imaging.
Electromagnetic field tapering using all-dielectric gradient index materials.
Yi, Jianjia; Piau, Gérard-Pascal; de Lustrac, André; Burokur, Shah Nawaz
2016-07-28
The concept of transformation optics (TO) is applied to control the flow of electromagnetic fields between two sections of different dimensions through a tapering device. The broadband performance of the field taper is numerically and experimentally validated. The taper device presents a graded permittivity profile and is fabricated through three-dimensional (3D) polyjet printing technology using low-cost all-dielectric materials. Calculated and measured near-field mappings are presented in order to validate the proposed taper. A good qualitative agreement is obtained between full-wave simulations and experimental tests. Such all-dielectric taper paves the way to novel types of microwave devices that can be easily fabricated through low-cost additive manufacturing processes.
Finn, C.A.; Deszcz-Pan, M.; Anderson, E.D.; John, D.A.
2007-01-01
Hydrothermally altered rocks, particularly if water saturated, can weaken stratovolcanoes, thereby increasing the potential for catastrophic sector collapses that can lead to far-traveled, destructive debris flows. Evaluating the hazards associated with such alteration is difficult because alteration has been mapped on few active volcanoes and the distribution and intensity of subsurface alteration are largely unknown on any active volcano. At Mount Adams, some Holocene debris flows contain abundant hydrothermal minerals derived from collapse of the altered, edifice. Intense hydrothermal alteration significantly reduces the resistivity and magnetization of volcanic rock, and therefore hydrothermally altered rocks can be identified with helicopter electromagnetic and magnetic measurements. Electromagnetic and magnetic data, combined with geological mapping and rock property measurements, indicate the presence of appreciable thicknesses of hydrothermally altered rock in the central core of Mount Adams north of the summit. We identify steep cliffs at the western edge of this zone as the likely source for future large debris flows. In addition, the electromagnetic data identified water in the brecciated core of the upper 100-200 m of the volcano. Water helps alter the rocks, reduces the effective stress, thereby increasing the potential for slope failure, and acts, with entrained melting ice, as a lubricant to transform debris avalanches into lahars. Therefore knowing the distribution of water is also important for hazard assessments. Our results demonstrate that high-resolution geophysical and geological observations can yield unprecedented views of the three-dimensional distribution of altered rock and shallow pore water aiding evaluation of the debris avalanche hazard.
A three-dimensional thermal and electromagnetic model of whole limb heating with a MAPA.
Charny, C K; Levin, R L
1991-10-01
Previous studies by the authors have shown that if properly implemented, the Pennes assumptions can be applied to quantify bioheat transfer during extremity heating. Given its relative numerical simplicity and its ability to predict temperatures in thermoregulated tissue, the Pennes model of bioheat transfer was utilized in a three-dimensional thermal model of limb heating. While the arterial blood temperature was assumed to be radially uniform within a cross section of the limb, axial gradients in the arterial and venous blood temperatures were computed with this three-dimensional model. A realistically shaped, three-dimensional finite element model of a tumor-bearing human lower leg was constructed and was "attached" mathematically to the whole body thermal model of man described in previous studies by the authors. The central as well as local thermoregulatory feedback control mechanisms which determine blood perfusion to the various tissues and rate of evaporation by sweating were input into the limb model. In addition, the temperature of the arterial blood which feeds into the most proximal section of the lower leg was computed by the whole body thermal model. The variations in the shape of the tissues which comprise the limb were obtained from computerized tomography scans. Axial variations in the energy deposition patterns along the length of the limb exposed to a miniannular phased array (MAPA) applicator were also input into this model of limb heating. Results indicate that proper positioning of the limb relative to the MAPA is a significant factor in determining the effectiveness of the treatment. A patient-specific hyperthermia protocol can be designed using this coupled electromagnetic and thermal model.
Near-field testing of the 15-meter hoop-column antenna
NASA Technical Reports Server (NTRS)
Schroeder, Lyle C.; Adams, Richard R.; Bailey, M. C.; Belvin, W. Keith; Butler, David H.; Campbell, Thomas G.
1989-01-01
A 15-m-diameter antenna was tested to verify that dimensional tolerances for acceptable performance could be achieved and to verify structural, electromagnetic, and mechanical performance predictions. This antenna utilized the hoop column structure, a gold plated molybdenum mesh reflector, and 96 control cables to adjust the reflector conformance with a paraboloid. The dimensional conformance of the antenna structure and surface was measured with metric camera and theodolites. Near field pattern data were used to assess the electromagnetic performance at five frequencies from 2.225 to 11.6 GHz. The reflector surface was adjusted to greatly improve electromagnetic performance with a finite element model and the surface measurements. Measurement results show that antenna surface figure and adjustments and electromagnetic patterns agree well with predictions.
NASA Astrophysics Data System (ADS)
Zhang, Yu-Qing; Zhu, Zhong-Hua; Peng, Zhao-Hui; Jiang, Chun-Lei; Chai, Yi-Feng; Hai, Lian; Tan, Lei
2018-06-01
We theoretically study the single-photon transport along a one-dimensional optical waveguide coupled to an optomechanical cavity containing a Λ-type three-level atom. Our numerical results show that the transmission spectra of the incident photon can be well controlled by such a hybrid atom-optomechanical system. The effects of the optomechanical coupling strength, the classical laser beam applied to the atom, atom-cavity detuning, and atomic dissipation on the single-photon transport properties are analyzed. It is of particular interest that an analogous double electromagnetically induced transparency emerges in the single-photon transmission spectra.
Advanced electromagnetic methods for aerospace vehicles
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; El-Sharawy, El-Budawy; Hashemi-Yeganeh, Shahrokh; Aberle, James T.; Birtcher, Craig R.
1991-01-01
The Advanced Helicopter Electromagnetics is centered on issues that advance technology related to helicopter electromagnetics. Progress was made on three major topics: composite materials; precipitation static corona discharge; and antenna technology. In composite materials, the research has focused on the measurements of their electrical properties, and the modeling of material discontinuities and their effect on the radiation pattern of antennas mounted on or near material surfaces. The electrical properties were used to model antenna performance when mounted on composite materials. Since helicopter platforms include several antenna systems at VHF and UHF bands, measuring techniques are being explored that can be used to measure the properties at these bands. The effort on corona discharge and precipitation static was directed toward the development of a new two dimensional Voltage Finite Difference Time Domain computer program. Results indicate the feasibility of using potentials for simulating electromagnetic problems in the cases where potentials become primary sources. In antenna technology the focus was on Polarization Diverse Conformal Microstrip Antennas, Cavity Backed Slot Antennas, and Varactor Tuned Circular Patch Antennas. Numerical codes were developed for the analysis of two probe fed rectangular and circular microstrip patch antennas fed by resistive and reactive power divider networks.
NASA Astrophysics Data System (ADS)
Bian, Xing-Ming; Liu, Lin; Li, Hai-Bing; Wang, Chan-Yuan; Xie, Qing; Zhao, Quan-Liang; Bi, Song; Hou, Zhi-Ling
2017-01-01
Since manipulating electromagnetic waves with electromagnetic active materials for environmental and electric engineering is a significant task, here a novel prototype is reported by introducing reduced graphene oxide (RGO) interfaces in carbon fiber (CF) networks for a hierarchical carbon fiber/reduced graphene oxide/nickel (CF-RGO-Ni) composite textile. Upon charaterizations of the microscopic morphologies, electrical and magnetic properties, the presence of three-dimensional RGO interfaces and bifunctional nickel nanoparticles substantially influences the related physical properties in the resulting hierarchical composite textiles. Eletromagnetic interference (EMI) shielding performance suggests that the hierarchical composite textiles hold a strong shielding effectiveness greater than 61 dB, showing greater advantages than conventional polymeric and foamy shielding composites. As a polymer-free lightweight structure, flexible CF-RGO-Ni composites of all electromagnetic active components offer unique understanding of the multi-scale and multiple mechanisms in electromagnetic energy consumption. Such a novel prototype of shielding structures along with convenient technology highlight a strategy to achieve high-performance EMI shielding, coupled with a universal approach for preparing advanced lightweight composites with graphene interfaces.
Bian, Xing-Ming; Liu, Lin; Li, Hai-Bing; Wang, Chan-Yuan; Xie, Qing; Zhao, Quan-Liang; Bi, Song; Hou, Zhi-Ling
2017-01-27
Since manipulating electromagnetic waves with electromagnetic active materials for environmental and electric engineering is a significant task, here a novel prototype is reported by introducing reduced graphene oxide (RGO) interfaces in carbon fiber (CF) networks for a hierarchical carbon fiber/reduced graphene oxide/nickel (CF-RGO-Ni) composite textile. Upon charaterizations of the microscopic morphologies, electrical and magnetic properties, the presence of three-dimensional RGO interfaces and bifunctional nickel nanoparticles substantially influences the related physical properties in the resulting hierarchical composite textiles. Eletromagnetic interference (EMI) shielding performance suggests that the hierarchical composite textiles hold a strong shielding effectiveness greater than 61 dB, showing greater advantages than conventional polymeric and foamy shielding composites. As a polymer-free lightweight structure, flexible CF-RGO-Ni composites of all electromagnetic active components offer unique understanding of the multi-scale and multiple mechanisms in electromagnetic energy consumption. Such a novel prototype of shielding structures along with convenient technology highlight a strategy to achieve high-performance EMI shielding, coupled with a universal approach for preparing advanced lightweight composites with graphene interfaces.
Kamata, Kaori; Piao, Zhenzi; Suzuki, Soichiro; Fujimori, Takahiro; Tajiri, Wataru; Nagai, Keiji; Iyoda, Tomokazu; Yamada, Atsushi; Hayakawa, Toshiaki; Ishiwara, Mitsuteru; Horaguchi, Satoshi; Belay, Amha; Tanaka, Takuo; Takano, Keisuke; Hangyo, Masanori
2014-01-01
Microstructures in nature are ultrafine and ordered in biological roles, which have attracted material scientists. Spirulina forms three-dimensional helical microstructure, one of remarkable features in nature beyond our current processing technology such as lithography in terms of mass-productivity and structural multiplicity. Spirulina varies its diameter, helical pitch, and/or length against growing environment. This unique helix is suggestive of a tiny electromagnetic coil, if composed of electro-conductive metal, which brought us main concept of this work. Here, we describe the biotemplating process onto Spirulina surface to fabricate metal microcoils. Structural parameters of the microcoil can be controlled by the cultivation conditions of Spirulina template and also purely one-handed microcoil can be fabricated. A microcoil dispersion sheet exhibited optically active response attributed to structural resonance in terahertz-wave region. PMID:24815190
Zhan, Pengfei; Dutta, Palash K; Wang, Pengfei; Song, Gang; Dai, Mingjie; Zhao, Shu-Xia; Wang, Zhen-Gang; Yin, Peng; Zhang, Wei; Ding, Baoquan; Ke, Yonggang
2017-02-28
Distinct electromagnetic properties can emerge from the three-dimensional (3D) configuration of a plasmonic nanostructure. Furthermore, the reconfiguration of a dynamic plasmonic nanostructure, driven by physical or chemical stimuli, may generate a tailored plasmonic response. In this work, we constructed a 3D reconfigurable plasmonic nanostructure with controllable, reversible conformational transformation using bottom-up DNA self-assembly. Three gold nanorods (AuNRs) were positioned onto a reconfigurable DNA origami tripod. The internanorod angle and distance were precisely tuned through operating the origami tripod by toehold-mediated strand displacement. The transduction of conformational change manifested into a controlled shift of the plasmonic resonance peak, which was studied by dark-field microscopy, and agrees well with electrodynamic calculations. This new 3D plasmonic nanostructure not only provides a method to study the plasmonic resonance of AuNRs at prescribed 3D conformations but also demonstrates that DNA origami can serve as a general self-assembly platform for constructing various 3D reconfigurable plasmonic nanostructures with customized optical properties.
A Two-Dimensional Linear Bicharacteristic FDTD Method
NASA Technical Reports Server (NTRS)
Beggs, John H.
2002-01-01
The linear bicharacteristic scheme (LBS) was originally developed to improve unsteady solutions in computational acoustics and aeroacoustics. The LBS has previously been extended to treat lossy materials for one-dimensional problems. It is a classical leapfrog algorithm, but is combined with upwind bias in the spatial derivatives. This approach preserves the time-reversibility of the leapfrog algorithm, which results in no dissipation, and it permits more flexibility by the ability to adopt a characteristic based method. The use of characteristic variables allows the LBS to include the Perfectly Matched Layer boundary condition with no added storage or complexity. The LBS offers a central storage approach with lower dispersion than the Yee algorithm, plus it generalizes much easier to nonuniform grids. It has previously been applied to two and three-dimensional free-space electromagnetic propagation and scattering problems. This paper extends the LBS to the two-dimensional case. Results are presented for point source radiation problems, and the FDTD algorithm is chosen as a convenient reference for comparison.
The Characteristics of Electromagnetic Fields Induced by Different Type Sources
NASA Astrophysics Data System (ADS)
Di, Q.; Fu, C.; Wang, R.; Xu, C.; An, Z.
2011-12-01
Controlled source audio-frequence magnetotelluric (CSAMT) method has played an important role in the shallow exploration (less than 1.5km) in the field of resources, environment and engineering geology. In order to prospect the deeper target, one has to increase the strength of the source and offset. However, the exploration is nearly impossible for the heavy larger power transmitting source used in the deeper prospecting and mountain area. So an EM method using a fixed large power source, such as long bipole current source, two perpendicular "L" shape long bipole current source and large radius circle current source, is beginning to take shape. In order to increase the strength of the source, the length of the transmitting bipole in one direction or in perpendicular directions has to be much larger, such as L=100km, or the radius of the circle current source is much larger. The electric field strength are IL2and IL2/4π separately for long bipole source and circle current source with the same wire length. Just considering the effectiveness of source, the strength of the circle current source is larger than that of long bipole source if is large enough. However, the strength of the electromagnetic signal doesn't totally depend on the transmitting source, the effect of ionosphere on the electromagnetic (EM) field should be considered when observation is carried at a very far (about several thousands kilometers) location away from the source for the long bipole source or the large radius circle current source. We firstly calculate the electromagnetic fields with the traditional controlled source (CSEM) configuration using the integral equation (IE) code developed by our research group for a three layers earth-ionosphere model which consists of ionosphere, atmosphere and earth media. The modeling results agree well with the half space analytical results because the effect of ionosphere for this small scale source can be ignorable, which means the integral equation method is reliable and effective for modeling models including ionosphere, atmosphere and earth media. In order to discuss EM fields' characters for complicate earth-ionosphere media excited by long bipole, "L" shape bipole and circle current sources in the far-field and wave-guide zones, we modeled the frequency responses and decay characters of EM fields for three layers earth-ionosphere model. Because of the effect of ionosphere, the earth-ionosphere electromagnetic fields' decay curves with given frequency show that the fields of Ex and Hy , excited by a long bipole and "L" shape bipole, can be divided into an extra wave-guide field with slower attenuation and strong amplititude than that in half space, but the EM fields of circle current source does not show the same characteristics, ionosphere makes the amplitude of the EM field weaker for the circle current source. For this reason, it is better to use long bipole source while working in the wave-guide field with a fixed large power source.
Peralta, Xomalin Guaiuli; Brener, Igal; O'Hara, John; Azad, Abul; Smirnova, Evgenya; Williams, John D.; Averitt, Richard D.
2014-08-12
Terahertz metamaterials comprise a periodic array of resonator elements disposed on a dielectric substrate or thin membrane, wherein the resonator elements have a structure that provides a tunable magnetic permeability or a tunable electric permittivity for incident electromagnetic radiation at a frequency greater than about 100 GHz and the periodic array has a lattice constant that is smaller than the wavelength of the incident electromagnetic radiation. Microfabricated metamaterials exhibit lower losses and can be assembled into three-dimensional structures that enable full coupling of incident electromagnetic terahertz radiation in two or three orthogonal directions. Furthermore, polarization sensitive and insensitive metamaterials at terahertz frequencies can enable new devices and applications.
Liu, Lianlian; Zhang, Shen; Yan, Feng; Li, Chunyan; Zhu, Chunling; Zhang, Xitian; Chen, Yujin
2018-04-25
Here, we report a simple method to grow thin MoS 2 nanosheets (NSs) on the ultralong nitrogen-doped carbon nanotubes through anion-exchange reaction. The MoS 2 NSs are grown on ultralong nitrogen-doped carbon nanotube surfaces, leading to an interesting three-dimensional hierarchical structure. The fabricated hybrid nanotubes have a length of approximately 100 μm, where the MoS 2 nanosheets have a thickness of less than 7.5 nm. The hybrid nanotubes show excellent electromagnetic wave attenuation performance, with the effective absorption bandwidth of 5.4 GHz at the thicknesses of 2.5 mm, superior to the pure MoS 2 nanosheets and the MoS 2 nanosheets grown on the short N-doped carbon nanotube surfaces. The experimental results indicate that the direct growth of MoS 2 on the ultralong nitrogen-doped carbon nanotube surfaces is a key factor for the enhanced electromagnetic wave attenuation property. The results open the avenue for the development of ultralong transition metal dichalcogenides for electromagnetic wave absorbers.
A Newtonian approach to extraordinarily strong negative refraction.
Yoon, Hosang; Yeung, Kitty Y M; Umansky, Vladimir; Ham, Donhee
2012-08-02
Metamaterials with negative refractive indices can manipulate electromagnetic waves in unusual ways, and can be used to achieve, for example, sub-diffraction-limit focusing, the bending of light in the 'wrong' direction, and reversed Doppler and Cerenkov effects. These counterintuitive and technologically useful behaviours have spurred considerable efforts to synthesize a broad array of negative-index metamaterials with engineered electric, magnetic or optical properties. Here we demonstrate another route to negative refraction by exploiting the inertia of electrons in semiconductor two-dimensional electron gases, collectively accelerated by electromagnetic waves according to Newton's second law of motion, where this acceleration effect manifests as kinetic inductance. Using kinetic inductance to attain negative refraction was theoretically proposed for three-dimensional metallic nanoparticles and seen experimentally with surface plasmons on the surface of a three-dimensional metal. The two-dimensional electron gas that we use at cryogenic temperatures has a larger kinetic inductance than three-dimensional metals, leading to extraordinarily strong negative refraction at gigahertz frequencies, with an index as large as -700. This pronounced negative refractive index and the corresponding reduction in the effective wavelength opens a path to miniaturization in the science and technology of negative refraction.
Evolution of lower hybrid turbulence in the ionosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganguli, G.; Crabtree, C.; Mithaiwala, M.
2015-11-15
Three-dimensional evolution of the lower hybrid turbulence driven by a spatially localized ion ring beam perpendicular to the ambient magnetic field in space plasmas is analyzed. It is shown that the quasi-linear saturation model breaks down when the nonlinear rate of scattering by thermal electron is larger than linear damping rates, which can occur even for low wave amplitudes. The evolution is found to be essentially a three-dimensional phenomenon, which cannot be accurately explained by two-dimensional simulations. An important feature missed in previous studies of this phenomenon is the nonlinear conversion of electrostatic lower hybrid waves into electromagnetic whistler andmore » magnetosonic waves and the consequent energy loss due to radiation from the source region. This can result in unique low-amplitude saturation with extended saturation time. It is shown that when the nonlinear effects are considered the net energy that can be permanently extracted from the ring beam is larger. The results are applied to anticipate the outcome of a planned experiment that will seed lower hybrid turbulence in the ionosphere and monitor its evolution.« less
Simulation Study of Magnetic Fields Generated by the Electromagnetic Filamentation Instability
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C. B.; Mizuno, Y.; Fishman, G. J.
2007-01-01
We have investigated the effects of plasma instabilities driven by rapid e(sup plus or minus) pair cascades, which arise in the environment of GRB sources as a result of back-scattering of a seed fraction of the original spectrum. The injection of e(sup plus or minus) pairs induces strong streaming motions in the ambient medium. One therefore expects the pair-enriched medium ahead of the forward shock to be strongly sheared on length scales comparable to the radiation front thickness. Using three-dimensional particle-in-cell simulations, we show that plasma instabilities driven by these streaming e(sup plus or minus) pairs are responsible for the excitation of near-equipartition, turbulent magnetic fields. Our results reveal the importance of the electromagnetic filamentation instability in ensuring an effective coupling between e(sup plus or minus) pairs and ions, and may help explain the origin of large upstream fields in GRB shocks.
Xue, Song; He, Ning; Long, Zhiqiang
2012-01-01
The long stator track for high speed maglev trains has a tooth-slot structure. The sensor obtains precise relative position information for the traction system by detecting the long stator tooth-slot structure based on nondestructive detection technology. The magnetic field modeling of the sensor is a typical three-dimensional (3-D) electromagnetic problem with complex boundary conditions, and is studied semi-analytically in this paper. A second-order vector potential (SOVP) is introduced to simplify the vector field problem to a scalar field one, the solution of which can be expressed in terms of series expansions according to Multipole Theory (MT) and the New Equivalent Source (NES) method. The coefficients of the expansions are determined by the least squares method based on the boundary conditions. Then, the solution is compared to the simulation result through Finite Element Analysis (FEA). The comparison results show that the semi-analytical solution agrees approximately with the numerical solution. Finally, based on electromagnetic modeling, a difference coil structure is designed to improve the sensitivity and accuracy of the sensor.
Xue, Song; He, Ning; Long, Zhiqiang
2012-01-01
The long stator track for high speed maglev trains has a tooth-slot structure. The sensor obtains precise relative position information for the traction system by detecting the long stator tooth-slot structure based on nondestructive detection technology. The magnetic field modeling of the sensor is a typical three-dimensional (3-D) electromagnetic problem with complex boundary conditions, and is studied semi-analytically in this paper. A second-order vector potential (SOVP) is introduced to simplify the vector field problem to a scalar field one, the solution of which can be expressed in terms of series expansions according to Multipole Theory (MT) and the New Equivalent Source (NES) method. The coefficients of the expansions are determined by the least squares method based on the boundary conditions. Then, the solution is compared to the simulation result through Finite Element Analysis (FEA). The comparison results show that the semi-analytical solution agrees approximately with the numerical solution. Finally, based on electromagnetic modeling, a difference coil structure is designed to improve the sensitivity and accuracy of the sensor. PMID:22778652
Three-dimensional light bullets in a Bragg medium with carbon nanotubes
NASA Astrophysics Data System (ADS)
Zhukov, Alexander V.; Bouffanais, Roland; Belonenko, Mikhail B.; Dvuzhilov, Ilya S.; Nevzorova, Yulia V.
2017-07-01
We present a theoretical study of the propagation of three-dimensional extremely short electromagnetic pulses (a.k.a. light bullets) through a Bragg medium containing an immersed array of carbon nanotubes. We demonstrate the possible stable propagation of such light bullets. In particular, our results suggest these light bullets can carry information about the Bragg medium itself.
NASA Astrophysics Data System (ADS)
Yasumoto, M.; Ohta, M.; Kawamura, Y.; Hatayama, A.
2014-02-01
Numerical simulations become useful for the developing RF-ICP (Radio Frequency Inductively Coupled Plasma) negative ion sources. We are developing and parallelizing a two-dimensional three velocity electromagnetic Particle-In-Cell code. The result shows rapid increase in the electron density during the density ramp-up phase. A radial electric field due to the space charge is produced with increase in the electron density and the electron transport in the radial direction is suppressed. As a result, electrons stay for a long period in the region where the inductive electric field is strong, and this leads efficient electron acceleration and a rapid increasing of the electron density.
Electromagnetic attachment mechanism
NASA Technical Reports Server (NTRS)
Monford, Leo G., Jr. (Inventor)
1992-01-01
An electromagnetic attachment mechanism is disclosed for use as an end effector of a remote manipulator system. A pair of electromagnets, each with a U-shaped magnetic core with a pull-in coil and two holding coils, are mounted by a spring suspension system on a base plate of the mechanism housing with end pole pieces adapted to move through openings in the base plate when the attractive force of the electromagnets is exerted on a strike plate of a grapple fixture affixed to a target object. The pole pieces are spaced by an air gap from the strike plate when the mechanism first contacts the grapple fixture. An individual control circuit and power source is provided for the pull-in coil and one holding coil of each electromagnet. A back-up control circuit connected to the two power sources and a third power source is provided for the remaining holding coils. When energized, the pull-in coils overcome the suspension system and air gap and are automatically de-energized when the pole pieces move to grapple and impose a preload force across the grapple interface. A battery backup is a redundant power source for each electromagnet in each individual control circuit and is automatically connected upon failure of the primary source. A centerline mounted camera and video monitor are used in cooperation with a target pattern on the reflective surface of the strike plate to effect targeting and alignment.
Development of the EM tomography system by the vertical electromagnetic profiling (VEMP) method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miura, Y.; Osato, K.; Takasugi, S.
1995-12-31
As a part of the {open_quotes}Deep-Seated Geothermal Resources Survey{close_quotes} project being undertaken by the NEDO, the Vertical ElectroMagnetic Profiling (VEMP) method is being developed to accurately obtain deep resistivity structure. The VEMP method acquires multi-frequency three-component magnetic field data in an open hole well using controlled sources (loop sources or grounded-wire sources) emitted at the surface. Numerical simulation using EM3D demonstrated that phase data of the VEMP method is very sensitive to resistivity structure and the phase data will also indicate presence of deep anomalies. Forward modelling was also used to determine required transmitter moments for various grounded-wire and loopmore » sources for a field test using the WD-1 well in the Kakkonda geothermal area. Field logging of the well was carried out in May 1994 and the processed field data matches well the simulated data.« less
Three-dimensional interpretation of TEM soundings
NASA Astrophysics Data System (ADS)
Barsukov, P. O.; Fainberg, E. B.
2013-07-01
We describe the approach to the interpretation of electromagnetic (EM) sounding data which iteratively adjusts the three-dimensional (3D) model of the environment by local one-dimensional (1D) transformations and inversions and reconstructs the geometrical skeleton of the model. The final 3D inversion is carried out with the minimal number of the sought parameters. At each step of the interpretation, the model of the medium is corrected according to the geological information. The practical examples of the suggested method are presented.
FEL amplifier performance in the Compton regime
NASA Astrophysics Data System (ADS)
Cover, R. A.; Bhowmik, A.
1984-01-01
The Kroll-Morton-Rosenbluth equations of motion for electrons in a linearly polarized, tapered wiggler are utilized to describe gain in free-electron laser amplifiers. The three-dimensional amplifier model includes the effects of density variation in the electron beam, off-axis variations in the wiggler magnetic field, and betatron oscillations. The input electromagnetic field is injected and subsequently propagated within the wiggler by computing the Fresnel-Kirchhoff diffraction integral using the Gardner-Fresnel-Kirchhoff algorithm. The injected optical beam used in evaluating amplifier performance is initially a Gaussian which in general may be astigmatic. The importance of the above effects on extraction efficiency is computed both with rigorous three-dimensional electromagnetic wave propagation and a Gaussian treatment of the field.
NASA Technical Reports Server (NTRS)
El-Shenawee, Magda
2003-01-01
An intensive numerical study for the resonance scattering of malignant breast cancer tumors is presented. The rigorous three-dimensional electromagnetic model, based on the equivalence theorem, is used to obtain the induced electric and magnetic currents on the breast and tumor surfaces. The results show that a non-spherical malignant tumor can be characterized based its spectra regardless of its orientation, the incident polarization, or the incident or scattered directions. The tumor's spectra depend solely on its physical characteristics (i.e., the shape and the electrical properties), however, their locations are not functions of its burial depth. This work provides a useful guidance to select the appropriate frequency range for the tumor's size.
NASA Astrophysics Data System (ADS)
Przylucki, R.; Golak, S.; Bulinski, P.; Smolka, J.; Palacz, M.; Siwiec, G.; Lipart, J.; Blacha, L.
2018-05-01
The article includes numerical simulation results for two induction furnace with cold crucible (IFCC). Induction furnaces differ in cold crucible design, while the inductor geometry was preserved for both variants. Numerical simulations were conducted as three dimensional one, with coupled analysis of electromagnetic, thermal and fluid dynamics fields. During the experiment, six calculation variants, differ in amount of molten titanium (three different weights of titanium for each type of cold crucible) were considered. Main parameters controlled during the calculations were: electrical efficiency of the IFCC and the meniscus shape of liquid metal.
NASA Astrophysics Data System (ADS)
Zhamaletdinov, A. A.; Shevtsov, A. N.; Korotkova, T. G.; Kopytenko, Yu. A.; Ismagilov, V. S.; Petrishev, M. S.; Efimov, B. V.; Barannik, M. B.; Kolobov, V. V.; Prokopchuk, P. I.; Smirnov, M. Yu.; Vagin, S. A.; Pertel, M. I.; Tereshchenko, E. D.; Vasil'Ev, A. N.; Grigoryev, V. F.; Gokhberg, M. B.; Trofimchik, V. I.; Yampolsky, Yu. M.; Koloskov, A. V.; Fedorov, A. V.; Korja, T.
2011-01-01
The paper addresses the technique and the first results of a unique experiment on the deep tensor frequency electromagnetic sounding, the Fennoscandian Electrical conductivity from results of sounding with Natural and Controlled Sources (FENICS). In the experiment, Energy-1 and Energy-2 generators with power of up to 200 kW and two mutually orthogonal industrial 109- and 120-km-long power transmission lines were used. The sounding frequency range was 0.1-200 Hz. The signals were measured in the Kola-Karelian region, in Finland, on Svalbard, and in Ukraine at distances up to 2150 km from the source. The parameters of electric conductivity in the lithosphere are studied down to depths on the order of 50-70 km. A strong lateral homogeneity (the one-dimensionality) of a geoelectric section of the Earth's crust is revealed below depths of 10-15 km. At the same time, a region with reduced transverse crustal resistivity spread over about 80 000 square kilometers is identified within the depth interval from 20 to 40 km. On the southeast the contour of the anomaly borders the zone of deepening of the Moho boundary down to 60 km in Central Finland. The results are compared with the AMT-MT sounding data and a geodynamic interpretation of the obtained information is carried out.
1993-08-27
rever"_? if necessary and identify by block number) FIELD SUB- GROUP Electromagnetic wave scattering, radiation boundary -. ... conditions, finite...international engineering electromagnetics symposia and in related journals has risen from a level of less than 10 per year (published primarily by my group ) to...Rzpoxs and Non -Refereed Papers: 3, as follows- I. D. S. Katz, A. Taflove, J. P. Brooks and E. Harrigan, "Large-scale methods in computational
NASA Astrophysics Data System (ADS)
Kai, Li; Jun, Liu; Weiqiang, Liu
2017-07-01
In order to cover the shortage of dipole magnetic field in the magnetohydrodynamic(MHD) heat shield system, physical model of a multipolar magnetic field with central and peripheral solenoids is constructed. By employing the governing equations of three dimensional thermochemical nonequilibrium flow with electromagnetic source terms based on the low magneto-Reynolds assumption, the flow control performance of the dipole and multipolar magnetic fields are numerically simulated. To make the results comparable, two groups of cases are designed by first assuming equal stagnation magnetic induction strength and secondly assuming equal ampere-turns. Results show that, the five-magnet system, whose central polar orientation is the same with the peripheral ones, have stronger work capability and better shock control and thermal protection performance. Moreover, the five-solenoid systems are the best when the ampere-turns of the central solenoid are twice and fourth of the peripheral ones under those two circumstances respectively. Compared with the dipole magnetic field, the stagnation non-catalytic heat fluxes are decreased by a factor of 47.5% and 34.0% respectively.
Turbulence in Three-Dimensional Simulations of Magnetopause Reconnection
NASA Astrophysics Data System (ADS)
Price, L.; Swisdak, M.; Drake, J. F.; Burch, J. L.; Cassak, P. A.; Ergun, R. E.
2017-11-01
We present detailed analysis of the turbulence observed in three-dimensional particle-in-cell simulations of magnetic reconnection at the magnetopause. The parameters are representative of an electron diffusion region encounter of the Magnetospheric Multiscale (MMS) mission. The turbulence is found to develop around both the magnetic X line and separatrices, is electromagnetic in nature, is characterized by a wave vector k given by kρe˜(meTe/miTi)0.25 with ρe the electron Larmor radius, and appears to have the ion pressure gradient as its source of free energy. Taken together, these results suggest the instability is a variant of the lower hybrid drift instability. The turbulence produces electric field fluctuations in the out-of-plane direction (the direction of the reconnection electric field) with an amplitude of around ±10 mV/m, which is much greater than the reconnection electric field of around 0.1 mV/m. Such large values of the out-of-plane electric field have been identified in the MMS data. The turbulence in the simulations controls the scale lengths of the density profile and current layers in asymmetric reconnection, driving them closer to √{ρeρi} than the ρe or de scalings seen in 2-D reconnection simulations, and produces significant anomalous resistivity and viscosity in the electron diffusion region.
NASA Astrophysics Data System (ADS)
Radożycki, Tomasz; Bargieła, Piotr
2018-07-01
The propagation of electromagnetic waves trapped within dielectric and magnetic layers is considered. The description within the three-dimensional theory is compared to the simplified analysis in two dimensions. Two distinct media configurations of different topology are dealt with: a plane slab and a hollow cylinder. Choosing the appropriate values for the geometrical parameters (layer thickness, radius of the cylinder) and for the electromagnetic properties of the media one can trap exactly one mode corresponding to that obtained within the two-dimensional electromagnetism. However, the symmetry between electric and magnetic fields suggests, that the two versions of the simplified electromagnetism ought to be equally considered. Its usual form is incomplete to describe all modes. It is also found that there exists a domain of optimal values of parameters for which the 2D model works relatively correctly. However, in the case of a cylindrical surface we observe several differences which may be attributed to the curvature of the layer, and which exclude the propagation of evanescent modes. The two-dimensional electrodynamics, whichever form is used, turns out still too poor to describe the so-called 'hybrid modes' excited in a real layer. The obtained results can be essential for proper description of the propagating waves within thin layers for which 3D approach is not available due to mathematical complexity and reducing the layer to a lower dimensional structure seems the only possible option.
NASA Technical Reports Server (NTRS)
Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.
2007-01-01
In this work, we present a new set of basis functions, de ned over a pair of planar triangular patches, for the solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped surfaces using the method of moments solution procedure. The basis functions are constant over the function subdomain and resemble pulse functions for one and two dimensional problems. Further, another set of basis functions, point-wise orthogonal to the first set, is also de ned over the same function space. The primary objective of developing these basis functions is to utilize them for the electromagnetic solution involving conducting, dielectric, and composite bodies. However, in the present work, only the conducting body solution is presented and compared with other data.
NASA Technical Reports Server (NTRS)
Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.
2008-01-01
In this work, we present a new set of basis functions, defined over a pair of planar triangular patches, for the solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped surfaces using the method of moments solution procedure. The basis functions are constant over the function subdomain and resemble pulse functions for one and two dimensional problems. Further, another set of basis functions, point-wise orthogonal to the first set, is also defined over the same function space. The primary objective of developing these basis functions is to utilize them for the electromagnetic solution involving conducting, dielectric, and composite bodies. However, in the present work, only the conducting body solution is presented and compared with other data.
Chebabhi, Ali; Fellah, Mohammed Karim; Kessal, Abdelhalim; Benkhoris, Mohamed F
2016-07-01
In this paper is proposed a new balancing three-level three dimensional space vector modulation (B3L-3DSVM) strategy which uses a redundant voltage vectors to realize precise control and high-performance for a three phase three-level four-leg neutral point clamped (NPC) inverter based Shunt Active Power Filter (SAPF) for eliminate the source currents harmonics, reduce the magnitude of neutral wire current (eliminate the zero-sequence current produced by single-phase nonlinear loads), and to compensate the reactive power in the three-phase four-wire electrical networks. This strategy is proposed in order to gate switching pulses generation, dc bus voltage capacitors balancing (conserve equal voltage of the two dc bus capacitors), and to switching frequency reduced and fixed of inverter switches in same times. A Nonlinear Back Stepping Controllers (NBSC) are used for regulated the dc bus voltage capacitors and the SAPF injected currents to robustness, stabilizing the system and to improve the response and to eliminate the overshoot and undershoot of traditional PI (Proportional-Integral). Conventional three-level three dimensional space vector modulation (C3L-3DSVM) and B3L-3DSVM are calculated and compared in terms of error between the two dc bus voltage capacitors, SAPF output voltages and THDv, THDi of source currents, magnitude of source neutral wire current, and the reactive power compensation under unbalanced single phase nonlinear loads. The success, robustness, and the effectiveness of the proposed control strategies are demonstrated through simulation using Sim Power Systems and S-Function of MATLAB/SIMULINK. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Balancing Newtonian gravity and spin to create localized structures
NASA Astrophysics Data System (ADS)
Bush, Michael; Lindner, John
2015-03-01
Using geometry and Newtonian physics, we design localized structures that do not require electromagnetic or other forces to resist implosion or explosion. In two-dimensional Euclidean space, we find an equilibrium configuration of a rotating ring of massive dust whose inward gravity is the centripetal force that spins it. We find similar solutions in three-dimensional Euclidean and hyperbolic spaces, but only in the limit of vanishing mass. Finally, in three-dimensional Euclidean space, we generalize the two-dimensional result by finding an equilibrium configuration of a spherical shell of massive dust that supports itself against gravitational collapse by spinning isoclinically in four dimensions so its three-dimensional acceleration is everywhere inward. These Newtonian ``atoms'' illuminate classical physics and geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, G.A.; Commer, M.
Three-dimensional (3D) geophysical imaging is now receiving considerable attention for electrical conductivity mapping of potential offshore oil and gas reservoirs. The imaging technology employs controlled source electromagnetic (CSEM) and magnetotelluric (MT) fields and treats geological media exhibiting transverse anisotropy. Moreover when combined with established seismic methods, direct imaging of reservoir fluids is possible. Because of the size of the 3D conductivity imaging problem, strategies are required exploiting computational parallelism and optimal meshing. The algorithm thus developed has been shown to scale to tens of thousands of processors. In one imaging experiment, 32,768 tasks/processors on the IBM Watson Research Blue Gene/Lmore » supercomputer were successfully utilized. Over a 24 hour period we were able to image a large scale field data set that previously required over four months of processing time on distributed clusters based on Intel or AMD processors utilizing 1024 tasks on an InfiniBand fabric. Electrical conductivity imaging using massively parallel computational resources produces results that cannot be obtained otherwise and are consistent with timeframes required for practical exploration problems.« less
NASA Astrophysics Data System (ADS)
Alpeggiani, Filippo; Gong, Su-Hyun; Kuipers, L.
2018-05-01
The two-dimensional excitons of transition metal dichalcogenide (TMDC) monolayers make these materials extremely promising for optical and optoelectronic applications. When the excitons interact with the electromagnetic field, they will give rise to exciton-polaritons, i.e., modes that propagate in the material plane while being confined in the out-of-plane direction. In this work, we derive the characteristic equations that determine both radiative and polaritonic modes in TMDC monolayers and we analyze the dispersion and decay rate of the modes. The condition for the existence of exciton-polaritons can be described in terms of a strong-coupling regime for the interaction between the exciton and the three-dimensional continuum of free-space electromagnetic modes. We show that the threshold for the strong-coupling regime critically depends on the interplay between nonradiative losses and the dielectric function imbalance at the two sides of the monolayer. Our results illustrate that a fine control of the dielectric function of the embedding media is essential for realizing exciton-polaritons in the strong-coupling regime.
Electromagnetic analysis of arbitrarily shaped pinched carpets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupont, Guillaume; Guenneau, Sebastien; Enoch, Stefan
2010-09-15
We derive the expressions for the anisotropic heterogeneous tensors of permittivity and permeability associated with two-dimensional and three-dimensional carpets of an arbitrary shape. In the former case, we map a segment onto smooth curves whereas in the latter case we map an arbitrary region of the plane onto smooth surfaces. Importantly, these carpets display no singularity of the permeability and permeability tensor components. Moreover, a reduced set of parameters leads to nonmagnetic two-dimensional carpets in p polarization (i.e., for a magnetic field orthogonal to the plane containing the carpet). Such an arbitrarily shaped carpet is shown to work over amore » finite bandwidth when it is approximated by a checkerboard with 190 homogeneous cells of piecewise constant anisotropic permittivity. We finally perform some finite element computations in the full vector three-dimensional case for a plane wave in normal incidence and a Gaussian beam in oblique incidence. The latter requires perfectly matched layers set in a rotated coordinate axis which exemplifies the role played by geometric transforms in computational electromagnetism.« less
Optimization of computations for adjoint field and Jacobian needed in 3D CSEM inversion
NASA Astrophysics Data System (ADS)
Dehiya, Rahul; Singh, Arun; Gupta, Pravin K.; Israil, M.
2017-01-01
We present the features and results of a newly developed code, based on Gauss-Newton optimization technique, for solving three-dimensional Controlled-Source Electromagnetic inverse problem. In this code a special emphasis has been put on representing the operations by block matrices for conjugate gradient iteration. We show how in the computation of Jacobian, the matrix formed by differentiation of system matrix can be made independent of frequency to optimize the operations at conjugate gradient step. The coarse level parallel computing, using OpenMP framework, is used primarily due to its simplicity in implementation and accessibility of shared memory multi-core computing machine to almost anyone. We demonstrate how the coarseness of modeling grid in comparison to source (comp`utational receivers) spacing can be exploited for efficient computing, without compromising the quality of the inverted model, by reducing the number of adjoint calls. It is also demonstrated that the adjoint field can even be computed on a grid coarser than the modeling grid without affecting the inversion outcome. These observations were reconfirmed using an experiment design where the deviation of source from straight tow line is considered. Finally, a real field data inversion experiment is presented to demonstrate robustness of the code.
Nicholls, Barry; Racey, Paul A.
2007-01-01
Large numbers of bats are killed by collisions with wind turbines, and there is at present no direct method of reducing or preventing this mortality. We therefore determine whether the electromagnetic radiation associated with radar installations can elicit an aversive behavioural response in foraging bats. Four civil air traffic control (ATC) radar stations, three military ATC radars and three weather radars were selected, each surrounded by heterogeneous habitat. Three sampling points matched for habitat type and structure, dominant vegetation species, altitude and surrounding land class were located at increasing distances from each station. A portable electromagnetic field meter measured the field strength of the radar at three distances from the source: in close proximity (<200 m) with a high electromagnetic field (EMF) strength >2 volts/metre, an intermediate point within line of sight of the radar (200–400 m) and with an EMF strength <2 v/m, and a control site out of sight of the radar (>400 m) and registering an EMF of zero v/m. At each radar station bat activity was recorded three times with three independent sampling points monitored on each occasion, resulting in a total of 90 samples, 30 of which were obtained within each field strength category. At these sampling points, bat activity was recorded using an automatic bat recording station, operated from sunset to sunrise. Bat activity was significantly reduced in habitats exposed to an EMF strength of greater than 2 v/m when compared to matched sites registering EMF levels of zero. The reduction in bat activity was not significantly different at lower levels of EMF strength within 400 m of the radar. We predict that the reduction in bat activity within habitats exposed to electromagnetic radiation may be a result of thermal induction and an increased risk of hyperthermia. PMID:17372629
Electromagnetic potential vectors and the Lagrangian of a charged particle
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1992-01-01
Maxwell's equations can be shown to imply the existence of two independent three-dimensional potential vectors. A comparison between the potential vectors and the electric and magnetic field vectors, using a spatial Fourier transformation, reveals six independent potential components but only four independent electromagnetic field components for each mode. Although the electromagnetic fields determined by Maxwell's equations give a complete description of all possible classical electromagnetic phenomena, potential vectors contains more information and allow for a description of such quantum mechanical phenomena as the Aharonov-Bohm effect. A new result is that a charged particle Lagrangian written in terms of potential vectors automatically contains a 'spontaneous symmetry breaking' potential.
Modeling 3-D objects with planar surfaces for prediction of electromagnetic scattering
NASA Technical Reports Server (NTRS)
Koch, M. B.; Beck, F. B.; Cockrell, C. R.
1992-01-01
Electromagnetic scattering analysis of objects at resonance is difficult because low frequency techniques are slow and computer intensive, and high frequency techniques may not be reliable. A new technique for predicting the electromagnetic backscatter from electrically conducting objects at resonance is studied. This technique is based on modeling three dimensional objects as a combination of flat plates where some of the plates are blocking the scattering from others. A cube is analyzed as a simple example. The preliminary results compare well with the Geometrical Theory of Diffraction and with measured data.
A collection of edge-based elements
NASA Technical Reports Server (NTRS)
Kempel, Leo C.; Volakis, John L.
1992-01-01
Edge-based elements have proved useful in solving electromagnetic problems since they are nondivergent. Previous authors have presented several two and three dimensional elements. Herein, we present four types of elements which are suitable for modeling several types of three dimensional geometries. Distorted brick and triangular prism elements are given in cartesian coordinates as well as the specialized cylindrical shell and pie-shaped prism elements which are suitable for problems best described in polar cylindrical coordinates.
NASA Astrophysics Data System (ADS)
Kiyan, Duygu; Rath, Volker; Delhaye, Robert
2017-04-01
The frequency- and time-domain airborne electromagnetic (AEM) data collected under the Tellus projects of the Geological Survey of Ireland (GSI) which represent a wealth of information on the multi-dimensional electrical structure of Ireland's near-surface. Our project, which was funded by GSI under the framework of their Short Call Research Programme, aims to develop and implement inverse techniques based on various Bayesian methods for these densely sampled data. We have developed a highly flexible toolbox using Python language for the one-dimensional inversion of AEM data along the flight lines. The computational core is based on an adapted frequency- and time-domain forward modelling core derived from the well-tested open-source code AirBeo, which was developed by the CSIRO (Australia) and the AMIRA consortium. Three different inversion methods have been implemented: (i) Tikhonov-type inversion including optimal regularisation methods (Aster el al., 2012; Zhdanov, 2015), (ii) Bayesian MAP inversion in parameter and data space (e.g. Tarantola, 2005), and (iii) Full Bayesian inversion with Markov Chain Monte Carlo (Sambridge and Mosegaard, 2002; Mosegaard and Sambridge, 2002), all including different forms of spatial constraints. The methods have been tested on synthetic and field data. This contribution will introduce the toolbox and present case studies on the AEM data from the Tellus projects.
Grapple fixture for use with electromagnetic attachment mechanism
NASA Technical Reports Server (NTRS)
Monford, Jr., Leo G. (Inventor)
1995-01-01
An electromagnetic attachment mechanism for use as an end effector of a remote manipulator system. A pair of electromagnets 15A,15B, each with a U-shaped magnetic core with a pull-in coil 34 and two holding coils 35,36 are mounted by a spring suspension system 38,47 on a base plate 25 of the mechanism housing 30 with end pole pieces 21,22 adapted to move through openings in the base plate when the attractive force of the electromagnets is exerted on a strike plate 65 of a grapple fixture 20 affixed to a target object 14. The pole pieces are spaced by an air gap from the strike plate when the mechanism first contacts the grapple fixture. An individual control circuit and power source is provided for the pull-in coil and one holding coil of each electromagnet. A back-up control circuit connected to the two power sources and a third power source is provided for the remaining holding coils. When energized, the pull-in coils overcome the suspension system and air gap and are automatically de-energized when the pole pieces move to grapple and impose a preload force across the grapple interface. A battery back-up 89A,89B is a redundant power source for each electromagnet in each individual control circuit and is automatically connected upon failure of the primary power source. A centerline mounted camera 31 and video monitor 70 are used in cooperation with a target pattern 19 on the reflective surface 67 of the strike plate to effect targeting and alignment.
NASA Astrophysics Data System (ADS)
Sharma, Navneet; Rawat, Tarun Kumar; Parthasarathy, Harish; Gautam, Kumar
2016-06-01
The aim of this paper is to design a current source obtained as a representation of p information symbols \\{I_k\\} so that the electromagnetic (EM) field generated interacts with a quantum atomic system producing after a fixed duration T a unitary gate U( T) that is as close as possible to a given unitary gate U_g. The design procedure involves calculating the EM field produced by \\{I_k\\} and hence the perturbing Hamiltonian produced by \\{I_k\\} finally resulting in the evolution operator produced by \\{I_k\\} up to cubic order based on the Dyson series expansion. The gate error energy is thus obtained as a cubic polynomial in \\{I_k\\} which is minimized using gravitational search algorithm. The signal to noise ratio (SNR) in the designed gate is higher as compared to that using quadratic Dyson series expansion. The SNR is calculated as the ratio of the Frobenius norm square of the desired gate to that of the desired gate error.
Sahoo, P. K.; Aepuru, Radhamanohar; Panda, Himanshu Sekhar; Bahadur, D.
2015-01-01
In-situ homogeneous dispersion of noble metals in three-dimensional graphene sheets is a key tactic for producing macroscopic architecture, which is desirable for practical applications, such as electromagnetic interference shielding and catalyst. We report a one-step greener approach for developing porous architecture of 3D-graphene/noble metal (Pt and Ag) nanocomposite monoliths. The resulting graphene/noble metal nanocomposites exhibit a combination of ultralow density, excellent elasticity, and good electrical conductivity. Moreover, in order to illuminate the advantages of the 3D-graphene/noble metal nanocomposites, their electromagnetic interference (EMI) shielding and electrocatalytic performance are further investigated. The as-synthesized 3D-graphene/noble metal nanocomposites exhibit excellent EMI shielding effectiveness when compared to bare graphene; the effectiveness has an average of 28 dB in the 8.2–12.4 GHz X-band range. In the electro-oxidation of methanol, the 3D-graphene/Pt nanocomposite also exhibits significantly enhanced electrocatalytic performance and stability than compared to reduced graphene oxide/Pt and commercial Pt/C. PMID:26638827
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, C., E-mail: chang@slac.stanford.edu; Key Laboratory of Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710049; Liu, Y. S.
2015-01-05
The three-dimensional periodic ripple profile with each unit of rotational symmetric surface is proposed to suppress multipactor for arbitrary electromagnetic mode with any polarization. The field distribution and multipactor electron dynamics on the wavy surface are studied to illustrate the multipactor inhibition mechanism. High power microwave experiment was conducted to demonstrate the effect of wavy surface on significantly improving the window power capacity.
NASA Astrophysics Data System (ADS)
Vigier, Jean-Pierre
1991-02-01
Starting from a nonlinear relativistic Klein-Gordon equation derived from the stochastic interpretation of quantum mechanics (proposed by Bohm-Vigier, (1) Nelson, (2) de Broglie, (3) Guerra et al. (4) ), one can construct joint wave and particle, soliton-like solutions, which follow the average de Broglie-Bohm (5) real trajectories associated with linear solutions of the usual Schrödinger and Klein-Gordon equations.
Probst, R.; Lin, J.; Komaee, A.; Nacev, A.; Cummins, Z.
2010-01-01
Any single permanent or electro magnet will always attract a magnetic fluid. For this reason it is difficult to precisely position and manipulate ferrofluid at a distance from magnets. We develop and experimentally demonstrate optimal (minimum electrical power) 2-dimensional manipulation of a single droplet of ferrofluid by feedback control of 4 external electromagnets. The control algorithm we have developed takes into account, and is explicitly designed for, the nonlinear (fast decay in space, quadratic in magnet strength) nature of how the magnets actuate the ferrofluid, and it also corrects for electro-magnet charging time delays. With this control, we show that dynamic actuation of electro-magnets held outside a domain can be used to position a droplet of ferrofluid to any desired location and steer it along any desired path within that domain – an example of precision control of a ferrofluid by magnets acting at a distance. PMID:21218157
An empirical approach to inversion of an unconventional helicopter electromagnetic dataset
Pellerin, L.; Labson, V.F.
2003-01-01
A helicopter electromagnetic (HEM) survey acquired at the U.S. Idaho National Engineering and Environmental Laboratory (INEEL) used a modification of a traditional mining airborne method flown at low levels for detailed characterization of shallow waste sites. The low sensor height, used to increase resolution, invalidates standard assumptions used in processing HEM data. Although the survey design strategy was sound, traditional interpretation techniques, routinely used in industry, proved ineffective. Processed data and apparent resistivity maps were severely distorted, and hence unusable, due to low flight height effects, high magnetic permeability of the basalt host, and the conductive, three-dimensional nature of the waste site targets.To accommodate these interpretation challenges, we modified a one-dimensional inversion routine to include a linear term in the objective function that allows for the magnetic and three-dimensional electromagnetic responses in the in-phase data. Although somewhat ad hoc, the use of this term in the inverse routine, referred to as the shift factor, was successful in defining the waste sites and reducing noise due to the low flight height and magnetic characteristics of the host rock. Many inversion scenarios were applied to the data and careful analysis was necessary to determine the parameters appropriate for interpretation, hence the approach was empirical. Data from three areas were processed with this scheme to highlight different interpretational aspects of the method. Wastes sites were delineated with the shift terms in two of the areas, allowing for separation of the anthropomorphic targets from the natural one-dimensional host. In the third area, the estimated resistivity and the shift factor were used for geological mapping. The high magnetic content of the native soil enabled the mapping of disturbed soil with the shift term. Published by Elsevier Science B.V.
Electromagnetic radiation from beam-plasma instabilities
NASA Technical Reports Server (NTRS)
Pritchett, P. L.; Dawson, J. M.
1983-01-01
A computer simulation is developed for the generation of electromagnetic radiation in an electron beam-plasma interaction. The plasma is treated as a two-dimensional finite system, and effects of a continuous nonrelativistic beam input are accounted for. Three momentum and three field components are included in the simulation, and an external magnetic field is excluded. EM radiation generation is possible through interaction among Langmuir oscillations, ion-acoustic waves, and the electromagnetic wave, producing radiation perpendicular to the beam. The radiation is located near the plasma frequency, and polarized with the E component parallel to the beam. The scattering of Langmuir waves caused by ion-acoustic fluctuations generates the radiation. Comparison with laboratory data for the three-wave interactions shows good agreement in terms of the radiation levels produced, which are small relative to the plasma thermal energy.
Coherent hybrid electromagnetic field imaging
Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM
2008-08-26
An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.
NASA Astrophysics Data System (ADS)
Carozzi, T. D.; Woan, G.
2009-05-01
We derive a generalized van Cittert-Zernike (vC-Z) theorem for radio astronomy that is valid for partially polarized sources over an arbitrarily wide field of view (FoV). The classical vC-Z theorem is the theoretical foundation of radio astronomical interferometry, and its application is the basis of interferometric imaging. Existing generalized vC-Z theorems in radio astronomy assume, however, either paraxiality (narrow FoV) or scalar (unpolarized) sources. Our theorem uses neither of these assumptions, which are seldom fulfiled in practice in radio astronomy, and treats the full electromagnetic field. To handle wide, partially polarized fields, we extend the two-dimensional (2D) electric field (Jones vector) formalism of the standard `Measurement Equation' (ME) of radio astronomical interferometry to the full three-dimensional (3D) formalism developed in optical coherence theory. The resulting vC-Z theorem enables full-sky imaging in a single telescope pointing, and imaging based not only on standard dual-polarized interferometers (that measure 2D electric fields) but also electric tripoles and electromagnetic vector-sensor interferometers. We show that the standard 2D ME is easily obtained from our formalism in the case of dual-polarized antenna element interferometers. We also exploit an extended 2D ME to determine that dual-polarized interferometers can have polarimetric aberrations at the edges of a wide FoV. Our vC-Z theorem is particularly relevant to proposed, and recently developed, wide FoV interferometers such as Low Frequency Array (LOFAR) and Square Kilometer Array (SKA), for which direction-dependent effects will be important.
Design and fabrication of planar structures with graded electromagnetic properties
NASA Astrophysics Data System (ADS)
Good, Brandon Lowell
Successfully integrating electromagnetic properties in planar structures offers numerous benefits to the microwave and optical communities. This work aims at formulating new analytic and optimized design methods, creating new fabrication techniques for achieving those methods, and matching appropriate implementation of methods to fabrication techniques. The analytic method consists of modifying an approach that realizes perfect antireflective properties from graded profiles. This method is shown for all-dielectric and magneto-dielectric grading profiles. The optimized design methods are applied to transformer (discrete) or taper (continuous) designs. From these methods, a subtractive and an additive manufacturing technique were established and are described. The additive method, dry powder dot deposition, enables three dimensional varying electromagnetic properties in a structural composite. Combining the methods and fabrication is shown in two applied methodologies. The first uses dry powder dot deposition to design one dimensionally graded electromagnetic profiles in a planar fiberglass composite. The second method simultaneously applies antireflective properties and adjusts directivity through a slab through the use of subwavelength structures to achieve a flat antireflective lens. The end result of this work is a complete set of methods, formulations, and fabrication techniques to achieve integrated electromagnetic properties in planar structures.
NASA Astrophysics Data System (ADS)
Liu, Changsheng; Lin, Jun; Zhou, Fengdao; Hu, Ruihua; Sun, Caitang
2013-12-01
The frequency-domain controlled-source electromagnetic method (FDCSEM) has played an important role in the terrestrial and oceanic exploration. However, the measuring manners and the detecting abilities in two kinds of environment are much different. This paper analyses the electromagnetic theories of the FDCSEM exploration on land and in ocean, simulates the electromagnetic responses in the two cases based on a united physical and mathematical model, and studies the physical mechanism leading to these differences. In this study, the relationship between the propagation paths and the detecting ability is illuminated and the way to improve the detecting ability of FDCSEM is brought forward. In terrestrial exploration, FDCSEM widely adopts the measuring manner of controlled-source audio-frequency magnetotelluric method (CSAMT), which records the electromagnetic fields in the far zone in the broadside direction of an electric dipole source. This manner utilizes the airwave (i.e. the Earth surface wave) and takes the stratum wave as interference. It is sensitive to the conductive target but insensitive to the resistive one. In oceanic exploration, FDCSEM usually adopts the measuring manner of marine controlled-source electromagnetic method (MCSEM), which records the electromagnetic fields, commonly the horizontal electric fields, in the in-line direction of the electric dipole source. This manner utilizes the stratum wave (i.e. the seafloor wave and the guided wave in resistive targets) and takes the airwave as interference. It is sensitive to the resistive target but relatively insensitive to the conductive one. The numerical simulation shows that both the airwave and the stratum wave contribute to the FDCSEM exploration. United utilization of them will enhance the anomalies of targets and congregate the advantages of CSAMT and MCSEM theories. At different azimuth and different offset, the contribution of the airwave and the stratum wave to electromagnetic anomaly is different. Observation at moderate offset in the in-line direction is the best choice for the exploration of resistive targets, no matter the environment is land or shallow sea. It is also the best choice for the exploration of conductive targets in terrestrial environment. As for the conductive targets in shallow sea, observation at moderate offset in the broadside direction is better. Synthetic and felicitous utilization of the airwave and the stratum wave will optimize the performance of FDCSEM.
Hilz, Florian M; Ahrens, Philipp; Grad, Sibylle; Stoddart, Martin J; Dahmani, Chiheb; Wilken, Frauke L; Sauerschnig, Martin; Niemeyer, Philipp; Zwingmann, Jörn; Burgkart, Rainer; von Eisenhart-Rothe, Rüdiger; Südkamp, Norbert P; Weyh, Thomas; Imhoff, Andreas B; Alini, Mauro; Salzmann, Gian M
2014-02-01
Articular cartilage, once damaged, has very low regenerative potential. Various experimental approaches have been conducted to enhance chondrogenesis and cartilage maturation. Among those, non-invasive electromagnetic fields have shown their beneficial influence for cartilage regeneration and are widely used for the treatment of non-unions, fractures, avascular necrosis and osteoarthritis. One very well accepted way to promote cartilage maturation is physical stimulation through bioreactors. The aim of this study was the investigation of combined mechanical and electromagnetic stress affecting cartilage cells in vitro. Primary articular chondrocytes from bovine fetlock joints were seeded into three-dimensional (3-D) polyurethane scaffolds and distributed into seven stimulated experimental groups. They either underwent mechanical or electromagnetic stimulation (sinusoidal electromagnetic field of 1 mT, 2 mT, or 3 mT; 60 Hz) or both within a joint-specific bioreactor and a coil system. The scaffold-cell constructs were analyzed for glycosaminoglycan (GAG) and DNA content, histology, and gene expression of collagen-1, collagen-2, aggrecan, cartilage oligomeric matrix protein (COMP), Sox9, proteoglycan-4 (PRG-4), and matrix metalloproteinases (MMP-3 and -13). There were statistically significant differences in GAG/DNA content between the stimulated versus the control group with highest levels in the combined stimulation group. Gene expression was significantly higher for combined stimulation groups versus static control for collagen 2/collagen 1 ratio and lower for MMP-13. Amongst other genes, a more chondrogenic phenotype was noticed in expression patterns for the stimulated groups. To conclude, there is an effect of electromagnetic and mechanical stimulation on chondrocytes seeded in a 3-D scaffold, resulting in improved extracellular matrix production. © 2013 Wiley Periodicals, Inc.
[Localization of attention related cortical structures by evoked potentials].
Szelenberger, W
2000-01-01
Attention is an ambiguous concept, difficult to direct implementation in neurophysiological studies. The paper presents application of the Continuous Attention Test (CAT) items as stimuli in event related potential (ERP) studies on attention. Stimuli with high demand of attention result in enlarged N1 component in occipital derivations. Spatial analysis revealed increased positivity in frontal derivations. Three-dimensional image of cortical current density by means of Low Resolution Electromagnetic Tomography (LORETA) revealed sources of N1 component in occipital, parietal and postero-temporal derivations with the maximal current value at 17 Brodmann area. After target stimuli increase of current density in frontal derivations was observed, with the maximal value in the left 9 Brodmann area.
On the use of multi-dimensional scaling and electromagnetic tracking in high dose rate brachytherapy
NASA Astrophysics Data System (ADS)
Götz, Th I.; Ermer, M.; Salas-González, D.; Kellermeier, M.; Strnad, V.; Bert, Ch; Hensel, B.; Tomé, A. M.; Lang, E. W.
2017-10-01
High dose rate brachytherapy affords a frequent reassurance of the precise dwell positions of the radiation source. The current investigation proposes a multi-dimensional scaling transformation of both data sets to estimate dwell positions without any external reference. Furthermore, the related distributions of dwell positions are characterized by uni—or bi—modal heavy—tailed distributions. The latter are well represented by α—stable distributions. The newly proposed data analysis provides dwell position deviations with high accuracy, and, furthermore, offers a convenient visualization of the actual shapes of the catheters which guide the radiation source during the treatment.
Real-time wideband cylindrical holographic surveillance system
Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.; Severtsen, Ronald H.
1999-01-01
A wideband holographic cylindrical surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply Fast Fourier Transforms and obtain a three dimensional cylindrical image.
Real-time wideband holographic surveillance system
Sheen, David M.; Collins, H. Dale; Hall, Thomas E.; McMakin, Douglas L.; Gribble, R. Parks; Severtsen, Ronald H.; Prince, James M.; Reid, Larry D.
1996-01-01
A wideband holographic surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply a three dimensional backward wave algorithm.
Real-time wideband holographic surveillance system
Sheen, D.M.; Collins, H.D.; Hall, T.E.; McMakin, D.L.; Gribble, R.P.; Severtsen, R.H.; Prince, J.M.; Reid, L.D.
1996-09-17
A wideband holographic surveillance system including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply a three dimensional backward wave algorithm. 28 figs.
NASA Astrophysics Data System (ADS)
Chen, Kai; Wei, Wen-Bo; Deng, Ming; Wu, Zhong-Liang; Yu, Gang
2015-09-01
In planning and executing marine controlled-source electromagnetic methods, seafloor electromagnetic receivers must overcome the problems of noise, clock drift, and power consumption. To design a receiver that performs well and overcomes the abovementioned problems, we performed forward modeling of the E-field abnormal response and established the receiver's characteristics. We describe the design optimization and the properties of each component, that is, low-noise induction coil sensor, low-noise Ag/AgCl electrode, low-noise chopper amplifier, digital temperature-compensated crystal oscillator module, acoustic telemetry modem, and burn wire system. Finally, we discuss the results of onshore and offshore field tests to show the effectiveness of the developed seafloor electromagnetic receiver and its performance: typical E-field noise of 0.12 nV/m/rt(Hz) at 0.5 Hz, dynamic range higher than 120 dB, clock drift lower than 1 ms/day, and continuous operation of at least 21 days.
Projectile and Lab Frame Differential Cross Sections for Electromagnetic Dissociation
NASA Technical Reports Server (NTRS)
Norbury, John W.; Adamczyk, Anne; Dick, Frank
2008-01-01
Differential cross sections for electromagnetic dissociation in nuclear collisions are calculated for the first time. In order to be useful for three - dimensional transport codes, these cross sections have been calculated in both the projectile and lab frames. The formulas for these cross sections are such that they can be immediately used in space radiation transport codes. Only a limited amount of data exists, but the comparison between theory and experiment is good.
On the Locality of Transient Electromagnetic Soundings with a Single-Loop Configuration
NASA Astrophysics Data System (ADS)
Barsukov, P. O.; Fainberg, E. B.
2018-03-01
The possibilities of reconstructing two-dimensional (2D) cross sections based on the data of the profile soundings by the transient electromagnetic method (TEM) with a single ungrounded loop are illustrated on three-dimensional (3D) models. The process of reconstruction includes three main steps: transformation of the responses in the depth dependence of resistivity ρ(h) measured along the profile, with their subsequent stitching into the 2D pseudo section; point-by-point one-dimensional (1D) inversion of the responses with the starting model constructed based on the transformations; and correction of the 2D cross section with the use of 2.5-dimensional (2.5D) block inversion. It is shown that single-loop TEM soundings allow studying the geological media within a local domain the lateral dimensions of which are commensurate with the depth of the investigation. The structure of the medium beyond this domain insignificantly affects the sounding results. This locality enables the TEM to reconstruct the geoelectrical structure of the medium from the 2D cross sections with the minimal distortions caused by the lack of information beyond the profile of the transient response measurements.
NASA Astrophysics Data System (ADS)
Han, Q.; Hu, X.; Cai, J.; Wei, W.
2016-12-01
Xinzhou geothermal field is located in the Guangdong province and adjacent to the China South Sea, and its hot springs can reach up to 92 degree Celsius. Yanshanian granite expose widely in the south of this geothermal field and four faults cut across each other over it. A dense grid of 176 magnetotelluric (MT) sites with broadband has been acquired over the Xinzhou geothermal field and its surrounding area. Due to the related electromagnetic (EM) noise one permanent observatory was placed as a remote reference to suppress this cultural EM noise interference. The datasets are processed using the mutual reference technique, static shift correction, and structural strike and dimensionality analysis based on tensor decomposition. Data analysis reveals that the underground conductivity structure has obvious three-dimensional characterization. For the high resolution result ,two and three dimensional inversion are both applied in this area employing the non-linear conjugate gradient method (NLCG).These MT data sets are supposed to detect the deep subsurface resistivity structure correlated to the distribution of geothermal reservoir (such as faults and fractured granite) and investigate the channel of the upwelling magma. The whole and cold granite usually present high resistivity but once it functions as reservoir the resistivity will decrease, sometimes it is hard to separate the reservoir from the cap layer. The 3D inversion results delineate three high resistivity anomalies distributed in different locations. At last we put forward that the large areas of granite form the major thermal source for the study area and discuss whether any melt under these magma intrusions exists.
Numerical analysis of a fluidic oscillator
NASA Astrophysics Data System (ADS)
Hoettges, Stefan; Schenkel, Torsten; Oertel, Herbert
2010-11-01
The technology of fluid logic or fluidic has its origins in 1959 when scientists were looking for alternatives to electronics to realize measuring or automatic control tasks. In recent years interest in fluidic components has been renewed. Possible applications of fluidic oscillators have been tested in flow control, to reduce or eliminate separation regions, to avoid resonance noise in the flow past cavities, to improve combustion processes or for efficient cooling of turbine blades or electronic components. The oscillatory motion of the jet is achieved only by suitable shaping of the nozzle geometry and fluid-dynamic interactions, hence no moving components or external sources of energy are necessary. Therefore fluidic oscillators can be used in extreme environmental conditions, such as high temperatures, aggressive media or within electromagnetic fields. In the present study the working principle of the fluidic oscillator has been identified using three-dimensional unsteady RANS simulations and stability analysis. The numerical models used have been validated successfully against experimental data. Furthermore the effects of changes in inlet velocity, geometry and working fluid on the oscillation frequency have been investigated. Based on the results a new dimensionless number has been derived in order to characterize the unsteady behavior of the fluidic oscillator.
Three-dimensional liquid flattened Luneburg lens with ultra-wide viewing angle and frequency band
NASA Astrophysics Data System (ADS)
Wu, Lingling; Tian, Xiaoyong; Yin, Ming; Li, Dichen; Tang, Yiping
2013-08-01
Traditional Luneburg lens is a dielectric spherical antenna. It can focus the incoming collimated electromagnetic waves on its spherical surface, which causes the incompatibility with the planar feeding and receiving devices. Furthermore, the difficulties in the fabrication process also limited its applications. In this paper, a three-dimensional flattened Luneburg lens with a field-of-view angle up to 180° has been realized based on a liquid medium approach and a 3D-printing process. The fabricated three-dimensional lens showed a broadband transmission characteristic from 12.4 GHz to 18 GHz. The performance of the proposed lens was demonstrated by simulation and experimental results.
The R.I. Pimenov unified gravitation and electromagnetism field theory as semi-Riemannian geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gromov, N. A., E-mail: gromov@dm.komisc.r
2009-05-15
More than forty years ago R.I. Pimenov introduced a new geometry-semi-Riemannian one-as a set of geometrical objects consistent with a fibering pr: M{sub n} {yields} M{sub m}. He suggested the heuristic principle according to which the physically different quantities (meter, second, Coulomb, etc.) are geometrically modelled as space coordinates that are not superposed by automorphisms. As there is only one type of coordinates in Riemannian geometry and only three types of coordinates in pseudo-Riemannian one, a multiple-fibered semi-Riemannian geometry is the most appropriate one for the treatment of more than three different physical quantities as unified geometrical field theory. Semi-Euclideanmore » geometry {sup 3}R{sub 5}{sup 4} with 1-dimensional fiber x{sup 5} and 4-dimensional Minkowski space-time as a base is naturally interpreted as classical electrodynamics. Semi-Riemannian geometry {sup 3}V{sub 5}{sup 4} with the general relativity pseudo-Riemannian space-time {sup 3}V{sub 4}, and 1-dimensional fiber x{sup 5}, responsible for the electromagnetism, provides the unified field theory of gravitation and electromagnetism. Unlike Kaluza-Klein theories, where the fifth coordinate appears in nondegenerate Riemannian or pseudo-Riemannian geometry, the theory based on semi-Riemannian geometry is free from defects of the former. In particular, scalar field does not arise.« less
NASA Astrophysics Data System (ADS)
Jamil, Rabia; Ali, Abu Bakar; Abbas, Muqaddar; Badshah, Fazal; Qamar, Sajid
2017-08-01
The Hartman effect is revisited using a Gaussian beam incident on a one-dimensional photonic crystal (1DPC) having a defect layer doped with four-level atoms. It is considered that each atom of the defect layer interacts with three driving fields, whereas a Gaussian beam of width w is used as a probe light to study Hartman effect. The atom-field interaction inside the defect layer exhibits electromagnetically induced transparency (EIT). The 1DPC acts as positive index material (PIM) and negative index material (NIM) corresponding to the normal and anomalous dispersion of the defect layer, respectively, via control of the phase associated with the driving fields and probe detuning. The positive and negative Hartman effects are noticed for PIM and NIM, respectively, via control of the relative phase corresponding to the driving fields and probe detuning. The advantage of using four-level EIT system is that a much smaller absorption of the transmitted beam occurs as compared to three-level EIT system corresponding to the anomalous dispersion, leading to negative Hartman effect.
Nagaoka, Tomoaki; Watanabe, Soichi
2012-01-01
Electromagnetic simulation with anatomically realistic computational human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the computational human model, we adapt three-dimensional FDTD code to a multi-GPU cluster environment with Compute Unified Device Architecture and Message Passing Interface. Our multi-GPU cluster system consists of three nodes. The seven GPU boards (NVIDIA Tesla C2070) are mounted on each node. We examined the performance of the FDTD calculation on multi-GPU cluster environment. We confirmed that the FDTD calculation on the multi-GPU clusters is faster than that on a multi-GPU (a single workstation), and we also found that the GPU cluster system calculate faster than a vector supercomputer. In addition, our GPU cluster system allowed us to perform the large-scale FDTD calculation because were able to use GPU memory of over 100 GB.
Vibration control of multiferroic fibrous composite plates using active constrained layer damping
NASA Astrophysics Data System (ADS)
Kattimani, S. C.; Ray, M. C.
2018-06-01
Geometrically nonlinear vibration control of fiber reinforced magneto-electro-elastic or multiferroic fibrous composite plates using active constrained layer damping treatment has been investigated. The piezoelectric (BaTiO3) fibers are embedded in the magnetostrictive (CoFe2O4) matrix forming magneto-electro-elastic or multiferroic smart composite. A three-dimensional finite element model of such fiber reinforced magneto-electro-elastic plates integrated with the active constrained layer damping patches is developed. Influence of electro-elastic, magneto-elastic and electromagnetic coupled fields on the vibration has been studied. The Golla-Hughes-McTavish method in time domain is employed for modeling a constrained viscoelastic layer of the active constrained layer damping treatment. The von Kármán type nonlinear strain-displacement relations are incorporated for developing a three-dimensional finite element model. Effect of fiber volume fraction, fiber orientation and boundary conditions on the control of geometrically nonlinear vibration of the fiber reinforced magneto-electro-elastic plates is investigated. The performance of the active constrained layer damping treatment due to the variation of piezoelectric fiber orientation angle in the 1-3 Piezoelectric constraining layer of the active constrained layer damping treatment has also been emphasized.
Directional Statistics for Polarization Observations of Individual Pulses from Radio Pulsars
NASA Astrophysics Data System (ADS)
McKinnon, M. M.
2010-10-01
Radio polarimetry is a three-dimensional statistical problem. The three-dimensional aspect of the problem arises from the Stokes parameters Q, U, and V, which completely describe the polarization of electromagnetic radiation and conceptually define the orientation of a polarization vector in the Poincaré sphere. The statistical aspect of the problem arises from the random fluctuations in the source-intrinsic polarization and the instrumental noise. A simple model for the polarization of pulsar radio emission has been used to derive the three-dimensional statistics of radio polarimetry. The model is based upon the proposition that the observed polarization is due to the incoherent superposition of two, highly polarized, orthogonal modes. The directional statistics derived from the model follow the Bingham-Mardia and Fisher family of distributions. The model assumptions are supported by the qualitative agreement between the statistics derived from it and those measured with polarization observations of the individual pulses from pulsars. The orthogonal modes are thought to be the natural modes of radio wave propagation in the pulsar magnetosphere. The intensities of the modes become statistically independent when generalized Faraday rotation (GFR) in the magnetosphere causes the difference in their phases to be large. A stochastic version of GFR occurs when fluctuations in the phase difference are also large, and may be responsible for the more complicated polarization patterns observed in pulsar radio emission.
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.
1995-01-01
The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier-Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic- source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in at-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.
Efficient Inversion of Mult-frequency and Multi-Source Electromagnetic Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gary D. Egbert
2007-03-22
The project covered by this report focused on development of efficient but robust non-linear inversion algorithms for electromagnetic induction data, in particular for data collected with multiple receivers, and multiple transmitters, a situation extremely common in eophysical EM subsurface imaging methods. A key observation is that for such multi-transmitter problems each step in commonly used linearized iterative limited memory search schemes such as conjugate gradients (CG) requires solution of forward and adjoint EM problems for each of the N frequencies or sources, essentially generating data sensitivities for an N dimensional data-subspace. These multiple sensitivities allow a good approximation to themore » full Jacobian of the data mapping to be built up in many fewer search steps than would be required by application of textbook optimization methods, which take no account of the multiplicity of forward problems that must be solved for each search step. We have applied this idea to a develop a hybrid inversion scheme that combines features of the iterative limited memory type methods with a Newton-type approach using a partial calculation of the Jacobian. Initial tests on 2D problems show that the new approach produces results essentially identical to a Newton type Occam minimum structure inversion, while running more rapidly than an iterative (fixed regularization parameter) CG style inversion. Memory requirements, while greater than for something like CG, are modest enough that even in 3D the scheme should allow 3D inverse problems to be solved on a common desktop PC, at least for modest (~ 100 sites, 15-20 frequencies) data sets. A secondary focus of the research has been development of a modular system for EM inversion, using an object oriented approach. This system has proven useful for more rapid prototyping of inversion algorithms, in particular allowing initial development and testing to be conducted with two-dimensional example problems, before approaching more computationally cumbersome three-dimensional problems.« less
Near field interaction of microwave signals with a bounded plasma plume
NASA Technical Reports Server (NTRS)
Ling, Hao; Hallock, Gary A.; Kim, Hyeongdong; Birkner, Bjorn
1991-01-01
The objective was to study the effect of the arcjet thruster plume on the performance of an onboard satellite reflector antenna. A project summary is presented along with sections on plasma and electromagnetic modeling. The plasma modeling section includes the following topics: wave propagation; plasma analysis; plume electron density model; and the proposed experimental program. The section on electromagnetic modeling includes new developments in ray modeling and the validation of three dimensional ray results.
Synthesis of resistive tapers to control scattering patterns of strips
NASA Astrophysics Data System (ADS)
Haupt, Randy L.
Scattering occurs when an electromagnetic wave impinges on an object and creates currents in that object which reradiate other electromagnetic waves. Three primary methods exist to reduce microwave scattering from an object: covering it with absorber, changing its shape, and detuning it through impedance loading. Absorbers convert unwanted electromagnetic energy into heat. An example is lining an anechoic chamber with absorbers. Changing its shape channels energy from one direction to another, changes dominant scattering centers, or causes returns from one direction to another, changes dominant scattering centers, or causes returns from various parts to coherently add and cancel the total return. Impedance loading alters the resonant frequency of an object. Absorbers have the most attractive features. They have a broad bandwidth, attenuate the return in many directions, and may be used to reduce scattering from an object after the object is designed. Before trying to control scattering from complex shapes, such as an antenna or airplane, one should try to develop methods to control scattering from simple objects. A very simple object is two dimensional strip. It is infinitely thin, has a finite width, and an infinite length. The scattering pattern of the strip depends upon its width and material composition. Varying these two factors provides a means for controlling the radar cross-section (RCS) of the strip. The goal of this thesis is to synthesize resistive tapers for the strip that produce desired bistatic scattering and backscattering patterns.
Research on radiation characteristic of plasma antenna through FDTD method.
Zhou, Jianming; Fang, Jingjing; Lu, Qiuyuan; Liu, Fan
2014-01-01
The radiation characteristic of plasma antenna is investigated by using the finite-difference time-domain (FDTD) approach in this paper. Through using FDTD method, we study the propagation of electromagnetic wave in free space in stretched coordinate. And the iterative equations of Maxwell equation are derived. In order to validate the correctness of this method, we simulate the process of electromagnetic wave propagating in free space. Results show that electromagnetic wave spreads out around the signal source and can be absorbed by the perfectly matched layer (PML). Otherwise, we study the propagation of electromagnetic wave in plasma by using the Boltzmann-Maxwell theory. In order to verify this theory, the whole process of electromagnetic wave propagating in plasma under one-dimension case is simulated. Results show that Boltzmann-Maxwell theory can be used to explain the phenomenon of electromagnetic wave propagating in plasma. Finally, the two-dimensional simulation model of plasma antenna is established under the cylindrical coordinate. And the near-field and far-field radiation pattern of plasma antenna are obtained. The experiments show that the variation of electron density can introduce the change of radiation characteristic.
[Organization of monitoring of electromagnetic radiation in the urban environment].
Savel'ev, S I; Dvoeglazova, S V; Koz'min, V A; Kochkin, D E; Begishev, M R
2008-01-01
The authors describe new current approaches to monitoring the environment, including the sources of electromagnetic radiation and noise. Electronic maps of the area under study are shown to be made, by constructing the isolines or distributing the actual levels of controlled factors. These current approaches to electromagnetic and acoustic monitoring make it possible to automate a process of measurements, to analyze the established situation, and to simplify the risk controlling methodology.
Lu, Haibao; Huang, Wei Min; Liang, Fei; Yu, Kai
2013-01-01
In the last few years, we have witnessed significant progress in developing high performance shape memory polymer (SMP) nanocomposites, in particular, for shape recovery activated by indirect heating in the presence of electricity, magnetism, light, radio frequency, microwave and radiation, etc. In this paper, we critically review recent findings in Joule heating of SMP nanocomposites incorporated with nanosized conductive electromagnetic particles by means of nanoscale control via applying an electro- and/or magnetic field. A few different nanoscale design principles to form one-/two-/three- dimensional conductive networks are discussed. PMID:28788303
Controlling the plasmonic surface waves of metallic nanowires by transformation optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yichao; Yuan, Jun; Yin, Ge
2015-07-06
In this letter, we introduce the technique of using transformation optics to manipulate the mode states of surface plasmonic waves of metallic nanowire waveguides. As examples we apply this technique to design two optical components: a three-dimensional (3D) electromagnetic mode rotator and a mode convertor. The rotator can rotate the polarization state of the surface wave around plasmonic nanowires by arbitrarily desired angles, and the convertor can transform the surface wave modes from one to another. Full-wave simulation is performed to verify the design and efficiency of our devices. Their potential application in photonic circuits is envisioned.
A GPU-based calculation using the three-dimensional FDTD method for electromagnetic field analysis.
Nagaoka, Tomoaki; Watanabe, Soichi
2010-01-01
Numerical simulations with the numerical human model using the finite-difference time domain (FDTD) method have recently been performed frequently in a number of fields in biomedical engineering. However, the FDTD calculation runs too slowly. We focus, therefore, on general purpose programming on the graphics processing unit (GPGPU). The three-dimensional FDTD method was implemented on the GPU using Compute Unified Device Architecture (CUDA). In this study, we used the NVIDIA Tesla C1060 as a GPGPU board. The performance of the GPU is evaluated in comparison with the performance of a conventional CPU and a vector supercomputer. The results indicate that three-dimensional FDTD calculations using a GPU can significantly reduce run time in comparison with that using a conventional CPU, even a native GPU implementation of the three-dimensional FDTD method, while the GPU/CPU speed ratio varies with the calculation domain and thread block size.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beskardes, G. D.; Weiss, Chester J.; Everett, M. E.
Electromagnetic responses reflect the interaction between applied electromagnetic fields and heterogeneous geoelectrical structures. Here by quantifying the relationship between multi-scale electrical properties and the observed electromagnetic response is therefore important for meaningful geologic interpretation. Furthermore, we present here examples of near-surface electromagnetic responses whose spatial fluctuations appear on all length scales, are repeatable and fractally distributed, suggesting that the spatial fluctuations may be considered as “geologic noise”.
Beskardes, G. D.; Weiss, Chester J.; Everett, M. E.
2016-11-30
Electromagnetic responses reflect the interaction between applied electromagnetic fields and heterogeneous geoelectrical structures. Here by quantifying the relationship between multi-scale electrical properties and the observed electromagnetic response is therefore important for meaningful geologic interpretation. Furthermore, we present here examples of near-surface electromagnetic responses whose spatial fluctuations appear on all length scales, are repeatable and fractally distributed, suggesting that the spatial fluctuations may be considered as “geologic noise”.
Half-Cell RF Gun Simulations with the Electromagnetic Particle-in-Cell Code VORPAL
NASA Astrophysics Data System (ADS)
Paul, K.; Dimitrov, D. A.; Busby, R.; Bruhwiler, D. L.; Smithe, D.; Cary, J. R.; Kewisch, J.; Kayran, D.; Calaga, R.; Ben-Zvi, I.
2009-01-01
We have simulated Brookhaven National Laboratory's half-cell superconducting RF gun design for a proposed high-current ERL using the three-dimensional, electromagnetic particle-in-cell code VORPAL. VORPAL computes the fully self-consistent electromagnetic fields produced by the electron bunches, meaning that it accurately models space-charge effects as well as bunch-to-bunch beam loading effects and the effects of higher-order cavity modes, though these are beyond the scope of this paper. We compare results from VORPAL to the well-established space-charge code PARMELA, using RF fields produced by SUPERFISH, as a benchmarking exercise in which the two codes should agree well.
Real-time wideband cylindrical holographic surveillance system
Sheen, D.M.; McMakin, D.L.; Hall, T.E.; Severtsen, R.H.
1999-01-12
A wideband holographic cylindrical surveillance system is disclosed including a transceiver for generating a plurality of electromagnetic waves; antenna for transmitting the electromagnetic waves toward a target at a plurality of predetermined positions in space; the transceiver also receiving and converting electromagnetic waves reflected from the target to electrical signals at a plurality of predetermined positions in space; a computer for processing the electrical signals to obtain signals corresponding to a holographic reconstruction of the target; and a display for displaying the processed information to determine nature of the target. The computer has instructions to apply Fast Fourier Transforms and obtain a three dimensional cylindrical image. 13 figs.
NASA Astrophysics Data System (ADS)
Newman, Gregory A.; Commer, Michael
2009-07-01
Three-dimensional (3D) geophysical imaging is now receiving considerable attention for electrical conductivity mapping of potential offshore oil and gas reservoirs. The imaging technology employs controlled source electromagnetic (CSEM) and magnetotelluric (MT) fields and treats geological media exhibiting transverse anisotropy. Moreover when combined with established seismic methods, direct imaging of reservoir fluids is possible. Because of the size of the 3D conductivity imaging problem, strategies are required exploiting computational parallelism and optimal meshing. The algorithm thus developed has been shown to scale to tens of thousands of processors. In one imaging experiment, 32,768 tasks/processors on the IBM Watson Research Blue Gene/L supercomputer were successfully utilized. Over a 24 hour period we were able to image a large scale field data set that previously required over four months of processing time on distributed clusters based on Intel or AMD processors utilizing 1024 tasks on an InfiniBand fabric. Electrical conductivity imaging using massively parallel computational resources produces results that cannot be obtained otherwise and are consistent with timeframes required for practical exploration problems.
Aydmer, A.A.; Chew, W.C.; Cui, T.J.; Wright, D.L.; Smith, D.V.; Abraham, J.D.
2001-01-01
A simple and efficient method for large scale three-dimensional (3-D) subsurface imaging of inhomogeneous background is presented. One-dimensional (1-D) multifrequency distorted Born iterative method (DBIM) is employed in the inversion. Simulation results utilizing synthetic scattering data are given. Calibration of the very early time electromagnetic (VETEM) experimental waveforms is detailed along with major problems encountered in practice and their solutions. This discussion is followed by the results of a large scale application of the method to the experimental data provided by the VETEM system of the U.S. Geological Survey. The method is shown to have a computational complexity that is promising for on-site inversion.
Three-dimensional inversion of multisource array electromagnetic data
NASA Astrophysics Data System (ADS)
Tartaras, Efthimios
Three-dimensional (3-D) inversion is increasingly important for the correct interpretation of geophysical data sets in complex environments. To this effect, several approximate solutions have been developed that allow the construction of relatively fast inversion schemes. One such method that is fast and provides satisfactory accuracy is the quasi-linear (QL) approximation. It has, however, the drawback that it is source-dependent and, therefore, impractical in situations where multiple transmitters in different positions are employed. I have, therefore, developed a localized form of the QL approximation that is source-independent. This so-called localized quasi-linear (LQL) approximation can have a scalar, a diagonal, or a full tensor form. Numerical examples of its comparison with the full integral equation solution, the Born approximation, and the original QL approximation are given. The objective behind developing this approximation is to use it in a fast 3-D inversion scheme appropriate for multisource array data such as those collected in airborne surveys, cross-well logging, and other similar geophysical applications. I have developed such an inversion scheme using the scalar and diagonal LQL approximation. It reduces the original nonlinear inverse electromagnetic (EM) problem to three linear inverse problems. The first of these problems is solved using a weighted regularized linear conjugate gradient method, whereas the last two are solved in the least squares sense. The algorithm I developed provides the option of obtaining either smooth or focused inversion images. I have applied the 3-D LQL inversion to synthetic 3-D EM data that simulate a helicopter-borne survey over different earth models. The results demonstrate the stability and efficiency of the method and show that the LQL approximation can be a practical solution to the problem of 3-D inversion of multisource array frequency-domain EM data. I have also applied the method to helicopter-borne EM data collected by INCO Exploration over the Voisey's Bay area in Labrador, Canada. The results of the 3-D inversion successfully delineate the shallow massive sulfides and show that the method can produce reasonable results even in areas of complex geology and large resistivity contrasts.
Safari, Mahdi; Mosleminiya, Navid; Abdolali, Ali
2017-10-01
Since the development of communication devices and expansion of their applications, there have been concerns about their harmful health effects. The main aim of this study was to investigate laptop thermal effects caused by exposure to electromagnetic fields and thermal sources simultaneously; propose a nondestructive, replicable process that is less expensive than clinical measurements; and to study the effects of positioning any new device near the human body in steady state conditions to ensure safety by U.S. and European standard thresholds. A computer simulation was designed to obtain laptop heat flux from SolidWorks flow simulation. Increase in body temperature due to heat flux was calculated, and antenna radiation was calculated using Computer Simulation Technology (CST) Microwave Studio software. Steady state temperature and specific absorption rate (SAR) distribution in user's body, and heat flux beneath the laptop, were obtained from simulations. The laptop in its high performance mode caused 420 (W/m 2 ) peak two-dimensional heat flux beneath it. The cumulative effect of laptop in high performance mode and 1 W antenna radiation resulted in temperatures of 42.9, 38.1, and 37.2 °C in lap skin, scrotum, and testis, that is, 5.6, 2.1, and 1.4 °C increase in temperature, respectively. Also, 1 W antenna radiation caused 0.37 × 10 -3 and 0.13 × 10 -1 (W/kg) peak three-dimensional SAR at 2.4 and 5 GHz, respectively, which could be ignored in reference to standards and temperature rise due to laptop use. Bioelectromagnetics. 38:550-558, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Ledwidge, Patrick S; Molfese, Dennis L
2016-12-01
This study investigated the effects of a past concussion on electrophysiological indices of attention in college athletes. Forty-four varsity football athletes (22 with at least one past concussion) participated in three neuropsychological tests and a two-tone auditory oddball task while undergoing high-density event-related potential (ERP) recording. Athletes previously diagnosed with a concussion experienced their most recent injury approximately 4 years before testing. Previously concussed and control athletes performed equivalently on three neuropsychological tests. Behavioral accuracy and reaction times on the oddball task were also equivalent across groups. However, athletes with a concussion history exhibited significantly larger N2 and P3b amplitudes and longer P3b latencies. Source localization using standardized low-resolution brain electromagnetic tomography indicated that athletes with a history of concussion generated larger electrical current density in the left inferior parietal gyrus compared to control athletes. These findings support the hypothesis that individuals with a past concussion recruit compensatory neural resources in order to meet executive functioning demands. High-density ERP measures combined with source localization provide an important method to detect long-term neural consequences of concussion in the absence of impaired neuropsychological performance.
Molfese, Dennis L.
2016-01-01
Abstract This study investigated the effects of a past concussion on electrophysiological indices of attention in college athletes. Forty-four varsity football athletes (22 with at least one past concussion) participated in three neuropsychological tests and a two-tone auditory oddball task while undergoing high-density event-related potential (ERP) recording. Athletes previously diagnosed with a concussion experienced their most recent injury approximately 4 years before testing. Previously concussed and control athletes performed equivalently on three neuropsychological tests. Behavioral accuracy and reaction times on the oddball task were also equivalent across groups. However, athletes with a concussion history exhibited significantly larger N2 and P3b amplitudes and longer P3b latencies. Source localization using standardized low-resolution brain electromagnetic tomography indicated that athletes with a history of concussion generated larger electrical current density in the left inferior parietal gyrus compared to control athletes. These findings support the hypothesis that individuals with a past concussion recruit compensatory neural resources in order to meet executive functioning demands. High-density ERP measures combined with source localization provide an important method to detect long-term neural consequences of concussion in the absence of impaired neuropsychological performance. PMID:27025905
Time-Domain Computation Of Electromagnetic Fields In MMICs
NASA Technical Reports Server (NTRS)
Lansing, Faiza S.; Rascoe, Daniel L.
1995-01-01
Maxwell's equations solved on three-dimensional, conformed orthogonal grids by finite-difference techniques. Method of computing frequency-dependent electrical parameters of monolithic microwave integrated circuit (MMIC) involves time-domain computation of propagation of electromagnetic field in response to excitation by single pulse at input terminal, followed by computation of Fourier transforms to obtain frequency-domain response from time-domain response. Parameters computed include electric and magnetic fields, voltages, currents, impedances, scattering parameters, and effective dielectric constants. Powerful and efficient means for analyzing performance of even complicated MMIC.
NASA Astrophysics Data System (ADS)
Kosyakov, B. P.
2014-03-01
A definition of the electromagnetic field can be neatly formulated by recognizing that the simplest form of the four-force is indeed feasible. We show that Maxwell’s equations almost entirely stem from the properties of spacetime, notably from the fact that our world has dimension d = 4. Their complete reconstruction requires three additional assumptions that are seemingly divorced from spacetime properties but which may, in fact, have much to do with their geometry.
Shielding Effectiveness in a Two-Dimensional Reverberation Chamber Using Finite-Element Techniques
NASA Technical Reports Server (NTRS)
Bunting, Charles F.
2006-01-01
Reverberation chambers are attaining an increased importance in determination of electromagnetic susceptibility of avionics equipment. Given the nature of the variable boundary condition, the ability of a given source to couple energy into certain modes and the passband characteristic due the chamber Q, the fields are typically characterized by statistical means. The emphasis of this work is to apply finite-element techniques at cutoff to the analysis of a two-dimensional structure to examine the notion of shielding-effectiveness issues in a reverberating environment. Simulated mechanical stirring will be used to obtain the appropriate statistical field distribution. The shielding effectiveness (SE) in a simulated reverberating environment is compared to measurements in a reverberation chamber. A log-normal distribution for the SE is observed with implications for system designers. The work is intended to provide further refinement in the consideration of SE in a complex electromagnetic environment.
Localization of non-stationary sources of electromagnetic radiation with the aid of phasometry
NASA Technical Reports Server (NTRS)
Mersov, G. A.
1978-01-01
The possibility of localizing sources of electromagnetic radiation by measurement of the time of passage of the radiation or the measurement of its phase at various points of cosmic space, at which are located satellite observatories is examined. Algorithms are proposed for localization using two, three, and four astronomical observatories. The precision of the localization and several partial results of practical significance are deduced.
Double-bundle ACL reconstruction can improve rotational stability.
Yagi, Masayoshi; Kuroda, Ryosuke; Nagamune, Kouki; Yoshiya, Shinichi; Kurosaka, Masahiro
2007-01-01
Double-bundle anterior cruciate ligament (ACL) reconstruction reproduces anteromedial and posterolateral bundles, and thus has theoretical advantages over conventional single-bundle reconstruction in controlling rotational torque in vitro. However, its superiority in clinical practice has not been proven. We analyzed rotational stability with three reconstruction techniques in 60 consecutive patients who were randomly divided into three groups (double-bundle, anteromedial single-bundle, posterolateral single-bundle). In the reconstructive procedure, the hamstring tendon was harvested and used as a free tendon graft. Followup examinations were performed 1 year after surgery. Anteroposterior laxity of the knee was examined with a KT-1000 arthrometer, whereas rotatory instability, as elicited by the pivot shift test, was assessed using a new measurement system incorporating three-dimensional electromagnetic sensors. Routine clinical evaluations, including KT examination, demonstrated no differences among the three groups. However, using the new measurement system, patients with double-bundle ACL reconstruction showed better pivot shift control of complex instability than patients with anteromedial and posterolateral single-bundle reconstruction.
Anderer, P; Saletu, B; Pascual-Marqui, R D
2000-12-04
In a double-blind, placebo-controlled study, the effects of 20 mg buspirone - a 5-HT(1A) partial agonist - on regional electrical generators within the human brain were investigated utilizing three-dimensional EEG tomography. Nineteen-channel vigilance-controlled EEG recordings were carried out in 20 healthy subjects before and 1, 2, 4, 6 and 8 h after drug intake. Low-resolution electromagnetic tomography (LORETA; Key Institute for Brain-Mind Research, software: http://www.keyinst.unizh.ch) was computed from spectrally analyzed EEG data, and differences between drug- and placebo-induced changes were displayed as statistical parametric maps. Data were registered to the Talairach-Tournoux human brain atlas available as a digitized MRI (McConnell Brain Imaging Centre: http://www.bic.mni.mcgill.ca). At the pharmacodynamic peak (1st hour), buspirone increased theta and decreased fast alpha and beta sources. Areas of theta increase were mainly the left temporo-occipito-parietal and left prefrontal cortices, which is consistent with PET studies on buspirone-induced decreases in regional cerebral blood flow and fenfluramine-induced serotonin activation demonstrated by changes in regional cerebral glucose metabolism. In later hours (8th hour) with lower buspirone plasma levels, delta, theta, slow alpha and fast beta decreased, predominantly in the prefrontal and anterior limbic lobe. Whereas the results of the 1st hour speak for a slight CNS sedation (more in the sense of relaxation), those obtained in the 8th hour indicate activation. Thus, LORETA may provide useful and direct information on drug-induced changes in central nervous system function in man.
Geophysical examination of coal deposits
NASA Astrophysics Data System (ADS)
Jackson, L. J.
1981-04-01
Geophysical techniques for the solution of mining problems and as an aid to mine planning are reviewed. Techniques of geophysical borehole logging are discussed. The responses of the coal seams to logging tools are easily recognized on the logging records. Cores for laboratory analysis are cut from selected sections of the borehole. In addition, information about the density and chemical composition of the coal may be obtained. Surface seismic reflection surveys using two dimensional arrays of seismic sources and detectors detect faults with throws as small as 3 m depths of 800 m. In geologically disturbed areas, good results have been obtained from three dimensional surveys. Smaller faults as far as 500 m in advance of the working face may be detected using in seam seismic surveying conducted from a roadway or working face. Small disturbances are detected by pulse radar and continuous wave electromagnetic methods either from within boreholes or from underground. Other geophysical techniques which explicit the electrical, magnetic, gravitational, and geothermal properties of rocks are described.
Growth Stimulation of Biological Cells and Tissue by Electromagnetic Fields and Uses Thereof
NASA Technical Reports Server (NTRS)
Wolf, David A. (Inventor); Goodwin, Thomas J. (Inventor)
2002-01-01
The present invention provides systems for growing two or three dimensional mammalian cells within a culture medium facilitated by an electromagnetic field, and preferably, a time varying electromagnetic field. The cells, and culture medium are contained within a fixed or rotating culture vessel, and the electromagnetic field is emitted from at least one electrode. In one embodiment, the electrode is spaced from the vessel. The invention further provides methods to promote neural tissue regeneration by means of culturing the neural cells in the claimed system. In one embodiment, neuronal cells are grown within longitudinally extending tissue strands extending axially along and within electrodes comprising electrically conductive channels or guides through which a time varying electrical current is conducted, the conductive channels being positioned within a culture medium.
Growth stimulation of biological cells and tissue by electromagnetic fields and uses thereof
NASA Technical Reports Server (NTRS)
Wolf, David A. (Inventor); Goodwin, Thomas J. (Inventor)
2004-01-01
The present invention provides systems for growing two or three dimensional mammalian cells within a culture medium facilitated by an electromagnetic field, and preferably, a time varying electromagnetic field. The cells and culture medium are contained within a fixed or rotating culture vessel, and the electromagnetic field is emitted from at least one electrode. In one embodiment, the electrode is spaced from the vessel. The invention further provides methods to promote neural tissue regeneration by means of culturing the neural cells in the claimed system. In one embodiment, neuronal cells are grown within longitudinally extending tissue strands extending axially along and within electrodes comprising electrically conductive channels or guides through which a time varying electrical current is conducted, the conductive channels being positioned within a culture medium.
Wave-Based Algorithms and Bounds for Target Support Estimation
2015-05-15
vector electromagnetic formalism in [5]. This theory leads to three main variants of the optical theorem detector, in particular, three alternative...further expands the applicability for transient pulse change detection of ar- bitrary nonlinear-media and time-varying targets [9]. This report... electromagnetic methods a new methodology to estimate the minimum convex source region and the (possibly nonconvex) support of a scattering target from knowledge of
Development of Simulated Disturbing Source for Isolation Switch
NASA Astrophysics Data System (ADS)
Cheng, Lin; Liu, Xiang; Deng, Xiaoping; Pan, Zhezhe; Zhou, Hang; Zhu, Yong
2018-01-01
In order to simulate the substation in the actual scene of the harsh electromagnetic environment, and then research on electromagnetic compatibility testing of electronic instrument transformer, On the basis of the original isolation switch as a harassment source of the electronic instrument transformer electromagnetic compatibility test system, an isolated switch simulation source system was developed, to promote the standardization of the original test. In this paper, the circuit breaker is used to control the opening and closing of the gap arc to simulate the operating of isolating switch, and the isolation switch simulation harassment source system is designed accordingly. Comparison with the actual test results of the isolating switch, it is proved that the system can meet the test requirements, and the simulation harassment source system has good stability and high reliability.
Source Physics Experiments at the Nevada Test Site
2010-09-01
not display a currently valid OMB control number. 1. REPORT DATE SEP 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND...seismograms through three-dimensional models of the earth will move monitoring science into a physics- based era. This capability should enable...the advanced ability to model synthetic seismograms in three-dimensional earth models should also lead to advances in the ability to locate and
NASA Technical Reports Server (NTRS)
Morrison, Carlos R.; Siebert, Mark W.; Ho, Eric J.
2007-01-01
Analysis and experimental measurement of the electromagnet force loads on the hybrid rotor in a novel bearingless switched-reluctance motor (BSRM) have been performed. A BSRM has the combined characteristics of a switched-reluctance motor and a magnetic bearing. The BSRM has an eight-pole stator and a six-pole hybrid rotor, which is composed of circular and scalloped lamination segments. The hybrid rotor is levitated using only one set of stator poles. A second set of stator poles imparts torque to the scalloped portion of the rotor, which is driven in a traditional switched reluctance manner by a processor. Analysis was done for nonrotating rotor poles that were oriented to achieve maximum and minimum radial force loads on the rotor. The objective is to assess whether simple one-dimensional magnetic circuit analysis is sufficient for preliminary evaluation of this machine, which may exhibit strong three-dimensional electromagnetic field behavior. Two magnetic circuit geometries, approximating the complex topology of the magnetic fields in and around the hybrid rotor, were employed in formulating the electromagnetic radial force equations. Reasonable agreement between the experimental results and the theoretical predictions was obtained with typical magnetic bearing derating factors applied to the predictions.
Modeling and simulation of RF photoinjectors for coherent light sources
NASA Astrophysics Data System (ADS)
Chen, Y.; Krasilnikov, M.; Stephan, F.; Gjonaj, E.; Weiland, T.; Dohlus, M.
2018-05-01
We propose a three-dimensional fully electromagnetic numerical approach for the simulation of RF photoinjectors for coherent light sources. The basic idea consists in incorporating a self-consistent photoemission model within a particle tracking code. The generation of electron beams in the injector is determined by the quantum efficiency (QE) of the cathode, the intensity profile of the driving laser as well as by the accelerating field and magnetic focusing conditions in the gun. The total charge emitted during an emission cycle can be limited by the space charge field at the cathode. Furthermore, the time and space dependent electromagnetic field at the cathode may induce a transient modulation of the QE due to surface barrier reduction of the emitting layer. In our modeling approach, all these effects are taken into account. The beam particles are generated dynamically according to the local QE of the cathode and the time dependent laser intensity profile. For the beam dynamics, a tracking code based on the Lienard-Wiechert retarded field formalism is employed. This code provides the single particle trajectories as well as the transient space charge field distribution at the cathode. As an application, the PITZ injector is considered. Extensive electron bunch emission simulations are carried out for different operation conditions of the injector, in the source limited as well as in the space charge limited emission regime. In both cases, fairly good agreement between measurements and simulations is obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burckel, David Bruce; Adomanis, Bryan M.; Sinclair, Michael B.
2017-01-08
This paper investigates three-dimensional cut wire pair (CWP) behavior in vertically oriented meta-atoms. We first analyze CWP metamaterial inclusions using full-wave electromagnetic simulations. The scattering behavior of the vertical CWP differs substantially from that of the planar version of the same structure. In particular, we show that the vertical CWP supports a magnetic resonance that is solely excited by the incident magnetic field. This is in stark contrast to the bianisotropic resonant excitation of in-plane CWPs. We further show that this CWP behavior can occur in other vertical metamaterial resonators, such as back-to-back linear dipoles and back-to-back split ring resonatorsmore » (SRRs), due to the strong coupling between the closely spaced metallic elements in the back-to-back configuration. In the case of SRRs, the vertical CWP mode (unexplored in previous literature) can be excited with a magnetic field that is parallel to both SRR loops, and exists in addition to the familiar fundamental resonances of the individual SRRs. In order to fully describe the scattering behavior from such dense arrays of three-dimensional structures, coupling effects between the close-packed inclusions must be included. Here, the new flexibility afforded by using vertical resonators allows us to controllably create purely electric inclusions, purely magnetic inclusions, as well as bianisotropic inclusions, and vastly increases the degrees of freedom for the design of metafilms.« less
NASA Astrophysics Data System (ADS)
Beltrachini, L.; Blenkmann, A.; von Ellenrieder, N.; Petroni, A.; Urquina, H.; Manes, F.; Ibáñez, A.; Muravchik, C. H.
2011-12-01
The major goal of evoked related potential studies arise in source localization techniques to identify the loci of neural activity that give rise to a particular voltage distribution measured on the surface of the scalp. In this paper we evaluate the effect of the head model adopted in order to estimate the N170 component source in attention deficit hyperactivity disorder (ADHD) patients and control subjects, considering faces and words stimuli. The standardized low resolution brain electromagnetic tomography algorithm (sLORETA) is used to compare between the three shell spherical head model and a fully realistic model based on the ICBM-152 atlas. We compare their variance on source estimation and analyze the impact on the N170 source localization. Results show that the often used three shell spherical model may lead to erroneous solutions, specially on ADHD patients, so its use is not recommended. Our results also suggest that N170 sources are mainly located in the right occipital fusiform gyrus for faces stimuli and in the left occipital fusiform gyrus for words stimuli, for both control subjects and ADHD patients. We also found a notable decrease on the N170 estimated source amplitude on ADHD patients, resulting in a plausible marker of the disease.
NASA Astrophysics Data System (ADS)
Xia, Wenze; Ma, Yayun; Han, Shaokun; Wang, Yulin; Liu, Fei; Zhai, Yu
2018-06-01
One of the most important goals of research on three-dimensional nonscanning laser imaging systems is the improvement of the illumination system. In this paper, a new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array is proposed. This array is obtained using a fiber array connected to a laser array with each unit laser having independent control circuits. This system uses a point-to-point imaging process, which is realized using the exact corresponding optical relationship between the point-light-source array and a linear-mode avalanche photodiode array detector. The complete working process of this system is explained in detail, and the mathematical model of this system containing four equations is established. A simulated contrast experiment and two real contrast experiments which use the simplified setup without a laser array are performed. The final results demonstrate that unlike a conventional three-dimensional nonscanning laser imaging system, the proposed system meets all the requirements of an eligible illumination system. Finally, the imaging performance of this system is analyzed under defocusing situations, and analytical results show that the system has good defocusing robustness and can be easily adjusted in real applications.
NASA Technical Reports Server (NTRS)
Tripp, John S.; Daniels, Taumi S.
1990-01-01
The NASA Langley 6 inch magnetic suspension and balance system (MSBS) requires an independently controlled bidirectional DC power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance coupled thyratron controlled rectifiers as well as AC to DC motor generator converters, is obsolete, inefficient, and unreliable. A replacement six phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full load efficiency is 80 percent compared to 25 percent for the resistance coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20 kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.
Improvements in Gravitational-wave Sky Localization with Expanded Networks of Interferometers
NASA Astrophysics Data System (ADS)
Pankow, Chris; Chase, Eve A.; Coughlin, Scott; Zevin, Michael; Kalogera, Vassiliki
2018-02-01
A milestone of multi-messenger astronomy has been achieved with the detection of gravitational waves from a binary neutron star merger accompanied by observations of several associated electromagnetic counterparts. Joint observations can reveal details of the engines that drive the electromagnetic and gravitational-wave emission. However, locating and identifying an electromagnetic counterpart to a gravitational-wave event is heavily reliant on localization of the source through gravitational-wave information. We explore the sky localization of a simulated set of neutron star mergers as the worldwide network of gravitational-wave detectors evolves through the next decade, performing the first such study for neutron star–black hole binary sources. Currently, three detectors are observing with additional detectors in Japan and India expected to become operational in the coming years. With three detectors, we recover a median neutron star–black hole binary sky localization of 60 deg2 at the 90% credible level. As all five detectors become operational, sources can be localized to a median of 11 deg2 on the sky.
Revisiting the anisotropy of metamaterials for water waves
NASA Astrophysics Data System (ADS)
Maurel, A.; Marigo, J.-J.; Cobelli, P.; Petitjeans, P.; Pagneux, V.
2017-10-01
We establish, both theoretically and experimentally, that metamaterials for water waves reach a much higher degree of anisotropy than the one predicted using the analogy between water waves and their electromagnetic or acoustic counterparts. This is due to the fact that this analogy, based on the two-dimensional shallow water approximation, is unable to account for the three-dimensional near field effects in the water depth. To properly capture these effects, we homogenize the fully three-dimensional problem and show that a subwavelength layered structuration of the bathymetry produces significant anisotropic parameters in the shallow water regime. Furthermore, we extend the validity of the homogenized prediction by proposing an empirical anisotropic version of the dispersion relation.
NASA Astrophysics Data System (ADS)
Li, Zhao; Wang, Dazhi; Zheng, Di; Yu, Linxin
2017-10-01
Rotational permanent magnet eddy current couplers are promising devices for torque and speed transmission without any mechanical contact. In this study, flux-concentration disk-type permanent magnet eddy current couplers with double conductor rotor are investigated. Given the drawback of the accurate three-dimensional finite element method, this paper proposes a mixed two-dimensional analytical modeling approach. Based on this approach, the closed-form expressions of magnetic field, eddy current, electromagnetic force and torque for such devices are obtained. Finally, a three-dimensional finite element method is employed to validate the analytical results. Besides, a prototype is manufactured and tested for the torque-speed characteristic.
A class of invisible inhomogeneous media and the control of electromagnetic waves
NASA Astrophysics Data System (ADS)
Vial, B.; Liu, Y.; Horsley, S. A. R.; Philbin, T. G.; Hao, Y.
2016-12-01
We propose a general method to arbitrarily manipulate an electromagnetic wave propagating in a two-dimensional medium, without introducing any scattering. This leads to a whole class of isotropic spatially varying permittivity and permeability profiles that are invisible while shaping the field magnitude and/or phase. In addition, we propose a metamaterial structure working in the infrared that demonstrates deep subwavelength control of the electric field amplitude and strong reduction of the scattering. This work offers an alternative strategy to achieve invisibility with isotropic materials and paves the way for tailoring the propagation of light at the nanoscale.
Noniterative three-dimensional grid generation using parabolic partial differential equations
NASA Technical Reports Server (NTRS)
Edwards, T. A.
1985-01-01
A new algorithm for generating three-dimensional grids has been developed and implemented which numerically solves a parabolic partial differential equation (PDE). The solution procedure marches outward in two coordinate directions, and requires inversion of a scalar tridiagonal system in the third. Source terms have been introduced to control the spacing and angle of grid lines near the grid boundaries, and to control the outer boundary point distribution. The method has been found to generate grids about 100 times faster than comparable grids generated via solution of elliptic PDEs, and produces smooth grids for finite-difference flow calculations.
Han, Jinxiang
2012-03-01
An electromagnetic radiation field within a biological organism is characterized by non-local interference. The interfering beams form a unitary tridimensional network with beams of varying intensity, also called striae, which are distributed on the organism surface. These striae are equivalent to semi-reflectors. The striae carry bio-information of corresponding organs and, thus, integrate all tissues, and organs of the organism. The longitudinal striae are classified as channels, while the transverse striae are collaterals. The acupoints are seen as the points where electromagnetic interfering striae intersect or converge. This hypothesis builds a foundation to understand the traditional Chinese medicine, including acupuncture, from the perspective of scientific knowledge.
NASA Astrophysics Data System (ADS)
Matveev, V. I.; Matrasulov, D. U.
2013-01-01
The processes of reemission of ultrashort electromagnetic pulses by linear chains consisting of isolated multielectron atoms have been considered. The developed method makes it possible to accurately take into account the spatial inhomogeneity of the field of an ultrashort pulse and the momenta of photons in reemission processes. The angular distributions of reemission spectra have been obtained for an arbitrary number of atoms in a chain. It has been shown that the interference of the photon emission amplitudes leads to the appearance of characteristic "diffraction" maxima. The results allow standard generalization to the cases of rescattering from two-dimensional (graphene-like) and three-dimensional lattices, as well as to the case of the inclusion of thermal vibrations of the atoms of lattices.
NASA Astrophysics Data System (ADS)
Dionne, Jennifer A.
2016-09-01
Advances in metamaterials and metasurfaces have enabled unprecedented control of light-matter interactions. Metamaterial constituents support high-frequency electric and magnetic dipoles, which can be used as building blocks for new materials capable of negative refraction, electromagnetic cloaking, strong visible-frequency circular dichroism, and enhanced magnetic or chiral transitions in ions and molecules. However, most metamaterials to date have been limited to solid-state, static, narrow-band, and/or small-area structures. Here, we introduce the design, fabrication, and three-dimensional nano-optical characterization of large-area, dynamically-tunable metamaterials and gram-scale metafluids. First, we use transformation optics to design a broadband metamaterial constituent - a metallo-dielectric nanocrescent - characterized by degenerate electric and magnetic dipoles. A periodic array of nanocrescents exhibits large positive and negative refractive indices at optical frequencies, confirmed through simulations of plane wave refraction through a metamaterial prism. Simulations also reveal that the metamaterial optical properties are largely insensitive to the wavelength, orientation and polarization of incident light. Then, we introduce a new tomographic technique, cathodoluminescence (CL) spectroscopic tomography, to probe light-matter interactions in individual nanocrescents with nanometer-scale resolution. Two-dimensional CL maps of the three-dimensional nanostructure are obtained at various orientations, while a filtered back projection is used to reconstruct the CL intensity at each wavelength. The resulting tomograms allow us to locate regions of efficient cathodoluminescence in three dimensions across visible and near-infrared wavelengths, with contributions from material luminescence and radiative decay of electromagnetic eigenmodes. Finally, we demonstrate the fabrication of dynamically tunable large-area metamaterials and gram-scale metafluids, using a combination of colloidal synthesis, protein-directed assembly, self-assembly, etching, and stamping. The electric and magnetic response of the bulk metamaterial and metafluid are directly probed with optical scattering and spectroscopy. Using chemical swelling, these metamaterials exhibit reversible, unity-order refractive index changes that may provide a foundation for new adaptive optical materials in sensing, solar, and display applications.
Wang, Zhiping; Cao, Dewei; Yu, Benli
2016-05-01
We present a new scheme for three-dimensional (3D) atom localization in a three-level atomic system via measuring the absorption of a weak probe field. Owing to the space-dependent atom-field interaction, the position probability distribution of the atom can be directly determined by measuring the probe absorption. It is found that, by properly varying the parameters of the system, the probability of finding the atom in 3D space can be almost 100%. Our scheme opens a promising way to achieve high-precision and high-efficiency 3D atom localization, which provides some potential applications in laser cooling or atom nano-lithography via atom localization.
A FINITE-DIFFERENCE, DISCRETE-WAVENUMBER METHOD FOR CALCULATING RADAR TRACES
A hybrid of the finite-difference method and the discrete-wavenumber method is developed to calculate radar traces. The method is based on a three-dimensional model defined in the Cartesian coordinate system; the electromagnetic properties of the model are symmetric with respect ...
Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures
Dregely, Daniel; Neubrech, Frank; Duan, Huigao; Vogelgesang, Ralf; Giessen, Harald
2013-01-01
Nanoantennas confine electromagnetic fields at visible and infrared wavelengths to volumes of only a few cubic nanometres. Assessing their near-field distribution offers fundamental insight into light–matter coupling and is of special interest for applications such as radiation engineering, attomolar sensing and nonlinear optics. Most experimental approaches to measure near-fields employ either diffraction-limited far-field methods or intricate near-field scanning techniques. Here, using diffraction-unlimited far-field spectroscopy in the infrared, we directly map the intensity of the electric field close to plasmonic nanoantennas. We place a patch of probe molecules with 10 nm accuracy at different locations in the near-field of a resonant antenna and extract the molecular vibrational excitation. We map the field intensity along a dipole antenna and gap-type antennas. Moreover, this method is able to assess the near-field intensity of complex buried plasmonic structures. We demonstrate this by measuring for the first time the near-field intensity of a three-dimensional plasmonic electromagnetically induced transparency structure. PMID:23892519
NASA Technical Reports Server (NTRS)
Reddy, C. J.; Deshpande, Manohar D.; Cockrell, C. R.; Beck, F. B.
1995-01-01
A combined finite element method/method of moments (FEM/MoM) approach is used to analyze the electromagnetic scattering properties of a three-dimensional-cavity-backed aperture in an infinite ground plane. The FEM is used to formulate the fields inside the cavity, and the MoM (with subdomain bases) in both spectral and spatial domains is used to formulate the fields above the ground plane. Fields in the aperture and the cavity are solved using a system of equations resulting from the combination of the FEM and the MoM. By virtue of the FEM, this combined approach is applicable to all arbitrarily shaped cavities with inhomogeneous material fillings, and because of the subdomain bases used in the MoM, the apertures can be of any arbitrary shape. This approach leads to a partly sparse and partly full symmetric matrix, which is efficiently solved using a biconjugate gradient algorithm. Numerical results are presented to validate the analysis.
Image formation of thick three-dimensional objects in differential-interference-contrast microscopy.
Trattner, Sigal; Kashdan, Eugene; Feigin, Micha; Sochen, Nir
2014-05-01
The differential-interference-contrast (DIC) microscope is of widespread use in life sciences as it enables noninvasive visualization of transparent objects. The goal of this work is to model the image formation process of thick three-dimensional objects in DIC microscopy. The model is based on the principles of electromagnetic wave propagation and scattering. It simulates light propagation through the components of the DIC microscope to the image plane using a combined geometrical and physical optics approach and replicates the DIC image of the illuminated object. The model is evaluated by comparing simulated images of three-dimensional spherical objects with the recorded images of polystyrene microspheres. Our computer simulations confirm that the model captures the major DIC image characteristics of the simulated object, and it is sensitive to the defocusing effects.
Li, Guoqiang; Li, Jiawen; Zhang, Chenchu; Hu, Yanlei; Li, Xiaohong; Chu, Jiaru; Huang, Wenhao; Wu, Dong
2015-01-14
The capability to realize 2D-3D controllable metallic micro/nanostructures is of key importance for various fields such as plasmonics, electronics, bioscience, and chemistry due to unique properties such as electromagnetic field enhancement, catalysis, photoemission, and conductivity. However, most of the present techniques are limited to low-dimension (1D-2D), small area, or single function. Here we report the assembly of self-organized three-dimensional (3D) porous metal micro/nanocages arrays on nickel surface by ethanol-assisted femtosecond laser irradiation. The underlying formation mechanism was investigated by a series of femtosecond laser irradiation under exposure time from 5 to 30 ms. We also demonstrate the ability to control the size of micro/nanocage arrays from 0.8 to 2 μm by different laser pulse energy. This method features rapidness (∼10 min), simplicity (one-step process), and ease of large-area (4 cm(2) or more) fabrication. The 3D cagelike micro/nanostructures exhibit not only improved antireflection from 80% to 7% but also enhanced hydrophobicity from 98.5° to 142° without surface modification. This simple technique for 3D large-area controllable metal microstructures will find great potential applications in optoelectronics, physics, and chemistry.
Scaling of electromagnetic transducers for shunt damping and energy harvesting
NASA Astrophysics Data System (ADS)
Elliott, Stephen J.; Zilletti, Michele
2014-04-01
In order for an electromagnetic transducer to operate well as either a mechanical shunt damper or as a vibration energy harvester, it must have good electromechanical coupling. A simple two-port analysis is used to derive a non-dimensional measure of electromechanical coupling, which must be large compared with unity for efficient operation in both of these applications. The two-port parameters for an inertial electromagnetic transducer are derived, from which this non-dimensional coupling parameter can be evaluated. The largest value that this parameter takes is approximately equal to the square of the magnetic flux density times the length of wire in the field, divided by the mechanical damping times the electrical resistance. This parameter is found to be only of the order of one for voice coil devices that weigh approximately 1 kg, and so such devices are generally not efficient, within the definition used here, in either of these applications. The non-dimensional coupling parameter is found to scale in approximate proportion to the device's characteristic length, however, and so although miniaturised devices are less efficient, greater efficiency can be obtained with large devices, such as those used to control civil engineering structures.
Trans-dimensional Bayesian inversion of airborne electromagnetic data for 2D conductivity profiles
NASA Astrophysics Data System (ADS)
Hawkins, Rhys; Brodie, Ross C.; Sambridge, Malcolm
2018-02-01
This paper presents the application of a novel trans-dimensional sampling approach to a time domain airborne electromagnetic (AEM) inverse problem to solve for plausible conductivities of the subsurface. Geophysical inverse field problems, such as time domain AEM, are well known to have a large degree of non-uniqueness. Common least-squares optimisation approaches fail to take this into account and provide a single solution with linearised estimates of uncertainty that can result in overly optimistic appraisal of the conductivity of the subsurface. In this new non-linear approach, the spatial complexity of a 2D profile is controlled directly by the data. By examining an ensemble of proposed conductivity profiles it accommodates non-uniqueness and provides more robust estimates of uncertainties.
Research on Radiation Characteristic of Plasma Antenna through FDTD Method
Zhou, Jianming; Fang, Jingjing; Lu, Qiuyuan; Liu, Fan
2014-01-01
The radiation characteristic of plasma antenna is investigated by using the finite-difference time-domain (FDTD) approach in this paper. Through using FDTD method, we study the propagation of electromagnetic wave in free space in stretched coordinate. And the iterative equations of Maxwell equation are derived. In order to validate the correctness of this method, we simulate the process of electromagnetic wave propagating in free space. Results show that electromagnetic wave spreads out around the signal source and can be absorbed by the perfectly matched layer (PML). Otherwise, we study the propagation of electromagnetic wave in plasma by using the Boltzmann-Maxwell theory. In order to verify this theory, the whole process of electromagnetic wave propagating in plasma under one-dimension case is simulated. Results show that Boltzmann-Maxwell theory can be used to explain the phenomenon of electromagnetic wave propagating in plasma. Finally, the two-dimensional simulation model of plasma antenna is established under the cylindrical coordinate. And the near-field and far-field radiation pattern of plasma antenna are obtained. The experiments show that the variation of electron density can introduce the change of radiation characteristic. PMID:25114961
Advanced DPSM approach for modeling ultrasonic wave scattering in an arbitrary geometry
NASA Astrophysics Data System (ADS)
Yadav, Susheel K.; Banerjee, Sourav; Kundu, Tribikram
2011-04-01
Several techniques are used to diagnose structural damages. In the ultrasonic technique structures are tested by analyzing ultrasonic signals scattered by damages. The interpretation of these signals requires a good understanding of the interaction between ultrasonic waves and structures. Therefore, researchers need analytical or numerical techniques to have a clear understanding of the interaction between ultrasonic waves and structural damage. However, modeling of wave scattering phenomenon by conventional numerical techniques such as finite element method requires very fine mesh at high frequencies necessitating heavy computational power. Distributed point source method (DPSM) is a newly developed robust mesh free technique to simulate ultrasonic, electrostatic and electromagnetic fields. In most of the previous studies the DPSM technique has been applied to model two dimensional surface geometries and simple three dimensional scatterer geometries. It was difficult to perform the analysis for complex three dimensional geometries. This technique has been extended to model wave scattering in an arbitrary geometry. In this paper a channel section idealized as a thin solid plate with several rivet holes is formulated. The simulation has been carried out with and without cracks near the rivet holes. Further, a comparison study has been also carried out to characterize the crack. A computer code has been developed in C for modeling the ultrasonic field in a solid plate with and without cracks near the rivet holes.
NASA Astrophysics Data System (ADS)
Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; Huang, Maoyi; Bao, Jie; Swiler, Laura
2017-12-01
In this study we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach is used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated - reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.
NASA Technical Reports Server (NTRS)
Chevalier, Christine T.; Herrmann, Kimberly A.; Kory, Carol L.; Wilson, Jeffrey D.; Cross, Andrew W.; Santana , Samuel
2003-01-01
The electromagnetic field simulation software package CST MICROWAVE STUDIO (MWS) was used to compute the cold-test parameters - frequency-phase dispersion, on-axis impedance, and attenuation - for a traveling-wave tube (TWT) slow-wave circuit. The results were compared to experimental data, as well as to results from MAFIA, another three-dimensional simulation code from CST currently used at the NASA Glenn Research Center (GRC). The strong agreement between cold-test parameters simulated with MWS and those measured experimentally demonstrates the potential of this code to reduce the time and cost of TWT development.
NASA Technical Reports Server (NTRS)
MacKenzie, Anne I.; Rao, Sadasiva M.; Baginski, Michael E.
2007-01-01
A pair of basis functions is presented for the surface integral, method of moment solution of scattering by arbitrarily-shaped, three-dimensional dielectric bodies. Equivalent surface currents are represented by orthogonal unit pulse vectors in conjunction with triangular patch modeling. The electric field integral equation is employed with closed geometries for dielectric bodies; the method may also be applied to conductors. Radar cross section results are shown for dielectric bodies having canonical spherical, cylindrical, and cubic shapes. Pulse basis function results are compared to results by other methods.
Soils, peatlands, and biomonitoring
James Doolittle
2009-01-01
Soils are three-dimensional (3D) natural bodies conSlStmg of unconsolidated mineral and organic materials that form a continuous blanket over most of the earth's land sUlface. At all sca les of measurements, soils are exceedingly complex and variable in biological, chemical, physical, mineralogical, and electromagnetic properties....
A FINITE-DIFFERENCE, DISCRETE-WAVENUMBER METHOD FOR CALCULATING RADAR TRACES
A hybrid of the finite-difference method and the discrete-wavenumber method is developed to calculate radar traces. The method is based on a three-dimensional model defined in the Cartesian coordinate system; the electromag-netic properties of the model are symmetric with respect...
NASA Astrophysics Data System (ADS)
Mirza, Imran M.; Schotland, John C.
2018-05-01
We study single photon transport in a one-dimensional disordered lattice of three-level atoms coupled to an optical waveguide. In particular, we study atoms of \\Lambda-type that are capable of exhibiting electromagnetically induced transparency (EIT) and separately consider disorder in the atomic positions and transition frequencies. We mainly address the question of how preferential emission into waveguide modes (chirality) can influence the formation of spatially localized states. Our work has relevance to experimental studies of cold atoms coupled to nanoscale waveguides and has possible applications to quantum communications.
NASA Technical Reports Server (NTRS)
Turc, Catalin; Anand, Akash; Bruno, Oscar; Chaubell, Julian
2011-01-01
We present a computational methodology (a novel Nystrom approach based on use of a non-overlapping patch technique and Chebyshev discretizations) for efficient solution of problems of acoustic and electromagnetic scattering by open surfaces. Our integral equation formulations (1) Incorporate, as ansatz, the singular nature of open-surface integral-equation solutions, and (2) For the Electric Field Integral Equation (EFIE), use analytical regularizes that effectively reduce the number of iterations required by iterative linear-algebra solution based on Krylov-subspace iterative solvers.
Three dimensional δf simulations of beams in the SSC
NASA Astrophysics Data System (ADS)
Koga, J.; Tajima, T.; Machida, S.
1993-12-01
A three dimensional δf strong-strong algorithm has been developed to apply to the study of such effects as space charge and beam-beam interaction phenomena in the Superconducting Super Collider (SSC). The algorithm is obtained from the merging of the particle tracking code Simpsons used for 3 dimensional space charge effects and a δf code. The δf method is used to follow the evolution of the non-gaussian part of the beam distribution. The advantages of this method are twofold. First, the Simpsons code utilizes a realistic accelerator model including synchrotron oscillations and energy ramping in 6 dimensional phase space with electromagnetic fields of the beams calculated using a realistic 3 dimensional field solver. Second, the beams are evolving in the fully self-consistent strong-strong sense with finite particle fluctuation noise is greatly reduced as opposed to the weak-strong models where one beam is fixed.
Bai, Zhengyang; Xu, Datang; Huang, Guoxiang
2017-01-23
We propose a scheme to realize the storage and retrieval of high-dimensional electromagnetic waves with orbital angular momentum (OAM) via plasmon-induced transparency (PIT) in a metamaterial, which consists of an array of meta-atoms constructed by a metallic structure loaded with two varactors. We show that due to PIT effect the system allows the existence of shape-preserving dark-mode plasmonic polaritons, which are mixture of electromagnetic-wave modes and dark oscillatory modes of the meta-atoms and may carry various OAMs. We demonstrate that the slowdown, storage and retrieval of multi-mode electromagnetic waves with OAMs can be achieved through the active manipulation of a control field. Our work raises the possibility for realizing PIT-based spatial multi-mode memory of electromagnetic waves and is promising for practical application of information processing with large capacity by using room-temperature metamaterials.
A magnetorheological fluid locking device
NASA Astrophysics Data System (ADS)
Kavlicoglu, Barkan; Liu, Yanming
2011-04-01
A magnetorheological fluid (MRF) device is designed to provide a static locking force caused by the operation of a controllable MRF valve. The intent is to introduce an MRF device which provides the locking force of a fifth wheel coupler while maintaining the "powerless" locking capability when required. A passive magnetic field supplied by a permanent magnet provides a powerless locking resistance force. The passively closed MRF valve provides sufficient reaction force to eliminate axial displacement to a pre-defined force value. Unlocking of the device is provided by means of an electromagnet which re-routes the magnetic field distribution along the MR valve, and minimizes the resistance. Three dimensional electromagnetic finite element analyses are performed to optimize the MRF lock valve performance. The MRF locking valve is fabricated and tested for installation on a truck fifth wheel application. An experimental setup, resembling actual working conditions, is designed and tests are conducted on vehicle interface schemes. The powerless-locking capacity and the unlocking process with minimal resistance are experimentally demonstrated.
Novel Techniques for Millimeter-Wave Packages
NASA Technical Reports Server (NTRS)
Herman, Martin I.; Lee, Karen A.; Kolawa, Elzbieta A.; Lowry, Lynn E.; Tulintseff, Ann N.
1995-01-01
A new millimeter-wave package architecture with supporting electrical, mechanical and material science experiment and analysis is presented. This package is well suited for discrete devices, monolithic microwave integrated circuits (MMIC's) and multichip module (MCM) applications. It has low-loss wide-band RF transitions which are necessary to overcome manufacturing tolerances leading to lower per unit cost Potential applications of this new packaging architecture which go beyond the standard requirements of device protection include integration of antennas, compatibility to photonic networks and direct transitions to waveguide systems. Techniques for electromagnetic analysis, thermal control and hermetic sealing were explored. Three dimensional electromagnetic analysis was performed using a finite difference time-domain (FDTD) algorithm and experimentally verified for millimeter-wave package input and output transitions. New multi-material system concepts (AlN, Cu, and diamond thin films) which allow excellent surface finishes to be achieved with enhanced thermal management have been investigated. A new approach utilizing block copolymer coatings was employed to hermetically seal packages which met MIL STD-883.
Illumination system having a plurality of movable sources
Sweatt, William C.; Kubiak, Glenn D.
2002-01-01
An illumination system includes several discharge sources that are multiplexed together to reduce the amount of debris generated. The system includes: (a) a first electromagnetic radiation source array that includes a plurality of first activatable radiation source elements that are positioned on a first movable carriage; (b) a second electromagnetic radiation source array that includes a plurality of second activatable radiation source elements that are positioned on a second movable carriage; (c) means for directing electromagnetic radiation from the first electromagnetic radiation source array and electromagnetic radiation from the second electromagnetic radiation source array toward a common optical path; (d) means for synchronizing (i) the movements of the first movable carriage and of the second movable carriage and (ii) the activation of the first electromagnetic radiation source array and of the second electromagnetic radiation source array to provide an essentially continuous illumination of electromagnetic radiation along the common optical path.
Dissemination and support of ARGUS for accelerator applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The ARGUS code is a three-dimensional code system for simulating for interactions between charged particles, electric and magnetic fields, and complex structure. It is a system of modules that share common utilities for grid and structure input, data handling, memory management, diagnostics, and other specialized functions. The code includes the fields due to the space charge and current density of the particles to achieve a self-consistent treatment of the particle dynamics. The physic modules in ARGUS include three-dimensional field solvers for electrostatics and electromagnetics, a three-dimensional electromagnetic frequency-domain module, a full particle-in-cell (PIC) simulation module, and a steady-state PIC model.more » These are described in the Appendix to this report. This project has a primary mission of developing the capabilities of ARGUS in accelerator modeling of release to the accelerator design community. Five major activities are being pursued in parallel during the first year of the project. To improve the code and/or add new modules that provide capabilities needed for accelerator design. To produce a User's Guide that documents the use of the code for all users. To release the code and the User's Guide to accelerator laboratories for their own use, and to obtain feed-back from the. To build an interactive user interface for setting up ARGUS calculations. To explore the use of ARGUS on high-power workstation platforms.« less
Non-ionising electromagnetic environments on manned spacecraft.
Murphy, J R
1989-08-01
Future space travellers and settlers will be exposed to a variety of electromagnetic fields (EMFs). Extrinsic sources will include solar and stellar fluxes, planetary fluxes, and supernovae. Intrinsic sources may include fusion and ion engines, EMFs from electrical equipment, radar, lighting, superconduction energy storage systems, magnetic bearings on gyroscopic control and orientation systems, and magnetic rail microprobe launch systems. Communication sources may include radio and microwave frequencies, and laser generating systems. Magnetic fields may also be used for deflection of radiation. There is also a loss of the normal Geomagnetic field (GMF) which includes static, alternating, and time-varying components. This paper reviews exposure limits and the biological effects of EMFs, and evidence for an electromagnetic sense organ and a relationship between man and the Geomagnetic field.
Rapid decay of nonlinear whistler waves in two dimensions: Full particle simulation
NASA Astrophysics Data System (ADS)
Umeda, Takayuki; Saito, Shinji; Nariyuki, Yasuhiro
2017-05-01
The decay of a nonlinear, short-wavelength, and monochromatic electromagnetic whistler wave is investigated by utilizing a two-dimensional (2D) fully relativistic electromagnetic particle-in-cell code. The simulation is performed under a low-beta condition in which the plasma pressure is much lower than the magnetic pressure. It has been shown that the nonlinear (large-amplitude) parent whistler wave decays through the parametric instability in a one-dimensional (1D) system. The present study shows that there is another channel for the decay of the parent whistler wave in 2D, which is much faster than in the timescale of the parametric decay in 1D. The parent whistler wave decays into two sideband daughter whistlers propagating obliquely with respect to the ambient magnetic field with a frequency close to the parent wave and two quasi-perpendicular electromagnetic modes with a frequency close to zero via a 2D decay instability. The two sideband daughter oblique whistlers also enhance a nonlinear longitudinal electrostatic wave via a three-wave interaction as a secondary process.
H2(15)O or 13NH3 PET and electromagnetic tomography (LORETA) during partial status epilepticus.
Zumsteg, D; Wennberg, R A; Treyer, V; Buck, A; Wieser, H G
2005-11-22
The authors evaluated the feasibility and source localization utility of H2(15)O or 13NH3 PET and low-resolution electromagnetic tomography (LORETA) in three patients with partial status epilepticus (SE). Results were correlated with findings from intraoperative electrocorticographic recordings and surgical outcomes. PET studies of cerebral blood flow and noninvasive source modeling with LORETA using statistical nonparametric mapping provided useful information for localizing the ictal activity in patients with partial SE.
Electromagnetic inverse scattering
NASA Technical Reports Server (NTRS)
Bojarski, N. N.
1972-01-01
A three-dimensional electromagnetic inverse scattering identity, based on the physical optics approximation, is developed for the monostatic scattered far field cross section of perfect conductors. Uniqueness of this inverse identity is proven. This identity requires complete scattering information for all frequencies and aspect angles. A nonsingular integral equation is developed for the arbitrary case of incomplete frequence and/or aspect angle scattering information. A general closed-form solution to this integral equation is developed, which yields the shape of the scatterer from such incomplete information. A specific practical radar solution is presented. The resolution of this solution is developed, yielding short-pulse target resolution radar system parameter equations. The special cases of two- and one-dimensional inverse scattering and the special case of a priori knowledge of scatterer symmetry are treated in some detail. The merits of this solution over the conventional radar imaging technique are discussed.
Three-dimensional magnetotelluric axial anisotropic forward modeling and inversion
NASA Astrophysics Data System (ADS)
Cao, Hui; Wang, Kunpeng; Wang, Tao; Hua, Boguang
2018-06-01
Magnetotelluric (MT) data has been widely used to image underground electrical structural. However, when the significant axial resistivity anisotropy presents, how this influences three-dimensional MT data has not been resolved clearly yet. We here propose a scheme for three-dimensional modeling of MT data in presence of axial anisotropic resistivity, where the electromagnetic fields are decomposed into primary and secondary components. A 3D staggered-grid finite difference method is then used to resolve the resulting 3D governing equations. Numerical tests have completed to validate the correctness and accuracy of the present algorithm. A limited-memory Broyden-Fletcher-Goldfarb-Shanno method is then utilized to realize the 3D MT axial anisotropic inversion. The testing results show that, compared to the results of isotropic resistivity inversion, taking account the axial anisotropy can much improve the inverted results.
Multi-GPU accelerated three-dimensional FDTD method for electromagnetic simulation.
Nagaoka, Tomoaki; Watanabe, Soichi
2011-01-01
Numerical simulation with a numerical human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the numerical human model, we adapt three-dimensional FDTD code to a multi-GPU environment using Compute Unified Device Architecture (CUDA). In this study, we used NVIDIA Tesla C2070 as GPGPU boards. The performance of multi-GPU is evaluated in comparison with that of a single GPU and vector supercomputer. The calculation speed with four GPUs was approximately 3.5 times faster than with a single GPU, and was slightly (approx. 1.3 times) slower than with the supercomputer. Calculation speed of the three-dimensional FDTD method using GPUs can significantly improve with an expanding number of GPUs.
NASA Technical Reports Server (NTRS)
Mackenzie, Anne I.; Baginski, Michael E.; Rao, Sadasiva M.
2008-01-01
In this work, we present an alternate set of basis functions, each defined over a pair of planar triangular patches, for the method of moments solution of electromagnetic scattering and radiation problems associated with arbitrarily-shaped, closed, conducting surfaces. The present basis functions are point-wise orthogonal to the pulse basis functions previously defined. The prime motivation to develop the present set of basis functions is to utilize them for the electromagnetic solution of dielectric bodies using a surface integral equation formulation which involves both electric and magnetic cur- rents. However, in the present work, only the conducting body solution is presented and compared with other data.
Systems and methods for locating and imaging proppant in an induced fracture
Aldridge, David F.; Bartel, Lewis C.
2016-02-02
Born Scattering Inversion (BSI) systems and methods are disclosed. A BSI system may be incorporated in a well system for accessing natural gas, oil and geothermal reserves in a geologic formation beneath the surface of the Earth. The BSI system may be used to generate a three-dimensional image of a proppant-filled hydraulically-induced fracture in the geologic formation. The BSI system may include computing equipment and sensors for measuring electromagnetic fields in the vicinity of the fracture before and after the fracture is generated, adjusting the parameters of a first Born approximation model of a scattered component of the surface electromagnetic fields using the measured electromagnetic fields, and generating the image of the proppant-filled fracture using the adjusted parameters.
Electromagnetic Forces in a Hybrid Magnetic-Bearing Switched-Reluctance Motor
NASA Technical Reports Server (NTRS)
Morrison, Carlos R.; Siebert, Mark W.; Ho, Eric J.
2008-01-01
Analysis and experimental measurement of the electromagnetic force loads on the hybrid rotor in a novel hybrid magnetic-bearing switched-reluctance motor (MBSRM) have been performed. A MBSRM has the combined characteristics of a switched-reluctance motor and a magnetic bearing. The MBSRM discussed in this report has an eight-pole stator and a six-pole hybrid rotor, which is composed of circular and scalloped lamination segments. The hybrid rotor is levitated using only one set of four stator poles, while a second set of four stator poles imparts torque to the scalloped portion of the rotor, which is driven in a traditional switched reluctance manner by a processor. Static torque and radial force analysis were done for rotor poles that were oriented to achieve maximum and minimum radial force loads on the rotor. The objective is to assess whether simple one-dimensional magnetic circuit analysis is sufficient for preliminary evaluation of this machine, which may exhibit strong three-dimensional electromagnetic field behavior. Two magnetic circuit geometries, approximating the complex topology of the magnetic fields in and around the hybrid rotor, were employed in formulating the electromagnetic radial force equations. Reasonable agreement between the experimental and the theoretical radial force loads predictions was obtained with typical magnetic bearing derating factors applied to the predictions.
Mao, Xianglong; Li, Hongtao; Han, Yanjun; Luo, Yi
2014-10-20
Designing an illumination system for a surface light source with a strict compactness requirement is quite challenging, especially for the general three-dimensional (3D) case. In accordance with the two key features of an expected illumination distribution, i.e., a well-controlled boundary and a precise illumination pattern, a two-step design method is proposed in this paper for highly compact 3D freeform illumination systems. In the first step, a target shape scaling strategy is combined with an iterative feedback modification algorithm to generate an optimized freeform optical system with a well-controlled boundary of the target distribution. In the second step, a set of selected radii of the system obtained in the first step are optimized to further improve the illuminating quality within the target region. The method is quite flexible and effective to design highly compact optical systems with almost no restriction on the shape of the desired target field. As examples, three highly compact freeform lenses with ratio of center height h of the lens and the maximum dimension D of the source ≤ 2.5:1 are designed for LED surface light sources to form a uniform illumination distribution on a rectangular, a cross-shaped and a complex cross pierced target plane respectively. High light control efficiency of η > 0.7 as well as low relative standard illumination deviation of RSD < 0.07 is obtained simultaneously for all the three design examples.
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Sakai, J.-I.; Zhao, Jie; Neubert, T.; Buneman, Oscar
1994-01-01
We have studied the dynamics of a coalescence of current loops using three-dimensional electromagnetic (EM) particle simulation code. Our focus is the investigation of such kinetic processes as energy trasnfer, heating particles, and electromagnetic emissions associated with a current loop coalescence which cannot be studied by MHD simulations. First, the two loops undergo a pinching oscillation due to a pressure imbalance between the inside and outside of the current loop. During the pinching oscillation, a kinetic kink instability is excited and electrons in the loops are heated perpendicularly to an ambient magnetic field. Next, the two current loops collide and coalesce, while at the same time a helical structure grows further. Subsequently, the perturbed current, which is due to these helically bunched electrons, can drive a whistler instability. It should be noted in this case that the whistler wave is excited by the kinetic kink instability and not a beam instability. After the coalescence of two helical loops, tilting motions can be observed in the direction of left-hand rotation, and the helical structure will relax resulting in strong plasma heating mostly in the direction perpendicular to the ambient magnetic field. It is also shown that high-frequency electromagnetic waves can be emitted from the region where the two loops coalesce and propagate strongly in the direction of the electron drift velocity. These processes may be important in understanding heating mechansims for coronal loops as well as radio wave emission mechanisms from active regions of solar plasmas.
Electric converters of electromagnetic strike machine with battery power
NASA Astrophysics Data System (ADS)
Usanov, K. M.; Volgin, A. V.; Kargin, V. A.; Moiseev, A. P.; Chetverikov, E. A.
2018-03-01
At present, the application of pulse linear electromagnetic engines to drive strike machines for immersion of rod elements into the soil, strike drilling of shallow wells, dynamic probing of soils is recognized as quite effective. The pulse linear electromagnetic engine performs discrete consumption and conversion of electrical energy into mechanical work. Pulse dosing of a stream transmitted by the battery source to the pulse linear electromagnetic engine of the energy is provided by the electrical converter. The electric converters with the control of an electromagnetic strike machine as functions of time and armature movement, which form the unipolar supply pulses of voltage and current necessary for the normal operation of a pulse linear electromagnetic engine, are proposed. Electric converters are stable in operation, implement the necessary range of output parameters control determined by the technological process conditions, have noise immunity and automatic disconnection of power supply in emergency modes.
NASA Astrophysics Data System (ADS)
Merenda, K. D.
2016-12-01
Since 2013, the Pierre Auger Cosmic Ray Observatory in Mendoza, Argentina, extended its trigger algorithm to detect emissions of light consistent with the signature from very low frequency perturbations due to electromagnetic pulse sources (ELVES). Correlations with the World Wide Lightning Location Network (WWLLN), the Lightning Imaging Sensor (LIS) and simulated events were used to assess the quality of the reconstructed data. The FD is a pixel array telescope sensitive to the deep UV emissions of ELVES. The detector provides the finest time resolution of 100 nanoseconds ever applied to the study of ELVES. Four eyes, separated by approximately 40 kilometers, consist of six telescopes and span a total of 360 degrees of azimuth angle. The detector operates at night when storms are not in the field of view. An existing 3D EMP Model solves Maxwell's equations using a three dimensional finite-difference time-domain model to describe the propagation of electromagnetic pulses from lightning sources to the ionosphere. The simulation also provides a projection of the resulting ELVES onto the pixel array of the FD. A full reconstruction of simulated events is under development. We introduce the analog signal time evolution comparison between Auger reconstructed data and simulated events on individual FD pixels. In conjunction, we will present a study of the angular distribution of light emission around the vertical and above the causative lightning source. We will also contrast, with Monte Carlo, Auger double ELVES events separated by at most 5 microseconds. These events are too short to be explained by multiple return strokes, ground reflections, or compact intra-cloud lightning sources. Reconstructed ELVES data is 40% correlated to WWLLN data and an analysis with the LIS database is underway.
Clemens, Béla; Bánk, József; Piros, Pálma; Bessenyei, Mónika; Veto, Sára; Tóth, Márton; Kondákor, István
2008-09-01
Investigating the brain of migraine patients in the pain-free interval may shed light on the basic cerebral abnormality of migraine, in other words, the liability of the brain to generate migraine attacks from time to time. Twenty unmedicated "migraine without aura" patients and a matched group of healthy controls were investigated in this explorative study. 19-channel EEG was recorded against the linked ears reference and was on-line digitized. 60 x 2-s epochs of eyes-closed, waking-relaxed activity were subjected to spectral analysis and a source localization method, low resolution electromagnetic tomography (LORETA). Absolute power was computed for 19 electrodes and four frequency bands (delta: 1.5-3.5 Hz, theta: 4.0-7.5 Hz, alpha: 8.0-12.5 Hz, beta: 13.0-25.0 Hz). LORETA "activity" (=current source density, ampers/meters squared) was computed for 2394 voxels and the above specified frequency bands. Group comparison was carried out for the specified quantitative EEG variables. Activity in the two groups was compared on a voxel-by-voxel basis for each frequency band. Statistically significant (uncorrected P < 0.01) group differences were projected to cortical anatomy. Spectral findings: there was a tendency for more alpha power in the migraine that in the control group in all but two (F4, C3) derivations. However, statistically significant (P < 0.01, Bonferroni-corrected) spectral difference was only found in the right occipital region. The main LORETA-finding was that voxels with P < 0.01 differences were crowded in anatomically contiguous cortical areas. Increased alpha activity was found in a cortical area including part of the precuneus, and the posterior part of the middle temporal gyrus in the right hemisphere. Decreased alpha activity was found bilaterally in medial parts of the frontal cortex including the anterior cingulate and the superior and medial frontal gyri. Neither spectral analysis, nor LORETA revealed statistically significant differences in the delta, theta, and beta bands. LORETA revealed the anatomical distribution of the cortical sources (generators) of the EEG abnormalities in migraine. The findings characterize the state of the cerebral cortex in the pain-free interval and might be suitable for planning forthcoming investigations.
Casting inorganic structures with DNA molds
Sun, Wei; Boulais, Etienne; Hakobyan, Yera; Wang, Wei Li; Guan, Amy; Bathe, Mark; Yin, Peng
2014-01-01
We report a general strategy for designing and synthesizing inorganic nanostructures with arbitrarily prescribed three-dimensional shapes. Computationally designed DNA strands self-assemble into a stiff “nano-mold” that contains a user-specified three-dimensional cavity and encloses a nucleating gold “seed”. Under mild conditions, this seed grows into a larger cast structure that fills and thus replicates the cavity. We synthesized a variety of nanoparticles with three nanometer resolution: three distinct silver cuboids with three independently tunable dimensions, silver and gold nanoparticles with diverse cross sections, and composite structures with homo-/heterogeneous components. The designer equilateral silver triangular and spherical nanoparticles exhibited plasmonic properties consistent with electromagnetism-based simulations. Our framework is generalizable to more complex geometries and diverse inorganic materials, offering a range of applications in biosensing, photonics, and nanoelectronics. PMID:25301973
Detection and Classification of UXO Using Unmanned Undersea Electromagnetic Sensing Platforms
NASA Astrophysics Data System (ADS)
Schultz, G.; Keranen, J.; McNinch, J.; Miller, J.
2017-12-01
Important seafloor applications, including mine countermeasures, unexploded ordnance (UXO) surveys, salvage, and underwater hazards, require the detection, geo-registration, and characterization of man-made targets on, or below, the seafloor. Investigations in littoral environments can be time-consuming and expensive due to the challenges of accurately tracking underwater assets, the difficulty of quick or effective site reconnaissance activities, high levels of clutter in nearshore areas, and lack of situational awareness and real-time feedback to operators. Consequently, a high payoff exists for effective methods using sensor and data fusion, feature extraction, and effective payload integration and deployment for improved assessments of littoral infrastructure. We present technology development and demonstration results from multiple technology research, development, and demonstration projects over the last 3 years that have been focused on advancing seafloor target detection, tracking, and classification for specific environmental and defense missions. We focus on challenges overcome in integrating and testing new miniaturized passive magnetic and controlled-source electromagnetic sensors on a variety of remotely and autonomously operated sensing platforms (ROVs, AUVs and bottom crawling systems). In particular, we present aspects of the design, development, and testing of array configurations of miniaturized atomic magnetometers/gradiometers and multi-dimensional electromagnetic (EM) sensor arrays. Results from nearshore (surf zone and marsh in North Carolina) and littoral experiments (bays and reef areas of Florida Gulf and Florida Keys) are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong Jing; Liu Wei, E-mail: jrliu@sdu.edu.cn; Wang Fenglong
Monodispersed Ni flower-like architectures with size of 1-2 {mu}m were synthesized through a facile solvent-thermal process in 1,2-propanediol solution in the presence of polyethylene glycol (PEG) and sodium alkali for electromagnetic absorption application. The Ni architectures are composed of nanoflakes, which assemble to form three dimensional flower-like structure, and the thickness of nanoflakes is about 10-40 nm. A possible formation mechanism for Ni flower-like architectures was proposed and it was confirmed by the control experiments. The Ni architectures exhibited a saturation magnetization (M{sub s}) of 47.7 emu/g and a large coercivity (H{sub cj}) of 332.3 Oe. The epoxy resin compositesmore » with 20 vol% Ni sample provided good electromagnetic wave absorption performance (reflection loss <-20 dB) in the range of 2.8-6.3 GHz over absorber thickness of 2.6-5.0 mm. - Graphical abstract: Monodispersed Ni flower-like architectures composed of nanoflakes were synthesized through a facile solvent-thermal process. The Ni architectures exhibited a large coercivity and enhanced electromagnetic wave absorption in GHz. Highlights: > Flower-like architectures composed of nanoflakes. > A possible formation mechanism for Ni flower-like architectures was proposed. > Sodium alkali, PEG, and NaCl played the important roles in the final morphology. > Ni architectures exhibited a large coercivity (H{sub cj}) of 332.3 Oe. > Efficient electromagnetic absorption (RL<-20 dB) was provided in 2.8-6.3 GHz.« less
Coherent beam control with an all-dielectric transformation optics based lens
NASA Astrophysics Data System (ADS)
Yi, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André
2016-01-01
Transformation optics (TO) concept well known for its huge possibility in patterning the path of electromagnetic waves is exploited to design a beam steering lens. The broadband directive in-phase emission in a desired off-normal direction from an array of equally fed radiators is numerically and experimentally reported. Such manipulation is achieved without the use of complex and bulky phase shifters as it is the case in classical phased array antennas. The all-dielectric compact low-cost lens prototype presenting a graded permittivity profile is fabricated through three-dimensional (3D) polyjet printing technology. The array of radiators is composed of four planar microstrip antennas realized using standard lithography techniques and is used as excitation source for the lens. To validate the proposed lens, we experimentally demonstrate the broadband focusing properties and in-phase directive emissions deflected from the normal direction. Both the far-field radiation patterns and the near-field distributions are measured and reported. Measurements agree quantitatively and qualitatively with numerical full-wave simulations and confirm the corresponding steering properties. Such experimental validation paves the way to inexpensive easy-made all-dielectric microwave lenses for beam forming and collimation.
Xu, He-Xiu; Wang, Guang-Ming; Tao, Zui; Cui, Tie Jun
2014-01-01
A three-dimensional (3D) highly-directive emission system is proposed to enable beam shaping and beam steering capabilities in wideband frequencies. It is composed of an omnidirectional source antenna and several 3D gradient-refractive-index (GRIN) lenses. To engineer a broadband impedance match, the design method for these 3D lenses is established under the scenario of free-space excitation by using a planar printed monopole. For realizations and demonstrations, a kind of GRIN metamaterial is proposed, which is constructed by non-uniform fractal geometries. Due to the non-resonant and deep-subwavelength features of the fractal elements, the resulting 3D GRIN metamaterial lenses have extra wide bandwidth (3 to 7.5 GHz), and are capable of manipulating electromagnetic wavefronts accurately, advancing the state of the art of available GRIN lenses. The proposal for the versatile highly-directive emissions has been confirmed by simulations and measurements, showing that not only the number of beams can be arbitrarily tailored but also the beam directions can be steerable. The proposal opens a new way to control broadband highly-directive emissions with pre-designed directions, promising great potentials in modern wireless communication systems. PMID:25034268
Coherent beam control with an all-dielectric transformation optics based lens.
Yi, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André
2016-01-05
Transformation optics (TO) concept well known for its huge possibility in patterning the path of electromagnetic waves is exploited to design a beam steering lens. The broadband directive in-phase emission in a desired off-normal direction from an array of equally fed radiators is numerically and experimentally reported. Such manipulation is achieved without the use of complex and bulky phase shifters as it is the case in classical phased array antennas. The all-dielectric compact low-cost lens prototype presenting a graded permittivity profile is fabricated through three-dimensional (3D) polyjet printing technology. The array of radiators is composed of four planar microstrip antennas realized using standard lithography techniques and is used as excitation source for the lens. To validate the proposed lens, we experimentally demonstrate the broadband focusing properties and in-phase directive emissions deflected from the normal direction. Both the far-field radiation patterns and the near-field distributions are measured and reported. Measurements agree quantitatively and qualitatively with numerical full-wave simulations and confirm the corresponding steering properties. Such experimental validation paves the way to inexpensive easy-made all-dielectric microwave lenses for beam forming and collimation.
Spatial Light Modulators as Optical Crossbar Switches
NASA Technical Reports Server (NTRS)
Juday, Richard
2003-01-01
A proposed method of implementing cross connections in an optical communication network is based on the use of a spatial light modulator (SLM) to form controlled diffraction patterns that connect inputs (light sources) and outputs (light sinks). Sources would typically include optical fibers and/or light-emitting diodes; sinks would typically include optical fibers and/or photodetectors. The sources and/or sinks could be distributed in two dimensions; that is, on planes. Alternatively or in addition, sources and/or sinks could be distributed in three dimensions -- for example, on curved surfaces or in more complex (including random) three-dimensional patterns.
Magnetic Control of Hypersonic Flow
NASA Astrophysics Data System (ADS)
Poggie, Jonathan; Gaitonde, Datta
2000-11-01
Electromagnetic control is an appealing possibility for mitigating the thermal loads that occur in hypersonic flight, in particular for the case of atmospheric entry. There was extensive research on this problem between about 1955 and 1970,(M. F. Romig, ``The Influence of Electric and Magnetic Fields on Heat Transfer to Electrically Conducting Fluids,'' \\underlineAdvances In Heat Transfer), Vol. 1, Academic Press, NY, 1964. and renewed interest has arisen due to developments in the technology of super-conducting magnets and the understanding of the physics of weakly-ionized, non-equilibrium plasmas. In order to examine the physics of this problem, and to evaluate the practicality of electromagnetic control in hypersonic flight, we have developed a computer code to solve the three-dimensional, non-ideal magnetogasdynamics equations. We have applied the code to the problem of magnetically-decelerated hypersonic flow over a sphere, and observed a reduction, with an applied dipole field, in heat flux and skin friction near the nose of the body, as well as an increase in shock standoff distance. The computational results compare favorably with the analytical predictions of Bush.(W. B. Bush, ``Magnetohydrodynamic-Hypersonic Flow Past a Blunt Body'', Journal of the Aero/Space Sciences, Vol. 25, No. 11, 1958; ``The Stagnation-Point Boundary Layer in the Presence of an Applied Magnetic Field'', Vol. 28, No. 8, 1961.)
Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan; ...
2017-10-17
In this paper we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach ismore » used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Huiying; Ray, Jaideep; Hou, Zhangshuan
In this paper we developed an efficient Bayesian inversion framework for interpreting marine seismic Amplitude Versus Angle and Controlled-Source Electromagnetic data for marine reservoir characterization. The framework uses a multi-chain Markov-chain Monte Carlo sampler, which is a hybrid of DiffeRential Evolution Adaptive Metropolis and Adaptive Metropolis samplers. The inversion framework is tested by estimating reservoir-fluid saturations and porosity based on marine seismic and Controlled-Source Electromagnetic data. The multi-chain Markov-chain Monte Carlo is scalable in terms of the number of chains, and is useful for computationally demanding Bayesian model calibration in scientific and engineering problems. As a demonstration, the approach ismore » used to efficiently and accurately estimate the porosity and saturations in a representative layered synthetic reservoir. The results indicate that the seismic Amplitude Versus Angle and Controlled-Source Electromagnetic joint inversion provides better estimation of reservoir saturations than the seismic Amplitude Versus Angle only inversion, especially for the parameters in deep layers. The performance of the inversion approach for various levels of noise in observational data was evaluated — reasonable estimates can be obtained with noise levels up to 25%. Sampling efficiency due to the use of multiple chains was also checked and was found to have almost linear scalability.« less
Multiview echocardiography fusion using an electromagnetic tracking system.
Punithakumar, Kumaradevan; Hareendranathan, Abhilash R; Paakkanen, Riitta; Khan, Nehan; Noga, Michelle; Boulanger, Pierre; Becher, Harald
2016-08-01
Three-dimensional ultrasound is an emerging modality for the assessment of complex cardiac anatomy and function. The advantages of this modality include lack of ionizing radiation, portability, low cost, and high temporal resolution. Major limitations include limited field-of-view, reliance on frequently limited acoustic windows, and poor signal to noise ratio. This study proposes a novel approach to combine multiple views into a single image using an electromagnetic tracking system in order to improve the field-of-view. The novel method has several advantages: 1) it does not rely on image information for alignment, and therefore, the method does not require image overlap; 2) the alignment accuracy of the proposed approach is not affected by any poor image quality as in the case of image registration based approaches; 3) in contrast to previous optical tracking based system, the proposed approach does not suffer from line-of-sight limitation; and 4) it does not require any initial calibration. In this pilot project, we were able to show that using a heart phantom, our method can fuse multiple echocardiographic images and improve the field-of view. Quantitative evaluations showed that the proposed method yielded a nearly optimal alignment of image data sets in three-dimensional space. The proposed method demonstrates the electromagnetic system can be used for the fusion of multiple echocardiography images with a seamless integration of sensors to the transducer.
NASA Astrophysics Data System (ADS)
Nowak, S.; Orefice, A.
1994-05-01
In today's high frequency systems employed for plasma diagnostics, power heating, and current drive the behavior of the wave beams is appreciably affected by the self-diffraction phenomena due to their narrow collimation. In the present article the three-dimensional propagation of Gaussian beams in inhomogeneous and anisotropic media is analyzed, starting from a properly formulated dispersion relation. Particular attention is paid, in the case of electromagnetic electron cyclotron (EC) waves, to the toroidal geometry characterizing tokamak plasmas, to the power density evolution on the advancing wave fronts, and to the absorption features occurring when a beam crosses an EC resonant layer.
Three dimensional magnetic solutions in massive gravity with (non)linear field
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Eslam Panah, B.; Panahiyan, S.; Momennia, M.
2017-12-01
The Noble Prize in physics 2016 motivates one to study different aspects of topological properties and topological defects as their related objects. Considering the significant role of the topological defects (especially magnetic strings) in cosmology, here, we will investigate three dimensional horizonless magnetic solutions in the presence of two generalizations: massive gravity and nonlinear electromagnetic field. The effects of these two generalizations on properties of the solutions and their geometrical structure are investigated. The differences between de Sitter and anti de Sitter solutions are highlighted and conditions regarding the existence of phase transition in geometrical structure of the solutions are studied.
Effects of electromagnetic radiation on the hemorheology of rats
NASA Astrophysics Data System (ADS)
Huang, Zhiwei; Tian, Tian; Xiao, Bo; Li, Wen
2017-01-01
The current work examines the effects of electromagnetic radiation on the hemorheology to provide an experimental basis for radiation protection. Electromagnetic radiation was generated by a Helmholtz coil constructed from copper wire. There were six rats altogether: three rats in the experimental group, and three rats in the control group. The rats in the experimental group were continuously exposed to radiation for 10 hours every day, and rats in the control group remained in a normal environment. After 30 days, the characteristics of hemorheology of the two groups were compared. The average plasma viscosity, whole blood high shear velocity, and whole blood low shear viscosity were lower in rats in the experimental group than in rats in the control group, while the whole blood shear viscosity was higher in the experimental group than in the control group. Results suggest that long term exposure to electromagnetic radiation does have certain impacts on the cardiovascular system, deeming it necessary to take preventative measures.
Emissivity of half-space random media. [in passive remote sensing
NASA Technical Reports Server (NTRS)
Tsang, L.; Kong, J. A.
1976-01-01
Scattering of electromagnetic waves by a half-space random medium with three-dimensional correlation functions is studied with the Born approximation. The emissivity is calculated from a simple integral and is illustrated for various cases. The results are valid over a wavelength range smaller or larger than the correlation lengths.
Three-dimensional simulation of microwave-induced helium plasma under atmospheric pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, G. L.; Hua, W., E-mail: huaw@scu.edu.cn; Guo, S. Y.
2016-07-15
A three-dimensional model is presented to investigate helium plasma generated by microwave under atmospheric pressure in this paper, which includes the physical processes of electromagnetic wave propagation, electron and heavy species transport, gas flow, and heat transfer. The model is based on the fluid approximation calculation and local thermodynamic equilibrium assumption. The simulation results demonstrate that the maxima of the electron density and gas temperature are 4.79 × 10{sup 17 }m{sup −3} and 1667 K, respectively, for the operating conditions with microwave power of 500 W, gas flow rate of 20 l/min, and initial gas temperature of 500 K. The electromagnetic field distribution in the plasma sourcemore » is obtained by solving Helmholtz equation. Electric field strength of 2.97 × 10{sup 4 }V/m is obtained. There is a broad variation on microwave power, gas flow rate, and initial gas temperature to obtain deeper information about the changes of the electron density and gas temperature.« less
Quasicrystalline structures and uses thereof
Steinhardt, Paul Joseph; Chaikin, Paul Michael; Man, Weining
2013-08-13
This invention relates generally to devices constructed from quasicrystalline heterostructures. In preferred embodiments, two or more dielectric materials are arranged in a two- or three-dimensional space in a lattice pattern having at least a five-fold symmetry axis and not a six-fold symmetry axis, such that the quasicrystalline heterostructure exhibits an energy band structure in the space, the band structure having corresponding symmetry, which symmetry is forbidden in crystals, and which band structure comprises a complete band gap. The constructed devices are adapted for manipulating, controlling, modulating, trapping, reflecting and otherwise directing waves including electromagnetic, sound, spin, and surface waves, for a pre-selected range of wavelengths propagating within or through the heterostructure in multiple directions.
Holography of Wi-fi Radiation.
Holl, Philipp M; Reinhard, Friedemann
2017-05-05
Wireless data transmission systems such as wi-fi or Bluetooth emit coherent light-electromagnetic waves with a precisely known amplitude and phase. Propagating in space, this radiation forms a hologram-a two-dimensional wave front encoding a three-dimensional view of all objects traversed by the light beam. Here we demonstrate a scheme to record this hologram in a phase-coherent fashion across a meter-sized imaging region. We recover three-dimensional views of objects and emitters by feeding the resulting data into digital reconstruction algorithms. Employing a digital implementation of dark-field propagation to suppress multipath reflection, we significantly enhance the quality of the resulting images. We numerically simulate the hologram of a 10-m-sized building, finding that both localization of emitters and 3D tomography of absorptive objects could be feasible by this technique.
NASA Astrophysics Data System (ADS)
Holl, Philipp M.; Reinhard, Friedemann
2017-05-01
Wireless data transmission systems such as wi-fi or Bluetooth emit coherent light—electromagnetic waves with a precisely known amplitude and phase. Propagating in space, this radiation forms a hologram—a two-dimensional wave front encoding a three-dimensional view of all objects traversed by the light beam. Here we demonstrate a scheme to record this hologram in a phase-coherent fashion across a meter-sized imaging region. We recover three-dimensional views of objects and emitters by feeding the resulting data into digital reconstruction algorithms. Employing a digital implementation of dark-field propagation to suppress multipath reflection, we significantly enhance the quality of the resulting images. We numerically simulate the hologram of a 10-m-sized building, finding that both localization of emitters and 3D tomography of absorptive objects could be feasible by this technique.
FOREWORD: Special section on electromagnetic characterization of buried obstacles
NASA Astrophysics Data System (ADS)
Lesselier, Dominique; Chew, Weng Cho
2004-12-01
This Inverse Problems special section on electromagnetic characterization of buried obstacles contains a selection of 14 invited papers, involving 41 authors and 19 research groups worldwide. (Though this section consists of invited papers, the standard refereeing procedures of Inverse Problems have been rigorously observed.) We do not claim to have reached all the high-level researchers in the field, but we believe that we have made a fair attempt. As illustrated by the variety of contributions included, the aim of this special section is to address theoretical and practical inversion problems (and the solutions thereof) that arise in the field of electromagnetic characterization of obstacles (artificial or natural) buried on the Earth or in planetary subsoil. Civil and military engineering, archaeological and environmental issues are typically among those within the scope of the investigation. An example is the characterization of a single (or multiple) obstacle(s) located near the interface or at shallow depths via electromagnetic means operating within relevant frequency bands. However, we also welcomed novel and thought-provoking investigations, even though their direct application to the real world, or even to laboratory-controlled settings, may still be far off. Within this general mathematical and applied framework, the submitted papers focused on a combination of theoretical, computational and experimental developments. They either reviewed the most recent advances in a particular area of research or were an original and specialized contribution. Let us now take the opportunity to remind the readers that this special section harks back (in addition to sharing some common contributors) to two special sections already published in the journal which possessed the same flavour of wave-field inversion and its many applications. They were `Electromagnetic imaging and inversion of the Earth's subsurface', which was published in October 2000 (volume 16, issue 5), and was co-ordinated by the Guest Editors, D Lesselier and T Habashy, and comprised 14 invited papers; and `Electromagnetic and ultrasonic nondestructive evaluation', which was published in December 2002 (volume 18, issue 6), was organized by the Guest Editors, D Lesselier and J Bowler, and comprised 12 invited papers. In particular in the latter special section, it was noted in the foreword that: `Much of the research effort in NDE (nondestructive evaluation) is aligned with the interests of the broader community of scientists and engineers who study inverse problems and their applications in areas such as geophysics, medical imaging, remote sensing or underwater acoustics, to mention but a few. Indeed, many of the basic methods adopted for NDE including tomography, synthetic aperture techniques and iterative inversions, under many guises, are widely used in these other areas'. In a similar fashion, the foreword of the former special section noted that: `Many developments have been driven by several new applications and some old ones, such as mathematical physics, atmospheric sciences, geophysical prospecting, quantum mechanics, remote sensing, underwater acoustics, nondestructive testing and evaluation, medical imaging, to mention only a few'. One was confronted in these two previous special sections, as one is confronted today, with the same difficult endeavour: a signal resulting from the interrogation of an object embedded in some complicated medium by a probing radiation contains arcane, encoded information about this object. Inversion is the procedure by which this signal is transformed into some intelligible, decoded form in order to provide the user with some of this information. This could be estimates of locations, volumes, boundaries, shapes, values, and distributions of electromagnetic (elastic) constitutive parameters. This endeavour forces us to go from mathematical theory to numerical solution methods, to validation from laboratory-controlled data, to processing of real-world data, and back again. Unfortunately, we face critical configurations in practice. They require increasingly sophisticated models, which exhaust most of our computational resources—notably due to the three-dimensionally bounded objects in possibly vast and little known search zones. Furthermore, we have to reckon with vector fields and dyadic Green functions, complex behaviours of materials and often with severely incomplete and limited data. The latter limitation is a severe one and is pervasive in the specific situation of buried objects in layered media, upon which we focus in the special section. In brief, this means that the solution methods must not be reduced to incremental improvements over existing ones. They must be validated in-depth, have sound theoretical bases and knowledge of the peculiarities and of the limitations of the measurements. Naturally, this means that the technologically advanced sensors that are available nowadays, together with advanced computers, provide increasingly reliable data and powerful implementations of solution methods. But as yet they do not provide us with the solution itself. This is evident in the papers published today—they rely on rigorous analyses, clever insights and much labour. Also, it is necessary to solve first and often simultaneously (within iterative retrievals) a sequence of direct (forward) wave-field problems. This is needed to understand the interaction, determine key parameters, estimate which models best fit our inversion needs and acquire well-generated synthetic data for cost-effective preliminary testing of methods. The 14 papers in this special section should do justice to the above, overall if not every one individually. Ordered alphabetically, by the first author, the articles are as follows: • A Baussard, E L Miller and D Lesselier, in `Adaptive multiscale reconstruction of buried objects', seek to improve the speed and robustness of a nonlinear inversion (here limited to the case of two-dimensional objects in a half space) using a novel coarse-to-fine iterative strategy which involves a pyramid of B-splines of degree 3. In order to map the distribution of electromagnetic parameters sought, increasingly finer representations are progressively introduced in the areas of interest, i.e. those where the objects emerge from the background as the iterations go on. This was done following the testing of the improvement which such representations may or may not bring. • N V Budko and R F Remis, in `Electromagnetic inversion using a reduced-order three-dimensional homogeneous model', start from the idea of seeking an effective medium three-dimensional homogeneous scatterer which will be equivalent to the true one, with the assumption of a known target support. They then develop, and illustrate through a variety of numerical examples (including an inhomogeneous target), a model-based approach which involves the so-called Arnoldi decomposition and uses a reduced-order representation of the objective functional in order to avoid (in particular) the unusually high computational costs caused by repetitive solutions of the forward problem. This may have interesting applications in the low frequency limit. • X Chen, K O'Neill, B E Barrowes, T M Grzegorczyk and J A Kong, in `Application of a spheroidal-mode approach and a differential evolution algorithm for inversion of magneto-quasistatic data in UXO discrimination', tackle the critical issue of the detection and characterization of unexploded ordnance in conflict and training zones, using low-frequency probing tools (working in the quasistatic regime) available in the field. They address both the case of spheroidal objects and that of complex objects possibly included within spheroidal surfaces, and compute the coefficients of spheroidal field expansions that are characteristic of their magnetic response. From a library of coefficients, fast forward models are employed within a differential evolution approach in order to reconstruct in an effective fashion pertinent features of actual ordnances as shown from synthetic and measured data. Then, the detection and characterization problem can be made much simpler than the inverse problem. • T J Cui, Y Qin, G-L Wang and W C Chew, in `Low-frequency detection of two-dimensional buried objects using high-order extended Born approximations', develop a full range of higher and higher approximations (starting from the Born one and encompassing the extended Born one, and then pursue beyond them both in a recursive fashion) in order to avoid solving the fully nonlinear problem for large contrasts of the sought obstacles. Then they show how these developments can be employed for such types of objects in lossy media at low enough frequency, yielding reliable images at the moderate computational expense of tackling a properly regularized linear inverse problem and recursively using the high-order approximations thereupon. • A Dubois, K Belkebir and M Saillard, in `Localization and characterization of two-dimensional targets buried in a cluttered environment', counter the clutter problem (so far only in a two-dimensional setting) via a combination of a hybrid iterative minimization—reduced to a modified gradient or to a Newton-type algorithm—and of the DORT (decomposition of the time reversal operator) method—which currently enjoys a number of developments for electromagnetic detection and numbering of buried objects. This novel combination enables one to synthesize waves that are focused onto the scatterers, an appropriate DORT-related objective functional being added or multiplied to the standard one minimized along the course of the iterations. In so doing, strong clutter, which usually tends to shadow the targets and/or produce severe artifacts, is overcome to a suitable extent. • B Duchêne, A Joisel and M Lambert, in `Nonlinear inversions of immersed objects using laboratory-controlled data', discuss the inversion of laboratory data that emulate buried objects in the ocean and where the data are very limited and the environment is highly attenuative. The forward model is employed with an integral equation approach. The inverse scattering algorithm uses the level set method as well as a binary specialized contrast source method. Though computationally intensive these approaches are expected to be effective whenever linearization of the inversion fails. Two types of antennae were tested out in the experiment, a small one and a larger one. It is found, in particular, that the smaller antenna reproduces the modelled result better than the larger one. • X Feng and M Sato, in `Pre-stack migration applied to GPR for landmine detection', investigate the testing of a ground penetrating radar with synthetic aperture, acquiring mid-point multi-offset data in the demanding situations (strong clutter) of inhomogeneous soil and rough ground and/or of steeply oblique landmines. This is done in practice with experimental data, and is thoroughly illustrated by numerical experiments in the framework of migration techniques. These techniques are tailored to provide an approximate but robust solution to the highly involved three-dimensional vector wave-field inversion problem which is relevant here. • A Kirsch, in `The factorization method for Maxwell's equations', shows how the theory of the recently introduced and much considered factorization method can be developed in a sound theoretical fashion for the time-harmonic three-dimensional Maxwell system when far-field scattering patterns are known—by constructing a binary criterion which tells whether, if a given point lies inside or outside an unknown obstacle, the shape of which is to be retrieved. The vector nature of the electromagnetic field is fully considered in this paper. This is investigated in depth both for a lossy obstacle (with lower-bounded imaginary part of the dielectric permittivity) and for a lossless one (albeit with smoothly varying dielectric permittivity). Useful comparisons with the linear sampling method are also made in the conclusion. • A Massa, M Pastorino and A Randazzo, in `Reconstruction of two-dimensional buried objects by a differential evolution method', cast the nonlinear inversion problem into the form of a global optimization problem. They combine properly weighted state (coupling) and data (observation) residuals and solve the problem by means of the differential evolution algorithm. Though limited at this stage to a two-dimensional setting and scalar fields, and to a limited exploration zone in space, the applicability of the procedure strongly relies on an appropriate strategy to construct trial solutions at low computational cost. Ways to achieve this strategy are studied and illustrated by the authors. • G A Newman and P T Boggs, in `Solution accelerators for large scale three-dimensional electromagnetic inverse problems', are interested in the solution of full vector three-dimensional inversion problems which involve a large number of unknowns, such as for monitoring oil recovery at diffusive frequencies. Much relies on properly preconditioning—an approximate Hessian was introduced to that effect via the solution of an approximate adjoint problem. They then propose two solution algorithms, known as the nonlinear conjugate gradient and the limited-memory quasi-Newton, and investigate their behaviour both in theory and via numerical experiments that are closely inspired by real-world applications. • L-P Song and Q H Liu, in `Fast three-dimensional electromagnetic nonlinear inversion in layered media with a novel scattering approximation', introduce within a full vector three-dimensional setting a source-dependent diagonal scattering tensor which leads them to a modelling method with a wider range of validity than the existing extended Born and other similar approaches. Then they show the efficiency of their model for electromagnetic imaging via an iterative inversion which involves carefully tuned regularization factors that are functions of the Fréchet sensitivity matrix. • G L Wang, W C Chew, T J Cui, A A Aydiner, D L Wright and D V Smith, in `3D near-to-surface conductivity reconstruction by inversion of VETEM data using the distorted Born iterative method', are preoccupied by the deciphering of data provided by the very early time electromagnetic (VETEM) system in the kHz to MHz range in order to reconstruct conductive structures in subsoils. A fast direct solver is introduced and used in the iterative reconstruction with a properly chosen regularization parameter. Yet this remains computationally expensive, as the authors illustrate. Through examples drawn from synthetic and real-world data, they retrieve the conductivity map of the search zone as a combination of sub-maps found separately, demonstrating its usefulness. • Y Yu, B Krishnapuram and L Carin, in `Inverse scattering with sparse Bayesian vector regression', develop on strong Bayesian foundations and statistical learning, a regression-based method in a vector framework (the sought parameters are in vector form), which preserves sparsity (only the most relevant examples from the training set are employed) and is appropriate for on-line decisions since here, in particular, all forward calculations are carried out beforehand. Once trained using synthetic and measured data, they apply the method to the retrieval of cubical targets buried in soil which are equivalent to the actual target. • M S Zhdanov and A Chernyavskiy, in `Rapid three-dimensional inversion of multi-transmitter electromagnetic data using the spectral Lanczos decomposition method', work out a spectral Lanczos decomposition method in order to apply it to vector three-dimensional inversion (with present-day applications to mining exploration from helicopter-borne data along prescribed flight lines) using the localized quasilinear inversion previously introduced in the literature. This decomposition method has the advantage of providing a regularized solution for all values of the regularization parameter (which weighs in a data error and a model error, the latter with respect to some priors) at once. Synthetic and real data are shown to be amenable to useful retrievals in complex geological environments. To conclude, we would like to thank all those involved in the preparation of this special section at the Institute of Physics for their dedicated work, and to thank all referees (there were many of them) for their thorough and timely reviews of the papers, which was not an easy task in view of the constraints we put on them and of the technical complexity of many of the contributions. Special thanks should go to the Publisher, Elaine Longden-Chapman, and the Publishing Administrator, Kate Hooper, without whom none of this could have been done and, in particular, no deadlines met! The Editor-in-Chief, F A Grünbaum, and all the members of the Editorial Board, gave us the great opportunity to organize this section, and they should be thanked again for their kind support. The last word of this introduction should, however, go out to the reader. We hope that he/she will appreciate the in-depth analysis of the electromagnetic retrieval of buried obstacles presented in the contributions of the special section, the variety of challenging issues dealt within and the cleverness of many of the solution methods proposed and investigated. We also know that many contributions will require from the reader a good level of multi-disciplinary expertise and sometimes quite considerable labour to get into the intricacies of the authors' analyses. And, to tell the truth, we have often found ourselves, as Guest Editors, on the verge of also being overwhelmed by the vast amount of knowledge required to understand and judge those intricacies. Ultimately, however, what should matter most now this special section is published is that some good light has been shed on many open and critical issues in the theoretical and applied field of electromagnetic inversion of buried obstacles. This is, in our opinion, very stimulating for those who are interested in this domain and who understand its relevance to many technical fields, as well as the integration of and synergy between such fields required to achieve a reliable result.
`Earth-ionosphere' mode controlled source electromagnetic method
NASA Astrophysics Data System (ADS)
Li, Diquan; Di, Qingyun; Wang, Miaoyue; Nobes, David
2015-09-01
In traditional artificial-source electromagnetic exploration, the effects of the ionosphere and displacement current (DC) in the air were neglected, and only the geoelectrical structure of the earth's crust and upper mantle was considered, such as for controlled source audio-frequency magnetotelluric (CSAMT). By employing a transmitter (less than 30 kW) to generate source fields, the CSAMT method overcomes the problems associated with weak natural electromagnetic (EM) fields used in magnetotellurics. However, the transmitter is moved and the source-receiver offset is approximately less than 20 km, because of the limitation of emission energy. We put forward a new idea, that is, a fixed artificial source (greater than 200 kW) is used and the source location selected at a high resistivity region (to ensure a high emission efficiency), so there may be a possibility that as long as the source strength magnitude is strong enough, the artificial EM signal can be easily observed within a distance of several thousand kilometres. Previous studies have provided the evidence to support this idea; they used the `earth-ionosphere' mode in modeling the EM fields with the offset up to a thousand kilometres. Such EM fields still have a signal/noise ratio over 10-20 dB; this means that a new EM method with fixed source is feasible. However, in their calculations, the DC which plays a very important role for large offsets was neglected. This paper pays much attention to derive the formulae of the `earth-ionosphere' mode with a horizontal electric dipole source, and the DC is not neglected. We present some three layers modeling results to illustrate the basic EM field characteristics under the `earth-ionosphere' mode. As the offset increases, the contribution of the conduction current decreases, DC and ionosphere were taken into account, and the EM field attenuation decreases. We also quantitatively compare the predicted and observed data. The comparison of these results with the data reveal the excellent agreement between the experimental and theoretical results. The DC and ionosphere affects the EM fields, however impedances (ratio of E to H) are unaffected, and this means we need to include ionosphere and DC effects to accurately model the EM field amplitudes for optimal setting of measurement parameters, but we do not need to include these complications for the interpretation of the data for the Earth conductivity.
NASA Technical Reports Server (NTRS)
Bernhard, R. J.; Bolton, J. S.; Gardner, B.; Mickol, J.; Mollo, C.; Bruer, C.
1986-01-01
Progress was made in the following areas: development of a numerical/empirical noise source identification procedure using bondary element techniques; identification of structure-borne noise paths using structural intensity and finite element methods; development of a design optimization numerical procedure to be used to study active noise control in three-dimensional geometries; measurement of dynamic properties of acoustical foams and incorporation of these properties in models governing three-dimensional wave propagation in foams; and structure-borne sound path identification by use of the Wigner distribution.
Advantages and Challenges of 10-Gbps Transmission on High-Density Interconnect Boards
NASA Astrophysics Data System (ADS)
Yee, Chang Fei; Jambek, Asral Bahari; Al-Hadi, Azremi Abdullah
2016-06-01
This paper provides a brief introduction to high-density interconnect (HDI) technology and its implementation on printed circuit boards (PCBs). The advantages and challenges of implementing 10-Gbps signal transmission on high-density interconnect boards are discussed in detail. The advantages (e.g., smaller via dimension and via stub removal) and challenges (e.g., crosstalk due to smaller interpair separation) of HDI are studied by analyzing the S-parameter, time-domain reflectometry (TDR), and transmission-line eye diagrams obtained by three-dimensional electromagnetic modeling (3DEM) and two-dimensional electromagnetic modeling (2DEM) using Mentor Graphics HyperLynx and Keysight Advanced Design System (ADS) electronic computer-aided design (ECAD) software. HDI outperforms conventional PCB technology in terms of signal integrity, but proper routing topology should be applied to overcome the challenge posed by crosstalk due to the tight spacing between traces.
Is time enough in order to know where you are?
NASA Astrophysics Data System (ADS)
Tartaglia, Angelo
2013-09-01
This talk discusses various aspects of the structure of space-time presenting mechanisms leading to the explanation of the "rigidity" of the manifold and to the emergence of time, i.e. of the Lorentzian signature. The proposed ingredient is the analog, in four dimensions, of the deformation energy associated with the common three-dimensional elasticity theory. The inclusion of this additional term in the Lagrangian of empty space-time accounts for gravity as an emergent feature from the microscopic structure of space-time. Once time has legitimately been introduced a global positioning method based on local measurements of proper times between the arrivals of electromagnetic pulses from independent distant sources is presented. The method considers both pulsars as well as artificial emitters located on celestial bodies of the solar system as pulsating beacons to be used for navigation and positioning.
Craig, G.D.; Pettibone, J.S.; Drobot, A.T.
1982-05-06
The invention comprises a new class of device, driven by electron or other charged particle flow, for producing coherent microwaves by utilizing the interaction of electromagnetic waves with electron flow in diodes not requiring an external magnetic field. Anode and cathode surfaces are electrically charged with respect to one another by electron flow, for example caused by a Marx bank voltage source or by other charged particle flow, for example by a high energy charged particle beam. This produces an electric field which stimulates an emitted electron beam to flow in the anode-cathode region. The emitted electrons are accelerated by the electric field and coherent microwaves are produced by the three dimensional spatial and temporal interaction of the accelerated electrons with geometrically allowed microwave modes which results in the bunching of the electrons and the pumping of at least one dominant microwave mode.
MOM3D method of moments code theory manual
NASA Technical Reports Server (NTRS)
Shaeffer, John F.
1992-01-01
MOM3D is a FORTRAN algorithm that solves Maxwell's equations as expressed via the electric field integral equation for the electromagnetic response of open or closed three dimensional surfaces modeled with triangle patches. Two joined triangles (couples) form the vector current unknowns for the surface. Boundary conditions are for perfectly conducting or resistive surfaces. The impedance matrix represents the fundamental electromagnetic interaction of the body with itself. A variety of electromagnetic analysis options are possible once the impedance matrix is computed including backscatter radar cross section (RCS), bistatic RCS, antenna pattern prediction for user specified body voltage excitation ports, RCS image projection showing RCS scattering center locations, surface currents excited on the body as induced by specified plane wave excitation, and near field computation for the electric field on or near the body.
NASA Technical Reports Server (NTRS)
Adrian, Mark L.; Wendel, D. E.
2012-01-01
We investigate observations of intense bursts of electromagnetic wave energy in association with the thin current layers of turbulent magnetosheath reconnection. These observed emissions - typically detected in the layers immediately outside of the current layer proper - form two distinct types: (i) broadband emissions that extend continuously to lOs of Hertz; and (ii) structured bursts of emitted energy that occur above 80-Hz, often displaying features reminiscent of absorption bands and are observed near the local minima in the magnetic field. We present detailed analyses of these intense bursts of electromagnetic energy and quantify their proximity to X-IO-nulls and magnetic spine connected null pairs, as well as their correlation - if any - to the amount of magnetic energy converted by the process of magnetic reconnection.
NASA Astrophysics Data System (ADS)
Taflove, Allen; Umashankar, Korada R.
1993-08-01
This project introduced radiation boundary condition (RBC) and absorbing boundary condition (ABC) theory to the engineering electromagnetics community. An approximate method for obtaining the scattering of 2-D and 3-D bodies, the on-surface radiation condition (OSRC) method, was formulated and validated. RBC's and ABC's were shown to work well at points closer to scatterers than anyone had expected. Finite-difference time domain (FD-TD) methods exploiting these ABC's were pursued for applications in scattering, radiation, penetration, biomedical studies, and nonlinear optics. Multiprocessing supercomputer software was developed for FD-TD, leading to the largest scale detailed electromagnetic wave interaction models ever conducted, including entire jet fighter aircraft modeled for radar cross section (RCS) at UHF frequencies up to 500 MHz.
A comparison of lightning and nuclear electromagnetic pulse response of a helicopter
NASA Technical Reports Server (NTRS)
Easterbrook, C. C.; Perala, R. A.
1984-01-01
A numerical modeling technique is utilized to investigate the response of a UH-60A helicopter to both lightning and nuclear electromagnetic pulses (NEMP). The analytical approach involves the three-dimensional time domain finite-difference solutions of Maxwell's equations. Both the external currents and charges as well as the internal electromagnetic fields and cable responses are computed. Results of the analysis indicate that, in general, the short circuit current on internal cables is larger for lightning, whereas the open-circuit voltages are slightly higher for NEMP. The lightning response is highly dependent upon the rise time of the injected current as was expected. The analysis shows that a coupling levels to cables in a helicopter are 20 to 30 dB larger than those observed in fixed-wing aircraft.
Manoufali, Mohamed; Bialkowski, Konstanty; Mohammed, Beadaa Jasem; Mills, Paul C; Abbosh, Amin
2018-01-01
Near-field inductive-coupling link can establish a reliable power source to a batteryless implantable medical device based on Faraday's law of induction. In this paper, the design, modeling, and experimental verification of an inductive-coupling link between an off-body loop antenna and a 0.9 three-dimensional (3-D) bowtie brain implantable antenna is presented. To ensure reliability of the design, the implantable antenna is embedded in the cerebral spinal fluid of a realistic human head model. Exposure, temperature, and propagation simulations of the near electromagnetic fields in a frequency-dispersive head model were carried out to comply with the IEEE safety standards. Concertedly, a fabrication process for the implantable antenna is proposed, which can be extended to devise and miniaturize different 3-D geometric shapes. The performance of the proposed inductive link was tested in a biological environment; in vitro measurements of the fabricated prototypes were carried in a pig's head and piglet. The measurements of the link gain demonstrated in the pig's head and in piglet. The in vitro measurement results showed that the proposed 3-D implantable antenna is suitable for integration with a miniaturized batteryless brain implantable medical device (BIMD).
Shahriari, Navid; Hekman, Edsko; Oudkerk, Matthijs; Misra, Sarthak
2015-11-01
Percutaneous needle insertion procedures are commonly used for diagnostic and therapeutic purposes. Although current technology allows accurate localization of lesions, they cannot yet be precisely targeted. Lung cancer is the most common cause of cancer-related death, and early detection reduces the mortality rate. Therefore, suspicious lesions are tested for diagnosis by performing needle biopsy. In this paper, we have presented a novel computed tomography (CT)-compatible needle insertion device (NID). The NID is used to steer a flexible needle (φ0.55 mm) with a bevel at the tip in biological tissue. CT images and an electromagnetic (EM) tracking system are used in two separate scenarios to track the needle tip in three-dimensional space during the procedure. Our system uses a control algorithm to steer the needle through a combination of insertion and minimal number of rotations. Noise analysis of CT images has demonstrated the compatibility of the device. The results for three experimental cases (case 1: open-loop control, case 2: closed-loop control using EM tracking system and case 3: closed-loop control using CT images) are presented. Each experimental case is performed five times, and average targeting errors are 2.86 ± 1.14, 1.11 ± 0.14 and 1.94 ± 0.63 mm for case 1, case 2 and case 3, respectively. The achieved results show that our device is CT-compatible and it is able to steer a bevel-tipped needle toward a target. We are able to use intermittent CT images and EM tracking data to control the needle path in a closed-loop manner. These results are promising and suggest that it is possible to accurately target the lesions in real clinical procedures in the future.
NASA Astrophysics Data System (ADS)
Rejiba, F.; Sagnard, F.; Schamper, C.
2011-07-01
Time domain reflectometry (TDR) is a proven, nondestructive method for the measurement of the permittivity and electrical conductivity of soils, using electromagnetic (EM) waves. Standard interpretation of TDR data leads to the estimation of the soil's equivalent electromagnetic properties since the wavelengths associated with the source signal are considerably greater than the microstructure of the soil. The aforementioned approximation tends to hide an important issue: the influence of the microstructure and phase configuration in the generation of a polarized electric field, which is complicated because of the presence of numerous length scales. In this paper, the influence of the microstructural distribution of each phase on the TDR signal has been studied. We propose a two-step EM modeling technique at a microscale range (?): first, we define an equivalent grain including a thin shell of free water, and second, we solve Maxwell's equations over the discretized, statistically distributed triphasic porous medium. Modeling of the TDR probe with the soil sample was performed using a three-dimensional finite difference time domain scheme. The effectiveness of this hybrid homogenization approach is tested on unsaturated Nemours sand with narrow granulometric fractions. The comparisons made between numerical and experimental results are promising, despite significant assumptions concerning (1) the TDR probe head and the coaxial cable and (2) the assumed effective medium theory homogenization associated with the electromagnetic processes arising locally between the liquid and solid phases at the grain scale.
Investigation of Fully Three-Dimensional Helical RF Field Effects on TWT Beam/Circuit Interaction
NASA Technical Reports Server (NTRS)
Kory, Carol L.
2000-01-01
A fully three-dimensional (3D), time-dependent, helical traveling wave-tube (TWT) interaction model has been developed using the electromagnetic particle-in-cell (PIC) code MAFIA. The model includes a short section of helical slow-wave circuit with excitation fed by RF input/output couplers, and electron beam contained by periodic permanent magnet (PPM) focusing. All components of the model are simulated in three dimensions allowing the effects of the fully 3D helical fields on RF circuit/beam interaction to be investigated for the first time. The development of the interaction model is presented, and predicted TWT performance using 2.5D and 3D models is compared to investigate the effect of conventional approximations used in TWT analyses.
Le, Tuan-Anh; Zhang, Xingming; Hoshiar, Ali Kafash; Yoon, Jungwon
2017-09-07
Magnetic nanoparticles (MNPs) are effective drug carriers. By using electromagnetic actuated systems, MNPs can be controlled noninvasively in a vascular network for targeted drug delivery (TDD). Although drugs can reach their target location through capturing schemes of MNPs by permanent magnets, drugs delivered to non-target regions can affect healthy tissues and cause undesirable side effects. Real-time monitoring of MNPs can improve the targeting efficiency of TDD systems. In this paper, a two-dimensional (2D) real-time monitoring scheme has been developed for an MNP guidance system. Resovist particles 45 to 65 nm in diameter (5 nm core) can be monitored in real-time (update rate = 2 Hz) in 2D. The proposed 2D monitoring system allows dynamic tracking of MNPs during TDD and renders magnetic particle imaging-based navigation more feasible.
Le, Tuan-Anh; Zhang, Xingming; Hoshiar, Ali Kafash; Yoon, Jungwon
2017-01-01
Magnetic nanoparticles (MNPs) are effective drug carriers. By using electromagnetic actuated systems, MNPs can be controlled noninvasively in a vascular network for targeted drug delivery (TDD). Although drugs can reach their target location through capturing schemes of MNPs by permanent magnets, drugs delivered to non-target regions can affect healthy tissues and cause undesirable side effects. Real-time monitoring of MNPs can improve the targeting efficiency of TDD systems. In this paper, a two-dimensional (2D) real-time monitoring scheme has been developed for an MNP guidance system. Resovist particles 45 to 65 nm in diameter (5 nm core) can be monitored in real-time (update rate = 2 Hz) in 2D. The proposed 2D monitoring system allows dynamic tracking of MNPs during TDD and renders magnetic particle imaging-based navigation more feasible. PMID:28880220
NASA Astrophysics Data System (ADS)
Mandolesi, E.; Moorkamp, M.; Jones, A. G.
2014-12-01
Most electromagnetic (EM) geophysical methods focus on the electrical conductivity of rocks and sediments to determine the geological structure of the subsurface. Electric conductivity itself is measured in the laboratory with a wide range of instruments and techniques. These measurements seldom return a compatible result. The presence of partially-interconnected random pathways of electrically conductive materials in resistive hosts has been studied for decades, and recently with increasing interest. To comprehend which conductive mechanism scales from the microstructures up to field electrical conductivity measurements, two main branch of studies have been undertaken: statistical probability of having a conductive pathways and mixing laws. Several numerical approaches have been tested to understand the effects of interconnected pathways of conductors at field scale. Usually these studies were restricted in two ways: the sources are considered constant in time (i.e., DC) and the domain is, with few exception, two-dimensional. We simulated the effects of time-varying EM sources on the conductivity measured on the surface of a three-dimensional randomly generated body embedded in an uniform host by using electromagnetic induction equations. We modelled a two-phase mixture of resistive and conductive elements with the goal of comparing the conductivity measured on field scale with the one proper of the elements constituting the random rock, and to test how the internal structures influence the directionality of the responses. Moreover, we modelled data from randomly generated bodies characterized by coherent internal structures, to check the effect of the named structures on the anisotropy of the effective conductivity. We compared these values with the electrical conductivity limits predicted by Hashin-Shtrikman bounds and the effective conductivity predicted by the Archie's law, both cast in its classic form and in an updated that allow to take in account two materials. The same analysis was done for both the resistive and the conductive conductivity values for the anisotropic case.
Simulation of light propagation in the thin-film waveguide lens
NASA Astrophysics Data System (ADS)
Malykh, M. D.; Divakov, D. V.; Sevastianov, L. A.; Sevastianov, A. L.
2018-04-01
In this paper we investigate the solution of the problem of modeling the propagation of electromagnetic radiation in three-dimensional integrated optical structures, such as waveguide lenses. When propagating through three-dimensional waveguide structures the waveguide modes can be hybridized, so the mathematical model of their propagation must take into account the connection of TE- and TM-mode components. Therefore, an adequate consideration of hybridization of the waveguide modes is possible only in vector formulation of the problem. An example of three-dimensional structure that hybridizes waveguide modes is the Luneburg waveguide lens, which also has focusing properties. If the waveguide lens has a radius of the order of several tens of wavelengths, its variable thickness at distances of the order of several wavelengths is almost constant. Assuming in this case that the electromagnetic field also varies slowly in the direction perpendicular to the direction of propagation, one can introduce a small parameter characterizing this slow varying and decompose the solution in powers of the small parameter. In this approach, in the zeroth approximation, scalar diffraction problems are obtained, the solution of which is less resource-consuming than the solution of vector problems. The calculated first-order corrections of smallness describe the connection of TE- and TM-modes, so the solutions obtained are weakly-hybridized modes. The formulation of problems and methods for their numerical solution in this paper are based on the authors' research on waveguide diffraction on a lens in a scalar formulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The ARGUS code is a three-dimensional code system for simulating for interactions between charged particles, electric and magnetic fields, and complex structure. It is a system of modules that share common utilities for grid and structure input, data handling, memory management, diagnostics, and other specialized functions. The code includes the fields due to the space charge and current density of the particles to achieve a self-consistent treatment of the particle dynamics. The physic modules in ARGUS include three-dimensional field solvers for electrostatics and electromagnetics, a three-dimensional electromagnetic frequency-domain module, a full particle-in-cell (PIC) simulation module, and a steady-state PIC model.more » These are described in the Appendix to this report. This project has a primary mission of developing the capabilities of ARGUS in accelerator modeling of release to the accelerator design community. Five major activities are being pursued in parallel during the first year of the project. To improve the code and/or add new modules that provide capabilities needed for accelerator design. To produce a User`s Guide that documents the use of the code for all users. To release the code and the User`s Guide to accelerator laboratories for their own use, and to obtain feed-back from the. To build an interactive user interface for setting up ARGUS calculations. To explore the use of ARGUS on high-power workstation platforms.« less
Fast attainment of computer cursor control with noninvasively acquired brain signals
NASA Astrophysics Data System (ADS)
Bradberry, Trent J.; Gentili, Rodolphe J.; Contreras-Vidal, José L.
2011-06-01
Brain-computer interface (BCI) systems are allowing humans and non-human primates to drive prosthetic devices such as computer cursors and artificial arms with just their thoughts. Invasive BCI systems acquire neural signals with intracranial or subdural electrodes, while noninvasive BCI systems typically acquire neural signals with scalp electroencephalography (EEG). Some drawbacks of invasive BCI systems are the inherent risks of surgery and gradual degradation of signal integrity. A limitation of noninvasive BCI systems for two-dimensional control of a cursor, in particular those based on sensorimotor rhythms, is the lengthy training time required by users to achieve satisfactory performance. Here we describe a novel approach to continuously decoding imagined movements from EEG signals in a BCI experiment with reduced training time. We demonstrate that, using our noninvasive BCI system and observational learning, subjects were able to accomplish two-dimensional control of a cursor with performance levels comparable to those of invasive BCI systems. Compared to other studies of noninvasive BCI systems, training time was substantially reduced, requiring only a single session of decoder calibration (~20 min) and subject practice (~20 min). In addition, we used standardized low-resolution brain electromagnetic tomography to reveal that the neural sources that encoded observed cursor movement may implicate a human mirror neuron system. These findings offer the potential to continuously control complex devices such as robotic arms with one's mind without lengthy training or surgery.
Casting inorganic structures with DNA molds
Sun, Wei; Boulais, Etienne; Hakobyan, Yera; ...
2014-10-09
Here we report a general strategy for designing and synthesizing inorganic nanostructures with arbitrarily prescribed three-dimensional shapes. Computationally designed DNA strands self-assemble into a stiff “nano-mold” that contains a user-specified three-dimensional cavity and encloses a nucleating gold “seed”. Under mild conditions, this seed grows into a larger cast structure that fills and thus replicates the cavity. We synthesized a variety of nanoparticles with three nanometer resolution: three distinct silver cuboids with three independently tunable dimensions, silver and gold nanoparticles with diverse cross sections, and composite structures with homo-/heterogeneous components. The designer equilateral silver triangular and spherical nanoparticles exhibited plasmonic propertiesmore » consistent with electromagnetism-based simulations. Our framework is generalizable to more complex geometries and diverse inorganic materials, offering a range of applications in biosensing, photonics, and nanoelectronics.« less
Two-dimensional electromagnetic Child-Langmuir law of a short-pulse electron flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S. H.; Tai, L. C.; Liu, Y. L.
Two-dimensional electromagnetic particle-in-cell simulations were performed to study the effect of the displacement current and the self-magnetic field on the space charge limited current density or the Child-Langmuir law of a short-pulse electron flow with a propagation distance of {zeta} and an emitting width of W from the classical regime to the relativistic regime. Numerical scaling of the two-dimensional electromagnetic Child-Langmuir law was constructed and it scales with ({zeta}/W) and ({zeta}/W){sup 2} at the classical and relativistic regimes, respectively. Our findings reveal that the displacement current can considerably enhance the space charge limited current density as compared to the well-knownmore » two-dimensional electrostatic Child-Langmuir law even at the classical regime.« less
The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutherland, Kevin Jerome
Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronicmore » devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.« less
Controllable Bidirectional dc Power Sources For Large Loads
NASA Technical Reports Server (NTRS)
Tripp, John S.; Daniels, Taumi S.
1995-01-01
System redesigned for greater efficiency, durability, and controllability. Modern electronically controlled dc power sources proposed to supply currents to six electromagnets used to position aerodynamic test model in wind tunnel. Six-phase bridge rectifier supplies load with large current at voltage of commanded magnitude and polarity. Current-feedback circuit includes current-limiting feature giving some protection against overload.
Götz, Th I; Lahmer, G; Strnad, V; Bert, Ch; Hensel, B; Tomé, A M; Lang, E W
2017-01-01
During High Dose Rate Brachytherapy (HDR-BT) the spatial position of the radiation source inside catheters implanted into a female breast is determined via electromagnetic tracking (EMT). Dwell positions and dwell times of the radiation source are established, relative to the patient's anatomy, from an initial X-ray-CT-image. During the irradiation treatment, catheter displacements can occur due to patient movements. The current study develops an automatic analysis tool of EMT data sets recorded with a solenoid sensor to assure concordance of the source movement with the treatment plan. The tool combines machine learning techniques such as multi-dimensional scaling (MDS), ensemble empirical mode decomposition (EEMD), singular spectrum analysis (SSA) and particle filter (PF) to precisely detect and quantify any mismatch between the treatment plan and actual EMT measurements. We demonstrate that movement artifacts as well as technical signal distortions can be removed automatically and reliably, resulting in artifact-free reconstructed signals. This is a prerequisite for a highly accurate determination of any deviations of dwell positions from the treatment plan.
Lahmer, G.; Strnad, V.; Bert, Ch.; Hensel, B.; Tomé, A. M.; Lang, E. W.
2017-01-01
During High Dose Rate Brachytherapy (HDR-BT) the spatial position of the radiation source inside catheters implanted into a female breast is determined via electromagnetic tracking (EMT). Dwell positions and dwell times of the radiation source are established, relative to the patient’s anatomy, from an initial X-ray-CT-image. During the irradiation treatment, catheter displacements can occur due to patient movements. The current study develops an automatic analysis tool of EMT data sets recorded with a solenoid sensor to assure concordance of the source movement with the treatment plan. The tool combines machine learning techniques such as multi-dimensional scaling (MDS), ensemble empirical mode decomposition (EEMD), singular spectrum analysis (SSA) and particle filter (PF) to precisely detect and quantify any mismatch between the treatment plan and actual EMT measurements. We demonstrate that movement artifacts as well as technical signal distortions can be removed automatically and reliably, resulting in artifact-free reconstructed signals. This is a prerequisite for a highly accurate determination of any deviations of dwell positions from the treatment plan. PMID:28934238
NASA Technical Reports Server (NTRS)
Curry, Mark A (Inventor); Senibi, Simon D (Inventor); Banks, David L (Inventor)
2010-01-01
A system and method for detecting damage to a structure is provided. The system includes a voltage source and at least one capacitor formed as a layer within the structure and responsive to the voltage source. The system also includes at least one sensor responsive to the capacitor to sense a voltage of the capacitor. A controller responsive to the sensor determines if damage to the structure has occurred based on the variance of the voltage of the capacitor from a known reference value. A method for sensing damage to a structure involves providing a plurality of capacitors and a controller, and coupling the capacitors to at least one surface of the structure. A voltage of the capacitors is sensed using the controller, and the controller calculates a change in the voltage of the capacitors. The method can include signaling a display system if a change in the voltage occurs.
Multi-Ferroic Polymer Nanoparticle Composites for Next Generation Metamaterials
2016-05-23
another application, electromagnetic wave shielding . Electromagnetic wave induces current which results in loss of energy. Thus magnetic nanoparticles...applicable for electromagnetic wave shielding . For better electromagnetic wave shielding capability, i) high dielectric constant, ii) high magnetic ...electromagnetic wave shielding properties7,8. In such point of view, designing a structure, magnetic nanoparticles in two dimensional electric conductive matrix
Uncertainty-enabled design of electromagnetic reflectors with integrated shape control
NASA Astrophysics Data System (ADS)
Haque, Samiul; Kindrat, Laszlo P.; Zhang, Li; Mikheev, Vikenty; Kim, Daewa; Liu, Sijing; Chung, Jooyeon; Kuian, Mykhailo; Massad, Jordan E.; Smith, Ralph C.
2018-03-01
We implemented a computationally efficient model for a corner-supported, thin, rectangular, orthotropic polyvinylidene fluoride (PVDF) laminate membrane, actuated by a two-dimensional array of segmented electrodes. The laminate can be used as shape-controlled electromagnetic reflector and the model estimates the reflector's shape given an array of control voltages. In this paper, we describe a model to determine the shape of the laminate for a given distribution of control voltages. Then, we investigate the surface shape error and its sensitivity to the model parameters. Subsequently, we analyze the simulated deflection of the actuated bimorph using a Zernike polynomial decomposition. Finally, we provide a probabilistic description of reflector performance using statistical methods to quantify uncertainty. We make design recommendations for nominal parameter values and their tolerances based on optimization under uncertainty using multiple methods.
[Features of control of electromagnetic radiation emitted by personal computers].
Pal'tsev, Iu P; Buzov, A L; Kol'chugin, Iu I
1996-01-01
Measurements of PC electromagnetic irradiation show that the main sources are PC blocks emitting the waves of certain frequencies. Use of wide-range detectors measuring field intensity in assessment of PC electromagnetic irradiation gives unreliable results. More precise measurements by selective devices are required. Thus, it is expedient to introduce a term "spectral density of field intensity" and its maximal allowable level. In this case a frequency spectrum of PC electromagnetic irradiation is divided into 4 ranges, one of which is subjected to calculation of field intensity for each harmonic frequency, and others undergo assessment of spectral density of field intensity.
1997-04-30
Currently there are no systems available which allow for economical and accurate subsurface imaging of remediation sites. In some cases, high...system to address this need. This project has been very successful in showing a promising new direction for high resolution subsurface imaging . Our
Grid generation using classical techniques
NASA Technical Reports Server (NTRS)
Moretti, G.
1980-01-01
A brief historical review of conformal mapping and its applications to problems in fluid mechanics and electromagnetism is presented. The use of conformal mapping as a grid generator is described. The philosophy of the 'closed form' approach and its application to a Neumann problem is discussed. Karman-Trefftz mappings and grids for ablated, three dimensional bodies are also discussed.
Body and Surface Wave Modeling of Observed Seismic Events. Part 2.
1987-05-12
is based on expand - ing the complete three dimensional solution of the wave equation expressed in cylindrical S coordinates in an asymptotic form which...using line source (2-D) theory. It is based on expand - ing the complete three dimensional solution of the wave equation expressed in cylindrical...generating synthetic point-source seismograms for shear dislocation sources using line source (2-D) theory. It is based on expanding the complete three
Marine Controlled-Source Electromagnetic 2D Inversion for synthetic models.
NASA Astrophysics Data System (ADS)
Liu, Y.; Li, Y.
2016-12-01
We present a 2D inverse algorithm for frequency domain marine controlled-source electromagnetic (CSEM) data, which is based on the regularized Gauss-Newton approach. As a forward solver, our parallel adaptive finite element forward modeling program is employed. It is a self-adaptive, goal-oriented grid refinement algorithm in which a finite element analysis is performed on a sequence of refined meshes. The mesh refinement process is guided by a dual error estimate weighting to bias refinement towards elements that affect the solution at the EM receiver locations. With the use of the direct solver (MUMPS), we can effectively compute the electromagnetic fields for multi-sources and parametric sensitivities. We also implement the parallel data domain decomposition approach of Key and Ovall (2011), with the goal of being able to compute accurate responses in parallel for complicated models and a full suite of data parameters typical of offshore CSEM surveys. All minimizations are carried out by using the Gauss-Newton algorithm and model perturbations at each iteration step are obtained by using the Inexact Conjugate Gradient iteration method. Synthetic test inversions are presented.
Formulation of a strategy for monitoring control integrity in critical digital control systems
NASA Technical Reports Server (NTRS)
Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe
1991-01-01
Advanced aircraft will require flight critical computer systems for stability augmentation as well as guidance and control that must perform reliably in adverse, as well as nominal, operating environments. Digital system upset is a functional error mode that can occur in electromagnetically harsh environments, involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. A strategy is presented for dynamic upset detection to be used in the evaluation of critical digital controllers during the design and/or validation phases of development. Critical controllers must be able to be used in adverse environments that result from disturbances caused by an electromagnetic source such as lightning, high intensity radiated field (HIRF), and nuclear electromagnetic pulses (NEMP). The upset detection strategy presented provides dynamic monitoring of a given control computer for degraded functional integrity that can result from redundancy management errors and control command calculation error that could occur in an electromagnetically harsh operating environment. The use is discussed of Kalman filtering, data fusion, and decision theory in monitoring a given digital controller for control calculation errors, redundancy management errors, and control effectiveness.
The Analysis of a Vortex Type Magnetohydrodynamic Induction Generator
NASA Technical Reports Server (NTRS)
Lengyel, L. L.
1962-01-01
Consideration it is given to the performance to the characteristics of an AC magnetohydrodynamic power generator, A rotating magnetic field is imposed on the vortex flow of an electrically conducting fluid, which is injected tangentially into an annulus formed by two nonconducting concentric cylinders and two nonconducting end plates. A perturbation technique is used to determine the two dimensional velocity and three dimensional electromagnetic field and current distributions. Finally, the generated power, the ohmic losses, the effective power and the electrical efficiency of the converter system are calculated.
Recent Simulation Results on Ring Current Dynamics Using the Comprehensive Ring Current Model
NASA Technical Reports Server (NTRS)
Zheng, Yihua; Zaharia, Sorin G.; Lui, Anthony T. Y.; Fok, Mei-Ching
2010-01-01
Plasma sheet conditions and electromagnetic field configurations are both crucial in determining ring current evolution and connection to the ionosphere. In this presentation, we investigate how different conditions of plasma sheet distribution affect ring current properties. Results include comparative studies in 1) varying the radial distance of the plasma sheet boundary; 2) varying local time distribution of the source population; 3) varying the source spectra. Our results show that a source located farther away leads to a stronger ring current than a source that is closer to the Earth. Local time distribution of the source plays an important role in determining both the radial and azimuthal (local time) location of the ring current peak pressure. We found that post-midnight source locations generally lead to a stronger ring current. This finding is in agreement with Lavraud et al.. However, our results do not exhibit any simple dependence of the local time distribution of the peak ring current (within the lower energy range) on the local time distribution of the source, as suggested by Lavraud et al. [2008]. In addition, we will show how different specifications of the magnetic field in the simulation domain affect ring current dynamics in reference to the 20 November 2007 storm, which include initial results on coupling the CRCM with a three-dimensional (3-D) plasma force balance code to achieve self-consistency in the magnetic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldstein, N.E.; Mozley, E.; Wilt, M.
1982-04-10
A magnetotelluric survey was conducted at accessible locations around Mount Hood, Oregon. Thirty-eight tensor magnetotelluric (MT) and remote telluric stations were set up in clusters around the volcano except for the northwest quadrant, a wilderness area. Because of limited access, station locations were restricted to elevations below 1829 m. On the basis of the MT results, three areas were later investigated in more detail using a large-moment, controlled-source electromagnetic (EM) system. One-dimensional interpretations of EM and MT data on the northeast flank of the mountain near the Cloud Cap eruptive center and on the south flank near Timberline Lodge showmore » a similar subsurface resistivity pattern: a resistive surface layer 400--700 m thick, underlain by a conductive layer with variable thickness and resistivity of <20 ohm m. It is speculated that the surface layer consists of volcanics partially saturated with cold meteoric water. The underlying conductive zone is presumed to be volcanics saturated with water heated within the region of the central conduit and, possibly, at the Cloud Cap side vent. This hypothesis is supported by the existence of warm springs at the base of the mountain, most notably Swim Warm Springs on the south flank, and by several geothermal test wells, one of which penetrates the conductor south of Timberline Lodge. The mT data typically gave a shallower depth to the conductive zone than did the Em data. On the other hand, MT was better for resolving the thickness of the conductive layer and deeper structure. The MT data show evidence for a moderately conductive north-south structure on the south flank below the Timberline Lodge and for a broad zone of late Tertiary intrusives concealed on the southeast flank.« less
Fang, C H; Lau, Y Y; Zhou, W P; Cai, W
2017-12-01
Digital medical technology is a powerful tool which has forcefully promoted the development of general surgery in China. In this article, we reviews the application status of three-dimensional visualization and three-dimensional printing technology in general surgery, introduces the development situation of surgical navigation guided by optical and electromagnetic technology and preliminary attempt to combined with mixed reality applied to complicated hepatectomy, looks ahead the development direction of digital medicine in the era of artificial intelligence and big data on behalf of surgical robot and radiomics. Surgeons should proactively master these advanced techniques and accelerate the innovative development of general surgery in China.
NASA Astrophysics Data System (ADS)
Shin, Keun-Young; Kim, Minkyu; Lee, James S.; Jang, Jyongsik
2015-09-01
Highly omnidirectional and frequency controllable carbon/polyaniline (C/PANI)-based, two- (2D) and three-dimensional (3D) monopole antennas were fabricated using screen-printing and a one-step, dimensionally confined hydrothermal strategy, respectively. Solvated C/PANI was synthesized by low-temperature interfacial polymerization, during which strong π-π interactions between graphene and the quinoid rings of PANI resulted in an expanded PANI conformation with enhanced crystallinity and improved mechanical and electrical properties. Compared to antennas composed of pristine carbon or PANI-based 2D monopole structures, 2D monopole antennas composed of this enhanced hybrid material were highly efficient and amenable to high-frequency, omnidirectional electromagnetic waves. The mean frequency of C/PANI fiber-based 3D monopole antennas could be controlled by simply cutting and stretching the antenna. These antennas attained high peak gain (3.60 dBi), high directivity (3.91 dBi) and radiation efficiency (92.12%) relative to 2D monopole antenna. These improvements were attributed the high packing density and aspect ratios of C/PANI fibers and the removal of the flexible substrate. This approach offers a valuable and promising tool for producing highly omnidirectional and frequency-controllable, carbon-based monopole antennas for use in wireless networking communications on industrial, scientific, and medical (ISM) bands.
Shin, Keun-Young; Kim, Minkyu; Lee, James S.; Jang, Jyongsik
2015-01-01
Highly omnidirectional and frequency controllable carbon/polyaniline (C/PANI)-based, two- (2D) and three-dimensional (3D) monopole antennas were fabricated using screen-printing and a one-step, dimensionally confined hydrothermal strategy, respectively. Solvated C/PANI was synthesized by low-temperature interfacial polymerization, during which strong π–π interactions between graphene and the quinoid rings of PANI resulted in an expanded PANI conformation with enhanced crystallinity and improved mechanical and electrical properties. Compared to antennas composed of pristine carbon or PANI-based 2D monopole structures, 2D monopole antennas composed of this enhanced hybrid material were highly efficient and amenable to high-frequency, omnidirectional electromagnetic waves. The mean frequency of C/PANI fiber-based 3D monopole antennas could be controlled by simply cutting and stretching the antenna. These antennas attained high peak gain (3.60 dBi), high directivity (3.91 dBi) and radiation efficiency (92.12%) relative to 2D monopole antenna. These improvements were attributed the high packing density and aspect ratios of C/PANI fibers and the removal of the flexible substrate. This approach offers a valuable and promising tool for producing highly omnidirectional and frequency-controllable, carbon-based monopole antennas for use in wireless networking communications on industrial, scientific, and medical (ISM) bands. PMID:26338090
Hearing in three dimensions: Sound localization
NASA Technical Reports Server (NTRS)
Wightman, Frederic L.; Kistler, Doris J.
1990-01-01
The ability to localize a source of sound in space is a fundamental component of the three dimensional character of the sound of audio. For over a century scientists have been trying to understand the physical and psychological processes and physiological mechanisms that subserve sound localization. This research has shown that important information about sound source position is provided by interaural differences in time of arrival, interaural differences in intensity and direction-dependent filtering provided by the pinnae. Progress has been slow, primarily because experiments on localization are technically demanding. Control of stimulus parameters and quantification of the subjective experience are quite difficult problems. Recent advances, such as the ability to simulate a three dimensional sound field over headphones, seem to offer potential for rapid progress. Research using the new techniques has already produced new information. It now seems that interaural time differences are a much more salient and dominant localization cue than previously believed.
NASA Astrophysics Data System (ADS)
Goldstein, N. E.; Mozley, E.; Wilt, M.
1982-04-01
A magnetotelluric survey, with a reference magnetometer for noise cancellation, was conducted at accessible locations around Mount Hood, Oregon. Thirty-eight tensor magnetotelluric (MT) and remote telluric stations were set up in clusters around the volcano except for the northwest quadrant, a wilderness area. Because of limited access, station locations were restricted to elevations below 1829 m, or no closer than 5 km from the 3424-m summit. On the basis of the MT results, three areas were later investigated in more detail using a large-moment, controlled-source electromagnetic (EM) system developed at Lawrence Berkeley Laboratory and the University of California at Berkeley. One-dimensional interpretations of EM and MT data on the northeast flank of the mountain near the Cloud Cap eruptive center and on the south flank near Timberline Lodge show a similar subsurface resistivity pattern: a resistive surface layer 400-700 m thick, underlain by a conductive layer with variable thickness and resistivity of <20 ohm m. It is speculated that the surface layer consists of volcanics partially saturated with cold meteoric water. The underlying conductive zone is presumed to be volcanics saturated with water heated within the region of the central conduit and, possibly, at the Cloud Cap side vent. This hypothesis is supported by the existence of warm springs at the base of the mountain, most notably Swim Warm Springs on the south flank, and by several geothermal test wells, one of which penetrates the conductor south of Timberline Lodge. The MT data typically gave a shallower depth to the conductive zone than did the EM data. This is attributed, in part, to the error inherent in one-dimensional MT interpretations of geologically or topographically complex areas. On the other hand, MT was better for resolving the thickness of the conductive layer and deeper structure. The MT data show evidence for a moderately conductive north-south structure on the south flank below the Timberline Lodge and for a broad zone of late Tertiary intrusives concealed on the southeast flank.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilt, M.; Goldstein, N.E.; Mozley, E.
1981-04-01
A magnetotelluric survey, with a reference magnetometer for noise cancellation, was conducted at accessible locations around Mount Hood, Oregon. Thirty-eight tensor magnetotelluric (MT) and remote telluric stations were set up in clusters around the volcano except for the northwest quadrant, a wilderness area. Because of limited access, station locations were restricted to elevations below 1829 m, or no closer than 5 km from the 3424-m summit. On the basis of the MT results, three areas were later investigated in more detail using a large-moment, controlled-source electromagnetic (EM) system developed at Lawrence Berkeley Laboratory and the University of California at Berkeley.more » One-dimensional interpretations of EM and MT data on the northeast flank of the mountain near the Cloud Cap eruptive center and on the south flank near Timberline Lodge show a similar subsurface resistivity pattern: a resistive surface layer 400-700 m thick, underlain by a conductive layer with variable thickness and resistivity of <20 ohm m. It is speculated that the surface layer consists of volcanics partially saturated with cold meteoric water. The underlying conductive zone is presumed to be volcanics saturated with water heated within the region of the central conduit and, possibly, at the Cloud Cap side vent. This hypothesis is supported by the existence of warm springs at the base of the mountain, most notably Swim Warm Springs on the south flank, and by several geothermal test wells, one of which penetrates the conductor south of Timberline Lodge. The MT data typically gave a shallower depth to the conductive zone than did the EM data. This is attributed, in part, to the error inherent in one-dimensional MT interpretations of geologically or topographically complex areas. On the other hand, MT was better for resolving the thickness of the conductive layer and deeper structure. The MT data show evidence for a moderately conductive north-south structure on the south flank below the Timberline Lodge and for a broad zone of late Tertiary intrusives concealed on the southeast flank.« less
Goyal, Amit , Kang; Sukill, [Knoxville, TN
2012-02-21
Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.
Three-phase Four-leg Inverter LabVIEW FPGA Control Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
In the area of power electronics control, Field Programmable Gate Arrays (FPGAs) have the capability to outperform their Digital Signal Processor (DSP) counterparts due to the FPGA’s ability to implement true parallel processing and therefore facilitate higher switching frequencies, higher control bandwidth, and/or enhanced functionality. National Instruments (NI) has developed two platforms, Compact RIO (cRIO) and Single Board RIO (sbRIO), which combine a real-time processor with an FPGA. The FPGA can be programmed with a subset of the well-known LabVIEW graphical programming language. The use of cRIO and sbRIO for power electronics control has developed over the last few yearsmore » to include control of three-phase inverters. Most three-phase inverter topologies include three switching legs. The addition of a fourth-leg to natively generate the neutral connection allows the inverter to serve single-phase loads in a microgrid or stand-alone power system and to balance the three-phase voltages in the presence of significant load imbalance. However, the control of a four-leg inverter is much more complex. In particular, instead of standard two-dimensional space vector modulation (SVM), the inverter requires three-dimensional space vector modulation (3D-SVM). The candidate software implements complete control algorithms in LabVIEW FPGA for a three-phase four-leg inverter. The software includes feedback control loops, three-dimensional space vector modulation gate-drive algorithms, advanced alarm handling capabilities, contactor control, power measurements, and debugging and tuning tools. The feedback control loops allow inverter operation in AC voltage control, AC current control, or DC bus voltage control modes based on external mode selection by a user or supervisory controller. The software includes the ability to synchronize its AC output to the grid or other voltage-source before connection. The software also includes provisions to allow inverter operation in parallel with other voltage regulating devices on the AC or DC buses. This flexibility allows the Inverter to operate as a stand-alone voltage source, connected to the grid, or in parallel with other controllable voltage sources as part of a microgrid or remote power system. In addition, as the inverter is expected to operate under severe unbalanced conditions, the software includes algorithms to accurately compute real and reactive power for each phase based on definitions provided in the IEEE Standard 1459: IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions. Finally, the software includes code to output analog signals for debugging and for tuning of control loops. The software fits on the Xilinx Virtex V LX110 FPGA embedded in the NI cRIO-9118 FPGA chassis, and with a 40 MHz base clock, supports a modulation update rate of 40 MHz, user-settable switching frequencies and synchronized control loop update rates of tens of kHz, and reference waveform generation, including Phase Lock Loop (PLL), update rate of 100 kHz.« less
Topological energy conversion through the bulk or the boundary of driven systems
NASA Astrophysics Data System (ADS)
Peng, Yang; Refael, Gil
2018-04-01
Combining physical and synthetic dimensions allows a controllable realization and manipulation of high-dimensional topological states. In our work, we introduce two quasiperiodically driven one-dimensional systems which enable tunable topological energy conversion between different driving sources. Using three drives, we realize a four-dimensional quantum Hall state which allows energy conversion between two of the drives within the bulk of the one-dimensional system. With only two drives, we achieve energy conversion between the two at the edge of the chain. Both effects are a manifestation of the effective axion electrodynamics in a three-dimensional time-reversal-invariant topological insulator. Furthermore, we explore the effects of disorder and commensurability of the driving frequencies, and show the phenomena are robust. We propose two experimental platforms, based on semiconductor heterostructures and ultracold atoms in optical lattices, in order to observe the topological energy conversion.
Electric converters of electromagnetic strike machine with capacitor supply
NASA Astrophysics Data System (ADS)
Usanov, K. M.; Volgin, A. V.; Kargin, V. A.; Moiseev, A. P.; Chetverikov, E. A.
2018-03-01
The application of pulse linear electromagnetic engines in small power strike machines (energy impact is 0.01...1.0 kJ), where the characteristic mode of rare beats (pulse seismic vibrator, the arch crash device bins bulk materials), is quite effective. At the same time, the technical and economic performance of such machines is largely determined by the ability of the power source to provide a large instantaneous power of the supply pulses in the winding of the linear electromagnetic motor. The use of intermediate energy storage devices in power systems of rare-shock LEME makes it possible to obtain easily large instantaneous powers, forced energy conversion, and increase the performance of the machine. A capacitor power supply of a pulsed source of seismic waves is proposed for the exploration of shallow depths. The sections of the capacitor storage (CS) are connected to the winding of the linear electromagnetic motor by thyristor dischargers, the sequence of activation of which is determined by the control device. The charge of the capacitors to the required voltage is made directly from the battery source, or through the converter from a battery source with a smaller number of batteries.
Menon, Samir; Brantner, Gerald; Aholt, Chris; Kay, Kendrick; Khatib, Oussama
2013-01-01
A challenging problem in motor control neuroimaging studies is the inability to perform complex human motor tasks given the Magnetic Resonance Imaging (MRI) scanner's disruptive magnetic fields and confined workspace. In this paper, we propose a novel experimental platform that combines Functional MRI (fMRI) neuroimaging, haptic virtual simulation environments, and an fMRI-compatible haptic device for real-time haptic interaction across the scanner workspace (above torso ∼ .65×.40×.20m(3)). We implement this Haptic fMRI platform with a novel haptic device, the Haptic fMRI Interface (HFI), and demonstrate its suitability for motor neuroimaging studies. HFI has three degrees-of-freedom (DOF), uses electromagnetic motors to enable high-fidelity haptic rendering (>350Hz), integrates radio frequency (RF) shields to prevent electromagnetic interference with fMRI (temporal SNR >100), and is kinematically designed to minimize currents induced by the MRI scanner's magnetic field during motor displacement (<2cm). HFI possesses uniform inertial and force transmission properties across the workspace, and has low friction (.05-.30N). HFI's RF noise levels, in addition, are within a 3 Tesla fMRI scanner's baseline noise variation (∼.85±.1%). Finally, HFI is haptically transparent and does not interfere with human motor tasks (tested for .4m reaches). By allowing fMRI experiments involving complex three-dimensional manipulation with haptic interaction, Haptic fMRI enables-for the first time-non-invasive neuroscience experiments involving interactive motor tasks, object manipulation, tactile perception, and visuo-motor integration.
Electromagnetic Detection of a Perfect Carpet Cloak
Shi, Xihang; Gao, Fei; Lin, Xiao; Zhang, Baile
2015-01-01
It has been shown that a spherical invisibility cloak originally proposed by Pendry et al. can be electromagnetically detected by shooting a charged particle through it, whose underlying mechanism stems from the asymmetry of transformation optics applied to motions of photons and charges [PRL 103, 243901 (2009)]. However, the conceptual three-dimensional invisibility cloak that exactly follows specifications of transformation optics is formidably difficult to implement, while the simplified cylindrical cloak that has been experimentally realized is inherently visible. On the other hand, the recent carpet cloak model has acquired remarkable experimental development, including a recently demonstrated full-parameter carpet cloak without any approximation in the required constitutive parameters. In this paper, we numerically investigate the electromagnetic radiation from a charged particle passing through a perfect carpet cloak and propose an experimentally verifiable model to demonstrate symmetry breaking of transformation optics. PMID:25997798
Macroscopic invisibility cloaking of visible light
Chen, Xianzhong; Luo, Yu; Zhang, Jingjing; Jiang, Kyle; Pendry, John B.; Zhang, Shuang
2011-01-01
Invisibility cloaks, which used to be confined to the realm of fiction, have now been turned into a scientific reality thanks to the enabling theoretical tools of transformation optics and conformal mapping. Inspired by those theoretical works, the experimental realization of electromagnetic invisibility cloaks has been reported at various electromagnetic frequencies. All the invisibility cloaks demonstrated thus far, however, have relied on nano- or micro-fabricated artificial composite materials with spatially varying electromagnetic properties, which limit the size of the cloaked region to a few wavelengths. Here, we report the first realization of a macroscopic volumetric invisibility cloak constructed from natural birefringent crystals. The cloak operates at visible frequencies and is capable of hiding, for a specific light polarization, three-dimensional objects of the scale of centimetres and millimetres. Our work opens avenues for future applications with macroscopic cloaking devices. PMID:21285954
Electromagnetic Detection of a Perfect Carpet Cloak
NASA Astrophysics Data System (ADS)
Shi, Xihang; Gao, Fei; Lin, Xiao; Zhang, Baile
2015-05-01
It has been shown that a spherical invisibility cloak originally proposed by Pendry et al. can be electromagnetically detected by shooting a charged particle through it, whose underlying mechanism stems from the asymmetry of transformation optics applied to motions of photons and charges [PRL 103, 243901 (2009)]. However, the conceptual three-dimensional invisibility cloak that exactly follows specifications of transformation optics is formidably difficult to implement, while the simplified cylindrical cloak that has been experimentally realized is inherently visible. On the other hand, the recent carpet cloak model has acquired remarkable experimental development, including a recently demonstrated full-parameter carpet cloak without any approximation in the required constitutive parameters. In this paper, we numerically investigate the electromagnetic radiation from a charged particle passing through a perfect carpet cloak and propose an experimentally verifiable model to demonstrate symmetry breaking of transformation optics.
NASA Astrophysics Data System (ADS)
Turkin, Yaroslav V.; Kuptsov, Pavel V.
2018-04-01
A quantum model of spin dynamics of spin-orbit coupled two-dimensional electron gas in the presence of strong high- frequency electromagnetic field is suggested. Interaction of electrons with optical phonons is taken into account in the second order of perturbation theory.
Casting inorganic structures with DNA molds.
Sun, Wei; Boulais, Etienne; Hakobyan, Yera; Wang, Wei Li; Guan, Amy; Bathe, Mark; Yin, Peng
2014-11-07
We report a general strategy for designing and synthesizing inorganic nanostructures with arbitrarily prescribed three-dimensional shapes. Computationally designed DNA strands self-assemble into a stiff "nanomold" that contains a user-specified three-dimensional cavity and encloses a nucleating gold "seed." Under mild conditions, this seed grows into a larger cast structure that fills and thus replicates the cavity. We synthesized a variety of nanoparticles with 3-nanometer resolution: three distinct silver cuboids with three independently tunable dimensions, silver and gold nanoparticles with diverse cross sections, and composite structures with homo- and heterogeneous components. The designer equilateral silver triangular and spherical nanoparticles exhibited plasmonic properties consistent with electromagnetism-based simulations. Our framework is generalizable to more complex geometries and diverse inorganic materials, offering a range of applications in biosensing, photonics, and nanoelectronics. Copyright © 2014, American Association for the Advancement of Science.
Polarization-independent broadband meta-holograms via polarization-dependent nanoholes.
Zhang, Xiaohu; Li, Xiong; Jin, Jinjin; Pu, Mingbo; Ma, Xiaoliang; Luo, Jun; Guo, Yinghui; Wang, Changtao; Luo, Xiangang
2018-05-17
Composed of ultrathin metal or dielectric nanostructures, metasurfaces can manipulate the phase, amplitude and polarization of electromagnetic waves at a subwavelength scale, which is promising for flat optical devices. In general, metasurfaces composed of space-variant anisotropic units are sensitive to the incident polarization due to the inherent polarization dependent geometric phase. Here, we implement polarization-independent broadband metasurface holograms constructed by polarization-dependent anisotropic elliptical nanoholes by elaborate design of complex amplitude holograms. The fabricated meta-hologram exhibits a polarization insensitive feature with an acceptable image quality. We verify the feasibility of the design algorithm for three-dimensional (3D) meta-holograms with simulation and the feasibility for two-dimensional (2D) meta-holograms is experimentally demonstrated at a broadband wavelength range from 405 nm to 632.8 nm. The effective polarization-independent broadband complex wavefront control with anisotropic elliptical nanoholes proposed in this paper greatly promotes the practical applications of the metasurface in technologies associated with wavefront manipulation, such as flat lens, colorful holographic displays and optical storage.
Nanocrystal assembly for bottom-up plasmonic materials
NASA Astrophysics Data System (ADS)
Tao, Andrea Rae
2007-12-01
Plasmonic materials are emerging as key platforms for applications that rely on the manipulation of light at small length scales. Materials that possess sub-wavelength metallic features support either localized or propagating surface plasmons that can induce huge local electromagnetic fields at the metal surface, facilitating a host of extraordinary optical phenomena. For many of the breakthrough photonic, spectroscopic, and optoelectronic applications of plasmonics, the bottom-up fabrication of these materials from low-dimensional structures has yet to be explored. Because colloidal metal nanostructures can be readily synthesized with controlled shapes and sizes, and because these structures also generate plasmon-mediated evanescent fields near their surfaces when irradiated with light, Ag nanocrystals and nanowires are ideal building blocks for rationally designed plasmonic materials. This dissertation addresses three major challenges: (1) the synthesis of Ag polyhedral nanocrystals and nanowires, (2) the bottom-up organization of these nanostructures into one-, two-, and three-dimensional assemblies, and (3) the application of these assemblies as spectroscopic sensing platforms. Faceted Ag colloids were synthesized in high yield and with remarkable monodispersity using the polyol process, where Ag+ is reduced in the presence of a polymer capping agent that serves to regulate nucleation and crystallographic growth direction. The resulting nanocrystals and nanowires are bound exclusively by {100} and {111} crystal planes, where nanowires possess pentagonal cross-sections and nanocrystals possess octahedral symmetry. Because allowed plasmon modes are explicitly dictated by geometric considerations, each shape exhibits a unique scattering spectrum in the optical wavelengths. These shaped colloidal building blocks were assembled into ordered groupings and superlattices to achieve controlled electromagnetic coupling between individual nanostructures. Of particular note is the use of Langmuir-Blodgett assembly for the construction of two-dimensional nanocrystal superlattices with continuously variable interparticle spacing and density. For the first time, we demonstrate the complete bottom-up fabrication of a macroscopic material with a tunable plasmonic response in the visible wavelengths. Lastly, we show that these nanoscale materials behave as exceptional substrates for surface-enhanced Raman spectroscopy (SERS). Assemblies of Ag nanowires and nanocrystals facilitate intense electromagnetic field enhancement due to charge localization near the sharp corners, edges, and junctions of the nanocrystals. We not only demonstrate that these assemblies can achieve high chemical sensitivity and specificity, but exhibit their utility as portable field sensors for toxins and explosives. For the first time, we demonstrate that SERS can be employed for the facile detection of low-level arsenic concentrations in ground water. In addition, we show the feasibility of integrating these Ag nanocrystals into microfluidic, multiplexed "lab-on-a-chip" devices, where SERS can be used for the in situ sensing of low-volume analytes.
NASA Astrophysics Data System (ADS)
Ozaki, Nobuhiko; Kanehira, Shingo; Hayashi, Yuma; Ohkouchi, Shunsuke; Ikeda, Naoki; Sugimoto, Yoshimasa; Hogg, Richard A.
2017-11-01
We obtained a high-intensity and broadband emission centered at 1 μm from InGaAs quantum three-dimensional (3D) structures grown on a GaAs substrate using molecular beam epitaxy. An InGaAs thin layer grown on GaAs with a thickness close to the critical layer thickness is normally affected by strain as a result of the lattice mismatch and introduced misfit dislocations. However, under certain growth conditions for the In concentration and growth temperature, the growth mode of the InGaAs layer can be transformed from two-dimensional to 3D growth. We found the optimal conditions to obtain a broadband emission from 3D structures with a high intensity and controlled center wavelength at 1 μm. This method offers an alternative approach for fabricating a broadband near-infrared light source for telecommunication and medical imaging systems such as for optical coherence tomography.
NASA Astrophysics Data System (ADS)
Song, Kun; Ding, Changlin; Su, Zhaoxian; Liu, Yahong; Luo, Chunrong; Zhao, Xiaopeng; Bhattarai, Khagendra; Zhou, Jiangfeng
2016-12-01
We propose a planar composite chiral metamaterial (CCMM) by symmetrically inserting a metallic mesh between two layers of conjugated gammadion resonators. As the elaborate CCMM operates at off-resonance frequencies, it therefore presents low-loss and low-dispersion polarization rotation features. The results show that the proposed CCMM can achieve pure and dispersionless polarization rotation with efficient transmission for a linearly polarized wave within a broad bandwidth. This off-resonance CCMM overcomes the drawbacks of high transmission losses and highly dispersive polarization rotation that exist in the previous resonance-type chiral metamaterials and also exhibits more simplicity of fabrication than the three-dimensional CMMs. The intriguing properties greatly improve the performance of chiral metamaterials in controlling the polarization state of electromagnetic waves.
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Chun, Donghoon; Yook, Jong-Gwan; Katehi, Linda P. B.
2001-01-01
Coupling between microstrip lines in dense RF packages is a common problem that degrades circuit performance. Prior three-dimensional-finite element method (3-D-FEM) electromagnetic simulations have shown that metal filled via hole fences between two adjacent microstrip lines actually Increases coupling between the lines: however, if the top of the via posts are connected by a metal strip, coupling is reduced. In this paper, experimental verification of the 3-D-FEM simulations is demonstrated for commercially fabricated low temperature cofired ceramic (LTCC) packages. In addition, measured attenuation of microstrip lines surrounded by the shielding structures is presented and shows that shielding structures do not change the attenuation characteristics of the line.
NASA Astrophysics Data System (ADS)
Cortie, D. L.; Lewis, R. A.
2012-06-01
It is well established that under excitation by short (<1 ps), above-band-gap optical pulses, semiconductor surfaces may emit terahertz-frequency electromagnetic radiation via photocarrier diffusion (the dominant mechanism in InAs) or photocarrier drift (dominant in GaAs). Our three-dimensional ensemble Monte Carlo simulations allow multiple physical parameters to vary over wide ranges and provide unique direct insight into the factors controlling terahertz emission. We find for GaAs (in contrast to InAs), scattering and the surface potential are key factors. We further delineate in GaAs (as in InAs) the role of a vanguard counter-potential. The effects of varying dielectric constant, band-gap, and effective mass are similar in both emitter types.
NASA Astrophysics Data System (ADS)
Callegary, J. B.; Page, W. R.; Megdal, S.; Gray, F.; Scott, C. A.; Berry, M.; Rangel, M.; Oroz Ramos, L.; Menges, C. M.; Jones, A.
2011-12-01
In 2006, the U.S. Congress passed the U.S.-Mexico Transboundary Aquifer Assessment Act which provides a framework for study of aquifers shared by the United States and Mexico. The aquifer of the Upper Santa Cruz Basin was chosen as one of four priority aquifers for several reasons, including water scarcity, a population greater than 300,000, groundwater as the sole source of water for human use, and a riparian corridor that is of regional significance for migratory birds and other animals. Several new mines are also being proposed for this area which may affect water quality and availability. To date, a number of studies have been carried out by a binational team composed of the U.S. Geological Survey, the Mexican National Water Commission, and the Universities of Arizona and Sonora. Construction of a cross-border hydrogeologic framework model of the basin between Amado, Arizona and its southern boundary in Sonora is currently a high priority. The relatively narrow Santa Cruz valley is a structural basin that did not experience the same degree of late Cenozoic lateral extension and consequent deepening as found in other basin-and-range alluvial basins, such as the Tucson basin, where basin depth exceeds 3000 meters. This implies that storage may be much less than that found in other basin-and-range aquifers. To investigate the geometry of the basin and facies changes within the alluvium, a database of over one thousand well logs has been developed, geologic mapping and transient electromagnetic (TEM) surveys have been carried out, and information from previous electromagnetic, magnetic, and gravity studies is being incorporated into the hydrogeologic framework. Initial geophysical surveys and analyses have focused on the portion of the basin west of Nogales, Arizona, because it supplies approximately 50% of that city's water. Previous gravity and magnetic modeling indicate that this area is a narrow, fault-controlled half graben. Preliminary modeling of airborne and ground-based transient electromagnetic surveys corroborates earlier conclusions from the gravity modeling that depth to bedrock is greater than 500 meters in some locations. Results from other portions of the study area including Mexico are still being evaluated and incorporated into the three-dimensional hydrologic framework which will ultimately be used to construct a groundwater flow model.
e(sup +/-) Pair Loading and the Origin of the Upstream Magnetic Field in GRB Shocks
NASA Technical Reports Server (NTRS)
Ramirez-Ruiz, Enrico; Nishikawa, Ken-Ichi; Hededal, Christian B.
2006-01-01
We investigate here the effects of plasma instabilities driven by rapid e(sup +/-) pair cascades, which arise in the environment of GRB sources as a result of back-scattering of a seed fraction of their original spectrum. The injection of e(sup +/-) pairs induces strong streaming motions in the ambient medium. One therefore expects the pair-enriched medium ahead of the forward shock to be strongly sheared on length scales comparable to the radiation front thickness. Using three-dimensional particle-in-cell simulations, we show that plasma instabilities driven by these streaming e(sup +/-) pairs are responsible for the excitation of near-equipartition, turbulent magnetic fields. Our results reveal the importance of the electromagnetic filamentation instability in ensuring an effective coupling between e(sup +/-) pairs and ions, and may help explain the origin of large upstream fields in GRB shocks.
e+/- Pair Loading and the Origin of the Upstream Field in GRB Shocks
NASA Technical Reports Server (NTRS)
Ramirez-Ruiz, Enrico; Nishikawa, Ken-Ichi; Hededal, Christian B.
2006-01-01
We investigate here the effects of plasma instabilities driven by rapid e(sup plus or minus) pair cascades, which arise in the environment of GRB sources as a result of back-scattering of a seed fraction of their original spectrum. The injection of e(sup plus or minus) pairs induces strong streaming motions in the ambient medium. One therefore expects the pair-enriched medium ahead of the forward shock to be strongly sheared on length scales comparable to the radiation front thickness. Using three-dimensional particle-in-cell simulations, we show that plasma instabilities driven by these streaming e(sup plus or minus) pairs are responsible for the excitation of near-equipartition, turbulent magnetic fields. Our results reveal the importance of the electromagnetic filamentation instability in ensuring an effective coupling between e(sup plus or minus) pairs and ions, and may help explain the origin of large upstream fields in GRB shocks.
1988-01-01
Deblurring This long-standing research area was wrapped up this year with the preparation of a major tutorial paper. This paper summarizes all of the work...that we have done. The iterative procedures were shown to perform significantly better at the deblurring task than Kalman filtering, Wiener filtering...suited to the resolution of multiple impulsive sources on a uniform background. Such applications occur in radio astronomy and in a number of
Photonic crystals at visible, x-ray, and terahertz frequencies
NASA Astrophysics Data System (ADS)
Prasad, Tushar
Photonic crystals are artificial structures with a periodically varying refractive index. This property allows photonic crystals to control the propagation of photons, making them desirable components for novel photonic devices. Photonic crystals are also termed as "semiconductors of light", since they control the flow of electromagnetic radiation similar to the way electrons are excited in a semiconductor crystal. The scale of periodicity in the refractive index determines the frequency (or wavelength) of the electromagnetic waves that can be manipulated. This thesis presents a detailed analysis of photonic crystals at visible, x-ray, and terahertz frequencies. Self-assembly and spin-coating methods are used to fabricate colloidal photonic crystals at visible frequencies. Their dispersion characteristics are examined through theoretical as well as experimental studies. Based on their peculiar dispersion property called the superprism effect, a sensor that can detect small quantities of chemical substances is designed. A photonic crystal that can manipulate x-rays is fabricated by using crystals of a non-toxic plant virus as templates. Calculations show that these metallized three-dimensional crystals can find utility in x-ray optical systems. Terahertz photonic crystal slabs are fabricated by standard lithographic and etching techniques. In-plane superprism effect and out-of-plane guided resonances are studied by terahertz time-domain spectroscopy, and verified by numerical simulations.
Millimeter Wave Sensor For On-Line Inspection Of Thin Sheet Dielectrics
Bakhtiari, Sasan; Gopalsami, Nachappa; Raptis, Apostolos C.
1999-03-23
A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components. A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components.
An investigation of the direct-drive method of susceptibility testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonn, R.H.
1992-07-01
The Naval Surface Weapons Laboratory has constructed a small electrical subsystem for the purpose of evaluating electrical upset from various electromagnetic sources. The subsystem consists of three boxes, two of which are intended to be illuminated by electromagnetic waves. The two illuminated boxes are connected by two unshielded cable bundles. The goal of the Navy test series is to expose the subsystem to electromagnetic illumination from several different types of excitation, document upset levels, and compare the results. Before its arrival at Sandia National Laboratories (SNL) the system was illuminated in a mode stirred chamber and in an anechoic chamber.more » This effort was a continuation of that test program. The Sandia tests involved the test methodology referred to as bulk current injection (BCI). Because this is a poorly-shielded, multiple-aperture system, the method was not expected to compare closely to the other test methods. The test results show that. The BCI test methodology is a useful test technique for a subset of limited aperture systems; the methodology will produce incorrect answers when used improperly on complex systems; the methodology can produce accurate answers on simple systems with a well-controlled electromagnetic topology. This is a preliminary study and the results should be interpreted carefully.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigoryan, G.V.; Grigoryan, R.P.
1995-09-01
The canonical quantization of a (D=2n)-dimensional Dirac particle with spin in an arbitrary external electromagnetic field is performed in a gauge that makes it possible to describe simultaneously particles and antiparticles (both massive and massless) already at the classical level. A pseudoclassical Foldy-Wouthuysen transformation is used to find the canonical (Newton-Wigner) coordinates. The connection between this quantization scheme and Blount`s picture describing the behavior of a Dirac particle in an external electromagnetic field is discussed.
Estimating oxygen distribution from vasculature in three-dimensional tumour tissue
Kannan, Pavitra; Warren, Daniel R.; Markelc, Bostjan; Bates, Russell; Muschel, Ruth; Partridge, Mike
2016-01-01
Regions of tissue which are well oxygenated respond better to radiotherapy than hypoxic regions by up to a factor of three. If these volumes could be accurately estimated, then it might be possible to selectively boost dose to radio-resistant regions, a concept known as dose-painting. While imaging modalities such as 18F-fluoromisonidazole positron emission tomography (PET) allow identification of hypoxic regions, they are intrinsically limited by the physics of such systems to the millimetre domain, whereas tumour oxygenation is known to vary over a micrometre scale. Mathematical modelling of microscopic tumour oxygen distribution therefore has the potential to complement and enhance macroscopic information derived from PET. In this work, we develop a general method of estimating oxygen distribution in three dimensions from a source vessel map. The method is applied analytically to line sources and quasi-linear idealized line source maps, and also applied to full three-dimensional vessel distributions through a kernel method and compared with oxygen distribution in tumour sections. The model outlined is flexible and stable, and can readily be applied to estimating likely microscopic oxygen distribution from any source geometry. We also investigate the problem of reconstructing three-dimensional oxygen maps from histological and confocal two-dimensional sections, concluding that two-dimensional histological sections are generally inadequate representations of the three-dimensional oxygen distribution. PMID:26935806
Estimating oxygen distribution from vasculature in three-dimensional tumour tissue.
Grimes, David Robert; Kannan, Pavitra; Warren, Daniel R; Markelc, Bostjan; Bates, Russell; Muschel, Ruth; Partridge, Mike
2016-03-01
Regions of tissue which are well oxygenated respond better to radiotherapy than hypoxic regions by up to a factor of three. If these volumes could be accurately estimated, then it might be possible to selectively boost dose to radio-resistant regions, a concept known as dose-painting. While imaging modalities such as 18F-fluoromisonidazole positron emission tomography (PET) allow identification of hypoxic regions, they are intrinsically limited by the physics of such systems to the millimetre domain, whereas tumour oxygenation is known to vary over a micrometre scale. Mathematical modelling of microscopic tumour oxygen distribution therefore has the potential to complement and enhance macroscopic information derived from PET. In this work, we develop a general method of estimating oxygen distribution in three dimensions from a source vessel map. The method is applied analytically to line sources and quasi-linear idealized line source maps, and also applied to full three-dimensional vessel distributions through a kernel method and compared with oxygen distribution in tumour sections. The model outlined is flexible and stable, and can readily be applied to estimating likely microscopic oxygen distribution from any source geometry. We also investigate the problem of reconstructing three-dimensional oxygen maps from histological and confocal two-dimensional sections, concluding that two-dimensional histological sections are generally inadequate representations of the three-dimensional oxygen distribution. © 2016 The Authors.
Laser-driven deflection arrangements and methods involving charged particle beams
Plettner, Tomas [San Ramon, CA; Byer, Robert L [Stanford, CA
2011-08-09
Systems, methods, devices and apparatus are implemented for producing controllable charged particle beams. In one implementation, an apparatus provides a deflection force to a charged particle beam. A source produces an electromagnetic wave. A structure, that is substantially transparent to the electromagnetic wave, includes a physical structure having a repeating pattern with a period L and a tilted angle .alpha., relative to a direction of travel of the charged particle beam, the pattern affects the force of the electromagnetic wave upon the charged particle beam. A direction device introduces the electromagnetic wave to the structure to provide a phase-synchronous deflection force to the charged particle beam.
Berzak, L; Jones, A D; Kaita, R; Kozub, T; Logan, N; Majeski, R; Menard, J; Zakharov, L
2010-10-01
The lithium tokamak experiment (LTX) is a modest-sized spherical tokamak (R(0)=0.4 m and a=0.26 m) designed to investigate the low-recycling lithium wall operating regime for magnetically confined plasmas. LTX will reach this regime through a lithium-coated shell internal to the vacuum vessel, conformal to the plasma last-closed-flux surface, and heated to 300-400 °C. This structure is highly conductive and not axisymmetric. The three-dimensional nature of the shell causes the eddy currents and magnetic fields to be three-dimensional as well. In order to analyze the plasma equilibrium in the presence of three-dimensional eddy currents, an extensive array of unique magnetic diagnostics has been implemented. Sensors are designed to survive high temperatures and incidental contact with lithium and provide data on toroidal asymmetries as well as full coverage of the poloidal cross-section. The magnetic array has been utilized to determine the effects of nonaxisymmetric eddy currents and to model the start-up phase of LTX. Measurements from the magnetic array, coupled with two-dimensional field component modeling, have allowed a suitable field null and initial plasma current to be produced. For full magnetic reconstructions, a three-dimensional electromagnetic model of the vacuum vessel and shell is under development.
NASA Technical Reports Server (NTRS)
Wang, J.; Biasca, R.; Liewer, P. C.
1996-01-01
Although the existence of the critical ionization velocity (CIV) is known from laboratory experiments, no agreement has been reached as to whether CIV exists in the natural space environment. In this paper we move towards more realistic models of CIV and present the first fully three-dimensional, electromagnetic particle-in-cell Monte-Carlo collision (PIC-MCC) simulations of typical space-based CIV experiments. In our model, the released neutral gas is taken to be a spherical cloud traveling across a magnetized ambient plasma. Simulations are performed for neutral clouds with various sizes and densities. The effects of the cloud parameters on ionization yield, wave energy growth, electron heating, momentum coupling, and the three-dimensional structure of the newly ionized plasma are discussed. The simulations suggest that the quantitative characteristics of momentum transfers among the ion beam, neutral cloud, and plasma waves is the key indicator of whether CIV can occur in space. The missing factors in space-based CIV experiments may be the conditions necessary for a continuous enhancement of the beam ion momentum. For a typical shaped charge release experiment, favorable CIV conditions may exist only in a very narrow, intermediate spatial region some distance from the release point due to the effects of the cloud density and size. When CIV does occur, the newly ionized plasma from the cloud forms a very complex structure due to the combined forces from the geomagnetic field, the motion induced emf, and the polarization. Hence the detection of CIV also critically depends on the sensor location.
Park, Hyun Soon; Yu, Xiuzhen; Aizawa, Shinji; Tanigaki, Toshiaki; Akashi, Tetsuya; Takahashi, Yoshio; Matsuda, Tsuyoshi; Kanazawa, Naoya; Onose, Yoshinori; Shindo, Daisuke; Tonomura, Akira; Tokura, Yoshinori
2014-05-01
Skyrmions are nanoscale spin textures that are viewed as promising candidates as information carriers in future spintronic devices. Skyrmions have been observed using neutron scattering and microscopy techniques. Real-space imaging using electrons is a straightforward way to interpret spin configurations by detecting the phase shifts due to electromagnetic fields. Here, we report the first observation by electron holography of the magnetic flux and the three-dimensional spin configuration of a skyrmion lattice in Fe(0.5)Co(0.5)Si thin samples. The magnetic flux inside and outside a skyrmion was directly visualized and the handedness of the magnetic flux flow was found to be dependent on the direction of the applied magnetic field. The electron phase shifts φ in the helical and skyrmion phases were determined using samples with a stepped thickness t (from 55 nm to 510 nm), revealing a linear relationship (φ = 0.00173 t). The phase measurements were used to estimate the three-dimensional structures of both the helical and skyrmion phases, demonstrating that electron holography is a useful tool for studying complex magnetic structures and for three-dimensional, real-space mapping of magnetic fields.
Three-Dimensional Mathematical Model of Oxygen Transport Behavior in Electroslag Remelting Process
NASA Astrophysics Data System (ADS)
Huang, Xuechi; Li, Baokuan; Liu, Zhongqiu
2018-04-01
A transient three-dimensional model has been proposed to investigate the oxygen transport behavior in electroslag remelting process. The electromagnetism, heat transfer, multiphase flow, and species transport were calculated simultaneously by finite volume method. The volume of fluid approach was adopted to trace the metal-slag-air three-phase flow. Based on the necessary thermodynamics of oxygen transport behavior, a kinetic model was established to predict the mass source terms in species transport equation. The kinetic correction factor was proposed to account for the effect of the oxide scale formed on the electrode on the FeO content in slag. Finally, the effect of applied current on the oxygen transfer was studied. The predicted result agrees well with the measured data when the kinetic correction factor is set to be 0.5. The temperature distribution that affects the thermodynamics differs at the interfaces. The oxygen in air is absorbed into slag due to the oxidation at the slag/air interface. The Fe2O3 in slag and the oxide scale contribute to the increase of FeO content in slag, and the latter one plays the leading role. The oxygen transfer from slag to metal mainly occurs during the formation of the droplet at the slag/metal droplet interface. With the current increasing from 1200 to 1800 A, the oxygen content increases from 76.4 to 89.8 ppm, and then slightly declines to 89.2 ppm when the current increases to 2100 A.
MUSIC electromagnetic imaging with enhanced resolution for small inclusions
NASA Astrophysics Data System (ADS)
Chen, Xudong; Zhong, Yu
2009-01-01
This paper investigates the influence of the test dipole on the resolution of the multiple signal classification (MUSIC) imaging method applied to the electromagnetic inverse scattering problem of determining the locations of a collection of small objects embedded in a known background medium. Based on the analysis of the induced electric dipoles in eigenstates, an algorithm is proposed to determine the test dipole that generates a pseudo-spectrum with enhanced resolution. The amplitudes in three directions of the optimal test dipole are not necessarily in phase, i.e., the optimal test dipole may not correspond to a physical direction in the real three-dimensional space. In addition, the proposed test-dipole-searching algorithm is able to deal with some special scenarios, due to the shapes and materials of objects, to which the standard MUSIC does not apply.
A new MUSIC electromagnetic imaging method with enhanced resolution for small inclusions
NASA Astrophysics Data System (ADS)
Zhong, Yu; Chen, Xudong
2008-11-01
This paper investigates the influence of test dipole on the resolution of the multiple signal classification (MUSIC) imaging method applied to the electromagnetic inverse scattering problem of determining the locations of a collection of small objects embedded in a known background medium. Based on the analysis of the induced electric dipoles in eigenstates, an algorithm is proposed to determine the test dipole that generates a pseudo-spectrum with enhanced resolution. The amplitudes in three directions of the optimal test dipole are not necessarily in phase, i.e., the optimal test dipole may not correspond to a physical direction in the real three-dimensional space. In addition, the proposed test-dipole-searching algorithm is able to deal with some special scenarios, due to the shapes and materials of objects, to which the standard MUSIC doesn't apply.
Guo, L-X; Li, J; Zeng, H
2009-11-01
We present an investigation of the electromagnetic scattering from a three-dimensional (3-D) object above a two-dimensional (2-D) randomly rough surface. A Message Passing Interface-based parallel finite-difference time-domain (FDTD) approach is used, and the uniaxial perfectly matched layer (UPML) medium is adopted for truncation of the FDTD lattices, in which the finite-difference equations can be used for the total computation domain by properly choosing the uniaxial parameters. This makes the parallel FDTD algorithm easier to implement. The parallel performance with different number of processors is illustrated for one rough surface realization and shows that the computation time of our parallel FDTD algorithm is dramatically reduced relative to a single-processor implementation. Finally, the composite scattering coefficients versus scattered and azimuthal angle are presented and analyzed for different conditions, including the surface roughness, the dielectric constants, the polarization, and the size of the 3-D object.
First results from experiment in South China Sea using marine controlled source electromagnetic
NASA Astrophysics Data System (ADS)
Li, Yuan; Wang, Lipeng; Deng, Ming
2016-04-01
We concentrated on the use of marine controlled-source electromagnetic (CSEM) sounding with a horizontal electric dipole source towed close to the seafloor and receivers anchored on the seafloor. We applied the CSEM method in South China Sea for the first time in 2014, which not only test the application of our instrument, but also test our data processing method. Electromagnetic fields transmitted by a towed electric dipole source in deep sea were measured by a linear array of six seafloor receivers, positioned 600 meter (m) apart. Our results provided two highly resistivity layers beneath the survey line and the gas hydrate saturation profile associated with the anomalous resistivity. In the letter, we discussed some anomalous layers during the interpretation steps. The most plausible explanation of the first resistivity layer anomalies is that large amounts of gas hydrate have accumulated at 200 m depth below the seep sites, and the second layers is considerable volumes of gas hydrate have accumulated the seafloor at survey line according to the conceptual model, during the resistivity compared with other evidence like seismic and well data from the same survey. We should try other observation like heat flow, geochemical or other evidence to test the statement in the future.
Micrometer-scale fabrication of complex three dimensional lattice + basis structures in silicon
Burckel, D. Bruce; Resnick, Paul J.; Finnegan, Patrick S.; ...
2015-01-01
A complementary metal oxide semiconductor (CMOS) compatible version of membrane projection lithography (MPL) for fabrication of micrometer-scale three-dimensional structures is presented. The approach uses all inorganic materials and standard CMOS processing equipment. In a single layer, MPL is capable of creating all 5 2D-Bravais lattices. Furthermore, standard semiconductor processing steps can be used in a layer-by-layer approach to create fully three dimensional structures with any of the 14 3D-Bravais lattices. The unit cell basis is determined by the projection of the membrane pattern, with many degrees of freedom for defining functional inclusions. Here we demonstrate several unique structural motifs, andmore » characterize 2D arrays of unit cells with split ring resonators in a silicon matrix. The structures exhibit strong polarization dependent resonances and, for properly oriented split ring resonators (SRRs), coupling to the magnetic field of a normally incident transverse electromagnetic wave, a response unique to 3D inclusions.« less
NASA Technical Reports Server (NTRS)
Morgan, Philip E.
2004-01-01
This final report contains reports of research related to the tasks "Scalable High Performance Computing: Direct and Lark-Eddy Turbulent FLow Simulations Using Massively Parallel Computers" and "Devleop High-Performance Time-Domain Computational Electromagnetics Capability for RCS Prediction, Wave Propagation in Dispersive Media, and Dual-Use Applications. The discussion of Scalable High Performance Computing reports on three objectives: validate, access scalability, and apply two parallel flow solvers for three-dimensional Navier-Stokes flows; develop and validate a high-order parallel solver for Direct Numerical Simulations (DNS) and Large Eddy Simulation (LES) problems; and Investigate and develop a high-order Reynolds averaged Navier-Stokes turbulence model. The discussion of High-Performance Time-Domain Computational Electromagnetics reports on five objectives: enhancement of an electromagnetics code (CHARGE) to be able to effectively model antenna problems; utilize lessons learned in high-order/spectral solution of swirling 3D jets to apply to solving electromagnetics project; transition a high-order fluids code, FDL3DI, to be able to solve Maxwell's Equations using compact-differencing; develop and demonstrate improved radiation absorbing boundary conditions for high-order CEM; and extend high-order CEM solver to address variable material properties. The report also contains a review of work done by the systems engineer.
Itoh, Toru; Sumiyoshi, Tomiki; Higuchi, Yuko; Suzuki, Michio; Kawasaki, Yasuhiro
2011-08-01
We sought to determine if altered electroencephalography (EEG) activities, such as delta band activity, in specific brain regions are associated with psychotic symptoms. Data were obtained from 17 neuroleptic-naive patients with schizophrenia and age- and sex-matched 17 healthy control subjects. Low Resolution Brain Electromagnetic Tomography (LORETA) was used to generate current source density images of delta, theta, alpha, and beta activities. Localization of the difference in EEG activity between the two groups was assessed by voxel-by-voxel non-paired t-test of the LORETA images. Spearman's correlation coefficient was obtained to relate LORETA values of EEG current density in brain regions showing a significant between-group difference and psychopathology scores. Delta band activity, represented by LORETA current density, was greater for patients in the following areas; the left inferior temporal gyrus, right middle frontal gyrus, right superior frontal gyrus, right inferior frontal gyrus, and right parahippocampal gyrus. LORETA values for delta band activity in the above five brain regions were negatively correlated with negative, but not positive symptoms. The results of this study suggest the role for electrophysiological changes in some of the brain regions, e.g. prefrontal cortex, in the manifestation of negative symptoms. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Finn, C A; Sisson, T W; Deszcz-Pan, M
2001-02-01
Hydrothermally altered rocks can weaken volcanoes, increasing the potential for catastrophic sector collapses that can lead to destructive debris flows. Evaluating the hazards associated with such alteration is difficult because alteration has been mapped on few active volcanoes and the distribution and severity of subsurface alteration is largely unknown on any active volcano. At Mount Rainier volcano (Washington, USA), collapses of hydrothermally altered edifice flanks have generated numerous extensive debris flows and future collapses could threaten areas that are now densely populated. Preliminary geological mapping and remote-sensing data indicated that exposed alteration is contained in a dyke-controlled belt trending east-west that passes through the volcano's summit. But here we present helicopter-borne electromagnetic and magnetic data, combined with detailed geological mapping, to show that appreciable thicknesses of mostly buried hydrothermally altered rock lie mainly in the upper west flank of Mount Rainier. We identify this as the likely source for future large debris flows. But as negligible amounts of highly altered rock lie in the volcano's core, this might impede collapse retrogression and so limit the volumes and inundation areas of future debris flows. Our results demonstrate that high-resolution geophysical and geological observations can yield unprecedented views of the three-dimensional distribution of altered rock.
Aerogeophysical measurements of collapse-prone hydrothermally altered zones at Mount Rainier volcano
Finn, C.A.; Sisson, T.W.; Deszcz-Pan, M.
2001-01-01
Hydrothermally altered rocks can weaken volcanoes, increasing the potential for catastrophic sector collapses that can lead to destructive debris flows1. Evaluating the hazards associated with such alteration is difficult because alteration has been mapped on few active volcanoes1-4 and the distribution and severity of subsurface alteration is largely unknown on any active volcano. At Mount Rainier volcano (Washington, USA), collapses of hydrothermally altered edifice flanks have generated numerous extensive debris flows5,6 and future collapses could threaten areas that are now densely populated7. Preliminary geological mapping and remote-sensing data indicated that exposed alteration is contained in a dyke-controlled belt trending east-west that passes through the volcano's summit3-5,8. But here we present helicopter-borne electromagnetic and magnetic data, combined with detailed geological mapping, to show that appreciable thicknesses of mostly buried hydrothermally altered rock lie mainly in the upper west flank of Mount Rainier. We identify this as the likely source for future large debris flows. But as negligible amounts of highly altered rock lie in the volcano's core, this might impede collapse retrogression and so limit the volumes and inundation areas of future debris flows. Our results demonstrate that high-resolution geophysical and geological observations can yield unprecedented views of the three-dimensional distribution of altered rock.
Computational Electronics and Electromagnetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeFord, J.F.
The Computational Electronics and Electromagnetics thrust area is a focal point for computer modeling activities in electronics and electromagnetics in the Electronics Engineering Department of Lawrence Livermore National Laboratory (LLNL). Traditionally, they have focused their efforts in technical areas of importance to existing and developing LLNL programs, and this continues to form the basis for much of their research. A relatively new and increasingly important emphasis for the thrust area is the formation of partnerships with industry and the application of their simulation technology and expertise to the solution of problems faced by industry. The activities of the thrust areamore » fall into three broad categories: (1) the development of theoretical and computational models of electronic and electromagnetic phenomena, (2) the development of useful and robust software tools based on these models, and (3) the application of these tools to programmatic and industrial problems. In FY-92, they worked on projects in all of the areas outlined above. The object of their work on numerical electromagnetic algorithms continues to be the improvement of time-domain algorithms for electromagnetic simulation on unstructured conforming grids. The thrust area is also investigating various technologies for conforming-grid mesh generation to simplify the application of their advanced field solvers to design problems involving complicated geometries. They are developing a major code suite based on the three-dimensional (3-D), conforming-grid, time-domain code DSI3D. They continue to maintain and distribute the 3-D, finite-difference time-domain (FDTD) code TSAR, which is installed at several dozen university, government, and industry sites.« less
Kraus, Jr., Robert H.; Espy, Michelle A.; Matlachov, Andrei; Volegov, Petr
2010-06-01
An apparatus measures electromagnetic signals from a weak signal source. A plurality of primary sensors is placed in functional proximity to the weak signal source with an electromagnetic field isolation surface arranged adjacent the primary sensors and between the weak signal source and sources of ambient noise. A plurality of reference sensors is placed adjacent the electromagnetic field isolation surface and arranged between the electromagnetic isolation surface and sources of ambient noise.
Toward fully three-dimensional-printed miniaturized confocal imager
NASA Astrophysics Data System (ADS)
Savaş, Janset; Khayatzadeh, Ramin; Çivitçi, Fehmi; Gökdel, Yiğit Dağhan; Ferhanoğlu, Onur
2018-04-01
We present a disposable miniaturized confocal imager, consisting mostly of three-dimensional (3-D)-printed components. A 3-D printed laser scanner with 10×10 mm2 frame size is employed for Lissajous scan, with 180 and 315 Hz frequencies in orthogonal directions corresponding to ±8 deg and ±4 deg optical scan angles, respectively. The actuation is done electromagnetically via a magnet attached to the scanner and an external coil. A miniaturized lens with 6-mm clear aperture and 10-mm focal length is 3-D printed and postprocessed to obtain desired (≤λ/5 surface roughness) performance. All components are press-fitted into a 3-D-printed housing having 17 mm width, which is comparable to many of the MEMS-based scanning imagers. Finally, line-scan from a resolution target and two-dimensional scanning in the sample location were demonstrated with the integrated device.
Magneto-rheological fluid shock absorbers for HMMWV
NASA Astrophysics Data System (ADS)
Gordaninejad, Faramarz; Kelso, Shawn P.
2000-04-01
This paper presents the development and evaluation of a controllable, semi-active magneto-rheological fluid (MRF) shock absorber for a High Mobility Multi-purpose Wheeled Vehicle (HMMWV). The University of Nevada, Reno (UNR) MRF damper is tailored for structures and ground vehicles that undergo a wide range of dynamic loading. It also has the capability for unique rebound and compression characteristics. The new MRF shock absorber emulates the original equipment manufacturer (OEM) shock absorber behavior in passive mode, and provides a wide controllable damping force range. A theoretical study is performed to evaluate the UNR MRF shock absorber. The Bingham plastic theory is employed to model the nonlinear behavior of the MR fluid. A fluid-mechanics-based theoretical model along with a three-dimensional finite element electromagnetic analysis is utilized to predict the MRF damper performance. The theoretical results are compared with experimental data and are demonstrated to be in excellent agreement.
[A wireless power transmission system for capsule endoscope].
Xin, Wenhui; Yan, Guozheng; Wang, Wenxing
2010-06-01
In order to deliver power to the capsule endoscope, whose position and orientation are always changing when traveling along the alimentary tract, a wireless power transmission system based on electromagnetic coupling was proposed. The system is composed of Helmholtz transmitting coil and three-dimensional receiving coil. Helmholtz coil outside the body generates a uniform magnetic field covering the whole alimentary tract; three-dimensional coil inside retrieves stable power regardless of its position and orientation. The transmitter and receiver were designed and implemented, and the experiments validated the feasibility of the system. The results show that at least 320 mW of usable power can be transmitted to capsule endoscope when its position and orientation are changing at random and the transmitting power is 25W.
Three-Dimensional Simulation of Traveling-Wave Tube Cold-Test Characteristics Using MAFIA
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Wilson, Jeffrey D.
1995-01-01
The three-dimensional simulation code MAFIA was used to compute the cold-test parameters - frequency-phase dispersion, beam on-axis interaction impedance, and attenuation - for two types of traveling-wave tube (TWT) slow-wave circuits. The potential for this electromagnetic computer modeling code to reduce the time and cost of TWT development is demonstrated by the high degree of accuracy achieved in calculating these parameters. Generalized input files were developed for ferruled coupled-cavity and TunneLadder slow-wave circuits. These files make it easy to model circuits of arbitrary dimensions. The utility of these files was tested by applying each to a specific TWT slow-wave circuit and comparing the results with experimental data. Excellent agreement was obtained.
3D Inversion of Natural Source Electromagnetics
NASA Astrophysics Data System (ADS)
Holtham, E. M.; Oldenburg, D. W.
2010-12-01
The superior depth of investigation of natural source electromagnetic techniques makes these methods excellent candidates for crustal studies as well as for mining and hydrocarbon exploration. The traditional natural source method, the magnetotelluric (MT) technique, has practical limitations because the surveys are costly and time consuming due to the labor intensive nature of ground based surveys. In an effort to continue to use the penetration advantage of natural sources, it has long been recognized that tipper data, the ratio of the local vertical magnetic field to the horizontal magnetic field, provide information about 3D electrical conductivity structure. It was this understanding that prompted the development of AFMAG (Audio Frequency Magnetics) and recently the new airborne Z-Axis Tipper Electromagnetic Technique (ZTEM). In ZTEM, the vertical component of the magnetic field is recorded above the entire survey area, while the horizontal fields are recorded at a ground-based reference station. MT processing techniques yield frequency domain transfer functions typically between 30-720 Hz that relate the vertical fields over the survey area to the horizontal fields at the reference station. The result is a cost effective procedure for collecting natural source EM data and for finding large scale targets at moderate depths. It is well known however that 1D layered structures produce zero vertical magnetic fields and thus ZTEM data cannot recover such background conductivities. This is in sharp contrast to the MT technique where electric fields are measured and a 1D background conductivity can be recovered from the off diagonal elements of the impedance tensor. While 1D models produce no vertical fields, two and three dimensional structures will produce anomalous currents and a ZTEM response. For such models the background conductivity structure does affect the data. In general however, the ZTEM data have weak sensitivity to the background conductivity and while we show that it is possible to obtain the background structure by inverting the ZTEM data alone, it is desirable to obtain robust background conductivity information from other sources. This information could come from a priori geologic and petrophysical information or from additional geophysical data such as MT. To counter the costly nature of large MT surveys and the limited sensitivity of the ZTEM technique to the background conductivity we show that an effective method is to collect and invert both MT and ZTEM data. A sparse MT survey grid can gather information about the background conductivity and deep structures while keeping the survey costs affordable. Higher spatial resolution at moderate depths can be obtained by flying multiple lines of ZTEM data.
NASA Astrophysics Data System (ADS)
Kai, Chen; Sheng, Jin; Wang, Shun
2017-09-01
A new type of electromagnetic (EM) receiver has been developed by integrating four capacitive electrodes and a triaxial induction coil with an advanced data logger for tunnel exploration. The new EM receiver can conduct EM observations in tunnels, which is one of the principal goals of surface-tunnel-borehole EM detection for deep ore deposit mapping. The use of capacitive electrodes enables us to record the electrical field (E-field) signals from hard rock surfaces, which are high-resistance terrains. A compact triaxial induction coil integrates three independent induction coils for narrow-tunnel exploration applications. A low-time-drift-error clock source is developed for tunnel applications where GPS signals are unavailable. The three main components of our tunnel EM receiver are: (1) four capacitive electrodes for measuring the E-field signal without digging in hard rock regions; (2) a triaxial induction coil sensor for audio-frequency magnetotelluric and controlled-source audio-frequency magnetotelluric signal measurements; and (3) a data logger that allows us to record five-component MT signals with low noise levels, low time-drift-error for the clock source, and high dynamic range. The proposed tunnel EM receiver was successfully deployed in a mine that exhibited with typical noise characteristics. [Figure not available: see fulltext. Caption: The new EM receiver can conduct EM observations in tunnels, which is one of the principal goals of the surface-tunnel-borehole EM (STBEM) detection for deep ore deposit mapping. The use of a capacitive electrode enables us to record the electrical field (E-field) signals from hard rock surfaces. A compact triaxial induction coil integrated three induction coils, for narrow-tunnel applications.
NASA Astrophysics Data System (ADS)
Aizin, G. R.; Mikalopas, J.; Shur, M.
2016-05-01
An alternative approach of using a distributed transmission line analogy for solving transport equations for ballistic nanostructures is applied for solving the three-dimensional problem of electron transport in gated ballistic nanostructures with periodically changing width. The structures with varying width allow for modulation of the electron drift velocity while keeping the plasma velocity constant. We predict that in such structures biased by a constant current, a periodic modulation of the electron drift velocity due to the varying width results in the instability of the plasma waves if the electron drift velocity to plasma wave velocity ratio changes from below to above unity. The physics of such instability is similar to that of the sonic boom, but, in the periodically modulated structures, this analog of the sonic boom is repeated many times leading to a larger increment of the instability. The constant plasma velocity in the sections of different width leads to resonant excitation of the unstable plasma modes with varying bias current. This effect (that we refer to as the superplasmonic boom condition) results in a strong enhancement of the instability. The predicted instability involves the oscillating dipole charge carried by the plasma waves. The plasmons can be efficiently coupled to the terahertz electromagnetic radiation due to the periodic geometry of the gated structure. Our estimates show that the analyzed instability should enable powerful tunable terahertz electronic sources.
Multifunction waveform generator for EM receiver testing
NASA Astrophysics Data System (ADS)
Chen, Kai; Jin, Sheng; Deng, Ming
2018-01-01
In many electromagnetic (EM) methods - such as magnetotelluric, spectral-induced polarization (SIP), time-domain-induced polarization (TDIP), and controlled-source audio magnetotelluric (CSAMT) methods - it is important to evaluate and test the EM receivers during their development stage. To assess the performance of the developed EM receivers, controlled synthetic data that simulate the observed signals in different modes are required. In CSAMT and SIP mode testing, the waveform generator should use the GPS time as the reference for repeating schedule. Based on our testing, the frequency range, frequency precision, and time synchronization of the currently available function waveform generators on the market are deficient. This paper presents a multifunction waveform generator with three waveforms: (1) a wideband, low-noise electromagnetic field signal to be used for magnetotelluric, audio-magnetotelluric, and long-period magnetotelluric studies; (2) a repeating frequency sweep square waveform for CSAMT and SIP studies; and (3) a positive-zero-negative-zero
signal that contains primary and secondary fields for TDIP studies. In this paper, we provide the principles of the above three waveforms along with a hardware design for the generator. Furthermore, testing of the EM receiver was conducted with the waveform generator, and the results of the experiment were compared with those calculated from the simulation and theory in the frequency band of interest.
Parallel processing a three-dimensional free-lagrange code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandell, D.A.; Trease, H.E.
1989-01-01
A three-dimensional, time-dependent free-Lagrange hydrodynamics code has been multitasked and autotasked on a CRAY X-MP/416. The multitasking was done by using the Los Alamos Multitasking Control Library, which is a superset of the CRAY multitasking library. Autotasking is done by using constructs which are only comment cards if the source code is not run through a preprocessor. The three-dimensional algorithm has presented a number of problems that simpler algorithms, such as those for one-dimensional hydrodynamics, did not exhibit. Problems in converting the serial code, originally written for a CRAY-1, to a multitasking code are discussed. Autotasking of a rewritten versionmore » of the code is discussed. Timing results for subroutines and hot spots in the serial code are presented and suggestions for additional tools and debugging aids are given. Theoretical speedup results obtained from Amdahl's law and actual speedup results obtained on a dedicated machine are presented. Suggestions for designing large parallel codes are given.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paddubskaya, A.; Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius; Valynets, N.
A new type of light-weight material produced by 3D printing consisting of nano-carbon doped polymer layer followed by a dielectric polymer layer is proposed. We performed temperature dependent characterization and measured the electromagnetic (EM) response of the samples in the GHz and THz range. The temperature dependent structural characteristics, crystallization, and melting were observed to be strongly affected by the presence and the number of nano-carbon doped layers in the sandwich structure. The electromagnetic measurements show a great potential of such a type of periodic material for electromagnetic compatibility applications in microwave frequency range. Sandwich structures containing only two nano-carbonmore » layers already become not transparent to the microwaves, giving an electromagnetic interference shielding efficiency at the level of 8–15 dB. A sandwich consisting of one nano-carbon doped and one polymer layer is opaque for THz radiation, because of 80% of absorption. These studies serve as a basis for design and realization of specific optimal geometries of meta-surface type with the 3D printing technique, in order to reach a high level of electromagnetic interference shielding performance for real world EM cloaking and EM ecology applications.« less
electromagnetics, eddy current, computer codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gartling, David
TORO Version 4 is designed for finite element analysis of steady, transient and time-harmonic, multi-dimensional, quasi-static problems in electromagnetics. The code allows simulation of electrostatic fields, steady current flows, magnetostatics and eddy current problems in plane or axisymmetric, two-dimensional geometries. TORO is easily coupled to heat conduction and solid mechanics codes to allow multi-physics simulations to be performed.
Ball, Lyndsay B.; Smith, Bruce D.; Minsley, Burke J.; Abraham, Jared D.; Voss, Clifford I.; Astley, Beth N.; Deszcz-Pan, Maria; Cannia, James C.
2011-01-01
In June 2010, the U.S. Geological Survey conducted airborne electromagnetic and magnetic surveys of the Yukon Flats and Fort Wainwright study areas in central Alaska. These data were collected to estimate the three-dimensional distribution of permafrost at the time of the survey. These data were also collected to evaluate the effectiveness of these geophysical methods at mapping permafrost geometry and to better define the physical properties of the subsurface in discontinuous permafrost areas. This report releases digital data associated with these surveys. Inverted resistivity depth sections are also provided in this data release, and data processing and inversion methods are discussed.
NASA Astrophysics Data System (ADS)
Guo, Li-xin; Chen, Wei; Li, Jiang-ting; Ren, Yi; Liu, Song-hua
2018-05-01
The dielectric coefficient of a weakly ionised dusty plasma is used to establish a three-dimensional time and space inhomogeneous dusty plasma sheath. The effects of scattering on electromagnetic (EM) waves in this dusty plasma sheath are investigated using the auxiliary differential equation finite-difference time-domain method. Backward radar cross-sectional values of various parameters, including the dust particle radius, charging frequency of dust particles, dust particle concentration, effective collision frequency, rate of the electron density variation with time, angle of EM wave incidence, and plasma frequency, are analysed within the time and space inhomogeneous plasma sheath. The results show the noticeable effects of dusty plasma parameters on EM waves.
1984-06-01
TechnologySchool of Electrical Engineering Atlanta, Georgia 30332 I1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE U.S. Army Research Office June 1984...Post Office Box 12211 I3. NUMBER OF PAGES Research Triangle Park, NC 27709 14. MONITORING AGENCY NAME G ADDRESS(if dilferent from Controlling Office...could be attached to it to produce a permanent record of images. A video control unit, designed and built in the Optics Lab, was employed to direct and
Wang, Yanqin; Pu, Mingbo; Zhang, Zuojun; Li, Xiong; Ma, Xiaoliang; Zhao, Zeyu; Luo, Xiangang
2015-12-04
Two-dimensional metasurface has attracted growing interest in recent years, owing to its ability in manipulating the phase, amplitude and polarization state of electromagnetic wave within a single interface. However, most existing metasurfaces rely on the collective responses of a set of discrete meta-atoms to perform various functionalities. In this paper, we presented a quasi-continuous metasurface for high-efficiency and broadband beam steering in the microwave regime. It is demonstrated both in simulation and experiment that the incident beam deviates from the normal direction after transmitting through the ultrathin metasurface. The efficiency of the proposed metasurface approximates to the theoretical limit of the single-layer metasurface in a broad frequency range, owing to the elimination of the circuit resonance in traditional discrete structures. The proposed scheme promises potential applications in broadband electromagnetic modulation and communication systems, etc.
Design Considerations of a Virtual Laboratory for Advanced X-ray Sources
NASA Astrophysics Data System (ADS)
Luginsland, J. W.; Frese, M. H.; Frese, S. D.; Watrous, J. J.; Heileman, G. L.
2004-11-01
The field of scientific computation has greatly advanced in the last few years, resulting in the ability to perform complex computer simulations that can predict the performance of real-world experiments in a number of fields of study. Among the forces driving this new computational capability is the advent of parallel algorithms, allowing calculations in three-dimensional space with realistic time scales. Electromagnetic radiation sources driven by high-voltage, high-current electron beams offer an area to further push the state-of-the-art in high fidelity, first-principles simulation tools. The physics of these x-ray sources combine kinetic plasma physics (electron beams) with dense fluid-like plasma physics (anode plasmas) and x-ray generation (bremsstrahlung). There are a number of mature techniques and software packages for dealing with the individual aspects of these sources, such as Particle-In-Cell (PIC), Magneto-Hydrodynamics (MHD), and radiation transport codes. The current effort is focused on developing an object-oriented software environment using the Rational© Unified Process and the Unified Modeling Language (UML) to provide a framework where multiple 3D parallel physics packages, such as a PIC code (ICEPIC), a MHD code (MACH), and a x-ray transport code (ITS) can co-exist in a system-of-systems approach to modeling advanced x-ray sources. Initial software design and assessments of the various physics algorithms' fidelity will be presented.
Comparing the Robustness of High-Frequency Traveling-Wave Tube Slow-Wave Circuits
NASA Technical Reports Server (NTRS)
Chevalier, Christine T.; Wilson, Jeffrey D.; Kory, Carol L.
2007-01-01
A three-dimensional electromagnetic field simulation software package was used to compute the cold-test parameters, phase velocity, on-axis interaction impedance, and attenuation, for several high-frequency traveling-wave tube slow-wave circuit geometries. This research effort determined the effects of variations in circuit dimensions on cold-test performance. The parameter variations were based on the tolerances of conventional micromachining techniques.
Volumetric graphics in liquid using holographic femtosecond laser pulse excitations
NASA Astrophysics Data System (ADS)
Kumagai, Kota; Hayasaki, Yoshio
2017-06-01
Much attention has been paid to the development of three-dimensional volumetric displays in the fields of optics and computer graphics, and it is a dream of we display researchers. However, full-color volumetric displays are challenging because many voxels with different colors have to be formed to render volumetric graphics in real three-dimensional space. Here, we show a new volumetric display in which microbubble voxels are three-dimensionally generated in a liquid by focused femtosecond laser pulses. Use of a high-viscosity liquid, which is the key idea of this system, slows down the movement of the microbubbles, and as a result, volumetric graphics can be displayed. This "volumetric bubble display" has a wide viewing angle and simple refresh and requires no addressing wires because it involves optical access to transparent liquid and achieves full-color graphics composed on light-scattering voxels controlled by illumination light sources. In addition, a bursting of bubble graphics system using an ultrasonic vibrator also has been demonstrated. This technology will open up a wide range of applications in three-dimensional displays, augmented reality and computer graphics.
Zarei, S.; Mortazavi, S. M. J.; Mehdizadeh, A. R.; Jalalipour, M.; Borzou, S.; Taeb, S.; Haghani, M.; Mortazavi, S. A. R.; Shojaei-fard, M. B.; Nematollahi, S.; Alighanbari, N.; Jarideh, S.
2015-01-01
Background Nowadays, mothers are continuously exposed to different sources of electromagnetic fields before and even during pregnancy. It has recently been shown that exposure to mobile phone radiation during pregnancy may lead to adverse effects on the brain development in offspring and cause hyperactivity. Researchers have shown that behavioral problems in laboratory animals which have a similar appearance to ADHD are caused by intrauterine exposure to mobile phones. Objective The purpose of this study was to investigate whether the maternal exposure to different sources of electromagnetic fields affect on the rate and severity of speech problems in their offspring. Methods In this study, mothers of 35 healthy 3-5 year old children (control group) and 77 children and diagnosed with speech problems who had been referred to a speech treatment center in Shiraz, Iran were interviewed. These mothers were asked whether they had exposure to different sources of electromagnetic fields such as mobile phones, mobile base stations, Wi-Fi, cordless phones, laptops and power lines. Results We found a significant association between either the call time (P=0.002) or history of mobile phone use (months used) and speech problems in the offspring (P=0.003). However, other exposures had no effect on the occurrence of speech problems. To the best of our knowledge, this is the first study to investigate a possible association between maternal exposure to electromagnetic field and speech problems in the offspring. Although a major limitation in our study is the relatively small sample size, this study indicates that the maternal exposure to common sources of electromagnetic fields such as mobile phones can affect the occurrence of speech problems in the offspring. PMID:26396971
Zarei, S; Mortazavi, S M J; Mehdizadeh, A R; Jalalipour, M; Borzou, S; Taeb, S; Haghani, M; Mortazavi, S A R; Shojaei-Fard, M B; Nematollahi, S; Alighanbari, N; Jarideh, S
2015-09-01
Nowadays, mothers are continuously exposed to different sources of electromagnetic fields before and even during pregnancy. It has recently been shown that exposure to mobile phone radiation during pregnancy may lead to adverse effects on the brain development in offspring and cause hyperactivity. Researchers have shown that behavioral problems in laboratory animals which have a similar appearance to ADHD are caused by intrauterine exposure to mobile phones. The purpose of this study was to investigate whether the maternal exposure to different sources of electromagnetic fields affect on the rate and severity of speech problems in their offspring. In this study, mothers of 35 healthy 3-5 year old children (control group) and 77 children and diagnosed with speech problems who had been referred to a speech treatment center in Shiraz, Iran were interviewed. These mothers were asked whether they had exposure to different sources of electromagnetic fields such as mobile phones, mobile base stations, Wi-Fi, cordless phones, laptops and power lines. We found a significant association between either the call time (P=0.002) or history of mobile phone use (months used) and speech problems in the offspring (P=0.003). However, other exposures had no effect on the occurrence of speech problems. To the best of our knowledge, this is the first study to investigate a possible association between maternal exposure to electromagnetic field and speech problems in the offspring. Although a major limitation in our study is the relatively small sample size, this study indicates that the maternal exposure to common sources of electromagnetic fields such as mobile phones can affect the occurrence of speech problems in the offspring.
NASA Astrophysics Data System (ADS)
Go, Gwangjun; Choi, Hyunchul; Jeong, Semi; Ko, Seong Young; Park, Jong-Oh; Park, Sukho
2016-03-01
Microparticle manipulation using a microrobot in an enclosed environment, such as a lab-on-a-chip, has been actively studied because an electromagnetic actuated microrobot can have accurate motility and wireless controllability. In most studies on electromagnetic actuated microrobots, only a single microrobot has been used to manipulate cells or microparticles. However, the use of a single microrobot can pose several limitations when performing multiple roles in microparticle manipulation. To overcome the limitations associated with using a single microrobot, we propose a new method for the control of multiple microrobots. Multiple microrobots can be controlled independently by an electromagnetic actuation system and multiple microclampers combined with microheaters. To select a specific microrobot among multiple microrobots, we propose a microclamper composed of a clamper structure using thermally responsive hydrogel and a microheater for controlling the microclamper. A fundamental test of the proposed microparticle manipulation system is performed by selecting a specific microrobot among multiple microrobots. Through the independent locomotion of multiple microrobots with U- and V-shaped tips, heterogeneous microparticle manipulation is demonstrated in the creation of a two-dimensional structure. In the future, our proposed multiple-microrobot system can be applied to tasks that are difficult to perform using a single microrobot, such as cell manipulation, cargo delivery, tissue assembly, and cloning.
NASA Astrophysics Data System (ADS)
Imamura, N.; Schultz, A.
2015-12-01
Recently, a full waveform time domain solution has been developed for the magnetotelluric (MT) and controlled-source electromagnetic (CSEM) methods. The ultimate goal of this approach is to obtain a computationally tractable direct waveform joint inversion for source fields and earth conductivity structure in three and four dimensions. This is desirable on several grounds, including the improved spatial resolving power expected from use of a multitude of source illuminations of non-zero wavenumber, the ability to operate in areas of high levels of source signal spatial complexity and non-stationarity, etc. This goal would not be obtainable if one were to adopt the finite difference time-domain (FDTD) approach for the forward problem. This is particularly true for the case of MT surveys, since an enormous number of degrees of freedom are required to represent the observed MT waveforms across the large frequency bandwidth. It means that for FDTD simulation, the smallest time steps should be finer than that required to represent the highest frequency, while the number of time steps should also cover the lowest frequency. This leads to a linear system that is computationally burdensome to solve. We have implemented our code that addresses this situation through the use of a fictitious wave domain method and GPUs to speed up the computation time. We also substantially reduce the size of the linear systems by applying concepts from successive cascade decimation, through quasi-equivalent time domain decomposition. By combining these refinements, we have made good progress toward implementing the core of a full waveform joint source field/earth conductivity inverse modeling method. From results, we found the use of previous generation of CPU/GPU speeds computations by an order of magnitude over a parallel CPU only approach. In part, this arises from the use of the quasi-equivalent time domain decomposition, which shrinks the size of the linear system dramatically.
Minimization of nanosatellite low frequency magnetic fields.
Belyayev, S M; Dudkin, F L
2016-03-01
Small weight and dimensions of the micro- and nanosatellites constrain researchers to place electromagnetic sensors on short booms or on the satellite body. Therefore the electromagnetic cleanliness of such satellites becomes a central question. This paper describes the theoretical base and practical techniques for determining the parameters of DC and very low frequency magnetic interference sources. One of such sources is satellite magnetization, the reduction of which improves the accuracy and stability of the attitude control system. We present design solutions for magnetically clean spacecraft, testing equipment, and technology for magnetic moment measurements, which are more convenient, efficient, and accurate than the conventional ones.
A solid-state controllable power supply for a magnetic suspension wind tunnel
NASA Technical Reports Server (NTRS)
Daniels, Taumi S.; Tripp, John S.
1991-01-01
The NASA Langley 6-inch Magnetic Suspension and Balance System (6-in. MSBS) requires an independently controlled bidirectional dc power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance-coupled thyratron-controlled rectifiers as well as ac to dc motor-generator converters, is obsolete, inefficient, and unreliable. A replacement six-phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full-load efficiency is 80 percent compared with 25 percent for the resistance-coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20-kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kourtzanidis, Konstantinos, E-mail: kkourt@utexas.edu; Pederson, Dylan M.; Raja, Laxminarayan L.
2016-05-28
We propose and study numerically a tunable and reconfigurable metamaterial based on coupled split-ring resonators (SRRs) and plasma discharges. The metamaterial couples the magnetic-electric response of the SRR structure with the electric response of a controllable plasma slab discharge that occupies a volume of the metamaterial. Because the electric response of a plasma depends on its constitutive parameters (electron density and collision frequency), the plasma-based metamaterial is tunable and active. Using three-dimensional numerical simulations, we analyze the coupled plasma-SRR metamaterial in terms of transmittance, performing parametric studies on the effects of electron density, collisional frequency, and the position of themore » plasma slab with respect to the SRR array. We find that the resonance frequency can be controlled by the plasma position or the plasma-to-collision frequency ratio, while transmittance is highly dependent on the latter.« less
Hanada, Eisuke
2007-01-01
Most problems with the electromagnetic environment of medical institutions have been related to radiated electromagnetic fields and have been constructed from reports about electromagnetic interference (EMI) with electronic medical equipment by the radio waves emitted from mobile telephone handsets. However, radiated electromagnetic fields are just one of the elements. For example, little attention has been placed on problems with the electric power source. Apparatus for clinical treatment and diagnosis that use electric power sources have come into wide use in hospitals. Hospitals must pay careful attention to all elements of the electromagnetic environment. Herein, I will show examples of measurements and measuring methods for radiated electromagnetic fields, static magnetic fields, and power-source noise, common components of the medical electromagnetic environment.
Black holes of dimensionally continued gravity coupled to Born-Infeld electromagnetic field
NASA Astrophysics Data System (ADS)
Meng, Kun; Yang, Da-Bao
2018-05-01
In this paper, for dimensionally continued gravity coupled to Born-Infeld electromagnetic field, we construct topological black holes in diverse dimensions and construct dyonic black holes in general even dimensions. We study thermodynamics of the black holes and obtain first laws. We study thermal phase transitions of the black holes in T-S plane and find van der Waals-like phase transitions for even-dimensional spherical black holes, such phase transitions are not found for other types of black holes constructed in this paper.
NASA Astrophysics Data System (ADS)
Li, Dong; Wen, Yinghong; Li, Weili; Fang, Jin; Cao, Junci; Zhang, Xiaochen; Lv, Gang
2017-03-01
In the paper, the numerical method calculating asymmetric primary slot leakage inductances of Single-sided High-Temperature Superconducting (HTS) Linear Induction Motor (HTS LIM) is presented. The mathematical and geometric models of three-dimensional nonlinear transient electromagnetic field are established and the boundary conditions are also given. The established model is solved by time-stepping Finite Element Method (FEM). Then, the three-phase asymmetric primary slot leakage inductances under different operation conditions are calculated by using the obtained electromagnetic field distribution. The influences of the special effects such as longitudinal end effects, transversal edge effects, etc. on the primary slot leakage inductance are investigated. The presented numerical method is validated by experiments carried out on a 3.5 kW prototype with copper wires which has the same structures with the HTS LIM.
Unifying electromagnetism and gravitation without curvature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schuetze, D.
1985-10-01
This paper is devoted to a five-dimensional unification of the gravitational theory of Hayashi and Shirafuji with electromagnetism. Interference effects are found between gravitational contributions of matter spin and electromagnetism. This unification becomes the classical Kaluza--Klein theory if contributions of the torsion tensor related with spin are neglected.
Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system
NASA Technical Reports Server (NTRS)
Whelan, D. A.; Stenzel, R. L.
1985-01-01
It is shown that the unstable electron-plasma waves of a beam-plasma system can generate electromagnetic radiation in a uniform plasma. The generation mechanism is a scattering of the unstable electron plasma waves off ion-acoustic waves, producing electromagnetic waves whose frequency is near the local plasma frequency. The wave vector and frequency matching conditions of the three-wave mode coupling are experimentally verified. The electromagnetic radiation is observed to be polarized with the electric field parallel to the beam direction, and its source region is shown to be localized to the unstable plasma wave region. The frequency spectrum shows negligible intensity near the second harmonic of the plasma frequency. These results suggest that the observed electromagnetic radiation of type III solar bursts may be generated near the local plasma frequency and observed downstream where the wave frequency is near the harmonic of the plasma frequency.
Volegov, P. L.; Danly, C. R.; Merrill, F. E.; ...
2015-11-24
The neutron imaging system at the National Ignition Facility is an important diagnostic tool for measuring the two-dimensional size and shape of the source of neutrons produced in the burning deuterium-tritium plasma during the stagnation phase of inertial confinement fusion implosions. Few two-dimensional projections of neutronimages are available to reconstruct the three-dimensionalneutron source. In our paper, we present a technique that has been developed for the 3Dreconstruction of neutron and x-raysources from a minimal number of 2D projections. Here, we present the detailed algorithms used for this characterization and the results of reconstructedsources from experimental data collected at Omega.
[Advances in the research of application of collagen in three-dimensional bioprinting].
Li, H H; Luo, P F; Sheng, J J; Liu, G C; Zhu, S H
2016-10-20
As a new industrial technology with characteristics of high precision and accuracy, the application of three-dimensional bioprinting technology is increasingly wide in the field of medical research. Collagen is one of the most common ingredients in tissue, and it has good biological material properties. There are many reports of using collagen as main composition of " ink" of three-dimensional bioprinting technology. However, the applied collagen is mainly from heterogeneous sources, which may cause some problems in application. Recombinant human source collagen can be obtained from microorganism fermentation by transgenic technology, but more research should be done to confirm its property. This article reviews the advances in the research of collagen and its biological application in three-dimensional bioprinting.
A Two-Dimensional Linear Bicharacteristic Scheme for Electromagnetics
NASA Technical Reports Server (NTRS)
Beggs, John H.
2002-01-01
The upwind leapfrog or Linear Bicharacteristic Scheme (LBS) has previously been implemented and demonstrated on one-dimensional electromagnetic wave propagation problems. This memorandum extends the Linear Bicharacteristic Scheme for computational electromagnetics to model lossy dielectric and magnetic materials and perfect electrical conductors in two dimensions. This is accomplished by proper implementation of the LBS for homogeneous lossy dielectric and magnetic media and for perfect electrical conductors. Both the Transverse Electric and Transverse Magnetic polarizations are considered. Computational requirements and a Fourier analysis are also discussed. Heterogeneous media are modeled through implementation of surface boundary conditions and no special extrapolations or interpolations at dielectric material boundaries are required. Results are presented for two-dimensional model problems on uniform grids, and the Finite Difference Time Domain (FDTD) algorithm is chosen as a convenient reference algorithm for comparison. The results demonstrate that the two-dimensional explicit LBS is a dissipation-free, second-order accurate algorithm which uses a smaller stencil than the FDTD algorithm, yet it has less phase velocity error.
NASA Astrophysics Data System (ADS)
Miller, C. R.; Routh, P. S.; Donaldson, P. R.
2004-05-01
Controlled Source Audio-Frequency Magnetotellurics (CSAMT) is a frequency domain electromagnetic (EM) sounding technique. CSAMT typically uses a grounded horizontal electric dipole approximately one to two kilometers in length as a source. Measurements of electric and magnetic field components are made at stations located ideally at least four skin depths away from the transmitter to approximate plane wave characteristics of the source. Data are acquired in a broad band frequency range that is sampled logarithmically from 0.1 Hz to 10 kHz. The usefulness of CSAMT soundings is to detect and map resistivity contrasts in the top two to three km of the Earth's surface. Some practical applications that CSAMT soundings have been used for include mapping ground water resources; mineral/precious metals exploration; geothermal reservoir mapping and monitoring; petroleum exploration; and geotechnical investigations. Higher frequency data can be used to image shallow features and lower frequency data are sensitive to deeper structures. We have a 3D CSAMT data set consisting of phase and amplitude measurements of the Ex and Hy components of the electric and magnetic fields respectively. The survey area is approximately 3 X 5 km. Receiver stations are situated 50 meters apart along a total of 13 lines with 8 lines bearing approximately N60E and the remainder of the lines oriented orthogonal to these 8 lines. We use an unconstrained Gauss-Newton method with positivity to invert the data. Inversion results will consist of conductivity versus depth profiles beneath each receiver station. These 1D profiles will be combined into a 3D subsurface conductivity image. We will include our interpretation of the subsurface conductivity structure and quantify the uncertainties associated with this interpretation.
Development on electromagnetic impedance function modeling and its estimation
NASA Astrophysics Data System (ADS)
Sutarno, D.
2015-09-01
Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim at reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition-as well as the far-field zones, and consequently the plane wave correction is no longer needed for the impedances. In the resulting robust impedance estimates, outlier contamination is removed and the self consistency between the real and imaginary parts of the impedance estimates is guaranteed. Using synthetic and real MT data, it is shown that the proposed robust estimation methods always yield impedance estimates which are better than the conventional least square (LS) estimation, even under condition of severe noise contamination. A recent development on the constrained robust CSAMT impedance estimation is also discussed. By using synthetic CSAMT data it is demonstrated that the proposed methods can produce usable CSAMT transfer functions for all measurement zones.
Development on electromagnetic impedance function modeling and its estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutarno, D., E-mail: Sutarno@fi.itb.ac.id
2015-09-30
Today the Electromagnetic methods such as magnetotellurics (MT) and controlled sources audio MT (CSAMT) is used in a broad variety of applications. Its usefulness in poor seismic areas and its negligible environmental impact are integral parts of effective exploration at minimum cost. As exploration was forced into more difficult areas, the importance of MT and CSAMT, in conjunction with other techniques, has tended to grow continuously. However, there are obviously important and difficult problems remaining to be solved concerning our ability to collect process and interpret MT as well as CSAMT in complex 3D structural environments. This talk aim atmore » reviewing and discussing the recent development on MT as well as CSAMT impedance functions modeling, and also some improvements on estimation procedures for the corresponding impedance functions. In MT impedance modeling, research efforts focus on developing numerical method for computing the impedance functions of three dimensionally (3-D) earth resistivity models. On that reason, 3-D finite elements numerical modeling for the impedances is developed based on edge element method. Whereas, in the CSAMT case, the efforts were focused to accomplish the non-plane wave problem in the corresponding impedance functions. Concerning estimation of MT and CSAMT impedance functions, researches were focused on improving quality of the estimates. On that objective, non-linear regression approach based on the robust M-estimators and the Hilbert transform operating on the causal transfer functions, were used to dealing with outliers (abnormal data) which are frequently superimposed on a normal ambient MT as well as CSAMT noise fields. As validated, the proposed MT impedance modeling method gives acceptable results for standard three dimensional resistivity models. Whilst, the full solution based modeling that accommodate the non-plane wave effect for CSAMT impedances is applied for all measurement zones, including near-, transition-as well as the far-field zones, and consequently the plane wave correction is no longer needed for the impedances. In the resulting robust impedance estimates, outlier contamination is removed and the self consistency between the real and imaginary parts of the impedance estimates is guaranteed. Using synthetic and real MT data, it is shown that the proposed robust estimation methods always yield impedance estimates which are better than the conventional least square (LS) estimation, even under condition of severe noise contamination. A recent development on the constrained robust CSAMT impedance estimation is also discussed. By using synthetic CSAMT data it is demonstrated that the proposed methods can produce usable CSAMT transfer functions for all measurement zones.« less
NASA Technical Reports Server (NTRS)
Kobayashi, H.
1978-01-01
Two dimensional, quasi three dimensional and three dimensional theories for the prediction of pure tone fan noise due to the interaction of inflow distortion with a subsonic annular blade row were studied with the aid of an unsteady three dimensional lifting surface theory. The effects of compact and noncompact source distributions on pure tone fan noise in an annular cascade were investigated. Numerical results show that the strip theory and quasi three-dimensional theory are reasonably adequate for fan noise prediction. The quasi three-dimensional method is more accurate for acoustic power and model structure prediction with an acoustic power estimation error of about plus or minus 2db.
On the use of particle filters for electromagnetic tracking in high dose rate brachytherapy.
Götz, Th I; Lahmer, G; Brandt, T; Kallis, K; Strnad, V; Bert, Ch; Hensel, B; Tomé, A M; Lang, E W
2017-09-12
Modern radiotherapy of female breast cancers often employs high dose rate brachytherapy, where a radioactive source is moved inside catheters, implanted in the female breast, according to a prescribed treatment plan. Source localization relative to the patient's anatomy is determined with solenoid sensors whose spatial positions are measured with an electromagnetic tracking system. Precise sensor dwell position determination is of utmost importance to assure irradiation of the cancerous tissue according to the treatment plan. We present a hybrid data analysis system which combines multi-dimensional scaling with particle filters to precisely determine sensor dwell positions in the catheters during subsequent radiation treatment sessions. Both techniques are complemented with empirical mode decomposition for the removal of superimposed breathing artifacts. We show that the hybrid model robustly and reliably determines the spatial positions of all catheters used during the treatment and precisely determines any deviations of actual sensor dwell positions from the treatment plan. The hybrid system only relies on sensor positions measured with an EMT system and relates them to the spatial positions of the implanted catheters as initially determined with a computed x-ray tomography.
Diffusive and localization behavior of electromagnetic waves in a two-dimensional random medium
NASA Astrophysics Data System (ADS)
Wang, Ken Kang-Hsin; Ye, Zhen
2003-10-01
In this paper, we discuss the transport phenomena of electromagnetic waves in a two-dimensional random system which is composed of arrays of electrical dipoles, following the model presented earlier by Erdogan et al. [J. Opt. Soc. Am. B 10, 391 (1993)]. A set of self-consistent equations is presented, accounting for the multiple scattering in the system, and is then solved numerically. A strong localization regime is discovered in the frequency domain. The transport properties within, near the edge of, and nearly outside the localization regime are investigated for different parameters such as filling factor and system size. The results show that within the localization regime, waves are trapped near the transmitting source. Meanwhile, the diffusive waves follow an intuitive but expected picture. That is, they increase with traveling path as more and more random scattering incurs, followed by a saturation, then start to decay exponentially when the travelling path is large enough, signifying the localization effect. For the cases where the frequencies are near the boundary of or outside the localization regime, the results of diffusive waves are compared with the diffusion approximation, showing less encouraging agreement as in other systems [Asatryan et al., Phys. Rev. E 67, 036605 (2003)].
An Implicit Characteristic Based Method for Electromagnetics
NASA Technical Reports Server (NTRS)
Beggs, John H.; Briley, W. Roger
2001-01-01
An implicit characteristic-based approach for numerical solution of Maxwell's time-dependent curl equations in flux conservative form is introduced. This method combines a characteristic based finite difference spatial approximation with an implicit lower-upper approximate factorization (LU/AF) time integration scheme. This approach is advantageous for three-dimensional applications because the characteristic differencing enables a two-factor approximate factorization that retains its unconditional stability in three space dimensions, and it does not require solution of tridiagonal systems. Results are given both for a Fourier analysis of stability, damping and dispersion properties, and for one-dimensional model problems involving propagation and scattering for free space and dielectric materials using both uniform and nonuniform grids. The explicit Finite Difference Time Domain Method (FDTD) algorithm is used as a convenient reference algorithm for comparison. The one-dimensional results indicate that for low frequency problems on a highly resolved uniform or nonuniform grid, this LU/AF algorithm can produce accurate solutions at Courant numbers significantly greater than one, with a corresponding improvement in efficiency for simulating a given period of time. This approach appears promising for development of dispersion optimized LU/AF schemes for three dimensional applications.
Photonic and phononic surface and edge modes in three-dimensional phoxonic crystals
NASA Astrophysics Data System (ADS)
Ma, Tian-Xue; Wang, Yue-Sheng; Zhang, Chuanzeng
2018-04-01
We investigate the photonic and phononic surface and edge modes in finite-size three-dimensional phoxonic crystals. By appropriately terminating the phoxonic crystals, the photons and phonons can be simultaneously guided at the two-dimensional surface and/or the one-dimensional edge of the terminated crystals. The Bloch surface and edge modes show that the electromagnetic and acoustic waves are highly localized near the surface and edge, respectively. The surface and edge geometries play important roles in tailoring the dispersion relations of the surface and edge modes, and dual band gaps for the surface or edge modes can be simultaneously achieved by changing the geometrical configurations. Furthermore, as the band gaps for the bulk modes are the essential prerequisites for the realization of dual surface and edge modes, the photonic and phononic bulk-mode band gap properties of three different types of phoxonic crystals with six-connected networks are revealed. It is found that the geometrical characteristic of the crystals with six-connected networks leads to dual large bulk-mode band gaps. Compared with the conventional bulk modes, the surface and edge modes provide a new approach for the photon and phonon manipulation and show great potential for phoxonic crystal devices and optomechanics.
Unified Electromagnetic-Electronic Design of Light Trapping Silicon Solar Cells
Boroumand, Javaneh; Das, Sonali; Vázquez-Guardado, Abraham; Franklin, Daniel; Chanda, Debashis
2016-01-01
A three-dimensional unified electromagnetic-electronic model is developed in conjunction with a light trapping scheme in order to predict and maximize combined electron-photon harvesting in ultrathin crystalline silicon solar cells. The comparison between a bare and light trapping cell shows significant enhancement in photon absorption and electron collection. The model further demonstrates that in order to achieve high energy conversion efficiency, charge separation must be optimized through control of the doping profile and surface passivation. Despite having a larger number of surface defect states caused by the surface patterning in light trapping cells, we show that the higher charge carrier generation and collection in this design compensates the absorption and recombination losses and ultimately results in an increase in energy conversion efficiency. The fundamental physics behind this specific design approach is validated through its application to a 3 μm thick functional light trapping solar cell which shows 192% efficiency enhancement with respect to the bare cell of same thickness. Such a unified design approach will pave the path towards achieving the well-known Shockley-Queisser (SQ) limit for c-Si in thin-film (<30 μm) geometries. PMID:27499446
Three-dimensional FDTD Modeling of Earth-ionosphere Cavity Resonances
NASA Astrophysics Data System (ADS)
Yang, H.; Pasko, V. P.
2003-12-01
Resonance properties of the earth-ionosphere cavity were first predicted by W. O. Schumann in 1952 [Schumann, Z. Naturforsch. A, 7, 149, 1952]. Since then observations of extremely low frequency (ELF) signals in the frequency range 1-500 Hz have become a powerful tool for monitoring of global lightning activity and planetary scale variability of the lower ionosphere, as well as, in recent years, for location and remote sensing of sprites, jets and elves and associated lightning discharges [e.g., Sato et al., JASTP, 65, 607, 2003; Su et al., Nature, 423, 974, 2003; and references cited therein]. The simplicity and flexibility of finite difference time domain (FDTD) technique for finding first principles solutions of electromagnetic problems in a medium with arbitrary inhomogeneities and ever-increasing computer power make FDTD an excellent candidate to be the technique of the future in development of realistic numerical models of VLF/ELF propagation in Earth-ionosphere waveguide [Cummer, IEEE Trans. Antennas Propagat., 48, 1420, 2000], and several reports about successful application of the FDTD technique for solution of related problems have recently appeared in the literature [e.g., Thevenot et al., Ann. Telecommun., 54, 297, 1999; Cummer, 2000; Berenger, Ann. Telecommun., 57, 1059, 2002, Simpson and Taflove, IEEE Antennas Wireless Propagat. Lett., 1, 53, 2002]. In this talk we will present results from a new three-dimensional spherical FDTD model, which is designed for studies of ELF electromagnetic signals under 100 Hz in the earth-ionosphere cavity. The model accounts for a realistic latitudinal and longitudinal variation of ground conductivity (i.e., for the boundaries between oceans and continents) by employing a broadband surface impedance technique proposed in [Breggs et al., IEEE Trans. Antenna Propagat., 41, 118, 1993]. The realistic distributions of atmospheric/lower ionospheric conductivity are derived from the international reference ionosphere model (IRI) [Bilitza, Radio Sci., 36, 261, 2001] and account for the medium anisotropy due to the geomagnetic field above approximately 70 km altitude. The realistic three-dimensional geomagnetic field distributions are loaded from the international geomagnetic field model (IGRF) [Barton, J. Geomag. Geoelectr., 49, 123, 1997]. In this talk we will compare the model results with available analytical solutions for electric and magnetic field distributions in the earth-ionosphere cavity excited by a strong positive cloud-to-ground lightning discharge. We will also discuss known sources of variability in Schumann resonance frequencies and present results illustrating model response under conditions of high-energy particle precipitation events in the polar regions [e.g., Morente et al., JGR, 108, doi:10.1029/2002JA009779, 2003, and references cited therein].
[The role of RKIP mediated ERK pathway in hippocampus neurons injured by electromagnetic radiation].
Zuo, Hong-Yan; Wang, De-Wen; Peng, Rui-Yun; Wang, Shui-Ming; Gao, Ya-Bing; Zhang, Zhi-Yi; Xiao, Feng-Jun
2008-07-01
To study the effects of electromagnetic radiation on RKIP and phosphorylated ERK in primary cultured hippocampus neurons. The inhibitor of MEK U0126 was applied to investigate the role of RKIP mediated ERK pathway in radiation injury. Primary hippocampus neurons were cultured in vitro. X-HPM, S-HPM and EMP were taken as radiation source respectively to establish three cell models exposed to electromagnetic radiation. RKIP and phosphorylated ERK were measured by immunofluorescent labelling and laser scanning confocal microscope. Apoptosis and death fraction of the cells were detected by Annexin V-PI double labelling and flow cytometry. After three kinds of electromagnetic radiation, the expression of RKIP in hippocampus neurons decreased but the expression of phosphorylated ERK increased, and its nuclear translocation occurred. No significant differences were seen between radiation groups. Apoptosis and death fraction of the neurons in U0126 pretreatment groups was significantly lower than that in radiation groups but they were still higher than those in sham-radiation group. The excessive activation of RKIP mediated ERK pathway is one of the important mechanisms for the apoptosis and death of hippocampus neurons induced by electromagnetic radiation. U0126 have some protective effects on radiation injury.
Suppression of radiating harmonics Electro-Impulse Deicing (EIDI) systems
NASA Astrophysics Data System (ADS)
Zieve, Peter; Ng, James; Fiedberg, Robert
1991-10-01
The electromagnetic compatibility (EMC) of two different configurations of electromagnetic deicing systems is discussed. Both Electro-Impulse Deicing (EIDI) and Eddy Current Repulsion Deicing Strip (EDS) are investigated. With EIDI, rigid coils are mounted behind the wing; while with EDS, the impulse coils are built thin and flexible with printed circuit board technology. An important consideration in the certification of electromagnetic impulse deicing systems is electromagnetic compatibility (EMC). When the capacitor bank discharges, a large current pulse travels down a transmission line to the coil. The coil is one source of radiation. Another source is the cabling and connections to the coil. In work conducted for the FAA in 1988, it was found that excessive electromagnetic emissions resulted from the operation of a Low Voltage Electro-Impulse Deicer (LVEID) in conjunction with a composite wing. The goal of this project was to investigate and develop techniques for controlling emissions without the benefit of shielding. In this study it was determined that both EIDI and EDS could be brought within the RTCA/DO-160B standards through proper shielding and termination of the pulse power cable. An alternative topology of EDS with the impulse coil on the wing exterior surface did not meet the standard.
Inversion of Airborne Electromagnetic Data: Application to Oil Sands Exploration
NASA Astrophysics Data System (ADS)
Cristall, J.; Farquharson, C. G.; Oldenburg, D. W.
2004-05-01
In general, three-dimensional inversion of airborne electromagnetic data for models of the conductivity variation in the Earth is currently impractical because of the large amount of computation time that it requires. At the other extreme, one-dimensional imaging techniques based on transforming the observed data as a function of measurement time or frequency at each location to values of conductivity as a function of depth are very fast. Such techniques can provide an image that, in many circumstances, is a fair, qualitative representation of the subsurface. However, this is not the same as a model that is known to reproduce the observations to a level considered appropriate for the noise in the data. This makes it hard to assess the quality and reliability of the images produced by the transform techniques until other information such as bore-hole logs is obtained. A compromise between these two interpretation strategies is to retain the approximation of a one-dimensional variation of conductivity beneath each observation location, but to invert the corresponding data as functions of time or frequency, taking advantage of all available aspects of inversion methodology. For example, using an automatic method such as the GCV or L-curve criteria for determining how well to fit a set of data when the actual amount of noise is not known, even when there are clear multi-dimensional effects in the data; using something other than a sum-of-squares measure for the misfit, for example the Huber M-measure, which affords a robust fit to data that contain non-Gaussian noise; and using an l1-norm or similar measure of model structure that enables piecewise constant, blocky models to be constructed. These features, as well as the basic concepts of minimum-structure inversion, result in a flexible and powerful interpretation procedure that, because of the one-dimensional approximation, is sufficiently rapid to be a viable alternative to the imaging techniques presently in use. We provide an example that involves the interpretation of an airborne time-domain electromagnetic data-set from an oil sands exploration project in Alberta. The target is the layer that potentially contains oil sands. This layer is relatively resistive, with its resistivity increasing with increasing hydrocarbon content, and is sandwiched between two more conductive layers. This is quite different from the classical electromagnetic geophysics scenario of looking for a conductive mineral deposit in resistive shield rocks. However, inverting the data enabled the depth, thickness and resistivity of the target layer to be well determined. As a consequence, it is concluded that airborne electromagnetic surveys, when combined with inversion procedures, can be a very cost-effective way of mapping even fairly subtle conductivity variations over large areas.
Finite element analysis of electromagnetic propagation in an absorbing wave guide
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1986-01-01
Wave guides play a significant role in microwave space communication systems. The attenuation per unit length of the guide depends on its construction and design frequency range. A finite element Galerkin formulation has been developed to study TM electromagnetic propagation in complex two-dimensional absorbing wave guides. The analysis models the electromagnetic absorptive characteristics of a general wave guide which could be used to determine wall losses or simulate resistive terminations fitted into the ends of a guide. It is believed that the general conclusions drawn by using this simpler two-dimensional geometry will be fundamentally the same for other geometries.
3D synthetic aperture for controlled-source electromagnetics
NASA Astrophysics Data System (ADS)
Knaak, Allison
Locating hydrocarbon reservoirs has become more challenging with smaller, deeper or shallower targets in complicated environments. Controlled-source electromagnetics (CSEM), is a geophysical electromagnetic method used to detect and derisk hydrocarbon reservoirs in marine settings, but it is limited by the size of the target, low-spatial resolution, and depth of the reservoir. To reduce the impact of complicated settings and improve the detecting capabilities of CSEM, I apply synthetic aperture to CSEM responses, which virtually increases the length and width of the CSEM source by combining the responses from multiple individual sources. Applying a weight to each source steers or focuses the synthetic aperture source array in the inline and crossline directions. To evaluate the benefits of a 2D source distribution, I test steered synthetic aperture on 3D diffusive fields and view the changes with a new visualization technique. Then I apply 2D steered synthetic aperture to 3D noisy synthetic CSEM fields, which increases the detectability of the reservoir significantly. With more general weighting, I develop an optimization method to find the optimal weights for synthetic aperture arrays that adapts to the information in the CSEM data. The application of optimally weighted synthetic aperture to noisy, simulated electromagnetic fields reduces the presence of noise, increases detectability, and better defines the lateral extent of the target. I then modify the optimization method to include a term that minimizes the variance of random, independent noise. With the application of the modified optimization method, the weighted synthetic aperture responses amplifies the anomaly from the reservoir, lowers the noise floor, and reduces noise streaks in noisy CSEM responses from sources offset kilometers from the receivers. Even with changes to the location of the reservoir and perturbations to the physical properties, synthetic aperture is still able to highlight targets correctly, which allows use of the method in locations where the subsurface models are built from only estimates. In addition to the technical work in this thesis, I explore the interface between science, government, and society by examining the controversy over hydraulic fracturing and by suggesting a process to aid the debate and possibly other future controversies.
Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Ren-Hao; Peng, Ru-Wen; Huang, Xian-Rong
2015-07-01
In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertzmore » ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies.« less
The development of the time dependence of the nuclear EMP electric field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eng, C
The nuclear electromagnetic pulse (EMP) electric field calculated with the legacy code CHAP is compared with the field given by an integral solution of Maxwell's equations, also known as the Jefimenko equation, to aid our current understanding on the factors that affect the time dependence of the EMP. For a fair comparison the CHAP current density is used as a source in the Jefimenko equation. At first, the comparison is simplified by neglecting the conduction current and replacing the standard atmosphere with a constant density air slab. The simplicity of the resultant current density aids in determining the factors thatmore » affect the rise, peak and tail of the EMP electric field versus time. The three dimensional nature of the radiating source, i.e. sources off the line-of-sight, and the time dependence of the derivative of the current density with respect to time are found to play significant roles in shaping the EMP electric field time dependence. These results are found to hold even when the conduction current and the standard atmosphere are properly accounted for. Comparison of the CHAP electric field with the Jefimenko electric field offers a direct validation of the high-frequency/outgoing wave approximation.« less
NASA Astrophysics Data System (ADS)
Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao
2014-09-01
We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.
Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao
2014-09-01
We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.
Making structured metals transparent for ultrabroadband electromagnetic waves and acoustic waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Ren-Hao; Peng, Ru-Wen, E-mail: rwpeng@nju.edu.cn; Huang, Xian-Rong
2015-07-15
In this review, we present our recent work on making structured metals transparent for broadband electromagnetic waves and acoustic waves via excitation of surface waves. First, we theoretically show that one-dimensional metallic gratings can become transparent and completely antireflective for extremely broadband electromagnetic waves by relying on surface plasmons or spoof surface plasmons. Second, we experimentally demonstrate that metallic gratings with narrow slits are highly transparent for broadband terahertz waves at oblique incidence and high transmission efficiency is insensitive to the metal thickness. Further, we significantly develop oblique metal gratings transparent for broadband electromagnetic waves (including optical waves and terahertzmore » ones) under normal incidence. In the third, we find the principles of broadband transparency for structured metals can be extended from one-dimensional metallic gratings to two-dimensional cases. Moreover, similar phenomena are found in sonic artificially metallic structures, which present the transparency for broadband acoustic waves. These investigations provide guidelines to develop many novel materials and devices, such as transparent conducting panels, antireflective solar cells, and other broadband metamaterials and stealth technologies. - Highlights: • Making structured metals transparent for ultrabroadband electromagnetic waves. • Non-resonant excitation of surface plasmons or spoof surface plasmons. • Sonic artificially metallic structures transparent for broadband acoustic waves.« less
Robust flow of light in three-dimensional dielectric photonic crystals.
Chen, Wen-Jie; Jiang, Shao-Ji; Dong, Jian-Wen
2013-09-01
Chiral defect waveguides and waveguide bend geometry were designed in diamond photonic crystal to mold the flow of light in three dimensions. Propagations of electromagnetic waves in chiral waveguides are robust against isotropic obstacles, which would suppress backscattering in waveguides or integrated devices. Finite-difference time-domain simulations demonstrate that high coupling efficiency through the bend corner is preserved in the polarization gap, as it provides an additional constraint on the polarization state of the backscattered wave. Transport robustness is also demonstrated by inserting two metallic slabs into the waveguide bend.
Numerical modelling of electromagnetic loads on fusion device structures
NASA Astrophysics Data System (ADS)
Bettini, Paolo; Furno Palumbo, Maurizio; Specogna, Ruben
2014-03-01
In magnetic confinement fusion devices, during abnormal operations (disruptions) the plasma begins to move rapidly towards the vessel wall in a vertical displacement event (VDE), producing plasma current asymmetries, vessel eddy currents and open field line halo currents, each of which can exert potentially damaging forces upon the vessel and in-vessel components. This paper presents a methodology to estimate electromagnetic loads, on three-dimensional conductive structures surrounding the plasma, which arise from the interaction of halo-currents associated to VDEs with a magnetic field of the order of some Tesla needed for plasma confinement. Lorentz forces, calculated by complementary formulations, are used as constraining loads in a linear static structural analysis carried out on a detailed model of the mechanical structures of a representative machine.
Flow Applications of the Least Squares Finite Element Method
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan
1998-01-01
The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tweeton, D.R.; Hanson, J.C.; Friedel, M.J.
1994-01-01
The U.S. Bureau of Mines, the University of Arizona, Sandia National Laboratory, and Zonge Engineering and Research, Inc., conducted cooperative field tests of six electromagnetic geophysical methods to compare their effectiveness in locating a brine solution simulating in situ leach solution or a high-conductivity plume of contamination. The brine was approximately 160 meters below the surface. The test site was the University's San Xavier experimental mine near Tucson, Arizona. Geophysical surveys using surface and surface-borehole time-domain electromagnetics (TEM), surface controlled source audio-frequency magnetotellurics (CSAMT), surface-borehole frequency-domain electromagnetics (FEM), crosshole FEM and surface magnetic field ellipticity were conducted before and duringmore » brine injection.« less
Coupled multi-disciplinary composites behavior simulation
NASA Technical Reports Server (NTRS)
Singhal, Surendra N.; Murthy, Pappu L. N.; Chamis, Christos C.
1993-01-01
The capabilities of the computer code CSTEM (Coupled Structural/Thermal/Electro-Magnetic Analysis) are discussed and demonstrated. CSTEM computationally simulates the coupled response of layered multi-material composite structures subjected to simultaneous thermal, structural, vibration, acoustic, and electromagnetic loads and includes the effect of aggressive environments. The composite material behavior and structural response is determined at its various inherent scales: constituents (fiber/matrix), ply, laminate, and structural component. The thermal and mechanical properties of the constituents are considered to be nonlinearly dependent on various parameters such as temperature and moisture. The acoustic and electromagnetic properties also include dependence on vibration and electromagnetic wave frequencies, respectively. The simulation is based on a three dimensional finite element analysis in conjunction with composite mechanics and with structural tailoring codes, and with acoustic and electromagnetic analysis methods. An aircraft engine composite fan blade is selected as a typical structural component to demonstrate the CSTEM capabilities. Results of various coupled multi-disciplinary heat transfer, structural, vibration, acoustic, and electromagnetic analyses for temperature distribution, stress and displacement response, deformed shape, vibration frequencies, mode shapes, acoustic noise, and electromagnetic reflection from the fan blade are discussed for their coupled effects in hot and humid environments. Collectively, these results demonstrate the effectiveness of the CSTEM code in capturing the coupled effects on the various responses of composite structures subjected to simultaneous multiple real-life loads.
NASA Astrophysics Data System (ADS)
Likun, Wang; Weili, Li; Yi, Xue; Chunwei, Guan
2013-11-01
A significant problem of turbogenerators on complex end structures is overheating of local parts caused by end losses in the end region. Therefore, it is important to investigate the 3-D magnetic field and eddy current loss in the end. In end region of operating large turbogenerator at thermal power plants, magnetic leakage field distribution is complex. In this paper, a 3-D mathematical model used for the calculation of the electromagnetic field in the end region of large turbo-generators is given. The influence of spatial locations of end structures, the actual shape and material of end windings, clamping plate, and copper screen are considered. Adopting the time-step finite element (FE) method and taking the nonlinear characteristics of the core into consideration, a 3-D transient magnetic field is calculated. The objective of this paper is to investigate the influence of clamping plate permeability and metal screen structures on 3-D electromagnetic field distribution and eddy current loss in end region of a turbo-generator. To reduce the temperature of copper screen, a hollow metal screen is proposed. The eddy current loss, which is gained from the 3D transient magnetic field, is used as heat source for the thermal field of end region. The calculated temperatures are compared with test data.
Future Directions of Electromagnetic Methods for Hydrocarbon Applications
NASA Astrophysics Data System (ADS)
Strack, K. M.
2014-01-01
For hydrocarbon applications, seismic exploration is the workhorse of the industry. Only in the borehole, electromagnetic (EM) methods play a dominant role, as they are mostly used to determine oil reserves and to distinguish water from oil-bearing zones. Throughout the past 60 years, we had several periods with an increased interest in EM. This increased with the success of the marine EM industry and now electromagnetics in general is considered for many new applications. The classic electromagnetic methods are borehole, onshore and offshore, and airborne EM methods. Airborne is covered elsewhere (see Smith, this issue). Marine EM material is readily available from the service company Web sites, and here I will only mention some future technical directions that are visible. The marine EM success is being carried back to the onshore market, fueled by geothermal and unconventional hydrocarbon applications. Oil companies are listening to pro-EM arguments, but still are hesitant to go through the learning exercises as early adopters. In particular, the huge business drivers of shale hydrocarbons and reservoir monitoring will bring markets many times bigger than the entire marine EM market. Additional applications include support for seismic operations, sub-salt, and sub-basalt, all areas where seismic exploration is costly and inefficient. Integration with EM will allow novel seismic methods to be applied. In the borehole, anisotropy measurements, now possible, form the missing link between surface measurements and ground truth. Three-dimensional (3D) induction measurements are readily available from several logging contractors. The trend to logging-while-drilling measurements will continue with many more EM technologies, and the effort of controlling the drill bit while drilling including look-ahead-and-around the drill bit is going on. Overall, the market for electromagnetics is increasing, and a demand for EM capable professionals will continue. The emphasis will be more on application and data integration (bottom-line value increase) and less on EM technology and modeling exercises.
NASA Astrophysics Data System (ADS)
Larnier, H.; Sailhac, P.; Chambodut, A.
2018-01-01
Atmospheric electromagnetic waves created by global lightning activity contain information about electrical processes of the inner and the outer Earth. Large signal-to-noise ratio events are particularly interesting because they convey information about electromagnetic properties along their path. We introduce a new methodology to automatically detect and characterize lightning-based waves using a time-frequency decomposition obtained through the application of continuous wavelet transform. We focus specifically on three types of sources, namely, atmospherics, slow tails and whistlers, that cover the frequency range 10 Hz to 10 kHz. Each wave has distinguishable characteristics in the time-frequency domain due to source shape and dispersion processes. Our methodology allows automatic detection of each type of event in the time-frequency decomposition thanks to their specific signature. Horizontal polarization attributes are also recovered in the time-frequency domain. This procedure is first applied to synthetic extremely low frequency time-series with different signal-to-noise ratios to test for robustness. We then apply it on real data: three stations of audio-magnetotelluric data acquired in Guadeloupe, oversea French territories. Most of analysed atmospherics and slow tails display linear polarization, whereas analysed whistlers are elliptically polarized. The diversity of lightning activity is finally analysed in an audio-magnetotelluric data processing framework, as used in subsurface prospecting, through estimation of the impedance response functions. We show that audio-magnetotelluric processing results depend mainly on the frequency content of electromagnetic waves observed in processed time-series, with an emphasis on the difference between morning and afternoon acquisition. Our new methodology based on the time-frequency signature of lightning-induced electromagnetic waves allows automatic detection and characterization of events in audio-magnetotelluric time-series, providing the means to assess quality of response functions obtained through processing.
NASA Astrophysics Data System (ADS)
Shao, Feng; Evanschitzky, Peter; Fühner, Tim; Erdmann, Andreas
2009-10-01
This paper employs the Waveguide decomposition method as an efficient rigorous electromagnetic field (EMF) solver to investigate three dimensional mask-induced imaging artifacts in EUV lithography. The major mask diffraction induced imaging artifacts are first identified by applying the Zernike analysis of the mask nearfield spectrum of 2D lines/spaces. Three dimensional mask features like 22nm semidense/dense contacts/posts, isolated elbows and line-ends are then investigated in terms of lithographic results. After that, the 3D mask-induced imaging artifacts such as feature orientation dependent best focus shift, process window asymmetries, and other aberration-like phenomena are explored for the studied mask features. The simulation results can help lithographers to understand the reasons of EUV-specific imaging artifacts and to devise illumination and feature dependent strategies for their compensation in the optical proximity correction (OPC) for EUV masks. At last, an efficient approach using the Zernike analysis together with the Waveguide decomposition technique is proposed to characterize the impact of mask properties for the future OPC process.
Minimization of nanosatellite low frequency magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belyayev, S. M., E-mail: belyayev@isr.lviv.ua; Royal Institute of Technology, Stockholm 11428; Dudkin, F. L.
2016-03-15
Small weight and dimensions of the micro- and nanosatellites constrain researchers to place electromagnetic sensors on short booms or on the satellite body. Therefore the electromagnetic cleanliness of such satellites becomes a central question. This paper describes the theoretical base and practical techniques for determining the parameters of DC and very low frequency magnetic interference sources. One of such sources is satellite magnetization, the reduction of which improves the accuracy and stability of the attitude control system. We present design solutions for magnetically clean spacecraft, testing equipment, and technology for magnetic moment measurements, which are more convenient, efficient, and accuratemore » than the conventional ones.« less
Hybrid Method for Power Control Simulation of a Single Fluid Plasma Thruster
NASA Astrophysics Data System (ADS)
Jaisankar, S.; Sheshadri, T. S.
2018-05-01
Propulsive plasma flow through a cylindrical-conical diverging thruster is simulated by a power controlled hybrid method to obtain the basic flow, thermodynamic and electromagnetic variables. Simulation is based on a single fluid model with electromagnetics being described by the equations of potential Poisson, Maxwell and the Ohm's law while the compressible fluid dynamics by the Navier Stokes in cylindrical form. The proposed method solved the electromagnetics and fluid dynamics separately, both to segregate the two prominent scales for an efficient computation and for the delivery of voltage controlled rated power. The magnetic transport is solved for steady state while fluid dynamics is allowed to evolve in time along with an electromagnetic source using schemes based on generalized finite difference discretization. The multistep methodology with power control is employed for simulating fully ionized propulsive flow of argon plasma through the thruster. Numerical solution shows convergence of every part of the solver including grid stability causing the multistep hybrid method to converge for a rated power delivery. Simulation results are reasonably in agreement with the reported physics of plasma flow in the thruster thus indicating the potential utility of this hybrid computational framework, especially when single fluid approximation of plasma is relevant.
Interrogation of an object for dimensional and topographical information
McMakin, Douglas L.; Severtsen, Ronald H.; Hall, Thomas E.; Sheen, David M.; Kennedy, Mike O.
2004-03-09
Disclosed are systems, methods, devices, and apparatus to interrogate a clothed individual with electromagnetic radiation to determine one or more body measurements at least partially covered by the individual's clothing. The invention further includes techniques to interrogate an object with electromagnetic radiation in the millimeter and/or microwave range to provide a volumetric representation of the object. This representation can be used to display images and/or determine dimensional information concerning the object.
Interrogation of an object for dimensional and topographical information
McMakin, Doug L [Richland, WA; Severtsen, Ronald H [Richland, WA; Hall, Thomas E [Richland, WA; Sheen, David M [Richland, WA
2003-01-14
Disclosed are systems, methods, devices, and apparatus to interrogate a clothed individual with electromagnetic radiation to determine one or more body measurements at least partially covered by the individual's clothing. The invention further includes techniques to interrogate an object with electromagnetic radiation in the millimeter and/or microwave range to provide a volumetric representation of the object. This representation can be used to display images and/or determine dimensional information concerning the object.
NASA Astrophysics Data System (ADS)
Pötz, Walter
2017-11-01
A single-cone finite-difference lattice scheme is developed for the (2+1)-dimensional Dirac equation in presence of general electromagnetic textures. The latter is represented on a (2+1)-dimensional staggered grid using a second-order-accurate finite difference scheme. A Peierls-Schwinger substitution to the wave function is used to introduce the electromagnetic (vector) potential into the Dirac equation. Thereby, the single-cone energy dispersion and gauge invariance are carried over from the continuum to the lattice formulation. Conservation laws and stability properties of the formal scheme are identified by comparison with the scheme for zero vector potential. The placement of magnetization terms is inferred from consistency with the one for the vector potential. Based on this formal scheme, several numerical schemes are proposed and tested. Elementary examples for single-fermion transport in the presence of in-plane magnetization are given, using material parameters typical for topological insulator surfaces.
Analysis of folded pulse forming line operation.
Domonkos, M T; Watrous, J; Parker, J V; Cavazos, T; Slenes, K; Heidger, S; Brown, D; Wilson, D
2014-09-01
A compact pulse forming line (CPFL) concept based on a folded transmission line and high-breakdown strength dielectric was explored through an effort combining proof-of-principle experiments with electromagnetic modeling. A small-scale folded CPFL was fabricated using surface-mount ceramic multilayer capacitors. The line consisted of 150 capacitors close-packed in parallel and delivered a 300 ns flat-top pulse. The concept was carried to a 10 kV class device using a polymer-ceramic nanocomposite dielectric with a permittivity of 37.6. The line was designed for a 161 ns FWHM length pulse into a matched load. The line delivered a 110 ns FWHM pulse, and the pulse peak amplitude exceeded the matched load ideal. Transient electromagnetic analysis using the particle-in-cell code ICEPIC was conducted to examine the nature of the unexpected pulse shortening and distortion. Two-dimensional analysis failed to capture the anomalous behavior. Three-dimensional analysis replicated the pulse shape and revealed that the bends were largely responsible for the pulse shortening. The bends not only create the expected reflection of the incident TEM wave but also produce a non-zero component of the Poynting vector perpendicular to the propagation direction of the dominant electromagnetic wave, resulting in power flow largely external to the PFL. This analysis explains both the pulse shortening and the amplitude of the pulse.
Analysis of folded pulse forming line operation
NASA Astrophysics Data System (ADS)
Domonkos, M. T.; Watrous, J.; Parker, J. V.; Cavazos, T.; Slenes, K.; Heidger, S.; Brown, D.; Wilson, D.
2014-09-01
A compact pulse forming line (CPFL) concept based on a folded transmission line and high-breakdown strength dielectric was explored through an effort combining proof-of-principle experiments with electromagnetic modeling. A small-scale folded CPFL was fabricated using surface-mount ceramic multilayer capacitors. The line consisted of 150 capacitors close-packed in parallel and delivered a 300 ns flat-top pulse. The concept was carried to a 10 kV class device using a polymer-ceramic nanocomposite dielectric with a permittivity of 37.6. The line was designed for a 161 ns FWHM length pulse into a matched load. The line delivered a 110 ns FWHM pulse, and the pulse peak amplitude exceeded the matched load ideal. Transient electromagnetic analysis using the particle-in-cell code ICEPIC was conducted to examine the nature of the unexpected pulse shortening and distortion. Two-dimensional analysis failed to capture the anomalous behavior. Three-dimensional analysis replicated the pulse shape and revealed that the bends were largely responsible for the pulse shortening. The bends not only create the expected reflection of the incident TEM wave but also produce a non-zero component of the Poynting vector perpendicular to the propagation direction of the dominant electromagnetic wave, resulting in power flow largely external to the PFL. This analysis explains both the pulse shortening and the amplitude of the pulse.
NASA Astrophysics Data System (ADS)
Ravi, Koustuban; Wang, Qian; Ho, Seng-Tiong
2015-08-01
We report a new computational model for simulations of electromagnetic interactions with semiconductor quantum well(s) (SQW) in complex electromagnetic geometries using the finite-difference time-domain method. The presented model is based on an approach of spanning a large number of electron transverse momentum states in each SQW sub-band (multi-band) with a small number of discrete multi-electron states (multi-level, multi-electron). This enables accurate and efficient two-dimensional (2-D) and three-dimensional (3-D) simulations of nanophotonic devices with SQW active media. The model includes the following features: (1) Optically induced interband transitions between various SQW conduction and heavy-hole or light-hole sub-bands are considered. (2) Novel intra sub-band and inter sub-band transition terms are derived to thermalize the electron and hole occupational distributions to the correct Fermi-Dirac distributions. (3) The terms in (2) result in an explicit update scheme which circumvents numerically cumbersome iterative procedures. This significantly augments computational efficiency. (4) Explicit update terms to account for carrier leakage to unconfined states are derived, which thermalize the bulk and SQW populations to a common quasi-equilibrium Fermi-Dirac distribution. (5) Auger recombination and intervalence band absorption are included. The model is validated by comparisons to analytic band-filling calculations, simulations of SQW optical gain spectra, and photonic crystal lasers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crenshaw, Michael E., E-mail: michael.e.crenshaw4.civ@mail.mil
2014-04-15
In a continuum setting, the energy–momentum tensor embodies the relations between conservation of energy, conservation of linear momentum, and conservation of angular momentum. The well-defined total energy and the well-defined total momentum in a thermodynamically closed system with complete equations of motion are used to construct the total energy–momentum tensor for a stationary simple linear material with both magnetic and dielectric properties illuminated by a quasimonochromatic pulse of light through a gradient-index antireflection coating. The perplexing issues surrounding the Abraham and Minkowski momentums are bypassed by working entirely with conservation principles, the total energy, and the total momentum. We derivemore » electromagnetic continuity equations and equations of motion for the macroscopic fields based on the material four-divergence of the traceless, symmetric total energy–momentum tensor. We identify contradictions between the macroscopic Maxwell equations and the continuum form of the conservation principles. We resolve the contradictions, which are the actual fundamental issues underlying the Abraham–Minkowski controversy, by constructing a unified version of continuum electrodynamics that is based on establishing consistency between the three-dimensional Maxwell equations for macroscopic fields, the electromagnetic continuity equations, the four-divergence of the total energy–momentum tensor, and a four-dimensional tensor formulation of electrodynamics for macroscopic fields in a simple linear medium.« less
Chang, C M; Fang, K M; Huang, T W; Wang, C T; Cheng, P W
2013-12-01
Studies on the performance of surface registration with electromagnetic tracking systems are lacking in both live surgery and the laboratory setting. This study presents the efficiency in time of the system preparation as well as the navigational accuracy of surface registration using electromagnetic tracking systems. Forty patients with bilateral chronic paranasal pansinusitis underwent endoscopic sinus surgery after undergoing sinus computed tomography scans. The surgeries were performed under electromagnetic navigation guidance after the surface registration had been carried out on all of the patients. The intraoperative measurements indicate the time taken for equipment set-up, surface registration and surgical procedure, as well as the degree of navigation error along 3 axes. The time taken for equipment set-up, surface registration and the surgical procedure was 179 +- 23 seconds, 39 +- 4.8 seconds and 114 +- 36 minutes, respectively. A comparison of the navigation error along the 3 axes showed that the deviation in the medial-lateral direction was significantly less than that in the anterior-posterior and cranial-caudal directions. The procedures of equipment set-up and surface registration in electromagnetic navigation tracking are efficient, convenient and easy to manipulate. The system accuracy is within the acceptable ranges, especially on the medial-lateral axis.
University Physics, Study Guide, Revised Edition
NASA Astrophysics Data System (ADS)
Benson, Harris
1996-01-01
Partial table of contents: Vectors. One-Dimensional Kinematics. Particle Dynamics II. Work and Energy. Linear Momentum. Systems of Particles. Angular Momentum and Statics. Gravitation. Solids and Fluids. Oscillations. Mechanical Waves. Sound. First Law of Thermodynamics. Kinetic Theory. Entropy and the Second Law of Thermodynamics. Electrostatics. The Electric Field. Gauss's Law. Electric Potential. Current and Resistance. The Magnetic Field. Sources of the Magnetic Field. Electromagnetic Induction. Light: Reflection and Refraction. Lenses and Optical Instruments. Wave Optics I. Special Relativity. Early Quantum Theory. Nuclear Physics. Appendices. Answers to Odd-Numbered Exercises and Problems. Index.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Es’kin, V. A.; Ivoninsky, A. V.; Kudrin, A. V., E-mail: kud@rf.unn.ru
Electromagnetic radiation from filamentary electric-dipole and magnetic-current sources of infinite length in the presence of gyrotropic cylindrical scatterers in the surrounding free space is studied. The scatterers are assumed to be infinitely long, axially magnetized circular plasma columns parallel to the axis of the filamentary source. The field and the radiation pattern of each source are calculated in the case where the source frequency is equal to one of the surface plasmon resonance frequencies of the cylindrical scatterers. It is shown that the presence of even a single resonant magnetized plasma scatterer of small electrical radius or a few suchmore » scatterers significantly affects the total fields of the filamentary sources, so that their radiation patterns become essentially different from those in the absence of scatterers or the presence of isotropic scatterers of the same shape and size. It is concluded that the radiation characteristics of the considered sources can efficiently be controlled using their resonance interaction with the neighboring gyrotropic scatterers.« less
Testing for EMC (electromagnetic compatibility) in the clinical environment.
Paperman, D; David, Y; Martinez, M
1996-01-01
Testing for electromagnetic compatibility (EMC) in the clinical environment introduces a host of complex conditions not normally encountered under laboratory conditions. In the clinical environment, various radio-frequency (RF) sources of electromagnetic interference (EMI) may be present throughout the entire spectrum of interest. Isolating and analyzing the impact from the sources of interference to medical devices involves a multidisciplinary approach based on training in, and knowledge of, the following: operation of medical devices and their susceptibility to EMI; RF propagation modalities and interaction theory; spectrum analysis systems and techniques (preferably with signature analysis capabilities) and calibrated antennas; the investigation methodology of suspected EMC problems, and testing protocols and standards. Using combinations of standard test procedures adapted for the clinical environment with personnel that have an understanding of radio-frequency behavior increases the probability of controlling, proactively, EMI in the clinical environment, thus providing for a safe and more effective patient care environment.
Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection
Phatak, C.; Knoop, L. de; Houdellier, F.; ...
2016-05-01
One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as wellmore » as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Moreover the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures.« less
Ultrafast high-power microwave window breakdown: nonlinear and postpulse effects.
Chang, C; Verboncoeur, J; Guo, M N; Zhu, M; Song, W; Li, S; Chen, C H; Bai, X C; Xie, J L
2014-12-01
The time- and space-dependent optical emissions of nanosecond high-power microwave discharges near a dielectric-air interface have been observed by nanosecond-response four-framing intensified-charged-coupled device cameras. The experimental observations indicate that plasma developed more intensely at the dielectric-air interface than at the free-space region with a higher electric-field amplitude. A thin layer of intense light emission above the dielectric was observed after the microwave pulse. The mechanisms of the breakdown phenomena are analyzed by a three-dimensional electromagnetic-field modeling and a two-dimensional electromagnetic particle-in-cell simulation, revealing the formation of a space-charge microwave sheath near the dielectric surface, accelerated by the normal components of the microwave field, significantly enhancing the local-field amplitude and hence ionization near the dielectric surface. The nonlinear positive feedback of ionization, higher electron mobility, and ultraviolet-driven photoemission due to the elevated electron temperature are crucial for achieving the ultrafast discharge. Following the high-power microwave pulse, the sheath sustains a glow discharge until the sheath collapses.
Quantitative 3D electromagnetic field determination of 1D nanostructures from single projection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phatak, C.; Knoop, L. de; Houdellier, F.
One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoelectronics and nanocomposite material systems as well as for alternative energy applications. Although they result in confinement of a material, their properties and interactions with other nanostructures are still very much three-dimensional (3D) in nature. In this work, we present a novel method for quantitative determination of the 3D electromagnetic fields in and around 1D nanostructures using a single electron wave phase image, thereby eliminating the cumbersome acquisition of tomographic data. Using symmetry arguments, we have reconstructed the 3D magnetic field of a nickel nanowire as wellmore » as the 3D electric field around a carbon nanotube field emitter, from one single projection. The accuracy of quantitative values determined here is shown to be a better fit to the physics at play than the value obtained by conventional analysis. Moreover the 3D reconstructions can then directly be visualized and used in the design of functional 3D architectures built using 1D nanostructures.« less
Ultraviolet Laser Lithography of Titania Photonic Crystals for Terahertz-Wave Modulation.
Kirihara, Soshu; Nonaka, Koki; Kisanuki, Shoichiro; Nozaki, Hirotoshi; Sakaguchi, Keito
2018-05-18
Three-dimensional (3D) microphotonic crystals with a diamond structure composed of titania microlattices were fabricated using ultraviolet laser lithography, and the bandgap properties in the terahertz (THz) electromagnetic-wave frequency region were investigated. An acrylic resin paste with titania fine particle dispersions was used as the raw material for additive manufacturing. By scanning a spread paste surface with an ultraviolet laser beam, two-dimensional solid patterns were dewaxed and sintered. Subsequently, 3D structures with a relative density of 97% were created via layer lamination and joining. A titania diamond lattice with a lattice constant density of 240 µm was obtained. The properties of the electromagnetic wave were measured using a THz time-domain spectrometer. In the transmission spectra for the Γ-X direction, a forbidden band was observed from 0.26 THz to 0.44 THz. The frequency range of the bandgap agreed well with calculated results obtained using the plane⁻wave expansion method. Additionally, results of a simulation via transmission-line modeling indicated that a localized mode can be obtained by introducing a plane defect between twinned diamond lattice structures.
Engineering of multi-segmented light tunnel and flattop focus with designed axial lengths and gaps
NASA Astrophysics Data System (ADS)
Yu, Yanzhong; Huang, Han; Zhou, Mianmian; Zhan, Qiwen
2018-01-01
Based on the radiation pattern from a sectional-uniform line source antenna, a three-dimensional (3D) focus engineering technique for the creation of multi-segmented light tunnel and flattop focus with designed axial lengths and gaps is proposed. Under a 4Pi focusing system, the fields radiated from sectional-uniform magnetic and electromagnetic current line source antennas are employed to generate multi-segmented optical tube and flattop focus, respectively. Numerical results demonstrate that the produced light tube and flattop focus remain homogeneous along the optical axis; and their lengths of the nth segment and the nth gap between consecutive segments can be easily adjusted and only depend on the sizes of the nth section and the nth blanking between adjacent sectional antennas. The optical tube is a pure azimuthally polarized field but for the flattop focus the longitudinal polarization is dominant on the optical axis. To obtain the required pupil plane illumination for constructing the above focal field with prescribed characteristics, the inverse problem of the antenna radiation field is solved. These peculiar focusing fields might find potential applications in multi-particle acceleration, multi-particle trapping and manipulation.
High power microwave source with a three dimensional printed metamaterial slow-wave structure.
French, David M; Shiffler, Don
2016-05-01
For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for building these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.
High power microwave source with a three dimensional printed metamaterial slow-wave structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, David M.; Shiffler, Don
2016-05-15
For over the last decade, the concept of metamaterials has led to new approaches for considering the interaction of radiation with complex structures. However, practical manifestations of such a device operating at high power densities have proven difficult to achieve due to the resonant nature of metamaterials and the resultant high electric fields, which place severe constraints on manufacturing the slow wave structures. In this paper, we describe the first experimental manifestation of a high power microwave device utilizing a metallic slow wave structure (metamaterial-like) fabricated using additive manufacturing. The feasibility of utilizing additive manufacturing as a technique for buildingmore » these relatively complicated structures has thus been demonstrated. The MW class microwave source operates in the C-band and shows frequency tunablility with electron beam voltage. The basic electromagnetic characteristics of this device, the construction using additive manufacturing, and the basic performance as a microwave oscillator are considered. Due to the tunable nature of the device, it shows promise not only as an oscillator but also as a microwave amplifier. Therefore, the dispersive characteristics and a discussion of the anticipated gain is included as it relates to an amplifier configuration.« less
Large-angle illumination STEM: Toward three-dimensional atom-by-atom imaging
Ishikawa, Ryo; Lupini, Andrew R.; Hinuma, Yoyo; ...
2014-11-26
To completely understand and control materials and their properties, it is of critical importance to determine their atomic structures in all three dimensions. Recent revolutionary advances in electron optics – the inventions of geometric and chromatic aberration correctors as well as electron source monochromators – have provided fertile ground for performing optical depth sectioning at atomic-scale dimensions. In this study we theoretically demonstrate the imaging of top/sub-surface atomic structures and identify the depth of single dopants, single vacancies and the other point defects within materials by large-angle illumination scanning transmission electron microscopy (LAI-STEM). The proposed method also allows us tomore » measure specimen properties such as thickness or three-dimensional surface morphology using observations from a single crystallographic orientation.« less
Four-dimensional modulation and coding: An alternate to frequency-reuse
NASA Technical Reports Server (NTRS)
Wilson, S. G.; Sleeper, H. A.
1983-01-01
Four dimensional modulation as a means of improving communication efficiency on the band-limited Gaussian channel, with the four dimensions of signal space constituted by phase orthogonal carriers (cos omega sub c t and sin omega sub c t) simultaneously on space orthogonal electromagnetic waves are discussed. "Frequency reuse' techniques use such polarization orthogonality to reuse the same frequency slot, but the modulation is not treated as four dimensional, rather a product of two-d modulations, e.g., QPSK. It is well known that, higher dimensionality signalling affords possible improvements in the power bandwidth sense. Four-D modulations based upon subsets of lattice-packings in four-D, which afford simplification of encoding and decoding are described. Sets of up to 1024 signals are constructed in four-D, providing a (Nyquist) spectral efficiency of up to 10 bps/Hz. Energy gains over the reuse technique are in the one to three dB range t equal bandwidth.
Four-dimensional modulation and coding - An alternate to frequency-reuse
NASA Technical Reports Server (NTRS)
Wilson, S. G.; Sleeper, H. A.; Srinath, N. K.
1984-01-01
Four dimensional modulation as a means of improving communication efficiency on the band-limited Gaussian channel, with the four dimensions of signal space constituted by phase orthogonal carriers (cos omega sub c t and sin omega sub c t) simultaneously on space orthogonal electromagnetic waves are discussed. 'Frequency reuse' techniques use such polarization orthogonality to reuse the same frequency slot, but the modulation is not treated as four dimensional, rather a product of two-D modulations, e.g., QPSK. It is well known that, higher dimensionality signalling affords possible improvements in the power bandwidth sense. Four-D modulations based upon subsets of lattice-packings in four-D, which afford simplification of encoding and decoding are described. Sets of up to 1024 signals are constructed in four-D, providing a (Nyquist) spectral efficiency of up to 10 bps/Hz. Energy gains over the reuse technique are in the one to three dB range t equal bandwidth.
The 2.5-dimensional equivalent sources method for directly exposed and shielded urban canyons.
Hornikx, Maarten; Forssén, Jens
2007-11-01
When a domain in outdoor acoustics is invariant in one direction, an inverse Fourier transform can be used to transform solutions of the two-dimensional Helmholtz equation to a solution of the three-dimensional Helmholtz equation for arbitrary source and observer positions, thereby reducing the computational costs. This previously published approach [D. Duhamel, J. Sound Vib. 197, 547-571 (1996)] is called a 2.5-dimensional method and has here been extended to the urban geometry of parallel canyons, thereby using the equivalent sources method to generate the two-dimensional solutions. No atmospheric effects are considered. To keep the error arising from the transform small, two-dimensional solutions with a very fine frequency resolution are necessary due to the multiple reflections in the canyons. Using the transform, the solution for an incoherent line source can be obtained much more efficiently than by using the three-dimensional solution. It is shown that the use of a coherent line source for shielded urban canyon observer positions leads mostly to an overprediction of levels and can yield erroneous results for noise abatement schemes. Moreover, the importance of multiple facade reflections in shielded urban areas is emphasized by vehicle pass-by calculations, where cases with absorptive and diffusive surfaces have been modeled.
Validation of the Electromagnetic Code FACETS for Numerical Simulation of Radar Target Images
2009-12-01
Validation of the electromagnetic code FACETS for numerical simulation of radar target images S. Wong...Validation of the electromagnetic code FACETS for numerical simulation of radar target images S. Wong DRDC Ottawa...for simulating radar images of a target is obtained, through direct simulation-to-measurement comparisons. A 3-dimensional computer-aided design
Model for a transformer-coupled toroidal plasma source
NASA Astrophysics Data System (ADS)
Rauf, Shahid; Balakrishna, Ajit; Chen, Zhigang; Collins, Ken
2012-01-01
A two-dimensional fluid plasma model for a transformer-coupled toroidal plasma source is described. Ferrites are used in this device to improve the electromagnetic coupling between the primary coils carrying radio frequency (rf) current and a secondary plasma loop. Appropriate components of the Maxwell equations are solved to determine the electromagnetic fields and electron power deposition in the model. The effect of gas flow on species transport is also considered. The model is applied to 1 Torr Ar/NH3 plasma in this article. Rf electric field lines form a loop in the vacuum chamber and generate a plasma ring. Due to rapid dissociation of NH3, NHx+ ions are more prevalent near the gas inlet and Ar+ ions are the dominant ions farther downstream. NH3 and its by-products rapidly dissociate into small fragments as the gas flows through the plasma. With increasing source power, NH3 dissociates more readily and NHx+ ions are more tightly confined near the gas inlet. Gas flow rate significantly influences the plasma characteristics. With increasing gas flow rate, NH3 dissociation occurs farther from the gas inlet in regions with higher electron density. Consequently, more NH4+ ions are produced and dissociation by-products have higher concentrations near the outlet.
Three Dimensional Photonic Dirac Points in Metamaterials
NASA Astrophysics Data System (ADS)
Guo, Qinghua; Yang, Biao; Xia, Lingbo; Gao, Wenlong; Liu, Hongchao; Chen, Jing; Xiang, Yuanjiang; Zhang, Shuang
2017-11-01
Topological semimetals, representing a new topological phase that lacks a full band gap in bulk states and exhibiting nontrivial topological orders, recently have been extended to photonic systems, predominantly in photonic crystals and to a lesser extent metamaterials. Photonic crystal realizations of Dirac degeneracies are protected by various space symmetries, where Bloch modes span the spin and orbital subspaces. Here, we theoretically show that Dirac points can also be realized in effective media through the intrinsic degrees of freedom in electromagnetism under electromagnetic duality. A pair of spin-polarized Fermi-arc-like surface states is observed at the interface between air and the Dirac metamaterials. Furthermore, eigenreflection fields show the decoupling process from a Dirac point to two Weyl points. We also find the topological correlation between a Dirac point and vortex or vector beams in classical photonics. The experimental feasibility of our scheme is demonstrated by designing a realistic metamaterial structure. The theoretical proposal of the photonic Dirac point lays the foundation for unveiling the connection between intrinsic physics and global topology in electromagnetism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sword, Charles K.
The present invention relates to an ultrasonic scanner and method for the imaging of a part surface, the scanner comprising: a probe assembly spaced apart from the surface including at least two tracking signals for emitting electromagnetic radiation and a transmitter for emitting ultrasonic waves onto a surface in order to induce at least a portion of said waves to be reflected from the surface, at least one detector for receiving the electromagnetic radiation wherein the detector is positioned to receive said radiation from the tracking signals, an analyzing means for recognizing a three-dimensional location of the tracking signals basedmore » on said emitted electromagnetic radiation, a differential conversion means for generating an output signal representative of the waveform of the reflected waves, and a means for relating said tracking signal location with the output signal and projecting an image of the resulting data. The scanner and method are particularly useful to acquire ultrasonic inspection data by scanning the probe-over a complex part surface in an arbitrary scanning pattern.« less
Advanced Electron Holography Applied to Electromagnetic Field Study in Materials Science.
Shindo, Daisuke; Tanigaki, Toshiaki; Park, Hyun Soon
2017-07-01
Advances and applications of electron holography to the study of electromagnetic fields in various functional materials are presented. In particular, the development of split-illumination electron holography, which introduces a biprism in the illumination system of a holography electron microscope, enables highly accurate observations of electromagnetic fields and the expansion of the observable area. First, the charge distributions on insulating materials were studied by using split-illumination electron holography and including a mask in the illumination system. Second, the three-dimensional spin configurations of skyrmion lattices in a helimagnet were visualized by using a high-voltage holography electron microscope. Third, the pinning of the magnetic flux lines in a high-temperature superconductor YBa 2 Cu 3 O 7-y was analyzed by combining electron holography and scanning ion microscopy. Finally, the dynamic accumulation and collective motions of electrons around insulating biomaterial surfaces were observed by utilizing the amplitude reconstruction processes of electron holography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Measurement of the nuclear electromagnetic cascade development in glass at energies above 200 GeV
NASA Technical Reports Server (NTRS)
Gillespie, C. R.; Huggett, R. W.; Humphreys, D. R.; Jones, W. V.; Levit, L. B.
1971-01-01
The longitudinal development of nuclear-electromagnetic cascades with energies greater than 200 GeV was measured in a low-Z (glass) absorber. This was done in the course of operating an ionization spectrometer at mountain altitude in an experiment to study the properties of gamma rays emitted from individual interactions at energies around 10,000 GeV. The ionization produced by a cascade is sampled by 20 sheets of plastic scintillator spaced uniformly in depth every 2.2 radiation lengths. Adjacent pairs of scintillators are viewed by photomultipliers which measure the mean ionization produced by an individual cascade in 10 layers each 1.1 interaction length (4.4 radiation lengths) thick. The longitudinal development of the cascades was measured for about 250 cascades having energies ranging from 200 GeV to 2500 GeV. The observations are compared with the predictions of calculations made for this specific spectrometer using a three-dimensional Monte Carlo model of the nuclear-electromagnetic cascade.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.
1992-01-01
The Penn State Finite Difference Time Domain Electromagnetic Scattering Code version D is a 3-D numerical electromagnetic scattering code based upon the finite difference time domain technique (FDTD). The manual provides a description of the code and corresponding results for several scattering problems. The manual is organized into 14 sections: introduction; description of the FDTD method; operation; resource requirements; version D code capabilities; a brief description of the default scattering geometry; a brief description of each subroutine; a description of the include file; a section briefly discussing Radar Cross Section computations; a section discussing some scattering results; a sample problem setup section; a new problem checklist; references and figure titles. The FDTD technique models transient electromagnetic scattering and interactions with objects of arbitrary shape and/or material composition. In the FDTD method, Maxwell's curl equations are discretized in time-space and all derivatives (temporal and spatial) are approximated by central differences.
NASA Technical Reports Server (NTRS)
(CIT), Barry Madore
1995-01-01
We will present the latest multiwavelength observations of spiral galaxies made from space and from the ground covering the electromagnetic spectrum from the far ultraviolet (ASTRO-2 UIT observations) through the optical, and out to the far infrared (IRAS). Comparisons with recent theoretical models for the radiative transfer of stellar light through a three-dimensional dusty galaxy will be presented.
Huang, Yu; Ma, Lingwei; Hou, Mengjing; Xie, Zheng; Zhang, Zhengjun
2016-01-28
By three-dimensional (3D) finite element method (FEM) plasmon mapping, gradual plasmon evolutions of both bonding dipole plasmon (BDP) and charge transfer plasmon (CTP) modes are visualized. In particular, the evolved BDP mode provides a physical insight into the rapid degeneration of electromagnetic hot spots in practical applications, while the rising CTP mode enables a huge near-field enhancement for potential plasmonic devices at infrared wavelengths.
Joint Services Electronics Program. Annual Report (16th). Appendix
1993-10-01
Lee and R.J. Burkholder, "A Three-Dimensional Implementation of the Hybrid Ray-FDTD Method for Modeling Electromagnetic Scattering from Electrically ...thin material-coated metallic surfaces. Each of the It is noted that expressions for the constants A1 electrically thin material coatings is modeled by...ElectroSdiece Laboratory Department of Electrical Engineering Columbus, Ohio 43212I ODTIC.. . •L•ELECTIE 1 Annual Report Appendix 721563-6 JAN I At ,94
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aldridge, David F.; Bartel, Lewis C.
Program LETS calculates the electric current distribution (in space and time) along an electrically energized steel-cased geologic borehole situated within the subsurface earth. The borehole is modeled as an electrical transmission line that “leaks” current into the surrounding geology. Parameters pertinent to the transmission line current calculation (i.e., series resistance and inductance, shunt capacitance and conductance) are obtained by sampling the electromagnetic (EM) properties of a three-dimensional (3D) geologic earth model along a (possibly deviated) well track.
NASA Astrophysics Data System (ADS)
Volegov, P. L.; Danly, C. R.; Fittinghoff, D.; Geppert-Kleinrath, V.; Grim, G.; Merrill, F. E.; Wilde, C. H.
2017-11-01
Neutron, gamma-ray, and x-ray imaging are important diagnostic tools at the National Ignition Facility (NIF) for measuring the two-dimensional (2D) size and shape of the neutron producing region, for probing the remaining ablator and measuring the extent of the DT plasmas during the stagnation phase of Inertial Confinement Fusion implosions. Due to the difficulty and expense of building these imagers, at most only a few two-dimensional projections images will be available to reconstruct the three-dimensional (3D) sources. In this paper, we present a technique that has been developed for the 3D reconstruction of neutron, gamma-ray, and x-ray sources from a minimal number of 2D projections using spherical harmonics decomposition. We present the detailed algorithms used for this characterization and the results of reconstructed sources from experimental neutron and x-ray data collected at OMEGA and NIF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganapol, B.D.; Kornreich, D.E.
Because of the requirement of accountability and quality control in the scientific world, a demand for high-quality analytical benchmark calculations has arisen in the neutron transport community. The intent of these benchmarks is to provide a numerical standard to which production neutron transport codes may be compared in order to verify proper operation. The overall investigation as modified in the second year renewal application includes the following three primary tasks. Task 1 on two dimensional neutron transport is divided into (a) single medium searchlight problem (SLP) and (b) two-adjacent half-space SLP. Task 2 on three-dimensional neutron transport covers (a) pointmore » source in arbitrary geometry, (b) single medium SLP, and (c) two-adjacent half-space SLP. Task 3 on code verification, includes deterministic and probabilistic codes. The primary aim of the proposed investigation was to provide a suite of comprehensive two- and three-dimensional analytical benchmarks for neutron transport theory applications. This objective has been achieved. The suite of benchmarks in infinite media and the three-dimensional SLP are a relatively comprehensive set of one-group benchmarks for isotropically scattering media. Because of time and resource limitations, the extensions of the benchmarks to include multi-group and anisotropic scattering are not included here. Presently, however, enormous advances in the solution for the planar Green`s function in an anisotropically scattering medium have been made and will eventually be implemented in the two- and three-dimensional solutions considered under this grant. Of particular note in this work are the numerical results for the three-dimensional SLP, which have never before been presented. The results presented were made possible only because of the tremendous advances in computing power that have occurred during the past decade.« less
NASA Astrophysics Data System (ADS)
Hickey, M. S.
2008-05-01
Controlled-source electromagnetic geophysical methods provide a noninvasive means of characterizing subsurface structure. In order to properly model the geologic subsurface with a controlled-source time domain electromagnetic (TDEM) system in an extreme topographic environment we must first see the effects of topography on the forward model data. I run simulations using the Texas A&M University (TAMU) finite element (FEM) code in which I include true 3D topography. From these models we see the limits of how much topography we can include before our forward model can no longer give us accurate data output. The simulations are based on a model of a geologic half space with no cultural noise and focus on topography changes associated with impact crater sites, such as crater rims and central uplift. Several topographical variations of the model are run but the main constant is that there is only a small conductivity change on the range of 10-1 s/m between the host medium and the geologic body within. Asking the following questions will guide us through determining the limits of our code: What is the maximum step we can have before we see fringe effects in our data? At what location relative to the body does the topography cause the most effect? After we know the limits of the code we can develop new methods to increase the limits that will allow us to better image the subsurface using TDEM in extreme topography.
Linear solutions to metamaterial volume hologram design using a variational approach.
Marks, Daniel L; Smith, David R
2018-04-01
Multiplex volume holograms are conventionally constructed by the repeated exposure of a photosensitive medium to a sequence of external fields, each field typically being the superposition of a reference wave that reconstructs the hologram and the other being a desired signal wave. Because there are no sources of radiation internal to the hologram, the pattern of material modulation is limited to the solutions to Helmholtz's equation in the medium. If the three-dimensional structure of the medium could be engineered at each point rather than limited to the patterns produced by standing waves, more versatile structures may result that can overcome the typical limitations to hologram dynamic range imposed by sequentially superimposing holograms. Metamaterial structures and other synthetic electromagnetic materials offer the possibility of achieving high medium contrast engineered at the subwavelength scale. By posing the multiplex volume holography problem as a linear medium design problem, we explore the potential improvements that such engineered synthetic media may provide over conventional multiplex volume holograms.
Zhang, Yaxin; Zhou, Yucong; Gang, Yin; Jiang, Guili; Yang, Ziqiang
2017-01-23
Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure (a three-dimensional holes array) which is composed of multiple stacked layers with 3 × 3 subwavelength holes array has been proposed in this paper. It has been found that in the structure the electromagnetic fields in each hole can be coupled with one another to construct a composite mode with strong field intensity. Therefore, the multiple electron beams injection can excite and efficiently interact with such mode. Meanwhile, the coupling among the electron beams is taken place during the interaction so that a very strong coherent terahertz radiation with high electron conversion efficiency can be generated. Furthermore, due to the coupling, the starting current density of this mechanism is much lower than that of traditional electron beam-driven terahertz sources. This multi-beam radiation system may provide a favorable way to combine photonics structure with electronics excitation to generate middle, high power terahertz radiation.
Zhang, Yaxin; Zhou, Yucong; Gang, Yin; Jiang, Guili; Yang, Ziqiang
2017-01-01
Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure (a three-dimensional holes array) which is composed of multiple stacked layers with 3 × 3 subwavelength holes array has been proposed in this paper. It has been found that in the structure the electromagnetic fields in each hole can be coupled with one another to construct a composite mode with strong field intensity. Therefore, the multiple electron beams injection can excite and efficiently interact with such mode. Meanwhile, the coupling among the electron beams is taken place during the interaction so that a very strong coherent terahertz radiation with high electron conversion efficiency can be generated. Furthermore, due to the coupling, the starting current density of this mechanism is much lower than that of traditional electron beam-driven terahertz sources. This multi-beam radiation system may provide a favorable way to combine photonics structure with electronics excitation to generate middle, high power terahertz radiation. PMID:28112234
NASA Technical Reports Server (NTRS)
Meyer, Harold D.
1999-01-01
This second volume of Acoustic Scattering by Three-Dimensional Stators and Rotors Using the SOURCE3D Code provides the scattering plots referenced by Volume 1. There are 648 plots. Half are for the 8750 rpm "high speed" operating condition and the other half are for the 7031 rpm "mid speed" operating condition.
NASA Astrophysics Data System (ADS)
Campanya, J. L.; Ogaya, X.; Jones, A. G.; Rath, V.; McConnell, B.; Haughton, P.; Prada, M.
2016-12-01
The Science Foundation Ireland funded project IRECCSEM project (www.ireccsem.ie) aims to evaluate Ireland's potential for onshore carbon sequestration in saline aquifers by integrating new electromagnetic geophysical data with existing geophysical and geological data. One of the objectives of this component of IRECCSEM is to characterise the subsurface beneath the Loop Head Peninsula (part of Clare Basin, Co. Clare, Ireland), and identify major electrical resistivity structures that can guide an interpretation of the carbon sequestration potential of this area. During the summer of 2014, a magnetotelluric (MT) survey was carried out on the Loop Head Peninsula, and data from a total of 140 sites were acquired, including audio-magnetotelluric (AMT), and broadband magnetotelluric (BBMT). The dataset was used to generate shallow three-dimensional (3-D) electrical resistivity models constraining the subsurface to depths of up to 3.5 km. The three-dimensional (3-D) joint inversions were performed using three different types of electromagnetic data: MT impedance tensor (Z), geomagnetic transfer functions (T), and inter-station horizontal magnetic transfer-functions (H). The interpretation of the results was complemented with second-derivative models of the resulting electrical resistivity models, and a quantitative comparison with borehole data using multivariate statistical methods. Second-derivative models were used to define the main interfaces between the geoelectrical structures, facilitating superior comparison with geological and seismic results, and also reducing the influence of the colour scale when interpreting the results. Specific analysis was performed to compare the extant borehole data with the electrical resistivity model, identifying those structures that are better characterised by the resistivity model. Finally, the electrical resistivity model was also used to propagate some of the physical properties measured in the borehole, when a good relation was possible between the different types of data. The final results were compared with independent geological and geophysical data for a high-quality interpretation.
Geist, E.; Yoshioka, S.
1996-01-01
The largest uncertainty in assessing hazards from local tsunamis along the Cascadia margin is estimating the possible earthquake source parameters. We investigate which source parameters exert the largest influence on tsunami generation and determine how each parameter affects the amplitude of the local tsunami. The following source parameters were analyzed: (1) type of faulting characteristic of the Cascadia subduction zone, (2) amount of slip during rupture, (3) slip orientation, (4) duration of rupture, (5) physical properties of the accretionary wedge, and (6) influence of secondary faulting. The effect of each of these source parameters on the quasi-static displacement of the ocean floor is determined by using elastic three-dimensional, finite-element models. The propagation of the resulting tsunami is modeled both near the coastline using the two-dimensional (x-t) Peregrine equations that includes the effects of dispersion and near the source using the three-dimensional (x-y-t) linear long-wave equations. The source parameters that have the largest influence on local tsunami excitation are the shallowness of rupture and the amount of slip. In addition, the orientation of slip has a large effect on the directivity of the tsunami, especially for shallow dipping faults, which consequently has a direct influence on the length of coastline inundated by the tsunami. Duration of rupture, physical properties of the accretionary wedge, and secondary faulting all affect the excitation of tsunamis but to a lesser extent than the shallowness of rupture and the amount and orientation of slip. Assessment of the severity of the local tsunami hazard should take into account that relatively large tsunamis can be generated from anomalous 'tsunami earthquakes' that rupture within the accretionary wedge in comparison to interplate thrust earthquakes of similar magnitude. ?? 1996 Kluwer Academic Publishers.
Numerical simulation of the control of the three-dimensional transition process in boundary layers
NASA Technical Reports Server (NTRS)
Kral, L. D.; Fasel, H. F.
1990-01-01
Surface heating techniques to control the three-dimensional laminar-turbulent transition process are numerically investigated for a water boundary layer. The Navier-Stokes and energy equations are solved using a fully implicit finite difference/spectral method. The spatially evolving boundary layer is simulated. Results of both passive and active methods of control are shown for small amplitude two-dimensional and three-dimensional disturbance waves. Control is also applied to the early stages of the secondary instability process using passive or active control techniques.
An Optimization of Pulsed ElectroMagnetic Fields Study
NASA Technical Reports Server (NTRS)
Goodwin, Thomas J.
2006-01-01
To date, in our research we have focused on the use of normal human neuronal progenitor (NHNP) cells because of their importance in human nervous system regeneration, development and maintenance, but we have developed 2-D and 3-D bioreactors that can accommodate any cell line. In this Project, we will include the use of tissues important for physiological regeneration: Human osteoblasts or chondrocytes, and vascular cells. Our initial results with the NHNP cells were quite startling using extremely low-level electromagnetic fields (5 microtesla at 10Hz; 6mA). The low-amplitude, rapidly time-varying electromagnetic fields exert a very potent effect on the proliferation, morphology, and gene expression of the cells in culture, both in standard 2-dimensional culture plates as well as cells organized into 3-dimensional tissue-like assemblies (TLAs) in a 3D bioreactor. We have replicated our preliminary results many, many times, have analyzed the gene expression using gene arrays (followed by Luminex analysis for protein production), and have monitored cell proliferation, orientation, morphology, and glucose metabolism, and we are confident that we have a stable and reliable model to study the control of high-level cellular processes by application of low-amplitude, time varying electromagnetic fields (TVEMF) (1, 2). In additional studies at the University of Michigan, we have been able to generate functional in vitro engineered mammalian skeletal muscle, and have employed nerve-muscle co-culture techniques to promote axonal sprouting. We believe that nearly all tissues, in particular, neural, are susceptible to the influences of low-level TVEMF.
NASA Astrophysics Data System (ADS)
Brcka, Jozef
2016-07-01
A multi inductively coupled plasma (ICP) system can be used to maintain the plasma uniformity and increase the area processed by a high-density plasma. This article presents a source in two different configurations. The distributed planar multi ICP (DM-ICP) source comprises individual ICP sources that are not overlapped and produce plasma independently. Mutual coupling of the ICPs may affect the distribution of the produced plasma. The integrated multicoil ICP (IMC-ICP) source consists of four low-inductance ICP antennas that are superimposed in an azimuthal manner. The identical geometry of the ICP coils was assumed in this work. Both configurations have highly asymmetric components. A three-dimensional (3D) plasma model of the multicoil ICP configurations with asymmetric features is used to investigate the plasma characteristics in a large chamber and the operation of the sources in inert and reactive gases. The feasibility of the computational calculation, the speed, and the computational resources of the coupled multiphysics solver are investigated in the framework of a large realistic geometry and complex reaction processes. It was determined that additional variables can be used to control large-area plasmas. Both configurations can form a plasma, that azimuthally moves in a controlled manner, the so-called “sweeping mode” (SM) or “polyphase mode” (PPM), and thus they have the potential for large-area and high-density plasma applications. The operation in the azimuthal mode has the potential to adjust the plasma distribution, the reaction chemistry, and increase or modulate the production of the radicals. The intrinsic asymmetry of the individual coils and their combined operation were investigated within a source assembly primarily in argon and CO gases. Limited investigations were also performed on operation in CH4 gas. The plasma parameters and the resulting chemistry are affected by the geometrical relation between individual antennas. The aim of this work is to incorporate the technological, computational, dimensional scaling, and reaction chemistry aspects of the plasma under one computational framework. The 3D simulation is utilized to geometrically scale up the reactive plasma that is produced by multiple ICP sources.
Chaotic scattering in an open vase-shaped cavity: Topological, numerical, and experimental results
NASA Astrophysics Data System (ADS)
Novick, Jaison Allen
We present a study of trajectories in a two-dimensional, open, vase-shaped cavity in the absence of forces The classical trajectories freely propagate between elastic collisions. Bound trajectories, regular scattering trajectories, and chaotic scattering trajectories are present in the vase. Most importantly, we find that classical trajectories passing through the vase's mouth escape without return. In our simulations, we propagate bursts of trajectories from point sources located along the vase walls. We record the time for escaping trajectories to pass through the vase's neck. Constructing a plot of escape time versus the initial launch angle for the chaotic trajectories reveals a vastly complicated recursive structure or a fractal. This fractal structure can be understood by a suitable coordinate transform. Reducing the dynamics to two dimensions reveals that the chaotic dynamics are organized by a homoclinic tangle, which is formed by the union of infinitely long, intersecting stable and unstable manifolds. This study is broken down into three major components. We first present a topological theory that extracts the essential topological information from a finite subset of the tangle and encodes this information in a set of symbolic dynamical equations. These equations can be used to predict a topologically forced minimal subset of the recursive structure seen in numerically computed escape time plots. We present three applications of the theory and compare these predictions to our simulations. The second component is a presentation of an experiment in which the vase was constructed from Teflon walls using an ultrasound transducer as a point source. We compare the escaping signal to a classical simulation and find agreement between the two. Finally, we present an approximate solution to the time independent Schrodinger Equation for escaping waves. We choose a set of points at which to evaluate the wave function and interpolate trajectories connecting the source point to each "detector point". We then construct the wave function directly from these classical trajectories using the two-dimensional WKB approximation. The wave function is Fourier Transformed using a Fast Fourier Transform algorithm resulting in a spectrum in which each peak corresponds to an interpolated trajectory. Our predictions are based on an imagined experiment that uses microwave propagation within an electromagnetic waveguide. Such an experiment exploits the fact that under suitable conditions both Maxwell's Equations and the Schrodinger Equation can be reduced to the Helmholtz Equation. Therefore, our predictions, while compared to the electromagnetic experiment, contain information about the quantum system. Identifying peaks in the transmission spectrum with chaotic trajectories will allow for an additional experimental verification of the intermediate recursive structure. Finally, we summarize our results and discuss possible extensions of this project.
1998-06-22
remote (e.g. HAARP /HIPAS), and natural sources (e.g. external noise); b) model the perturbed fields due to the specified underground structures...examined in this study are of three types • Remote man-made sources, e.g. HAARP /HIPAS • Local sources, e.g. metal-detector loop • Natural sources, e.g...The High Power Auroral Stimulation Observatory (HIPAS) and the High Frequency Active Auroral Research Program ( HAARP ) are capable of exciting plasma
NASA Astrophysics Data System (ADS)
Wang, Feiyan; Morten, Jan Petter; Spitzer, Klaus
2018-05-01
In this paper, we present a recently developed anisotropic 3-D inversion framework for interpreting controlled-source electromagnetic (CSEM) data in the frequency domain. The framework integrates a high-order finite-element forward operator and a Gauss-Newton inversion algorithm. Conductivity constraints are applied using a parameter transformation. We discretize the continuous forward and inverse problems on unstructured grids for a flexible treatment of arbitrarily complex geometries. Moreover, an unstructured mesh is more desirable in comparison to a single rectilinear mesh for multisource problems because local grid refinement will not significantly influence the mesh density outside the region of interest. The non-uniform spatial discretization facilitates parametrization of the inversion domain at a suitable scale. For a rapid simulation of multisource EM data, we opt to use a parallel direct solver. We further accelerate the inversion process by decomposing the entire data set into subsets with respect to frequencies (and transmitters if memory requirement is affordable). The computational tasks associated with each data subset are distributed to different processes and run in parallel. We validate the scheme using a synthetic marine CSEM model with rough bathymetry, and finally, apply it to an industrial-size 3-D data set from the Troll field oil province in the North Sea acquired in 2008 to examine its robustness and practical applicability.
jInv: A Modular and Scalable Framework for Electromagnetic Inverse Problems
NASA Astrophysics Data System (ADS)
Belliveau, P. T.; Haber, E.
2016-12-01
Inversion is a key tool in the interpretation of geophysical electromagnetic (EM) data. Three-dimensional (3D) EM inversion is very computationally expensive and practical software for inverting large 3D EM surveys must be able to take advantage of high performance computing (HPC) resources. It has traditionally been difficult to achieve those goals in a high level dynamic programming environment that allows rapid development and testing of new algorithms, which is important in a research setting. With those goals in mind, we have developed jInv, a framework for PDE constrained parameter estimation problems. jInv provides optimization and regularization routines, a framework for user defined forward problems, and interfaces to several direct and iterative solvers for sparse linear systems. The forward modeling framework provides finite volume discretizations of differential operators on rectangular tensor product meshes and tetrahedral unstructured meshes that can be used to easily construct forward modeling and sensitivity routines for forward problems described by partial differential equations. jInv is written in the emerging programming language Julia. Julia is a dynamic language targeted at the computational science community with a focus on high performance and native support for parallel programming. We have developed frequency and time-domain EM forward modeling and sensitivity routines for jInv. We will illustrate its capabilities and performance with two synthetic time-domain EM inversion examples. First, in airborne surveys, which use many sources, we achieve distributed memory parallelism by decoupling the forward and inverse meshes and performing forward modeling for each source on small, locally refined meshes. Secondly, we invert grounded source time-domain data from a gradient array style induced polarization survey using a novel time-stepping technique that allows us to compute data from different time-steps in parallel. These examples both show that it is possible to invert large scale 3D time-domain EM datasets within a modular, extensible framework written in a high-level, easy to use programming language.
Source Term Model for Steady Micro Jets in a Navier-Stokes Computer Code
NASA Technical Reports Server (NTRS)
Waithe, Kenrick A.
2005-01-01
A source term model for steady micro jets was implemented into a non-proprietary Navier-Stokes computer code, OVERFLOW. The source term models the mass flow and momentum created by a steady blowing micro jet. The model is obtained by adding the momentum and mass flow created by the jet to the Navier-Stokes equations. The model was tested by comparing with data from numerical simulations of a single, steady micro jet on a flat plate in two and three dimensions. The source term model predicted the velocity distribution well compared to the two-dimensional plate using a steady mass flow boundary condition, which was used to simulate a steady micro jet. The model was also compared to two three-dimensional flat plate cases using a steady mass flow boundary condition to simulate a steady micro jet. The three-dimensional comparison included a case with a grid generated to capture the circular shape of the jet and a case without a grid generated for the micro jet. The case without the jet grid mimics the application of the source term. The source term model compared well with both of the three-dimensional cases. Comparisons of velocity distribution were made before and after the jet and Mach and vorticity contours were examined. The source term model allows a researcher to quickly investigate different locations of individual or several steady micro jets. The researcher is able to conduct a preliminary investigation with minimal grid generation and computational time.
NASA Astrophysics Data System (ADS)
Shi, Guoliang; Peng, Xing; Huangfu, Yanqi; Wang, Wei; Xu, Jiao; Tian, Yingze; Feng, Yinchang; Ivey, Cesunica E.; Russell, Armistead G.
2017-07-01
Source apportionment technologies are used to understand the impacts of important sources of particulate matter (PM) air quality, and are widely used for both scientific studies and air quality management. Generally, receptor models apportion speciated PM data from a single sampling site. With the development of large scale monitoring networks, PM speciation are observed at multiple sites in an urban area. For these situations, the models should account for three factors, or dimensions, of the PM, including the chemical species concentrations, sampling periods and sampling site information, suggesting the potential power of a three-dimensional source apportionment approach. However, the principle of three-dimensional Parallel Factor Analysis (Ordinary PARAFAC) model does not always work well in real environmental situations for multi-site receptor datasets. In this work, a new three-way receptor model, called "multi-site three way factor analysis" model is proposed to deal with the multi-site receptor datasets. Synthetic datasets were developed and introduced into the new model to test its performance. Average absolute error (AAE, between estimated and true contributions) for extracted sources were all less than 50%. Additionally, three-dimensional ambient datasets from a Chinese mega-city, Chengdu, were analyzed using this new model to assess the application. Four factors are extracted by the multi-site WFA3 model: secondary source have the highest contributions (64.73 and 56.24 μg/m3), followed by vehicular exhaust (30.13 and 33.60 μg/m3), crustal dust (26.12 and 29.99 μg/m3) and coal combustion (10.73 and 14.83 μg/m3). The model was also compared to PMF, with general agreement, though PMF suggested a lower crustal contribution.
Yang, Zhutian; Qiu, Wei; Sun, Hongjian; Nallanathan, Arumugam
2016-01-01
Due to the increasing complexity of electromagnetic signals, there exists a significant challenge for radar emitter signal recognition. To address this challenge, multi-component radar emitter recognition under a complicated noise environment is studied in this paper. A novel radar emitter recognition approach based on the three-dimensional distribution feature and transfer learning is proposed. The cubic feature for the time-frequency-energy distribution is proposed to describe the intra-pulse modulation information of radar emitters. Furthermore, the feature is reconstructed by using transfer learning in order to obtain the robust feature against signal noise rate (SNR) variation. Last, but not the least, the relevance vector machine is used to classify radar emitter signals. Simulations demonstrate that the approach proposed in this paper has better performances in accuracy and robustness than existing approaches. PMID:26927111
User's Manual for FEMOM3DS. Version 1.0
NASA Technical Reports Server (NTRS)
Reddy, C.J.; Deshpande, M. D.
1997-01-01
FEMOM3DS is a computer code written in FORTRAN 77 to compute electromagnetic(EM) scattering characteristics of a three dimensional object with complex materials using combined Finite Element Method (FEM)/Method of Moments (MoM) technique. This code uses the tetrahedral elements, with vector edge basis functions for FEM in the volume of the cavity and the triangular elements with the basis functions similar to that described for MoM at the outer boundary. By virtue of FEM, this code can handle any arbitrarily shaped three-dimensional cavities filled with inhomogeneous lossy materials. The User's Manual is written to make the user acquainted with the operation of the code. The user is assumed to be familiar with the FORTRAN 77 language and the operating environment of the computers on which the code is intended to run.
Yang, Zhutian; Qiu, Wei; Sun, Hongjian; Nallanathan, Arumugam
2016-02-25
Due to the increasing complexity of electromagnetic signals, there exists a significant challenge for radar emitter signal recognition. To address this challenge, multi-component radar emitter recognition under a complicated noise environment is studied in this paper. A novel radar emitter recognition approach based on the three-dimensional distribution feature and transfer learning is proposed. The cubic feature for the time-frequency-energy distribution is proposed to describe the intra-pulse modulation information of radar emitters. Furthermore, the feature is reconstructed by using transfer learning in order to obtain the robust feature against signal noise rate (SNR) variation. Last, but not the least, the relevance vector machine is used to classify radar emitter signals. Simulations demonstrate that the approach proposed in this paper has better performances in accuracy and robustness than existing approaches.
NASA Astrophysics Data System (ADS)
Ciattoni, Alessandro; Rizza, Carlo
2015-05-01
We develop, from first principles, a general and compact formalism for predicting the electromagnetic response of a metamaterial with nonmagnetic inclusions in the long-wavelength limit, including spatial dispersion up to the second order. Specifically, by resorting to a suitable multiscale technique, we show that the effective medium permittivity tensor and the first- and second-order tensors describing spatial dispersion can be evaluated by averaging suitable spatially rapidly varying fields, each satisfying electrostatic-like equations within the metamaterial unit cell. For metamaterials with negligible second-order spatial dispersion, we exploit the equivalence of first-order spatial dispersion and reciprocal bianisotropic electromagnetic response to deduce a simple expression for the metamaterial chirality tensor. Such an expression allows us to systematically analyze the effect of the composite spatial symmetry properties on electromagnetic chirality. We find that even if a metamaterial is geometrically achiral, i.e., it is indistinguishable from its mirror image, it shows pseudo-chiral-omega electromagnetic chirality if the rotation needed to restore the dielectric profile after the reflection is either a 0∘ or 90∘ rotation around an axis orthogonal to the reflection plane. These two symmetric situations encompass two-dimensional and one-dimensional metamaterials with chiral response. As an example admitting full analytical description, we discuss one-dimensional metamaterials whose single chirality parameter is shown to be directly related to the metamaterial dielectric profile by quadratures.
The biophysical basis of Benveniste experiments: Entropy, structure, and information in water
NASA Astrophysics Data System (ADS)
Widom, Allan; Srivastava, Yogendra; Valenzi, Vincenzo
Benveniste had observed that highly dilute (and even in the absence of physical molecules) biological agents still triggered relevant biological systems. Some of these experiments were reproduced in three other laboratories who cosigned the article, (Davenas et al., Nature 1988, 333, 816). Further works, [(Medical Hypotheses 2000, 54, 33), (Rivista di Biologia/Biology Forum 97, 2004, 169)], showed that molecular activity in more than 50 biochemical systems and even in bacteria could be induced by electromagnetic signals transferred through water solutes. The sources of the electromagnetic signals were recordings of specific biological activities. These results suggest that electromagnetic transmission of biochemical information can be stored in the electric dipole moments of water in close analogy to the manner in which magnetic moments store information on a computer disk. The electromagnetic transmission would enable in vivo transmissions of the specific molecular information between two functional biomolecules. In the present work, the physical nature of such biological information storage and retrieval in ordered quantum electromagnetic domains of water will be discussed.
Electromagnetism on anisotropic fractal media
NASA Astrophysics Data System (ADS)
Ostoja-Starzewski, Martin
2013-04-01
Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.
Improved function and growth of pancreatic cells in a three-dimensional bioreactor environment.
Samuelson, Lisa; Gerber, David A
2013-01-01
Methods of three-dimensional (3D) cell culture have made significant progress in recent years due to a better understanding of cell to cell interactions and the cell's interface with their surrounding environment. We hypothesized that a microgravity 3D culture system would improve upon the growth and function of a pancreatic progenitor cell population. We developed a rotating wall vessel bioreactor and established a culture system using a pancreatic cell line. Cells in the bioreactors showed robust proliferation, enhanced transcriptional signaling, and improved translation of pancreatic genes compared with two-dimensional static culture. Cells also gained the ability to respond to glucose stimulation, which was not observed in the control cultures. These findings suggest that a 3D microgravity bioreactor environment mimics the niche of the pancreas yielding a cell source with potential for cell-based therapy in the treatment of diabetes.
Valley-controlled propagation of pseudospin states in bulk metacrystal waveguides
NASA Astrophysics Data System (ADS)
Chen, Xiao-Dong; Deng, Wei-Min; Lu, Jin-Cheng; Dong, Jian-Wen
2018-05-01
Light manipulations such as spin-direction locking propagation, robust transport, quantum teleportation, and reconfigurable electromagnetic pathways have been investigated at the boundaries of photonic systems. Recently by breaking Dirac cones in time-reversal-invariant photonic crystals, valley-pseudospin coupled edge states have been employed to realize selective propagation of light. Here, we realize the controllable propagation of pseudospin states in three-dimensional bulk metacrystal waveguides by valley degree of freedom. Reconfigurable photonic valley Hall effect is achieved for frequency-direction locking propagation in such a way that the propagation path can be tunable precisely by scanning the working frequency. A complete transition diagram is illustrated on the valley-dependent pseudospin states of Dirac-cone-absent photonic bands. A photonic blocker is proposed by cascading two inversion asymmetric metacrystal waveguides in which pseudospin-direction locking propagation exists. In addition, valley-dependent pseudospin bands are also discussed in a realistic metamaterials sample. These results show an alternative way toward molding the pseudospin flow in photonic systems.
Systems, Apparatuses and Methods for Beamforming RFID Tags
NASA Technical Reports Server (NTRS)
Fink, Patrick W. (Inventor); Lin, Gregory Y. (Inventor); Ngo, Phong H. (Inventor); Kennedy, Timothy F. (Inventor)
2017-01-01
A radio frequency identification (RFID) system includes an RFID interrogator and an RFID tag having a plurality of information sources and a beamforming network. The tag receives electromagnetic radiation from the interrogator. The beamforming network directs the received electromagnetic radiation to a subset of the plurality of information sources. The RFID tag transmits a response to the received electromagnetic radiation, based on the subset of the plurality of information sources to which the received electromagnetic radiation was directed. Method and other embodiments are also disclosed.
2016-11-29
AFRL-AFOSR-VA-TR-2016-0365 Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source Jerome Moloney...SUBTITLE "Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source 5a. CONTRACT NUMBER FA9550-15-1-0272 5b...afosr.reports.sgizmo.com/s3/> Subject: Final Report to Dr. Arje Nachman Contract/Grant Title: Long Wavelength Electromagnetic Light Bullets Generated by a 10.6
Three dimensional global modeling of atmospheric CO2
NASA Technical Reports Server (NTRS)
Fung, I.; Hansen, J.; Rind, D.
1983-01-01
A model was developed to study the prospects of extracting information on carbon dioxide sources and sinks from observed CO2 variations. The approach uses a three dimensional global transport model, based on winds from a 3-D general circulation model (GCM), to advect CO2 noninteractively, i.e., as a tracer, with specified sources and sinks of CO2 at the surface. The 3-D model employed is identified and biosphere, ocean and fossil fuel sources and sinks are discussed. Some preliminary model results are presented.
Creating double negative index materials using the Babinet principle with one metasurface
NASA Astrophysics Data System (ADS)
Zhang, Lei; Koschny, Thomas; Soukoulis, C. M.
2013-01-01
Metamaterials are patterned metallic structures which permit access to a novel electromagnetic response, negative index of refraction, impossible to achieve with naturally occurring materials. Using the Babinet principle, the complementary split ring resonator (SRR) is etched in a metallic plate to provide negative ɛ, with perpendicular direction. Here we propose a new design, etched in a metallic plate to provide negative magnetic permeability μ, with perpendicular direction. The combined electromagnetic response of this planar metamaterial, where the negative μ comes from the aperture and the negative ɛ from the remainder of the continuous metallic plate, allows achievement of a double negative index metamaterial (NIM) with only one metasurface and strong transmission. These designs can be used to fabricate NIMs at microwave and optical wavelengths and three-dimensional metamaterials.
NASA Astrophysics Data System (ADS)
Ma, Xibo; Tian, Jie; Zhang, Bo; Zhang, Xing; Xue, Zhenwen; Dong, Di; Han, Dong
2011-03-01
Among many optical molecular imaging modalities, bioluminescence imaging (BLI) has more and more wide application in tumor detection and evaluation of pharmacodynamics, toxicity, pharmacokinetics because of its noninvasive molecular and cellular level detection ability, high sensitivity and low cost in comparison with other imaging technologies. However, BLI can not present the accurate location and intensity of the inner bioluminescence sources such as in the bone, liver or lung etc. Bioluminescent tomography (BLT) shows its advantage in determining the bioluminescence source distribution inside a small animal or phantom. Considering the deficiency of two-dimensional imaging modality, we developed three-dimensional tomography to reconstruct the information of the bioluminescence source distribution in transgenic mOC-Luc mice bone with the boundary measured data. In this paper, to study the osteocalcin (OC) accumulation in transgenic mOC-Luc mice bone, a BLT reconstruction method based on multilevel adaptive finite element (FEM) algorithm was used for localizing and quantifying multi bioluminescence sources. Optical and anatomical information of the tissues are incorporated as a priori knowledge in this method, which can reduce the ill-posedness of BLT. The data was acquired by the dual modality BLT and Micro CT prototype system that was developed by us. Through temperature control and absolute intensity calibration, a relative accurate intensity can be calculated. The location of the OC accumulation was reconstructed, which was coherent with the principle of bone differentiation. This result also was testified by ex vivo experiment in the black 96-plate well using the BLI system and the chemiluminescence apparatus.
Volume-scalable high-brightness three-dimensional visible light source
Subramania, Ganapathi; Fischer, Arthur J; Wang, George T; Li, Qiming
2014-02-18
A volume-scalable, high-brightness, electrically driven visible light source comprises a three-dimensional photonic crystal (3DPC) comprising one or more direct bandgap semiconductors. The improved light emission performance of the invention is achieved based on the enhancement of radiative emission of light emitters placed inside a 3DPC due to the strong modification of the photonic density-of-states engendered by the 3DPC.
Broad band waveguide spectrometer
Goldman, Don S.
1995-01-01
A spectrometer for analyzing a sample of material utilizing a broad band source of electromagnetic radiation and a detector. The spectrometer employs a waveguide possessing an entry and an exit for the electromagnetic radiation emanating from the source. The waveguide further includes a surface between the entry and exit portions which permits interaction between the electromagnetic radiation passing through the wave guide and a sample material. A tapered portion forms a part of the entry of the wave guide and couples the electromagnetic radiation emanating from the source to the waveguide. The electromagnetic radiation passing from the exit of the waveguide is captured and directed to a detector for analysis.
Medium effect on the characteristics of the coupled seismic and electromagnetic signals.
Huang, Qinghua; Ren, Hengxin; Zhang, Dan; Chen, Y John
2015-01-01
Recently developed numerical simulation technique can simulate the coupled seismic and electromagnetic signals for a double couple point source or a finite fault planar source. Besides the source effect, the simulation results showed that both medium structure and medium property could affect the coupled seismic and electromagnetic signals. The waveform of coupled signals for a layered structure is more complicated than that for a simple uniform structure. Different from the seismic signals, the electromagnetic signals are sensitive to the medium properties such as fluid salinity and fluid viscosity. Therefore, the co-seismic electromagnetic signals may be more informative than seismic signals.
Medium effect on the characteristics of the coupled seismic and electromagnetic signals
HUANG, Qinghua; REN, Hengxin; ZHANG, Dan; CHEN, Y. John
2015-01-01
Recently developed numerical simulation technique can simulate the coupled seismic and electromagnetic signals for a double couple point source or a finite fault planar source. Besides the source effect, the simulation results showed that both medium structure and medium property could affect the coupled seismic and electromagnetic signals. The waveform of coupled signals for a layered structure is more complicated than that for a simple uniform structure. Different from the seismic signals, the electromagnetic signals are sensitive to the medium properties such as fluid salinity and fluid viscosity. Therefore, the co-seismic electromagnetic signals may be more informative than seismic signals. PMID:25743062
Energy Flow Exciting Field-Aligned Current at Substorm Expansion Onset
NASA Astrophysics Data System (ADS)
Ebihara, Y.; Tanaka, T.
2017-12-01
At substorm expansion onset, upward field-aligned currents (FACs) increase abruptly, and a large amount of electromagnetic energy starts to consume in the polar ionosphere. A question arises as to where the energy comes from. Based on the results obtained by the global magnetohydrodynamics simulation, we present energy flow and energy conversion associated with the upward FACs that manifest the onset. Our simulations show that the cusp/mantle region transmits electromagnetic energy to almost the entire region of the magnetosphere when the interplanetary magnetic field is southward. Integral curve of the Poynting flux shows a spiral moving toward the ionosphere, probably suggesting the pathway of electromagnetic energy from the cusp/mantle dynamo to the ionosphere. The near-Earth reconnection initiates three-dimensional redistribution of the magnetosphere. Flow shear in the near-Earth region results in the generation of the near-Earth dynamo and the onset FACs. The onset FACs are responsible to transport the electromagnetic energy toward the Earth. In the near-Earth region, the electromagnetic energy coming from the cusp/mantle dynamo is converted to the kinetic energy (known as bursty bulk flow) and the thermal energy (associated with high-pressure region in the inner magnetosphere). Then, they are converted to the electromagnetic energy associated with the onset FACs. A part of electromagnetic energy is stored in the lobe region during the growth phase. The release of the stored energy, together with the continuously supplied energy from the cusp/mantle dynamo, contributes to the energy supply to the ionosphere during the expansion phase.
Wintertime nitric acid chemistry - Implications from three-dimensional model calculations
NASA Technical Reports Server (NTRS)
Rood, Richard B.; Kaye, Jack A.; Douglass, Anne R.; Allen, Dale J.; Steenford, Stephen
1990-01-01
A three-dimensional simulation of the evolution of HNO3 has been run for the winter of 1979. Winds and temperatures are taken from a stratospheric data assimilation analysis, and the chemistry is based on Limb Infrared Monitor of the Stratosphere (LIMS) observations. The model is compared to LIMS observations to investigate the problem of 'missing' nitric acid chemistry in the winter hemisphere. Both the model and observations support the contention that a nitric acid source is needed outside of the polar vortex and north of the subtropics. Observations suggest that HNO3 is not dynamically controlled in middle latitudes. The model shows that given the time scales of conventional chemistry, dynamical control is expected. Therefore, an error exists in the conventional chemistry or additional processes are needed to bring the model and data into agreement. Since the polar vortex is dynamically isolated from the middle latitudes, and since the highest HNO3 values are observed in October and November, a source associated solely with polar stratospheric clouds cannot explain the deficiencies in the chemistry. The role of heterogeneous processes on background aerosols is reviewed in light of these results.
Tethered satellite system control using electromagnetic forces and reaction wheels
NASA Astrophysics Data System (ADS)
Alandi Hallaj, Mohammad Amin; Assadian, Nima
2015-12-01
In this paper a novel non-rotating space tethered configuration is introduced which its relative positions controlled using electromagnetic forces. The attitude dynamics is controlled by three reaction wheels in the body axes. The nonlinear coupled orbital dynamics of a dumbbell tethered satellite formation flight are derived through a constrained Lagrangian approach. These equations are presented in the leader satellite orbital frame. The tether is assumed to be mass-less and straight, and the J2 perturbation is included to the analysis. The forces and the moments of the electromagnetic coils are modeled based on the far-filed model of the magnetic dipoles. A guidance scheme for generating the desired positions as a function of time in Cartesian form is presented. The satellite tethered formation with variable length is controlled utilizing a linear controller. This approach is applied to a specified scenario and it is shown that the nonlinear guidance method and the linear controller can control the nonlinear system of the tethered formation and the results are compared with optimal control approach.
NASA Technical Reports Server (NTRS)
Pathak, P. H.; Altintas, A.
1988-01-01
A high-frequency analysis of electromagnetic modal reflection and transmission coefficients is presented for waveguide discontinuities formed by joining different waveguide sections. The analysis uses an extended version of the concept of geometrical theory of diffraction based equivalent edge currents in conjunction with the reciprocity theorem to describe interior scattering effects. If the waveguide modes and their associated modal rays can be found explicitly, general two- and three-dimensional waveguide geometries can be analyzed. Expressions are developed for two-dimensional reflection and transmission coefficients. Numerical results are given for a flanged, semi-infinite parallel plate waveguide and for the junction between two linearly tapered waveguides.
Fan, Yuancheng; Qiao, Tong; Zhang, Fuli; Fu, Quanhong; Dong, Jiajia; Kong, Botao; Li, Hongqiang
2017-01-16
Electromagnetically induced transparency (EIT) is a promising technology for the enhancement of light-matter interactions, and recent demonstrations of the EIT analogue realized in artificial micro-structured medium have remarkably reduced the extreme requirement for experimental observation of EIT spectrum. In this paper, we propose to electrically control the EIT-like spectrum in a metamaterial as an electromagnetic modulator. A diode acting as a tunable resistor is loaded in the gap of paired wires to inductively tune the magnetic resonance, which induces remarkable modulation on the EIT-like spectrum through the metamaterial sample. The experimental measurements confirmed that the prediction of electromagnetic modulation in three narrow bands on the EIT-like spectrum, and a modulation contrast of up to 31 dB was achieved on the transmission through the metamaterial. Our results may facilitate the study on active/dynamical technology in translational metamaterials, which connect extraordinary manipulations on the flow of light in metamaterials, e.g., the exotic EIT, and practical applications in industry.
Magnetostriction measurement by four probe method
NASA Astrophysics Data System (ADS)
Dange, S. N.; Radha, S.
2018-04-01
The present paper describes the design and setting up of an indigenouslydevelopedmagnetostriction(MS) measurement setup using four probe method atroom temperature.A standard strain gauge is pasted with a special glue on the sample and its change in resistance with applied magnetic field is measured using KeithleyNanovoltmeter and Current source. An electromagnet with field upto 1.2 tesla is used to source the magnetic field. The sample is placed between the magnet poles using self designed and developed wooden probe stand, capable of moving in three mutually perpendicular directions. The nanovoltmeter and current source are interfaced with PC using RS232 serial interface. A software has been developed in for logging and processing of data. Proper optimization of measurement has been done through software to reduce the noise due to thermal emf and electromagnetic induction. The data acquired for some standard magnetic samples are presented. The sensitivity of the setup is 1microstrain with an error in measurement upto 5%.
Passive lighting responsive three-dimensional integral imaging
NASA Astrophysics Data System (ADS)
Lou, Yimin; Hu, Juanmei
2017-11-01
A three dimensional (3D) integral imaging (II) technique with a real-time passive lighting responsive ability and vivid 3D performance has been proposed and demonstrated. Some novel lighting responsive phenomena, including light-activated 3D imaging, and light-controlled 3D image scaling and translation, have been realized optically without updating images. By switching the on/off state of a point light source illuminated on the proposed II system, the 3D images can show/hide independent of the diffused illumination background. By changing the position or illumination direction of the point light source, the position and magnification of the 3D image can be modulated in real time. The lighting responsive mechanism of the 3D II system is deduced analytically and verified experimentally. A flexible thin film lighting responsive II system with a 0.4 mm thickness was fabricated. This technique gives some additional degrees of freedom in order to design the II system and enable the virtual 3D image to interact with the real illumination environment in real time.
Numerical simulation of forced convection in a duct subjected to microwave heating
NASA Astrophysics Data System (ADS)
Zhu, J.; Kuznetsov, A. V.; Sandeep, K. P.
2007-01-01
In this paper, forced convection in a rectangular duct subjected to microwave heating is investigated. Three types of non-Newtonian liquids flowing through the duct are considered, specifically, apple sauce, skim milk, and tomato sauce. A finite difference time domain method is used to solve Maxwell’s equations simulating the electromagnetic field. The three-dimensional temperature field is determined by solving the coupled momentum, energy, and Maxwell’s equations. Numerical results show that the heating pattern strongly depends on the dielectric properties of the fluid in the duct and the geometry of the microwave heating system.
Effect of non-ionizing electromagnetic field on the alteration of ovarian follicles in rats.
Ahmadi, Seyed Shahin; Khaki, Amir Afshin; Ainehchi, Nava; Alihemmati, Alireza; Khatooni, Azam Asghari; Khaki, Arash; Asghari, Ali
2016-03-01
In recent years, there has been an increase in the attention paid to safety effects, environmental and society's health, extremely low frequency electromagnetic fields (ELF-EMF), and radio frequency electromagnetic fields (RF-EMF). The aim of this research was to determine the effect of EMF on the alteration of ovarian follicles. In this experimental study at Tabriz Medical University in 2015, we did EMF exposures and assessed the alteration of rats' ovarian follicles. Thirty three-month old rats were selected randomly from laboratory animals, and, after their ages and weights were determined, they were divided randomly into three groups. The control group consisted of 10 rats without any treatment, and they were kept in normal conditions. The second group of rats was influenced by a magnetic field of 50 Hz for eight weeks (three weeks intrauterine and five weeks ectopic). The third group of rats was influenced by a magnetic field of 50 Hz for 13 weeks (three weeks intrauterine and ten weeks ectopic). Samples were fixed in 10% buffered formaldehyde and cleared with Xylol and embedded in paraffin. After sectioning and staining, samples were studied by optic microscopy. Finally, SPSS version 17, were used for data analysis. EMF radiation increased the harmful effects on the formation of ovarian follicles and oocytes implantation. Studies on the effects of electromagnetic fields on ovarian follicles have shown that the nuclei of the oocytes become smaller and change shape. There were significant, harmful changes in the groups affected by electromagnetic waves. Atresia of ovarian follicles was significantly significant in both study groups compared to the control group (p < 0.05). Exposure to electromagnetic fields during embryonic development can cause morphological changes in oocytes and affect the differentiation of oocytes and folliculogenesis, resulting in decreased ovarian reserve leading to infertility or reduced fertility.
NASA Astrophysics Data System (ADS)
Sivasubramaniam, Kiruba
This thesis makes advances in three dimensional finite element analysis of electrical machines and the quantification of their parameters and performance. The principal objectives of the thesis are: (1)the development of a stable and accurate method of nonlinear three-dimensional field computation and application to electrical machinery and devices; and (2)improvement in the accuracy of determination of performance parameters, particularly forces and torque computed from finite elements. Contributions are made in two general areas: a more efficient formulation for three dimensional finite element analysis which saves time and improves accuracy, and new post-processing techniques to calculate flux density values from a given finite element solution. A novel three-dimensional magnetostatic solution based on a modified scalar potential method is implemented. This method has significant advantages over the traditional total scalar, reduced scalar or vector potential methods. The new method is applied to a 3D geometry of an iron core inductor and a permanent magnet motor. The results obtained are compared with those obtained from traditional methods, in terms of accuracy and speed of computation. A technique which has been observed to improve force computation in two dimensional analysis using a local solution of Laplace's equation in the airgap of machines is investigated and a similar method is implemented in the three dimensional analysis of electromagnetic devices. A new integral formulation to improve force calculation from a smoother flux-density profile is also explored and implemented. Comparisons are made and conclusions drawn as to how much improvement is obtained and at what cost. This thesis also demonstrates the use of finite element analysis to analyze torque ripples due to rotor eccentricity in permanent magnet BLDC motors. A new method for analyzing torque harmonics based on data obtained from a time stepping finite element analysis of the machine is explored and implemented.
NASA Astrophysics Data System (ADS)
Yongzhi, WANG; hui, WANG; Lixia, LIAO; Dongsen, LI
2017-02-01
In order to analyse the geological characteristics of salt rock and stability of salt caverns, rough three-dimensional (3D) models of salt rock stratum and the 3D models of salt caverns on study areas are built by 3D GIS spatial modeling technique. During implementing, multi-source data, such as basic geographic data, DEM, geological plane map, geological section map, engineering geological data, and sonar data are used. In this study, the 3D spatial analyzing and calculation methods, such as 3D GIS intersection detection method in three-dimensional space, Boolean operations between three-dimensional space entities, three-dimensional space grid discretization, are used to build 3D models on wall rock of salt caverns. Our methods can provide effective calculation models for numerical simulation and analysis of the creep characteristics of wall rock in salt caverns.
Split ring resonator based THz-driven electron streak camera featuring femtosecond resolution
Fabiańska, Justyna; Kassier, Günther; Feurer, Thomas
2014-01-01
Through combined three-dimensional electromagnetic and particle tracking simulations we demonstrate a THz driven electron streak camera featuring a temporal resolution on the order of a femtosecond. The ultrafast streaking field is generated in a resonant THz sub-wavelength antenna which is illuminated by an intense single-cycle THz pulse. Since electron bunches and THz pulses are generated with parts of the same laser system, synchronization between the two is inherently guaranteed. PMID:25010060
Observation of backscattering-immune chiral electromagnetic modes without time reversal breaking.
Chen, Wen-Jie; Hang, Zhi Hong; Dong, Jian-Wen; Xiao, Xiao; Wang, He-Zhou; Chan, C T
2011-07-08
A strategy is proposed to realize robust transport in a time reversal invariant photonic system. Using numerical simulation and a microwave experiment, we demonstrate that a chiral guided mode in the channel of a three-dimensional dielectric layer-by-layer photonic crystal is immune to the scattering of a square patch of metal or dielectric inserted to block the channel. The chirality based robust transport can be realized in nonmagnetic dielectric materials without any external field.
1978-11-01
the Proceedings of the IEEE (January 1980) Special Issue on Biologi - cal and Ecoigical Effects and Medical Applications of Electromag- netic Energy...prolate spheroidal and ellipsoidal equivalents of biologi - cal bodies, theoretical calculations have recently been given in a dosimetry handbook3 for...surface layers, e.g., skin, fat, muscle, which normally occur in biologi - cal bodies. It is found that the layering resonance for three-dimensional bodies