Sample records for three-dimensional direct numerical

  1. Three-dimensional supersonic flow around double compression ramp with finite span

    NASA Astrophysics Data System (ADS)

    Lee, H. S.; Lee, J. H.; Park, G.; Park, S. H.; Byun, Y. H.

    2017-01-01

    Three-dimensional flows of Mach number 3 around a double-compression ramp with finite span have been investigated numerically. Shadowgraph visualisation images obtained in a supersonic wind tunnel are used for comparison. A three-dimensional Reynolds-averaged Navier-Stokes solver was used to obtain steady numerical solutions. Two-dimensional numerical results are also compared. Four different cases were studied: two different second ramp angles of 30° and 45° in configurations with and without sidewalls, respectively. Results showed that there is a leakage of mass and momentum fluxes heading outwards in the spanwise direction for three-dimensional cases without sidewalls. The leakage changed the flow characteristics of the shock-induced boundary layer and resulted in the discrepancy between the experimental data and two-dimensional numerical results. It is found that suppressing the flow leakage by attaching the sidewalls enhances the two-dimensionality of the experimental data for the double-compression ramp flow.

  2. Direct Numerical Simulation of a Temporally Evolving Incompressible Plane Wake: Effect of Initial Conditions on Evolution and Topology

    NASA Technical Reports Server (NTRS)

    Sondergaard, R.; Cantwell, B.; Mansour, N.

    1997-01-01

    Direct numerical simulations have been used to examine the effect of the initial disturbance field on the development of three-dimensionality and the transition to turbulence in the incompressible plane wake. The simulations were performed using a new numerical method for solving the time-dependent, three-dimensional, incompressible Navier-Stokes equations in flows with one infinite and two periodic directions. The method uses standard Fast Fourier Transforms and is applicable to cases where the vorticity field is compact in the infinite direction. Initial disturbances fields examined were combinations of two-dimensional waves and symmetric pairs of 60 deg oblique waves at the fundamental, subharmonic, and sub-subharmonic wavelengths. The results of these simulations indicate that the presence of 60 deg disturbances at the subharmonic streamwise wavelength results in the development of strong coherent three-dimensional structures. The resulting strong three-dimensional rate-of-strain triggers the growth of intense fine scale motions. Wakes initiated with 60 deg disturbances at the fundamental streamwise wavelength develop weak coherent streamwise structures, and do not develop significant fine scale motions, even at high Reynolds numbers. The wakes which develop strong three-dimensional structures exhibit growth rates on par with experimentally observed turbulent plane wakes. Wakes which develop only weak three-dimensional structures exhibit significantly lower late time growth rates. Preliminary studies of wakes initiated with an oblique fundamental and a two-dimensional subharmonic, which develop asymmetric coherent oblique structures at the subharmonic wavelength, indicate that significant fine scale motions only develop if the resulting oblique structures are above an angle of approximately 45 deg.

  3. Full-Scale Direct Numerical Simulation of Two- and Three-Dimensional Instabilities and Rivulet Formulation in Heated Falling Films

    NASA Technical Reports Server (NTRS)

    Krishnamoorthy, S.; Ramaswamy, B.; Joo, S. W.

    1995-01-01

    A thin film draining on an inclined plate has been studied numerically using finite element method. Three-dimensional governing equations of continuity, momentum and energy with a moving boundary are integrated in an arbitrary Lagrangian Eulerian frame of reference. Kinematic equation is solved to precisely update interface location. Rivulet formation based on instability mechanism has been simulated using full-scale computation. Comparisons with long-wave theory are made to validate the numerical scheme. Detailed analysis of two- and three-dimensional nonlinear wave formation and spontaneous rupture forming rivulets under the influence of combined thermocapillary and surface-wave instabilities is performed.

  4. Direct numerical simulation of the laminar-turbulent transition at hypersonic flow speeds on a supercomputer

    NASA Astrophysics Data System (ADS)

    Egorov, I. V.; Novikov, A. V.; Fedorov, A. V.

    2017-08-01

    A method for direct numerical simulation of three-dimensional unsteady disturbances leading to a laminar-turbulent transition at hypersonic flow speeds is proposed. The simulation relies on solving the full three-dimensional unsteady Navier-Stokes equations. The computational technique is intended for multiprocessor supercomputers and is based on a fully implicit monotone approximation scheme and the Newton-Raphson method for solving systems of nonlinear difference equations. This approach is used to study the development of three-dimensional unstable disturbances in a flat-plate and compression-corner boundary layers in early laminar-turbulent transition stages at the free-stream Mach number M = 5.37. The three-dimensional disturbance field is visualized in order to reveal and discuss features of the instability development at the linear and nonlinear stages. The distribution of the skin friction coefficient is used to detect laminar and transient flow regimes and determine the onset of the laminar-turbulent transition.

  5. Three-dimensional transient flow of spin-up in a filled cylinder with oblique gravity force

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1995-01-01

    Three-dimensional transient flow profiles of spin-up in a fully liquid filled cylinder from rest with gravity acceleration at various direction are numerically simulated and studied. Particular interests are concentrated on the development of temporary reverse flow zones and Ekman layer right after the impulsive start of spin-up from rest, and decay before the flow reaching to the solid rotation. Relationship of these flow developments and differences in the Reynolds numbers of the flow and its size selection of grid points concerning the numerical instabilities of flow computations are also discussed. In addition to the gravitational acceleration along the axial direction of the cylindrical container, a series of complicated flow profiles accompanied by three-dimensional transient flows with oblique gravitational acceleration has been studies.

  6. Direct numerical simulation of steady state, three dimensional, laminar flow around a wall mounted cube

    NASA Astrophysics Data System (ADS)

    Liakos, Anastasios; Malamataris, Nikolaos A.

    2014-05-01

    The topology and evolution of flow around a surface mounted cubical object in three dimensional channel flow is examined for low to moderate Reynolds numbers. Direct numerical simulations were performed via a home made parallel finite element code. The computational domain has been designed according to actual laboratory experiment conditions. Analysis of the results is performed using the three dimensional theory of separation. Our findings indicate that a tornado-like vortex by the side of the cube is present for all Reynolds numbers for which flow was simulated. A horseshoe vortex upstream from the cube was formed at Reynolds number approximately 1266. Pressure distributions are shown along with three dimensional images of the tornado-like vortex and the horseshoe vortex at selected Reynolds numbers. Finally, and in accordance to previous work, our results indicate that the upper limit for the Reynolds number for which steady state results are physically realizable is roughly 2000.

  7. Full three-dimensional isotropic carpet cloak designed by quasi-conformal transformation optics.

    PubMed

    Silva, Daniely G; Teixeira, Poliane A; Gabrielli, Lucas H; Junqueira, Mateus A F C; Spadoti, Danilo H

    2017-09-18

    A fully three-dimensional carpet cloak presenting invisibility in all viewing angles is theoretically demonstrated. The design is developed using transformation optics and three-dimensional quasi-conformal mapping. Parametrization strategy and numerical optimization of the coordinate transformation deploying a quasi-Newton method is applied. A discussion about the minimum achievable anisotropy in the 3D transformation optics is presented. The method allows to reduce the anisotropy in the cloak and an isotropic medium could be considered. Numerical simulations confirm the strategy employed enabling the design of an isotropic reflectionless broadband carpet cloak independently of the incident light direction and polarization.

  8. Available number of multiplexed holograms based on signal-to-noise ratio analysis in reflection-type holographic memory using three-dimensional speckle-shift multiplexing.

    PubMed

    Nishizaki, Tatsuya; Matoba, Osamu; Nitta, Kouichi

    2014-09-01

    The recording properties of three-dimensional speckle-shift multiplexing in reflection-type holographic memory are analyzed numerically. Three-dimensional recording can increase the number of multiplexed holograms by suppressing the cross-talk noise from adjacent holograms by using depth-direction multiplexing rather than in-plane multiplexing. Numerical results indicate that the number of multiplexed holograms in three-layer recording can be increased by 1.44 times as large as that of a single-layer recording when an acceptable signal-to-noise ratio is set to be 2 when NA=0.43 and the thickness of the recording medium is 0.5 mm.

  9. Analytical and numerical construction of vertical periodic orbits about triangular libration points based on polynomial expansion relations among directions

    NASA Astrophysics Data System (ADS)

    Qian, Ying-Jing; Yang, Xiao-Dong; Zhai, Guan-Qiao; Zhang, Wei

    2017-08-01

    Innovated by the nonlinear modes concept in the vibrational dynamics, the vertical periodic orbits around the triangular libration points are revisited for the Circular Restricted Three-body Problem. The ζ -component motion is treated as the dominant motion and the ξ and η -component motions are treated as the slave motions. The slave motions are in nature related to the dominant motion through the approximate nonlinear polynomial expansions with respect to the ζ -position and ζ -velocity during the one of the periodic orbital motions. By employing the relations among the three directions, the three-dimensional system can be transferred into one-dimensional problem. Then the approximate three-dimensional vertical periodic solution can be analytically obtained by solving the dominant motion only on ζ -direction. To demonstrate the effectiveness of the proposed method, an accuracy study was carried out to validate the polynomial expansion (PE) method. As one of the applications, the invariant nonlinear relations in polynomial expansion form are used as constraints to obtain numerical solutions by differential correction. The nonlinear relations among the directions provide an alternative point of view to explore the overall dynamics of periodic orbits around libration points with general rules.

  10. Direct numerical simulation of steady state, three dimensional, laminar flow around a wall mounted cube

    NASA Astrophysics Data System (ADS)

    Liakos, Anastasios; Malamataris, Nikolaos

    2014-11-01

    The topology and evolution of flow around a surface mounted cubical object in three dimensional channel flow is examined for low to moderate Reynolds numbers. Direct numerical simulations were performed via a home made parallel finite element code. The computational domain has been designed according to actual laboratory experimental conditions. Analysis of the results is performed using the three dimensional theory of separation. Our findings indicate that a tornado-like vortex by the side of the cube is present for all Reynolds numbers for which flow was simulated. A horse-shoe vortex upstream from the cube was formed at Reynolds number approximately 1266. Pressure distributions are shown along with three dimensional images of the tornado-like vortex and the horseshoe vortex at selected Reynolds numbers. Finally, and in accordance to previous work, our results indicate that the upper limit for the Reynolds number for which steady state results are physically realizable is roughly 2000. Financial support of author NM from the Office of Naval Research Global (ONRG-VSP, N62909-13-1-V016) is acknowledged.

  11. Numerical modeling of separated flows at moderate Reynolds numbers appropriate for turbine blades and unmanned aero vehicles

    NASA Astrophysics Data System (ADS)

    Castiglioni, Giacomo

    Flows over airfoils and blades in rotating machinery, for unmanned and micro-aerial vehicles, wind turbines, and propellers consist of a laminar boundary layer near the leading edge that is often followed by a laminar separation bubble and transition to turbulence further downstream. Typical Reynolds averaged Navier-Stokes turbulence models are inadequate for such flows. Direct numerical simulation is the most reliable, but is also the most computationally expensive alternative. This work assesses the capability of immersed boundary methods and large eddy simulations to reduce the computational requirements for such flows and still provide high quality results. Two-dimensional and three-dimensional simulations of a laminar separation bubble on a NACA-0012 airfoil at Rec = 5x104 and at 5° of incidence have been performed with an immersed boundary code and a commercial code using body fitted grids. Several sub-grid scale models have been implemented in both codes and their performance evaluated. For the two-dimensional simulations with the immersed boundary method the results show good agreement with the direct numerical simulation benchmark data for the pressure coefficient Cp and the friction coefficient Cf, but only when using dissipative numerical schemes. There is evidence that this behavior can be attributed to the ability of dissipative schemes to damp numerical noise coming from the immersed boundary. For the three-dimensional simulations the results show a good prediction of the separation point, but an inaccurate prediction of the reattachment point unless full direct numerical simulation resolution is used. The commercial code shows good agreement with the direct numerical simulation benchmark data in both two and three-dimensional simulations, but the presence of significant, unquantified numerical dissipation prevents a conclusive assessment of the actual prediction capabilities of very coarse large eddy simulations with low order schemes in general cases. Additionally, a two-dimensional sweep of angles of attack from 0° to 5° is performed showing a qualitative prediction of the jump in lift and drag coefficients due to the appearance of the laminar separation bubble. The numerical dissipation inhibits the predictive capabilities of large eddy simulations whenever it is of the same order of magnitude or larger than the sub-grid scale dissipation. The need to estimate the numerical dissipation is most pressing for low-order methods employed by commercial computational fluid dynamics codes. Following the recent work of Schranner et al., the equations and procedure for estimating the numerical dissipation rate and the numerical viscosity in a commercial code are presented. The method allows for the computation of the numerical dissipation rate and numerical viscosity in the physical space for arbitrary sub-domains in a self-consistent way, using only information provided by the code in question. The method is first tested for a three-dimensional Taylor-Green vortex flow in a simple cubic domain and compared with benchmark results obtained using an accurate, incompressible spectral solver. Afterwards the same procedure is applied for the first time to a realistic flow configuration, specifically to the above discussed laminar separation bubble flow over a NACA 0012 airfoil. The method appears to be quite robust and its application reveals that for the code and the flow in question the numerical dissipation can be significantly larger than the viscous dissipation or the dissipation of the classical Smagorinsky sub-grid scale model, confirming the previously qualitative finding.

  12. A numerical study of transition control by periodic suction-blowing

    NASA Technical Reports Server (NTRS)

    Biringen, Sedat

    1987-01-01

    The applicability of active control of transition by periodic suction-blowing is investigated via direct numerical simulations of the Navier-Stokes equations. The time-evolution of finite-amplitude disturbances in plane channel flow is compared in detail with and without control. The analysis indicates that, for relatively small three dimensional amplitudes, a two dimensional control effectively reduces disturbance growth rates even for linearly unstable Reynolds numbers. After the flow goes through secondary instability, three dimensional control seems necessary to stabilize the flow. An investigation of the temperature field suggests that passive temperature contamination is operative to reflect the flow dynamics during transition.

  13. Modeling and numerical simulations of growth and morphologies of three dimensional aggregated silver films

    NASA Astrophysics Data System (ADS)

    Davis, L. J.; Boggess, M.; Kodpuak, E.; Deutsch, M.

    2012-11-01

    We report on a model for the deposition of three dimensional, aggregated nanocrystalline silver films, and an efficient numerical simulation method developed for visualizing such structures. We compare our results to a model system comprising chemically deposited silver films with morphologies ranging from dilute, uniform distributions of nanoparticles to highly porous aggregated networks. Disordered silver films grown in solution on silica substrates are characterized using digital image analysis of high resolution scanning electron micrographs. While the latter technique provides little volume information, plane-projected (two dimensional) island structure and surface coverage may be reliably determined. Three parameters governing film growth are evaluated using these data and used as inputs for the deposition model, greatly reducing computing requirements while still providing direct access to the complete (bulk) structure of the films throughout the growth process. We also show how valuable three dimensional characteristics of the deposited materials can be extracted using the simulated structures.

  14. Development and application of a three dimensional numerical model for predicting pollutant and sediment transport using an Eulerian-Lagrangian marker particle technique

    NASA Technical Reports Server (NTRS)

    Pavish, D. L.; Spaulding, M. L.

    1977-01-01

    A computer coded Lagrangian marker particle in Eulerian finite difference cell solution to the three dimensional incompressible mass transport equation, Water Advective Particle in Cell Technique, WAPIC, was developed, verified against analytic solutions, and subsequently applied in the prediction of long term transport of a suspended sediment cloud resulting from an instantaneous dredge spoil release. Numerical results from WAPIC were verified against analytic solutions to the three dimensional incompressible mass transport equation for turbulent diffusion and advection of Gaussian dye releases in unbounded uniform and uniformly sheared uni-directional flow, and for steady-uniform plug channel flow. WAPIC was utilized to simulate an analytic solution for non-equilibrium sediment dropout from an initially vertically uniform particle distribution in one dimensional turbulent channel flow.

  15. Fully three-dimensional direct numerical simulation of a plunging breaker

    NASA Astrophysics Data System (ADS)

    Lubin, Pierre; Vincent, Stéphane; Caltagirone, Jean-Paul; Abadie, Stéphane

    2003-07-01

    The scope of this paper is to show the results obtained for simulating three-dimensional breaking waves by solving the Navier-Stokes equations in air and water. The interface tracking is achieved by a Lax-Wendroff TVD scheme (Total Variation Diminishing), which is able to handle interface reconnections. We first present the equations and the numerical methods used in this work. We then proceed to the study of a three-dimensional plunging breaking wave, using initial conditions corresponding to unstable periodic sinusoidal waves of large amplitudes. We compare the results obtained for two simulations, a longshore depth perturbation has been introduced in the solution of the flow equations in order to see the transition from a two-dimensional velocity field to a fully three-dimensional one after plunging. Breaking processes including overturning, splash-up and breaking induced vortex-like motion beneath the surface are presented and discussed. To cite this article: P. Lubin et al., C. R. Mecanique 331 (2003).

  16. Investigation of Three-Dimensional Unsteady Flow Characteristics in Transonic Diffusers

    NASA Astrophysics Data System (ADS)

    Proshchanka, Dzianis; Yonezawa, Koichi; Tsujimoto, Yoshinobu

    Three-dimensional characteristics of unsteady flow in supercritical transonic diffuser are investigated. For various pressure ratios three-dimensional flow containing a normal shock/turbulent boundary layer interaction regions with shockwave and pseudo-shockwaves fluctuating in longitudinal and spanwise directions is observed. Experimental and numerical investigations show details of the flowfield in the vicinity of terminal shock, interaction regions and downstream turbulent unsteady flow. Spectral analysis of pressure fluctuations reveals existence of two characteristic frequencies attributed to the shockwave fluctuation in longitudinal direction for the lower frequency case and acoustic resonance in spanwise direction for the higher one. Vortices appear at each corner in transversal sections modifying the core flow. As a result, size and depth of longitudinal and vertical penetration of separation regions impelled by the terminal shock is either increased or decreased.

  17. Direct numerical simulations of three-dimensional electrokinetic flows

    NASA Astrophysics Data System (ADS)

    Chiam, Keng-Hwee

    2006-11-01

    We discuss direct numerical simulations of three-dimensional electrokinetic flows in microfluidic devices. In particular, we focus on the study of the electrokinetic instability that develops when two solutions with different electrical conductivities are coupled to an external electric field. We characterize this ``mixing'' instability as a function of the parameters of the model, namely the Reynolds number of the flow, the electric Peclet number of the electrolyte solution, and the ratio of the electroosmotic to the electroviscous time scales. Finally, we describe how this model breaks down when the length scale of the device approaches the nanoscale, where the width of the electric Debye layer is comparable to the width of the channel, and discuss solutions to overcome this.

  18. Development of a three dimensional numerical water quality model for continental shelf applications

    NASA Technical Reports Server (NTRS)

    Spaulding, M.; Hunter, D.

    1975-01-01

    A model to predict the distribution of water quality parameters in three dimensions was developed. The mass transport equation was solved using a non-dimensional vertical axis and an alternating-direction-implicit finite difference technique. The reaction kinetics of the constituents were incorporated into a matrix method which permits computation of the interactions of multiple constituents. Methods for the computation of dispersion coefficients and coliform bacteria decay rates were determined. Numerical investigations of dispersive and dissipative effects showed that the three-dimensional model performs as predicted by analysis of simpler cases. The model was then applied to a two dimensional vertically averaged tidal dynamics model for the Providence River. It was also extended to a steady state application by replacing the time step with an iteration sequence. This modification was verified by comparison to analytical solutions and applied to a river confluence situation.

  19. Direct numerical simulation of axisymmetric turbulence

    NASA Astrophysics Data System (ADS)

    Qu, Bo; Bos, Wouter J. T.; Naso, Aurore

    2017-09-01

    The dynamics of decaying, strictly axisymmetric, incompressible turbulence is investigated using direct numerical simulations. It is found that the angular momentum is a robust invariant of the system. It is further shown that long-lived coherent structures are generated by the flow. These structures can be associated with stationary solutions of the Euler equations. The structures obey relations in agreement with predictions from selective decay principles, compatible with the decay laws of the system. Two different types of decay scenarios are highlighted. The first case results in a quasi-two-dimensional flow with a dynamical behavior in the poloidal plane similar to freely decaying two-dimensional turbulence. In a second regime, the long-time dynamics is dominated by a single three-dimensional mode.

  20. Improved numerical methods for turbulent viscous flows aerothermal modeling program, phase 2

    NASA Technical Reports Server (NTRS)

    Karki, K. C.; Patankar, S. V.; Runchal, A. K.; Mongia, H. C.

    1988-01-01

    The details of a study to develop accurate and efficient numerical schemes to predict complex flows are described. In this program, several discretization schemes were evaluated using simple test cases. This assessment led to the selection of three schemes for an in-depth evaluation based on two-dimensional flows. The scheme with the superior overall performance was incorporated in a computer program for three-dimensional flows. To improve the computational efficiency, the selected discretization scheme was combined with a direct solution approach in which the fluid flow equations are solved simultaneously rather than sequentially.

  1. Three-dimensional volume containing multiple two-dimensional information patterns

    NASA Astrophysics Data System (ADS)

    Nakayama, Hirotaka; Shiraki, Atsushi; Hirayama, Ryuji; Masuda, Nobuyuki; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2013-06-01

    We have developed an algorithm for recording multiple gradated two-dimensional projection patterns in a single three-dimensional object. When a single pattern is observed, information from the other patterns can be treated as background noise. The proposed algorithm has two important features: the number of patterns that can be recorded is theoretically infinite and no meaningful information can be seen outside of the projection directions. We confirmed the effectiveness of the proposed algorithm by performing numerical simulations of two laser crystals: an octagonal prism that contained four patterns in four projection directions and a dodecahedron that contained six patterns in six directions. We also fabricated and demonstrated an actual prototype laser crystal from a glass cube engraved by a laser beam. This algorithm has applications in various fields, including media art, digital signage, and encryption technology.

  2. Direct numerical simulation of human phonation

    NASA Astrophysics Data System (ADS)

    Bodony, Daniel; Saurabh, Shakti

    2017-11-01

    The generation and propagation of the human voice in three-dimensions is studied using direct numerical simulation. A full body domain is employed for the purpose of directly computing the sound in the region past the speaker's mouth. The air in the vocal tract is modeled as a compressible and viscous fluid interacting with the elastic vocal folds. The vocal fold tissue material properties are multi-layered, with varying stiffness, and a linear elastic transversely isotropic model is utilized and implemented in a quadratic finite element code. The fluid-solid domains are coupled through a boundary-fitted interface and utilize a Poisson equation-based mesh deformation method. A kinematic constraint based on a specified minimum gap between the vocal folds is applied to prevent collision during glottal closure. Both near VF flow dynamics and far-field acoustics have been studied. A comparison is drawn to current two-dimensional simulations as well as to data from the literature. Near field vocal fold dynamics and glottal flow results are studied and in good agreement with previous three-dimensional phonation studies. Far-field acoustic characteristics, when compared to their two-dimensional counterpart, are shown to be sensitive to the dimensionality. Supported by the National Science Foundation (CAREER Award Number 1150439).

  3. The dimension split element-free Galerkin method for three-dimensional potential problems

    NASA Astrophysics Data System (ADS)

    Meng, Z. J.; Cheng, H.; Ma, L. D.; Cheng, Y. M.

    2018-06-01

    This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.

  4. Contributions of numerical simulation data bases to the physics, modeling and measurement of turbulence

    NASA Technical Reports Server (NTRS)

    Moin, Parviz; Spalart, Philippe R.

    1987-01-01

    The use of simulation data bases for the examination of turbulent flows is an effective research tool. Studies of the structure of turbulence have been hampered by the limited number of probes and the impossibility of measuring all desired quantities. Also, flow visualization is confined to the observation of passive markers with limited field of view and contamination caused by time-history effects. Computer flow fields are a new resource for turbulence research, providing all the instantaneous flow variables in three-dimensional space. Simulation data bases also provide much-needed information for phenomenological turbulence modeling. Three dimensional velocity and pressure fields from direct simulations can be used to compute all the terms in the transport equations for the Reynolds stresses and the dissipation rate. However, only a few, geometrically simple flows have been computed by direct numerical simulation, and the inventory of simulation does not fully address the current modeling needs in complex turbulent flows. The availability of three-dimensional flow fields also poses challenges in developing new techniques for their analysis, techniques based on experimental methods, some of which are used here for the analysis of direct-simulation data bases in studies of the mechanics of turbulent flows.

  5. Simulation of wave propagation in three-dimensional random media

    NASA Technical Reports Server (NTRS)

    Coles, William A.; Filice, J. P.; Frehlich, R. G.; Yadlowsky, M.

    1993-01-01

    Quantitative error analysis for simulation of wave propagation in three dimensional random media assuming narrow angular scattering are presented for the plane wave and spherical wave geometry. This includes the errors resulting from finite grid size, finite simulation dimensions, and the separation of the two-dimensional screens along the propagation direction. Simple error scalings are determined for power-law spectra of the random refractive index of the media. The effects of a finite inner scale are also considered. The spatial spectra of the intensity errors are calculated and compared to the spatial spectra of intensity. The numerical requirements for a simulation of given accuracy are determined for realizations of the field. The numerical requirements for accurate estimation of higher moments of the field are less stringent.

  6. A three-dimensional turbulent separated flow and related mesurements

    NASA Technical Reports Server (NTRS)

    Pierce, F. J.

    1985-01-01

    The applicability of and the limits on the applicability of 11 near wall similarity laws characterizing three-dimensional turbulent boundary layer flows were determined. A direct force sensing local wall shear stress meter was used in both pressure-driven and shear-driven three-dimensional turbulent boundary layers, together with extensive mean velocity field and wall pressure field data. This resulted in a relatively large number of graphical comparisons of the predictive ability of 10 of these 11 similarity models relative to measured data over a wide range of flow conditions. Documentation of a complex, separated three-dimensional turbulent flow as a standard test case for evaluating the predictive ability of numerical codes solving such flows is presented.

  7. Accurate complex scaling of three dimensional numerical potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerioni, Alessandro; Genovese, Luigi; Duchemin, Ivan

    2013-05-28

    The complex scaling method, which consists in continuing spatial coordinates into the complex plane, is a well-established method that allows to compute resonant eigenfunctions of the time-independent Schroedinger operator. Whenever it is desirable to apply the complex scaling to investigate resonances in physical systems defined on numerical discrete grids, the most direct approach relies on the application of a similarity transformation to the original, unscaled Hamiltonian. We show that such an approach can be conveniently implemented in the Daubechies wavelet basis set, featuring a very promising level of generality, high accuracy, and no need for artificial convergence parameters. Complex scalingmore » of three dimensional numerical potentials can be efficiently and accurately performed. By carrying out an illustrative resonant state computation in the case of a one-dimensional model potential, we then show that our wavelet-based approach may disclose new exciting opportunities in the field of computational non-Hermitian quantum mechanics.« less

  8. The development of a three-dimensional partially elliptic flow computer program for combustor research

    NASA Technical Reports Server (NTRS)

    Pan, Y. S.

    1978-01-01

    A three dimensional, partially elliptic, computer program was developed. Without requiring three dimensional computer storage locations for all flow variables, the partially elliptic program is capable of predicting three dimensional combustor flow fields with large downstream effects. The program requires only slight increase of computer storage over the parabolic flow program from which it was developed. A finite difference formulation for a three dimensional, fully elliptic, turbulent, reacting, flow field was derived. Because of the negligible diffusion effects in the main flow direction in a supersonic combustor, the set of finite-difference equations can be reduced to a partially elliptic form. Only the pressure field was governed by an elliptic equation and requires three dimensional storage; all other dependent variables are governed by parabolic equations. A numerical procedure which combines a marching integration scheme with an iterative scheme for solving the elliptic pressure was adopted.

  9. Three-dimensional modeling of electron quasiviscous dissipation in guide-field magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hesse, Michael; Kuznetsova, Masha; Schindler, Karl

    2005-10-01

    A numerical study of guide-field magnetic reconnection in a three-dimensional model is presented. Starting from an initial, perturbed, force-free current sheet, it is shown that reconnection develops to an almost translationally invariant state, where magnetic perturbations are aligned primarily along the main current flow direction. An analysis of guide-field and electron flow signatures indicates behavior that is very similar to earlier, albeit not three-dimensional, simulations. Furthermore, a detailed investigation of electron pressure nongyrotropies in the central diffusion region confirms the major role the associated dissipation process plays in establishing the reconnection electric field.

  10. On the construction of a direct numerical simulation of a breaking inertia-gravity wave in the upper mesosphere

    NASA Astrophysics Data System (ADS)

    Fruman, Mark D.; Remmler, Sebastian; Achatz, Ulrich; Hickel, Stefan

    2014-10-01

    A systematic approach to the direct numerical simulation (DNS) of breaking upper mesospheric inertia-gravity waves of amplitude close to or above the threshold for static instability is presented. Normal mode or singular vector analysis applied in a frame of reference moving with the phase velocity of the wave (in which the wave is a steady solution) is used to determine the most likely scale and structure of the primary instability and to initialize nonlinear "2.5-D" simulations (with three-dimensional velocity and vorticity fields but depending only on two spatial coordinates). Singular vector analysis is then applied to the time-dependent 2.5-D solution to predict the transition of the breaking event to three-dimensional turbulence and to initialize three-dimensional DNS. The careful choice of the computational domain and the relatively low Reynolds numbers, on the order of 25,000, relevant to breaking waves in the upper mesosphere, makes the three-dimensional DNS tractable with present-day computing clusters. Three test cases are presented: a statically unstable low-frequency inertia-gravity wave, a statically and dynamically stable inertia-gravity wave, and a statically unstable high-frequency gravity wave. The three-dimensional DNS are compared to ensembles of 2.5-D simulations. In general, the decay of the wave and generation of turbulence is faster in three dimensions, but the results are otherwise qualitatively and quantitatively similar, suggesting that results of 2.5-D simulations are meaningful if the domain and initial condition are chosen properly.

  11. Direct numerical simulation of a compressible boundary-layer flow past an isolated three-dimensional hump in a high-speed subsonic regime

    NASA Astrophysics Data System (ADS)

    De Grazia, D.; Moxey, D.; Sherwin, S. J.; Kravtsova, M. A.; Ruban, A. I.

    2018-02-01

    In this paper we study the boundary-layer separation produced in a high-speed subsonic boundary layer by a small wall roughness. Specifically, we present a direct numerical simulation (DNS) of a two-dimensional boundary-layer flow over a flat plate encountering a three-dimensional Gaussian-shaped hump. This work was motivated by the lack of DNS data of boundary-layer flows past roughness elements in a similar regime which is typical of civil aviation. The Mach and Reynolds numbers are chosen to be relevant for aeronautical applications when considering small imperfections at the leading edge of wings. We analyze different heights of the hump: The smaller heights result in a weakly nonlinear regime, while the larger result in a fully nonlinear regime with an increasing laminar separation bubble arising downstream of the roughness element and the formation of a pair of streamwise counterrotating vortices which appear to support themselves.

  12. Multi-dimensional high order essentially non-oscillatory finite difference methods in generalized coordinates

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    1992-01-01

    The nonlinear stability of compact schemes for shock calculations is investigated. In recent years compact schemes were used in various numerical simulations including direct numerical simulation of turbulence. However to apply them to problems containing shocks, one has to resolve the problem of spurious numerical oscillation and nonlinear instability. A framework to apply nonlinear limiting to a local mean is introduced. The resulting scheme can be proven total variation (1D) or maximum norm (multi D) stable and produces nice numerical results in the test cases. The result is summarized in the preprint entitled 'Nonlinearly Stable Compact Schemes for Shock Calculations', which was submitted to SIAM Journal on Numerical Analysis. Research was continued on issues related to two and three dimensional essentially non-oscillatory (ENO) schemes. The main research topics include: parallel implementation of ENO schemes on Connection Machines; boundary conditions; shock interaction with hydrogen bubbles, a preparation for the full combustion simulation; and direct numerical simulation of compressible sheared turbulence.

  13. Surface representations of two- and three-dimensional fluid flow topology

    NASA Technical Reports Server (NTRS)

    Helman, James L.; Hesselink, Lambertus

    1990-01-01

    We discuss our work using critical point analysis to generate representations of the vector field topology of numerical flow data sets. Critical points are located and characterized in a two-dimensional domain, which may be either a two-dimensional flow field or the tangential velocity field near a three-dimensional body. Tangent curves are then integrated out along the principal directions of certain classes of critical points. The points and curves are linked to form a skeleton representing the two-dimensional vector field topology. When generated from the tangential velocity field near a body in a three-dimensional flow, the skeleton includes the critical points and curves which provide a basis for analyzing the three-dimensional structure of the flow separation. The points along the separation curves in the skeleton are used to start tangent curve integrations to generate surfaces representing the topology of the associated flow separations.

  14. Transonic blade-vortex interactions - The far field

    NASA Astrophysics Data System (ADS)

    Lyrintzis, A. S.; George, A. R.

    Numerical techniques are developed to predict midfield and far-field helicopter noise due to main-rotor blade-vortex interaction (BVI). The extension of the two-dimensional small-disturbance transonic flow code VTRAN2 (George and Chang, 1983) to the three-dimensional far field (via the Green-function approach of Kirchhoff) is described, and the treatment of oblique BVIs is discussed. Numerical results for a NACA 64A006 airfoil at Mach 0.82 are presented in extensive graphs and characterized in detail. The far-field BVI signature is shown to begin with a strongly forward-directed primary wave (from the original BVI), with an additional downward-directed wave in the case of type C shock motion on the blade.

  15. DNSs of Multicomponent Gaseous and Drop-Laden Mixing Layers Achieving Transition to Turbulence

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Selle, Laurent

    2007-01-01

    A paper describes direct numerical simulations (DNSs) of three-dimensional mixing-layer flows undergoing transition to turbulence; the mixing layers may or may not be laden with evaporating liquid drops.

  16. The Thin Oil Film Equation

    NASA Technical Reports Server (NTRS)

    Brown, James L.; Naughton, Jonathan W.

    1999-01-01

    A thin film of oil on a surface responds primarily to the wall shear stress generated on that surface by a three-dimensional flow. The oil film is also subject to wall pressure gradients, surface tension effects and gravity. The partial differential equation governing the oil film flow is shown to be related to Burgers' equation. Analytical and numerical methods for solving the thin oil film equation are presented. A direct numerical solver is developed where the wall shear stress variation on the surface is known and which solves for the oil film thickness spatial and time variation on the surface. An inverse numerical solver is also developed where the oil film thickness spatial variation over the surface at two discrete times is known and which solves for the wall shear stress variation over the test surface. A One-Time-Level inverse solver is also demonstrated. The inverse numerical solver provides a mathematically rigorous basis for an improved form of a wall shear stress instrument suitable for application to complex three-dimensional flows. To demonstrate the complexity of flows for which these oil film methods are now suitable, extensive examination is accomplished for these analytical and numerical methods as applied to a thin oil film in the vicinity of a three-dimensional saddle of separation.

  17. Three-dimensional simulation of vortex breakdown

    NASA Technical Reports Server (NTRS)

    Kuruvila, G.; Salas, M. D.

    1990-01-01

    The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.

  18. A three-dimensional non-isothermal model for a membraneless direct methanol redox fuel cell

    NASA Astrophysics Data System (ADS)

    Wei, Lin; Yuan, Xianxia; Jiang, Fangming

    2018-05-01

    In the membraneless direct methanol redox fuel cell (DMRFC), three-dimensional electrodes contribute to the reduction of methanol crossover and the open separator design lowers the system cost and extends its service life. In order to better understand the mechanisms of this configuration and further optimize its performance, the development of a three-dimensional numerical model is reported in this work. The governing equations of the multi-physics field are solved based on computational fluid dynamics methodology, and the influence of the CO2 gas is taken into consideration through the effective diffusivities. The numerical results are in good agreement with experimental data, and the deviation observed for cases of large current density may be related to the single-phase assumption made. The three-dimensional electrode is found to be effective in controlling methanol crossover in its multi-layer structure, while it also increases the flow resistance for the discharging products. It is found that the current density distribution is affected by both the electronic conductivity and the concentration of reactants, and the temperature rise can be primarily attributed to the current density distribution. The sensitivity and reliability of the model are analyzed through the investigation of the effects of cell parameters, including porosity values of gas diffusion layers and catalyst layers, methanol concentration and CO2 volume fraction, on the polarization characteristics.

  19. Numerical simulation of premixed flame propagation in a closed tube

    NASA Astrophysics Data System (ADS)

    Kuzuu, Kazuto; Ishii, Katsuya; Kuwahara, Kunio

    1996-08-01

    Premixed flame propagation of methane-air mixture in a closed tube is estimated through a direct numerical simulation of the three-dimensional unsteady Navier-Stokes equations coupled with chemical reaction. In order to deal with a combusting flow, an extended version of the MAC method, which can be applied to a compressible flow with strong density variation, is employed as a numerical method. The chemical reaction is assumed to be an irreversible single step reaction between methane and oxygen. The chemical species are CH 4, O 2, N 2, CO 2, and H 2O. In this simulation, we reproduce a formation of a tulip flame in a closed tube during the flame propagation. Furthermore we estimate not only a two-dimensional shape but also a three-dimensional structure of the flame and flame-induced vortices, which cannot be observed in the experiments. The agreement between the calculated results and the experimental data is satisfactory, and we compare the phenomenon near the side wall with the one in the corner of the tube.

  20. Herringbone streaks in Taylor-Couette turbulence.

    PubMed

    Dong, S

    2008-03-01

    We study near-wall streaks that form herringbonelike patterns in Taylor-Couette turbulence and in counter-rotating Taylor-Couette turbulence through three-dimensional direct numerical simulations. The orientation, axial distribution, onset, and tilting angle of these streaks are characterized.

  1. Direct numerical simulation of laminar-turbulent flow over a flat plate at hypersonic flow speeds

    NASA Astrophysics Data System (ADS)

    Egorov, I. V.; Novikov, A. V.

    2016-06-01

    A method for direct numerical simulation of a laminar-turbulent flow around bodies at hypersonic flow speeds is proposed. The simulation is performed by solving the full three-dimensional unsteady Navier-Stokes equations. The method of calculation is oriented to application of supercomputers and is based on implicit monotonic approximation schemes and a modified Newton-Raphson method for solving nonlinear difference equations. By this method, the development of three-dimensional perturbations in the boundary layer over a flat plate and in a near-wall flow in a compression corner is studied at the Mach numbers of the free-stream of M = 5.37. In addition to pulsation characteristic, distributions of the mean coefficients of the viscous flow in the transient section of the streamlined surface are obtained, which enables one to determine the beginning of the laminar-turbulent transition and estimate the characteristics of the turbulent flow in the boundary layer.

  2. Viewing Angle Classification of Cryo-Electron Microscopy Images Using Eigenvectors

    PubMed Central

    Singer, A.; Zhao, Z.; Shkolnisky, Y.; Hadani, R.

    2012-01-01

    The cryo-electron microscopy (cryo-EM) reconstruction problem is to find the three-dimensional structure of a macromolecule given noisy versions of its two-dimensional projection images at unknown random directions. We introduce a new algorithm for identifying noisy cryo-EM images of nearby viewing angles. This identification is an important first step in three-dimensional structure determination of macromolecules from cryo-EM, because once identified, these images can be rotationally aligned and averaged to produce “class averages” of better quality. The main advantage of our algorithm is its extreme robustness to noise. The algorithm is also very efficient in terms of running time and memory requirements, because it is based on the computation of the top few eigenvectors of a specially designed sparse Hermitian matrix. These advantages are demonstrated in numerous numerical experiments. PMID:22506089

  3. Robust Multigrid Smoothers for Three Dimensional Elliptic Equations with Strong Anisotropies

    NASA Technical Reports Server (NTRS)

    Llorente, Ignacio M.; Melson, N. Duane

    1998-01-01

    We discuss the behavior of several plane relaxation methods as multigrid smoothers for the solution of a discrete anisotropic elliptic model problem on cell-centered grids. The methods compared are plane Jacobi with damping, plane Jacobi with partial damping, plane Gauss-Seidel, plane zebra Gauss-Seidel, and line Gauss-Seidel. Based on numerical experiments and local mode analysis, we compare the smoothing factor of the different methods in the presence of strong anisotropies. A four-color Gauss-Seidel method is found to have the best numerical and architectural properties of the methods considered in the present work. Although alternating direction plane relaxation schemes are simpler and more robust than other approaches, they are not currently used in industrial and production codes because they require the solution of a two-dimensional problem for each plane in each direction. We verify the theoretical predictions of Thole and Trottenberg that an exact solution of each plane is not necessary and that a single two-dimensional multigrid cycle gives the same result as an exact solution, in much less execution time. Parallelization of the two-dimensional multigrid cycles, the kernel of the three-dimensional implicit solver, is also discussed. Alternating-plane smoothers are found to be highly efficient multigrid smoothers for anisotropic elliptic problems.

  4. A Noniterative Technique for the Direct Implementation of Well Bore Boundary Conditions in Three-Dimensional Heterogeneous Formations

    NASA Astrophysics Data System (ADS)

    Sudicky, E. A.; Unger, A. J. A.; Lacombe, S.

    1995-02-01

    A noniterative algorithm for handling prescribed well bore boundary conditions while pumping or injecting fluid in a three-dimensional heterogeneous aquifer is described. The algorithm is formulated by superimposing conductive one-dimensional line elements representing the well screen onto the three-dimensional matrix elements epresenting the aquifer. Storage in the well casing is also naturally accommodated by the superposition of the line elements. The numerical algorithm is verified by comparison with results obtained from the solution of Papadopulos and Cooper (1967). A large-scale example problem involving groundwater extraction from a partially penetrating pumping well located in a highly heterogeneous confined aquifer is presented to demonstrate the utility of the approach.

  5. Evaluation of the Anisotropic Radiative Conductivity of a Low-Density Carbon Fiber Material from Realistic Microscale Imaging

    NASA Technical Reports Server (NTRS)

    Nouri, Nima; Panerai, Francesco; Tagavi, Kaveh A.; Mansour, Nagi N.; Martin, Alexandre

    2015-01-01

    The radiative heat transfer inside a low-density carbon fiber insulator is analyzed using a three-dimensional direct simulation model. A robust procedure is presented for the numerical calculation of the geometric configuration factor to compute the radiative energy exchange processes among the small discretized surface areas of the fibrous material. The methodology is applied to a polygonal mesh of a fibrous insulator obtained from three-dimensional microscale imaging of the real material. The anisotropic values of the radiative conductivity are calculated for that geometry. The results yield both directional and thermal dependence of the radiative conductivity.

  6. Macroscopic response in active nonlinear photonic crystals.

    PubMed

    Alagappan, Gandhi; John, Sajeev; Li, Er Ping

    2013-09-15

    We derive macroscopic equations of motion for the slowly varying electric field amplitude in three-dimensional active nonlinear optical nanostructures. We show that the microscopic Maxwell equations and polarization dynamics can be simplified to a macroscopic one-dimensional problem in the direction of group velocity. For a three-level active material, we derive the steady-state equations for normal mode frequency, threshold pumping, nonlinear Bloch mode amplitude, and lasing in photonic crystals. Our analytical results accurately recapture the results of exact numerical methods.

  7. Three dimensional flow computations in a turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Ghantous, C. A.

    1982-01-01

    The compressible three dimensional inviscid flow in the scroll and vaneless nozzle of radial inflow turbines is analyzed. A FORTRAN computer program for the numerical solution of this complex flow field using the finite element method is presented. The program input consists of the mass flow rate and stagnation conditions at the scroll inlet and of the finite element discretization parameters and nodal coordinates. The output includes the pressure, Mach number and velocity magnitude and direction at all the nodal points.

  8. A numerical study of the 3-periodic wave solutions to KdV-type equations

    NASA Astrophysics Data System (ADS)

    Zhang, Yingnan; Hu, Xingbiao; Sun, Jianqing

    2018-02-01

    In this paper, by using the direct method of calculating periodic wave solutions proposed by Akira Nakamura, we present a numerical process to calculate the 3-periodic wave solutions to several KdV-type equations: the Korteweg-de Vries equation, the Sawada-Koterra equation, the Boussinesq equation, the Ito equation, the Hietarinta equation and the (2 + 1)-dimensional Kadomtsev-Petviashvili equation. Some detailed numerical examples are given to show the existence of the three-periodic wave solutions numerically.

  9. Direct Simulation of Evolution and Control of Three-Dimensional Instabilities in Attachment-Line Boundary Layers

    NASA Technical Reports Server (NTRS)

    Joslin, Ronald D.

    1995-01-01

    The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier-Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic- source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in at-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.

  10. Comprehensive Numerical Analysis of Finite Difference Time Domain Methods for Improving Optical Waveguide Sensor Accuracy

    PubMed Central

    Samak, M. Mosleh E. Abu; Bakar, A. Ashrif A.; Kashif, Muhammad; Zan, Mohd Saiful Dzulkifly

    2016-01-01

    This paper discusses numerical analysis methods for different geometrical features that have limited interval values for typically used sensor wavelengths. Compared with existing Finite Difference Time Domain (FDTD) methods, the alternating direction implicit (ADI)-FDTD method reduces the number of sub-steps by a factor of two to three, which represents a 33% time savings in each single run. The local one-dimensional (LOD)-FDTD method has similar numerical equation properties, which should be calculated as in the previous method. Generally, a small number of arithmetic processes, which result in a shorter simulation time, are desired. The alternating direction implicit technique can be considered a significant step forward for improving the efficiency of unconditionally stable FDTD schemes. This comparative study shows that the local one-dimensional method had minimum relative error ranges of less than 40% for analytical frequencies above 42.85 GHz, and the same accuracy was generated by both methods.

  11. Measurement of impinging butane flame using combined optical system with digital speckle tomography

    NASA Astrophysics Data System (ADS)

    Ko, Han Seo; Ahn, Seong Soo; Kim, Hyun Jung

    2011-11-01

    Three-dimensional density distributions of an impinging and eccentric flame were measured experimentally using a combined optical system with digital speckle tomography. In addition, a three-dimensional temperature distribution of the flame was reconstructed from an ideal gas equation based on the reconstructed density data. The flame was formed by the ignition of premixed butane/air from air holes and impinged upward against a plate located 24 mm distance from the burner nozzle. In order to verify the reconstruction process for the experimental measurements, numerically synthesized phantoms of impinging and eccentric flames were derived and reconstructed using a developed three-dimensional multiplicative algebraic reconstruction technique (MART). A new scanning technique was developed for the accurate analysis of speckle displacements necessary for investigating the wall jet regions of the impinging flame at which a sharp variation of the flow direction and pressure gradient occur. The reconstructed temperatures by the digital speckle tomography were applied to the boundary condition for numerical analysis of a flame impinged plate. Then, the numerically calculated temperature distribution of the upper side of the flame impinged plate was compared to temperature data taken by an infrared camera. The absolute average uncertainty between the numerical and infrared camera data was 3.7%.

  12. On the Solution of the Three-Dimensional Flowfield About a Flow-Through Nacelle. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Compton, William Bernard

    1985-01-01

    The solution of the three dimensional flow field for a flow through nacelle was studied. Both inviscid and viscous inviscid interacting solutions were examined. Inviscid solutions were obtained with two different computational procedures for solving the three dimensional Euler equations. The first procedure employs an alternating direction implicit numerical algorithm, and required the development of a complete computational model for the nacelle problem. The second computational technique employs a fourth order Runge-Kutta numerical algorithm which was modified to fit the nacelle problem. Viscous effects on the flow field were evaluated with a viscous inviscid interacting computational model. This model was constructed by coupling the explicit Euler solution procedure with a flag entrainment boundary layer solution procedure in a global iteration scheme. The computational techniques were used to compute the flow field for a long duct turbofan engine nacelle at free stream Mach numbers of 0.80 and 0.94 and angles of attack of 0 and 4 deg.

  13. Flow transition with 2-D roughness elements in a 3-D channel

    NASA Technical Reports Server (NTRS)

    Liu, Zhining; Liu, Chaoquin; Mccormick, Stephen F.

    1993-01-01

    We develop a new numerical approach to study the spatially evolving instability of the streamwise dominant flow in the presence of roughness elements. The difficulty in handling the flow over the boundary surface with general geometry is removed by using a new conservative form of the governing equations and an analytical mapping. The numerical scheme uses second-order backward Euler in time, fourth-order central differences in all three spatial directions, and boundary-fitted staggered grids. A three-dimensional channel with multiple two-dimensional-type roughness elements is employed as the test case. Fourier analysis is used to decompose different Fourier modes of the disturbance. The results show that surface roughness leads to transition at lower Reynolds number than for smooth channels.

  14. Universal statistics of vortex tangles in three-dimensional random waves

    NASA Astrophysics Data System (ADS)

    Taylor, Alexander J.

    2018-02-01

    The tangled nodal lines (wave vortices) in random, three-dimensional wavefields are studied as an exemplar of a fractal loop soup. Their statistics are a three-dimensional counterpart to the characteristic random behaviour of nodal domains in quantum chaos, but in three dimensions the filaments can wind around one another to give distinctly different large scale behaviours. By tracing numerically the structure of the vortices, their conformations are shown to follow recent analytical predictions for random vortex tangles with periodic boundaries, where the local disorder of the model ‘averages out’ to produce large scale power law scaling relations whose universality classes do not depend on the local physics. These results explain previous numerical measurements in terms of an explicit effect of the periodic boundaries, where the statistics of the vortices are strongly affected by the large scale connectedness of the system even at arbitrarily high energies. The statistics are investigated primarily for static (monochromatic) wavefields, but the analytical results are further shown to directly describe the reconnection statistics of vortices evolving in certain dynamic systems, or occurring during random perturbations of the static configuration.

  15. Numerical investigations of hybrid rocket engines

    NASA Astrophysics Data System (ADS)

    Betelin, V. B.; Kushnirenko, A. G.; Smirnov, N. N.; Nikitin, V. F.; Tyurenkova, V. V.; Stamov, L. I.

    2018-03-01

    Paper presents the results of numerical studies of hybrid rocket engines operating cycle including unsteady-state transition stage. A mathematical model is developed accounting for the peculiarities of diffusion combustion of fuel in the flow of oxidant, which is composed of oxygen-nitrogen mixture. Three dimensional unsteady-state simulations of chemically reacting gas mixture above thermochemically destructing surface are performed. The results show that the diffusion combustion brings to strongly non-uniform fuel mass regression rate in the flow direction. Diffusive deceleration of chemical reaction brings to the decrease of fuel regression rate in the longitudinal direction.

  16. Direct Harmonic Linear Navier-Stokes Methods for Efficient Simulation of Wave Packets

    NASA Technical Reports Server (NTRS)

    Streett, C. L.

    1998-01-01

    Wave packets produced by localized disturbances play an important role in transition in three-dimensional boundary layers, such as that on a swept wing. Starting with the receptivity process, we show the effects of wave-space energy distribution on the development of packets and other three-dimensional disturbance patterns. Nonlinearity in the receptivity process is specifically addressed, including demonstration of an effect which can enhance receptivity of traveling crossflow disturbances. An efficient spatial numerical simulation method is allowing most of the simulations presented to be carried out on a workstation.

  17. Reynolds stress closure modeling in wall-bounded flows

    NASA Technical Reports Server (NTRS)

    Durbin, Paul A.

    1993-01-01

    This report describes two projects. Firstly, a Reynolds stress closure for near-wall turbulence is described. It was motivated by the simpler k-epsilon-(v-bar(exp 2)) model described in last year's annual research brief. Direct Numerical Simulation of three-dimensional channel flow shows a curious decrease of the turbulent kinetic energy. The second topic of this report is a model which reproduces this effect. That model is described and used to discuss the relevance of the three dimensional channel flow simulation to swept wing boundary layers.

  18. Light-transmittance predictions under multiple-light-scattering conditions. I. Direct problem: hybrid-method approximation.

    PubMed

    Czerwiński, M; Mroczka, J; Girasole, T; Gouesbet, G; Gréhan, G

    2001-03-20

    Our aim is to present a method of predicting light transmittances through dense three-dimensional layered media. A hybrid method is introduced as a combination of the four-flux method with coefficients predicted from a Monte Carlo statistical model to take into account the actual three-dimensional geometry of the problem under study. We present the principles of the hybrid method, some exemplifying results of numerical simulations, and their comparison with results obtained from Bouguer-Lambert-Beer law and from Monte Carlo simulations.

  19. Numerical modelling techniques of soft soil improvement via stone columns: A brief review

    NASA Astrophysics Data System (ADS)

    Zukri, Azhani; Nazir, Ramli

    2018-04-01

    There are a number of numerical studies on stone column systems in the literature. Most of the studies found were involved with two-dimensional analysis of the stone column behaviour, while only a few studies used three-dimensional analysis. The most popular software utilised in those studies was Plaxis 2D and 3D. Other types of software that used for numerical analysis are DIANA, EXAMINE, ZSoil, ABAQUS, ANSYS, NISA, GEOSTUDIO, CRISP, TOCHNOG, CESAR, GEOFEM (2D & 3D), FLAC, and FLAC 3. This paper will review the methodological approaches to model stone column numerically, both in two-dimensional and three-dimensional analyses. The numerical techniques and suitable constitutive model used in the studies will also be discussed. In addition, the validation methods conducted were to verify the numerical analysis conducted will be presented. This review paper also serves as a guide for junior engineers through the applicable procedures and considerations when constructing and running a two or three-dimensional numerical analysis while also citing numerous relevant references.

  20. Pattern formation and three-dimensional instability in rotating flows

    NASA Astrophysics Data System (ADS)

    Christensen, Erik A.; Aubry, Nadine; Sorensen, Jens N.

    1997-03-01

    A fluid flow enclosed in a cylindrical container where fluid motion is created by the rotation of one end wall as a centrifugal fan is studied. Direct numerical simulations and spatio-temporal analysis have been performed in the early transition scenario, which includes a steady-unsteady transition and a breakdown of axisymmetric to three-dimensional flow behavior. In the early unsteady regime of the flow, the central vortex undergoes a vertical beating motion, accompanied by axisymmetric spikes formation on the edge of the breakdown bubble. As traveling waves, the spikes move along the central vortex core toward the rotating end-wall. As the Reynolds number is increased further, the flow undergoes a three-dimensional instability. The influence of the latter on the previous patterns is studied.

  1. Transition between quasi-two-dimensional and three-dimensional Rayleigh-Bénard convection in a horizontal magnetic field

    NASA Astrophysics Data System (ADS)

    Vogt, Tobias; Ishimi, Wataru; Yanagisawa, Takatoshi; Tasaka, Yuji; Sakuraba, Ataru; Eckert, Sven

    2018-01-01

    Magnetohydrodynamic Rayleigh-Bénard convection was studied experimentally and numerically using a liquid metal inside a box with a square horizontal cross section and an aspect ratio of 5. Applying a sufficiently strong horizontal magnetic field converts the convective motion into a flow pattern of quasi-two-dimensional (quasi-2D) rolls arranged parallel to the magnetic field. The aim of this paper is to provide a detailed description of the flow field, which is often considered as quasi-2D. In this paper, we focus on the transition from a quasi-two-dimensional state toward a three-dimensional flow occurring with decreasing magnetic-field strength. We present systematic flow measurements that were performed by means of ultrasound Doppler velocimetry. The measured data provide insight into the dynamics of the primary convection rolls, the secondary flow induced by Ekman pumping, and they reveal the existence of small vortices that develop around the convection rolls. New flow regimes have been identified by the velocity measurements, which show a pronounced manifestation of three-dimensional flow structures as the ratio Ra /Q increases. The interaction between the primary swirling motion of the convection rolls and the secondary flow becomes increasingly strong. Significant bulging of the convection rolls causes a breakdown of the original recirculation loop driven by Ekman pumping into several smaller cells. The flow measurements are completed by direct numerical simulations. The numerical simulations have proven to be able to qualitatively reproduce the newly discovered flow regimes in the experiment.

  2. The boundary element method applied to 3D magneto-electro-elastic dynamic problems

    NASA Astrophysics Data System (ADS)

    Igumnov, L. A.; Markov, I. P.; Kuznetsov, Iu A.

    2017-11-01

    Due to the coupling properties, the magneto-electro-elastic materials possess a wide number of applications. They exhibit general anisotropic behaviour. Three-dimensional transient analyses of magneto-electro-elastic solids can hardly be found in the literature. 3D direct boundary element formulation based on the weakly-singular boundary integral equations in Laplace domain is presented in this work for solving dynamic linear magneto-electro-elastic problems. Integral expressions of the three-dimensional fundamental solutions are employed. Spatial discretization is based on a collocation method with mixed boundary elements. Convolution quadrature method is used as a numerical inverse Laplace transform scheme to obtain time domain solutions. Numerical examples are provided to illustrate the capability of the proposed approach to treat highly dynamic problems.

  3. Numerical investigation of the vortex-induced vibration of an elastically mounted circular cylinder at high Reynolds number (Re = 104) and low mass ratio using the RANS code.

    PubMed

    Khan, Niaz Bahadur; Ibrahim, Zainah; Nguyen, Linh Tuan The; Javed, Muhammad Faisal; Jameel, Mohammed

    2017-01-01

    This study numerically investigates the vortex-induced vibration (VIV) of an elastically mounted rigid cylinder by using Reynolds-averaged Navier-Stokes (RANS) equations with computational fluid dynamic (CFD) tools. CFD analysis is performed for a fixed-cylinder case with Reynolds number (Re) = 104 and for a cylinder that is free to oscillate in the transverse direction and possesses a low mass-damping ratio and Re = 104. Previously, similar studies have been performed with 3-dimensional and comparatively expensive turbulent models. In the current study, the capability and accuracy of the RANS model are validated, and the results of this model are compared with those of detached eddy simulation, direct numerical simulation, and large eddy simulation models. All three response branches and the maximum amplitude are well captured. The 2-dimensional case with the RANS shear-stress transport k-w model, which involves minimal computational cost, is reliable and appropriate for analyzing the characteristics of VIV.

  4. Three-dimensional turbulent boundary layers; Proceedings of the Symposium, Berlin, West Germany, March 29-April 1, 1982

    NASA Astrophysics Data System (ADS)

    Fernholz, H. H.; Krause, E.

    Papers are presented on recent research concerning three-dimensional turbulent boundary layers. Topics examined include experimental techniques in three-dimensional turbulent boundary layers, turbulence measurements in ship-model flow, measurements of Reynolds-stress profiles in the stern region of a ship model, the effects of crossflow on the vortex-layer-type three-dimensional flow separation, and wind tunnel investigations of some three-dimensional separated turbulent boundary layers. Also examined are three-dimensional boundary layers in turbomachines, the boundary layers on bodies of revolution spinning in axial flows, the effect on a developed turbulent boundary layer of a sudden local wall motion, three-dimensional turbulent boundary layer along a concave wall, the numerical computation of three-dimensional boundary layers, a numerical study of corner flows, three-dimensional boundary calculations in design aerodynamics, and turbulent boundary-layer calculations in design aerodynamics. For individual items see A83-47012 to A83-47036

  5. Numerical investigation on layout optimization of obstacles in a three-dimensional passive micromixer.

    PubMed

    Chen, Xueye; Zhao, Zhongyi

    2017-04-29

    This paper aims at layout optimization design of obstacles in a three-dimensional T-type micromixer. Numerical analysis shows that the direction of flow velocity change constantly due to the obstacles blocking, which produces the chaotic convection and increases species mixing effectively. The orthogonal experiment method was applied for determining the effects of some key parameters on mixing efficiency. The weights in the order are: height of obstacles > geometric shape > symmetry = number of obstacles. Based on the optimized results, a multi-units obstacle micromixer was designed. Compared with T-type micromixer, the multi-units obstacle micromixer is more efficient, and more than 90% mixing efficiency were obtained for a wide range of peclet numbers. It can be demonstrated that the presented optimal design method of obstacles layout in three-dimensional microchannels is a simple and effective technology to improve species mixing in microfluidic devices. The obstacles layout methodology has the potential for applications in chemical engineering and bioengineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Unsteady three-dimensional marginal separation caused by surface-mounted obstacles and/or local suction

    NASA Astrophysics Data System (ADS)

    Braun, Stefan; Kluwick, Alfred

    2004-09-01

    Earlier investigations of steady two-dimensional marginally separated laminar boundary layers have shown that the non-dimensional wall shear (or equivalently the negative non-dimensional perturbation displacement thickness) is governed by a nonlinear integro-differential equation. This equation contains a single controlling parameter Gamma characterizing, for example, the angle of attack of a slender airfoil and has the important property that (real) solutions exist up to a critical value Gamma_c of Gamma only. Here we investigate three-dimensional unsteady perturbations of an incompressible steady two-dimensional marginally separated laminar boundary layer with special emphasis on the flow behaviour near Gamma_c. Specifically, it is shown that the integro differential equation which governs these disturbances if Gamma_c {-} Gamma {=} O(1) reduces to a nonlinear partial differential equation known as the Fisher equation as Gamma approaches the critical value Gamma_c. This in turn leads to a significant simplification of the problem allowing, among other things, a systematic study of devices used in boundary-layer control and an analytical investigation of the conditions leading to the formation of finite-time singularities which have been observed in earlier numerical studies of unsteady two-dimensional and three-dimensional flows in the vicinity of a line of symmetry. Also, it is found that it is possible to construct exact solutions which describe waves of constant form travelling in the spanwise direction. These waves may contain singularities which can be interpreted as vortex sheets. The existence of these solutions strongly suggests that solutions of the Fisher equation which lead to finite-time blow-up may be extended beyond the blow-up time, thereby generating moving singularities which can be interpreted as vortical structures qualitatively similar to those emerging in direct numerical simulations of near critical (i.e. transitional) laminar separation bubbles. This is supported by asymptotic analysis.

  7. Instability and transition in rotating disk flow

    NASA Technical Reports Server (NTRS)

    Malik, M. R.

    1981-01-01

    The stability of three dimensional rotating disk flow and the effects of Coriolis forces and streamline curvature were investigated. It was shown that this analysis gives better growth rates than Orr-Sommerfeld equation. Results support the numerical prediction that the number of stationary vortices varies directly with the Reynolds number.

  8. A three-dimensional, compressible, laminar boundary-layer method for general fuselages. Volume 1: Numerical method

    NASA Technical Reports Server (NTRS)

    Wie, Yong-Sun

    1990-01-01

    A procedure for calculating 3-D, compressible laminar boundary layer flow on general fuselage shapes is described. The boundary layer solutions can be obtained in either nonorthogonal 'body oriented' coordinates or orthogonal streamline coordinates. The numerical procedure is 'second order' accurate, efficient and independent of the cross flow velocity direction. Numerical results are presented for several test cases, including a sharp cone, an ellipsoid of revolution, and a general aircraft fuselage at angle of attack. Comparisons are made between numerical results obtained using nonorthogonal curvilinear 'body oriented' coordinates and streamline coordinates.

  9. Noniterative three-dimensional grid generation using parabolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Edwards, T. A.

    1985-01-01

    A new algorithm for generating three-dimensional grids has been developed and implemented which numerically solves a parabolic partial differential equation (PDE). The solution procedure marches outward in two coordinate directions, and requires inversion of a scalar tridiagonal system in the third. Source terms have been introduced to control the spacing and angle of grid lines near the grid boundaries, and to control the outer boundary point distribution. The method has been found to generate grids about 100 times faster than comparable grids generated via solution of elliptic PDEs, and produces smooth grids for finite-difference flow calculations.

  10. Preliminary study of the three-dimensional deformation of the vortex in Karman vortex street

    NASA Astrophysics Data System (ADS)

    Ling, Guocan; Guo, Liang; Wu, Zuobin; Ma, Huiyang

    1992-03-01

    The mechanism for 3D evolution of the isolated Karman vortex and the thin-vortex filament in a circular cylinder wake is studied numerically using the LIA method. The results show that the vortex motion is unstable for small 3D disturbances in the separated wake of a circular cylinder. Karman vortex in the time-averaged wake flowfield wolves into a horseshoe-spoon-like 3D structure. The thin vortex filament deforms three-dimensionally in the braid and generates streamwise vortex structures which incline to the region maximum-deformation direction of the flowfield.

  11. Three-Dimensional Inverse Transport Solver Based on Compressive Sensing Technique

    NASA Astrophysics Data System (ADS)

    Cheng, Yuxiong; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi

    2013-09-01

    According to the direct exposure measurements from flash radiographic image, a compressive sensing-based method for three-dimensional inverse transport problem is presented. The linear absorption coefficients and interface locations of objects are reconstructed directly at the same time. It is always very expensive to obtain enough measurements. With limited measurements, compressive sensing sparse reconstruction technique orthogonal matching pursuit is applied to obtain the sparse coefficients by solving an optimization problem. A three-dimensional inverse transport solver is developed based on a compressive sensing-based technique. There are three features in this solver: (1) AutoCAD is employed as a geometry preprocessor due to its powerful capacity in graphic. (2) The forward projection matrix rather than Gauss matrix is constructed by the visualization tool generator. (3) Fourier transform and Daubechies wavelet transform are adopted to convert an underdetermined system to a well-posed system in the algorithm. Simulations are performed and numerical results in pseudo-sine absorption problem, two-cube problem and two-cylinder problem when using compressive sensing-based solver agree well with the reference value.

  12. A numerical and experimental study of three-dimensional liquid sloshing in a rotating spherical container

    NASA Technical Reports Server (NTRS)

    Chen, Kuo-Huey; Kelecy, Franklyn J.; Pletcher, Richard H.

    1992-01-01

    A numerical and experimental study of three dimensional liquid sloshing inside a partially-filled spherical container undergoing an orbital rotating motion is described. Solutions of the unsteady, three-dimensional Navier-Stokes equations for the case of a gradual spin-up from rest are compared with experimental data obtained using a rotating test rig fitted with two liquid-filled spherical tanks. Data gathered from several experiments are reduced in terms of a dimensionless free surface height for comparison with transient results from the numerical simulations. The numerical solutions are found to compare favorably with the experimental data.

  13. One- and Two-dimensional Solitary Wave States in the Nonlinear Kramers Equation with Movement Direction as a Variable

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Hidetsugu; Ishibashi, Kazuya

    2018-06-01

    We study self-propelled particles by direct numerical simulation of the nonlinear Kramers equation for self-propelled particles. In our previous paper, we studied self-propelled particles with velocity variables in one dimension. In this paper, we consider another model in which each particle exhibits directional motion. The movement direction is expressed with a variable ϕ. We show that one-dimensional solitary wave states appear in direct numerical simulations of the nonlinear Kramers equation in one- and two-dimensional systems, which is a generalization of our previous result. Furthermore, we find two-dimensionally localized states in the case that each self-propelled particle exhibits rotational motion. The center of mass of the two-dimensionally localized state exhibits circular motion, which implies collective rotating motion. Finally, we consider a simple one-dimensional model equation to qualitatively understand the formation of the solitary wave state.

  14. Three-dimensional biomechanical properties of human vocal folds: parameter optimization of a numerical model to match in vitro dynamics.

    PubMed

    Yang, Anxiong; Berry, David A; Kaltenbacher, Manfred; Döllinger, Michael

    2012-02-01

    The human voice signal originates from the vibrations of the two vocal folds within the larynx. The interactions of several intrinsic laryngeal muscles adduct and shape the vocal folds to facilitate vibration in response to airflow. Three-dimensional vocal fold dynamics are extracted from in vitro hemilarynx experiments and fitted by a numerical three-dimensional-multi-mass-model (3DM) using an optimization procedure. In this work, the 3DM dynamics are optimized over 24 experimental data sets to estimate biomechanical vocal fold properties during phonation. Accuracy of the optimization is verified by low normalized error (0.13 ± 0.02), high correlation (83% ± 2%), and reproducible subglottal pressure values. The optimized, 3DM parameters yielded biomechanical variations in tissue properties along the vocal fold surface, including variations in both the local mass and stiffness of vocal folds. That is, both mass and stiffness increased along the superior-to-inferior direction. These variations were statistically analyzed under different experimental conditions (e.g., an increase in tension as a function of vocal fold elongation and an increase in stiffness and a decrease in mass as a function of glottal airflow). The study showed that physiologically relevant vocal fold tissue properties, which cannot be directly measured during in vivo human phonation, can be captured using this 3D-modeling technique. © 2012 Acoustical Society of America

  15. Three-dimensional biomechanical properties of human vocal folds: Parameter optimization of a numerical model to match in vitro dynamics

    PubMed Central

    Yang, Anxiong; Berry, David A.; Kaltenbacher, Manfred; Döllinger, Michael

    2012-01-01

    The human voice signal originates from the vibrations of the two vocal folds within the larynx. The interactions of several intrinsic laryngeal muscles adduct and shape the vocal folds to facilitate vibration in response to airflow. Three-dimensional vocal fold dynamics are extracted from in vitro hemilarynx experiments and fitted by a numerical three-dimensional-multi-mass-model (3DM) using an optimization procedure. In this work, the 3DM dynamics are optimized over 24 experimental data sets to estimate biomechanical vocal fold properties during phonation. Accuracy of the optimization is verified by low normalized error (0.13 ± 0.02), high correlation (83% ± 2%), and reproducible subglottal pressure values. The optimized, 3DM parameters yielded biomechanical variations in tissue properties along the vocal fold surface, including variations in both the local mass and stiffness of vocal folds. That is, both mass and stiffness increased along the superior-to-inferior direction. These variations were statistically analyzed under different experimental conditions (e.g., an increase in tension as a function of vocal fold elongation and an increase in stiffness and a decrease in mass as a function of glottal airflow). The study showed that physiologically relevant vocal fold tissue properties, which cannot be directly measured during in vivo human phonation, can be captured using this 3D-modeling technique. PMID:22352511

  16. Numerical and analytical modeling of the end-loaded split (ELS) test specimens made of multi-directional coupled composite laminates

    NASA Astrophysics Data System (ADS)

    Samborski, Sylwester; Valvo, Paolo S.

    2018-01-01

    The paper deals with the numerical and analytical modelling of the end-loaded split test for multi-directional laminates affected by the typical elastic couplings. Numerical analysis of three-dimensional finite element models was performed with the Abaqus software exploiting the virtual crack closure technique (VCCT). The results show possible asymmetries in the widthwise deflections of the specimen, as well as in the strain energy release rate (SERR) distributions along the delamination front. Analytical modelling based on a beam-theory approach was also conducted in simpler cases, where only bending-extension coupling is present, but no out-of-plane effects. The analytical results matched the numerical ones, thus demonstrating that the analytical models are feasible for test design and experimental data reduction.

  17. Numerical study of core formation of asymmetrically driven cone-guided targets

    DOE PAGES

    Sawada, Hiroshi; Sakagami, Hitoshi

    2017-09-22

    Compression of a directly driven fast ignition cone-sphere target with a finite number of laser beams is numerically studied using a three-dimensional hydrodynamics code IMPACT-3D. The formation of a dense plasma core is simulated for 12-, 9-, 6-, and 4-beam configurations of the GEKKO XII laser. The complex 3D shapes of the cores are analyzed by elucidating synthetic 2D x-ray radiographic images in two orthogonal directions. Finally, the simulated x-ray images show significant differences in the core shape between the two viewing directions and rotation of the stagnating core axis in the top view for the axisymmetric 9- and 6-beammore » configurations.« less

  18. Numerical study of core formation of asymmetrically driven cone-guided targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, Hiroshi; Sakagami, Hitoshi

    Compression of a directly driven fast ignition cone-sphere target with a finite number of laser beams is numerically studied using a three-dimensional hydrodynamics code IMPACT-3D. The formation of a dense plasma core is simulated for 12-, 9-, 6-, and 4-beam configurations of the GEKKO XII laser. The complex 3D shapes of the cores are analyzed by elucidating synthetic 2D x-ray radiographic images in two orthogonal directions. Finally, the simulated x-ray images show significant differences in the core shape between the two viewing directions and rotation of the stagnating core axis in the top view for the axisymmetric 9- and 6-beammore » configurations.« less

  19. Stress orientation and fracturing during three-dimensional buckling: Numerical simulation and application to chocolate-tablet structures in folded turbidites, SW Portugal

    NASA Astrophysics Data System (ADS)

    Reber, J. E.; Schmalholz, S. M.; Burg, J.-P.

    2010-10-01

    Two orthogonal sets of veins, both orthogonal to bedding, form chocolate tablet structures on the limbs of folded quartzwackes of Carboniferous turbidites in SW Portugal. Structural observations suggest that (1) mode 1 fractures transverse to the fold axes formed while fold amplitudes were small and limbs were under layer-subparallel compression and (2) mode 1 fractures parallel to the fold axes formed while fold amplitudes were large and limbs were brought to be under layer-subparallel tension. We performed two- and three-dimensional numerical simulations investigating the evolution of stress orientations during viscous folding to test whether and how these two successive sets of fractures were related to folding. We employed ellipses and ellipsoids for the visualization and quantification of the local stress field. The numerical simulations show a change in the orientation of the local σ1 direction by almost 90° with respect to the bedding plane in the fold limbs. The coeval σ3 direction rotates from parallel to the fold axis at low fold amplitudes to orthogonal to the fold axis at high fold amplitudes. The stress orientation changes faster in multilayers than in single-layers. The numerical simulations are consistent with observation and provide a mechanical interpretation for the formation of the chocolate tablet structures through consecutive sets of fractures on rotating limbs of folded competent layers.

  20. Behavior of streamwise rib vortices in a three-dimensional mixing layer

    NASA Technical Reports Server (NTRS)

    Lopez, J. M.; Bulbeck, C. J.

    1992-01-01

    The structure and behavior of a streamwise rib vortex in a direct numerical simulation of a time-developing three-dimensional incompressible plane mixing layer is examined. Where the rib vortex is being stretched, the vorticity vector is primarily directed in the vortex axial direction and the radial and azimuthal velocity distribution is similar to that of a Burger's vortex. In the region where the vortex stretching is negative, there is a change in the local topology of the vortex. The axial flow is decelerated and a negative azimuthal component of vorticity is induced. These features are characteristic of vortex breakdown. The temporal evolution of the rib vortex is similar to the evolution of an axisymmetric vortex in the early stages of vortex breakdown. The effect of vortex breakdown on other parts of the flow is, however, not as significant as the interaction between the rib vortex and other vortices.

  1. Large eddy simulation of incompressible turbulent channel flow

    NASA Technical Reports Server (NTRS)

    Moin, P.; Reynolds, W. C.; Ferziger, J. H.

    1978-01-01

    The three-dimensional, time-dependent primitive equations of motion were numerically integrated for the case of turbulent channel flow. A partially implicit numerical method was developed. An important feature of this scheme is that the equation of continuity is solved directly. The residual field motions were simulated through an eddy viscosity model, while the large-scale field was obtained directly from the solution of the governing equations. An important portion of the initial velocity field was obtained from the solution of the linearized Navier-Stokes equations. The pseudospectral method was used for numerical differentiation in the horizontal directions, and second-order finite-difference schemes were used in the direction normal to the walls. The large eddy simulation technique is capable of reproducing some of the important features of wall-bounded turbulent flows. The resolvable portions of the root-mean square wall pressure fluctuations, pressure velocity-gradient correlations, and velocity pressure-gradient correlations are documented.

  2. Computer program for calculating full potential transonic, quasi-three-dimensional flow through a rotating turbomachinery blade row

    NASA Technical Reports Server (NTRS)

    Farrell, C. A.

    1982-01-01

    A fast, reliable computer code is described for calculating the flow field about a cascade of arbitrary two dimensional airfoils. The method approximates the three dimensional flow in a turbomachinery blade row by correcting for stream tube convergence and radius change in the throughflow direction. A fully conservative solution of the full potential equation is combined with the finite volume technique on a body-fitted periodic mesh, with an artificial density imposed in the transonic region to insure stability and the capture of shock waves. The instructions required to set up and use the code are included. The name of the code is QSONIC. A numerical example is also given to illustrate the output of the program.

  3. A spectral-finite difference solution of the Navier-Stokes equations in three dimensions

    NASA Astrophysics Data System (ADS)

    Alfonsi, Giancarlo; Passoni, Giuseppe; Pancaldo, Lea; Zampaglione, Domenico

    1998-07-01

    A new computational code for the numerical integration of the three-dimensional Navier-Stokes equations in their non-dimensional velocity-pressure formulation is presented. The system of non-linear partial differential equations governing the time-dependent flow of a viscous incompressible fluid in a channel is managed by means of a mixed spectral-finite difference method, in which different numerical techniques are applied: Fourier decomposition is used along the homogeneous directions, second-order Crank-Nicolson algorithms are employed for the spatial derivatives in the direction orthogonal to the solid walls and a fourth-order Runge-Kutta procedure is implemented for both the calculation of the convective term and the time advancement. The pressure problem, cast in the Helmholtz form, is solved with the use of a cyclic reduction procedure. No-slip boundary conditions are used at the walls of the channel and cyclic conditions are imposed at the other boundaries of the computing domain.Results are provided for different values of the Reynolds number at several time steps of integration and are compared with results obtained by other authors.

  4. Numerical investigations of passive scalar transport in Taylor-Couette flows: Counter-rotation effect

    NASA Astrophysics Data System (ADS)

    Ouazib, Nabila; Salhi, Yacine; Si-Ahmed, El-Khider; Legrand, Jack; Degrez, G.

    2017-07-01

    Numerical methods for solving convection-diffusion-reaction (CDR) scalar transport equation in three-dimensional flow are used in the present investigation. The flow is confined between two concentric cylinders both the inner cylinder and the outer one are allowed to rotate. Direct numerical simulations (DNS) have been achieved to study the effects of the gravitational and the centrifugal potentials on the stability of incompressible Taylor-Couette flow. The Navier-Stokes equations and the uncoupled convection-diffusion-reaction equation are solved using a spectral development in one direction combined together with a finite element discretization in the two remaining directions. The complexity of the patterns is highlighted. Since, it increases as the rotation rates of the cylinders increase. In addition, the effect of the counter-rotation of the cylinders on the mass transfer is pointed out.

  5. Some problems of the calculation of three-dimensional boundary layer flows on general configurations

    NASA Technical Reports Server (NTRS)

    Cebeci, T.; Kaups, K.; Mosinskis, G. J.; Rehn, J. A.

    1973-01-01

    An accurate solution of the three-dimensional boundary layer equations over general configurations such as those encountered in aircraft and space shuttle design requires a very efficient, fast, and accurate numerical method with suitable turbulence models for the Reynolds stresses. The efficiency, speed, and accuracy of a three-dimensional numerical method together with the turbulence models for the Reynolds stresses are examined. The numerical method is the implicit two-point finite difference approach (Box Method) developed by Keller and applied to the boundary layer equations by Keller and Cebeci. In addition, a study of some of the problems that may arise in the solution of these equations for three-dimensional boundary layer flows over general configurations.

  6. Laser-optical and numerical Research of the flow inside the lubricating gap of a journal bearing model

    NASA Astrophysics Data System (ADS)

    Nobis, M.; Stücke, P.; Schmidt, M.; Riedel, M.

    2013-04-01

    The laser-optical research of the flow inside the lubricating gap of a journal bearing model is one important task in a larger overall project. The long-term objective is the development of an easy-to-work calculation tool which delivers information about the causes and consequences of cavitation processes in hydrodynamically lubricated journal bearings. Hence, it will be possible to find statements for advantageous and disadvantageous geometrical shapes of the bushings. In conclusion such a calculation tool can provide important insights for the construction and design of future journal bearings. Current design programs are based on a two-dimensional approach for the lubricating gap. The first dimension is the breath of the bearing and the second dimension is the circumferential direction of the bearing. The third dimension, the expansion of the gap in radial direction, will be neglected. Instead of an exact resolution of the flow pattern inside the gap, turbulence models are in use. Past studies on numerical and experimental field have shown that inside the lubricating gap clearly organized and predominantly laminar flow structures can be found. Thus, for a detailed analysis of the reasons and effects of cavitation bubbles, a three-dimensional resolution of the lubricating gap is inevitable. In addition to the qualitative evaluation of the flow with visualization experiments it is possible to perform angle-based velocity measurements inside the gap with the help of a triggered Laser-Doppler- Velocimeter (LDV). The results of these measurements are used to validate three-dimensional CFD flow simulations, and to optimize the numerical mesh structure and the boundary conditions. This paper will present the experimental setup of the bearing model, some exemplary results of the visualization experiments and LDV measurements as well as a comparison between experimental and numerical results.

  7. Flow through three-dimensional arrangements of cylinders with alternating streamwise planar tilt

    NASA Astrophysics Data System (ADS)

    Sahraoui, M.; Marshall, H.; Kaviany, M.

    1993-09-01

    In this report, fluid flow through a three-dimensional model for the fibrous filters is examined. In this model, the three-dimensional Stokes equation with the appropriate periodic boundary conditions is solved using the finite volume method. In addition to the numerical solution, we attempt to model this flow analytically by using the two-dimensional extended analytic solution in each of the unit cells of the three-dimensional structure. Particle trajectories computed using the superimposed analytic solution of the flow field are closed to those computed using the numerical solution of the flow field. The numerical results show that the pressure drop is not affected significantly by the relative angle of rotation of the cylinders for the high porosity used in this study (epsilon = 0.8 and epsilon = 0.95). The numerical solution and the superimposed analytic solution are also compared in terms of the particle capture efficiency. The results show that the efficiency predictions using the two methods are within 10% for St = 0.01 and 5% for St = 100. As the the porosity decreases, the three-dimensional effect becomes more significant and a difference of 35% is obtained for epsilon = 0.8.

  8. A numerical formulation and algorithm for limit and shakedown analysis of large-scale elastoplastic structures

    NASA Astrophysics Data System (ADS)

    Peng, Heng; Liu, Yinghua; Chen, Haofeng

    2018-05-01

    In this paper, a novel direct method called the stress compensation method (SCM) is proposed for limit and shakedown analysis of large-scale elastoplastic structures. Without needing to solve the specific mathematical programming problem, the SCM is a two-level iterative procedure based on a sequence of linear elastic finite element solutions where the global stiffness matrix is decomposed only once. In the inner loop, the static admissible residual stress field for shakedown analysis is constructed. In the outer loop, a series of decreasing load multipliers are updated to approach to the shakedown limit multiplier by using an efficient and robust iteration control technique, where the static shakedown theorem is adopted. Three numerical examples up to about 140,000 finite element nodes confirm the applicability and efficiency of this method for two-dimensional and three-dimensional elastoplastic structures, with detailed discussions on the convergence and the accuracy of the proposed algorithm.

  9. International Conference on Numerical Ship Hydrodynamics (6th), Held in Iowa City, Iowa on 2-5 August 1993,

    DTIC Science & Technology

    1994-01-01

    length scales mensional hydrofoil and tip vortex flow around a F circulation three dimensional hydrofoil. The simulated mean v molecular viscosity flow...Unstructured Grid for Free Surface Flow Simulations , by T. Hino, L. Martinelli, and A. Jameson 173 "A Semi-Implicit Semi-Lagrangian Finite Element Model...Haussling Solid-Fluid Juncture Boundary Layer and Wake with Waves, by J.E. Choi and F. Stern 215 Direct Numerical and Large-Eddy Simulations of Turbulent

  10. The three-dimensional evolution of a plane mixing layer. Part 1: The Kelvin-Helmholtz roll-up

    NASA Technical Reports Server (NTRS)

    Rogers, Michael M.; Moser, Robert D.

    1991-01-01

    The Kelvin Helmholtz roll up of three dimensional, temporally evolving, plane mixing layers were simulated numerically. All simulations were begun from a few low wavenumber disturbances, usually derived from linear stability theory, in addition to the mean velocity profile. The spanwise disturbance wavelength was taken to be less than or equal to the streamwise wavelength associated with the Kelvin Helmholtz roll up. A standard set of clean structures develop in most of the simulations. The spanwise vorticity rolls up into a corrugated spanwise roller, with vortex stretching creating strong spanwise vorticity in a cup shaped region at the vends of the roller. Predominantly streamwise rib vortices develop in the braid region between the rollers. For sufficiently strong initial three dimensional disturbances, these ribs collapse into compact axisymmetric vortices. The rib vortex lines connect to neighboring ribs and are kinked in the opposite direction of the roller vortex lines. Because of this, these two sets of vortex lines remain distinct. For certain initial conditions, persistent ribs do not develop. In such cases the development of significant three dimensionality is delayed. When the initial three dimensional disturbance energy is about equal to, or less than, the two dimensional fundamental disturbance energy, the evolution of the three dimensional disturbance is nearly linear (with respect to the mean and the two dimensional disturbances), at least until the first Kelvin Helmholtz roll up is completed.

  11. High-resolution two-dimensional and three-dimensional modeling of wire grid polarizers and micropolarizer arrays

    NASA Astrophysics Data System (ADS)

    Vorobiev, Dmitry; Ninkov, Zoran

    2017-11-01

    Recent advances in photolithography allowed the fabrication of high-quality wire grid polarizers for the visible and near-infrared regimes. In turn, micropolarizer arrays (MPAs) based on wire grid polarizers have been developed and used to construct compact, versatile imaging polarimeters. However, the contrast and throughput of these polarimeters are significantly worse than one might expect based on the performance of large area wire grid polarizers or MPAs, alone. We investigate the parameters that affect the performance of wire grid polarizers and MPAs, using high-resolution two-dimensional and three-dimensional (3-D) finite-difference time-domain simulations. We pay special attention to numerical errors and other challenges that arise in models of these and other subwavelength optical devices. Our tests show that simulations of these structures in the visible and near-IR begin to converge numerically when the mesh size is smaller than ˜4 nm. The performance of wire grid polarizers is very sensitive to the shape, spacing, and conductivity of the metal wires. Using 3-D simulations of micropolarizer "superpixels," we directly study the cross talk due to diffraction at the edges of each micropolarizer, which decreases the contrast of MPAs to ˜200∶1.

  12. Kolmogorov Flow in Three Dimensions

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.; Woodruff, Stephen L.

    1996-01-01

    A numerical study of the long-time evolution of incompressible Navier-Stokes turbulence forced at a single long-wavelength Fourier mode, i.e., a Kolmogorov flow, has been completed. The boundary conditions are periodic in three dimensions and the forcing is effected by imposing a steady, two-dimensional, sinusoidal shear velocity which is directed along the x-direction and varies along the z-direction. A comparison with experimental data shows agreement with measured cross-correlations of the turbulent velocity components which lie in the mean-flow plane. A statistical analysis reveals that the shear-driven turbulence studied here has significant spectral anisotropy which increases with wave number.

  13. Energy transfer in turbulence under rotation

    NASA Astrophysics Data System (ADS)

    Buzzicotti, Michele; Aluie, Hussein; Biferale, Luca; Linkmann, Moritz

    2018-03-01

    It is known that rapidly rotating turbulent flows are characterized by the emergence of simultaneous upscale and downscale energy transfer. Indeed, both numerics and experiments show the formation of large-scale anisotropic vortices together with the development of small-scale dissipative structures. However the organization of interactions leading to this complex dynamics remains unclear. Two different mechanisms are known to be able to transfer energy upscale in a turbulent flow. The first is characterized by two-dimensional interactions among triads lying on the two-dimensional, three-component (2D3C)/slow manifold, namely on the Fourier plane perpendicular to the rotation axis. The second mechanism is three-dimensional and consists of interactions between triads with the same sign of helicity (homochiral). Here, we present a detailed numerical study of rotating flows using a suite of high-Reynolds-number direct numerical simulations (DNS) within different parameter regimes to analyze both upscale and downscale cascade ranges. We find that the upscale cascade at wave numbers close to the forcing scale is generated by increasingly dominant homochiral interactions which couple the three-dimensional bulk and the 2D3C plane. This coupling produces an accumulation of energy in the 2D3C plane, which then transfers energy to smaller wave numbers thanks to the two-dimensional mechanism. In the forward cascade range, we find that the energy transfer is dominated by heterochiral triads and is dominated primarily by interaction within the fast manifold where kz≠0 . We further analyze the energy transfer in different regions in the real-space domain. In particular, we distinguish high-strain from high-vorticity regions and we uncover that while the mean transfer is produced inside regions of strain, the rare but extreme events of energy transfer occur primarily inside the large-scale column vortices.

  14. Development of computational methods for heavy lift launch vehicles

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Ryan, James S.

    1993-01-01

    The research effort has been focused on the development of an advanced flow solver for complex viscous turbulent flows with shock waves. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. A new computer program named CENS3D has been developed for viscous turbulent flows with discontinuities. Details of the code are described in Appendix A and Appendix B. With the developments of the numerical algorithm and dissipation model, the simulation of three-dimensional viscous compressible flows has become more efficient and accurate. The results of the research are expected to yield a direct impact on the design process of future liquid fueled launch systems.

  15. Numerical investigation of the vortex-induced vibration of an elastically mounted circular cylinder at high Reynolds number (Re = 104) and low mass ratio using the RANS code

    PubMed Central

    2017-01-01

    This study numerically investigates the vortex-induced vibration (VIV) of an elastically mounted rigid cylinder by using Reynolds-averaged Navier–Stokes (RANS) equations with computational fluid dynamic (CFD) tools. CFD analysis is performed for a fixed-cylinder case with Reynolds number (Re) = 104 and for a cylinder that is free to oscillate in the transverse direction and possesses a low mass-damping ratio and Re = 104. Previously, similar studies have been performed with 3-dimensional and comparatively expensive turbulent models. In the current study, the capability and accuracy of the RANS model are validated, and the results of this model are compared with those of detached eddy simulation, direct numerical simulation, and large eddy simulation models. All three response branches and the maximum amplitude are well captured. The 2-dimensional case with the RANS shear–stress transport k-w model, which involves minimal computational cost, is reliable and appropriate for analyzing the characteristics of VIV. PMID:28982172

  16. Numerical Analysis of an H 1-Galerkin Mixed Finite Element Method for Time Fractional Telegraph Equation

    PubMed Central

    Wang, Jinfeng; Zhao, Meng; Zhang, Min; Liu, Yang; Li, Hong

    2014-01-01

    We discuss and analyze an H 1-Galerkin mixed finite element (H 1-GMFE) method to look for the numerical solution of time fractional telegraph equation. We introduce an auxiliary variable to reduce the original equation into lower-order coupled equations and then formulate an H 1-GMFE scheme with two important variables. We discretize the Caputo time fractional derivatives using the finite difference methods and approximate the spatial direction by applying the H 1-GMFE method. Based on the discussion on the theoretical error analysis in L 2-norm for the scalar unknown and its gradient in one dimensional case, we obtain the optimal order of convergence in space-time direction. Further, we also derive the optimal error results for the scalar unknown in H 1-norm. Moreover, we derive and analyze the stability of H 1-GMFE scheme and give the results of a priori error estimates in two- or three-dimensional cases. In order to verify our theoretical analysis, we give some results of numerical calculation by using the Matlab procedure. PMID:25184148

  17. Numerical simulation of boundary layers. Part 2: Ribbon-induced transition in Blasius flow

    NASA Technical Reports Server (NTRS)

    Spalart, P.; Yang, K. S.

    1986-01-01

    The early three-dimensional stages of transition in Blasius boundary layers are studied by numerical solution of the Navier-Stokes equations. A finite-amplitude two-dimensional wave and random low-amplitude three-dimensional disturbances are introduced. Rapid amplification of the three-dimensional components is observed and leads to transition. For intermediate amplitudes of the two-dimensional wave the breakdown is of subharmonic type, and the dominant spanwise wave number increases with the amplitude. For high amplitudes the energy of the fundamental mode is comparable to the energy of the subharmonic mode, but never dominates it; the breakdown is of mixed type. Visualizations, energy histories, and spectra are presented. The sensitivity of the results to various physical and numerical parameters is studied. Agreement with experimental and theoretical results is discussed.

  18. Common aero vehicle autonomous reentry trajectory optimization satisfying waypoint and no-fly zone constraints

    NASA Astrophysics Data System (ADS)

    Jorris, Timothy R.

    2007-12-01

    To support the Air Force's Global Reach concept, a Common Aero Vehicle is being designed to support the Global Strike mission. "Waypoints" are specified for reconnaissance or multiple payload deployments and "no-fly zones" are specified for geopolitical restrictions or threat avoidance. Due to time critical targets and multiple scenario analysis, an autonomous solution is preferred over a time-intensive, manually iterative one. Thus, a real-time or near real-time autonomous trajectory optimization technique is presented to minimize the flight time, satisfy terminal and intermediate constraints, and remain within the specified vehicle heating and control limitations. This research uses the Hypersonic Cruise Vehicle (HCV) as a simplified two-dimensional platform to compare multiple solution techniques. The solution techniques include a unique geometric approach developed herein, a derived analytical dynamic optimization technique, and a rapidly emerging collocation numerical approach. This up-and-coming numerical technique is a direct solution method involving discretization then dualization, with pseudospectral methods and nonlinear programming used to converge to the optimal solution. This numerical approach is applied to the Common Aero Vehicle (CAV) as the test platform for the full three-dimensional reentry trajectory optimization problem. The culmination of this research is the verification of the optimality of this proposed numerical technique, as shown for both the two-dimensional and three-dimensional models. Additionally, user implementation strategies are presented to improve accuracy and enhance solution convergence. Thus, the contributions of this research are the geometric approach, the user implementation strategies, and the determination and verification of a numerical solution technique for the optimal reentry trajectory problem that minimizes time to target while satisfying vehicle dynamics and control limitation, and heating, waypoint, and no-fly zone constraints.

  19. Three-dimensional flow measurements in a vaneless radial turbine scroll

    NASA Technical Reports Server (NTRS)

    Tabakoff, W.; Wood, B.; Vittal, B. V. R.

    1982-01-01

    The flow behavior in a vaneless radial turbine scroll was examined experimentally. The data was obtained using the slant sensor technique of hot film anemometry. This method used the unsymmetric heat transfer characteristics of a constant temperature hot film sensor to detect the flow direction and magnitude. This was achieved by obtaining a velocity vector measurement at three sensor positions with respect to the flow. The true magnitude and direction of the velocity vector was then found using these values and a Newton-Raphson numerical technique. The through flow and secondary flow velocity components are measured at various points in three scroll sections.

  20. Numerical simulation of steady supersonic flow. [spatial marching

    NASA Technical Reports Server (NTRS)

    Schiff, L. B.; Steger, J. L.

    1981-01-01

    A noniterative, implicit, space-marching, finite-difference algorithm was developed for the steady thin-layer Navier-Stokes equations in conservation-law form. The numerical algorithm is applicable to steady supersonic viscous flow over bodies of arbitrary shape. In addition, the same code can be used to compute supersonic inviscid flow or three-dimensional boundary layers. Computed results from two-dimensional and three-dimensional versions of the numerical algorithm are in good agreement with those obtained from more costly time-marching techniques.

  1. On the Universality of the Kolmogorov Constant in Numerical Simulations of Turbulence

    NASA Technical Reports Server (NTRS)

    Yeung, P. K.; Zhou, Ye

    1997-01-01

    Motivated by a recent survey of experimental data, we examine data on the Kolmogorov spectrum constant in numerical simulations of isotropic turbulence, using results both from previous studies and from new direct numerical simulations over a range of Reynolds numbers (up to 240 on the Taylor scale) at grid resolutions up to 512(exp 3). It is noted that in addition to k(exp -5/3) scaling, identification of a true inertial range requires spectral isotropy in the same wavenumber range. We found that a plateau in the compensated three-dimensional energy spectrum at k(eta) approx. = 0.1 - -0.2, commonly used to infer the Kolmogorov constant from the compensated three-dimensional energy spectrum, actually does not represent proper inertial range behavior. Rather, a proper, if still approximate, inertial range emerges at k(eta) approx. = 0.02 - 0.05 when R(sub lambda) increases beyond 140. The new simulations indicate proportionality constants C(sub 1) and C in the one- and three-dimensional energy spectra respectively about 0.60 and 1.62. If the turbulence were perfectly isotropic then use of isotropy relations in wavenumber space (C(sub 1) = 18/55 C) would imply that C(sub 1) approx. = 0.53 for C = 1.62, in excellent agreement with experiments. However the one- and three-dimensional estimates are not fully consistent, because of departures (due to numerical and statistical limitations) from isotropy of the computed spectra at low wavenumbers. The inertial scaling of structure functions in physical space is briefly addressed. Since DNS is still restricted to moderate Reynolds numbers, an accurate evaluation of the Kolmogorov constant is very difficult. We focus on providing new insights on the interpretation of Kolmogorov 1941 similarity in the DNS literature and do not consider issues pertaining to the refined similarity hypotheses of Kolmogorov (K62).

  2. Numerical simulation of the control of the three-dimensional transition process in boundary layers

    NASA Technical Reports Server (NTRS)

    Kral, L. D.; Fasel, H. F.

    1990-01-01

    Surface heating techniques to control the three-dimensional laminar-turbulent transition process are numerically investigated for a water boundary layer. The Navier-Stokes and energy equations are solved using a fully implicit finite difference/spectral method. The spatially evolving boundary layer is simulated. Results of both passive and active methods of control are shown for small amplitude two-dimensional and three-dimensional disturbance waves. Control is also applied to the early stages of the secondary instability process using passive or active control techniques.

  3. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.

    2016-09-01

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include methods that 1) explicitly model the three-dimensional geometry of pore spaces and 2) those that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of class 1, based on direct numerical simulation using computational fluid dynamics (CFD) codes, against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of class 1 based on the immersed-boundary method (IMB),more » lattice Boltzmann method (LBM), smoothed particle hydrodynamics (SPH), as well as a model of class 2 (a pore-network model or PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and nonreactive solute transport, and intercompare the model results with previously reported experimental observations. Experimental observations are limited to measured pore-scale velocities, so solute transport comparisons are made only among the various models. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations).« less

  4. Three-dimensional numerical simulations of crustal-scale wrenching using a non-linear failure criterion

    NASA Astrophysics Data System (ADS)

    Braun, Jean

    1994-08-01

    We have developed a three-dimensional finite element model to study wrench deformation of the crust regarded as an elasto-plastic material obeying Murrell's extension of Griffith's failure criterion. Numerical experiments using this model predict that the imposed basal wrenching is accommodated by an array of oblique Riedel-like shears and Y-shears (parallel to the direction of wrenching). The partitioning of deformation between the two types of structure depends on the width of the zone of imposed basal wrenching and the existence of a component of deformation in the x-direction (normal to the direction of wrenching). The Riedel shears are arranged in spiral-like structures that root into the basal wrench zone. In cross-section, the Riedel shears resemble wedge-shaped flower structures similar to those often observed in seismic cross-sections. The 'polarity' of the flower structures is positive (or palm-tree-like) in transpression experiments and negative (or tulip-like) in transtension experiments. The orientation of the Riedel shears throughout the crust obeys Mohr's hypothesis for incipient faulting combined with Murrell's failure criterion. The model also predicts plastic dilatancy inversely proportional to the square root of the confining pressure; this result agrees qualitatively with field observations and the results of sand-box experiments and quantitatively with direct measurement of dilatancy during high-pressure rock-deformation experiments.

  5. NUMERICAL SIMULATION OF THREE-DIMENSIONAL TUFT CORONA AND ELECTROHYDRODYNAMICS

    EPA Science Inventory

    The numerical simulation of three-dimensional tuft corona and electrohydrodynamics (EHD) is discussed. The importance of high-voltage and low-current operation in the wire-duct precipitator has focused attention on collecting high-resistivity dust. The local current density of in...

  6. Comparison of Mars Science Laboratory Reaction Control System Jet Computations With Flow Visualization and Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Johansen, Craig T.; Ashcraft, Scott W.; Novak, Luke A.

    2013-01-01

    Numerical predictions of the Mars Science Laboratory reaction control system jets interacting with a Mach 10 hypersonic flow are compared to experimental nitric oxide planar laser-induced fluorescence data. The steady Reynolds Averaged Navier Stokes equations using the Baldwin-Barth one-equation turbulence model were solved using the OVERFLOW code. The experimental fluorescence data used for comparison consists of qualitative two-dimensional visualization images, qualitative reconstructed three-dimensional flow structures, and quantitative two-dimensional distributions of streamwise velocity. Through modeling of the fluorescence signal equation, computational flow images were produced and directly compared to the qualitative fluorescence data.

  7. Numerical Investigation of Dual-Mode Scramjet Combustor with Large Upstream Interaction

    NASA Technical Reports Server (NTRS)

    Mohieldin, T. O.; Tiwari, S. N.; Reubush, David E. (Technical Monitor)

    2004-01-01

    Dual-mode scramjet combustor configuration with significant upstream interaction is investigated numerically, The possibility of scaling the domain to accelerate the convergence and reduce the computational time is explored. The supersonic combustor configuration was selected to provide an understanding of key features of upstream interaction and to identify physical and numerical issues relating to modeling of dual-mode configurations. The numerical analysis was performed with vitiated air at freestream Math number of 2.5 using hydrogen as the sonic injectant. Results are presented for two-dimensional models and a three-dimensional jet-to-jet symmetric geometry. Comparisons are made with experimental results. Two-dimensional and three-dimensional results show substantial oblique shock train reaching upstream of the fuel injectors. Flow characteristics slow numerical convergence, while the upstream interaction slowly increases with further iterations. As the flow field develops, the symmetric assumption breaks down. A large separation zone develops and extends further upstream of the step. This asymmetric flow structure is not seen in the experimental data. Results obtained using a sub-scale domain (both two-dimensional and three-dimensional) qualitatively recover the flow physics obtained from full-scale simulations. All results show that numerical modeling using a scaled geometry provides good agreement with full-scale numerical results and experimental results for this configuration. This study supports the argument that numerical scaling is useful in simulating dual-mode scramjet combustor flowfields and could provide an excellent convergence acceleration technique for dual-mode simulations.

  8. Numerical simulation of phenomenon on zonal disintegration in deep underground mining in case of unsupported roadway

    NASA Astrophysics Data System (ADS)

    Han, Fengshan; Wu, Xinli; Li, Xia; Zhu, Dekang

    2018-02-01

    Zonal disintegration phenomenon was found in deep mining roadway surrounding rock. It seriously affects the safety of mining and underground engineering and it may lead to the occurrence of natural disasters. in deep mining roadway surrounding rock, tectonic stress in deep mining roadway rock mass, horizontal stress is much greater than the vertical stress, When the direction of maximum principal stress is parallel to the axis of the roadway in deep mining, this is the main reasons for Zonal disintegration phenomenon. Using ABAQUS software to numerical simulation of the three-dimensional model of roadway rupture formation process systematically, and the study shows that when The Direction of maximum main stress in deep underground mining is along the roadway axial direction, Zonal disintegration phenomenon in deep underground mining is successfully reproduced by our numerical simulation..numerical simulation shows that using ABAQUA simulation can reproduce Zonal disintegration phenomenon and the formation process of damage of surrounding rock can be reproduced. which have important engineering practical significance.

  9. Magnetic helicity conservation and inverse energy cascade in electron magnetohydrodynamic wave packets.

    PubMed

    Cho, Jungyeon

    2011-05-13

    Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.

  10. Ejection mechanisms in the sublayer of a turbulent channel

    NASA Technical Reports Server (NTRS)

    Jimenez, Javier; Moin, P.; Moser, R.; Keefe, L.

    1988-01-01

    The structure of the vorticity field in the viscous wall layer of a turbulent channel is studied by examining the results of a fully resolved direct numerical simulation. It is shown that this region is dominated by intense three-dimensional shear layers in which the dominant vorticity component is spanwise. The advection and reproduction processes of these structures are examined and shown to be consistent with the classical generation mechanism for two-dimensional Tollmien-Schlichting waves. This process is fundamentally different from the usually accepted mechanism involving hairpin vortices.

  11. Three-dimensional compact explicit-finite difference time domain scheme with density variation

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Takao; Maruta, Naoki

    2018-07-01

    In this paper, the density variation is implemented in the three-dimensional compact-explicit finite-difference time-domain (CE-FDTD) method. The formulation is first developed based on the continuity equation and the equation of motion, which include the density. Some numerical demonstrations are performed for the three-dimensional sound wave propagation in a two density layered medium. The numerical results are compared with the theoretical results to verify the proposed formulation.

  12. Schramm-Loewner (SLE) analysis of quasi two-dimensional turbulent flows

    NASA Astrophysics Data System (ADS)

    Thalabard, Simon

    2012-02-01

    Quasi two-dimensional turbulence can be observed in several cases: for example, in the laboratory using liquid soap films, or as the result of a strong imposed rotation as obtained in three-dimensional large direct numerical simulations. We study and contrast SLE properties of such flows, in the former case in the inverse cascade of energy to large scale, and in the latter in the direct cascade of energy to small scales in the presence of a fully-helical forcing. We thus examine the geometric properties of these quasi 2D regimes in the context of stochastic geometry, as was done for the 2D inverse cascade by Bernard et al. (2006). We show that in both cases the data is compatible with self-similarity and with SLE behaviors, whose different diffusivities can be heuristically determined.

  13. 3D DNS and LES of Breaking Inertia-Gravity Waves

    NASA Astrophysics Data System (ADS)

    Remmler, S.; Fruman, M. D.; Hickel, S.; Achatz, U.

    2012-04-01

    As inertia-gravity waves we refer to gravity waves that have a sufficiently low frequency and correspondingly large horizontal wavelength to be strongly influenced by the Coriolis force. Inertia-gravity waves are very active in the middle atmosphere and their breaking is potentially an important influence on the circulation in this region. The parametrization of this process requires a good theoretical understanding, which we want to enhance with the present study. Primary linear instabilities of an inertia-gravity wave and "2.5-dimensional" nonlinear simulations (where the spatial dependence is two dimensional but the velocity and vorticity fields are three-dimensional) with the wave perturbed by its leading primary instabilities by Achatz [1] have shown that the breaking differs significantly from that of high-frequency gravity waves due to the strongly sheared component of velocity perpendicular to the plane of wave-propagation. Fruman & Achatz [2] investigated the three-dimensionalization of the breaking by computing the secondary linear instabilities of the same waves using singular vector analysis. These secondary instabilities are variations perpendicular to the direction of the primary perturbation and the wave itself, and their wavelengths are an order of magnitude shorter than both. In continuation of this work, we carried out fully three-dimensional nonlinear simulations of inertia-gravity waves perturbed by their leading primary and secondary instabilities. The direct numerical simulation (DNS) was made tractable by restricting the domain size to the dominant scales selected by the linear analyses. The study includes both convectively stable and unstable waves. To the best of our knowledge, this is the first fully three-dimensional nonlinear direct numerical simulation of inertia-gravity waves at realistic Reynolds numbers with complete resolution of the smallest turbulence scales. Previous simulations either were restricted to high frequency gravity waves (e. g. Fritts et al. [3]), or the ratio N/f was artificially reduced (e. g. Lelong & Dunkerton [4]). The present simulations give us insight into the three-dimensional breaking process as well as the emerging turbulence. We assess the possibility of reducing the computational costs of three-dimensional simulations by using an implicit turbulence subgrid-scale parametrization based on the Adaptive Local Deconvolution Method (ALDM) for stratified turbulence [5]. In addition, we have performed ensembles of nonlinear 2.5-dimensional DNS, like those in Achatz [1] but with a small amount of noise superposed to the initial state, and compared the results with coarse-resolution simulations using either ALDM as well as with standard LES schemes. We found that the results of the models with parametrized turbulence, which are orders of magnitude more computationally economical than the DNS, compare favorably with the DNS in terms of the decay of the wave amplitude with time (the quantity most important for application to gravity-wave drag parametrization) suggesting that they may be trusted in future simulations of gravity wave breaking.

  14. Three-dimensional finite amplitude electroconvection in dielectric liquids

    NASA Astrophysics Data System (ADS)

    Luo, Kang; Wu, Jian; Yi, Hong-Liang; Tan, He-Ping

    2018-02-01

    Charge injection induced electroconvection in a dielectric liquid lying between two parallel plates is numerically simulated in three dimensions (3D) using a unified lattice Boltzmann method (LBM). Cellular flow patterns and their subcritical bifurcation phenomena of 3D electroconvection are numerically investigated for the first time. A unit conversion is also derived to connect the LBM system to the real physical system. The 3D LBM codes are validated by three carefully chosen cases and all results are found to be highly consistent with the analytical solutions or other numerical studies. For strong injection, the steady state roll, polygon, and square flow patterns are observed under different initial disturbances. Numerical results show that the hexagonal cell with the central region being empty of charge and centrally downward flow is preferred in symmetric systems under random initial disturbance. For weak injection, the numerical results show that the flow directly passes from the motionless state to turbulence once the system loses its linear stability. In addition, the numerically predicted linear and finite amplitude stability criteria of different flow patterns are discussed.

  15. Three-dimensional numerical simulations of local scouring around bridge piers

    USDA-ARS?s Scientific Manuscript database

    This paper presents a novel numerical method for simulating local scouring around bridge piers using a three-dimensional free-surface RANS turbulent flow model. Strong turbulent fluctuations and the down-flows around the bridge pier are considered important factors in scouring the bed. The turbulent...

  16. Direct numerical simulation of annular flows

    NASA Astrophysics Data System (ADS)

    Batchvarov, Assen; Kahouadji, Lyes; Chergui, Jalel; Juric, Damir; Shin, Seungwon; Craster, Richard V.; Matar, Omar K.

    2017-11-01

    Vertical counter-current two-phase flows are investigated using direct numerical simulations. The computations are carried out using Blue, a front-tracking-based CFD solver. Preliminary results show good qualitative agreement with experimental observations in terms of interfacial phenomena; these include three-dimensional, large-amplitude wave formation, the development of long ligaments, and droplet entrainment. The flooding phenomena in these counter current systems are closely investigated. The onset of flooding in our simulations is compared to existing empirical correlations such as Kutateladze-type and Wallis-type. The effect of varying tube diameter and fluid properties on the flooding phenomena is also investigated in this work. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).

  17. Homoclinic orbits in three-dimensional Shilnikov-type chaotic systems

    NASA Astrophysics Data System (ADS)

    Feng, Jing-Jing; Zhang, Qi-Chang; Wang, Wei; Hao, Shu-Ying

    2013-09-01

    In this paper, the Padé approximant and analytic solution in the neighborhood of the initial value are introduced into the process of constructing the Shilnikov type homoclinic trajectories in three-dimensional nonlinear dynamical systems. The PID controller system with quadratic and cubic nonlinearities, the simplified solar-wind-driven-magnetosphere-ionosphere system, and the human DNA sequence system are considered. With the aid of presenting a new condition, the solutions of solving the boundary-value problems which are formulated for the trajectory and evaluating the initial amplitude values become available. At the same time, the value of the bifurcation parameter is obtained directly, which is almost consistent with the numerical result.

  18. Simulating three dimensional wave run-up over breakwaters covered by antifer units

    NASA Astrophysics Data System (ADS)

    Najafi-Jilani, A.; Niri, M. Zakiri; Naderi, Nader

    2014-06-01

    The paper presents the numerical analysis of wave run-up over rubble-mound breakwaters covered by antifer units using a technique integrating Computer-Aided Design (CAD) and Computational Fluid Dynamics (CFD) software. Direct application of Navier-Stokes equations within armour blocks, is used to provide a more reliable approach to simulate wave run-up over breakwaters. A well-tested Reynolds-averaged Navier-Stokes (RANS) Volume of Fluid (VOF) code (Flow-3D) was adopted for CFD computations. The computed results were compared with experimental data to check the validity of the model. Numerical results showed that the direct three dimensional (3D) simulation method can deliver accurate results for wave run-up over rubble mound breakwaters. The results showed that the placement pattern of antifer units had a great impact on values of wave run-up so that by changing the placement pattern from regular to double pyramid can reduce the wave run-up by approximately 30%. Analysis was done to investigate the influences of surface roughness, energy dissipation in the pores of the armour layer and reduced wave run-up due to inflow into the armour and stone layer.

  19. Origins of oblique-slip faulting during caldera subsidence

    NASA Astrophysics Data System (ADS)

    Holohan, Eoghan P.; Walter, Thomas R.; Schöpfer, Martin P. J.; Walsh, John J.; van Wyk de Vries, Benjamin; Troll, Valentin R.

    2013-04-01

    Although conventionally described as purely dip-slip, faults at caldera volcanoes may have a strike-slip displacement component. Examples occur in the calderas of Olympus Mons (Mars), Miyakejima (Japan), and Dolomieu (La Reunion). To investigate this phenomenon, we use numerical and analog simulations of caldera subsidence caused by magma reservoir deflation. The numerical models constrain mechanical causes of oblique-slip faulting from the three-dimensional stress field in the initial elastic phase of subsidence. The analog experiments directly characterize the development of oblique-slip faulting, especially in the later, non-elastic phases of subsidence. The combined results of both approaches can account for the orientation, mode, and location of oblique-slip faulting at natural calderas. Kinematically, oblique-slip faulting originates to resolve the following: (1) horizontal components of displacement that are directed radially toward the caldera center and (2) horizontal translation arising from off-centered or "asymmetric" subsidence. We informally call these two origins the "camera iris" and "sliding trapdoor" effects, respectively. Our findings emphasize the fundamentally three-dimensional nature of deformation during caldera subsidence. They hence provide an improved basis for analyzing structural, geodetic, and geophysical data from calderas, as well as analogous systems, such as mines and producing hydrocarbon reservoirs.

  20. Advanced graphical user interface for multi-physics simulations using AMST

    NASA Astrophysics Data System (ADS)

    Hoffmann, Florian; Vogel, Frank

    2017-07-01

    Numerical modelling of particulate matter has gained much popularity in recent decades. Advanced Multi-physics Simulation Technology (AMST) is a state-of-the-art three dimensional numerical modelling technique combining the eX-tended Discrete Element Method (XDEM) with Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) [1]. One major limitation of this code is the lack of a graphical user interface (GUI) meaning that all pre-processing has to be made directly in a HDF5-file. This contribution presents the first graphical pre-processor developed for AMST.

  1. Transversally periodic solitary gravity–capillary waves

    PubMed Central

    Milewski, Paul A.; Wang, Zhan

    2014-01-01

    When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity–capillary solitary waves are found to be of either elevation or depression type, tend to plane waves below a critical transverse period and tend to solitary lumps as the transverse period tends to infinity. The waves are found numerically in a Hamiltonian system for water waves simplified by a cubic truncation of the Dirichlet-to-Neumann operator. This approximation has been proved to be very accurate for both two- and three-dimensional computations of fully localized gravity–capillary solitary waves. The stability properties of these waves are then investigated via the time evolution of perturbed wave profiles. PMID:24399922

  2. Transonic Navier-Stokes solutions of three-dimensional afterbody flows

    NASA Technical Reports Server (NTRS)

    Compton, William B., III; Thomas, James L.; Abeyounis, William K.; Mason, Mary L.

    1989-01-01

    The performance of a three-dimensional Navier-Stokes solution technique in predicting the transonic flow past a nonaxisymmetric nozzle was investigated. The investigation was conducted at free-stream Mach numbers ranging from 0.60 to 0.94 and an angle of attack of 0 degrees. The numerical solution procedure employs the three-dimensional, unsteady, Reynolds-averaged Navier-Stokes equations written in strong conservation form, a thin layer assumption, and the Baldwin-Lomax turbulence model. The equations are solved by using the finite-volume principle in conjunction with an approximately factored upwind-biased numerical algorithm. In the numerical procedure, the jet exhaust is represented by a solid sting. Wind-tunnel data with the jet exhaust simulated by high pressure air were also obtained to compare with the numerical calculations.

  3. Influence of magnetic disorders on quantum anomalous Hall effect in magnetic topological insulator films beyond the two-dimensional limit

    NASA Astrophysics Data System (ADS)

    Xing, Yanxia; Xu, Fuming; Cheung, King Tai; Sun, Qing-feng; Wang, Jian; Yao, Yugui

    2018-04-01

    Quantum anomalous Hall effect (QAHE) has been experimentally realized in magnetic topological insulator (MTI) thin films fabricated on magnetically doped {({{Bi}},{{Sb}})}2{{{Te}}}3. In an MTI thin film with the magnetic easy axis along the normal direction (z-direction), orientations of magnetic dopants are randomly distributed around the magnetic easy axis, acting as magnetic disorders. With the aid of the non-equilibrium Green's function and Landauer–Büttiker formalism, we numerically study the influence of magnetic disorders on QAHE in an MTI thin film modeled by a three-dimensional tight-binding Hamiltonian. It is found that, due to the existence of gapless side surface states, QAHE is protected even in the presence of magnetic disorders as long as the z-component of magnetic moment of all magnetic dopants are positive. More importantly, such magnetic disorders also suppress the dissipation of the chiral edge states and enhance the quality of QAHE in MTI films. In addition, the effect of magnetic disorders depends very much on the film thickness, and the optimal influence is achieved at certain thickness. These findings are new features for QAHE in three-dimensional systems, not present in two-dimensional systems.

  4. A Three-Dimensional Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows

    NASA Technical Reports Server (NTRS)

    Montgomery, Matthew D.; Verdon, Joseph M.

    1997-01-01

    A three-dimensional, linearized, Euler analysis is being developed to provide an efficient unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacoustic responses of axial-flow turbo-machinery blading.The field equations and boundary conditions needed to describe nonlinear and linearized inviscid unsteady flows through a blade row operating within a cylindrical annular duct are presented. A numerical model for linearized inviscid unsteady flows, which couples a near-field, implicit, wave-split, finite volume analysis to a far-field eigenanalysis, is also described. The linearized aerodynamic and numerical models have been implemented into a three-dimensional linearized unsteady flow code, called LINFLUX. This code has been applied to selected, benchmark, unsteady, subsonic flows to establish its accuracy and to demonstrate its current capabilities. The unsteady flows considered, have been chosen to allow convenient comparisons between the LINFLUX results and those of well-known, two-dimensional, unsteady flow codes. Detailed numerical results for a helical fan and a three-dimensional version of the 10th Standard Cascade indicate that important progress has been made towards the development of a reliable and useful, three-dimensional, prediction capability that can be used in aeroelastic and aeroacoustic design studies.

  5. Spectral multigrid methods for the solution of homogeneous turbulence problems

    NASA Technical Reports Server (NTRS)

    Erlebacher, G.; Zang, T. A.; Hussaini, M. Y.

    1987-01-01

    New three-dimensional spectral multigrid algorithms are analyzed and implemented to solve the variable coefficient Helmholtz equation. Periodicity is assumed in all three directions which leads to a Fourier collocation representation. Convergence rates are theoretically predicted and confirmed through numerical tests. Residual averaging results in a spectral radius of 0.2 for the variable coefficient Poisson equation. In general, non-stationary Richardson must be used for the Helmholtz equation. The algorithms developed are applied to the large-eddy simulation of incompressible isotropic turbulence.

  6. Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications

    PubMed Central

    Su, Wenjing; Cook, Benjamin S.; Fang, Yunnan; Tentzeris, Manos M.

    2016-01-01

    As the needs for low-cost rapidly-produced microfluidics are growing with the trend of Lab-on-a-Chip and distributed healthcare, the fully inkjet-printing of microfluidics can be a solution to it with numerous potential electrical and sensing applications. Inkjet-printing is an additive manufacturing technique featuring no material waste and a low equipment cost. Moreover, similar to other additive manufacturing techniques, inkjet-printing is easy to learn and has a high fabrication speed, while it offers generally a great planar resolution down to below 20 µm and enables flexible designs due to its inherent thin film deposition capabilities. Due to the thin film feature, the printed objects also usually obtain a high vertical resolution (such as 4.6 µm). This paper introduces a low-cost rapid three-dimensional fabrication process of microfluidics, that relies entirely on an inkjet-printer based single platform and can be implemented directly on top of virtually any substrates. PMID:27713545

  7. Transition to turbulence in plane channel flows

    NASA Technical Reports Server (NTRS)

    Biringen, S.

    1984-01-01

    Results obtained from a numerical simulation of the final stages of transition to turbulence in plane channel flow are described. Three dimensional, incompressible Navier-Stokes equations are numerically integrated to obtain the time evolution of two and three dimensional finite amplitude disturbances. Computations are performed on CYBER-203 vector processor for a 32x51x32 grid. Results are presented for no-slip boundary conditions at the solid walls as well as for periodic suction blowing to simulate active control of transition by mass transfer. Solutions indicate that the method is capable of simulating the complex character of vorticity dynamics during the various stages of transition and final breakdown. In particular, evidence points to the formation of a lambda-shape vortex and the subsequent system of horseshoe vortices inclined to the main flow direction as the main elements of transition. Calculations involving periodic suction-blowing indicate that interference with a wave of suitable phase and amplitude reduces the disturbance growth rates.

  8. Fully inkjet-printed microfluidics: a solution to low-cost rapid three-dimensional microfluidics fabrication with numerous electrical and sensing applications

    NASA Astrophysics Data System (ADS)

    Su, Wenjing; Cook, Benjamin S.; Fang, Yunnan; Tentzeris, Manos M.

    2016-10-01

    As the needs for low-cost rapidly-produced microfluidics are growing with the trend of Lab-on-a-Chip and distributed healthcare, the fully inkjet-printing of microfluidics can be a solution to it with numerous potential electrical and sensing applications. Inkjet-printing is an additive manufacturing technique featuring no material waste and a low equipment cost. Moreover, similar to other additive manufacturing techniques, inkjet-printing is easy to learn and has a high fabrication speed, while it offers generally a great planar resolution down to below 20 µm and enables flexible designs due to its inherent thin film deposition capabilities. Due to the thin film feature, the printed objects also usually obtain a high vertical resolution (such as 4.6 µm). This paper introduces a low-cost rapid three-dimensional fabrication process of microfluidics, that relies entirely on an inkjet-printer based single platform and can be implemented directly on top of virtually any substrates.

  9. Flow field predictions for a slab delta wing at incidence

    NASA Technical Reports Server (NTRS)

    Conti, R. J.; Thomas, P. D.; Chou, Y. S.

    1972-01-01

    Theoretical results are presented for the structure of the hypersonic flow field of a blunt slab delta wing at moderately high angle of attack. Special attention is devoted to the interaction between the boundary layer and the inviscid entropy layer. The results are compared with experimental data. The three-dimensional inviscid flow is computed numerically by a marching finite difference method. Attention is concentrated on the windward side of the delta wing, where detailed comparisons are made with the data for shock shape and surface pressure distributions. Surface streamlines are generated, and used in the boundary layer analysis. The three-dimensional laminar boundary layer is computed numerically using a specially-developed technique based on small cross-flow in streamline coordinates. In the rear sections of the wing the boundary layer decreases drastically in the spanwise direction, so that it is still submerged in the entropy layer at the centerline, but surpasses it near the leading edge. Predicted heat transfer distributions are compared with experimental data.

  10. Numerical analysis of modified Central Solenoid insert design

    DOE PAGES

    Khodak, Andrei; Martovetsky, Nicolai; Smirnov, Aleksandre; ...

    2015-06-21

    The United States ITER Project Office (USIPO) is responsible for fabrication of the Central Solenoid (CS) for ITER project. The ITER machine is currently under construction by seven parties in Cadarache, France. The CS Insert (CSI) project should provide a verification of the conductor performance in relevant conditions of temperature, field, currents and mechanical strain. The US IPO designed the CSI that will be tested at the Central Solenoid Model Coil (CSMC) Test Facility at JAEA, Naka. To validate the modified design we performed three-dimensional numerical simulations using coupled solver for simultaneous structural, thermal and electromagnetic analysis. Thermal and electromagneticmore » simulations supported structural calculations providing necessary loads and strains. According to current analysis design of the modified coil satisfies ITER magnet structural design criteria for the following conditions: (1) room temperature, no current, (2) temperature 4K, no current, (3) temperature 4K, current 60 kA direct charge, and (4) temperature 4K, current 60 kA reverse charge. Fatigue life assessment analysis is performed for the alternating conditions of: temperature 4K, no current, and temperature 4K, current 45 kA direct charge. Results of fatigue analysis show that parts of the coil assembly can be qualified for up to 1 million cycles. Distributions of the Current Sharing Temperature (TCS) in the superconductor were obtained from numerical results using parameterization of the critical surface in the form similar to that proposed for ITER. Lastly, special ADPL scripts were developed for ANSYS allowing one-dimensional representation of TCS along the cable, as well as three-dimensional fields of TCS in superconductor material. Published by Elsevier B.V.« less

  11. A Computational and Experimental Study of Resonators in Three Dimensions

    NASA Technical Reports Server (NTRS)

    Tam, C. K. W.; Ju, H.; Jones, Michael G.; Watson, Willie R.; Parrott, Tony L.

    2009-01-01

    In a previous work by the present authors, a computational and experimental investigation of the acoustic properties of two-dimensional slit resonators was carried out. The present paper reports the results of a study extending the previous work to three dimensions. This investigation has two basic objectives. The first is to validate the computed results from direct numerical simulations of the flow and acoustic fields of slit resonators in three dimensions by comparing with experimental measurements in a normal incidence impedance tube. The second objective is to study the flow physics of resonant liners responsible for sound wave dissipation. Extensive comparisons are provided between computed and measured acoustic liner properties with both discrete frequency and broadband sound sources. Good agreements are found over a wide range of frequencies and sound pressure levels. Direct numerical simulation confirms the previous finding in two dimensions that vortex shedding is the dominant dissipation mechanism at high sound pressure intensity. However, it is observed that the behavior of the shed vortices in three dimensions is quite different from those of two dimensions. In three dimensions, the shed vortices tend to evolve into ring (circular in plan form) vortices, even though the slit resonator opening from which the vortices are shed has an aspect ratio of 2.5. Under the excitation of discrete frequency sound, the shed vortices align themselves into two regularly spaced vortex trains moving away from the resonator opening in opposite directions. This is different from the chaotic shedding of vortices found in two-dimensional simulations. The effect of slit aspect ratio at a fixed porosity is briefly studied. For the range of liners considered in this investigation, it is found that the absorption coefficient of a liner increases when the open area of the single slit is subdivided into multiple, smaller slits.

  12. Direct simulations of chemically reacting turbulent mixing layers, part 2

    NASA Technical Reports Server (NTRS)

    Metcalfe, Ralph W.; Mcmurtry, Patrick A.; Jou, Wen-Huei; Riley, James J.; Givi, Peyman

    1988-01-01

    The results of direct numerical simulations of chemically reacting turbulent mixing layers are presented. This is an extension of earlier work to a more detailed study of previous three dimensional simulations of cold reacting flows plus the development, validation, and use of codes to simulate chemically reacting shear layers with heat release. Additional analysis of earlier simulations showed good agreement with self similarity theory and laboratory data. Simulations with a two dimensional code including the effects of heat release showed that the rate of chemical product formation, the thickness of the mixing layer, and the amount of mass entrained into the layer all decrease with increasing rates of heat release. Subsequent three dimensional simulations showed similar behavior, in agreement with laboratory observations. Baroclinic torques and thermal expansion in the mixing layer were found to produce changes in the flame vortex structure that act to diffuse the pairing vortices, resulting in a net reduction in vorticity. Previously unexplained anomalies observed in the mean velocity profiles of reacting jets and mixing layers were shown to result from vorticity generation by baroclinic torques.

  13. Semi-implicit finite difference methods for three-dimensional shallow water flow

    USGS Publications Warehouse

    Casulli, Vincenzo; Cheng, Ralph T.

    1992-01-01

    A semi-implicit finite difference method for the numerical solution of three-dimensional shallow water flows is presented and discussed. The governing equations are the primitive three-dimensional turbulent mean flow equations where the pressure distribution in the vertical has been assumed to be hydrostatic. In the method of solution a minimal degree of implicitness has been adopted in such a fashion that the resulting algorithm is stable and gives a maximal computational efficiency at a minimal computational cost. At each time step the numerical method requires the solution of one large linear system which can be formally decomposed into a set of small three-diagonal systems coupled with one five-diagonal system. All these linear systems are symmetric and positive definite. Thus the existence and uniquencess of the numerical solution are assured. When only one vertical layer is specified, this method reduces as a special case to a semi-implicit scheme for solving the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm has been shown to be fast, accurate and mass-conservative and can also be applied to simulate flooding and drying of tidal mud-flats in conjunction with three-dimensional flows. Furthermore, the resulting algorithm is fully vectorizable for an efficient implementation on modern vector computers.

  14. Three-dimensional Numerical Simulations of Rayleigh-Taylor Unstable Flames in Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Zingale, M.; Woosley, S. E.; Rendleman, C. A.; Day, M. S.; Bell, J. B.

    2005-10-01

    Flame instabilities play a dominant role in accelerating the burning front to a large fraction of the speed of sound in a Type Ia supernova. We present a three-dimensional numerical simulation of a Rayleigh-Taylor unstable carbon flame, following its evolution through the transition to turbulence. A low-Mach number hydrodynamics method is used, freeing us from the harsh time step restrictions imposed by sound waves. We fully resolve the thermal structure of the flame and its reaction zone, eliminating the need for a flame model. A single density is considered, 1.5×107 g cm-3, and half-carbon, half-oxygen fuel: conditions under which the flame propagated in the flamelet regime in our related two-dimensional study. We compare to a corresponding two-dimensional simulation and show that while fire polishing keeps the small features suppressed in two dimensions, turbulence wrinkles the flame on far smaller scales in the three-dimensional case, suggesting that the transition to the distributed burning regime occurs at higher densities in three dimensions. Detailed turbulence diagnostics are provided. We show that the turbulence follows a Kolmogorov spectrum and is highly anisotropic on the large scales, with a much larger integral scale in the direction of gravity. Furthermore, we demonstrate that it becomes more isotropic as it cascades down to small scales. On the basis of the turbulent statistics and the flame properties of our simulation, we compute the Gibson scale. We show the progress of the turbulent flame through a classic combustion regime diagram, indicating that the flame just enters the distributed burning regime near the end of our simulation.

  15. Three-Dimensional Upward Flame Spreading in Partial-Gravity Buoyant Flows

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt R.; Feier, Ioan I.; Shih, Hsin-Yi; T'ien, James S.

    2001-01-01

    Reduced-gravity environments have been used to establish low-speed, purely forced flows for both opposed- and concurrent-flow flame spread studies. Altenkirch's group obtained spacebased experimental results and developed unsteady, two-dimensional numerical simulations of opposed-flow flame spread including gas-phase radiation, primarily away from the flammability limit for thin fuels, but including observations of thick fuel quenching in quiescent environments. T'ien's group contributed some early flame spreading results for thin fuels both in opposed flow and concurrent flow regimes, with more focus on near-limit conditions. T'ien's group also developed two- and three-dimensional numerical simulations of concurrent-flow flame spread incorporating gas-phase radiative models, including predictions of a radiatively-induced quenching limit reached in very low-speed air flows. Radiative quenching has been subsequently observed in other studies of combustion in very low-speed flows including other flame spread investigations, droplet combustion and homogeneous diffusion flames, and is the subject of several contemporary studies reported in this workshop. Using NASA aircraft flying partial-gravity "parabolic" trajectories, flame spreading in purely buoyant, opposed-flow (downward burning) has been studied. These results indicated increases in flame spread rates and enhanced flammability (lower limiting atmospheric oxygen content) as gravity levels were reduced from normal Earth gravity, and were consistent with earlier data obtained by Altenkirch using a centrifuge. In this work, experimental results and a three-dimensional numerical simulation of upward flame spreading in variable partial-gravity environments were obtained including some effects of reduced pressure and variable sample width. The simulation provides physical insight for interpreting the experimental results and shows the intrinsic 3-D nature of buoyant, upward flame spreading. This study is intended to link the evolving understanding of flame spreading in purely-forced flows to the purely-buoyant flow environment, particularly in the concurrent flow regime; provide additional insight into the existence of steady flame spread in concurrent flows; and stimulate direct comparisons between opposed- and concurrent-flow flame spread. Additionally, this effort is intended to provide direct practical understanding applicable to fire protection planning for the habitable facilities in partial gravity environments of anticipated Lunar and Martian explorations.

  16. Reflecting microscope system with a 0.99 numerical aperture designed for three-dimensional fluorescence imaging of individual molecules at cryogenic temperatures

    PubMed Central

    Inagawa, H.; Toratani, Y.; Motohashi, K.; Nakamura, I.; Matsushita, M.; Fujiyoshi, S.

    2015-01-01

    We have developed a cryogenic fluorescence microscope system, the core of which is a reflecting objective that consists of spherical and aspherical mirrors. The use of an aspherical mirror allows the reflecting objective to have a numerical aperture (NA) of up to 0.99, which is close to the maximum possible NA of 1.03 in superfluid helium. The performance of the system at a temperature of 1.7 K was tested by recording a three-dimensional fluorescence image of individual quantum dots using excitation wavelengths (λex) of 532 nm and 635 nm. At 1.7 K, the microscope worked with achromatic and nearly diffraction-limited performance. The 1/e2 radius (Γ) of the point spread function of the reflecting objective in the lateral (xy) direction was 0.212 ± 0.008 μm at λex = 532 nm and was less than 1.2 times the simulated value for a perfectly polished objective. The radius Γ in the axial (z) direction was 0.91 ± 0.04 μm at λex = 532 nm and was less than 1.4 times the simulated value of Γ. The chromatic aberrations between the two wavelengths were one order of magnitude smaller than Γ in each direction. PMID:26239746

  17. A three-dimensional Dirichlet-to-Neumann operator for water waves over topography

    NASA Astrophysics Data System (ADS)

    Andrade, D.; Nachbin, A.

    2018-06-01

    Surface water waves are considered propagating over highly variable non-smooth topographies. For this three dimensional problem a Dirichlet-to-Neumann (DtN) operator is constructed reducing the numerical modeling and evolution to the two dimensional free surface. The corresponding Fourier-type operator is defined through a matrix decomposition. The topographic component of the decomposition requires special care and a Galerkin method is provided accordingly. One dimensional numerical simulations, along the free surface, validate the DtN formulation in the presence of a large amplitude, rapidly varying topography. An alternative, conformal mapping based, method is used for benchmarking. A two dimensional simulation in the presence of a Luneburg lens (a particular submerged mound) illustrates the accurate performance of the three dimensional DtN operator.

  18. Topology of large-scale structure. IV - Topology in two dimensions

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Cohen, Alexander P.; Hamilton, Andrew J. S.; Gott, J. Richard, III; Weinberg, David H.

    1989-01-01

    In a recent series of papers, an algorithm was developed for quantitatively measuring the topology of the large-scale structure of the universe and this algorithm was applied to numerical models and to three-dimensional observational data sets. In this paper, it is shown that topological information can be derived from a two-dimensional cross section of a density field, and analytic expressions are given for a Gaussian random field. The application of a two-dimensional numerical algorithm for measuring topology to cross sections of three-dimensional models is demonstrated.

  19. Stability of a flow down an incline with respect to two-dimensional and three-dimensional disturbances for Newtonian and non-Newtonian fluids.

    PubMed

    Allouche, M H; Millet, S; Botton, V; Henry, D; Ben Hadid, H; Rousset, F

    2015-12-01

    Squire's theorem, which states that the two-dimensional instabilities are more dangerous than the three-dimensional instabilities, is revisited here for a flow down an incline, making use of numerical stability analysis and Squire relationships when available. For flows down inclined planes, one of these Squire relationships involves the slopes of the inclines. This means that the Reynolds number associated with a two-dimensional wave can be shown to be smaller than that for an oblique wave, but this oblique wave being obtained for a larger slope. Physically speaking, this prevents the possibility to directly compare the thresholds at a given slope. The goal of the paper is then to reach a conclusion about the predominance or not of two-dimensional instabilities at a given slope, which is of practical interest for industrial or environmental applications. For a Newtonian fluid, it is shown that, for a given slope, oblique wave instabilities are never the dominant instabilities. Both the Squire relationships and the particular variations of the two-dimensional wave critical curve with regard to the inclination angle are involved in the proof of this result. For a generalized Newtonian fluid, a similar result can only be obtained for a reduced stability problem where some term connected to the perturbation of viscosity is neglected. For the general stability problem, however, no Squire relationships can be derived and the numerical stability results show that the thresholds for oblique waves can be smaller than the thresholds for two-dimensional waves at a given slope, particularly for large obliquity angles and strong shear-thinning behaviors. The conclusion is then completely different in that case: the dominant instability for a generalized Newtonian fluid flowing down an inclined plane with a given slope can be three dimensional.

  20. Finite Deformation of Magnetoelastic Film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barham, Matthew Ian

    2011-05-31

    A nonlinear two-dimensional theory is developed for thin magnetoelastic lms capable of large deformations. This is derived directly from three-dimensional theory. Signi cant simpli cations emerge in the descent from three dimensions to two, permitting the self eld generated by the body to be computed a posteriori. The model is specialized to isotropic elastomers with two material models. First weak magnetization is investigated leading to a free energy where magnetization and deformation are un-coupled. The second closely couples the magnetization and deformation. Numerical solutions are obtained to equilibrium boundary-value problems in which the membrane is subjected to lateral pressure andmore » an applied magnetic eld. An instability is inferred and investigated for the weak magnetization material model.« less

  1. Resonant Spectra of Malignant Breast Cancer Tumors Using the Three-Dimensional Electromagnetic Fast Multipole Model. Part 1

    NASA Technical Reports Server (NTRS)

    El-Shenawee, Magda

    2003-01-01

    An intensive numerical study for the resonance scattering of malignant breast cancer tumors is presented. The rigorous three-dimensional electromagnetic model, based on the equivalence theorem, is used to obtain the induced electric and magnetic currents on the breast and tumor surfaces. The results show that a non-spherical malignant tumor can be characterized based its spectra regardless of its orientation, the incident polarization, or the incident or scattered directions. The tumor's spectra depend solely on its physical characteristics (i.e., the shape and the electrical properties), however, their locations are not functions of its burial depth. This work provides a useful guidance to select the appropriate frequency range for the tumor's size.

  2. Accuracy of three-dimensional seismic ground response analysis in time domain using nonlinear numerical simulations

    NASA Astrophysics Data System (ADS)

    Liang, Fayun; Chen, Haibing; Huang, Maosong

    2017-07-01

    To provide appropriate uses of nonlinear ground response analysis for engineering practice, a three-dimensional soil column with a distributed mass system and a time domain numerical analysis were implemented on the OpenSees simulation platform. The standard mesh of a three-dimensional soil column was suggested to be satisfied with the specified maximum frequency. The layered soil column was divided into multiple sub-soils with a different viscous damping matrix according to the shear velocities as the soil properties were significantly different. It was necessary to use a combination of other one-dimensional or three-dimensional nonlinear seismic ground analysis programs to confirm the applicability of nonlinear seismic ground motion response analysis procedures in soft soil or for strong earthquakes. The accuracy of the three-dimensional soil column finite element method was verified by dynamic centrifuge model testing under different peak accelerations of the earthquake. As a result, nonlinear seismic ground motion response analysis procedures were improved in this study. The accuracy and efficiency of the three-dimensional seismic ground response analysis can be adapted to the requirements of engineering practice.

  3. The three-dimensional structure of swirl-switching in bent pipe flow

    DOE PAGES

    Hufnagel, Lorenz; Canton, Jacopo; Örlü, Ramis; ...

    2017-11-27

    Swirl-switching is a low-frequency oscillatory phenomenon which affects the Dean vortices in bent pipes and may cause fatigue in piping systems. Despite thirty years worth of research, the mechanism that causes these oscillations and the frequencies that characterise them remain unclear. In this paper, we show that a three-dimensional wave-like structure is responsible for the low-frequency switching of the dominant Dean vortex. The present study, performed via direct numerical simulation, focuses on the turbulent flow through amore » $$90^{\\circ }$$pipe bend preceded and followed by straight pipe segments. A pipe with curvature 0.3 (defined as ratio between pipe radius and bend radius) is studied for a bulk Reynolds number $$Re=11\\,700$$, corresponding to a friction Reynolds number $$Re_{\\unicode[STIX]{x1D70F}}\\approx 360$$. Synthetic turbulence is generated at the inflow section and used instead of the classical recycling method in order to avoid the interference between recycling and swirl-switching frequencies. The flow field is analysed by three-dimensional proper orthogonal decomposition (POD) which for the first time allows the identification of the source of swirl-switching: a wave-like structure that originates in the pipe bend. Contrary to some previous studies, the flow in the upstream pipe does not show any direct influence on the swirl-switching modes. Finally, our analysis further shows that a three-dimensional characterisation of the modes is crucial to understand the mechanism, and that reconstructions based on two-dimensional POD modes are incomplete.« less

  4. The three-dimensional structure of swirl-switching in bent pipe flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hufnagel, Lorenz; Canton, Jacopo; Örlü, Ramis

    Swirl-switching is a low-frequency oscillatory phenomenon which affects the Dean vortices in bent pipes and may cause fatigue in piping systems. Despite thirty years worth of research, the mechanism that causes these oscillations and the frequencies that characterise them remain unclear. In this paper, we show that a three-dimensional wave-like structure is responsible for the low-frequency switching of the dominant Dean vortex. The present study, performed via direct numerical simulation, focuses on the turbulent flow through amore » $$90^{\\circ }$$pipe bend preceded and followed by straight pipe segments. A pipe with curvature 0.3 (defined as ratio between pipe radius and bend radius) is studied for a bulk Reynolds number $$Re=11\\,700$$, corresponding to a friction Reynolds number $$Re_{\\unicode[STIX]{x1D70F}}\\approx 360$$. Synthetic turbulence is generated at the inflow section and used instead of the classical recycling method in order to avoid the interference between recycling and swirl-switching frequencies. The flow field is analysed by three-dimensional proper orthogonal decomposition (POD) which for the first time allows the identification of the source of swirl-switching: a wave-like structure that originates in the pipe bend. Contrary to some previous studies, the flow in the upstream pipe does not show any direct influence on the swirl-switching modes. Finally, our analysis further shows that a three-dimensional characterisation of the modes is crucial to understand the mechanism, and that reconstructions based on two-dimensional POD modes are incomplete.« less

  5. Calibration and validation of a one-dimensional complex marine biogeochemical flux model in different areas of the northern Adriatic shelf

    NASA Astrophysics Data System (ADS)

    Vichi, M.; Oddo, P.; Zavatarelli, M.; Coluccelli, A.; Coppini, G.; Celio, M.; Fonda Umani, S.; Pinardi, N.

    2003-01-01

    In this paper we show results from numerical simulations carried out with a complex biogeochemical fluxes model coupled with a one-dimensional high-resolution hydrodynamical model and implemented at three different locations of the northern Adriatic shelf. One location is directly affected by the Po River influence, one has more open-sea characteristics and one is located in the Gulf of Trieste with an intermediate behavior; emphasis is put on the comparison with observations and on the functioning of the northern Adriatic ecosystem in the three areas. The work has been performed in a climatological context and has to be considered as preliminary to the development of three-dimensional numerical simulations. Biogeochemical model parameterizations have been ameliorated with a detailed description of bacterial substrate utilization associated with the quality of the dissolved organic matter (DOM), in order to improve the models capability in capturing the observed DOM dynamics in the basin. The coupled model has been calibrated and validated at the three locations by means of climatological data sets. Results show satisfactory model behavior in simulating local seasonal dynamics in the limit of the available boundary conditions and the one-dimensional implementation. Comparisons with available measurements of primary and bacterial production and bacterial abundances have been performed in all locations. Model simulated rates and bacterial dynamics are in the same order of magnitude of observations and show a qualitatively correct time evolution. The importance of temperature as a factor controlling bacteria efficiency is investigated with sensitivity experiments on the model parameterizations.

  6. Numerical solution to the glancing sidewall oblique shock wave/turbulent boundary layer interaction in three dimension

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Benson, T. J.

    1983-01-01

    A supersonic three-dimensional viscous forward-marching computer design code called PEPSIS is used to obtain a numerical solution of the three-dimensional problem of the interaction of a glancing sidewall oblique shock wave and a turbulent boundary layer. Very good results are obtained for a test case that was run to investigate the use of the wall-function boundary-condition approximation for a highly complex three-dimensional shock-boundary layer interaction. Two additional test cases (coarse mesh and medium mesh) are run to examine the question of near-wall resolution when no-slip boundary conditions are applied. A comparison with experimental data shows that the PEPSIS code gives excellent results in general and is practical for three-dimensional supersonic inlet calculations.

  7. Numerical solution to the glancing sidewall oblique shock wave/turbulent boundary layer interaction in three-dimension

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Benson, T. J.

    1983-01-01

    A supersonic three-dimensional viscous forward-marching computer design code called PEPSIS is used to obtain a numerical solution of the three-dimensional problem of the interaction of a glancing sidewall oblique shock wave and a turbulent boundary layer. Very good results are obtained for a test case that was run to investigate the use of the wall-function boundary-condition approximation for a highly complex three-dimensional shock-boundary layer interaction. Two additional test cases (coarse mesh and medium mesh) are run to examine the question of near-wall resolution when no-slip boundary conditions are applied. A comparison with experimental data shows that the PEPSIS code gives excellent results in general and is practical for three-dimensional supersonic inlet calculations.

  8. Numerical modeling on air quality in an urban environment with changes of the aspect ratio and wind direction.

    PubMed

    Yassin, Mohamed F

    2013-06-01

    Due to heavy traffic emissions within an urban environment, air quality during the last decade becomes worse year by year and hazard to public health. In the present work, numerical modeling of flow and dispersion of gaseous emissions from vehicle exhaust in a street canyon were investigated under changes of the aspect ratio and wind direction. The three-dimensional flow and dispersion of gaseous pollutants were modeled using a computational fluid dynamics (CFD) model which was numerically solved using Reynolds-averaged Navier-Stokes (RANS) equations. The diffusion flow field in the atmospheric boundary layer within the street canyon was studied for different aspect ratios (W/H=1/2, 3/4, and 1) and wind directions (θ=90°, 112.5°, 135°, and 157.5°). The numerical models were validated against wind tunnel results to optimize the turbulence model. The numerical results agreed well with the wind tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height within the street canyon was on the windward side for aspect ratios W/H=1/2 and 1 and wind directions θ=112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the wind direction and aspect ratio increase. The wind velocity and turbulence intensity increase as the aspect ratio and wind direction increase.

  9. Turbulence modeling: Near-wall turbulence and effects of rotation on turbulence

    NASA Technical Reports Server (NTRS)

    Shih, T.-H.

    1990-01-01

    Many Reynolds averaged Navier-Stokes solvers use closure models in conjunction with 'the law of the wall', rather than deal with a thin, viscous sublayer near the wall. This work is motivated by the need for better models to compute near wall turbulent flow. The authors use direct numerical simulation of fully developed channel flow and one of three dimensional turbulent boundary layer flow to develop new models. These direct numerical simulations provide detailed data that experimentalists have not been able to measure directly. Another objective of the work is to examine analytically the effects of rotation on turbulence, using Rapid Distortion Theory (RDT). This work was motivated by the observation that the pressure strain models in all current second order closure models are unable to predict the effects of rotation on turbulence.

  10. Processing And Display Of Medical Three Dimensional Arrays Of Numerical Data Using Octree Encoding

    NASA Astrophysics Data System (ADS)

    Amans, Jean-Louis; Darier, Pierre

    1986-05-01

    imaging modalities such as X-Ray computerized Tomography (CT), Nuclear Medecine and Nuclear Magnetic Resonance can produce three-dimensional (3-D) arrays of numerical data of medical object internal structures. The analysis of 3-D data by synthetic generation of realistic images is an important area of computer graphics and imaging.

  11. Advanced development of BEM for elastic and inelastic dynamic analysis of solids

    NASA Technical Reports Server (NTRS)

    Banerjee, P. K.; Ahmad, S.; Wang, H. C.

    1989-01-01

    Direct Boundary Element formulations and their numerical implementation for periodic and transient elastic as well as inelastic transient dynamic analyses of two-dimensional, axisymmetric and three-dimensional solids are presented. The inelastic formulation is based on an initial stress approach and is the first of its kind in the field of Boundary Element Methods. This formulation employs the Navier-Cauchy equation of motion, Graffi's dynamic reciprocal theorem, Stokes' fundamental solution, and the divergence theorem, together with kinematical and constitutive equations to obtain the pertinent integral equations of the problem in the time domain within the context of the small displacement theory of elastoplasticity. The dynamic (periodic, transient as well as nonlinear transient) formulations have been applied to a range of problems. The numerical formulations presented here are included in the BEST3D and GPBEST systems.

  12. Electroelastic fields in a layered piezoelectric cylindrical shell under dynamic load

    NASA Astrophysics Data System (ADS)

    Saviz, M. R.; Shakeri, M.; Yas, M. H.

    2007-10-01

    The objective of this paper is to demonstrate layerwise theory for the analysis of thick laminated piezoelectric shell structures. A general finite element formulation using the layerwise theory is developed for a laminated cylindrical shell with piezoelectric layers, subjected to dynamic loads. The quadratic approximation of the displacement and electric potential in the thickness direction is considered. The governing equations are reduced to two-dimensional (2D) differential equations. The three-dimensional (3D) elasticity solution is also presented. The resulting equations are solved by a proper finite element method. The numerical results for static loading are compared with exact solutions of benchmark problems. Numerical examples of the dynamic problem are presented. The convergence is studied, as is the influence of the electromechanical coupling on the axisymmetric free-vibration characteristics of a thick cylinder.

  13. Generating Neuron Geometries for Detailed Three-Dimensional Simulations Using AnaMorph.

    PubMed

    Mörschel, Konstantin; Breit, Markus; Queisser, Gillian

    2017-07-01

    Generating realistic and complex computational domains for numerical simulations is often a challenging task. In neuroscientific research, more and more one-dimensional morphology data is becoming publicly available through databases. This data, however, only contains point and diameter information not suitable for detailed three-dimensional simulations. In this paper, we present a novel framework, AnaMorph, that automatically generates water-tight surface meshes from one-dimensional point-diameter files. These surface triangulations can be used to simulate the electrical and biochemical behavior of the underlying cell. In addition to morphology generation, AnaMorph also performs quality control of the semi-automatically reconstructed cells coming from anatomical reconstructions. This toolset allows an extension from the classical dimension-reduced modeling and simulation of cellular processes to a full three-dimensional and morphology-including method, leading to novel structure-function interplay studies in the medical field. The developed numerical methods can further be employed in other areas where complex geometries are an essential component of numerical simulations.

  14. Calculation of flow about posts and powerhead model. [space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Anderson, P. G.; Farmer, R. C.

    1985-01-01

    A three dimensional analysis of the non-uniform flow around the liquid oxygen (LOX) posts in the Space Shuttle Main Engine (SSME) powerhead was performed to determine possible factors contributing to the failure of the posts. Also performed was three dimensional numerical fluid flow analysis of the high pressure fuel turbopump (HPFTP) exhaust system, consisting of the turnaround duct (TAD), two-duct hot gas manifold (HGM), and the Version B transfer ducts. The analysis was conducted in the following manner: (1) modeling the flow around a single and small clusters (2 to 10) of posts; (2) modeling the velocity field in the cross plane; and (3) modeling the entire flow region with a three dimensional network type model. Shear stress functions which will permit viscous analysis without requiring excessive numbers of computational grid points were developed. These wall functions, laminar and turbulent, have been compared to standard Blasius solutions and are directly applicable to the cylinder in cross flow class of problems to which the LOX post problem belongs.

  15. Design and Numerical Simulation of Radial Inflow Turbine Volute

    NASA Astrophysics Data System (ADS)

    Shah, Samip P.; Channiwala, S. A.; Kulshreshtha, D. B.; Chaudhari, Gaurang

    2014-12-01

    The volute of a radial inflow turbine has to be designed to ensure that the desired rotor inlet conditions like absolute Mach number, flow angle etc. are attained. For the reasonable performance of vaneless volute turbine care has to be taken for reduction in losses at an appropriate flow angle at the rotor inlet, in the direction of volute, whose function is to convert gas energy into kinetic energy and direct the flow towards the rotor inlet at an appropriate flow angle with reduced losses. In literature it was found that the incompressible approaches failed to provide free vortex and uniform flow at rotor inlet for compressible flow regimes. So, this paper describes a non-dimensional design procedure for a vaneless turbine volute for compressible flow regime and investigates design parameters, such as the distribution of area ratio and radius ratio as a function of azimuth angle. The nondimensional design is converted in dimensional form for three different volute cross sections. A commercial computational fluid dynamics code is used to develop numerical models of three different volute cross sections. From the numerical models, losses generation in the different volutes are identified and compared. The maximum pressure loss coefficient for Trapezoidal cross section is 0.1075, for Bezier-trapezoidal cross section is 0.0677 and for circular cross section is 0.0438 near tongue region, which suggested that the circular cross section will give a better efficiency than other types of volute cross sections.

  16. Two-Dimensional Versus Three-Dimensional Conceptualization in Astronomy Education

    NASA Astrophysics Data System (ADS)

    Reynolds, Michael David

    Numerous science conceptual issues are naturally three-dimensional. Classroom presentations are often two -dimensional or at best multidimensional. Several astronomy topics are of this nature, e. g. mechanics of the phases of the moon. Textbooks present this three-dimensional topic in two-dimensions; such is often the case in the classroom. This study was conducted to examine conceptions exhibited by pairs of like-sex 11th grade standard physics students as they modeled the lunar phases. Student pairs, 13 male and 13 female, were randomly selected and assigned. Pairing comes closer to classroom emulation, minimizes needs for direct probes, and pair discussion is more likely to display variety and depth. Four hypotheses were addressed: (1) Participants who model three-dimensionally will more likely achieve a higher explanation score. (2) Students who experienced more earth or physical science exposure will more likely model three-dimensionally. (3) Pairs that exhibit a strong science or mathematics preference will more likely model three-dimensionally. (4) Males will model in three dimensions more than females. Students provided background information, including science course exposure and subject preference. Each pair laid out a 16-card set representing two complete lunar phase changes. The pair was asked to explain why the phases occur. Materials were provided for use, including disks, spheres, paper and pen, and flashlight. Activities were videotaped for later evaluation. Statistics of choice was a correlation determination between course preference and model type and ANOVA for the other hypotheses. It was determined that pairs who modeled three -dimensionally achieved a higher score on their phases mechanics explanation at p <.05 level. Pairs with earth science or physical science exposure, those who prefer science or mathematics, and male participants were not more likely to model three-dimensionally. Possible reasons for lack of significance was small sample size and in the case of course preferences, small differences in course preference means. Based on this study, instructors should be aware of dimensionality and student misconceptions. Whenever possible, three-dimensional concepts should be modeled as such. Authors and publishers should consider modeling suggestions and three-dimensional ancillaries.

  17. Numerical method for predicting flow characteristics and performance of nonaxisymmetric nozzles, theory

    NASA Technical Reports Server (NTRS)

    Thomas, P. D.

    1979-01-01

    The theoretical foundation and formulation of a numerical method for predicting the viscous flowfield in and about isolated three dimensional nozzles of geometrically complex configuration are presented. High Reynolds number turbulent flows are of primary interest for any combination of subsonic, transonic, and supersonic flow conditions inside or outside the nozzle. An alternating-direction implicit (ADI) numerical technique is employed to integrate the unsteady Navier-Stokes equations until an asymptotic steady-state solution is reached. Boundary conditions are computed with an implicit technique compatible with the ADI technique employed at interior points of the flow region. The equations are formulated and solved in a boundary-conforming curvilinear coordinate system. The curvilinear coordinate system and computational grid is generated numerically as the solution to an elliptic boundary value problem. A method is developed that automatically adjusts the elliptic system so that the interior grid spacing is controlled directly by the a priori selection of the grid spacing on the boundaries of the flow region.

  18. The three-dimensional compressible flow in a radial inflow turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Tabakoff, W.; Malak, M.

    1984-01-01

    This work presents the results of an analytical study and an experimental investigation of the three-dimensional flow in a turbine scroll. The finite element method is used in the iterative numerical solution of the locally linearized governing equations for the three-dimensional velocity potential field. The results of the numerical computations are compared with the experimental measurements in the scroll cross sections, which were obtained using laser Doppler velocimetry and hot wire techniques. The results of the computations show a variation in the flow conditions around the rotor periphery which was found to depend on the scroll geometry.

  19. Experimental and numerical studies on three dimensional GTA weld pool convection: Non-axisymmetric effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Y.; Dutta, P.; Schupp, P.E.

    1995-12-31

    Observations of surface flow patterns of steel and aluminum GTAW pools have been made using a pulsed laser visualization system. The weld pool convection is found to be three dimensional, with the azimuthal circulation depending on the location of the clamp with respect to the torch. Oscillation of steel pools and undulating motion in aluminum weld pools are also observed even with steady process parameters. Current axisymmetric numerical models are unable to explain such phenomena. A three dimensional computational study is carried out in this study to explain the rotational flow in aluminum weld pools.

  20. Progress in multi-dimensional upwind differencing

    NASA Technical Reports Server (NTRS)

    Vanleer, Bram

    1992-01-01

    Multi-dimensional upwind-differencing schemes for the Euler equations are reviewed. On the basis of the first-order upwind scheme for a one-dimensional convection equation, the two approaches to upwind differencing are discussed: the fluctuation approach and the finite-volume approach. The usual extension of the finite-volume method to the multi-dimensional Euler equations is not entirely satisfactory, because the direction of wave propagation is always assumed to be normal to the cell faces. This leads to smearing of shock and shear waves when these are not grid-aligned. Multi-directional methods, in which upwind-biased fluxes are computed in a frame aligned with a dominant wave, overcome this problem, but at the expense of robustness. The same is true for the schemes incorporating a multi-dimensional wave model not based on multi-dimensional data but on an 'educated guess' of what they could be. The fluctuation approach offers the best possibilities for the development of genuinely multi-dimensional upwind schemes. Three building blocks are needed for such schemes: a wave model, a way to achieve conservation, and a compact convection scheme. Recent advances in each of these components are discussed; putting them all together is the present focus of a worldwide research effort. Some numerical results are presented, illustrating the potential of the new multi-dimensional schemes.

  1. Development of a linearized unsteady Euler analysis for turbomachinery blade rows

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.; Montgomery, Matthew D.; Kousen, Kenneth A.

    1995-01-01

    A linearized unsteady aerodynamic analysis for axial-flow turbomachinery blading is described in this report. The linearization is based on the Euler equations of fluid motion and is motivated by the need for an efficient aerodynamic analysis that can be used in predicting the aeroelastic and aeroacoustic responses of blade rows. The field equations and surface conditions required for inviscid, nonlinear and linearized, unsteady aerodynamic analyses of three-dimensional flow through a single, blade row operating within a cylindrical duct, are derived. An existing numerical algorithm for determining time-accurate solutions of the nonlinear unsteady flow problem is described, and a numerical model, based upon this nonlinear flow solver, is formulated for the first-harmonic linear unsteady problem. The linearized aerodynamic and numerical models have been implemented into a first-harmonic unsteady flow code, called LINFLUX. At present this code applies only to two-dimensional flows, but an extension to three-dimensions is planned as future work. The three-dimensional aerodynamic and numerical formulations are described in this report. Numerical results for two-dimensional unsteady cascade flows, excited by prescribed blade motions and prescribed aerodynamic disturbances at inlet and exit, are also provided to illustrate the present capabilities of the LINFLUX analysis.

  2. A new method for solving reachable domain of spacecraft with a single impulse

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Qiao, Dong; Shang, Haibin; Liu, Xinfu

    2018-04-01

    This paper develops a new approach to solve the reachable domain of a spacecraft with a single maximum available impulse. First, the distance in a chosen direction, started from a given position on the initial orbit, is formulated. Then, its extreme value is solved to obtain the maximum reachable distance in this direction. The envelop of the reachable domain in three-dimensional space is determined by solving the maximum reachable distance in all directions. Four scenarios are analyzed, including three typical scenarios (either the maneuver position or impulse direction is fixed, or both are arbitrary) and a new extended scenario (the maneuver position is restricted to an interval and the impulse direction is arbitrary). Moreover, the symmetry and the boundedness of the reachable domain are discussed in detail. The former is helpful to reduce the numerical computation, while the latter decides the maximum eccentricity of the initial orbit for a maximum available impulse. The numerical simulations verify the effectiveness of the proposed method for solving the reachable domain in all four scenarios. Especially, the reachable domain with a highly elliptical initial orbit can be determined successfully, which remains unsolved in the existing papers.

  3. Three dimensional numerical modeling of flow and pollutant transport in a flooding area of 2008 US Midwest Flood

    USDA-ARS?s Scientific Manuscript database

    This paper presents the development and application of a three-dimensional numerical model for simulating the flow field and pollutant transport in a flood zone near the confluence of the Mississippi River and Iowa River in Oakville, Iowa. Due to a levee breaching along the Iowa River during the US ...

  4. Numerical prediction of three-dimensional juncture region flow using the parabolic Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Manhardt, P. D.; Orzechowski, J. A.

    1979-01-01

    A numerical solution algorithm is established for prediction of subsonic turbulent three-dimensional flows in aerodynamic configuration juncture regions. A turbulence closure model is established using the complete Reynolds stress. Pressure coupling is accomplished using the concepts of complementary and particular solutions to a Poisson equation. Specifications for data input juncture geometry modification are presented.

  5. A Three-Dimensional Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows

    NASA Technical Reports Server (NTRS)

    Montgomery, Matthew D.; Verdon, Joseph M.

    1996-01-01

    A three-dimensional, linearized, Euler analysis is being developed to provide an efficient unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacoustic response characteristics of axial-flow turbomachinery blading. The field equations and boundary conditions needed to describe nonlinear and linearized inviscid unsteady flows through a blade row operating within a cylindrical annular duct are presented. In addition, a numerical model for linearized inviscid unsteady flow, which is based upon an existing nonlinear, implicit, wave-split, finite volume analysis, is described. These aerodynamic and numerical models have been implemented into an unsteady flow code, called LINFLUX. A preliminary version of the LINFLUX code is applied herein to selected, benchmark three-dimensional, subsonic, unsteady flows, to illustrate its current capabilities and to uncover existing problems and deficiencies. The numerical results indicate that good progress has been made toward developing a reliable and useful three-dimensional prediction capability. However, some problems, associated with the implementation of an unsteady displacement field and numerical errors near solid boundaries, still exist. Also, accurate far-field conditions must be incorporated into the FINFLUX analysis, so that this analysis can be applied to unsteady flows driven be external aerodynamic excitations.

  6. Numerical prediction of the energy efficiency of the three-dimensional fish school using the discretized Adomian decomposition method

    NASA Astrophysics Data System (ADS)

    Lin, Yinwei

    2018-06-01

    A three-dimensional modeling of fish school performed by a modified Adomian decomposition method (ADM) discretized by the finite difference method is proposed. To our knowledge, few studies of the fish school are documented due to expensive cost of numerical computing and tedious three-dimensional data analysis. Here, we propose a simple model replied on the Adomian decomposition method to estimate the efficiency of energy saving of the flow motion of the fish school. First, the analytic solutions of Navier-Stokes equations are used for numerical validation. The influences of the distance between the side-by-side two fishes are studied on the energy efficiency of the fish school. In addition, the complete error analysis for this method is presented.

  7. Preventing Data Ambiguity in Infectious Diseases with Four-Dimensional and Personalized Evaluations

    PubMed Central

    Iandiorio, Michelle J.; Fair, Jeanne M.; Chatzipanagiotou, Stylianos; Ioannidis, Anastasios; Trikka-Graphakos, Eleftheria; Charalampaki, Nikoletta; Sereti, Christina; Tegos, George P.; Hoogesteijn, Almira L.; Rivas, Ariel L.

    2016-01-01

    Background Diagnostic errors can occur, in infectious diseases, when anti-microbial immune responses involve several temporal scales. When responses span from nanosecond to week and larger temporal scales, any pre-selected temporal scale is likely to miss some (faster or slower) responses. Hoping to prevent diagnostic errors, a pilot study was conducted to evaluate a four-dimensional (4D) method that captures the complexity and dynamics of infectious diseases. Methods Leukocyte-microbial-temporal data were explored in canine and human (bacterial and/or viral) infections, with: (i) a non-structured approach, which measures leukocytes or microbes in isolation; and (ii) a structured method that assesses numerous combinations of interacting variables. Four alternatives of the structured method were tested: (i) a noise-reduction oriented version, which generates a single (one data point-wide) line of observations; (ii) a version that measures complex, three-dimensional (3D) data interactions; (iii) a non-numerical version that displays temporal data directionality (arrows that connect pairs of consecutive observations); and (iv) a full 4D (single line-, complexity-, directionality-based) version. Results In all studies, the non-structured approach revealed non-interpretable (ambiguous) data: observations numerically similar expressed different biological conditions, such as recovery and lack of recovery from infections. Ambiguity was also found when the data were structured as single lines. In contrast, two or more data subsets were distinguished and ambiguity was avoided when the data were structured as complex, 3D, single lines and, in addition, temporal data directionality was determined. The 4D method detected, even within one day, changes in immune profiles that occurred after antibiotics were prescribed. Conclusions Infectious disease data may be ambiguous. Four-dimensional methods may prevent ambiguity, providing earlier, in vivo, dynamic, complex, and personalized information that facilitates both diagnostics and selection or evaluation of anti-microbial therapies. PMID:27411058

  8. Structure of Exhausts in Magnetic Reconnection with an X-line of Finite Extent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepherd, L. S.; Cassak, P. A.; Drake, J. F.

    2017-10-20

    We present quantitative predictions of the structure of reconnection exhausts in three-dimensional magnetic reconnection with an X-line of finite extent in the out-of-plane direction. Sasunov et al. showed that they have a tilted ribbon-like shape bounded by rotational discontinuities and tangential discontinuities. We show analytically and numerically that this prediction is largely correct. When there is an out-of-plane (guide) magnetic field, the presence of the upstream field that does not reconnect acts as a boundary condition in the normal direction, which forces the normal magnetic field to be zero outside the exhaust. This condition constrains the normal magnetic field insidemore » the exhaust to be small. Thus, rather than the ribbon tilting in the inflow direction, the exhaust remains collimated in the normal direction and is forced to expand nearly completely in the out-of-plane direction. This exhaust structure is in stark contrast to the two-dimensional picture of reconnection, where reconnected flux expands in the normal direction. We present analytical predictions for the structure of the exhausts in terms of upstream conditions. The predictions are confirmed using three-dimensional resistive-magnetohydrodynamic simulations with a finite-length X-line achieved using a localized (anomalous) resistivity. Implications to reconnection in the solar wind are discussed. In particular, the results can be used to estimate a lower bound for the extent of the X-line in the out-of-plane direction solely using single-spacecraft data taken downstream in the exhausts.« less

  9. Direct Solution of the Chemical Master Equation Using Quantized Tensor Trains

    PubMed Central

    Kazeev, Vladimir; Khammash, Mustafa; Nip, Michael; Schwab, Christoph

    2014-01-01

    The Chemical Master Equation (CME) is a cornerstone of stochastic analysis and simulation of models of biochemical reaction networks. Yet direct solutions of the CME have remained elusive. Although several approaches overcome the infinite dimensional nature of the CME through projections or other means, a common feature of proposed approaches is their susceptibility to the curse of dimensionality, i.e. the exponential growth in memory and computational requirements in the number of problem dimensions. We present a novel approach that has the potential to “lift” this curse of dimensionality. The approach is based on the use of the recently proposed Quantized Tensor Train (QTT) formatted numerical linear algebra for the low parametric, numerical representation of tensors. The QTT decomposition admits both, algorithms for basic tensor arithmetics with complexity scaling linearly in the dimension (number of species) and sub-linearly in the mode size (maximum copy number), and a numerical tensor rounding procedure which is stable and quasi-optimal. We show how the CME can be represented in QTT format, then use the exponentially-converging -discontinuous Galerkin discretization in time to reduce the CME evolution problem to a set of QTT-structured linear equations to be solved at each time step using an algorithm based on Density Matrix Renormalization Group (DMRG) methods from quantum chemistry. Our method automatically adapts the “basis” of the solution at every time step guaranteeing that it is large enough to capture the dynamics of interest but no larger than necessary, as this would increase the computational complexity. Our approach is demonstrated by applying it to three different examples from systems biology: independent birth-death process, an example of enzymatic futile cycle, and a stochastic switch model. The numerical results on these examples demonstrate that the proposed QTT method achieves dramatic speedups and several orders of magnitude storage savings over direct approaches. PMID:24626049

  10. A Parallel Compact Multi-Dimensional Numerical Algorithm with Aeroacoustics Applications

    NASA Technical Reports Server (NTRS)

    Povitsky, Alex; Morris, Philip J.

    1999-01-01

    In this study we propose a novel method to parallelize high-order compact numerical algorithms for the solution of three-dimensional PDEs (Partial Differential Equations) in a space-time domain. For this numerical integration most of the computer time is spent in computation of spatial derivatives at each stage of the Runge-Kutta temporal update. The most efficient direct method to compute spatial derivatives on a serial computer is a version of Gaussian elimination for narrow linear banded systems known as the Thomas algorithm. In a straightforward pipelined implementation of the Thomas algorithm processors are idle due to the forward and backward recurrences of the Thomas algorithm. To utilize processors during this time, we propose to use them for either non-local data independent computations, solving lines in the next spatial direction, or local data-dependent computations by the Runge-Kutta method. To achieve this goal, control of processor communication and computations by a static schedule is adopted. Thus, our parallel code is driven by a communication and computation schedule instead of the usual "creative, programming" approach. The obtained parallelization speed-up of the novel algorithm is about twice as much as that for the standard pipelined algorithm and close to that for the explicit DRP algorithm.

  11. Experimental and numerical modeling of heat transfer in directed thermoplates

    DOE PAGES

    Khalil, Imane; Hayes, Ryan; Pratt, Quinn; ...

    2018-03-20

    We present three-dimensional numerical simulations to quantify the design specifications of a directional thermoplate expanded channel heat exchanger, also called dimpleplate. Parametric thermofluidic simulations were performed independently varying the number of spot welds, the diameter of the spot welds, and the thickness of the fluid channel within the laminar flow regime. Results from computational fluid dynamics simulations show an improvement in heat transfer is achieved under a variety of conditions: when the thermoplate has a relatively large cross-sectional area normal to the flow, a ratio of spot weld spacing to channel length of 0.2, and a ratio of the spotmore » weld diameter with respect to channel width of 0.3. Lastly, experimental results performed to validate the model are also presented.« less

  12. Experimental and numerical modeling of heat transfer in directed thermoplates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, Imane; Hayes, Ryan; Pratt, Quinn

    We present three-dimensional numerical simulations to quantify the design specifications of a directional thermoplate expanded channel heat exchanger, also called dimpleplate. Parametric thermofluidic simulations were performed independently varying the number of spot welds, the diameter of the spot welds, and the thickness of the fluid channel within the laminar flow regime. Results from computational fluid dynamics simulations show an improvement in heat transfer is achieved under a variety of conditions: when the thermoplate has a relatively large cross-sectional area normal to the flow, a ratio of spot weld spacing to channel length of 0.2, and a ratio of the spotmore » weld diameter with respect to channel width of 0.3. Lastly, experimental results performed to validate the model are also presented.« less

  13. Numerical Simulation and Analyses of the Loss of Feedwater Transient at the Unit 4 of Kola NPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevanovic, Vladimir D.; Stosic, Zoran V.; Kiera, Michael

    2002-07-01

    A three-dimensional numerical simulation of the loss-of-feed water transient at the horizontal steam generator of the Kola nuclear power plant is performed. Presented numerical results show transient change of integral steam generator parameters, such as steam generation rate, water mass inventory, outlet reactor coolant temperature, as well as detailed distribution of shell side thermal-hydraulic parameters: swell and collapsed levels, void fraction distributions, mass flux vectors, etc. Numerical results are compared with measurements at the Kola NPP. The agreement is satisfactory, while differences are close to or below the measurement uncertainties. Obtained numerical results are the first ones that give completemore » insight into the three-dimensional and transient horizontal steam generator thermal-hydraulics. Also, the presented results serve as benchmark tests for the assessment and further improvement of one-dimensional models of horizontal steam generator built with safety codes. (authors)« less

  14. Percolation in three-dimensional fracture networks for arbitrary size and shape distributions

    NASA Astrophysics Data System (ADS)

    Thovert, J.-F.; Mourzenko, V. V.; Adler, P. M.

    2017-04-01

    The percolation threshold of fracture networks is investigated by extensive direct numerical simulations. The fractures are randomly located and oriented in three-dimensional space. A very wide range of regular, irregular, and random fracture shapes is considered, in monodisperse or polydisperse networks containing fractures with different shapes and/or sizes. The results are rationalized in terms of a dimensionless density. A simple model involving a new shape factor is proposed, which accounts very efficiently for the influence of the fracture shape. It applies with very good accuracy in monodisperse or moderately polydisperse networks, and provides a good first estimation in other situations. A polydispersity index is shown to control the need for a correction, and the corrective term is modelled for the investigated size distributions.

  15. Navier-Stokes solution on the CYBER-203 by a pseudospectral technique

    NASA Technical Reports Server (NTRS)

    Lambiotte, J. J.; Hussaini, M. Y.; Bokhari, S.; Orszag, S. A.

    1983-01-01

    A three-level, time-split, mixed spectral/finite difference method for the numerical solution of the three-dimensional, compressible Navier-Stokes equations has been developed and implemented on the Control Data Corporation (CDC) CYBER-203. This method uses a spectral representation for the flow variables in the streamwise and spanwise coordinates, and central differences in the normal direction. The five dependent variables are interleaved one horizontal plane at a time and the array of their values at the grid points of each horizontal plane is a typical vector in the computation. The code is organized so as to require, per time step, a single forward-backward pass through the entire data base. The one-and two-dimensional Fast Fourier Transforms are performed using software especially developed for the CYBER-203.

  16. Metal-chelate dye-controlled organization of Cd32S14(SPh)40(4-) nanoclusters into three-dimensional molecular and covalent open architecture.

    PubMed

    Zheng, Nanfeng; Lu, Haiwei; Bu, Xianhui; Feng, Pingyun

    2006-04-12

    Chalcogenide II-VI nanoclusters are usually prepared as isolated clusters and have defied numerous efforts to join them into covalent open-framework architecture with conventional templating methods such as protonated amines or inorganic cations commonly used to direct the formation of porous frameworks. Herein, we report the first templated synthesis of II-VI covalent superlattices from large II-VI tetrahedral clusters (i.e., [Cd32S14(SPh)38]2-). Our method takes advantage of low charge density of metal-chelate dyes that is a unique match with three-dimensional II-VI semiconductor frameworks in charge density, surface hydrophilicity-hydrophobicity, and spatial organization. In addition, metal-chelate dyes also serve to tune the optical properties of resulting dye semiconductor composite materials.

  17. Mixing in the shear superposition micromixer: three-dimensional analysis.

    PubMed

    Bottausci, Frederic; Mezić, Igor; Meinhart, Carl D; Cardonne, Caroline

    2004-05-15

    In this paper, we analyse mixing in an active chaotic advection micromixer. The micromixer consists of a main rectangular channel and three cross-stream secondary channels that provide ability for time-dependent actuation of the flow stream in the direction orthogonal to the main stream. Three-dimensional motion in the mixer is studied. Numerical simulations and modelling of the flow are pursued in order to understand the experiments. It is shown that for some values of parameters a simple model can be derived that clearly represents the flow nature. Particle image velocimetry measurements of the flow are compared with numerical simulations and the analytical model. A measure for mixing, the mixing variance coefficient (MVC), is analysed. It is shown that mixing is substantially improved with multiple side channels with oscillatory flows, whose frequencies are increasing downstream. The optimization of MVC results for single side-channel mixing is presented. It is shown that dependence of MVC on frequency is not monotone, and a local minimum is found. Residence time distributions derived from the analytical model are analysed. It is shown that, while the average Lagrangian velocity profile is flattened over the steady flow, Taylor-dispersion effects are still present for the current micromixer configuration.

  18. Analysis and design of three dimensional supersonic nozzles. Volume 2: Numerical program for analysis of nozzle-exhaust flow fields

    NASA Technical Reports Server (NTRS)

    Kalben, P.

    1972-01-01

    The FORTRAN IV Program developed to analyze the flow field associated with scramjet exhaust systems is presented. The instructions for preparing input and interpreting output are described. The program analyzes steady three dimensional supersonic flow by the reference plane characteristic technique. The governing equations and numerical techniques employed are presented in Volume 1 of this report.

  19. Salty popcorn in a homogeneous low-dimensional toy model of holographic QCD

    NASA Astrophysics Data System (ADS)

    Elliot-Ripley, Matthew

    2017-04-01

    Recently, a homogeneous ansatz has been used to study cold dense nuclear matter in the Sakai-Sugimoto model of holographic QCD. To justify this homogeneous approximation we here investigate a homogeneous ansatz within a low-dimensional toy version of Sakai-Sugimoto to study finite baryon density configurations and compare it to full numerical solutions. We find the ansatz corresponds to enforcing a dyon salt arrangement in which the soliton solutions are split into half-soliton layers. Within this ansatz we find analogues of the proposed baryonic popcorn transitions, in which solutions split into multiple layers in the holographic direction. The homogeneous results are found to qualitatively match the full numerical solutions, lending confidence to the homogeneous approximations of the full Sakai-Sugimoto model. In addition, we find exact compact solutions in the high density, flat space limit which demonstrate the existence of further popcorn transitions to three layers and beyond.

  20. Three-dimensional effects on pure tone fan noise due to inflow distortion. [rotor blade noise prediction

    NASA Technical Reports Server (NTRS)

    Kobayashi, H.

    1978-01-01

    Two dimensional, quasi three dimensional and three dimensional theories for the prediction of pure tone fan noise due to the interaction of inflow distortion with a subsonic annular blade row were studied with the aid of an unsteady three dimensional lifting surface theory. The effects of compact and noncompact source distributions on pure tone fan noise in an annular cascade were investigated. Numerical results show that the strip theory and quasi three-dimensional theory are reasonably adequate for fan noise prediction. The quasi three-dimensional method is more accurate for acoustic power and model structure prediction with an acoustic power estimation error of about plus or minus 2db.

  1. Three-Dimensional Temperature Field Simulation for the Rotor of an Asynchronous Motor

    ERIC Educational Resources Information Center

    Wang, Yanwu; Fan, Chunli; Yang, Li; Sun, Fengrui

    2010-01-01

    A three-dimensional heat transfer model is built according to the rotor structure of an asynchronous motor, and three-dimensional temperature fields of the rotor under different working conditions, such as the unloaded, rated loaded and that with broken rotor bars, are studied based on the finite element numerical method and experiments. The…

  2. Mathematical Model Taking into Account Nonlocal Effects of Plasmonic Structures on the Basis of the Discrete Source Method

    NASA Astrophysics Data System (ADS)

    Eremin, Yu. A.; Sveshnikov, A. G.

    2018-04-01

    The discrete source method is used to develop and implement a mathematical model for solving the problem of scattering electromagnetic waves by a three-dimensional plasmonic scatterer with nonlocal effects taken into account. Numerical results are presented whereby the features of the scattering properties of plasmonic particles with allowance for nonlocal effects are demonstrated depending on the direction and polarization of the incident wave.

  3. Evaluating the effects of modeling errors for isolated finite three-dimensional targets

    NASA Astrophysics Data System (ADS)

    Henn, Mark-Alexander; Barnes, Bryan M.; Zhou, Hui

    2017-10-01

    Optical three-dimensional (3-D) nanostructure metrology utilizes a model-based metrology approach to determine critical dimensions (CDs) that are well below the inspection wavelength. Our project at the National Institute of Standards and Technology is evaluating how to attain key CD and shape parameters from engineered in-die capable metrology targets. More specifically, the quantities of interest are determined by varying the input parameters for a physical model until the simulations agree with the actual measurements within acceptable error bounds. As in most applications, establishing a reasonable balance between model accuracy and time efficiency is a complicated task. A well-established simplification is to model the intrinsically finite 3-D nanostructures as either periodic or infinite in one direction, reducing the computationally expensive 3-D simulations to usually less complex two-dimensional (2-D) problems. Systematic errors caused by this simplified model can directly influence the fitting of the model to the measurement data and are expected to become more apparent with decreasing lengths of the structures. We identify these effects using selected simulation results and present experimental setups, e.g., illumination numerical apertures and focal ranges, that can increase the validity of the 2-D approach.

  4. Comparison of Speed-Up Over Hills Derived from Wind-Tunnel Experiments, Wind-Loading Standards, and Numerical Modelling

    NASA Astrophysics Data System (ADS)

    Safaei Pirooz, Amir A.; Flay, Richard G. J.

    2018-03-01

    We evaluate the accuracy of the speed-up provided in several wind-loading standards by comparison with wind-tunnel measurements and numerical predictions, which are carried out at a nominal scale of 1:500 and full-scale, respectively. Airflow over two- and three-dimensional bell-shaped hills is numerically modelled using the Reynolds-averaged Navier-Stokes method with a pressure-driven atmospheric boundary layer and three different turbulence models. Investigated in detail are the effects of grid size on the speed-up and flow separation, as well as the resulting uncertainties in the numerical simulations. Good agreement is obtained between the numerical prediction of speed-up, as well as the wake region size and location, with that according to large-eddy simulations and the wind-tunnel results. The numerical results demonstrate the ability to predict the airflow over a hill with good accuracy with considerably less computational time than for large-eddy simulation. Numerical simulations for a three-dimensional hill show that the speed-up and the wake region decrease significantly when compared with the flow over two-dimensional hills due to the secondary flow around three-dimensional hills. Different hill slopes and shapes are simulated numerically to investigate the effect of hill profile on the speed-up. In comparison with more peaked hill crests, flat-topped hills have a lower speed-up at the crest up to heights of about half the hill height, for which none of the standards gives entirely satisfactory values of speed-up. Overall, the latest versions of the National Building Code of Canada and the Australian and New Zealand Standard give the best predictions of wind speed over isolated hills.

  5. Evolution of three-dimensional relativistic current sheets and development of self-generated turbulence

    NASA Astrophysics Data System (ADS)

    Takamoto, M.

    2018-05-01

    In this paper, the temporal evolution of three-dimensional relativistic current sheets in Poynting-dominated plasma is studied for the first time. Over the past few decades, a lot of efforts have been conducted on studying the evolution of current sheets in two-dimensional space, and concluded that sufficiently long current sheets always evolve into the so-called plasmoid chain, which provides a fast reconnection rate independent of its resistivity. However, it is suspected that plasmoid chain can exist only in the case of two-dimensional approximation, and would show transition to turbulence in three-dimensional space. We performed three-dimensional numerical simulation of relativistic current sheet using resistive relativistic magnetohydrodynamic approximation. The results showed that the three-dimensional current sheets evolve not into plasmoid chain but turbulence. The resulting reconnection rate is 0.004, which is much smaller than that of plasmoid chain. The energy conversion from magnetic field to kinetic energy of turbulence is just 0.01 per cent, which is much smaller than typical non-relativistic cases. Using the energy principle, we also showed that the plasmoid is always unstable for a displacement in the opposite direction to its acceleration, probably interchange-type instability, and this always results in seeds of turbulence behind the plasmoids. Finally, the temperature distribution along the sheet is discussed, and it is found that the sheet is less active than plasmoid chain. Our finding can be applied for many high-energy astrophysical phenomena, and can provide a basic model of the general current sheet in Poynting-dominated plasma.

  6. TEMPEST: A three-dimensional time-dependent computer program for hydrothermal analysis: Volume 1, Numerical methods and input instructions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trent, D.S.; Eyler, L.L.; Budden, M.J.

    This document describes the numerical methods, current capabilities, and the use of the TEMPEST (Version L, MOD 2) computer program. TEMPEST is a transient, three-dimensional, hydrothermal computer program that is designed to analyze a broad range of coupled fluid dynamic and heat transfer systems of particular interest to the Fast Breeder Reactor thermal-hydraulic design community. The full three-dimensional, time-dependent equations of motion, continuity, and heat transport are solved for either laminar or turbulent fluid flow, including heat diffusion and generation in both solid and liquid materials. 10 refs., 22 figs., 2 tabs.

  7. Delineation of recharge areas for selected wells in the St. Peter-Prairie du Chien-Jordan Aquifer, Rochester, Minnesota

    USGS Publications Warehouse

    Delin, G.N.; Almendinger, James Edward

    1991-01-01

    Hydrogeologic mapping and numerical modeling were used to delineate zones of contribution to wells, defined as all parts of a ground-water-flow system that could supply water to a well. The zones of contribution delineated by use of numerical modeling have similar orientation (parallel to regional flow directions) but significantly different areas than the zones of contribution delineated by use of hydrogeologic mapping. Differences in computed areas of recharge are attributed to the capability of the numerical model to more accurately represent (1) the three-dimensional flow system, (2) hydrologic boundaries like streams, (3) variable recharge, and (4) the influence of nearby pumped wells, compared to the analytical models.

  8. Delineation of recharge areas for selected wells in the St. Peter-Prairie du Chien-Jordan aquifer, Rochester, Minnesota

    USGS Publications Warehouse

    Delin, G.N.; Almendinger, James Edward

    1993-01-01

    Hydrogeologic mapping and numerical modeling were used to delineate zones of contribution to wells, defined as all parts of a ground-water-flow system that could supply water to a well. The zones of contribution delineated by use of numerical modeling have similar orientation (parallel to regional flow directions) but significantly different areas than the zones of contribution delineated by use of hydrogeologic mapping. Differences in computed areas of recharge are attributed to the capability of the numerical model to more accurately represent (1) the three-dimensional flow system, (2) hydrologic boundaries such as streams, (3) variable recharge, and (4) the influence of nearby pumped wells, compared to the analytical models.

  9. Hypersonic Combustor Model Inlet CFD Simulations and Experimental Comparisons

    NASA Technical Reports Server (NTRS)

    Venkatapathy, E.; TokarcikPolsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    Numerous two-and three-dimensional computational simulations were performed for the inlet associated with the combustor model for the hypersonic propulsion experiment in the NASA Ames 16-Inch Shock Tunnel. The inlet was designed to produce a combustor-inlet flow that is nearly two-dimensional and of sufficient mass flow rate for large scale combustor testing. The three-dimensional simulations demonstrated that the inlet design met all the design objectives and that the inlet produced a very nearly two-dimensional combustor inflow profile. Numerous two-dimensional simulations were performed with various levels of approximations such as in the choice of chemical and physical models, as well as numerical approximations. Parametric studies were conducted to better understand and to characterize the inlet flow. Results from the two-and three-dimensional simulations were used to predict the mass flux entering the combustor and a mass flux correlation as a function of facility stagnation pressure was developed. Surface heat flux and pressure measurements were compared with the computed results and good agreement was found. The computational simulations helped determine the inlet low characteristics in the high enthalpy environment, the important parameters that affect the combustor-inlet flow, and the sensitivity of the inlet flow to various modeling assumptions.

  10. Effective one-dimensional approach to the source reconstruction problem of three-dimensional inverse optoacoustics

    NASA Astrophysics Data System (ADS)

    Stritzel, J.; Melchert, O.; Wollweber, M.; Roth, B.

    2017-09-01

    The direct problem of optoacoustic signal generation in biological media consists of solving an inhomogeneous three-dimensional (3D) wave equation for an initial acoustic stress profile. In contrast, the more defiant inverse problem requires the reconstruction of the initial stress profile from a proper set of observed signals. In this article, we consider an effectively 1D approach, based on the assumption of a Gaussian transverse irradiation source profile and plane acoustic waves, in which the effects of acoustic diffraction are described in terms of a linear integral equation. The respective inverse problem along the beam axis can be cast into a Volterra integral equation of the second kind for which we explore here efficient numerical schemes in order to reconstruct initial stress profiles from observed signals, constituting a methodical progress of computational aspects of optoacoustics. In this regard, we explore the validity as well as the limits of the inversion scheme via numerical experiments, with parameters geared toward actual optoacoustic problem instances. The considered inversion input consists of synthetic data, obtained in terms of the effectively 1D approach, and, more generally, a solution of the 3D optoacoustic wave equation. Finally, we also analyze the effect of noise and different detector-to-sample distances on the optoacoustic signal and the reconstructed pressure profiles.

  11. Statistics of pressure fluctuations in decaying isotropic turbulence.

    PubMed

    Kalelkar, Chirag

    2006-04-01

    We present results from a systematic direct-numerical simulation study of pressure fluctuations in an unforced, incompressible, homogeneous, and isotropic three-dimensional turbulent fluid. At cascade completion, isosurfaces of low pressure are found to be organized as slender filaments, whereas the predominant isostructures appear sheetlike. We exhibit several results, including plots of probability distributions of the spatial pressure difference, the pressure-gradient norm, and the eigenvalues of the pressure-Hessian tensor. Plots of the temporal evolution of the mean pressure-gradient norm, and the mean eigenvalues of the pressure-Hessian tensor are also exhibited. We find the statistically preferred orientations between the eigenvectors of the pressure-Hessian tensor, the pressure gradient, the eigenvectors of the strain-rate tensor, the vorticity, and the velocity. Statistical properties of the nonlocal part of the pressure-Hessian tensor are also exhibited. We present numerical tests (in the viscous case) of some conjectures of Ohkitani [Phys. Fluids A 5, 2570 (1993)] and Ohkitani and Kishiba [Phys. Fluids 7, 411 (1995)] concerning the pressure-Hessian and the strain-rate tensors, for the unforced, incompressible, three-dimensional Euler equations.

  12. Freefield vibrations due to dynamic loading on a tunnel embedded in a stratified medium

    NASA Astrophysics Data System (ADS)

    Clouteau, D.; Arnst, M.; Al-Hussaini, T. M.; Degrande, G.

    2005-05-01

    An efficient and modular numerical prediction model is developed to predict vibration and re-radiated noise in adjacent buildings from excitation due to metro trains in tunnels for both newly built and existing situations. The three-dimensional dynamic tunnel-soil interaction problem is solved with a subdomain formulation, using a finite element formulation for the tunnel and a boundary element method for the soil. The periodicity of the tunnel and the soil in the longitudinal direction is exploited using the Floquet transform, limiting the discretization effort to a single bounded reference cell. It is demonstrated in the paper how the boundary element method can efficiently be extended to deal with periodic media, reusing the available three-dimensional Green's tensors for layered media. The efficiency of the method is demonstrated with a numerical example, where the case of harmonic and transient point loading on the invert of a shallow cut-and-cover masonry tunnel in Paris is considered. The work described here was carried out under the auspices of the CONVURT project sponsored by the European Community.

  13. -> Air entrainment and bubble statistics in three-dimensional breaking waves

    NASA Astrophysics Data System (ADS)

    Deike, L.; Popinet, S.; Melville, W. K.

    2016-02-01

    Wave breaking in the ocean is of fundamental importance for quantifying wave dissipation and air-sea interaction, including gas and momentum exchange, and for improving air-sea flux parametrizations for weather and climate models. Here we investigate air entrainment and bubble statistics in three-dimensional breaking waves through direct numerical simulations of the two-phase air-water flow using the Open Source solver Gerris. As in previous 2D simulations, the dissipation due to breaking is found to be in good agreement with previous experimental observations and inertial-scaling arguments. For radii larger than the Hinze scale, the bubble size distribution is found to follow a power law of the radius, r-10/3 and to scale linearly with the time dependent turbulent dissipation rate during the active breaking stage. The time-averaged bubble size distribution is found to follow the same power law of the radius and to scale linearly with the wave dissipation rate per unit length of breaking crest. We propose a phenomenological turbulent bubble break-up model that describes the numerical results and existing experimental results.

  14. Numerical simulation of three-dimensional transonic turbulent projectile aerodynamics by TVD schemes

    NASA Technical Reports Server (NTRS)

    Shiau, Nae-Haur; Hsu, Chen-Chi; Chyu, Wei-Jao

    1989-01-01

    The two-dimensional symmetric TVD scheme proposed by Yee has been extended to and investigated for three-dimensional thin-layer Navier-Stokes simulation of complex aerodynamic problems. An existing three-dimensional Navier-stokes code based on the beam and warming algorithm is modified to provide an option of using the TVD algorithm and the flow problem considered is a transonic turbulent flow past a projectile with sting at ten-degree angle of attack. Numerical experiments conducted for three flow cases, free-stream Mach numbers of 0.91, 0.96 and 1.20 show that the symmetric TVD algorithm can provide surface pressure distribution in excellent agreement with measured data; moreover, the rate of convergence to attain a steady state solution is about two times faster than the original beam and warming algorithm.

  15. Heat transfer in gas turbine engines and three-dimensional flows; Proceedings of the Symposium, ASME Winter Annual Meeting, Chicago, IL, Nov. 27-Dec. 2, 1988

    NASA Technical Reports Server (NTRS)

    Elovic, E. (Editor); O'Brien, J. E. (Editor); Pepper, D. W. (Editor)

    1988-01-01

    The present conference on heat transfer characteristics of gas turbines and three-dimensional flows discusses velocity-temperature fluctuation correlations at the flow stagnation flow of a circular cylinder in turbulent flow, heat transfer across turbulent boundary layers with pressure gradients, the effect of jet grid turbulence on boundary layer heat transfer, and heat transfer characteristics predictions for discrete-hole film cooling. Also discussed are local heat transfer in internally cooled turbine airfoil leading edges, secondary flows in vane cascades and curved ducts, three-dimensional numerical modeling in gas turbine coal combustor design, numerical and experimental results for tube-fin heat exchanger airflow and heating characteristics, and the computation of external hypersonic three-dimensional flow field and heat transfer characteristics.

  16. Heat transfer in gas turbine engines and three-dimensional flows; Proceedings of the Symposium, ASME Winter Annual Meeting, Chicago, IL, Nov. 27-Dec. 2, 1988

    NASA Astrophysics Data System (ADS)

    Elovic, E.; O'Brien, J. E.; Pepper, D. W.

    The present conference on heat transfer characteristics of gas turbines and three-dimensional flows discusses velocity-temperature fluctuation correlations at the flow stagnation flow of a circular cylinder in turbulent flow, heat transfer across turbulent boundary layers with pressure gradients, the effect of jet grid turbulence on boundary layer heat transfer, and heat transfer characteristics predictions for discrete-hole film cooling. Also discussed are local heat transfer in internally cooled turbine airfoil leading edges, secondary flows in vane cascades and curved ducts, three-dimensional numerical modeling in gas turbine coal combustor design, numerical and experimental results for tube-fin heat exchanger airflow and heating characteristics, and the computation of external hypersonic three-dimensional flow field and heat transfer characteristics.

  17. Multi-GPU accelerated three-dimensional FDTD method for electromagnetic simulation.

    PubMed

    Nagaoka, Tomoaki; Watanabe, Soichi

    2011-01-01

    Numerical simulation with a numerical human model using the finite-difference time domain (FDTD) method has recently been performed in a number of fields in biomedical engineering. To improve the method's calculation speed and realize large-scale computing with the numerical human model, we adapt three-dimensional FDTD code to a multi-GPU environment using Compute Unified Device Architecture (CUDA). In this study, we used NVIDIA Tesla C2070 as GPGPU boards. The performance of multi-GPU is evaluated in comparison with that of a single GPU and vector supercomputer. The calculation speed with four GPUs was approximately 3.5 times faster than with a single GPU, and was slightly (approx. 1.3 times) slower than with the supercomputer. Calculation speed of the three-dimensional FDTD method using GPUs can significantly improve with an expanding number of GPUs.

  18. A mixed finite difference/Galerkin method for three-dimensional Rayleigh-Benard convection

    NASA Technical Reports Server (NTRS)

    Buell, Jeffrey C.

    1988-01-01

    A fast and accurate numerical method, for nonlinear conservation equation systems whose solutions are periodic in two of the three spatial dimensions, is presently implemented for the case of Rayleigh-Benard convection between two rigid parallel plates in the parameter region where steady, three-dimensional convection is known to be stable. High-order streamfunctions secure the reduction of the system of five partial differential equations to a system of only three. Numerical experiments are presented which verify both the expected convergence rates and the absolute accuracy of the method.

  19. Real gas flow fields about three dimensional configurations

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A.; Lombard, C. K.; Davy, W. C.

    1983-01-01

    Real gas, inviscid supersonic flow fields over a three-dimensional configuration are determined using a factored implicit algorithm. Air in chemical equilibrium is considered and its local thermodynamic properties are computed by an equilibrium composition method. Numerical solutions are presented for both real and ideal gases at three different Mach numbers and at two different altitudes. Selected results are illustrated by contour plots and are also tabulated for future reference. Results obtained compare well with existing tabulated numerical solutions and hence validate the solution technique.

  20. Increased heat transfer to elliptical leading edges due to spanwise variations in the freestream momentum: Numerical and experimental results

    NASA Technical Reports Server (NTRS)

    Rigby, D. L.; Vanfossen, G. J.

    1992-01-01

    A study of the effect of spanwise variation in momentum on leading edge heat transfer is discussed. Numerical and experimental results are presented for both a circular leading edge and a 3:1 elliptical leading edge. Reynolds numbers in the range of 10,000 to 240,000 based on leading edge diameter are investigated. The surface of the body is held at a constant uniform temperature. Numerical and experimental results with and without spanwise variations are presented. Direct comparison of the two-dimensional results, that is, with no spanwise variations, to the analytical results of Frossling is very good. The numerical calculation, which uses the PARC3D code, solves the three-dimensional Navier-Stokes equations, assuming steady laminar flow on the leading edge region. Experimentally, increases in the spanwise-averaged heat transfer coefficient as high as 50 percent above the two-dimensional value were observed. Numerically, the heat transfer coefficient was seen to increase by as much as 25 percent. In general, under the same flow conditions, the circular leading edge produced a higher heat transfer rate than the elliptical leading edge. As a percentage of the respective two-dimensional values, the circular and elliptical leading edges showed similar sensitivity to span wise variations in momentum. By equating the root mean square of the amplitude of the spanwise variation in momentum to the turbulence intensity, a qualitative comparison between the present work and turbulent results was possible. It is shown that increases in leading edge heat transfer due to spanwise variations in freestream momentum are comparable to those due to freestream turbulence.

  1. 3DHYDROGEOCHEM: A 3-DIMENSIONAL MODEL OF DENSITY-DEPENDENT SUBSURFACE FLOW AND THERMAL MULTISPECIES-MULTICOMPONENT HYDROGEOCHEMICAL TRANSPORT

    EPA Science Inventory

    This report presents a three-dimensional finite-element numerical model designed to simulate chemical transport in subsurface systems with temperature effect taken into account. The three-dimensional model is developed to provide (1) a tool of application, with which one is able...

  2. Three-Dimensional Stereoscopic Tracking Velocimetry and Experimental/Numerical Comparison of Directional Solidification

    NASA Technical Reports Server (NTRS)

    Lee, David; Ge, Yi; Cha, Soyoung Stephen; Ramachandran, Narayanan; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Measurement of three-dimensional (3-D) three-component velocity fields is of great importance in both ground and space experiments for understanding materials processing and fluid physics. The experiments in these fields most likely inhibit the application of conventional planar probes for observing 3-D phenomena. Here, we present the investigation results of stereoscopic tracking velocimetry (STV) for measuring 3-D velocity fields, which include diagnostic technology development, experimental velocity measurement, and comparison with analytical and numerical computation. STV is advantageous in system simplicity for building compact hardware and in software efficiency for continual near-real-time monitoring. It has great freedom in illuminating and observing volumetric fields from arbitrary directions. STV is based on stereoscopic observation of particles-Seeded in a flow by CCD sensors. In the approach, part of the individual particle images that provide data points is likely to be lost or cause errors when their images overlap and crisscross each other especially under a high particle density. In order to maximize the valid recovery of data points, neural networks are implemented for these two important processes. For the step of particle overlap decomposition, the back propagation neural network is utilized because of its ability in pattern recognition with pertinent particle image feature parameters. For the step of particle tracking, the Hopfield neural network is employed to find appropriate particle tracks based on global optimization. Our investigation indicates that the neural networks are very efficient and useful for stereoscopically tracking particles. As an initial assessment of the diagnostic technology performance, laminar water jets with and without pulsation are measured. The jet tip velocity profiles are in good agreement with analytical predictions. Finally, for testing in material processing applications, a simple directional solidification apparatus is built for experimenting with a metal analog of succinonitrile. Its 3-D velocity field at the liquid phase is then measured to be compared with those from numerical computation. Our theoretical, numerical, and experimental investigations have proven STV to be a viable candidate for reliably measuring 3-D flow velocities. With current activities are focused on further improving the processing efficiency, overall accuracy, and automation, the eventual efforts of broad experimental applications and concurrent numerical modeling validation will be vital to many areas in fluid flow and materials processing.

  3. Unsteady boundary layer rotating flow and heat transfer in a copper-water nanofluid over a shrinking sheet

    NASA Astrophysics Data System (ADS)

    Dzulkifli, Nor Fadhilah; Bachok, Norfifah; Yacob, Nor Azizah; Arifin, Norihan Md; Rosali, Haliza

    2017-04-01

    The study of unsteady three-dimensional boundary layer rotating flow with heat transfer in Copper-water nanofluid over a shrinking sheet is discussed. The governing equations in terms of partial differential equations are transformed to ordinary differential equations by introducing the appropriate similarity variables which are then solved numerically by a shooting method with Maple software. The numerical results of velocity gradient in x and y directions, skin friction coefficient and local Nusselt number as well as dual velocity and temperature profiles are shown graphically. The study revealed that dual solutions exist in certain range of s > 0.

  4. Dual solutions of three-dimensional flow and heat transfer over a non-linearly stretching/shrinking sheet

    NASA Astrophysics Data System (ADS)

    Naganthran, Kohilavani; Nazar, Roslinda; Pop, Ioan

    2018-05-01

    This study investigated the influence of the non-linearly stretching/shrinking sheet on the boundary layer flow and heat transfer. A proper similarity transformation simplified the system of partial differential equations into a system of ordinary differential equations. This system of similarity equations is then solved numerically by using the bvp4c function in the MATLAB software. The generated numerical results presented graphically and discussed in the relevance of the governing parameters. Dual solutions found as the sheet stretched and shrunk in the horizontal direction. Stability analysis showed that the first solution is physically realizable whereas the second solution is not practicable.

  5. Experimental analysis and numerical modeling of mollusk shells as a three dimensional integrated volume.

    PubMed

    Faghih Shojaei, M; Mohammadi, V; Rajabi, H; Darvizeh, A

    2012-12-01

    In this paper, a new numerical technique is presented to accurately model the geometrical and mechanical features of mollusk shells as a three dimensional (3D) integrated volume. For this purpose, the Newton method is used to solve the nonlinear equations of shell surfaces. The points of intersection on the shell surface are identified and the extra interior parts are removed. Meshing process is accomplished with respect to the coordinate of each point of intersection. The final 3D generated mesh models perfectly describe the spatial configuration of the mollusk shells. Moreover, the computational model perfectly matches with the actual interior geometry of the shells as well as their exterior architecture. The direct generation technique is employed to generate a 3D finite element (FE) model in ANSYS 11. X-ray images are taken to show the close similarity of the interior geometry of the models and the actual samples. A scanning electron microscope (SEM) is used to provide information on the microstructure of the shells. In addition, a set of compression tests were performed on gastropod shell specimens to obtain their ultimate compressive strength. A close agreement between experimental data and the relevant numerical results is demonstrated. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. A three-dimensional electrostatic particle-in-cell methodology on unstructured Delaunay-Voronoi grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gatsonis, Nikolaos A.; Spirkin, Anton

    2009-06-01

    The mathematical formulation and computational implementation of a three-dimensional particle-in-cell methodology on unstructured Delaunay-Voronoi tetrahedral grids is presented. The method allows simulation of plasmas in complex domains and incorporates the duality of the Delaunay-Voronoi in all aspects of the particle-in-cell cycle. Charge assignment and field interpolation weighting schemes of zero- and first-order are formulated based on the theory of long-range constraints. Electric potential and fields are derived from a finite-volume formulation of Gauss' law using the Voronoi-Delaunay dual. Boundary conditions and the algorithms for injection, particle loading, particle motion, and particle tracking are implemented for unstructured Delaunay grids. Error andmore » sensitivity analysis examines the effects of particles/cell, grid scaling, and timestep on the numerical heating, the slowing-down time, and the deflection times. The problem of current collection by cylindrical Langmuir probes in collisionless plasmas is used for validation. Numerical results compare favorably with previous numerical and analytical solutions for a wide range of probe radius to Debye length ratios, probe potentials, and electron to ion temperature ratios. The versatility of the methodology is demonstrated with the simulation of a complex plasma microsensor, a directional micro-retarding potential analyzer that includes a low transparency micro-grid.« less

  7. Numerical calculation of the internal flow field in a centrifugal compressor impeller

    NASA Technical Reports Server (NTRS)

    Walitt, L.; Harp, J. L., Jr.; Liu, C. Y.

    1975-01-01

    An iterative numerical method has been developed for the calculation of steady, three-dimensional, viscous, compressible flow fields in centrifugal compressor impellers. The computer code, which embodies the method, solves the steady three dimensional, compressible Navier-Stokes equations in rotating, curvilinear coordinates. The solution takes place on blade-to-blade surfaces of revolution which move from the hub to the shroud during each iteration.

  8. Development of a Linearized Unsteady Euler Analysis with Application to Wake/Blade-Row Interactions

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.; Montgomery, Matthew D.; Chuang, H. Andrew

    1999-01-01

    A three-dimensional, linearized, Euler analysis is being developed to provide a comprehensive and efficient unsteady aerodynamic analysis for predicting the aeroacoustic and aeroelastic responses of axial-flow turbomachinery blading. The mathematical models needed to describe nonlinear and linearized, inviscid, unsteady flows through a blade row operating within a cylindrical annular duct are presented in this report. A numerical model for linearized inviscid unsteady flows, which couples a near-field, implicit, wave-split, finite volume analysis to far-field eigen analyses, is also described. The linearized aerodynamic and numerical models have been implemented into the three-dimensional unsteady flow code, LINFLUX. This code is applied herein to predict unsteady subsonic flows driven by wake or vortical excitations. The intent is to validate the LINFLUX analysis via numerical results for simple benchmark unsteady flows and to demonstrate this analysis via application to a realistic wake/blade-row interaction. Detailed numerical results for a three-dimensional version of the 10th Standard Cascade and a fan exit guide vane indicate that LINFLUX is becoming a reliable and useful unsteady aerodynamic prediction capability that can be applied, in the future, to assess the three-dimensional flow physics important to blade-row, aeroacoustic and aeroelastic responses.

  9. Full three-dimensional investigation of structural contact interactions in turbomachines

    NASA Astrophysics Data System (ADS)

    Legrand, Mathias; Batailly, Alain; Magnain, Benoît; Cartraud, Patrice; Pierre, Christophe

    2012-05-01

    Minimizing the operating clearance between rotating bladed-disks and stationary surrounding casings is a primary concern in the design of modern turbomachines since it may advantageously affect their energy efficiency. This technical choice possibly leads to interactions between elastic structural components through direct unilateral contact and dry friction, events which are now accepted as normal operating conditions. Subsequent nonlinear dynamical behaviors of such systems are commonly investigated with simplified academic models mainly due to theoretical difficulties and numerical challenges involved in non-smooth large-scale realistic models. In this context, the present paper introduces an adaptation of a full three-dimensional contact strategy for the prediction of potentially damaging motions that would imply highly demanding computational efforts for the targeted aerospace application in an industrial context. It combines a smoothing procedure including bicubic B-spline patches together with a Lagrange multiplier based contact strategy within an explicit time-marching integration procedure preferred for its versatility. The proposed algorithm is first compared on a benchmark configuration against the more elaborated bi-potential formulation and the commercial software Ansys. The consistency of the provided results and the low energy fluctuations of the introduced approach underlines its reliable numerical properties. A case study featuring blade-tip/casing contact on industrial finite element models is then proposed: it incorporates component mode synthesis and the developed three-dimensional contact algorithm for investigating structural interactions occurring within a turbomachine compressor stage. Both time results and frequency-domain analysis emphasize the practical use of such a numerical tool: detection of severe operating conditions and critical rotational velocities, time-dependent maps of stresses acting within the structures, parameter studies and blade design tests.

  10. Construction of Three Dimensional Solutions for the Maxwell Equations

    NASA Technical Reports Server (NTRS)

    Yefet, A.; Turkel, E.

    1998-01-01

    We consider numerical solutions for the three dimensional time dependent Maxwell equations. We construct a fourth order accurate compact implicit scheme and compare it to the Yee scheme for free space in a box.

  11. International Conference on Numerical Methods in Fluid Dynamics, 7th, Stanford University, Stanford and Moffett Field, CA, June 23-27, 1980, Proceedings

    NASA Technical Reports Server (NTRS)

    Reynolds, W. C. (Editor); Maccormack, R. W.

    1981-01-01

    Topics discussed include polygon transformations in fluid mechanics, computation of three-dimensional horseshoe vortex flow using the Navier-Stokes equations, an improved surface velocity method for transonic finite-volume solutions, transonic flow calculations with higher order finite elements, the numerical calculation of transonic axial turbomachinery flows, and the simultaneous solutions of inviscid flow and boundary layer at transonic speeds. Also considered are analytical solutions for the reflection of unsteady shock waves and relevant numerical tests, reformulation of the method of characteristics for multidimensional flows, direct numerical simulations of turbulent shear flows, the stability and separation of freely interacting boundary layers, computational models of convective motions at fluid interfaces, viscous transonic flow over airfoils, and mixed spectral/finite difference approximations for slightly viscous flows.

  12. Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling

    PubMed Central

    Aoki, Michio

    2018-01-01

    Conventional manufacturing techniques—moulding, machining and casting—exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures. PMID:29515894

  13. Forming three-dimensional closed shapes from two-dimensional soft ribbons by controlled buckling

    NASA Astrophysics Data System (ADS)

    Aoki, Michio; Juang, Jia-Yang

    2018-02-01

    Conventional manufacturing techniques-moulding, machining and casting-exist to produce three-dimensional (3D) shapes. However, these industrial processes are typically geared for mass production and are not directly applicable to residential settings, where inexpensive and versatile tools are desirable. Moreover, those techniques are, in general, not adequate to process soft elastic materials. Here, we introduce a new concept of forming 3D closed hollow shapes from two-dimensional (2D) elastic ribbons by controlled buckling. We numerically and experimentally characterize how the profile and thickness of the ribbon determine its buckled shape. We find a 2D master profile with which various elliptical 3D shapes can be formed. More complex natural and artificial hollow shapes, such as strawberry, hourglass and wheel, can also be achieved via strategic design and pattern engraving on the ribbons. The nonlinear response of the post-buckling regime is rationalized through finite-element analysis, which shows good quantitative agreement with experiments. This robust fabrication should complement conventional techniques and provide a rich arena for future studies on the mechanics and new applications of elastic hollow structures.

  14. Thermally induced rarefied gas flow in a three-dimensional enclosure with square cross-section

    NASA Astrophysics Data System (ADS)

    Zhu, Lianhua; Yang, Xiaofan; Guo, Zhaoli

    2017-12-01

    Rarefied gas flow in a three-dimensional enclosure induced by nonuniform temperature distribution is numerically investigated. The enclosure has a square channel-like geometry with alternatively heated closed ends and lateral walls with a linear temperature distribution. A recently proposed implicit discrete velocity method with a memory reduction technique is used to numerically simulate the problem based on the nonlinear Shakhov kinetic equation. The Knudsen number dependencies of the vortices pattern, slip velocity at the planar walls and edges, and heat transfer are investigated. The influences of the temperature ratio imposed at the ends of the enclosure and the geometric aspect ratio are also evaluated. The overall flow pattern shows similarities with those observed in two-dimensional configurations in literature. However, features due to the three-dimensionality are observed with vortices that are not identified in previous studies on similar two-dimensional enclosures at high Knudsen and small aspect ratios.

  15. Development and Application of a Numerical Framework for Improving Building Foundation Heat Transfer Calculations

    NASA Astrophysics Data System (ADS)

    Kruis, Nathanael J. F.

    Heat transfer from building foundations varies significantly in all three spatial dimensions and has important dynamic effects at all timescales, from one hour to several years. With the additional consideration of moisture transport, ground freezing, evapotranspiration, and other physical phenomena, the estimation of foundation heat transfer becomes increasingly sophisticated and computationally intensive to the point where accuracy must be compromised for reasonable computation time. The tools currently available to calculate foundation heat transfer are often either too limited in their capabilities to draw meaningful conclusions or too sophisticated to use in common practices. This work presents Kiva, a new foundation heat transfer computational framework. Kiva provides a flexible environment for testing different numerical schemes, initialization methods, spatial and temporal discretizations, and geometric approximations. Comparisons within this framework provide insight into the balance of computation speed and accuracy relative to highly detailed reference solutions. The accuracy and computational performance of six finite difference numerical schemes are verified against established IEA BESTEST test cases for slab-on-grade heat conduction. Of the schemes tested, the Alternating Direction Implicit (ADI) scheme demonstrates the best balance between accuracy, performance, and numerical stability. Kiva features four approaches of initializing soil temperatures for an annual simulation. A new accelerated initialization approach is shown to significantly reduce the required years of presimulation. Methods of approximating three-dimensional heat transfer within a representative two-dimensional context further improve computational performance. A new approximation called the boundary layer adjustment method is shown to improve accuracy over other established methods with a negligible increase in computation time. This method accounts for the reduced heat transfer from concave foundation shapes, which has not been adequately addressed to date. Within the Kiva framework, three-dimensional heat transfer that can require several days to simulate is approximated in two-dimensions in a matter of seconds while maintaining a mean absolute deviation within 3%.

  16. A contrastive study on the influences of radial and three-dimensional satellite gravity gradiometry on the accuracy of the Earth's gravitational field recovery

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Hsu, Hou-Tse; Zhong, Min; Yun, Mei-Juan

    2012-10-01

    The accuracy of the Earth's gravitational field measured from the gravity field and steady-state ocean circulation explorer (GOCE), up to 250 degrees, influenced by the radial gravity gradient Vzz and three-dimensional gravity gradient Vij from the satellite gravity gradiometry (SGG) are contrastively demonstrated based on the analytical error model and numerical simulation, respectively. Firstly, the new analytical error model of the cumulative geoid height, influenced by the radial gravity gradient Vzz and three-dimensional gravity gradient Vij are established, respectively. In 250 degrees, the GOCE cumulative geoid height error measured by the radial gravity gradient Vzz is about 2½ times higher than that measured by the three-dimensional gravity gradient Vij. Secondly, the Earth's gravitational field from GOCE completely up to 250 degrees is recovered using the radial gravity gradient Vzz and three-dimensional gravity gradient Vij by numerical simulation, respectively. The study results show that when the measurement error of the gravity gradient is 3 × 10-12/s2, the cumulative geoid height errors using the radial gravity gradient Vzz and three-dimensional gravity gradient Vij are 12.319 cm and 9.295 cm at 250 degrees, respectively. The accuracy of the cumulative geoid height using the three-dimensional gravity gradient Vij is improved by 30%-40% on average compared with that using the radial gravity gradient Vzz in 250 degrees. Finally, by mutual verification of the analytical error model and numerical simulation, the orders of magnitude from the accuracies of the Earth's gravitational field recovery make no substantial differences based on the radial and three-dimensional gravity gradients, respectively. Therefore, it is feasible to develop in advance a radial cold-atom interferometric gradiometer with a measurement accuracy of 10-13/s2-10-15/s2 for precisely producing the next-generation GOCE Follow-On Earth gravity field model with a high spatial resolution.

  17. High-resolution three-dimensional structural microscopy by single-angle Bragg ptychography

    DOE PAGES

    Hruszkewycz, S. O.; Allain, M.; Holt, M. V.; ...

    2016-11-21

    Coherent X-ray microscopy by phase retrieval of Bragg diffraction intensities enables lattice distortions within a crystal to be imaged at nanometre-scale spatial resolutions in three dimensions. While this capability can be used to resolve structure–property relationships at the nanoscale under working conditions, strict data measurement requirements can limit the application of current approaches. Here, in this work, we introduce an efficient method of imaging three-dimensional (3D) nanoscale lattice behaviour and strain fields in crystalline materials with a methodology that we call 3D Bragg projection ptychography (3DBPP). This method enables 3D image reconstruction of a crystal volume from a series ofmore » two-dimensional X-ray Bragg coherent intensity diffraction patterns measured at a single incident beam angle. Structural information about the sample is encoded along two reciprocal-space directions normal to the Bragg diffracted exit beam, and along the third dimension in real space by the scanning beam. Finally, we present our approach with an analytical derivation, a numerical demonstration, and an experimental reconstruction of lattice distortions in a component of a nanoelectronic prototype device.« less

  18. Monte-Carlo simulations of the clean and disordered contact process in three space dimensions

    NASA Astrophysics Data System (ADS)

    Vojta, Thomas

    2013-03-01

    The absorbing-state transition in the three-dimensional contact process with and without quenched randomness is investigated by means of Monte-Carlo simulations. In the clean case, a reweighting technique is combined with a careful extrapolation of the data to infinite time to determine with high accuracy the critical behavior in the three-dimensional directed percolation universality class. In the presence of quenched spatial disorder, our data demonstrate that the absorbing-state transition is governed by an unconventional infinite-randomness critical point featuring activated dynamical scaling. The critical behavior of this transition does not depend on the disorder strength, i.e., it is universal. Close to the disordered critical point, the dynamics is characterized by the nonuniversal power laws typical of a Griffiths phase. We compare our findings to the results of other numerical methods, and we relate them to a general classification of phase transitions in disordered systems based on the rare region dimensionality. This work has been supported in part by the NSF under grants no. DMR-0906566 and DMR-1205803.

  19. Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions

    NASA Technical Reports Server (NTRS)

    Hodge, Steve L.; Zorumski, William E.; Watson, Willie R.

    1995-01-01

    The Helmholtz equation is solved within a three-dimensional rectangular duct with a nonlocal radiation boundary condition at the duct exit plane. This condition accurately models the acoustic admittance at an arbitrarily-located computational boundary plane. A linear system of equations is constructed with second-order central differences for the Helmholtz operator and second-order backward differences for both local admittance conditions and the gradient term in the nonlocal radiation boundary condition. The resulting matrix equation is large, sparse, and non-Hermitian. The size and structure of the matrix makes direct solution techniques impractical; as a result, a nonstationary iterative technique is used for its solution. The theory behind the nonstationary technique is reviewed, and numerical results are presented for radiation from both a point source and a planar acoustic source. The solutions with the nonlocal boundary conditions are invariant to the location of the computational boundary, and the same nonlocal conditions are valid for all solutions. The nonlocal conditions thus provide a means of minimizing the size of three-dimensional computational domains.

  20. A GPU-based calculation using the three-dimensional FDTD method for electromagnetic field analysis.

    PubMed

    Nagaoka, Tomoaki; Watanabe, Soichi

    2010-01-01

    Numerical simulations with the numerical human model using the finite-difference time domain (FDTD) method have recently been performed frequently in a number of fields in biomedical engineering. However, the FDTD calculation runs too slowly. We focus, therefore, on general purpose programming on the graphics processing unit (GPGPU). The three-dimensional FDTD method was implemented on the GPU using Compute Unified Device Architecture (CUDA). In this study, we used the NVIDIA Tesla C1060 as a GPGPU board. The performance of the GPU is evaluated in comparison with the performance of a conventional CPU and a vector supercomputer. The results indicate that three-dimensional FDTD calculations using a GPU can significantly reduce run time in comparison with that using a conventional CPU, even a native GPU implementation of the three-dimensional FDTD method, while the GPU/CPU speed ratio varies with the calculation domain and thread block size.

  1. Three-Dimensional Direct Numerical Simulation of Methane-Air Turbulent Premixed Flames with Reduced Kinetic Mechanism

    NASA Astrophysics Data System (ADS)

    Tanahashi, Mamoru; Kikuta, Satoshi; Miyauchi, Toshio

    2004-11-01

    Three-dimensional DNS of methane-air turbulent premixed flames have been conducted to investigate local extinction mechanism of turbulent premixed flames. A reduced kinetic mechanism (MeCH-19), which is created from GRI-Mech. 2.11 and includes 23 reactive species and 19 step reactions, are used to simulate CH_4-O_2-N2 reaction in turbulence. The effectiveness of this reduced kinetic mechanism has been conformed by preliminary two-dimensional DNS with the reduced kinetic mechanism and two detailed kinetic mechanisms; GRI-Mech. 2.11 and Miller & Bowman. Flame structures of methane-air turbulent premixed flames are compared with those of hydrogen-air turbulent premixed flames which have been obtained by 3D-DNS with a detailed kinetic mechanism in our previous study. Local extinctions occur in methane-air turbulent premixed flames, whereas no extinction is observed for hydrogen-air flames in nearly same turbulence condition. The local extinction mechanism is discussed based on eddy/flame interaction in small scales.

  2. Acoustic scattering by arbitrary distributions of disjoint, homogeneous cylinders or spheres.

    PubMed

    Hesford, Andrew J; Astheimer, Jeffrey P; Waag, Robert C

    2010-05-01

    A T-matrix formulation is presented to compute acoustic scattering from arbitrary, disjoint distributions of cylinders or spheres, each with arbitrary, uniform acoustic properties. The generalized approach exploits the similarities in these scattering problems to present a single system of equations that is easily specialized to cylindrical or spherical scatterers. By employing field expansions based on orthogonal harmonic functions, continuity of pressure and normal particle velocity are directly enforced at each scatterer using diagonal, analytic expressions to eliminate the need for integral equations. The effect of a cylinder or sphere that encloses all other scatterers is simulated with an outer iterative procedure that decouples the inner-object solution from the effect of the enclosing object to improve computational efficiency when interactions among the interior objects are significant. Numerical results establish the validity and efficiency of the outer iteration procedure for nested objects. Two- and three-dimensional methods that employ this outer iteration are used to measure and characterize the accuracy of two-dimensional approximations to three-dimensional scattering of elevation-focused beams.

  3. Numerical simulation of the three-dimensional river antidunes

    NASA Astrophysics Data System (ADS)

    Iwasaki, T.; Inoue, T.; Onda, S.; Yabe, H.

    2017-12-01

    This study presents numerical simulations of the formation and development of the three-dimensional river antidunes. We use a Boussinesq type depth-integrated hydrodynamic model to account for the non-hydrostatic pressure effects on the flow field, dissipative feature of the free surface and the bed shear stress distribution. In addition, a non-equilibrium bedload transport model is incorporated into the model to consider the lag effect of the bedload transport on the bedform dynamics. The model is applied to idealized laboratory-scale conditions, i.e., steady water and sediment supplies, uniform sediment and a straight channel with constant slope and channel width, to understand the model performance and applicability. The results show that the model is able to reproduce an upstream-migrating antidunes and associated free surface dynamics. The model also captures the formation of the two dimensional and the three-dimensional antidunes. The antidunes reproduced by the model are somewhat unstable, i.e., the repeated cycle of dissipation and regeneration of antidunes is observed. In addition, as the calculation progresses, the modelled three-dimensional antidunes generally tend to lose their three-dimensionality, i.e., the reduction of the spanwise wavenumber. In the early stage of the calculation, the antidune mode is dominant, whereas, the free bars also develop when the formative condition of bars is satisfied. The numerical results show the coexisting of free bars and antidunes, which are a common evident in flume experiments and field observations.

  4. The three-dimensional wake of a cylinder undergoing a combination of translational and rotational oscillation in a quiescent fluid

    NASA Astrophysics Data System (ADS)

    Nazarinia, M.; Lo Jacono, D.; Thompson, M. C.; Sheridan, J.

    2009-06-01

    Previous two-dimensional numerical studies have shown that a circular cylinder undergoing both oscillatory rotational and translational motions can generate thrust so that it will actually self-propel through a stationary fluid. Although a cylinder undergoing a single oscillation has been thoroughly studied, the combination of the two oscillations has not received much attention until now. The current research reported here extends the numerical study of Blackburn et al. [Phys. Fluids 11, L4 (1999)] both experimentally and numerically, recording detailed vorticity fields in the wake and using these to elucidate the underlying physics, examining the three-dimensional wake development experimentally, and determining the three-dimensional stability of the wake through Floquet stability analysis. Experiments conducted in the laboratory are presented for a given parameter range, confirming the early results from Blackburn et al. [Phys. Fluids 11, L4 (1999)]. In particular, we confirm the thrust generation ability of a circular cylinder undergoing combined oscillatory motions. Importantly, we also find that the wake undergoes three-dimensional transition at low Reynolds numbers (Re≃100) to an instability mode with a wavelength of about two cylinder diameters. The stability analysis indicates that the base flow is also unstable to another mode at slightly higher Reynolds numbers, broadly analogous to the three-dimensional wake transition mode for a circular cylinder, despite the distinct differences in wake/mode topology. The stability of these flows was confirmed by experimental measurements.

  5. Chemical Transport in a Fissured Rock: Verification of a Numerical Model

    NASA Astrophysics Data System (ADS)

    Rasmuson, A.; Narasimhan, T. N.; Neretnieks, I.

    1982-10-01

    Numerical models for simulating chemical transport in fissured rocks constitute powerful tools for evaluating the acceptability of geological nuclear waste repositories. Due to the very long-term, high toxicity of some nuclear waste products, the models are required to predict, in certain cases, the spatial and temporal distribution of chemical concentration less than 0.001% of the concentration released from the repository. Whether numerical models can provide such accuracies is a major question addressed in the present work. To this end we have verified a numerical model, TRUMP, which solves the advective diffusion equation in general three dimensions, with or without decay and source terms. The method is based on an integrated finite difference approach. The model was verified against known analytic solution of the one-dimensional advection-diffusion problem, as well as the problem of advection-diffusion in a system of parallel fractures separated by spherical particles. The studies show that as long as the magnitude of advectance is equal to or less than that of conductance for the closed surface bounding any volume element in the region (that is, numerical Peclet number <2), the numerical method can indeed match the analytic solution within errors of ±10-3% or less. The realistic input parameters used in the sample calculations suggest that such a range of Peclet numbers is indeed likely to characterize deep groundwater systems in granitic and ancient argillaceous systems. Thus TRUMP in its present form does provide a viable tool for use in nuclear waste evaluation studies. A sensitivity analysis based on the analytic solution suggests that the errors in prediction introduced due to uncertainties in input parameters are likely to be larger than the computational inaccuracies introduced by the numerical model. Currently, a disadvantage in the TRUMP model is that the iterative method of solving the set of simultaneous equations is rather slow when time constants vary widely over the flow region. Although the iterative solution may be very desirable for large three-dimensional problems in order to minimize computer storage, it seems desirable to use a direct solver technique in conjunction with the mixed explicit-implicit approach whenever possible. Work in this direction is in progress.

  6. Numerical modeling of multidimensional flow in seals and bearings used in rotating machinery

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Tam, L. T.; Przekwas, A.; Muszynska, A.; Braun, M. J.; Mullen, R. L.

    1988-01-01

    The rotordynamic behavior of turbomachinery is critically dependent on fluid dynamic rotor forces developed by various types of seals and bearings. The occurrence of self-excited vibrations often depends on the rotor speed and load. Misalignment and rotor wobbling motion associated with differential clearance were often attributed to stability problems. In general, the rotative character of the flowfield is a complex three dimensional system with secondary flow patterns that significantly alter the average fluid circumferential velocity. A multidimensional, nonorthogonal, body-fitted-grid fluid flow model is presented that describes the fluid dynamic forces and the secondary flow pattern development in seals and bearings. Several numerical experiments were carried out to demonstrate the characteristics of this complex flowfield. Analyses were performed by solving a conservation form of the three dimensional Navier-Stokes equations transformed to those for a rotating observer and using the general-purpose computer code PHOENICS with the assumptions that the rotor orbit is circular and that static eccentricity is zero. These assumptions have enabled a precise steady-state analysis to be used. Fluid injection from ports near the seal or bearing center increased fluid-film direct dynamic stiffness and, in some cases, significantly increased quadrature dynamic stiffness. Injection angle and velocity could be used for active rotordynamic control; for example, injection, when compared with no injection, increased direct dynamic stiffness, which is an important factor for hydrostatic bearings.

  7. Numerical approach for finite volume three-body interaction

    NASA Astrophysics Data System (ADS)

    Guo, Peng; Gasparian, Vladimir

    2018-01-01

    In the present work, we study a numerical approach to one dimensional finite volume three-body interaction, the method is demonstrated by considering a toy model of three spinless particles interacting with pair-wise δ -function potentials. The numerical results are compared with the exact solutions of three spinless bosons interaction when the strength of short-range interactions are set equal for all pairs.

  8. Evaluation of the three-dimensional parabolic flow computer program SHIP

    NASA Technical Reports Server (NTRS)

    Pan, Y. S.

    1978-01-01

    The three-dimensional parabolic flow program SHIP designed for predicting supersonic combustor flow fields is evaluated to determine its capabilities. The mathematical foundation and numerical procedure are reviewed; simplifications are pointed out and commented upon. The program is then evaluated numerically by applying it to several subsonic and supersonic, turbulent, reacting and nonreacting flow problems. Computational results are compared with available experimental or other analytical data. Good agreements are obtained when the simplifications on which the program is based are justified. Limitations of the program and the needs for improvement and extension are pointed out. The present three dimensional parabolic flow program appears to be potentially useful for the development of supersonic combustors.

  9. Numerical Investigation of Three-dimensional Instability of Standing Waves

    NASA Astrophysics Data System (ADS)

    Zhu, Qiang; Liu, Yuming; Yue, Dick K. P.

    2002-11-01

    We study the three-dimensional instability of finite-amplitude standing waves under the influence of gravity using the transition matrix method. For accurate calculation of the transition matrices, we apply an efficient high-order spectral element method for nonlinear wave dynamics in complex domain. We consider two types of standing waves: (a) plane standing waves; and (b) standing waves in a circular tank. For the former, in addition to the confirmation of the side-band-like instability, we find a new three-dimensional instability for arbitrary base standing waves. The dominant component of the unstable disturbance is an oblique standing wave, with an arbitrary angle relative to the base flow, whose frequency is approximately equal to that of the base standing wave. Based on direct simulations, we confirm such a three-dimensional instability and show the occurrence of the Fermi-Pasta-Ulam recurrence phenomenon during nonlinear evolution. For the latter, we find that beyond a threshold wave steepness, the standing wave with frequency Ω becomes unstable to a small three-dimensional disturbance, which contains two dominant standing-wave components with frequencies ω1 and ω_2, provided that 2Ω ω1 + ω_2. The threshold wave steepness is found to decrease/increase as the radial/azimuthal wavenumber of the base standing wave increases. We show that the instability of standing waves in rectangular and circular tanks is caused by third-order quartet resonances between base flow and disturbance.

  10. Advanced numerical methods for three dimensional two-phase flow calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toumi, I.; Caruge, D.

    1997-07-01

    This paper is devoted to new numerical methods developed for both one and three dimensional two-phase flow calculations. These methods are finite volume numerical methods and are based on the use of Approximate Riemann Solvers concepts to define convective fluxes versus mean cell quantities. The first part of the paper presents the numerical method for a one dimensional hyperbolic two-fluid model including differential terms as added mass and interface pressure. This numerical solution scheme makes use of the Riemann problem solution to define backward and forward differencing to approximate spatial derivatives. The construction of this approximate Riemann solver uses anmore » extension of Roe`s method that has been successfully used to solve gas dynamic equations. As far as the two-fluid model is hyperbolic, this numerical method seems very efficient for the numerical solution of two-phase flow problems. The scheme was applied both to shock tube problems and to standard tests for two-fluid computer codes. The second part describes the numerical method in the three dimensional case. The authors discuss also some improvements performed to obtain a fully implicit solution method that provides fast running steady state calculations. Such a scheme is not implemented in a thermal-hydraulic computer code devoted to 3-D steady-state and transient computations. Some results obtained for Pressurised Water Reactors concerning upper plenum calculations and a steady state flow in the core with rod bow effect evaluation are presented. In practice these new numerical methods have proved to be stable on non staggered grids and capable of generating accurate non oscillating solutions for two-phase flow calculations.« less

  11. Numerical Study of Single Bubble Growth on and Departure from a Horizontal Superheated Wall by Three-dimensional Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Feng, Yuan; Li, Hui-Xiong; Guo, Kai-Kai; Zhao, Jian-Fu; Wang, Tai

    2018-05-01

    A three-dimensional hybrid lattice Boltzmann method was used to simulate the progress of a single bubble's growth and departure from a horizontal superheated wall. The evolutionary process of the bubble shapes and also the temperature fields during pool nucleate boiling were obtained and the influence of the gravitational acceleration on the bubble departure diameter (BDD), the bubble release frequency (BRF) and the heat flux on the superheated wall was analyzed. The simulation results obtained by the present three-dimensional numerical studies demonstrate that the BDD is proportional to g^{-0.301}, the BRF is proportional to g^{-0.58}, and the averaged wall heat flux is proportional to g^{0.201}, where g is the gravitational acceleration. These results are in good agreement with the common-used experimental correlations, indicating the rationality of the present numerical model and results.

  12. Time-Accurate Numerical Simulations of Synthetic Jet Quiescent Air

    NASA Technical Reports Server (NTRS)

    Rupesh, K-A. B.; Ravi, B. R.; Mittal, R.; Raju, R.; Gallas, Q.; Cattafesta, L.

    2007-01-01

    The unsteady evolution of three-dimensional synthetic jet into quiescent air is studied by time-accurate numerical simulations using a second-order accurate mixed explicit-implicit fractional step scheme on Cartesian grids. Both two-dimensional and three-dimensional calculations of synthetic jet are carried out at a Reynolds number (based on average velocity during the discharge phase of the cycle V(sub j), and jet width d) of 750 and Stokes number of 17.02. The results obtained are assessed against PIV and hotwire measurements provided for the NASA LaRC workshop on CFD validation of synthetic jets.

  13. A numerical code for a three-dimensional magnetospheric MHD equilibrium model

    NASA Technical Reports Server (NTRS)

    Voigt, G.-H.

    1992-01-01

    Two dimensional and three dimensional MHD equilibrium models were begun for Earth's magnetosphere. The original proposal was motivated by realizing that global, purely data based models of Earth's magnetosphere are inadequate for studying the underlying plasma physical principles according to which the magnetosphere evolves on the quasi-static convection time scale. Complex numerical grid generation schemes were established for a 3-D Poisson solver, and a robust Grad-Shafranov solver was coded for high beta MHD equilibria. Thus, the effects were calculated of both the magnetopause geometry and boundary conditions on the magnetotail current distribution.

  14. Transition from Direct to Inverse Cascade in Three-Dimensional Turbulence

    NASA Astrophysics Data System (ADS)

    Sahoo, Ganapati; Alexakis, Alexandros; Biferale, Luca

    2017-11-01

    We study a model system where the triadic interactions in Navier-Stokes equations are enhanced or suppressed in a controlled manner without affecting neither the total number of degrees of freedom nor the ideal invariants and without breaking any of the symmetries of original equations. Our numerical simulations are based on the helical decomposition of velocity Fourier modes. We introduced a parameter (0 <= λ <= 1) that controls the relative weight among homochiral and heterochiral triads in the nonlinear evolution. We show that by using this weighting protocol the turbulent evolution displays a sharp transition, for a critical value of the control parameter, from forward to backward energy transfer but still keeping the dynamics fully three dimensional, isotropic, and parity invariant. AtMath Collaboration of University of Helsinki and ERC Grant No. 339032 `NewTurb'.

  15. Lattice Three-Species Models of the Spatial Spread of Rabies among FOXES

    NASA Astrophysics Data System (ADS)

    Benyoussef, A.; Boccara, N.; Chakib, H.; Ez-Zahraouy, H.

    Lattice models describing the spatial spread of rabies among foxes are studied. In these models, the fox population is divided into three-species: susceptible (S), infected or incubating (I), and infectious or rabid (R). They are based on the fact that susceptible and incubating foxes are territorial while rabid foxes have lost their sense of direction and move erratically. Two different models are investigated: a one-dimensional coupled-map lattice model, and a two-dimensional automata network model. Both models take into account the short-range character of the infection process and the diffusive motion of rabid foxes. Numerical simulations show how the spatial distribution of rabies, and the speed of propagation of the epizootic front depend upon the carrying capacity of the environment and diffusion of rabid foxes out of their territory.

  16. Energy and Technology Review

    NASA Astrophysics Data System (ADS)

    Poggio, Andrew J.

    1988-10-01

    This issue of Energy and Technology Review contains: Neutron Penumbral Imaging of Laser-Fusion Targets--using our new penumbral-imaging diagnostic, we have obtained the first images that can be used to measure directly the deuterium-tritium burn region in laser-driven fusion targets; Computed Tomography for Nondestructive Evaluation--various computed tomography systems and computational techniques are used in nondestructive evaluation; Three-Dimensional Image Analysis for Studying Nuclear Chromatin Structure--we have developed an optic-electronic system for acquiring cross-sectional views of cell nuclei, and computer codes to analyze these images and reconstruct the three-dimensional structures they represent; Imaging in the Nuclear Test Program--advanced techniques produce images of unprecedented detail and resolution from Nevada Test Site data; and Computational X-Ray Holography--visible-light experiments and numerically simulated holograms test our ideas about an X-ray microscope for biological research.

  17. A Numeric Study of the Dependence of the Surface Temperature of Beta-Layered Regions on Absolute Thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebey, Peter S.; Asaki, Thomas J.; Hoffer, James K.

    2000-01-15

    Beta-layering of deuterium-tritium (D-T) ice in spherical shell geometries is numerically and analytically considered to investigate the relationship between temperature differences that arise because of inner-surface perturbations and the absolute shell thickness. The calculations use dimensions based on a proposed design of an inertial confinement fusion target for use at the National Ignition Facility. The temperature differences are calculated within D-T ice shells of varying total thicknesses, and the temperature differences calculated in three dimensions are compared both to the one-dimensional results and to the expected limits in three dimensions for long- and short-wavelength surface perturbations. The three-dimensional numeric resultsmore » agree well with both the long- and short-wavelength limits; the region of crossover from short- to long-wavelength behavior is mapped out. Temperature differences due to surface perturbations are proportional to D-T layer thickness in one-dimensional systems but not in three-dimensional spherical shells. In spherical shells, surface perturbations of long wavelength give rise to temperature perturbations that are approximately proportional to the total shell thickness, while for short-wavelength perturbations, the temperature differences are inversely related to total shell thickness. In contrast to the one-dimensional result, we find that in three dimensions there is not a general relationship between shell thickness and surface temperature differences.« less

  18. Spectral-based propagation schemes for time-dependent quantum systems with application to carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Chen, Zuojing; Polizzi, Eric

    2010-11-01

    Effective modeling and numerical spectral-based propagation schemes are proposed for addressing the challenges in time-dependent quantum simulations of systems ranging from atoms, molecules, and nanostructures to emerging nanoelectronic devices. While time-dependent Hamiltonian problems can be formally solved by propagating the solutions along tiny simulation time steps, a direct numerical treatment is often considered too computationally demanding. In this paper, however, we propose to go beyond these limitations by introducing high-performance numerical propagation schemes to compute the solution of the time-ordered evolution operator. In addition to the direct Hamiltonian diagonalizations that can be efficiently performed using the new eigenvalue solver FEAST, we have designed a Gaussian propagation scheme and a basis-transformed propagation scheme (BTPS) which allow to reduce considerably the simulation times needed by time intervals. It is outlined that BTPS offers the best computational efficiency allowing new perspectives in time-dependent simulations. Finally, these numerical schemes are applied to study the ac response of a (5,5) carbon nanotube within a three-dimensional real-space mesh framework.

  19. The measurements of water flow rates in the straight microchannel based on the scanning micro-PIV technique

    NASA Astrophysics Data System (ADS)

    Wang, H. L.; Han, W.; Xu, M.

    2011-12-01

    Measurement of the water flow rate in microchannel has been one of the hottest points in the applications of microfluidics, medical, biological, chemical analyses and so on. In this study, the scanning microscale particle image velocimetry (scanning micro-PIV) technique is used for the measurements of water flow rates in a straight microchannel of 200μm width and 60μm depth under the standard flow rates ranging from 2.481μL/min to 8.269μL/min. The main effort of this measurement technique is to obtain three-dimensional velocity distribution on the cross sections of microchannel by measuring velocities of the different fluid layers along the out-of-plane direction in the microchannel, so the water flow rates can be evaluated from the discrete surface integral of velocities on the cross section. At the same time, the three-dimensional velocity fields in the measured microchannel are simulated numerically using the FLUENT software in order to verify the velocity accuracy of measurement results. The results show that the experimental values of flow rates are well consistent to the standard flow rates input by the syringe pump and the compared results between numerical simulation and experiment are consistent fundamentally. This study indicates that the micro-flow rate evaluated from three-dimensional velocity by the scanning micro-PIV technique is a promising method for the micro-flow rate research.

  20. A new procedure for investigating three-dimensional stress fields in a thin plate with a through-the-thickness crack

    NASA Astrophysics Data System (ADS)

    Yi, Dake; Wang, TzuChiang

    2018-06-01

    In the paper, a new procedure is proposed to investigate three-dimensional fracture problems of a thin elastic plate with a long through-the-thickness crack under remote uniform tensile loading. The new procedure includes a new analytical method and high accurate finite element simulations. In the part of theoretical analysis, three-dimensional Maxwell stress functions are employed in order to derive three-dimensional crack tip fields. Based on the theoretical analysis, an equation which can describe the relationship among the three-dimensional J-integral J( z), the stress intensity factor K( z) and the tri-axial stress constraint level T z ( z) is derived first. In the part of finite element simulations, a fine mesh including 153360 elements is constructed to compute the stress field near the crack front, J( z) and T z ( z). Numerical results show that in the plane very close to the free surface, the K field solution is still valid for in-plane stresses. Comparison with the numerical results shows that the analytical results are valid.

  1. Adjoint sensitivity analysis of chaotic dynamical systems with non-intrusive least squares shadowing

    NASA Astrophysics Data System (ADS)

    Blonigan, Patrick J.

    2017-11-01

    This paper presents a discrete adjoint version of the recently developed non-intrusive least squares shadowing (NILSS) algorithm, which circumvents the instability that conventional adjoint methods encounter for chaotic systems. The NILSS approach involves solving a smaller minimization problem than other shadowing approaches and can be implemented with only minor modifications to preexisting tangent and adjoint solvers. Adjoint NILSS is demonstrated on a small chaotic ODE, a one-dimensional scalar PDE, and a direct numerical simulation (DNS) of the minimal flow unit, a turbulent channel flow on a small spatial domain. This is the first application of an adjoint shadowing-based algorithm to a three-dimensional turbulent flow.

  2. Time-accurate simulations of a shear layer forced at a single frequency

    NASA Technical Reports Server (NTRS)

    Claus, R. W.; Huang, P. G.; Macinnes, J. M.

    1988-01-01

    Calculations are presented for the forced shear layer studied experimentally by Oster and Wygnanski, and Weisbrot. Two different computational approaches are examined: Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES). The DNS approach solves the full three dimensional Navier-Stokes equations for a temporally evolving mixing layer, while the LES approach solves the two dimensional Navier-Stokes equations with a subgrid scale turbulence model. While the comparison between these calculations and experimental data was hampered by a lack of information on the inflow boundary conditions, the calculations are shown to qualitatively agree with several aspects of the experiment. The sensitivity of these calculations to factors such as mesh refinement and Reynolds number is illustrated.

  3. Three-Dimensional Numerical Simulation to Mud Turbine for LWD

    NASA Astrophysics Data System (ADS)

    Yao, Xiaojiang; Dong, Jingxin; Shang, Jie; Zhang, Guanqi

    Hydraulic performance analysis was discussed for a type of turbine on generator used for LWD. The simulation models were built by CFD analysis software FINE/Turbo, and full three-dimensional numerical simulation was carried out for impeller group. The hydraulic parameter such as power, speed and pressure drop, were calculated in two kinds of medium water and mud. Experiment was built in water environment. The error of numerical simulation was less than 6%, verified by experiment. Based on this rationalization proposals would be given to choice appropriate impellers, and the rationalization of methods would be explored.

  4. Analysis of absorption and reflection mechanisms in a three-dimensional plate silencer

    NASA Astrophysics Data System (ADS)

    Wang, Chunqi; Huang, Lixi

    2008-06-01

    When a segment of a rigid duct is replaced by a plate backed by a hard-walled cavity, grazing incident sound waves induce plate vibration, hence sound reflection. Based on this mechanism, a broadband plate silencer, which works effectively from low-to-medium frequencies have been developed recently. A typical plate silencer consists of an expansion chamber with two side-branch cavities covered by light but extremely stiff plates. Such a configuration is two-dimensional in nature. In this paper, numerical study is extended to three-dimensional configurations to investigate the potential improvement in sound reflection. Finite element simulation shows that the three-dimensional configurations perform better than the corresponding two-dimensional design, especially in the relatively high frequency region. Further analysis shows that the three-dimensional design gives better plate response at higher axial modes than the simple two-dimensional design. Sound absorption mechanism is also introduced to the plate silencer by adding two dissipative chambers on the two lateral sides of a two-cavity wave reflector, hence a hybrid silencer. Numerical simulation shows that the proposed hybrid silencer is able to achieve a good moderate bandwidth with much reduced total length in comparison with pure absorption design.

  5. Vectorization on the star computer of several numerical methods for a fluid flow problem

    NASA Technical Reports Server (NTRS)

    Lambiotte, J. J., Jr.; Howser, L. M.

    1974-01-01

    A reexamination of some numerical methods is considered in light of the new class of computers which use vector streaming to achieve high computation rates. A study has been made of the effect on the relative efficiency of several numerical methods applied to a particular fluid flow problem when they are implemented on a vector computer. The method of Brailovskaya, the alternating direction implicit method, a fully implicit method, and a new method called partial implicitization have been applied to the problem of determining the steady state solution of the two-dimensional flow of a viscous imcompressible fluid in a square cavity driven by a sliding wall. Results are obtained for three mesh sizes and a comparison is made of the methods for serial computation.

  6. Three-dimensional implicit lambda methods

    NASA Technical Reports Server (NTRS)

    Napolitano, M.; Dadone, A.

    1983-01-01

    This paper derives the three dimensional lambda-formulation equations for a general orthogonal curvilinear coordinate system and provides various block-explicit and block-implicit methods for solving them, numerically. Three model problems, characterized by subsonic, supersonic and transonic flow conditions, are used to assess the reliability and compare the efficiency of the proposed methods.

  7. Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Frankel, S. H.; Adumitroaie, V.; Sabini, G.; Madnia, C. K.

    1993-01-01

    The primary objective of this research is to extend current capabilities of Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first two years of this research have been concentrated on a priori investigations of single-point Probability Density Function (PDF) methods for providing subgrid closures in reacting turbulent flows. In the efforts initiated in the third year, our primary focus has been on performing actual LES by means of PDF methods. The approach is based on assumed PDF methods and we have performed extensive analysis of turbulent reacting flows by means of LES. This includes simulations of both three-dimensional (3D) isotropic compressible flows and two-dimensional reacting planar mixing layers. In addition to these LES analyses, some work is in progress to assess the extent of validity of our assumed PDF methods. This assessment is done by making detailed companions with recent laboratory data in predicting the rate of reactant conversion in parallel reacting shear flows. This report provides a summary of our achievements for the first six months of the third year of this program.

  8. Numerical Modeling of Three-Dimensional Confined Flows

    NASA Technical Reports Server (NTRS)

    Greywall, M. S.

    1981-01-01

    A three dimensional confined flow model is presented. The flow field is computed by calculating velocity and enthalpy along a set of streamlines. The finite difference equations are obtained by applying conservation principles to streamtubes constructed around the chosen streamlines. With appropriate substitutions for the body force terms, the approach computes three dimensional magnetohydrodynamic channel flows. A listing of a computer code, based on this approach is presented in FORTRAN IV language. The code computes three dimensional compressible viscous flow through a rectangular duct, with the duct cross section specified along the axis.

  9. Numerical Simulation of the Vortex-Induced Vibration of A Curved Flexible Riser in Shear Flow

    NASA Astrophysics Data System (ADS)

    Zhu, Hong-jun; Lin, Peng-zhi

    2018-06-01

    A series of fully three-dimensional (3D) numerical simulations of flow past a free-to-oscillate curved flexible riser in shear flow were conducted at Reynolds number of 185-1015. The numerical results obtained by the two-way fluid-structure interaction (FSI) simulations are in good agreement with the experimental results reported in the earlier study. It is further found that the frequency transition is out of phase not only in the inline (IL) and crossflow (CF) directions but also along the span direction. The mode competition leads to the non-zero nodes of the rootmean- square (RMS) amplitude and the relatively chaotic trajectories. The fluid-structure interaction is to some extent reflected by the transverse velocity of the ambient fluid, which reaches the maximum value when the riser reaches the equilibrium position. Moreover, the local maximum transverse velocities occur at the peak CF amplitudes, and the values are relatively large when the vibration is in the resonance regions. The 3D vortex columns are shed nearly parallel to the axis of the curved flexible riser. As the local Reynolds number increases from 0 at the bottom of the riser to the maximum value at the top, the wake undergoes a transition from a two-dimensional structure to a 3D one. More irregular small-scale vortices appeared at the wake region of the riser, undergoing large amplitude responses.

  10. A numerical study of incompressible juncture flows

    NASA Technical Reports Server (NTRS)

    Kwak, D.; Rogers, S. E.; Kaul, U. K.; Chang, J. L. C.

    1986-01-01

    The laminar, steady juncture flow around single or multiple posts mounted between two flat plates is simulated using the three dimensional incompressible Navier-Stokes code, INS3D. The three dimensional separation of the boundary layer and subsequent formation and development of the horseshoe vortex is computed. The computed flow compares favorably with the experimental observation. The recent numerical study to understand and quantify the juncture flow relevant to the Space Shuttle main engine power head is summarized.

  11. Improved numerical methods for turbulent viscous recirculating flows

    NASA Technical Reports Server (NTRS)

    Vandoormaal, J. P.; Turan, A.; Raithby, G. D.

    1986-01-01

    The objective of the present study is to improve both the accuracy and computational efficiency of existing numerical techniques used to predict viscous recirculating flows in combustors. A review of the status of the study is presented along with some illustrative results. The effort to improve the numerical techniques consists of the following technical tasks: (1) selection of numerical techniques to be evaluated; (2) two dimensional evaluation of selected techniques; and (3) three dimensional evaluation of technique(s) recommended in Task 2.

  12. Three-dimensional numerical study of heat transfer enhancement in separated flows

    NASA Astrophysics Data System (ADS)

    Kumar, Saurav; Vengadesan, S.

    2017-11-01

    The flow separation appears in a wide range of heat transfer applications and causes poor heat transfer performance. It motivates the study of heat transfer enhancement in laminar as well as turbulent flows over a backward facing step by means of an adiabatic fin mounted on the top wall. Recently, we have studied steady, 2-D numerical simulations in laminar flow and investigated the effect of fin length, location, and orientation. It revealed that the addition of fin causes enhancement of heat transfer and it is very effective to control the flow and thermal behavior. The fin is most effective and sensitive when it is placed exactly above the step. A slight displacement of the fin in upstream of the step causes the complete change of flow and thermal behavior. Based on the obtained 2-D results it is interesting to investigate the side wall effect in three-dimensional simulations. The comparison of two-dimensional and three-dimensional numerical simulations with the available experimental results will be presented. Special attention has to be given to capture unsteadiness in the flow and thermal field.

  13. Three-dimensional marginal separation

    NASA Technical Reports Server (NTRS)

    Duck, Peter W.

    1988-01-01

    The three dimensional marginal separation of a boundary layer along a line of symmetry is considered. The key equation governing the displacement function is derived, and found to be a nonlinear integral equation in two space variables. This is solved iteratively using a pseudo-spectral approach, based partly in double Fourier space, and partly in physical space. Qualitatively, the results are similar to previously reported two dimensional results (which are also computed to test the accuracy of the numerical scheme); however quantitatively the three dimensional results are much different.

  14. 3DHYDROGEOCHEM: A 3-DIMENSIONAL MODEL OF DENSITY-DEPENDENT SUBSURFACE FLOW AND THERMAL MULTISPECIES-MULTICOMPONENT HYDROGEOCHEMICAL TRANSPORT (EPA/600/SR-98/159)

    EPA Science Inventory

    This report presents a three-dimensional finite-element numerical model designed to simulate chemical transport in subsurface systems with temperature effect taken into account. The three-dimensional model is developed to provide (1) a tool of application, with which one is able ...

  15. Solitary solutions including spatially localized chaos and their interactions in two-dimensional Kolmogorov flow.

    PubMed

    Hiruta, Yoshiki; Toh, Sadayoshi

    2015-12-01

    Two-dimensional Kolmogorov flow in wide periodic boxes is numerically investigated. It is shown that the total flow rate in the direction perpendicular to the force controls the characteristics of the flow, especially the existence of spatially localized solitary solutions such as traveling waves, periodic solutions, and chaotic solutions, which can behave as elementary components of the flow. We propose a procedure to construct approximate solutions consisting of solitary solutions. It is confirmed by direct numerical simulations that these solutions are stable and represent interactions between elementary components such as collisions, coexistence, and collapse of chaos.

  16. Numerical study of three-dimensional separation and flow control at a wing/body junction

    NASA Technical Reports Server (NTRS)

    Ash, Robert L.; Lakshmanan, Balakrishnan

    1989-01-01

    The problem of three-dimensional separation and flow control at a wing/body junction has been investigated numerically using a three-dimensional Navier-Stokes code. The numerical code employs an algebraic grid generation technique for generating the grid for unmodified junction and an elliptic grid generation technique for filleted fin junction. The results for laminar flow past a blunt fin/flat plate junction demonstrate that after grid refinement, the computations agree with experiment and reveal a strong dependency of the number of vortices at the junction on Mach number and Reynolds number. The numerical results for pressure distribution, particle paths and limiting streamlines for turbulent flow past a swept fin show a decrease in the peak pressure and in the extent of the separated flow region compared to the laminar case. The results for a filleted juncture indicate that the streamline patterns lose much of their vortical character with proper filleting. Fillets with a radius of three and one-half times the fin leading edge diameter or two times the incoming boundary layer thickness, significantly weaken the usual necklace interaction vortex for the Mach number and Reynolds number considered in the present study.

  17. Boundary acquisition for setup of numerical simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diegert, C.

    1997-12-31

    The author presents a work flow diagram that includes a path that begins with taking experimental measurements, and ends with obtaining insight from results produced by numerical simulation. Two examples illustrate this path: (1) Three-dimensional imaging measurement at micron scale, using X-ray tomography, provides information on the boundaries of irregularly-shaped alumina oxide particles held in an epoxy matrix. A subsequent numerical simulation predicts the electrical field concentrations that would occur in the observed particle configurations. (2) Three-dimensional imaging measurement at meter scale, again using X-ray tomography, provides information on the boundaries fossilized bone fragments in a Parasaurolophus crest recently discoveredmore » in New Mexico. A subsequent numerical simulation predicts acoustic response of the elaborate internal structure of nasal passageways defined by the fossil record. The author must both add value, and must change the format of the three-dimensional imaging measurements before the define the geometric boundary initial conditions for the automatic mesh generation, and subsequent numerical simulation. The author applies a variety of filters and statistical classification algorithms to estimate the extents of the structures relevant to the subsequent numerical simulation, and capture these extents as faceted geometries. The author will describe the particular combination of manual and automatic methods used in the above two examples.« less

  18. Size distribution spectrum of noninertial particles in turbulence

    NASA Astrophysics Data System (ADS)

    Saito, Izumi; Gotoh, Toshiyuki; Watanabe, Takeshi

    2018-05-01

    Collision-coalescence growth of noninertial particles in three-dimensional homogeneous isotropic turbulence is studied. Smoluchowski's coagulation equation describes the evolution of the size distribution of particles in this system. By applying a methodology based on turbulence theory, the equation is shown to have a steady-state solution, which corresponds to the Kolmogorov-type power-law spectrum. Direct numerical simulations of turbulence and Lagrangian particles are conducted. The result shows that the size distribution in a statistically steady state agrees accurately with the theoretical prediction.

  19. Transonic Symposium: Theory, Application, and Experiment, volume 1, part 2

    NASA Technical Reports Server (NTRS)

    Foughner, Jerome T., Jr. (Compiler)

    1989-01-01

    In order to assess the state of the art in transonic flow disciplines and to glimpse at future directions, NASA-Langley held a Transonic Symposium. Emphasis was placed on steady, three dimensional external, transonic flow and its simulation, both numerically and experimentally. The symposium included technical sessions on wind tunnel and flight experiments; computational fluid dynamic applications; inviscid methods and grid generation; viscous methods and boundary layer stability; and wind tunnel techniques and wall interference. This, being volume 1, is unclassified.

  20. The transition prediction toolkit: LST, SIT, PSE, DNS, and LES

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.; Chang, Chau-Lyan; Ng, Lian L.

    1992-01-01

    The e(sup N) method for predicting transition onset is an amplitude ratio criterion that is on the verge of full maturation for three-dimensional, compressible, real gas flows. Many of the components for a more sophisticated, absolute amplitude criterion are now emerging: receptivity theory, secondary instability theory, parabolized stability equations approaches, direct numerical simulation and large-eddy simulation. This paper will provide a description of each of these new theoretical tools and provide indications of their current status.

  1. An Investigation of the Flow Physics of Acoustic Liners by Direct Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Watson, Willie R. (Technical Monitor); Tam, Christopher

    2004-01-01

    This report concentrates on reporting the effort and status of work done on three dimensional (3-D) simulation of a multi-hole resonator in an impedance tube. This work is coordinated with a parallel experimental effort to be carried out at the NASA Langley Research Center. The outline of this report is as follows : 1. Preliminary consideration. 2. Computation model. 3. Mesh design and parallel computing. 4. Visualization. 5. Status of computer code development. 1. Preliminary Consideration.

  2. Ion heating in a plasma focus

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Gary, S. P.

    1974-01-01

    Ion acceleration and heating in a plasma focus were investigated by the numerical integration of the three-dimensional equations of motion. The electric and magnetic fields given were derived from experimental data. The results obtained show that during the collapse phase of focus formation, ions are efficiently heated to temperatures of several keV. During the phase of rapid current reduction, ions are accelerated to large velocities in the axial direction. The results obtained with the model are in general agreement with experimental results.

  3. Numerical simulation and parametric analysis of selective laser melting process of AlSi10Mg powder

    NASA Astrophysics Data System (ADS)

    Pei, Wei; Zhengying, Wei; Zhen, Chen; Junfeng, Li; Shuzhe, Zhang; Jun, Du

    2017-08-01

    A three-dimensional numerical model was developed to investigate effects of laser scanning speed, laser power, and hatch spacing on the thermodynamic behaviors of the molten pool during selective laser melting of AlSi10Mg powder. A randomly distributed packed powder bed was achieved using discrete element method (DEM). The powder bed can be treated as a porous media with interconnected voids in the simulation. A good agreement between numerical results and experimental results establish the validity of adopted method. The numerical results show that the Marangoni flow within the molten pool was significantly affected by the processing parameters. An intense Marangoni flow leads to a perturbation within the molten pool. In addition, a relatively high scanning speed tends to cause melt instability. The perturbation or the instability within the molten pool results in the formation of pores during SLM, which have a direct influence on the densification level.

  4. Numerical studies of the fluid and optical fields associated with complex cavity flows

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher A.

    1992-01-01

    Numerical solutions for the flowfield about several cavity configurations have been computed using the Reynolds averaged Navier-Stokes equations. Comparisons between numerical and experimental results are made in two dimensions for free shear layers and a rectangular cavity, and in three dimensions for the transonic aero-window problem of the Stratospheric Observatory for Infrared Astronomy (SOFIA). Results show that dominant acoustic frequencies and magnitudes of the self excited resonant cavity flows compare well with the experiment. In addition, solution sensitivity to artificial dissipation and grid resolution levels are determined. Optical path distortion due to the flow field is modelled geometrically and is found to match the experiment. The fluid field was computed using a diagonalized scheme within an overset mesh framework. An existing code, OVERFLOW, was utilized with the additions of characteristic boundary condition and output routines required for reduction of the unsteady data. The newly developed code is directly applicable to a generalized three dimensional structured grid zone. Details are provided in a paper included in Appendix A.

  5. The development of an explicit thermochemical nonequilibrium algorithm and its application to compute three dimensional AFE flowfields

    NASA Technical Reports Server (NTRS)

    Palmer, Grant

    1989-01-01

    This study presents a three-dimensional explicit, finite-difference, shock-capturing numerical algorithm applied to viscous hypersonic flows in thermochemical nonequilibrium. The algorithm employs a two-temperature physical model. Equations governing the finite-rate chemical reactions are fully-coupled to the gas dynamic equations using a novel coupling technique. The new coupling method maintains stability in the explicit, finite-rate formulation while allowing relatively large global time steps. The code uses flux-vector accuracy. Comparisons with experimental data and other numerical computations verify the accuracy of the present method. The code is used to compute the three-dimensional flowfield over the Aeroassist Flight Experiment (AFE) vehicle at one of its trajectory points.

  6. Direct numerical simulation of stochastically forced laminar plane couette flow: peculiarities of hydrodynamic fluctuations.

    PubMed

    Khujadze, G; Oberlack, M; Chagelishvili, G

    2006-07-21

    The background of three-dimensional hydrodynamic (vortical) fluctuations in a stochastically forced, laminar, incompressible, plane Couette flow is simulated numerically. The fluctuating field is anisotropic and has well pronounced peculiarities: (i) the hydrodynamic fluctuations exhibit nonexponential, transient growth; (ii) fluctuations with the streamwise characteristic length scale about 2 times larger than the channel width are predominant in the fluctuating spectrum instead of streamwise constant ones; (iii) nonzero cross correlations of velocity (even streamwise-spanwise) components appear; (iv) stochastic forcing destroys the spanwise reflection symmetry (inherent to the linear and full Navier-Stokes equations in a case of the Couette flow) and causes an asymmetry of the dynamical processes.

  7. A high-order multi-zone cut-stencil method for numerical simulations of high-speed flows over complex geometries

    NASA Astrophysics Data System (ADS)

    Greene, Patrick T.; Eldredge, Jeff D.; Zhong, Xiaolin; Kim, John

    2016-07-01

    In this paper, we present a method for performing uniformly high-order direct numerical simulations of high-speed flows over arbitrary geometries. The method was developed with the goal of simulating and studying the effects of complex isolated roughness elements on the stability of hypersonic boundary layers. The simulations are carried out on Cartesian grids with the geometries imposed by a third-order cut-stencil method. A fifth-order hybrid weighted essentially non-oscillatory scheme was implemented to capture any steep gradients in the flow created by the geometries and a third-order Runge-Kutta method is used for time advancement. A multi-zone refinement method was also utilized to provide extra resolution at locations with expected complex physics. The combination results in a globally fourth-order scheme in space and third order in time. Results confirming the method's high order of convergence are shown. Two-dimensional and three-dimensional test cases are presented and show good agreement with previous results. A simulation of Mach 3 flow over the logo of the Ubuntu Linux distribution is shown to demonstrate the method's capabilities for handling complex geometries. Results for Mach 6 wall-bounded flow over a three-dimensional cylindrical roughness element are also presented. The results demonstrate that the method is a promising tool for the study of hypersonic roughness-induced transition.

  8. A modified sparse reconstruction method for three-dimensional synthetic aperture radar image

    NASA Astrophysics Data System (ADS)

    Zhang, Ziqiang; Ji, Kefeng; Song, Haibo; Zou, Huanxin

    2018-03-01

    There is an increasing interest in three-dimensional Synthetic Aperture Radar (3-D SAR) imaging from observed sparse scattering data. However, the existing 3-D sparse imaging method requires large computing times and storage capacity. In this paper, we propose a modified method for the sparse 3-D SAR imaging. The method processes the collection of noisy SAR measurements, usually collected over nonlinear flight paths, and outputs 3-D SAR imagery. Firstly, the 3-D sparse reconstruction problem is transformed into a series of 2-D slices reconstruction problem by range compression. Then the slices are reconstructed by the modified SL0 (smoothed l0 norm) reconstruction algorithm. The improved algorithm uses hyperbolic tangent function instead of the Gaussian function to approximate the l0 norm and uses the Newton direction instead of the steepest descent direction, which can speed up the convergence rate of the SL0 algorithm. Finally, numerical simulation results are given to demonstrate the effectiveness of the proposed algorithm. It is shown that our method, compared with existing 3-D sparse imaging method, performs better in reconstruction quality and the reconstruction time.

  9. Neck muscle load distribution in lateral, frontal, and rear-end impacts: a three-dimensional finite element analysis.

    PubMed

    Hedenstierna, Sofia; Halldin, Peter; Siegmund, Gunter P

    2009-11-15

    A finite element (FE) model of the human neck was used to study the distribution of neck muscle loads during multidirectional impacts. The computed load distributions were compared to experimental electromyography (EMG) recordings. To quantify passive muscle loads in nonactive cervical muscles during impacts of varying direction and energy, using a three-dimensional (3D) continuum FE muscle model. Experimental and numerical studies have confirmed the importance of muscles in the impact response of the neck. Although EMG has been used to measure the relative activity levels in neck muscles during impact tests, this technique has not been able to measure all neck muscles and cannot directly quantify the force distribution between the muscles. A numerical model can give additional insight into muscle loading during impact. An FE model with solid element musculature was used to simulate frontal, lateral, and rear-end vehicle impacts at 4 peak accelerations. The peak cross-sectional forces, internal energies, and effective strains were calculated for each muscle and impact configuration. The computed load distribution was compared with experimental EMG data. The load distribution in the cervical muscles varied with load direction. Peak sectional forces, internal energies, and strains increased in most muscles with increasing impact acceleration. The dominant muscles identified by the model for each direction were splenius capitis, levator scapulae, and sternocleidomastoid in lateral impacts, splenius capitis, and trapezoid in frontal impacts, and sternocleidomastoid, rectus capitis posterior minor, and hyoids in rear-end impacts. This corresponded with the most active muscles identified by EMG recordings, although within these muscles the distribution of forces and EMG levels were not the same. The passive muscle forces, strains, and energies computed using a continuum FE model of the cervical musculature distinguished between impact directions and peak accelerations, and on the basis of prior studies, isolated the most important muscles for each direction.

  10. Analytical theory of two-dimensional ring dark soliton in nonlocal nonlinear media

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Wang, Qi; Shi, Jielong; Shen, Ming

    2017-11-01

    Completely stable two-dimensional ring dark soliton in nonlocal media with an arbitrary degree of nonlocality are investigated. The exact solution of the ring dark solitons is obtained with the variational method and a cylindrical nonlocal response function. The analytical results are confirmed by directly numerical simulations. We also analytically and numerically study the expansion dynamics of the gray ring dark solitons in detail.

  11. Three-dimensional thermocapillary flow regimes with evaporation

    NASA Astrophysics Data System (ADS)

    Bekezhanova, V. B.; Goncharova, O. N.

    2017-10-01

    A three-dimensional problem of evaporative convection in a system of the immiscible media with a common thermocapillary interface is studied. New exact solution, which is a generalization of the Ostroumov - Birikh solution of the Navier - Stokes equations in the Oberbeck - Boussinesq approximation, is presented in order to describe the joint flows of the liquid and gas - vapor mixture in an infinite channel with a rectangular cross-section. The motion occurs in the bulk force field under action of a constant longitudinal temperature gradient. The velocity components depend only on the transverse coordinates. The functions of pressure, temperature and concentration of vapor in the gas are characterized by the linear dependence on the longitudinal coordinate. In the framework of the problem statement, which takes into account diffusive mass flux through the interface and zero vapor flux at the upper boundary of the channel, the influence of the gravity and intensity of the thermal action on flow structure is studied. The original three-dimensional problem is reduced to a chain of two-dimensional problems which are solved numerically with help of modification of the method of alternating directions. Arising flows can be characterized as a translational-rotational motion, under that the symmetrical double, quadruple or sextuple vortex structures are formed. Quantity, shape and structure of the vortexes also depend on properties of the working media.

  12. The use of optimization techniques to design controlled diffusion compressor blading

    NASA Technical Reports Server (NTRS)

    Sanger, N. L.

    1982-01-01

    A method for automating compressor blade design using numerical optimization, and applied to the design of a controlled diffusion stator blade row is presented. A general purpose optimization procedure is employed, based on conjugate directions for locally unconstrained problems and on feasible directions for locally constrained problems. Coupled to the optimizer is an analysis package consisting of three analysis programs which calculate blade geometry, inviscid flow, and blade surface boundary layers. The optimizing concepts and selection of design objective and constraints are described. The procedure for automating the design of a two dimensional blade section is discussed, and design results are presented.

  13. Influence of Coanda surface curvature on performance of bladeless fan

    NASA Astrophysics Data System (ADS)

    Li, Guoqi; Hu, Yongjun; Jin, Yingzi; Setoguchi, Toshiaki; Kim, Heuy Dong

    2014-10-01

    The unique Coanda surface has a great influence on the performance of bladeless fan. However, there is few studies to explain the relationship between the performance and Coanda surface curvature at present. In order to gain a qualitative understanding of effect of the curvature on the performance of bladeless fan, numerical studies are performed in this paper. Firstly, three-dimensional numerical simulation is done by Fluent software. For the purpose to obtain detailed information of the flow field around the Coanda surface, two-dimensional numerical simulation is also conducted. Five types of Coanda surfaces with different curvature are designed, and the flow behaviour and the performance of them are analyzed and compared with those of the prototype. The analysis indicates that the curvature of Coanda surface is strongly related to blowing performance, It is found that there is an optimal curvature of Coanda surfaces among the studied models. Simulation result shows that there is a special low pressure region. With increasing curvature in Y direction, several low pressure regions gradually enlarged, then begin to merge slowly, and finally form a large area of low pressure. From the analyses of streamlines and velocity angle, it is found that the magnitude of the curvature affects the flow direction and reasonable curvature can induce fluid flow close to the wall. Thus, it leads to that the curvature of the streamlines is consistent with that of Coanda surface. Meanwhile, it also causes the fluid movement towards the most suitable direction. This study will provide useful information to performance improvements of bladeless fans.

  14. Two-component dark-bright solitons in three-dimensional atomic Bose-Einstein condensates.

    PubMed

    Wang, Wenlong; Kevrekidis, P G

    2017-03-01

    In the present work, we revisit two-component Bose-Einstein condensates in their fully three-dimensional (3D) form. Motivated by earlier studies of dark-bright solitons in the 1D case, we explore the stability of these structures in their fully 3D form in two variants. In one the dark soliton is planar and trapping a planar bright (disk) soliton. In the other case, a dark spherical shell soliton creates an effective potential in which a bright spherical shell of atoms is trapped in the second component. We identify these solutions as numerically exact states (up to a prescribed accuracy) and perform a Bogolyubov-de Gennes linearization analysis that illustrates that both structures can be dynamically stable in suitable intervals of sufficiently low chemical potentials. We corroborate this finding theoretically by analyzing the stability via degenerate perturbation theory near the linear limit of the system. When the solitary waves are found to be unstable, we explore their dynamical evolution via direct numerical simulations which, in turn, reveal wave forms that are more robust. Finally, using the SO(2) symmetry of the model, we produce multi-dark-bright planar or shell solitons involved in pairwise oscillatory motion.

  15. Inertial objects in complex flows

    NASA Astrophysics Data System (ADS)

    Syed, Rayhan; Ho, George; Cavas, Samuel; Bao, Jialun; Yecko, Philip

    2017-11-01

    Chaotic Advection and Finite Time Lyapunov Exponents both describe stirring and transport in complex and time-dependent flows, but FTLE analysis has been largely limited to either purely kinematic flow models or high Reynolds number flow field data. The neglect of dynamic effects in FTLE and Lagrangian Coherent Structure studies has stymied detailed information about the role of pressure, Coriolis effects and object inertia. We present results of laboratory and numerical experiments on time-dependent and multi-gyre Stokes flows. In the lab, a time-dependent effectively two-dimensional low Re flow is used to distinguish transport properties of passive tracer from those of small paramagnetic spheres. Companion results of FTLE calculations for inertial particles in a time-dependent multi-gyre flow are presented, illustrating the critical roles of density, Stokes number and Coriolis forces on their transport. Results of Direct Numerical Simulations of fully resolved inertial objects (spheroids) immersed in a three dimensional (ABC) flow show the role of shape and finite size in inertial transport at small finite Re. We acknowledge support of NSF DMS-1418956.

  16. Lorentz force particle analyzer

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Thess, André; Moreau, René; Tan, Yanqing; Dai, Shangjun; Tao, Zhen; Yang, Wenzhi; Wang, Bo

    2016-07-01

    A new contactless technique is presented for the detection of micron-sized insulating particles in the flow of an electrically conducting fluid. A transverse magnetic field brakes this flow and tends to become entrained in the flow direction by a Lorentz force, whose reaction force on the magnetic-field-generating system can be measured. The presence of insulating particles suspended in the fluid produce changes in this Lorentz force, generating pulses in it; these pulses enable the particles to be counted and sized. A two-dimensional numerical model that employs a moving mesh method demonstrates the measurement principle when such a particle is present. Two prototypes and a three-dimensional numerical model are used to demonstrate the feasibility of a Lorentz force particle analyzer (LFPA). The findings of this study conclude that such an LFPA, which offers contactless and on-line quantitative measurements, can be applied to an extensive range of applications. These applications include measurements of the cleanliness of high-temperature and aggressive molten metal, such as aluminum and steel alloys, and the clean manufacturing of semiconductors.

  17. One shot methods for optimal control of distributed parameter systems 1: Finite dimensional control

    NASA Technical Reports Server (NTRS)

    Taasan, Shlomo

    1991-01-01

    The efficient numerical treatment of optimal control problems governed by elliptic partial differential equations (PDEs) and systems of elliptic PDEs, where the control is finite dimensional is discussed. Distributed control as well as boundary control cases are discussed. The main characteristic of the new methods is that they are designed to solve the full optimization problem directly, rather than accelerating a descent method by an efficient multigrid solver for the equations involved. The methods use the adjoint state in order to achieve efficient smoother and a robust coarsening strategy. The main idea is the treatment of the control variables on appropriate scales, i.e., control variables that correspond to smooth functions are solved for on coarse grids depending on the smoothness of these functions. Solution of the control problems is achieved with the cost of solving the constraint equations about two to three times (by a multigrid solver). Numerical examples demonstrate the effectiveness of the method proposed in distributed control case, pointwise control and boundary control problems.

  18. Redundantly piezo-actuated XYθ z compliant mechanism for nano-positioning featuring simple kinematics, bi-directional motion and enlarged workspace

    NASA Astrophysics Data System (ADS)

    Zhu, Wu-Le; Zhu, Zhiwei; To, Suet; Liu, Qiang; Ju, Bing-Feng; Zhou, Xiaoqin

    2016-12-01

    This paper presents a novel redundantly piezo-actuated three-degree-of-freedom XYθ z compliant mechanism for nano-positioning, driven by four mirror-symmetrically configured piezoelectric actuators (PEAs). By means of differential motion principle, linearized kinematics and physically bi-directional motions in all the three directions are achieved. Meanwhile, the decoupled delivering of three-directional independent motions at the output end is accessible, and the essential parallel and mirror symmetric configuration guarantees large output stiffness, high natural frequencies, high accuracy as well as high structural compactness of the mechanism. Accurate kinematics analysis with consideration of input coupling indicates that the proposed redundantly actuated compliant mechanism can generate three-dimensional (3D) symmetric polyhedral workspace envelope with enlarged reachable workspace, as compared with the most common parallel XYθ z mechanism driven by three PEAs. Keeping a high consistence with both analytical and numerical models, the experimental results show the working ranges of ±6.21 μm and ±12.41 μm in X- and Y-directions, and that of ±873.2 μrad in θ z-direction with nano-positioning capability can be realized. The superior performances and easily achievable structure well facilitate practical applications of the proposed XYθ z compliant mechanism in nano-positioning systems.

  19. A Variational Reduction and the Existence of a Fully Localised Solitary Wave for the Three-Dimensional Water-Wave Problem with Weak Surface Tension

    NASA Astrophysics Data System (ADS)

    Buffoni, Boris; Groves, Mark D.; Wahlén, Erik

    2017-12-01

    Fully localised solitary waves are travelling-wave solutions of the three- dimensional gravity-capillary water wave problem which decay to zero in every horizontal spatial direction. Their existence has been predicted on the basis of numerical simulations and model equations (in which context they are usually referred to as `lumps'), and a mathematically rigorous existence theory for strong surface tension (Bond number {β} greater than {1/3} ) has recently been given. In this article we present an existence theory for the physically more realistic case {0 < β < 1/3} . A classical variational principle for fully localised solitary waves is reduced to a locally equivalent variational principle featuring a perturbation of the functional associated with the Davey-Stewartson equation. A nontrivial critical point of the reduced functional is found by minimising it over its natural constraint set.

  20. Calculation of three dimensional viscous flows in annular cascades using parabolized Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Lawerenz, M.

    Numerical algorithms for describing the endwall boundary layers and secondary flows in high turning turbine cascades are described. Partially-parabolic methods which cover three-dimensional viscous flow effects are outlined. Introduction of tip-clearance models and modifications of no-slip conditions without the use of wall functions expand the range of application and improve accuracy. Simultaneous computation of the profile boundary layers by refinement of the mesh size in the circumferential direction makes it possible to describe the boundary layer interaction in the corners formed by the bladings and the endwalls. The partially-parabolic method means that the streamwise elliptic coupling is well represented by the given pressure field and that separation does not occur, but it is not possible to describe the separation of the endwall boundary layer near the leading edge and the horse-shoe vortex there properly.

  1. A Variational Reduction and the Existence of a Fully Localised Solitary Wave for the Three-Dimensional Water-Wave Problem with Weak Surface Tension

    NASA Astrophysics Data System (ADS)

    Buffoni, Boris; Groves, Mark D.; Wahlén, Erik

    2018-06-01

    Fully localised solitary waves are travelling-wave solutions of the three- dimensional gravity-capillary water wave problem which decay to zero in every horizontal spatial direction. Their existence has been predicted on the basis of numerical simulations and model equations (in which context they are usually referred to as `lumps'), and a mathematically rigorous existence theory for strong surface tension (Bond number {β} greater than {1/3}) has recently been given. In this article we present an existence theory for the physically more realistic case {0 < β < 1/3}. A classical variational principle for fully localised solitary waves is reduced to a locally equivalent variational principle featuring a perturbation of the functional associated with the Davey-Stewartson equation. A nontrivial critical point of the reduced functional is found by minimising it over its natural constraint set.

  2. Interaction of a mantle plume and a segmented mid-ocean ridge: Results from numerical modeling

    NASA Astrophysics Data System (ADS)

    Georgen, Jennifer E.

    2014-04-01

    Previous investigations have proposed that changes in lithospheric thickness across a transform fault, due to the juxtaposition of seafloor of different ages, can impede lateral dispersion of an on-ridge mantle plume. The application of this “transform damming” mechanism has been considered for several plume-ridge systems, including the Reunion hotspot and the Central Indian Ridge, the Amsterdam-St. Paul hotspot and the Southeast Indian Ridge, the Cobb hotspot and the Juan de Fuca Ridge, the Iceland hotspot and the Kolbeinsey Ridge, the Afar plume and the ridges of the Gulf of Aden, and the Marion/Crozet hotspot and the Southwest Indian Ridge. This study explores the geodynamics of the transform damming mechanism using a three-dimensional finite element numerical model. The model solves the coupled steady-state equations for conservation of mass, momentum, and energy, including thermal buoyancy and viscosity that is dependent on pressure and temperature. The plume is introduced as a circular thermal anomaly on the bottom boundary of the numerical domain. The center of the plume conduit is located directly beneath a spreading segment, at a distance of 200 km (measured in the along-axis direction) from a transform offset with length 100 km. Half-spreading rate is 0.5 cm/yr. In a series of numerical experiments, the buoyancy flux of the modeled plume is progressively increased to investigate the effects on the temperature and velocity structure of the upper mantle in the vicinity of the transform. Unlike earlier studies, which suggest that a transform always acts to decrease the along-axis extent of plume signature, these models imply that the effect of a transform on plume dispersion may be complex. Under certain ranges of plume flux modeled in this study, the region of the upper mantle undergoing along-axis flow directed away from the plume could be enhanced by the three-dimensional velocity and temperature structure associated with ridge-transform-ridge geometry. It is suggested that, for a setting where a plume-ridge system has one or more transforms, a location-specific model with appropriate plate boundary geometry be used to assess the importance of ridge offsets on upper mantle geodynamics

  3. Computation of three-dimensional nozzle-exhaust flow fields with the GIM code

    NASA Technical Reports Server (NTRS)

    Spradley, L. W.; Anderson, P. G.

    1978-01-01

    A methodology is introduced for constructing numerical analogs of the partial differential equations of continuum mechanics. A general formulation is provided which permits classical finite element and many of the finite difference methods to be derived directly. The approach, termed the General Interpolants Method (GIM), can combined the best features of finite element and finite difference methods. A quasi-variational procedure is used to formulate the element equations, to introduce boundary conditions into the method and to provide a natural assembly sequence. A derivation is given in terms of general interpolation functions from this procedure. Example computations for transonic and supersonic flows in two and three dimensions are given to illustrate the utility of GIM. A three-dimensional nozzle-exhaust flow field is solved including interaction with the freestream and a coupled treatment of the shear layer. Potential applications of the GIM code to a variety of computational fluid dynamics problems is then discussed in terms of existing capability or by extension of the methodology.

  4. Statistical conservation law in two- and three-dimensional turbulent flows.

    PubMed

    Frishman, Anna; Boffetta, Guido; De Lillo, Filippo; Liberzon, Alex

    2015-03-01

    Particles in turbulence live complicated lives. It is nonetheless sometimes possible to find order in this complexity. It was proposed in Falkovich et al. [Phys. Rev. Lett. 110, 214502 (2013)] that pairs of Lagrangian tracers at small scales, in an incompressible isotropic turbulent flow, have a statistical conservation law. More specifically, in a d-dimensional flow the distance R(t) between two neutrally buoyant particles, raised to the power -d and averaged over velocity realizations, remains at all times equal to the initial, fixed, separation raised to the same power. In this work we present evidence from direct numerical simulations of two- and three-dimensional turbulence for this conservation. In both cases the conservation is lost when particles exit the linear flow regime. In two dimensions we show that, as an extension of the conservation law, an Evans-Cohen-Morriss or Gallavotti-Cohen type fluctuation relation exists. We also analyze data from a 3D laboratory experiment [Liberzon et al., Physica D 241, 208 (2012)], finding that although it probes small scales they are not in the smooth regime. Thus instead of 〈R-3〉, we look for a similar, power-law-in-separation conservation law. We show that the existence of an initially slowly varying function of this form can be predicted but that it does not turn into a conservation law. We suggest that the conservation of 〈R-d〉, demonstrated here, can be used as a check of isotropy, incompressibility, and flow dimensionality in numerical and laboratory experiments that focus on small scales.

  5. Numerical Studies of Three-dimensional Breakdown in Trailing Vortex Wakes

    NASA Technical Reports Server (NTRS)

    Evans, P. F.; Hackett, J. E.

    1976-01-01

    Finite element, three dimensional relaxation methods are used to calculate the development of vortex wakes behind aircraft for a considerable downstream distance. The inclusion of a self-induction term in the solution, dependent upon local curvature and vortex core radius, permits calculation of finite lifetimes for systems for which infinite life would be predicted two dimensionally. The associated computer program is described together with single-pair, twin-pair, and multiple-pair studies carried out using it. It is found, in single-pair studies, that there is a lower limit to the wavelengths at which the Crow-type of instability can occur. Below this limit, self-induction effects cause the plane of the disturbance waves to rotate counter to the vortex direction. Self induction in two dimensionally generated twin spiral waves causes an increase in axial length which becomes more marked with decreasing initial wavelength. The time taken for vortex convergence toward the center plane is correspondingly increased. The limited parametric twin-pair study performed suggests that time-to-converge increases with increasing flap span. Limited studies of Boeing 747 configurations show correct qualitative response to removal of the outer flap and to gear deployment, as compared with wind tunnel and flight test experience.

  6. Inverse energy cascades in three-dimensional turbulence

    NASA Technical Reports Server (NTRS)

    Hossain, Murshed

    1991-01-01

    Fully three-dimensional magnetohydrodynamic (MHD) turbulence at large kinetic and low magnetic Reynolds numbers is considered in the presence of a strong uniform magnetic field. It is shown by numerical simulation of a model of MHD that the energy inverse cascades to longer length scales when the interaction parameter is large. While the steady-state dynamics of the driven problem is three-dimensional in character, the behavior has resemblance to two-dimensional hydrodynamics. These results have implications in turbulence theory, MHD power generator, planetary dynamos, and fusion reactor blanket design.

  7. Numerical simulation of a shear-thinning fluid through packed spheres

    NASA Astrophysics Data System (ADS)

    Liu, Hai Long; Moon, Jong Sin; Hwang, Wook Ryol

    2012-12-01

    Flow behaviors of a non-Newtonian fluid in spherical microstructures have been studied by a direct numerical simulation. A shear-thinning (power-law) fluid through both regular and randomly packed spheres has been numerically investigated in a representative unit cell with the tri-periodic boundary condition, employing a rigorous three-dimensional finite-element scheme combined with fictitious-domain mortar-element methods. The present scheme has been validated for the classical spherical packing problems with literatures. The flow mobility of regular packing structures, including simple cubic (SC), body-centered cubic (BCC), face-centered cubic (FCC), as well as randomly packed spheres, has been investigated quantitatively by considering the amount of shear-thinning, the pressure gradient and the porosity as parameters. Furthermore, the mechanism leading to the main flow path in a highly shear-thinning fluid through randomly packed spheres has been discussed.

  8. A numerical study of the acid rain in northern Taiwan in winter season

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Ching-Sen; Deng, Zen-Sing

    1996-12-31

    Two-thirds of the land mass of Taiwan island is covered by mountains. In winter precipitation could occur in northern Taiwan when the prevailing wind was from northeastern direction. In northern Taiwan the acid rain (pH value less than 5.0) in winter time could contribute about 30 rain in the whole year. A three-dimensional numerical model with terrain following coordinated system was used to simulate the precipitation system and the characteristics of acid rain. A smooth terrain was assumed in the model. A mean sounding was used to initialize the numerical model when acid rain occurred in northern Taiwan during wintermore » time from 1991 to 1993. Investigations of the effect of pollutions from abroad on the acid rain in northern Taiwan in winter are considered for the future.« less

  9. Application of acoustic doppler current profilers for measuring three-dimensional flow fields and as a surrogate measurement of bedload transport

    USGS Publications Warehouse

    Conaway, Jeffrey S.

    2005-01-01

    Acoustic Doppler current profilers (ADCPs) have been in use in the riverine environment for nearly 20 years. Their application primarily has been focused on the measurement of streamflow discharge. ADCPs emit high-frequency sound pulses and receive reflected sound echoes from sediment particles in the water column. The Doppler shift between transmitted and return signals is resolved into a velocity component that is measured in three dimensions by simultaneously transmitting four independent acoustical pulses. To measure the absolute velocity magnitude and direction in the water column, the velocity magnitude and direction of the instrument must also be computed. Typically this is accomplished by ensonifying the streambed with an acoustical pulse that also provides a depth measurement for each of the four acoustic beams. Sediment transport on or near the streambed will bias these measurements and requires external positioning such as a differentially corrected Global Positioning Systems (GPS). Although the influence of hydraulic structures such as spur dikes and bridge piers is typically only measured and described in one or two dimensions, the use of differentially corrected GPS with ADCPs provides a fully three-dimensional measurement of the magnitude and direction of the water column at such structures. The measurement of these flow disturbances in a field setting also captures the natural pulsations of river flow that cannot be easily quantified or modeled by numerical simulations or flumes. Several examples of measured three-dimensional flow conditions at bridge sites throughout Alaska are presented. The bias introduced to the bottom-track measurement is being investigated as a surrogate measurement of bedload transport. By fixing the position of the ADCP for a known period of time the apparent velocity of the streambed at that position can be determined. Initial results and comparison to traditionally measured bedload values are presented. These initial results and those by other researchers are helping to determine a direction for further research of noncontact measurements of sediment transport. Copyright ASCE 2005.

  10. Numerical method for predicting flow characteristics and performance of nonaxisymmetric nozzles. Part 2: Applications

    NASA Technical Reports Server (NTRS)

    Thomas, P. D.

    1980-01-01

    A computer implemented numerical method for predicting the flow in and about an isolated three dimensional jet exhaust nozzle is summarized. The approach is based on an implicit numerical method to solve the unsteady Navier-Stokes equations in a boundary conforming curvilinear coordinate system. Recent improvements to the original numerical algorithm are summarized. Equations are given for evaluating nozzle thrust and discharge coefficient in terms of computed flowfield data. The final formulation of models that are used to simulate flow turbulence effect is presented. Results are presented from numerical experiments to explore the effect of various quantities on the rate of convergence to steady state and on the final flowfield solution. Detailed flowfield predictions for several two and three dimensional nozzle configurations are presented and compared with wind tunnel experimental data.

  11. Acoustic metacages for sound shielding with steady air flow

    NASA Astrophysics Data System (ADS)

    Shen, Chen; Xie, Yangbo; Li, Junfei; Cummer, Steven A.; Jing, Yun

    2018-03-01

    Conventional sound shielding structures typically prevent fluid transport between the exterior and interior. A design of a two-dimensional acoustic metacage with subwavelength thickness which can shield acoustic waves from all directions while allowing steady fluid flow is presented in this paper. The structure is designed based on acoustic gradient-index metasurfaces composed of open channels and shunted Helmholtz resonators. In-plane sound at an arbitrary angle of incidence is reflected due to the strong parallel momentum on the metacage surface, which leads to low sound transmission through the metacage. The performance of the proposed metacage is verified by numerical simulations and measurements on a three-dimensional printed prototype. The acoustic metacage has potential applications in sound insulation where steady fluid flow is necessary or advantageous.

  12. Two-dimensional solitons in conservative and parity-time-symmetric triple-core waveguides with cubic-quintic nonlinearity

    NASA Astrophysics Data System (ADS)

    Feijoo, David; Zezyulin, Dmitry A.; Konotop, Vladimir V.

    2015-12-01

    We analyze a system of three two-dimensional nonlinear Schrödinger equations coupled by linear terms and with the cubic-quintic (focusing-defocusing) nonlinearity. We consider two versions of the model: conservative and parity-time (PT ) symmetric. These models describe triple-core nonlinear optical waveguides, with balanced gain and losses in the PT -symmetric case. We obtain families of soliton solutions and discuss their stability. The latter study is performed using a linear stability analysis and checked with direct numerical simulations of the evolutional system of equations. Stable solitons are found in the conservative and PT -symmetric cases. Interactions and collisions between the conservative and PT -symmetric solitons are briefly investigated, as well.

  13. Numerical investigation for design and critical performance evaluation of a horizontal axis hydrokinetic turbine

    NASA Astrophysics Data System (ADS)

    Subhra Mukherji, Suchi; Banerjee, Arindam

    2010-11-01

    We will discuss findings from our numerical investigation on the hydrodynamic performance of horizontal axis hydrokinetic turbines (HAHkT) under different turbine geometries and flow conditions. Hydrokinetic turbines are a class of zero-head hydropower systems which utilizes kinetic energy of flowing water to drive a generator. However, such turbines very often suffer from low efficiency which is primarily controlled by tip-speed ratio, solidity, angle of attack and number of blades. A detailed CFD study was performed using two-dimensional and three dimensional numerical models to examine the effect of each of these parameters on the performance of small HAHkTs having power capacities <= 10 kW. The two-dimensional numerical results provide an optimum angle of attack that maximizes the lift as well as lift to drag ratio yielding maximum power output. However three-dimensional numerical studies estimate optimum turbine solidity and blade numbers that produces maximum power coefficient at a given tip speed ratio. In addition, simulations were also performed to observe the axial velocity deficit at the turbine rotor downstream for different tip-speed ratios to obtain both qualitative and quantitative details about stall delay phenomena and the energy loss suffered by the turbine under ambient flow condition.

  14. Microscopic analysis and simulation of check-mark stain on the galvanized steel strip

    NASA Astrophysics Data System (ADS)

    So, Hongyun; Yoon, Hyun Gi; Chung, Myung Kyoon

    2010-11-01

    When galvanized steel strip is produced through a continuous hot-dip galvanizing process, the thickness of adhered zinc film is controlled by plane impinging air gas jet referred to as "air-knife system". In such a gas-jet wiping process, stain of check-mark or sag line shape frequently appears. The check-mark defect is caused by non-uniform zinc coating and the oblique patterns such as "W", "V" or "X" on the coated surface. The present paper presents a cause and analysis of the check-mark formation and a numerical simulation of sag lines by using the numerical data produced by Large Eddy Simulation (LES) of the three-dimensional compressible turbulent flow field around the air-knife system. It was found that there is alternating plane-wise vortices near the impinging stagnation region and such alternating vortices move almost periodically to the right and to the left sides on the stagnation line due to the jet flow instability. Meanwhile, in order to simulate the check-mark formation, a novel perturbation model has been developed to predict the variation of coating thickness along the transverse direction. Finally, the three-dimensional zinc coating surface was obtained by the present perturbation model. It was found that the sag line formation is determined by the combination of the instantaneous coating thickness distribution along the transverse direction near the stagnation line and the feed speed of the steel strip.

  15. Coastal Water Quality Modeling in Tidal Lake: Revisited with Groundwater Intrusion

    NASA Astrophysics Data System (ADS)

    Kim, C.

    2016-12-01

    A new method for predicting the temporal and spatial variation of water quality, with accounting for a groundwater effect, has been proposed and applied to a water body partially connected to macro-tidal coastal waters in Korea. The method consists of direct measurement of environmental parameters, and it indirectly incorporates a nutrients budget analysis to estimate the submarine groundwater fluxes. Three-dimensional numerical modeling of water quality has been used with the directly collected data and the indirectly estimated groundwater fluxes. The applied area is Saemangeum tidal lake that is enclosed by 33km-long sea dyke with tidal openings at two water gates. Many investigations of groundwater impact reveal that 10 50% of nutrient loading in coastal waters comes from submarine groundwater, particularly in the macro-tidal flat, as in the west coast of Korea. Long-term monitoring of coastal water quality signals the possibility of groundwater influence on salinity reversal and on the excess mass outbalancing the normal budget in Saemangeum tidal lake. In the present study, we analyze the observed data to examine the influence of submarine groundwater, and then a box model is demonstrated for quantifying the influx and efflux. A three-dimensional numerical model has been applied to reproduce the process of groundwater dispersal and its effect on the water quality of Saemangeum tidal lake. The results show that groundwater influx during the summer monsoon then contributes significantly, 20% more than during dry season, to water quality in the tidal lake.

  16. Numerical studies of the use of thin high-Z layers for reducing laser imprint in direct-drive inertial-fusion targets

    NASA Astrophysics Data System (ADS)

    Bates, Jason; Schmitt, Andrew; Karasik, Max; Obenschain, Steve

    2012-10-01

    Using the FAST code, we present numerical studies of the effect of thin metallic layers with high atomic number (high-Z) on the hydrodynamics of directly-driven inertial-confinement-fusion (ICF) targets. Previous experimental work on the NIKE Laser Facility at the U.S. Naval Research Laboratory demonstrated that the use of high-Z layers may be efficacious in reducing laser non-uniformities imprinted on the target during the start-up phase of the implosion. Such a reduction is highly desirable in a direct-drive ICF scenario because laser non-uniformities seed hydrodynamic instabilities that can amplify during the implosion process, prevent uniform compression and spoil high gain. One of the main objectives of the present work is to assess the utility of high-Z layers for achieving greater laser uniformity in polar-drive target designs planned for the National Ignition Facility. To address this problem, new numerical routines have recently been incorporated in the FAST code, including an improved radiation-transfer package and a three-dimensional ray-tracing algorithm. We will discuss these topics, and present initial simulation results for high-Z planar-target experiments planned on the NIKE Laser Facility later this year.

  17. A computer code for three-dimensional incompressible flows using nonorthogonal body-fitted coordinate systems

    NASA Technical Reports Server (NTRS)

    Chen, Y. S.

    1986-01-01

    In this report, a numerical method for solving the equations of motion of three-dimensional incompressible flows in nonorthogonal body-fitted coordinate (BFC) systems has been developed. The equations of motion are transformed to a generalized curvilinear coordinate system from which the transformed equations are discretized using finite difference approximations in the transformed domain. The hybrid scheme is used to approximate the convection terms in the governing equations. Solutions of the finite difference equations are obtained iteratively by using a pressure-velocity correction algorithm (SIMPLE-C). Numerical examples of two- and three-dimensional, laminar and turbulent flow problems are employed to evaluate the accuracy and efficiency of the present computer code. The user's guide and computer program listing of the present code are also included.

  18. Continuous Diffusion Flames and Flame Streets in Micro-Channels

    NASA Astrophysics Data System (ADS)

    Mohan, Shikhar; Matalon, Moshe

    2015-11-01

    Experiments of non-premixed combustion in micro-channels have shown different modes of burning. Normally, a flame is established along, or near the axis of a channel that spreads the entire mixing layer and separates a region of fuel but no oxidizer from a region with only oxidizer. Often, however, a periodic sequence of extinction and reignition events, termed collectively as ``flame streets'', are observed. They constitute a series of diffusion flames, each with a tribrachial leading edge stabilized along the channel. This work focuses on understanding the underlying mechanism responsible for these distinct observations. Numerical simulations were conducted in the thermo-diffusive limit in order to study the effects of confinement and heat loss on non-premixed flames in three-dimensional micro-channels with low aspect ratios. The three dimensionality of the channel was captured qualitatively through a systematic asymptotic analysis that led to a two dimensional problem with an effective parameter representing heat losses in the vertical direction. There exist three key flame regimes: (1) a stable continuous diffusion flame, (2) an unsteady flame, and (3) a stable ``flame street'' the transition between regimes demarcated primarily by Reynolds and Nusselt numbers.

  19. A full three dimensional Navier-Stokes numerical simulation of flow field inside a power plant Kaplan turbine using some model test turbine hill chart points

    NASA Astrophysics Data System (ADS)

    Hosseinalipour, S. M.; Raja, A.; Hajikhani, S.

    2012-06-01

    A full three dimensional Navier - Stokes numerical simulation has been performed for performance analysis of a Kaplan turbine which is installed in one of the Irans south dams. No simplifications have been enforced in the simulation. The numerical results have been evaluated using some integral parameters such as the turbine efficiency via comparing the results with existing experimental data from the prototype Hill chart. In part of this study the numerical simulations were performed in order to calculate the prototype turbine efficiencies in some specific points which comes from the scaling up of the model efficiency that are available in the model experimental Hill chart. The results are very promising which shows the good ability of the numerical techniques for resolving the flow characteristics in these kind of complex geometries. A parametric study regarding the evaluation of turbine performance in three different runner angles of the prototype is also performed and the results are cited in this paper.

  20. Impact of Separation Distance on Multi-Vane Radiometer Configurations

    NASA Astrophysics Data System (ADS)

    Cornella, B. M.; Ketsdever, A. D.; Gimelshein, N. E.; Gimelshein, S. F.

    2011-05-01

    The radiometric force produced by a linear array of three radiometer vanes has been assessed numerically using an argon carrier gas and experimentally using air. The separation distance between the three vanes of the array was varied between 0 and 120 percent based on the height of an individual radiometer vane of 40 mm. Qualitative agreement between the numerical and experimental results is shown as a function of operating Knudsen number, vane separation distance, and surrounding chamber geometry. Both sets of results indicate an asymptotic trend in maximum force as the separation distance increases as well as a shift in the maximum force Knudsen number. Small chamber effects for both numerical and experimental results indicate an increase of the total force ranging from a factor of 2.5 to 4. Quantitatively, however, the numerical simulations yield forces approximately an order of magnitude higher than observed in the experiments due to differences in carrier gas and accommodation coefficient as well as the two dimensional nature of the numerical simulations versus the three dimensional experiment.

  1. A novel left heart simulator for the multi-modality characterization of native mitral valve geometry and fluid mechanics.

    PubMed

    Rabbah, Jean-Pierre; Saikrishnan, Neelakantan; Yoganathan, Ajit P

    2013-02-01

    Numerical models of the mitral valve have been used to elucidate mitral valve function and mechanics. These models have evolved from simple two-dimensional approximations to complex three-dimensional fully coupled fluid structure interaction models. However, to date these models lack direct one-to-one experimental validation. As computational solvers vary considerably, experimental benchmark data are critically important to ensure model accuracy. In this study, a novel left heart simulator was designed specifically for the validation of numerical mitral valve models. Several distinct experimental techniques were collectively performed to resolve mitral valve geometry and hemodynamics. In particular, micro-computed tomography was used to obtain accurate and high-resolution (39 μm voxel) native valvular anatomy, which included the mitral leaflets, chordae tendinae, and papillary muscles. Three-dimensional echocardiography was used to obtain systolic leaflet geometry. Stereoscopic digital particle image velocimetry provided all three components of fluid velocity through the mitral valve, resolved every 25 ms in the cardiac cycle. A strong central filling jet (V ~ 0.6 m/s) was observed during peak systole with minimal out-of-plane velocities. In addition, physiologic hemodynamic boundary conditions were defined and all data were synchronously acquired through a central trigger. Finally, the simulator is a precisely controlled environment, in which flow conditions and geometry can be systematically prescribed and resultant valvular function and hemodynamics assessed. Thus, this work represents the first comprehensive database of high fidelity experimental data, critical for extensive validation of mitral valve fluid structure interaction simulations.

  2. Microscale shock tube

    NASA Astrophysics Data System (ADS)

    Mirshekari, Gholamreza

    This project aims at the simulation, design, fabrication and testing of a microscale shock tube. A step by step procedure has been followed to develop the different components of the microscale shock tube and then combine them together to realize the final device. The document reports on the numerical simulation of flows in a microscale shock tube, the experimental study of gas flow in microchannels, the design, microfabrication, and the test of a microscale shock tube. In the first step, a one-dimensional numerical model for simulation of transport effects at small-scale, appeared in low Reynolds number shock tubes is developed. The conservation equations have been integrated in the lateral directions and three-dimensional effects have been introduced as carefully controlled sources of mass, momentum and energy, into the one-dimensional model. The unsteady flow of gas behind the shock wave is reduced to a quasi-steady laminar flow solution, similar to the Blasius solution. The resulting one-dimensional equations are solved numerically and the simulations are performed for previously reported low Reynolds number shock tube experiments. Good agreement between the shock structure simulation and the attenuation due to the boundary layers has been observed. The simulation for predicting the performance of a microscale shock tube shows the large attenuation of shock wave at low pressure ratios. In the next step the steady flow inside microchannels has been experimentally studied. A set of microchannels with different geometries were fabricated. These microchannels have been used to measure the pressure drop as a function of flow rate in a steady compressible flow. The results of the experiments confirm that the flow inside the microscale shock tube follows the laminar model over the experiment's range of Knudsen number. The microscale shock tube is fabricated by deposition and patterning of different thin layers of selected materials on the silicon substrate. The direct sensing piezoelectric sensors were fabricated and integrated with microchannels patterned on the substrate. The channels were then covered with another substrate. This shock tube is 2000 mum long and it has a 2000 mum wide and 17 mum high rectangular cross section equipped with 5 piezoelectric sensors along the tube. The packaged microscale shock tube was installed in an ordinary shock tube and shock waves with different Mach numbers were directed into the channel. A one-dimensional inviscid calculation as well as viscous simulation using the one-dimensional model have also been performed for the above mentioned geometry. The comparison of results with those of the same geometry for an inviscid flow shows the considerable attenuation of shock strength and deceleration of the shock wave for both incident and reflected shock waves in the channel. The comparison of results with numerically generated results with the one-dimensional model presents good agreement for incident shock waves. Keywords. Shock wave, Shock tube, MEMS, Microfluidic, Piezoelectric sensor, Microchannel, Transport phenomena.

  3. Direct Numerical Simulations of Autoignition in Stratified Dimethyl-ether (DME)/Air Turbulent Mixtures

    DOE PAGES

    Bansal, Gaurav; Mascarenhas, Ajith; Chen, Jacqueline H.

    2014-10-01

    In our paper, two- and three-dimensional direct numerical simulations (DNS) of autoignition phenomena in stratified dimethyl-ether (DME)/air turbulent mixtures are performed. A reduced DME oxidation mechanism, which was obtained using rigorous mathematical reduction and stiffness removal procedure from a detailed DME mechanism with 55 species, is used in the present DNS. The reduced DME mechanism consists of 30 chemical species. This study investigates the fundamental aspects of turbulence-mixing-autoignition interaction occurring in homogeneous charge compression ignition (HCCI) engine environments. A homogeneous isotropic turbulence spectrum is used to initialize the velocity field in the domain. Moreover, the computational configuration corresponds to amore » constant volume combustion vessel with inert mass source terms added to the governing equations to mimic the pressure rise due to piston motion, as present in practical engines. DME autoignition is found to be a complex three-staged process; each stage corresponds to a distinct chemical kinetic pathway. The distinct role of turbulence and reaction in generating scalar gradients and hence promoting molecular transport processes are investigated. Then, by applying numerical diagnostic techniques, the different heat release modes present in the igniting mixture are identified. In particular, the contribution of homogeneous autoignition, spontaneous ignition front propagation, and premixed deflagration towards the total heat release are quantified.« less

  4. Long-Time Numerical Integration of the Three-Dimensional Wave Equation in the Vicinity of a Moving Source

    NASA Technical Reports Server (NTRS)

    Ryabenkii, V. S.; Turchaninov, V. I.; Tsynkov, S. V.

    1999-01-01

    We propose a family of algorithms for solving numerically a Cauchy problem for the three-dimensional wave equation. The sources that drive the equation (i.e., the right-hand side) are compactly supported in space for any given time; they, however, may actually move in space with a subsonic speed. The solution is calculated inside a finite domain (e.g., sphere) that also moves with a subsonic speed and always contains the support of the right-hand side. The algorithms employ a standard consistent and stable explicit finite-difference scheme for the wave equation. They allow one to calculate tile solution for arbitrarily long time intervals without error accumulation and with the fixed non-growing amount of tile CPU time and memory required for advancing one time step. The algorithms are inherently three-dimensional; they rely on the presence of lacunae in the solutions of the wave equation in oddly dimensional spaces. The methodology presented in the paper is, in fact, a building block for constructing the nonlocal highly accurate unsteady artificial boundary conditions to be used for the numerical simulation of waves propagating with finite speed over unbounded domains.

  5. Dispersive shock waves in the Kadomtsev-Petviashvili and two dimensional Benjamin-Ono equations

    NASA Astrophysics Data System (ADS)

    Ablowitz, Mark J.; Demirci, Ali; Ma, Yi-Ping

    2016-10-01

    Dispersive shock waves (DSWs) in the Kadomtsev-Petviashvili (KP) equation and two dimensional Benjamin-Ono (2DBO) equation are considered using step like initial data along a parabolic front. Employing a parabolic similarity reduction exactly reduces the study of such DSWs in two space one time (2 + 1) dimensions to finding DSW solutions of (1 + 1) dimensional equations. With this ansatz, the KP and 2DBO equations can be exactly reduced to the cylindrical Korteweg-de Vries (cKdV) and cylindrical Benjamin-Ono (cBO) equations, respectively. Whitham modulation equations which describe DSW evolution in the cKdV and cBO equations are derived and Riemann type variables are introduced. DSWs obtained from the numerical solutions of the corresponding Whitham systems and direct numerical simulations of the cKdV and cBO equations are compared with very good agreement obtained. In turn, DSWs obtained from direct numerical simulations of the KP and 2DBO equations are compared with the cKdV and cBO equations, again with good agreement. It is concluded that the (2 + 1) DSW behavior along self similar parabolic fronts can be effectively described by the DSW solutions of the reduced (1 + 1) dimensional equations.

  6. Conjugate Heat Transfer Analyses on the Manifold for Ramjet Fuel Injectors

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.

    2006-01-01

    Three-dimensional conjugate heat transfer analyses on the manifold located upstream of the ramjet fuel injector are performed using CFdesign, a finite-element computational fluid dynamics (CFD) software. The flow field of the hot fuel (JP-7) flowing through the manifold is simulated and the wall temperature of the manifold is computed. The three-dimensional numerical results of the fuel temperature are compared with those obtained using a one-dimensional analysis based on empirical equations, and they showed a good agreement. The numerical results revealed that it takes around 30 to 40 sec to reach the equilibrium where the fuel temperature has dropped about 3 F from the inlet to the exit of the manifold.

  7. Simulation of light propagation in the thin-film waveguide lens

    NASA Astrophysics Data System (ADS)

    Malykh, M. D.; Divakov, D. V.; Sevastianov, L. A.; Sevastianov, A. L.

    2018-04-01

    In this paper we investigate the solution of the problem of modeling the propagation of electromagnetic radiation in three-dimensional integrated optical structures, such as waveguide lenses. When propagating through three-dimensional waveguide structures the waveguide modes can be hybridized, so the mathematical model of their propagation must take into account the connection of TE- and TM-mode components. Therefore, an adequate consideration of hybridization of the waveguide modes is possible only in vector formulation of the problem. An example of three-dimensional structure that hybridizes waveguide modes is the Luneburg waveguide lens, which also has focusing properties. If the waveguide lens has a radius of the order of several tens of wavelengths, its variable thickness at distances of the order of several wavelengths is almost constant. Assuming in this case that the electromagnetic field also varies slowly in the direction perpendicular to the direction of propagation, one can introduce a small parameter characterizing this slow varying and decompose the solution in powers of the small parameter. In this approach, in the zeroth approximation, scalar diffraction problems are obtained, the solution of which is less resource-consuming than the solution of vector problems. The calculated first-order corrections of smallness describe the connection of TE- and TM-modes, so the solutions obtained are weakly-hybridized modes. The formulation of problems and methods for their numerical solution in this paper are based on the authors' research on waveguide diffraction on a lens in a scalar formulation.

  8. Two-dimensional numerical simulation of flow around three-stranded rope

    NASA Astrophysics Data System (ADS)

    Wang, Xinxin; Wan, Rong; Huang, Liuyi; Zhao, Fenfang; Sun, Peng

    2016-08-01

    Three-stranded rope is widely used in fishing gear and mooring system. Results of numerical simulation are presented for flow around a three-stranded rope in uniform flow. The simulation was carried out to study the hydrodynamic characteristics of pressure and velocity fields of steady incompressible laminar and turbulent wakes behind a three-stranded rope. A three-cylinder configuration and single circular cylinder configuration are used to model the three-stranded rope in the two-dimensional simulation. The governing equations, Navier-Stokes equations, are solved by using two-dimensional finite volume method. The turbulence flow is simulated using Standard κ-ɛ model and Shear-Stress Transport κ-ω (SST) model. The drag of the three-cylinder model and single cylinder model is calculated for different Reynolds numbers by using control volume analysis method. The pressure coefficient is also calculated for the turbulent model and laminar model based on the control surface method. From the comparison of the drag coefficient and the pressure of the single cylinder and three-cylinder models, it is found that the drag coefficients of the three-cylinder model are generally 1.3-1.5 times those of the single circular cylinder for different Reynolds numbers. Comparing the numerical results with water tank test data, the results of the three-cylinder model are closer to the experiment results than the single cylinder model results.

  9. Three-dimensional numerical modeling of water quality and sediment-associated processes in natural lakes

    USDA-ARS?s Scientific Manuscript database

    This chapter presents the development and application of a three-dimensional water quality model for predicting the distributions of nutrients, phytoplankton, dissolved oxygen, etc., in natural lakes. In this model, the computational domain was divided into two parts: the water column and the bed se...

  10. Parallel Computation and Visualization of Three-dimensional, Time-dependent, Thermal Convective Flows

    NASA Technical Reports Server (NTRS)

    Wang, P.; Li, P.

    1998-01-01

    A high-resolution numerical study on parallel systems is reported on three-dimensional, time-dependent, thermal convective flows. A parallel implentation on the finite volume method with a multigrid scheme is discussed, and a parallel visualization systemm is developed on distributed systems for visualizing the flow.

  11. Measurement of three-dimensional posture and trajectory of lower body during standing long jumping utilizing body-mounted sensors.

    PubMed

    Ibata, Yuki; Kitamura, Seiji; Motoi, Kosuke; Sagawa, Koichi

    2013-01-01

    The measurement method of three-dimensional posture and flying trajectory of lower body during jumping motion using body-mounted wireless inertial measurement units (WIMU) is introduced. The WIMU is composed of three-dimensional (3D) accelerometer and gyroscope of two kinds with different dynamic range and one 3D geomagnetic sensor to adapt to quick movement. Three WIMUs are mounted under the chest, right thigh and right shank. Thin film pressure sensors are connected to the shank WIMU and are installed under right heel and tiptoe to distinguish the state of the body motion between grounding and jumping. Initial and final postures of trunk, thigh and shank at standing-still are obtained using gravitational acceleration and geomagnetism. The posture of body is determined using the 3D direction of each segment updated by the numerical integration of angular velocity. Flying motion is detected from pressure sensors and 3D flying trajectory is derived by the double integration of trunk acceleration applying the 3D velocity of trunk at takeoff. Standing long jump experiments are performed and experimental results show that the joint angle and flying trajectory agree with the actual motion measured by the optical motion capture system.

  12. Three-dimensional transient numerical simulation for intake process in the engine intake port-valve-cylinder system.

    PubMed

    Luo, Ma-Ji; Chen, Guo-Hua; Ma, Yuan-Hao

    2003-01-01

    This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine intake system.

  13. Direct Linear Transformation Method for Three-Dimensional Cinematography

    ERIC Educational Resources Information Center

    Shapiro, Robert

    1978-01-01

    The ability of Direct Linear Transformation Method for three-dimensional cinematography to locate points in space was shown to meet the accuracy requirements associated with research on human movement. (JD)

  14. Verification of a three-dimensional viscous flow analysis for a single stage compressor

    NASA Astrophysics Data System (ADS)

    Matsuoka, Akinori; Hashimoto, Keisuke; Nozaki, Osamu; Kikuchi, Kazuo; Fukuda, Masahiro; Tamura, Atsuhiro

    1992-12-01

    A transonic flowfield around rotor blades of a highly loaded single stage axial compressor was numerically analyzed by a three dimensional compressible Navier-Stokes equation code using Chakravarthy and Osher type total variation diminishing (TVD) scheme. A stage analysis which calculates both flowfields around inlet guide vane (IGV) and rotor blades simultaneously was carried out. Comparing with design values and experimental data, computed results show slight difference quantitatively. But the numerical calculation simulates well the pressure rise characteristics of the compressor and its flow pattern including strong shock surface.

  15. A study of methods to predict and measure the transmission of sound through the walls of light aircraft

    NASA Technical Reports Server (NTRS)

    Bernhard, R. J.; Bolton, J. S.; Gardner, B.; Mickol, J.; Mollo, C.; Bruer, C.

    1986-01-01

    Progress was made in the following areas: development of a numerical/empirical noise source identification procedure using bondary element techniques; identification of structure-borne noise paths using structural intensity and finite element methods; development of a design optimization numerical procedure to be used to study active noise control in three-dimensional geometries; measurement of dynamic properties of acoustical foams and incorporation of these properties in models governing three-dimensional wave propagation in foams; and structure-borne sound path identification by use of the Wigner distribution.

  16. Study of the Evolution of the Electric Structure of a Convective Cloud Using the Data of a Numerical Nonstationary Three-Dimensional Model

    NASA Astrophysics Data System (ADS)

    Veremey, N. E.; Dovgalyuk, Yu. A.; Zatevakhin, M. A.; Ignatyev, A. A.; Morozov, V. N.

    2014-04-01

    Numerical nonstationary three-dimensional model of a convective cloud with parameterized description of microphysical processes with allowance for the electrization processes is considered. The results of numerical modeling of the cloud evolution for the specified atmospheric conditions are presented. The spatio-temporal distribution of the main cloud characteristics including the volume charge density and the electric field is obtained. The calculation results show that the electric structure of the cloud is different at its various life stages, i.e., it varies from unipolar to dipolar and then to tripolar. This conclusion is in fair agreement with the field studies.

  17. Couette flow through a porous medium with heat and mass transfer in the presence of tranverse magnetic field

    NASA Astrophysics Data System (ADS)

    Lawanya, T.; Vidhya, M.; Govindarajan, A.

    2018-04-01

    This present paper deals with the investigation of couette flow of a viscous electrically conducting incompressible fluid three dimensionally through a porous medium in presence of transverse magnetic field. Approximate Solution of equations of motion and energy equations are derived using series solution method. Hartmann number, Schmidt number and Grashoff number (or) modified Grashoff number for mass transfer on the velocity and temperature distribution are numerically discussed and shown graphically. The Nusselt number and skin friction coefficients atthe plate are derived and their numerical values are shown graphically. It is seen that in the main flow direction the velocity profiles decreases due to either an increase in Schmidt number (Or) Hartmann number.

  18. Turbulent diffusion of chemically reacting flows: Theory and numerical simulations

    NASA Astrophysics Data System (ADS)

    Elperin, T.; Kleeorin, N.; Liberman, M.; Lipatnikov, A. N.; Rogachevskii, I.; Yu, R.

    2017-11-01

    The theory of turbulent diffusion of chemically reacting gaseous admixtures developed previously [T. Elperin et al., Phys. Rev. E 90, 053001 (2014), 10.1103/PhysRevE.90.053001] is generalized for large yet finite Reynolds numbers and the dependence of turbulent diffusion coefficient on two parameters, the Reynolds number and Damköhler number (which characterizes a ratio of turbulent and reaction time scales), is obtained. Three-dimensional direct numerical simulations (DNSs) of a finite-thickness reaction wave for the first-order chemical reactions propagating in forced, homogeneous, isotropic, and incompressible turbulence are performed to validate the theoretically predicted effect of chemical reactions on turbulent diffusion. It is shown that the obtained DNS results are in good agreement with the developed theory.

  19. Turbulent diffusion of chemically reacting flows: Theory and numerical simulations.

    PubMed

    Elperin, T; Kleeorin, N; Liberman, M; Lipatnikov, A N; Rogachevskii, I; Yu, R

    2017-11-01

    The theory of turbulent diffusion of chemically reacting gaseous admixtures developed previously [T. Elperin et al., Phys. Rev. E 90, 053001 (2014)PLEEE81539-375510.1103/PhysRevE.90.053001] is generalized for large yet finite Reynolds numbers and the dependence of turbulent diffusion coefficient on two parameters, the Reynolds number and Damköhler number (which characterizes a ratio of turbulent and reaction time scales), is obtained. Three-dimensional direct numerical simulations (DNSs) of a finite-thickness reaction wave for the first-order chemical reactions propagating in forced, homogeneous, isotropic, and incompressible turbulence are performed to validate the theoretically predicted effect of chemical reactions on turbulent diffusion. It is shown that the obtained DNS results are in good agreement with the developed theory.

  20. Chemical transport in a fissured rock: Verification of a numerical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rasmuson, A.; Narasimhan, T. N.; Neretnieks, I.

    1982-10-01

    Numerical models for simulating chemical transport in fissured rocks constitute powerful tools for evaluating the acceptability of geological nuclear waste repositories. Due to the very long-term, high toxicity of some nuclear waste products, the models are required to predict, in certain cases, the spatial and temporal distribution of chemical concentration less than 0.001% of the concentration released from the repository. Whether numerical models can provide such accuracies is a major question addressed in the present work. To this end, we have verified a numerical model, TRUMP, which solves the advective diffusion equation in general three dimensions with or without decaymore » and source terms. The method is based on an integrated finite-difference approach. The model was verified against known analytic solution of the one-dimensional advection-diffusion problem as well as the problem of advection-diffusion in a system of parallel fractures separated by spherical particles. The studies show that as long as the magnitude of advectance is equal to or less than that of conductance for the closed surface bounding any volume element in the region (that is, numerical Peclet number <2), the numerical method can indeed match the analytic solution within errors of ±10{sup -3} % or less. The realistic input parameters used in the sample calculations suggest that such a range of Peclet numbers is indeed likely to characterize deep groundwater systems in granitic and ancient argillaceous systems. Thus TRUMP in its present form does provide a viable tool for use in nuclear waste evaluation studies. A sensitivity analysis based on the analytic solution suggests that the errors in prediction introduced due to uncertainties in input parameters is likely to be larger than the computational inaccuracies introduced by the numerical model. Currently, a disadvantage in the TRUMP model is that the iterative method of solving the set of simultaneous equations is rather slow when time constants vary widely over the flow region. Although the iterative solution may be very desirable for large three-dimensional problems in order to minimize computer storage, it seems desirable to use a direct solver technique in conjunction with the mixed explicit-implicit approach whenever possible. work in this direction is in progress.« less

  1. Direct numerical simulations of on-demand vortex generators: Mathematical formulation

    NASA Technical Reports Server (NTRS)

    Koumoutsakos, Petros

    1994-01-01

    The objective of the present research is the development and application of efficient adaptive numerical algorithms for the study, via direct numerical simulations, of active vortex generators. We are using innovative computational schemes to investigate flows past complex configurations undergoing arbitrary motions. Some of the questions we try to answer are: Can and how may we control the dynamics of the wake? What is the importance of body shape and motion in the active control of the flow? What is the effect of three-dimensionality in laboratory experiments? We are interested not only in coupling our results to ongoing, related experimental work, but furthermore to develop an extensive database relating the above mechanisms to the vortical wake structures with the long-range objective of developing feedback control mechanisms. This technology is very important to aircraft, ship, automotive, and other industries that require predictive capability for fluid mechanical problems. The results would have an impact in high angle of attack aerodynamics and help design ways to improve the efficiency of ships and submarines (maneuverability, vortex induced vibration, and noise).

  2. Direct numerical simulations of on-demand vortex generators: Mathematical formulation

    NASA Astrophysics Data System (ADS)

    Koumoutsakos, Petros

    1994-12-01

    The objective of the present research is the development and application of efficient adaptive numerical algorithms for the study, via direct numerical simulations, of active vortex generators. We are using innovative computational schemes to investigate flows past complex configurations undergoing arbitrary motions. Some of the questions we try to answer are: Can and how may we control the dynamics of the wake? What is the importance of body shape and motion in the active control of the flow? What is the effect of three-dimensionality in laboratory experiments? We are interested not only in coupling our results to ongoing, related experimental work, but furthermore to develop an extensive database relating the above mechanisms to the vortical wake structures with the long-range objective of developing feedback control mechanisms. This technology is very important to aircraft, ship, automotive, and other industries that require predictive capability for fluid mechanical problems. The results would have an impact in high angle of attack aerodynamics and help design ways to improve the efficiency of ships and submarines (maneuverability, vortex induced vibration, and noise).

  3. Three-dimensional viscous design methodology for advanced technology aircraft supersonic inlet systems

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.

    1983-01-01

    A broad program to develop advanced, reliable, and user oriented three-dimensional viscous design techniques for supersonic inlet systems, and encourage their transfer into the general user community is discussed. Features of the program include: (1) develop effective methods of computing three-dimensional flows within a zonal modeling methodology; (2) ensure reasonable agreement between said analysis and selective sets of benchmark validation data; (3) develop user orientation into said analysis; and (4) explore and develop advanced numerical methodology.

  4. Least-squares finite element solutions for three-dimensional backward-facing step flow

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Hou, Lin-Jun; Lin, Tsung-Liang

    1993-01-01

    Comprehensive numerical solutions of the steady state incompressible viscous flow over a three-dimensional backward-facing step up to Re equals 800 are presented. The results are obtained by the least-squares finite element method (LSFEM) which is based on the velocity-pressure-vorticity formulation. The computed model is of the same size as that of Armaly's experiment. Three-dimensional phenomena are observed even at low Reynolds number. The calculated values of the primary reattachment length are in good agreement with experimental results.

  5. Numerical solution of the Navier-Stokes equations about three-dimensional configurations: A survey

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1987-01-01

    The numerical solution of the Navier-Stokes equations about three-dimensional configurations is reviewed. Formulational and computational requirements for the various Navier-Stokes approaches are examined for typical problems including the viscous flow field solution about a complete aerospace vehicle. Recent computed results, with experimental comparisons when available, are presented to highlight the presentation. The future of Navier-Stokes applications in three-dimensions is seen to be rapidly expanding across a broad front including internal and external flows, and flows across the entire speed regime from incompressible to hypersonic applications. Prospects for the future are described and recommendations for areas of concentrated research are indicated.

  6. Commensurability oscillations by snake-orbit magnetotransport in two-dimensional electron gases

    NASA Astrophysics Data System (ADS)

    Leuschner, A.; Schluck, J.; Cerchez, M.; Heinzel, T.; Pierz, K.; Schumacher, H. W.

    2017-04-01

    Commensurate magnetoresistance periodic oscillations generated by transversal electron snake orbits are found experimentally. A two-dimensional electron gas is exposed to a magnetic field that changes sign along the current longitudinal direction and is homogeneous in the transverse direction. The change in sign of the magnetic field directs the electron flow along the transversal direction, in snake orbits. This generates resistance oscillations with a predictable periodicity that is commensurate with the width of the electron gas. Numerical simulations are used to reveal the character of the oscillations.

  7. Finite-difference interblock transmissivity for unconfined aquifers and for aquifers having smoothly varying transmissivity

    USGS Publications Warehouse

    Goode, D.J.; Appel, C.A.

    1992-01-01

    More accurate alternatives to the widely used harmonic mean interblock transmissivity are proposed for block-centered finite-difference models of ground-water flow in unconfined aquifers and in aquifers having smoothly varying transmissivity. The harmonic mean is the exact interblock transmissivity for steady-state one-dimensional flow with no recharge if the transmissivity is assumed to be spatially uniform over each finite-difference block, changing abruptly at the block interface. However, the harmonic mean may be inferior to other means if transmissivity varies in a continuous or smooth manner between nodes. Alternative interblock transmissivity functions are analytically derived for the case of steady-state one-dimensional flow with no recharge. The second author has previously derived the exact interblock transmissivity, the logarithmic mean, for one-dimensional flow when transmissivity is a linear function of distance in the direction of flow. We show that the logarithmic mean transmissivity is also exact for uniform flow parallel to the direction of changing transmissivity in a two- or three-dimensional model, regardless of grid orientation relative to the flow vector. For the case of horizontal flow in a homogeneous unconfined or water-table aquifer with a horizontal bottom and with areally distributed recharge, the exact interblock transmissivity is the unweighted arithmetic mean of transmissivity at the nodes. This mean also exhibits no grid-orientation effect for unidirectional flow in a two-dimensional model. For horizontal flow in an unconfined aquifer with no recharge where hydraulic conductivity is a linear function of distance in the direction of flow the exact interblock transmissivity is the product of the arithmetic mean saturated thickness and the logarithmic mean hydraulic conductivity. For several hypothetical two- and three-dimensional cases with smoothly varying transmissivity or hydraulic conductivity, the harmonic mean is shown to yield the least accurate solution to the flow equation of the alternatives considered. Application of the alternative interblock transmissivities to a regional aquifer system model indicates that the changes in computed heads and fluxes are typically small, relative to model calibration error. For this example, the use of alternative interblock transmissivities resulted in an increase in computational effort of less than 3 percent. Numerical algorithms to compute alternative interblock transmissivity functions in a modular three-dimensional flow model are presented and documented.

  8. Direct Numerical Simulation of a Weakly Stratified Turbulent Wake

    NASA Technical Reports Server (NTRS)

    Redford, J. A.; Lund, T. S.; Coleman, Gary N.

    2014-01-01

    Direct numerical simulation (DNS) is used to investigate a time-dependent turbulent wake evolving in a stably stratified background. A large initial Froude number is chosen to allow the wake to become fully turbulent and axisymmetric before stratification affects the spreading rate of the mean defect. The uncertainty introduced by the finite sample size associated with gathering statistics from a simulation of a time-dependent flow is reduced, compared to earlier simulations of this flow. The DNS reveals the buoyancy-induced changes to the turbulence structure, as well as to the mean-defect history and the terms in the mean-momentum and turbulence-kinetic-energy budgets, that characterize the various states of this flow - namely the three-dimensional (essentially unstratified), non-equilibrium (or 'wake-collapse') and quasi-two-dimensional (or 'two-component') regimes observed elsewhere for wakes embedded in both weakly and strongly stratified backgrounds. The wake-collapse regime is not accompanied by transfer (or 'reconversion') of the potential energy of the turbulence to the kinetic energy of the turbulence, implying that this is not an essential feature of stratified-wake dynamics. The dependence upon Reynolds number of the duration of the wake-collapse period is demonstrated, and the effect of the details of the initial/near-field conditions of the wake on its subsequent development is examined.

  9. Simulation of confined magnetohydrodynamic flows with Dirichlet boundary conditions using a pseudo-spectral method with volume penalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morales, Jorge A.; Leroy, Matthieu; Bos, Wouter J.T.

    A volume penalization approach to simulate magnetohydrodynamic (MHD) flows in confined domains is presented. Here the incompressible visco-resistive MHD equations are solved using parallel pseudo-spectral solvers in Cartesian geometries. The volume penalization technique is an immersed boundary method which is characterized by a high flexibility for the geometry of the considered flow. In the present case, it allows to use other than periodic boundary conditions in a Fourier pseudo-spectral approach. The numerical method is validated and its convergence is assessed for two- and three-dimensional hydrodynamic (HD) and MHD flows, by comparing the numerical results with results from literature and analyticalmore » solutions. The test cases considered are two-dimensional Taylor–Couette flow, the z-pinch configuration, three dimensional Orszag–Tang flow, Ohmic-decay in a periodic cylinder, three-dimensional Taylor–Couette flow with and without axial magnetic field and three-dimensional Hartmann-instabilities in a cylinder with an imposed helical magnetic field. Finally, we present a magnetohydrodynamic flow simulation in toroidal geometry with non-symmetric cross section and imposing a helical magnetic field to illustrate the potential of the method.« less

  10. Plane Poiseuille flow of a rarefied gas in the presence of strong gravitation.

    PubMed

    Doi, Toshiyuki

    2011-02-01

    Plane Poiseuille flow of a rarefied gas, which flows horizontally in the presence of strong gravitation, is studied based on the Boltzmann equation. Applying the asymptotic analysis for a small variation in the flow direction [Y. Sone, Molecular Gas Dynamics (Birkhäuser, 2007)], the two-dimensional problem is reduced to a one-dimensional problem, as in the case of a Poiseuille flow in the absence of gravitation, and the solution is obtained in a semianalytical form. The reduced one-dimensional problem is solved numerically for a hard sphere molecular gas over a wide range of the gas-rarefaction degree and the gravitational strength. The presence of gravitation reduces the mass flow rate, and the effect of gravitation is significant for large Knudsen numbers. To verify the validity of the asymptotic solution, a two-dimensional problem of a flow through a long channel is directly solved numerically, and the validity of the asymptotic solution is confirmed. ©2011 American Physical Society

  11. Center for Modeling of Turbulence and Transition (CMOTT): Research Briefs, 1992

    NASA Technical Reports Server (NTRS)

    Liou, William W. (Editor)

    1992-01-01

    The progress is reported of the Center for Modeling of Turbulence and Transition (CMOTT). The main objective of the CMOTT is to develop, validate and implement the turbulence and transition models for practical engineering flows. The flows of interest are three-dimensional, incompressible and compressible flows with chemical reaction. The research covers two-equation (e.g., k-e) and algebraic Reynolds-stress models, second moment closure models, probability density function (pdf) models, Renormalization Group Theory (RNG), Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS).

  12. Boundary element modelling of dynamic behavior of piecewise homogeneous anisotropic elastic solids

    NASA Astrophysics Data System (ADS)

    Igumnov, L. A.; Markov, I. P.; Litvinchuk, S. Yu

    2018-04-01

    A traditional direct boundary integral equations method is applied to solve three-dimensional dynamic problems of piecewise homogeneous linear elastic solids. The materials of homogeneous parts are considered to be generally anisotropic. The technique used to solve the boundary integral equations is based on the boundary element method applied together with the Radau IIA convolution quadrature method. A numerical example of suddenly loaded 3D prismatic rod consisting of two subdomains with different anisotropic elastic properties is presented to verify the accuracy of the proposed formulation.

  13. Computer simulation of concentrated solid solution strengthening

    NASA Technical Reports Server (NTRS)

    Kuo, C. T. K.; Arsenault, R. J.

    1976-01-01

    The interaction forces between a straight edge dislocation moving through a three-dimensional block containing a random array of solute atoms were determined. The yield stress at 0 K was obtained by determining the average maximum solute-dislocation interaction force that is encountered by edge dislocation, and an expression relating the yield stress to the length of the dislocation and the solute concentration is provided. The magnitude of the solid solution strengthening due to solute atoms can be determined directly from the numerical results, provided the dislocation line length that moves as a unit is specified.

  14. On the three-dimensional instability of laminar boundary layers on concave walls

    NASA Technical Reports Server (NTRS)

    Gortler, Henry

    1954-01-01

    A study is made of the stability of laminar boundary-layer profiles on slightly curved walls relative to small disturbances that result from vortices whose axes are parallel to the principal direction of flow. The result is an eigenvalue problem by which, for a given undisturbed flow at a prescribed wall, the amplification or decay is computed for each Reynolds number and each vortex thickness. For neutral disturbances (zero amplification) a critical Reynolds number is determined for each vortex distribution. The numerical calculation produces amplified disturbances on concave walls only.

  15. Influence of particle shape on the microstructure evolution and the mechanical properties of granular materials

    NASA Astrophysics Data System (ADS)

    Tian, Jianqiu; Liu, Enlong; Jiang, Lian; Jiang, Xiaoqiong; Sun, Yi; Xu, Ran

    2018-06-01

    In order to study the influence of particle shape on the microstructure evolution and the mechanical properties of granular materials, a two-dimensional DEM analysis of samples with three particle shapes, including circular particles, triangular particles, and elongated particles, is proposed here to simulate the direct shear tests of coarse-grained soils. For the numerical test results, analyses are conducted in terms of particle rotations, fabric evolution, and average path length evolution. A modified Rowe's stress-dilatancy equation is also proposed and successfully fitted onto simulation data.

  16. DNS of flow in stenosed carotid artery

    NASA Astrophysics Data System (ADS)

    Grinberg, Leopold; Yakhot, Alexander; Karniadakis, George

    2006-11-01

    Direct numerical simulation (DNS) of a three-dimensional flow through a stenosed carotid artery has been performed. Onset of turbulence downstream of the occlusion has been observed. The developing turbulence is characterized by an alternating spatio-temporal transitional regime. The transition to turbulence occurs during the systolic phase approximately five throat-diameters downstream of the throat, while laminarization occurs during the diastolic phase. Transition in space is first enhanced and subsequently decays downstream. The wall shear stress increases in the stenosed internal carotid artery due to the vessel occlusion and as the result of turbulence.

  17. Towards effective interactive three-dimensional colour postprocessing

    NASA Technical Reports Server (NTRS)

    Bailey, B. C.; Hajjar, J. F.; Abel, J. F.

    1986-01-01

    Recommendations for the development of effective three-dimensional, graphical color postprocessing are made. First, the evaluation of large, complex numerical models demands that a postprocessor be highly interactive. A menu of available functions should be provided and these operations should be performed quickly so that a sense of continuity and spontaneity exists during the post-processing session. Second, an agenda for three-dimensional color postprocessing is proposed. A postprocessor must be versatile with respect to application and basic algorithms must be designed so that they are flexible. A complete selection of tools is necessary to allow arbitrary specification of views, extraction of qualitative information, and access to detailed quantitative and problem information. Finally, full use of advanced display hardware is necessary if interactivity is to be maximized and effective postprocessing of today's numerical simulations is to be achieved.

  18. Global Phase Diagram of a Three-Dimensional Dirty Topological Superconductor

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Alavirad, Yahya; Sau, Jay D.

    2017-06-01

    We investigate the phase diagram of a three-dimensional, time-reversal symmetric topological superconductor in the presence of charge impurities and random s -wave pairing. Combining complimentary field theoretic and numerical methods, we show that the quantum phase transition between two topologically distinct paired states (or thermal insulators), described by thermal Dirac semimetal, remains unaffected in the presence of sufficiently weak generic randomness. At stronger disorder, however, these two phases are separated by an intervening thermal metallic phase of diffusive Majorana fermions. We show that across the insulator-insulator and metal-insulator transitions, normalized thermal conductance displays single parameter scaling, allowing us to numerically extract the critical exponents across them. The pertinence of our study in strong spin-orbit coupled, three-dimensional doped narrow gap semiconductors, such as CuxBi2Se3 , is discussed.

  19. Dynamic tailoring of surface plasmon polaritons through incident angle modulation.

    PubMed

    Qiu, Peizhen; Zhang, Dawei; Jing, Ming; Lu, Taiguo; Yu, Binbin; Zhan, Qiwen; Zhuang, Songlin

    2018-04-16

    Dynamic tailoring of the propagating surface plasmon polaritons (SPPs) through incident angle modulation is proposed and numerically demonstrated. The generation and tailoring mechanism of the SPPs are discussed. The relationship formula between the incident angle and the generated SPP wave vector direction is theoretically derived. The correctness of the formula is verified with three different approaches using finite difference time domain method. Using this formula, the generated SPP wave vector direction can be precisely modulated by changing the incident angle. The precise modulation results of two dimensional Bessel-like SPP beam and SPP bottle beam array are given. The results can deepen the understanding of the generation and modulation mechanism of the SPPs.

  20. Simulation of the turbulent Rayleigh-Benard problem using a spectral/finite difference technique

    NASA Technical Reports Server (NTRS)

    Eidson, T. M.; Hussaini, M. Y.; Zang, T. A.

    1986-01-01

    The three-dimensional, incompressible Navier-Stokes and energy equations with the Bousinesq assumption have been directly simulated at a Rayleigh number of 3.8 x 10 to the 5th power and a Prandtl number of 0.76. In the vertical direction, wall boundaries were used and in the horizontal, periodic boundary conditions were used. A spectral/finite difference numerical method was used to simulate the flow. The flow at these conditions is turbulent and a sufficiently fine mesh was used to capture all relevant flow scales. The results of the simulation are compared to experimental data to justify the conclusion that the small scale motion is adequately resolved.

  1. Statistics for laminar flamelet modeling

    NASA Technical Reports Server (NTRS)

    Cant, R. S.; Rutland, C. J.; Trouve, A.

    1990-01-01

    Statistical information required to support modeling of turbulent premixed combustion by laminar flamelet methods is extracted from a database of the results of Direct Numerical Simulation of turbulent flames. The simulations were carried out previously by Rutland (1989) using a pseudo-spectral code on a three dimensional mesh of 128 points in each direction. One-step Arrhenius chemistry was employed together with small heat release. A framework for the interpretation of the data is provided by the Bray-Moss-Libby model for the mean turbulent reaction rate. Probability density functions are obtained over surfaces of the constant reaction progress variable for the tangential strain rate and the principal curvature. New insights are gained which will greatly aid the development of modeling approaches.

  2. The Fifth Symposium on Numerical and Physical Aspects of Aerodynamic Flows

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This volume contains the papers presented at the Fifth Symposium on Numerical and Physical Aspects of Aerodynamic Flows, held at the California State University, Long Beach, from 13 to 15 January 1992. The symposium, like its immediate predecessors, considers the calculation of flows of relevance to aircraft, ships, and missiles with emphasis on the solution of two-dimensional unsteady and three-dimensional equations.

  3. Anharmonic, dimensionality and size effects in phonon transport

    NASA Astrophysics Data System (ADS)

    Thomas, Iorwerth O.; Srivastava, G. P.

    2017-12-01

    We have developed and employed a numerically efficient semi- ab initio theory, based on density-functional and relaxation-time schemes, to examine anharmonic, dimensionality and size effects in phonon transport in three- and two-dimensional solids of different crystal symmetries. Our method uses third- and fourth-order terms in crystal Hamiltonian expressed in terms of a temperature-dependent Grüneisen’s constant. All input to numerical calculations are generated from phonon calculations based on the density-functional perturbation theory. It is found that four-phonon processes make important and measurable contribution to lattice thermal resistivity above the Debye temperature. From our numerical results for bulk Si, bulk Ge, bulk MoS2 and monolayer MoS2 we find that the sample length dependence of phonon conductivity is significantly stronger in low-dimensional solids.

  4. A three-dimensional dual potential procedure with applications to wind tunnel inlets and interacting boundary layers

    NASA Technical Reports Server (NTRS)

    Rao, K. V.; Pletcher, R. H.; Steger, J. L.; Vandalsem, W. R.

    1987-01-01

    A dual potential decomposition of the velocity field into a scalar and a vector potential function is extended to three dimensions and used in the finite-difference simulation of steady three-dimensional inviscid rotational flows and viscous flow. The finite-difference procedure was used to simulate the flow through the 80 by 120 ft wind tunnel at NASA Ames Research Center. Rotational flow produced by the stagnation pressure drop across vanes and screens which are located at the entrance of the inlet is modeled using actuator disk theory. Results are presented for two different inlet vane and screen configurations. The numerical predictions are in good agreement with experimental data. The dual potential procedure was also applied to calculate the viscous flow along two and three dimensional troughs. Viscous effects are simulated by injecting vorticity which is computed from a boundary layer algorithm. For attached flow over a three dimensional trough, the present calculations are in good agreement with other numerical predictions. For separated flow, it is shown from a two dimensional analysis that the boundary layer approximation provides an accurate measure of the vorticity in regions close to the wall; whereas further away from the wall, caution has to be exercised in using the boundary-layer equations to supply vorticity to the dual potential formulation.

  5. Three-Dimensional Numerical Simulation of Water Quality and Sediment-Associated Processes with Application to a Mississippi Delta Lake

    USDA-ARS?s Scientific Manuscript database

    A three-dimensional water quality model was developed for simulating temporal and spatial variations of phytoplankton, nutrients, and dissolved oxygen in freshwater bodies. Effects of suspended and bed sediment on the water quality processes were simulated. A formula was generated from field measure...

  6. Validation of the Electromagnetic Code FACETS for Numerical Simulation of Radar Target Images

    DTIC Science & Technology

    2009-12-01

    Validation of the electromagnetic code FACETS for numerical simulation of radar target images S. Wong...Validation of the electromagnetic code FACETS for numerical simulation of radar target images S. Wong DRDC Ottawa...for simulating radar images of a target is obtained, through direct simulation-to-measurement comparisons. A 3-dimensional computer-aided design

  7. Critical Transitions in Thin Layer Turbulence

    NASA Astrophysics Data System (ADS)

    Benavides, Santiago; Alexakis, Alexandros

    2017-11-01

    We investigate a model of thin layer turbulence that follows the evolution of the two-dimensional motions u2 D (x , y) along the horizontal directions (x , y) coupled to a single Fourier mode along the vertical direction (z) of the form uq (x , y , z) = [vx (x , y) sin (qz) ,vy (x , y) sin (qz) ,vz (x , y) cos (qz) ] , reducing thus the system to two coupled, two-dimensional equations. Its reduced dimensionality allows a thorough investigation of the transition from a forward to an inverse cascade of energy as the thickness of the layer H = π / q is varied.Starting from a thick layer and reducing its thickness it is shown that two critical heights are met (i) one for which the forward unidirectional cascade (similar to three-dimensional turbulence) transitions to a bidirectional cascade transferring energy to both small and large scales and (ii) one for which the bidirectional cascade transitions to a unidirectional inverse cascade when the layer becomes very thin (similar to two-dimensional turbulence). The two critical heights are shown to have different properties close to criticality that we are able to analyze with numerical simulations for a wide range of Reynolds numbers and aspect ratios. This work was Granted access to the HPC resources of MesoPSL financed by the Region Ile de France and the project Equip@Meso (reference ANR-10-EQPX-29-01).

  8. Annual Research Briefs, 1998

    NASA Technical Reports Server (NTRS)

    Spinks, Debra (Compiler)

    1998-01-01

    The topics contained in this progress report are direct numerical simulation of turbulent non-premixed combustion with realistic chemistry; LES of non-premixed turbulent reacting flows with conditional source term estimation; measurements of the three-dimensional scalar dissipation rate in gas-phase planar turbulent jets; direct simulation of a jet diffusion flame; on the use of interpolating wavelets in the direct numerical simulation of combustion; on the use of a dynamically adaptive wavelet collocation algorithm in DNS (direct numerical simulation) of non-premixed turbulent combustion; 2D simulations of Hall thrusters; computation of trailing-edge noise at low mach number using LES and acoustic analogy; weakly nonlinear modeling of the early stages of bypass transition; interactions between freestream turbulence and boundary layers; interfaces at the outer boundaries of turbulent motions; largest scales of turbulent wall flows; the instability of streaks in near-wall turbulence; an implementation of the v(sup 2) - f model with application to transonic flows; heat transfer predictions in cavities; a structure-based model with stropholysis effects; modeling a confined swirling coaxial jet; subgrid-scale models based on incremental unknowns for large eddy simulations; subgrid scale modeling taking the numerical error into consideration; towards a near-wall model for LES of a separated diffuser flow; on the feasibility of merging LES with RANS (Reynolds Averaging Numerical simulation) for the near-wall region of attached turbulent flows; large-eddy simulation of a separated boundary layer; numerical study of a channel flow with variable properties; on the construction of high order finite difference schemes on non-uniform meshes with good conservation properties; development of immersed boundary methods for complex geometries; and particle methods for micro and macroscale flow simulations.

  9. Three-dimensional surface contouring of macroscopic objects by means of phase-difference images.

    PubMed

    Velásquez Prieto, Daniel; Garcia-Sucerquia, Jorge

    2006-09-01

    We report a technique to determine the 3D contour of objects with dimensions of at least 4 orders of magnitude larger than the illumination optical wavelength. Our proposal is based on the numerical reconstruction of the optical wave field of digitally recorded holograms. The required modulo 2pi phase map in any contouring process is obtained by means of the direct subtraction of two phase-contrast images under different illumination angles to create a phase-difference image of a still object. Obtaining the phase-difference images is only possible by using the capability of numerical reconstruction of the complex optical field provided by digital holography. This unique characteristic leads us to a robust, reliable, and fast procedure that requires only two images. A theoretical analysis of the contouring system is shown, with verification by means of numerical and experimental results.

  10. Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet.

    PubMed

    Li, C K; Tzeferacos, P; Lamb, D; Gregori, G; Norreys, P A; Rosenberg, M J; Follett, R K; Froula, D H; Koenig, M; Seguin, F H; Frenje, J A; Rinderknecht, H G; Sio, H; Zylstra, A B; Petrasso, R D; Amendt, P A; Park, H S; Remington, B A; Ryutov, D D; Wilks, S C; Betti, R; Frank, A; Hu, S X; Sangster, T C; Hartigan, P; Drake, R P; Kuranz, C C; Lebedev, S V; Woolsey, N C

    2016-10-07

    The remarkable discovery by the Chandra X-ray observatory that the Crab nebula's jet periodically changes direction provides a challenge to our understanding of astrophysical jet dynamics. It has been suggested that this phenomenon may be the consequence of magnetic fields and magnetohydrodynamic instabilities, but experimental demonstration in a controlled laboratory environment has remained elusive. Here we report experiments that use high-power lasers to create a plasma jet that can be directly compared with the Crab jet through well-defined physical scaling laws. The jet generates its own embedded toroidal magnetic fields; as it moves, plasma instabilities result in multiple deflections of the propagation direction, mimicking the kink behaviour of the Crab jet. The experiment is modelled with three-dimensional numerical simulations that show exactly how the instability develops and results in changes of direction of the jet.

  11. Numerical Model of Flame Spread Over Solids in Microgravity: A Supplementary Tool for Designing a Space Experiment

    NASA Technical Reports Server (NTRS)

    Shih, Hsin-Yi; Tien, James S.; Ferkul, Paul (Technical Monitor)

    2001-01-01

    The recently developed numerical model of concurrent-flow flame spread over thin solids has been used as a simulation tool to help the designs of a space experiment. The two-dimensional and three-dimensional, steady form of the compressible Navier-Stokes equations with chemical reactions are solved. With the coupled multi-dimensional solver of the radiative heat transfer, the model is capable of answering a number of questions regarding the experiment concept and the hardware designs. In this paper, the capabilities of the numerical model are demonstrated by providing the guidance for several experimental designing issues. The test matrix and operating conditions of the experiment are estimated through the modeling results. The three-dimensional calculations are made to simulate the flame-spreading experiment with realistic hardware configuration. The computed detailed flame structures provide the insight to the data collection. In addition, the heating load and the requirements of the product exhaust cleanup for the flow tunnel are estimated with the model. We anticipate that using this simulation tool will enable a more efficient and successful space experiment to be conducted.

  12. Evaluation of a two-dimensional numerical model for air quality simulation in a street canyon

    NASA Astrophysics Data System (ADS)

    Okamoto, Shin `Ichi; Lin, Fu Chi; Yamada, Hiroaki; Shiozawa, Kiyoshige

    For many urban areas, the most severe air pollution caused by automobile emissions appears along a road surrounded by tall buildings: the so=called street canyon. A practical two-dimensional numerical model has been developed to be applied to this kind of road structure. This model contains two submodels: a wind-field model and a diffusion model based on a Monte Carlo particle scheme. In order to evaluate the predictive performance of this model, an air quality simulation was carried out at three trunk roads in the Tokyo metropolitan area: Nishi-Shimbashi, Aoyama and Kanda-Nishikicho (using SF 6 as a tracer and NO x measurement). Since this model has two-dimensional properties and cannot be used for the parallel wind condition, the perpendicular wind condition was selected for the simulation. The correlation coefficients for the SF 6 and NO x data in Aoyama were 0.67 and 0.62, respectively. When predictive performance of this model is compared with other models, this model is comparable to the SRI model, and superior to the APPS three-dimensional numerical model.

  13. Numerical solution of supersonic three-dimensional free-mixing flows using the parabolic-elliptic Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Hirsh, R. S.

    1976-01-01

    A numerical method is presented for solving the parabolic-elliptic Navier-Stokes equations. The solution procedure is applied to three-dimensional supersonic laminar jet flow issuing parallel with a supersonic free stream. A coordinate transformation is introduced which maps the boundaries at infinity into a finite computational domain in order to eliminate difficulties associated with the imposition of free-stream boundary conditions. Results are presented for an approximate circular jet, a square jet, varying aspect ratio rectangular jets, and interacting square jets. The solution behavior varies from axisymmetric to nearly two-dimensional in character. For cases where comparisons of the present results with those obtained from shear layer calculations could be made, agreement was good.

  14. Numerical Simulation of Bow Waves and Transom-Stern Flows

    NASA Astrophysics Data System (ADS)

    Dommermuth, Douglas G.; Schlageter, Eric A.; Talcott, John C.; Wyatt, Donald C.; Novikov, Evgeny A.

    1997-11-01

    A stratified-flow formulation is used to model the breaking bow wave and the separated transom-stern flow that are generated by a ship moving with forward speed. The interface of the air with the water is identified as the zero level-set of a three-dimensional function. The ship is modeled using a body-force technique on a cartesian grid. The three-dimensional body-force is generated using a surface panelization of the entire ship, including the above-water geometry up to and including the deck. The effects of surface tension are modeled as a source term that is concentrated at the air-water interface. The effects of gravity are modeled as a volumetric force. The three-dimensional, unsteady, Navier-Stokes equations are expressed in primitive-variable form. A LES formulation with a Smagorinsky sub-grid-scale model is used to model turbulence. Numerical convergence is demonstrated using 128x64x65, 256x128x129, and 512x256x257 grid points. The numerical results compare well to whisker-probe measurements of the free-surface elevation generated by a naval combatant.

  15. Large 3D direct laser written scaffolds for tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Trautmann, Anika; Rüth, Marieke; Lemke, Horst-Dieter; Walther, Thomas; Hellmann, Ralf

    2018-01-01

    We report on the fabrication of three-dimensional direct laser written scaffolds for tissue engineering and the seeding of primary fibroblasts on these structures. Scaffolds are realized by two-photon absorption induced polymerization in the inorganic-organic hybrid polymer OrmoComp using a 515 nm femtosecond laser. A nonstop single-line single-pass writing process is implemented in order to produce periodic reproducible large scaled structures with a dimension in the range of several millimeters and reduce process time to less than one hour. This method allows us to determine optimized process parameters for writing stable structures while achieving pore sizes ranging from 5 μm to 90 μm and a scanning speed of up to 5 mm/s. After a multi-stage post-treatment, normal human dermal fibroblasts are applied to the scaffolds to test if these macroscopic structures with large surface and numerous small gaps between the pores provide nontoxic conditions. Furthermore, we study the cell behavior in this environment and observe both cell growth on as well as ingrowth on the three-dimensional structures. In particular, fibroblasts adhere and grow also on the vertical walls of the scaffolds.

  16. Temperature, Pressure, and Infrared Image Survey of an Axisymmetric Heated Exhaust Plume

    NASA Technical Reports Server (NTRS)

    Nelson, Edward L.; Mahan, J. Robert; Birckelbaw, Larry D.; Turk, Jeffrey A.; Wardwell, Douglas A.; Hange, Craig E.

    1996-01-01

    The focus of this research is to numerically predict an infrared image of a jet engine exhaust plume, given field variables such as temperature, pressure, and exhaust plume constituents as a function of spatial position within the plume, and to compare this predicted image directly with measured data. This work is motivated by the need to validate computational fluid dynamic (CFD) codes through infrared imaging. The technique of reducing the three-dimensional field variable domain to a two-dimensional infrared image invokes the use of an inverse Monte Carlo ray trace algorithm and an infrared band model for exhaust gases. This report describes an experiment in which the above-mentioned field variables were carefully measured. Results from this experiment, namely tables of measured temperature and pressure data, as well as measured infrared images, are given. The inverse Monte Carlo ray trace technique is described. Finally, experimentally obtained infrared images are directly compared to infrared images predicted from the measured field variables.

  17. WebCSD: the online portal to the Cambridge Structural Database

    PubMed Central

    Thomas, Ian R.; Bruno, Ian J.; Cole, Jason C.; Macrae, Clare F.; Pidcock, Elna; Wood, Peter A.

    2010-01-01

    WebCSD, a new web-based application developed by the Cambridge Crystallographic Data Centre, offers fast searching of the Cambridge Structural Database using only a standard internet browser. Search facilities include two-dimensional substructure, molecular similarity, text/numeric and reduced cell searching. Text, chemical diagrams and three-dimensional structural information can all be studied in the results browser using the efficient entry summaries and embedded three-dimensional viewer. PMID:22477776

  18. A computer program for fitting smooth surfaces to three-dimensional aircraft configurations

    NASA Technical Reports Server (NTRS)

    Craidon, C. B.; Smith, R. E., Jr.

    1975-01-01

    A computer program developed to fit smooth surfaces to the component parts of three-dimensional aircraft configurations was described. The resulting equation definition of an aircraft numerical model is useful in obtaining continuous two-dimensional cross section plots in arbitrarily defined planes, local tangents, enriched surface plots and other pertinent geometric information; the geometry organization used as input to the program has become known as the Harris Wave Drag Geometry.

  19. Logarithmic Superdiffusion in Two Dimensional Driven Lattice Gases

    NASA Astrophysics Data System (ADS)

    Krug, J.; Neiss, R. A.; Schadschneider, A.; Schmidt, J.

    2018-03-01

    The spreading of density fluctuations in two-dimensional driven diffusive systems is marginally anomalous. Mode coupling theory predicts that the diffusivity in the direction of the drive diverges with time as (ln t)^{2/3} with a prefactor depending on the macroscopic current-density relation and the diffusion tensor of the fluctuating hydrodynamic field equation. Here we present the first numerical verification of this behavior for a particular version of the two-dimensional asymmetric exclusion process. Particles jump strictly asymmetrically along one of the lattice directions and symmetrically along the other, and an anisotropy parameter p governs the ratio between the two rates. Using a novel massively parallel coupling algorithm that strongly reduces the fluctuations in the numerical estimate of the two-point correlation function, we are able to accurately determine the exponent of the logarithmic correction. In addition, the variation of the prefactor with p provides a stringent test of mode coupling theory.

  20. A numerical study of the 2- and 3-dimensional unsteady Navier-Stokes equations in velocity-vorticity variables using compact difference schemes

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.; Grosch, C. E.

    1984-01-01

    A compact finite-difference approximation to the unsteady Navier-Stokes equations in velocity-vorticity variables is used to numerically simulate a number of flows. These include two-dimensional laminar flow of a vortex evolving over a flat plate with an embedded cavity, the unsteady flow over an elliptic cylinder, and aspects of the transient dynamics of the flow over a rearward facing step. The methodology required to extend the two-dimensional formulation to three-dimensions is presented.

  1. The effect of step height on the performance of three-dimensional ac electro-osmotic microfluidic pumps.

    PubMed

    Urbanski, John Paul; Levitan, Jeremy A; Burch, Damian N; Thorsen, Todd; Bazant, Martin Z

    2007-05-15

    Recent numerical and experimental studies have investigated the increase in efficiency of microfluidic ac electro-osmotic pumps by introducing nonplanar geometries with raised steps on the electrodes. In this study, we analyze the effect of the step height on ac electro-osmotic pump performance. AC electro-osmotic pumps with three-dimensional electroplated steps are fabricated on glass substrates and pumping velocities of low ionic strength electrolyte solutions are measured systematically using a custom microfluidic device. Numerical simulations predict an improvement in pump performance with increasing step height, at a given frequency and voltage, up to an optimal step height, which qualitatively matches the trend observed in experiment. For a broad range of step heights near the optimum, the observed flow is much faster than with existing planar pumps (at the same voltage and minimum feature size) and in the theoretically predicted direction of the "fluid conveyor belt" mechanism. For small step heights, the experiments also exhibit significant flow reversal at the optimal frequency, which cannot be explained by the theory, although the simulations predict weak flow reversal at higher frequencies due to incomplete charging. These results provide insight to an important parameter for the design of nonplanar electro-osmotic pumps and clues to improve the fundamental theory of ACEO.

  2. Effect of mesh distortion on the accuracy of transverse shear stresses and their sensitivity coefficients in multilayered composites

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Kim, Yong H.

    1995-01-01

    A study is made of the effect of mesh distortion on the accuracy of transverse shear stresses and their first-order and second-order sensitivity coefficients in multilayered composite panels subjected to mechanical and thermal loads. The panels are discretized by using a two-field degenerate solid element, with the fundamental unknowns consisting of both displacement and strain components, and the displacement components having a linear variation throughout the thickness of the laminate. A two-step computational procedure is used for evaluating the transverse shear stresses. In the first step, the in-plane stresses in the different layers are calculated at the numerical quadrature points for each element. In the second step, the transverse shear stresses are evaluated by using piecewise integration, in the thickness direction, of the three-dimensional equilibrium equations. The same procedure is used for evaluating the sensitivity coefficients of transverse shear stresses. Numerical results are presented showing no noticeable degradation in the accuracy of the in-plane stresses and their sensitivity coefficients with mesh distortion. However, such degradation is observed for the transverse shear stresses and their sensitivity coefficients. The standard of comparison is taken to be the exact solution of the three-dimensional thermoelasticity equations of the panel.

  3. Three-dimensional tomographic imaging for dynamic radiation behavior study using infrared imaging video bolometers in large helical device plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sano, Ryuichi; Iwama, Naofumi; Peterson, Byron J.

    A three-dimensional (3D) tomography system using four InfraRed imaging Video Bolometers (IRVBs) has been designed with a helical periodicity assumption for the purpose of plasma radiation measurement in the large helical device. For the spatial inversion of large sized arrays, the system has been numerically and experimentally examined using the Tikhonov regularization with the criterion of minimum generalized cross validation, which is the standard solver of inverse problems. The 3D transport code EMC3-EIRENE for impurity behavior and related radiation has been used to produce phantoms for numerical tests, and the relative calibration of the IRVB images has been carried outmore » with a simple function model of the decaying plasma in a radiation collapse. The tomography system can respond to temporal changes in the plasma profile and identify the 3D dynamic behavior of radiation, such as the radiation enhancement that starts from the inboard side of the torus, during the radiation collapse. The reconstruction results are also consistent with the output signals of a resistive bolometer. These results indicate that the designed 3D tomography system is available for the 3D imaging of radiation. The first 3D direct tomographic measurement of a magnetically confined plasma has been achieved.« less

  4. Numerical Limitations of 1D Hydraulic Models Using MIKE11 or HEC-RAS software - Case study of Baraolt River, Romania

    NASA Astrophysics Data System (ADS)

    Andrei, Armas; Robert, Beilicci; Erika, Beilicci

    2017-10-01

    MIKE 11 is an advanced hydroinformatic tool, a professional engineering software package for simulation of one-dimensional flows in estuaries, rivers, irrigation systems, channels and other water bodies. MIKE 11 is a 1-dimensional river model. It was developed by DHI Water · Environment · Health, Denmark. The basic computational procedure of HEC-RAS for steady flow is based on the solution of the one-dimensional energy equation. Energy losses are evaluated by friction and contraction / expansion. The momentum equation may be used in situations where the water surface profile is rapidly varied. These situations include hydraulic jumps, hydraulics of bridges, and evaluating profiles at river confluences. For unsteady flow, HEC-RAS solves the full, dynamic, 1-D Saint Venant Equation using an implicit, finite difference method. The unsteady flow equation solver was adapted from Dr. Robert L. Barkau’s UNET package. Fluid motion is controlled by the basic principles of conservation of mass, energy and momentum, which form the basis of fluid mechanics and hydraulic engineering. Complex flow situations must be solved using empirical approximations and numerical models, which are based on derivations of the basic principles (backwater equation, Navier-Stokes equation etc.). All numerical models are required to make some form of approximation to solve these principles, and consequently all have their limitations. The study of hydraulics and fluid mechanics is founded on the three basic principles of conservation of mass, energy and momentum. Real-life situations are frequently too complex to solve without the aid of numerical models. There is a tendency among some engineers to discard the basic principles taught at university and blindly assume that the results produced by the model are correct. Regardless of the complexity of models and despite the claims of their developers, all numerical models are required to make approximations. These may be related to geometric limitations, numerical simplification, or the use of empirical correlations. Some are obvious: one-dimensional models must average properties over the two remaining directions. It is the less obvious and poorly advertised approximations that pose the greatest threat to the novice user. Some of these, such as the inability of one-dimensional unsteady models to simulate supercritical flow can cause significant inaccuracy in the model predictions.

  5. Flow field analysis of aircraft configurations using a numerical solution to the three-dimensional unified supersonic/hypersonic small disturbance equations, part 1

    NASA Technical Reports Server (NTRS)

    Gunness, R. C., Jr.; Knight, C. J.; Dsylva, E.

    1972-01-01

    The unified small disturbance equations are numerically solved using the well-known Lax-Wendroff finite difference technique. The method allows complete determination of the inviscid flow field and surface properties as long as the flow remains supersonic. Shock waves and other discontinuities are accounted for implicity in the numerical method. This technique was programed for general application to the three-dimensional case. The validity of the method is demonstrated by calculations on cones, axisymmetric bodies, lifting bodies, delta wings, and a conical wing/body combination. Part 1 contains the discussion of problem development and results of the study. Part 2 contains flow charts, subroutine descriptions, and a listing of the computer program.

  6. EDDA: integrated simulation of debris flow erosion, deposition and property changes

    NASA Astrophysics Data System (ADS)

    Chen, H. X.; Zhang, L. M.

    2014-11-01

    Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA, is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during the flow process. The yield stress of debris flow mixture is determined at limit equilibrium using the Mohr-Coulomb equation, which is applicable to clear water flow, hyper-concentrated flow and fully developed debris flow. To assure numerical stability and computational efficiency at the same time, a variable time stepping algorithm is developed to solve the governing differential equations. Four numerical tests are conducted to validate the model. The first two tests involve a one-dimensional dam-break water flow and a one-dimensional debris flow with constant properties. The last two tests involve erosion and deposition, and the movement of multi-directional debris flows. The changes in debris flow mass and properties due to either erosion or deposition are shown to affect the runout characteristics significantly. The model is also applied to simulate a large-scale debris flow in Xiaojiagou Ravine to test the performance of the model in catchment-scale simulations. The results suggest that the model estimates well the volume, inundated area, and runout distance of the debris flow. The model is intended for use as a module in a real-time debris flow warning system.

  7. Shape sensing using multi-core fiber optic cable and parametric curve solutions.

    PubMed

    Moore, Jason P; Rogge, Matthew D

    2012-01-30

    The shape of a multi-core optical fiber is calculated by numerically solving a set of Frenet-Serret equations describing the path of the fiber in three dimensions. Included in the Frenet-Serret equations are curvature and bending direction functions derived from distributed fiber Bragg grating strain measurements in each core. The method offers advantages over prior art in that it determines complex three-dimensional fiber shape as a continuous parametric solution rather than an integrated series of discrete planar bends. Results and error analysis of the method using a tri-core optical fiber is presented. Maximum error expressed as a percentage of fiber length was found to be 7.2%.

  8. Oscillations and stability of numerical solutions of the heat conduction equation

    NASA Technical Reports Server (NTRS)

    Kozdoba, L. A.; Levi, E. V.

    1976-01-01

    The mathematical model and results of numerical solutions are given for the one dimensional problem when the linear equations are written in a rectangular coordinate system. All the computations are easily realizable for two and three dimensional problems when the equations are written in any coordinate system. Explicit and implicit schemes are shown in tabular form for stability and oscillations criteria; the initial temperature distribution is considered uniform.

  9. Recent Developments Related To An Optically Controlled Microwave Phased Array Antenna.

    NASA Astrophysics Data System (ADS)

    Kittel, A.; Peinke, J.; Klein, M.; Baier, G.; Parisi, J.; Rössler, O. E.

    1990-12-01

    A generic 3-dimensional diffeomorphic map, with constant Jacobian determinant, is proposed and looked at numerically. It contains a lower-dimensional basin boundary along which a chaotic motion takes place. This boundary is nowhere differentiable in one direction. Therefore, nowhere differentiable limit sets exist generically in nature.

  10. IMPRINTS OF EXPANSION ON THE LOCAL ANISOTROPY OF SOLAR WIND TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdini, Andrea; Grappin, Roland

    2015-08-01

    We study the anisotropy of II-order structure functions (SFs) defined in a frame attached to the local mean field in three-dimensional (3D) direct numerical simulations of magnetohydrodynamic turbulence, with the solar wind expansion both included and not included. We simulate spacecraft flybys through the numerical domain by taking increments along the radial (wind) direction that form an angle of 45° with the ambient magnetic field. We find that only when expansion is taken into account do the synthetic observations match the 3D anisotropy observed in the solar wind, including the change of anisotropy with scale. Our simulations also show thatmore » the anisotropy changes dramatically when considering increments oblique to the radial directions. Both results can be understood by noting that expansion reduces the radial component of the magnetic field at all scales, thus confining fluctuations in the plane perpendicular to the radial. Expansion is thus shown to affect not only the (global) spectral anisotropy, but also the local anisotropy of second-order SF by influencing the distribution of the local mean field, which enters this higher-order statistics.« less

  11. Analytical three-dimensional neutron transport benchmarks for verification of nuclear engineering codes. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganapol, B.D.; Kornreich, D.E.

    Because of the requirement of accountability and quality control in the scientific world, a demand for high-quality analytical benchmark calculations has arisen in the neutron transport community. The intent of these benchmarks is to provide a numerical standard to which production neutron transport codes may be compared in order to verify proper operation. The overall investigation as modified in the second year renewal application includes the following three primary tasks. Task 1 on two dimensional neutron transport is divided into (a) single medium searchlight problem (SLP) and (b) two-adjacent half-space SLP. Task 2 on three-dimensional neutron transport covers (a) pointmore » source in arbitrary geometry, (b) single medium SLP, and (c) two-adjacent half-space SLP. Task 3 on code verification, includes deterministic and probabilistic codes. The primary aim of the proposed investigation was to provide a suite of comprehensive two- and three-dimensional analytical benchmarks for neutron transport theory applications. This objective has been achieved. The suite of benchmarks in infinite media and the three-dimensional SLP are a relatively comprehensive set of one-group benchmarks for isotropically scattering media. Because of time and resource limitations, the extensions of the benchmarks to include multi-group and anisotropic scattering are not included here. Presently, however, enormous advances in the solution for the planar Green`s function in an anisotropically scattering medium have been made and will eventually be implemented in the two- and three-dimensional solutions considered under this grant. Of particular note in this work are the numerical results for the three-dimensional SLP, which have never before been presented. The results presented were made possible only because of the tremendous advances in computing power that have occurred during the past decade.« less

  12. Chinks in Solar Dynamo Theory: Turbulent Diffusion, Dynamo Waves and Magnetic Helicity

    NASA Technical Reports Server (NTRS)

    DeLuca, E. E.; Wagner, William J. (Technical Monitor)

    2001-01-01

    We have investigated the generation of magnetic fields in the Sun using two-dimensional and three-dimensional numerical simulations. The results of our investigations have been presented at scientific meetings and published.

  13. Slip Effects On MHD Three Dimensional Flow Of Casson Fluid Over An Exponentially Stretching Surface

    NASA Astrophysics Data System (ADS)

    Madhusudhana Rao, B.; Krishna Murthy, M.; Sivakumar, N.; Rushi Kumar, B.; Raju, C. S. K.

    2018-04-01

    Heat and mass transfer effects on MHD three dimensional flow of Casson fluid over an exponentially stretching surface with slip conditions is examined. The similarity transformations are used to convert the governing equations into a set of nonlinear ordinary differential equations and are solved numerically using fourth order Runge-Kutta method along with shooting technique. The effects of Casson parameter, Hartmann number, heat source/sink,chemical reaction and slip factors on velocity, temperature and concentration are shown graphically. The skin friction coefficient and the Nusselt number are examined numerically.

  14. Lump Solitons in Surface Tension Dominated Flows

    NASA Astrophysics Data System (ADS)

    Milewski, Paul; Berger, Kurt

    1999-11-01

    The Kadomtsev-Petviashvilli I equation (KPI) which models small-amplitude, weakly three-dimensional surface-tension dominated long waves is integrable and allows for algebraically decaying lump solitary waves. It is not known (theoretically or numerically) whether the full free-surface Euler equations support such solutions. We consider an intermediate model, the generalised Benney-Luke equation (gBL) which is isotropic (not weakly three-dimensional) and contains KPI as a limit. We show numerically that: 1. gBL supports lump solitary waves; 2. These waves collide elastically and are stable; 3. They are generated by resonant flow over an obstacle.

  15. THE EMERGENCE OF NUMERICAL AIR QUALITY FORECASTING MODELS AND THEIR APPLICATION

    EPA Science Inventory

    In recent years the U.S. and other nations have begun programs for short-term local through regional air quality forecasting based upon numerical three-dimensional air quality grid models. These numerical air quality forecast (NAQF) models and systems have been developed and test...

  16. THE EMERGENCE OF NUMERICAL AIR QUALITY FORCASTING MODELS AND THEIR APPLICATIONS

    EPA Science Inventory

    In recent years the U.S. and other nations have begun programs for short-term local through regional air quality forecasting based upon numerical three-dimensional air quality grid models. These numerical air quality forecast (NAQF) models and systems have been developed and test...

  17. Matter-wave two-dimensional solitons in crossed linear and nonlinear optical lattices

    NASA Astrophysics Data System (ADS)

    da Luz, H. L. F.; Abdullaev, F. Kh.; Gammal, A.; Salerno, M.; Tomio, Lauro

    2010-10-01

    The existence of multidimensional matter-wave solitons in a crossed optical lattice (OL) with a linear optical lattice (LOL) in the x direction and a nonlinear optical lattice (NOL) in the y direction, where the NOL can be generated by a periodic spatial modulation of the scattering length using an optically induced Feshbach resonance is demonstrated. In particular, we show that such crossed LOLs and NOLs allow for stabilizing two-dimensional solitons against decay or collapse for both attractive and repulsive interactions. The solutions for the soliton stability are investigated analytically, by using a multi-Gaussian variational approach, with the Vakhitov-Kolokolov necessary criterion for stability; and numerically, by using the relaxation method and direct numerical time integrations of the Gross-Pitaevskii equation. Very good agreement of the results corresponding to both treatments is observed.

  18. Three-Dimensional Flow Behavior Inside the Submerged Entry Nozzle

    NASA Astrophysics Data System (ADS)

    Real-Ramirez, Cesar Augusto; Carvajal-Mariscal, Ignacio; Sanchez-Silva, Florencio; Cervantes-de-la-Torre, Francisco; Diaz-Montes, Jesus; Gonzalez-Trejo, Jesus

    2018-05-01

    According to various authors, the surface quality of steel depends on the dynamic conditions that occur within the continuous casting mold's upper region. The meniscus, found in that upper region, is where the solidification process begins. The liquid steel is distributed into the mold through a submerged entry nozzle (SEN). In this paper, the dynamic behavior inside the SEN is analyzed by means of physical experiments and numerical simulations. The particle imaging velocimetry technique was used to obtain the vector field in different planes and three-dimensional flow patterns inside the SEN volume. Moreover, large eddy simulation was performed, and the turbulence model results were used to understand the nonlinear flow pattern inside the SEN. Using scaled physical and numerical models, quasi-periodic behavior was observed due to the interaction of two three-dimensional vortices that move inside the SEN lower region located between the exit ports of the nozzle.

  19. Flavor and topological current correlators in parity-invariant three-dimensional QED

    NASA Astrophysics Data System (ADS)

    Karthik, Nikhil; Narayanan, Rajamani

    2017-09-01

    We use lattice regularization to study the flow of the flavor-triplet fermion current central charge CJf from its free field value in the ultraviolet limit to its conformal value in the infrared limit of the parity-invariant three-dimensional QED with two flavors of two-component fermions. The dependence of CJf on the scale is weak with a tendency to be below the free field value at intermediate distances. Our numerical data suggest that the flavor-triplet fermion current and the topological current correlators become degenerate within numerical errors in the infrared limit, thereby supporting an enhanced O(4) symmetry predicted by strong self-duality. Further, we demonstrate that fermion dynamics is necessary for the scale-invariant behavior of parity-invariant three-dimensional QED by showing that the pure gauge theory with noncompact gauge action has a nonzero bilinear condensate.

  20. Calculation of three-dimensional compressible laminar and turbulent boundary layers. An implicit finite-difference procedure for solving the three-dimensional compressible laminar, transitional, and turbulent boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Harris, J. E.

    1975-01-01

    An implicit finite-difference procedure is presented for solving the compressible three-dimensional boundary-layer equations. The method is second-order accurate, unconditionally stable (conditional stability for reverse cross flow), and efficient from the viewpoint of computer storage and processing time. The Reynolds stress terms are modeled by (1) a single-layer mixing length model and (2) a two-layer eddy viscosity model. These models, although simple in concept, accurately predicted the equilibrium turbulent flow for the conditions considered. Numerical results are compared with experimental wall and profile data for a cone at an angle of attack larger than the cone semiapex angle. These comparisons clearly indicate that the numerical procedure and turbulence models accurately predict the experimental data with as few as 21 nodal points in the plane normal to the wall boundary.

  1. WIND: Computer program for calculation of three dimensional potential compressible flow about wind turbine rotor blades

    NASA Technical Reports Server (NTRS)

    Dulikravich, D. S.

    1980-01-01

    A computer program is presented which numerically solves an exact, full potential equation (FPE) for three dimensional, steady, inviscid flow through an isolated wind turbine rotor. The program automatically generates a three dimensional, boundary conforming grid and iteratively solves the FPE while fully accounting for both the rotating cascade and Coriolis effects. The numerical techniques incorporated involve rotated, type dependent finite differencing, a finite volume method, artificial viscosity in conservative form, and a successive line overrelaxation combined with the sequential grid refinement procedure to accelerate the iterative convergence rate. Consequently, the WIND program is capable of accurately analyzing incompressible and compressible flows, including those that are locally transonic and terminated by weak shocks. The program can also be used to analyze the flow around isolated aircraft propellers and helicopter rotors in hover as long as the total relative Mach number of the oncoming flow is subsonic.

  2. Analytical computation of three-dimensional synthetic seismograms by Modal Summation: method, validation and applications

    NASA Astrophysics Data System (ADS)

    La Mura, Cristina; Gholami, Vahid; Panza, Giuliano F.

    2013-04-01

    In order to enable realistic and reliable earthquake hazard assessment and reliable estimation of the ground motion response to an earthquake, three-dimensional velocity models have to be considered. The propagation of seismic waves in complex laterally varying 3D layered structures is a complicated process. Analytical solutions of the elastodynamic equations for such types of media are not known. The most common approaches to the formal description of seismic wavefields in such complex structures are methods based on direct numerical solutions of the elastodynamic equations, e.g. finite-difference, finite-element method, and approximate asymptotic methods. In this work, we present an innovative methodology for computing synthetic seismograms, complete of the main direct, refracted, converted phases and surface waves in three-dimensional anelastic models based on the combination of the Modal Summation technique with the Asymptotic Ray Theory in the framework of the WKBJ - approximation. The three - dimensional models are constructed using a set of vertically heterogeneous sections (1D structures) that are juxtaposed on a regular grid. The distribution of these sections in the grid is done in such a way to fulfill the requirement of weak lateral inhomogeneity in order to satisfy the condition of applicability of the WKBJ - approximation, i.e. the lateral gradient of the parameters characterizing the 1D structure has to be small with respect to the prevailing wavelength. The new method has been validated comparing synthetic seismograms with the records available of three different earthquakes in three different regions: Kanto basin (Japan) triggered by the 1990 Odawara earthquake Mw= 5.1, Romanian territory triggered by the 30 May 1990 Vrancea intermediate-depth earthquake Mw= 6.9 and Iranian territory affected by the 26 December 2003 Bam earthquake Mw= 6.6. Besides the advantage of being a useful tool for assessment of seismic hazard and seismic risk reduction, it is characterized by high efficiency, in fact, once the study region is identified and the 3D model is constructed, the computation, at each station, of the three components of the synthetic signal (displacement, velocity, and acceleration) takes less than 3 hours on a 2 GHz CPU.

  3. A Novel Left Heart Simulator for the Multi-modality Characterization of Native Mitral Valve Geometry and Fluid Mechanics

    PubMed Central

    Rabbah, Jean-Pierre; Saikrishnan, Neelakantan; Yoganathan, Ajit P.

    2012-01-01

    Numerical models of the mitral valve have been used to elucidate mitral valve function and mechanics. These models have evolved from simple two-dimensional approximations to complex three-dimensional fully coupled fluid structure interaction models. However, to date these models lack direct one-to-one experimental validation. As computational solvers vary considerably, experimental benchmark data are critically important to ensure model accuracy. In this study, a novel left heart simulator was designed specifically for the validation of numerical mitral valve models. Several distinct experimental techniques were collectively performed to resolve mitral valve geometry and hemodynamics. In particular, micro-computed tomography was used to obtain accurate and high-resolution (39 µm voxel) native valvular anatomy, which included the mitral leaflets, chordae tendinae, and papillary muscles. Threedimensional echocardiography was used to obtain systolic leaflet geometry for direct comparison of resultant leaflet kinematics. Stereoscopic digital particle image velocimetry provided all three components of fluid velocity through the mitral valve, resolved every 25 ms in the cardiac cycle. A strong central filling jet was observed during peak systole, with minimal out-of-plane velocities (V~0.6m/s). In addition, physiologic hemodynamic boundary conditions were defined and all data were synchronously acquired through a central trigger. Finally, the simulator is a precisely controlled environment, in which flow conditions and geometry can be systematically prescribed and resultant valvular function and hemodynamics assessed. Thus, these data represent the first comprehensive database of high fidelity experimental data, critical for extensive validation of mitral valve fluid structure interaction simulations. PMID:22965640

  4. Optimization of planar PIV-based pressure estimates in laminar and turbulent wakes

    NASA Astrophysics Data System (ADS)

    McClure, Jeffrey; Yarusevych, Serhiy

    2017-05-01

    The performance of four pressure estimation techniques using Eulerian material acceleration estimates from planar, two-component Particle Image Velocimetry (PIV) data were evaluated in a bluff body wake. To allow for the ground truth comparison of the pressure estimates, direct numerical simulations of flow over a circular cylinder were used to obtain synthetic velocity fields. Direct numerical simulations were performed for Re_D = 100, 300, and 1575, spanning laminar, transitional, and turbulent wake regimes, respectively. A parametric study encompassing a range of temporal and spatial resolutions was performed for each Re_D. The effect of random noise typical of experimental velocity measurements was also evaluated. The results identified optimal temporal and spatial resolutions that minimize the propagation of random and truncation errors to the pressure field estimates. A model derived from linear error propagation through the material acceleration central difference estimators was developed to predict these optima, and showed good agreement with the results from common pressure estimation techniques. The results of the model are also shown to provide acceptable first-order approximations for sampling parameters that reduce error propagation when Lagrangian estimations of material acceleration are employed. For pressure integration based on planar PIV, the effect of flow three-dimensionality was also quantified, and shown to be most pronounced at higher Reynolds numbers downstream of the vortex formation region, where dominant vortices undergo substantial three-dimensional deformations. The results of the present study provide a priori recommendations for the use of pressure estimation techniques from experimental PIV measurements in vortex dominated laminar and turbulent wake flows.

  5. Efficient implementation of three-dimensional reference interaction site model self-consistent-field method: Application to solvatochromic shift calculations

    NASA Astrophysics Data System (ADS)

    Minezawa, Noriyuki; Kato, Shigeki

    2007-02-01

    The authors present an implementation of the three-dimensional reference interaction site model self-consistent-field (3D-RISM-SCF) method. First, they introduce a robust and efficient algorithm for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second, they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the electrostatic potential (ESP) map on a 3D grid is constructed directly from the electron density. The charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP acting on the solute molecule is derived from the solvent charge distribution obtained by solving the 3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct numerical integration. A remarkable reduction in the computational time is observed in both routes. Finally, the authors implement the first derivatives of the free energy with respect to the solute nuclear coordinates. They apply the present method to "solute" water and formaldehyde in aqueous solvent using the simple point charge model, and the results are compared with those from other methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with the experimental and other theoretical results.

  6. Efficient implementation of three-dimensional reference interaction site model self-consistent-field method: application to solvatochromic shift calculations.

    PubMed

    Minezawa, Noriyuki; Kato, Shigeki

    2007-02-07

    The authors present an implementation of the three-dimensional reference interaction site model self-consistent-field (3D-RISM-SCF) method. First, they introduce a robust and efficient algorithm for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second, they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the electrostatic potential (ESP) map on a 3D grid is constructed directly from the electron density. The charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP acting on the solute molecule is derived from the solvent charge distribution obtained by solving the 3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct numerical integration. A remarkable reduction in the computational time is observed in both routes. Finally, the authors implement the first derivatives of the free energy with respect to the solute nuclear coordinates. They apply the present method to "solute" water and formaldehyde in aqueous solvent using the simple point charge model, and the results are compared with those from other methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with the experimental and other theoretical results.

  7. Matter-wave solitons supported by quadrupole-quadrupole interactions and anisotropic discrete lattices

    NASA Astrophysics Data System (ADS)

    Zhong, Rong-Xuan; Huang, Nan; Li, Huang-Wu; He, He-Xiang; Lü, Jian-Tao; Huang, Chun-Qing; Chen, Zhao-Pin

    2018-04-01

    We numerically and analytically investigate the formations and features of two-dimensional discrete Bose-Einstein condensate solitons, which are constructed by quadrupole-quadrupole interactional particles trapped in the tunable anisotropic discrete optical lattices. The square optical lattices in the model can be formed by two pairs of interfering plane waves with different intensities. Two hopping rates of the particles in the orthogonal directions are different, which gives rise to a linear anisotropic system. We find that if all of the pairs of dipole and anti-dipole are perpendicular to the lattice panel and the line connecting the dipole and anti-dipole which compose the quadrupole is parallel to horizontal direction, both the linear anisotropy and the nonlocal nonlinear one can strongly influence the formations of the solitons. There exist three patterns of stable solitons, namely horizontal elongation quasi-one-dimensional discrete solitons, disk-shape isotropic pattern solitons and vertical elongation quasi-continuous solitons. We systematically demonstrate the relationships of chemical potential, size and shape of the soliton with its total norm and vertical hopping rate and analytically reveal the linear dispersion relation for quasi-one-dimensional discrete solitons.

  8. An Assessment of Five Modeling Approaches for Thermo-Mechanical Stress Analysis of Laminated Composite Panels

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Malik, M.

    2000-01-01

    A study is made of the effects of variation in the lamination and geometric parameters, and boundary conditions of multi-layered composite panels on the accuracy of the detailed response characteristics obtained by five different modeling approaches. The modeling approaches considered include four two-dimensional models, each with five parameters to characterize the deformation in the thickness direction, and a predictor-corrector approach with twelve displacement parameters. The two-dimensional models are first-order shear deformation theory, third-order theory; a theory based on trigonometric variation of the transverse shear stresses through the thickness, and a discrete layer theory. The combination of the following four key elements distinguishes the present study from previous studies reported in the literature: (1) the standard of comparison is taken to be the solutions obtained by using three-dimensional continuum models for each of the individual layers; (2) both mechanical and thermal loadings are considered; (3) boundary conditions other than simply supported edges are considered; and (4) quantities compared include detailed through-the-thickness distributions of transverse shear and transverse normal stresses. Based on the numerical studies conducted, the predictor-corrector approach appears to be the most effective technique for obtaining accurate transverse stresses, and for thermal loading, none of the two-dimensional models is adequate for calculating transverse normal stresses, even when used in conjunction with three-dimensional equilibrium equations.

  9. Piecewise parabolic method for simulating one-dimensional shear shock wave propagation in tissue-mimicking phantoms

    NASA Astrophysics Data System (ADS)

    Tripathi, B. B.; Espíndola, D.; Pinton, G. F.

    2017-11-01

    The recent discovery of shear shock wave generation and propagation in the porcine brain suggests that this new shock phenomenology may be responsible for a broad range of traumatic injuries. Blast-induced head movement can indirectly lead to shear wave generation in the brain, which could be a primary mechanism for injury. Shear shock waves amplify the local acceleration deep in the brain by up to a factor of 8.5, which may tear and damage neurons. Currently, there are numerical methods that can model compressional shock waves, such as comparatively well-studied blast waves, but there are no numerical full-wave solvers that can simulate nonlinear shear shock waves in soft solids. Unlike simplified representations, e.g., retarded time, full-wave representations describe fundamental physical behavior such as reflection and heterogeneities. Here we present a piecewise parabolic method-based solver for one-dimensional linearly polarized nonlinear shear wave in a homogeneous medium and with empirical frequency-dependent attenuation. This method has the advantage of being higher order and more directly extendable to multiple dimensions and heterogeneous media. The proposed numerical scheme is validated analytically and experimentally and compared to other shock capturing methods. A Riemann step-shock problem is used to characterize the numerical dissipation. This dissipation is then tuned to be negligible with respect to the physical attenuation by choosing an appropriate grid spacing. The numerical results are compared to ultrasound-based experiments that measure planar polarized shear shock wave propagation in a tissue-mimicking gelatin phantom. Good agreement is found between numerical results and experiment across a 40 mm propagation distance. We anticipate that the proposed method will be a starting point for the development of a two- and three-dimensional full-wave code for the propagation of nonlinear shear waves in heterogeneous media.

  10. Three-Dimensional Model of Holographic Formation of Inhomogeneous PPLC Diffraction Structures

    NASA Astrophysics Data System (ADS)

    Semkin, A. O.; Sharangovich, S. N.

    2018-05-01

    A three-dimensional theoretical model of holographic formation of inhomogeneous diffraction structures in composite photopolymer - liquid crystal materials is presented considering both the nonlinearity of recording and the amplitude-phase inhomogeneity of the recording light field. Based on the results of numerical simulation, the kinematics of formations of such structures and their spatial profile are investigated.

  11. Numerical methods for multi-scale modeling of non-Newtonian flows

    NASA Astrophysics Data System (ADS)

    Symeonidis, Vasileios

    This work presents numerical methods for the simulation of Non-Newtonian fluids in the continuum as well as the mesoscopic level. The former is achieved with Direct Numerical Simulation (DNS) spectral h/p methods, while the latter employs the Dissipative Particle Dynamics (DPD) technique. Physical results are also presented as a motivation for a clear understanding of the underlying numerical approaches. The macroscopic simulations employ two non-Newtonian models, namely the Reiner-Ravlin (RR) and the viscoelastic FENE-P model. (1) A spectral viscosity method defined by two parameters ε, M is used to stabilize the FENE-P conformation tensor c. Convergence studies are presented for different combinations of these parameters. Two boundary conditions for the tensor c are also investigated. (2) Agreement is achieved with other works for Stokes flow of a two-dimensional cylinder in a channel. Comparison of the axial normal stress and drag coefficient on the cylinder is presented. Further, similar results from unsteady two- and three-dimensional turbulent flows past a flat plate in a channel are shown. (3) The RR problem is formulated for nearly incompressible flows, with the introduction of a mathematically equivalent tensor formulation. A spectral viscosity method and polynomial over-integration are studied. Convergence studies, including a three-dimensional channel flow with a parallel slot, investigate numerical problems arising from elemental boundaries and sharp corners. (4) The round hole pressure problem is presented for Newtonian and RR fluids in geometries with different hole sizes. Comparison with experimental data is made for the Newtonian case. The flaw in the experimental assumptions of undisturbed pressure opposite the hole is revealed, while good agreement with the data is shown. The Higashitani-Pritchard kinematical theory for RR, fluids is recovered for round holes and an approximate formula for the RR Stokes hole pressure is presented. The mesoscopic simulations assume bead-spring representations of polymer chains and investigate different integrating schemes of the DPD equations and different intra-polymer force combinations. (1) A novel family of time-staggered integrators is presented, taking advantage of the time-scale disparity between polymer-solvent and solvent-solvent interactions. Convergence tests for relaxation parameters for the velocity-Verlet and Lowe's schemes are presented. (2) Wormlike chains simulating lambda- DNA molecules subject to constant shear are studied, and direct comparison with Brownian Dynamics and experimental results is made. The effect of the number of beads per chain is examined through the extension autocorrelation function. (3) The Schmidt number (Sc) for each numerical scheme is investigated and the dependence on the scheme's parameters is shown. Re-visiting the wormlike chain problem under shear, we recover a better agreement with the experimental data through proper adjustment of Sc.

  12. From three-dimensional long-term tectonic numerical models to synthetic structural data: semi-automatic extraction of instantaneous & finite strain quantities

    NASA Astrophysics Data System (ADS)

    Duclaux, Guillaume; May, Dave

    2017-04-01

    Over the past three decades thermo-mechanical numerical modelling has transformed the way we look at deformation in the lithosphere. More than just generating aesthetically pleasing pictures, the output from a numerical models contains a rich source of quantitative information that can be used to measure deformation quantities in plan view or three-dimensions. Adding value to any numerical experiment requires a thorough post-processing of the modelling results. Such work aims to produce visual information that will resonate to seasoned structural geologists and assist with comparing experimental and observational data. Here we introduce two methods to generate synthetic structural data from numerical model outputs. We first present an image processing and shape recognition workflow developed to extract the active faults orientation from surface velocity gradients. In order to measure the active faults lengths and directions along with their distribution at the surface of the model we implemented an automated sequential mapping technique based on the second invariant of the strain rate tensor and using a suite a python functions. Active fault direction measurements are achieved using a probabilistic method for extracting linear features orientation from any surface. This method has the undeniable advantage to avoid interpretation bias. Strike measurements for individual segments are weighted according to their length and orientation distribution data are presented in an equal-area moving average rose diagrams produced using a weighted method. Finally, we discuss a method for mapping finite strain in three-dimensions. A high-resolution Lagrangian regular grid which advects during the numerical experiment is used to track the progressive deformation within the model. Thanks to this data we can measure the finite strain ellipsoids for any region of interest in the model. This method assumes that the finite strain is homogenous within one unit cell of the grid. We can compute individual ellipsoid's parameters (orientation, shape, etc.) and represent the finite deformation for any region of interest in a Flinn diagram. In addition, we can use the finite strain ellipsoids to estimate the prevailing foliation and/or lineation directions anywhere in the model. These two methods are applied to measure the instantaneous and finite deformation patterns within an oblique rift zone ongoing constant extension in the absence of surface processes.

  13. Microwave imaging by three-dimensional Born linearization of electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Caorsi, S.; Gragnani, G. L.; Pastorino, M.

    1990-11-01

    An approach to microwave imaging is proposed that uses a three-dimensional vectorial form of the Born approximation to linearize the equation of electromagnetic scattering. The inverse scattering problem is numerically solved for three-dimensional geometries by means of the moment method. A pseudoinversion algorithm is adopted to overcome ill conditioning. Results show that the method is well suited for qualitative imaging purposes, while its capability for exactly reconstructing the complex dielectric permittivity is affected by the limitations inherent in the Born approximation and in ill conditioning.

  14. Three-dimensional nanomagnetism

    DOE PAGES

    Fernandez-Pacheco, Amalio; Streubel, Robert; Fruchart, Olivier; ...

    2017-06-09

    Magnetic nanostructures are being developed for use in many aspects of our daily life, spanning areas such as data storage, sensing and biomedicine. Whereas patterned nanomagnets are traditionally two-dimensional planar structures, recent work is expanding nanomagnetism into three dimensions; a move triggered by the advance of unconventional synthesis methods and the discovery of new magnetic effects. In three-dimensional nanomagnets more complex magnetic configurations become possible, many with unprecedented properties. Here we review the creation of these structures and their implications for the emergence of new physics, the development of instrumentation and computational methods, and exploitation in numerous applications.

  15. Travel-time sensitivity kernels in long-range propagation.

    PubMed

    Skarsoulis, E K; Cornuelle, B D; Dzieciuch, M A

    2009-11-01

    Wave-theoretic travel-time sensitivity kernels (TSKs) are calculated in two-dimensional (2D) and three-dimensional (3D) environments and their behavior with increasing propagation range is studied and compared to that of ray-theoretic TSKs and corresponding Fresnel-volumes. The differences between the 2D and 3D TSKs average out when horizontal or cross-range marginals are considered, which indicates that they are not important in the case of range-independent sound-speed perturbations or perturbations of large scale compared to the lateral TSK extent. With increasing range, the wave-theoretic TSKs expand in the horizontal cross-range direction, their cross-range extent being comparable to that of the corresponding free-space Fresnel zone, whereas they remain bounded in the vertical. Vertical travel-time sensitivity kernels (VTSKs)-one-dimensional kernels describing the effect of horizontally uniform sound-speed changes on travel-times-are calculated analytically using a perturbation approach, and also numerically, as horizontal marginals of the corresponding TSKs. Good agreement between analytical and numerical VTSKs, as well as between 2D and 3D VTSKs, is found. As an alternative method to obtain wave-theoretic sensitivity kernels, the parabolic approximation is used; the resulting TSKs and VTSKs are in good agreement with normal-mode results. With increasing range, the wave-theoretic VTSKs approach the corresponding ray-theoretic sensitivity kernels.

  16. Three dimensional identification card and applications

    NASA Astrophysics Data System (ADS)

    Zhou, Changhe; Wang, Shaoqing; Li, Chao; Li, Hao; Liu, Zhao

    2016-10-01

    Three dimensional Identification Card, with its three-dimensional personal image displayed and stored for personal identification, is supposed be the advanced version of the present two-dimensional identification card in the future [1]. Three dimensional Identification Card means that there are three-dimensional optical techniques are used, the personal image on ID card is displayed to be three-dimensional, so we can see three dimensional personal face. The ID card also stores the three-dimensional face information in its inside electronics chip, which might be recorded by using two-channel cameras, and it can be displayed in computer as three-dimensional images for personal identification. Three-dimensional ID card might be one interesting direction to update the present two-dimensional card in the future. Three-dimension ID card might be widely used in airport custom, entrance of hotel, school, university, as passport for on-line banking, registration of on-line game, etc...

  17. Numerical simulation of marine currents in the Bunaken Strait, North Sulawesi, Indonesia

    NASA Astrophysics Data System (ADS)

    Rompas, P. T. D.; Manongko, J. D. I.

    2016-04-01

    This study intended for the generation of hydroelectric power at suitable area of the strait in order to provide electric current to a close environment. The project uses a three-dimensional model of taking flow into account the variation of hydrostatic pressure in the liquid vertical layers. We brought back to a two-dimensional calculation using the shallow water equations. The objectives of the study are getting simultaneous obtaining the velocities of currents by the component of velocities and distributions of the kinetic energy from the numerical results. The Bunaken strait is 5280 m width for an average depth of 130 m. Numerical calculation is simulated using horizontal meshes of 60 side meters. The numerical solutions obtained by using a time step of one second. It found that there was no great difference between 2D and 3D numerical simulations because the effect of flow velocity in the vertical direction is very small. The numerical results have shown that the average current velocities when low and high tide currents are 1.46 m/s and 0.85 m/s respectively. The kinetic energy ranged from 0.01 to 2.54 kW/m2 when low and high tide in the Bunaken strait area at discharge of 1 Sv, whereas at discharge 2 Sv, 0.11-17.40 kW/m2 and 0.11-2.77 kW/m2 (when low and high tide currents). These results can used in the design of turbines for power generation marine currents in the Bunaken strait at depths below 60 meters.

  18. Simulation studies of vestibular macular afferent-discharge patterns using a new, quasi-3-D finite volume method

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Linton, S. W.; Parnas, B. R.

    2000-01-01

    A quasi-three-dimensional finite-volume numerical simulator was developed to study passive voltage spread in vestibular macular afferents. The method, borrowed from computational fluid dynamics, discretizes events transpiring in small volumes over time. The afferent simulated had three calyces with processes. The number of processes and synapses, and direction and timing of synapse activation, were varied. Simultaneous synapse activation resulted in shortest latency, while directional activation (proximal to distal and distal to proximal) yielded most regular discharges. Color-coded visualizations showed that the simulator discretized events and demonstrated that discharge produced a distal spread of voltage from the spike initiator into the ending. The simulations indicate that directional input, morphology, and timing of synapse activation can affect discharge properties, as must also distal spread of voltage from the spike initiator. The finite volume method has generality and can be applied to more complex neurons to explore discrete synaptic effects in four dimensions.

  19. Linear instability in the wake of an elliptic wing

    NASA Astrophysics Data System (ADS)

    He, Wei; Tendero, Juan Ángel; Paredes, Pedro; Theofilis, Vassilis

    2017-12-01

    Linear global instability analysis has been performed in the wake of a low aspect ratio three-dimensional wing of elliptic cross section, constructed with appropriately scaled Eppler E387 airfoils. The flow field over the airfoil and in its wake has been computed by full three-dimensional direct numerical simulation at a chord Reynolds number of Rec=1750 and two angles of attack, {AoA}=0° and 5°. Point-vortex methods have been employed to predict the inviscid counterpart of this flow. The spatial BiGlobal eigenvalue problem governing linear small-amplitude perturbations superposed upon the viscous three-dimensional wake has been solved at several axial locations, and results were used to initialize linear PSE-3D analyses without any simplifying assumptions regarding the form of the trailing vortex system, other than weak dependence of all flow quantities on the axial spatial direction. Two classes of linearly unstable perturbations were identified, namely stronger-amplified symmetric modes and weaker-amplified antisymmetric disturbances, both peaking at the vortex sheet which connects the trailing vortices. The amplitude functions of both classes of modes were documented, and their characteristics were compared with those delivered by local linear stability analysis in the wake near the symmetry plane and in the vicinity of the vortex core. While all linear instability analysis approaches employed have delivered qualitatively consistent predictions, only PSE-3D is free from assumptions regarding the underlying base flow and should thus be employed to obtain quantitative information on amplification rates and amplitude functions in this class of configurations.

  20. Characteristics of large three-dimensional heaps of particles produced by ballistic deposition from extended sources

    NASA Astrophysics Data System (ADS)

    Topic, Nikola; Gallas, Jason A. C.; Pöschel, Thorsten

    2013-11-01

    This paper reports a detailed numerical investigation of the geometrical and structural properties of three-dimensional heaps of particles. Our goal is the characterization of very large heaps produced by ballistic deposition from extended circular dropping areas. First, we provide an in-depth study of the formation of monodisperse heaps of particles. We find very large heaps to contain three new geometrical characteristics: they may display two external angles of repose, one internal angle of repose, and four distinct packing fraction (density) regions. Such features are found to be directly connected with the size of the dropping zone. We derive a differential equation describing the boundary of an unexpected triangular packing fraction zone formed under the dropping area. We investigate the impact that noise during the deposition has on the final heap structure. In addition, we perform two complementary experiments designed to test the robustness of the novel features found. The first experiment considers changes due to polydispersity. The second checks what happens when letting the extended dropping zone to become a point-like source of particles, the more common type of source.

  1. A STUDY ON MECHANICAL BEHAVIOR OF SUPPORT ELEMENTS INDUCED BY SHAFT SINKING

    NASA Astrophysics Data System (ADS)

    Tsusaka, Kimikazu; Inagaki, Daisuke; Hatsuyama, Yoshihiro; Koike, Masashi; Shimada, Tomohiro; Ijiri, Yuji

    Japan Atomic Energy Agency has been excavating three deep shafts through soft sedimentary rock in the Horonobe Underground Research Laboratory. In this paper, the authors discussed change in stress and the stress distribution in a concrete lining and steel arch ribs induced by the 6.5 m diameter shaft sinking. They conducted not only field measurements of stress in support elements at a depth of around 220 m but also three-dimensional numerical analysis which models the shaft excavation procedure such as timing of installation of support elements and setting and removal of a concrete form. As a result, it was clarified that more than 10 MPa difference in circumferential stress occurred in a 2 m high and 400 mm thick concrete lining due to anisotropy of initial stress and three-dimensional effect of an excavation face. It was also found that a concrete lining gradually deformed from an original cylindrical form to a shape of an ellipsis with the long axis pallarel to the direction of the minimum horizontal principal stress after a concrete form was removed.

  2. An assessment of first-order stochastic dispersion theories in porous media

    NASA Astrophysics Data System (ADS)

    Chin, David A.

    1997-12-01

    Random realizations of three-dimensional exponentially correlated hydraulic conductivity fields are used in a finite-difference numerical flow model to calculate the mean and covariance of the corresponding Lagrangian-velocity fields. The dispersivity of the porous medium is then determined from the Lagrangian-velocity statistics using the Taylor definition. This estimation procedure is exact, except for numerical errors, and the results are used to assess the accuracy of various first-order dispersion theories in both isotropic and anisotropic porous media. The results show that the Dagan theory is by far the most robust in both isotropic and anisotropic media, producing accurate values of the principal dispersivity components for σy as high as 1.0, In the case of anisotropic media where the flow is at an angle to the principal axis of hydraulic conductivity, it is shown that the dispersivity tensor is rotated away from the flow direction in the non-Fickian phase, but eventually coincides with the flow direction in the Fickian phase.

  3. Numerical investigation of polarization insensitive two-mode division (De)multiplexer based on an asymmetric directional coupler

    NASA Astrophysics Data System (ADS)

    Truong, Cao Dung; Trinh, M. Tuan; Dang, Hoai Bac; Nguyen, Van Tho

    2017-02-01

    We propose a polarization insensitive two-mode division (de)multiplexer based on a silicon-on-insulator platform operating with a broadband, low insertion and scattering loss, and small crosstalk. By using an asymmetric directional coupler, two-mode (de)multiplexing functions for both polarization TE and TM states can be realized by the numerical simulation. Simulated results using a three dimensional beam propagation method (3D-BPM) incorporated with an effective index method (EIM) show high performance of the device with an operation efficiency above 81.2% (i.e., insertion loss is less than 0.9 dB) in the range of ±5 nm around the central wavelength of 1550 nm. Fabrication tolerances also have proved suitability to current manufacture technologies for the planar waveguides. Besides a low scattering loss of the sidewall roughness and a little influence of dispersion, a small footprint can bring the device to applications of high bitrate and compact on-chip silicon photonic integrated circuits.

  4. Direct Numerical Simulation of Cell Printing

    NASA Astrophysics Data System (ADS)

    Qiao, Rui; He, Ping

    2010-11-01

    Structural cell printing, i.e., printing three dimensional (3D) structures of cells held in a tissue matrix, is gaining significant attention in the biomedical community. The key idea is to use desktop printer or similar devices to print cells into 3D patterns with a resolution comparable to the size of mammalian cells, similar to that in living organs. Achieving such a resolution in vitro can lead to breakthroughs in areas such as organ transplantation and understanding of cell-cell interactions in truly 3D spaces. Although the feasibility of cell printing has been demonstrated in the recent years, the printing resolution and cell viability remain to be improved. In this work, we investigate one of the unit operations in cell printing, namely, the impact of a cell-laden droplet into a pool of highly viscous liquids using direct numerical simulations. The dynamics of droplet impact (e.g., crater formation and droplet spreading and penetration) and the evolution of cell shape and internal stress are quantified in details.

  5. Spatial Direct Numerical Simulation of Boundary-Layer Transition Mechanisms: Validation of PSE Theory

    NASA Technical Reports Server (NTRS)

    Joslin, R. D.; Streett, C. L.; Chang, C.-L.

    1991-01-01

    A study of instabilities in incompressible boundary-layer flow on a flat plate is conducted by spatial direct numerical simulation (DNS) of the Navier-Stokes equations. Here, the DNS results are used to critically evaluate the results obtained using parabolized stability equations (PSE) theory and to study mechanisms associated with breakdown from laminar to turbulent flow. Three test cases are considered: two-dimensional Tollmien-Schlichting wave propagation, subharmonic instability breakdown, and oblique-wave break-down. The instability modes predicted by PSE theory are in good quantitative agreement with the DNS results, except a small discrepancy is evident in the mean-flow distortion component of the 2-D test problem. This discrepancy is attributed to far-field boundary- condition differences. Both DNS and PSE theory results show several modal discrepancies when compared with the experiments of subharmonic breakdown. Computations that allow for a small adverse pressure gradient in the basic flow and a variation of the disturbance frequency result in better agreement with the experiments.

  6. Numerical analysis of light extraction enhancement of GaN-based thin-film flip-chip light-emitting diodes with high-refractive-index buckling nanostructures

    NASA Astrophysics Data System (ADS)

    Yue, Qing-Yang; Yang, Yang; Cheng, Zhen-Jia; Guo, Cheng-Shan

    2018-06-01

    In this work, the light extraction efficiency enhancement of GaN-based thin-film flip-chip (TFFC) light-emitting diodes (LEDs) with high-refractive-index (TiO2) buckling nanostructures was studied using the three-dimensional finite difference time domain method. Compared with 2-D photonic crystals, the buckling structures have the advantages of a random directionality and a broad distribution in periodicity, which can effectively extract the guided light propagating in all azimuthal directions over a wide spectrum. Numerical studies revealed that the light extraction efficiency of buckling-structured LEDs reaches 1.1 times that of triangular lattice photonic crystals. The effects of the buckling structure feature sizes and the thickness of the N-GaN layer on the light extraction efficiency for TFFC LEDs were also investigated systematically. With optimized structural parameters, a significant light extraction enhancement of about 2.6 times was achieved for TiO2 buckling-structured TFFC LEDs compared with planar LEDs.

  7. Investigation of Turbulent Entrainment-Mixing Processes With a New Particle-Resolved Direct Numerical Simulation Model

    DOE PAGES

    Gao, Zheng; Liu, Yangang; Li, Xiaolin; ...

    2018-02-19

    Here, a new particle-resolved three dimensional direct numerical simulation (DNS) model is developed that combines Lagrangian droplet tracking with the Eulerian field representation of turbulence near the Kolmogorov microscale. Six numerical experiments are performed to investigate the processes of entrainment of clear air and subsequent mixing with cloudy air and their interactions with cloud microphysics. The experiments are designed to represent different combinations of three configurations of initial cloudy area and two turbulence modes (decaying and forced turbulence). Five existing measures of microphysical homogeneous mixing degree are examined, modified, and compared in terms of their ability as a unifying measuremore » to represent the effect of various entrainment-mixing mechanisms on cloud microphysics. Also examined and compared are the conventional Damköhler number and transition scale number as a dynamical measure of different mixing mechanisms. Relationships between the various microphysical measures and dynamical measures are investigated in search for a unified parameterization of entrainment-mixing processes. The results show that even with the same cloud water fraction, the thermodynamic and microphysical properties are different, especially for the decaying cases. Further analysis confirms that despite the detailed differences in cloud properties among the six simulation scenarios, the variety of turbulent entrainment-mixing mechanisms can be reasonably represented with power-law relationships between the microphysical homogeneous mixing degrees and the dynamical measures.« less

  8. Investigation of Turbulent Entrainment-Mixing Processes With a New Particle-Resolved Direct Numerical Simulation Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zheng; Liu, Yangang; Li, Xiaolin

    Here, a new particle-resolved three dimensional direct numerical simulation (DNS) model is developed that combines Lagrangian droplet tracking with the Eulerian field representation of turbulence near the Kolmogorov microscale. Six numerical experiments are performed to investigate the processes of entrainment of clear air and subsequent mixing with cloudy air and their interactions with cloud microphysics. The experiments are designed to represent different combinations of three configurations of initial cloudy area and two turbulence modes (decaying and forced turbulence). Five existing measures of microphysical homogeneous mixing degree are examined, modified, and compared in terms of their ability as a unifying measuremore » to represent the effect of various entrainment-mixing mechanisms on cloud microphysics. Also examined and compared are the conventional Damköhler number and transition scale number as a dynamical measure of different mixing mechanisms. Relationships between the various microphysical measures and dynamical measures are investigated in search for a unified parameterization of entrainment-mixing processes. The results show that even with the same cloud water fraction, the thermodynamic and microphysical properties are different, especially for the decaying cases. Further analysis confirms that despite the detailed differences in cloud properties among the six simulation scenarios, the variety of turbulent entrainment-mixing mechanisms can be reasonably represented with power-law relationships between the microphysical homogeneous mixing degrees and the dynamical measures.« less

  9. Multiscale Mathematics for Biomass Conversion to Renewable Hydrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsoulakis, Markos

    2014-08-09

    Our two key accomplishments in the first three years were towards the development of, (1) a mathematically rigorous and at the same time computationally flexible framework for parallelization of Kinetic Monte Carlo methods, and its implementation on GPUs, and (2) spatial multilevel coarse-graining methods for Monte Carlo sampling and molecular simulation. A common underlying theme in both these lines of our work is the development of numerical methods which are at the same time both computationally efficient and reliable, the latter in the sense that they provide controlled-error approximations for coarse observables of the simulated molecular systems. Finally, our keymore » accomplishment in the last year of the grant is that we started developing (3) pathwise information theory-based and goal-oriented sensitivity analysis and parameter identification methods for complex high-dimensional dynamics and in particular of nonequilibrium extended (high-dimensional) systems. We discuss these three research directions in some detail below, along with the related publications.« less

  10. Through the looking glass: Unraveling the network structure of coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, D. M.; Stec, D. F.; Botto, R. E.

    1999-12-23

    Since the original idea by Sanada and Honda of treating coal as a three-dimensional cross-linked network, coal structure has been probed by monitoring ingress of solvents using traditional volumetric or gravimetric methods. However, using these techniques has allowed only an indirect observation of the swelling process. More recently, the authors have developed magnetic resonance microscopy (MRM) approaches for studying solvent ingress in polymeric systems, about which fundamental aspects of the swelling process can be deduced directly and quantitatively. The aim of their work is to utilize solvent transport and network response parameters obtained from these methods to assess fundamental propertiesmore » of the system under investigation. Polymer and coal samples have been studied to date. Numerous swelling parameters measured by magnetic resonance microscopy are found to correlate with cross-link density of the polymer network under investigation. Use of these parameters to assess the three-dimensional network structure of coal is discussed.« less

  11. Acoustic Waves in a Three-Dimensional Stratified Atmosphere

    NASA Astrophysics Data System (ADS)

    Kalkofen, W.; Massaglia, S.; Bodo, G.; Rossi, P.

    2000-05-01

    We investigate the propagation of acoustic waves in a three-dimensional, nonmagnetic, isothermal atmosphere stratified in plane-parallel layers in a study of oscillations in chromospheric calcium bright points. We present analytic results for the linear and numerical results for the nonlinear evolution of a disturbance. An impulsively excited acoustic disturbance emanates from a point source and propagates outward as a spherical acoustic wave, amplifying exponentially in the upward direction. A significant wave amplitude is found only in a relatively narrow cone about the vertical. The amplitude of the wave and the opening angle of the cone decrease with time. Because of the lateral spread of the upward-propagating energy, the decay is faster in 2D and 3D simulations than in 1D. We discuss observational consequences of this scenario, some of which are not anticipated from 1D calculations. We acknowledge support from NASA, NSF and the Ministero per l'Università e la Ricerca Scientifica e Tecnologica.

  12. Three-dimensional implementation of the Low Diffusion method for continuum flow simulations

    NASA Astrophysics Data System (ADS)

    Mirza, A.; Nizenkov, P.; Pfeiffer, M.; Fasoulas, S.

    2017-11-01

    Concepts of a particle-based continuum method have existed for many years. The ultimate goal is to couple such a method with the Direct Simulation Monte Carlo (DSMC) in order to bridge the gap of numerical tools in the treatment of the transitional flow regime between near-equilibrium and rarefied gas flows. For this purpose, the Low Diffusion (LD) method, introduced first by Burt and Boyd, offers a promising solution. In this paper, the LD method is revisited and the implementation in a modern particle solver named PICLas is given. The modifications of the LD routines enable three-dimensional continuum flow simulations. The implementation is successfully verified through a series of test cases: simple stationary shock, oblique shock simulation and thermal Couette flow. Additionally, the capability of this method is demonstrated by the simulation of a hypersonic nitrogen flow around a 70°-blunted cone. Overall results are in very good agreement with experimental data. Finally, the scalability of PICLas using LD on a high performance cluster is presented.

  13. Design and Simulation of Optically Actuated Bistable MEMS

    NASA Astrophysics Data System (ADS)

    Lucas, Thomas; Moiseeva, Evgeniya; Harnett, Cindy

    2012-02-01

    In this project, bistable three-dimensional MEMS actuators are designed to be optically switched between stable states for biological research applications. The structure is a strained rectangular frame created with stress-mismatched metal-oxide bilayers. The devices curl into an arc in one of two directions tangent to the substrate, and can switch orientation when regions are selectively heated. The heating is powered by infrared laser, and localized with patterned infrared-resonant gold nanoparticles on critical regions. The enhanced energy absorption on selected areas provides switching control and heightened response to narrow-band infrared light. Coventorware has been used for finite element analysis of the system. The numerical simulations indicate that it has two local minimum states with extremely rapid transition time (<<0.1 s) when the structure is thermally deformed. Actuation at laser power and thermal limits compatible with physiological applications will enable microfluidic pumping elements and fundamental studies of tissue response to three-dimensional mechanical stimuli, artificial-muscle based pumps and other biomedical devices triggered by tissue-permeant infrared light.

  14. Coherent beam control with an all-dielectric transformation optics based lens

    NASA Astrophysics Data System (ADS)

    Yi, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André

    2016-01-01

    Transformation optics (TO) concept well known for its huge possibility in patterning the path of electromagnetic waves is exploited to design a beam steering lens. The broadband directive in-phase emission in a desired off-normal direction from an array of equally fed radiators is numerically and experimentally reported. Such manipulation is achieved without the use of complex and bulky phase shifters as it is the case in classical phased array antennas. The all-dielectric compact low-cost lens prototype presenting a graded permittivity profile is fabricated through three-dimensional (3D) polyjet printing technology. The array of radiators is composed of four planar microstrip antennas realized using standard lithography techniques and is used as excitation source for the lens. To validate the proposed lens, we experimentally demonstrate the broadband focusing properties and in-phase directive emissions deflected from the normal direction. Both the far-field radiation patterns and the near-field distributions are measured and reported. Measurements agree quantitatively and qualitatively with numerical full-wave simulations and confirm the corresponding steering properties. Such experimental validation paves the way to inexpensive easy-made all-dielectric microwave lenses for beam forming and collimation.

  15. Coherent beam control with an all-dielectric transformation optics based lens.

    PubMed

    Yi, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André

    2016-01-05

    Transformation optics (TO) concept well known for its huge possibility in patterning the path of electromagnetic waves is exploited to design a beam steering lens. The broadband directive in-phase emission in a desired off-normal direction from an array of equally fed radiators is numerically and experimentally reported. Such manipulation is achieved without the use of complex and bulky phase shifters as it is the case in classical phased array antennas. The all-dielectric compact low-cost lens prototype presenting a graded permittivity profile is fabricated through three-dimensional (3D) polyjet printing technology. The array of radiators is composed of four planar microstrip antennas realized using standard lithography techniques and is used as excitation source for the lens. To validate the proposed lens, we experimentally demonstrate the broadband focusing properties and in-phase directive emissions deflected from the normal direction. Both the far-field radiation patterns and the near-field distributions are measured and reported. Measurements agree quantitatively and qualitatively with numerical full-wave simulations and confirm the corresponding steering properties. Such experimental validation paves the way to inexpensive easy-made all-dielectric microwave lenses for beam forming and collimation.

  16. Reconfigurable origami-inspired acoustic waveguides

    PubMed Central

    Babaee, Sahab; Overvelde, Johannes T. B.; Chen, Elizabeth R.; Tournat, Vincent; Bertoldi, Katia

    2016-01-01

    We combine numerical simulations and experiments to design a new class of reconfigurable waveguides based on three-dimensional origami-inspired metamaterials. Our strategy builds on the fact that the rigid plates and hinges forming these structures define networks of tubes that can be easily reconfigured. As such, they provide an ideal platform to actively control and redirect the propagation of sound. We design reconfigurable systems that, depending on the externally applied deformation, can act as networks of waveguides oriented along one, two, or three preferential directions. Moreover, we demonstrate that the capability of the structure to guide and radiate acoustic energy along predefined directions can be easily switched on and off, as the networks of tubes are reversibly formed and disrupted. The proposed designs expand the ability of existing acoustic metamaterials and exploit complex waveguiding to enhance control over propagation and radiation of acoustic energy, opening avenues for the design of a new class of tunable acoustic functional systems. PMID:28138527

  17. Towards an Automated Full-Turbofan Engine Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Reed, John A.; Turner, Mark G.; Norris, Andrew; Veres, Joseph P.

    2003-01-01

    The objective of this study was to demonstrate the high-fidelity numerical simulation of a modern high-bypass turbofan engine. The simulation utilizes the Numerical Propulsion System Simulation (NPSS) thermodynamic cycle modeling system coupled to a high-fidelity full-engine model represented by a set of coupled three-dimensional computational fluid dynamic (CFD) component models. Boundary conditions from the balanced, steady-state cycle model are used to define component boundary conditions in the full-engine model. Operating characteristics of the three-dimensional component models are integrated into the cycle model via partial performance maps generated automatically from the CFD flow solutions using one-dimensional meanline turbomachinery programs. This paper reports on the progress made towards the full-engine simulation of the GE90-94B engine, highlighting the generation of the high-pressure compressor partial performance map. The ongoing work will provide a system to evaluate the steady and unsteady aerodynamic and mechanical interactions between engine components at design and off-design operating conditions.

  18. Parallel 3-D numerical simulation of dielectric barrier discharge plasma actuators

    NASA Astrophysics Data System (ADS)

    Houba, Tomas

    Dielectric barrier discharge plasma actuators have shown promise in a range of applications including flow control, sterilization and ozone generation. Developing numerical models of plasma actuators is of great importance, because a high-fidelity parallel numerical model allows new design configurations to be tested rapidly. Additionally, it provides a better understanding of the plasma actuator physics which is useful for further innovation. The physics of plasma actuators is studied numerically. A loosely coupled approach is utilized for the coupling of the plasma to the neutral fluid. The state of the art in numerical plasma modeling is advanced by the development of a parallel, three-dimensional, first-principles model with detailed air chemistry. The model incorporates 7 charged species and 18 reactions, along with a solution of the electron energy equation. To the author's knowledge, a parallel three-dimensional model of a gas discharge with a detailed air chemistry model and the solution of electron energy is unique. Three representative geometries are studied using the gas discharge model. The discharge of gas between two parallel electrodes is used to validate the air chemistry model developed for the gas discharge code. The gas discharge model is then applied to the discharge produced by placing a dc powered wire and grounded plate electrodes in a channel. Finally, a three-dimensional simulation of gas discharge produced by electrodes placed inside a riblet is carried out. The body force calculated with the gas discharge model is loosely coupled with a fluid model to predict the induced flow inside the riblet.

  19. An Improved Treatment of External Boundary for Three-Dimensional Flow Computations

    NASA Technical Reports Server (NTRS)

    Tsynkov, Semyon V.; Vatsa, Veer N.

    1997-01-01

    We present an innovative numerical approach for setting highly accurate nonlocal boundary conditions at the external computational boundaries when calculating three-dimensional compressible viscous flows over finite bodies. The approach is based on application of the difference potentials method by V. S. Ryaben'kii and extends our previous technique developed for the two-dimensional case. The new boundary conditions methodology has been successfully combined with the NASA-developed code TLNS3D and used for the analysis of wing-shaped configurations in subsonic and transonic flow regimes. As demonstrated by the computational experiments, the improved external boundary conditions allow one to greatly reduce the size of the computational domain while still maintaining high accuracy of the numerical solution. Moreover, they may provide for a noticeable speedup of convergence of the multigrid iterations.

  20. Development of an integrated BEM for hot fluid-structure interaction

    NASA Technical Reports Server (NTRS)

    Banerjee, P. K.; Dargush, G. F.

    1989-01-01

    The Boundary Element Method (BEM) is chosen as a basic analysis tool principally because the definition of quantities like fluxes, temperature, displacements, and velocities is very precise on a boundary base discretization scheme. One fundamental difficulty is, of course, that the entire analysis requires a very considerable amount of analytical work which is not present in other numerical methods. During the last 18 months all of this analytical work was completed and a two-dimensional, general purpose code was written. Some of the early results are described. It is anticipated that within the next two to three months almost all two-dimensional idealizations will be examined. It should be noted that the analytical work for the three-dimensional case has also been done and numerical implementation will begin next year.

  1. Advantages of multigrid methods for certifying the accuracy of PDE modeling

    NASA Technical Reports Server (NTRS)

    Forester, C. K.

    1981-01-01

    Numerical techniques for assessing and certifying the accuracy of the modeling of partial differential equations (PDE) to the user's specifications are analyzed. Examples of the certification process with conventional techniques are summarized for the three dimensional steady state full potential and the two dimensional steady Navier-Stokes equations using fixed grid methods (FG). The advantages of the Full Approximation Storage (FAS) scheme of the multigrid technique of A. Brandt compared with the conventional certification process of modeling PDE are illustrated in one dimension with the transformed potential equation. Inferences are drawn for how MG will improve the certification process of the numerical modeling of two and three dimensional PDE systems. Elements of the error assessment process that are common to FG and MG are analyzed.

  2. Numerical simulation of unsteady rotational flow over propfan configurations

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Sankar, L. N.

    1989-01-01

    The objective is to develop efficient numerical techniques for the study of aeroelastic response of a propfan in an unsteady transonic flow. A three dimensional unsteady Euler solver is being modified to address this problem.

  3. Theoretical study of platonic crystals with periodically structured N-beam resonators

    NASA Astrophysics Data System (ADS)

    Gao, Penglin; Climente, Alfonso; Sánchez-Dehesa, José; Wu, Linzhi

    2018-03-01

    A multiple scattering theory is applied to study the properties of flexural waves propagating in a plate with periodically structured N-beam resonators. Each resonator consists of a circular hole containing an inner disk connected to background plate with N rectangular beams. The Bloch theorem is employed to obtain the band structure of a two-dimensional lattice containing a single resonator per unit cell. Also, a numerical algorithm has been developed to get the transmittance through resonator slabs infinitely long in the direction perpendicular to the incident wave. For the numerical validation, a square lattice of 2-beam resonators has been comprehensively analyzed. Its band structure exhibits several flat bands, indicating the existence of local resonances embedded in the structure. Particularly, the one featured as the fundamental mode of the inner disk opens a bandgap at low frequencies. This mode has been fully described in terms of a simple spring-mass model. As a practical application of the results obtained, a homogenization approach has been employed to design a focusing lens for flexural waves, where the index gradient is obtained by adjusting the orientation of the resonators beams. Numerical experiments performed within the framework of a three-dimensional finite element method have been employed to discuss the accuracy of the models described here.

  4. Highly Parallel Alternating Directions Algorithm for Time Dependent Problems

    NASA Astrophysics Data System (ADS)

    Ganzha, M.; Georgiev, K.; Lirkov, I.; Margenov, S.; Paprzycki, M.

    2011-11-01

    In our work, we consider the time dependent Stokes equation on a finite time interval and on a uniform rectangular mesh, written in terms of velocity and pressure. For this problem, a parallel algorithm based on a novel direction splitting approach is developed. Here, the pressure equation is derived from a perturbed form of the continuity equation, in which the incompressibility constraint is penalized in a negative norm induced by the direction splitting. The scheme used in the algorithm is composed of two parts: (i) velocity prediction, and (ii) pressure correction. This is a Crank-Nicolson-type two-stage time integration scheme for two and three dimensional parabolic problems in which the second-order derivative, with respect to each space variable, is treated implicitly while the other variable is made explicit at each time sub-step. In order to achieve a good parallel performance the solution of the Poison problem for the pressure correction is replaced by solving a sequence of one-dimensional second order elliptic boundary value problems in each spatial direction. The parallel code is implemented using the standard MPI functions and tested on two modern parallel computer systems. The performed numerical tests demonstrate good level of parallel efficiency and scalability of the studied direction-splitting-based algorithm.

  5. Numerical study of radiometric forces via the direct solution of the Boltzmann kinetic equation

    NASA Astrophysics Data System (ADS)

    Anikin, Yu. A.

    2011-07-01

    The two-dimensional rarefied gas motion in a Crookes radiometer and the resulting radiometric forces are studied by numerically solving the Boltzmann kinetic equation. The collision integral is directly evaluated using a projection method, and second-order accurate TVD schemes are used to solve the advection equation. The radiometric forces are found as functions of the Knudsen number and the temperatures, and their spatial distribution is analyzed.

  6. Advancing three-dimensional MEMS by complimentary laser micro manufacturing

    NASA Astrophysics Data System (ADS)

    Palmer, Jeremy A.; Williams, John D.; Lemp, Tom; Lehecka, Tom M.; Medina, Francisco; Wicker, Ryan B.

    2006-01-01

    This paper describes improvements that enable engineers to create three-dimensional MEMS in a variety of materials. It also provides a means for selectively adding three-dimensional, high aspect ratio features to pre-existing PMMA micro molds for subsequent LIGA processing. This complimentary method involves in situ construction of three-dimensional micro molds in a stand-alone configuration or directly adjacent to features formed by x-ray lithography. Three-dimensional micro molds are created by micro stereolithography (MSL), an additive rapid prototyping technology. Alternatively, three-dimensional features may be added by direct femtosecond laser micro machining. Parameters for optimal femtosecond laser micro machining of PMMA at 800 nanometers are presented. The technical discussion also includes strategies for enhancements in the context of material selection and post-process surface finish. This approach may lead to practical, cost-effective 3-D MEMS with the surface finish and throughput advantages of x-ray lithography. Accurate three-dimensional metal microstructures are demonstrated. Challenges remain in process planning for micro stereolithography and development of buried features following femtosecond laser micro machining.

  7. Three-dimensional application of the Johnson-King turbulence model for a boundary-layer direct method

    NASA Technical Reports Server (NTRS)

    Kavsaoglu, Mehmet S.; Kaynak, Unver; Van Dalsem, William R.

    1989-01-01

    The Johnson-King turbulence model as extended to three-dimensional flows was evaluated using finite-difference boundary-layer direct method. Calculations were compared against the experimental data of the well-known Berg-Elsenaar incompressible flow over an infinite swept-wing. The Johnson-King model, which includes the nonequilibrium effects in a developing turbulent boundary-layer, was found to significantly improve the predictive quality of a direct boundary-layer method. The improvement was especially visible in the computations with increased three-dimensionality of the mean flow, larger integral parameters, and decreasing eddy-viscosity and shear stress magnitudes in the streamwise direction; all in better agreement with the experiment than simple mixing-length methods.

  8. The impact of the form of the Euler equations for radial flow in cylindrical and spherical coordinates on numerical conservation and accuracy

    NASA Astrophysics Data System (ADS)

    Crittenden, P. E.; Balachandar, S.

    2018-07-01

    The radial one-dimensional Euler equations are often rewritten in what is known as the geometric source form. The differential operator is identical to the Cartesian case, but source terms result. Since the theory and numerical methods for the Cartesian case are well-developed, they are often applied without modification to cylindrical and spherical geometries. However, numerical conservation is lost. In this article, AUSM^+-up is applied to a numerically conservative (discrete) form of the Euler equations labeled the geometric form, a nearly conservative variation termed the geometric flux form, and the geometric source form. The resulting numerical methods are compared analytically and numerically through three types of test problems: subsonic, smooth, steady-state solutions, Sedov's similarity solution for point or line-source explosions, and shock tube problems. Numerical conservation is analyzed for all three forms in both spherical and cylindrical coordinates. All three forms result in constant enthalpy for steady flows. The spatial truncation errors have essentially the same order of convergence, but the rate constants are superior for the geometric and geometric flux forms for the steady-state solutions. Only the geometric form produces the correct shock location for Sedov's solution, and a direct connection between the errors in the shock locations and energy conservation is found. The shock tube problems are evaluated with respect to feature location using an approximation with a very fine discretization as the benchmark. Extensions to second order appropriate for cylindrical and spherical coordinates are also presented and analyzed numerically. Conclusions are drawn, and recommendations are made. A derivation of the steady-state solution is given in the Appendix.

  9. The impact of the form of the Euler equations for radial flow in cylindrical and spherical coordinates on numerical conservation and accuracy

    NASA Astrophysics Data System (ADS)

    Crittenden, P. E.; Balachandar, S.

    2018-03-01

    The radial one-dimensional Euler equations are often rewritten in what is known as the geometric source form. The differential operator is identical to the Cartesian case, but source terms result. Since the theory and numerical methods for the Cartesian case are well-developed, they are often applied without modification to cylindrical and spherical geometries. However, numerical conservation is lost. In this article, AUSM^+ -up is applied to a numerically conservative (discrete) form of the Euler equations labeled the geometric form, a nearly conservative variation termed the geometric flux form, and the geometric source form. The resulting numerical methods are compared analytically and numerically through three types of test problems: subsonic, smooth, steady-state solutions, Sedov's similarity solution for point or line-source explosions, and shock tube problems. Numerical conservation is analyzed for all three forms in both spherical and cylindrical coordinates. All three forms result in constant enthalpy for steady flows. The spatial truncation errors have essentially the same order of convergence, but the rate constants are superior for the geometric and geometric flux forms for the steady-state solutions. Only the geometric form produces the correct shock location for Sedov's solution, and a direct connection between the errors in the shock locations and energy conservation is found. The shock tube problems are evaluated with respect to feature location using an approximation with a very fine discretization as the benchmark. Extensions to second order appropriate for cylindrical and spherical coordinates are also presented and analyzed numerically. Conclusions are drawn, and recommendations are made. A derivation of the steady-state solution is given in the Appendix.

  10. A tool for simulating collision probabilities of animals with marine renewable energy devices.

    PubMed

    Schmitt, Pál; Culloch, Ross; Lieber, Lilian; Molander, Sverker; Hammar, Linus; Kregting, Louise

    2017-01-01

    The mathematical problem of establishing a collision probability distribution is often not trivial. The shape and motion of the animal as well as of the the device must be evaluated in a four-dimensional space (3D motion over time). Earlier work on wind and tidal turbines was limited to a simplified two-dimensional representation, which cannot be applied to many new structures. We present a numerical algorithm to obtain such probability distributions using transient, three-dimensional numerical simulations. The method is demonstrated using a sub-surface tidal kite as an example. Necessary pre- and post-processing of the data created by the model is explained, numerical details and potential issues and limitations in the application of resulting probability distributions are highlighted.

  11. Stochastic weighted particle methods for population balance equations with coagulation, fragmentation and spatial inhomogeneity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kok Foong; Patterson, Robert I.A.; Wagner, Wolfgang

    2015-12-15

    Graphical abstract: -- Highlights: •Problems concerning multi-compartment population balance equations are studied. •A class of fragmentation weight transfer functions is presented. •Three stochastic weighted algorithms are compared against the direct simulation algorithm. •The numerical errors of the stochastic solutions are assessed as a function of fragmentation rate. •The algorithms are applied to a multi-dimensional granulation model. -- Abstract: This paper introduces stochastic weighted particle algorithms for the solution of multi-compartment population balance equations. In particular, it presents a class of fragmentation weight transfer functions which are constructed such that the number of computational particles stays constant during fragmentation events. Themore » weight transfer functions are constructed based on systems of weighted computational particles and each of it leads to a stochastic particle algorithm for the numerical treatment of population balance equations. Besides fragmentation, the algorithms also consider physical processes such as coagulation and the exchange of mass with the surroundings. The numerical properties of the algorithms are compared to the direct simulation algorithm and an existing method for the fragmentation of weighted particles. It is found that the new algorithms show better numerical performance over the two existing methods especially for systems with significant amount of large particles and high fragmentation rates.« less

  12. Reverberation effects on directionality and response of stationary monopole and dipole sources in a wind tunnel

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1985-01-01

    Analytical solutions for the three dimensional inhomogeneous wave equation with flow in a hardwall rectangular wind tunnel and in the free field are presented for a stationary monopole noise source. Dipole noise sources are calculated by combining two monopoles 180 deg out of phase. Numerical calculations for the modal content, spectral response and directivity for both monopole and dipole sources are presented. In addition, the effect of tunnel alterations, such as the addition of a mounting plate, on the tunnels reverberant response are considered. In the frequency range of practical importance for the turboprop response, important features of the free field directivity can be approximated in a hardwall wind tunnel with flow if the major lobe of the noise source is not directed upstream. However, for an omnidirectional source, such as a monopole, the hardwall wind tunnel and free field response are not comparable.

  13. Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet

    PubMed Central

    Li, C. K.; Tzeferacos, P.; Lamb, D.; Gregori, G.; Norreys, P. A.; Rosenberg, M. J.; Follett, R. K.; Froula, D. H.; Koenig, M.; Seguin, F. H.; Frenje, J. A.; Rinderknecht, H. G.; Sio, H.; Zylstra, A. B.; Petrasso, R. D.; Amendt, P. A.; Park, H. S.; Remington, B. A.; Ryutov, D. D.; Wilks, S. C.; Betti, R.; Frank, A.; Hu, S. X.; Sangster, T. C.; Hartigan, P.; Drake, R. P.; Kuranz, C. C.; Lebedev, S. V.; Woolsey, N. C.

    2016-01-01

    The remarkable discovery by the Chandra X-ray observatory that the Crab nebula's jet periodically changes direction provides a challenge to our understanding of astrophysical jet dynamics. It has been suggested that this phenomenon may be the consequence of magnetic fields and magnetohydrodynamic instabilities, but experimental demonstration in a controlled laboratory environment has remained elusive. Here we report experiments that use high-power lasers to create a plasma jet that can be directly compared with the Crab jet through well-defined physical scaling laws. The jet generates its own embedded toroidal magnetic fields; as it moves, plasma instabilities result in multiple deflections of the propagation direction, mimicking the kink behaviour of the Crab jet. The experiment is modelled with three-dimensional numerical simulations that show exactly how the instability develops and results in changes of direction of the jet. PMID:27713403

  14. Estimation of three-dimensional radar tracking using modified extended kalman filter

    NASA Astrophysics Data System (ADS)

    Aditya, Prima; Apriliani, Erna; Khusnul Arif, Didik; Baihaqi, Komar

    2018-03-01

    Kalman filter is an estimation method by combining data and mathematical models then developed be extended Kalman filter to handle nonlinear systems. Three-dimensional radar tracking is one of example of nonlinear system. In this paper developed a modification method of extended Kalman filter from the direct decline of the three-dimensional radar tracking case. The development of this filter algorithm can solve the three-dimensional radar measurements in the case proposed in this case the target measured by radar with distance r, azimuth angle θ, and the elevation angle ϕ. Artificial covariance and mean adjusted directly on the three-dimensional radar system. Simulations result show that the proposed formulation is effective in the calculation of nonlinear measurement compared with extended Kalman filter with the value error at 0.77% until 1.15%.

  15. Turbulence-enhanced bottom melting of a horizontal glacier--lake interface

    NASA Astrophysics Data System (ADS)

    Keitzl, T.; Mellado, J. P.; Notz, D.

    2014-12-01

    We use laboratory tank experiments and direct numerical simulations to investigate the meltrates of a horizontal bottom glacier--lake interface as a function of lake temperature. Existing parameterisations of such meltrates are usually based on empirical fits to field observations. To understand the meltrates of an ice--water interface more systematically we study an idealised system in terms of its temperature-driven buoyancy forcing. In such systems, the meltrate can be expressed analytically for a stable stratification. Here we investigate the unstable case and present how the meltrate depends on the lake temperature when the water beneath the ice is overturning and turbulent. We use laboratory tank experiments and direct numerical simulations to study an idealised ice--water boundary. The laboratory tank experiments provide robust observation-based mean-temperature profiles. The numerical simulations provide the full three-dimensional structure of the turbulent flow down to scales not accessible in the laboratory, with a minimum 0.2mm gridspacing. Our laboratory mean-temperature profiles agree well with the numerical simulations and lend credibility to our numerical setup. The structure of the turbulent flow in our simulations is well described by two self-similar subregions, a diffusion-dominated inner layer close to the ice and a turbulence-dominated outer layer far from the ice. We provide an explicit expression for the parameterisation of the meltrate of a horizontal glacier--lake interface as a function of lake temperature.

  16. A supersonic, three-dimensional code for flow over blunt bodies: User's manual

    NASA Technical Reports Server (NTRS)

    Chaussee, D. S.; Mcmillan, O. J.

    1980-01-01

    A computer code is described which may be used to calculate the steady, supersonic, three-dimensional, inviscid flow over blunt bodies. The theoretical and numerical formulation of the problem is given (shock-capturing, downstream marching), including exposition of the boundary and initial conditions. The overall flow logic of the program, its usage, accuracy, and limitations are discussed.

  17. Generation of three-dimensional body-fitted coordinates using hyperbolic partial differential equations

    NASA Technical Reports Server (NTRS)

    Steger, J. L.; Rizk, Y. M.

    1985-01-01

    An efficient numerical mesh generation scheme capable of creating orthogonal or nearly orthogonal grids about moderately complex three dimensional configurations is described. The mesh is obtained by marching outward from a user specified grid on the body surface. Using spherical grid topology, grids have been generated about full span rectangular wings and a simplified space shuttle orbiter.

  18. Three-dimensional interactions and vortical flows with emphasis on high speeds

    NASA Technical Reports Server (NTRS)

    Peake, D. J.; Tobak, M.

    1980-01-01

    Diverse kinds of three-dimensional regions of separation in laminar and turbulent boundary layers are discussed that exist on lifting aerodynamic configurations immersed in flows from subsonic to hypersonic speeds. In all cases of three dimensional flow separation, the assumption of continuous vector fields of skin-friction lines and external-flow streamlines, coupled with simple topology laws, provides a flow grammar whose elemental constituents are the singular points: nodes, foci, and saddles. Adopting these notions enables one to create sequences of plausible flow structures, to deduce mean flow characteristics, expose flow mechanisms, and to aid theory and experiment where lack of resolution in numerical calculations or wind tunnel observation causes imprecision in diagnosing the three dimensional flow features.

  19. Discrete is it enough? The revival of Piola-Hencky keynotes to analyze three-dimensional Elastica

    NASA Astrophysics Data System (ADS)

    Turco, Emilio

    2018-04-01

    Complex problems such as those concerning the mechanics of materials can be confronted only by considering numerical simulations. Analytical methods are useful to build guidelines or reference solutions but, for general cases of technical interest, they have to be solved numerically, especially in the case of large displacements and deformations. Probably continuous models arose for producing inspiring examples and stemmed from homogenization techniques. These techniques allowed for the solution of some paradigmatic examples but, in general, always require a discretization method for solving problems dictated by the applications. Therefore, and also by taking into account that computing powers are nowadays more largely available and cheap, the question arises: why not using directly a discrete model for 3D beams? In other words, it could be interesting to formulate a discrete model without using an intermediate continuum one, as this last, at the end, has to be discretized in any case. These simple considerations immediately evoke some very basic models developed many years ago when the computing powers were practically inexistent but the problem of finding simple solutions to beam deformation problem was already an emerging one. Actually, in recent years, the keynotes of Hencky and Piola attracted a renewed attention [see, one for all, the work (Turco et al. in Zeitschrift für Angewandte Mathematik und Physik 67(4):1-28, 2016)]: generalizing their results, in the present paper, a novel directly discrete three-dimensional beam model is presented and discussed, in the framework of geometrically nonlinear analysis. Using a stepwise algorithm based essentially on Newton's method to compute the extrapolations and on the Riks' arc-length method to perform the corrections, we could obtain some numerical simulations showing the computational effectiveness of presented model: Indeed, it presents a convenient balance between accuracy and computational cost.

  20. A Three-Dimensional Pore-Scale Model for Non-Wetting Phase Mobilization with Ferrofluid

    NASA Astrophysics Data System (ADS)

    Wang, N.; Prodanovic, M.

    2017-12-01

    Ferrofluid, a stable dispersion of paramagnetic nanoparticles in water, can generate a distributed pressure difference across the phase interface in an immiscible two-phase flow under an external magnetic field. In water-wet porous media, this non-uniform pressure difference may be used to mobilize the non-wetting phase, e.g. oil, trapped in the pores. Previous numerical work by Soares et al. of two-dimensional single-pore model showed enhanced non-wetting phase recovery with water-based ferrofluid under certain magnetic field directions and decreased recovery under other directions. However, the magnetic field selectively concentrates in the high magnetic permeability ferrofluid which fills the small corners between the non-wetting phase and the solid wall. The magnetic field induced pressure is proportional to the square of local magnetic field strength and its normal component, and makes a significant impact on the non-wetting phase deformation. The two-dimensional model omitted the effect of most of these corners and is not sufficient to compute the magnetic-field-induced pressure difference or to predict the non-wetting blob deformation. Further, it is not clear that 3D effects on magnetic field in an irregular geometry can be approximated in 2D. We present a three-dimensional immiscible two-phase flow model to simulate the deformation of a non-wetting liquid blob in a single pore filled with a ferrofluid under a uniform external magnetic field. The ferrofluid is modeled as a uniform single phase because the nanoparticles are 104 times smaller than the pore. The open source CFD solver library OpenFOAM is used for the simulations based on the volume of fluid method. Simulations are performed in a converging-diverging channel model on different magnetic field direction, different initial oil saturations, and different pore shapes. Results indicate that the external magnetic field always stretches the non-wetting blob away from the solid channel wall. A magnetic field transverse to the channel direction may likely provide the best elongation along the channel direction for the non-wetting blob. The pore-throat size ratio has an impact on the deformation of the non-wetting blob.

  1. Three-dimensional viscous rotor flow calculations using a viscous-inviscid interaction approach

    NASA Technical Reports Server (NTRS)

    Chen, Ching S.; Bridgeman, John O.

    1990-01-01

    A three-dimensional viscous-inviscid interaction analysis was developed to predict the performance of rotors in hover and in forward flight at subsonic and transonic tip speeds. The analysis solves the full-potential and boundary-layer equations by finite-difference numerical procedures. Calculations were made for several different model rotor configurations. The results were compared with predictions from a two-dimensional integral method and with experimental data. The comparisons show good agreement between predictions and test data.

  2. Particle-tracking analysis of contributing areas of public-supply wells in simple and complex flow systems, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Barlow, Paul M.

    1997-01-01

    Steady-state, two- and three-dimensional, ground-water-flow models coupled with particle tracking were evaluated to determine their effectiveness in delineating contributing areas of wells pumping from stratified-drift aquifers of Cape Cod, Massachusetts. Several contributing areas delineated by use of the three-dimensional models do not conform to simple ellipsoidal shapes that are typically delineated by use of two-dimensional analytical and numerical modeling techniques and included discontinuous areas of the water table.

  3. Mathematical Modeling and Numerical Analysis of Thermal Distribution in Arch Dams considering Solar Radiation Effect

    PubMed Central

    Mirzabozorg, H.; Hariri-Ardebili, M. A.; Shirkhan, M.; Seyed-Kolbadi, S. M.

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams. PMID:24695817

  4. Energy Spectrum in the Dissipation Range of Fluid Turbulence

    NASA Technical Reports Server (NTRS)

    Martinez, D. O.; Chen, S.; Doolen, G. D.; Kraichnan, R. H.; Wang, L.-P.; Zhou, Y.

    1996-01-01

    High resolution, direct numerical simulations of the three-dimensional incompressible Navier-Stokes equations are carried out to study the energy spectrum in the dissipation range. An energy spectrum of the form A(k/k( sub d))(sup alpha) exp[- betak/k(sub d) is confirmed. The possible values of the parameters alpha and beta, as well as their dependence on Revnolds numbers and length scales, are investigated, showing good agreement with recent theoretical predictions. A "bottleneck'-type effect is reported at k/k(sub d) approximately 4, exhibiting a possible transition from near-dissipation to far- dissipation.

  5. Identification of complex flows in Taylor-Couette counter-rotating cavities

    NASA Technical Reports Server (NTRS)

    Czarny, O.; Serre, E.; Bontoux, P.; Lueptow, R. M.

    2001-01-01

    The transition in confined rotating flows is a topical problem with many industrial and fundamental applications. The purpose of this study is to investigate the Taylor-Couette flow in a finite-length cavity with counter-rotating walls, for two aspect ratios L=5 or L=6. Two complex regimes of wavy vortex and spirals are emphasized for the first time via direct numerical simulation, by using a three-dimensional spectral method. The spatio-temporal behavior of the solutions is analyzed and compared to the few data actually available. c2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.

  6. Mathematical modeling and numerical analysis of thermal distribution in arch dams considering solar radiation effect.

    PubMed

    Mirzabozorg, H; Hariri-Ardebili, M A; Shirkhan, M; Seyed-Kolbadi, S M

    2014-01-01

    The effect of solar radiation on thermal distribution in thin high arch dams is investigated. The differential equation governing thermal behavior of mass concrete in three-dimensional space is solved applying appropriate boundary conditions. Solar radiation is implemented considering the dam face direction relative to the sun, the slop relative to horizon, the region cloud cover, and the surrounding topography. It has been observed that solar radiation changes the surface temperature drastically and leads to nonuniform temperature distribution. Solar radiation effects should be considered in thermal transient analysis of thin arch dams.

  7. Light polarization management via reflection from arrays of sub-wavelength metallic twisted bands

    NASA Astrophysics Data System (ADS)

    Nawrot, M.; Haberko, J.; Zinkiewicz, Ł.; Wasylczyk, P.

    2017-12-01

    With constant progress of nano- and microfabrication technologies, photolithography in particular, a number of sub-wavelength metallic structures have been demonstrated that can be used to manipulate light polarization. Numerical simulations of light propagation hint that helical twisted bands can have interesting polarization properties. We use three-dimensional two-photon photolithography (direct laser writing) to fabricate a few-micrometer-thick arrays of twisted bands and coat them uniformly with metal. We demonstrate that circular polarization can be generated from linear polarization upon reflection from such structures over a broad range of frequencies in the mid infrared.

  8. Bifurcations of periodic motion in a three-degree-of-freedom vibro-impact system with clearance

    NASA Astrophysics Data System (ADS)

    Liu, Yongbao; Wang, Qiang; Xu, Huidong

    2017-07-01

    The smooth bifurcation and grazing non-smooth bifurcation of periodic motion of a three-degree-of-freedom vibro-impact system with clearance are studied in this paper. Firstly, a periodic solution of vibro-impact system is solved and a six-dimensional Poincaré map is established. Then, for the six-dimensional Poincaré map, the analytic expressions of all eigenvalues of Jacobi matrix with respect to parameters are unavailable. This implies that with application of the classical critical criterion described by the properties of eigenvalues, we have to numerically compute eigenvalues point by point and check their properties to search for the bifurcation points. Such the numerical calculation is a laborious job in the process of determining bifurcation points. To overcome the difficulty that originates from the classical bifurcation criteria, the explicit critical criteria without using eigenvalues calculation of high-dimensional map are applied to determine bifurcation points of Co-dimension-one period doubling bifurcation and Co-dimension-one Neimark-Sacker bifurcation and Co-dimension-two Flip-Neimark-Sacker bifurcation, and then local dynamical behaviors of these bifurcations are analyzed. Moreover, the directions of period doubling bifurcation and Neimark-Sacker bifurcation are analyzed by center manifold reduction theory and normal form approach. Finally, the existence of the grazing periodic motion of the vibro-impact system is analyzed and the grazing bifurcation point is obtained, the discontinuous grazing bifurcation behavior is studied based on the compound normal form map near the grazing point, the discontinuous jumping phenomenon and co-existing multiple solutions near the grazing bifurcation point are revealed.

  9. Comparison between PVI2D and Abreu–Johnson’s Model for Petroleum Vapor Intrusion Assessment

    PubMed Central

    Yao, Yijun; Wang, Yue; Verginelli, Iason; Suuberg, Eric M.; Ye, Jianfeng

    2018-01-01

    Recently, we have developed a two-dimensional analytical petroleum vapor intrusion model, PVI2D (petroleum vapor intrusion, two-dimensional), which can help users to easily visualize soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, reaction rate constant, soil characteristics, and building features. In this study, we made a full comparison of the results returned by PVI2D and those obtained using Abreu and Johnson’s three-dimensional numerical model (AJM). These comparisons, examined as a function of the source strength, source depth, and reaction rate constant, show that PVI2D can provide similar soil gas concentration profiles and source-to-indoor air attenuation factors (within one order of magnitude difference) as those by the AJM. The differences between the two models can be ascribed to some simplifying assumptions used in PVI2D and to some numerical limitations of the AJM in simulating strictly piecewise aerobic biodegradation and no-flux boundary conditions. Overall, the obtained results show that for cases involving homogenous source and soil, PVI2D can represent a valid alternative to more rigorous three-dimensional numerical models. PMID:29398981

  10. Computation of three-dimensional three-phase flow of carbon dioxide using a high-order WENO scheme

    NASA Astrophysics Data System (ADS)

    Gjennestad, Magnus Aa.; Gruber, Andrea; Lervåg, Karl Yngve; Johansen, Øyvind; Ervik, Åsmund; Hammer, Morten; Munkejord, Svend Tollak

    2017-11-01

    We have developed a high-order numerical method for the 3D simulation of viscous and inviscid multiphase flow described by a homogeneous equilibrium model and a general equation of state. Here we focus on single-phase, two-phase (gas-liquid or gas-solid) and three-phase (gas-liquid-solid) flow of CO2 whose thermodynamic properties are calculated using the Span-Wagner reference equation of state. The governing equations are spatially discretized on a uniform Cartesian grid using the finite-volume method with a fifth-order weighted essentially non-oscillatory (WENO) scheme and the robust first-order centered (FORCE) flux. The solution is integrated in time using a third-order strong-stability-preserving Runge-Kutta method. We demonstrate close to fifth-order convergence for advection-diffusion and for smooth single- and two-phase flows. Quantitative agreement with experimental data is obtained for a direct numerical simulation of an air jet flowing from a rectangular nozzle. Quantitative agreement is also obtained for the shape and dimensions of the barrel shock in two highly underexpanded CO2 jets.

  11. Experimental and numerical investigation of feed-point parameters in a 3-D hyperthermia applicator using different FDTD models of feed networks.

    PubMed

    Nadobny, Jacek; Fähling, Horst; Hagmann, Mark J; Turner, Paul F; Wlodarczyk, Waldemar; Gellermann, Johanna M; Deuflhard, Peter; Wust, Peter

    2002-11-01

    Experimental and numerical methods were used to determine the coupling of energy in a multichannel three-dimensional hyperthermia applicator (SIGMA-Eye), consisting of 12 short dipole antenna pairs with stubs for impedance matching. The relationship between the amplitudes and phases of the forward waves from the amplifiers, to the resulting amplitudes and phases at the antenna feed-points was determined in terms of interaction matrices. Three measuring methods were used: 1) a differential probe soldered directly at the antenna feed-points; 2) an E-field sensor placed near the feed-points; and 3) measurements were made at the outputs of the amplifier. The measured data were compared with finite-difference time-domain (FDTD) calculations made with three different models. The first model assumes that single antennas are fed independently. The second model simulates antenna pairs connected to the transmission lines. The measured data correlate best with the latter FDTD model, resulting in an improvement of more than 20% and 20 degrees (average difference in amplitudes and phases) when compared with the two simpler FDTD models.

  12. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam.

    PubMed

    Li, Xiangping; Lan, Tzu-Hsiang; Tien, Chung-Hao; Gu, Min

    2012-01-01

    The interplay between light polarization and matter is the basis of many fundamental physical processes and applications. However, the electromagnetic wave nature of light in free space sets a fundamental limit on the three-dimensional polarization orientation of a light beam. Although a high numerical aperture objective can be used to bend the wavefront of a radially polarized beam to generate the longitudinal polarization state in the focal volume, the arbitrary three-dimensional polarization orientation of a beam has not been achieved yet. Here we present a novel technique for generating arbitrary three-dimensional polarization orientation by a single optically configured vectorial beam. As a consequence, by applying this technique to gold nanorods, orientation-unlimited polarization encryption with ultra-security is demonstrated. These results represent a new landmark of the orientation-unlimited three-dimensional polarization control of the light-matter interaction.

  13. NAPL: SIMULATOR DOCUMENTATION

    EPA Science Inventory

    A mathematical and numerical model is developed to simulate the transport and fate of NAPLs (Non-Aqueous Phase Liquids) in near-surface granular soils. The resulting three-dimensional, three phase simulator is called NAPL. The simulator accommodates three mobile phases: water, NA...

  14. Putting atomic diffusion theory of magnetic ApBp stars to the test: evaluation of the predictions of time-dependent diffusion models

    NASA Astrophysics Data System (ADS)

    Kochukhov, O.; Ryabchikova, T. A.

    2018-02-01

    A series of recent theoretical atomic diffusion studies has address the challenging problem of predicting inhomogeneous vertical and horizontal chemical element distributions in the atmospheres of magnetic ApBp stars. Here we critically assess the most sophisticated of such diffusion models - based on a time-dependent treatment of the atomic diffusion in a magnetized stellar atmosphere - by direct comparison with observations as well by testing the widely used surface mapping tools with the spectral line profiles predicted by this theory. We show that the mean abundances of Fe and Cr are grossly underestimated by the time-dependent theoretical diffusion model, with discrepancies reaching a factor of 1000 for Cr. We also demonstrate that Doppler imaging inversion codes, based either on modelling of individual metal lines or line-averaged profiles simulated according to theoretical three-dimensional abundance distribution, are able to reconstruct correct horizontal chemical spot maps despite ignoring the vertical abundance variation. These numerical experiments justify a direct comparison of the empirical two-dimensional Doppler maps with theoretical diffusion calculations. This comparison is generally unfavourable for the current diffusion theory, as very few chemical elements are observed to form overabundance rings in the horizontal field regions as predicted by the theory and there are numerous examples of element accumulations in the vicinity of radial field zones, which cannot be explained by diffusion calculations.

  15. Three-dimensional vortex-bright solitons in a spin-orbit-coupled spin-1 condensate

    NASA Astrophysics Data System (ADS)

    Gautam, Sandeep; Adhikari, S. K.

    2018-01-01

    We demonstrate stable and metastable vortex-bright solitons in a three-dimensional spin-orbit-coupled three-component hyperfine spin-1 Bose-Einstein condensate (BEC) using numerical solution and variational approximation of a mean-field model. The spin-orbit coupling provides attraction to form vortex-bright solitons in both attractive and repulsive spinor BECs. The ground state of these vortex-bright solitons is axially symmetric for weak polar interaction. For a sufficiently strong ferromagnetic interaction, we observe the emergence of a fully asymmetric vortex-bright soliton as the ground state. We also numerically investigate moving solitons. The present mean-field model is not Galilean invariant, and we use a Galilean-transformed mean-field model for generating the moving solitons.

  16. Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castillo-Negrete, Diego del; Blazevski, Daniel

    2016-04-15

    Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in three-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands andmore » remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. Results on modulated heat pulse propagation in fully stochastic fields and across magnetic islands are also presented. In qualitative agreement with recent experiments in large helical device and DIII-D, it is shown that the elliptic (O) and hyperbolic (X) points of magnetic islands have a direct impact on the spatio-temporal dependence of the amplitude of modulated heat pulses.« less

  17. A semi-implicit finite difference model for three-dimensional tidal circulation,

    USGS Publications Warehouse

    Casulli, V.; Cheng, R.T.

    1992-01-01

    A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is presented. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that in the absence of horizontal viscosity the resulting algorithm is unconditionally stable at a minimal computational cost. When only one vertical layer is specified this method reduces, as a particular case, to a semi-implicit scheme for the solutions of the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm is fast, accurate and mass conservative. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers.

  18. NASA-VOF3D: A three-dimensional computer program for incompressible flows with free surfaces

    NASA Astrophysics Data System (ADS)

    Torrey, M. D.; Mjolsness, R. C.; Stein, L. R.

    1987-07-01

    Presented is the NASA-VOF3D three-dimensional, transient, free-surface hydrodynamics program. This three-dimensional extension of NASA-VOF2D will, in principle, permit treatment in full three-dimensional generality of the wide variety of applications that could be treated by NASA-VOF2D only within the two-dimensional idealization. In particular, it, like NASA-VOF2D, is specifically designed to calculate confined flows in a low g environment. The code is presently restricted to cylindrical geometry. The code is based on the fractional volume-of-fluid method and allows multiple free surfaces with surface tension and wall adhesion. It also has a partial cell treatment that allows curved boundaries and internal obstacles. This report provides a brief discussion of the numerical method, a code listing, and some sample problems.

  19. Three-dimensional numerical simulation of a continuously rotating detonation in the annular combustion chamber with a wide gap and separate delivery of fuel and oxidizer

    NASA Astrophysics Data System (ADS)

    Frolov, S. M.; Dubrovskii, A. V.; Ivanov, V. S.

    2016-07-01

    The possibility of integrating the Continuous Detonation Chamber (CDC) in a gas turbine engine (GTE) is demonstrated by means of three-dimensional (3D) numerical simulations, i. e., the feasibility of the operation process in the annular combustion chamber with a wide gap and with separate feeding of fuel (hydrogen) and oxidizer (air) is proved computationally. The CDC with an upstream isolator damping pressure disturbances propagating towards the compressor is shown to exhibit a gain in the total pressure of 15% as compared with the same combustion chamber operating in the deflagration mode.

  20. Numerical investigation on the viewing angle of a lenticular three-dimensional display with a triplet lens array.

    PubMed

    Kim, Hwi; Hahn, Joonku; Choi, Hee-Jin

    2011-04-10

    We investigate the viewing angle enhancement of a lenticular three-dimensional (3D) display with a triplet lens array. The theoretical limitations of the viewing angle and view number of the lenticular 3D display with the triplet lens array are analyzed numerically. For this, the genetic-algorithm-based design method of the triplet lens is developed. We show that a lenticular 3D display with viewing angle of 120° and 144 views without interview cross talk can be realized with the use of an optimally designed triplet lens array. © 2011 Optical Society of America

  1. A numerical method for determination of source time functions for general three-dimensional rupture propagation

    NASA Technical Reports Server (NTRS)

    Das, S.

    1979-01-01

    A method to determine the displacement and the stress on the crack plane for a three-dimensional shear crack of arbitrary shape propagating in an infinite, homogeneous medium which is linearly elastic everywhere off the crack plane is presented. The main idea of the method is to use a representation theorem in which the displacement at any given point on the crack plane is written as an integral of the traction over the whole crack plane. As a test of the accuracy of the numerical technique, the results are compared with known solutions for two simple cases.

  2. Effects of mass transfer on MHD three dimensional flow of a Prandtl liquid over a flat plate in the presence of chemical reaction

    NASA Astrophysics Data System (ADS)

    Ganesh Kumar, K.; Rizwan-ul-Haq; Rudraswamy, N. G.; Gireesha, B. J.

    The present study addresses the three-dimensional flow of a Prandtl fluid over a Riga plate in the presence of chemical reaction and convective condition. The converted set of boundary layer equations are solved numerically by RKF four-fifth method. Obtained numerical results for flow and mass transfer characteristics are discussed for various physical parameters. Additionally, the skin friction coefficient and Sherwood number are also presented. It is found that, the momentum boundary layer thickness is dominant for higher values of α and solutal boundary layer is low for higher Schmidt number and chemical reaction parameter.

  3. New numerical solutions of three-dimensional compressible hydrodynamic convection. [in stars

    NASA Technical Reports Server (NTRS)

    Hossain, Murshed; Mullan, D. J.

    1990-01-01

    Numerical solutions of three-dimensional compressible hydrodynamics (including sound waves) in a stratified medium with open boundaries are presented. Convergent/divergent points play a controlling role in the flows, which are dominated by a single frequency related to the mean sound crossing time. Superposed on these rapid compressive flows, slower eddy-like flows eventually create convective transport. The solutions contain small structures stacked on top of larger ones, with vertical scales equal to the local pressure scale heights, H sub p. Although convective transport starts later in the evolution, vertical scales of H sub p are apparently selected at much earlier times by nonlinear compressive effects.

  4. Three-dimensional turbulent-mixing-length modeling for discrete-hole coolant injection into a crossflow

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Papell, S. S.

    1983-01-01

    Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.

  5. Three-dimensional turbulent-mixing-length modeling for discrete-hole coolant injection into a crossflow

    NASA Astrophysics Data System (ADS)

    Wang, C. R.; Papell, S. S.

    1983-09-01

    Three dimensional mixing length models of a flow field immediately downstream of coolant injection through a discrete circular hole at a 30 deg angle into a crossflow were derived from the measurements of turbulence intensity. To verify their effectiveness, the models were used to estimate the anisotropic turbulent effects in a simplified theoretical and numerical analysis to compute the velocity and temperature fields. With small coolant injection mass flow rate and constant surface temperature, numerical results of the local crossflow streamwise velocity component and surface heat transfer rate are consistent with the velocity measurement and the surface film cooling effectiveness distributions reported in previous studies.

  6. Three-dimensional Numerical Simulation of Gas-particulate Flow around Breathing Human and Particulate Inhalation

    NASA Astrophysics Data System (ADS)

    Shimazaki, Yasuhiro; Okubo, Masaaki; Yamamoto, Toshiaki

    2006-05-01

    It is important to predict the environment around the breathing human because inhalation of virus (avian influenza, SARS) is recently severe worldwide problem, and air pollution caused by diesel emission particle (DEP) and asbestos attract a great deal of attention. In the present study, three-dimensional numerical simulation was carried out to predict unsteady flows around a breathing human and how suspended particulate matter (SPM, diameter˜1 μm) reaches the human nose in inhalation and exhalation. In the calculation, we find out smaller breathing angle and the closer distance between the human nose and pollutant region are effective in the inhalation of SPM.

  7. The Modified Hartmann Potential Effects on γ-rigid Bohr Hamiltonian

    NASA Astrophysics Data System (ADS)

    Suparmi, A.; Cari, C.; Nur Pratiwi, Beta

    2018-04-01

    In this paper, we present the solution of Bohr Hamiltonian in the case of γ-rigid for the modified Hartmann potential. The modified Hartmann potential was formed from the original Hartmann potential, consists of β function and θ function. By using the separation method, the three-dimensional Bohr Hamiltonian equation was reduced into three one-dimensional Schrodinger-like equation which was solved analytically. The results for the wavefunction were shown in mathematically, while for the binding energy was solved numerically. The numerical binding energy for the presence of the modified Hartmann potential is lower than the binding energy value in the absence of modified Hartmann potential effect.

  8. The Numerical Analysis of a Turbulent Compressible Jet. Degree awarded by Ohio State Univ., 2000

    NASA Technical Reports Server (NTRS)

    DeBonis, James R.

    2001-01-01

    A numerical method to simulate high Reynolds number jet flows was formulated and applied to gain a better understanding of the flow physics. Large-eddy simulation was chosen as the most promising approach to model the turbulent structures due to its compromise between accuracy and computational expense. The filtered Navier-Stokes equations were developed including a total energy form of the energy equation. Subgrid scale models for the momentum and energy equations were adapted from compressible forms of Smagorinsky's original model. The effect of using disparate temporal and spatial accuracy in a numerical scheme was discovered through one-dimensional model problems and a new uniformly fourth-order accurate numerical method was developed. Results from two- and three-dimensional validation exercises show that the code accurately reproduces both viscous and inviscid flows. Numerous axisymmetric jet simulations were performed to investigate the effect of grid resolution, numerical scheme, exit boundary conditions and subgrid scale modeling on the solution and the results were used to guide the three-dimensional calculations. Three-dimensional calculations of a Mach 1.4 jet showed that this LES simulation accurately captures the physics of the turbulent flow. The agreement with experimental data was relatively good and is much better than results in the current literature. Turbulent intensities indicate that the turbulent structures at this level of modeling are not isotropic and this information could lend itself to the development of improved subgrid scale models for LES and turbulence models for RANS simulations. A two point correlation technique was used to quantify the turbulent structures. Two point space correlations were used to obtain a measure of the integral length scale, which proved to be approximately 1/2 D(sub j). Two point space-time correlations were used to obtain the convection velocity for the turbulent structures. This velocity ranged from 0.57 to 0.71 U(sub j).

  9. A numerical experiment that provides new results regarding the inception of separation in the flow around a circular cylinder

    NASA Astrophysics Data System (ADS)

    Malamataris, Nikolaos; Liakos, Anastasios

    2015-11-01

    The exact value of the Reynolds number regarding the inception of separation in the flow around a circular cylinder is still a matter of research. This work connects the inception of separation with the calculation of a positive pressure gradient around the circumference of the cylinder. The hypothesis is that inception of separation occurs when the pressure gradient becomes positive around the circumference. From the most cited laboratory experiments that have dealt with that subject of inception of separation only Thom has measured the pressure gradient there at very low Reynolds numbers (up to Re=3.5). For this reason, the experimental conditions of his tunnel are simulated in a new numerical experiment. The full Navier Stokes equations in both two and three dimensions are solved with a home made code that utilizes Galerkin finite elements. In the two dimensional numerical experiment, inception of separation is observed at Re=4.3, which is the lowest Reynolds number where inception has been reported computationally. Currently, the three dimensional experiment is under way, in order to compare if there are effects of three dimensional theory of separation in the conditions of Thom's experiments.

  10. Cancellation exponent and multifractal structure in two-dimensional magnetohydrodynamics: direct numerical simulations and Lagrangian averaged modeling.

    PubMed

    Graham, Jonathan Pietarila; Mininni, Pablo D; Pouquet, Annick

    2005-10-01

    We present direct numerical simulations and Lagrangian averaged (also known as alpha model) simulations of forced and free decaying magnetohydrodynamic turbulence in two dimensions. The statistics of sign cancellations of the current at small scales is studied using both the cancellation exponent and the fractal dimension of the structures. The alpha model is found to have the same scaling behavior between positive and negative contributions as the direct numerical simulations. The alpha model is also able to reproduce the time evolution of these quantities in free decaying turbulence. At large Reynolds numbers, an independence of the cancellation exponent with the Reynolds numbers is observed.

  11. Improved numerical methods for turbulent viscous recirculating flows

    NASA Technical Reports Server (NTRS)

    Turan, A.

    1985-01-01

    The hybrid-upwind finite difference schemes employed in generally available combustor codes possess excessive numerical diffusion errors which preclude accurate quantative calculations. The present study has as its primary objective the identification and assessment of an improved solution algorithm as well as discretization schemes applicable to analysis of turbulent viscous recirculating flows. The assessment is carried out primarily in two dimensional/axisymetric geometries with a view to identifying an appropriate technique to be incorporated in a three-dimensional code.

  12. A solution for two-dimensional Fredholm integral equations of the second kind with periodic, semiperiodic, or nonperiodic kernels. [integral representation of the stationary Navier-Stokes problem

    NASA Technical Reports Server (NTRS)

    Gabrielsen, R. E.; Uenal, A.

    1981-01-01

    A numerical scheme for solving two dimensional Fredholm integral equations of the second kind is developed. The proof of the convergence of the numerical scheme is shown for three cases: the case of periodic kernels, the case of semiperiodic kernels, and the case of nonperiodic kernels. Applications to the incompressible, stationary Navier-Stokes problem are of primary interest.

  13. Three-dimensional skyrmions in spin-2 Bose–Einstein condensates

    NASA Astrophysics Data System (ADS)

    Tiurev, Konstantin; Ollikainen, Tuomas; Kuopanportti, Pekko; Nakahara, Mikio; Hall, David S.; Möttönen, Mikko

    2018-05-01

    We introduce topologically stable three-dimensional skyrmions in the cyclic and biaxial nematic phases of a spin-2 Bose–Einstein condensate. These skyrmions exhibit exceptionally high mapping degrees resulting from the versatile symmetries of the corresponding order parameters. We show how these structures can be created in existing experimental setups and study their temporal evolution and lifetime by numerically solving the three-dimensional Gross–Pitaevskii equations for realistic parameter values. Although the biaxial nematic and cyclic phases are observed to be unstable against transition towards the ferromagnetic phase, their lifetimes are long enough for the skyrmions to be imprinted and detected experimentally.

  14. Investigation of deformation of elements of three-dimensional reinforced concrete structures located in the soil, interacting with each other through rubber gaskets

    NASA Astrophysics Data System (ADS)

    Berezhnoi, D. V.; Balafendieva, I. S.; Sachenkov, A. A.; Sekaeva, L. R.

    2017-06-01

    In work the technique of calculation of elements of three-dimensional reinforced concrete substructures located in a soil, interacting with each other through rubber linings is realized. To describe the interaction of deformable structures with the ground, special “semi-infinite” finite elements are used. A technique has been implemented that allows one to describe the contact interaction of three-dimensional structures by means of a special contact finite element with specific properties. The obtained numerical results are compared with the experimental data, their good agreement is noted.

  15. Entanglement Area Law in Disordered Free Fermion Anderson Model in One, Two, and Three Dimensions

    DOE PAGES

    Pouranvari, Mohammad; Zhang, Yuhui; Yang, Kun

    2015-01-01

    We calculate numerically the entanglement entropy of free fermion ground states in one-, two-, and three-dimensional Anderson models and find that it obeys the area law as long as the linear size of the subsystem is sufficiently larger than the mean free path. This result holds in the metallic phase of the three-dimensional Anderson model, where the mean free path is finite although the localization length is infinite. Relation between the present results and earlier ones on area law violation in special one-dimensional models that support metallic phases is discussed.

  16. Rapid and efficient mixing in a slip-driven three-dimensional flow in a rectangular channel

    NASA Astrophysics Data System (ADS)

    Pacheco, J. Rafael; Ping Chen, Kang; Hayes, Mark A.

    2006-08-01

    A method for generating mixing in an electroosmotic flow of an electrolytic solution in a three-dimensional channel is proposed. When the width-to-height aspect ratio of the channel cross-section is large, mixing of a blob of a solute in a slip-driven three-dimensional flow in a rectangular channel can be used to model and assess the effectiveness of this method. It is demonstrated through numerical simulations that under certain operating conditions, rapid and efficient mixing can be achieved. Future investigation will include the solution of the exact equations and experimentation.

  17. Entanglement Area Law in Disordered Free Fermion Anderson Model in One, Two, and Three Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pouranvari, Mohammad; Zhang, Yuhui; Yang, Kun

    We calculate numerically the entanglement entropy of free fermion ground states in one-, two-, and three-dimensional Anderson models and find that it obeys the area law as long as the linear size of the subsystem is sufficiently larger than the mean free path. This result holds in the metallic phase of the three-dimensional Anderson model, where the mean free path is finite although the localization length is infinite. Relation between the present results and earlier ones on area law violation in special one-dimensional models that support metallic phases is discussed.

  18. Radiative Instabilities in Three-Dimensional Astrophysical Masers

    NASA Technical Reports Server (NTRS)

    Scappaticci, Gerardo A.; Watson, William D.

    1995-01-01

    Inherent instabilities in the radiative transfer for astrophysical masers have been recognized and calculated in the linear maser idealization in our previous investigations. The same instabilities are now shown to occur in the more realistic, three-dimensional geometries. Fluctuations in the emergent flux result and may be related to the observed fluctuations in the radiative flux from the 1665 MHz OH masers that have been reported to occur on timescales as short as 1000 s. The time-dependent differential equations of radiative transfer are solved numerically for three-dimensional astrophysical masers. Computations are performed for spherical and elongated (rectangular parallelepiped) geometries.

  19. Theoretical Exploration of Exponential Heat Source and Thermal Stratification Effects on The Motion of 3-Dimensional Flow of Casson Fluid Over a Low Heat Energy Surface at Initial Unsteady Stage

    NASA Astrophysics Data System (ADS)

    Sandeep, N.; Animasaun, I. L.

    2017-06-01

    Within the last few decades, experts and scientists dealing with the flow of non-Newtonian fluids (most especially Casson fluid) have confirmed the existence of such flow on a stretchable surface with low heat energy (i.e. absolute zero of temperature). This article presents the motion of a three-dimensional of such fluid. Influence of uniform space dependent internal heat source on the intermolecular forces holding the molecules of Casson fluid is investigated. It is assumed that the stagnation flow was induced by an external force (pressure gradient) together with impulsive. Based on these assumptions, variable thermophysical properties are most suitable; hence modified kinematic viscosity model is presented. The system of governing equations of 3-dimensional unsteady Casson fluid was non-dimensionalized using suitable similarity transformation which unravels the behavior of the flow at full fledge short period. The numerical solution of the corresponding boundary value problem (ODE) was obtained using Runge-Kutta fourth order along with shooting technique. The intermolecular forces holding the molecules of Casson fluid flow in both horizontal directions when magnitude of velocity ratio parameters are greater than unity breaks continuously with an increase in Casson parameter and this leads to an increase in velocity profiles in both directions.

  20. Direct determination of one-dimensional interphase structures using normalized crystal truncation rod analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawaguchi, Tomoya; Liu, Yihua; Reiter, Anthony

    Here, a one-dimensional non-iterative direct method was employed for normalized crystal truncation rod analysis. The non-iterative approach, utilizing the Kramers–Kronig relation, avoids the ambiguities due to an improper initial model or incomplete convergence in the conventional iterative methods. The validity and limitations of the present method are demonstrated through both numerical simulations and experiments with Pt(111) in a 0.1 M CsF aqueous solution. The present method is compared with conventional iterative phase-retrieval methods.

  1. Direct determination of one-dimensional interphase structures using normalized crystal truncation rod analysis

    DOE PAGES

    Kawaguchi, Tomoya; Liu, Yihua; Reiter, Anthony; ...

    2018-04-20

    Here, a one-dimensional non-iterative direct method was employed for normalized crystal truncation rod analysis. The non-iterative approach, utilizing the Kramers–Kronig relation, avoids the ambiguities due to an improper initial model or incomplete convergence in the conventional iterative methods. The validity and limitations of the present method are demonstrated through both numerical simulations and experiments with Pt(111) in a 0.1 M CsF aqueous solution. The present method is compared with conventional iterative phase-retrieval methods.

  2. A Framework for Evaluating Regional-Scale Numerical Photochemical Modeling Systems

    EPA Science Inventory

    This paper discusses the need for critically evaluating regional-scale (~ 200-2000 km) three dimensional numerical photochemical air quality modeling systems to establish a model's credibility in simulating the spatio-temporal features embedded in the observations. Because of li...

  3. Time-dependent patterns in quasivertical cylindrical binary convection.

    PubMed

    Alonso, Arantxa; Mercader, Isabel; Batiste, Oriol

    2018-02-01

    This paper reports on numerical investigations of the effect of a slight inclination α on pattern formation in a shallow vertical cylindrical cell heated from below for binary mixtures with a positive value of the Soret coefficient. By using direct numerical simulation of the three-dimensional Boussinesq equations with Soret effect in cylindrical geometry, we show that a slight inclination of the cell in the range α≈0.036rad=2^{∘} strongly influences pattern selection. The large-scale shear flow (LSSF) induced by the small tilt of gravity overcomes the squarelike arrangements observed in noninclined cylinders in the Soret regime, stratifies the fluid along the direction of inclination, and produces an enhanced separation of the two components of the mixture. The competition between shear effects and horizontal and vertical buoyancy alters significantly the dynamics observed in noninclined convection. Additional unexpected time-dependent patterns coexist with the basic LSSF. We focus on an unsual periodic state recently discovered in an experiment, the so-called superhighway convection state (SHC), in which ascending and descending regions of fluid move in opposite directions. We provide numerical confirmation that Boussinesq Navier-Stokes equations with standard boundary conditions contain the essential ingredients that allow for the existence of such a state. Also, we obtain a persistent heteroclinic structure where regular oscillations between a SHC pattern and a state of nearly stationary longitudinal rolls take place. We characterize numerically these time-dependent patterns and investigate the dynamics around the threshold of convection.

  4. Time-dependent patterns in quasivertical cylindrical binary convection

    NASA Astrophysics Data System (ADS)

    Alonso, Arantxa; Mercader, Isabel; Batiste, Oriol

    2018-02-01

    This paper reports on numerical investigations of the effect of a slight inclination α on pattern formation in a shallow vertical cylindrical cell heated from below for binary mixtures with a positive value of the Soret coefficient. By using direct numerical simulation of the three-dimensional Boussinesq equations with Soret effect in cylindrical geometry, we show that a slight inclination of the cell in the range α ≈0.036 rad =2∘ strongly influences pattern selection. The large-scale shear flow (LSSF) induced by the small tilt of gravity overcomes the squarelike arrangements observed in noninclined cylinders in the Soret regime, stratifies the fluid along the direction of inclination, and produces an enhanced separation of the two components of the mixture. The competition between shear effects and horizontal and vertical buoyancy alters significantly the dynamics observed in noninclined convection. Additional unexpected time-dependent patterns coexist with the basic LSSF. We focus on an unsual periodic state recently discovered in an experiment, the so-called superhighway convection state (SHC), in which ascending and descending regions of fluid move in opposite directions. We provide numerical confirmation that Boussinesq Navier-Stokes equations with standard boundary conditions contain the essential ingredients that allow for the existence of such a state. Also, we obtain a persistent heteroclinic structure where regular oscillations between a SHC pattern and a state of nearly stationary longitudinal rolls take place. We characterize numerically these time-dependent patterns and investigate the dynamics around the threshold of convection.

  5. Numerical simulation and experimental validation of Lamb wave propagation behavior in composite plates

    NASA Astrophysics Data System (ADS)

    Kim, Sungwon; Uprety, Bibhisha; Mathews, V. John; Adams, Daniel O.

    2015-03-01

    Structural Health Monitoring (SHM) based on Acoustic Emission (AE) is dependent on both the sensors to detect an impact event as well as an algorithm to determine the impact location. The propagation of Lamb waves produced by an impact event in thin composite structures is affected by several unique aspects including material anisotropy, ply orientations, and geometric discontinuities within the structure. The development of accurate numerical models of Lamb wave propagation has important benefits towards the development of AE-based SHM systems for impact location estimation. Currently, many impact location algorithms utilize the time of arrival or velocities of Lamb waves. Therefore the numerical prediction of characteristic wave velocities is of great interest. Additionally, the propagation of the initial symmetric (S0) and asymmetric (A0) wave modes is important, as these wave modes are used for time of arrival estimation. In this investigation, finite element analyses were performed to investigate aspects of Lamb wave propagation in composite plates with active signal excitation. A comparative evaluation of two three-dimensional modeling approaches was performed, with emphasis placed on the propagation and velocity of both the S0 and A0 wave modes. Results from numerical simulations are compared to experimental results obtained from active AE testing. Of particular interest is the directional dependence of Lamb waves in quasi-isotropic carbon/epoxy composite plates. Numerical and experimental results suggest that although a quasi-isotropic composite plate may have the same effective elastic modulus in all in-plane directions, the Lamb wave velocity may have some directional dependence. Further numerical analyses were performed to investigate Lamb wave propagation associated with circular cutouts in composite plates.

  6. Simulation of spectral properties of bundlelike gold nanorods

    NASA Astrophysics Data System (ADS)

    Ozaki, Ryotaro; Nagao, Yoshiki; Kadowaki, Kazunori; Kuwahara, Yutaka

    2016-03-01

    Metal nanoparticles have become increasingly important in fields such as electronics, photonics, and biotechnology. In particular, anisotropic gold nanoparticles, such as gold nanorods, exhibit unique properties owing to their anisotropy. Optical properties of isolated gold nanorods and dimers of gold nanorods have been investigated from both experimental and theoretical points of view. We have reported a method for three-dimensional assembly of anisotropic gold nanoparticles by two-phase transfer in which the morphologies of the assemblies can be controlled by the aspect ratio of nanorods. In this study, we numerically calculate extinction spectra to investigate the plasmonic properties of bundlelike assemblies by the finite-element method. Their plasmonic properties depend on not only the three orthogonal directions but also the alignment of the nanorod assembly.

  7. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo

    2018-05-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.

  8. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies.

    PubMed

    Liu, Cheng-Lin; Sun, Ze; Lu, Gui-Min; Yu, Jian-Guo

    2018-05-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study.

  9. Hydrodynamic characteristics of the two-phase flow field at gas-evolving electrodes: numerical and experimental studies

    PubMed Central

    Lu, Gui-Min; Yu, Jian-Guo

    2018-01-01

    Gas-evolving vertical electrode system is a typical electrochemical industrial reactor. Gas bubbles are released from the surfaces of the anode and affect the electrolyte flow pattern and even the cell performance. In the current work, the hydrodynamics induced by the air bubbles in a cold model was experimentally and numerically investigated. Particle image velocimetry and volumetric three-component velocimetry techniques were applied to experimentally visualize the hydrodynamics characteristics and flow fields in a two-dimensional (2D) plane and a three-dimensional (3D) space, respectively. Measurements were performed at different gas rates. Furthermore, the corresponding mathematical model was developed under identical conditions for the qualitative and quantitative analyses. The experimental measurements were compared with the numerical results based on the mathematical model. The study of the time-averaged flow field, three velocity components, instantaneous velocity and turbulent intensity indicate that the numerical model qualitatively reproduces liquid motion. The 3D model predictions capture the flow behaviour more accurately than the 2D model in this study. PMID:29892347

  10. Investigation of advanced counterrotation blade configuration concepts for high speed turboprop systems, task 1: Ducted propfan analysis

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Delaney, Robert A.; Bettner, James L.

    1990-01-01

    The time-dependent three-dimensional Euler equations of gas dynamics were solved numerically to study the steady compressible transonic flow about ducted propfan propulsion systems. Aerodynamic calculations were based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. An implicit residual smoothing operator was used to aid convergence. Two calculation grids were employed in this study. The first grid utilized an H-type mesh network with a branch cut opening to represent the axisymmetric cowl. The second grid utilized a multiple-block mesh system with a C-type grid about the cowl. The individual blocks were numerically coupled in the Euler solver. Grid systems were generated by a combined algebraic/elliptic algortihm developed specifically for ducted propfans. Numerical calculations were initially performed for unducted propfans to verify the accuracy of the three-dimensional Euler formulation. The Euler analyses were then applied for the calculation of ducted propfan flows, and predicted results were compared with experimental data for two cases. The three-dimensional Euler analyses displayed exceptional accuracy, although certain parameters were observed to be very sensitive to geometric deflections. Both solution schemes were found to be very robust and demonstrated nearly equal efficiency and accuracy, although it was observed that the multi-block C-grid formulation provided somewhat better resolution of the cowl leading edge region.

  11. Life-Size Sculptural Heads: A Lesson in Three-Dimensional Design.

    ERIC Educational Resources Information Center

    Gamble, Harriet

    2003-01-01

    Presents a lesson in which students created three-dimensional self-portraits, using papier-mache, clay, and plaster, designed to develop their modeling skills as they learn about art history. Discusses how the students created their sculptures, offering detailed directions on creating the three-dimensional heads. (CMK)

  12. Adaptive numerical algorithms to simulate the dynamical Casimir effect in a closed cavity with different boundary conditions

    NASA Astrophysics Data System (ADS)

    Villar, Paula I.; Soba, Alejandro

    2017-07-01

    We present an alternative numerical approach to compute the number of particles created inside a cavity due to time-dependent boundary conditions. The physical model consists of a rectangular cavity, where a wall always remains still while the other wall of the cavity presents a smooth movement in one direction. The method relies on the setting of the boundary conditions (Dirichlet and Neumann) and the following resolution of the corresponding equations of modes. By a further comparison between the ground state before and after the movement of the cavity wall, we finally compute the number of particles created. To demonstrate the method, we investigate the creation of particle production in vibrating cavities, confirming previously known results in the appropriate limits. Within this approach, the dynamical Casimir effect can be investigated, making it possible to study a variety of scenarios where no analytical results are known. Of special interest is, of course, the realistic case of the electromagnetic field in a three-dimensional cavity, with transverse electric (TE)-mode and transverse magnetic (TM)-mode photon production. Furthermore, with our approach we are able to calculate numerically the particle creation in a tuneable resonant superconducting cavity by the use of the generalized Robin boundary condition. We compare the numerical results with analytical predictions as well as a different numerical approach. Its extension to three dimensions is also straightforward.

  13. Turbine endwall single cylinder program

    NASA Technical Reports Server (NTRS)

    Langston, L. S.

    1982-01-01

    Detailed measurement of the flow field in front of a large-scale single cylinder, mounted in a wind tunnel is discussed. A better understanding of the three dimensional separation occuring in front of the cylinder on the endwall, and of the vortex system that is formed is sought. A data base with which to check analytical and numerical computer models of three dimensional flows is also anticipated.

  14. Three-dimensional Stress Analysis Using the Boundary Element Method

    NASA Technical Reports Server (NTRS)

    Wilson, R. B.; Banerjee, P. K.

    1984-01-01

    The boundary element method is to be extended (as part of the NASA Inelastic Analysis Methods program) to the three-dimensional stress analysis of gas turbine engine hot section components. The analytical basis of the method (as developed in elasticity) is outlined, its numerical implementation is summarized, and the approaches to be followed in extending the method to include inelastic material response indicated.

  15. EDDA 1.0: integrated simulation of debris flow erosion, deposition and property changes

    NASA Astrophysics Data System (ADS)

    Chen, H. X.; Zhang, L. M.

    2015-03-01

    Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA (Erosion-Deposition Debris flow Analysis), is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during the flow process. The yield stress of the debris flow mixture determined at limit equilibrium using the Mohr-Coulomb equation is applicable to clear water flow, hyper-concentrated flow and fully developed debris flow. To assure numerical stability and computational efficiency at the same time, an adaptive time stepping algorithm is developed to solve the governing differential equations. Four numerical tests are conducted to validate the model. The first two tests involve a one-dimensional debris flow with constant properties and a two-dimensional dam-break water flow. The last two tests involve erosion and deposition, and the movement of multi-directional debris flows. The changes in debris flow mass and properties due to either erosion or deposition are shown to affect the runout characteristics significantly. The model is also applied to simulate a large-scale debris flow in Xiaojiagou Ravine to test the performance of the model in catchment-scale simulations. The results suggest that the model estimates well the volume, inundated area, and runout distance of the debris flow. The model is intended for use as a module in a real-time debris flow warning system.

  16. Power-scaling performance of a three-dimensional tritium betavoltaic diode

    NASA Astrophysics Data System (ADS)

    Liu, Baojun; Chen, Kevin P.; Kherani, Nazir P.; Zukotynski, Stefan

    2009-12-01

    Three-dimensional diodes fabricated by electrochemical etching are exposed to tritium gas at pressures from 0.05 to 33 atm at room temperature to examine its power scaling performance. It is shown that the three-dimensional microporous structure overcomes the self-absorption limited saturation of beta flux at high tritium pressures. These results are contrasted against the three-dimensional device powered in one instance by tritium absorbed in the near surface region of the three-dimensional microporous network, and in another by a planar scandium tritide foil. These findings suggest that direct tritium occlusion in the near surface of three-dimensional diode can improve the specific power production.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giunta, G.; Belouettar, S.

    In this paper, the static response of three-dimensional beams made of functionally graded materials is investigated through a family of hierarchical one-dimensional finite elements. A wide variety of elements is proposed differing by the kinematic formulation and the number of nodes per elements along the beam axis. Elements’ stiffness matrix and load vector are derived in a unified nuclear form that does not depend upon the a priori expansion order over the cross-section nor the finite element approximation along the beam axis. Results are validated towards three-dimensional finite element models as well as equivalent Navier-type analytical solutions. The numerical investigationsmore » show that accurate and efficient solutions (when compared with full three-dimensional FEM solutions) can be obtained by the proposed family of hierarchical one-dimensional elements’ family.« less

  18. Stretching of passive tracers and implications for mantle mixing

    NASA Astrophysics Data System (ADS)

    Conjeepuram, N.; Kellogg, L. H.

    2007-12-01

    Mid ocean ridge basalts(MORB) and ocean island basalts(OIB) have fundamentally different geochemical signatures. Understanding this difference requires a fundamental knowledge of the mixing processes that led to their formation. Quantitative methods used to assess mixing include examining the distribution of passive tracers, attaching time-evolution information to simulate decay of radioactive isotopes, and, for chaotic flows, calculating the Lyapunov exponent, which characterizes whether two nearby particles diverge at an exponential rate. Although effective, these methods are indirect measures of the two fundamental processes associated with mixing namely, stretching and folding. Building on work done by Kellogg and Turcotte, we present a method to compute the stretching and thinning of a passive, ellipsoidal tracer in three orthogonal directions in isoviscous, incompressible three dimensional flows. We also compute the Lyapunov exponents associated with the given system based on the quantitative measures of stretching and thinning. We test our method with two analytical and three numerical flow fields which exhibit Lagrangian turbulence. The ABC and STF class of analytical flows are a three and two parameter class of flows respectively and have been well studied for fast dynamo action. Since they generate both periodic and chaotic particle paths depending either on the starting point or on the choice of the parameters, they provide a good foundation to understand mixing. The numerical flow fields are similar to the geometries used by Ferrachat and Ricard (1998) and emulate a ridge - transform system. We also compute the stable and unstable manifolds associated with the numerical flow fields to illustrate the directions of rapid and slow mixing. We find that stretching in chaotic flow fields is significantly more effective than regular or periodic flow fields. Consequently, chaotic mixing is far more efficient than regular mixing. We also find that in the numerical flow field, there is a fundamental topological difference in the regions exhibiting slow or regular mixing for different model geometries.

  19. A test of a vortex method for the computation of flap side edge noise

    NASA Technical Reports Server (NTRS)

    Martin, James E.

    1995-01-01

    Upon approach to landing, a major source location of airframe noise occurs at the side edges of the part span, trailing edge flaps. In the vicinity of these flaps, a complex arrangement of spanwise flow with primary and secondary tip vortices may form. Each of these vortices is observed to become fully three-dimensional. In the present study, a numerical model is developed to investigate the noise radiated from the side edge of a flap. The inherent three-dimensionality of this flow forces us to carefully consider a numerical scheme which will be both accurate in its prediction of the flow acoustics and also computationally efficient. Vortex methods have offered a fast and efficient means of simulating many two and three-dimensional, vortex dominated flows. In vortex methods, the time development of the flow is tracked by following exclusively the vorticity containing regions. Through the Biot-Savart law, knowledge of the vorticity field enables one to obtain flow quantities at any desired location during the flow evolution. In the present study, a numerical procedure has been developed which incorporates the Lagrangian approach of vortex methods into a calculation for the noise radiated by a flow-surface interaction. In particular, the noise generated by a vortex in the presence of a flat half plane is considered. This problem serves as a basic model of flap edge flow. It also permits the direct comparison between our computed results and previous acoustic analyses performed for this problem. In our numerical simulations, the mean flow is represented by the complex potential W(z) = Aiz(exp l/2), which is obtained through conformal mapping techniques. The magnitude of the mean flow is controlled by the parameter A. This mean flow has been used in the acoustic analysis by Hardin and is considered a reasonable model of the flow field in the vicinity of the edge and away from the leading and trailing edges of the flap. To represent the primary vortex which occurs near the flap, a point vortex is introduced just below the flat half plane. Using a technique from panel methods, boundary conditions on the flap surface are satisfied by the introduction of a row of stationary point vortices along the extent of the flap. At each time step in the calculation, the strength of these vortices is chosen to eliminate the normal velocity at intermediary collocation points. The time development of the overall flow field is then tracked using standard techniques from vortex methods. Vortex trajectories obtained through this computation are in good agreement with those predicted by the analytical solution given by Hardin, thus verifying the viability of this procedure for more complex flow arrangements. For the flow acoustics, the Ffowcs Williams-Hawkings equation is numerically integrated. This equation supplies the far field acoustic pressure based upon pressures occurring along the flap surface. With our vortex method solution, surface pressures may be obtained with exceptional resolution. The Ffowcs Williams-Hawkings equation is integrated using a spatially fourth order accurate Simpson's rule. Rational function interpolation is used to obtain the surface pressures at the appropriate retarded times. Comparisons between our numerical results for the acoustic pressure and those predicted by the Hardin analysis have been made. Preliminary results indicate the need for an improved integration technique. In the future, the numerical procedure developed in this study will be applied to the case of a rectangular flap of finite thickness and ultimately modified for application to the fully three-dimensional problem.

  20. Modeling of Sensor Placement Strategy for Shape Sensing and Structural Health Monitoring of a Wing-Shaped Sandwich Panel Using Inverse Finite Element Method.

    PubMed

    Kefal, Adnan; Yildiz, Mehmet

    2017-11-30

    This paper investigated the effect of sensor density and alignment for three-dimensional shape sensing of an airplane-wing-shaped thick panel subjected to three different loading conditions, i.e., bending, torsion, and membrane loads. For shape sensing analysis of the panel, the Inverse Finite Element Method (iFEM) was used together with the Refined Zigzag Theory (RZT), in order to enable accurate predictions for transverse deflection and through-the-thickness variation of interfacial displacements. In this study, the iFEM-RZT algorithm is implemented by utilizing a novel three-node C°-continuous inverse-shell element, known as i3-RZT. The discrete strain data is generated numerically through performing a high-fidelity finite element analysis on the wing-shaped panel. This numerical strain data represents experimental strain readings obtained from surface patched strain gauges or embedded fiber Bragg grating (FBG) sensors. Three different sensor placement configurations with varying density and alignment of strain data were examined and their corresponding displacement contours were compared with those of reference solutions. The results indicate that a sparse distribution of FBG sensors (uniaxial strain measurements), aligned in only the longitudinal direction, is sufficient for predicting accurate full-field membrane and bending responses (deformed shapes) of the panel, including a true zigzag representation of interfacial displacements. On the other hand, a sparse deployment of strain rosettes (triaxial strain measurements) is essentially enough to produce torsion shapes that are as accurate as those of predicted by a dense sensor placement configuration. Hence, the potential applicability and practical aspects of i3-RZT/iFEM methodology is proven for three-dimensional shape-sensing of future aerospace structures.

Top