Developments in the simulation of compressible inviscid and viscous flow on supercomputers
NASA Technical Reports Server (NTRS)
Steger, J. L.; Buning, P. G.
1985-01-01
In anticipation of future supercomputers, finite difference codes are rapidly being extended to simulate three-dimensional compressible flow about complex configurations. Some of these developments are reviewed. The importance of computational flow visualization and diagnostic methods to three-dimensional flow simulation is also briefly discussed.
Hypersonic Combustor Model Inlet CFD Simulations and Experimental Comparisons
NASA Technical Reports Server (NTRS)
Venkatapathy, E.; TokarcikPolsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)
1995-01-01
Numerous two-and three-dimensional computational simulations were performed for the inlet associated with the combustor model for the hypersonic propulsion experiment in the NASA Ames 16-Inch Shock Tunnel. The inlet was designed to produce a combustor-inlet flow that is nearly two-dimensional and of sufficient mass flow rate for large scale combustor testing. The three-dimensional simulations demonstrated that the inlet design met all the design objectives and that the inlet produced a very nearly two-dimensional combustor inflow profile. Numerous two-dimensional simulations were performed with various levels of approximations such as in the choice of chemical and physical models, as well as numerical approximations. Parametric studies were conducted to better understand and to characterize the inlet flow. Results from the two-and three-dimensional simulations were used to predict the mass flux entering the combustor and a mass flux correlation as a function of facility stagnation pressure was developed. Surface heat flux and pressure measurements were compared with the computed results and good agreement was found. The computational simulations helped determine the inlet low characteristics in the high enthalpy environment, the important parameters that affect the combustor-inlet flow, and the sensitivity of the inlet flow to various modeling assumptions.
Mittal, R.; Dong, H.; Bozkurttas, M.; Najjar, F.M.; Vargas, A.; von Loebbecke, A.
2010-01-01
A sharp interface immersed boundary method for simulating incompressible viscous flow past three-dimensional immersed bodies is described. The method employs a multi-dimensional ghost-cell methodology to satisfy the boundary conditions on the immersed boundary and the method is designed to handle highly complex three-dimensional, stationary, moving and/or deforming bodies. The complex immersed surfaces are represented by grids consisting of unstructured triangular elements; while the flow is computed on non-uniform Cartesian grids. The paper describes the salient features of the methodology with special emphasis on the immersed boundary treatment for stationary and moving boundaries. Simulations of a number of canonical two- and three-dimensional flows are used to verify the accuracy and fidelity of the solver over a range of Reynolds numbers. Flow past suddenly accelerated bodies are used to validate the solver for moving boundary problems. Finally two cases inspired from biology with highly complex three-dimensional bodies are simulated in order to demonstrate the versatility of the method. PMID:20216919
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morales, Jorge A.; Leroy, Matthieu; Bos, Wouter J.T.
A volume penalization approach to simulate magnetohydrodynamic (MHD) flows in confined domains is presented. Here the incompressible visco-resistive MHD equations are solved using parallel pseudo-spectral solvers in Cartesian geometries. The volume penalization technique is an immersed boundary method which is characterized by a high flexibility for the geometry of the considered flow. In the present case, it allows to use other than periodic boundary conditions in a Fourier pseudo-spectral approach. The numerical method is validated and its convergence is assessed for two- and three-dimensional hydrodynamic (HD) and MHD flows, by comparing the numerical results with results from literature and analyticalmore » solutions. The test cases considered are two-dimensional Taylor–Couette flow, the z-pinch configuration, three dimensional Orszag–Tang flow, Ohmic-decay in a periodic cylinder, three-dimensional Taylor–Couette flow with and without axial magnetic field and three-dimensional Hartmann-instabilities in a cylinder with an imposed helical magnetic field. Finally, we present a magnetohydrodynamic flow simulation in toroidal geometry with non-symmetric cross section and imposing a helical magnetic field to illustrate the potential of the method.« less
Numerical aerodynamic simulation facility. [for flows about three-dimensional configurations
NASA Technical Reports Server (NTRS)
Bailey, F. R.; Hathaway, A. W.
1978-01-01
Critical to the advancement of computational aerodynamics capability is the ability to simulate flows about three-dimensional configurations that contain both compressible and viscous effects, including turbulence and flow separation at high Reynolds numbers. Analyses were conducted of two solution techniques for solving the Reynolds averaged Navier-Stokes equations describing the mean motion of a turbulent flow with certain terms involving the transport of turbulent momentum and energy modeled by auxiliary equations. The first solution technique is an implicit approximate factorization finite-difference scheme applied to three-dimensional flows that avoids the restrictive stability conditions when small grid spacing is used. The approximate factorization reduces the solution process to a sequence of three one-dimensional problems with easily inverted matrices. The second technique is a hybrid explicit/implicit finite-difference scheme which is also factored and applied to three-dimensional flows. Both methods are applicable to problems with highly distorted grids and a variety of boundary conditions and turbulence models.
NASA Astrophysics Data System (ADS)
Huang, W. D.; Fan, H. G.; Chen, N. X.
2012-11-01
To study the interaction between the transient flow in pipe and the unsteady turbulent flow in turbine, a coupled model of the transient flow in the pipe and three-dimensional unsteady flow in the turbine is developed based on the method of characteristics and the fluid governing equation in the accelerated rotational relative coordinate. The load-rejection process under the closing of guide vanes of the hydraulic power plant is simulated by the coupled method, the traditional transient simulation method and traditional three-dimensional unsteady flow calculation method respectively and the results are compared. The pressure, unit flux and rotation speed calculated by three methods show a similar change trend. However, because the elastic water hammer in the pipe and the pressure fluctuation in the turbine have been considered in the coupled method, the increase of pressure at spiral inlet is higher and the pressure fluctuation in turbine is stronger.
NASA Technical Reports Server (NTRS)
Moin, Parviz; Spalart, Philippe R.
1987-01-01
The use of simulation data bases for the examination of turbulent flows is an effective research tool. Studies of the structure of turbulence have been hampered by the limited number of probes and the impossibility of measuring all desired quantities. Also, flow visualization is confined to the observation of passive markers with limited field of view and contamination caused by time-history effects. Computer flow fields are a new resource for turbulence research, providing all the instantaneous flow variables in three-dimensional space. Simulation data bases also provide much-needed information for phenomenological turbulence modeling. Three dimensional velocity and pressure fields from direct simulations can be used to compute all the terms in the transport equations for the Reynolds stresses and the dissipation rate. However, only a few, geometrically simple flows have been computed by direct numerical simulation, and the inventory of simulation does not fully address the current modeling needs in complex turbulent flows. The availability of three-dimensional flow fields also poses challenges in developing new techniques for their analysis, techniques based on experimental methods, some of which are used here for the analysis of direct-simulation data bases in studies of the mechanics of turbulent flows.
Three-dimensional numerical simulations of local scouring around bridge piers
USDA-ARS?s Scientific Manuscript database
This paper presents a novel numerical method for simulating local scouring around bridge piers using a three-dimensional free-surface RANS turbulent flow model. Strong turbulent fluctuations and the down-flows around the bridge pier are considered important factors in scouring the bed. The turbulent...
NASA Technical Reports Server (NTRS)
Rao, K. V.; Pletcher, R. H.; Steger, J. L.; Vandalsem, W. R.
1987-01-01
A dual potential decomposition of the velocity field into a scalar and a vector potential function is extended to three dimensions and used in the finite-difference simulation of steady three-dimensional inviscid rotational flows and viscous flow. The finite-difference procedure was used to simulate the flow through the 80 by 120 ft wind tunnel at NASA Ames Research Center. Rotational flow produced by the stagnation pressure drop across vanes and screens which are located at the entrance of the inlet is modeled using actuator disk theory. Results are presented for two different inlet vane and screen configurations. The numerical predictions are in good agreement with experimental data. The dual potential procedure was also applied to calculate the viscous flow along two and three dimensional troughs. Viscous effects are simulated by injecting vorticity which is computed from a boundary layer algorithm. For attached flow over a three dimensional trough, the present calculations are in good agreement with other numerical predictions. For separated flow, it is shown from a two dimensional analysis that the boundary layer approximation provides an accurate measure of the vorticity in regions close to the wall; whereas further away from the wall, caution has to be exercised in using the boundary-layer equations to supply vorticity to the dual potential formulation.
Three-Dimensional Computational Model for Flow in an Over-Expanded Nozzle With Porous Surfaces
NASA Technical Reports Server (NTRS)
Abdol-Hamid, K. S.; Elmiligui, Alaa; Hunter, Craig A.; Massey, Steven J.
2006-01-01
A three-Dimensional computational model is used to simulate flow in a non-axisymmetric, convergent-divergent nozzle incorporating porous cavities for shock-boundary layer interaction control. The nozzle has an expansion ratio (exit area/throat area) of 1.797 and a design nozzle pressure ratio of 8.78. Flow fields for the baseline nozzle (no porosity) and for the nozzle with porous surfaces of 10% openness are computed for Nozzle Pressure Ratio (NPR) varying from 1.29 to 9.54. The three dimensional computational results indicate that baseline (no porosity) nozzle performance is dominated by unstable, shock-induced, boundary-layer separation at over-expanded conditions. For NPR less than or equal to 1.8, the separation is three dimensional, somewhat unsteady, and confined to a bubble (with partial reattachment over the nozzle flap). For NPR greater than or equal to 2.0, separation is steady and fully detached, and becomes more two dimensional as NPR increased. Numerical simulation of porous configurations indicates that a porous patch is capable of controlling off design separation in the nozzle by either alleviating separation or by encouraging stable separation of the exhaust flow. In the present paper, computational simulation results, wall centerline pressure, mach contours, and thrust efficiency ratio are presented, discussed and compared with experimental data. Results indicate that comparisons are in good agreement with experimental data. The three-dimensional simulation improves the comparisons for over-expanded flow conditions as compared with two-dimensional assumptions.
An adaptive front tracking technique for three-dimensional transient flows
NASA Astrophysics Data System (ADS)
Galaktionov, O. S.; Anderson, P. D.; Peters, G. W. M.; van de Vosse, F. N.
2000-01-01
An adaptive technique, based on both surface stretching and surface curvature analysis for tracking strongly deforming fluid volumes in three-dimensional flows is presented. The efficiency and accuracy of the technique are demonstrated for two- and three-dimensional flow simulations. For the two-dimensional test example, the results are compared with results obtained using a different tracking approach based on the advection of a passive scalar. Although for both techniques roughly the same structures are found, the resolution for the front tracking technique is much higher. In the three-dimensional test example, a spherical blob is tracked in a chaotic mixing flow. For this problem, the accuracy of the adaptive tracking is demonstrated by the volume conservation for the advected blob. Adaptive front tracking is suitable for simulation of the initial stages of fluid mixing, where the interfacial area can grow exponentially with time. The efficiency of the algorithm significantly benefits from parallelization of the code. Copyright
A three-dimensional spectral algorithm for simulations of transition and turbulence
NASA Technical Reports Server (NTRS)
Zang, T. A.; Hussaini, M. Y.
1985-01-01
A spectral algorithm for simulating three dimensional, incompressible, parallel shear flows is described. It applies to the channel, to the parallel boundary layer, and to other shear flows with one wall bounded and two periodic directions. Representative applications to the channel and to the heated boundary layer are presented.
A heterogeneous computing environment for simulating astrophysical fluid flows
NASA Technical Reports Server (NTRS)
Cazes, J.
1994-01-01
In the Concurrent Computing Laboratory in the Department of Physics and Astronomy at Louisiana State University we have constructed a heterogeneous computing environment that permits us to routinely simulate complicated three-dimensional fluid flows and to readily visualize the results of each simulation via three-dimensional animation sequences. An 8192-node MasPar MP-1 computer with 0.5 GBytes of RAM provides 250 MFlops of execution speed for our fluid flow simulations. Utilizing the parallel virtual machine (PVM) language, at periodic intervals data is automatically transferred from the MP-1 to a cluster of workstations where individual three-dimensional images are rendered for inclusion in a single animation sequence. Work is underway to replace executions on the MP-1 with simulations performed on the 512-node CM-5 at NCSA and to simultaneously gain access to more potent volume rendering workstations.
Unsteady flow simulations around complex geometries using stationary or rotating unstructured grids
NASA Astrophysics Data System (ADS)
Sezer-Uzol, Nilay
In this research, the computational analysis of three-dimensional, unsteady, separated, vortical flows around complex geometries is studied by using stationary or moving unstructured grids. Two main engineering problems are investigated. The first problem is the unsteady simulation of a ship airwake, where helicopter operations become even more challenging, by using stationary unstructured grids. The second problem is the unsteady simulation of wind turbine rotor flow fields by using moving unstructured grids which are rotating with the whole three-dimensional rigid rotor geometry. The three dimensional, unsteady, parallel, unstructured, finite volume flow solver, PUMA2, is used for the computational fluid dynamics (CFD) simulations considered in this research. The code is modified to have a moving grid capability to perform three-dimensional, time-dependent rotor simulations. An instantaneous log-law wall model for Large Eddy Simulations is also implemented in PUMA2 to investigate the very large Reynolds number flow fields of rotating blades. To verify the code modifications, several sample test cases are also considered. In addition, interdisciplinary studies, which are aiming to provide new tools and insights to the aerospace and wind energy scientific communities, are done during this research by focusing on the coupling of ship airwake CFD simulations with the helicopter flight dynamics and control analysis, the coupling of wind turbine rotor CFD simulations with the aeroacoustic analysis, and the analysis of these time-dependent and large-scale CFD simulations with the help of a computational monitoring, steering and visualization tool, POSSE.
Three-dimensional numerical study of heat transfer enhancement in separated flows
NASA Astrophysics Data System (ADS)
Kumar, Saurav; Vengadesan, S.
2017-11-01
The flow separation appears in a wide range of heat transfer applications and causes poor heat transfer performance. It motivates the study of heat transfer enhancement in laminar as well as turbulent flows over a backward facing step by means of an adiabatic fin mounted on the top wall. Recently, we have studied steady, 2-D numerical simulations in laminar flow and investigated the effect of fin length, location, and orientation. It revealed that the addition of fin causes enhancement of heat transfer and it is very effective to control the flow and thermal behavior. The fin is most effective and sensitive when it is placed exactly above the step. A slight displacement of the fin in upstream of the step causes the complete change of flow and thermal behavior. Based on the obtained 2-D results it is interesting to investigate the side wall effect in three-dimensional simulations. The comparison of two-dimensional and three-dimensional numerical simulations with the available experimental results will be presented. Special attention has to be given to capture unsteadiness in the flow and thermal field.
NASA Astrophysics Data System (ADS)
Bakker, Mark
2001-05-01
An analytic, approximate solution is derived for the modeling of three-dimensional flow to partially penetrating wells. The solution is written in terms of a correction on the solution for a fully penetrating well and is obtained by dividing the aquifer up, locally, in a number of aquifer layers. The resulting system of differential equations is solved by application of the theory for multiaquifer flow. The presented approach has three major benefits. First, the solution may be applied to any groundwater model that can simulate flow to a fully penetrating well; the solution may be superimposed onto the solution for the fully penetrating well to simulate the local three-dimensional drawdown and flow field. Second, the approach is applicable to isotropic, anisotropic, and stratified aquifers and to both confined and unconfined flow. Third, the solution extends over a small area around the well only; outside this area the three-dimensional effect of the partially penetrating well is negligible, and no correction to the fully penetrating well is needed. A number of comparisons are made to existing three-dimensional, analytic solutions, including radial confined and unconfined flow and a well in a uniform flow field. It is shown that a subdivision in three layers is accurate for many practical cases; very accurate solutions are obtained with more layers.
NASA Astrophysics Data System (ADS)
Liakos, Anastasios; Malamataris, Nikolaos A.
2014-05-01
The topology and evolution of flow around a surface mounted cubical object in three dimensional channel flow is examined for low to moderate Reynolds numbers. Direct numerical simulations were performed via a home made parallel finite element code. The computational domain has been designed according to actual laboratory experiment conditions. Analysis of the results is performed using the three dimensional theory of separation. Our findings indicate that a tornado-like vortex by the side of the cube is present for all Reynolds numbers for which flow was simulated. A horseshoe vortex upstream from the cube was formed at Reynolds number approximately 1266. Pressure distributions are shown along with three dimensional images of the tornado-like vortex and the horseshoe vortex at selected Reynolds numbers. Finally, and in accordance to previous work, our results indicate that the upper limit for the Reynolds number for which steady state results are physically realizable is roughly 2000.
NASA Astrophysics Data System (ADS)
Egorov, I. V.; Novikov, A. V.; Fedorov, A. V.
2017-08-01
A method for direct numerical simulation of three-dimensional unsteady disturbances leading to a laminar-turbulent transition at hypersonic flow speeds is proposed. The simulation relies on solving the full three-dimensional unsteady Navier-Stokes equations. The computational technique is intended for multiprocessor supercomputers and is based on a fully implicit monotone approximation scheme and the Newton-Raphson method for solving systems of nonlinear difference equations. This approach is used to study the development of three-dimensional unstable disturbances in a flat-plate and compression-corner boundary layers in early laminar-turbulent transition stages at the free-stream Mach number M = 5.37. The three-dimensional disturbance field is visualized in order to reveal and discuss features of the instability development at the linear and nonlinear stages. The distribution of the skin friction coefficient is used to detect laminar and transient flow regimes and determine the onset of the laminar-turbulent transition.
Initialization and Simulation of Three-Dimensional Aircraft Wake Vortices
NASA Technical Reports Server (NTRS)
Ash, Robert L.; Zheng, Z. C.
1997-01-01
This paper studies the effects of axial velocity profiles on vortex decay, in order to properly initialize and simulate three-dimensional wake vortex flow. Analytical relationships are obtained based on a single vortex model and computational simulations are performed for a rather practical vortex wake, which show that the single vortex analytical relations can still be applicable at certain streamwise sections of three-dimensional wake vortices.
MODELING THREE-DIMENSIONAL SUBSURFACE FLOW, FATE AND TRANSPORT OF MICROBES AND CHEMICALS (3DFATMIC)
A three-dimensional model simulating the subsurface flow, microbial growth and degradation, microbial-chemical reaction, and transport of microbes and chemicals has been developed. he model is designed to solve the coupled flow and transport equations. asically, the saturated-uns...
Convection Effects in Three-dimensional Dendritic Growth
NASA Technical Reports Server (NTRS)
Lu, Yili; Beckermann, C.; Karma, A.
2003-01-01
A phase-field model is developed to simulate free dendritic growth coupled with fluid flow for a pure material in three dimensions. The preliminary results presented here illustrate the strong influence of convection on the three-dimensional (3D) dendrite growth morphology. The detailed knowledge of the flow and temperature fields in the melt around the dendrite from the simulations allows for a detailed understanding of the convection effects on dendritic growth.
Varma, Hari M.; Valdes, Claudia P.; Kristoffersen, Anna K.; Culver, Joseph P.; Durduran, Turgut
2014-01-01
A novel tomographic method based on the laser speckle contrast, speckle contrast optical tomography (SCOT) is introduced that allows us to reconstruct three dimensional distribution of blood flow in deep tissues. This method is analogous to the diffuse optical tomography (DOT) but for deep tissue blood flow. We develop a reconstruction algorithm based on first Born approximation to generate three dimensional distribution of flow using the experimental data obtained from tissue simulating phantoms. PMID:24761306
Applications of the Lattice Boltzmann Method to Complex and Turbulent Flows
NASA Technical Reports Server (NTRS)
Luo, Li-Shi; Qi, Dewei; Wang, Lian-Ping; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
We briefly review the method of the lattice Boltzmann equation (LBE). We show the three-dimensional LBE simulation results for a non-spherical particle in Couette flow and 16 particles in sedimentation in fluid. We compare the LBE simulation of the three-dimensional homogeneous isotropic turbulence flow in a periodic cubic box of the size 1283 with the pseudo-spectral simulation, and find that the two results agree well with each other but the LBE method is more dissipative than the pseudo-spectral method in small scales, as expected.
NASA Astrophysics Data System (ADS)
Liakos, Anastasios; Malamataris, Nikolaos
2014-11-01
The topology and evolution of flow around a surface mounted cubical object in three dimensional channel flow is examined for low to moderate Reynolds numbers. Direct numerical simulations were performed via a home made parallel finite element code. The computational domain has been designed according to actual laboratory experimental conditions. Analysis of the results is performed using the three dimensional theory of separation. Our findings indicate that a tornado-like vortex by the side of the cube is present for all Reynolds numbers for which flow was simulated. A horse-shoe vortex upstream from the cube was formed at Reynolds number approximately 1266. Pressure distributions are shown along with three dimensional images of the tornado-like vortex and the horseshoe vortex at selected Reynolds numbers. Finally, and in accordance to previous work, our results indicate that the upper limit for the Reynolds number for which steady state results are physically realizable is roughly 2000. Financial support of author NM from the Office of Naval Research Global (ONRG-VSP, N62909-13-1-V016) is acknowledged.
Voss, Clifford I.; Simmons, Craig T.; Robinson, Neville I.
2010-01-01
This benchmark for three-dimensional (3D) numerical simulators of variable-density groundwater flow and solute or energy transport consists of matching simulation results with the semi-analytical solution for the transition from one steady-state convective mode to another in a porous box. Previous experimental and analytical studies of natural convective flow in an inclined porous layer have shown that there are a variety of convective modes possible depending on system parameters, geometry and inclination. In particular, there is a well-defined transition from the helicoidal mode consisting of downslope longitudinal rolls superimposed upon an upslope unicellular roll to a mode consisting of purely an upslope unicellular roll. Three-dimensional benchmarks for variable-density simulators are currently (2009) lacking and comparison of simulation results with this transition locus provides an unambiguous means to test the ability of such simulators to represent steady-state unstable 3D variable-density physics.
Numerical simulation of three-dimensional transonic turbulent projectile aerodynamics by TVD schemes
NASA Technical Reports Server (NTRS)
Shiau, Nae-Haur; Hsu, Chen-Chi; Chyu, Wei-Jao
1989-01-01
The two-dimensional symmetric TVD scheme proposed by Yee has been extended to and investigated for three-dimensional thin-layer Navier-Stokes simulation of complex aerodynamic problems. An existing three-dimensional Navier-stokes code based on the beam and warming algorithm is modified to provide an option of using the TVD algorithm and the flow problem considered is a transonic turbulent flow past a projectile with sting at ten-degree angle of attack. Numerical experiments conducted for three flow cases, free-stream Mach numbers of 0.91, 0.96 and 1.20 show that the symmetric TVD algorithm can provide surface pressure distribution in excellent agreement with measured data; moreover, the rate of convergence to attain a steady state solution is about two times faster than the original beam and warming algorithm.
Franz, Delbert D.; Melching, Charles S.
1997-01-01
The Full EQuations UTiLities (FEQUTL) model is a computer program for computation of tables that list the hydraulic characteristics of open channels and control structures as a function of upstream and downstream depths; these tables facilitate the simulation of unsteady flow in a stream system with the Full Equations (FEQ) model. Simulation of unsteady flow requires many iterations for each time period computed. Thus, computation of hydraulic characteristics during the simulations is impractical, and preparation of function tables and application of table look-up procedures facilitates simulation of unsteady flow. Three general types of function tables are computed: one-dimensional tables that relate hydraulic characteristics to upstream flow depth, two-dimensional tables that relate flow through control structures to upstream and downstream flow depth, and three-dimensional tables that relate flow through gated structures to upstream and downstream flow depth and gate setting. For open-channel reaches, six types of one-dimensional function tables contain different combinations of the top width of flow, area, first moment of area with respect to the water surface, conveyance, flux coefficients, and correction coefficients for channel curvilinearity. For hydraulic control structures, one type of one-dimensional function table contains relations between flow and upstream depth, and two types of two-dimensional function tables contain relations among flow and upstream and downstream flow depths. For hydraulic control structures with gates, a three-dimensional function table lists the system of two-dimensional tables that contain the relations among flow and upstream and downstream flow depths that correspond to different gate openings. Hydraulic control structures for which function tables containing flow relations are prepared in FEQUTL include expansions, contractions, bridges, culverts, embankments, weirs, closed conduits (circular, rectangular, and pipe-arch shapes), dam failures, floodways, and underflow gates (sluice and tainter gates). The theory for computation of the hydraulic characteristics is presented for open channels and for each hydraulic control structure. For the hydraulic control structures, the theory is developed from the results of experimental tests of flow through the structure for different upstream and downstream flow depths. These tests were done to describe flow hydraulics for a single, steady-flow design condition and, thus, do not provide complete information on flow transitions (for example, between free- and submerged-weir flow) that may result in simulation of unsteady flow. Therefore, new procedures are developed to approximate the hydraulics of flow transitions for culverts, embankments, weirs, and underflow gates.
Two-dimensional numerical simulation of flow around three-stranded rope
NASA Astrophysics Data System (ADS)
Wang, Xinxin; Wan, Rong; Huang, Liuyi; Zhao, Fenfang; Sun, Peng
2016-08-01
Three-stranded rope is widely used in fishing gear and mooring system. Results of numerical simulation are presented for flow around a three-stranded rope in uniform flow. The simulation was carried out to study the hydrodynamic characteristics of pressure and velocity fields of steady incompressible laminar and turbulent wakes behind a three-stranded rope. A three-cylinder configuration and single circular cylinder configuration are used to model the three-stranded rope in the two-dimensional simulation. The governing equations, Navier-Stokes equations, are solved by using two-dimensional finite volume method. The turbulence flow is simulated using Standard κ-ɛ model and Shear-Stress Transport κ-ω (SST) model. The drag of the three-cylinder model and single cylinder model is calculated for different Reynolds numbers by using control volume analysis method. The pressure coefficient is also calculated for the turbulent model and laminar model based on the control surface method. From the comparison of the drag coefficient and the pressure of the single cylinder and three-cylinder models, it is found that the drag coefficients of the three-cylinder model are generally 1.3-1.5 times those of the single circular cylinder for different Reynolds numbers. Comparing the numerical results with water tank test data, the results of the three-cylinder model are closer to the experiment results than the single cylinder model results.
NASA Technical Reports Server (NTRS)
Przekwas, A. J.; Singhal, A. K.; Tam, L. T.
1984-01-01
The capability of simulating three dimensional two phase reactive flows with combustion in the liquid fuelled rocket engines is demonstrated. This was accomplished by modifying an existing three dimensional computer program (REFLAN3D) with Eulerian Lagrangian approach to simulate two phase spray flow, evaporation and combustion. The modified code is referred as REFLAN3D-SPRAY. The mathematical formulation of the fluid flow, heat transfer, combustion and two phase flow interaction of the numerical solution procedure, boundary conditions and their treatment are described.
Two-dimensional dynamics of elasto-inertial turbulence and its role in polymer drag reduction
NASA Astrophysics Data System (ADS)
Sid, S.; Terrapon, V. E.; Dubief, Y.
2018-02-01
The goal of the present study is threefold: (i) to demonstrate the two-dimensional nature of the elasto-inertial instability in elasto-inertial turbulence (EIT), (ii) to identify the role of the bidimensional instability in three-dimensional EIT flows, and (iii) to establish the role of the small elastic scales in the mechanism of self-sustained EIT. Direct numerical simulations of viscoelastic fluid flows are performed in both two- and three-dimensional straight periodic channels using the Peterlin finitely extensible nonlinear elastic model (FENE-P). The Reynolds number is set to Reτ=85 , which is subcritical for two-dimensional flows but beyond the transition for three-dimensional ones. The polymer properties selected correspond to those of typical dilute polymer solutions, and two moderate Weissenberg numbers, Wiτ=40 ,100 , are considered. The simulation results show that sustained turbulence can be observed in two-dimensional subcritical flows, confirming the existence of a bidimensional elasto-inertial instability. The same type of instability is also observed in three-dimensional simulations where both Newtonian and elasto-inertial turbulent structures coexist. Depending on the Wi number, one type of structure can dominate and drive the flow. For large Wi values, the elasto-inertial instability tends to prevail over the Newtonian turbulence. This statement is supported by (i) the absence of typical Newtonian near-wall vortices and (ii) strong similarities between two- and three-dimensional flows when considering larger Wi numbers. The role of small elastic scales is investigated by introducing global artificial diffusion (GAD) in the hyperbolic transport equation for polymers. The aim is to measure how the flow reacts when the smallest elastic scales are progressively filtered out. The study results show that the introduction of large polymer diffusion in the system strongly damps a significant part of the elastic scales that are necessary to feed turbulence, eventually leading to flow laminarization. A sufficiently high Schmidt number (weakly diffusive polymers) is necessary to allow self-sustained turbulence to settle. Although EIT can withstand a low amount of diffusion and remains in a nonlaminar chaotic state, adding a finite amount of GAD in the system can have an impact on the dynamics and lead to important quantitative changes, even for Schmidt numbers as large as 102. The use of GAD should therefore be avoided in viscoelastic flow simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tartakovsky, Alexandre M.; Meakin, Paul
2005-08-10
A numerical model based on smoothed particle hydrodynamics (SPH) has been developed and used to simulate the classical two-dimensional Rayleigh–Taylor instability and three-dimensional miscible flow in fracture apertures with complex geometries. To model miscible flow fluid particles with variable, composition dependent, masses were used. By basing the SPH equations on the particle number density artificial surface tension effects were avoided. The simulation results for the growth of a single perturbation driven by the Rayleigh – Taylor instability compare well with numerical results obtained by Fournier et al., and the growth of a perturbation with time can be represented quite wellmore » by a second-degree polynomial, in accord with the linear stability analysis of Duff et al. The dispersion coefficient found from SPH simulation of flow and diffusion in an ideal fracture was in excellent agreement with the value predicted by the theory of Taylor and Aris. The simulations of miscible flow in fracture apertures can be used to determination dispersion coefficients for transport in fractured media - a parameter used in large-scale simulations of contaminant transport.« less
Two- and three-dimensional turbine blade row flow field simulations
NASA Technical Reports Server (NTRS)
Buggeln, R. C.; Briley, W. R.; Mcdonald, H.; Shamroth, S. J.; Weinberg, B. C.
1987-01-01
Work performed in the numerical simulation of turbine passage flows via a Navier-Stokes approach is discussed. Both laminar and turbulent simulations in both two and three dimensions are discussed. An outline of the approach, background, and an overview of the results are given.
THREE-DIMENSIONAL NAPL FATE AND TRANSPORT MODEL
We have added several new and significant capabilities to UTCHEM to make it into a general-purpose NAPL simulator. The simulator is now capable of modeling transient and steady-state three-dimensional flow and mass transport in the groundwater (saturated) and vadose (unsaturated...
NASA Technical Reports Server (NTRS)
Weed, Richard Allen; Sankar, L. N.
1994-01-01
An increasing amount of research activity in computational fluid dynamics has been devoted to the development of efficient algorithms for parallel computing systems. The increasing performance to price ratio of engineering workstations has led to research to development procedures for implementing a parallel computing system composed of distributed workstations. This thesis proposal outlines an ongoing research program to develop efficient strategies for performing three-dimensional flow analysis on distributed computing systems. The PVM parallel programming interface was used to modify an existing three-dimensional flow solver, the TEAM code developed by Lockheed for the Air Force, to function as a parallel flow solver on clusters of workstations. Steady flow solutions were generated for three different wing and body geometries to validate the code and evaluate code performance. The proposed research will extend the parallel code development to determine the most efficient strategies for unsteady flow simulations.
GPU accelerated simulations of three-dimensional flow of power-law fluids in a driven cube
NASA Astrophysics Data System (ADS)
Jin, K.; Vanka, S. P.; Agarwal, R. K.; Thomas, B. G.
2017-01-01
Newtonian fluid flow in two- and three-dimensional cavities with a moving wall has been studied extensively in a number of previous works. However, relatively a fewer number of studies have considered the motion of non-Newtonian fluids such as shear thinning and shear thickening power law fluids. In this paper, we have simulated the three-dimensional, non-Newtonian flow of a power law fluid in a cubic cavity driven by shear from the top wall. We have used an in-house developed fractional step code, implemented on a Graphics Processor Unit. Three Reynolds numbers have been studied with power law index set to 0.5, 1.0 and 1.5. The flow patterns, viscosity distributions and velocity profiles are presented for Reynolds numbers of 100, 400 and 1000. All three Reynolds numbers are found to yield steady state flows. Tabulated values of velocity are given for the nine cases studied, including the Newtonian cases.
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2009-01-01
The quality of simulated hypersonic stagnation region heating on tetrahedral meshes is investigated by using a three-dimensional, upwind reconstruction algorithm for the inviscid flux vector. Two test problems are investigated: hypersonic flow over a three-dimensional cylinder with special attention to the uniformity of the solution in the spanwise direction and hypersonic flow over a three-dimensional sphere. The tetrahedral cells used in the simulation are derived from a structured grid where cell faces are bisected across the diagonal resulting in a consistent pattern of diagonals running in a biased direction across the otherwise symmetric domain. This grid is known to accentuate problems in both shock capturing and stagnation region heating encountered with conventional, quasi-one-dimensional inviscid flux reconstruction algorithms. Therefore the test problem provides a sensitive test for algorithmic effects on heating. This investigation is believed to be unique in its focus on three-dimensional, rotated upwind schemes for the simulation of hypersonic heating on tetrahedral grids. This study attempts to fill the void left by the inability of conventional (quasi-one-dimensional) approaches to accurately simulate heating in a tetrahedral grid system. Results show significant improvement in spanwise uniformity of heating with some penalty of ringing at the captured shock. Issues with accuracy near the peak shear location are identified and require further study.
NASA Astrophysics Data System (ADS)
Chang, S. L.; Lottes, S. A.; Berry, G. F.
Argonne National Laboratory is investigating the non-reacting jet-gas mixing patterns in a magnetohydrodynamics (MHD) second stage combustor by using a three-dimensional single-phase hydrodynamics computer program. The computer simulation is intended to enhance the understanding of flow and mixing patterns in the combustor, which in turn may improve downstream MHD channel performance. The code is used to examine the three-dimensional effects of the side walls and the distributed jet flows on the non-reacting jet-gas mixing patterns. The code solves the conservation equations of mass, momentum, and energy, and a transport equation of a turbulence parameter and allows permeable surfaces to be specified for any computational cell.
An intermediate-scale model for thermal hydrology in low-relief permafrost-affected landscapes
Jan, Ahmad; Coon, Ethan T.; Painter, Scott L.; ...
2017-07-10
Integrated surface/subsurface models for simulating the thermal hydrology of permafrost-affected regions in a warming climate have recently become available, but computational demands of those new process-rich simu- lation tools have thus far limited their applications to one-dimensional or small two-dimensional simulations. We present a mixed-dimensional model structure for efficiently simulating surface/subsurface thermal hydrology in low-relief permafrost regions at watershed scales. The approach replaces a full three-dimensional system with a two-dimensional overland thermal hydrology system and a family of one-dimensional vertical columns, where each column represents a fully coupled surface/subsurface thermal hydrology system without lateral flow. The system is then operatormore » split, sequentially updating the overland flow system without sources and the one-dimensional columns without lateral flows. We show that the app- roach is highly scalable, supports subcycling of different processes, and compares well with the corresponding fully three-dimensional representation at significantly less computational cost. Those advances enable recently developed representations of freezing soil physics to be coupled with thermal overland flow and surface energy balance at scales of 100s of meters. Furthermore developed and demonstrated for permafrost thermal hydrology, the mixed-dimensional model structure is applicable to integrated surface/subsurface thermal hydrology in general.« less
NASA Astrophysics Data System (ADS)
Ryu, Dongsu; Jones, T. W.; Frank, Adam
2000-12-01
We investigate through high-resolution three-dimensional simulations the nonlinear evolution of compressible magnetohydrodynamic flows subject to the Kelvin-Helmholtz instability. As in our earlier work, we have considered periodic sections of flows that contain a thin, transonic shear layer but are otherwise uniform. The initially uniform magnetic field is parallel to the shear plane but oblique to the flow itself. We confirm in three-dimensional flows the conclusion from our two-dimensional work that even apparently weak magnetic fields embedded in Kelvin-Helmholtz unstable plasma flows can be fundamentally important to nonlinear evolution of the instability. In fact, that statement is strengthened in three dimensions by this work because it shows how field-line bundles can be stretched and twisted in three dimensions as the quasi-two-dimensional Cat's Eye vortex forms out of the hydrodynamical motions. In our simulations twisting of the field may increase the maximum field strength by more than a factor of 2 over the two-dimensional effect. If, by these developments, the Alfvén Mach number of flows around the Cat's Eye drops to unity or less, our simulations suggest that magnetic stresses will eventually destroy the Cat's Eye and cause the plasma flow to self-organize into a relatively smooth and apparently stable flow that retains memory of the original shear. For our flow configurations, the regime in three dimensions for such reorganization is 4<~MAx<~50, expressed in terms of the Alfvén Mach number of the original velocity transition and the initial Alfvén speed projected to the flow plan. When the initial field is stronger than this, the flow either is linearly stable (if MAx<~2) or becomes stabilized by enhanced magnetic tension as a result of the corrugated field along the shear layer before the Cat's Eye forms (if MAx>~2). For weaker fields the instability remains essentially hydrodynamic in early stages, and the Cat's Eye is destroyed by the hydrodynamic secondary instabilities of a three-dimensional nature. Then, the flows evolve into chaotic structures that approach decaying isotropic turbulence. In this stage, there is considerable enhancement to the magnetic energy due to stretching, twisting, and turbulent amplification, which is retained long afterward. The magnetic energy eventually catches up to the kinetic energy, and the nature of flows becomes magnetohydrodynamic. Decay of the magnetohydrodynamic turbulence is enhanced by dissipation accompanying magnetic reconnection. Hence, in three dimensions as in two dimensions, very weak fields do not modify substantially the character of the flow evolution but do increase global dissipation rates.
Drag and drop simulation: from pictures to full three-dimensional simulations
NASA Astrophysics Data System (ADS)
Bergmann, Michel; Iollo, Angelo
2014-11-01
We present a suite of methods to achieve ``drag and drop'' simulation, i.e., to fully automatize the process to perform thee-dimensional flow simulations around a bodies defined by actual images of moving objects. The overall approach requires a skeleton graph generation to get level set function from pictures, optimal transportation to get body velocity on the surface and then flow simulation thanks to a cartesian method based on penalization. We illustrate this paradigm simulating the swimming of a mackerel fish.
Reynolds stress closure modeling in wall-bounded flows
NASA Technical Reports Server (NTRS)
Durbin, Paul A.
1993-01-01
This report describes two projects. Firstly, a Reynolds stress closure for near-wall turbulence is described. It was motivated by the simpler k-epsilon-(v-bar(exp 2)) model described in last year's annual research brief. Direct Numerical Simulation of three-dimensional channel flow shows a curious decrease of the turbulent kinetic energy. The second topic of this report is a model which reproduces this effect. That model is described and used to discuss the relevance of the three dimensional channel flow simulation to swept wing boundary layers.
Updates to Multi-Dimensional Flux Reconstruction for Hypersonic Simulations on Tetrahedral Grids
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2010-01-01
The quality of simulated hypersonic stagnation region heating with tetrahedral meshes is investigated by using an updated three-dimensional, upwind reconstruction algorithm for the inviscid flux vector. An earlier implementation of this algorithm provided improved symmetry characteristics on tetrahedral grids compared to conventional reconstruction methods. The original formulation however displayed quantitative differences in heating and shear that were as large as 25% compared to a benchmark, structured-grid solution. The primary cause of this discrepancy is found to be an inherent inconsistency in the formulation of the flux limiter. The inconsistency is removed by employing a Green-Gauss formulation of primitive gradients at nodes to replace the previous Gram-Schmidt algorithm. Current results are now in good agreement with benchmark solutions for two challenge problems: (1) hypersonic flow over a three-dimensional cylindrical section with special attention to the uniformity of the solution in the spanwise direction and (2) hypersonic flow over a three-dimensional sphere. The tetrahedral cells used in the simulation are derived from a structured grid where cell faces are bisected across the diagonal resulting in a consistent pattern of diagonals running in a biased direction across the otherwise symmetric domain. This grid is known to accentuate problems in both shock capturing and stagnation region heating encountered with conventional, quasi-one-dimensional inviscid flux reconstruction algorithms. Therefore the test problems provide a sensitive indicator for algorithmic effects on heating. Additional simulations on a sharp, double cone and the shuttle orbiter are then presented to demonstrate the capabilities of the new algorithm on more geometrically complex flows with tetrahedral grids. These results provide the first indication that pure tetrahedral elements utilizing the updated, three-dimensional, upwind reconstruction algorithm may be used for the simulation of heating and shear in hypersonic flows in upwind, finite volume formulations.
A coupled approach for the three-dimensional simulation of pipe leakage in variably saturated soil
NASA Astrophysics Data System (ADS)
Peche, Aaron; Graf, Thomas; Fuchs, Lothar; Neuweiler, Insa
2017-12-01
In urban water pipe networks, pipe leakage may lead to subsurface contamination or to reduced waste water treatment efficiency. The quantification of pipe leakage is challenging due to inaccessibility and unknown hydraulic properties of the soil. A novel physically-based model for three-dimensional numerical simulation of pipe leakage in variably saturated soil is presented. We describe the newly implemented coupling between the pipe flow simulator HYSTEM-EXTRAN and the groundwater flow simulator OpenGeoSys and its validation. We further describe a novel upscaling of leakage using transfer functions derived from numerical simulations. This upscaling enables the simulation of numerous pipe defects with the benefit of reduced computation times. Finally, we investigate the response of leakage to different time-dependent pipe flow events and conclude that larger pipe flow volume and duration lead to larger leakage while the peak position in time has a small effect on leakage.
A computational model for three-dimensional incompressible wall jets with large cross flow
NASA Technical Reports Server (NTRS)
Murphy, W. D.; Shankar, V.; Malmuth, N. D.
1979-01-01
A computational model for the flow field of three dimensional incompressible wall jets prototypic of thrust augmenting ejectors with large cross flow is presented. The formulation employs boundary layer equations in an orthogonal curvilinear coordinate system. Simulation of laminar as well as turbulen wall jets is reported. Quantification of jet spreading, jet growth, nominal separation, and jet shrink effects due to corss flow are discussed.
Vectorization of a particle simulation method for hypersonic rarefied flow
NASA Technical Reports Server (NTRS)
Mcdonald, Jeffrey D.; Baganoff, Donald
1988-01-01
An efficient particle simulation technique for hypersonic rarefied flows is presented at an algorithmic and implementation level. The implementation is for a vector computer architecture, specifically the Cray-2. The method models an ideal diatomic Maxwell molecule with three translational and two rotational degrees of freedom. Algorithms are designed specifically for compatibility with fine grain parallelism by reducing the number of data dependencies in the computation. By insisting on this compatibility, the method is capable of performing simulation on a much larger scale than previously possible. A two-dimensional simulation of supersonic flow over a wedge is carried out for the near-continuum limit where the gas is in equilibrium and the ideal solution can be used as a check on the accuracy of the gas model employed in the method. Also, a three-dimensional, Mach 8, rarefied flow about a finite-span flat plate at a 45 degree angle of attack was simulated. It utilized over 10 to the 7th particles carried through 400 discrete time steps in less than one hour of Cray-2 CPU time. This problem was chosen to exhibit the capability of the method in handling a large number of particles and a true three-dimensional geometry.
Concentration data and dimensionality in groundwater models: evaluation using inverse modelling
Barlebo, H.C.; Hill, M.C.; Rosbjerg, D.; Jensen, K.H.
1998-01-01
A three-dimensional inverse groundwater flow and transport model that fits hydraulic-head and concentration data simultaneously using nonlinear regression is presented and applied to a layered sand and silt groundwater system beneath the Grindsted Landfill in Denmark. The aquifer is composed of rather homogeneous hydrogeologic layers. Two issues common to groundwater flow and transport modelling are investigated: 1) The accuracy of simulated concentrations in the case of calibration with head data alone; and 2) The advantages and disadvantages of using a two-dimensional cross-sectional model instead of a three-dimensional model to simulate contaminant transport when the source is at the land surface. Results show that using only hydraulic heads in the nonlinear regression produces a simulated plume that is profoundly different from what is obtained in a calibration using both hydraulic-head and concentration data. The present study provides a well-documented example of the differences that can occur. Representing the system as a two-dimensional cross-section obviously omits some of the system dynamics. It was, however, possible to obtain a simulated plume cross-section that matched the actual plume cross-section well. The two-dimensional model execution times were about a seventh of those for the three-dimensional model, but some difficulties were encountered in representing the spatially variable source concentrations and less precise simulated concentrations were calculated by the two-dimensional model compared to the three-dimensional model. Summed up, the present study indicates that three dimensional modelling using both hydraulic heads and concentrations in the calibration should be preferred in the considered type of transport studies.
Rapid Prediction of Unsteady Three-Dimensional Viscous Flows in Turbopump Geometries
NASA Technical Reports Server (NTRS)
Dorney, Daniel J.
1998-01-01
A program is underway to improve the efficiency of a three-dimensional Navier-Stokes code and generalize it for nozzle and turbopump geometries. Code modifications will include the implementation of parallel processing software, incorporating new physical models and generalizing the multi-block capability to allow the simultaneous simulation of nozzle and turbopump configurations. The current report contains details of code modifications, numerical results of several flow simulations and the status of the parallelization effort.
Three-dimensional implementation of the Low Diffusion method for continuum flow simulations
NASA Astrophysics Data System (ADS)
Mirza, A.; Nizenkov, P.; Pfeiffer, M.; Fasoulas, S.
2017-11-01
Concepts of a particle-based continuum method have existed for many years. The ultimate goal is to couple such a method with the Direct Simulation Monte Carlo (DSMC) in order to bridge the gap of numerical tools in the treatment of the transitional flow regime between near-equilibrium and rarefied gas flows. For this purpose, the Low Diffusion (LD) method, introduced first by Burt and Boyd, offers a promising solution. In this paper, the LD method is revisited and the implementation in a modern particle solver named PICLas is given. The modifications of the LD routines enable three-dimensional continuum flow simulations. The implementation is successfully verified through a series of test cases: simple stationary shock, oblique shock simulation and thermal Couette flow. Additionally, the capability of this method is demonstrated by the simulation of a hypersonic nitrogen flow around a 70°-blunted cone. Overall results are in very good agreement with experimental data. Finally, the scalability of PICLas using LD on a high performance cluster is presented.
Three-dimensional simulation of the free shear layer using the vortex-in-cell method
NASA Technical Reports Server (NTRS)
Couet, B.; Buneman, O.; Leonard, A.
1979-01-01
We present numerical simulations of the evolution of a mixing layer from an initial state of uniform vorticity with simple two- and three-dimensional small perturbations. A new method for tracing a large number of three-dimensional vortex filaments is used in the simulations. Vortex tracing by Biot-Savart interaction originally implied ideal (non-viscous) flow, but we use a 3-d mesh, Fourier transforms and filtering for vortex tracing, which implies 'modeling' of subgrid scale motion and hence some viscosity. Streamwise perturbations lead to the usual roll-up of vortex patterns with spanwise uniformity maintained. Remarkably, spanwise perturbations generate streamwise distortions of the vortex filaments and the combination of both perturbations leads to patterns with interesting features discernable in the movies and in the records of enstrophy and energy for the three components of the flow.
Numerical simulation of steady supersonic flow. [spatial marching
NASA Technical Reports Server (NTRS)
Schiff, L. B.; Steger, J. L.
1981-01-01
A noniterative, implicit, space-marching, finite-difference algorithm was developed for the steady thin-layer Navier-Stokes equations in conservation-law form. The numerical algorithm is applicable to steady supersonic viscous flow over bodies of arbitrary shape. In addition, the same code can be used to compute supersonic inviscid flow or three-dimensional boundary layers. Computed results from two-dimensional and three-dimensional versions of the numerical algorithm are in good agreement with those obtained from more costly time-marching techniques.
NASA Technical Reports Server (NTRS)
Hendricks, R. C.; Athavale, M. M.; Lattime, S. B.; Braun, M. J.
1998-01-01
A videotape presentation of flow in a packed bed of spheres is provided. The flow experiment consisted of three principal elements: (1) an oil tunnel 76.2 mm by 76.2 mm in cross section, (2) a packed bed of spheres in regular and irregular arrays, and (3) a flow characterization methodology, either (a) full flow field tracking (FFFT) or (b) computational fluid dynamic (CFD) simulation. The refraction indices of the oil and the test array of spheres were closely matched, and the flow was seeded with aluminum oxide particles. Planar laser light provided a two-dimensional projection of the flow field, and a traverse simulated a three-dimensional image of the entire flow field. Light focusing and reflection rendered the spheres black, permitting visualization of the planar circular interfaces in both the axial and transverse directions. Flows were observed near the wall-sphere interface and within the set of spheres. The CFD model required that a representative section of a packed bed be formed and gridded, enclosing and cutting six spheres so that symmetry conditions could be imposed at all cross-boundaries. Simulations had to be made with the flow direction at right angles to that used in the experiments, however, to take advantage of flow symmetry. Careful attention to detail was required for proper gridding. The flow field was three-dimensional and complex to describe, yet the most prominent finding was flow threads, as computed in the representative 'cube' of spheres with face symmetry and conclusively demonstrated experimentally herein. Random packing and bed voids tended to disrupt the laminar flow, creating vortices.
Three-dimensional transient flow of spin-up in a filled cylinder with oblique gravity force
NASA Technical Reports Server (NTRS)
Hung, R. J.; Pan, H. L.
1995-01-01
Three-dimensional transient flow profiles of spin-up in a fully liquid filled cylinder from rest with gravity acceleration at various direction are numerically simulated and studied. Particular interests are concentrated on the development of temporary reverse flow zones and Ekman layer right after the impulsive start of spin-up from rest, and decay before the flow reaching to the solid rotation. Relationship of these flow developments and differences in the Reynolds numbers of the flow and its size selection of grid points concerning the numerical instabilities of flow computations are also discussed. In addition to the gravitational acceleration along the axial direction of the cylindrical container, a series of complicated flow profiles accompanied by three-dimensional transient flows with oblique gravitational acceleration has been studies.
NASA Astrophysics Data System (ADS)
Jin, Young-Gwan; Son, Il-Heon; Im, Yong-Taek
2010-06-01
Experiments with a square specimen made of commercially pure aluminum alloy (AA1050) were conducted to investigate deformation behaviour during a multi-pass Equal Channel Angular Pressing (ECAP) for routes A, Bc, and C up to four passes. Three-dimensional finite element numerical simulations of the multi-pass ECAP were carried out in order to evaluate the influence of processing routes and number of passes on local flow behaviour by applying a simplified saturation model of flow stress under an isothermal condition. Simulation results were investigated by comparing them with the experimentally measured data in terms of load variations and microhardness distributions. Also, transmission electron microscopy analysis was employed to investigate the microstructural changes. The present work clearly shows that the three-dimensional flow characteristics of the deformed specimen were dependent on the strain path changes due to the processing routes and number of passes that occurred during the multi-pass ECAP.
Reaction-Infiltration Instabilities in Fractured and Porous Rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ladd, Anthony
In this project we are developing a multiscale analysis of the evolution of fracture permeability, using numerical simulations and linear stability analysis. Our simulations include fully three-dimensional simulations of the fracture topography, fluid flow, and reactant transport, two-dimensional simulations based on aperture models, and linear stability analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griebel, M., E-mail: griebel@ins.uni-bonn.de, E-mail: ruettgers@ins.uni-bonn.de; Rüttgers, A., E-mail: griebel@ins.uni-bonn.de, E-mail: ruettgers@ins.uni-bonn.de
The multiscale FENE model is applied to a 3D square-square contraction flow problem. For this purpose, the stochastic Brownian configuration field method (BCF) has been coupled with our fully parallelized three-dimensional Navier-Stokes solver NaSt3DGPF. The robustness of the BCF method enables the numerical simulation of high Deborah number flows for which most macroscopic methods suffer from stability issues. The results of our simulations are compared with that of experimental measurements from literature and show a very good agreement. In particular, flow phenomena such as a strong vortex enhancement, streamline divergence and a flow inversion for highly elastic flows are reproduced.more » Due to their computational complexity, our simulations require massively parallel computations. Using a domain decomposition approach with MPI, the implementation achieves excellent scale-up results for up to 128 processors.« less
Direct numerical simulation of laminar-turbulent flow over a flat plate at hypersonic flow speeds
NASA Astrophysics Data System (ADS)
Egorov, I. V.; Novikov, A. V.
2016-06-01
A method for direct numerical simulation of a laminar-turbulent flow around bodies at hypersonic flow speeds is proposed. The simulation is performed by solving the full three-dimensional unsteady Navier-Stokes equations. The method of calculation is oriented to application of supercomputers and is based on implicit monotonic approximation schemes and a modified Newton-Raphson method for solving nonlinear difference equations. By this method, the development of three-dimensional perturbations in the boundary layer over a flat plate and in a near-wall flow in a compression corner is studied at the Mach numbers of the free-stream of M = 5.37. In addition to pulsation characteristic, distributions of the mean coefficients of the viscous flow in the transient section of the streamlined surface are obtained, which enables one to determine the beginning of the laminar-turbulent transition and estimate the characteristics of the turbulent flow in the boundary layer.
Analysis of Massively Separated Flows of Aircraft Using Detached Eddy Simulation
NASA Astrophysics Data System (ADS)
Morton, Scott
2002-08-01
An important class of turbulent flows of aerodynamic interest are those characterized by massive separation, e.g., the flow around an aircraft at high angle of attack. Numerical simulation is an important tool for analysis, though traditional models used in the solution of the Reynolds-averaged Navier-Stokes (RANS) equations appear unable to accurately account for the time-dependent and three-dimensional motions governing flows with massive separation. Large-eddy simulation (LES) is able to resolve these unsteady three-dimensional motions, yet is cost prohibitive for high Reynolds number wall-bounded flows due to the need to resolve the small scale motions in the boundary layer. Spalart et. al. proposed a hybrid technique, Detached-Eddy Simulation (DES), which takes advantage of the often adequate performance of RANS turbulence models in the "thin," typically attached regions of the flow. In the separated regions of the flow the technique becomes a Large Eddy Simulation, directly resolving the time-dependent and unsteady features that dominate regions of massive separation. The current work applies DES to a 70 degree sweep delta wing at 27 degrees angle of attack, a geometrically simple yet challenging flowfield that exhibits the unsteady three-dimensional massively separated phenomena of vortex breakdown. After detailed examination of this basic flowfield, the method is demonstrated on three full aircraft of interest characterized by massive separation, the F-16 at 45 degrees angle of attack, the F-15 at 65 degree angle of attack (with comparison to flight test), and the C-130 in a parachute drop condition at near stall speed with cargo doors open.
High-Fidelity Three-Dimensional Simulation of the GE90
NASA Technical Reports Server (NTRS)
Turner, Mark G.; Norris, Andrew; Veres, Josphe P.
2004-01-01
A full-engine simulation of the three-dimensional flow in the GE90 94B high-bypass ratio turbofan engine has been achieved. It would take less than 11 hr of wall clock time if starting from scratch through the exploitation of parallel processing. The simulation of the compressor components, the cooled high-pressure turbine, and the low-pressure turbine was performed using the APNASA turbomachinery flow code. The combustor flow and chemistry were simulated using the National Combustor Code (NCC). The engine simulation matches the engine thermodynamic cycle for a sea-level takeoff condition. The simulation is started at the inlet of the fan and progresses downstream. Comparisons with the cycle point are presented. A detailed look at the blockage in the turbomachinery is presented as one measure to assess and view the solution and the multistage interaction effects.
NASA Technical Reports Server (NTRS)
Van Dalsem, W. R.; Steger, J. L.
1985-01-01
A simple and computationally efficient algorithm for solving the unsteady three-dimensional boundary-layer equations in the time-accurate or relaxation mode is presented. Results of the new algorithm are shown to be in quantitative agreement with detailed experimental data for flow over a swept infinite wing. The separated flow over a 6:1 ellipsoid at angle of attack, and the transonic flow over a finite-wing with shock-induced 'mushroom' separation are also computed and compared with available experimental data. It is concluded that complex, separated, three-dimensional viscous layers can be economically and routinely computed using a time-relaxation boundary-layer algorithm.
NASA Astrophysics Data System (ADS)
He, Liping; Lu, Gang; Chen, Dachuan; Li, Wenjun; Lu, Chunsheng
2017-07-01
This paper investigates the three-dimensional (3D) injection molding flow of short fiber-reinforced polymer composites using a smoothed particle hydrodynamics (SPH) simulation method. The polymer melt was modeled as a power law fluid and the fibers were considered as rigid cylindrical bodies. The filling details and fiber orientation in the injection-molding process were studied. The results indicated that the SPH method could effectively predict the order of filling, fiber accumulation, and heterogeneous distribution of fibers. The SPH simulation also showed that fibers were mainly aligned to the flow direction in the skin layer and inclined to the flow direction in the core layer. Additionally, the fiber-orientation state in the simulation was quantitatively analyzed and found to be consistent with the results calculated by conventional tensor methods.
Duct flow nonuniformities: Effect of struts in SSME HGM II(+)
NASA Technical Reports Server (NTRS)
Burke, Roger
1988-01-01
A numerical study, using the INS3D flow solver, of laminar and turbulent flow around a two dimensional strut, and three dimensional flow around a strut in an annulus is presented. A multi-block procedure was used to calculate two dimensional laminar flow around two struts in parallel, with each strut represented by one computational block. Single block calculations were performed for turbulent flow around a two dimensional strut, using a Baldwin-Lomax turbulence model to parameterize the turbulent shear stresses. A modified Baldwin-Lomax model was applied to the case of a three dimensional strut in an annulus. The results displayed the essential features of wing-body flows, including the presence of a horseshoe vortex system at the junction of the strut and the lower annulus surface. A similar system was observed at the upper annulus surface. The test geometries discussed were useful in developing the capability to perform multiblock calculations, and to simulate turbulent flow around obstructions located between curved walls. Both of these skills will be necessary to model the three dimensional flow in the strut assembly of the SSME. Work is now in progress on performing a three dimensional two block turbulent calculation of the flow in the turnaround duct (TAD) and strut/fuel bowl juncture region.
Zheng, X; Xue, Q; Mittal, R; Beilamowicz, S
2010-11-01
A new flow-structure interaction method is presented, which couples a sharp-interface immersed boundary method flow solver with a finite-element method based solid dynamics solver. The coupled method provides robust and high-fidelity solution for complex flow-structure interaction (FSI) problems such as those involving three-dimensional flow and viscoelastic solids. The FSI solver is used to simulate flow-induced vibrations of the vocal folds during phonation. Both two- and three-dimensional models have been examined and qualitative, as well as quantitative comparisons, have been made with established results in order to validate the solver. The solver is used to study the onset of phonation in a two-dimensional laryngeal model and the dynamics of the glottal jet in a three-dimensional model and results from these studies are also presented.
The NASA Ames Hypersonic Combustor-Model Inlet CFD Simulations and Experimental Comparisons
NASA Technical Reports Server (NTRS)
Venkatapathy, E.; Tokarcik-Polsky, S.; Deiwert, G. S.; Edwards, Thomas A. (Technical Monitor)
1995-01-01
Computations have been performed on a three-dimensional inlet associated with the NASA Ames combustor model for the hypersonic propulsion experiment in the 16-inch shock tunnel. The 3-dimensional inlet was designed to have the combustor inlet flow nearly two-dimensional and of sufficient mass flow necessary for combustion. The 16-inch shock tunnel experiment is a short duration test with test time of the order of milliseconds. The flow through the inlet is in chemical non-equilibrium. Two test entries have been completed and limited experimental results for the inlet region of the combustor-model are available. A number of CFD simulations, with various levels of simplifications such as 2-D simulations, 3-D simulations with and without chemical reactions, simulations with and without turbulent conditions, etc., have been performed. These simulations have helped determine the model inlet flow characteristics and the important factors that affect the combustor inlet flow and the sensitivity of the flow field to these simplifications. In the proposed paper, CFD modeling of the hypersonic inlet, results from the simulations and comparison with available experimental results will be presented.
Rapid and efficient mixing in a slip-driven three-dimensional flow in a rectangular channel
NASA Astrophysics Data System (ADS)
Pacheco, J. Rafael; Ping Chen, Kang; Hayes, Mark A.
2006-08-01
A method for generating mixing in an electroosmotic flow of an electrolytic solution in a three-dimensional channel is proposed. When the width-to-height aspect ratio of the channel cross-section is large, mixing of a blob of a solute in a slip-driven three-dimensional flow in a rectangular channel can be used to model and assess the effectiveness of this method. It is demonstrated through numerical simulations that under certain operating conditions, rapid and efficient mixing can be achieved. Future investigation will include the solution of the exact equations and experimentation.
A numerical study of incompressible juncture flows
NASA Technical Reports Server (NTRS)
Kwak, D.; Rogers, S. E.; Kaul, U. K.; Chang, J. L. C.
1986-01-01
The laminar, steady juncture flow around single or multiple posts mounted between two flat plates is simulated using the three dimensional incompressible Navier-Stokes code, INS3D. The three dimensional separation of the boundary layer and subsequent formation and development of the horseshoe vortex is computed. The computed flow compares favorably with the experimental observation. The recent numerical study to understand and quantify the juncture flow relevant to the Space Shuttle main engine power head is summarized.
Simulation of Fluid Flow and Collection Efficiency for an SEA Multi-element Probe
NASA Technical Reports Server (NTRS)
Rigby, David L.; Struk, Peter M.; Bidwell, Colin
2014-01-01
Numerical simulations of fluid flow and collection efficiency for a Science Engineering Associates (SEA) multi-element probe are presented. Simulation of the flow field was produced using the Glenn-HT Navier-Stokes solver. Three dimensional unsteady results were produced and then time averaged for the collection efficiency results. Three grid densities were investigated to enable an assessment of grid dependence. Collection efficiencies were generated for three spherical particle sizes, 100, 20, and 5 micron in diameter, using the codes LEWICE3D and LEWICE2D. The free stream Mach number was 0.27, representing a velocity of approximately 86 ms. It was observed that a reduction in velocity of about 15-20 occurred as the flow entered the shroud of the probe.Collection efficiency results indicate a reduction in collection efficiency as particle size is reduced. The reduction with particle size is expected, however, the results tended to be lower than previous results generated for isolated two-dimensional elements. The deviation from the two-dimensional results is more pronounced for the smaller particles and is likely due to the effect of the protective shroud.
NASA Astrophysics Data System (ADS)
Vogt, Tobias; Ishimi, Wataru; Yanagisawa, Takatoshi; Tasaka, Yuji; Sakuraba, Ataru; Eckert, Sven
2018-01-01
Magnetohydrodynamic Rayleigh-Bénard convection was studied experimentally and numerically using a liquid metal inside a box with a square horizontal cross section and an aspect ratio of 5. Applying a sufficiently strong horizontal magnetic field converts the convective motion into a flow pattern of quasi-two-dimensional (quasi-2D) rolls arranged parallel to the magnetic field. The aim of this paper is to provide a detailed description of the flow field, which is often considered as quasi-2D. In this paper, we focus on the transition from a quasi-two-dimensional state toward a three-dimensional flow occurring with decreasing magnetic-field strength. We present systematic flow measurements that were performed by means of ultrasound Doppler velocimetry. The measured data provide insight into the dynamics of the primary convection rolls, the secondary flow induced by Ekman pumping, and they reveal the existence of small vortices that develop around the convection rolls. New flow regimes have been identified by the velocity measurements, which show a pronounced manifestation of three-dimensional flow structures as the ratio Ra /Q increases. The interaction between the primary swirling motion of the convection rolls and the secondary flow becomes increasingly strong. Significant bulging of the convection rolls causes a breakdown of the original recirculation loop driven by Ekman pumping into several smaller cells. The flow measurements are completed by direct numerical simulations. The numerical simulations have proven to be able to qualitatively reproduce the newly discovered flow regimes in the experiment.
Numerical simulation and analysis of the flow in a two-staged axial fan
NASA Astrophysics Data System (ADS)
Xu, J. Q.; Dou, H. S.; Jia, H. X.; Chen, X. P.; Wei, Y. K.; Dong, M. W.
2016-05-01
In this paper, numerical simulation was performed for the internal three-dimensional turbulent flow field in the two-stage axial fan using steady three-dimensional in-compressible Navier-Stokes equations coupled with the Realizable turbulent model. The numerical simulation results of the steady analysis were combined with the flow characteristics of two- staged axial fan, the influence of the mutual effect between the blade and the vane on the flow of the two inter-stages was analyzed emphatically. This paper studied how the flow field distribution in inter-stage is influenced by the wake interaction and potential flow interaction of mutual effect in the impeller-vane inter-stage and the vane-impeller inter-stage. The results showed that: Relatively, wake interaction has an advantage over potential flow interaction in the impeller-vane inter-stage; potential flow interaction has an advantage over wake interaction in the vane-impeller inter-stage. In other words, distribution of flow field in the two interstages is determined by the rotating component.
Modeling axisymmetric flow and transport
Langevin, C.D.
2008-01-01
Unmodified versions of common computer programs such as MODFLOW, MT3DMS, and SEAWAT that use Cartesian geometry can accurately simulate axially symmetric ground water flow and solute transport. Axisymmetric flow and transport are simulated by adjusting several input parameters to account for the increase in flow area with radial distance from the injection or extraction well. Logarithmic weighting of interblock transmissivity, a standard option in MODFLOW, can be used for axisymmetric models to represent the linear change in hydraulic conductance within a single finite-difference cell. Results from three test problems (ground water extraction, an aquifer push-pull test, and upconing of saline water into an extraction well) show good agreement with analytical solutions or with results from other numerical models designed specifically to simulate the axisymmetric geometry. Axisymmetric models are not commonly used but can offer an efficient alternative to full three-dimensional models, provided the assumption of axial symmetry can be justified. For the upconing problem, the axisymmetric model was more than 1000 times faster than an equivalent three-dimensional model. Computational gains with the axisymmetric models may be useful for quickly determining appropriate levels of grid resolution for three-dimensional models and for estimating aquifer parameters from field tests.
McDonald, Richard R.; Nelson, Jonathan M.; Fosness, Ryan L.; Nelson, Peter O.; Constantinescu, George; Garcia, Marcelo H.; Hanes, Dan
2016-01-01
Two- and three-dimensional morphodynamic simulations are becoming common in studies of channel form and process. The performance of these simulations are often validated against measurements from laboratory studies. Collecting channel change information in natural settings for model validation is difficult because it can be expensive and under most channel forming flows the resulting channel change is generally small. Several channel restoration projects designed in part to armor large meanders with several large spurs constructed of wooden piles on the Kootenai River, ID, have resulted in rapid bed elevation change following construction. Monitoring of these restoration projects includes post- restoration (as-built) Digital Elevation Models (DEMs) as well as additional channel surveys following high channel forming flows post-construction. The resulting sequence of measured bathymetry provides excellent validation data for morphodynamic simulations at the reach scale of a real river. In this paper we test the performance a quasi-three-dimensional morphodynamic simulation against the measured elevation change. The resulting simulations predict the pattern of channel change reasonably well but many of the details such as the maximum scour are under predicted.
Pattern formation and three-dimensional instability in rotating flows
NASA Astrophysics Data System (ADS)
Christensen, Erik A.; Aubry, Nadine; Sorensen, Jens N.
1997-03-01
A fluid flow enclosed in a cylindrical container where fluid motion is created by the rotation of one end wall as a centrifugal fan is studied. Direct numerical simulations and spatio-temporal analysis have been performed in the early transition scenario, which includes a steady-unsteady transition and a breakdown of axisymmetric to three-dimensional flow behavior. In the early unsteady regime of the flow, the central vortex undergoes a vertical beating motion, accompanied by axisymmetric spikes formation on the edge of the breakdown bubble. As traveling waves, the spikes move along the central vortex core toward the rotating end-wall. As the Reynolds number is increased further, the flow undergoes a three-dimensional instability. The influence of the latter on the previous patterns is studied.
NASA Astrophysics Data System (ADS)
Huyakorn, Peter S.; Springer, Everett P.; Guvanasen, Varut; Wadsworth, Terry D.
1986-12-01
A three-dimensional finite-element model for simulating water flow in variably saturated porous media is presented. The model formulation is general and capable of accommodating complex boundary conditions associated with seepage faces and infiltration or evaporation on the soil surface. Included in this formulation is an improved Picard algorithm designed to cope with severely nonlinear soil moisture relations. The algorithm is formulated for both rectangular and triangular prism elements. The element matrices are evaluated using an "influence coefficient" technique that avoids costly numerical integration. Spatial discretization of a three-dimensional region is performed using a vertical slicing approach designed to accommodate complex geometry with irregular boundaries, layering, and/or lateral discontinuities. Matrix solution is achieved using a slice successive overrelaxation scheme that permits a fairly large number of nodal unknowns (on the order of several thousand) to be handled efficiently on small minicomputers. Six examples are presented to verify and demonstrate the utility of the proposed finite-element model. The first four examples concern one- and two-dimensional flow problems used as sample problems to benchmark the code. The remaining examples concern three-dimensional problems. These problems are used to illustrate the performance of the proposed algorithm in three-dimensional situations involving seepage faces and anisotropic soil media.
Numerical Investigation of Dual-Mode Scramjet Combustor with Large Upstream Interaction
NASA Technical Reports Server (NTRS)
Mohieldin, T. O.; Tiwari, S. N.; Reubush, David E. (Technical Monitor)
2004-01-01
Dual-mode scramjet combustor configuration with significant upstream interaction is investigated numerically, The possibility of scaling the domain to accelerate the convergence and reduce the computational time is explored. The supersonic combustor configuration was selected to provide an understanding of key features of upstream interaction and to identify physical and numerical issues relating to modeling of dual-mode configurations. The numerical analysis was performed with vitiated air at freestream Math number of 2.5 using hydrogen as the sonic injectant. Results are presented for two-dimensional models and a three-dimensional jet-to-jet symmetric geometry. Comparisons are made with experimental results. Two-dimensional and three-dimensional results show substantial oblique shock train reaching upstream of the fuel injectors. Flow characteristics slow numerical convergence, while the upstream interaction slowly increases with further iterations. As the flow field develops, the symmetric assumption breaks down. A large separation zone develops and extends further upstream of the step. This asymmetric flow structure is not seen in the experimental data. Results obtained using a sub-scale domain (both two-dimensional and three-dimensional) qualitatively recover the flow physics obtained from full-scale simulations. All results show that numerical modeling using a scaled geometry provides good agreement with full-scale numerical results and experimental results for this configuration. This study supports the argument that numerical scaling is useful in simulating dual-mode scramjet combustor flowfields and could provide an excellent convergence acceleration technique for dual-mode simulations.
USDA-ARS?s Scientific Manuscript database
This paper presents the development and application of a three-dimensional numerical model for simulating the flow field and pollutant transport in a flood zone near the confluence of the Mississippi River and Iowa River in Oakville, Iowa. Due to a levee breaching along the Iowa River during the US ...
The Chimera Method of Simulation for Unsteady Three-Dimensional Viscous Flow
NASA Technical Reports Server (NTRS)
Meakin, Robert L.
1996-01-01
The Chimera overset grid method is reviewed and discussed in the context of a method of solution and analysis of unsteady three-dimensional viscous flows. The state of maturity of the various pieces of support software required to use the approach is discussed. A variety of recent applications of the method is presented. Current limitations of the approach are defined.
This report presents a three-dimensional finite-element numerical model designed to simulate chemical transport in subsurface systems with temperature effect taken into account. The three-dimensional model is developed to provide (1) a tool of application, with which one is able...
Three-Dimensional Flow Behavior Inside the Submerged Entry Nozzle
NASA Astrophysics Data System (ADS)
Real-Ramirez, Cesar Augusto; Carvajal-Mariscal, Ignacio; Sanchez-Silva, Florencio; Cervantes-de-la-Torre, Francisco; Diaz-Montes, Jesus; Gonzalez-Trejo, Jesus
2018-05-01
According to various authors, the surface quality of steel depends on the dynamic conditions that occur within the continuous casting mold's upper region. The meniscus, found in that upper region, is where the solidification process begins. The liquid steel is distributed into the mold through a submerged entry nozzle (SEN). In this paper, the dynamic behavior inside the SEN is analyzed by means of physical experiments and numerical simulations. The particle imaging velocimetry technique was used to obtain the vector field in different planes and three-dimensional flow patterns inside the SEN volume. Moreover, large eddy simulation was performed, and the turbulence model results were used to understand the nonlinear flow pattern inside the SEN. Using scaled physical and numerical models, quasi-periodic behavior was observed due to the interaction of two three-dimensional vortices that move inside the SEN lower region located between the exit ports of the nozzle.
Calibration of the 7—Equation Transition Model for High Reynolds Flows at Low Mach
NASA Astrophysics Data System (ADS)
Colonia, S.; Leble, V.; Steijl, R.; Barakos, G.
2016-09-01
The numerical simulation of flows over large-scale wind turbine blades without considering the transition from laminar to fully turbulent flow may result in incorrect estimates of the blade loads and performance. Thanks to its relative simplicity and promising results, the Local-Correlation based Transition Modelling concept represents a valid way to include transitional effects into practical CFD simulations. However, the model involves coefficients that need tuning. In this paper, the γ—equation transition model is assessed and calibrated, for a wide range of Reynolds numbers at low Mach, as needed for wind turbine applications. An aerofoil is used to evaluate the original model and calibrate it; while a large scale wind turbine blade is employed to show that the calibrated model can lead to reliable solutions for complex three-dimensional flows. The calibrated model shows promising results for both two-dimensional and three-dimensional flows, even if cross-flow instabilities are neglected.
NASA Astrophysics Data System (ADS)
Mehdipour, R.; Baniamerian, Z.; Delauré, Y.
2016-05-01
An accurate knowledge of heat transfer and temperature distribution in vehicle engines is essential to have a good management of heat transfer performance in combustion engines. This may be achieved by numerical simulation of flow through the engine cooling passages; but the task becomes particularly challenging when boiling occurs. Neglecting two phase flow processes in the simulation would however result in significant inaccuracy in the predictions. In this study a three dimensional numerical model is proposed using Fluent 6.3 to simulate heat transfer of fluid flowing through channels of conventional size. Results of the present theoretical and numerical model are then compared with some empirical results. For high fluid flow velocities, departure between experimental and numerical results is about 9 %, while for lower velocity conditions, the model inaccuracy increases to 18 %. One of the outstanding capabilities of the present model, beside its ability to simulate two phase fluid flow and heat transfer in three dimensions, is the prediction of the location of bubble formation and condensation which can be a key issue in the evaluation of the engine performance and thermal stresses.
Scaling of near-wall flows in quasi-two-dimensional turbulent channels.
Samanta, D; Ingremeau, F; Cerbus, R; Tran, T; Goldburg, W I; Chakraborty, P; Kellay, H
2014-07-11
The law of the wall and the log law rule the near-wall mean velocity profile of three-dimensional turbulent flows. These well-known laws, which are validated by legions of experiments and simulations, may be universal. Here, using a soap-film channel, we report the first experimental test of these laws in quasi-two-dimensional turbulent channel flows under two disparate turbulent spectra. We find that despite the differences with three-dimensional flows, the laws prevail, albeit with notable distinctions: the two parameters of the log law are markedly distinct from their three-dimensional counterpart; further, one parameter (the von Kármán constant) is independent of the spectrum whereas the other (the offset of the log law) depends on the spectrum. Our results suggest that the classical theory of scaling in wall-bounded turbulence is incomplete wherein a key missing element is the link with the turbulent spectrum.
Error-growth dynamics and predictability of surface thermally induced atmospheric flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, X.; Pielke, R.A.
1993-09-01
Using the CSU Regional Atmospheric Modeling System (RAMS) in its nonhydrostatic and compressible configuration, over 200 two-dimensional simulations with [Delta]x = 2 km and [Delta]x = 100 m are performed to study in detail the initial adjustment process and the error-growth dynamics of surface thermally induced circulation including the sensitivity to initial conditions, boundary conditions, and model parameters, and to study the predictability as a function of the size of surface heat patches under a calm mean wind. It is found that the error growth is not sensitive to the characterisitics of the initial perturbations. The numerical smoothing has amore » strong impact on the initial adjustment process and on the error-growth dynamics. The predictability and flow structures, it is found that the vertical velocity field is strongly affected by the mean wind, and the flow structures are quite sensitive to the initial soil water content. The transition from organized flow to the situation in which fluxes are dominated by noncoherent turbulent eddies under a calm mean wind is quantitatively evaluated and this transition is different for different variables. The relationship between the predictability of a realization and of an ensemble average is discussed. The predictability and the coherent circulations modulated by the surface inhomogeneities are also studied by computing the autocorrelations and the power spectra. The three-dimensional mesoscale and large-eddy simulations are performed to verify the above results. It is found that the two-dimensional mesoscale (or fine resolution) simulation yields very close or similar results regarding the predictability as those from the three-dimensional mesoscale (or large eddy) simulation. The horizontally averaged quantities based on two-dimensional fine-resolution simulations are insensitive to initial perturbations and agree with those based on three-dimensional large-eddy simulations. 87 refs., 25 figs.« less
The Multi-dimensional Character of Core-collapse Supernovae
Hix, W. R.; Lentz, E. J.; Bruenn, S. W.; ...
2016-03-01
Core-collapse supernovae, the culmination of massive stellar evolution, are spectacular astronomical events and the principle actors in the story of our elemental origins. Our understanding of these events, while still incomplete, centers around a neutrino-driven central engine that is highly hydrodynamically unstable. Increasingly sophisticated simulations reveal a shock that stalls for hundreds of milliseconds before reviving. Though brought back to life by neutrino heating, the development of the supernova explosion is inextricably linked to multi-dimensional fluid flows. In this paper, the outcomes of three-dimensional simulations that include sophisticated nuclear physics and spectral neutrino transport are juxtaposed to learn about themore » nature of the three-dimensional fluid flow that shapes the explosion. Comparison is also made between the results of simulations in spherical symmetry from several groups, to give ourselves confidence in the understanding derived from this juxtaposition.« less
A numerical study of transition control by periodic suction-blowing
NASA Technical Reports Server (NTRS)
Biringen, Sedat
1987-01-01
The applicability of active control of transition by periodic suction-blowing is investigated via direct numerical simulations of the Navier-Stokes equations. The time-evolution of finite-amplitude disturbances in plane channel flow is compared in detail with and without control. The analysis indicates that, for relatively small three dimensional amplitudes, a two dimensional control effectively reduces disturbance growth rates even for linearly unstable Reynolds numbers. After the flow goes through secondary instability, three dimensional control seems necessary to stabilize the flow. An investigation of the temperature field suggests that passive temperature contamination is operative to reflect the flow dynamics during transition.
Deterministic Stress Modeling of Hot Gas Segregation in a Turbine
NASA Technical Reports Server (NTRS)
Busby, Judy; Sondak, Doug; Staubach, Brent; Davis, Roger
1998-01-01
Simulation of unsteady viscous turbomachinery flowfields is presently impractical as a design tool due to the long run times required. Designers rely predominantly on steady-state simulations, but these simulations do not account for some of the important unsteady flow physics. Unsteady flow effects can be modeled as source terms in the steady flow equations. These source terms, referred to as Lumped Deterministic Stresses (LDS), can be used to drive steady flow solution procedures to reproduce the time-average of an unsteady flow solution. The goal of this work is to investigate the feasibility of using inviscid lumped deterministic stresses to model unsteady combustion hot streak migration effects on the turbine blade tip and outer air seal heat loads using a steady computational approach. The LDS model is obtained from an unsteady inviscid calculation. The LDS model is then used with a steady viscous computation to simulate the time-averaged viscous solution. Both two-dimensional and three-dimensional applications are examined. The inviscid LDS model produces good results for the two-dimensional case and requires less than 10% of the CPU time of the unsteady viscous run. For the three-dimensional case, the LDS model does a good job of reproducing the time-averaged viscous temperature migration and separation as well as heat load on the outer air seal at a CPU cost that is 25% of that of an unsteady viscous computation.
Wang, Ping; Zhou, Ye; MacLaren, Stephan A.; ...
2015-11-06
Three- and two-dimensional numerical studies have been carried out to simulate recent counter-propagating shear flow experiments on the National Ignition Facility. A multi-physics three-dimensional, time-dependent radiation hydrodynamics simulation code is used. Using a Reynolds Averaging Navier-Stokes model, we show that the evolution of the mixing layer width obtained from the simulations agrees well with that measured from the experiments. A sensitivity study is conducted to illustrate a 3D geometrical effect that could confuse the measurement at late times, if the energy drives from the two ends of the shock tube are asymmetric. Implications for future experiments are discussed.
Experimental, Theoretical, and Computational Investigation of Separated Nozzle Flows
NASA Technical Reports Server (NTRS)
Hunter, Craig A.
2004-01-01
A detailed experimental, theoretical, and computational study of separated nozzle flows has been conducted. Experimental testing was performed at the NASA Langley 16-Foot Transonic Tunnel Complex. As part of a comprehensive static performance investigation, force, moment, and pressure measurements were made and schlieren flow visualization was obtained for a sub-scale, non-axisymmetric, two-dimensional, convergent- divergent nozzle. In addition, two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and algebraic Reynolds stress modeling. For reference, experimental and computational results were compared with theoretical predictions based on one-dimensional gas dynamics and an approximate integral momentum boundary layer method. Experimental results from this study indicate that off-design overexpanded nozzle flow was dominated by shock induced boundary layer separation, which was divided into two distinct flow regimes; three- dimensional separation with partial reattachment, and fully detached two-dimensional separation. The test nozzle was observed to go through a marked transition in passing from one regime to the other. In all cases, separation provided a significant increase in static thrust efficiency compared to the ideal prediction. Results indicate that with controlled separation, the entire overexpanded range of nozzle performance would be within 10% of the peak thrust efficiency. By offering savings in weight and complexity over a conventional mechanical exhaust system, this may allow a fixed geometry nozzle to cover an entire flight envelope. The computational simulation was in excellent agreement with experimental data over most of the test range, and did a good job of modeling internal flow and thrust performance. An exception occurred at low nozzle pressure ratios, where the two-dimensional computational model was inconsistent with the three-dimensional separation observed in the experiment. In general, the computation captured the physics of the shock boundary layer interaction and shock induced boundary layer separation in the nozzle, though there were some differences in shock structure compared to experiment. Though minor, these differences could be important for studies involving flow control or thrust vectoring of separated nozzles. Combined with other observations, this indicates that more detailed, three-dimensional computational modeling needs to be conducted to more realistically simulate shock-separated nozzle flows.
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Tatum, Kenneth E.
1991-01-01
Computational results are presented for three issues pertinent to hypersonic, airbreathing vehicles employing scramjet exhaust flow simulation. The first issue consists of a comparison of schlieren photographs obtained on the aftbody of a cruise missile configuration under powered conditions with two-dimensional computational solutions. The second issue presents the powered aftbody effects of modeling the inlet with a fairing to divert the external flow as compared to an operating flow-through inlet on a generic hypersonic vehicle. Finally, a comparison of solutions examining the potential of testing powered configurations in a wind-off, instead of a wind-on, environment, indicate that, depending on the extent of the three-dimensional plume, it may be possible to test aftbody powered hypersonic, airbreathing configurations in a wind-off environment.
3D Numerical Simulation of Turbulent Buoyant Flow and Heat Transport in a Curved Open Channel
USDA-ARS?s Scientific Manuscript database
A three-dimensional buoyancy-extended version of kappa-epsilon turbulence model was developed for simulating the turbulent flow and heat transport in a curved open channel. The density- induced buoyant force was included in the model, and the influence of temperature stratification on flow field was...
Three-Dimensional Upward Flame Spreading in Partial-Gravity Buoyant Flows
NASA Technical Reports Server (NTRS)
Sacksteder, Kurt R.; Feier, Ioan I.; Shih, Hsin-Yi; T'ien, James S.
2001-01-01
Reduced-gravity environments have been used to establish low-speed, purely forced flows for both opposed- and concurrent-flow flame spread studies. Altenkirch's group obtained spacebased experimental results and developed unsteady, two-dimensional numerical simulations of opposed-flow flame spread including gas-phase radiation, primarily away from the flammability limit for thin fuels, but including observations of thick fuel quenching in quiescent environments. T'ien's group contributed some early flame spreading results for thin fuels both in opposed flow and concurrent flow regimes, with more focus on near-limit conditions. T'ien's group also developed two- and three-dimensional numerical simulations of concurrent-flow flame spread incorporating gas-phase radiative models, including predictions of a radiatively-induced quenching limit reached in very low-speed air flows. Radiative quenching has been subsequently observed in other studies of combustion in very low-speed flows including other flame spread investigations, droplet combustion and homogeneous diffusion flames, and is the subject of several contemporary studies reported in this workshop. Using NASA aircraft flying partial-gravity "parabolic" trajectories, flame spreading in purely buoyant, opposed-flow (downward burning) has been studied. These results indicated increases in flame spread rates and enhanced flammability (lower limiting atmospheric oxygen content) as gravity levels were reduced from normal Earth gravity, and were consistent with earlier data obtained by Altenkirch using a centrifuge. In this work, experimental results and a three-dimensional numerical simulation of upward flame spreading in variable partial-gravity environments were obtained including some effects of reduced pressure and variable sample width. The simulation provides physical insight for interpreting the experimental results and shows the intrinsic 3-D nature of buoyant, upward flame spreading. This study is intended to link the evolving understanding of flame spreading in purely-forced flows to the purely-buoyant flow environment, particularly in the concurrent flow regime; provide additional insight into the existence of steady flame spread in concurrent flows; and stimulate direct comparisons between opposed- and concurrent-flow flame spread. Additionally, this effort is intended to provide direct practical understanding applicable to fire protection planning for the habitable facilities in partial gravity environments of anticipated Lunar and Martian explorations.
A numerical simulation of finite-length Taylor-Couette flow
NASA Technical Reports Server (NTRS)
Streett, C. L.; Hussaini, M. Y.
1987-01-01
The processes leading to laminar-turbulent transition in finite-channel-length Taylor-Couette flow are investigated analytically, solving the unsteady incompressible Navier-Stokes equations by spectral-collocation methods. A time-split algorithm, implementable in both axisymmetric and fully three-dimensional time-accurate versions, and an algorithm based on the staggered-mesh discretization of Bernardi and Maday (1986) are described in detail, and results obtained by applying the axisymmetric version of the first algorithm and a steady-state version of the second are presented graphically and compared with published experimental data. The feasibility of full three-dimensional simulations of the progression through chaotic states to turbulence under the constraints of Taylor-Couette flow is demonstrated.
Numerical simulation of three dimensional transonic flows
NASA Technical Reports Server (NTRS)
Sahu, Jubaraj; Steger, Joseph L.
1987-01-01
The three-dimensional flow over a projectile has been computed using an implicit, approximately factored, partially flux-split algorithm. A simple composite grid scheme has been developed in which a single grid is partitioned into a series of smaller grids for applications which require an external large memory device such as the SSD of the CRAY X-MP/48, or multitasking. The accuracy and stability of the composite grid scheme has been tested by numerically simulating the flow over an ellipsoid at angle of attack and comparing the solution with a single grid solution. The flowfield over a projectile at M = 0.96 and 4 deg angle-of-attack has been computed using a fine grid, and compared with experiment.
NASA Astrophysics Data System (ADS)
Lonsdale, R. D.; Webster, R.
This paper demonstrates the application of a simple finite volume approach to a finite element mesh, combining the economy of the former with the geometrical flexibility of the latter. The procedure is used to model a three-dimensional flow on a mesh of linear eight-node brick (hexahedra). Simulations are performed for a wide range of flow problems, some in excess of 94,000 nodes. The resulting computer code ASTEC that incorporates these procedures is described.
Guide to the Revised Ground-Water Flow and Heat Transport Simulator: HYDROTHERM - Version 3
Kipp, Kenneth L.; Hsieh, Paul A.; Charlton, Scott R.
2008-01-01
The HYDROTHERM computer program simulates multi-phase ground-water flow and associated thermal energy transport in three dimensions. It can handle high fluid pressures, up to 1 ? 109 pascals (104 atmospheres), and high temperatures, up to 1,200 degrees Celsius. This report documents the release of Version 3, which includes various additions, modifications, and corrections that have been made to the original simulator. Primary changes to the simulator include: (1) the ability to simulate unconfined ground-water flow, (2) a precipitation-recharge boundary condition, (3) a seepage-surface boundary condition at the land surface, (4) the removal of the limitation that a specified-pressure boundary also have a specified temperature, (5) a new iterative solver for the linear equations based on a generalized minimum-residual method, (6) the ability to use time- or depth-dependent functions for permeability, (7) the conversion of the program code to Fortran 90 to employ dynamic allocation of arrays, and (8) the incorporation of a graphical user interface (GUI) for input and output. The graphical user interface has been developed for defining a simulation, running the HYDROTHERM simulator interactively, and displaying the results. The combination of the graphical user interface and the HYDROTHERM simulator forms the HYDROTHERM INTERACTIVE (HTI) program. HTI can be used for two-dimensional simulations only. New features in Version 3 of the HYDROTHERM simulator have been verified using four test problems. Three problems come from the published literature and one problem was simulated by another partially saturated flow and thermal transport simulator. The test problems include: transient partially saturated vertical infiltration, transient one-dimensional horizontal infiltration, two-dimensional steady-state drainage with a seepage surface, and two-dimensional drainage with coupled heat transport. An example application to a hypothetical stratovolcano system with unconfined ground-water flow is presented in detail. It illustrates the use of HTI with the combination precipitation-recharge and seepage-surface boundary condition, and functions as a tutorial example problem for the new user.
NASA Astrophysics Data System (ADS)
Aigner, M.; Köpplmayr, T.; Kneidinger, C.; Miethlinger, J.
2014-05-01
Barrier screws are widely used in the plastics industry. Due to the extreme diversity of their geometries, describing the flow behavior is difficult and rarely done in practice. We present a systematic approach based on networks that uses tensor algebra and numerical methods to model and calculate selected barrier screw geometries in terms of pressure, mass flow, and residence time. In addition, we report the results of three-dimensional simulations using the commercially available ANSYS Polyflow software. The major drawbacks of three-dimensional finite-element-method (FEM) simulations are that they require vast computational power and, large quantities of memory, and consume considerable time to create a geometric model created by computer-aided design (CAD) and complete a flow calculation. Consequently, a modified 2.5-dimensional finite volume method, termed network analysis is preferable. The results obtained by network analysis and FEM simulations correlated well. Network analysis provides an efficient alternative to complex FEM software in terms of computing power and memory consumption. Furthermore, typical barrier screw geometries can be parameterized and used for flow calculations without timeconsuming CAD-constructions.
Kontis, Angelo L.
1999-01-01
The seaward limit of the fresh ground-water system underlying Kings and Queens Counties on Long Island, N.Y., is at the freshwater-saltwater transition zone. This zone has been conceptualized in transient-state, three-dimensional models of the aquifer system as a sharp interface between freshwater and saltwater, and represented as a stationary, zero lateral-flow boundary. In this study, a pair of two-dimensional, four-layer ground-water flow models representing a generalized vertical section in Kings County and one in adjacent Queens County were developed to evaluate the validity of the boundary condition used in three-dimensional models of the aquifer system. The two-dimensional simulations used a model code that can simulate the movement of a sharp interface in response to transient stress. Sensitivity of interface movement to four factors was analyzed; these were (1) the method of simulating vertical leakage between freshwater and saltwater; (2) recharge at the normal rate, at 50-percent of the normal rate, and at zero for a prolonged (3-year) period; (3) high, medium, and low pumping rates; and (4) pumping from a hypothetical cluster of wells at two locations. Results indicate that the response of the interfaces to the magnitude and duration of pumping and the location of the hypothetical wells is probably sufficiently slow that the interfaces in three-dimensional models can reasonably be approximated as stationary, zero-lateral- flow boundaries.
NASA Astrophysics Data System (ADS)
Tseng, Chien-Yung; Chou, Yi-Ju
2018-04-01
A three-dimensional nonhydrostatic coastal model SUNTANS is used to study hyperpycnal plumes on sloping continental shelves with idealized domain setup. The study aims to examine the nonhydrostatic effect of the plunging hyperpycnal plume and the associated flow structures on different shelf slopes. The unstructured triangular grid in SUNTANS allows for local refinement of the grid size for regions in which the flow varies abruptly, while retaining low-cost computation using the coarse grid resolution for regions in which the flow is more uniform. These nonhydrostatic simulations reveal detailed three-dimensional flow structures in both transient and steady states. Via comparison with the hydrostatic simulation, we show that the nonhydrostatic effect is particularly important before plunging, when the plume is subject to significant changes in both the along-shore and vertical directions. After plunging, where the plume becomes an undercurrent that is more spatially uniform, little difference is found between the hydrostatic and nonhydrostatic simulations in the present gentle- and mild-slope cases. A grid-dependence study shows that the nonhydrostatic effect can be seen only when the grid resolution is sufficiently fine that the calculation is not overly diffusive. A depth-integrated momentum budget analysis is then conducted to show that the flow convergence due to plunging is an important factor in the three-dimensional flow structures. Moreover, it shows that the nonhydrostatic effect becomes more important as the slope increases, and in the steep-slope case, neglect of transport of the vertical momentum during plunging in the hydrostatic case further leads to an erroneous prediction for the undercurrent.
Source Term Model for Steady Micro Jets in a Navier-Stokes Computer Code
NASA Technical Reports Server (NTRS)
Waithe, Kenrick A.
2005-01-01
A source term model for steady micro jets was implemented into a non-proprietary Navier-Stokes computer code, OVERFLOW. The source term models the mass flow and momentum created by a steady blowing micro jet. The model is obtained by adding the momentum and mass flow created by the jet to the Navier-Stokes equations. The model was tested by comparing with data from numerical simulations of a single, steady micro jet on a flat plate in two and three dimensions. The source term model predicted the velocity distribution well compared to the two-dimensional plate using a steady mass flow boundary condition, which was used to simulate a steady micro jet. The model was also compared to two three-dimensional flat plate cases using a steady mass flow boundary condition to simulate a steady micro jet. The three-dimensional comparison included a case with a grid generated to capture the circular shape of the jet and a case without a grid generated for the micro jet. The case without the jet grid mimics the application of the source term. The source term model compared well with both of the three-dimensional cases. Comparisons of velocity distribution were made before and after the jet and Mach and vorticity contours were examined. The source term model allows a researcher to quickly investigate different locations of individual or several steady micro jets. The researcher is able to conduct a preliminary investigation with minimal grid generation and computational time.
NASA Astrophysics Data System (ADS)
Castiglioni, Giacomo
Flows over airfoils and blades in rotating machinery, for unmanned and micro-aerial vehicles, wind turbines, and propellers consist of a laminar boundary layer near the leading edge that is often followed by a laminar separation bubble and transition to turbulence further downstream. Typical Reynolds averaged Navier-Stokes turbulence models are inadequate for such flows. Direct numerical simulation is the most reliable, but is also the most computationally expensive alternative. This work assesses the capability of immersed boundary methods and large eddy simulations to reduce the computational requirements for such flows and still provide high quality results. Two-dimensional and three-dimensional simulations of a laminar separation bubble on a NACA-0012 airfoil at Rec = 5x104 and at 5° of incidence have been performed with an immersed boundary code and a commercial code using body fitted grids. Several sub-grid scale models have been implemented in both codes and their performance evaluated. For the two-dimensional simulations with the immersed boundary method the results show good agreement with the direct numerical simulation benchmark data for the pressure coefficient Cp and the friction coefficient Cf, but only when using dissipative numerical schemes. There is evidence that this behavior can be attributed to the ability of dissipative schemes to damp numerical noise coming from the immersed boundary. For the three-dimensional simulations the results show a good prediction of the separation point, but an inaccurate prediction of the reattachment point unless full direct numerical simulation resolution is used. The commercial code shows good agreement with the direct numerical simulation benchmark data in both two and three-dimensional simulations, but the presence of significant, unquantified numerical dissipation prevents a conclusive assessment of the actual prediction capabilities of very coarse large eddy simulations with low order schemes in general cases. Additionally, a two-dimensional sweep of angles of attack from 0° to 5° is performed showing a qualitative prediction of the jump in lift and drag coefficients due to the appearance of the laminar separation bubble. The numerical dissipation inhibits the predictive capabilities of large eddy simulations whenever it is of the same order of magnitude or larger than the sub-grid scale dissipation. The need to estimate the numerical dissipation is most pressing for low-order methods employed by commercial computational fluid dynamics codes. Following the recent work of Schranner et al., the equations and procedure for estimating the numerical dissipation rate and the numerical viscosity in a commercial code are presented. The method allows for the computation of the numerical dissipation rate and numerical viscosity in the physical space for arbitrary sub-domains in a self-consistent way, using only information provided by the code in question. The method is first tested for a three-dimensional Taylor-Green vortex flow in a simple cubic domain and compared with benchmark results obtained using an accurate, incompressible spectral solver. Afterwards the same procedure is applied for the first time to a realistic flow configuration, specifically to the above discussed laminar separation bubble flow over a NACA 0012 airfoil. The method appears to be quite robust and its application reveals that for the code and the flow in question the numerical dissipation can be significantly larger than the viscous dissipation or the dissipation of the classical Smagorinsky sub-grid scale model, confirming the previously qualitative finding.
NASA Astrophysics Data System (ADS)
Greene, Patrick T.; Eldredge, Jeff D.; Zhong, Xiaolin; Kim, John
2016-07-01
In this paper, we present a method for performing uniformly high-order direct numerical simulations of high-speed flows over arbitrary geometries. The method was developed with the goal of simulating and studying the effects of complex isolated roughness elements on the stability of hypersonic boundary layers. The simulations are carried out on Cartesian grids with the geometries imposed by a third-order cut-stencil method. A fifth-order hybrid weighted essentially non-oscillatory scheme was implemented to capture any steep gradients in the flow created by the geometries and a third-order Runge-Kutta method is used for time advancement. A multi-zone refinement method was also utilized to provide extra resolution at locations with expected complex physics. The combination results in a globally fourth-order scheme in space and third order in time. Results confirming the method's high order of convergence are shown. Two-dimensional and three-dimensional test cases are presented and show good agreement with previous results. A simulation of Mach 3 flow over the logo of the Ubuntu Linux distribution is shown to demonstrate the method's capabilities for handling complex geometries. Results for Mach 6 wall-bounded flow over a three-dimensional cylindrical roughness element are also presented. The results demonstrate that the method is a promising tool for the study of hypersonic roughness-induced transition.
Three-dimensional modeling of electron quasiviscous dissipation in guide-field magnetic reconnection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hesse, Michael; Kuznetsova, Masha; Schindler, Karl
2005-10-01
A numerical study of guide-field magnetic reconnection in a three-dimensional model is presented. Starting from an initial, perturbed, force-free current sheet, it is shown that reconnection develops to an almost translationally invariant state, where magnetic perturbations are aligned primarily along the main current flow direction. An analysis of guide-field and electron flow signatures indicates behavior that is very similar to earlier, albeit not three-dimensional, simulations. Furthermore, a detailed investigation of electron pressure nongyrotropies in the central diffusion region confirms the major role the associated dissipation process plays in establishing the reconnection electric field.
This report presents a three-dimensional finite-element numerical model designed to simulate chemical transport in subsurface systems with temperature effect taken into account. The three-dimensional model is developed to provide (1) a tool of application, with which one is able ...
A THREE-DIMENSIONAL AIR FLOW MODEL FOR SOIL VENTING: SUPERPOSITION OF ANLAYTICAL FUNCTIONS
A three-dimensional computer model was developed for the simulation of the soil-air pressure distribution at steady state and specific discharge vectors during soil venting with multiple wells in unsaturated soil. The Kirchhoff transformation of dependent variables and coordinate...
Three Dimensional CFD Analysis of the GTX Combustor
NASA Technical Reports Server (NTRS)
Steffen, C. J., Jr.; Bond, R. B.; Edwards, J. R.
2002-01-01
The annular combustor geometry of a combined-cycle engine has been analyzed with three-dimensional computational fluid dynamics. Both subsonic combustion and supersonic combustion flowfields have been simulated. The subsonic combustion analysis was executed in conjunction with a direct-connect test rig. Two cold-flow and one hot-flow results are presented. The simulations compare favorably with the test data for the two cold flow calculations; the hot-flow data was not yet available. The hot-flow simulation indicates that the conventional ejector-ramjet cycle would not provide adequate mixing at the conditions tested. The supersonic combustion ramjet flowfield was simulated with frozen chemistry model. A five-parameter test matrix was specified, according to statistical design-of-experiments theory. Twenty-seven separate simulations were used to assemble surrogate models for combustor mixing efficiency and total pressure recovery. ScramJet injector design parameters (injector angle, location, and fuel split) as well as mission variables (total fuel massflow and freestream Mach number) were included in the analysis. A promising injector design has been identified that provides good mixing characteristics with low total pressure losses. The surrogate models can be used to develop performance maps of different injector designs. Several complex three-way variable interactions appear within the dataset that are not adequately resolved with the current statistical analysis.
Detwiler, R.L.; Mehl, S.; Rajaram, H.; Cheung, W.W.
2002-01-01
Numerical solution of large-scale ground water flow and transport problems is often constrained by the convergence behavior of the iterative solvers used to solve the resulting systems of equations. We demonstrate the ability of an algebraic multigrid algorithm (AMG) to efficiently solve the large, sparse systems of equations that result from computational models of ground water flow and transport in large and complex domains. Unlike geometric multigrid methods, this algorithm is applicable to problems in complex flow geometries, such as those encountered in pore-scale modeling of two-phase flow and transport. We integrated AMG into MODFLOW 2000 to compare two- and three-dimensional flow simulations using AMG to simulations using PCG2, a preconditioned conjugate gradient solver that uses the modified incomplete Cholesky preconditioner and is included with MODFLOW 2000. CPU times required for convergence with AMG were up to 140 times faster than those for PCG2. The cost of this increased speed was up to a nine-fold increase in required random access memory (RAM) for the three-dimensional problems and up to a four-fold increase in required RAM for the two-dimensional problems. We also compared two-dimensional numerical simulations of steady-state transport using AMG and the generalized minimum residual method with an incomplete LU-decomposition preconditioner. For these transport simulations, AMG yielded increased speeds of up to 17 times with only a 20% increase in required RAM. The ability of AMG to solve flow and transport problems in large, complex flow systems and its ready availability make it an ideal solver for use in both field-scale and pore-scale modeling.
Modeling Intrajunction Dispersion at a Well-Mixed Tidal River Junction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfram, Phillip J.; Fringer, Oliver B.; Monsen, Nancy E.
In this paper, the relative importance of small-scale, intrajunction flow features such as shear layers, separation zones, and secondary flows on dispersion in a well-mixed tidal river junction is explored. A fully nonlinear, nonhydrostatic, and unstructured three-dimensional (3D) model is used to resolve supertidal dispersion via scalar transport at a well-mixed tidal river junction. Mass transport simulated in the junction is compared against predictions using a simple node-channel model to quantify the effects of small-scale, 3D intrajunction flow features on mixing and dispersion. The effects of three-dimensionality are demonstrated by quantifying the difference between two-dimensional (2D) and 3D model results.more » An intermediate 3D model that does not resolve the secondary circulation or the recirculating flow at the junction is also compared to the 3D model to quantify the relative sensitivity of mixing on intrajunction flow features. Resolution of complex flow features simulated by the full 3D model is not always necessary because mixing is primarily governed by bulk flow splitting due to the confluence–diffluence cycle. Finally, results in 3D are comparable to the 2D case for many flow pathways simulated, suggesting that 2D modeling may be reasonable for nonstratified and predominantly hydrostatic flows through relatively straight junctions, but not necessarily for the full junction network.« less
Modeling Intrajunction Dispersion at a Well-Mixed Tidal River Junction
Wolfram, Phillip J.; Fringer, Oliver B.; Monsen, Nancy E.; ...
2016-08-01
In this paper, the relative importance of small-scale, intrajunction flow features such as shear layers, separation zones, and secondary flows on dispersion in a well-mixed tidal river junction is explored. A fully nonlinear, nonhydrostatic, and unstructured three-dimensional (3D) model is used to resolve supertidal dispersion via scalar transport at a well-mixed tidal river junction. Mass transport simulated in the junction is compared against predictions using a simple node-channel model to quantify the effects of small-scale, 3D intrajunction flow features on mixing and dispersion. The effects of three-dimensionality are demonstrated by quantifying the difference between two-dimensional (2D) and 3D model results.more » An intermediate 3D model that does not resolve the secondary circulation or the recirculating flow at the junction is also compared to the 3D model to quantify the relative sensitivity of mixing on intrajunction flow features. Resolution of complex flow features simulated by the full 3D model is not always necessary because mixing is primarily governed by bulk flow splitting due to the confluence–diffluence cycle. Finally, results in 3D are comparable to the 2D case for many flow pathways simulated, suggesting that 2D modeling may be reasonable for nonstratified and predominantly hydrostatic flows through relatively straight junctions, but not necessarily for the full junction network.« less
NASA Technical Reports Server (NTRS)
Gatski, T. B.; Grosch, C. E.
1984-01-01
A compact finite-difference approximation to the unsteady Navier-Stokes equations in velocity-vorticity variables is used to numerically simulate a number of flows. These include two-dimensional laminar flow of a vortex evolving over a flat plate with an embedded cavity, the unsteady flow over an elliptic cylinder, and aspects of the transient dynamics of the flow over a rearward facing step. The methodology required to extend the two-dimensional formulation to three-dimensions is presented.
Gingerich, S.B.; Voss, C.I.
2005-01-01
Three-dimensional modeling of groundwater flow and solute transport in the Pearl Harbor aquifer, southern Oahu, Hawaii, shows that the readjustment of the freshwater-saltwater transition zone takes a long time following changes in pumping, irrigation, or recharge in the aquifer system. It takes about 50-years for the transition zone to move 90% of the distance to its new steady position. Further, the Ghyben-Herzberg estimate of the freshwater/saltwater interface depth occurred between the 10 and 50% simulated seawater concentration contours in a complex manner during 100-years of the pumping history of the aquifer. Thus, it is not a good predictor of the depth of potable water. Pre-development recharge was used to simulate the 1880 freshwater-lens configuration. Historical pumpage and recharge distributions were used and the resulting freshwater-lens size and position were simulated through 1980. Simulations show that the transition zone moved upward and landward during the period simulated. Previous groundwater flow models for Oahu have been limited to areal models that simulate a sharp interface between freshwater and saltwater or solute-transport models that simulate a vertical aquifer section. The present model is based on the US Geological Survey's three-dimensional solute transport (3D SUTRA) computer code. Using several new tools for pre- and post-processing of model input and results have allowed easy model construction and unprecedented visualization of the freshwater lens and underlying transition zone in Hawaii's most developed aquifer. ?? Springer-Verlag 2005.
The role of viscous fluid flow in cochlear partition transduction
NASA Astrophysics Data System (ADS)
Svobodny, Thomas
2002-11-01
Sound transduction occurs via the forcing of the basilar membrane by a wave set up in the cochlear chamber. At the threshold of hearing the amplitude of the vibrations is on the nanometer scale. Fluid flow in this chamber is at very low Reynolds number. The actual transduction occurs through the mechanism of stereocilia of hair cells. We will describe the three-dimensional distribution of energy and how fluid flow affects stereociliar deflection due to the influence of the dynamics of the endothelial fluid. This talk will emphasis the results of two-dimensional and three-dimensional simulations and will relate these to the analytical solutions previously reported.
Thermally induced rarefied gas flow in a three-dimensional enclosure with square cross-section
NASA Astrophysics Data System (ADS)
Zhu, Lianhua; Yang, Xiaofan; Guo, Zhaoli
2017-12-01
Rarefied gas flow in a three-dimensional enclosure induced by nonuniform temperature distribution is numerically investigated. The enclosure has a square channel-like geometry with alternatively heated closed ends and lateral walls with a linear temperature distribution. A recently proposed implicit discrete velocity method with a memory reduction technique is used to numerically simulate the problem based on the nonlinear Shakhov kinetic equation. The Knudsen number dependencies of the vortices pattern, slip velocity at the planar walls and edges, and heat transfer are investigated. The influences of the temperature ratio imposed at the ends of the enclosure and the geometric aspect ratio are also evaluated. The overall flow pattern shows similarities with those observed in two-dimensional configurations in literature. However, features due to the three-dimensionality are observed with vortices that are not identified in previous studies on similar two-dimensional enclosures at high Knudsen and small aspect ratios.
Haro, Alexander J.; Chelminski, Michael; Dudley, Robert W.
2015-01-01
We developed two-dimensional computational fluid hydraulics-habitat suitability index (CFD-HSI) models to identify and qualitatively assess potential zones of shallow water depth and high water velocity that may present passage challenges for five major anadromous fish species in a 2.63-km reach of the main stem Penobscot River, Maine, as a result of a dam removal downstream of the reach. Suitability parameters were based on distribution of fish lengths and body depths and transformed to cruising, maximum sustained and sprint swimming speeds. Zones of potential depth and velocity challenges were calculated based on the hydraulic models; ability of fish to pass a challenge zone was based on the percent of river channel that the contiguous zone spanned and its maximum along-current length. Three river flows (low: 99.1 m3 sec-1; normal: 344.9 m3 sec-1; and high: 792.9 m3 sec-1) were modelled to simulate existing hydraulic conditions and hydraulic conditions simulating removal of a dam at the downstream boundary of the reach. Potential depth challenge zones were nonexistent for all low-flow simulations of existing conditions for deeper-bodied fishes. Increasing flows for existing conditions and removal of the dam under all flow conditions increased the number and size of potential velocity challenge zones, with the effects of zones being more pronounced for smaller species. The two-dimensional CFD-HSI model has utility in demonstrating gross effects of flow and hydraulic alteration, but may not be as precise a predictive tool as a three-dimensional model. Passability of the potential challenge zones cannot be precisely quantified for two-dimensional or three-dimensional models due to untested assumptions and incomplete data on fish swimming performance and behaviours.
Thoughts on the chimera method of simulation of three-dimensional viscous flow
NASA Technical Reports Server (NTRS)
Steger, Joseph L.
1991-01-01
The chimera overset grid is reviewed and discussed relative to other procedures for simulating flow about complex configurations. It is argued that while more refinement of the technique is needed, current schemes are competitive to unstructured grid schemes and should ultimately prove more useful.
Three-dimensional analysis of the Pratt and Whitney alternate design SSME fuel turbine
NASA Technical Reports Server (NTRS)
Kirtley, K. R.; Beach, T. A.; Adamczyk, J. J.
1991-01-01
The three dimensional viscous time-mean flow in the Pratt and Whitney alternate design space shuttle main engine fuel turbine is simulated using the average passage Navier-Stokes equations. The migration of secondary flows generated by upstream blade rows and their effect on the performance of downstream blade rows is studied. The present simulation confirms that the flow in this two stage turbine is highly three dimensional and dominated by the tip leakage flow. The tip leakage vortex generated by the first blade persists through the second blade and adversely affects its performance. The greatest mixing of the inlet total temperature distortion occurs in the second vane and is due to the large leakage vortex generated by the upstream rotor. It is assumed that the predominant spanwise mixing mechanism in this low aspect ratio turbine is the radial transport due to the deterministically unsteady vortical flow generated by upstream blade rows. A by-product of the analysis is accurate pressure and heat loads for all blade rows under the influence of neighboring blade rows. These aero loads are useful for advanced structural analysis of the vanes and blades.
NASA Technical Reports Server (NTRS)
Swanson, R. Charles; Radespiel, Rolf; Mccormick, V. Edward
1989-01-01
The two-dimensional (2-D) and three-dimensional Navier-Stokes equations are solved for flow over a NAE CAST-10 airfoil model. Recently developed finite-volume codes that apply a multistage time stepping scheme in conjunction with steady state acceleration techniques are used to solve the equations. Two-dimensional results are shown for flow conditions uncorrected and corrected for wind tunnel wall interference effects. Predicted surface pressures from 3-D simulations are compared with those from 2-D calculations. The focus of the 3-D computations is the influence of the sidewall boundary layers. Topological features of the 3-D flow fields are indicated. Lift and drag results are compared with experimental measurements.
De Sterck H; Poedts
2000-06-12
Simulation results of three-dimensional (3D) stationary magnetohydrodynamic (MHD) bow-shock flows around perfectly conducting spheres are presented. For strong upstream magnetic field a new complex bow-shock flow topology arises consisting of two consecutive interacting shock fronts. It is shown that the leading shock front contains a segment of intermediate 1-3 shock type. This is the first confirmation in 3D that intermediate shocks, which were believed to be unphysical for a long time, can be formed and can persist for small-dissipation MHD in a realistic flow configuration.
Numerical Simulation of Dual-Mode Scramjet Combustors
NASA Technical Reports Server (NTRS)
Rodriguez, C. G.; Riggins, D. W.; Bittner, R. D.
2000-01-01
Results of a numerical investigation of a three-dimensional dual-mode scramjet isolator-combustor flow-field are presented. Specifically, the effect of wall cooling on upstream interaction and flow-structure is examined for a case assuming jet-to-jet symmetry within the combustor. Comparisons are made with available experimental wall pressures. The full half-duct for the isolator-combustor is then modeled in order to study the influence of side-walls. Large scale three-dimensionality is observed in the flow with massive separation forward on the side-walls of the duct. A brief review of convergence-acceleration techniques useful in dual-mode simulations is presented, followed by recommendations regarding the development of a reliable and unambiguous experimental data base for guiding CFD code assessments in this area.
Direct numerical simulations of three-dimensional electrokinetic flows
NASA Astrophysics Data System (ADS)
Chiam, Keng-Hwee
2006-11-01
We discuss direct numerical simulations of three-dimensional electrokinetic flows in microfluidic devices. In particular, we focus on the study of the electrokinetic instability that develops when two solutions with different electrical conductivities are coupled to an external electric field. We characterize this ``mixing'' instability as a function of the parameters of the model, namely the Reynolds number of the flow, the electric Peclet number of the electrolyte solution, and the ratio of the electroosmotic to the electroviscous time scales. Finally, we describe how this model breaks down when the length scale of the device approaches the nanoscale, where the width of the electric Debye layer is comparable to the width of the channel, and discuss solutions to overcome this.
NASA Astrophysics Data System (ADS)
Kondo, Yoshiyuki; Suga, Keishi; Hibi, Koki; Okazaki, Toshihiko; Komeno, Toshihiro; Kunugi, Tomoaki; Serizawa, Akimi; Yoneda, Kimitoshi; Arai, Takahiro
2009-02-01
An advanced experimental technique has been developed to simulate two-phase flow behavior in a light water reactor (LWR). The technique applies three kinds of methods; (1) use of sulfur-hexafluoride (SF6) gas and ethanol (C2H5OH) liquid at atmospheric temperature and a pressure less than 1.0MPa, where the fluid properties are similar to steam-water ones in the LWR, (2) generation of bubble with a sintering tube, which simulates bubble generation on heated surface in the LWR, (3) measurement of detailed bubble distribution data with a bi-optical probe (BOP), (4) and measurement of liquid velocities with the tracer liquid. This experimental technique provides easy visualization of flows by using a large scale experimental apparatus, which gives three-dimensional flows, and measurement of detailed spatial distributions of two-phase flow. With this technique, we have carried out experiments simulating two-phase flow behavior in a single-channel geometry, a multi-rod-bundle one, and a horizontal-tube-bundle one on a typical natural circulation reactor system. Those experiments have clarified a) a flow regime map in a rod bundle on the transient region between bubbly and churn flow, b) three-dimensional flow behaviour in rod-bundles where inter-subassembly cross-flow occurs, c) bubble-separation behavior with consideration of reactor internal structures. The data have given analysis models for the natural circulation reactor design with good extrapolation.
The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications
NASA Technical Reports Server (NTRS)
Bravo, Ramiro H.; Chen, Ching-Jen
1992-01-01
In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified.
NASA Astrophysics Data System (ADS)
Wang, Guang-yue; Sun, Guo-rui; Li, Jian-kang; Li, Jiong
2018-02-01
The hydrodynamic characteristics of the overland flow on a slope with a three-dimensional Geomat are studied for different rainfall intensities and slope gradients. The rainfall intensity is adjusted in the rainfall simulation system. It is shown that the velocity of the overland flow has a strong positive correlation with the slope length and the rainfall intensity, the scour depth decreases with the increase of the slope gradient for a given rainfall intensity, and the scour depth increases with the increase of the rainfall intensity for a given slope gradient, the overland flow starts with a transitional flow on the top and finishes with a turbulent flow on the bottom on the slope with the three-dimensional Geomat for different rainfall intensities and slope gradients, the resistance coefficient and the turbulent flow Reynolds number are in positively related logarithmic functions, the resistance coefficient and the slope gradient are in positively related power functions, and the trend becomes leveled with the increase of the rainfall intensity. This study provides some important theoretical insight for further studies of the hydrodynamic process of the erosion on the slope surface with a three-dimensional Geomat.
NASA Technical Reports Server (NTRS)
Pavish, D. L.; Spaulding, M. L.
1977-01-01
A computer coded Lagrangian marker particle in Eulerian finite difference cell solution to the three dimensional incompressible mass transport equation, Water Advective Particle in Cell Technique, WAPIC, was developed, verified against analytic solutions, and subsequently applied in the prediction of long term transport of a suspended sediment cloud resulting from an instantaneous dredge spoil release. Numerical results from WAPIC were verified against analytic solutions to the three dimensional incompressible mass transport equation for turbulent diffusion and advection of Gaussian dye releases in unbounded uniform and uniformly sheared uni-directional flow, and for steady-uniform plug channel flow. WAPIC was utilized to simulate an analytic solution for non-equilibrium sediment dropout from an initially vertically uniform particle distribution in one dimensional turbulent channel flow.
Flow of GE90 Turbofan Engine Simulated
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1999-01-01
The objective of this task was to create and validate a three-dimensional model of the GE90 turbofan engine (General Electric) using the APNASA (average passage) flow code. This was a joint effort between GE Aircraft Engines and the NASA Lewis Research Center. The goal was to perform an aerodynamic analysis of the engine primary flow path, in under 24 hours of CPU time, on a parallel distributed workstation system. Enhancements were made to the APNASA Navier-Stokes code to make it faster and more robust and to allow for the analysis of more arbitrary geometry. The resulting simulation exploited the use of parallel computations by using two levels of parallelism, with extremely high efficiency.The primary flow path of the GE90 turbofan consists of a nacelle and inlet, 49 blade rows of turbomachinery, and an exhaust nozzle. Secondary flows entering and exiting the primary flow path-such as bleed, purge, and cooling flows-were modeled macroscopically as source terms to accurately simulate the engine. The information on these source terms came from detailed descriptions of the cooling flow and from thermodynamic cycle system simulations. These provided boundary condition data to the three-dimensional analysis. A simplified combustor was used to feed boundary conditions to the turbomachinery. Flow simulations of the fan, high-pressure compressor, and high- and low-pressure turbines were completed with the APNASA code.
Semi-implicit finite difference methods for three-dimensional shallow water flow
Casulli, Vincenzo; Cheng, Ralph T.
1992-01-01
A semi-implicit finite difference method for the numerical solution of three-dimensional shallow water flows is presented and discussed. The governing equations are the primitive three-dimensional turbulent mean flow equations where the pressure distribution in the vertical has been assumed to be hydrostatic. In the method of solution a minimal degree of implicitness has been adopted in such a fashion that the resulting algorithm is stable and gives a maximal computational efficiency at a minimal computational cost. At each time step the numerical method requires the solution of one large linear system which can be formally decomposed into a set of small three-diagonal systems coupled with one five-diagonal system. All these linear systems are symmetric and positive definite. Thus the existence and uniquencess of the numerical solution are assured. When only one vertical layer is specified, this method reduces as a special case to a semi-implicit scheme for solving the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm has been shown to be fast, accurate and mass-conservative and can also be applied to simulate flooding and drying of tidal mud-flats in conjunction with three-dimensional flows. Furthermore, the resulting algorithm is fully vectorizable for an efficient implementation on modern vector computers.
NASA Astrophysics Data System (ADS)
Gusti, T. P.; Hertanti, D. R.; Bahsan, E.; Soeryantono, H.
2013-12-01
Particle-based numerical methods, such as Smoothed Particle Hydrodynamics (SPH), may be able to simulate some hydrodynamic and morphodynamic behaviors better than grid-based numerical methods. This study simulates hydrodynamics in meanders and advection and turbulent diffusion in straight river channels using Microsoft Excel and Visual Basic. The simulators generate three-dimensional data for hydrodynamics and one-dimensional data for advection-turbulent diffusion. Fluid at rest, sloshing, and helical flow are simulated in the river meanders. Spill loading and step loading are done to simulate concentration patterns associated with advection-turbulent diffusion. Results indicate that helical flow is formed due to disturbance in morphology and particle velocity in the stream and the number of particles does not have a significant effect on the pattern of advection-turbulent diffusion concentration.
Numerical investigation of Dean vortices in a curved pipe
NASA Astrophysics Data System (ADS)
Bernad, S. I.; Totorean, A.; Bosioc, A.; Stanciu, R.; Bernad, E. S.
2013-10-01
This study is devoted to the three-dimensional numerical simulation of developing secondary flows of Newtonian fluid through a curved circular duct. The numerical simulations produced for different Dean numbers show clearly the presence of two steady Dean vortices. Therefore, results confirm that helical flow constitutes an important flow signature in vessels, and its strength as a fluid dynamic index.
A 3-D turbulent flow analysis using finite elements with k-ɛ model
NASA Astrophysics Data System (ADS)
Okuda, H.; Yagawa, G.; Eguchi, Y.
1989-03-01
This paper describes the finite element turbulent flow analysis, which is suitable for three-dimensional large scale problems. The k-ɛ turbulence model as well as the conservation equations of mass and momentum are discretized in space using rather low order elements. Resulting coefficient matrices are evaluated by one-point quadrature in order to reduce the computational storage and the CPU cost. The time integration scheme based on the velocity correction method is employed to obtain steady state solutions. For the verification of this FEM program, two-dimensional plenum flow is simulated and compared with experiment. As the application to three-dimensional practical problems, the turbulent flows in the upper plenum of the fast breeder reactor are calculated for various boundary conditions.
dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia
DFNWORKS is a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using DFNGEN, which combines FRAM (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs with the LaGriT meshing toolbox to create a high-quality computational mesh representation. The representation produces a conforming Delaunay triangulation suitable for high performance computing finite volume solvers in anmore » intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code PFLOTRAN. A Lagrangian approach to simulating transport through the DFN is adopted within DFNTRANS to determine pathlines and solute transport through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO 2 sequestration are also included.« less
dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport
Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia; ...
2015-11-01
DFNWORKS is a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using DFNGEN, which combines FRAM (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs with the LaGriT meshing toolbox to create a high-quality computational mesh representation. The representation produces a conforming Delaunay triangulation suitable for high performance computing finite volume solvers in anmore » intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code PFLOTRAN. A Lagrangian approach to simulating transport through the DFN is adopted within DFNTRANS to determine pathlines and solute transport through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO 2 sequestration are also included.« less
Russell, G.M.; Goodwin, C.R.
1987-01-01
Results of a two-dimensional, vertically averaged, computer simulation model of the Loxahatchee River estuary show that under typical low freshwater inflow and vertically well mixed conditions, water circulation is dominated by freshwater inflow rather than by tidal influence. The model can simulate tidal flow and circulation in the Loxahatchee River estuary under typical low freshwater inflow and vertically well mixed conditions, but is limited, however, to low-flow and well mixed conditions. Computed patterns of residual water transport show a consistent seaward flow from the northwest fork through the central embayment and out Jupiter Inlet to the Atlantic Ocean. A large residual seaward flow was computed from the North Intracoastal Waterway to the inlet channel. Although the tide produces large flood and ebb flows in the estuary, tide-induced residual transport rates are low in comparison with freshwater-induced residual transport. Model investigations of partly mixed or stratified conditions in the estuary need to await development of systems capable of simulating three-dimensional flow patterns. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Shimazaki, Yasuhiro; Okubo, Masaaki; Yamamoto, Toshiaki
2006-05-01
It is important to predict the environment around the breathing human because inhalation of virus (avian influenza, SARS) is recently severe worldwide problem, and air pollution caused by diesel emission particle (DEP) and asbestos attract a great deal of attention. In the present study, three-dimensional numerical simulation was carried out to predict unsteady flows around a breathing human and how suspended particulate matter (SPM, diameter˜1 μm) reaches the human nose in inhalation and exhalation. In the calculation, we find out smaller breathing angle and the closer distance between the human nose and pollutant region are effective in the inhalation of SPM.
NASA Astrophysics Data System (ADS)
Safaei Pirooz, Amir A.; Flay, Richard G. J.
2018-03-01
We evaluate the accuracy of the speed-up provided in several wind-loading standards by comparison with wind-tunnel measurements and numerical predictions, which are carried out at a nominal scale of 1:500 and full-scale, respectively. Airflow over two- and three-dimensional bell-shaped hills is numerically modelled using the Reynolds-averaged Navier-Stokes method with a pressure-driven atmospheric boundary layer and three different turbulence models. Investigated in detail are the effects of grid size on the speed-up and flow separation, as well as the resulting uncertainties in the numerical simulations. Good agreement is obtained between the numerical prediction of speed-up, as well as the wake region size and location, with that according to large-eddy simulations and the wind-tunnel results. The numerical results demonstrate the ability to predict the airflow over a hill with good accuracy with considerably less computational time than for large-eddy simulation. Numerical simulations for a three-dimensional hill show that the speed-up and the wake region decrease significantly when compared with the flow over two-dimensional hills due to the secondary flow around three-dimensional hills. Different hill slopes and shapes are simulated numerically to investigate the effect of hill profile on the speed-up. In comparison with more peaked hill crests, flat-topped hills have a lower speed-up at the crest up to heights of about half the hill height, for which none of the standards gives entirely satisfactory values of speed-up. Overall, the latest versions of the National Building Code of Canada and the Australian and New Zealand Standard give the best predictions of wind speed over isolated hills.
Lau, Kevin D.; Asrress, Kaleab N.; Redwood, Simon R.; Figueroa, C. Alberto
2016-01-01
This work presents a mathematical model of the metabolic feedback and adrenergic feedforward control of coronary blood flow that occur during variations in the cardiac workload. It is based on the physiological observations that coronary blood flow closely follows myocardial oxygen demand, that myocardial oxygen debts are repaid, and that control oscillations occur when the system is perturbed and so are phenomenological in nature. Using clinical data, we demonstrate that the model can provide patient-specific estimates of coronary blood flow changes between rest and exercise, requiring only the patient's heart rate and peak aortic pressure as input. The model can be used in zero-dimensional lumped parameter network studies or as a boundary condition for three-dimensional multidomain Navier-Stokes blood flow simulations. For the first time, this model provides feedback control of the coronary vascular resistance, which can be used to enhance the physiological accuracy of any hemodynamic simulation, which includes both a heart model and coronary arteries. This has particular relevance to patient-specific simulation for which heart rate and aortic pressure recordings are available. In addition to providing a simulation tool, under our assumptions, the derivation of our model shows that β-feedforward control of the coronary microvascular resistance is a mathematical necessity and that the metabolic feedback control must be dependent on two error signals: the historical myocardial oxygen debt, and the instantaneous myocardial oxygen deficit. PMID:26945076
Arthurs, Christopher J; Lau, Kevin D; Asrress, Kaleab N; Redwood, Simon R; Figueroa, C Alberto
2016-05-01
This work presents a mathematical model of the metabolic feedback and adrenergic feedforward control of coronary blood flow that occur during variations in the cardiac workload. It is based on the physiological observations that coronary blood flow closely follows myocardial oxygen demand, that myocardial oxygen debts are repaid, and that control oscillations occur when the system is perturbed and so are phenomenological in nature. Using clinical data, we demonstrate that the model can provide patient-specific estimates of coronary blood flow changes between rest and exercise, requiring only the patient's heart rate and peak aortic pressure as input. The model can be used in zero-dimensional lumped parameter network studies or as a boundary condition for three-dimensional multidomain Navier-Stokes blood flow simulations. For the first time, this model provides feedback control of the coronary vascular resistance, which can be used to enhance the physiological accuracy of any hemodynamic simulation, which includes both a heart model and coronary arteries. This has particular relevance to patient-specific simulation for which heart rate and aortic pressure recordings are available. In addition to providing a simulation tool, under our assumptions, the derivation of our model shows that β-feedforward control of the coronary microvascular resistance is a mathematical necessity and that the metabolic feedback control must be dependent on two error signals: the historical myocardial oxygen debt, and the instantaneous myocardial oxygen deficit. Copyright © 2016 the American Physiological Society.
A parallel program for numerical simulation of discrete fracture network and groundwater flow
NASA Astrophysics Data System (ADS)
Huang, Ting-Wei; Liou, Tai-Sheng; Kalatehjari, Roohollah
2017-04-01
The ability of modeling fluid flow in Discrete Fracture Network (DFN) is critical to various applications such as exploration of reserves in geothermal and petroleum reservoirs, geological sequestration of carbon dioxide and final disposal of spent nuclear fuels. Although several commerical or acdametic DFN flow simulators are already available (e.g., FracMan and DFNWORKS), challenges in terms of computational efficiency and three-dimensional visualization still remain, which therefore motivates this study for developing a new DFN and flow simulator. A new DFN and flow simulator, DFNbox, was written in C++ under a cross-platform software development framework provided by Qt. DFNBox integrates the following capabilities into a user-friendly drop-down menu interface: DFN simulation and clipping, 3D mesh generation, fracture data analysis, connectivity analysis, flow path analysis and steady-state grounwater flow simulation. All three-dimensional visualization graphics were developed using the free OpenGL API. Similar to other DFN simulators, fractures are conceptualized as random point process in space, with stochastic characteristics represented by orientation, size, transmissivity and aperture. Fracture meshing was implemented by Delaunay triangulation for visualization but not flow simulation purposes. Boundary element method was used for flow simulations such that only unknown head or flux along exterior and interection bounaries are needed for solving the flow field in the DFN. Parallel compuation concept was taken into account in developing DFNbox for calculations that such concept is possible. For example, the time-consuming seqential code for fracture clipping calculations has been completely replaced by a highly efficient parallel one. This can greatly enhance compuational efficiency especially on multi-thread platforms. Furthermore, DFNbox have been successfully tested in Windows and Linux systems with equally-well performance.
A Flow Solver for Three-Dimensional DRAGON Grids
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Zheng, Yao
2002-01-01
DRAGONFLOW code has been developed to solve three-dimensional Navier-Stokes equations over a complex geometry whose flow domain is discretized with the DRAGON grid-a combination of Chimera grid and a collection of unstructured grids. In the DRAGONFLOW suite, both OVERFLOW and USM3D are presented in form of module libraries, and a master module controls the invoking of these individual modules. This report includes essential aspects, programming structures, benchmark tests and numerical simulations.
Parallel Simulation of Three-Dimensional Free Surface Fluid Flow Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
BAER,THOMAS A.; SACKINGER,PHILIP A.; SUBIA,SAMUEL R.
1999-10-14
Simulation of viscous three-dimensional fluid flow typically involves a large number of unknowns. When free surfaces are included, the number of unknowns increases dramatically. Consequently, this class of problem is an obvious application of parallel high performance computing. We describe parallel computation of viscous, incompressible, free surface, Newtonian fluid flow problems that include dynamic contact fines. The Galerkin finite element method was used to discretize the fully-coupled governing conservation equations and a ''pseudo-solid'' mesh mapping approach was used to determine the shape of the free surface. In this approach, the finite element mesh is allowed to deform to satisfy quasi-staticmore » solid mechanics equations subject to geometric or kinematic constraints on the boundaries. As a result, nodal displacements must be included in the set of unknowns. Other issues discussed are the proper constraints appearing along the dynamic contact line in three dimensions. Issues affecting efficient parallel simulations include problem decomposition to equally distribute computational work among a SPMD computer and determination of robust, scalable preconditioners for the distributed matrix systems that must be solved. Solution continuation strategies important for serial simulations have an enhanced relevance in a parallel coquting environment due to the difficulty of solving large scale systems. Parallel computations will be demonstrated on an example taken from the coating flow industry: flow in the vicinity of a slot coater edge. This is a three dimensional free surface problem possessing a contact line that advances at the web speed in one region but transitions to static behavior in another region. As such, a significant fraction of the computational time is devoted to processing boundary data. Discussion focuses on parallel speed ups for fixed problem size, a class of problems of immediate practical importance.« less
A parallel finite-difference method for computational aerodynamics
NASA Technical Reports Server (NTRS)
Swisshelm, Julie M.
1989-01-01
A finite-difference scheme for solving complex three-dimensional aerodynamic flow on parallel-processing supercomputers is presented. The method consists of a basic flow solver with multigrid convergence acceleration, embedded grid refinements, and a zonal equation scheme. Multitasking and vectorization have been incorporated into the algorithm. Results obtained include multiprocessed flow simulations from the Cray X-MP and Cray-2. Speedups as high as 3.3 for the two-dimensional case and 3.5 for segments of the three-dimensional case have been achieved on the Cray-2. The entire solver attained a factor of 2.7 improvement over its unitasked version on the Cray-2. The performance of the parallel algorithm on each machine is analyzed.
EDDA: integrated simulation of debris flow erosion, deposition and property changes
NASA Astrophysics Data System (ADS)
Chen, H. X.; Zhang, L. M.
2014-11-01
Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA, is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during the flow process. The yield stress of debris flow mixture is determined at limit equilibrium using the Mohr-Coulomb equation, which is applicable to clear water flow, hyper-concentrated flow and fully developed debris flow. To assure numerical stability and computational efficiency at the same time, a variable time stepping algorithm is developed to solve the governing differential equations. Four numerical tests are conducted to validate the model. The first two tests involve a one-dimensional dam-break water flow and a one-dimensional debris flow with constant properties. The last two tests involve erosion and deposition, and the movement of multi-directional debris flows. The changes in debris flow mass and properties due to either erosion or deposition are shown to affect the runout characteristics significantly. The model is also applied to simulate a large-scale debris flow in Xiaojiagou Ravine to test the performance of the model in catchment-scale simulations. The results suggest that the model estimates well the volume, inundated area, and runout distance of the debris flow. The model is intended for use as a module in a real-time debris flow warning system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui
2017-09-03
Mixing, thermal-stratification, and mass transport phenomena in large pools or enclosures play major roles for the safety of reactor systems. Depending on the fidelity requirement and computational resources, various modeling methods, from the 0-D perfect mixing model to 3-D Computational Fluid Dynamics (CFD) models, are available. Each is associated with its own advantages and shortcomings. It is very desirable to develop an advanced and efficient thermal mixing and stratification modeling capability embedded in a modern system analysis code to improve the accuracy of reactor safety analyses and to reduce modeling uncertainties. An advanced system analysis tool, SAM, is being developedmore » at Argonne National Laboratory for advanced non-LWR reactor safety analysis. While SAM is being developed as a system-level modeling and simulation tool, a reduced-order three-dimensional module is under development to model the multi-dimensional flow and thermal mixing and stratification in large enclosures of reactor systems. This paper provides an overview of the three-dimensional finite element flow model in SAM, including the governing equations, stabilization scheme, and solution methods. Additionally, several verification and validation tests are presented, including lid-driven cavity flow, natural convection inside a cavity, laminar flow in a channel of parallel plates. Based on the comparisons with the analytical solutions and experimental results, it is demonstrated that the developed 3-D fluid model can perform very well for a wide range of flow problems.« less
Barlow, P.M.
1994-01-01
Steady-state, two-and three-dimensional, ground-water flow models coupled with a particle- tracking program were evaluated to determine their effectiveness in delineating contributing areas of existing and hypothetical public-supply wells pumping from two contrasting stratified-drift aquifers of Cape Cod, Mass. Several of the contri- buting areas delineated by use of the three- dimensional models do not conform to simple ellipsoidal shapes that are typically delineated by use of a two-dimensional analytical and numerical modeling techniques, include dis- continuous areas of the water table, and do not surround the wells. Because two-dimensional areal models do not account for vertical flow, they cannot adequately represent many of the hydro- geologic and well-design variables that were shown to complicate the delineation of contributing areas in these flow systems, including the presence of discrete lenses of 1ow hydraulic conductivity, large ratios of horizontal to ver- tical hydraulic conductivity, shallow streams, partially penetrating supply wells, and 1ow pumping rates (less than 0.1 million gallons per day). Nevertheless, contributing areas delineated for two wells in the simpler of the two flow systems--a thin (less than 100 feet), single- layer, uniform aquifer with near-ideal boundary conditions--were not significantly different for the two- or three-dimensional models of the natural system, for a pumping rate of 0.5 million gallons per day. Use of particle tracking helped identify the source of water to simulated wells, which included precipitation recharge, wastewater return flow, and pond water. Pond water and wastewater return flow accounted for as much as 73 and 40 percent, respectively, of the water captured by simulated wells.
Fully three-dimensional direct numerical simulation of a plunging breaker
NASA Astrophysics Data System (ADS)
Lubin, Pierre; Vincent, Stéphane; Caltagirone, Jean-Paul; Abadie, Stéphane
2003-07-01
The scope of this paper is to show the results obtained for simulating three-dimensional breaking waves by solving the Navier-Stokes equations in air and water. The interface tracking is achieved by a Lax-Wendroff TVD scheme (Total Variation Diminishing), which is able to handle interface reconnections. We first present the equations and the numerical methods used in this work. We then proceed to the study of a three-dimensional plunging breaking wave, using initial conditions corresponding to unstable periodic sinusoidal waves of large amplitudes. We compare the results obtained for two simulations, a longshore depth perturbation has been introduced in the solution of the flow equations in order to see the transition from a two-dimensional velocity field to a fully three-dimensional one after plunging. Breaking processes including overturning, splash-up and breaking induced vortex-like motion beneath the surface are presented and discussed. To cite this article: P. Lubin et al., C. R. Mecanique 331 (2003).
NASA Astrophysics Data System (ADS)
Amalia, E.; Moelyadi, M. A.; Ihsan, M.
2018-04-01
The flow of air passing around a circular cylinder on the Reynolds number of 250,000 is to show Von Karman Vortex Street Phenomenon. This phenomenon was captured well by using a right turbulence model. In this study, some turbulence models available in software ANSYS Fluent 16.0 was tested to simulate Von Karman vortex street phenomenon, namely k- epsilon, SST k-omega and Reynolds Stress, Detached Eddy Simulation (DES), and Large Eddy Simulation (LES). In addition, it was examined the effect of time step size on the accuracy of CFD simulation. The simulations are carried out by using two-dimensional and three- dimensional models and then compared with experimental data. For two-dimensional model, Von Karman Vortex Street phenomenon was captured successfully by using the SST k-omega turbulence model. As for the three-dimensional model, Von Karman Vortex Street phenomenon was captured by using Reynolds Stress Turbulence Model. The time step size value affects the smoothness quality of curves of drag coefficient over time, as well as affecting the running time of the simulation. The smaller time step size, the better inherent drag coefficient curves produced. Smaller time step size also gives faster computation time.
Masterson, John P.; Barlow, Paul M.
1997-01-01
Three-dimensional transient ground-water-flow models that simulate both freshwater and saltwater flow were developed for the flow cells of the Cape Cod Basin to determine the effects of long-term pumping and recharge, seasonal fluctuations in pumping and recharge, and prolonged reductions of natural recharge, on the position of the freshwater-saltwater interface, water-table and pond altitudes, and streamflow and discharge to coastal marshes and embayments. Two-dimensional, finite-difference change models were developed for Martha's Vineyard and Nantucket Island basins to determine anticipated drawdowns in response to projected summer season pumping rates for 180 days of no recharge.
Three Dimensional Flow and Pressure Patterns in a Single Pocket of a Hydrostatic Journal Bearing
NASA Technical Reports Server (NTRS)
Braun, M. Jack; Dzodzo, Milorad B.
1996-01-01
The flow in a hydrostatic pocket is described by a mathematical model that uses the three dimensional Navier-Stokes equations written in terms of the primary variables, u, v, w, and p. Using a conservative formulation, a finite volume multi-block method is applied through a collocated, body fitted grid. The flow is simulated in a shallow pocket with a depth/length ratio of 0.02. The flow structures obtained and described by the authors in their previous two dimensional models are made visible in their three dimensional aspect for the Couette flow. It has been found that the flow regimes formed central and secondary vortical cells with three dimensional corkscrew-like structures that lead the fluid on an outward bound path in the axial direction of the pocket. The position of the central vortical cell center is at the exit region of the capillary restrictor feedline. It has also been determined that a fluid turn around zone occupies all the upstream space between the floor of the pocket and the runner, thus preventing any flow exit through the upstream port. The corresponding pressure distribution under the shaft presented as well. It was clearly established that for the Couette dominated case the pressure varies significantly in the pocket in the circumferential direction, while its variation is less pronounced axially.
Flow Simulation of Supersonic Inlet with Bypass Annular Duct
NASA Technical Reports Server (NTRS)
Kim, HyoungJin; Kumano, Takayasu; Liou, Meng-Sing; Povinelli, Louis A.; Conners, Timothy R.
2011-01-01
A relaxed isentropic compression supersonic inlet is a new concept that produces smaller cowl drag than a conventional inlet, but incurs lower total pressure recovery and increased flow distortion in the (radially) outer flowpath. A supersonic inlet comprising a bypass annulus to the relaxed isentropic compression inlet dumps out airflow of low quality through the bypass duct. A reliable computational fluid dynamics solution can provide considerable useful information to ascertain quantitatively relative merits of the concept, and further provide a basis for optimizing the design. For a fast and reliable performance evaluation of the inlet performance, an equivalent axisymmetric model whose area changes accounts for geometric and physical (blockage) effects resulting from the original complex three-dimensional configuration is proposed. In addition, full three-dimensional calculations are conducted for studying flow phenomena and verifying the validity of the equivalent model. The inlet-engine coupling is carried out by embedding numerical propulsion system simulation engine data into the flow solver for interactive boundary conditions at the engine fan face and exhaust plane. It was found that the blockage resulting from complex three-dimensional geometries in the bypass duct causes significant degradation of inlet performance by pushing the terminal normal shock upstream.
Mehl, Steffen W.; Hill, Mary C.
2007-01-01
This report documents the addition of the multiple-refined-areas capability to shared node Local Grid Refinement (LGR) and Boundary Flow and Head (BFH) Package of MODFLOW-2005, the U.S. Geological Survey modular, three-dimensional, finite-difference ground-water flow model. LGR now provides the capability to simulate ground-water flow by using one or more block-shaped, higher resolution local grids (child model) within a coarser grid (parent model). LGR accomplishes this by iteratively coupling separate MODFLOW-2005 models such that heads and fluxes are balanced across the shared interfacing boundaries. The ability to have multiple, nonoverlapping areas of refinement is important in situations where there is more than one area of concern within a regional model. In this circumstance, LGR can be used to simulate these distinct areas with higher resolution grids. LGR can be used in two-and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined ground-water systems. The BFH Package can be used to simulate these situations by using either the parent or child models independently.
NASA Astrophysics Data System (ADS)
Lan, C. W.; Lee, I. F.; Yeh, B. C.
2003-07-01
Three-dimensional simulation, both pseudo-steady and time-dependent states, is carried out to illustrate the effects of magnetic fields on the flow and segregation in a vertical Bridgman crystal growth. With an axial magnetic field in a perfectly vertical growth, the calculated results are in good agreement with those obtained by a two-dimensional axisymmetric model. The asymptotic scaling of flow damping is also consistent with the boundary layer approximation regardless to the magnetic orientation. Radial and axial segregations are further discussed concluding that radial segregation could be severe if the flow damping is not adequate. Moreover, there is a regime of enhanced global dopant mixing due to the flow stretching by the axial field. Accordingly, the transversal field is more effective in pushing the growth to the diffusion-controlled limit and suppressing the asymmetric global flow due to ampule tilting.
Three-dimensional flow about penguin wings
NASA Astrophysics Data System (ADS)
Noca, Flavio; Sudki, Bassem; Lauria, Michel
2012-11-01
Penguins, contrary to airborne birds, do not need to compensate for gravity. Yet, the kinematics of their wings is highly three-dimensional and seems exceedingly complex for plain swimming. Is such kinematics the result of an evolutionary optimization or is it just a forced adaptation of an airborne flying apparatus to underwater swimming? Some answers will be provided based on flow dynamics around robotic penguin wings. Updates will also be presented on the development of a novel robotic arm intended to simulate penguin swimming and enable novel propulsion devices.
NASA Astrophysics Data System (ADS)
Zhou, Chao; Yu, Guoqiang; Furuya, Daisuke; Greenberg, Joel; Yodh, Arjun; Durduran, Turgut
2006-02-01
Diffuse optical correlation methods were adapted for three-dimensional (3D) tomography of cerebral blood flow (CBF) in small animal models. The image reconstruction was optimized using a noise model for diffuse correlation tomography which enabled better data selection and regularization. The tomographic approach was demonstrated with simulated data and during in-vivo cortical spreading depression (CSD) in rat brain. Three-dimensional images of CBF were obtained through intact skull in tissues(~4mm) deep below the cortex.
Flow Analysis of a Gas Turbine Low- Pressure Subsystem
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1997-01-01
The NASA Lewis Research Center is coordinating a project to numerically simulate aerodynamic flow in the complete low-pressure subsystem (LPS) of a gas turbine engine. The numerical model solves the three-dimensional Navier-Stokes flow equations through all components within the low-pressure subsystem as well as the external flow around the engine nacelle. The Advanced Ducted Propfan Analysis Code (ADPAC), which is being developed jointly by Allison Engine Company and NASA, is the Navier-Stokes flow code being used for LPS simulation. The majority of the LPS project is being done under a NASA Lewis contract with Allison. Other contributors to the project are NYMA and the University of Toledo. For this project, the Energy Efficient Engine designed by GE Aircraft Engines is being modeled. This engine includes a low-pressure system and a high-pressure system. An inlet, a fan, a booster stage, a bypass duct, a lobed mixer, a low-pressure turbine, and a jet nozzle comprise the low-pressure subsystem within this engine. The tightly coupled flow analysis evaluates aerodynamic interactions between all components of the LPS. The high-pressure core engine of this engine is simulated with a one-dimensional thermodynamic cycle code in order to provide boundary conditions to the detailed LPS model. This core engine consists of a high-pressure compressor, a combustor, and a high-pressure turbine. The three-dimensional LPS flow model is coupled to the one-dimensional core engine model to provide a "hybrid" flow model of the complete gas turbine Energy Efficient Engine. The resulting hybrid engine model evaluates the detailed interaction between the LPS components at design and off-design engine operating conditions while considering the lumped-parameter performance of the core engine.
Representation of multiaquifer well effects in three-dimensional ground-water flow simulation
Bennett, Gordon D.; Kontis, Angelo L.; Larson, Steven P.
1982-01-01
The presence of multiaquifer or multilayer wells changes the nature of the equations which must be solved in a three-dimensional ground-water flow simulation and, in effect, alters the stencil of computation. A method has been devised which takes this change into consideration by allowing simulation of the hydraulic effects of a multiaquifer well on the aquifer system. It also allows for calculation of the water level and individual aquifer discharges in such a well. The method is valid for the case of a single well located at the center of a square node block. Where more than one well per node is involved, the effects of the stencil alteration still must be considered, although difficulties arise in estimating and justifying the parameters to be utilized.
Visualization of instationary flows by particle traces
NASA Astrophysics Data System (ADS)
Raasch, S.
An abstract on a study which represents a model of atmospheric flow output by computer movies is presented. The structure and evolution of the flow is visualized by starting weightless particles at the locations of the model grid points at distinct, equally spaced times. These particles are then only advected by the flow. In order to avoid useless accumulation of particles, they can be provided with a limited lifetime. Scalar quantities can be shown in addition to using color shaded contours as background information. A movie with several examples of atmospheric flows, for example convection in the atmospheric boundary layer, slope winds, land seabreeze and Kelvin-Helmholtz waves is presented. The simulations are performed by two dimensional and three dimensional nonhydrostatic, finite difference models. Graphics are produced by using the UNIRAS software and the graphic output is in form of CGM metafiles. The single frames are stored on an ABEKAS real time video disc and then transferred to a BETACAM-SP tape recorder. The graphic software is suitable to produce 2 dimensional pictures, for example only cross sections of three dimensional simulations can be made. To produce a movie of typically 90 seconds duration, the graphic software and the particle model need about 10 hours CPU time on a CCD CYBER 990 and the CGM metafile has a size of about 1.4 GByte.
NASA Technical Reports Server (NTRS)
Leonard, A.
1980-01-01
Three recent simulations of tubulent shear flow bounded by a wall using the Illiac computer are reported. These are: (1) vibrating-ribbon experiments; (2) study of the evolution of a spot-like disturbance in a laminar boundary layer; and (3) investigation of turbulent channel flow. A number of persistent flow structures were observed, including streamwise and vertical vorticity distributions near the wall, low-speed and high-speed streaks, and local regions of intense vertical velocity. The role of these structures in, for example, the growth or maintenance of turbulence is discussed. The problem of representing the large range of turbulent scales in a computer simulation is also discussed.
Numerical simulation of unsteady rotational flow over propfan configurations
NASA Technical Reports Server (NTRS)
Srivastava, R.; Sankar, L. N.
1989-01-01
The objective is to develop efficient numerical techniques for the study of aeroelastic response of a propfan in an unsteady transonic flow. A three dimensional unsteady Euler solver is being modified to address this problem.
Three-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (3DFATMIC) Model
This model simulates subsurface flow, fate and transport of contaminants that are undergoing chemical or biological transformations. The model is applicable to transient conditions in both saturated and unsaturated zones.
Unsteady viscous calculations of supersonic flows past deep and shallow three-dimensional cavities
NASA Technical Reports Server (NTRS)
Baysal, O.; Srinivasan, S.; Stallings, R. L.
1988-01-01
Computational simulations were performed for supersonic, turbulent flows over deep and shallow three-dimensional cavities. The width and the depth of these cavities were fixed at 2.5 in. and 0.5 in., respectively. Length-to-depth ratio of the deep cavity was 6 and that of the shallow cavity was 16. Freestream values of Mach number and Reynolds number were 1.50 and 2.0 x 10 to the 6th/ft., respectively, at a total temperature of 585 R. The thickness of the turbulent boundary layer at the front lip of the cavity was 0.2 in. Simulations of these oscillatory flows were generated through time-accurate solutions of Reynolds-averaged full Navier-Stokes equations using the explicit MacCormack scheme. The solutions are validated through comparisons with experimental data. The features of open and closed cavity flows and effects of the third dimension are illustrated through computational graphics.
Three-dimensional numerical simulations of turbulent cavitating flow in a rectangular channel
NASA Astrophysics Data System (ADS)
Iben, Uwe; Makhnov, Andrei; Schmidt, Alexander
2018-05-01
Cavitation is a phenomenon of formation of bubbles (cavities) in liquid as a result of pressure drop. Cavitation plays an important role in a wide range of applications. For example, cavitation is one of the key problems of design and manufacturing of pumps, hydraulic turbines, ship's propellers, etc. Special attention is paid to cavitation erosion and to performance degradation of hydraulic devices (noise, fluctuations of the mass flow rate, etc.) caused by the formation of a two-phase system with an increased compressibility. Therefore, development of a model to predict cavitation inception and collapse of cavities in high-speed turbulent flows is an important fundamental and applied task. To test the algorithm three-dimensional simulations of turbulent flow of a cavitating liquid in a rectangular channel have been conducted. The obtained results demonstrate the efficiency and robustness of the formulated model and the algorithm.
NASA Technical Reports Server (NTRS)
Tweedt, Daniel L.; Chima, Rodrick V.; Turkel, Eli
1997-01-01
A preconditioning scheme has been implemented into a three-dimensional viscous computational fluid dynamics code for turbomachine blade rows. The preconditioning allows the code, originally developed for simulating compressible flow fields, to be applied to nearly-incompressible, low Mach number flows. A brief description is given of the compressible Navier-Stokes equations for a rotating coordinate system, along with the preconditioning method employed. Details about the conservative formulation of artificial dissipation are provided, and different artificial dissipation schemes are discussed and compared. The preconditioned code was applied to a well-documented case involving the NASA large low-speed centrifugal compressor for which detailed experimental data are available for comparison. Performance and flow field data are compared for the near-design operating point of the compressor, with generally good agreement between computation and experiment. Further, significant differences between computational results for the different numerical implementations, revealing different levels of solution accuracy, are discussed.
NASA Astrophysics Data System (ADS)
Wang, H. L.; Han, W.; Xu, M.
2011-12-01
Measurement of the water flow rate in microchannel has been one of the hottest points in the applications of microfluidics, medical, biological, chemical analyses and so on. In this study, the scanning microscale particle image velocimetry (scanning micro-PIV) technique is used for the measurements of water flow rates in a straight microchannel of 200μm width and 60μm depth under the standard flow rates ranging from 2.481μL/min to 8.269μL/min. The main effort of this measurement technique is to obtain three-dimensional velocity distribution on the cross sections of microchannel by measuring velocities of the different fluid layers along the out-of-plane direction in the microchannel, so the water flow rates can be evaluated from the discrete surface integral of velocities on the cross section. At the same time, the three-dimensional velocity fields in the measured microchannel are simulated numerically using the FLUENT software in order to verify the velocity accuracy of measurement results. The results show that the experimental values of flow rates are well consistent to the standard flow rates input by the syringe pump and the compared results between numerical simulation and experiment are consistent fundamentally. This study indicates that the micro-flow rate evaluated from three-dimensional velocity by the scanning micro-PIV technique is a promising method for the micro-flow rate research.
Three-dimensional multigrid Navier-Stokes computations for turbomachinery applications
NASA Astrophysics Data System (ADS)
Subramanian, S. V.
1989-07-01
The fully three-dimensional, time-dependent compressible Navier-Stokes equations in cylindrical coordinates are presently used, in conjunction with the multistage Runge-Kutta numerical integration scheme for solution of the governing flow equations, to simulate complex flowfields within turbomechanical components whose pertinent effects encompass those of viscosity, compressibility, blade rotation, and tip clearance. Computed results are presented for selected cascades, emphasizing the code's capabilities in the accurate prediction of such features as airfoil loadings, exit flow angles, shocks, and secondary flows. Computations for several test cases have been performed on a Cray-YMP, using nearly 90,000 grid points.
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.
1995-01-01
The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier-Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic- source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in at-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.
Computational Flow Modeling of Human Upper Airway Breathing
NASA Astrophysics Data System (ADS)
Mylavarapu, Goutham
Computational modeling of biological systems have gained a lot of interest in biomedical research, in the recent past. This thesis focuses on the application of computational simulations to study airflow dynamics in human upper respiratory tract. With advancements in medical imaging, patient specific geometries of anatomically accurate respiratory tracts can now be reconstructed from Magnetic Resonance Images (MRI) or Computed Tomography (CT) scans, with better and accurate details than traditional cadaver cast models. Computational studies using these individualized geometrical models have advantages of non-invasiveness, ease, minimum patient interaction, improved accuracy over experimental and clinical studies. Numerical simulations can provide detailed flow fields including velocities, flow rates, airway wall pressure, shear stresses, turbulence in an airway. Interpretation of these physical quantities will enable to develop efficient treatment procedures, medical devices, targeted drug delivery etc. The hypothesis for this research is that computational modeling can predict the outcomes of a surgical intervention or a treatment plan prior to its application and will guide the physician in providing better treatment to the patients. In the current work, three different computational approaches Computational Fluid Dynamics (CFD), Flow-Structure Interaction (FSI) and Particle Flow simulations were used to investigate flow in airway geometries. CFD approach assumes airway wall as rigid, and relatively easy to simulate, compared to the more challenging FSI approach, where interactions of airway wall deformations with flow are also accounted. The CFD methodology using different turbulence models is validated against experimental measurements in an airway phantom. Two case-studies using CFD, to quantify a pre and post-operative airway and another, to perform virtual surgery to determine the best possible surgery in a constricted airway is demonstrated. The unsteady Large Eddy simulations (LES) and a steady Reynolds Averaged Navier Stokes (RANS) approaches in CFD modeling are discussed. The more challenging FSI approach is modeled first in simple two-dimensional anatomical geometry and then extended to simplified three dimensional geometry and finally in three dimensionally accurate geometries. The concepts of virtual surgery and the differences to CFD are discussed. Finally, the influence of various drug delivery parameters on particle deposition efficiency in airway anatomy are investigated through particle-flow simulations in a nasal airway model.
Modeling and simulation of the flow field in the electrolysis of magnesium
NASA Astrophysics Data System (ADS)
Sun, Ze; Zhang, He-Nan; Li, Ping; Li, Bing; Lu, Gui-Min; Yu, Jian-Guo
2009-05-01
A three-dimensional mathematical model was developed to describe the flow field in the electrolysis cell of the molten magnesium salt, where the model of the three-phase flow was coupled with the electric field force. The mathematical model was validated against the experimental data of the cold model in the electrolysis cell of zinc sulfate with 2 mol/L concentration. The flow field of the cold model was measured by particle image velocimetry, a non-intrusive visualization experimental technique. The flow field in the advanced diaphragmless electrolytic cell of the molten magnesium salt was investigated by the simulations with the mathematical model.
NASA Technical Reports Server (NTRS)
Shih, Hsin-Yi; Tien, James S.; Ferkul, Paul (Technical Monitor)
2001-01-01
The recently developed numerical model of concurrent-flow flame spread over thin solids has been used as a simulation tool to help the designs of a space experiment. The two-dimensional and three-dimensional, steady form of the compressible Navier-Stokes equations with chemical reactions are solved. With the coupled multi-dimensional solver of the radiative heat transfer, the model is capable of answering a number of questions regarding the experiment concept and the hardware designs. In this paper, the capabilities of the numerical model are demonstrated by providing the guidance for several experimental designing issues. The test matrix and operating conditions of the experiment are estimated through the modeling results. The three-dimensional calculations are made to simulate the flame-spreading experiment with realistic hardware configuration. The computed detailed flame structures provide the insight to the data collection. In addition, the heating load and the requirements of the product exhaust cleanup for the flow tunnel are estimated with the model. We anticipate that using this simulation tool will enable a more efficient and successful space experiment to be conducted.
1994-01-01
length scales mensional hydrofoil and tip vortex flow around a F circulation three dimensional hydrofoil. The simulated mean v molecular viscosity flow...Unstructured Grid for Free Surface Flow Simulations , by T. Hino, L. Martinelli, and A. Jameson 173 "A Semi-Implicit Semi-Lagrangian Finite Element Model...Haussling Solid-Fluid Juncture Boundary Layer and Wake with Waves, by J.E. Choi and F. Stern 215 Direct Numerical and Large-Eddy Simulations of Turbulent
NASA Astrophysics Data System (ADS)
De Grazia, D.; Moxey, D.; Sherwin, S. J.; Kravtsova, M. A.; Ruban, A. I.
2018-02-01
In this paper we study the boundary-layer separation produced in a high-speed subsonic boundary layer by a small wall roughness. Specifically, we present a direct numerical simulation (DNS) of a two-dimensional boundary-layer flow over a flat plate encountering a three-dimensional Gaussian-shaped hump. This work was motivated by the lack of DNS data of boundary-layer flows past roughness elements in a similar regime which is typical of civil aviation. The Mach and Reynolds numbers are chosen to be relevant for aeronautical applications when considering small imperfections at the leading edge of wings. We analyze different heights of the hump: The smaller heights result in a weakly nonlinear regime, while the larger result in a fully nonlinear regime with an increasing laminar separation bubble arising downstream of the roughness element and the formation of a pair of streamwise counterrotating vortices which appear to support themselves.
Control of Transitional and Turbulent Flows Using Plasma-Based Actuators
2006-06-01
by means of asymmetric dielectric-barrier-discharge ( DBD ) actuators is presented. The flow fields are simulated employ- ing an extensively validated...effective use of DBD devices. As a consequence, meaningful computations require the use of three-dimensional large-eddy simulation approaches capable of...counter-flow DBD actuator is shown to provide an effective on-demand tripping device . This prop- erty is exploited for the suppression of laminar
Micro-Macro Simulation of Viscoelastic Fluids in Three Dimensions
NASA Astrophysics Data System (ADS)
Rüttgers, Alexander; Griebel, Michael
2012-11-01
The development of the chemical industry resulted in various complex fluids that cannot be correctly described by classical fluid mechanics. For instance, this includes paint, engine oils with polymeric additives and toothpaste. We currently perform multiscale viscoelastic flow simulations for which we have coupled our three-dimensional Navier-Stokes solver NaSt3dGPF with the stochastic Brownian configuration field method on the micro-scale. In this method, we represent a viscoelastic fluid as a dumbbell system immersed in a three-dimensional Newtonian liquid which leads to a six-dimensional problem in space. The approach requires large computational resources and therefore depends on an efficient parallelisation strategy. Our flow solver is parallelised with a domain decomposition approach using MPI. It shows excellent scale-up results for up to 128 processors. In this talk, we present simulation results for viscoelastic fluids in square-square contractions due to their relevance for many engineering applications such as extrusion. Another aspect of the talk is the parallel implementation in NaSt3dGPF and the parallel scale-up and speed-up behaviour.
Analysis of the three-dimensional structure of a bubble wake using PIV and Galilean decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, Y.A.; Schmidl, W.D.; Ortiz-Villafuerte, J.
1999-07-01
Bubbly flow plays a key role in a variety of natural and industrial processes. An accurate and complete description of the phase interactions in two-phase bubbly flow is not available at this time. These phase interactions are, in general, always three-dimensional and unsteady. Therefore, measurement techniques utilized to obtain qualitative and quantitative data from two-phase flow should be able to acquire transient and three-dimensional data, in order to provide information to test theoretical models and numerical simulations. Even for dilute bubble flows, in which bubble interaction is at a minimum, the turbulent motion of the liquid generated by the bubblemore » is yet to be completely understood. For many years, the design of systems with bubbly flows was based primarily on empiricism. Dilute bubbly flows are an extension of single bubble dynamics, and therefore improvements in the description and modeling of single bubble motion, the flow field around the bubble, and the dynamical interactions between the bubble and the flow will consequently improve bubbly flow modeling. The improved understanding of the physical phenomena will have far-reaching benefits in upgrading the operation and efficiency of current processes and in supporting the development of new and innovative approaches. A stereoscopic particle image velocimetry measurement of the flow generated by the passage of a single air-bubble rising in stagnant water, in a circular pipe is presented. Three-dimensional velocity fields within the measurement zone were obtained. Ensemble-averaged instantaneous velocities for a specific bubble path were calculated and interpolated to obtain mean three-dimensional velocity fields. A Galilean velocity decomposition is used to study the vorticity generated in the flow.« less
NASA Astrophysics Data System (ADS)
Hosseinalipour, S. M.; Raja, A.; Hajikhani, S.
2012-06-01
A full three dimensional Navier - Stokes numerical simulation has been performed for performance analysis of a Kaplan turbine which is installed in one of the Irans south dams. No simplifications have been enforced in the simulation. The numerical results have been evaluated using some integral parameters such as the turbine efficiency via comparing the results with existing experimental data from the prototype Hill chart. In part of this study the numerical simulations were performed in order to calculate the prototype turbine efficiencies in some specific points which comes from the scaling up of the model efficiency that are available in the model experimental Hill chart. The results are very promising which shows the good ability of the numerical techniques for resolving the flow characteristics in these kind of complex geometries. A parametric study regarding the evaluation of turbine performance in three different runner angles of the prototype is also performed and the results are cited in this paper.
Simulation of Fluid Flow and Collection Efficiency for an SEA Multi-element Probe
NASA Technical Reports Server (NTRS)
Rigby, David L.; Struk, Peter M.; Bidwell, Colin
2014-01-01
Numerical simulations of fluid flow and collection efficiency for a Science Engineering Associates (SEA) multi-element probe are presented. Simulation of the flow field was produced using the Glenn-HT Navier-Stokes solver. Three-dimensional unsteady results were produced and then time averaged for the heat transfer and collection efficiency results. Three grid densities were investigated to enable an assessment of grid dependence. Simulations were completed for free stream velocities ranging from 85-135 meters per second, and free stream total pressure of 44.8 and 93.1 kilopascals (6.5 and 13.5 pounds per square inch absolute). In addition, the effect of angle of attack and yaw were investigated by including 5 degree deviations from straight for one of the flow conditions. All but one of the cases simulated a probe in isolation (i.e. in a very large domain without any support strut). One case is included which represents a probe mounted on a support strut within a finite sized wind tunnel. Collection efficiencies were generated, using the LEWICE3D code, for four spherical particle sizes, 100, 50, 20, and 5 micron in diameter. It was observed that a reduction in velocity of about 20% occurred, for all cases, as the flow entered the shroud of the probe. The reduction in velocity within the shroud is not indicative of any error in the probe measurement accuracy. Heat transfer results are presented which agree quite well with a correlation for the circular cross section heated elements. Collection efficiency results indicate a reduction in collection efficiency as particle size is reduced. The reduction with particle size is expected, however, the results tended to be lower than the previous results generated for isolated two-dimensional elements. The deviation from the two-dimensional results is more pronounced for the smaller particles and is likely due to the reduced flow within the protective shroud. As particle size increases differences between the two-dimensional and three dimensional results become negligible. Taken as a group, the total collection efficiency of the elements including the effects of the shroud has been shown to be in the range of 0.93 to 0.99 for particles above 20 microns. The 3D model has improved the estimated collection efficiency for smaller particles where errors in previous estimates were more significant.
Documentation for the “XT3D” option in the Node Property Flow (NPF) Package of MODFLOW 6
Provost, Alden M.; Langevin, Christian D.; Hughes, Joseph D.
2017-08-10
This report describes the “XT3D” option in the Node Property Flow (NPF) Package of MODFLOW 6. The XT3D option extends the capabilities of MODFLOW by enabling simulation of fully three-dimensional anisotropy on regular or irregular grids in a way that properly takes into account the full, three-dimensional conductivity tensor. It can also improve the accuracy of groundwater-flow simulations in cases in which the model grid violates certain geometric requirements. Three example problems demonstrate the use of the XT3D option to simulate groundwater flow on irregular grids and through three-dimensional porous media with anisotropic hydraulic conductivity.Conceptually, the XT3D method of estimating flow between two MODFLOW 6 model cells can be viewed in terms of three main mathematical steps: construction of head-gradient estimates by interpolation; construction of fluid-flux estimates by application of the full, three-dimensional form of Darcy’s Law, in which the conductivity tensor can be heterogeneous and anisotropic; and construction of the flow expression by enforcement of continuity of flow across the cell interface. The resulting XT3D flow expression, which relates the flow across the cell interface to the values of heads computed at neighboring nodes, is the sum of terms in which conductance-like coefficients multiply head differences, as in the conductance-based flow expression the NPF Package uses by default. However, the XT3D flow expression contains terms that involve “neighbors of neighbors” of the two cells for which the flow is being calculated. These additional terms have no analog in the conductance-based formulation. When assembled into matrix form, the XT3D formulation results in a larger stencil than the conductance-based formulation; that is, each row of the coefficient matrix generally contains more nonzero elements. The “RHS” suboption can be used to avoid expanding the stencil by placing the additional terms on the right-hand side of the matrix equation and evaluating them at the previous iteration or time step.The XT3D option can be an alternative to the Ghost-Node Correction (GNC) Package. However, the XT3D formulation is typically more computationally intensive than the conductance-based formulation the NPF Package uses by default, either with or without ghost nodes. Before deciding whether to use the GNC Package or XT3D option for production runs, the user should consider whether the conductance-based formulation alone can provide acceptable accuracy for the particular problem being solved.
EDDA 1.0: integrated simulation of debris flow erosion, deposition and property changes
NASA Astrophysics Data System (ADS)
Chen, H. X.; Zhang, L. M.
2015-03-01
Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA (Erosion-Deposition Debris flow Analysis), is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during the flow process. The yield stress of the debris flow mixture determined at limit equilibrium using the Mohr-Coulomb equation is applicable to clear water flow, hyper-concentrated flow and fully developed debris flow. To assure numerical stability and computational efficiency at the same time, an adaptive time stepping algorithm is developed to solve the governing differential equations. Four numerical tests are conducted to validate the model. The first two tests involve a one-dimensional debris flow with constant properties and a two-dimensional dam-break water flow. The last two tests involve erosion and deposition, and the movement of multi-directional debris flows. The changes in debris flow mass and properties due to either erosion or deposition are shown to affect the runout characteristics significantly. The model is also applied to simulate a large-scale debris flow in Xiaojiagou Ravine to test the performance of the model in catchment-scale simulations. The results suggest that the model estimates well the volume, inundated area, and runout distance of the debris flow. The model is intended for use as a module in a real-time debris flow warning system.
Montessori, A; Falcucci, G; Prestininzi, P; La Rocca, M; Succi, S
2014-05-01
We investigate the accuracy and performance of the regularized version of the single-relaxation-time lattice Boltzmann equation for the case of two- and three-dimensional lid-driven cavities. The regularized version is shown to provide a significant gain in stability over the standard single-relaxation time, at a moderate computational overhead.
The purpose of this study is to evaluate the Urban Airshed Model (UAM), a three-dimensional photochemical urban air quality simulation model, using field observations from the Tokyo Metropolitan Area. mphasis was placed on the photochemical smog formation mechanism under stagnant...
Parallel Simulation of Three-Dimensional Free-Surface Fluid Flow Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
BAER,THOMAS A.; SUBIA,SAMUEL R.; SACKINGER,PHILIP A.
2000-01-18
We describe parallel simulations of viscous, incompressible, free surface, Newtonian fluid flow problems that include dynamic contact lines. The Galerlin finite element method was used to discretize the fully-coupled governing conservation equations and a ''pseudo-solid'' mesh mapping approach was used to determine the shape of the free surface. In this approach, the finite element mesh is allowed to deform to satisfy quasi-static solid mechanics equations subject to geometric or kinematic constraints on the boundaries. As a result, nodal displacements must be included in the set of problem unknowns. Issues concerning the proper constraints along the solid-fluid dynamic contact line inmore » three dimensions are discussed. Parallel computations are carried out for an example taken from the coating flow industry, flow in the vicinity of a slot coater edge. This is a three-dimensional free-surface problem possessing a contact line that advances at the web speed in one region but transitions to static behavior in another part of the flow domain. Discussion focuses on parallel speedups for fixed problem size, a class of problems of immediate practical importance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleman, S.E.
This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrington, David Bradley; Monayem, A. K. M.; Mazumder, H.
2015-03-05
A three-dimensional finite element method for the numerical simulations of fluid flow in domains containing moving rigid objects or boundaries is developed. The method falls into the general category of Arbitrary Lagrangian Eulerian methods; it is based on a fixed mesh that is locally adapted in the immediate vicinity of the moving interfaces and reverts to its original shape once the moving interfaces go past the elements. The moving interfaces are defined by separate sets of marker points so that the global mesh is independent of interface movement and the possibility of mesh entanglement is eliminated. The results is amore » fully robust formulation capable of calculating on domains of complex geometry with moving boundaries or devises that can also have a complex geometry without danger of the mesh becoming unsuitable due to its continuous deformation thus eliminating the need for repeated re-meshing and interpolation. Moreover, the boundary conditions on the interfaces are imposed exactly. This work is intended to support the internal combustion engines simulator KIVA developed at Los Alamos National Laboratories. The model's capabilities are illustrated through application to incompressible flows in different geometrical settings that show the robustness and flexibility of the technique to perform simulations involving moving boundaries in a three-dimensional domain.« less
Tsai, Mong-Yu; Chen, Kang-Shin; Wu, Chung-Hsing
2005-08-01
Effects of excess ground and building temperatures on airflow and dispersion of pollutants in an urban street canyon with an aspect ratio of 0.8 and a length-to-width ratio of 3 were investigated numerically. Three-dimensional governing equations of mass, momentum, energy, and species were modeled using the RNG k-epsilon turbulence model and Boussinesq approximation, which were solved using the finite volume method. Vehicle emissions were estimated from the measured traffic flow rates and modeled as banded line sources, with a street length and bandwidths equal to typical vehicle widths. Both measurements and simulations reveal that pollutant concentrations typically follow the traffic flow rate; they decline as the height increases and are higher on the leeward side than on the windward side. Three-dimensional simulations reveal that the vortex line, joining the centers of cross-sectional vortexes of the street canyon, meanders between street buildings and shifts toward the windward side when heating strength is increased. Thermal boundary layers are very thin. Entrainment of outside air increases, and pollutant concentration decreases with increasing heating condition. Also, traffic-produced turbulence enhances the turbulent kinetic energy and the mixing of temperature and admixtures in the canyon. Factors affecting the inaccuracy of the simulations are addressed.
An Object-Oriented Serial DSMC Simulation Package
NASA Astrophysics Data System (ADS)
Liu, Hongli; Cai, Chunpei
2011-05-01
A newly developed three-dimensional direct simulation Monte Carlo (DSMC) simulation package, named GRASP ("Generalized Rarefied gAs Simulation Package"), is reported in this paper. This package utilizes the concept of simulation engine, many C++ features and software design patterns. The package has an open architecture which can benefit further development and maintenance of the code. In order to reduce the engineering time for three-dimensional models, a hybrid grid scheme, combined with a flexible data structure compiled by C++ language, are implemented in this package. This scheme utilizes a local data structure based on the computational cell to achieve high performance on workstation processors. This data structure allows the DSMC algorithm to be very efficiently parallelized with domain decomposition and it provides much flexibility in terms of grid types. This package can utilize traditional structured, unstructured or hybrid grids within the framework of a single code to model arbitrarily complex geometries and to simulate rarefied gas flows. Benchmark test cases indicate that this package has satisfactory accuracy for complex rarefied gas flows.
LAGRANGIAN MODELING OF A SUSPENDED-SEDIMENT PULSE.
Schoellhamer, David H.
1987-01-01
The one-dimensional Lagrangian Transport Model (LTM) has been applied in a quasi two-dimensional manner to simulate the transport of a slug injection of microbeads in steady experimental flows. A stationary bed segment was positioned below each parcel location to simulate temporary storage of beads on the bottom of the flume. Only one degree of freedom was available for all three bead simulations. The results show the versatility of the LTM and the ability of the LTM to accurately simulate transport of fine suspended sediment.
Numerical simulation of premixed flame propagation in a closed tube
NASA Astrophysics Data System (ADS)
Kuzuu, Kazuto; Ishii, Katsuya; Kuwahara, Kunio
1996-08-01
Premixed flame propagation of methane-air mixture in a closed tube is estimated through a direct numerical simulation of the three-dimensional unsteady Navier-Stokes equations coupled with chemical reaction. In order to deal with a combusting flow, an extended version of the MAC method, which can be applied to a compressible flow with strong density variation, is employed as a numerical method. The chemical reaction is assumed to be an irreversible single step reaction between methane and oxygen. The chemical species are CH 4, O 2, N 2, CO 2, and H 2O. In this simulation, we reproduce a formation of a tulip flame in a closed tube during the flame propagation. Furthermore we estimate not only a two-dimensional shape but also a three-dimensional structure of the flame and flame-induced vortices, which cannot be observed in the experiments. The agreement between the calculated results and the experimental data is satisfactory, and we compare the phenomenon near the side wall with the one in the corner of the tube.
Unstructured grid methods for the simulation of 3D transient flows
NASA Technical Reports Server (NTRS)
Morgan, K.; Peraire, J.; Peiro, J.
1994-01-01
A description of the research work undertaken under NASA Research Grant NAGW-2962 has been given. Basic algorithmic development work, undertaken for the simulation of steady three dimensional inviscid flow, has been used as the basis for the construction of a procedure for the simulation of truly transient flows in three dimensions. To produce a viable procedure for implementation on the current generation of computers, moving boundary components are simulated by fixed boundaries plus a suitably modified boundary condition. Computational efficiency is increased by the use of an implicit time stepping scheme in which the equation system is solved by explicit multistage time stepping with multigrid acceleration. The viability of the proposed approach has been demonstrated by considering the application of the procedure to simulation of a transonic flow over an oscillating ONERA M6 wing.
Shock/vortex interaction and vortex-breakdown modes
NASA Technical Reports Server (NTRS)
Kandil, Osama A.; Kandil, H. A.; Liu, C. H.
1992-01-01
Computational simulation and study of shock/vortex interaction and vortex-breakdown modes are considered for bound (internal) and unbound (external) flow domains. The problem is formulated using the unsteady, compressible, full Navier-Stokes (NS) equations which are solved using an implicit, flux-difference splitting, finite-volume scheme. For the bound flow domain, a supersonic swirling flow is considered in a configured circular duct and the problem is solved for quasi-axisymmetric and three-dimensional flows. For the unbound domain, a supersonic swirling flow issued from a nozzle into a uniform supersonic flow of lower Mach number is considered for quasi-axisymmetric and three-dimensional flows. The results show several modes of breakdown; e.g., no-breakdown, transient single-bubble breakdown, transient multi-bubble breakdown, periodic multi-bubble multi-frequency breakdown and helical breakdown.
A non-hydrostatic flat-bottom ocean model entirely based on Fourier expansion
NASA Astrophysics Data System (ADS)
Wirth, A.
2005-01-01
We show how to implement free-slip and no-slip boundary conditions in a three dimensional Boussinesq flat-bottom ocean model based on Fourier expansion. Our method is inspired by the immersed or virtual boundary technique in which the effect of boundaries on the flow field is modeled by a virtual force field. Our method, however, explicitly depletes the velocity on the boundary induced by the pressure, while at the same time respecting the incompressibility of the flow field. Spurious spatial oscillations remain at a negligible level in the simulated flow field when using our technique and no filtering of the flow field is necessary. We furthermore show that by using the method presented here the residual velocities at the boundaries are easily reduced to a negligible value. This stands in contradistinction to previous calculations using the immersed or virtual boundary technique. The efficiency is demonstrated by simulating a Rayleigh impulsive flow, for which the time evolution of the simulated flow is compared to an analytic solution, and a three dimensional Boussinesq simulation of ocean convection. The second instance is taken form a well studied oceanographic context: A free slip boundary condition is applied on the upper surface, the modeled sea surface, and a no-slip boundary condition to the lower boundary, the modeled ocean floor. Convergence properties of the method are investigated by solving a two dimensional stationary problem at different spatial resolutions. The work presented here is restricted to a flat ocean floor. Extensions of our method to ocean models with a realistic topography are discussed.
On the role of radiation and dimensionality in predicting flow opposed flame spread over thin fuels
NASA Astrophysics Data System (ADS)
Kumar, Chenthil; Kumar, Amit
2012-06-01
In this work a flame-spread model is formulated in three dimensions to simulate opposed flow flame spread over thin solid fuels. The flame-spread model is coupled to a three-dimensional gas radiation model. The experiments [1] on downward spread and zero gravity quiescent spread over finite width thin fuel are simulated by flame-spread models in both two and three dimensions to assess the role of radiation and effect of dimensionality on the prediction of the flame-spread phenomena. It is observed that while radiation plays only a minor role in normal gravity downward spread, in zero gravity quiescent spread surface radiation loss holds the key to correct prediction of low oxygen flame spread rate and quenching limit. The present three-dimensional simulations show that even in zero gravity gas radiation affects flame spread rate only moderately (as much as 20% at 100% oxygen) as the heat feedback effect exceeds the radiation loss effect only moderately. However, the two-dimensional model with the gas radiation model badly over-predicts the zero gravity flame spread rate due to under estimation of gas radiation loss to the ambient surrounding. The two-dimensional model was also found to be inadequate for predicting the zero gravity flame attributes, like the flame length and the flame width, correctly. The need for a three-dimensional model was found to be indispensable for consistently describing the zero gravity flame-spread experiments [1] (including flame spread rate and flame size) especially at high oxygen levels (>30%). On the other hand it was observed that for the normal gravity downward flame spread for oxygen levels up to 60%, the two-dimensional model was sufficient to predict flame spread rate and flame size reasonably well. Gas radiation is seen to increase the three-dimensional effect especially at elevated oxygen levels (>30% for zero gravity and >60% for normal gravity flames).
NASA Astrophysics Data System (ADS)
Miao, Sha; Hendrickson, Kelli; Liu, Yuming
2017-12-01
This work presents a Fully-Coupled Immersed Flow (FCIF) solver for the three-dimensional simulation of fluid-fluid interaction by coupling two distinct flow solvers using an Immersed Boundary (IB) method. The FCIF solver captures dynamic interactions between two fluids with disparate flow properties, while retaining the desirable simplicity of non-boundary-conforming grids. For illustration, we couple an IB-based unsteady Reynolds Averaged Navier Stokes (uRANS) simulator with a depth-integrated (long-wave) solver for the application of slug development with turbulent gas and laminar liquid. We perform a series of validations including turbulent/laminar flows over prescribed wavy boundaries and freely-evolving viscous fluids. These confirm the effectiveness and accuracy of both one-way and two-way coupling in the FCIF solver. Finally, we present a simulation example of the evolution from a stratified turbulent/laminar flow through the initiation of a slug that nearly bridges the channel. The results show both the interfacial wave dynamics excited by the turbulent gas forcing and the influence of the liquid on the gas turbulence. These results demonstrate that the FCIF solver effectively captures the essential physics of gas-liquid interaction and can serve as a useful tool for the mechanistic study of slug generation in two-phase gas/liquid flows in channels and pipes.
NASA Astrophysics Data System (ADS)
Panday, S.; Wu, Y. S.; Huyakorn, P. S.; Springer, E. P.
1994-06-01
This paper discusses the verification and application of the three-dimensional (3-D) multiphase flow model presented by Huyakorn et al. (Part 1 in this issue) for assessing contamination due to subsurface releases of non-aqueous-phase liquids (NAPL's). Attention is focussed on situations involving one-, two- and three-dimensional flow through porous media. The model formulations and numerical schemes are tested for highly nonlinear field conditions. The utility and accuracy of various simplifications to certain simulation scenarios are assessed. Five simulation examples are included for demonstrative purposes. The first example verifies the model for vertical flow and compares the performance of the fully three-phase and the passive-air-phase formulations. Air-phase boundary conditions are noted to have considerable effects on simulation results. The second example verifies the model for cross-sectional analyses involving LNAPL and DNAPL migration. Finite-difference (5-point) and finite-element (9-point) spatial approximations are compared for different grid aspect ratios. Unless corrected, negative-transmissivity conditions were found to have undesirable impact on the finite-element solutions. The third example provides a model validation against laboratory experimental data on 5-spot water-flood treatment of oil reservoirs. The sensitivity to grid orientation is noted for the finite-difference schemes. The fourth example demonstrates model utility in characterizing the 3-D migration of LNAPL and DNAPL from surface sources. The final example present a modeling study of air sparging. Critical parameters affecting the performance of air-sparging system are examined. In general, the modeling results indicate sparging is more effective in water-retentive soils, and larger values of sparge influence radius may be achieved for certain anisotropic conditions.
The Numerical Analysis of a Turbulent Compressible Jet. Degree awarded by Ohio State Univ., 2000
NASA Technical Reports Server (NTRS)
DeBonis, James R.
2001-01-01
A numerical method to simulate high Reynolds number jet flows was formulated and applied to gain a better understanding of the flow physics. Large-eddy simulation was chosen as the most promising approach to model the turbulent structures due to its compromise between accuracy and computational expense. The filtered Navier-Stokes equations were developed including a total energy form of the energy equation. Subgrid scale models for the momentum and energy equations were adapted from compressible forms of Smagorinsky's original model. The effect of using disparate temporal and spatial accuracy in a numerical scheme was discovered through one-dimensional model problems and a new uniformly fourth-order accurate numerical method was developed. Results from two- and three-dimensional validation exercises show that the code accurately reproduces both viscous and inviscid flows. Numerous axisymmetric jet simulations were performed to investigate the effect of grid resolution, numerical scheme, exit boundary conditions and subgrid scale modeling on the solution and the results were used to guide the three-dimensional calculations. Three-dimensional calculations of a Mach 1.4 jet showed that this LES simulation accurately captures the physics of the turbulent flow. The agreement with experimental data was relatively good and is much better than results in the current literature. Turbulent intensities indicate that the turbulent structures at this level of modeling are not isotropic and this information could lend itself to the development of improved subgrid scale models for LES and turbulence models for RANS simulations. A two point correlation technique was used to quantify the turbulent structures. Two point space correlations were used to obtain a measure of the integral length scale, which proved to be approximately 1/2 D(sub j). Two point space-time correlations were used to obtain the convection velocity for the turbulent structures. This velocity ranged from 0.57 to 0.71 U(sub j).
Polwaththe-Gallage, Hasitha-Nayanajith; Saha, Suvash C; Sauret, Emilie; Flower, Robert; Senadeera, Wijitha; Gu, YuanTong
2016-12-28
Blood continuously flows through the blood vessels in the human body. When blood flows through the smallest blood vessels, red blood cells (RBCs) in the blood exhibit various types of motion and deformed shapes. Computational modelling techniques can be used to successfully predict the behaviour of the RBCs in capillaries. In this study, we report the application of a meshfree particle approach to model and predict the motion and deformation of three-dimensional RBCs in capillaries. An elastic spring network based on the discrete element method (DEM) is employed to model the three-dimensional RBC membrane. The haemoglobin in the RBC and the plasma in the blood are modelled as smoothed particle hydrodynamics (SPH) particles. For validation purposes, the behaviour of a single RBC in a simple shear flow is examined and compared against experimental results. Then simulations are carried out to predict the behaviour of RBCs in a capillary; (i) the motion of five identical RBCs in a uniform capillary, (ii) the motion of five identical RBCs with different bending stiffness (K b ) values in a stenosed capillary, (iii) the motion of three RBCs in a narrow capillary. Finally five identical RBCs are employed to determine the critical diameter of a stenosed capillary. Validation results showed a good agreement with less than 10% difference. From the above simulations, the following results are obtained; (i) RBCs exhibit different deformation behaviours due to the hydrodynamic interaction between them. (ii) Asymmetrical deformation behaviours of the RBCs are clearly observed when the bending stiffness (K b ) of the RBCs is changed. (iii) The model predicts the ability of the RBCs to squeeze through smaller blood vessels. Finally, from the simulations, the critical diameter of the stenosed section to stop the motion of blood flow is predicted. A three-dimensional spring network model based on DEM in combination with the SPH method is successfully used to model the motion and deformation of RBCs in capillaries. Simulation results reveal that the condition of blood flow stopping depends on the pressure gradient of the capillary and the severity of stenosis of the capillary. In addition, this model is capable of predicting the critical diameter which prevents motion of RBCs for different blood pressures.
NASA Astrophysics Data System (ADS)
Lin, S. T.; Liou, T. S.
2017-12-01
Numerical simulation of groundwater flow in anisotropic aquifers usually suffers from the lack of accuracy of calculating groundwater flux across grid blocks. Conventional two-point flux approximation (TPFA) can only obtain the flux normal to the grid interface but completely neglects the one parallel to it. Furthermore, the hydraulic gradient in a grid block estimated from TPFA can only poorly represent the hydraulic condition near the intersection of grid blocks. These disadvantages are further exacerbated when the principal axes of hydraulic conductivity, global coordinate system, and grid boundary are not parallel to one another. In order to refine the estimation the in-grid hydraulic gradient, several multiple-point flux approximation (MPFA) methods have been developed for two-dimensional groundwater flow simulations. For example, the MPFA-O method uses the hydraulic head at the junction node as an auxiliary variable which is then eliminated using the head and flux continuity conditions. In this study, a three-dimensional MPFA method will be developed for numerical simulation of groundwater flow in three-dimensional and strongly anisotropic aquifers. This new MPFA method first discretizes the simulation domain into hexahedrons. Each hexahedron is further decomposed into a certain number of tetrahedrons. The 2D MPFA-O method is then extended to these tetrahedrons, using the unknown head at the intersection of hexahedrons as an auxiliary variable along with the head and flux continuity conditions to solve for the head at the center of each hexahedron. Numerical simulations using this new MPFA method have been successfully compared with those obtained from a modified version of TOUGH2.
Fast Multipole Methods for Three-Dimensional N-body Problems
NASA Technical Reports Server (NTRS)
Koumoutsakos, P.
1995-01-01
We are developing computational tools for the simulations of three-dimensional flows past bodies undergoing arbitrary motions. High resolution viscous vortex methods have been developed that allow for extended simulations of two-dimensional configurations such as vortex generators. Our objective is to extend this methodology to three dimensions and develop a robust computational scheme for the simulation of such flows. A fundamental issue in the use of vortex methods is the ability of employing efficiently large numbers of computational elements to resolve the large range of scales that exist in complex flows. The traditional cost of the method scales as Omicron (N(sup 2)) as the N computational elements/particles induce velocities at each other, making the method unacceptable for simulations involving more than a few tens of thousands of particles. In the last decade fast methods have been developed that have operation counts of Omicron (N log N) or Omicron (N) (referred to as BH and GR respectively) depending on the details of the algorithm. These methods are based on the observation that the effect of a cluster of particles at a certain distance may be approximated by a finite series expansion. In order to exploit this observation we need to decompose the element population spatially into clusters of particles and build a hierarchy of clusters (a tree data structure) - smaller neighboring clusters combine to form a cluster of the next size up in the hierarchy and so on. This hierarchy of clusters allows one to determine efficiently when the approximation is valid. This algorithm is an N-body solver that appears in many fields of engineering and science. Some examples of its diverse use are in astrophysics, molecular dynamics, micro-magnetics, boundary element simulations of electromagnetic problems, and computer animation. More recently these N-body solvers have been implemented and applied in simulations involving vortex methods. Koumoutsakos and Leonard (1995) implemented the GR scheme in two dimensions for vector computer architectures allowing for simulations of bluff body flows using millions of particles. Winckelmans presented three-dimensional, viscous simulations of interacting vortex rings, using vortons and an implementation of a BH scheme for parallel computer architectures. Bhatt presented a vortex filament method to perform inviscid vortex ring interactions, with an alternative implementation of a BH scheme for a Connection Machine parallel computer architecture.
Mehl, Steffen W.; Hill, Mary C.
2011-01-01
This report documents modifications to the Streamflow-Routing Package (SFR2) to route streamflow through grids constructed using the multiple-refined-areas capability of shared node Local Grid Refinement (LGR) of MODFLOW-2005. MODFLOW-2005 is the U.S. Geological Survey modular, three-dimensional, finite-difference groundwater-flow model. LGR provides the capability to simulate groundwater flow by using one or more block-shaped, higher resolution local grids (child model) within a coarser grid (parent model). LGR accomplishes this by iteratively coupling separate MODFLOW-2005 models such that heads and fluxes are balanced across the shared interfacing boundaries. Compatibility with SFR2 allows for streamflow routing across grids. LGR can be used in two- and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined groundwater systems.
Hutchinson, C.B.
1984-01-01
This report describes a quasi-three-dimensional finite-difference model for simulation of steady-state ground-water flow in the Floridan aquifer over a 932-square-mile area that contains 10 municipal well fields. The over-lying surficial aquifer contains a water table and is coupled to the Floridan aquifer by leakage term that represents flow through a confining layer separating the two aquifers. Under the steady-state condition, all storage terms are set to zero. Use of the head-controlled flux condition allows simulated head and flow changes to occur in the Floridan aquifer at the model boundaries. Procedures used to calibrate the model, test its sensitivity to input-parameter errors, and validate its accuracy for predictive purposes are described. Also included are attachments that describe setting up and running the model. Example model-interrogation runs show anticipated drawdowns under high, average, and low recharge conditions with 10 well fields pumping simultaneously at the maximum annual permitted rates totaling 186.9 million gallons per day. (USGS)
Numerical simulation of flow through the Langley parametric scramjet engine
NASA Technical Reports Server (NTRS)
Srinivasan, Shivakumar; Kamath, Pradeep S.; Mcclinton, Charles R.
1989-01-01
The numerical simulation of a three-dimensional turbulent, reacting flow through the entire Langley parametric scramjet engine has been obtained using a piecewise elliptic approach. The last section in the combustor has been analyzed using a parabolized Navier-Stokes code. The facility nozzle flow was analyzed as a first step. The outflow conditions from the nozzle were chosen as the inflow conditions of the scramjet inlet. The nozzle and the inlet simulation were accomplished by solving the three-dimensional Navier-Stokes equations with a perfect gas assumption. The inlet solution downstream of the scramjet throat was used to provide inflow conditions for the combustor region. The first two regions of the combustor were analyzed using the MacCormack's explicit scheme. However, the source terms in the species equations were solved implicitly. The finite rate chemistry was modeled using the two-step reaction model of Rogers and Chinitz. A complete reaction model was used in the PNS code to solve the last combustor region. The numerical solutions provide an insight of the flow details in a complete hydrogen-fueled scramjet engine module.
Transition to turbulence in plane channel flows
NASA Technical Reports Server (NTRS)
Biringen, S.
1984-01-01
Results obtained from a numerical simulation of the final stages of transition to turbulence in plane channel flow are described. Three dimensional, incompressible Navier-Stokes equations are numerically integrated to obtain the time evolution of two and three dimensional finite amplitude disturbances. Computations are performed on CYBER-203 vector processor for a 32x51x32 grid. Results are presented for no-slip boundary conditions at the solid walls as well as for periodic suction blowing to simulate active control of transition by mass transfer. Solutions indicate that the method is capable of simulating the complex character of vorticity dynamics during the various stages of transition and final breakdown. In particular, evidence points to the formation of a lambda-shape vortex and the subsequent system of horseshoe vortices inclined to the main flow direction as the main elements of transition. Calculations involving periodic suction-blowing indicate that interference with a wave of suitable phase and amplitude reduces the disturbance growth rates.
Wang, Yuhe; Li, Yanbin; Wang, Ronghui; Wang, Maohua; Lin, Jianhan
2017-04-01
As a result of the low concentration of avian influenza viruses in samples for routine screening, the separation and concentration of these viruses are vital for their sensitive detection. We present a novel three-dimensional printed magnetophoretic system for the continuous flow separation of the viruses using aptamer-modified magnetic nanoparticles, a magnetophoretic chip, a magnetic field, and a fluidic controller. The magnetic field was designed based on finite element magnetic simulation and developed using neodymium magnets with a maximum intensity of 0.65 T and a gradient of 32 T/m for dragging the nanoparticle-virus complexes. The magnetophoretic chip was designed by SOLIDWORKS and fabricated by a three-dimensional printer with a magnetophoretic channel for the continuous flow separation of the viruses using phosphate-buffered saline as carrier flow. The fluidic controller was developed using a microcontroller and peristaltic pumps to inject the carrier flow and the viruses. The trajectory of the virus-nanoparticle complexes was simulated using COMSOL for optimization of the carrier flow and the magnetic field, respectively. The results showed that the H5N1 viruses could be captured, separated, and concentrated using the proposed magnetophoretic system with the separation efficiency up to 88% in a continuous flow separation time of 2 min for a sample volume of 200 μL. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Larsen, J. D.; Schaap, M. G.
2013-12-01
Recent advances in computing technology and experimental techniques have made it possible to observe and characterize fluid dynamics at the micro-scale. Many computational methods exist that can adequately simulate fluid flow in porous media. Lattice Boltzmann methods provide the distinct advantage of tracking particles at the microscopic level and returning macroscopic observations. While experimental methods can accurately measure macroscopic fluid dynamics, computational efforts can be used to predict and gain insight into fluid dynamics by utilizing thin sections or computed micro-tomography (CMT) images of core sections. Although substantial effort have been made to advance non-invasive imaging methods such as CMT, fluid dynamics simulations, and microscale analysis, a true three dimensional image segmentation technique has not been developed until recently. Many competing segmentation techniques are utilized in industry and research settings with varying results. In this study lattice Boltzmann method is used to simulate stokes flow in a macroporous soil column. Two dimensional CMT images were used to reconstruct a three dimensional representation of the original sample. Six competing segmentation standards were used to binarize the CMT volumes which provide distinction between solid phase and pore space. The permeability of the reconstructed samples was calculated, with Darcy's Law, from lattice Boltzmann simulations of fluid flow in the samples. We compare simulated permeability from differing segmentation algorithms to experimental findings.
Mixing in the shear superposition micromixer: three-dimensional analysis.
Bottausci, Frederic; Mezić, Igor; Meinhart, Carl D; Cardonne, Caroline
2004-05-15
In this paper, we analyse mixing in an active chaotic advection micromixer. The micromixer consists of a main rectangular channel and three cross-stream secondary channels that provide ability for time-dependent actuation of the flow stream in the direction orthogonal to the main stream. Three-dimensional motion in the mixer is studied. Numerical simulations and modelling of the flow are pursued in order to understand the experiments. It is shown that for some values of parameters a simple model can be derived that clearly represents the flow nature. Particle image velocimetry measurements of the flow are compared with numerical simulations and the analytical model. A measure for mixing, the mixing variance coefficient (MVC), is analysed. It is shown that mixing is substantially improved with multiple side channels with oscillatory flows, whose frequencies are increasing downstream. The optimization of MVC results for single side-channel mixing is presented. It is shown that dependence of MVC on frequency is not monotone, and a local minimum is found. Residence time distributions derived from the analytical model are analysed. It is shown that, while the average Lagrangian velocity profile is flattened over the steady flow, Taylor-dispersion effects are still present for the current micromixer configuration.
NASA Technical Reports Server (NTRS)
Kandula, M.; Pearce, D. G.
1991-01-01
A steady incompressible three-dimensional viscous flow analysis has been conducted for the Space Shuttle external tank/orbiter propellant feed line disconnect flapper valves with upstream elbows. The Navier-Stokes code, INS3D, is modified to handle interior obstacles and a simple turbulence model. The flow solver is tested for stability and convergence in the presence of interior flappers. An under-relaxation scheme has been incorporated to improve the solution stability. Important flow characteristics such as secondary flows, recirculation, vortex and wake regions, and separated flows are observed. Computed values for forces, moments, and pressure drop are in satisfactory agreement with water flow test data covering a maximum tube Reynolds number of 3.5 million. The predicted hydrodynamical stability of the flappers correlates well with the measurements.
NASA Astrophysics Data System (ADS)
Teles, V.; de Marsily, G.; Delay, F.; Perrier, E.
Alluvial floodplains are extremely heterogeneous aquifers, whose three-dimensional structures are quite difficult to model. In general, when representing such structures, the medium heterogeneity is modeled with classical geostatistical or Boolean meth- ods. Another approach, still in its infancy, is called the genetic method because it simulates the generation of the medium by reproducing sedimentary processes. We developed a new genetic model to obtain a realistic three-dimensional image of allu- vial media. It does not simulate the hydrodynamics of sedimentation but uses semi- empirical and statistical rules to roughly reproduce fluvial deposition and erosion. The main processes, either at the stream scale or at the plain scale, are modeled by simple rules applied to "sediment" entities or to conceptual "erosion" entities. The model was applied to a several kilometer long portion of the Aube River floodplain (France) and reproduced the deposition and erosion cycles that occurred during the inferred climate periods (15 000 BP to present). A three-dimensional image of the aquifer was gener- ated, by extrapolating the two-dimensional information collected on a cross-section of the floodplain. Unlike geostatistical methods, this extrapolation does not use a statis- tical spatial analysis of the data, but a genetic analysis, which leads to a more realistic structure. Groundwater flow and transport simulations in the alluvium were carried out with a three-dimensional flow code or simulator (MODFLOW), using different rep- resentations of the alluvial reservoir of the Aube River floodplain: first an equivalent homogeneous medium, and then different heterogeneous media built either with the traditional geostatistical approach simulating the permeability distribution, or with the new genetic model presented here simulating sediment facies. In the latter case, each deposited entity of a given lithology was assigned a constant hydraulic conductivity value. Results of these models have been compared to assess the value of the genetic approach and will be presented.
NASA Astrophysics Data System (ADS)
Takiwaki, Tomoya; Kotake, Kei; Suwa, Yudai
2016-09-01
We report results from a series of three-dimensional (3D) rotational core-collapse simulations for 11.2 and 27 M⊙ stars employing neutrino transport scheme by the isotropic diffusion source approximation. By changing the initial strength of rotation systematically, we find a rotation-assisted explosion for the 27 M⊙ progenitor , which fails in the absence of rotation. The unique feature was not captured in previous two-dimensional (2D) self-consistent rotating models because the growing non-axisymmetric instabilities play a key role. In the rapidly rotating case, strong spiral flows generated by the so-called low T/|W| instability enhance the energy transport from the proto-neutron star (PNS) to the gain region, which makes the shock expansion more energetic. The explosion occurs more strongly in the direction perpendicular to the rotational axis, which is different from previous 2D predictions.
Daniele Tonina; John M. Buffington
2007-01-01
We report the first laboratory simulations of hyporheic exchange in gravel pool-riffle channels, which are characterized by coarse sediment, steep slopes, and three-dimensional bed forms that strongly influence surface flow. These channels are particularly important habitat for salmonids, many of which are currently at risk worldwide and which incubate their offspring...
Verification of a three-dimensional viscous flow analysis for a single stage compressor
NASA Astrophysics Data System (ADS)
Matsuoka, Akinori; Hashimoto, Keisuke; Nozaki, Osamu; Kikuchi, Kazuo; Fukuda, Masahiro; Tamura, Atsuhiro
1992-12-01
A transonic flowfield around rotor blades of a highly loaded single stage axial compressor was numerically analyzed by a three dimensional compressible Navier-Stokes equation code using Chakravarthy and Osher type total variation diminishing (TVD) scheme. A stage analysis which calculates both flowfields around inlet guide vane (IGV) and rotor blades simultaneously was carried out. Comparing with design values and experimental data, computed results show slight difference quantitatively. But the numerical calculation simulates well the pressure rise characteristics of the compressor and its flow pattern including strong shock surface.
Numerical Simulation of Plume Transport in Channel Bend with Different Sediment Diameters
NASA Astrophysics Data System (ADS)
Kim, H. S.; Chen, H. C.
2017-12-01
The flow and transport of suspended sediment particles, in the form of plume, were simulated using an in-house Computational Fluid Dynamics (CFD) solver FANS3D (Finite Analytic Navier-Stokes code for 3D flow). The motivation for this investigation is to provide a means to simulate and visualize dispersal systems in a complex flow environment. The physical domain considered is a 90-degrees channel bend with wingwall abutments, which induces complex, three-dimensional flow characteristics. At the inlet of the channel, a sediment plume with the volumetric concentration of 1,000 parts per million (ppm) was constantly supplied. For simplicity, it was assumed that neither deposition nor erosion takes place inside the channel and settling sediment was made to pass through the bed surface. The effect of the sediment particle size was also analyzed using two different median diameters: 0.10 mm and 0.20 mm. It was shown that flow acceleration and vortices cause strong mixing inside the channel. The three-dimensional time series from the simulation captured increasing suspended sediment concentration downstream of the abutments, along the outer bank. When the median diameter was varied, the sediment concentration at certain locations differed by orders of magnitude, indicating that the settling velocity dominates the transport process for larger diameters.
Leahy, P.P.
1982-01-01
The Trescott computer program for modeling groundwater flow in three dimensions has been modified to (1) treat aquifer and confining bed pinchouts more realistically and (2) reduce the computer memory requirements needed for the input data. Using the original program, simulation of aquifer systems with nonrectangular external boundaries may result in a large number of nodes that are not involved in the numerical solution of the problem, but require computer storage. (USGS)
Feasibility study for a numerical aerodynamic simulation facility. Volume 1
NASA Technical Reports Server (NTRS)
Lincoln, N. R.; Bergman, R. O.; Bonstrom, D. B.; Brinkman, T. W.; Chiu, S. H. J.; Green, S. S.; Hansen, S. D.; Klein, D. L.; Krohn, H. E.; Prow, R. P.
1979-01-01
A Numerical Aerodynamic Simulation Facility (NASF) was designed for the simulation of fluid flow around three-dimensional bodies, both in wind tunnel environments and in free space. The application of numerical simulation to this field of endeavor promised to yield economies in aerodynamic and aircraft body designs. A model for a NASF/FMP (Flow Model Processor) ensemble using a possible approach to meeting NASF goals is presented. The computer hardware and software are presented, along with the entire design and performance analysis and evaluation.
The high performance parallel algorithm for Unified Gas-Kinetic Scheme
NASA Astrophysics Data System (ADS)
Li, Shiyi; Li, Qibing; Fu, Song; Xu, Jinxiu
2016-11-01
A high performance parallel algorithm for UGKS is developed to simulate three-dimensional flows internal and external on arbitrary grid system. The physical domain and velocity domain are divided into different blocks and distributed according to the two-dimensional Cartesian topology with intra-communicators in physical domain for data exchange and other intra-communicators in velocity domain for sum reduction to moment integrals. Numerical results of three-dimensional cavity flow and flow past a sphere agree well with the results from the existing studies and validate the applicability of the algorithm. The scalability of the algorithm is tested both on small (1-16) and large (729-5832) scale processors. The tested speed-up ratio is near linear ashind thus the efficiency is around 1, which reveals the good scalability of the present algorithm.
A new procedure for dynamic adaption of three-dimensional unstructured grids
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Strawn, Roger
1993-01-01
A new procedure is presented for the simultaneous coarsening and refinement of three-dimensional unstructured tetrahedral meshes. This algorithm allows for localized grid adaption that is used to capture aerodynamic flow features such as vortices and shock waves in helicopter flowfield simulations. The mesh-adaption algorithm is implemented in the C programming language and uses a data structure consisting of a series of dynamically-allocated linked lists. These lists allow the mesh connectivity to be rapidly reconstructed when individual mesh points are added and/or deleted. The algorithm allows the mesh to change in an anisotropic manner in order to efficiently resolve directional flow features. The procedure has been successfully implemented on a single processor of a Cray Y-MP computer. Two sample cases are presented involving three-dimensional transonic flow. Computed results show good agreement with conventional structured-grid solutions for the Euler equations.
Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, P.; Frankel, S. H.; Adumitroaie, V.; Sabini, G.; Madnia, C. K.
1993-01-01
The primary objective of this research is to extend current capabilities of Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first two years of this research have been concentrated on a priori investigations of single-point Probability Density Function (PDF) methods for providing subgrid closures in reacting turbulent flows. In the efforts initiated in the third year, our primary focus has been on performing actual LES by means of PDF methods. The approach is based on assumed PDF methods and we have performed extensive analysis of turbulent reacting flows by means of LES. This includes simulations of both three-dimensional (3D) isotropic compressible flows and two-dimensional reacting planar mixing layers. In addition to these LES analyses, some work is in progress to assess the extent of validity of our assumed PDF methods. This assessment is done by making detailed companions with recent laboratory data in predicting the rate of reactant conversion in parallel reacting shear flows. This report provides a summary of our achievements for the first six months of the third year of this program.
A Novel Multi-scale Simulation Strategy for Turbulent Reacting Flows
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Sutherland C.
In this project, a new methodology was proposed to bridge the gap between Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES). This novel methodology, titled Lattice-Based Multiscale Simulation (LBMS), creates a lattice structure of One-Dimensional Turbulence (ODT) models. This model has been shown to capture turbulent combustion with high fidelity by fully resolving interactions between turbulence and diffusion. By creating a lattice of ODT models, which are then coupled, LBMS overcomes the shortcomings of ODT, which are its inability to capture large scale three dimensional flow structures. However, by spacing these lattices significantly apart, LBMS can avoid the cursemore » of dimensionality that creates untenable computational costs associated with DNS. This project has shown that LBMS is capable of reproducing statistics of isotropic turbulent flows while coarsening the spacing between lines significantly. It also investigates and resolves issues that arise when coupling ODT lines, such as flux reconstruction perpendicular to a given ODT line, preservation of conserved quantities when eddies cross a course cell volume and boundary condition application. Robust parallelization is also investigated.« less
Three-Dimensional Numerical Simulation of Airflow in Nasopharynx.
NASA Astrophysics Data System (ADS)
Shome, Biswadip; Wang, Lian-Ping; Santare, Michael H.; Szeri, Andras Z.; Prasad, Ajay K.; Roberts, David
1996-11-01
A three-dimensional numerical simulation of airflow in nasopharynx (from the soft palate to the epiglottis) was conducted, using anatomically accurate model and finite element method, to study the influence of flow characteristics on obstructive sleep apnea (OSA). The results showed that the pressure drop in the nasopharynx is in the range 200-500 Pa. Ten different nasopharynx geometries resulting from three OSA treatment therapies (CPAP, mandibular repositioning devices, and surgery) were compared. The results confirmed that the airflow in the nasopharynx lies in the transitional flow regime and thus, a subtle change in the morphology caused by these treatment therapies has a large effect on the airflow. The onset of turbulence can cause as much as 40% of increase in pressure drop. For the transitional flow regime, the k-ɛ turbulence model was found to be the most appropriate model, when compared to the mixing length and the k-ω model, as it correctly reproduces the limiting laminar behavior. In addition, the pressure drop increased approximately as the square of the volumetric flow rate. Supported by NIH.
NASA Astrophysics Data System (ADS)
Tian, Fang-Bao; Dai, Hu; Luo, Haoxiang; Doyle, James F.; Rousseau, Bernard
2014-02-01
Three-dimensional fluid-structure interaction (FSI) involving large deformations of flexible bodies is common in biological systems, but accurate and efficient numerical approaches for modeling such systems are still scarce. In this work, we report a successful case of combining an existing immersed-boundary flow solver with a nonlinear finite-element solid-mechanics solver specifically for three-dimensional FSI simulations. This method represents a significant enhancement from the similar methods that are previously available. Based on the Cartesian grid, the viscous incompressible flow solver can handle boundaries of large displacements with simple mesh generation. The solid-mechanics solver has separate subroutines for analyzing general three-dimensional bodies and thin-walled structures composed of frames, membranes, and plates. Both geometric nonlinearity associated with large displacements and material nonlinearity associated with large strains are incorporated in the solver. The FSI is achieved through a strong coupling and partitioned approach. We perform several validation cases, and the results may be used to expand the currently limited database of FSI benchmark study. Finally, we demonstrate the versatility of the present method by applying it to the aerodynamics of elastic wings of insects and the flow-induced vocal fold vibration.
Tian, Fang-Bao; Dai, Hu; Luo, Haoxiang; Doyle, James F.; Rousseau, Bernard
2013-01-01
Three-dimensional fluid–structure interaction (FSI) involving large deformations of flexible bodies is common in biological systems, but accurate and efficient numerical approaches for modeling such systems are still scarce. In this work, we report a successful case of combining an existing immersed-boundary flow solver with a nonlinear finite-element solid-mechanics solver specifically for three-dimensional FSI simulations. This method represents a significant enhancement from the similar methods that are previously available. Based on the Cartesian grid, the viscous incompressible flow solver can handle boundaries of large displacements with simple mesh generation. The solid-mechanics solver has separate subroutines for analyzing general three-dimensional bodies and thin-walled structures composed of frames, membranes, and plates. Both geometric nonlinearity associated with large displacements and material nonlinearity associated with large strains are incorporated in the solver. The FSI is achieved through a strong coupling and partitioned approach. We perform several validation cases, and the results may be used to expand the currently limited database of FSI benchmark study. Finally, we demonstrate the versatility of the present method by applying it to the aerodynamics of elastic wings of insects and the flow-induced vocal fold vibration. PMID:24415796
Numerical Simulation of the Interaction of a Vortex with Stationary Airfoil in Transonic Flow,
1984-01-12
Goorjian, P. M., "Implicit Vortex Wakes ," AIAA Journal, Vol. 15, No. 4, April Finite- Difference Computations of Unsteady Transonic 1977, pp. 581-590... Difference Simulations of Three- tion of Wing- Vortex Interaction in Transonic Flow Dimensional Flow," AIAA Journal, Vol. 18, No. 2, Using Implicit...assumptions are made in p = density modeling the nonlinear vortex wake structure. Numerical algorithms based on the Euler equations p_ = free stream density
Three-dimensional lattice Boltzmann model for compressible flows.
Sun, Chenghai; Hsu, Andrew T
2003-07-01
A three-dimensional compressible lattice Boltzmann model is formulated on a cubic lattice. A very large particle-velocity set is incorporated in order to enable a greater variation in the mean velocity. Meanwhile, the support set of the equilibrium distribution has only six directions. Therefore, this model can efficiently handle flows over a wide range of Mach numbers and capture shock waves. Due to the simple form of the equilibrium distribution, the fourth-order velocity tensors are not involved in the formulation. Unlike the standard lattice Boltzmann model, no special treatment is required for the homogeneity of fourth-order velocity tensors on square lattices. The Navier-Stokes equations were recovered, using the Chapman-Enskog method from the Bhatnagar-Gross-Krook (BGK) lattice Boltzmann equation. The second-order discretization error of the fluctuation velocity in the macroscopic conservation equation was eliminated by means of a modified collision invariant. The model is suitable for both viscous and inviscid compressible flows with or without shocks. Since the present scheme deals only with the equilibrium distribution that depends only on fluid density, velocity, and internal energy, boundary conditions on curved wall are easily implemented by an extrapolation of macroscopic variables. To verify the scheme for inviscid flows, we have successfully simulated a three-dimensional shock-wave propagation in a box and a normal shock of Mach number 10 over a wedge. As an application to viscous flows, we have simulated a flat plate boundary layer flow, flow over a cylinder, and a transonic flow over a NACA0012 airfoil cascade.
Direct numerical simulation of human phonation
NASA Astrophysics Data System (ADS)
Bodony, Daniel; Saurabh, Shakti
2017-11-01
The generation and propagation of the human voice in three-dimensions is studied using direct numerical simulation. A full body domain is employed for the purpose of directly computing the sound in the region past the speaker's mouth. The air in the vocal tract is modeled as a compressible and viscous fluid interacting with the elastic vocal folds. The vocal fold tissue material properties are multi-layered, with varying stiffness, and a linear elastic transversely isotropic model is utilized and implemented in a quadratic finite element code. The fluid-solid domains are coupled through a boundary-fitted interface and utilize a Poisson equation-based mesh deformation method. A kinematic constraint based on a specified minimum gap between the vocal folds is applied to prevent collision during glottal closure. Both near VF flow dynamics and far-field acoustics have been studied. A comparison is drawn to current two-dimensional simulations as well as to data from the literature. Near field vocal fold dynamics and glottal flow results are studied and in good agreement with previous three-dimensional phonation studies. Far-field acoustic characteristics, when compared to their two-dimensional counterpart, are shown to be sensitive to the dimensionality. Supported by the National Science Foundation (CAREER Award Number 1150439).
NASA Technical Reports Server (NTRS)
Sondergaard, R.; Cantwell, B.; Mansour, N.
1997-01-01
Direct numerical simulations have been used to examine the effect of the initial disturbance field on the development of three-dimensionality and the transition to turbulence in the incompressible plane wake. The simulations were performed using a new numerical method for solving the time-dependent, three-dimensional, incompressible Navier-Stokes equations in flows with one infinite and two periodic directions. The method uses standard Fast Fourier Transforms and is applicable to cases where the vorticity field is compact in the infinite direction. Initial disturbances fields examined were combinations of two-dimensional waves and symmetric pairs of 60 deg oblique waves at the fundamental, subharmonic, and sub-subharmonic wavelengths. The results of these simulations indicate that the presence of 60 deg disturbances at the subharmonic streamwise wavelength results in the development of strong coherent three-dimensional structures. The resulting strong three-dimensional rate-of-strain triggers the growth of intense fine scale motions. Wakes initiated with 60 deg disturbances at the fundamental streamwise wavelength develop weak coherent streamwise structures, and do not develop significant fine scale motions, even at high Reynolds numbers. The wakes which develop strong three-dimensional structures exhibit growth rates on par with experimentally observed turbulent plane wakes. Wakes which develop only weak three-dimensional structures exhibit significantly lower late time growth rates. Preliminary studies of wakes initiated with an oblique fundamental and a two-dimensional subharmonic, which develop asymmetric coherent oblique structures at the subharmonic wavelength, indicate that significant fine scale motions only develop if the resulting oblique structures are above an angle of approximately 45 deg.
Direct numerical simulation of axisymmetric turbulence
NASA Astrophysics Data System (ADS)
Qu, Bo; Bos, Wouter J. T.; Naso, Aurore
2017-09-01
The dynamics of decaying, strictly axisymmetric, incompressible turbulence is investigated using direct numerical simulations. It is found that the angular momentum is a robust invariant of the system. It is further shown that long-lived coherent structures are generated by the flow. These structures can be associated with stationary solutions of the Euler equations. The structures obey relations in agreement with predictions from selective decay principles, compatible with the decay laws of the system. Two different types of decay scenarios are highlighted. The first case results in a quasi-two-dimensional flow with a dynamical behavior in the poloidal plane similar to freely decaying two-dimensional turbulence. In a second regime, the long-time dynamics is dominated by a single three-dimensional mode.
Two-dimensional vocal tracts with three-dimensional behavior in the numerical generation of vowels.
Arnela, Marc; Guasch, Oriol
2014-01-01
Two-dimensional (2D) numerical simulations of vocal tract acoustics may provide a good balance between the high quality of three-dimensional (3D) finite element approaches and the low computational cost of one-dimensional (1D) techniques. However, 2D models are usually generated by considering the 2D vocal tract as a midsagittal cut of a 3D version, i.e., using the same radius function, wall impedance, glottal flow, and radiation losses as in 3D, which leads to strong discrepancies in the resulting vocal tract transfer functions. In this work, a four step methodology is proposed to match the behavior of 2D simulations with that of 3D vocal tracts with circular cross-sections. First, the 2D vocal tract profile becomes modified to tune the formant locations. Second, the 2D wall impedance is adjusted to fit the formant bandwidths. Third, the 2D glottal flow gets scaled to recover 3D pressure levels. Fourth and last, the 2D radiation model is tuned to match the 3D model following an optimization process. The procedure is tested for vowels /a/, /i/, and /u/ and the obtained results are compared with those of a full 3D simulation, a conventional 2D approach, and a 1D chain matrix model.
Unsteady flow motions in the supraglottal region during phonation
NASA Astrophysics Data System (ADS)
Luo, Haoxiang; Dai, Hu
2008-11-01
The highly unsteady flow motions in the larynx are not only responsible for producing the fundamental frequency tone in phonation, but also have a significant contribution to the broadband noise in the human voice. In this work, the laryngeal flow is modeled either as an incompressible pulsatile jet confined in a two-dimensional channel, or a pressure-driven flow modulated by a pair of viscoelastic vocal folds through the flow--structure interaction. The flow in the supraglottal region is found to be dominated by large-scale vortices whose unsteady motions significantly deflect the glottal jet. In the flow--structure interaction, a hybrid model based on the immersed-boundary method is developed to simulate the flow-induced vocal fold vibration, which involves a three-dimensional vocal fold prototype and a two-dimensional viscous flow. Both the flow behavior and the vibratory characteristics of the vocal folds will be presented.
Multifractal spectra in shear flows
NASA Technical Reports Server (NTRS)
Keefe, L. R.; Deane, Anil E.
1989-01-01
Numerical simulations of three-dimensional homogeneous shear flow and fully developed channel flow, are used to calculate the associated multifractal spectra of the energy dissipation field. Only weak parameterization of the results with the nondimensional shear is found, and this only if the flow has reached its asymptotic development state. Multifractal spectra of these flows coincide with those from experiments only at the range alpha less than 1.
Conjugate Heat Transfer Analyses on the Manifold for Ramjet Fuel Injectors
NASA Technical Reports Server (NTRS)
Wang, Xiao-Yen J.
2006-01-01
Three-dimensional conjugate heat transfer analyses on the manifold located upstream of the ramjet fuel injector are performed using CFdesign, a finite-element computational fluid dynamics (CFD) software. The flow field of the hot fuel (JP-7) flowing through the manifold is simulated and the wall temperature of the manifold is computed. The three-dimensional numerical results of the fuel temperature are compared with those obtained using a one-dimensional analysis based on empirical equations, and they showed a good agreement. The numerical results revealed that it takes around 30 to 40 sec to reach the equilibrium where the fuel temperature has dropped about 3 F from the inlet to the exit of the manifold.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyman, Jeffrey De'Haven; Painter, S. L.; Viswanathan, H.
We investigate how the choice of injection mode impacts transport properties in kilometer-scale three-dimensional discrete fracture networks (DFN). The choice of injection mode, resident and flux-weighted, is designed to mimic different physical phenomena. It has been hypothesized that solute plumes injected under resident conditions evolve to behave similarly to solutes injected under flux-weighted conditions. Previously, computational limitations have prohibited the large-scale simulations required to investigate this hypothesis. We investigate this hypothesis by using a high-performance DFN suite, dfnWorks, to simulate flow in kilometer-scale three-dimensional DFNs based on fractured granite at the Forsmark site in Sweden, and adopt a Lagrangian approachmore » to simulate transport therein. Results show that after traveling through a pre-equilibrium region, both injection methods exhibit linear scaling of the first moment of travel time and power law scaling of the breakthrough curve with similar exponents, slightly larger than 2. Lastly, the physical mechanisms behind this evolution appear to be the combination of in-network channeling of mass into larger fractures, which offer reduced resistance to flow, and in-fracture channeling, which results from the topology of the DFN.« less
Hyman, Jeffrey De'Haven; Painter, S. L.; Viswanathan, H.; ...
2015-09-12
We investigate how the choice of injection mode impacts transport properties in kilometer-scale three-dimensional discrete fracture networks (DFN). The choice of injection mode, resident and flux-weighted, is designed to mimic different physical phenomena. It has been hypothesized that solute plumes injected under resident conditions evolve to behave similarly to solutes injected under flux-weighted conditions. Previously, computational limitations have prohibited the large-scale simulations required to investigate this hypothesis. We investigate this hypothesis by using a high-performance DFN suite, dfnWorks, to simulate flow in kilometer-scale three-dimensional DFNs based on fractured granite at the Forsmark site in Sweden, and adopt a Lagrangian approachmore » to simulate transport therein. Results show that after traveling through a pre-equilibrium region, both injection methods exhibit linear scaling of the first moment of travel time and power law scaling of the breakthrough curve with similar exponents, slightly larger than 2. Lastly, the physical mechanisms behind this evolution appear to be the combination of in-network channeling of mass into larger fractures, which offer reduced resistance to flow, and in-fracture channeling, which results from the topology of the DFN.« less
NASA Astrophysics Data System (ADS)
Huang, Junqi; Goltz, Mark N.
2005-11-01
The potential for using pairs of so-called horizontal flow treatment wells (HFTWs) to effect in situ capture and treatment of contaminated groundwater has recently been demonstrated. To apply this new technology, design engineers need to be able to simulate the relatively complex groundwater flow patterns that result from HFTW operation. In this work, a three-dimensional analytical solution for steady flow in a homogeneous, anisotropic, contaminated aquifer is developed to efficiently calculate the interflow of water circulating between a pair of HFTWs and map the spatial extent of contaminated groundwater flowing from upgradient that is captured. The solution is constructed by superposing the solutions for the flow fields resulting from operation of partially penetrating wells. The solution is used to investigate the flow resulting from operation of an HFTW well pair and to quantify how aquifer anisotropy, well placement, and pumping rate impact capture zone width and interflow. The analytical modeling method presented here provides a fast and accurate technique for representing the flow field resulting from operation of HFTW systems, and represents a tool that can be useful in designing in situ groundwater contamination treatment systems.
NASA Astrophysics Data System (ADS)
Galperin, Boris; Mellor, George L.
1990-09-01
The three-dimensional model of Delaware Bay, River and adjacent continental shelf was described in Part 1. Here, Part 2 of this two-part paper demonstrates that the model is capable of realistic simulation of current and salinity distributions, tidal cycle variability, events of strong mixing caused by high winds and rapid salinity changes due to high river runoff. The 25-h average subtidal circulation strongly depends on the wind forcing. Monthly residual currents and salinity distributions demonstrate a classical two-layer estuarine circulation wherein relatively low salinity water flows out at the surface and compensating high salinity water from the shelf flows at the bottom. The salinity intrusion is most vigorous along deep channels in the Bay. Winds can generate salinity fronts inside and outside the Bay and enhance or weaken the two-layer circulation pattern. Since the portion of the continental shelf included in the model is limited, the model shelf circulation is locally wind-driven and excludes such effects as coastally trapped waves and interaction with Gulf Stream rings; nevertheless, a significant portion of the coastal elevation variability is hindcast by the model. Also, inclusion of the shelf improves simulation of salinity inside the Bay compared with simulations where the salinity boundary condition is specified at the mouth of the Bay.
He, Yue; Zhu, Han Guang; Zhang, Zhi Yuan; He, Jie; Sader, Robert
2009-12-01
A total maxillectomy always causes composite defects of maxilla, zygomatic bone, orbital floor or rim, and palatal and nasal mucosa lining. This leads to significant functional and cosmetic consequences after ablative surgery. The purpose of this clinical study was to preliminarily 3-dimensionally reconstruct the defect of total maxillectomy with sufficient bone support and soft tissue lining. Three-dimensional model simulation technique and free fibula osteomyocutaneous flap flow-through from radial forearm flap were used to reconstruct a total maxillectomy defect for a 21-year-old female patient. Preoperatively, the 3-dimensional (3D) simulated resin models of skeleton and fibula were used to design the osteotomies and bone segment replacement. At surgery, a 22-cm-length free fibula was divided into 4 segments to make 1 maxilla skeletal framework in the schedule of the preoperative model surgical planning with a radial forearm flap flow-through for the free fibula flap with skin paddle to repair the palatal and nasal region. Free fibula and radial forearm flap were alive, and the patient was satisfied with the results both esthetically and functionally after dental rehabilitation which was carried out 6 months after surgery. This preliminarily clinical study and case demonstrated that: the fibula osteomyocutaneous flap is an ideal donor site in 3D total maxillectomy defect reconstruction, because of its thickness, length, and bone uniformity which makes ideal support for dental rehabilitation; the flow-through forearm radial flap not only serves as the vascular bridge to midface reconstruction, but also provides sufficient soft tissue cover for the intraoral defect; and the 3D model simulation and preoperative surgical planning are effective methods to refine reconstruction surgery, shorten the surgical time, and predict the outcome after operation.
Modeling variably saturated subsurface solute transport with MODFLOW-UZF and MT3DMS
Morway, Eric D.; Niswonger, Richard G.; Langevin, Christian D.; Bailey, Ryan T.; Healy, Richard W.
2013-01-01
The MT3DMS groundwater solute transport model was modified to simulate solute transport in the unsaturated zone by incorporating the unsaturated-zone flow (UZF1) package developed for MODFLOW. The modified MT3DMS code uses a volume-averaged approach in which Lagrangian-based UZF1 fluid fluxes and storage changes are mapped onto a fixed grid. Referred to as UZF-MT3DMS, the linked model was tested against published benchmarks solved analytically as well as against other published codes, most frequently the U.S. Geological Survey's Variably-Saturated Two-Dimensional Flow and Transport Model. Results from a suite of test cases demonstrate that the modified code accurately simulates solute advection, dispersion, and reaction in the unsaturated zone. Two- and three-dimensional simulations also were investigated to ensure unsaturated-saturated zone interaction was simulated correctly. Because the UZF1 solution is analytical, large-scale flow and transport investigations can be performed free from the computational and data burdens required by numerical solutions to Richards' equation. Results demonstrate that significant simulation runtime savings can be achieved with UZF-MT3DMS, an important development when hundreds or thousands of model runs are required during parameter estimation and uncertainty analysis. Three-dimensional variably saturated flow and transport simulations revealed UZF-MT3DMS to have runtimes that are less than one tenth of the time required by models that rely on Richards' equation. Given its accuracy and efficiency, and the wide-spread use of both MODFLOW and MT3DMS, the added capability of unsaturated-zone transport in this familiar modeling framework stands to benefit a broad user-ship.
Modeling variably saturated subsurface solute transport with MODFLOW-UZF and MT3DMS.
Morway, Eric D; Niswonger, Richard G; Langevin, Christian D; Bailey, Ryan T; Healy, Richard W
2013-03-01
The MT3DMS groundwater solute transport model was modified to simulate solute transport in the unsaturated zone by incorporating the unsaturated-zone flow (UZF1) package developed for MODFLOW. The modified MT3DMS code uses a volume-averaged approach in which Lagrangian-based UZF1 fluid fluxes and storage changes are mapped onto a fixed grid. Referred to as UZF-MT3DMS, the linked model was tested against published benchmarks solved analytically as well as against other published codes, most frequently the U.S. Geological Survey's Variably-Saturated Two-Dimensional Flow and Transport Model. Results from a suite of test cases demonstrate that the modified code accurately simulates solute advection, dispersion, and reaction in the unsaturated zone. Two- and three-dimensional simulations also were investigated to ensure unsaturated-saturated zone interaction was simulated correctly. Because the UZF1 solution is analytical, large-scale flow and transport investigations can be performed free from the computational and data burdens required by numerical solutions to Richards' equation. Results demonstrate that significant simulation runtime savings can be achieved with UZF-MT3DMS, an important development when hundreds or thousands of model runs are required during parameter estimation and uncertainty analysis. Three-dimensional variably saturated flow and transport simulations revealed UZF-MT3DMS to have runtimes that are less than one tenth of the time required by models that rely on Richards' equation. Given its accuracy and efficiency, and the wide-spread use of both MODFLOW and MT3DMS, the added capability of unsaturated-zone transport in this familiar modeling framework stands to benefit a broad user-ship. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
Mehl, Steffen W.; Hill, Mary C.
2013-01-01
This report documents the addition of ghost node Local Grid Refinement (LGR2) to MODFLOW-2005, the U.S. Geological Survey modular, transient, three-dimensional, finite-difference groundwater flow model. LGR2 provides the capability to simulate groundwater flow using multiple block-shaped higher-resolution local grids (a child model) within a coarser-grid parent model. LGR2 accomplishes this by iteratively coupling separate MODFLOW-2005 models such that heads and fluxes are balanced across the grid-refinement interface boundary. LGR2 can be used in two-and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined groundwater systems. Traditional one-way coupled telescopic mesh refinement methods can have large, often undetected, inconsistencies in heads and fluxes across the interface between two model grids. The iteratively coupled ghost-node method of LGR2 provides a more rigorous coupling in which the solution accuracy is controlled by convergence criteria defined by the user. In realistic problems, this can result in substantially more accurate solutions and require an increase in computer processing time. The rigorous coupling enables sensitivity analysis, parameter estimation, and uncertainty analysis that reflects conditions in both model grids. This report describes the method used by LGR2, evaluates accuracy and performance for two-and three-dimensional test cases, provides input instructions, and lists selected input and output files for an example problem. It also presents the Boundary Flow and Head (BFH2) Package, which allows the child and parent models to be simulated independently using the boundary conditions obtained through the iterative process of LGR2.
Mehl, Steffen W.; Hill, Mary C.
2006-01-01
This report documents the addition of shared node Local Grid Refinement (LGR) to MODFLOW-2005, the U.S. Geological Survey modular, transient, three-dimensional, finite-difference ground-water flow model. LGR provides the capability to simulate ground-water flow using one block-shaped higher-resolution local grid (a child model) within a coarser-grid parent model. LGR accomplishes this by iteratively coupling two separate MODFLOW-2005 models such that heads and fluxes are balanced across the shared interfacing boundary. LGR can be used in two-and three-dimensional, steady-state and transient simulations and for simulations of confined and unconfined ground-water systems. Traditional one-way coupled telescopic mesh refinement (TMR) methods can have large, often undetected, inconsistencies in heads and fluxes across the interface between two model grids. The iteratively coupled shared-node method of LGR provides a more rigorous coupling in which the solution accuracy is controlled by convergence criteria defined by the user. In realistic problems, this can result in substantially more accurate solutions and require an increase in computer processing time. The rigorous coupling enables sensitivity analysis, parameter estimation, and uncertainty analysis that reflects conditions in both model grids. This report describes the method used by LGR, evaluates LGR accuracy and performance for two- and three-dimensional test cases, provides input instructions, and lists selected input and output files for an example problem. It also presents the Boundary Flow and Head (BFH) Package, which allows the child and parent models to be simulated independently using the boundary conditions obtained through the iterative process of LGR.
Transonic Navier-Stokes solutions of three-dimensional afterbody flows
NASA Technical Reports Server (NTRS)
Compton, William B., III; Thomas, James L.; Abeyounis, William K.; Mason, Mary L.
1989-01-01
The performance of a three-dimensional Navier-Stokes solution technique in predicting the transonic flow past a nonaxisymmetric nozzle was investigated. The investigation was conducted at free-stream Mach numbers ranging from 0.60 to 0.94 and an angle of attack of 0 degrees. The numerical solution procedure employs the three-dimensional, unsteady, Reynolds-averaged Navier-Stokes equations written in strong conservation form, a thin layer assumption, and the Baldwin-Lomax turbulence model. The equations are solved by using the finite-volume principle in conjunction with an approximately factored upwind-biased numerical algorithm. In the numerical procedure, the jet exhaust is represented by a solid sting. Wind-tunnel data with the jet exhaust simulated by high pressure air were also obtained to compare with the numerical calculations.
Development of axisymmetric lattice Boltzmann flux solver for complex multiphase flows
NASA Astrophysics Data System (ADS)
Wang, Yan; Shu, Chang; Yang, Li-Ming; Yuan, Hai-Zhuan
2018-05-01
This paper presents an axisymmetric lattice Boltzmann flux solver (LBFS) for simulating axisymmetric multiphase flows. In the solver, the two-dimensional (2D) multiphase LBFS is applied to reconstruct macroscopic fluxes excluding axisymmetric effects. Source terms accounting for axisymmetric effects are introduced directly into the governing equations. As compared to conventional axisymmetric multiphase lattice Boltzmann (LB) method, the present solver has the kinetic feature for flux evaluation and avoids complex derivations of external forcing terms. In addition, the present solver also saves considerable computational efforts in comparison with three-dimensional (3D) computations. The capability of the proposed solver in simulating complex multiphase flows is demonstrated by studying single bubble rising in a circular tube. The obtained results compare well with the published data.
Luo, Ma-Ji; Chen, Guo-Hua; Ma, Yuan-Hao
2003-01-01
This paper presents a KIVA-3 code based numerical model for three-dimensional transient intake flow in the intake port-valve-cylinder system of internal combustion engine using body-fitted technique, which can be used in numerical study on internal combustion engine with vertical and inclined valves, and has higher calculation precision. A numerical simulation (on the intake process of a two-valve engine with a semi-sphere combustion chamber and a radial intake port) is provided for analysis of the velocity field and pressure field of different plane at different crank angles. The results revealed the formation of the tumble motion, the evolution of flow field parameters and the variation of tumble ratios as important information for the design of engine intake system.
A one-dimensional heat-transport model for conduit flow in karst aquifers
Long, Andrew J.; Gilcrease, P.C.
2009-01-01
A one-dimensional heat-transport model for conduit flow in karst aquifers is presented as an alternative to two or three-dimensional distributed-parameter models, which are data intensive and require knowledge of conduit locations. This model can be applied for cases where water temperature in a well or spring receives all or part of its water from a phreatic conduit. Heat transport in the conduit is simulated by using a physically-based heat-transport equation that accounts for inflow of diffuse flow from smaller openings and fissures in the surrounding aquifer during periods of low recharge. Additional diffuse flow that is within the zone of influence of the well or spring but has not interacted with the conduit is accounted for with a binary mixing equation to proportion these different water sources. The estimation of this proportion through inverse modeling is useful for the assessment of contaminant vulnerability and well-head or spring protection. The model was applied to 7 months of continuous temperature data for a sinking stream that recharges a conduit and a pumped well open to the Madison aquifer in western South Dakota. The simulated conduit-flow fraction to the well ranged from 2% to 31% of total flow, and simulated conduit velocity ranged from 44 to 353 m/d.
Modeling the hydrodynamic and electrochemical efficiency of semi-solid flow batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunini, VE; Chiang, YM; Carter, WC
2012-05-01
A mathematical model of flow cell operation incorporating hydrodynamic and electrochemical effects in three dimensions is developed. The model and resulting simulations apply to recently demonstrated high energy-density semi-solid flow cells. In particular, state of charge gradients that develop during low flow rate operation and their effects on the spatial non-uniformity of current density within flow cells are quantified. A one-dimensional scaling model is also developed and compared to the full three-dimensional simulation. The models are used to demonstrate the impact of the choice of electrochemical couple on flow cell performance. For semi-solid flow electrodes, which can use solid activemore » materials with a wide variety of voltage-capacity responses, we find that cell efficiency is maximized for electrochemical couples that have a relatively flat voltage vs. capacity curve, operated under slow flow conditions. For example, in flow electrodes limited by macroscopic charge transport, an LiFePO4-based system requires one-third the polarization to reach the same cycling rate as an LiCoO2-based system, all else being equal. Our conclusions are generally applicable to high energy density flow battery systems, in which flow rates can be comparatively low for a given required power. (C) 2012 Elsevier Ltd. All rights reserved.« less
Design principle for improved three-dimensional ac electro-osmotic pumps
NASA Astrophysics Data System (ADS)
Burch, Damian; Bazant, Martin Z.
2008-05-01
Three-dimensional (3D) ac electro-osmotic (ACEO) pumps have recently been developed that are much faster and more robust than previous planar designs. The basic idea is to create a “fluid conveyor belt” by placing opposing ACEO slip velocities at different heights. Current designs involve electrodes with electroplated steps, whose heights have been optimized in simulations and experiments. Here, we consider changing the boundary conditions—rather than the geometry—and predict that flow rates can be further doubled by fabricating 3D features with nonpolarizable materials. This amplifies the fluid conveyor belt by removing opposing flows on the vertical surfaces, and it increases the slip velocities that drive the flow.
Design principle for improved three-dimensional ac electro-osmotic pumps.
Burch, Damian; Bazant, Martin Z
2008-05-01
Three-dimensional (3D) ac electro-osmotic (ACEO) pumps have recently been developed that are much faster and more robust than previous planar designs. The basic idea is to create a "fluid conveyor belt" by placing opposing ACEO slip velocities at different heights. Current designs involve electrodes with electroplated steps, whose heights have been optimized in simulations and experiments. Here, we consider changing the boundary conditions-rather than the geometry-and predict that flow rates can be further doubled by fabricating 3D features with nonpolarizable materials. This amplifies the fluid conveyor belt by removing opposing flows on the vertical surfaces, and it increases the slip velocities that drive the flow.
Electrolysis Bubbles Make Waterflow Visible
NASA Technical Reports Server (NTRS)
Schultz, Donald F.
1990-01-01
Technique for visualization of three-dimensional flow uses tiny tracer bubbles of hydrogen and oxygen made by electrolysis of water. Strobe-light photography used to capture flow patterns, yielding permanent record that is measured to obtain velocities of particles. Used to measure simulated mixing turbulence in proposed gas-turbine combustor and also used in other water-table flow tests.
NASA Astrophysics Data System (ADS)
Tomaro, Robert F.
1998-07-01
The present research is aimed at developing a higher-order, spatially accurate scheme for both steady and unsteady flow simulations using unstructured meshes. The resulting scheme must work on a variety of general problems to ensure the creation of a flexible, reliable and accurate aerodynamic analysis tool. To calculate the flow around complex configurations, unstructured grids and the associated flow solvers have been developed. Efficient simulations require the minimum use of computer memory and computational times. Unstructured flow solvers typically require more computer memory than a structured flow solver due to the indirect addressing of the cells. The approach taken in the present research was to modify an existing three-dimensional unstructured flow solver to first decrease the computational time required for a solution and then to increase the spatial accuracy. The terms required to simulate flow involving non-stationary grids were also implemented. First, an implicit solution algorithm was implemented to replace the existing explicit procedure. Several test cases, including internal and external, inviscid and viscous, two-dimensional, three-dimensional and axi-symmetric problems, were simulated for comparison between the explicit and implicit solution procedures. The increased efficiency and robustness of modified code due to the implicit algorithm was demonstrated. Two unsteady test cases, a plunging airfoil and a wing undergoing bending and torsion, were simulated using the implicit algorithm modified to include the terms required for a moving and/or deforming grid. Secondly, a higher than second-order spatially accurate scheme was developed and implemented into the baseline code. Third- and fourth-order spatially accurate schemes were implemented and tested. The original dissipation was modified to include higher-order terms and modified near shock waves to limit pre- and post-shock oscillations. The unsteady cases were repeated using the higher-order spatially accurate code. The new solutions were compared with those obtained using the second-order spatially accurate scheme. Finally, the increased efficiency of using an implicit solution algorithm in a production Computational Fluid Dynamics flow solver was demonstrated for steady and unsteady flows. A third- and fourth-order spatially accurate scheme has been implemented creating a basis for a state-of-the-art aerodynamic analysis tool.
1984-12-30
as three dimensional, when the assumption is made that all SUTRA parameters and coefficients have a constant value in the third space direction. A...finite element. The type of element employed by SUTRA for two-dimensional simulation is a quadrilateral which has a finite thickness in the third ... space dimension. This type of a quad- rilateral element and a typical two-dimensional mesh is shown in Figure 3.1. - All twelve edges of the two
Symmetry-breaking bifurcations and enhanced mixing in microfluidic cross-slots
NASA Astrophysics Data System (ADS)
Poole, Rob; Haward, Simon; Oliveira, Paulo; Alves, Manuel
2014-11-01
We investigate, both experimentally and numerically, a new subcritical bifurcation phenomenon for a Newtonian fluid flowing through three-dimensional cross-slot geometries. At low Reynolds numbers the flow remains steady and symmetric. For the case of square inlets and outlets, at a critical Reynolds number of approximately 40 (based on average velocity) a pitchfork bifurcation is observed beyond which the unstable symmetrical solution is replaced by a pair of steady asymmetric solutions. Sensitivity of this critical Reynolds number to the initial conditions of the simulation, resulting in a small degree of hysteresis, suggests a subcritical instability. At higher flowrates the flow becomes unsteady. The effects of channel aspect ratio are investigated on the critical conditions and excellent agreement is found between three-dimensional finite volume simulations and flow visualisation experiments in microfluidic channels. Finally we suggest this new flow bifurcation could be an effective method of enhancing mixing in microfluidic channels as significant increases in mixing quality are observed beyond the bifurcation. This enhancement occurs at flowrates more than a factor of two smaller than those observed in the well-known T-channel micromixer.
Guo, Weixing; Langevin, C.D.
2002-01-01
This report documents a computer program (SEAWAT) that simulates variable-density, transient, ground-water flow in three dimensions. The source code for SEAWAT was developed by combining MODFLOW and MT3DMS into a single program that solves the coupled flow and solute-transport equations. The SEAWAT code follows a modular structure, and thus, new capabilities can be added with only minor modifications to the main program. SEAWAT reads and writes standard MODFLOW and MT3DMS data sets, although some extra input may be required for some SEAWAT simulations. This means that many of the existing pre- and post-processors can be used to create input data sets and analyze simulation results. Users familiar with MODFLOW and MT3DMS should have little difficulty applying SEAWAT to problems of variable-density ground-water flow.
Kernodle, J.M.
1996-01-01
This report presents the computer input files required to run the three-dimensional ground-water-flow model of the Albuquerque Basin, central New Mexico, documented in Kernodle and others (Kernodle, J.M., McAda, D.P., and Thorn, C.R., 1995, Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, 1901-1994, with projections to 2020: U.S. Geological Survey Water-Resources Investigations Report 94-4251, 114 p.) and revised by Kernodle (Kernodle, J.M., 1998, Simulation of ground-water flow in the Albuquerque Basin, 1901-95, with projections to 2020 (supplement two to U.S. Geological Survey Water-Resources Investigations Report 94-4251): U.S. Geological Survey Open-File Report 96-209, 54 p.). Output files resulting from the computer simulations are included for reference.
Flow of a Gas Turbine Engine Low-Pressure Subsystem Simulated
NASA Technical Reports Server (NTRS)
Veres, Joseph P.
1997-01-01
The NASA Lewis Research Center is managing a task to numerically simulate overnight, on a parallel computing testbed, the aerodynamic flow in the complete low-pressure subsystem (LPS) of a gas turbine engine. The model solves the three-dimensional Navier- Stokes flow equations through all the components within the LPS, as well as the external flow around the engine nacelle. The LPS modeling task is being performed by Allison Engine Company under the Small Engine Technology contract. The large computer simulation was evaluated on networked computer systems using 8, 16, and 32 processors, with the parallel computing efficiency reaching 75 percent when 16 processors were used.
Three-dimensional flow measurements in a tesla turbine rotor
NASA Astrophysics Data System (ADS)
Fuchs, Thomas; Schosser, Constantin; Hain, Rainer; Kaehler, Christian
2015-11-01
Tesla turbines are fluid mechanical devices converting flow energy into rotation energy by two physical effects: friction and adhesion. The advantages of the tesla turbine are its simple and robust design, as well as its scalability, which makes it suitable for custom power supply solutions, and renewable energy applications. To this day, there is a lack of experimental data to validate theoretical studies, and CFD simulations of these turbines. This work presents a comprehensive analysis of the flow through a tesla turbine rotor gap, with a gap height of only 0.5 mm, by means of three-dimensional Particle Tracking Velocimetry (3D-PTV). For laminar flows, the experimental results match the theory very well, since the measured flow profiles show the predicted second order parabolic shape in radial direction and a fourth order behavior in circumferential direction. In addition to these laminar measurements, turbulent flows at higher mass flow rates were investigated.
NASA Astrophysics Data System (ADS)
Kordilla, Jannes; Noffz, Torsten; Dentz, Marco; Geyer, Tobias; Tartakovsky, Alexandre M.
2017-11-01
In this work, we study gravity-driven flow of water in the presence of air on a synthetic surface intersected by a horizontal fracture and investigate the importance of droplet and rivulet flow modes on the partitioning behavior at the fracture intersection. We present laboratory experiments, three-dimensional smoothed particle hydrodynamics (SPH) simulations using a heavily parallelized code, and a theoretical analysis. The flow-rate-dependent mode switching from droplets to rivulets is observed in experiments and reproduced by the SPH model, and the transition ranges agree in SPH simulations and laboratory experiments. We show that flow modes heavily influence the "bypass" behavior of water flowing along a fracture junction. Flows favoring the formation of droplets exhibit a much stronger bypass capacity compared to rivulet flows, where nearly the whole fluid mass is initially stored within the horizontal fracture. The effect of fluid buffering within the horizontal fracture is presented in terms of dimensionless fracture inflow so that characteristic scaling regimes can be recovered. For both cases (rivulets and droplets), the flow within the horizontal fracture transitions into a Washburn regime until a critical threshold is reached and the bypass efficiency increases. For rivulet flows, the initial filling of the horizontal fracture is described by classical plug flow. Meanwhile, for droplet flows, a size-dependent partitioning behavior is observed, and the filling of the fracture takes longer. For the case of rivulet flow, we provide an analytical solution that demonstrates the existence of classical Washburn flow within the horizontal fracture.
NASA Technical Reports Server (NTRS)
Ganguli, Supriya B.; Gavrishchaka, Valeriy V.
1999-01-01
Multiscale transverse structures in the magnetic-field-aligned flows have been frequently observed in the auroral region by FAST and Freja satellites. A number of multiscale processes, such as broadband low-frequency oscillations and various cross-field transport effects are well correlated with these structures. To study these effects, we have used our three-dimensional multifluid model with multiscale transverse inhomogeneities in the initial velocity profile. Self-consistent-frequency mode driven by local transverse gradients in the generation of the low field-aligned ion flow and associated transport processes were simulated. Effects of particle interaction with the self-consistent time-dependent three-dimensional wave potential have been modeled using a distribution of test particles. For typical polar wind conditions it has been found that even large-scale (approximately 50 - 100 km) transverse inhomogeneities in the flow can generate low-frequency oscillations that lead to significant flow modifications, cross-field particle diffusion, and other transport effects. It has also been shown that even small-amplitude (approximately 10 - 20%) short-scale (approximately 10 km) modulations of the original large-scale flow profile significantly increases low-frequency mode generation and associated cross-field transport, not only at the local spatial scales imposed by the modulations but also on global scales. Note that this wave-induced cross-field transport is not included in any of the global numerical models of the ionosphere, ionosphere-thermosphere, or ionosphere-polar wind. The simulation results indicate that the wave-induced cross-field transport not only affects the ion outflow rates but also leads to a significant broadening of particle phase-space distribution and transverse particle diffusion.
Numerical simulation of a combined oxidation ditch flow using 3D k-epsilon turbulence model.
Luo, Lin; Li, Wei-min; Deng, Yong-sen; Wang, Tao
2005-01-01
The standard three dimensional(3D) k-epsilon turbulence model was applied to simulate the flow field of a small scale combined oxidation ditch. The moving mesh approach was used to model the rotor of the ditch. Comparison of the computed and the measured data is acceptable. A vertical reverse flow zone in the ditch was found, and it played a very important role in the ditch flow behavior. The flow pattern in the ditch is discussed in detail, and approaches are suggested to improve the hydrodynamic performance in the ditch.
NASA Astrophysics Data System (ADS)
Bolet, A. J. S.; Linga, G.; Mathiesen, J.
2017-12-01
Surface charge is an important control parameter for wall-bounded flow of electrolyte solution. The electroviscous effect has been studied theoretically in model geometries such as infinite capillaries. However, in more complex geometries a quantification of the electroviscous effect is a non-trival task due to strong non-linarites of the underlying equations. In general, one has to rely on numerical methods. Here we present numerical studies of the full three-dimensional steady state Stokes-Poisson-Nernst-Planck problem in order to model electrolyte transport in artificial porous samples. The simulations are performed using the finite element method. From the simulation, we quantity how the electroviscous effect changes the general flow permeability in complex three-dimensional porous media. The porous media we consider are mostly generated artificially by connecting randomly dispersed cylindrical pores. Furthermore, we present results of electric driven two-phase immiscible flow in two dimensions. The simulations are performed by augmenting the above equations with a phase field model to handle and track the interaction between the two fluids (using parameters corresponding to oil-water interfaces, where oil non-polar). In particular, we consider the electro-osmotic effect on imbibition due to charged walls and electrolyte-solution.
Three-dimensional computational aerodynamics in the 1980's
NASA Technical Reports Server (NTRS)
Lomax, H.
1978-01-01
The future requirements for constructing codes that can be used to compute three-dimensional flows about aerodynamic shapes should be assessed in light of the constraints imposed by future computer architectures and the reality of usable algorithms that can provide practical three-dimensional simulations. On the hardware side, vector processing is inevitable in order to meet the CPU speeds required. To cope with three-dimensional geometries, massive data bases with fetch/store conflicts and transposition problems are inevitable. On the software side, codes must be prepared that: (1) can be adapted to complex geometries, (2) can (at the very least) predict the location of laminar and turbulent boundary layer separation, and (3) will converge rapidly to sufficiently accurate solutions.
Computational analysis of fluid dynamics in pharmaceutical freeze-drying.
Alexeenko, Alina A; Ganguly, Arnab; Nail, Steven L
2009-09-01
Analysis of water vapor flows encountered in pharmaceutical freeze-drying systems, laboratory-scale and industrial, is presented based on the computational fluid dynamics (CFD) techniques. The flows under continuum gas conditions are analyzed using the solution of the Navier-Stokes equations whereas the rarefied flow solutions are obtained by the direct simulation Monte Carlo (DSMC) method for the Boltzmann equation. Examples of application of CFD techniques to laboratory-scale and industrial scale freeze-drying processes are discussed with an emphasis on the utility of CFD for improvement of design and experimental characterization of pharmaceutical freeze-drying hardware and processes. The current article presents a two-dimensional simulation of a laboratory scale dryer with an emphasis on the importance of drying conditions and hardware design on process control and a three-dimensional simulation of an industrial dryer containing a comparison of the obtained results with analytical viscous flow solutions. It was found that the presence of clean in place (CIP)/sterilize in place (SIP) piping in the duct lead to significant changes in the flow field characteristics. The simulation results for vapor flow rates in an industrial freeze-dryer have been compared to tunable diode laser absorption spectroscopy (TDLAS) and gravimetric measurements.
Modeling unstable alcohol flooding of DNAPL-contaminated columns
NASA Astrophysics Data System (ADS)
Roeder, Eberhard; Falta, Ronald W.
Alcohol flooding, consisting of injection of a mixture of alcohol and water, is one source removal technology for dense non-aqueous phase liquids (DNAPLs) currently under investigation. An existing compositional multiphase flow simulator (UTCHEM) was adapted to accurately represent the equilibrium phase behavior of ternary and quaternary alcohol/DNAPL systems. Simulator predictions were compared to laboratory column experiments and the results are presented here. It was found that several experiments involved unstable displacements of the NAPL bank by the alcohol flood or of the alcohol flood by the following water flood. Unstable displacement led to additional mixing compared to ideal displacement. This mixing was approximated by a large dispersion in one-dimensional simulations and or by including permeability heterogeneities on a very small scale in three-dimensional simulations. Three-dimensional simulations provided the best match. Simulations of unstable displacements require either high-resolution grids, or need to consider the mixing of fluids in a different manner to capture the resulting effects on NAPL recovery.
Essaid, Hedeff I.
1990-01-01
A quasi three-dimensional, finite difference model, that simulates freshwater and saltwater flow separated by a sharp interface, has been developed to study layered coastal aquifer systems. The model allows for regional simulation of coastal groundwater conditions, including the effects of saltwater dynamics on the freshwater system. Vertically integrated freshwater and saltwater flow equations incorporating the interface boundary condition are solved within each aquifer. Leakage through confining layers is calculated by Darcy's law, accounting for density differences across the layer. The locations of the interface tip and toe, within grid blocks, are tracked by linearly extrapolating the position of the interface. The model has been verified using available analytical solutions and experimental results. Application of the model to the Soquel-Aptos basin, Santa Cruz County, California, illustrates the use of the quasi three-dimensional, sharp interface approach for the examination of freshwater-saltwater dynamics in regional systems. Simulation suggests that the interface, today, is still responding to long-term Pleistocene sea level fluctuations and has not achieved equilibrium with present day sea level conditions.
Numerical simulation of liquid droplet breakup in supersonic flows
NASA Astrophysics Data System (ADS)
Liu, Nan; Wang, Zhenguo; Sun, Mingbo; Wang, Hongbo; Wang, Bing
2018-04-01
A five-equation model based on finite-difference frame was utilized to simulate liquid droplet breakup in supersonic flows. To enhance the interface-capturing quality, an anti-diffusion method was introduced as a correction of volume-fraction after each step of calculation to sharpen the interface. The robustness was guaranteed by the hybrid variable reconstruction in which the second-order and high-order method were respectively employed in discontinuous and continuous flow fields. According to the recent classification of droplet breakup regimes, the simulations lay in the shear induced entrainment regime. Comparing to the momentum of the high-speed air flows, surface tension and viscid force were negligible in both two-dimensional and three-dimensional simulations. The inflow conditions were set as Mach 1.2, 1.5 and 1.8 to reach different dynamic pressure with the liquid to gas density ratio being 1000 initially. According to the results of simulations, the breakup process was divided into three stages which were analyzed in details with the consideration of interactions between gas and liquid. The shear between the high-speed gas flow and the liquid droplet was found to be the sources of surface instabilities on windward, while the instabilities on the leeward side were originated by vortices. Movement of the liquid mass center was studied, and the unsteady acceleration was observed. In addition, the characteristic breakup time was around 1.0 based on the criterion of either droplet thickness or liquid volume fraction.
NASA Astrophysics Data System (ADS)
Yang, Xiaochen; Zhang, Qinghe; Hao, Linnan
2015-03-01
A water-fluid mud coupling model is developed based on the unstructured grid finite volume coastal ocean model (FVCOM) to investigate the fluid mud motion. The hydrodynamics and sediment transport of the overlying water column are solved using the original three-dimensional ocean model. A horizontal two-dimensional fluid mud model is integrated into the FVCOM model to simulate the underlying fluid mud flow. The fluid mud interacts with the water column through the sediment flux, current, and shear stress. The friction factor between the fluid mud and the bed, which is traditionally determined empirically, is derived with the assumption that the vertical distribution of shear stress below the yield surface of fluid mud is identical to that of uniform laminar flow of Newtonian fluid in the open channel. The model is validated by experimental data and reasonable agreement is found. Compared with numerical cases with fixed friction factors, the results simulated with the derived friction factor exhibit the best agreement with the experiment, which demonstrates the necessity of the derivation of the friction factor.
NASA Technical Reports Server (NTRS)
Green, F. M.; Resnick, D. R.
1979-01-01
An FMP (Flow Model Processor) was designed for use in the Numerical Aerodynamic Simulation Facility (NASF). The NASF was developed to simulate fluid flow over three-dimensional bodies in wind tunnel environments and in free space. The facility is applicable to studying aerodynamic and aircraft body designs. The following general topics are discussed in this volume: (1) FMP functional computer specifications; (2) FMP instruction specification; (3) standard product system components; (4) loosely coupled network (LCN) specifications/description; and (5) three appendices: performance of trunk allocation contention elimination (trace) method, LCN channel protocol and proposed LCN unified second level protocol.
NASA Astrophysics Data System (ADS)
Leclaire, Sébastien; Parmigiani, Andrea; Malaspinas, Orestis; Chopard, Bastien; Latt, Jonas
2017-03-01
This article presents a three-dimensional numerical framework for the simulation of fluid-fluid immiscible compounds in complex geometries, based on the multiple-relaxation-time lattice Boltzmann method to model the fluid dynamics and the color-gradient approach to model multicomponent flow interaction. New lattice weights for the lattices D3Q15, D3Q19, and D3Q27 that improve the Galilean invariance of the color-gradient model as well as for modeling the interfacial tension are derived and provided in the Appendix. The presented method proposes in particular an approach to model the interaction between the fluid compound and the solid, and to maintain a precise contact angle between the two-component interface and the wall. Contrarily to previous approaches proposed in the literature, this method yields accurate solutions even in complex geometries and does not suffer from numerical artifacts like nonphysical mass transfer along the solid wall, which is crucial for modeling imbibition-type problems. The article also proposes an approach to model inflow and outflow boundaries with the color-gradient method by generalizing the regularized boundary conditions. The numerical framework is first validated for three-dimensional (3D) stationary state (Jurin's law) and time-dependent (Washburn's law and capillary waves) problems. Then, the usefulness of the method for practical problems of pore-scale flow imbibition and drainage in porous media is demonstrated. Through the simulation of nonwetting displacement in two-dimensional random porous media networks, we show that the model properly reproduces three main invasion regimes (stable displacement, capillary fingering, and viscous fingering) as well as the saturating zone transition between these regimes. Finally, the ability to simulate immiscible two-component flow imbibition and drainage is validated, with excellent results, by numerical simulations in a Berea sandstone, a frequently used benchmark case used in this field, using a complex geometry that originates from a 3D scan of a porous sandstone. The methods presented in this article were implemented in the open-source PALABOS library, a general C++ matrix-based library well adapted for massive fluid flow parallel computation.
NASA Astrophysics Data System (ADS)
Ishii, Ayako; Ohnishi, Naofumi; Nagakura, Hiroki; Ito, Hirotaka; Yamada, Shoichi
2017-11-01
We developed a three-dimensional radiative transfer code for an ultra-relativistic background flow-field by using the Monte Carlo (MC) method in the context of gamma-ray burst (GRB) emission. For obtaining reliable simulation results in the coupled computation of MC radiation transport with relativistic hydrodynamics which can reproduce GRB emission, we validated radiative transfer computation in the ultra-relativistic regime and assessed the appropriate simulation conditions. The radiative transfer code was validated through two test calculations: (1) computing in different inertial frames and (2) computing in flow-fields with discontinuous and smeared shock fronts. The simulation results of the angular distribution and spectrum were compared among three different inertial frames and in good agreement with each other. If the time duration for updating the flow-field was sufficiently small to resolve a mean free path of a photon into ten steps, the results were thoroughly converged. The spectrum computed in the flow-field with a discontinuous shock front obeyed a power-law in frequency whose index was positive in the range from 1 to 10 MeV. The number of photons in the high-energy side decreased with the smeared shock front because the photons were less scattered immediately behind the shock wave due to the small electron number density. The large optical depth near the shock front was needed for obtaining high-energy photons through bulk Compton scattering. Even one-dimensional structure of the shock wave could affect the results of radiation transport computation. Although we examined the effect of the shock structure on the emitted spectrum with a large number of cells, it is hard to employ so many computational cells per dimension in multi-dimensional simulations. Therefore, a further investigation with a smaller number of cells is required for obtaining realistic high-energy photons with multi-dimensional computations.
Verification on spray simulation of a pintle injector for liquid rocket engine
NASA Astrophysics Data System (ADS)
Son, Min; Yu, Kijeong; Radhakrishnan, Kanmaniraja; Shin, Bongchul; Koo, Jaye
2016-02-01
The pintle injector used for a liquid rocket engine is a newly re-attracted injection system famous for its wide throttle ability with high efficiency. The pintle injector has many variations with complex inner structures due to its moving parts. In order to study the rotating flow near the injector tip, which was observed from the cold flow experiment using water and air, a numerical simulation was adopted and a verification of the numerical model was later conducted. For the verification process, three types of experimental data including velocity distributions of gas flows, spray angles and liquid distribution were all compared using simulated results. The numerical simulation was performed using a commercial simulation program with the Eulerian multiphase model and axisymmetric two dimensional grids. The maximum and minimum velocities of gas were within the acceptable range of agreement, however, the spray angles experienced up to 25% error when the momentum ratios were increased. The spray density distributions were quantitatively measured and had good agreement. As a result of this study, it was concluded that the simulation method was properly constructed to study specific flow characteristics of the pintle injector despite having the limitations of two dimensional and coarse grids.
Computational hydrodynamics and optical performance of inductively-coupled plasma adaptive lenses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mortazavi, M.; Urzay, J., E-mail: jurzay@stanford.edu; Mani, A.
2015-06-15
This study addresses the optical performance of a plasma adaptive lens for aero-optical applications by using both axisymmetric and three-dimensional numerical simulations. Plasma adaptive lenses are based on the effects of free electrons on the phase velocity of incident light, which, in theory, can be used as a phase-conjugation mechanism. A closed cylindrical chamber filled with Argon plasma is used as a model lens into which a beam of light is launched. The plasma is sustained by applying a radio-frequency electric current through a coil that envelops the chamber. Four different operating conditions, ranging from low to high powers andmore » induction frequencies, are employed in the simulations. The numerical simulations reveal complex hydrodynamic phenomena related to buoyant and electromagnetic laminar transport, which generate, respectively, large recirculating cells and wall-normal compression stresses in the form of local stagnation-point flows. In the axisymmetric simulations, the plasma motion is coupled with near-wall axial striations in the electron-density field, some of which propagate in the form of low-frequency traveling disturbances adjacent to vortical quadrupoles that are reminiscent of Taylor-Görtler flow structures in centrifugally unstable flows. Although the refractive-index fields obtained from axisymmetric simulations lead to smooth beam wavefronts, they are found to be unstable to azimuthal disturbances in three of the four three-dimensional cases considered. The azimuthal striations are optically detrimental, since they produce high-order angular aberrations that account for most of the beam wavefront error. A fourth case is computed at high input power and high induction frequency, which displays the best optical properties among all the three-dimensional simulations considered. In particular, the increase in induction frequency prevents local thermalization and leads to an axisymmetric distribution of electrons even after introduction of spatial disturbances. The results highlight the importance of accounting for spatial effects in the numerical computations when optical analyses of plasma lenses are pursued in this range of operating conditions.« less
NASA Technical Reports Server (NTRS)
Kwak, Dochan; Kiris, C.; Smith, Charles A. (Technical Monitor)
1998-01-01
Performance of the two commonly used numerical procedures, one based on artificial compressibility method and the other pressure projection method, are compared. These formulations are selected primarily because they are designed for three-dimensional applications. The computational procedures are compared by obtaining steady state solutions of a wake vortex and unsteady solutions of a curved duct flow. For steady computations, artificial compressibility was very efficient in terms of computing time and robustness. For an unsteady flow which requires small physical time step, pressure projection method was found to be computationally more efficient than an artificial compressibility method. This comparison is intended to give some basis for selecting a method or a flow solution code for large three-dimensional applications where computing resources become a critical issue.
Three dimensional investigation of the shock train structure in a convergent-divergent nozzle
NASA Astrophysics Data System (ADS)
Mousavi, Seyed Mahmood; Roohi, Ehsan
2014-12-01
Three-dimensional computational fluid dynamics analyses have been employed to study the compressible and turbulent flow of the shock train in a convergent-divergent nozzle. The primary goal is to determine the behavior, location, and number of shocks. In this context, full multi-grid initialization, Reynolds stress turbulence model (RSM), and the grid adaption techniques in the Fluent software are utilized under the 3D investigation. The results showed that RSM solution matches with the experimental data suitably. The effects of applying heat generation sources and changing inlet flow total temperature have been investigated. Our simulations showed that changes in the heat generation rate and total temperature of the intake flow influence on the starting point of shock, shock strength, minimum pressure, as well as the maximum flow Mach number.
Tools for 3D scientific visualization in computational aerodynamics at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val
1989-01-01
Hardware, software, and techniques used by the Fluid Dynamics Division (NASA) for performing visualization of computational aerodynamics, which can be applied to the visualization of flow fields from computer simulations of fluid dynamics about the Space Shuttle, are discussed. Three visualization techniques applied, post-processing, tracking, and steering, are described, as well as the post-processing software packages used, PLOT3D, SURF (Surface Modeller), GAS (Graphical Animation System), and FAST (Flow Analysis software Toolkit). Using post-processing methods a flow simulation was executed on a supercomputer and, after the simulation was complete, the results were processed for viewing. It is shown that the high-resolution, high-performance three-dimensional workstation combined with specially developed display and animation software provides a good tool for analyzing flow field solutions obtained from supercomputers.
NASA Astrophysics Data System (ADS)
Bilyeu, David
This dissertation presents an extension of the Conservation Element Solution Element (CESE) method from second- to higher-order accuracy. The new method retains the favorable characteristics of the original second-order CESE scheme, including (i) the use of the space-time integral equation for conservation laws, (ii) a compact mesh stencil, (iii) the scheme will remain stable up to a CFL number of unity, (iv) a fully explicit, time-marching integration scheme, (v) true multidimensionality without using directional splitting, and (vi) the ability to handle two- and three-dimensional geometries by using unstructured meshes. This algorithm has been thoroughly tested in one, two and three spatial dimensions and has been shown to obtain the desired order of accuracy for solving both linear and non-linear hyperbolic partial differential equations. The scheme has also shown its ability to accurately resolve discontinuities in the solutions. Higher order unstructured methods such as the Discontinuous Galerkin (DG) method and the Spectral Volume (SV) methods have been developed for one-, two- and three-dimensional application. Although these schemes have seen extensive development and use, certain drawbacks of these methods have been well documented. For example, the explicit versions of these two methods have very stringent stability criteria. This stability criteria requires that the time step be reduced as the order of the solver increases, for a given simulation on a given mesh. The research presented in this dissertation builds upon the work of Chang, who developed a fourth-order CESE scheme to solve a scalar one-dimensional hyperbolic partial differential equation. The completed research has resulted in two key deliverables. The first is a detailed derivation of a high-order CESE methods on unstructured meshes for solving the conservation laws in two- and three-dimensional spaces. The second is the code implementation of these numerical methods in a computer code. For code development, a one-dimensional solver for the Euler equations was developed. This work is an extension of Chang's work on the fourth-order CESE method for solving a one-dimensional scalar convection equation. A generic formulation for the nth-order CESE method, where n ≥ 4, was derived. Indeed, numerical implementation of the scheme confirmed that the order of convergence was consistent with the order of the scheme. For the two- and three-dimensional solvers, SOLVCON was used as the basic framework for code implementation. A new solver kernel for the fourth-order CESE method has been developed and integrated into the framework provided by SOLVCON. The main part of SOLVCON, which deals with unstructured meshes and parallel computing, remains intact. The SOLVCON code for data transmission between computer nodes for High Performance Computing (HPC). To validate and verify the newly developed high-order CESE algorithms, several one-, two- and three-dimensional simulations where conducted. For the arbitrary order, one-dimensional, CESE solver, three sets of governing equations were selected for simulation: (i) the linear convection equation, (ii) the linear acoustic equations, (iii) the nonlinear Euler equations. All three systems of equations were used to verify the order of convergence through mesh refinement. In addition the Euler equations were used to solve the Shu-Osher and Blastwave problems. These two simulations demonstrated that the new high-order CESE methods can accurately resolve discontinuities in the flow field.For the two-dimensional, fourth-order CESE solver, the Euler equation was employed in four different test cases. The first case was used to verify the order of convergence through mesh refinement. The next three cases demonstrated the ability of the new solver to accurately resolve discontinuities in the flows. This was demonstrated through: (i) the interaction between acoustic waves and an entropy pulse, (ii) supersonic flow over a circular blunt body, (iii) supersonic flow over a guttered wedge. To validate and verify the three-dimensional, fourth-order CESE solver, two different simulations where selected. The first used the linear convection equations to demonstrate fourth-order convergence. The second used the Euler equations to simulate supersonic flow over a spherical body to demonstrate the scheme's ability to accurately resolve shocks. All test cases used are well known benchmark problems and as such, there are multiple sources available to validate the numerical results. Furthermore, the simulations showed that the high-order CESE solver was stable at a CFL number near unity.
Two-Dimensional Computational Model for Wave Rotor Flow Dynamics
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
1996-01-01
A two-dimensional (theta,z) Navier-Stokes solver for multi-port wave rotor flow simulation is described. The finite-volume form of the unsteady thin-layer Navier-Stokes equations are integrated in time on multi-block grids that represent the stationary inlet and outlet ports and the moving rotor passages of the wave rotor. Computed results are compared with three-port wave rotor experimental data. The model is applied to predict the performance of a planned four-port wave rotor experiment. Two-dimensional flow features that reduce machine performance and influence rotor blade and duct wall thermal loads are identified. The performance impact of rounding the inlet port wall, to inhibit separation during passage gradual opening, is assessed.
Wagner, Chad R.
2007-01-01
The use of one-dimensional hydraulic models currently is the standard method for estimating velocity fields through a bridge opening for scour computations and habitat assessment. Flood-flow contraction through bridge openings, however, is hydrodynamically two dimensional and often three dimensional. Although there is awareness of the utility of two-dimensional models to predict the complex hydraulic conditions at bridge structures, little guidance is available to indicate whether a one- or two-dimensional model will accurately estimate the hydraulic conditions at a bridge site. The U.S. Geological Survey, in cooperation with the North Carolina Department of Transportation, initiated a study in 2004 to compare one- and two-dimensional model results with field measurements at complex riverine and tidal bridges in North Carolina to evaluate the ability of each model to represent field conditions. The field data consisted of discharge and depth-averaged velocity profiles measured with an acoustic Doppler current profiler and surveyed water-surface profiles for two high-flow conditions. For the initial study site (U.S. Highway 13 over the Tar River at Greenville, North Carolina), the water-surface elevations and velocity distributions simulated by the one- and two-dimensional models showed appreciable disparity in the highly sinuous reach upstream from the U.S. Highway 13 bridge. Based on the available data from U.S. Geological Survey streamgaging stations and acoustic Doppler current profiler velocity data, the two-dimensional model more accurately simulated the water-surface elevations and the velocity distributions in the study reach, and contracted-flow magnitudes and direction through the bridge opening. To further compare the results of the one- and two-dimensional models, estimated hydraulic parameters (flow depths, velocities, attack angles, blocked flow width) for measured high-flow conditions were used to predict scour depths at the U.S. Highway 13 bridge by using established methods. Comparisons of pier-scour estimates from both models indicated that the scour estimates from the two-dimensional model were as much as twice the depth of the estimates from the one-dimensional model. These results can be attributed to higher approach velocities and the appreciable flow angles at the piers simulated by the two-dimensional model and verified in the field. Computed flood-frequency estimates of the 10-, 50-, 100-, and 500-year return-period floods on the Tar River at Greenville were also simulated with both the one- and two-dimensional models. The simulated water-surface profiles and velocity fields of the various return-period floods were used to compare the modeling approaches and provide information on what return-period discharges would result in road over-topping and(or) pressure flow. This information is essential in the design of new and replacement structures. The ability to accurately simulate water-surface elevations and velocity magnitudes and distributions at bridge crossings is essential in assuring that bridge plans balance public safety with the most cost-effective design. By compiling pertinent bridge-site characteristics and relating them to the results of several model-comparison studies, the framework for developing guidelines for selecting the most appropriate model for a given bridge site can be accomplished.
NASA Astrophysics Data System (ADS)
Harvazinski, Matthew Evan
Self-excited combustion instabilities have been studied using a combination of two- and three-dimensional computational fluid dynamics (CFD) simulations. This work was undertaken to assess the ability of CFD simulations to generate the high-amplitude resonant combustion dynamics without external forcing or a combustion response function. Specifically, detached eddy simulations (DES), which allow for significantly coarser grid resolutions in wall bounded flows than traditional large eddy simulations (LES), were investigated for their capability of simulating the instability. A single-element laboratory rocket combustor which produces self-excited longitudinal instabilities is used for the configuration. The model rocket combustor uses an injector configuration based on practical oxidizer-rich staged-combustion devices; a sudden expansion combustion section; and uses decomposed hydrogen peroxide as the oxidizer and gaseous methane as the fuel. A better understanding of the physics has been achieved using a series of diagnostics. Standard CFD outputs like instantaneous and time averaged flowfield outputs are combined with other tools, like the Rayleigh index to provide additional insight. The Rayleigh index is used to identify local regions in the combustor which are responsible for driving and damping the instability. By comparing the Rayleigh index to flowfield parameters it is possible to connect damping and driving to specific flowfield conditions. A cost effective procedure to compute multidimensional local Rayleigh index was developed. This work shows that combustion instabilities can be qualitatively simulated using two-dimensional axisymmetric simulations for fuel rich operating conditions. A full three-dimensional simulation produces a higher level of instability which agrees quite well with the experimental results. In addition to matching the level of instability the three-dimensional simulation also predicts the harmonic nature of the instability that is observed in experiments. All fuel rich simulations used a single step global reaction for the chemical kinetic model. A fuel lean operating condition is also studied and has a lower level of instability. The two-dimensional results are unable to provide good agreement with experimental results unless a more expensive four-step chemical kinetic model is used. The three-dimensional simulation is able to predict the harmonic behavior but fails to capture the amplitude of the instability observed in the companion experiment, instead predicting lower amplitude oscillations. A detailed analysis of the three-dimensional results on a single cycle shows that the periodic heat release commonly associated with combustion instability can be interpreted to be a result of the time lag between the instant the fuel is injected and when it is burned. The time lag is due to two mechanisms. First, methane present near the backstep can become trapped and transported inside shed vortices to the point of combustion. The second aspect of the time lag arises due to the interaction of the fuel with upstream-running pressure waves. As the wave moves past the injection point the flow is temporarily disrupted, reducing the fuel flow into the combustor. A comparison between the fuel lean and fuel rich cases shows several differences. Whereas both cases can produce instability, the fuel-rich case is measurably more unstable. Using the tools developed differences in the location of the damping, and driving regions are evident. By moving the peak driving area upstream of the damping region the level of instability is lower in the fuel lean case. The location of the mean heat release is also important; locating the mean heat release adjacent to the vortex impingement point a higher level of instability is observed for the fuel rich case. This research shows that DES instability modeling has the ability to be a valuable tool in the study of combustion instability. The lower grid size requirement makes the use of DES based modeling a potential candidate in the modeling of full-scale rocket engines. Whereas three-dimensional simulations may be necessary for very good agreement, two-dimensional simulations allow efficient parametric investigation and tool development. The insights obtained from the simulations offer the possibility that their results can be used in the design of future engines to exploit damping and reduce driving.
NASA Technical Reports Server (NTRS)
Moser, Robert D.; Rogers, Michael M.
1992-01-01
The evolution of three-dimensional temporally evolving plane mixing layers through as many as three pairings was simulated numerically. Initial conditions for all simulations consisted of a few low-wavenumber disturbances, usually derived from linear stability theory, in addition to the mean velocity. Three-dimensional perturbations were used with amplitudes ranging from infinitesimal to large enough to trigger a rapid transition to turbulence. Pairing is found both to inhibit the growth of infinitesimal three-dimensional disturbances and to trigger the transition to turbulence in highly three dimensional flows. The mechanisms responsible for the growth of three-dimensionality as well as the initial phases of the transition to turbulence are described. The transition to turbulence is accompanied by the formation of thin sheets of span wise vorticity, which undergo a secondary roll up. Transition also produces an increase in the degree of scalar mixing, in agreement with experimental observations of mixing transition. Simulations were also conducted to investigate changes in span wise length scale that may occur in response to the change in stream wise length scale during a pairing. The linear mechanism for this process was found to be very slow, requiring roughly three pairings to complete a doubling of the span wise scale. Stronger three-dimensionality can produce more rapid scale changes but is also likely to trigger transition to turbulence. No evidence was found for a change from an organized array of rib vortices at one span wise scale to a similar array at a larger span wise scale.
NASA Astrophysics Data System (ADS)
Juhui, Chen; Yanjia, Tang; Dan, Li; Pengfei, Xu; Huilin, Lu
2013-07-01
Flow behavior of gas and particles is predicted by the large eddy simulation of gas-second order moment of solid model (LES-SOM model) in the simulation of flow behavior in CFB. This study shows that the simulated solid volume fractions along height using a two-dimensional model are in agreement with experiments. The velocity, volume fraction and second-order moments of particles are computed. The second-order moments of clusters are calculated. The solid volume fraction, velocity and second order moments are compared at the three different model constants.
Three-dimensional turbulent near-wall flows in streamwise corners: Current state and questions
NASA Astrophysics Data System (ADS)
Kornilov, V. I.
2017-10-01
Current advances in experimental and computational studies of three-dimensional (3-D) near-wall turbulent flows in streamwise corners (SC) including the boundary-layer transition are reviewed. The focus is the structure, properties and main regularities of such flows in a wide range of variable conditions and basic parameters. A variety of different kinds of near-wall streamwise corner flows is displayed. Analysis of approaches for modeling of the near-wall corner flow in laboratory experiment is given. The problem of simulation of such flows where some ambiguities remain is discussed. The main factors on the structure of the flow in streamwise corners are analyzed. Also, the effectiveness of flow control by streamwise vortices in the junction regions of aerodynamic surfaces is shown. Finally, some important properties of the modified near-wall turbulent corner flows which have been revealed experimentally, in particular, for the flow near the wing/body junction (WBJ), can be used as an attractive alternative for real applications.
Resonance phenomena in a time-dependent, three-dimensional model of an idealized eddy
NASA Astrophysics Data System (ADS)
Rypina, I. I.; Pratt, L. J.; Wang, P.; Äe; -zgökmen, T. M.; Mezic, I.
2015-08-01
We analyze the geometry of Lagrangian motion and material barriers in a time-dependent, three-dimensional, Ekman-driven, rotating cylinder flow, which serves as an idealization for an isolated oceanic eddy and other overturning cells with cylindrical geometry in the ocean and atmosphere. The flow is forced at the top through an oscillating upper lid, and the response depends on the frequency and amplitude of lid oscillations. In particular, the Lagrangian geometry changes near the resonant tori of the unforced flow, whose frequencies are rationally related to the forcing frequencies. Multi-scale analytical expansions are used to simplify the flow in the vicinity of resonant trajectories and to investigate the resonant flow geometries. The resonance condition and scaling can be motivated by simple physical argument. The theoretically predicted flow geometries near resonant trajectories have then been confirmed through numerical simulations in a phenomenological model and in a full solution of the Navier-Stokes equations.
A 2.5D Computational Method to Simulate Cylindrical Fluidized Beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingwen; Benyahia, Sofiane; Dietiker, Jeff
2015-02-17
In this paper, the limitations of axisymmetric and Cartesian two-dimensional (2D) simulations of cylindrical gas-solid fluidized beds are discussed. A new method has been proposed to carry out pseudo-two-dimensional (2.5D) simulations of a cylindrical fluidized bed by appropriately combining computational domains of Cartesian 2D and axisymmetric simulations. The proposed method was implemented in the open-source code MFIX and applied to the simulation of a lab-scale bubbling fluidized bed with necessary sensitivity study. After a careful grid study to ensure the numerical results are grid independent, detailed comparisons of the flow hydrodynamics were presented against axisymmetric and Cartesian 2D simulations. Furthermore,more » the 2.5D simulation results have been compared to the three-dimensional (3D) simulation for evaluation. This new approach yields better agreement with the 3D simulation results than with axisymmetric and Cartesian 2D simulations.« less
Conceptualization of preferential flow for hillslope stability assessment
NASA Astrophysics Data System (ADS)
Kukemilks, Karlis; Wagner, Jean-Frank; Saks, Tomas; Brunner, Philip
2018-03-01
This study uses two approaches to conceptualize preferential flow with the goal to investigate their influence on hillslope stability. Synthetic three-dimensional hydrogeological models using dual-permeability and discrete-fracture conceptualization were subsequently integrated into slope stability simulations. The slope stability simulations reveal significant differences in slope stability depending on the preferential flow conceptualization applied, despite similar small-scale hydrogeological responses of the system. This can be explained by a local-scale increase of pore-water pressures observed in the scenario with discrete fractures. The study illustrates the critical importance of correctly conceptualizing preferential flow for slope stability simulations. It further demonstrates that the combination of the latest generation of physically based hydrogeological models with slope stability simulations allows for improvement to current modeling approaches through more complex consideration of preferential flow paths.
Funamoto, Kenichi; Hayase, Toshiyuki; Saijo, Yoshifumi; Yambe, Tomoyuki
2008-08-01
Integration of ultrasonic measurement and numerical simulation is a possible way to break through limitations of existing methods for obtaining complete information on hemodynamics. We herein propose Ultrasonic-Measurement-Integrated (UMI) simulation, in which feedback signals based on the optimal estimation of errors in the velocity vector determined by measured and computed Doppler velocities at feedback points are added to the governing equations. With an eye towards practical implementation of UMI simulation with real measurement data, its efficiency for three-dimensional unsteady blood flow analysis and a method for treating low time resolution of ultrasonic measurement were investigated by a numerical experiment dealing with complicated blood flow in an aneurysm. Even when simplified boundary conditions were applied, the UMI simulation reduced the errors of velocity and pressure to 31% and 53% in the feedback domain which covered the aneurysm, respectively. Local maximum wall shear stress was estimated, showing both the proper position and the value with 1% deviance. A properly designed intermittent feedback applied only at the time when measurement data were obtained had the same computational accuracy as feedback applied at every computational time step. Hence, this feedback method is a possible solution to overcome the insufficient time resolution of ultrasonic measurement.
NASA Technical Reports Server (NTRS)
Ameri, Ali A.
2012-01-01
The purpose of this report is to summarize and document the work done to enable a NASA CFD code to model laminar-turbulent transition process on an isolated turbine blade. The ultimate purpose of the present work is to down-select a transition model that would allow the flow simulation of a variable speed power turbine to be accurately performed. The flow modeling in its final form will account for the blade row interactions and their effects on transition which would lead to accurate accounting for losses. The present work only concerns itself with steady flows of variable inlet turbulence. The low Reynolds number k- model of Wilcox and a modified version of the same model will be used for modeling of transition on experimentally measured blade pressure and heat transfer. It will be shown that the k- model and its modified variant fail to simulate the transition with any degree of accuracy. A case is thus made for the adoption of more accurate transition models. Three-equation models based on the work of Mayle on Laminar Kinetic Energy were explored. The three-equation model of Walters and Leylek was thought to be in a relatively mature state of development and was implemented in the Glenn-HT code. Two-dimensional heat transfer predictions of flat plate flow and two-dimensional and three-dimensional heat transfer predictions on a turbine blade were performed and reported herein. Surface heat transfer rate serves as sensitive indicator of transition. With the newly implemented model, it was shown that the simulation of transition process is much improved over the baseline k- model for the single Reynolds number and pressure ratio attempted; while agreement with heat transfer data became more satisfactory. Armed with the new transition model, total-pressure losses of computed three-dimensional flow of E3 tip section cascade were compared to the experimental data for a range of incidence angles. The results obtained, form a partial loss bucket for the chosen blade. In time the loss bucket will be populated with losses at additional incidences. Results obtained thus far will be discussed herein.
Numerical simulation of the tip vortex off a low-aspect-ratio wing at transonic speed
NASA Technical Reports Server (NTRS)
Mansour, N. N.
1984-01-01
The viscous transonic flow around a low aspect ratio wing was computed by an implicit, three dimensional, thin-layer Navier-Stokes solver. The grid around the geometry of interest is obtained numerically as a solution to a Dirichlet problem for the cube. A low aspect ratio wing with large sweep, twist, taper, and camber is the chosen geometry. The topology chosen to wrap the mesh around the wing with good tip resolution is a C-O type mesh. The flow around the wing was computed for a free stream Mach number of 0.82 at an angle of attack of 5 deg. At this Mach number, an oblique shock forms on the upper surface of the wing, and a tip vortex and three dimensional flow separation off the wind surface are observed. Particle path lines indicate that the three dimensional flow separation on the wing surface is part of the roots of the tip vortex formation. The lifting of the tip vortex before the wing trailing edge is observed by following the trajectory of particles release around the wing tip.
Fulford, Janice M.
2003-01-01
A numerical computer model, Transient Inundation Model for Rivers -- 2 Dimensional (TrimR2D), that solves the two-dimensional depth-averaged flow equations is documented and discussed. The model uses a semi-implicit, semi-Lagrangian finite-difference method. It is a variant of the Trim model and has been used successfully in estuarine environments such as San Francisco Bay. The abilities of the model are documented for three scenarios: uniform depth flows, laboratory dam-break flows, and large-scale riverine flows. The model can start computations from a ?dry? bed and converge to accurate solutions. Inflows are expressed as source terms, which limits the use of the model to sufficiently long reaches where the flow reaches equilibrium with the channel. The data sets used by the investigation demonstrate that the model accurately propagates flood waves through long river reaches and simulates dam breaks with abrupt water-surface changes.
Blood Flow in Stenotic Carotid Bifurcation
NASA Astrophysics Data System (ADS)
Rayz, Vitaliy L.; Williamson, Shobha Devi; Berger, Stanley A.; Saloner, David
2004-11-01
Mechanical forces induced by blood flow on an arterial wall play an important role in the development and growth of atherosclerotic plaque. To assess vulnerability of a plaque it is important to model the flow in a realistic, patient-specific geometry. Three-dimensional models of stenotic carotid bifurcations were obtained from MR images and grids were generated for the flow domains. The unsteady, incompressible Navier-Stokes equations were solved numerically using physiological boundary conditions. The results obtained by computations were compared with in-vivo ultrasound measurements and flow visualization experiments carried out for the same geometry. The simulations show a high velocity jet forming at the stenotic throat and a strong recirculation zone downstream of the stenosis. The jet grows rapidly during the systolic part of the pulse. During diastole the flow is more stagnant. The flow is highly three-dimensional and unsteady which is clearly demonstrated by the flow streamlines. These unsteady flows cause rapid temporal and spatial changes of the forces acting on the atherosclerotic plaque, which has important effects on its growth and stability.
Experiments on two- and three-dimensional vortex flows in lid-driven cavities
NASA Astrophysics Data System (ADS)
Siegmann-Hegerfeld, Tanja; Albensoeder, Stefan; Kuhlmann, Hendrik C.
2009-11-01
Vortex flows in one-sided lid-driven cavities with different cross-sectional aspect ratios (γ = 0.26 up to γ = 6.3) are investigated experimentally. In all cases the spanwise aspect ratio λ>>γ is very large and much larger than most previous experiments. Flow-structure visualizations will be presented together with quantitative LDA and PIV measurements. The experimental results are in good agreement with the critical data from numerical stability analyses and with nonlinear simulations. Experimentally, we find four different three-dimensional instabilities. Particular attention is paid to the so-called C4 mode which arises at large cross-sectional aspect ratios. When the spanwise aspect ratio is small the first bifurcation of the C4 mode is strongly imperfect.
Towards an Automated Full-Turbofan Engine Numerical Simulation
NASA Technical Reports Server (NTRS)
Reed, John A.; Turner, Mark G.; Norris, Andrew; Veres, Joseph P.
2003-01-01
The objective of this study was to demonstrate the high-fidelity numerical simulation of a modern high-bypass turbofan engine. The simulation utilizes the Numerical Propulsion System Simulation (NPSS) thermodynamic cycle modeling system coupled to a high-fidelity full-engine model represented by a set of coupled three-dimensional computational fluid dynamic (CFD) component models. Boundary conditions from the balanced, steady-state cycle model are used to define component boundary conditions in the full-engine model. Operating characteristics of the three-dimensional component models are integrated into the cycle model via partial performance maps generated automatically from the CFD flow solutions using one-dimensional meanline turbomachinery programs. This paper reports on the progress made towards the full-engine simulation of the GE90-94B engine, highlighting the generation of the high-pressure compressor partial performance map. The ongoing work will provide a system to evaluate the steady and unsteady aerodynamic and mechanical interactions between engine components at design and off-design operating conditions.
NASA Astrophysics Data System (ADS)
Hendrickson, Kelli; Yue, Dick
2016-11-01
This work presents the development and a priori testing of closure models for the incompressible highly-variable density turbulent (IHVDT) flow in the near wake region of a transom stern. This complex, three-dimensional flow includes three regions with distinctly different flow behavior: (i) the convergent corner waves that originate from the body and collide on the ship center plane; (ii) the "rooster tail" that forms from the collision; and (iii) the diverging wave train. The characteristics of these regions involve violent free-surface flows and breaking waves with significant turbulent mass flux (TMF) at Atwood number At = (ρ2 -ρ1) / (ρ2 +ρ1) 1 for which there is little guidance in turbulence closure modeling for the momentum and scalar transport along the wake. Utilizing datasets from high-resolution simulations of the near wake of a canonical three-dimensional transom stern using conservative Volume-of-Fluid (cVOF), implicit Large Eddy Simulation (iLES), and Boundary Data Immersion Method (BDIM), we develop explicit algebraic turbulent mass flux closure models that incorporate the most relevant physical processes. Performance of these models in predicting the turbulent mass flux in all three regions of the wake will be presented. Office of Naval Research.
NASA Astrophysics Data System (ADS)
Ji, P.; Yuan, X.
2017-12-01
Located in the northern Tibetan Plateau, Sanjiangyuan is the headwater region of the Yellow River, Yangtze River and Mekong River. Besides climate change, natural and human-induced land cover change (e.g., Graze for Grass Project) is also influencing the regional hydro-climate and hydrological extremes significantly. To quantify their impacts, a land surface model (LSM) with consideration of soil moisture-lateral surface flow interaction and quasi-three-dimensional subsurface flow, is used to conduct long-term high resolution simulations driven by China Meteorological Administration Land Data Assimilation System forcing data and different land cover scenarios. In particular, the role of surface and subsurface lateral flows is also analyzed by comparing with typical one-dimensional models. Lateral flows help to simulate soil moisture variability caused by topography at hyper-resolution (e.g., 100m), which is also essential for simulating hydrological extremes including soil moisture dryness/wetness and high/low flows. The LSM will also be coupled with a regional climate model to simulate the effect of natural and anthropogenic land cover change on regional climate, with particular focus on the land-atmosphere coupling at different resolutions with different configurations in modeling land surface hydrology.
Laenen, Antonius; Hansen, R.P.
1988-01-01
A one-dimensional, unsteady-state, open-channel model was used to analytically reproduce three lahar events. Factors contributing to the success of the modeling were: (1) the lahars were confined to a channel, (2) channel roughness was defined by field information, and (3) the volume of the flow remained relatively unchanged for the duration of the peak. Manning 's 'n ' values used in computing conveyance in the model were subject to the changing rheology of the debris flow and were calculated from field cross-section information (velocities used in these calculations were derived from super-elevation or run-up formulas). For the events modeled in this exercise, Manning 's 'n ' calculations ranged from 0.020 to 0.099. In all lahar simulations, the rheology of the flow changed in a downstream direction during the course of the event. Chen 's 'U ', the mudflow consistency index, changed approximately an order of magnitude for each event. The ' u ' values ranged from 5-2,260 kg/m for three events modeled. The empirical approach adopted in this paper is useful as a tool to help predict debris-flow behavior, but does not lead to understanding the physical processes of debris flows. (Author 's abstract)
Development of Finite-Volume Methods for Three-Dimensional Transonic Flows.
1980-08-01
rapidly. Away from the airfoil, the streamlines spread. This type of mesh can easily be blended into a Cartesian mesh for the far field. A disadvantage...E. W., and Stern, M. A. (1980) "Simulated Transonic Flows for Aircraft with Nacelles, Pylons and Winglets ," AIAA Paper 80-0130, January. Caughey, D. A
Analysis of vibrational-translational energy transfer using the direct simulation Monte Carlo method
NASA Technical Reports Server (NTRS)
Boyd, Iain D.
1991-01-01
A new model is proposed for energy transfer between the vibrational and translational modes for use in the direct simulation Monte Carlo method (DSMC). The model modifies the Landau-Teller theory for a harmonic oscillator and the rate transition is related to an experimental correlation for the vibrational relaxation time. Assessment of the model is made with respect to three different computations: relaxation in a heat bath, a one-dimensional shock wave, and hypersonic flow over a two-dimensional wedge. These studies verify that the model achieves detailed balance, and excellent agreement with experimental data is obtained in the shock wave calculation. The wedge flow computation reveals that the usual phenomenological method for simulating vibrational nonequilibrium in the DSMC technique predicts much higher vibrational temperatures in the wake region.
NASA Technical Reports Server (NTRS)
Steinthorsson, Erlendur; Liou, Meng-Sing; Povinelli, Louis A.; Arnone, Andrea
1993-01-01
This paper reports the results of numerical simulations of steady, laminar flow over a backward-facing step. The governing equations used in the simulations are the full 'compressible' Navier-Stokes equations, solutions to which were computed by using a cell-centered, finite volume discretization. The convection terms of the governing equations were discretized by using the Advection Upwind Splitting Method (AUSM), whereas the diffusion terms were discretized using central differencing formulas. The validity and accuracy of the numerical solutions were verified by comparing the results to existing experimental data for flow at identical Reynolds numbers in the same back step geometry. The paper focuses attention on the details of the flow field near the side wall of the geometry.
NASA Technical Reports Server (NTRS)
Murman, E. M. (Editor); Abarbanel, S. S. (Editor)
1985-01-01
Current developments and future trends in the application of supercomputers to computational fluid dynamics are discussed in reviews and reports. Topics examined include algorithm development for personal-size supercomputers, a multiblock three-dimensional Euler code for out-of-core and multiprocessor calculations, simulation of compressible inviscid and viscous flow, high-resolution solutions of the Euler equations for vortex flows, algorithms for the Navier-Stokes equations, and viscous-flow simulation by FEM and related techniques. Consideration is given to marching iterative methods for the parabolized and thin-layer Navier-Stokes equations, multigrid solutions to quasi-elliptic schemes, secondary instability of free shear flows, simulation of turbulent flow, and problems connected with weather prediction.
Development of computational methods for heavy lift launch vehicles
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Ryan, James S.
1993-01-01
The research effort has been focused on the development of an advanced flow solver for complex viscous turbulent flows with shock waves. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. A new computer program named CENS3D has been developed for viscous turbulent flows with discontinuities. Details of the code are described in Appendix A and Appendix B. With the developments of the numerical algorithm and dissipation model, the simulation of three-dimensional viscous compressible flows has become more efficient and accurate. The results of the research are expected to yield a direct impact on the design process of future liquid fueled launch systems.
NASA Astrophysics Data System (ADS)
Haitjema, Henk M.
1985-10-01
A technique is presented to incorporate three-dimensional flow in a Dupuit-Forchheimer model. The method is based on superposition of approximate analytic solutions to both two- and three-dimensional flow features in a confined aquifer of infinite extent. Three-dimensional solutions are used in the domain of interest, while farfield conditions are represented by two-dimensional solutions. Approximate three- dimensional solutions have been derived for a partially penetrating well and a shallow creek. Each of these solutions satisfies the condition that no flow occurs across the confining layers of the aquifer. Because of this condition, the flow at some distance of a three-dimensional feature becomes nearly horizontal. Consequently, remotely from a three-dimensional feature, its three-dimensional solution is replaced by a corresponding two-dimensional one. The latter solution is trivial as compared to its three-dimensional counterpart, and its use greatly enhances the computational efficiency of the model. As an example, the flow is modeled between a partially penetrating well and a shallow creek that occur in a regional aquifer system.
NASA Technical Reports Server (NTRS)
Newman, James C., III
1995-01-01
The limiting factor in simulating flows past realistic configurations of interest has been the discretization of the physical domain on which the governing equations of fluid flow may be solved. In an attempt to circumvent this problem, many Computational Fluid Dynamic (CFD) methodologies that are based on different grid generation and domain decomposition techniques have been developed. However, due to the costs involved and expertise required, very few comparative studies between these methods have been performed. In the present work, the two CFD methodologies which show the most promise for treating complex three-dimensional configurations as well as unsteady moving boundary problems are evaluated. These are namely the structured-overlapped and the unstructured grid schemes. Both methods use a cell centered, finite volume, upwind approach. The structured-overlapped algorithm uses an approximately factored, alternating direction implicit scheme to perform the time integration, whereas, the unstructured algorithm uses an explicit Runge-Kutta method. To examine the accuracy, efficiency, and limitations of each scheme, they are applied to the same steady complex multicomponent configurations and unsteady moving boundary problems. The steady complex cases consist of computing the subsonic flow about a two-dimensional high-lift multielement airfoil and the transonic flow about a three-dimensional wing/pylon/finned store assembly. The unsteady moving boundary problems are a forced pitching oscillation of an airfoil in a transonic freestream and a two-dimensional, subsonic airfoil/store separation sequence. Accuracy was accessed through the comparison of computed and experimentally measured pressure coefficient data on several of the wing/pylon/finned store assembly's components and at numerous angles-of-attack for the pitching airfoil. From this study, it was found that both the structured-overlapped and the unstructured grid schemes yielded flow solutions of comparable accuracy for these simulations. This study also indicated that, overall, the structured-overlapped scheme was slightly more CPU efficient than the unstructured approach.
Center for Modeling of Turbulence and Transition (CMOTT): Research Briefs, 1992
NASA Technical Reports Server (NTRS)
Liou, William W. (Editor)
1992-01-01
The progress is reported of the Center for Modeling of Turbulence and Transition (CMOTT). The main objective of the CMOTT is to develop, validate and implement the turbulence and transition models for practical engineering flows. The flows of interest are three-dimensional, incompressible and compressible flows with chemical reaction. The research covers two-equation (e.g., k-e) and algebraic Reynolds-stress models, second moment closure models, probability density function (pdf) models, Renormalization Group Theory (RNG), Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS).
A High-Resolution, Three-Dimensional Model of Jupiter's Great Red Spot
NASA Technical Reports Server (NTRS)
Cho, James Y.-K.; delaTorreJuarez, Manuel; Ingersoll, Andrew P.; Dritschel, David G.
2001-01-01
The turbulent flow at the periphery of the Great Red Spot (GRS) contains many fine-scale filamentary structures, while the more quiescent core, bounded by a narrow high- velocity ring, exhibits organized, possibly counterrotating, motion. Past studies have neither been able to capture this complexity nor adequately study the effect of vertical stratification L(sub R)(zeta) on the GRS. We present results from a series of high-resolution, three-dimensional simulations that advect the dynamical tracer, potential vorticity. The detailed flow is successfully captured with a characteristic value of L(sub R) approx. equals 2000 km, independent of the precise vertical stratification profile.
Simulation of the turbulent Rayleigh-Benard problem using a spectral/finite difference technique
NASA Technical Reports Server (NTRS)
Eidson, T. M.; Hussaini, M. Y.; Zang, T. A.
1986-01-01
The three-dimensional, incompressible Navier-Stokes and energy equations with the Bousinesq assumption have been directly simulated at a Rayleigh number of 3.8 x 10 to the 5th power and a Prandtl number of 0.76. In the vertical direction, wall boundaries were used and in the horizontal, periodic boundary conditions were used. A spectral/finite difference numerical method was used to simulate the flow. The flow at these conditions is turbulent and a sufficiently fine mesh was used to capture all relevant flow scales. The results of the simulation are compared to experimental data to justify the conclusion that the small scale motion is adequately resolved.
Djukic, Tijana; Mandic, Vesna; Filipovic, Nenad
2013-12-01
Medical education, training and preoperative diagnostics can be drastically improved with advanced technologies, such as virtual reality. The method proposed in this paper enables medical doctors and students to visualize and manipulate three-dimensional models created from CT or MRI scans, and also to analyze the results of fluid flow simulations. Simulation of fluid flow using the finite element method is performed, in order to compute the shear stress on the artery walls. The simulation of motion through the artery is also enabled. The virtual reality system proposed here could shorten the length of training programs and make the education process more effective. © 2013 Published by Elsevier Ltd.
Computational fluid dynamics (CFD) study on the fetal aortic coarctation
NASA Astrophysics Data System (ADS)
Zhou, Yue; Zhang, Yutao; Wang, Jingying
2018-03-01
Blood flows in normal and coarctate fetal aortas are simulated by the CFD technique using T-rex grids. The three-dimensional (3-D) digital model of the fetal arota is reconstructed by the computer-aided design (CAD) software based on two-dimensional (2-D) ultrasono tomographic images. Simulation results displays the development and enhancement of the secondary flow structure in the coarctate fetal arota. As the diameter narrow ratio rises greater than 45%, the pressure and wall shear stress (WSS) of the aorta arch increase exponentially, which is consistent with the conventional clinical concept. The present study also demonstrates that CFD is a very promising assistant technique to investigate human cardiovascular diseases.
Voss, Clifford I.; Provost, A.M.
2002-01-01
SUTRA (Saturated-Unsaturated Transport) is a computer program that simulates fluid movement and the transport of either energy or dissolved substances in a subsurface environment. This upgraded version of SUTRA adds the capability for three-dimensional simulation to the former code (Voss, 1984), which allowed only two-dimensional simulation. The code employs a two- or three-dimensional finite-element and finite-difference method to approximate the governing equations that describe the two interdependent processes that are simulated: 1) fluid density-dependent saturated or unsaturated ground-water flow; and 2) either (a) transport of a solute in the ground water, in which the solute may be subject to: equilibrium adsorption on the porous matrix, and both first-order and zero-order production or decay; or (b) transport of thermal energy in the ground water and solid matrix of the aquifer. SUTRA may also be used to simulate simpler subsets of the above processes. A flow-direction-dependent dispersion process for anisotropic media is also provided by the code and is introduced in this report. As the primary calculated result, SUTRA provides fluid pressures and either solute concentrations or temperatures, as they vary with time, everywhere in the simulated subsurface system. SUTRA flow simulation may be employed for two-dimensional (2D) areal, cross sectional and three-dimensional (3D) modeling of saturated ground-water flow systems, and for cross sectional and 3D modeling of unsaturated zone flow. Solute-transport simulation using SUTRA may be employed to model natural or man-induced chemical-species transport including processes of solute sorption, production, and decay. For example, it may be applied to analyze ground-water contaminant transport problems and aquifer restoration designs. In addition, solute-transport simulation with SUTRA may be used for modeling of variable-density leachate movement, and for cross sectional modeling of saltwater intrusion in aquifers at near-well or regional scales, with either dispersed or relatively sharp transition zones between freshwater and saltwater. SUTRA energy-transport simulation may be employed to model thermal regimes in aquifers, subsurface heat conduction, aquifer thermal-energy storage systems, geothermal reservoirs, thermal pollution of aquifers, and natural hydrogeologic convection systems. Mesh construction, which is quite flexible for arbitrary geometries, employs quadrilateral finite elements in 2D Cartesian or radial-cylindrical coordinate systems, and hexahedral finite elements in 3D systems. 3D meshes are currently restricted to be logically rectangular; in other words, they are similar to deformable finite-difference-style grids. Permeabilities may be anisotropic and may vary in both direction and magnitude throughout the system, as may most other aquifer and fluid properties. Boundary conditions, sources and sinks may be time dependent. A number of input data checks are made to verify the input data set. An option is available for storing intermediate results and restarting a simulation at the intermediate time. Output options include fluid velocities, fluid mass and solute mass or energy budgets, and time-varying observations at points in the system. Both the mathematical basis for SUTRA and the program structure are highly general, and are modularized to allow for straightforward addition of new methods or processes to the simulation. The FORTRAN-90 coding stresses clarity and modularity rather than efficiency, providing easy access for later modifications.
Viscous computations of cold air/air flow around scramjet nozzle afterbody
NASA Technical Reports Server (NTRS)
Baysal, Oktay; Engelund, Walter C.
1991-01-01
The flow field in and around the nozzle afterbody section of a hypersonic vehicle was computationally simulated. The compressible, Reynolds averaged, Navier Stokes equations were solved by an implicit, finite volume, characteristic based method. The computational grids were adapted to the flow as the solutions were developing in order to improve the accuracy. The exhaust gases were assumed to be cold. The computational results were obtained for the two dimensional longitudinal plane located at the half span of the internal portion of the nozzle for over expanded and under expanded conditions. Another set of results were obtained, where the three dimensional simulations were performed for a half span nozzle. The surface pressures were successfully compared with the data obtained from the wind tunnel tests. The results help in understanding this complex flow field and, in turn, should help the design of the nozzle afterbody section.
Direct simulations of chemically reacting turbulent mixing layers, part 2
NASA Technical Reports Server (NTRS)
Metcalfe, Ralph W.; Mcmurtry, Patrick A.; Jou, Wen-Huei; Riley, James J.; Givi, Peyman
1988-01-01
The results of direct numerical simulations of chemically reacting turbulent mixing layers are presented. This is an extension of earlier work to a more detailed study of previous three dimensional simulations of cold reacting flows plus the development, validation, and use of codes to simulate chemically reacting shear layers with heat release. Additional analysis of earlier simulations showed good agreement with self similarity theory and laboratory data. Simulations with a two dimensional code including the effects of heat release showed that the rate of chemical product formation, the thickness of the mixing layer, and the amount of mass entrained into the layer all decrease with increasing rates of heat release. Subsequent three dimensional simulations showed similar behavior, in agreement with laboratory observations. Baroclinic torques and thermal expansion in the mixing layer were found to produce changes in the flame vortex structure that act to diffuse the pairing vortices, resulting in a net reduction in vorticity. Previously unexplained anomalies observed in the mean velocity profiles of reacting jets and mixing layers were shown to result from vorticity generation by baroclinic torques.
TRIM—3D: a three-dimensional model for accurate simulation of shallow water flow
Casulli, Vincenzo; Bertolazzi, Enrico; Cheng, Ralph T.
1993-01-01
A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is discussed. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that the resulting algorithm permits the use of large time steps at a minimal computational cost. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers. The high computational efficiency of this method has made it possible to provide the fine details of circulation structure in complex regions that previous studies were unable to obtain. For proper interpretation of the model results suitable interactive graphics is also an essential tool.
NASA Astrophysics Data System (ADS)
Jiao, Huiqing; Zhao, Chengyi; Sheng, Yu; Chen, Yan; Shi, Jianchu; Li, Baoguo
2017-04-01
Water shortage and soil salinization increasingly become the main constraints for sustainable development of agriculture in Southern Xinjiang, China. Mulched drip irrigation, as a high-efficient water-saving irrigation method, has been widely applied in Southern Xinjiang for cotton production. In order to analyze the reasonability of describing the three-dimensional soil water and salt transport processes under mulched drip irrigation with a relatively simple two-dimensional model, a field experiment was conducted from 2007 to 2015 at Aksu of Southern Xinjiang, and soil water and salt transport processes were simulated through the three-dimensional and two-dimensional models based on COMSOL. Obvious differences were found between three-dimensional and two-dimensional simulations for soil water flow within the early 12 h of irrigation event and for soil salt transport in the area within 15 cm away from drip tubes during the whole irrigation event. The soil water and salt contents simulated by the two-dimensional model, however, agreed well with the mean values between two adjacent emitters simulated by the three-dimensional model, and also coincided with the measurements as corresponding RMSE less than 0.037 cm3 cm-3 and 1.80 g kg-1, indicating that the two-dimensional model was reliable for field irrigation management. Subsequently, the two-dimensional model was applied to simulate the dynamics of soil salinity for five numerical situations and for a widely adopted irrigation pattern in Southern Xinjiang (about 350 mm through mulched drip irrigation during growing season of cotton and total 400 mm through flooding irrigations before sowing and after harvesting). The simulation results indicated that the contribution of transpiration to salt accumulation in root layer was about 75% under mulched drip irrigation. Moreover, flooding irrigations before sowing and after harvesting were of great importance for salt leaching of arable layer, especially in bare strip where drip irrigation water hardly reached, and thus providing suitable root zone environment for cotton. Nevertheless, flooding irrigation should be further optimized to enhance water use efficiency.
DNSs of Multicomponent Gaseous and Drop-Laden Mixing Layers Achieving Transition to Turbulence
NASA Technical Reports Server (NTRS)
Bellan, Josette; Selle, Laurent
2007-01-01
A paper describes direct numerical simulations (DNSs) of three-dimensional mixing-layer flows undergoing transition to turbulence; the mixing layers may or may not be laden with evaporating liquid drops.
Drag Reduction by Riblets & Sharkskin Denticles: A Numerical Study
NASA Astrophysics Data System (ADS)
Boomsma, Aaron
Riblet films are a passive method of turbulent boundary layer control that can reduce viscous drag. They have been studied with great detail for over 30 years. Although common riblet applications include flows with Adverse Pressure Gradients (APG), nearly all research thus far has been performed in channel flows. Recent research has provided motivation to study riblets in more complicated turbulent flows with claims that riblet drag reduction can double in mild APG common to airfoils at moderate angles of attack. Therefore, in this study, we compare drag reduction by scalloped riblet films between riblets in a zero pressure gradient and those in a mild APG using high-resolution large eddy simulations. In order to gain a fundamental understanding of the relationship between drag reduction and pressure gradient, we simulated several different riblet sizes that encompassed a broad range of s + (riblet width in wall units), similarly to many experimental studies. We found that there was only a slight improvement in drag reduction for riblets in the mild APG. We also observed that peak values of streamwise turbulence intensity, turbulent kinetic energy, and streamwise vorticity scale with riblet width. Primary Reynolds shear stresses and turbulence kinetic energy production however scale with the ability of the riblet to reduce skin-friction. Another turbulent roughness of similar shape and size to riblets is sharkskin. The hydrodynamic function of sharkskin has been under investigation for the past 30 years. Current literature conflicts on whether sharkskin is able to reduce skin friction similarly to riblets. To contribute insights toward reconciling these conflicting views, Direct Numerical Simulations (DNS) are carried out to obtain detailed flow fields around realistic denticles. A sharp interface immersed boundary method is employed to simulate two arrangements of actual sharkskin denticles (from Isurus oxyrinchus) in a turbulent boundary layer at Retau ≈ 180. For comparison, turbulent flow over drag-reducing scalloped riblets is also simulated with similar flow conditions and with the same numerical method. Although the denticles resemble riblets, both sharkskin arrangements increase total drag by 44-50%, while the riblets reduce drag by 5%. Analysis of the simulated flow fields shows that the turbulent flow around denticles is highly three-dimensional and separated, with 25% of the total drag being form drag. The complex three-dimensional shape of the denticles gives rise to a mean flow dominated by strong secondary flows in sharp contrast with the mean flow generated by riblets, which is largely two-dimensional. The so resulting three-dimensionality of sharkskin flows leads to an increase in the magnitude of the turbulence statistics near the denticles, which further contributes to increasing the total drag. The simulations also show that, at least for the simulated arrangements, sharkskin, in sharp contrast with drag-reducing riblets, is unable to isolate high shear stress near denticle ridges causing a significant portion of the denticle surface to be exposed to high mean shear. Lastly, it has been theorized that sharkskin might act similarly to vortex generators and prevent separation. In order to test this theory, we have conducted simulations with and without sharkskin upstream of a steady separation bubble. Using large eddy simulation, our study shows that sharkskin worsened the weak separation region and enlarged the separation bubble's boundaries. The cause was shown to originate due to the denticles acting as blockages, rather than vortex generators. In fact, our results showed that separation occurred just after the second row of denticles and that the turbulent flow was unable to recover its lost momentum. Streamwise turbulence intensities were decreased compared to the baseline case. Finally, in the present case, the sharkskin induced reversed flow within the denticles---something that was not observed with sharkskin in channel flow.
NASA Astrophysics Data System (ADS)
Kerner, Boris S.
2012-03-01
Based on numerical simulations of a stochastic three-phase traffic flow model, we reveal the physics of the fundamental hypothesis of three-phase theory that, in contrast with a fundamental diagram of classical traffic flow theories, postulates the existence of a two-dimensional (2D) region of steady states of synchronized flow where a driver makes an arbitrary choice of a space gap (time headway) to the preceding vehicle. We find that macroscopic and microscopic spatiotemporal effects of the entire complexity of traffic congestion observed up to now in real measured traffic data can be explained by simulations of traffic flow consisting of identical drivers and vehicles, if a microscopic model used in these simulations incorporates the fundamental hypothesis of three-phase theory. It is shown that the driver's choice of space gaps within the 2D region of synchronized flow associated with the fundamental hypothesis of three-phase theory can qualitatively change types of congested patterns that can emerge at a highway bottleneck. In particular, if drivers choose long enough spaces gaps associated with the fundamental hypothesis, then general patterns, which consist of synchronized flow and wide moving jams, do not emerge independent of the flow rates and bottleneck characteristics: Even at a heavy bottleneck leading to a very low speed within congested patterns, only synchronized flow patterns occur in which no wide moving jams emerge spontaneously.
Kerner, Boris S
2012-03-01
Based on numerical simulations of a stochastic three-phase traffic flow model, we reveal the physics of the fundamental hypothesis of three-phase theory that, in contrast with a fundamental diagram of classical traffic flow theories, postulates the existence of a two-dimensional (2D) region of steady states of synchronized flow where a driver makes an arbitrary choice of a space gap (time headway) to the preceding vehicle. We find that macroscopic and microscopic spatiotemporal effects of the entire complexity of traffic congestion observed up to now in real measured traffic data can be explained by simulations of traffic flow consisting of identical drivers and vehicles, if a microscopic model used in these simulations incorporates the fundamental hypothesis of three-phase theory. It is shown that the driver's choice of space gaps within the 2D region of synchronized flow associated with the fundamental hypothesis of three-phase theory can qualitatively change types of congested patterns that can emerge at a highway bottleneck. In particular, if drivers choose long enough spaces gaps associated with the fundamental hypothesis, then general patterns, which consist of synchronized flow and wide moving jams, do not emerge independent of the flow rates and bottleneck characteristics: Even at a heavy bottleneck leading to a very low speed within congested patterns, only synchronized flow patterns occur in which no wide moving jams emerge spontaneously.
VARTM Process Modeling of Aerospace Composite Structures
NASA Technical Reports Server (NTRS)
Song, Xiao-Lan; Grimsley, Brian W.; Hubert, Pascal; Cano, Roberto J.; Loos, Alfred C.
2003-01-01
A three-dimensional model was developed to simulate the VARTM composite manufacturing process. The model considers the two important mechanisms that occur during the process: resin flow, and compaction and relaxation of the preform. The model was used to simulate infiltration of a carbon preform with an epoxy resin by the VARTM process. The model predicted flow patterns and preform thickness changes agreed qualitatively with the measured values. However, the predicted total infiltration times were much longer than measured most likely due to the inaccurate preform permeability values used in the simulation.
NASA Astrophysics Data System (ADS)
Matin, Rastin; Hernandez, Anier; Misztal, Marek; Mathiesen, Joachim
2015-04-01
Many hydrodynamic phenomena ranging from flows at micron scale in porous media, large Reynolds numbers flows, non-Newtonian and multiphase flows have been simulated on computers using the lattice Boltzmann (LB) method. By solving the Lattice Boltzmann Equation on unstructured meshes in three dimensions, we have developed methods to efficiently model the fluid flow in real rock samples. We use this model to study the spatio-temporal statistics of the velocity field inside three-dimensional real geometries and investigate its relation to the, in general, anomalous transport of passive tracers for a wide range of Peclet and Reynolds numbers. We extend this model by free-energy based method, which allows us to simulate binary systems with large-density ratios in a thermodynamically consistent way and track the interface explicitly. In this presentation we will present our recent results on both anomalous transport and multiphase segregation.
Kernodle, J.M.
1996-01-01
This report presents the computer input files required to run the three-dimensional ground-water-flow model of the Albuquerque Basin, central New Mexico, documented in Kernodle and others (Kernodle, J.M., McAda, D.P., and Thorn, C.R., 1995, Simulation of ground-water flow in the Albuquerque Basin, central New Mexico, 1901-1994, with projections to 2020: U.S. Geological Survey Water-Resources Investigations Report 94-4251, 114 p.). Output files resulting from the computer simulations are included for reference.
D. Caamano; P. Goodwin; J. M. Buffington
2010-01-01
Detailed field measurements and simulations of three-dimensional flow structure were used to develop a conceptual model to explain the sustainability of self-formed pool-riffle sequences in gravel-bed rivers. The analysis was conducted at the Red River Wildlife Management Area in Idaho, USA, and enabled characterization of the flow structure through two consecutive...
BORAZJANI, IMAN; SOTIROPOULOS, FOTIS
2009-01-01
We investigate numerically vortex-induced vibrations (VIV) of two identical two-dimensional elastically mounted cylinders in tandem in the proximity–wake interference regime at Reynolds number Re = 200 for systems having both one (transverse vibrations) and two (transverse and in-line) degrees of freedom (1-DOF and 2-DOF, respectively). For the 1-DOF system the computed results are in good qualitative agreement with available experiments at higher Reynolds numbers. Similar to these experiments our simulations reveal: (1) larger amplitudes of motion and a wider lock-in region for the tandem arrangement when compared with an isolated cylinder; (2) that at low reduced velocities the vibration amplitude of the front cylinder exceeds that of the rear cylinder; and (3) that above a threshold reduced velocity, large-amplitude VIV are excited for the rear cylinder with amplitudes significantly larger than those of the front cylinder. By analysing the simulated flow patterns we identify the VIV excitation mechanisms that lead to such complex responses and elucidate the near-wake vorticity dynamics and vortex-shedding modes excited in each case. We show that at low reduced velocities vortex shedding provides the initial excitation mechanism, which gives rise to a vertical separation between the two cylinders. When this vertical separation exceeds one cylinder diameter, however, a significant portion of the incoming flow is able to pass through the gap between the two cylinders and the gap-flow mechanism starts to dominate the VIV dynamics. The gap flow is able to periodically force either the top or the bottom shear layer of the front cylinder into the gap region, setting off a series of very complex vortex-to-vortex and vortex-to-cylinder interactions, which induces pressure gradients that result in a large oscillatory force in phase with the vortex shedding and lead to the experimentally observed larger vibration amplitudes. When the vortex shedding is the dominant mechanism the front cylinder vibration amplitude is larger than that of the rear cylinder. The reversing of this trend above a threshold reduced velocity is associated with the onset of the gap flow. The important role of the gap flow is further illustrated via a series of simulations for the 2-DOF system. We show that when the gap-flow mechanism is triggered, the 2-DOF system can develop and sustain large VIV amplitudes comparable to those observed in the corresponding (same reduced velocity) 1-DOF system. For sufficiently high reduced velocities, however, the two cylinders in the 2-DOF system approach each other, thus significantly reducing the size of the gap region. In such cases the gap flow is entirely eliminated, and the two cylinders vibrate together as a single body with vibration amplitudes up to 50% lower than the amplitudes of the corresponding 1-DOF in which the gap flow is active. Three-dimensional simulations are also carried out to examine the adequacy of two-dimensional simulations for describing the dynamic response of the tandem system at Re = 200. It is shown that even though the wake transitions to a weakly three-dimensional state when the gap flow is active, the three-dimensional modes are too weak to affect the dynamic response of the system, which is found to be identical to that obtained from the two-dimensional computations. PMID:19693281
Flow dynamics and energy efficiency of flow in the left ventricle during myocardial infarction.
Vasudevan, Vivek; Low, Adriel Jia Jun; Annamalai, Sarayu Parimal; Sampath, Smita; Poh, Kian Keong; Totman, Teresa; Mazlan, Muhammad; Croft, Grace; Richards, A Mark; de Kleijn, Dominique P V; Chin, Chih-Liang; Yap, Choon Hwai
2017-10-01
Cardiovascular disease is a leading cause of death worldwide, where myocardial infarction (MI) is a major category. After infarction, the heart has difficulty providing sufficient energy for circulation, and thus, understanding the heart's energy efficiency is important. We induced MI in a porcine animal model via circumflex ligation and acquired multiple-slice cine magnetic resonance (MR) images in a longitudinal manner-before infarction, and 1 week (acute) and 4 weeks (chronic) after infarction. Computational fluid dynamic simulations were performed based on MR images to obtain detailed fluid dynamics and energy dynamics of the left ventricles. Results showed that energy efficiency flow through the heart decreased at the acute time point. Since the heart was observed to experience changes in heart rate, stroke volume and chamber size over the two post-infarction time points, simulations were performed to test the effect of each of the three parameters. Increasing heart rate and stroke volume were found to significantly decrease flow energy efficiency, but the effect of chamber size was inconsistent. Strong complex interplay was observed between the three parameters, necessitating the use of non-dimensional parameterization to characterize flow energy efficiency. The ratio of Reynolds to Strouhal number, which is a form of Womersley number, was found to be the most effective non-dimensional parameter to represent energy efficiency of flow in the heart. We believe that this non-dimensional number can be computed for clinical cases via ultrasound and hypothesize that it can serve as a biomarker for clinical evaluations.
Three-dimensional multi-scale model of deformable platelets adhesion to vessel wall in blood flow
Wu, Ziheng; Xu, Zhiliang; Kim, Oleg; Alber, Mark
2014-01-01
When a blood vessel ruptures or gets inflamed, the human body responds by rapidly forming a clot to restrict the loss of blood. Platelets aggregation at the injury site of the blood vessel occurring via platelet–platelet adhesion, tethering and rolling on the injured endothelium is a critical initial step in blood clot formation. A novel three-dimensional multi-scale model is introduced and used in this paper to simulate receptor-mediated adhesion of deformable platelets at the site of vascular injury under different shear rates of blood flow. The novelty of the model is based on a new approach of coupling submodels at three biological scales crucial for the early clot formation: novel hybrid cell membrane submodel to represent physiological elastic properties of a platelet, stochastic receptor–ligand binding submodel to describe cell adhesion kinetics and lattice Boltzmann submodel for simulating blood flow. The model implementation on the GPU cluster significantly improved simulation performance. Predictive model simulations revealed that platelet deformation, interactions between platelets in the vicinity of the vessel wall as well as the number of functional GPIbα platelet receptors played significant roles in platelet adhesion to the injury site. Variation of the number of functional GPIbα platelet receptors as well as changes of platelet stiffness can represent effects of specific drugs reducing or enhancing platelet activity. Therefore, predictive simulations can improve the search for new drug targets and help to make treatment of thrombosis patient-specific. PMID:24982253
NASA Astrophysics Data System (ADS)
Mohammed, F.
2016-12-01
Landslide hazards such as fast-moving debris flows, slow-moving landslides, and other mass flows cause numerous fatalities, injuries, and damage. Landslide occurrences in fjords, bays, and lakes can additionally generate tsunamis with locally extremely high wave heights and runups. Two-dimensional depth-averaged models can successfully simulate the entire lifecycle of the three-dimensional landslide dynamics and tsunami propagation efficiently and accurately with the appropriate assumptions. Landslide rheology is defined using viscous fluids, visco-plastic fluids, and granular material to account for the possible landslide source materials. Saturated and unsaturated rheologies are further included to simulate debris flow, debris avalanches, mudflows, and rockslides respectively. The models are obtained by reducing the fully three-dimensional Navier-Stokes equations with the internal rheological definition of the landslide material, the water body, and appropriate scaling assumptions to obtain the depth-averaged two-dimensional models. The landslide and tsunami models are coupled to include the interaction between the landslide and the water body for tsunami generation. The reduced models are solved numerically with a fast semi-implicit finite-volume, shock-capturing based algorithm. The well-balanced, positivity preserving algorithm accurately accounts for wet-dry interface transition for the landslide runout, landslide-water body interface, and the tsunami wave flooding on land. The models are implemented as a General-Purpose computing on Graphics Processing Unit-based (GPGPU) suite of models, either coupled or run independently within the suite. The GPGPU implementation provides up to 1000 times speedup over a CPU-based serial computation. This enables simulations of multiple scenarios of hazard realizations that provides a basis for a probabilistic hazard assessment. The models have been successfully validated against experiments, past studies, and field data for landslides and tsunamis.
NASA Astrophysics Data System (ADS)
McClure, J. E.; Prins, J. F.; Miller, C. T.
2014-07-01
Multiphase flow implementations of the lattice Boltzmann method (LBM) are widely applied to the study of porous medium systems. In this work, we construct a new variant of the popular "color" LBM for two-phase flow in which a three-dimensional, 19-velocity (D3Q19) lattice is used to compute the momentum transport solution while a three-dimensional, seven velocity (D3Q7) lattice is used to compute the mass transport solution. Based on this formulation, we implement a novel heterogeneous GPU-accelerated algorithm in which the mass transport solution is computed by multiple shared memory CPU cores programmed using OpenMP while a concurrent solution of the momentum transport is performed using a GPU. The heterogeneous solution is demonstrated to provide speedup of 2.6 × as compared to multi-core CPU solution and 1.8 × compared to GPU solution due to concurrent utilization of both CPU and GPU bandwidths. Furthermore, we verify that the proposed formulation provides an accurate physical representation of multiphase flow processes and demonstrate that the approach can be applied to perform heterogeneous simulations of two-phase flow in porous media using a typical GPU-accelerated workstation.
NASA Astrophysics Data System (ADS)
Mirshekari, Gholamreza
This project aims at the simulation, design, fabrication and testing of a microscale shock tube. A step by step procedure has been followed to develop the different components of the microscale shock tube and then combine them together to realize the final device. The document reports on the numerical simulation of flows in a microscale shock tube, the experimental study of gas flow in microchannels, the design, microfabrication, and the test of a microscale shock tube. In the first step, a one-dimensional numerical model for simulation of transport effects at small-scale, appeared in low Reynolds number shock tubes is developed. The conservation equations have been integrated in the lateral directions and three-dimensional effects have been introduced as carefully controlled sources of mass, momentum and energy, into the one-dimensional model. The unsteady flow of gas behind the shock wave is reduced to a quasi-steady laminar flow solution, similar to the Blasius solution. The resulting one-dimensional equations are solved numerically and the simulations are performed for previously reported low Reynolds number shock tube experiments. Good agreement between the shock structure simulation and the attenuation due to the boundary layers has been observed. The simulation for predicting the performance of a microscale shock tube shows the large attenuation of shock wave at low pressure ratios. In the next step the steady flow inside microchannels has been experimentally studied. A set of microchannels with different geometries were fabricated. These microchannels have been used to measure the pressure drop as a function of flow rate in a steady compressible flow. The results of the experiments confirm that the flow inside the microscale shock tube follows the laminar model over the experiment's range of Knudsen number. The microscale shock tube is fabricated by deposition and patterning of different thin layers of selected materials on the silicon substrate. The direct sensing piezoelectric sensors were fabricated and integrated with microchannels patterned on the substrate. The channels were then covered with another substrate. This shock tube is 2000 mum long and it has a 2000 mum wide and 17 mum high rectangular cross section equipped with 5 piezoelectric sensors along the tube. The packaged microscale shock tube was installed in an ordinary shock tube and shock waves with different Mach numbers were directed into the channel. A one-dimensional inviscid calculation as well as viscous simulation using the one-dimensional model have also been performed for the above mentioned geometry. The comparison of results with those of the same geometry for an inviscid flow shows the considerable attenuation of shock strength and deceleration of the shock wave for both incident and reflected shock waves in the channel. The comparison of results with numerically generated results with the one-dimensional model presents good agreement for incident shock waves. Keywords. Shock wave, Shock tube, MEMS, Microfluidic, Piezoelectric sensor, Microchannel, Transport phenomena.
Meng, Xiangyin; Li, Yan
2015-01-01
Natural heat convection of water-based alumina (Al2O3/water) nanofluids (with volume fraction 1% and 4%) in a horizontal cylinder is numerically investigated. The whole three-dimensional computational fluid dynamics (CFD) procedure is performed in a completely open-source way. Blender, enGrid, OpenFOAM and ParaView are employed for geometry creation, mesh generation, case simulation and post process, respectively. Original solver 'buoyantBoussinesqSimpleFoam' is selected for the present study, and a temperature-dependent solver 'buoyantBoussinesqSimpleTDFoam' is developed to ensure the simulation is more realistic. The two solvers are used for same cases and compared to corresponding experimental results. The flow regime in these cases is laminar (Reynolds number is 150) and the Rayleigh number range is 0.7 × 10(7) ~ 5 × 10(7). By comparison, the average natural Nusselt numbers of water and Al2O3/water nanofluids are found to increase with the Rayleigh number. At the same Rayleigh number, the Nusselt number is found to decrease with nanofluid volume fraction. The temperature-dependent solver is found better for water and 1% Al2O3/water nanofluid cases, while the original solver is better for 4% Al2O3/water nanofluid cases. Furthermore, due to strong three-dimensional flow features in the horizontal cylinder, three-dimensional CFD simulation is recommended instead of two-dimensional simplifications.
NASA Astrophysics Data System (ADS)
Shen, Binglin; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang
2017-11-01
Combining the kinetic and fluid dynamic processes in static and flowing-gas diode-pumped alkali vapor lasers, a comprehensive physical model with three cyclically iterative algorithms for simulating the three-dimensional pump and laser intensities as well as temperature distribution in the vapor cell of side-pumped alkali vapor lasers is established. Comparison with measurement of a static side-pumped cesium vapor laser with a diffuse type hollow cylinder cavity, and with classical and modified models is made. Influences of flowed velocity and pump power on laser power are calculated and analyzed. The results have demonstrated that for high-power side-pumped alkali vapor lasers, it is necessary to take into account the three-dimensional distributions of pump energy, laser energy and temperature in the cell to simultaneously obtain the thermal features and output characteristics. Therefore, the model can deepen the understanding of the complete kinetic and fluid dynamic mechanisms of a side-pumped alkali vapor laser, and help with its further experimental design.
Multiphase three-dimensional direct numerical simulation of a rotating impeller with code Blue
NASA Astrophysics Data System (ADS)
Kahouadji, Lyes; Shin, Seungwon; Chergui, Jalel; Juric, Damir; Craster, Richard V.; Matar, Omar K.
2017-11-01
The flow driven by a rotating impeller inside an open fixed cylindrical cavity is simulated using code Blue, a solver for massively-parallel simulations of fully three-dimensional multiphase flows. The impeller is composed of four blades at a 45° inclination all attached to a central hub and tube stem. In Blue, solid forms are constructed through the definition of immersed objects via a distance function that accounts for the object's interaction with the flow for both single and two-phase flows. We use a moving frame technique for imposing translation and/or rotation. The variation of the Reynolds number, the clearance, and the tank aspect ratio are considered, and we highlight the importance of the confinement ratio (blade radius versus the tank radius) in the mixing process. Blue uses a domain decomposition strategy for parallelization with MPI. The fluid interface solver is based on a parallel implementation of a hybrid front-tracking/level-set method designed complex interfacial topological changes. Parallel GMRES and multigrid iterative solvers are applied to the linear systems arising from the implicit solution for the fluid velocities and pressure in the presence of strong density and viscosity discontinuities across fluid phases. EPSRC, UK, MEMPHIS program Grant (EP/K003976/1), RAEng Research Chair (OKM).
Winkler, Daniel; Zischg, Jonatan; Rauch, Wolfgang
2018-01-01
For communicating urban flood risk to authorities and the public, a realistic three-dimensional visual display is frequently more suitable than detailed flood maps. Virtual reality could also serve to plan short-term flooding interventions. We introduce here an alternative approach for simulating three-dimensional flooding dynamics in large- and small-scale urban scenes by reaching out to computer graphics. This approach, denoted 'particle in cell', is a particle-based CFD method that is used to predict physically plausible results instead of accurate flow dynamics. We exemplify the approach for the real flooding event in July 2016 in Innsbruck.
NASA Astrophysics Data System (ADS)
Prévost, Jean H.; Sukumar, N.
2016-01-01
Faults are geological entities with thicknesses several orders of magnitude smaller than the grid blocks typically used to discretize reservoir and/or over-under-burden geological formations. Introducing faults in a complex reservoir and/or geomechanical mesh therefore poses significant meshing difficulties. In this paper, we consider the strong-coupling of solid displacement and fluid pressure in a three-dimensional poro-mechanical (reservoir-geomechanical) model. We introduce faults in the mesh without meshing them explicitly, by using the extended finite element method (X-FEM) in which the nodes whose basis function support intersects the fault are enriched within the framework of partition of unity. For the geomechanics, the fault is treated as an internal displacement discontinuity that allows slipping to occur using a Mohr-Coulomb type criterion. For the reservoir, the fault is either an internal fluid flow conduit that allows fluid flow in the fault as well as to enter/leave the fault or is a barrier to flow (sealing fault). For internal fluid flow conduits, the continuous fluid pressure approximation admits a discontinuity in its normal derivative across the fault, whereas for an impermeable fault, the pressure approximation is discontinuous across the fault. Equal-order displacement and pressure approximations are used. Two- and three-dimensional benchmark computations are presented to verify the accuracy of the approach, and simulations are presented that reveal the influence of the rate of loading on the activation of faults.
Computations of Complex Three-Dimensional Turbulent Free Jets
NASA Technical Reports Server (NTRS)
Wilson, Robert V.; Demuren, Ayodeji O.
1997-01-01
Three-dimensional, incompressible turbulent jets with rectangular and elliptical cross-sections are simulated with a finite-difference numerical method. The full Navier- Stokes equations are solved at low Reynolds numbers, whereas at high Reynolds numbers filtered forms of the equations are solved along with a sub-grid scale model to approximate the effects of the unresolved scales. A 2-N storage, third-order Runge-Kutta scheme is used for temporary discretization and a fourth-order compact scheme is used for spatial discretization. Although such methods are widely used in the simulation of compressible flows, the lack of an evolution equation for pressure or density presents particular difficulty in incompressible flows. The pressure-velocity coupling must be established indirectly. It is achieved, in this study, through a Poisson equation which is solved by a compact scheme of the same order of accuracy. The numerical formulation is validated and the dispersion and dissipation errors are documented by the solution of a wide range of benchmark problems. Three-dimensional computations are performed for different inlet conditions which model the naturally developing and forced jets. The experimentally observed phenomenon of axis-switching is captured in the numerical simulation, and it is confirmed through flow visualization that this is based on self-induction of the vorticity field. Statistical quantities such as mean velocity, mean pressure, two-point velocity spatial correlations and Reynolds stresses are presented. Detailed budgets of the mean momentum and Reynolds stresses are presented. Detailed budgets of the mean momentum and Reynolds stress equations are presented to aid in the turbulence modeling of complex jets. Simulations of circular jets are used to quantify the effect of the non-uniform curvature of the non-circular jets.
Masterson, John P.; Barlow, Paul M.
1994-01-01
The effects of changing patterns of ground-water pumping and aquifer recharge on the surface-water and ground-water hydrologic systems were determined for the Cape Cod, Martha's Vineyard, and Nantucket Island Basins. Three-dimensional, transient, ground-water-flow modelS that simulate both freshwater and saltwater flow were developed for the f1ow cells of Cape Cod which currently have large-capacity public-supply wells. Only the freshwater-flow system was simulated for the Cape Cod flow cells where public-water supply demands are satisfied by small-capacity domestic wells. Two- dimensional, finite-difference, change models were developed for Martha's Vineyard and Nantucket Island to determine the projected drawdowns in response to projected in-season pumping rates for 180 days of no aquifer recharge. Results of the simulations indicate very little change in the position of the freshwater-saltwater interface from predevelopment flow conditions to projected ground-water pumping and recharge rates for Cape Cod in the year 2020. Results of change model simulations for Martha's Vineyard and Nantucket Island indicate that the greatest impact in response to projected in-season ground-water pumping occurs at the pumping centers and the magnitude of the drawdowns are minimal with respect to the total thickness of the aquifers.
NASA Technical Reports Server (NTRS)
Bardina, J. E.; Coakley, T. J.
1994-01-01
An investigation of the numerical simulation with two-equation turbulence models of a three-dimensional hypersonic intersecting (SWTBL) shock-wave/turbulent boundary layer interaction flow is presented. The flows are solved with an efficient implicit upwind flux-difference split Reynolds-averaged Navier-Stokes code. Numerical results are compared with experimental data for a flow at Mach 8.28 and Reynolds number 5.3x10(exp 6) with crossing shock-waves and expansion fans generated by two lateral 15 fins located on top of a cold-wall plate. This experiment belongs to the hypersonic database for modeling validation. Simulations show the development of two primary counter-rotating cross-flow vortices and secondary turbulent structures under the main vortices and in each corner singularity inside the turbulent boundary layer. A significant loss of total pressure is produced by the complex interaction between the main vortices and the uplifted jet stream of the boundary layer. The overall agreement between computational and experimental data is generally good. The turbulence modeling corrections show improvements in the predictions of surface heat transfer distribution and an increase in the strength of the cross-flow vortices. Accurate predictions of the outflow flowfield is found to require accurate modeling of the laminar/turbulent boundary layers on the fin walls.
Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles
2016-10-03
When representing the blade aerodynamics with rotating actuator lines, the computed forces have to be projected back to the CFD flow field as a volumetric body force. That has been done in the past with a geometrically simple uniform three-dimensional Gaussian at each point along the blade. Here, we argue that the body force can be shaped in a way that better predicts the blade local flow field, the blade load distribution, and the formation of the tip/root vortices. In previous work, we have determined the optimal scales of circular and elliptical Gaussian kernels that best reproduce the local flowmore » field in two-dimensions. Lastly, in this work we extend the analysis and applications by considering the full three-dimensional blade to test our hypothesis in a highly resolved Large Eddy Simulation.« less
Navier-Stokes simulation of the crossflow instability in swept-wing flows
NASA Technical Reports Server (NTRS)
Reed, Helen L.
1989-01-01
The computational modeling of the transition process characteristic of flows over swept wings are described. Specifically, the crossflow instability and crossflow/T-S wave interactions are analyzed through the numerical solution of the full three-dimensional Navier-Stokes equations including unsteadiness, curvature, and sweep. This approach is chosen because of the complexity of the problem and because it appears that linear stability theory is insufficient to explain the discrepancies between different experiments and between theory and experiments. The leading edge region of a swept wing is considered in a three-dimensional spatial simulation with random disturbances as the initial conditions. The work has been closely coordinated with the experimental program of Professor William Saric, examining the same problem. Comparisons with NASA flight test data and the experiments at Arizona State University were a necessary and an important integral part of this work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez-Tossas, Luis A.; Churchfield, Matthew J.; Meneveau, Charles
When representing the blade aerodynamics with rotating actuator lines, the computed forces have to be projected back to the CFD flow field as a volumetric body force. That has been done in the past with a geometrically simple uniform three-dimensional Gaussian at each point along the blade. Here, we argue that the body force can be shaped in a way that better predicts the blade local flow field, the blade load distribution, and the formation of the tip/root vortices. In previous work, we have determined the optimal scales of circular and elliptical Gaussian kernels that best reproduce the local flowmore » field in two-dimensions. Lastly, in this work we extend the analysis and applications by considering the full three-dimensional blade to test our hypothesis in a highly resolved Large Eddy Simulation.« less
Development and application of computational aerothermodynamics flowfield computer codes
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj
1992-01-01
Presented is a collection of papers on research activities carried out during the funding period of October 1991 to March 1992. Topics covered include: blunt body flows in thermochemical equilibrium; thermochemical relaxation in high enthalpy nozzle flow; single expansion ramp nozzle simulations; lunar return aerobraking; line boundary problem for three dimensional grids; and unsteady shock induced combustion.
CFD-DEM study of effect of bed thickness for bubbling fluidized beds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tingwen, Li; Gopalakrishnan, Pradeep; Garg, Rahul
2011-10-01
The effect of bed thickness in rectangular fluidized beds is investigated through the CFD–DEM simulations of small-scale systems. Numerical results are compared for bubbling fluidized beds of various bed thicknesses with respect to particle packing, bed expansion, bubble behavior, solids velocities, and particle kinetic energy. Good two-dimensional (2D) flow behavior is observed in the bed having a thickness of up to 20 particle diameters. However, a strong three-dimensional (3D) flow behavior is observed in beds with a thickness of 40 particle diameters, indicating the transition from 2D flow to 3D flow within the range of 20–40 particle diameters. Comparison ofmore » velocity profiles near the walls and at the center of the bed shows significant impact of the front and back walls on the flow hydrodynamics of pseudo-2D fluidized beds. Hence, for quantitative comparison with experiments in pseudo-2D columns, the effect of walls has to be accounted for in numerical simulations.« less
Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane
2012-01-01
Model results from the planar beach case show good agreement with depth-averaged analytical solutions and with theoretical flow structures. Simulation results for the DUCK' 94 experiment agree closely with measured profiles of cross-shore and longshore velocity data from and . Diagnostic simulations showed that the nonlinear processes of wave roller generation and wave-induced mixing are important for the accurate simulation of surf zone flows. It is further recommended that a more realistic approach for determining the contribution of wave rollers and breaking induced turbulent mixing can be formulated using non-dimensional parameters which are functions of local wave parameters and the beach slope. Dominant terms in the cross-shore momentum balance are found to be the quasi-static pressure gradient and breaking acceleration. In the alongshore direction, bottom stress, breaking acceleration, horizontal advection and horizontal vortex forces dominate the momentum balance. The simulation results for the bar/rip channel morphology case clearly show the ability of the modeling system to reproduce horizontal and vertical circulation patterns similar to those found in laboratory studies and to numerical simulations using the radiation stress representation. The vortex force term is found to be more important at locations where strong flow vorticity interacts with the wave-induced Stokes flow field. Outside the surf zone, the three-dimensional model simulations of wave-induced flows for non-breaking waves closely agree with flow observations from MVCO, with the vertical structure of the simulated flow varying as a function of the vertical viscosity as demonstrated by Lentz et al. (2008).
NASA Astrophysics Data System (ADS)
Re, B.; Dobrzynski, C.; Guardone, A.
2017-07-01
A novel strategy to solve the finite volume discretization of the unsteady Euler equations within the Arbitrary Lagrangian-Eulerian framework over tetrahedral adaptive grids is proposed. The volume changes due to local mesh adaptation are treated as continuous deformations of the finite volumes and they are taken into account by adding fictitious numerical fluxes to the governing equation. This peculiar interpretation enables to avoid any explicit interpolation of the solution between different grids and to compute grid velocities so that the Geometric Conservation Law is automatically fulfilled also for connectivity changes. The solution on the new grid is obtained through standard ALE techniques, thus preserving the underlying scheme properties, such as conservativeness, stability and monotonicity. The adaptation procedure includes node insertion, node deletion, edge swapping and points relocation and it is exploited both to enhance grid quality after the boundary movement and to modify the grid spacing to increase solution accuracy. The presented approach is assessed by three-dimensional simulations of steady and unsteady flow fields. The capability of dealing with large boundary displacements is demonstrated by computing the flow around the translating infinite- and finite-span NACA 0012 wing moving through the domain at the flight speed. The proposed adaptive scheme is applied also to the simulation of a pitching infinite-span wing, where the bi-dimensional character of the flow is well reproduced despite the three-dimensional unstructured grid. Finally, the scheme is exploited in a piston-induced shock-tube problem to take into account simultaneously the large deformation of the domain and the shock wave. In all tests, mesh adaptation plays a crucial role.
Viscoelastic flow modeling in the extrusion of a dough-like fluid
NASA Technical Reports Server (NTRS)
Dhanasekharan, M.; Kokini, J. L.; Janes, H. W. (Principal Investigator)
2000-01-01
This work attempts to investigate the effect of viscoelasticity and three-dimensional geometry in screw channels. The Phan-Thien Tanner (PTT) constitutive equation with simplified model parameters was solved in conjunction with the flow equations. Polyflow, a commercially available finite element code was used to solve the resulting nonlinear partial differential equations. The PTT model predicted one log scale lower pressure buildup compared to the equivalent Newtonian results. However, the velocity profile did not show significant changes for the chosen PTT model parameters. Past Researchers neglected viscoelastic effects and also the three dimensional nature of the flow in extruder channels. The results of this paper provide a starting point for further simulations using more realistic model parameters, which may enable the food engineer to more accurately scale-up and design extrusion processes.
Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.
Decker, Gifford Z; Thomson, Scott L
2007-05-01
The use of the mechanical energy (ME) equation for fluid flow, an extension of the Bernoulli equation, to predict the aerodynamic loading on a two-dimensional finite element vocal fold model is examined. Three steady, one-dimensional ME flow models, incorporating different methods of flow separation point prediction, were compared. For two models, determination of the flow separation point was based on fixed ratios of the glottal area at separation to the minimum glottal area; for the third model, the separation point determination was based on fluid mechanics boundary layer theory. Results of flow rate, separation point, and intraglottal pressure distribution were compared with those of an unsteady, two-dimensional, finite element Navier-Stokes model. Cases were considered with a rigid glottal profile as well as with a vibrating vocal fold. For small glottal widths, the three ME flow models yielded good predictions of flow rate and intraglottal pressure distribution, but poor predictions of separation location. For larger orifice widths, the ME models were poor predictors of flow rate and intraglottal pressure, but they satisfactorily predicted separation location. For the vibrating vocal fold case, all models resulted in similar predictions of mean intraglottal pressure, maximum orifice area, and vibration frequency, but vastly different predictions of separation location and maximum flow rate.
NASA Astrophysics Data System (ADS)
Benjankar, R. M.; Sohrabi, M.; Tonina, D.; McKean, J. A.
2013-12-01
Aquatic habitat models utilize flow variables which may be predicted with one-dimensional (1D) or two-dimensional (2D) hydrodynamic models to simulate aquatic habitat quality. Studies focusing on the effects of hydrodynamic model dimensionality on predicted aquatic habitat quality are limited. Here we present the analysis of the impact of flow variables predicted with 1D and 2D hydrodynamic models on simulated spatial distribution of habitat quality and Weighted Usable Area (WUA) for fall-spawning Chinook salmon. Our study focuses on three river systems located in central Idaho (USA), which are a straight and pool-riffle reach (South Fork Boise River), small pool-riffle sinuous streams in a large meadow (Bear Valley Creek) and a steep-confined plane-bed stream with occasional deep forced pools (Deadwood River). We consider low and high flows in simple and complex morphologic reaches. Results show that 1D and 2D modeling approaches have effects on both the spatial distribution of the habitat and WUA for both discharge scenarios, but we did not find noticeable differences between complex and simple reaches. In general, the differences in WUA were small, but depended on stream type. Nevertheless, spatially distributed habitat quality difference is considerable in all streams. The steep-confined plane bed stream had larger differences between aquatic habitat quality defined with 1D and 2D flow models compared to results for streams with well defined macro-topographies, such as pool-riffle bed forms. KEY WORDS: one- and two-dimensional hydrodynamic models, habitat modeling, weighted usable area (WUA), hydraulic habitat suitability, high and low discharges, simple and complex reaches
Numerical simulation of boundary layers. Part 2: Ribbon-induced transition in Blasius flow
NASA Technical Reports Server (NTRS)
Spalart, P.; Yang, K. S.
1986-01-01
The early three-dimensional stages of transition in Blasius boundary layers are studied by numerical solution of the Navier-Stokes equations. A finite-amplitude two-dimensional wave and random low-amplitude three-dimensional disturbances are introduced. Rapid amplification of the three-dimensional components is observed and leads to transition. For intermediate amplitudes of the two-dimensional wave the breakdown is of subharmonic type, and the dominant spanwise wave number increases with the amplitude. For high amplitudes the energy of the fundamental mode is comparable to the energy of the subharmonic mode, but never dominates it; the breakdown is of mixed type. Visualizations, energy histories, and spectra are presented. The sensitivity of the results to various physical and numerical parameters is studied. Agreement with experimental and theoretical results is discussed.
Fan, Wenwen; Yuan, LinJiang; Li, Yonglin
2018-06-22
The flow pattern is considered to play an important role in the formation of aerobic granular sludge in a bubble column reactor; therefore, it is necessary to understand the behavior of the flow in the reactor. A three-dimensional computational fluid dynamics (CFD) simulation for bubble column reactor was established to visualize the flow patterns of two-phase air-liquid flow and three-phase air-liquid-sludge flow under different ratios of height to diameter (H/D ratio) and superficial gas upflow velocities (SGVs). Moreover, a simulation of the three-phase flow pattern at the same SGV and different characteristics of the sludge was performed in this study. The results show that not only SGV but also properties of sludge involve the transformation of flow behaviors and relative velocity between liquid and sludge. For the original activated sludge floc to cultivate aerobic granules, the flow pattern has nothing to do with sludge, but is influenced by SGV, and the vortices is occurred and the relative velocity is increased with an increase in SGV; the two-phase flow can simplify the three-phase flow that predicts the flow pattern development in bubble column reactor (BCR) for aerobic granulation. For the aerobic granules, the liquid flow behavior developed from the symmetrical circular flow to numbers and small-size vortices with an increase in the sludge diameter, the relative velocity is amount up to u r = 5.0, it is 29.4 times of original floc sludge.
User's manual for Interactive Data Display System (IDDS)
NASA Technical Reports Server (NTRS)
Stegeman, James D.
1992-01-01
A computer graphics package for the visualization of three-dimensional flow in turbomachinery has been developed and tested. This graphics package, called IDDS (Interactive Data Display System), is able to 'unwrap' the volumetric data cone associated with a centrifugal compressor and display the results in an easy to understand two-dimensional manner. IDDS will provide the majority of the visualization and analysis capability for the ICE (Integrated CFD and Experiment) system. This document is intended to serve as a user's manual for IDDS in a stand-alone mode. Currently, IDDS is capable of plotting two- or three-dimensional simulation data, but work is under way to expand IDDS so that experimental data can be accepted, plotted, and compared with a simulation dataset of the actual hardware being tested.
Fluid Physics of Foam Evolution and Flow
NASA Technical Reports Server (NTRS)
Aref, H.; Thoroddsen, S. T.; Sullivan, J. M.
2003-01-01
The grant supported theoretical, numerical and experimental work focused on the elucidation of the fluid physics of foam structure, evolution and flow. The experimental work concentrated on these subject areas: (a) Measurements of the speed of reconnections within a foam; (b) statistics of bubble rearrangements; and (c) three-dimensional reconstruction of the foam structure. On the numerical simulation and theory side our efforts concentrated on the subjects: (a) simulation techniques for 2D and 3D foams; (b) phase transition in a compressible foam; and (c) TCP structures.
Hydroelastic behaviour of a structure exposed to an underwater explosion
Colicchio, G.; Greco, M.; Brocchini, M.; Faltinsen, O. M.
2015-01-01
The hydroelastic interaction between an underwater explosion and an elastic plate is investigated num- erically through a domain-decomposition strategy. The three-dimensional features of the problem require a large computational effort, which is reduced through a weak coupling between a one-dimensional radial blast solver, which resolves the blast evolution far from the boundaries, and a three-dimensional compressible flow solver used where the interactions between the compression wave and the boundaries take place and the flow becomes three-dimensional. The three-dimensional flow solver at the boundaries is directly coupled with a modal structural solver that models the response of the solid boundaries like elastic plates. This enables one to simulate the fluid–structure interaction as a strong coupling, in order to capture hydroelastic effects. The method has been applied to the experimental case of Hung et al. (2005 Int. J. Impact Eng. 31, 151–168 (doi:10.1016/j.ijimpeng.2003.10.039)) with explosion and structure sufficiently far from other boundaries and successfully validated in terms of the evolution of the acceleration induced on the plate. It was also used to investigate the interaction of an underwater explosion with the bottom of a close-by ship modelled as an orthotropic plate. In the application, the acoustic phase of the fluid–structure interaction is examined, highlighting the need of the fluid–structure coupling to capture correctly the possible inception of cavitation. PMID:25512585
NASA Astrophysics Data System (ADS)
Kosovic, B.; Jimenez, P. A.; Haupt, S. E.; Martilli, A.; Olson, J.; Bao, J. W.
2017-12-01
At present, the planetary boundary layer (PBL) parameterizations available in most numerical weather prediction (NWP) models are one-dimensional. One-dimensional parameterizations are based on the assumption of horizontal homogeneity. This homogeneity assumption is appropriate for grid cell sizes greater than 10 km. However, for mesoscale simulations of flows in complex terrain with grid cell sizes below 1 km, the assumption of horizontal homogeneity is violated. Applying a one-dimensional PBL parameterization to high-resolution mesoscale simulations in complex terrain could result in significant error. For high-resolution mesoscale simulations of flows in complex terrain, we have therefore developed and implemented a three-dimensional (3D) PBL parameterization in the Weather Research and Forecasting (WRF) model. The implementation of the 3D PBL scheme is based on the developments outlined by Mellor and Yamada (1974, 1982). Our implementation in the Weather Research and Forecasting (WRF) model uses a pure algebraic model (level 2) to diagnose the turbulent fluxes. To evaluate the performance of the 3D PBL model, we use observations from the Wind Forecast Improvement Project 2 (WFIP2). The WFIP2 field study took place in the Columbia River Gorge area from 2015-2017. We focus on selected cases when physical phenomena of significance for wind energy applications such as mountain waves, topographic wakes, and gap flows were observed. Our assessment of the 3D PBL parameterization also considers a large-eddy simulation (LES). We carried out a nested LES with grid cell sizes of 30 m and 10 m covering a large fraction of the WFIP2 study area. Both LES domains were discretized using 6000 x 3000 x 200 grid cells in zonal, meridional, and vertical direction, respectively. The LES results are used to assess the relative magnitude of horizontal gradients of turbulent stresses and fluxes in comparison to vertical gradients. The presentation will highlight the advantages of the 3D PBL scheme in regions of complex terrain.
Shaded computer graphic techniques for visualizing and interpreting analytic fluid flow models
NASA Technical Reports Server (NTRS)
Parke, F. I.
1981-01-01
Mathematical models which predict the behavior of fluid flow in different experiments are simulated using digital computers. The simulations predict values of parameters of the fluid flow (pressure, temperature and velocity vector) at many points in the fluid. Visualization of the spatial variation in the value of these parameters is important to comprehend and check the data generated, to identify the regions of interest in the flow, and for effectively communicating information about the flow to others. The state of the art imaging techniques developed in the field of three dimensional shaded computer graphics is applied to visualization of fluid flow. Use of an imaging technique known as 'SCAN' for visualizing fluid flow, is studied and the results are presented.
NASA Technical Reports Server (NTRS)
Shyam, Vikram; Ameri, Ali; Luk, Daniel F.; Chen, Jen-Ping
2010-01-01
Unsteady three-dimensional RANS simulations have been performed on a highly loaded transonic turbine stage and results are compared to steady calculations as well as experiment. A low Reynolds number k- turbulence model is employed to provide closure for the RANS system. A phase-lag boundary condition is used in the periodic direction. This allows the unsteady simulation to be performed by using only one blade from each of the two rows. The objective of this paper is to study the effect of unsteadiness on rotor heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure results agreed favorably with experiment. The time-averaged heat transfer predicted by the unsteady simulation is higher than the heat transfer predicted by the steady simulation everywhere except at the leading edge. The shock structure formed due to stator-rotor interaction was analyzed. Heat transfer and pressure at the hub and casing were also studied. Thermal segregation was observed that leads to the heat transfer patterns predicted by steady and unsteady simulations to be different.
NASA Astrophysics Data System (ADS)
Cowton, L. R.; Neufeld, J. A.; Bickle, M.; White, N.; White, J.; Chadwick, A.
2017-12-01
Vertically-integrated gravity current models enable computationally efficient simulations of CO2 flow in sub-surface reservoirs. These simulations can be used to investigate the properties of reservoirs by minimizing differences between observed and modeled CO2 distributions. At the Sleipner project, about 1 Mt yr-1 of supercritical CO2 is injected at a depth of 1 km into a pristine saline aquifer with a thick shale caprock. Analysis of time-lapse seismic reflection surveys shows that CO2 is distributed within 9 discrete layers. The trapping mechanism comprises a stacked series of 1 m thick, impermeable shale horizons that are spaced at 30 m intervals through the reservoir. Within the stratigraphically highest reservoir layer, Layer 9, a submarine channel deposit has been mapped on the pre-injection seismic survey. Detailed measurements of the three-dimensional CO2 distribution within Layer 9 have been made using seven time-lapse surveys, providing a useful benchmark against which numerical flow simulations can be tested. Previous simulations have, in general, been largely unsuccessful in matching the migration rate of CO2 in this layer. Here, CO2 flow within Layer 9 is modeled as a vertically-integrated gravity current that spreads beneath a structurally complex caprock using a two-dimensional grid, considerably increasing computational efficiency compared to conventional three-dimensional simulators. This flow model is inverted to find the optimal reservoir permeability in Layer 9 by minimizing the difference between observed and predicted distributions of CO2 as a function of space and time. A three parameter inverse model, comprising reservoir permeability, channel permeability and channel width, is investigated by grid search. The best-fitting reservoir permeability is 3 Darcys, which is consistent with measurements made on core material from the reservoir. Best-fitting channel permeability is 26 Darcys. Finally, the ability of this simplified numerical model to forecast CO2 flow within Layer 9 is tested. Permeability recovered by modeling a suite of early seismic surveys is used to predict the CO2 distribution for a suite of later seismic surveys with a considerable degree of success. Forecasts have also been carried out that can be tested using future seismic surveys.
NASA Technical Reports Server (NTRS)
Drozda, Tomasz G.; Cabell, Karen F.; Passe, Bradley J.; Baurle, Robert A.
2017-01-01
Computational fluid dynamics analyses and experimental data are presented for the Mach 6 facility nozzle used in the Arc-Heated Scramjet Test Facility for the Enhanced Injection and Mixing Project (EIMP). This project, conducted at the NASA Langley Research Center, aims to investigate supersonic combustion ramjet (scramjet) fuel injection and mixing physics relevant to flight Mach numbers greater than 8. The EIMP experiments use a two-dimensional Mach 6 facility nozzle to provide the high-speed air simulating the combustor entrance flow of a scramjet engine. Of interest are the physical extent and the thermodynamic properties of the core flow at the nozzle exit plane. The detailed characterization of this flow is obtained from three-dimensional, viscous, Reynolds-averaged simulations. Thermodynamic nonequilibrium effects are also investigated. The simulations are compared with the available experimental data, which includes wall static pressures as well as in-stream static pressure, pitot pressure and total temperature obtained via in-stream probes positioned just downstream of the nozzle exit plane.
NASA Astrophysics Data System (ADS)
Lackey, Tahirih C.; Sotiropoulos, Fotis
2006-05-01
We solve numerically the three-dimensional incompressible Navier-Stokes equations to simulate the flow in a cylindrical container of aspect ratio one with exactly counter-rotating lids for a range of Reynolds numbers for which the flow is steady and three dimensional (300⩽Re⩽850). In agreement with linear stability results [C. Nore et al., J. Fluid Mech. 511, 45 (2004)] we find steady, axisymmetric solutions for Re <300. For Re >300 the equatorial shear layer becomes unstable to steady azimuthal modes and a complex vortical flow emerges, which consists of cat's eye radial vortices at the shear layer and azimuthally inclined axial vortices. Upon the onset of the three-dimensional instability the Lagrangian dynamics of the flow become chaotic. A striking finding of our work is that there is an optimal Reynolds number at which the stirring rate in the chaotically advected flow is maximized. Above this Reynolds number, the integrable (unmixed) part of the flow begins to grow and the stirring rate is shown conclusively to decline. This finding is explained in terms of and appears to support a recently proposed theory of chaotic advection [I. Mezić, J. Fluid Mech. 431, 347 (2001)]. Furthermore, the calculated rate of decay of the stirring rate with Reynolds numbers is consistent with the Re-1/2 upper bound predicted by the theory.
SOMAR-LES: A framework for multi-scale modeling of turbulent stratified oceanic flows
NASA Astrophysics Data System (ADS)
Chalamalla, Vamsi K.; Santilli, Edward; Scotti, Alberto; Jalali, Masoud; Sarkar, Sutanu
2017-12-01
A new multi-scale modeling technique, SOMAR-LES, is presented in this paper. Localized grid refinement gives SOMAR (the Stratified Ocean Model with Adaptive Resolution) access to small scales of the flow which are normally inaccessible to general circulation models (GCMs). SOMAR-LES drives a LES (Large Eddy Simulation) on SOMAR's finest grids, forced with large scale forcing from the coarser grids. Three-dimensional simulations of internal tide generation, propagation and scattering are performed to demonstrate this multi-scale modeling technique. In the case of internal tide generation at a two-dimensional bathymetry, SOMAR-LES is able to balance the baroclinic energy budget and accurately model turbulence losses at only 10% of the computational cost required by a non-adaptive solver running at SOMAR-LES's fine grid resolution. This relative cost is significantly reduced in situations with intermittent turbulence or where the location of the turbulence is not known a priori because SOMAR-LES does not require persistent, global, high resolution. To illustrate this point, we consider a three-dimensional bathymetry with grids adaptively refined along the tidally generated internal waves to capture remote mixing in regions of wave focusing. The computational cost in this case is found to be nearly 25 times smaller than that of a non-adaptive solver at comparable resolution. In the final test case, we consider the scattering of a mode-1 internal wave at an isolated two-dimensional and three-dimensional topography, and we compare the results with Legg (2014) numerical experiments. We find good agreement with theoretical estimates. SOMAR-LES is less dissipative than the closure scheme employed by Legg (2014) near the bathymetry. Depending on the flow configuration and resolution employed, a reduction of more than an order of magnitude in computational costs is expected, relative to traditional existing solvers.
Hu, Yandong; Werner, Carsten; Li, Dongqing
2004-12-15
Surface roughness has been considered as a passive means of enhancing species mixing in electroosmotic flow through microfluidic systems. It is highly desirable to understand the synergetic effect of three-dimensional (3D) roughness and surface heterogeneity on the electrokinetic flow through microchannels. In this study, we developed a three-dimensional finite-volume-based numerical model to simulate electroosmotic transport in a slit microchannel (formed between two parallel plates) with numerous heterogeneous prismatic roughness elements arranged symmetrically and asymmetrically on the microchannel walls. We consider that all 3D prismatic rough elements have the same surface charge or zeta potential, the substrate (the microchannel wall) surface has a different zeta potential. The results showed that the rough channel's geometry and the electroosmotic mobility ratio of the roughness elements' surface to that of the substrate, epsilon(mu), have a dramatic influence on the induced-pressure field, the electroosmotic flow patterns, and the electroosmotic flow rate in the heterogeneous rough microchannels. The associated sample-species transport presents a tidal-wave-like concentration field at the intersection between four neighboring rough elements under low epsilon(mu) values and has a concentration field similar to that of the smooth channels under high epsilon(mu) values.
NASA Technical Reports Server (NTRS)
Chen, Y. S.; Farmer, R. C.
1992-01-01
A particulate two-phase flow CFD model was developed based on the FDNS code which is a pressure based predictor plus multi-corrector Navier-Stokes flow solver. Turbulence models with compressibility correction and the wall function models were employed as submodels. A finite-rate chemistry model was used for reacting flow simulation. For particulate two-phase flow simulations, a Eulerian-Lagrangian solution method using an efficient implicit particle trajectory integration scheme was developed in this study. Effects of particle-gas reaction and particle size change to agglomeration or fragmentation were not considered in this investigation. At the onset of the present study, a two-dimensional version of FDNS which had been modified to treat Lagrangian tracking of particles (FDNS-2DEL) had already been written and was operational. The FDNS-2DEL code was too slow for practical use, mainly because it had not been written in a form amenable to vectorization on the Cray, nor was the full three-dimensional form of FDNS utilized. The specific objective of this study was to reorder to calculations into long single arrays for automatic vectorization on the Cray and to implement the full three-dimensional version of FDNS to produce the FDNS-3DEL code. Since the FDNS-2DEL code was slow, a very limited number of test cases had been run with it. This study was also intended to increase the number of cases simulated to verify and improve, as necessary, the particle tracking methodology coded in FDNS.
Time-Spectral Rotorcraft Simulations on Overset Grids
NASA Technical Reports Server (NTRS)
Leffell, Joshua I.; Murman, Scott M.; Pulliam, Thomas H.
2014-01-01
The Time-Spectral method is derived as a Fourier collocation scheme and applied to NASA's overset Reynolds-averaged Navier-Stokes (RANS) solver OVERFLOW. The paper outlines the Time-Spectral OVERFLOWimplementation. Successful low-speed laminar plunging NACA 0012 airfoil simulations demonstrate the capability of the Time-Spectral method to resolve the highly-vortical wakes typical of more expensive three-dimensional rotorcraft configurations. Dealiasing, in the form of spectral vanishing viscosity (SVV), facilitates the convergence of Time-Spectral calculations of high-frequency flows. Finally, simulations of the isolated V-22 Osprey tiltrotor for both hover and forward (edgewise) flight validate the three-dimensional Time-Spectral OVERFLOW implementation. The Time-Spectral hover simulation matches the time-accurate calculation using a single harmonic. Significantly more temporal modes and SVV are required to accurately compute the forward flight case because of its more active, high-frequency wake.
Software Aids In Graphical Depiction Of Flow Data
NASA Technical Reports Server (NTRS)
Stegeman, J. D.
1995-01-01
Interactive Data Display System (IDDS) computer program is graphical-display program designed to assist in visualization of three-dimensional flow in turbomachinery. Grid and simulation data files in PLOT3D format required for input. Able to unwrap volumetric data cone associated with centrifugal compressor and display results in easy-to-understand two- or three-dimensional plots. IDDS provides majority of visualization and analysis capability for Integrated Computational Fluid Dynamics and Experiment (ICE) system. IDDS invoked from any subsystem, or used as stand-alone package of display software. Generates contour, vector, shaded, x-y, and carpet plots. Written in C language. Input file format used by IDDS is that of PLOT3D (COSMIC item ARC-12782).
Coherent vertical structures in numerical simulations of buoyant plumes from wildland fires
Philip Cunningham; Scott L. Goodrick; M. Yousuff Hussaini; Rodman R. Linn
2005-01-01
The structure and dynamics of buoyant plumes arising from surface-based heat sources in a vertically sheared ambient atmospheric flow are examined via simulations of a three-dimensional, compressible numerical model. Simple circular heat sources and asymmetric elliptical ring heat sources that are representative of wildland fires of moderate intensity are considered....
NASA Astrophysics Data System (ADS)
Huang, M.; Bisht, G.; Zhou, T.; Chen, X.; Dai, H.; Hammond, G. E.; Riley, W. J.; Downs, J.; Liu, Y.; Zachara, J. M.
2016-12-01
A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively-parallel multi-physics reactive tranport model (PFLOTRAN). The coupled model (CLM-PFLOTRAN) is applied to a 400m×400m study domain instrumented with groundwater monitoring wells in the Hanford 300 Area along the Columbia River. CLM-PFLOTRAN simulations are performed at three different spatial resolutions over the period 2011-2015 to evaluate the impact of spatial resolution on simulated variables. To demonstrate the difference in model simulations with and without lateral subsurface flow, a vertical-only CLM-PFLOTRAN simulation is also conducted for comparison. Results show that the coupled model is skillful in simulating stream-aquifer interactions, and the land-surface energy partitioning can be strongly modulated by groundwater-river water interactions in high water years due to increased soil moisture availability caused by elevated groundwater table. In addition, spatial resolution does not seem to impact the land surface energy flux simulations, although it is a key factor for accurately estimating the mass exchange rates at the boundaries and associated biogeochemical reactions in the aquifer. The coupled model developed in this study establishes a solid foundation for understanding co-evolution of hydrology and biogeochemistry along the river corridors under historical and future hydro-climate changes.
A k-Omega Turbulence Model for Quasi-Three-Dimensional Turbomachinery Flows
NASA Technical Reports Server (NTRS)
Chima, Rodrick V.
1995-01-01
A two-equation k-omega turbulence model has been developed and applied to a quasi-three-dimensional viscous analysis code for blade-to-blade flows in turbomachinery. the code includes the effects of rotation, radius change, and variable stream sheet thickness. The flow equations are given and the explicit runge-Kutta solution scheme is described. the k-omega model equations are also given and the upwind implicit approximate-factorization solution scheme is described. Three cases were calculated: transitional flow over a flat plate, a transonic compressor rotor, and transonic turbine vane with heat transfer. Results were compared to theory, experimental data, and to results using the Baldwin-Lomax turbulence model. The two models compared reasonably well with the data and surprisingly well with each other. Although the k-omega model behaves well numerically and simulates effects of transition, freestream turbulence, and wall roughness, it was not decisively better than the Baldwin-Lomax model for the cases considered here.
Numerical simulation of supersonic inlets using a three-dimensional viscous flow analysis
NASA Technical Reports Server (NTRS)
Anderson, B. H.; Towne, C. E.
1980-01-01
A three dimensional fully viscous computer analysis was evaluated to determine its usefulness in the design of supersonic inlets. This procedure takes advantage of physical approximations to limit the high computer time and storage associated with complete Navier-Stokes solutions. Computed results are presented for a Mach 3.0 supersonic inlet with bleed and a Mach 7.4 hypersonic inlet. Good agreement was obtained between theory and data for both inlets. Results of a mesh sensitivity study are also shown.
Low-Dimensional Model of a Cylinder Wake
NASA Astrophysics Data System (ADS)
Luchtenburg, Mark; Cohen, Kelly; Siegel, Stefan; McLaughlin, Tom
2003-11-01
In a two-dimensional cylinder wake, self-excited oscillations in the form of periodic shedding of vortices are observed above a critical Reynolds number of about 47. These flow-induced non-linear oscillations lead to some undesirable effects associated with unsteady pressures such as fluid-structure interactions. An effective way of suppressing the self-excited flow oscillations is by the incorporation of closed-loop flow control. In this effort, a low dimensional, proper orthogonal decomposition (POD) model is based on data obtained from direct numerical simulations of the Navier Stokes equations for the two dimensional circular cylinder wake at a Reynolds number of 100. Three different conditions are examined, namely, the unforced wake experiencing steady-state vortex shedding, the transient behavior of the unforced wake at the startup of the simulation, and transient response to open-loop harmonic forcing by translation. We discuss POD mode selection and the number of modes that need to be included in the low-dimensional model. It is found that the transient dynamics need to be represented by a coupled system that includes an aperiodic mean-flow mode, an aperiodic shift mode and the periodic von Karman modes. Finally, a least squares mapping method is introduced to develop the non-linear state equations. The predictive capability of the state equations demonstrates the ability of the above approach to model the transient dynamics of the wake.
Model modifications for simulation of flow through stratified rocks in eastern Ohio
Helgesen, J.O.; Razem, A.C.; Larson, S.P.
1982-01-01
A quasi three-dimensional groundwater flow model is being used as part of a study to determine impacts of coal-strip mining on local hydrologic systems. Modifications to the model were necessary to simulate local hydrologic conditions properly. Perched water tables required that the method of calculating vertical flow rate be changed. A head-dependent spring-discharge function and a head-dependent stream aquifer-interchange function were added to the program. Modifications were also made to allow recharge from precipitation to any layer. The modified program, data deck instructions, and sample input and output are presented. (USGS)
DSMC simulation of the interaction between rarefied free jets
NASA Technical Reports Server (NTRS)
Dagum, Leonardo; Zhu, S. H. K.
1993-01-01
This paper presents a direct simulation Monte Carlo (DSMC) calculation of two interacting free jets exhausting into vacuum. The computed flow field is compared against available experimental data and shows excellent agreement everywhere except in the very near field (less than one orifice diameter downstream of the jet exhaust plane). The lack of agreement in this region is attributed to having assumed an inviscid boundary condition for the orifice lip. The results serve both to validate the DSMC code for a very complex, three dimensional non-equilibrium flow field, and to provide some insight as to the complicated nature of this flow.
NASA Technical Reports Server (NTRS)
Deiwert, G. S.; Rothmund, H.
1984-01-01
The supersonic flow field over a body of revolution incident to the free stream is simulated numerically on a large, array processor (the CDC CYBER 205). The configuration is composed of a cone-cylinder forebody followed by a conical afterbody from which emanates a centered, supersonic propulsive jet. The free-stream Mach number is 2, the jet-exist Mach number is 2.5, and the jet-to-free-stream static pressure ratio is 3. Both the external flow and the exhaust are ideal air at a common total temperature.
NASA Astrophysics Data System (ADS)
Miller, K. L.; Berg, S. J.; Davison, J. H.; Sudicky, E. A.; Forsyth, P. A.
2018-01-01
Although high performance computers and advanced numerical methods have made the application of fully-integrated surface and subsurface flow and transport models such as HydroGeoSphere common place, run times for large complex basin models can still be on the order of days to weeks, thus, limiting the usefulness of traditional workhorse algorithms for uncertainty quantification (UQ) such as Latin Hypercube simulation (LHS) or Monte Carlo simulation (MCS), which generally require thousands of simulations to achieve an acceptable level of accuracy. In this paper we investigate non-intrusive polynomial chaos for uncertainty quantification, which in contrast to random sampling methods (e.g., LHS and MCS), represents a model response of interest as a weighted sum of polynomials over the random inputs. Once a chaos expansion has been constructed, approximating the mean, covariance, probability density function, cumulative distribution function, and other common statistics as well as local and global sensitivity measures is straightforward and computationally inexpensive, thus making PCE an attractive UQ method for hydrologic models with long run times. Our polynomial chaos implementation was validated through comparison with analytical solutions as well as solutions obtained via LHS for simple numerical problems. It was then used to quantify parametric uncertainty in a series of numerical problems with increasing complexity, including a two-dimensional fully-saturated, steady flow and transient transport problem with six uncertain parameters and one quantity of interest; a one-dimensional variably-saturated column test involving transient flow and transport, four uncertain parameters, and two quantities of interest at 101 spatial locations and five different times each (1010 total); and a three-dimensional fully-integrated surface and subsurface flow and transport problem for a small test catchment involving seven uncertain parameters and three quantities of interest at 241 different times each. Numerical experiments show that polynomial chaos is an effective and robust method for quantifying uncertainty in fully-integrated hydrologic simulations, which provides a rich set of features and is computationally efficient. Our approach has the potential for significant speedup over existing sampling based methods when the number of uncertain model parameters is modest ( ≤ 20). To our knowledge, this is the first implementation of the algorithm in a comprehensive, fully-integrated, physically-based three-dimensional hydrosystem model.
Three-dimensional wave evolution on electrified falling films
NASA Astrophysics Data System (ADS)
Tomlin, Ruben; Papageorgiou, Demetrios; Pavliotis, Greg
2016-11-01
We consider the full three-dimensional model for a thin viscous liquid film completely wetting a flat infinite solid substrate at some non-zero angle to the horizontal, with an electric field normal to the substrate far from the flow. Thin film flows have applications in cooling processes. Many studies have shown that the presence of interfacial waves increases heat transfer by orders of magnitude due to film thinning and convection effects. A long-wave asymptotics procedure yields a Kuramoto-Sivashinsky equation with a non-local term to model the weakly nonlinear evolution of the interface dynamics for overlying film arrangements, with a restriction on the electric field strength. The non-local term is always linearly destabilising and produces growth rates proportional to the cube of the magnitude of the wavenumber vector. A sufficiently strong electric field is able promote non-trivial dynamics for subcritical Reynolds number flows where the flat interface is stable in the absence of an electric field. We present numerical simulations where we observe rich dynamical behavior with competing attractors, including "snaking" travelling waves and other fully three-dimensional wave formations. EPSRC studentship (RJT).
Numerical Simulation of Bow Waves and Transom-Stern Flows
NASA Astrophysics Data System (ADS)
Dommermuth, Douglas G.; Schlageter, Eric A.; Talcott, John C.; Wyatt, Donald C.; Novikov, Evgeny A.
1997-11-01
A stratified-flow formulation is used to model the breaking bow wave and the separated transom-stern flow that are generated by a ship moving with forward speed. The interface of the air with the water is identified as the zero level-set of a three-dimensional function. The ship is modeled using a body-force technique on a cartesian grid. The three-dimensional body-force is generated using a surface panelization of the entire ship, including the above-water geometry up to and including the deck. The effects of surface tension are modeled as a source term that is concentrated at the air-water interface. The effects of gravity are modeled as a volumetric force. The three-dimensional, unsteady, Navier-Stokes equations are expressed in primitive-variable form. A LES formulation with a Smagorinsky sub-grid-scale model is used to model turbulence. Numerical convergence is demonstrated using 128x64x65, 256x128x129, and 512x256x257 grid points. The numerical results compare well to whisker-probe measurements of the free-surface elevation generated by a naval combatant.
Theoretical Analysis of Novel Quasi-3D Microscopy of Cell Deformation
Qiu, Jun; Baik, Andrew D.; Lu, X. Lucas; Hillman, Elizabeth M. C.; Zhuang, Zhuo; Guo, X. Edward
2012-01-01
A novel quasi-three-dimensional (quasi-3D) microscopy technique has been developed to enable visualization of a cell under dynamic loading in two orthogonal planes simultaneously. The three-dimensional (3D) dynamics of the mechanical behavior of a cell under fluid flow can be examined at a high temporal resolution. In this study, a numerical model of a fluorescently dyed cell was created in 3D space, and the cell was subjected to uniaxial deformation or unidirectional fluid shear flow via finite element analysis (FEA). Therefore, the intracellular deformation in the simulated cells was exactly prescribed. Two-dimensional fluorescent images simulating the quasi-3D technique were created from the cell and its deformed states in 3D space using a point-spread function (PSF) and a convolution operation. These simulated original and deformed images were processed by a digital image correlation technique to calculate quasi-3D-based intracellular strains. The calculated strains were compared to the prescribed strains, thus providing a theoretical basis for the measurement of the accuracy of quasi-3D and wide-field microscopy-based intracellular strain measurements against the true 3D strains. The signal-to-noise ratio (SNR) of the simulated quasi-3D images was also modulated using additive Gaussian noise, and a minimum SNR of 12 was needed to recover the prescribed strains using digital image correlation. Our computational study demonstrated that quasi-3D strain measurements closely recovered the true 3D strains in uniform and fluid flow cellular strain states to within 5% strain error. PMID:22707985
Simulations of material mixing in laser-driven reshock experiments
NASA Astrophysics Data System (ADS)
Haines, Brian M.; Grinstein, Fernando F.; Welser-Sherrill, Leslie; Fincke, James R.
2013-02-01
We perform simulations of a laser-driven reshock experiment [Welser-Sherrill et al., High Energy Density Phys. (unpublished)] in the strong-shock high energy-density regime to better understand material mixing driven by the Richtmyer-Meshkov instability. Validation of the simulations is based on direct comparison of simulation and radiographic data. Simulations are also compared with published direct numerical simulation and the theory of homogeneous isotropic turbulence. Despite the fact that the flow is neither homogeneous, isotropic nor fully turbulent, there are local regions in which the flow demonstrates characteristics of homogeneous isotropic turbulence. We identify and isolate these regions by the presence of high levels of turbulent kinetic energy (TKE) and vorticity. After reshock, our analysis shows characteristics consistent with those of incompressible isotropic turbulence. Self-similarity and effective Reynolds number assessments suggest that the results are reasonably converged at the finest resolution. Our results show that in shock-driven transitional flows, turbulent features such as self-similarity and isotropy only fully develop once de-correlation, characteristic vorticity distributions, and integrated TKE, have decayed significantly. Finally, we use three-dimensional simulation results to test the performance of two-dimensional Reynolds-averaged Navier-Stokes simulations. In this context, we also test a presumed probability density function turbulent mixing model extensively used in combustion applications.
Assessment of CFD Estimation of Aerodynamic Characteristics of Basic Reusable Rocket Configurations
NASA Astrophysics Data System (ADS)
Fujimoto, Keiichiro; Fujii, Kozo
Flow-fields around the basic SSTO-rocket configurations are numerically simulated by the Reynolds-averaged Navier-Stokes (RANS) computations. Simulations of the Apollo-like configuration is first carried out, where the results are compared with NASA experiments and the prediction ability of the RANS simulation is discussed. The angle of attack of the freestream ranges from 0° to 180° and the freestream Mach number ranges from 0.7 to 2.0. Computed aerodynamic coefficients for the Apollo-like configuration agree well with the experiments under a wide range of flow conditions. The flow simulations around the slender Apollo-type configuration are carried out next and the results are compared with the experiments. Computed aerodynamic coefficients also agree well with the experiments. Flow-fields are dominated by the three-dimensional massively separated flow, which should be captured for accurate aerodynamic prediction. Grid refinement effects on the computed aerodynamic coefficients are investigated comprehensively.
NASA Astrophysics Data System (ADS)
Kordilla, J.; Bresinsky, L. T.
2017-12-01
The physical mechanisms that govern preferential flow dynamics in unsaturated fractured rock formations are complex and not well understood. Fracture intersections may act as an integrator of unsaturated flow, leading to temporal delay, intermittent flow and partitioning dynamics. In this work, a three-dimensional Pairwise-Force Smoothed Particle Hydrodynamics (PF-SPH) model is being applied in order to simulate gravity-driven multiphase flow at synthetic fracture intersections. SPH, as a meshless Lagrangian method, is particularly suitable for modeling deformable interfaces, such as three-phase contact dynamics of droplets, rivulets and free-surface films. The static and dynamic contact angle can be recognized as the most important parameter of gravity-driven free-surface flow. In SPH, surface tension and adhesion naturally emerges from the implemented pairwise fluid-fluid (sff) and solid-fluid (ssf) interaction force. The model was calibrated to a contact angle of 65°, which corresponds to the wetting properties of water on Poly(methyl methacrylate). The accuracy of the SPH simulations were validated against an analytical solution of Poiseuille flow between two parallel plates and against laboratory experiments. Using the SPH model, the complex flow mode transitions from droplet to rivulet flow of an experimental study were reproduced. Additionally, laboratory dimensionless scaling experiments of water droplets were successfully replicated in SPH. Finally, SPH simulations were used to investigate the partitioning dynamics of single droplets into synthetic horizontal fractures with various apertures (Δdf = 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 mm) and offsets (Δdoff = -1.5, -1.0, -0.5, 0, 1.0, 2.0, 3.0 mm). Fluid masses were measured in the domains R1, R2 and R3. The perfect conditions of ideally smooth surfaces and the SPH inherent advantage of particle tracking allow the recognition of small scale partitioning mechanisms and its importance for bulk flow behavior.
Convection- and SASI-driven flows in parametrized models of core-collapse supernova explosions
Endeve, E.; Cardall, C. Y.; Budiardja, R. D.; ...
2016-01-21
We present initial results from three-dimensional simulations of parametrized core-collapse supernova (CCSN) explosions obtained with our astrophysical simulation code General Astrophysical Simulation System (GenASIS). We are interested in nonlinear flows resulting from neutrino-driven convection and the standing accretion shock instability (SASI) in the CCSN environment prior to and during the explosion. By varying parameters in our model that control neutrino heating and shock dissociation, our simulations result in convection-dominated and SASI-dominated evolution. We describe this initial set of simulation results in some detail. To characterize the turbulent flows in the simulations, we compute and compare velocity power spectra from convection-dominatedmore » and SASI-dominated (both non-exploding and exploding) models. When compared to SASI-dominated models, convection-dominated models exhibit significantly more power on small spatial scales.« less
Wang, Ao; Song, Qiang; Ji, Bingqiang; Yao, Qiang
2015-12-01
As a key mechanism of submicron particle capture in wet deposition and wet scrubbing processes, thermophoresis is influenced by the flow and temperature fields. Three-dimensional direct numerical simulations were conducted to quantify the characteristics of the flow and temperature fields around a droplet at three droplet Reynolds numbers (Re) that correspond to three typical boundary-layer-separation flows (steady axisymmetric, steady plane-symmetric, and unsteady plane-symmetric flows). The thermophoretic motion of submicron particles was simulated in these cases. Numerical results show that the motion of submicron particles around the droplet and the deposition distribution exhibit different characteristics under three typical flow forms. The motion patterns of particles are dependent on their initial positions in the upstream and flow forms. The patterns of particle motion and deposition are diversified as Re increases. The particle motion pattern, initial position of captured particles, and capture efficiency change periodically, especially during periodic vortex shedding. The key effects of flow forms on particle motion are the shape and stability of the wake behind the droplet. The drag force of fluid and the thermophoretic force in the wake contribute jointly to the deposition of submicron particles after the boundary-layer separation around a droplet.
The three-dimensional structure of swirl-switching in bent pipe flow
Hufnagel, Lorenz; Canton, Jacopo; Örlü, Ramis; ...
2017-11-27
Swirl-switching is a low-frequency oscillatory phenomenon which affects the Dean vortices in bent pipes and may cause fatigue in piping systems. Despite thirty years worth of research, the mechanism that causes these oscillations and the frequencies that characterise them remain unclear. In this paper, we show that a three-dimensional wave-like structure is responsible for the low-frequency switching of the dominant Dean vortex. The present study, performed via direct numerical simulation, focuses on the turbulent flow through amore » $$90^{\\circ }$$pipe bend preceded and followed by straight pipe segments. A pipe with curvature 0.3 (defined as ratio between pipe radius and bend radius) is studied for a bulk Reynolds number $$Re=11\\,700$$, corresponding to a friction Reynolds number $$Re_{\\unicode[STIX]{x1D70F}}\\approx 360$$. Synthetic turbulence is generated at the inflow section and used instead of the classical recycling method in order to avoid the interference between recycling and swirl-switching frequencies. The flow field is analysed by three-dimensional proper orthogonal decomposition (POD) which for the first time allows the identification of the source of swirl-switching: a wave-like structure that originates in the pipe bend. Contrary to some previous studies, the flow in the upstream pipe does not show any direct influence on the swirl-switching modes. Finally, our analysis further shows that a three-dimensional characterisation of the modes is crucial to understand the mechanism, and that reconstructions based on two-dimensional POD modes are incomplete.« less
The three-dimensional structure of swirl-switching in bent pipe flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hufnagel, Lorenz; Canton, Jacopo; Örlü, Ramis
Swirl-switching is a low-frequency oscillatory phenomenon which affects the Dean vortices in bent pipes and may cause fatigue in piping systems. Despite thirty years worth of research, the mechanism that causes these oscillations and the frequencies that characterise them remain unclear. In this paper, we show that a three-dimensional wave-like structure is responsible for the low-frequency switching of the dominant Dean vortex. The present study, performed via direct numerical simulation, focuses on the turbulent flow through amore » $$90^{\\circ }$$pipe bend preceded and followed by straight pipe segments. A pipe with curvature 0.3 (defined as ratio between pipe radius and bend radius) is studied for a bulk Reynolds number $$Re=11\\,700$$, corresponding to a friction Reynolds number $$Re_{\\unicode[STIX]{x1D70F}}\\approx 360$$. Synthetic turbulence is generated at the inflow section and used instead of the classical recycling method in order to avoid the interference between recycling and swirl-switching frequencies. The flow field is analysed by three-dimensional proper orthogonal decomposition (POD) which for the first time allows the identification of the source of swirl-switching: a wave-like structure that originates in the pipe bend. Contrary to some previous studies, the flow in the upstream pipe does not show any direct influence on the swirl-switching modes. Finally, our analysis further shows that a three-dimensional characterisation of the modes is crucial to understand the mechanism, and that reconstructions based on two-dimensional POD modes are incomplete.« less
Lee, Pil Hyong; Han, Sang Seok; Hwang, Sang Soon
2008-01-01
Modeling and simulation for heat and mass transport in micro channel are being used extensively in researches and industrial applications to gain better understanding of the fundamental processes and to optimize fuel cell designs before building a prototype for engineering application. In this study, we used a single-phase, fully three dimensional simulation model for PEMFC that can deal with both anode and cathode flow field for examining the micro flow channel with electrochemical reaction. The results show that hydrogen and oxygen were solely supplied to the membrane by diffusion mechanism rather than convection transport, and the higher pressure drop at cathode side is thought to be caused by higher flow rate of oxygen at cathode. And it is found that the amount of water in cathode channel was determined by water formation due to electrochemical reaction plus electro-osmotic mass flux directing toward the cathode side. And it is very important to model the back diffusion and electro-osmotic mass flux accurately since the two flux was closely correlated each other and greatly influenced for determination of ionic conductivity of the membrane which directly affects the performance of fuel cell. PMID:27879774
Shakhawath Hossain, Md; Bergstrom, D J; Chen, X B
2015-12-01
The in vitro chondrocyte cell culture for cartilage tissue regeneration in a perfusion bioreactor is a complex process. Mathematical modeling and computational simulation can provide important insights into the culture process, which would be helpful for selecting culture conditions to improve the quality of the developed tissue constructs. However, simulation of the cell culture process is a challenging task due to the complicated interaction between the cells and local fluid flow and nutrient transport inside the complex porous scaffolds. In this study, a mathematical model and computational framework has been developed to simulate the three-dimensional (3D) cell growth in a porous scaffold placed inside a bi-directional flow perfusion bioreactor. The model was developed by taking into account the two-way coupling between the cell growth and local flow field and associated glucose concentration, and then used to perform a resolved-scale simulation based on the lattice Boltzmann method (LBM). The simulation predicts the local shear stress, glucose concentration, and 3D cell growth inside the porous scaffold for a period of 30 days of cell culture. The predicted cell growth rate was in good overall agreement with the experimental results available in the literature. This study demonstrates that the bi-directional flow perfusion culture system can enhance the homogeneity of the cell growth inside the scaffold. The model and computational framework developed is capable of providing significant insight into the culture process, thus providing a powerful tool for the design and optimization of the cell culture process. © 2015 Wiley Periodicals, Inc.
LavaSIM: the effect of heat transfer in 3D on lava flow characteristics (Invited)
NASA Astrophysics Data System (ADS)
Fujita, E.
2013-12-01
Characteristics of lava flow are governed by many parameters like lava viscosity, effusion rate, ground topography, etc. The accuracy and applicability of lava flow simulation code is evaluated whether the numerical simulation can reproduce these features quantitatively, which is important from both strategic and scientific points of views. Many lava flow simulation codes are so far proposed, and they are classified into two categories, i.e., the deterministic and the probabilistic models. LavaSIM is one of the former category models, and has a disadvantage of time consuming. But LavaSIM can solves the equations of continuity, motion, energy by step and has an advantage in the calculation of three-dimensional analysis with solid-liquid two phase flow, including the heat transfer between lava, solidified crust, air, water and ground, and three-dimensional convection in liquid lava. In other word, we can check the detailed structure of lava flow by LavaSIM. Therefore, this code can produce both channeled and fan-dispersive flows. The margin of the flow is solidified by cooling and these solidified crusts control the behavior of successive lava flow. In case of a channel flow, the solidified margin supports the stable central main flow and elongates the lava flow distance. The cross section of lava flow shows that the liquid lava flows between solidified crusts. As for the lava extrusion flow rate, LavaSIM can include the time function as well as the location of the vents. In some cases, some parts of the solidified wall may be broken by the pressure of successive flow and/or re-melting. These mechanisms could characterize complex features of the observed lava flows at many volcanoes in the world. To apply LavaSIM to the benchmark tests organized by V-hub is important to improve the lava flow evaluation technique.
NASA Astrophysics Data System (ADS)
Fernholz, H. H.; Krause, E.
Papers are presented on recent research concerning three-dimensional turbulent boundary layers. Topics examined include experimental techniques in three-dimensional turbulent boundary layers, turbulence measurements in ship-model flow, measurements of Reynolds-stress profiles in the stern region of a ship model, the effects of crossflow on the vortex-layer-type three-dimensional flow separation, and wind tunnel investigations of some three-dimensional separated turbulent boundary layers. Also examined are three-dimensional boundary layers in turbomachines, the boundary layers on bodies of revolution spinning in axial flows, the effect on a developed turbulent boundary layer of a sudden local wall motion, three-dimensional turbulent boundary layer along a concave wall, the numerical computation of three-dimensional boundary layers, a numerical study of corner flows, three-dimensional boundary calculations in design aerodynamics, and turbulent boundary-layer calculations in design aerodynamics. For individual items see A83-47012 to A83-47036
Wake Management Strategies for Reduction of Turbomachinery Fan Noise
NASA Technical Reports Server (NTRS)
Waitz, Ian A.
1998-01-01
The primary objective of our work was to evaluate and test several wake management schemes for the reduction of turbomachinery fan noise. Throughout the course of this work we relied on several tools. These include 1) Two-dimensional steady boundary-layer and wake analyses using MISES (a thin-shear layer Navier-Stokes code), 2) Two-dimensional unsteady wake-stator interaction simulations using UNSFLO, 3) Three-dimensional, steady Navier-Stokes rotor simulations using NEWT, 4) Internal blade passage design using quasi-one-dimensional passage flow models developed at MIT, 5) Acoustic modeling using LINSUB, 6) Acoustic modeling using VO72, 7) Experiments in a low-speed cascade wind-tunnel, and 8) ADP fan rig tests in the MIT Blowdown Compressor.
Simulations of laminar boundary-layer flow encountering large-scale surface indentions
NASA Astrophysics Data System (ADS)
Beratlis, N.; Balaras, E.; Squires, K.; Vizard, A.
2016-03-01
The transition from laminar to turbulent flow over dimples and grooves has been investigated through a series of direct numerical simulations. Emphasis has been given to the mechanism of transition and the momentum transport in the post-dimple boundary layer. It has been found that the dimple geometry plays an important role in the evolution of the turbulent boundary layer downstream. The mechanism of transition in all cases is that of the reorientation of the spanwise vorticity into streamwise oriented structures resembling hairpin vortices commonly encountered in wall bounded turbulent flows. Although qualitatively the transition mechanism amongst the three different cases is similar, important quantitative differences exist. It was shown that two-dimensional geometries like a groove are more stable than three-dimensional geometries like a dimple. In addition, it was found that the cavity geometry controls the initial thickness of the boundary layer and practically results in a shift of the virtual origin of the turbulent boundary layer. Important differences in the momentum transport downstream of the dimples exist but in all cases the boundary layer grows in a self-similar manner.
Three-dimensional simulation of microwave-induced helium plasma under atmospheric pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, G. L.; Hua, W., E-mail: huaw@scu.edu.cn; Guo, S. Y.
2016-07-15
A three-dimensional model is presented to investigate helium plasma generated by microwave under atmospheric pressure in this paper, which includes the physical processes of electromagnetic wave propagation, electron and heavy species transport, gas flow, and heat transfer. The model is based on the fluid approximation calculation and local thermodynamic equilibrium assumption. The simulation results demonstrate that the maxima of the electron density and gas temperature are 4.79 × 10{sup 17 }m{sup −3} and 1667 K, respectively, for the operating conditions with microwave power of 500 W, gas flow rate of 20 l/min, and initial gas temperature of 500 K. The electromagnetic field distribution in the plasma sourcemore » is obtained by solving Helmholtz equation. Electric field strength of 2.97 × 10{sup 4 }V/m is obtained. There is a broad variation on microwave power, gas flow rate, and initial gas temperature to obtain deeper information about the changes of the electron density and gas temperature.« less
Lai, Chintu
1977-01-01
Two-dimensional unsteady flows of homogeneous density in estuaries and embayments can be described by hyperbolic, quasi-linear partial differential equations involving three dependent and three independent variables. A linear combination of these equations leads to a parametric equation of characteristic form, which consists of two parts: total differentiation along the bicharacteristics and partial differentiation in space. For its numerical solution, the specified-time-interval scheme has been used. The unknown, partial space-derivative terms can be eliminated first by suitable combinations of difference equations, converted from the corresponding differential forms and written along four selected bicharacteristics and a streamline. Other unknowns are thus made solvable from the known variables on the current time plane. The computation is carried to the second-order accuracy by using trapezoidal rule of integration. Means to handle complex boundary conditions are developed for practical application. Computer programs have been written and a mathematical model has been constructed for flow simulation. The favorable computer outputs suggest further exploration and development of model worthwhile. (Woodard-USGS)
AEROSOL TRANSPORT AND DEPOSITION IN SEQUENTIALLY BIFURCATING AIRWAYS
Deposition patterns and efficiencies of a dilute suspension of inhaled particles in three-dimensional double bifurcating airway models for both in-plane and 90 deg out-of-plane configurations have been numerically simulated assuming steady, laminar, constant-property air flow wit...
Boundary acquisition for setup of numerical simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diegert, C.
1997-12-31
The author presents a work flow diagram that includes a path that begins with taking experimental measurements, and ends with obtaining insight from results produced by numerical simulation. Two examples illustrate this path: (1) Three-dimensional imaging measurement at micron scale, using X-ray tomography, provides information on the boundaries of irregularly-shaped alumina oxide particles held in an epoxy matrix. A subsequent numerical simulation predicts the electrical field concentrations that would occur in the observed particle configurations. (2) Three-dimensional imaging measurement at meter scale, again using X-ray tomography, provides information on the boundaries fossilized bone fragments in a Parasaurolophus crest recently discoveredmore » in New Mexico. A subsequent numerical simulation predicts acoustic response of the elaborate internal structure of nasal passageways defined by the fossil record. The author must both add value, and must change the format of the three-dimensional imaging measurements before the define the geometric boundary initial conditions for the automatic mesh generation, and subsequent numerical simulation. The author applies a variety of filters and statistical classification algorithms to estimate the extents of the structures relevant to the subsequent numerical simulation, and capture these extents as faceted geometries. The author will describe the particular combination of manual and automatic methods used in the above two examples.« less
Natural convection in a cubical cavity with a coaxial heated cylinder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aithal, S. M.
High-resolution three-dimensional simulations were conducted to investigate the velocity and temperature fields in a cold cubical cavity due to natural convection induced by a centrally placed hot cylinder. Unsteady, incompressible Navier-Stokes equations were solved by using a spectral- element method for Rayleigh numbers ranging from 103 to 109. The effect of spanwise thermal boundary conditions, aspect ratio (radius of the cylinder to the side of the cavity), and spanwise temperature distribution of the inner cylinder on the velocity and thermal fields were investigated for each Rayleigh number. Results from two-dimensional calculations were compared with three-dimensional simulations. The 3D results indicatemore » a complex flow structure in the vicinity of the spanwise walls. The results also show that the imposed thermal wall boundary condition impacts the flow and temperature fields strongly near the spanwise walls. The variation of the local Nusselt number on the cylinder surface and enclosure walls at various spanwise locations was also investigated. The local Nusselt number on the cylinder surface and enclosure walls at the cavity mid-plane (Z = 0) is close to 2D simulations for 103 ≤ Ra ≤ 108. Simulations also show a variation in the local Nusselt number, on both the cylinder surface and the enclosure walls, in the spanwise direction, for all Rayleigh numbers studied in this work. The results also indicate that if the enclosure walls are insulated in the spanwise direction (as opposed to a constant temperature), the peak Nusselt number on the enclosure surface occurs near the spanwise walls and is about 20% higher than the peak Nusselt number at the cavity mid-plane. The temporal characteristics of 3D flows are also different from 2D results for Ra > 108. These results suggest that 3D simulations would be more appropriate for flows with Ra > 108.« less
Force Evaluation in the Lattice Boltzmann Method Involving Curved Geometry
NASA Technical Reports Server (NTRS)
Mei, Renwei; Yu, Dazhi; Shyy, Wei; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The present work investigates two approaches for force evaluation in the lattice Boltzmann equation: the momentum- exchange method and the stress-integration method on the surface of a body. The boundary condition for the particle distribution functions on curved geometries is handled with second order accuracy based on our recent works. The stress-integration method is computationally laborious for two-dimensional flows and in general difficult to implement for three-dimensional flows, while the momentum-exchange method is reliable, accurate, and easy to implement for both two-dimensional and three-dimensional flows. Several test cases are selected to evaluate the present methods, including: (i) two-dimensional pressure-driven channel flow; (ii) two-dimensional uniform flow past a column of cylinders; (iii) two-dimensional flow past a cylinder asymmetrically placed in a channel (with vortex shedding); (iv) three-dimensional pressure-driven flow in a circular pipe; and (v) three-dimensional flow past a sphere. The drag evaluated by using the momentum-exchange method agrees well with the exact or other published results.
Multiscale solute transport upscaling for a three-dimensional hierarchical porous medium
NASA Astrophysics Data System (ADS)
Zhang, Mingkan; Zhang, Ye
2015-03-01
A laboratory-generated hierarchical, fully heterogeneous aquifer model (FHM) provides a reference for developing and testing an upscaling approach that integrates large-scale connectivity mapping with flow and transport modeling. Based on the FHM, three hydrostratigraphic models (HSMs) that capture lithological (static) connectivity at different resolutions are created, each corresponding to a sedimentary hierarchy. Under increasing system lnK variances (0.1, 1.0, 4.5), flow upscaling is first conducted to calculate equivalent hydraulic conductivity for individual connectivity (or unit) of the HSMs. Given the computed flow fields, an instantaneous, conservative tracer test is simulated by all models. For the HSMs, two upscaling formulations are tested based on the advection-dispersion equation (ADE), implementing space versus time-dependent macrodispersivity. Comparing flow and transport predictions of the HSMs against those of the reference model, HSMs capturing connectivity at increasing resolutions are more accurate, although upscaling errors increase with system variance. Results suggest: (1) by explicitly modeling connectivity, an enhanced degree of freedom in representing dispersion can improve the ADE-based upscaled models by capturing non-Fickian transport of the FHM; (2) when connectivity is sufficiently resolved, the type of data conditioning used to model transport becomes less critical. Data conditioning, however, is influenced by the prediction goal; (3) when aquifer is weakly-to-moderately heterogeneous, the upscaled models adequately capture the transport simulation of the FHM, despite the existence of hierarchical heterogeneity at smaller scales. When aquifer is strongly heterogeneous, the upscaled models become less accurate because lithological connectivity cannot adequately capture preferential flows; (4) three-dimensional transport connectivities of the hierarchical aquifer differ quantitatively from those analyzed for two-dimensional systems. This article was corrected on 7 MAY 2015. See the end of the full text for details.
Two-dimensional Lagrangian simulation of suspended sediment
Schoellhamer, David H.
1988-01-01
A two-dimensional laterally averaged model for suspended sediment transport in steady gradually varied flow that is based on the Lagrangian reference frame is presented. The layered Lagrangian transport model (LLTM) for suspended sediment performs laterally averaged concentration. The elevations of nearly horizontal streamlines and the simulation time step are selected to optimize model stability and efficiency. The computational elements are parcels of water that are moved along the streamlines in the Lagrangian sense and are mixed with neighboring parcels. Three applications show that the LLTM can accurately simulate theoretical and empirical nonequilibrium suspended sediment distributions and slug injections of suspended sediment in a laboratory flume.
NASA Technical Reports Server (NTRS)
Lakshmanan, Balakrishnan; Tiwari, Surendra N.
1992-01-01
A robust, discontinuity-resolving TVD MacCormack scheme containing no dependent parameters requiring adjustment is presently used to investigate the 3D separation of wing/body junction flows at supersonic speeds. Many production codes employing MacCormack schemes can be adapted to use this method. A numerical simulation of laminar supersonic junction flow is found to yield improved separation location predictions, as well as the axial velocity profiles in the separated flow region.
Wake meandering statistics of a model wind turbine: Insights gained by large eddy simulations
NASA Astrophysics Data System (ADS)
Foti, Daniel; Yang, Xiaolei; Guala, Michele; Sotiropoulos, Fotis
2016-08-01
Wind tunnel measurements in the wake of an axial flow miniature wind turbine provide evidence of large-scale motions characteristic of wake meandering [Howard et al., Phys. Fluids 27, 075103 (2015), 10.1063/1.4923334]. A numerical investigation of the wake, using immersed boundary large eddy simulations able to account for all geometrical details of the model wind turbine, is presented here to elucidate the three-dimensional structure of the wake and the mechanisms controlling near and far wake instabilities. Similar to the findings of Kang et al. [Kang et al., J. Fluid Mech. 744, 376 (2014), 10.1017/jfm.2014.82], an energetic coherent helical hub vortex is found to form behind the turbine nacelle, which expands radially outward downstream of the turbine and ultimately interacts with the turbine tip shear layer. Starting from the wake meandering filtering used by Howard et al., a three-dimensional spatiotemporal filtering process is developed to reconstruct a three-dimensional meandering profile in the wake of the turbine. The counterwinding hub vortex undergoes a spiral vortex breakdown and the rotational component of the hub vortex persists downstream, contributing to the rotational direction of the wake meandering. Statistical characteristics of the wake meandering profile, along with triple decomposition of the flow field separating the coherent and incoherent turbulent fluctuations, are used to delineate the near and far wake flow structures and their interactions. In the near wake, the nacelle leads to mostly incoherent turbulence, while in the far wake, turbulent coherent structures, especially the azimuthal velocity component, dominate the flow field.
Numerical simulation of steady state three-dimensional groundwater flow near lakes
Winter, Thomas C.
1978-01-01
Numerical simulation of three-dimensional groundwater flow near lakes shows that the continuity of the boundary encompassing the local groundwater flow system associated with a lake is the key to understanding the interaction of a lake with the groundwater system. The continuity of the boundary can be determined by the presence of a stagnation zone coinciding with the side of the lake nearest the downgradient side of the groundwater system. For most settings modeled in this study the stagnation zone underlies the lakeshore, and it generally follows its curvature. The length of the stagnation zone is controlled by the geometry of the lake's drainage basin divide on the side of the lake nearest the downgradient side of the groundwater system. In the case of lakes that lose water to the groundwater system, three-dimensional modeling also allows for estimating the area of lake bed through which outseepage takes place. Analysis of the effects of size and lateral and vertical distribution of aquifers within the groundwater system on the outseepage from lakes shows that the position of the center point of the aquifer relative to the littoral zone on the side of the lake nearest the downgradient side of the groundwater system is a critical factor. If the center point is downslope from this part of the littoral zone, the local flow system boundary tends to be weak or outseepage occurs. If the center point is upslope from this littoral zone, the stagnation zone tends to be stronger (to have a higher head in relation to lake level), and outseepage is unlikely to occur.
NASA Technical Reports Server (NTRS)
Thomas, P. D.
1980-01-01
A computer implemented numerical method for predicting the flow in and about an isolated three dimensional jet exhaust nozzle is summarized. The approach is based on an implicit numerical method to solve the unsteady Navier-Stokes equations in a boundary conforming curvilinear coordinate system. Recent improvements to the original numerical algorithm are summarized. Equations are given for evaluating nozzle thrust and discharge coefficient in terms of computed flowfield data. The final formulation of models that are used to simulate flow turbulence effect is presented. Results are presented from numerical experiments to explore the effect of various quantities on the rate of convergence to steady state and on the final flowfield solution. Detailed flowfield predictions for several two and three dimensional nozzle configurations are presented and compared with wind tunnel experimental data.
Transient Characteristics of a Fluidic Device for Circulatory Jet Flow.
Phan, Hoa Thanh; Dinh, Thien Xuan; Bui, Phong Nhu; Dau, Van Thanh
2018-03-13
In this paper, we report on the design, simulation, and experimental analysis of a miniaturized device that can generate multiple circulated jet flows. The device is actuated by a lead zirconate titanate (PZT) diaphragm. The flows in the device were studied using three-dimensional transient numerical simulation with the programmable open source OpenFOAM and was comparable to the experimental result. Each flow is verified by two hotwires mounted at two positions inside each consisting chamber. The experiment confirmed that the flow was successfully created, and it demonstrated good agreement with the simulation. In addition, a prospective application of the device as an angular rate sensor is also demonstrated. The device is robust, is minimal in size, and can contribute to the development of multi-axis fluidic inertial sensors, fluidic amplifiers, gas mixing, coupling, and analysis.
Transient Characteristics of a Fluidic Device for Circulatory Jet Flow
Phan, Hoa Thanh; Dinh, Thien Xuan; Bui, Phong Nhu
2018-01-01
In this paper, we report on the design, simulation, and experimental analysis of a miniaturized device that can generate multiple circulated jet flows. The device is actuated by a lead zirconate titanate (PZT) diaphragm. The flows in the device were studied using three-dimensional transient numerical simulation with the programmable open source OpenFOAM and was comparable to the experimental result. Each flow is verified by two hotwires mounted at two positions inside each consisting chamber. The experiment confirmed that the flow was successfully created, and it demonstrated good agreement with the simulation. In addition, a prospective application of the device as an angular rate sensor is also demonstrated. The device is robust, is minimal in size, and can contribute to the development of multi-axis fluidic inertial sensors, fluidic amplifiers, gas mixing, coupling, and analysis. PMID:29534014
Reconfiguration of broad leaves into cones
NASA Astrophysics Data System (ADS)
Miller, Laura
2013-11-01
Flexible plants, fungi, and sessile animals are thought to reconfigure in the wind and water to reduce the drag forces that act upon them. Simple mathematical models of a flexible beam immersed in a two-dimensional flow will also exhibit this behavior. What is less understood is how the mechanical properties of a leaf in a three-dimensional flow will passively allow roll up and reduce drag. This presentation will begin by examining how leaves roll up into drag reducing shapes in strong flow. The dynamics of the flow around the leaf of the wild ginger Hexastylis arifolia are described using particle image velocimetry. The flows around the leaves are compared with those of simplified sheets using 3D numerical simulations and physical models. For some reconfiguration shapes, large forces and oscillations due to strong vortex shedding are produced. In the actual leaf, a stable recirculation zone is formed within the wake of the reconfigured cone. In physical and numerical models that reconfigure into cones, a similar recirculation zone is observed with both rigid and flexible tethers. These results suggest that the three-dimensional cone structure in addition to flexibility is significant to both the reduction of vortex-induced vibrations and the forces experienced by the leaf.
Grid-to-rod flow-induced impact study for PWR fuel in reactor
Jiang, Hao; Qu, Jun; Lu, Roger Y.; ...
2016-06-10
The source for grid-to-rod fretting in a pressurized water nuclear reactor (PWR) is the dynamic contact impact from hydraulic flow-induced fuel assembly vibration. In order to support grid-to-rod fretting wear mitigation research, finite element analysis (FEA) was used to evaluate the hydraulic flow-induced impact intensity between the fuel rods and the spacer grids. Three-dimensional FEA models, with detailed geometries of the dimple and spring of the actual spacer grids along with fuel rods, were developed for flow impact simulation. The grid-to-rod dynamic impact simulation provided insights of the contact phenomena at grid-rod interface. Finally, it is an essential and effectivemore » way to evaluate contact forces and provide guidance for simulative bench fretting-impact tests.« less
Numerical and experimental investigation of transverse injection flows
NASA Astrophysics Data System (ADS)
Erdem, E.; Kontis, K.
2010-04-01
The flow field resulting from a transverse injection through a slot into supersonic flow is numerically simulated by solving Favre-averaged Navier-Stokes equations with κ - ω SST turbulence model with corrections for compressibility and transition. Numerical results are compared to experimental data in terms of surface pressure profiles, boundary layer separation location, transition location, and flow structures at the upstream and downstream of the jet. Results show good agreement with experimental data for a wide range of pressure ratios and transition locations are captured with acceptable accuracy. κ - ω SST model provides quite accurate results for such a complex flow field. Moreover, few experiments involving a sonic round jet injected on a flat plate into high-speed crossflow at Mach 5 are carried out. These experiments are three-dimensional in nature. The effect of pressure ratio on three-dimensional jet interaction dynamics is sought. Jet penetration is found to be a non-linear function of jet to free stream momentum flux ratio.
A Numerical Simulator for Three-Dimensional Flows Through Vibrating Blade Rows
NASA Technical Reports Server (NTRS)
Chuang, H. Andrew; Verdon, Joseph M.
1998-01-01
The three-dimensional, multi-stage, unsteady, turbomachinery analysis, TURBO, has been extended to predict the aeroelastic and aeroacoustic response behaviors of a single blade row operating within a cylindrical annular duct. In particular, a blade vibration capability has been incorporated so that the TURBO analysis can be applied over a solution domain that deforms with a vibratory blade motion. Also, unsteady far-field conditions have been implemented to render the computational boundaries at inlet and exit transparent to outgoing unsteady disturbances. The modified TURBO analysis is applied herein to predict unsteady subsonic and transonic flows. The intent is to partially validate this nonlinear analysis for blade flutter applications, via numerical results for benchmark unsteady flows, and to demonstrate the analysis for a realistic fan rotor. For these purposes, we have considered unsteady subsonic flows through a 3D version of the 10th Standard Cascade, and unsteady transonic flows through the first stage rotor of the NASA Lewis, Rotor 67, two-stage fan.
CFD analyses for advanced pump design
NASA Technical Reports Server (NTRS)
Dejong, F. J.; Choi, S.-K.; Govindan, T. R.
1994-01-01
As one of the activities of the NASA/MSFC Pump Stage Technology Team, the present effort was focused on using CFD in the design and analysis of high performance rocket engine pumps. Under this effort, a three-dimensional Navier-Stokes code was used for various inducer and impeller flow field calculations. An existing algebraic grid generation procedure was-extended to allow for nonzero blade thickness, splitter blades, and hub/shroud cavities upstream or downstream of the (main) blades. This resulted in a fast, robust inducer/impeller geometry/grid generation package. Problems associated with running a compressible flow code to simulate an incompressible flow were resolved; related aspects of the numerical algorithm (viz., the matrix preconditioning, the artificial dissipation, and the treatment of low Mach number flows) were addressed. As shown by the calculations performed under the present effort, the resulting code, in conjunction with the grid generation package, is an effective tool for the rapid solution of three-dimensional viscous inducer and impeller flows.
A Three-Dimensional Coupled Internal/External Simulation of a Film-Cooled Turbine Vane
NASA Technical Reports Server (NTRS)
Heidmann, James D.; Rigby, David L.; Ameri, Ali A.
1999-01-01
A three-dimensional Navier-Stokes simulation has been performed for a realistic film-cooled turbine vane using the LeRC-HT code. The simulation includes the flow regions inside the coolant plena and film cooling holes in addition to the external flow. The vane is the subject of an upcoming NASA Glenn Research Center experiment and has both circular cross-section and shaped film cooling holes. This complex geometry is modeled using a multi-block grid which accurately discretizes the actual vane geometry including shaped holes. The simulation matches operating conditions for the planned experiment and assumes periodicity in the spanwise direction on the scale of one pitch of the film cooling hole pattern. Two computations were performed for different isothermal wall temperatures, allowing independent determination of heat transfer coefficients and film effectiveness values. The results indicate separate localized regions of high heat transfer coefficient values, while the shaped holes provide a reduction in heat flux through both parameters. Hole exit data indicate rather simple skewed profiles for the round holes, but complex profiles for the shaped holes with mass fluxes skewed strongly toward their leading edges.
Hemodynamics in a giant intracranial aneurysm characterized by in vitro 4D flow MRI
Schiavazzi, Daniele; Moen, Sean; Jagadeesan, Bharathi; Van de Moortele, Pierre-François; Coletti, Filippo
2018-01-01
Experimental and computational data suggest that hemodynamics play a critical role in the development, growth, and rupture of cerebral aneurysms. The flow structure, especially in aneurysms with a large sac, is highly complex and three-dimensional. Therefore, volumetric and time-resolved measurements of the flow properties are crucial to fully characterize the hemodynamics. In this study, phase-contrast Magnetic Resonance Imaging is used to assess the fluid dynamics inside a 3D-printed replica of a giant intracranial aneurysm, whose hemodynamics was previously simulated by multiple research groups. The physiological inflow waveform is imposed in a flow circuit with realistic cardiovascular impedance. Measurements are acquired with sub-millimeter spatial resolution for 16 time steps over a cardiac cycle, allowing for the detailed reconstruction of the flow evolution. Moreover, the three-dimensional and time-resolved pressure distribution is calculated from the velocity field by integrating the fluid dynamics equations, and is validated against differential pressure measurements using precision transducers. The flow structure is characterized by vortical motions that persist within the aneurysm sac for most of the cardiac cycle. All the main flow statistics including velocity, vorticity, pressure, and wall shear stress suggest that the flow pattern is dictated by the aneurysm morphology and is largely independent of the pulsatility of the inflow, at least for the flow regimes investigated here. Comparisons are carried out with previous computational simulations that used the same geometry and inflow conditions, both in terms of cycle-averaged and systolic quantities. PMID:29300738
Yu, Huidan; Chen, Xi; Wang, Zhiqiang; Deep, Debanjan; Lima, Everton; Zhao, Ye; Teague, Shawn D
2014-06-01
In this paper, we develop a mass-conserved volumetric lattice Boltzmann method (MCVLBM) for numerically solving fluid dynamics with willfully moving arbitrary boundaries. In MCVLBM, fluid particles are uniformly distributed in lattice cells and the lattice Boltzmann equations deal with the time evolution of the particle distribution function. By introducing a volumetric parameter P(x,y,z,t) defined as the occupation of solid volume in the cell, we distinguish three types of lattice cells in the simulation domain: solid cell (pure solid occupation, P=1), fluid cell (pure fluid occupation, P=0), and boundary cell (partial solid and partial fluid, 0
NASA Astrophysics Data System (ADS)
Deeb, R.; Kulasegaram, S.; Karihaloo, B. L.
2014-12-01
In part I of this two-part paper, a three-dimensional Lagrangian smooth particle hydrodynamics method has been used to model the flow of self-compacting concrete (SCC) with or without short steel fibres in the slump cone test. The constitutive behaviour of this non-Newtonian viscous fluid is described by a Bingham-type model. The 3D simulation of SCC without fibres is focused on the distribution of large aggregates (larger than or equal to 8 mm) during the flow. The simulation of self-compacting high- and ultra-high- performance concrete containing short steel fibres is focused on the distribution of fibres and their orientation during the flow. The simulation results show that the fibres and/or heavier aggregates do not precipitate but remain homogeneously distributed in the mix throughout the flow.
Intercomparison of 3D pore-scale flow and solute transport simulation methods
Mehmani, Yashar; Schoenherr, Martin; Pasquali, Andrea; ...
2015-09-28
Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based onmore » the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This paper provides support for confidence in a variety of pore-scale modeling methods and motivates further development and application of pore-scale simulation methods.« less
Intercomparison of 3D pore-scale flow and solute transport simulation methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.
2016-09-01
Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based onmore » the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides support for confidence in a variety of pore-scale modeling methods and motivates further development and application of pore-scale simulation methods.« less
Simulation of supersonic turbulent flow in the vicinity of an inclined backward-facing step
NASA Astrophysics Data System (ADS)
El-Askary, W. A.
2011-08-01
Large eddy simulation (LES) is a viable and powerful tool to analyse unsteady three-dimensional turbulent flows. In this article, the method of LES is used to compute a plane turbulent supersonic boundary layer subjected to different pressure gradients. The pressure gradients are generated by allowing the flow to pass in the vicinity of an expansion-compression ramp (inclined backward-facing step with leeward-face angle of 25°) for an upstream Mach number of 2.9. The inflow boundary condition is the main problem for all turbulent wall-bounded flows. An approach to solve this problem is to extract instantaneous velocities, temperature and density data from an auxiliary simulation (inflow generator). To generate an appropriate realistic inflow condition to the inflow generator itself the rescaling technique for compressible flows is used. In this method, Morkovin's hypothesis, in which the total temperature fluctuations are neglected compared with the static temperature fluctuations, is applied to rescale and generate the temperature profile at inlet. This technique was successfully developed and applied by the present author for an LES of subsonic three-dimensional boundary layer of a smooth curved ramp. The present LES results are compared with the available experimental data as well as numerical data. The positive impact of the rescaling formulation of the temperature is proven by the convincing agreement of the obtained results with the experimental data compared with published numerical work and sheds light on the quality of the developed compressible inflow generator.
N-S/DSMC hybrid simulation of hypersonic flow over blunt body including wakes
NASA Astrophysics Data System (ADS)
Li, Zhonghua; Li, Zhihui; Li, Haiyan; Yang, Yanguang; Jiang, Xinyu
2014-12-01
A hybrid N-S/DSMC method is presented and applied to solve the three-dimensional hypersonic transitional flows by employing the MPC (modular Particle-Continuum) technique based on the N-S and the DSMC method. A sub-relax technique is adopted to deal with information transfer between the N-S and the DSMC. The hypersonic flows over a 70-deg spherically blunted cone under different Kn numbers are simulated using the CFD, DSMC and hybrid N-S/DSMC method. The present computations are found in good agreement with DSMC and experimental results. The present method provides an efficient way to predict the hypersonic aerodynamics in near-continuum transitional flow regime.
NASA Astrophysics Data System (ADS)
Richardson, S. I. Heath; Baggaley, A. W.; Hill, N. A.
2018-02-01
We study the effects of imposed three-dimensional flows on the trajectories and mixing of gyrotactic swimming microorganisms and identify phenomena not seen in flows restricted to two dimensions. Through numerical simulation of Taylor-Green and Arnold-Beltrami-Childress (ABC) flows, we explore the role that the flow and the cell shape play in determining the long-term configuration of the cells' trajectories, which often take the form of multiple sinuous and helical "plumelike" structures, even in the chaotic ABC flow. This gyrotactic suppression of Lagrangian chaos persists even in the presence of random noise. Analytical solutions for a number of cases reveal the how plumes form and the nature of the competition between torques acting on individual cells. Furthermore, studies of Lyapunov exponents reveal that, as the ratio of cell swimming speed relative to the flow speed increases from zero, the initial chaotic trajectories are first suppressed and then give way to a second unexpected window of chaotic trajectories at speeds greater than unity, before suppression of chaos at high relative swimming speeds.
Adjoint sensitivity analysis of chaotic dynamical systems with non-intrusive least squares shadowing
NASA Astrophysics Data System (ADS)
Blonigan, Patrick J.
2017-11-01
This paper presents a discrete adjoint version of the recently developed non-intrusive least squares shadowing (NILSS) algorithm, which circumvents the instability that conventional adjoint methods encounter for chaotic systems. The NILSS approach involves solving a smaller minimization problem than other shadowing approaches and can be implemented with only minor modifications to preexisting tangent and adjoint solvers. Adjoint NILSS is demonstrated on a small chaotic ODE, a one-dimensional scalar PDE, and a direct numerical simulation (DNS) of the minimal flow unit, a turbulent channel flow on a small spatial domain. This is the first application of an adjoint shadowing-based algorithm to a three-dimensional turbulent flow.
Parallel DSMC Solution of Three-Dimensional Flow Over a Finite Flat Plate
NASA Technical Reports Server (NTRS)
Nance, Robert P.; Wilmoth, Richard G.; Moon, Bongki; Hassan, H. A.; Saltz, Joel
1994-01-01
This paper describes a parallel implementation of the direct simulation Monte Carlo (DSMC) method. Runtime library support is used for scheduling and execution of communication between nodes, and domain decomposition is performed dynamically to maintain a good load balance. Performance tests are conducted using the code to evaluate various remapping and remapping-interval policies, and it is shown that a one-dimensional chain-partitioning method works best for the problems considered. The parallel code is then used to simulate the Mach 20 nitrogen flow over a finite-thickness flat plate. It is shown that the parallel algorithm produces results which compare well with experimental data. Moreover, it yields significantly faster execution times than the scalar code, as well as very good load-balance characteristics.
Hydroelastic behaviour of a structure exposed to an underwater explosion.
Colicchio, G; Greco, M; Brocchini, M; Faltinsen, O M
2015-01-28
The hydroelastic interaction between an underwater explosion and an elastic plate is investigated num- erically through a domain-decomposition strategy. The three-dimensional features of the problem require a large computational effort, which is reduced through a weak coupling between a one-dimensional radial blast solver, which resolves the blast evolution far from the boundaries, and a three-dimensional compressible flow solver used where the interactions between the compression wave and the boundaries take place and the flow becomes three-dimensional. The three-dimensional flow solver at the boundaries is directly coupled with a modal structural solver that models the response of the solid boundaries like elastic plates. This enables one to simulate the fluid-structure interaction as a strong coupling, in order to capture hydroelastic effects. The method has been applied to the experimental case of Hung et al. (2005 Int. J. Impact Eng. 31, 151-168 (doi:10.1016/j.ijimpeng.2003.10.039)) with explosion and structure sufficiently far from other boundaries and successfully validated in terms of the evolution of the acceleration induced on the plate. It was also used to investigate the interaction of an underwater explosion with the bottom of a close-by ship modelled as an orthotropic plate. In the application, the acoustic phase of the fluid-structure interaction is examined, highlighting the need of the fluid-structure coupling to capture correctly the possible inception of cavitation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
The numerical simulation based on CFD of hydraulic turbine pump
NASA Astrophysics Data System (ADS)
Duan, X. H.; Kong, F. Y.; Liu, Y. Y.; Zhao, R. J.; Hu, Q. L.
2016-05-01
As the functions of hydraulic turbine pump including self-adjusting and compensation with each other, it is far-reaching to analyze its internal flow by the numerical simulation based on CFD, mainly including the pressure field and the velocity field in hydraulic turbine and pump.The three-dimensional models of hydraulic turbine pump are made by Pro/Engineer software;the internal flow fields in hydraulic turbine and pump are simulated numerically by CFX ANSYS software. According to the results of the numerical simulation in design condition, the pressure field and the velocity field in hydraulic turbine and pump are analyzed respectively .The findings show that the static pressure decreases systematically and the pressure gradient is obvious in flow area of hydraulic turbine; the static pressure increases gradually in pump. The flow trace is regular in suction chamber and flume without spiral trace. However, there are irregular traces in the turbine runner channels which contrary to that in flow area of impeller. Most of traces in the flow area of draft tube are spiral.
Simulation of a Synthetic Jet in Quiescent Air Using TLNS3D Flow Code
NASA Technical Reports Server (NTRS)
Vatsa, Veer N.; Turkel, Eli
2007-01-01
Although the actuator geometry is highly three-dimensional, the outer flowfield is nominally two-dimensional because of the high aspect ratio of the rectangular slot. For the present study, this configuration is modeled as a two-dimensional problem. A multi-block structured grid available at the CFDVAL2004 website is used as a baseline grid. The periodic motion of the diaphragm is simulated by specifying a sinusoidal velocity at the diaphragm surface with a frequency of 450 Hz, corresponding to the experimental setup. The amplitude is chosen so that the maximum Mach number at the jet exit is approximately 0.1, to replicate the experimental conditions. At the solid walls zero slip, zero injection, adiabatic temperature and zero pressure gradient conditions are imposed. In the external region, symmetry conditions are imposed on the side (vertical) boundaries and far-field conditions are imposed on the top boundary. A nominal free-stream Mach number of 0.001 is imposed in the free stream to simulate incompressible flow conditions in the TLNS3D code, which solves compressible flow equations. The code was run in unsteady (URANS) mode until the periodicity was established. The time-mean quantities were obtained by running the code for at least another 15 periods and averaging the flow quantities over these periods. The phase-locked average of flow quantities were assumed to be coincident with their values during the last full time period.
Intercomparison of 3D pore-scale flow and solute transport simulation methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.
2016-09-01
Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include methods that 1) explicitly model the three-dimensional geometry of pore spaces and 2) those that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of class 1, based on direct numerical simulation using computational fluid dynamics (CFD) codes, against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of class 1 based on the immersed-boundary method (IMB),more » lattice Boltzmann method (LBM), smoothed particle hydrodynamics (SPH), as well as a model of class 2 (a pore-network model or PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and nonreactive solute transport, and intercompare the model results with previously reported experimental observations. Experimental observations are limited to measured pore-scale velocities, so solute transport comparisons are made only among the various models. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations).« less
Experimental Investigation of Nozzle/Plume Aerodynamics at Hypersonic Speeds
NASA Technical Reports Server (NTRS)
Heinemann, K.; Bogdanoff, David W.; Cambier, Jean-Luc
1992-01-01
The work performed by D. W. Bogdanoff and J.-L. Cambier during the period of 1 Feb. - 31 Oct. 1992 is presented. The following topics are discussed: (1) improvement in the operation of the facility; (2) the wedge model; (3) calibration of the new test section; (4) combustor model; (5) hydrogen fuel system for combustor model; (6) three inch calibration/development tunnel; (7) shock tunnel unsteady flow; (8) pulse detonation wave engine; (9) DCAF flow simulation; (10) high temperature shock layer simulation; and (11) the one dimensional Godunov CFD code.
Calculation of wake vortex structures in the near-field wake behind cruising aircraft
NASA Astrophysics Data System (ADS)
Ehret, T.; Oertel, H.
Wake flows behind cruising aircraft influence the distribution of the exhaust gases. A three-dimensional vortex filament method was developed to calculate the vortex structures and the velocity field of the vorticity dominated wake flows as an integration of the Biot-Savart law. For three-dimensional vortex filament calculations, self-induction singularities were prevented using a finite vortex core for each vortex filament. Numerical simulations show the vortex structures and the velocity field in the wake behind a cruising Boeing 747 as a result of the integration of the Biot-Savart law. It is further shown how the structures of the fully rolled-up trailing vortices depend on the wing span loading, i.e. the circulation distribution.
NASA Astrophysics Data System (ADS)
Akbariyeh, S.; Snow, D. D.; Bartelt-Hunt, S.; Li, X.; Li, Y.
2015-12-01
Contamination of groundwater from nitrogen fertilizers and pesticides in agricultural lands is an important environmental and water quality management issue. It is well recognized that in agriculturally intensive areas, fertilizers and pesticides may leach through the vadose zone and eventually reach groundwater, impacting future uses of this limited resource. While numerical models are commonly used to simulate fate and transport of agricultural contaminants, few models have been validated based on realistic three dimensional soil lithology, hydrological conditions, and historical changes in groundwater quality. In this work, contamination of groundwater in the Nebraska Management Systems Evaluation Area (MSEA) site was simulated based on extensive field data including (1) lithology from 69 wells and 11 test holes; (2) surface soil type, land use, and surface elevations; (3) 5-year groundwater level and flow velocity; (4) daily meteorological monitoring; (5) 5-year seasonal irrigation records; (6) 5-years of spatially intensive contaminant concentration in 40 multilevel monitoring wells; and (7) detailed cultivation records. Using this data, a three-dimensional vadose zone lithological framework was developed using a commercial software tool (RockworksTM). Based on the interpolated lithology, a hydrological model was developed using HYDRUS-3D to simulate water flow and contaminant transport. The model was validated through comparison of simulated atrazine and nitrate concentration with historical data from 40 wells and multilevel samplers. The validated model will be used to predict potential changes in ground water quality due to agricultural contamination under future climate scenarios in the High Plain Aquifer system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.
The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less
Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; ...
2015-09-16
The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less
Virtual reality in radiology: virtual intervention
NASA Astrophysics Data System (ADS)
Harreld, Michael R.; Valentino, Daniel J.; Duckwiler, Gary R.; Lufkin, Robert B.; Karplus, Walter J.
1995-04-01
Intracranial aneurysms are the primary cause of non-traumatic subarachnoid hemorrhage. Morbidity and mortality remain high even with current endovascular intervention techniques. It is presently impossible to identify which aneurysms will grow and rupture, however hemodynamics are thought to play an important role in aneurysm development. With this in mind, we have simulated blood flow in laboratory animals using three dimensional computational fluid dynamics software. The data output from these simulations is three dimensional, complex and transient. Visualization of 3D flow structures with standard 2D display is cumbersome, and may be better performed using a virtual reality system. We are developing a VR-based system for visualization of the computed blood flow and stress fields. This paper presents the progress to date and future plans for our clinical VR-based intervention simulator. The ultimate goal is to develop a software system that will be able to accurately model an aneurysm detected on clinical angiography, visualize this model in virtual reality, predict its future behavior, and give insight into the type of treatment necessary. An associated database will give historical and outcome information on prior aneurysms (including dynamic, structural, and categorical data) that will be matched to any current case, and assist in treatment planning (e.g., natural history vs. treatment risk, surgical vs. endovascular treatment risks, cure prediction, complication rates).
Three dimensional simulations of viscous folding in diverging microchannels
NASA Astrophysics Data System (ADS)
Xu, Bingrui; Chergui, Jalel; Shin, Seungwon; Juric, Damir
2016-11-01
Three dimensional simulations on the viscous folding in diverging microchannels reported by Cubaud and Mason are performed using the parallel code BLUE for multi-phase flows. The more viscous liquid L1 is injected into the channel from the center inlet, and the less viscous liquid L2 from two side inlets. Liquid L1 takes the form of a thin filament due to hydrodynamic focusing in the long channel that leads to the diverging region. The thread then becomes unstable to a folding instability, due to the longitudinal compressive stress applied to it by the diverging flow of liquid L2. We performed a parameter study in which the flow rate ratio, the viscosity ratio, the Reynolds number, and the shape of the channel were varied relative to a reference model. In our simulations, the cross section of the thread produced by focusing is elliptical rather than circular. The initial folding axis can be either parallel or perpendicular to the narrow dimension of the chamber. In the former case, the folding slowly transforms via twisting to perpendicular folding, or it may remain parallel. The direction of folding onset is determined by the velocity profile and the elliptical shape of the thread cross section in the channel that feeds the diverging part of the cell.
Modeling variable density turbulence in the wake of an air-entraining transom stern
NASA Astrophysics Data System (ADS)
Hendrickson, Kelli; Yue, Dick
2015-11-01
This work presents a priori testing of closure models for the incompressible highly-variable density turbulent (IHVDT) flows in the near wake region of a transom stern. This three-dimensional flow is comprised of convergent corner waves that originate from the body and collide on the ship center plane forming the ``rooster tail'' that then widens to form the divergent wave train. These violent free-surface flows and breaking waves are characterized by significant turbulent mass flux (TMF) at Atwood number At = (ρ2 -ρ1) / (ρ2 +ρ1) ~ 1 for which there is little guidance in turbulence closure modeling for the momentum and scalar transport along the wake. To whit, this work utilizes high-resolution simulations of the near wake of a canonical three-dimensional transom stern using conservative Volume-of-Fluid (cVOF), implicit Large Eddy Simulation (iLES), and Boundary Data Immersion Method (BDIM) to capture the turbulence and large scale air entrainment. Analysis of the simulation results across and along the wake for the TMF budget and turbulent anisotropy provide the physical basis of the development of multiphase turbulence closure models. Performance of isotropic and anisotropic turbulent mass flux closure models will be presented. Sponsored by the Office of Naval Research.
Aerodynamics of a finite wing with simulated ice
NASA Technical Reports Server (NTRS)
Bragg, M. B.; Khodadoust, A.; Kerho, M.
1992-01-01
The effect of a simulated glaze ice accretion on the aerodynamic performance of a three-dimensional wing is studied experimentally. Results are reviewed from earlier two-dimensional tests which show the character of the large leading-edge separation bubbles caused by the simulated ice accretion. The 2-D bubbles are found to closely resemble well known airfoil laminar separation bubbles. For the 3-D experiments a semispan wing of effective aspect ratio five was mounted from the sidewall of the UIUC subsonic wind tunnel. The model uses a NACA 0012 airfoil section on a rectangular planform with interchangeable tip and root sections to allow for 0- and 30-degree sweep. A three-component sidewall balance was used to measure lift, drag and pitching moment on the clean and iced model. Fluorescent oil flow visualization has been performed on the iced model and reveals extensive spanwise and vortical flow in the separation bubble aft of the upper surface horn. Sidewall interaction and spanwise nonuniformity are also seen on the unswept model. Comparisons to the computed flow fields are shown. Results are also shown for roughness effects on the straight wing. Sand grain roughness on the ice shape is seen to have a different effect than isolated 3-D roughness elements.
Tada, Shigeru
2015-01-01
The analysis of cell separation has many important biological and medical applications. Dielectrophoresis (DEP) is one of the most effective and widely used techniques for separating and identifying biological species. In the present study, a DEP flow channel, a device that exploits the differences in the dielectric properties of cells in cell separation, was numerically simulated and its cell-separation performance examined. The samples of cells used in the simulation were modeled as human leukocyte (B cell) live and dead cells. The cell-separation analysis was carried out for a flow channel equipped with a planar electrode on the channel's top face and a pair of interdigitated counter electrodes on the bottom. This yielded a three-dimensional (3D) nonuniform AC electric field in the entire space of the flow channel. To investigate the optimal separation conditions for mixtures of live and dead cells, the strength of the applied electric field was varied. With appropriately selected conditions, the device was predicted to be very effective at separating dead cells from live cells. The major advantage of the proposed method is that a large volume of sample can be processed rapidly because of a large spacing of the channel height.
NASA Astrophysics Data System (ADS)
Kunz, Robert; Haworth, Daniel; Dogan, Gulkiz; Kriete, Andres
2006-11-01
Three-dimensional, unsteady simulations of multiphase flow, gas exchange, and particle/aerosol deposition in the human lung are reported. Surface data for human tracheo-bronchial trees are derived from CT scans, and are used to generate three- dimensional CFD meshes for the first several generations of branching. One-dimensional meshes for the remaining generations down to the respiratory units are generated using branching algorithms based on those that have been proposed in the literature, and a zero-dimensional respiratory unit (pulmonary acinus) model is attached at the end of each terminal bronchiole. The process is automated to facilitate rapid model generation. The model is exercised through multiple breathing cycles to compute the spatial and temporal variations in flow, gas exchange, and particle/aerosol deposition. The depth of the 3D/1D transition (at branching generation n) is a key parameter, and can be varied. High-fidelity models (large n) are run on massively parallel distributed-memory clusters, and are used to generate physical insight and to calibrate/validate the 1D and 0D models. Suitably validated lower-order models (small n) can be run on single-processor PC’s with run times that allow model-based clinical intervention for individual patients.
Numerical Modeling of Fuel Injection into an Accelerating, Turning Flow with a Cavity
NASA Astrophysics Data System (ADS)
Colcord, Ben James
Deliberate continuation of the combustion in the turbine passages of a gas turbine engine has the potential to increase the efficiency and the specific thrust or power of current gas-turbine engines. This concept, known as a turbine-burner, must overcome many challenges before becoming a viable product. One major challenge is the injection, mixing, ignition, and burning of fuel within a short residence time in a turbine passage characterized by large three-dimensional accelerations. One method of increasing the residence time is to inject the fuel into a cavity adjacent to the turbine passage, creating a low-speed zone for mixing and combustion. This situation is simulated numerically, with the turbine passage modeled as a turning, converging channel flow of high-temperature, vitiated air adjacent to a cavity. Both two- and three-dimensional, reacting and non-reacting calculations are performed, examining the effects of channel curvature and convergence, fuel and additional air injection configurations, and inlet conditions. Two-dimensional, non-reacting calculations show that higher aspect ratio cavities improve the fluid interaction between the channel flow and the cavity, and that the cavity dimensions are important for enhancing the mixing. Two-dimensional, reacting calculations show that converging channels improve the combustion efficiency. Channel curvature can be either beneficial or detrimental to combustion efficiency, depending on the location of the cavity and the fuel and air injection configuration. Three-dimensional, reacting calculations show that injecting fuel and air so as to disrupt the natural motion of the cavity stimulates three-dimensional instability and improves the combustion efficiency.
3D automatic Cartesian grid generation for Euler flows
NASA Technical Reports Server (NTRS)
Melton, John E.; Enomoto, Francis Y.; Berger, Marsha J.
1993-01-01
We describe a Cartesian grid strategy for the study of three dimensional inviscid flows about arbitrary geometries that uses both conventional and CAD/CAM surface geometry databases. Initial applications of the technique are presented. The elimination of the body-fitted constraint allows the grid generation process to be automated, significantly reducing the time and effort required to develop suitable computational grids for inviscid flowfield simulations.
NASA Technical Reports Server (NTRS)
Pan, Y. S.
1978-01-01
A three dimensional, partially elliptic, computer program was developed. Without requiring three dimensional computer storage locations for all flow variables, the partially elliptic program is capable of predicting three dimensional combustor flow fields with large downstream effects. The program requires only slight increase of computer storage over the parabolic flow program from which it was developed. A finite difference formulation for a three dimensional, fully elliptic, turbulent, reacting, flow field was derived. Because of the negligible diffusion effects in the main flow direction in a supersonic combustor, the set of finite-difference equations can be reduced to a partially elliptic form. Only the pressure field was governed by an elliptic equation and requires three dimensional storage; all other dependent variables are governed by parabolic equations. A numerical procedure which combines a marching integration scheme with an iterative scheme for solving the elliptic pressure was adopted.
NASA Astrophysics Data System (ADS)
Zhang, Ye; van Zuijlen, Alexander; van Bussel, Gerard
2014-06-01
In this paper, three dimensional flow over non-rotating MEXICO blades is simulated by CFD methods. The numerical results are compared with the latest MEXICO wind turbine blades measurements obtained in the low speed low turbulence (LTT) wind tunnel of Delft University of Technology. This study aims to validate CFD codes by using these experimental data measured in well controlled conditions. In order to avoid use of wind tunnel corrections, both the blades and the wind tunnel test section are modelled in the simulations. The ability of Menter's k - ω shear stress transport (SST) turbulence model is investigated at both attached flow and massively separated flow cases. Steady state Reynolds averaged Navier Stokes (RANS) equations are solved in these computations. The pressure distribution at three measured sections are compared under the conditions of different inflow velocities and a range of angles of attack. The comparison shows that at attached flow condition, good agreement can be obtained for all three airfoil sections. Even with massively separated flow, still fairly good pressure distribution comparison can be found for the DU and NACA airfoil sections, although the RISØ section shows poor comparison. At the near stall case, considerable deviations exists on the forward half part of the upper surface for all three sections.
Numerical simulations of the superdetonative ram accelerator combusting flow field
NASA Technical Reports Server (NTRS)
Soetrisno, Moeljo; Imlay, Scott T.; Roberts, Donald W.
1993-01-01
The effects of projectile canting and fins on the ram accelerator combusting flowfield and the possible cause of the ram accelerator unstart are investigated by performing axisymmetric, two-dimensional, and three-dimensional calculations. Calculations are performed using the INCA code for solving Navier-Stokes equations and a guasi-global combustion model of Westbrook and Dryer (1981, 1984), which includes N2 and nine reacting species (CH4, CO, CO2, H2, H, O2, O, OH, and H2O), which are allowed to undergo a 12-step reaction. It is found that, without canting, interactions between the fins, boundary layers, and combustion fronts are insufficient to unstart the projectile at superdetonative velocities. With canting, the projectile will unstart at flow conditions where it appears to accelerate without canting. Unstart occurs at some critical canting angle. It is also found that three-dimensionality plays an important role in the overall combustion process.
High Performance Parallel Analysis of Coupled Problems for Aircraft Propulsion
NASA Technical Reports Server (NTRS)
Felippa, C. A.; Farhat, C.; Lanteri, S.; Maman, N.; Piperno, S.; Gumaste, U.
1994-01-01
In order to predict the dynamic response of a flexible structure in a fluid flow, the equations of motion of the structure and the fluid must be solved simultaneously. In this paper, we present several partitioned procedures for time-integrating this focus coupled problem and discuss their merits in terms of accuracy, stability, heterogeneous computing, I/O transfers, subcycling, and parallel processing. All theoretical results are derived for a one-dimensional piston model problem with a compressible flow, because the complete three-dimensional aeroelastic problem is difficult to analyze mathematically. However, the insight gained from the analysis of the coupled piston problem and the conclusions drawn from its numerical investigation are confirmed with the numerical simulation of the two-dimensional transient aeroelastic response of a flexible panel in a transonic nonlinear Euler flow regime.
Design and simulation of the micromixer with chaotic advection in twisted microchannels.
Jen, Chun-Ping; Wu, Chung-Yi; Lin, Yu-Cheng; Wu, Ching-Yi
2003-05-01
Chaotic mixers with twisted microchannels were designed and simulated numerically in the present study. The phenomenon whereby a simple Eulerian velocity field may generate a chaotic response in the distribution of a Lagrangian marker is termed chaotic advection. Dynamic system theory indicates that chaotic particle motion can occur when a velocity field is either two-dimensional and time-dependent, or three-dimensional. In the present study, micromixers with three-dimensional structures of the twisted microchannel were designed in order to induce chaotic mixing. In addition to the basic T-mixer, three types of micromixers with inclined, oblique and wavelike microchannels were investigated. In the design of each twisted microchannel, the angle of the channels' bottoms alternates in each subsection. When the fluids enter the twisted microchannels, the flow sways around the varying structures within the microchannels. The designs of the twisted microchannels provide a third degree of freedom to the flow field in the microchannel. Therefore, chaotic regimes that lead to chaotic mixing may arise. The numerical results indicate that mixing occurs in the main channel and progressively larger mixing lengths are required as the Peclet number increased. The swaying of the flow in the twisted microchannel causes chaotic advection. Among the four micromixer designs, the micromixer with the inclined channel most improved mixing. Furthermore, using the inclined mixer with six subsections yielded optimum performance, decreasing the mixing length by up to 31% from that of the basic T-mixer.
Analysis of the coherent and turbulent stresses of a numerically simulated rough wall pipe
NASA Astrophysics Data System (ADS)
Chan, L.; MacDonald, M.; Chung, D.; Hutchins, N.; Ooi, A.
2017-04-01
A turbulent rough wall flow in a pipe is simulated using direct numerical simulation (DNS) where the roughness elements consist of explicitly gridded three-dimensional sinusoids. Two groups of simulations were conducted where the roughness semi-amplitude h+ and the roughness wavelength λ+ are systematically varied. The triple decomposition is applied to the velocity to separate the coherent and turbulent components. The coherent or dispersive component arises due to the roughness and depends on the topological features of the surface. The turbulent stress on the other hand, scales with the friction Reynolds number. For the case with the largest roughness wavelength, large secondary flows are observed which are similar to that of duct flows. The occurrence of these large secondary flows is due to the spanwise heterogeneity of the roughness which has a spacing approximately equal to the boundary layer thickness δ.
NASA Astrophysics Data System (ADS)
Dorschner, B.; Chikatamarla, S. S.; Karlin, I. V.
2017-06-01
Entropic lattice Boltzmann methods have been developed to alleviate intrinsic stability issues of lattice Boltzmann models for under-resolved simulations. Its reliability in combination with moving objects was established for various laminar benchmark flows in two dimensions in our previous work [B. Dorschner, S. Chikatamarla, F. Bösch, and I. Karlin, J. Comput. Phys. 295, 340 (2015), 10.1016/j.jcp.2015.04.017] as well as for three-dimensional one-way coupled simulations of engine-type geometries in B . Dorschner, F. Bösch, S. Chikatamarla, K. Boulouchos, and I. Karlin [J. Fluid Mech. 801, 623 (2016), 10.1017/jfm.2016.448] for flat moving walls. The present contribution aims to fully exploit the advantages of entropic lattice Boltzmann models in terms of stability and accuracy and extends the methodology to three-dimensional cases, including two-way coupling between fluid and structure and then turbulence and deforming geometries. To cover this wide range of applications, the classical benchmark of a sedimenting sphere is chosen first to validate the general two-way coupling algorithm. Increasing the complexity, we subsequently consider the simulation of a plunging SD7003 airfoil in the transitional regime at a Reynolds number of Re =40 000 and, finally, to access the model's performance for deforming geometries, we conduct a two-way coupled simulation of a self-propelled anguilliform swimmer. These simulations confirm the viability of the new fluid-structure interaction lattice Boltzmann algorithm to simulate flows of engineering relevance.
A wind model for an elevated STOL-port configuration
NASA Technical Reports Server (NTRS)
Peterka, J. A.; Cermak, J. E.
1974-01-01
Measurements of mean velocity magnitude and direction as well as three-dimensional turbulence intensity were made in the flow over a model of an elevated STOL-port. A 1:300 scale model was placed in a wind tunnel flow simulating the mean velocity profile and turbulence characteristics of atmospheric winds over a typical city environment excluding detailed wake structures of possible nearby buildings. Hot-wire anemometer measurements of velocity and turbulence were made along approach and departure paths of aircraft operating on the runway centerline and at specified lateral distances from the centerline. Approach flow directions simulated were 0 and 30 degrees to the runway centerline.
Center for Modeling of Turbulence and Transition (CMOTT). Research briefs: 1990
NASA Technical Reports Server (NTRS)
Povinelli, Louis A. (Compiler); Liou, Meng-Sing (Compiler); Shih, Tsan-Hsing (Compiler)
1991-01-01
Brief progress reports of the Center for Modeling of Turbulence and Transition (CMOTT) research staff from May 1990 to May 1991 are given. The objectives of the CMOTT are to develop, validate, and implement the models for turbulence and boundary layer transition in the practical engineering flows. The flows of interest are three dimensional, incompressible, and compressible flows with chemistry. The schemes being studied include the two-equation and algebraic Reynolds stress models, the full Reynolds stress (or second moment closure) models, the probability density function models, the Renormalization Group Theory (RNG) and Interaction Approximation (DIA), the Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS).
A CFD analysis of blade row interactions within a high-speed axial compressor
NASA Astrophysics Data System (ADS)
Richman, Michael Scott
Aircraft engine design provides many technical and financial hurdles. In an effort to streamline the design process, save money, and improve reliability and performance, many manufacturers are relying on computational fluid dynamic simulations. An overarching goal of the design process for military aircraft engines is to reduce size and weight while maintaining (or improving) reliability. Designers often turn to the compression system to accomplish this goal. As pressure ratios increase and the number of compression stages decrease, many problems arise, for example stability and high cycle fatigue (HCF) become significant as individual stage loading is increased. CFD simulations have recently been employed to assist in the understanding of the aeroelastic problems. For accurate multistage blade row HCF prediction, it is imperative that advanced three-dimensional blade row unsteady aerodynamic interaction codes be validated with appropriate benchmark data. This research addresses this required validation process for TURBO, an advanced three-dimensional multi-blade row turbomachinery CFD code. The solution/prediction accuracy is characterized, identifying key flow field parameters driving the inlet guide vane (IGV) and stator response to the rotor generated forcing functions. The result is a quantified evaluation of the ability of TURBO to predict not only the fundamental flow field characteristics but the three dimensional blade loading.
NASA Astrophysics Data System (ADS)
Sun, Rui; Xiao, Heng
2016-04-01
With the growth of available computational resource, CFD-DEM (computational fluid dynamics-discrete element method) becomes an increasingly promising and feasible approach for the study of sediment transport. Several existing CFD-DEM solvers are applied in chemical engineering and mining industry. However, a robust CFD-DEM solver for the simulation of sediment transport is still desirable. In this work, the development of a three-dimensional, massively parallel, and open-source CFD-DEM solver SediFoam is detailed. This solver is built based on open-source solvers OpenFOAM and LAMMPS. OpenFOAM is a CFD toolbox that can perform three-dimensional fluid flow simulations on unstructured meshes; LAMMPS is a massively parallel DEM solver for molecular dynamics. Several validation tests of SediFoam are performed using cases of a wide range of complexities. The results obtained in the present simulations are consistent with those in the literature, which demonstrates the capability of SediFoam for sediment transport applications. In addition to the validation test, the parallel efficiency of SediFoam is studied to test the performance of the code for large-scale and complex simulations. The parallel efficiency tests show that the scalability of SediFoam is satisfactory in the simulations using up to O(107) particles.
NASA Astrophysics Data System (ADS)
Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane
The coupled ocean-atmosphere-wave-sediment transport modeling system (COAWST) enables simulations that integrate oceanic, atmospheric, wave and morphological processes in the coastal ocean. Within the modeling system, the three-dimensional ocean circulation module (ROMS) is coupled with the wave generation and propagation model (SWAN) to allow full integration of the effect of waves on circulation and vice versa. The existing wave-current coupling component utilizes a depth dependent radiation stress approach. In here we present a new approach that uses the vortex force formalism. The formulation adopted and the various parameterizations used in the model as well as their numerical implementation are presented in detail. The performance of the new system is examined through the presentation of four test cases. These include obliquely incident waves on a synthetic planar beach and a natural barred beach (DUCK' 94); normal incident waves on a nearshore barred morphology with rip channels; and wave-induced mean flows outside the surf zone at the Martha's Vineyard Coastal Observatory (MVCO). Model results from the planar beach case show good agreement with depth-averaged analytical solutions and with theoretical flow structures. Simulation results for the DUCK' 94 experiment agree closely with measured profiles of cross-shore and longshore velocity data from Garcez Faria et al. (1998, 2000). Diagnostic simulations showed that the nonlinear processes of wave roller generation and wave-induced mixing are important for the accurate simulation of surf zone flows. It is further recommended that a more realistic approach for determining the contribution of wave rollers and breaking induced turbulent mixing can be formulated using non-dimensional parameters which are functions of local wave parameters and the beach slope. Dominant terms in the cross-shore momentum balance are found to be the quasi-static pressure gradient and breaking acceleration. In the alongshore direction, bottom stress, breaking acceleration, horizontal advection and horizontal vortex forces dominate the momentum balance. The simulation results for the bar/rip channel morphology case clearly show the ability of the modeling system to reproduce horizontal and vertical circulation patterns similar to those found in laboratory studies and to numerical simulations using the radiation stress representation. The vortex force term is found to be more important at locations where strong flow vorticity interacts with the wave-induced Stokes flow field. Outside the surf zone, the three-dimensional model simulations of wave-induced flows for non-breaking waves closely agree with flow observations from MVCO, with the vertical structure of the simulated flow varying as a function of the vertical viscosity as demonstrated by Lentz et al. (2008).
Program of research in severe storms
NASA Technical Reports Server (NTRS)
1979-01-01
Two modeling areas, the development of a mesoscale chemistry-meteorology interaction model, and the development of a combined urban chemical kinetics-transport model are examined. The problems associated with developing a three dimensional combined meteorological-chemical kinetics computer program package are defined. A similar three dimensional hydrostatic real time model which solves the fundamental Navier-Stokes equations for nonviscous flow is described. An urban air quality simulation model, developed to predict the temporal and spatial distribution of reactive and nonreactive gases in and around an urban area and to support a remote sensor evaluation program is reported.
NASA Astrophysics Data System (ADS)
Ding, Y.; Bi, H. T.; Wilkinson, D. P.
The dynamic formation of water droplets emerging from a gas diffusion layer (GDL) surface in micro-channels was simulated using the volume of fluid (VOF) method. The influence of GDL surface microstructure was investigated by changing the pore diameter and the number of pore openings on the GDL surface. Simulation results show that the microstructure of the GDL surface has a significant impact on the two-phase flow patterns in gas flow channels. For a non-uniform GDL surface, three stages were identified, namely emergence and merging on the GDL surface, accumulation on the channel sidewalls and detachment from the top wall. It was also found that if the pore size is small enough, the flow pattern in the channel does not change with further reduction in the pore diameter. However, the two-phase flow patterns change significantly with the wettability of the GDL surface and sidewalls, but remain the same when the liquid flow rate is reduced by two orders of magnitude from the reference case.
NASA Astrophysics Data System (ADS)
Saaid, Hicham; Segers, Patrick; Novara, Matteo; Claessens, Tom; Verdonck, Pascal
2018-03-01
The characterization of flow patterns in the left ventricle may help the development and interpretation of flow-based parameters of cardiac function and (patho-)physiology. Yet, in vivo visualization of highly dynamic three-dimensional flow patterns in an opaque and moving chamber is a challenging task. This has been shown in several recent multidisciplinary studies where in vivo imaging methods are often complemented by in silico solutions, or by in vitro methods. Because of its distinctive features, particle image velocimetry (PIV) has been extensively used to investigate flow dynamics in the cardiovascular field. However, full volumetric PIV data in a dynamically changing geometry such as the left ventricle remain extremely scarce, which justifies the present study. An investigation of the left ventricle flow making use of a customized cardiovascular simulator is presented; a multiplane scanning-stereoscopic PIV setup is used, which allows for the measurement of independent planes across the measurement volume. Due to the accuracy in traversing the illumination and imaging systems, the present setup allows to reconstruct the flow in a 3D volume performing only one single calibration. The effects of the orientation of a prosthetic mitral valve in anatomical and anti-anatomical configurations have been investigated during the diastolic filling time. The measurement is performed in a phase-locked manner; the mean velocity components are presented together with the vorticity and turbulent kinetic energy maps. The reconstructed 3D flow structures downstream the bileaflet mitral valve are shown, which provides additional insight of the highly three-dimensional flow.
NASA Technical Reports Server (NTRS)
Aveiro, H. C.; Hysell, D. L.; Caton, R. G.; Groves, K. M.; Klenzing, J.; Pfaff, R. F.; Stoneback, R.; Heelis, R. A.
2012-01-01
A three-dimensional numerical simulation of plasma density irregularities in the postsunset equatorial F region ionosphere leading to equatorial spread F (ESF) is described. The simulation evolves under realistic background conditions including bottomside plasma shear flow and vertical current. It also incorporates C/NOFS satellite data which partially specify the forcing. A combination of generalized Rayleigh-Taylor instability (GRT) and collisional shear instability (CSI) produces growing waveforms with key features that agree with C/NOFS satellite and ALTAIR radar observations in the Pacific sector, including features such as gross morphology and rates of development. The transient response of CSI is consistent with the observation of bottomside waves with wavelengths close to 30 km, whereas the steady state behavior of the combined instability can account for the 100+ km wavelength waves that predominate in the F region.
Investigation of growth features in several hydraulic fractures
NASA Astrophysics Data System (ADS)
Bykov, Alexander; Galybin, Alexander; Evdokimov, Alexander; Zavialova, Natalia; Zavialov, Ivan; Negodiaev, Sergey; Perepechkin, Ilia
2017-04-01
In this paper we simulate the growth of three or more interacting hydraulic fractures in the horizontal well with a cross flow of fluid between them. Calculation of the dynamics of cracks is performed in three dimensional space. The computation of the movement of fracturing fluid with proppant is performed in the two-dimensional space (the flow was averaged along crack aperture). For determining the hydraulic pipe resistance coefficient we used a generalization of the Reynolds number for fluids with power rheology and a generalization of the von Karman equation made by Dodge and Meiner. The calculations showed that the first crack was developing faster than the rest in homogeneous medium. During the steady loading the outer cracks pinch the inner cracks and it was shown that only the first and last fracture develop in extreme case. It is also possible to simulate the parameters at which the two developing outer cracks pinch the central one in the horizontal direction. In this case, the central crack may grow in the vertical direction.
Research on external flow field of a car based on reverse engineering
NASA Astrophysics Data System (ADS)
Hu, Shushan; Liu, Ronge
2018-05-01
In this paper, the point cloud data of FAW-VOLKSWAGEN car body shape is obtained by three coordinate measuring instrument and laser scanning method. The accurate three dimensional model of the car is obtained using CATIA software reverse modelling technology. The car body is gridded, the calculation field and boundary condition type of the car flow field are determined, and the numerical simulation is carried out in Hyper Mesh software. The pressure cloud diagram, velocity vector diagram, air resistance coefficient and lift coefficient of the car are obtained. The calculation results reflect the aerodynamic characteristics of the car's external flow field. The motion of the separation flow on the surface of the vehicle body is well simulated, and the area where the vortex motion is relatively intense has been determined. The results provide a theoretical basis for improving and optimizing the body shape.
Global Flowfield About the V-22 Tiltrotor Aircraft
NASA Technical Reports Server (NTRS)
Meakin, Robert L.
1996-01-01
This final report includes five publications that resulted from the studies of the global flowfield about the V-22 Tiltrotor Aircraft. The first of the five is 'The Chimera Method of Simulation for Unsteady Three-Dimensional Viscous Flow', as presented in 'Computational Fluid Dynamics Review 1995.' The remaining papers, all presented at AIAA conferences, are 'Unsteady Simulation of the Viscous Flow About a V-22 Rotor and Wing in Hover', 'An Efficient Means of Adaptive Refinement Within Systems of Overset Grids', 'On the Spatial and Temporal Accuracy of Overset Grid Methods for MOving Body Problems', and 'Moving Body Overset Grid Methods for Complete Aircraft Tiltrotor Simulations.'
Transient Three-Dimensional Side Load Analysis of a Film Cooled Nozzle
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Guidos, Mike
2008-01-01
Transient three-dimensional numerical investigations on the side load physics for an engine encompassing a film cooled nozzle extension and a regeneratively cooled thrust chamber, were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Ultimately, the computational results will be provided to the nozzle designers for estimating of effect of the peak side load on the nozzle structure. Computations simulating engine startup at ambient pressures corresponding to sea level and three high altitudes were performed. In addition, computations for both engine startup and shutdown transients were also performed for a stub nozzle, operating at sea level. For engine with the full nozzle extension, computational result shows starting up at sea level, the peak side load occurs when the lambda shock steps into the turbine exhaust flow, while the side load caused by the transition from free-shock separation to restricted-shock separation comes at second; and the side loads decreasing rapidly and progressively as the ambient pressure decreases. For the stub nozzle operating at sea level, the computed side loads during both startup and shutdown becomes very small due to the much reduced flow area.
Three-dimensional numerical simulation for plastic injection-compression molding
NASA Astrophysics Data System (ADS)
Zhang, Yun; Yu, Wenjie; Liang, Junjie; Lang, Jianlin; Li, Dequn
2018-03-01
Compared with conventional injection molding, injection-compression molding can mold optical parts with higher precision and lower flow residual stress. However, the melt flow process in a closed cavity becomes more complex because of the moving cavity boundary during compression and the nonlinear problems caused by non-Newtonian polymer melt. In this study, a 3D simulation method was developed for injection-compression molding. In this method, arbitrary Lagrangian- Eulerian was introduced to model the moving-boundary flow problem in the compression stage. The non-Newtonian characteristics and compressibility of the polymer melt were considered. The melt flow and pressure distribution in the cavity were investigated by using the proposed simulation method and compared with those of injection molding. Results reveal that the fountain flow effect becomes significant when the cavity thickness increases during compression. The back flow also plays an important role in the flow pattern and redistribution of cavity pressure. The discrepancy in pressures at different points along the flow path is complicated rather than monotonically decreased in injection molding.
Simulating reservoir leakage in ground-water models
Fenske, J.P.; Leake, S.A.; Prudic, David E.
1997-01-01
Leakage to ground water resulting from the expansion and contraction of reservoirs cannot be easily simulated by most ground-water flow models. An algorithm, entitled the Reservoir Package, was developed for the United States Geological Survey (USGS) three-dimensional finite-difference modular ground-water flow model MODFLOW. The Reservoir Package automates the process of specifying head-dependent boundary cells, eliminating the need to divide a simulation into many stress periods while improving accuracy in simulating changes in ground-water levels resulting from transient reservoir stage. Leakage between the reservoir and the underlying aquifer is simulated for each model cell corrresponding to the inundated area by multiplying the head difference between the reservoir and the aquifer with the hydraulic conductance of the reservoir-bed sediments.
Numerical Modeling of Three-Dimensional Confined Flows
NASA Technical Reports Server (NTRS)
Greywall, M. S.
1981-01-01
A three dimensional confined flow model is presented. The flow field is computed by calculating velocity and enthalpy along a set of streamlines. The finite difference equations are obtained by applying conservation principles to streamtubes constructed around the chosen streamlines. With appropriate substitutions for the body force terms, the approach computes three dimensional magnetohydrodynamic channel flows. A listing of a computer code, based on this approach is presented in FORTRAN IV language. The code computes three dimensional compressible viscous flow through a rectangular duct, with the duct cross section specified along the axis.
3D visualization of unsteady 2D airplane wake vortices
NASA Technical Reports Server (NTRS)
Ma, Kwan-Liu; Zheng, Z. C.
1994-01-01
Air flowing around the wing tips of an airplane forms horizontal tornado-like vortices that can be dangerous to following aircraft. The dynamics of such vortices, including ground and atmospheric effects, can be predicted by numerical simulation, allowing the safety and capacity of airports to be improved. In this paper, we introduce three-dimensional techniques for visualizing time-dependent, two-dimensional wake vortex computations, and the hazard strength of such vortices near the ground. We describe a vortex core tracing algorithm and a local tiling method to visualize the vortex evolution. The tiling method converts time-dependent, two-dimensional vortex cores into three-dimensional vortex tubes. Finally, a novel approach calculates the induced rolling moment on the following airplane at each grid point within a region near the vortex tubes and thus allows three-dimensional visualization of the hazard strength of the vortices. We also suggest ways of combining multiple visualization methods to present more information simultaneously.
Aerodynamics of a Flapping Airfoil with a Flexible Tail
NASA Astrophysics Data System (ADS)
Lai, Alan Kai San
This dissertation presents computational solutions to an airfoil in a oscillatory heaving motion with a aeroelastically flexible tail attachment. An unsteady potential flow solver is coupled to a structural solver to obtain the aeroelastic flow solution over an inviscid fluid to investigate the propulsive performance of such a configuration. The simulation is then extended to a two-dimensional viscous solver by coupling NASA's CFL3D solver to the structural solver to study how the flow is altered by the presence of viscosity. Finally, additional simulations are done in three dimensions over wings with varying aspect ratio to study the three-dimensional effects on the propulsive performance of an airfoil with an aeroelastic tail. The computation reveals that the addition of the aeroelastic trailing edge improved the thrust generated by a heaving airfoil significantly. As the frequency of the heaving motion increases, the thrust generated by the airfoil with the tail increases exponentially. In an inviscid fluid, the increase in thrust is insufficient to overcome the increase in power required to maintain the motion and as a result the overall propulsive efficiency is reduced. When the airfoil is heaving in a viscous fluid, the presence of a suction boundary layer and the appearance of leading edge vortex increase the thrust generated to such an extent that the propulsive efficiency is increased by about 3% when compared to the same airfoil with a rigid tail. The three-dimensional computations shows that the presence of the tip vorticies suppress some of the increase in thrust observed in the two-dimensional viscous computations for short span wings. For large span wings, the overall thrust enhancing capabilities of the aeroelastic tail is preserved.
Vankan, W J; Huyghe, J M; Slaaf, D W; van Donkelaar, C C; Drost, M R; Janssen, J D; Huson, A
1997-09-01
Mechanical interaction between tissue stress and blood perfusion in skeletal muscles plays an important role in blood flow impediment during sustained contraction. The exact mechanism of this interaction is not clear, and experimental investigation of this mechanism is difficult. We developed a finite-element model of the mechanical behavior of blood-perfused muscle tissue, which accounts for mechanical blood-tissue interaction in maximally vasodilated vasculature. Verification of the model was performed by comparing finite-element results of blood pressure and flow with experimental measurements in a muscle that is subject to well-controlled mechanical loading conditions. In addition, we performed simulations of blood perfusion during tetanic, isometric contraction and maximal vasodilation in a simplified, two-dimensional finite-element model of a rat calf muscle. A vascular waterfall in the venous compartment was identified as the main cause for blood flow impediment both in the experiment and in the finite-element simulations. The validated finite-element model offers possibilities for detailed analysis of blood perfusion in three-dimensional muscle models under complicated loading conditions.
SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport
NASA Astrophysics Data System (ADS)
Chauchat, Julien; Cheng, Zhen; Nagel, Tim; Bonamy, Cyrille; Hsu, Tian-Jian
2017-11-01
In this paper, a three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended from twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD (computational fluid dynamics) toolbox OpenFOAM. In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different intergranular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I). For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only), a k - ɛ, and a k - ω model. The numerical implementation is demonstrated on four test cases: sedimentation of suspended particles, laminar bed load, sheet flow, and scour at an apron. These test cases illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems with different combinations of intergranular stress and turbulence models.
Comparing volume of fluid and level set methods for evaporating liquid-gas flows
NASA Astrophysics Data System (ADS)
Palmore, John; Desjardins, Olivier
2016-11-01
This presentation demonstrates three numerical strategies for simulating liquid-gas flows undergoing evaporation. The practical aim of this work is to choose a framework capable of simulating the combustion of liquid fuels in an internal combustion engine. Each framework is analyzed with respect to its accuracy and computational cost. All simulations are performed using a conservative, finite volume code for simulating reacting, multiphase flows under the low-Mach assumption. The strategies used in this study correspond to different methods for tracking the liquid-gas interface and handling the transport of the discontinuous momentum and vapor mass fractions fields. The first two strategies are based on conservative, geometric volume of fluid schemes using directionally split and un-split advection, respectively. The third strategy is the accurate conservative level set method. For all strategies, special attention is given to ensuring the consistency between the fluxes of mass, momentum, and vapor fractions. The study performs three-dimensional simulations of an isolated droplet of a single component fuel evaporating into air. Evaporation rates and vapor mass fractions are compared to analytical results.
Three-dimentional simulation of flow-induced platelet activation in artificial heart valves
NASA Astrophysics Data System (ADS)
Hedayat, Mohammadali; Asgharzadeh, Hafez; Borazjani, Iman
2015-11-01
Since the advent of heart valve, several valve types such as mechanical and bio-prosthetic valves have been designed. Mechanical Heart Valves (MHV) are durable but suffer from thromboembolic complications that caused by shear-induced platelet activation near the valve region. Bio-prosthetic Heart Valves (BHV) are known for better hemodynamics. However, they usually have a short average life time. Realistic simulations of heart valves in combination with platelet activation models can lead to a better understanding of the potential risk of thrombus formation in such devices. In this study, an Eulerian approach is developed to calculate the platelet activation in three-dimensional simulations of flow through MHV and BHV using a parallel overset-curvilinear immersed boundary technique. A curvilinear body-fitted grid is used for the flow simulation through the anatomic aorta, while the sharp-interface immersed boundary method is used for simulation of the Left Ventricle (LV) with prescribed motion. In addition, dynamics of valves were calculated numerically using under-relaxed strong-coupling algorithm. Finally, the platelet activation results for BMV and MHV are compared with each other.
User's guide to the Variably Saturated Flow (VSF) process to MODFLOW
Thoms, R. Brad; Johnson, Richard L.; Healy, Richard W.
2006-01-01
A new process for simulating three-dimensional (3-D) variably saturated flow (VSF) using Richards' equation has been added to the 3-D modular finite-difference ground-water model MODFLOW. Five new packages are presented here as part of the VSF Process--the Richards' Equation Flow (REF1) Package, the Seepage Face (SPF1) Package, the Surface Ponding (PND1) Package, the Surface Evaporation (SEV1) Package, and the Root Zone Evapotranspiration (RZE1) Package. Additionally, a new Adaptive Time-Stepping (ATS1) Package is presented for use by both the Ground-Water Flow (GWF) Process and VSF. The VSF Process allows simulation of flow in unsaturated media above the ground-water zone and facilitates modeling of ground-water/surface-water interactions. Model performance is evaluated by comparison to an analytical solution for one-dimensional (1-D) constant-head infiltration (Dirichlet boundary condition), field experimental data for a 1-D constant-head infiltration, laboratory experimental data for two-dimensional (2-D) constant-flux infiltration (Neumann boundary condition), laboratory experimental data for 2-D transient drainage through a seepage face, and numerical model results (VS2DT) of a 2-D flow-path simulation using realistic surface boundary conditions. A hypothetical 3-D example case also is presented to demonstrate the new capability using periodic boundary conditions (for example, daily precipitation) and varied surface topography over a larger spatial scale (0.133 square kilometer). The new model capabilities retain the modular structure of the MODFLOW code and preserve MODFLOW's existing capabilities as well as compatibility with commercial pre-/post-processors. The overall success of the VSF Process in simulating mixed boundary conditions and variable soil types demonstrates its utility for future hydrologic investigations. This report presents a new flow package implementing the governing equations for variably saturated ground-water flow, four new boundary condition packages unique to unsaturated flow, the Adaptive Time-Stepping Package for use with both the GWF Process and the new VSF Process, detailed descriptions of the input and output files for each package, and six simulation examples verifying model performance.
Two-Dimensional Finite Element Ablative Thermal Response Analysis of an Arcjet Stagnation Test
NASA Technical Reports Server (NTRS)
Dec, John A.; Laub, Bernard; Braun, Robert D.
2011-01-01
The finite element ablation and thermal response (FEAtR, hence forth called FEAR) design and analysis program simulates the one, two, or three-dimensional ablation, internal heat conduction, thermal decomposition, and pyrolysis gas flow of thermal protection system materials. As part of a code validation study, two-dimensional axisymmetric results from FEAR are compared to thermal response data obtained from an arc-jet stagnation test in this paper. The results from FEAR are also compared to the two-dimensional axisymmetric computations from the two-dimensional implicit thermal response and ablation program under the same arcjet conditions. The ablating material being used in this arcjet test is phenolic impregnated carbon ablator with an LI-2200 insulator as backup material. The test is performed at the NASA, Ames Research Center Interaction Heating Facility. Spatially distributed computational fluid dynamics solutions for the flow field around the test article are used for the surface boundary conditions.
Evaluation of subgrid-scale turbulence models using a fully simulated turbulent flow
NASA Technical Reports Server (NTRS)
Clark, R. A.; Ferziger, J. H.; Reynolds, W. C.
1977-01-01
An exact turbulent flow field was calculated on a three-dimensional grid with 64 points on a side. The flow simulates grid-generated turbulence from wind tunnel experiments. In this simulation, the grid spacing is small enough to include essentially all of the viscous energy dissipation, and the box is large enough to contain the largest eddy in the flow. The method is limited to low-turbulence Reynolds numbers, in our case R sub lambda = 36.6. To complete the calculation using a reasonable amount of computer time with reasonable accuracy, a third-order time-integration scheme was developed which runs at about the same speed as a simple first-order scheme. It obtains this accuracy by saving the velocity field and its first-time derivative at each time step. Fourth-order accurate space-differencing is used.
Surface representations of two- and three-dimensional fluid flow topology
NASA Technical Reports Server (NTRS)
Helman, James L.; Hesselink, Lambertus
1990-01-01
We discuss our work using critical point analysis to generate representations of the vector field topology of numerical flow data sets. Critical points are located and characterized in a two-dimensional domain, which may be either a two-dimensional flow field or the tangential velocity field near a three-dimensional body. Tangent curves are then integrated out along the principal directions of certain classes of critical points. The points and curves are linked to form a skeleton representing the two-dimensional vector field topology. When generated from the tangential velocity field near a body in a three-dimensional flow, the skeleton includes the critical points and curves which provide a basis for analyzing the three-dimensional structure of the flow separation. The points along the separation curves in the skeleton are used to start tangent curve integrations to generate surfaces representing the topology of the associated flow separations.
Numerical investigation of turbulent channel flow
NASA Technical Reports Server (NTRS)
Moin, P.; Kim, J.
1981-01-01
Fully developed turbulent channel flow was simulated numerically at Reynolds number 13800, based on centerline velocity and channel halt width. The large-scale flow field was obtained by directly integrating the filtered, three dimensional, time dependent, Navier-Stokes equations. The small-scale field motions were simulated through an eddy viscosity model. The calculations were carried out on the ILLIAC IV computer with up to 516,096 grid points. The computed flow field was used to study the statistical properties of the flow as well as its time dependent features. The agreement of the computed mean velocity profile, turbulence statistics, and detailed flow structures with experimental data is good. The resolvable portion of the statistical correlations appearing in the Reynolds stress equations are calculated. Particular attention is given to the examination of the flow structure in the vicinity of the wall.
Numerical simulations of thermal convection on a hemisphere
NASA Astrophysics Data System (ADS)
Bruneau, C.-H.; Fischer, P.; Xiong, Y.-L.; Kellay, H.; Cyclobulle Collaboration
2018-04-01
In this paper we present numerical simulations of two-dimensional turbulent convection on a hemisphere. Recent experiments on a half soap bubble located on a heated plate have shown that such a configuration is ideal for studying thermal convection on a curved surface. Thermal convection and fluid flows on curved surfaces are relevant to a variety of situations, notably for simulating atmospheric and geophysical flows. As in experiments, our simulations show that the gradient of temperature between the base and the top of the hemisphere generates thermal plumes at the base that move up from near the equator to the pole. The movement of these plumes gives rise to a two-dimensional turbulent thermal convective flow. Our simulations turn out to be in qualitative and quantitative agreement with experiments and show strong similarities with Rayleigh-Bénard convection in classical cells where a fluid is heated from below and cooled from above. To compare to results obtained in classical Rayleigh-Bénard convection in standard three-dimensional cells (rectangular or cylindrical), a Nusselt number adapted to our geometry and a Reynolds number are calculated as a function of the Rayleigh number. We find that the Nusselt and Reynolds numbers verify scaling laws consistent with turbulent Rayleigh-Bénard convection: Nu∝Ra0.31 and Re∝Ra1/2 . Further, a Bolgiano regime is found with the Bolgiano scale scaling as Ra-1/4. All these elements show that despite the significant differences in geometry between our simulations and classical 3D cells, the scaling laws of thermal convection are robust.
Three-dimensional interactions and vortical flows with emphasis on high speeds
NASA Technical Reports Server (NTRS)
Peake, D. J.; Tobak, M.
1980-01-01
Diverse kinds of three-dimensional regions of separation in laminar and turbulent boundary layers are discussed that exist on lifting aerodynamic configurations immersed in flows from subsonic to hypersonic speeds. In all cases of three dimensional flow separation, the assumption of continuous vector fields of skin-friction lines and external-flow streamlines, coupled with simple topology laws, provides a flow grammar whose elemental constituents are the singular points: nodes, foci, and saddles. Adopting these notions enables one to create sequences of plausible flow structures, to deduce mean flow characteristics, expose flow mechanisms, and to aid theory and experiment where lack of resolution in numerical calculations or wind tunnel observation causes imprecision in diagnosing the three dimensional flow features.
Toward Automatic Verification of Goal-Oriented Flow Simulations
NASA Technical Reports Server (NTRS)
Nemec, Marian; Aftosmis, Michael J.
2014-01-01
We demonstrate the power of adaptive mesh refinement with adjoint-based error estimates in verification of simulations governed by the steady Euler equations. The flow equations are discretized using a finite volume scheme on a Cartesian mesh with cut cells at the wall boundaries. The discretization error in selected simulation outputs is estimated using the method of adjoint-weighted residuals. Practical aspects of the implementation are emphasized, particularly in the formulation of the refinement criterion and the mesh adaptation strategy. Following a thorough code verification example, we demonstrate simulation verification of two- and three-dimensional problems. These involve an airfoil performance database, a pressure signature of a body in supersonic flow and a launch abort with strong jet interactions. The results show reliable estimates and automatic control of discretization error in all simulations at an affordable computational cost. Moreover, the approach remains effective even when theoretical assumptions, e.g., steady-state and solution smoothness, are relaxed.
SAFSIM theory manual: A computer program for the engineering simulation of flow systems
NASA Astrophysics Data System (ADS)
Dobranich, Dean
1993-12-01
SAFSIM (System Analysis Flow SIMulator) is a FORTRAN computer program for simulating the integrated performance of complex flow systems. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary SAFSIM development goals. SAFSIM contains three basic physics modules: (1) a fluid mechanics module with flow network capability; (2) a structure heat transfer module with multiple convection and radiation exchange surface capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. Any or all of the physics modules can be implemented, as the problem dictates. SAFSIM can be used for compressible and incompressible, single-phase, multicomponent flow systems. Both the fluid mechanics and structure heat transfer modules employ a one-dimensional finite element modeling approach. This document contains a description of the theory incorporated in SAFSIM, including the governing equations, the numerical methods, and the overall system solution strategies.
Recent Advances in Agglomerated Multigrid
NASA Technical Reports Server (NTRS)
Nishikawa, Hiroaki; Diskin, Boris; Thomas, James L.; Hammond, Dana P.
2013-01-01
We report recent advancements of the agglomerated multigrid methodology for complex flow simulations on fully unstructured grids. An agglomerated multigrid solver is applied to a wide range of test problems from simple two-dimensional geometries to realistic three- dimensional configurations. The solver is evaluated against a single-grid solver and, in some cases, against a structured-grid multigrid solver. Grid and solver issues are identified and overcome, leading to significant improvements over single-grid solvers.
Preliminary development of the LBL/USGS three-dimensional site-scale model of Yucca Mountain, Nevada
1995-01-01
A three-dimensional model of moisture flow within the unsaturated zone at Yucca Mountain is being developed at Lawrence Berkeley Laboratory (LBL) in cooperation with the U.S. Geological Survey (USGS). This site-scale model covers and area of about 34 km2 and is bounded by major faults to the north, east and west. The model geometry is defined (1) to represent the variations of hydrogeological units between the ground surface and the water table; (2) to be able to reproduce the effect of abrupt changes in hydrogeological parameters at the boundaries between hyrdogeological units; and (3) to include the influence of major faults. A detailed numerical grid has been developed based on the locations of boreholes, different infiltration zones, hydrogeological units and their outcrops, major faults, and water level data. Contour maps and isopatch maps are presented defining different types of infiltration zones, and the spatial distribution of Tiva Canyon, Paintbrush, and Topopah Spring hydrogeological units. The grid geometry consists of seventeen non-uniform layers which represent the lithological variations within the four main welded and non-welded hydrogeological units. Matrix flow is approximated using the van Genuchten model, and the equivalent continuum approximation is used to account for fracture flow in the welded units. The fault zones are explicitly modeled as porous medium using various assumptions regarding their permeabilities and characteristic curves. One-, two-, and three-dimensional simulations are conducted using the TOUGH2 computer program. Steady-state simulations are performed with various uniform and non-uniform infiltration rates. The results are interpreted in terms of the effect of fault characteristics on the moisture flow distribution, and on location and formation of preferential pathways.
Application of ARC/INFO to regional scale hydrogeologic modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wurstner, S.K.; McWethy, G.; Devary, J.L.
1993-05-01
Geographic Information Systems (GIS) can be a useful tool in data preparation for groundwater flow modeling, especially when studying large regional systems. ARC/INFO is being used in conjunction with GRASS to support data preparation for input to the CFEST (Coupled Fluid, Energy, and Solute Transport) groundwater modeling code. Simulations will be performed with CFEST to model three-dimensional, regional, groundwater flow in the West Siberian Basin.
Development of the Patient-specific Cardiovascular Modeling System Using Immersed Boundary Technique
NASA Astrophysics Data System (ADS)
Tay, Wee-Beng; Lin, Liang-Yu; Tseng, Wen-Yih; Tseng, Yu-Heng
2010-05-01
A computational fluid dynamics (CFD) based, patient-specific cardiovascular modeling system is under-developed. The system can identify possible diseased conditions and facilitate physicians' diagnosis at early stage through the hybrid CFD simulation and time-resolved magnetic resonance imaging (MRI). The CFD simulation is initially based on the three-dimensional heart model developed by McQueen and Peskin, which can simultaneously compute fluid motions and elastic boundary motions using the immersed boundary method. We extend and improve the three-dimensional heart model for the clinical application by including the patient-specific hemodynamic information. The flow features in the ventricles and their responses are investigated under different inflow and outflow conditions during diastole and systole phases based on the quasi-realistic heart model, which takes advantage of the observed flow scenarios. Our results indicate distinct differences between the two groups of participants, including the vortex formation process in the left ventricle (LV), as well as the flow rate distributions at different identified sources such as the aorta, vena cava and pulmonary veins/artery. We further identify some key parameters which may affect the vortex formation in the LV. Thus it is hypothesized that disease-related dysfunctions in intervals before complete heart failure can be observed in the dynamics of transmitral blood flow during early LV diastole.
Computation of three-dimensional three-phase flow of carbon dioxide using a high-order WENO scheme
NASA Astrophysics Data System (ADS)
Gjennestad, Magnus Aa.; Gruber, Andrea; Lervåg, Karl Yngve; Johansen, Øyvind; Ervik, Åsmund; Hammer, Morten; Munkejord, Svend Tollak
2017-11-01
We have developed a high-order numerical method for the 3D simulation of viscous and inviscid multiphase flow described by a homogeneous equilibrium model and a general equation of state. Here we focus on single-phase, two-phase (gas-liquid or gas-solid) and three-phase (gas-liquid-solid) flow of CO2 whose thermodynamic properties are calculated using the Span-Wagner reference equation of state. The governing equations are spatially discretized on a uniform Cartesian grid using the finite-volume method with a fifth-order weighted essentially non-oscillatory (WENO) scheme and the robust first-order centered (FORCE) flux. The solution is integrated in time using a third-order strong-stability-preserving Runge-Kutta method. We demonstrate close to fifth-order convergence for advection-diffusion and for smooth single- and two-phase flows. Quantitative agreement with experimental data is obtained for a direct numerical simulation of an air jet flowing from a rectangular nozzle. Quantitative agreement is also obtained for the shape and dimensions of the barrel shock in two highly underexpanded CO2 jets.
Three-dimensional microbubble streaming flows
NASA Astrophysics Data System (ADS)
Rallabandi, Bhargav; Marin, Alvaro; Rossi, Massimiliano; Kaehler, Christian; Hilgenfeldt, Sascha
2014-11-01
Streaming due to acoustically excited bubbles has been used successfully for applications such as size-sorting, trapping and focusing of particles, as well as fluid mixing. Many of these applications involve the precise control of particle trajectories, typically achieved using cylindrical bubbles, which establish planar flows. Using astigmatic particle tracking velocimetry (APTV), we show that, while this two-dimensional picture is a useful description of the flow over short times, a systematic three-dimensional flow structure is evident over long time scales. We demonstrate that this long-time three-dimensional fluid motion can be understood through asymptotic theory, superimposing secondary axial flows (induced by boundary conditions at the device walls) onto the two-dimensional description. This leads to a general framework that describes three-dimensional flows in confined microstreaming systems, guiding the design of applications that profit from minimizing or maximizing these effects.
Simulations of Heterogeneous Detonations and Post Detonation Turbulent Mixing and Afterburning
NASA Astrophysics Data System (ADS)
Menon, Suresh; Gottiparthi, Kalyana
2011-06-01
Most metal-loaded explosives and thermobaric explosives exploit the afterburning of metals to maintain pressure and temperature conditions.The use of such explosives in complex environment can result in post detonation flow containing many scales of vortical motion, flow jetting and shear, as well as plume-surface interactions due to flow impingement and wall flows. In general, all these interactions can lead to highly turbulent flow fields even if the initial ambient conditions were quiescent. Thus, turbulent mixing can dominate initial mixing and impact the final afterburn. We conduct three-dimensional numerical simulations of the propagation of detonation resulting from metal-loaded (inert or reacting) explosives and analyze the afterburn process as well as the generation of multiple scales of mixing in the post detonation flow field. Impact of the detonation and post-detonation flow field on solid surface is also considered for a variety of initial conditions. Comparison with available data is carried out to demonstrate validity of the simulation method. Supported by Defense Threat Reduction Agency
PLIF Imaging of Capsule RCS Jets, Shear Layers, and Simulated Forebody Ablation
NASA Technical Reports Server (NTRS)
Inman, Jennifer A.; Danehy, Paul M.; Alderfer, David W.; Buck, Gregory M.; McCrea, Andrew
2008-01-01
Planar laser-induced fluorescence (PLIF) has been used to investigate hypersonic flows associated with capsule reentry vehicles. These flows included reaction control system (RCS) jets, shear layer flow, and simulated forebody heatshield ablation. Pitch, roll, and yaw RCS jets were studied. PLIF obtained planar slices in these flowfields. These slices could be viewed individually or they could be combined using computer visualization techniques to reconstruct the three dimensional shape of the flow. The tests described herein were conducted in the 31-Inch Mach 10 Air Tunnel at NASA Langley Research Center. Improvements to many facets of the imaging system increased the efficiency and quality of both data acquisition, in addition to increasing the overall robustness of the system.
Numerical model for learning concepts of streamflow simulation
DeLong, L.L.; ,
1993-01-01
Numerical models are useful for demonstrating principles of open-channel flow. Such models can allow experimentation with cause-and-effect relations, testing concepts of physics and numerical techniques. Four PT is a numerical model written primarily as a teaching supplement for a course in one-dimensional stream-flow modeling. Four PT options particularly useful in training include selection of governing equations, boundary-value perturbation, and user-programmable constraint equations. The model can simulate non-trivial concepts such as flow in complex interconnected channel networks, meandering channels with variable effective flow lengths, hydraulic structures defined by unique three-parameter relations, and density-driven flow.The model is coded in FORTRAN 77, and data encapsulation is used extensively to simplify maintenance and modification and to enhance the use of Four PT modules by other programs and programmers.
A CFD study of gas-solid jet in a CFB riser flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tingwen; Guenther, Chris
2012-03-01
Three-dimensional high-resolution numerical simulations of a gas–solid jet in a high-density riser flow were conducted. The impact of gas–solid injection on the riser flow hydrodynamics was investigated with respect to voidage, tracer mass fractions, and solids velocity distribution. The behaviors of a gas–solid jet in the riser crossflow were studied through the unsteady numerical simulations. Substantial separation of the jetting gas and solids in the riser crossflow was observed. Mixing of the injected gas and solids with the riser flow was investigated and backmixing of gas and solids was evaluated. In the current numerical study, both the overall hydrodynamics ofmore » riser flow and the characteristics of gas–solid jet were reasonably predicted compared with the experimental measurements made at NETL.« less
Modeling Physiological Systems in the Human Body as Networks of Quasi-1D Fluid Flows
NASA Astrophysics Data System (ADS)
Staples, Anne
2008-11-01
Extensive research has been done on modeling human physiology. Most of this work has been aimed at developing detailed, three-dimensional models of specific components of physiological systems, such as a cell, a vein, a molecule, or a heart valve. While efforts such as these are invaluable to our understanding of human biology, if we were to construct a global model of human physiology with this level of detail, computing even a nanosecond in this computational being's life would certainly be prohibitively expensive. With this in mind, we derive the Pulsed Flow Equations, a set of coupled one-dimensional partial differential equations, specifically designed to capture two-dimensional viscous, transport, and other effects, and aimed at providing accurate and fast-to-compute global models for physiological systems represented as networks of quasi one-dimensional fluid flows. Our goal is to be able to perform faster-than-real time simulations of global processes in the human body on desktop computers.
NASA Technical Reports Server (NTRS)
Watkins, William B.
1990-01-01
Comparisons between scramjet combustor data and a three-dimensional full Navier-Stokes calculation have been made to verify and substantiate computational fluid dynamics (CFD) codes and application procedures. High Mach number scramjet combustor development will rely heavily on CFD applications to provide wind tunnel-equivalent data of quality sufficient to design, build and fly hypersonic aircraft. Therefore. detailed comparisons between CFD results and test data are imperative. An experimental case is presented, for which combustor wall static pressures were measured and flow-fieid interferograms were obtained. A computer model was done of the experiment, and counterpart parameters are compared with experiment. The experiment involved a subscale combustor designed and fabricated for the National Aero-Space Plane Program, and tested in the Calspan Corporation 96" hypersonic shock tunnel. The combustor inlet ramp was inclined at a 20 angle to the shock tunnel nozzle axis, and resulting combustor entrance flow conditions simulated freestream M=10. The combustor body and cowl walls were instrumented with static pressure transducers, and the combustor lateral walls contained windows through which flowfield holographic interferograms were obtained. The CFD calculation involved a three-dimensional time-averaged full Navier-Stokes code applied to the axial flow segment containing fuel injection and combustion. The full Navier-Stokes approach allowed for mixed supersonic and subsonic flow, downstream-upstream communication in subsonic flow regions, and effects of adverse pressure gradients. The code included hydrogen-air chemistry in the combustor segment which begins near fuel injection and continues through combustor exhaust. Combustor ramp and inlet segments on the combustor lateral centerline were modelled as two dimensional. Comparisons to be shown include calculated versus measured wall static pressures as functions of axial flow coordinate, and calculated path-averaged density contours versus an holographic Interferogram.
4D Magnetic Resonance Velocimetry in a 3D printed brain aneurysm
NASA Astrophysics Data System (ADS)
Amili, Omid; Schiavazzi, Daniele; Coletti, Filippo
2016-11-01
Cerebral aneurysms are of great clinical importance. It is believed that hemodynamics play a critical role in the development, growth, and rupture of brain arteries with such condition. The flow structure in the aneurysm sac is complex, unsteady, and three-dimensional. Therefore the time-resolved measurement of the three-dimensional three-component velocity field is crucial to predict the clinical outcome. In this study magnetic resonance velocimetry is used to assess the fluid dynamics inside a 3D printed model of a giant intracranial aneurysm. We reach sub-millimeter resolution while resolving sixteen instances within the cardiac cycle. The physiological flow waveform is imposed using an in-house built pump in a flow circuit where the cardiovascular impedance is matched. The flow evolution over time is reconstructed in detail. The complex flow structure is characterized by vortical and helical motions that reside in the aneurysm for most part of the cycle. The 4D pressured distribution is also reconstructed from the velocity field. The present case study was used in a previous CFD challenge, therefore these results may provide useful experimental comparison for simulations performed by other research groups.
Acoustic metacages for sound shielding with steady air flow
NASA Astrophysics Data System (ADS)
Shen, Chen; Xie, Yangbo; Li, Junfei; Cummer, Steven A.; Jing, Yun
2018-03-01
Conventional sound shielding structures typically prevent fluid transport between the exterior and interior. A design of a two-dimensional acoustic metacage with subwavelength thickness which can shield acoustic waves from all directions while allowing steady fluid flow is presented in this paper. The structure is designed based on acoustic gradient-index metasurfaces composed of open channels and shunted Helmholtz resonators. In-plane sound at an arbitrary angle of incidence is reflected due to the strong parallel momentum on the metacage surface, which leads to low sound transmission through the metacage. The performance of the proposed metacage is verified by numerical simulations and measurements on a three-dimensional printed prototype. The acoustic metacage has potential applications in sound insulation where steady fluid flow is necessary or advantageous.
Zhang, Hubao; Schwartz, Frank W.; Wood, Warren W.; Garabedian, S.P.; LeBlanc, D.R.
1998-01-01
A multispecies numerical code was developed to simulate flow and mass transport with kinetic adsorption in variable-density flow systems. The two-dimensional code simulated the transport of bromide (Br−), a nonreactive tracer, and lithium (Li+), a reactive tracer, in a large-scale tracer test performed in a sand-and-gravel aquifer at Cape Cod, Massachusetts. A two-fraction kinetic adsorption model was implemented to simulate the interaction of Li+ with the aquifer solids. Initial estimates for some of the transport parameters were obtained from a nonlinear least squares curve-fitting procedure, where the breakthrough curves from column experiments were matched with one-dimensional theoretical models. The numerical code successfully simulated the basic characteristics of the two plumes in the tracer test. At early times the centers of mass of Br− and Li+ sank because the two plumes were closely coupled to the density-driven velocity field. At later times the rate of downward movement in the Br− plume due to gravity slowed significantly because of dilution by dispersion. The downward movement of the Li+ plume was negligible because the two plumes moved in locally different velocity regimes, where Li+ transport was retarded relative to Br−. The maximum extent of downward transport of the Li+ plume was less than that of the Br− plume. This study also found that at early times the downward movement of a plume created by a three-dimensional source could be much more extensive than the case with a two-dimensional source having the same cross-sectional area. The observed shape of the Br− plume at Cape Cod was simulated by adding two layers with different hydraulic conductivities at shallow depth across the region. The large dispersion and asymmetrical shape of the Li+ plume were simulated by including kinetic adsorption-desorption reactions.
Reduced-Order Models Based on POD-Tpwl for Compositional Subsurface Flow Simulation
NASA Astrophysics Data System (ADS)
Durlofsky, L. J.; He, J.; Jin, L. Z.
2014-12-01
A reduced-order modeling procedure applicable for compositional subsurface flow simulation will be described and applied. The technique combines trajectory piecewise linearization (TPWL) and proper orthogonal decomposition (POD) to provide highly efficient surrogate models. The method is based on a molar formulation (which uses pressure and overall component mole fractions as the primary variables) and is applicable for two-phase, multicomponent systems. The POD-TPWL procedure expresses new solutions in terms of linearizations around solution states generated and saved during previously simulated 'training' runs. High-dimensional states are projected into a low-dimensional subspace using POD. Thus, at each time step, only a low-dimensional linear system needs to be solved. Results will be presented for heterogeneous three-dimensional simulation models involving CO2 injection. Both enhanced oil recovery and carbon storage applications (with horizontal CO2 injectors) will be considered. Reasonably close agreement between full-order reference solutions and compositional POD-TPWL simulations will be demonstrated for 'test' runs in which the well controls differ from those used for training. Construction of the POD-TPWL model requires preprocessing overhead computations equivalent to about 3-4 full-order runs. Runtime speedups using POD-TPWL are, however, very significant - typically O(100-1000). The use of POD-TPWL for well control optimization will also be illustrated. For this application, some amount of retraining during the course of the optimization is required, which leads to smaller, but still significant, speedup factors.
2015-01-01
Purpose: The aim of this study was to validate a computational fluid dynamics (CFD) simulation of flow-diverter treatment through Doppler ultrasonography measurements in patient-specific models of intracranial bifurcation and side-wall aneurysms. Methods: Computational and physical models of patient-specific bifurcation and sidewall aneurysms were constructed from computed tomography angiography with use of stereolithography, a three-dimensional printing technology. Flow dynamics parameters before and after flow-diverter treatment were measured with pulse-wave and color Doppler ultrasonography, and then compared with CFD simulations. Results: CFD simulations showed drastic flow reduction after flow-diverter treatment in both aneurysms. The mean volume flow rate decreased by 90% and 85% for the bifurcation aneurysm and the side-wall aneurysm, respectively. Velocity contour plots from computer simulations before and after flow diversion closely resembled the patterns obtained by color Doppler ultrasonography. Conclusion: The CFD estimation of flow reduction in aneurysms treated with a flow-diverting stent was verified by Doppler ultrasonography in patient-specific phantom models of bifurcation and side-wall aneurysms. The combination of CFD and ultrasonography may constitute a feasible and reliable technique in studying the treatment of intracranial aneurysms with flow-diverting stents. PMID:25754367
NASA Astrophysics Data System (ADS)
Bellos, Vasilis; Tsakiris, George
2016-09-01
The study presents a new hybrid method for the simulation of flood events in small catchments. It combines a physically-based two-dimensional hydrodynamic model and the hydrological unit hydrograph theory. Unit hydrographs are derived using the FLOW-R2D model which is based on the full form of two-dimensional Shallow Water Equations, solved by a modified McCormack numerical scheme. The method is tested at a small catchment in a suburb of Athens-Greece for a storm event which occurred in February 2013. The catchment is divided into three friction zones and unit hydrographs of 15 and 30 min are produced. The infiltration process is simulated by the empirical Kostiakov equation and the Green-Ampt model. The results from the implementation of the proposed hybrid method are compared with recorded data at the hydrometric station at the outlet of the catchment and the results derived from the fully hydrodynamic model FLOW-R2D. It is concluded that for the case studied, the proposed hybrid method produces results close to those of the fully hydrodynamic simulation at substantially shorter computational time. This finding, if further verified in a variety of case studies, can be useful in devising effective hybrid tools for the two-dimensional flood simulations, which are lead to accurate and considerably faster results than those achieved by the fully hydrodynamic simulations.
Robust flow of light in three-dimensional dielectric photonic crystals.
Chen, Wen-Jie; Jiang, Shao-Ji; Dong, Jian-Wen
2013-09-01
Chiral defect waveguides and waveguide bend geometry were designed in diamond photonic crystal to mold the flow of light in three dimensions. Propagations of electromagnetic waves in chiral waveguides are robust against isotropic obstacles, which would suppress backscattering in waveguides or integrated devices. Finite-difference time-domain simulations demonstrate that high coupling efficiency through the bend corner is preserved in the polarization gap, as it provides an additional constraint on the polarization state of the backscattered wave. Transport robustness is also demonstrated by inserting two metallic slabs into the waveguide bend.
Numerical Simulations of Laminar Air-Water Flow of a Non-linear Progressive Wave at Low Wind Speed
NASA Astrophysics Data System (ADS)
Wen, X.; Mobbs, S.
2014-03-01
A numerical simulation for two-dimensional laminar air-water flow of a non-linear progressive water wave with large steepness is performed when the background wind speed varies from zero to the wave phase speed. It is revealed that in the water the difference between the analytical solution of potential flow and numerical solution of viscous flow is very small, indicating that both solutions of the potential flow and viscous flow describe the water wave very accurately. In the air the solutions of potential and viscous flows are very different due to the effects of viscosity. The velocity distribution in the airflow is strongly influenced by the background wind speed and it is found that three wind speeds, , (the maximum orbital velocity of a water wave), and (the wave phase speed), are important in distinguishing different features of the flow patterns.
Arthur, J.K.; Taylor, R.E.
1986-01-01
As part of the Gulf Coast Regional Aquifer System Analysis (GC RASA) study, data from 184 geophysical well logs were used to define the geohydrologic framework of the Mississippi embayment aquifer system in Mississippi for flow model simulation. Five major aquifers of Eocene and Paleocene age were defined within this aquifer system in Mississippi. A computer data storage system was established to assimilate the information obtained from the geophysical logs. Computer programs were developed to manipulate the data to construct geologic sections and structure maps. Data from the storage system will be input to a five-layer, three-dimensional, finite-difference digital computer model that is used to simulate the flow dynamics in the five major aquifers of the Mississippi embayment aquifer system.
NASA Astrophysics Data System (ADS)
Fang, Z.; Ward, A. L.; Fang, Y.; Yabusaki, S.
2011-12-01
High-resolution geologic models have proven effective in improving the accuracy of subsurface flow and transport predictions. However, many of the parameters in subsurface flow and transport models cannot be determined directly at the scale of interest and must be estimated through inverse modeling. A major challenge, particularly in vadose zone flow and transport, is the inversion of the highly-nonlinear, high-dimensional problem as current methods are not readily scalable for large-scale, multi-process models. In this paper we describe the implementation of a fully automated approach for addressing complex parameter optimization and sensitivity issues on massively parallel multi- and many-core systems. The approach is based on the integration of PNNL's extreme scale Subsurface Transport Over Multiple Phases (eSTOMP) simulator, which uses the Global Array toolkit, with the Beowulf-Cluster inspired parallel nonlinear parameter estimation software, BeoPEST in the MPI mode. In the eSTOMP/BeoPEST implementation, a pre-processor generates all of the PEST input files based on the eSTOMP input file. Simulation results for comparison with observations are extracted automatically at each time step eliminating the need for post-process data extractions. The inversion framework was tested with three different experimental data sets: one-dimensional water flow at Hanford Grass Site; irrigation and infiltration experiment at the Andelfingen Site; and a three-dimensional injection experiment at Hanford's Sisson and Lu Site. Good agreements are achieved in all three applications between observations and simulations in both parameter estimates and water dynamics reproduction. Results show that eSTOMP/BeoPEST approach is highly scalable and can be run efficiently with hundreds or thousands of processors. BeoPEST is fault tolerant and new nodes can be dynamically added and removed. A major advantage of this approach is the ability to use high-resolution geologic models to preserve the spatial structure in the inverse model, which leads to better parameter estimates and improved predictions when using the inverse-conditioned realizations of parameter fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundquist, K A
Mesoscale models, such as the Weather Research and Forecasting (WRF) model, are increasingly used for high resolution simulations, particularly in complex terrain, but errors associated with terrain-following coordinates degrade the accuracy of the solution. Use of an alternative Cartesian gridding technique, known as an immersed boundary method (IBM), alleviates coordinate transformation errors and eliminates restrictions on terrain slope which currently limit mesoscale models to slowly varying terrain. In this dissertation, an immersed boundary method is developed for use in numerical weather prediction. Use of the method facilitates explicit resolution of complex terrain, even urban terrain, in the WRF mesoscale model.more » First, the errors that arise in the WRF model when complex terrain is present are presented. This is accomplished using a scalar advection test case, and comparing the numerical solution to the analytical solution. Results are presented for different orders of advection schemes, grid resolutions and aspect ratios, as well as various degrees of terrain slope. For comparison, results from the same simulation are presented using the IBM. Both two-dimensional and three-dimensional immersed boundary methods are then described, along with details that are specific to the implementation of IBM in the WRF code. Our IBM is capable of imposing both Dirichlet and Neumann boundary conditions. Additionally, a method for coupling atmospheric physics parameterizations at the immersed boundary is presented, making IB methods much more functional in the context of numerical weather prediction models. The two-dimensional IB method is verified through comparisons of solutions for gentle terrain slopes when using IBM and terrain-following grids. The canonical case of flow over a Witch of Agnesi hill provides validation of the basic no-slip and zero gradient boundary conditions. Specified diurnal heating in a valley, producing anabatic winds, is used to validate the use of flux (non-zero) boundary conditions. This anabatic flow set-up is further coupled to atmospheric physics parameterizations, which calculate surface fluxes, demonstrating that the IBM can be coupled to various land-surface parameterizations in atmospheric models. Additionally, the IB method is extended to three dimensions, using both trilinear and inverse distance weighted interpolations. Results are presented for geostrophic flow over a three-dimensional hill. It is found that while the IB method using trilinear interpolation works well for simple three-dimensional geometries, a more flexible and robust method is needed for extremely complex geometries, as found in three-dimensional urban environments. A second, more flexible, immersed boundary method is devised using inverse distance weighting, and results are compared to the first IBM approach. Additionally, the functionality to nest a domain with resolved complex geometry inside of a parent domain without resolved complex geometry is described. The new IBM approach is used to model urban terrain from Oklahoma City in a one-way nested configuration, where lateral boundary conditions are provided by the parent domain. Finally, the IB method is extended to include wall model parameterizations for rough surfaces. Two possible implementations are presented, one which uses the log law to reconstruct velocities exterior to the solid domain, and one which reconstructs shear stress at the immersed boundary, rather than velocity. These methods are tested on the three-dimensional canonical case of neutral atmospheric boundary layer flow over flat terrain.« less
Anomalous flow deflection at earth's low-Alfvén-Mach-Number bow shock.
Nishino, Masaki N; Fujimoto, Masaki; Phan, Tai-Duc; Mukai, Toshifumi; Saito, Yoshifumi; Kuznetsova, Masha M; Rastätter, Lutz
2008-08-08
Earth's magnetosphere is an obstacle to the supersonic solar wind and the bow shock is formed in the front side of it. In ordinary hydrodynamics, the flow decelerated at the shock is diverted around the obstacle symmetrically about the Earth-Sun line, which is indeed observed in the magnetosheath most of the time. Here we show a case under a very low-density solar wind in which duskward flow was observed in the dawnside magnetosheath. A Rankine-Hugoniot test shows that the magnetic effect is crucial for this "wrong flow" to appear. A full three-dimensional magnetohydrodynamics (MHD) simulation of the situation confirming this interpretation and earlier simulations is also performed. It is illustrated that in addition to the "wrong flow" feature, various peculiar characteristics appear in the global picture of the MHD flow interaction with the obstacle.
Three-Dimensional Plasma-Based Stall Control Simulations with Coupled First-Principles Approaches
2006-07-01
flow code, developed at the Computational Plasma Dynamics Laboratory at Kettering University. The method is based on a versatile finite-element ( FE ...McLaughlin, T., and Baughn, J., 2005. “Acoustic testing of the dielectric barrier dis- charge ( dbd ) plasma actuator”. AIAA Paper 2005-0565, Jan
Towards a Comprehensive Computational Simulation System for Turbomachinery
NASA Technical Reports Server (NTRS)
Shih, Ming-Hsin
1994-01-01
The objective of this work is to develop algorithms associated with a comprehensive computational simulation system for turbomachinery flow fields. This development is accomplished in a modular fashion. These modules includes grid generation, visualization, network, simulation, toolbox, and flow modules. An interactive grid generation module is customized to facilitate the grid generation process associated with complicated turbomachinery configurations. With its user-friendly graphical user interface, the user may interactively manipulate the default settings to obtain a quality grid within a fraction of time that is usually required for building a grid about the same geometry with a general-purpose grid generation code. Non-Uniform Rational B-Spline formulations are utilized in the algorithm to maintain geometry fidelity while redistributing grid points on the solid surfaces. Bezier curve formulation is used to allow interactive construction of inner boundaries. It is also utilized to allow interactive point distribution. Cascade surfaces are transformed from three-dimensional surfaces of revolution into two-dimensional parametric planes for easy manipulation. Such a transformation allows these manipulated plane grids to be mapped to surfaces of revolution by any generatrix definition. A sophisticated visualization module is developed to al-low visualization for both grid and flow solution, steady or unsteady. A network module is built to allow data transferring in the heterogeneous environment. A flow module is integrated into this system, using an existing turbomachinery flow code. A simulation module is developed to combine the network, flow, and visualization module to achieve near real-time flow simulation about turbomachinery geometries. A toolbox module is developed to support the overall task. A batch version of the grid generation module is developed to allow portability and has been extended to allow dynamic grid generation for pitch changing turbomachinery configurations. Various applications with different characteristics are presented to demonstrate the success of this system.
NASA Technical Reports Server (NTRS)
Decker, A. J.
1984-01-01
The holographic recording of the time history of a flow feature in three dimensions is discussed. The use of diffuse illumination holographic interferometry or the three dimensional visualization of flow features such as shock waves and turbulent eddies is described. The double-exposure and time-average methods are compared using the characteristic function and the results from a flow simulator. A time history requires a large hologram recording rate. Results of holographic cinematography of the shock waves in a flutter cascade are presented as an example. Future directions of this effort, including the availability and development of suitable lasers, are discussed.
NASA Astrophysics Data System (ADS)
Gao, Zhenlan; Podvin, Berengere; Sergent, Anne; Xin, Shihe; Chergui, Jalel
2018-05-01
The transition to the chaos of the air flow between two vertical plates maintained at different temperatures is studied in the Boussinesq approximation. After the first bifurcation at critical Rayleigh number Rac, the flow consists of two-dimensional (2D) corotating rolls. The stability of the 2D rolls is examined, confronting linear predictions with nonlinear integration. In all cases the 2D rolls are destabilized in the spanwise direction. Efficient linear stability analysis based on an Arnoldi method shows competition between two eigenmodes, corresponding to different spanwise wavelengths and different types of roll distortion. Nonlinear integration shows that the lower-wave-number mode is always dominant. A partial route to chaos is established through the nonlinear simulations. The flow becomes temporally chaotic for Ra =1.05 Rac , but remains characterized by the spatial patterns identified by linear stability analysis. This highlights the complementary role of linear stability analysis and nonlinear simulation.
Modern and Unconventional Approaches to Karst Hydrogeology
NASA Astrophysics Data System (ADS)
Sukop, M. C.
2017-12-01
Karst hydrogeology is frequently approached from a hydrograph/statistical perspective where precipitation/recharge inputs are converted to output hydrographs and the conversion process reflects the hydrology of the system. Karst catchments show hydrological response to short-term meteorological events and to long-term variation of large-scale atmospheric circulation. Modern approaches to analysis of these data include, for example, multiresolution wavelet techniques applied to understand relations between karst discharge and climate fields. Much less effort has been directed towards direct simulation of flow fields and transport phenomena in karst settings. This is primarily due to the lack of information on the detailed physical geometry of most karst systems. New mapping, sampling, and modeling techniques are beginning to enable direct simulation of flow and transport. A Conduit Flow Process (CFP) add-on to the USGS ModFlow model became available in 2007. FEFLOW and similar models are able to represent flows in individual conduits. Lattice Boltzmann models have also been applied to flow modeling in karst systems. Regarding quantitative measurement of karst system geometry, at scales to 0.1 m, X-ray computed tomography enables good detection of detailed (sub-millimeter) pore space in karstic rocks. Three-dimensional printing allows reconstruction of fragile high porosity rocks, and surrogate samples generated this way can then be subjected to laboratory testing. Borehole scales can be accessed with high-resolution ( 0.001 m) Digital Optical Borehole Imaging technologies and can provide virtual samples more representative of the true nature of karst aquifers than can obtained from coring. Subsequent extrapolation of such samples can generate three-dimensional models suitable for direct modeling of flow and transport. Finally, new cave mapping techniques are beginning to provide information than can be applied to direct simulation of flow. Due to flow rates and cave diameter, very high Reynolds number flows may be encountered.
NASA Astrophysics Data System (ADS)
Johnson, Ryan Federick; Chelliah, Harsha Kumar
2017-01-01
For a range of flow and chemical timescales, numerical simulations of two-dimensional laminar flow over a reacting carbon surface were performed to understand further the complex coupling between heterogeneous and homogeneous reactions. An open-source computational package (OpenFOAM®) was used with previously developed lumped heterogeneous reaction models for carbon surfaces and a detailed homogeneous reaction model for CO oxidation. The influence of finite-rate chemical kinetics was explored by varying the surface temperatures from 1800 to 2600 K, while flow residence time effects were explored by varying the free-stream velocity up to 50 m/s. The reacting boundary layer structure dependence on the residence time was analysed by extracting the ratio of chemical source and species diffusion terms. The important contributions of radical species reactions on overall carbon removal rate, which is often neglected in multi-dimensional simulations, are highlighted. The results provide a framework for future development and validation of lumped heterogeneous reaction models based on multi-dimensional reacting flow configurations.
Three-Dimensional Simulation of Liquid Drop Dynamics Within Unsaturated Vertical Hele-Shaw Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hai Huang; Paul Meakin
A three-dimensional, multiphase fluid flow model with volume of fluid-interface tracking was developed and applied to study the multiphase dynamics of moving liquid drops of different sizes within vertical Hele-Shaw cells. The simulated moving velocities are significantly different from those obtained from a first-order analytical approximation, based on simple force-balance concepts. The simulation results also indicate that the moving drops can exhibit a variety of shapes and that the transition among these different shapes is largely determined by the moving velocities. More important, there is a transition from a linear moving regime at small capillary numbers, in which the capillarymore » number scales linearly with the Bond number, to a nonlinear moving regime at large capillary numbers, in which the moving drop releases a train of droplets from its trailing edge. The train of droplets forms a variety of patterns at different moving velocities.« less
Computation of turbulence and dispersion of cork in the NETL riser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiradilok, Veeraya; Gidaspow, Dimitri; Breault, R.W.
The knowledge of dispersion coefficients is essential for reliable design of gasifiers. However, a literature review had shown that dispersion coefficients in fluidized beds differ by more than five orders of magnitude. This study presents a comparison of the computed axial solids dispersion coefficients for cork particles to the NETL riser cork data. The turbulence properties, the Reynolds stresses, the granular temperature spectra and the radial and axial gas and solids dispersion coefficients are computed. The standard kinetic theory model described in Gidaspow’s 1994 book, Multiphase Flow and Fluidization, Academic Press and the IIT and Fluent codes were used tomore » compute the measured axial solids volume fraction profiles for flow of cork particles in the NETL riser. The Johnson–Jackson boundary conditions were used. Standard drag correlations were used. This study shows that the computed solids volume fractions for the low flux flow are within the experimental error of those measured, using a two-dimensional model. At higher solids fluxes the simulated solids volume fractions are close to the experimental measurements, but deviate significantly at the top of the riser. This disagreement is due to use of simplified geometry in the two-dimensional simulation. There is a good agreement between the experiment and the three-dimensional simulation for a high flux condition. This study concludes that the axial and radial gas and solids dispersion coefficients in risers operating in the turbulent flow regime can be computed using a multiphase computational fluid dynamics model.« less
Lumped versus distributed thermoregulatory control: results from a three-dimensional dynamic model.
Werner, J; Buse, M; Foegen, A
1989-01-01
In this study we use a three-dimensional model of the human thermal system, the spatial grid of which is 0.5 ... 1.0 cm. The model is based on well-known physical heat-transfer equations, and all parameters of the passive system have definite physical values. According to the number of substantially different areas and organs, 54 spatially different values are attributed to each physical parameter. Compatibility of simulation and experiment was achieved solely on the basis of physical considerations and physiological basic data. The equations were solved using a modification of the alternating direction implicit method. On the basis of this complex description of the passive system close to reality, various lumped and distributed parameter control equations were tested for control of metabolic heat production, blood flow and sweat production. The simplest control equations delivering results on closed-loop control compatible with experimental evidence were determined. It was concluded that it is essential to take into account the spatial distribution of heat production, blood flow and sweat production, and that at least for control of shivering, distributed controller gains different from the pattern of distribution of muscle tissue are required. For sweat production this is not so obvious, so that for simulation of sweating control after homogeneous heat load a lumped parameter control may be justified. Based on these conclusions three-dimensional temperature profiles for cold and heat load and the dynamics for changes of the environmental conditions were computed. In view of the exact simulation of the passive system and the compatibility with experimentally attainable variables there is good evidence that those values extrapolated by the simulation are adequately determined. The model may be used both for further analysis of the real thermoregulatory mechanisms and for special applications in environmental and clinical health care.
Khujadze, G; Oberlack, M; Chagelishvili, G
2006-07-21
The background of three-dimensional hydrodynamic (vortical) fluctuations in a stochastically forced, laminar, incompressible, plane Couette flow is simulated numerically. The fluctuating field is anisotropic and has well pronounced peculiarities: (i) the hydrodynamic fluctuations exhibit nonexponential, transient growth; (ii) fluctuations with the streamwise characteristic length scale about 2 times larger than the channel width are predominant in the fluctuating spectrum instead of streamwise constant ones; (iii) nonzero cross correlations of velocity (even streamwise-spanwise) components appear; (iv) stochastic forcing destroys the spanwise reflection symmetry (inherent to the linear and full Navier-Stokes equations in a case of the Couette flow) and causes an asymmetry of the dynamical processes.
NASA Technical Reports Server (NTRS)
Wang, Qun-Zhen; Massey, Steven J.; Abdol-Hamid, Khaled S.; Frink, Neal T.
1999-01-01
USM3D is a widely-used unstructured flow solver for simulating inviscid and viscous flows over complex geometries. The current version (version 5.0) of USM3D, however, does not have advanced turbulence models to accurately simulate complicated flows. We have implemented two modified versions of the original Jones and Launder k-epsilon two-equation turbulence model and the Girimaji algebraic Reynolds stress model in USM3D. Tests have been conducted for two flat plate boundary layer cases, a RAE2822 airfoil and an ONERA M6 wing. The results are compared with those of empirical formulae, theoretical results and the existing Spalart-Allmaras one-equation model.
A multiscale MDCT image-based breathing lung model with time-varying regional ventilation
Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long
2012-01-01
A novel algorithm is presented that links local structural variables (regional ventilation and deforming central airways) to global function (total lung volume) in the lung over three imaged lung volumes, to derive a breathing lung model for computational fluid dynamics simulation. The algorithm constitutes the core of an integrative, image-based computational framework for subject-specific simulation of the breathing lung. For the first time, the algorithm is applied to three multi-detector row computed tomography (MDCT) volumetric lung images of the same individual. A key technique in linking global and local variables over multiple images is an in-house mass-preserving image registration method. Throughout breathing cycles, cubic interpolation is employed to ensure C1 continuity in constructing time-varying regional ventilation at the whole lung level, flow rate fractions exiting the terminal airways, and airway deformation. The imaged exit airway flow rate fractions are derived from regional ventilation with the aid of a three-dimensional (3D) and one-dimensional (1D) coupled airway tree that connects the airways to the alveolar tissue. An in-house parallel large-eddy simulation (LES) technique is adopted to capture turbulent-transitional-laminar flows in both normal and deep breathing conditions. The results obtained by the proposed algorithm when using three lung volume images are compared with those using only one or two volume images. The three-volume-based lung model produces physiologically-consistent time-varying pressure and ventilation distribution. The one-volume-based lung model under-predicts pressure drop and yields un-physiological lobar ventilation. The two-volume-based model can account for airway deformation and non-uniform regional ventilation to some extent, but does not capture the non-linear features of the lung. PMID:23794749
Droplet flow along the wall of rectangular channel with gradient of wettability
NASA Astrophysics Data System (ADS)
Kupershtokh, A. L.
2018-03-01
The lattice Boltzmann equations (LBE) method (LBM) is applicable for simulating the multiphysics problems of fluid flows with free boundaries, taking into account the viscosity, surface tension, evaporation and wetting degree of a solid surface. Modeling of the nonstationary motion of a drop of liquid along a solid surface with a variable level of wettability is carried out. For the computer simulation of such a problem, the three-dimensional lattice Boltzmann equations method D3Q19 is used. The LBE method allows us to parallelize the calculations on multiprocessor graphics accelerators using the CUDA programming technology.
The rotating movement of three immiscible fluids - A benchmark problem
Bakker, M.; Oude, Essink G.H.P.; Langevin, C.D.
2004-01-01
A benchmark problem involving the rotating movement of three immiscible fluids is proposed for verifying the density-dependent flow component of groundwater flow codes. The problem consists of a two-dimensional strip in the vertical plane filled with three fluids of different densities separated by interfaces. Initially, the interfaces between the fluids make a 45??angle with the horizontal. Over time, the fluids rotate to the stable position whereby the interfaces are horizontal; all flow is caused by density differences. Two cases of the problem are presented, one resulting in a symmetric flow field and one resulting in an asymmetric flow field. An exact analytical solution for the initial flow field is presented by application of the vortex theory and complex variables. Numerical results are obtained using three variable-density groundwater flow codes (SWI, MOCDENS3D, and SEAWAT). Initial horizontal velocities of the interfaces, as simulated by the three codes, compare well with the exact solution. The three codes are used to simulate the positions of the interfaces at two times; the three codes produce nearly identical results. The agreement between the results is evidence that the specific rotational behavior predicted by the models is correct. It also shows that the proposed problem may be used to benchmark variable-density codes. It is concluded that the three models can be used to model accurately the movement of interfaces between immiscible fluids, and have little or no numerical dispersion. ?? 2003 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babic, Miroslav; Kljenak, Ivo; Mavko, Borut
2006-07-01
The CFD code CFX4.4 was used to simulate an experiment in the ThAI facility, which was designed for investigation of thermal-hydraulic processes during a severe accident inside a Light Water Reactor containment. In the considered experiment, air was initially present in the vessel, and helium and steam were injected during different phases of the experiment at various mass flow rates and at different locations. The main purpose of the proposed work was to assess the capabilities of the CFD code to reproduce the atmosphere structure with a three-dimensional model, coupled with condensation models proposed by the authors. A three-dimensional modelmore » of the ThAI vessel for the CFX4.4 code was developed. The flow in the simulation domain was modeled as single-phase. Steam condensation on vessel walls was modeled as a sink of mass and energy using a correlation that was originally developed for an integral approach. A simple model of bulk phase change was also included. Calculated time-dependent variables together with temperature and volume fraction distributions at the end of different experiment phases are compared to experimental results. (authors)« less
Zhang, Hao; Fujiwara, Naoya; Kobayashi, Masaharu; Yamada, Shigeki; Liang, Fuyou; Takagi, Shu; Oshima, Marie
2016-08-01
The detailed flow information in the circle of Willis (CoW) can facilitate a better understanding of disease progression, and provide useful references for disease treatment. We have been developing a one-dimensional-zero-dimensional (1D-0D) simulation method for the entire cardiovascular system to obtain hemodynamics information in the CoW. This paper presents a new method for applying 1D-0D simulation to an individual patient using patient-specific data. The key issue is how to adjust the deviation of physiological parameters, such as peripheral resistance, from literature data when patient-specific geometry is used. In order to overcome this problem, we utilized flow information from single photon emission computed tomography (SPECT) data. A numerical method was developed to optimize physiological parameters by adjusting peripheral cerebral resistance to minimize the difference between the resulting flow rate and the SPECT data in the efferent arteries of the CoW. The method was applied to three cases using different sets of patient-specific data in order to investigate the hemodynamics of the CoW. The resulting flow rates in the afferent arteries were compared to those of the phase-contrast magnetic resonance angiography (PC-MRA) data. Utilization of the SPECT data combined with the PC-MRA data showed a good agreement in flow rates in the afferent arteries of the CoW with those of PC-MRA data for all three cases. The results also demonstrated that application of SPECT data alone could provide the information on the ratios of flow distributions among arteries in the CoW.