Sample records for three-dimensional image processing

  1. A web service system supporting three-dimensional post-processing of medical images based on WADO protocol.

    PubMed

    He, Longjun; Xu, Lang; Ming, Xing; Liu, Qian

    2015-02-01

    Three-dimensional post-processing operations on the volume data generated by a series of CT or MR images had important significance on image reading and diagnosis. As a part of the DIOCM standard, WADO service defined how to access DICOM objects on the Web, but it didn't involve three-dimensional post-processing operations on the series images. This paper analyzed the technical features of three-dimensional post-processing operations on the volume data, and then designed and implemented a web service system for three-dimensional post-processing operations of medical images based on the WADO protocol. In order to improve the scalability of the proposed system, the business tasks and calculation operations were separated into two modules. As results, it was proved that the proposed system could support three-dimensional post-processing service of medical images for multiple clients at the same moment, which met the demand of accessing three-dimensional post-processing operations on the volume data on the web.

  2. Three-dimensional imaging and remote sensing imaging; Proceedings of the Meeting, Los Angeles, CA, Jan. 14, 15, 1988

    NASA Astrophysics Data System (ADS)

    Robbins, Woodrow E.

    1988-01-01

    The present conference discusses topics in novel technologies and techniques of three-dimensional imaging, human factors-related issues in three-dimensional display system design, three-dimensional imaging applications, and image processing for remote sensing. Attention is given to a 19-inch parallactiscope, a chromostereoscopic CRT-based display, the 'SpaceGraph' true three-dimensional peripheral, advantages of three-dimensional displays, holographic stereograms generated with a liquid crystal spatial light modulator, algorithms and display techniques for four-dimensional Cartesian graphics, an image processing system for automatic retina diagnosis, the automatic frequency control of a pulsed CO2 laser, and a three-dimensional display of magnetic resonance imaging of the spine.

  3. [Bone drilling simulation by three-dimensional imaging].

    PubMed

    Suto, Y; Furuhata, K; Kojima, T; Kurokawa, T; Kobayashi, M

    1989-06-01

    The three-dimensional display technique has a wide range of medical applications. Pre-operative planning is one typical application: in orthopedic surgery, three-dimensional image processing has been used very successfully. We have employed this technique in pre-operative planning for orthopedic surgery, and have developed a simulation system for bone-drilling. Positive results were obtained by pre-operative rehearsal; when a region of interest is indicated by means of a mouse on the three-dimensional image displayed on the CRT, the corresponding region appears on the slice image which is displayed simultaneously. Consequently, the status of the bone-drilling is constantly monitored. In developing this system, we have placed emphasis on the quality of the reconstructed three-dimensional images, on fast processing, and on the easy operation of the surgical planning simulation.

  4. [Three-dimensional reconstruction of functional brain images].

    PubMed

    Inoue, M; Shoji, K; Kojima, H; Hirano, S; Naito, Y; Honjo, I

    1999-08-01

    We consider PET (positron emission tomography) measurement with SPM (Statistical Parametric Mapping) analysis to be one of the most useful methods to identify activated areas of the brain involved in language processing. SPM is an effective analytical method that detects markedly activated areas over the whole brain. However, with the conventional presentations of these functional brain images, such as horizontal slices, three directional projection, or brain surface coloring, makes understanding and interpreting the positional relationships among various brain areas difficult. Therefore, we developed three-dimensionally reconstructed images from these functional brain images to improve the interpretation. The subjects were 12 normal volunteers. The following three types of images were constructed: 1) routine images by SPM, 2) three-dimensional static images, and 3) three-dimensional dynamic images, after PET images were analyzed by SPM during daily dialog listening. The creation of images of both the three-dimensional static and dynamic types employed the volume rendering method by VTK (The Visualization Toolkit). Since the functional brain images did not include original brain images, we synthesized SPM and MRI brain images by self-made C++ programs. The three-dimensional dynamic images were made by sequencing static images with available software. Images of both the three-dimensional static and dynamic types were processed by a personal computer system. Our newly created images showed clearer positional relationships among activated brain areas compared to the conventional method. To date, functional brain images have been employed in fields such as neurology or neurosurgery, however, these images may be useful even in the field of otorhinolaryngology, to assess hearing and speech. Exact three-dimensional images based on functional brain images are important for exact and intuitive interpretation, and may lead to new developments in brain science. Currently, the surface model is the most common method of three-dimensional display. However, the volume rendering method may be more effective for imaging regions such as the brain.

  5. Instantaneous three-dimensional visualization of concentration distributions in turbulent flows with crossed-plane laser-induced fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Hoffmann, A.; Zimmermann, F.; Scharr, H.; Krömker, S.; Schulz, C.

    2005-01-01

    A laser-based technique for measuring instantaneous three-dimensional species concentration distributions in turbulent flows is presented. The laser beam from a single laser is formed into two crossed light sheets that illuminate the area of interest. The laser-induced fluorescence (LIF) signal emitted from excited species within both planes is detected with a single camera via a mirror arrangement. Image processing enables the reconstruction of the three-dimensional data set in close proximity to the cutting line of the two light sheets. Three-dimensional intensity gradients are computed and compared to the two-dimensional projections obtained from the two directly observed planes. Volume visualization by digital image processing gives unique insight into the three-dimensional structures within the turbulent processes. We apply this technique to measurements of toluene-LIF in a turbulent, non-reactive mixing process of toluene and air and to hydroxyl (OH) LIF in a turbulent methane-air flame upon excitation at 248 nm with a tunable KrF excimer laser.

  6. Three-dimensional rendering of segmented object using matlab - biomed 2010.

    PubMed

    Anderson, Jeffrey R; Barrett, Steven F

    2010-01-01

    The three-dimensional rendering of microscopic objects is a difficult and challenging task that often requires specialized image processing techniques. Previous work has been described of a semi-automatic segmentation process of fluorescently stained neurons collected as a sequence of slice images with a confocal laser scanning microscope. Once properly segmented, each individual object can be rendered and studied as a three-dimensional virtual object. This paper describes the work associated with the design and development of Matlab files to create three-dimensional images from the segmented object data previously mentioned. Part of the motivation for this work is to integrate both the segmentation and rendering processes into one software application, providing a seamless transition from the segmentation tasks to the rendering and visualization tasks. Previously these tasks were accomplished on two different computer systems, windows and Linux. This transition basically limits the usefulness of the segmentation and rendering applications to those who have both computer systems readily available. The focus of this work is to create custom Matlab image processing algorithms for object rendering and visualization, and merge these capabilities to the Matlab files that were developed especially for the image segmentation task. The completed Matlab application will contain both the segmentation and rendering processes in a single graphical user interface, or GUI. This process for rendering three-dimensional images in Matlab requires that a sequence of two-dimensional binary images, representing a cross-sectional slice of the object, be reassembled in a 3D space, and covered with a surface. Additional segmented objects can be rendered in the same 3D space. The surface properties of each object can be varied by the user to aid in the study and analysis of the objects. This inter-active process becomes a powerful visual tool to study and understand microscopic objects.

  7. Three-dimensional imaging technology offers promise in medicine.

    PubMed

    Karako, Kenji; Wu, Qiong; Gao, Jianjun

    2014-04-01

    Medical imaging plays an increasingly important role in the diagnosis and treatment of disease. Currently, medical equipment mainly has two-dimensional (2D) imaging systems. Although this conventional imaging largely satisfies clinical requirements, it cannot depict pathologic changes in 3 dimensions. The development of three-dimensional (3D) imaging technology has encouraged advances in medical imaging. Three-dimensional imaging technology offers doctors much more information on a pathology than 2D imaging, thus significantly improving diagnostic capability and the quality of treatment. Moreover, the combination of 3D imaging with augmented reality significantly improves surgical navigation process. The advantages of 3D imaging technology have made it an important component of technological progress in the field of medical imaging.

  8. Dynamic three-dimensional display of common congenital cardiac defects from reconstruction of two-dimensional echocardiographic images.

    PubMed

    Hsieh, K S; Lin, C C; Liu, W S; Chen, F L

    1996-01-01

    Two-dimensional echocardiography had long been a standard diagnostic modality for congenital heart disease. Further attempts of three-dimensional reconstruction using two-dimensional echocardiographic images to visualize stereotypic structure of cardiac lesions have been successful only recently. So far only very few studies have been done to display three-dimensional anatomy of the heart through two-dimensional image acquisition because such complex procedures were involved. This study introduced a recently developed image acquisition and processing system for dynamic three-dimensional visualization of various congenital cardiac lesions. From December 1994 to April 1995, 35 cases were selected in the Echo Laboratory here from about 3000 Echo examinations completed. Each image was acquired on-line with specially designed high resolution image grazmber with EKG and respiratory gating technique. Off-line image processing using a window-architectured interactive software package includes construction of 2-D ehcocardiographic pixel to 3-D "voxel" with conversion of orthogonal to rotatory axial system, interpolation, extraction of region of interest, segmentation, shading and, finally, 3D rendering. Three-dimensional anatomy of various congenital cardiac defects was shown, including four cases with ventricular septal defects, two cases with atrial septal defects, and two cases with aortic stenosis. Dynamic reconstruction of a "beating heart" is recorded as vedio tape with video interface. The potential application of 3D display of the reconstruction from 2D echocardiographic images for the diagnosis of various congenital heart defects has been shown. The 3D display was able to improve the diagnostic ability of echocardiography, and clear-cut display of the various congenital cardiac defects and vavular stenosis could be demonstrated. Reinforcement of current techniques will expand future application of 3D display of conventional 2D images.

  9. Light ray field capture using focal plane sweeping and its optical reconstruction using 3D displays.

    PubMed

    Park, Jae-Hyeung; Lee, Sung-Keun; Jo, Na-Young; Kim, Hee-Jae; Kim, Yong-Soo; Lim, Hong-Gi

    2014-10-20

    We propose a method to capture light ray field of three-dimensional scene using focal plane sweeping. Multiple images are captured using a usual camera at different focal distances, spanning the three-dimensional scene. The captured images are then back-projected to four-dimensional spatio-angular space to obtain the light ray field. The obtained light ray field can be visualized either using digital processing or optical reconstruction using various three-dimensional display techniques including integral imaging, layered display, and holography.

  10. Synthesis and identification of three-dimensional faces from image(s) and three-dimensional generic models

    NASA Astrophysics Data System (ADS)

    Liu, Zexi; Cohen, Fernand

    2017-11-01

    We describe an approach for synthesizing a three-dimensional (3-D) face structure from an image or images of a human face taken at a priori unknown poses using gender and ethnicity specific 3-D generic models. The synthesis process starts with a generic model, which is personalized as images of the person become available using preselected landmark points that are tessellated to form a high-resolution triangular mesh. From a single image, two of the three coordinates of the model are reconstructed in accordance with the given image of the person, while the third coordinate is sampled from the generic model, and the appearance is made in accordance with the image. With multiple images, all coordinates and appearance are reconstructed in accordance with the observed images. This method allows for accurate pose estimation as well as face identification in 3-D rendering of a difficult two-dimensional (2-D) face recognition problem into a much simpler 3-D surface matching problem. The estimation of the unknown pose is achieved using the Levenberg-Marquardt optimization process. Encouraging experimental results are obtained in a controlled environment with high-resolution images under a good illumination condition, as well as for images taken in an uncontrolled environment under arbitrary illumination with low-resolution cameras.

  11. Stereo Imaging Velocimetry

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor); Glasgow, Thomas K. (Inventor)

    1999-01-01

    A system and a method for measuring three-dimensional velocities at a plurality of points in a fluid employing at least two cameras positioned approximately perpendicular to one another. The cameras are calibrated to accurately represent image coordinates in world coordinate system. The two-dimensional views of the cameras are recorded for image processing and centroid coordinate determination. Any overlapping particle clusters are decomposed into constituent centroids. The tracer particles are tracked on a two-dimensional basis and then stereo matched to obtain three-dimensional locations of the particles as a function of time so that velocities can be measured therefrom The stereo imaging velocimetry technique of the present invention provides a full-field. quantitative, three-dimensional map of any optically transparent fluid which is seeded with tracer particles.

  12. Three-dimensional ultrastructure of osteocytes assessed by focused ion beam-scanning electron microscopy (FIB-SEM).

    PubMed

    Hasegawa, Tomoka; Yamamoto, Tomomaya; Hongo, Hiromi; Qiu, Zixuan; Abe, Miki; Kanesaki, Takuma; Tanaka, Kawori; Endo, Takashi; de Freitas, Paulo Henrique Luiz; Li, Minqi; Amizuka, Norio

    2018-04-01

    The aim of this study is to demonstrate the application of focused ion beam-scanning electron microscopy, FIB-SEM for revealing the three-dimensional features of osteocytic cytoplasmic processes in metaphyseal (immature) and diaphyseal (mature) trabeculae. Tibiae of eight-week-old male mice were fixed with aldehyde solution, and treated with block staining prior to FIB-SEM observation. While two-dimensional backscattered SEM images showed osteocytes' cytoplasmic processes in a fragmented fashion, three-dimensional reconstructions of FIB-SEM images demonstrated that osteocytes in primary metaphyseal trabeculae extended their cytoplasmic processes randomly, thus maintaining contact with neighboring osteocytes and osteoblasts. In contrast, diaphyseal osteocytes extended thin cytoplasmic processes from their cell bodies, which ran perpendicular to the bone surface. In addition, these osteocytes featured thick processes that branched into thinner, transverse cytoplasmic processes; at some point, however, these transverse processes bend at a right angle to run perpendicular to the bone surface. Osteoblasts also possessed thicker cytoplasmic processes that branched off as thinner processes, which then connected with cytoplasmic processes of neighboring osteocytes. Thus, FIB-SEM is a useful technology for visualizing the three-dimensional structures of osteocytes and their cytoplasmic processes.

  13. Analysis of autostereoscopic three-dimensional images using multiview wavelets.

    PubMed

    Saveljev, Vladimir; Palchikova, Irina

    2016-08-10

    We propose that multiview wavelets can be used in processing multiview images. The reference functions for the synthesis/analysis of multiview images are described. The synthesized binary images were observed experimentally as three-dimensional visual images. The symmetric multiview B-spline wavelets are proposed. The locations recognized in the continuous wavelet transform correspond to the layout of the test objects. The proposed wavelets can be applied to the multiview, integral, and plenoptic images.

  14. Processing And Display Of Medical Three Dimensional Arrays Of Numerical Data Using Octree Encoding

    NASA Astrophysics Data System (ADS)

    Amans, Jean-Louis; Darier, Pierre

    1986-05-01

    imaging modalities such as X-Ray computerized Tomography (CT), Nuclear Medecine and Nuclear Magnetic Resonance can produce three-dimensional (3-D) arrays of numerical data of medical object internal structures. The analysis of 3-D data by synthetic generation of realistic images is an important area of computer graphics and imaging.

  15. Three-dimensional Bragg coherent diffraction imaging of an extended ZnO crystal.

    PubMed

    Huang, Xiaojing; Harder, Ross; Leake, Steven; Clark, Jesse; Robinson, Ian

    2012-08-01

    A complex three-dimensional quantitative image of an extended zinc oxide (ZnO) crystal has been obtained using Bragg coherent diffraction imaging integrated with ptychography. By scanning a 2.5 µm-long arm of a ZnO tetrapod across a 1.3 µm X-ray beam with fine step sizes while measuring a three-dimensional diffraction pattern at each scan spot, the three-dimensional electron density and projected displacement field of the entire crystal were recovered. The simultaneously reconstructed complex wavefront of the illumination combined with its coherence properties determined by a partial coherence analysis implemented in the reconstruction process provide a comprehensive characterization of the incident X-ray beam.

  16. Ground Penetrating Radar Imaging of Ancient Clastic Deposits: A Tool for Three-Dimensional Outcrop Studies

    NASA Astrophysics Data System (ADS)

    Akinpelu, Oluwatosin Caleb

    The growing need for better definition of flow units and depositional heterogeneities in petroleum reservoirs and aquifers has stimulated a renewed interest in outcrop studies as reservoir analogues in the last two decades. Despite this surge in interest, outcrop studies remain largely two-dimensional; a major limitation to direct application of outcrop knowledge to the three dimensional heterogeneous world of subsurface reservoirs. Behind-outcrop Ground Penetrating Radar (GPR) imaging provides high-resolution geophysical data, which when combined with two dimensional architectural outcrop observation, becomes a powerful interpretation tool. Due to the high resolution, non-destructive and non-invasive nature of the GPR signal, as well as its reflection-amplitude sensitivity to shaly lithologies, three-dimensional outcrop studies combining two dimensional architectural element data and behind-outcrop GPR imaging hold significant promise with the potential to revolutionize outcrop studies the way seismic imaging changed basin analysis. Earlier attempts at GPR imaging on ancient clastic deposits were fraught with difficulties resulting from inappropriate field techniques and subsequent poorly-informed data processing steps. This project documents advances in GPR field methodology, recommends appropriate data collection and processing procedures and validates the value of integrating outcrop-based architectural-element mapping with GPR imaging to obtain three dimensional architectural data from outcrops. Case studies from a variety of clastic deposits: Whirlpool Formation (Niagara Escarpment), Navajo Sandstone (Moab, Utah), Dunvegan Formation (Pink Mountain, British Columbia), Chinle Formation (Southern Utah) and St. Mary River Formation (Alberta) demonstrate the usefulness of this approach for better interpretation of outcrop scale ancient depositional processes and ultimately as a tool for refining existing facies models, as well as a predictive tool for subsurface reservoir modelling. While this approach is quite promising for detailed three-dimensional outcrop studies, it is not an all-purpose panacea; thick overburden, poor antenna-ground coupling in rough terrains typical of outcrops, low penetration and rapid signal attenuation in mudstone and diagenetic clay- rich deposits often limit the prospects of this novel technique.

  17. A New Perspective on Surface Weather Maps

    ERIC Educational Resources Information Center

    Meyer, Steve

    2006-01-01

    A two-dimensional weather map is actually a physical representation of three-dimensional atmospheric conditions at a specific point in time. Abstract thinking is required to visualize this two-dimensional image in three-dimensional form. But once that visualization is accomplished, many of the meteorological concepts and processes conveyed by the…

  18. Depth measurements through controlled aberrations of projected patterns.

    PubMed

    Birch, Gabriel C; Tyo, J Scott; Schwiegerling, Jim

    2012-03-12

    Three-dimensional displays have become increasingly present in consumer markets. However, the ability to capture three-dimensional images in space confined environments and without major modifications to current cameras is uncommon. Our goal is to create a simple modification to a conventional camera that allows for three dimensional reconstruction. We require such an imaging system have imaging and illumination paths coincident. Furthermore, we require that any three-dimensional modification to a camera also permits full resolution 2D image capture.Here we present a method of extracting depth information with a single camera and aberrated projected pattern. A commercial digital camera is used in conjunction with a projector system with astigmatic focus to capture images of a scene. By using an astigmatic projected pattern we can create two different focus depths for horizontal and vertical features of a projected pattern, thereby encoding depth. By designing an aberrated projected pattern, we are able to exploit this differential focus in post-processing designed to exploit the projected pattern and optical system. We are able to correlate the distance of an object at a particular transverse position from the camera to ratios of particular wavelet coefficients.We present our information regarding construction, calibration, and images produced by this system. The nature of linking a projected pattern design and image processing algorithms will be discussed.

  19. Three-dimensional modeling of tea-shoots using images and models.

    PubMed

    Wang, Jian; Zeng, Xianyin; Liu, Jianbing

    2011-01-01

    In this paper, a method for three-dimensional modeling of tea-shoots with images and calculation models is introduced. The process is as follows: the tea shoots are photographed with a camera, color space conversion is conducted, using an improved algorithm that is based on color and regional growth to divide the tea shoots in the images, and the edges of the tea shoots extracted with the help of edge detection; after that, using the divided tea-shoot images, the three-dimensional coordinates of the tea shoots are worked out and the feature parameters extracted, matching and calculation conducted according to the model database, and finally the three-dimensional modeling of tea-shoots is completed. According to the experimental results, this method can avoid a lot of calculations and has better visual effects and, moreover, performs better in recovering the three-dimensional information of the tea shoots, thereby providing a new method for monitoring the growth of and non-destructive testing of tea shoots.

  20. Image formation of thick three-dimensional objects in differential-interference-contrast microscopy.

    PubMed

    Trattner, Sigal; Kashdan, Eugene; Feigin, Micha; Sochen, Nir

    2014-05-01

    The differential-interference-contrast (DIC) microscope is of widespread use in life sciences as it enables noninvasive visualization of transparent objects. The goal of this work is to model the image formation process of thick three-dimensional objects in DIC microscopy. The model is based on the principles of electromagnetic wave propagation and scattering. It simulates light propagation through the components of the DIC microscope to the image plane using a combined geometrical and physical optics approach and replicates the DIC image of the illuminated object. The model is evaluated by comparing simulated images of three-dimensional spherical objects with the recorded images of polystyrene microspheres. Our computer simulations confirm that the model captures the major DIC image characteristics of the simulated object, and it is sensitive to the defocusing effects.

  1. 3D visualization of Thoraco-Lumbar Spinal Lesions in German Shepherd Dog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azpiroz, J.; Krafft, J.; Cadena, M.

    2006-09-08

    Computed tomography (CT) has been found to be an excellent imaging modality due to its sensitivity to characterize the morphology of the spine in dogs. This technique is considered to be particularly helpful for diagnosing spinal cord atrophy and spinal stenosis. The three-dimensional visualization of organs and bones can significantly improve the diagnosis of certain diseases in dogs. CT images were acquired of a German shepherd's dog spinal cord to generate stacks and digitally process them to arrange them in a volume image. All imaging experiments were acquired using standard clinical protocols on a clinical CT scanner. The three-dimensional visualizationmore » allowed us to observe anatomical structures that otherwise are not possible to observe with two-dimensional images. The combination of an imaging modality like CT together with imaging processing techniques can be a powerful tool for the diagnosis of a number of animal diseases.« less

  2. 3D visualization of Thoraco-Lumbar Spinal Lesions in German Shepherd Dog

    NASA Astrophysics Data System (ADS)

    Azpiroz, J.; Krafft, J.; Cadena, M.; Rodríguez, A. O.

    2006-09-01

    Computed tomography (CT) has been found to be an excellent imaging modality due to its sensitivity to characterize the morphology of the spine in dogs. This technique is considered to be particularly helpful for diagnosing spinal cord atrophy and spinal stenosis. The three-dimensional visualization of organs and bones can significantly improve the diagnosis of certain diseases in dogs. CT images were acquired of a German shepherd's dog spinal cord to generate stacks and digitally process them to arrange them in a volume image. All imaging experiments were acquired using standard clinical protocols on a clinical CT scanner. The three-dimensional visualization allowed us to observe anatomical structures that otherwise are not possible to observe with two-dimensional images. The combination of an imaging modality like CT together with imaging processing techniques can be a powerful tool for the diagnosis of a number of animal diseases.

  3. Three-dimensional image signals: processing methods

    NASA Astrophysics Data System (ADS)

    Schiopu, Paul; Manea, Adrian; Craciun, Anca-Ileana; Craciun, Alexandru

    2010-11-01

    Over the years extensive studies have been carried out to apply coherent optics methods in real-time processing, communications and transmission image. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. We describe the results of literature investigation research of processing methods for the signals of the three-dimensional images. All commercially available 3D technologies today are based on stereoscopic viewing. 3D technology was once the exclusive domain of skilled computer-graphics developers with high-end machines and software. The images capture from the advanced 3D digital camera can be displayed onto screen of the 3D digital viewer with/ without special glasses. For this is needed considerable processing power and memory to create and render the complex mix of colors, textures, and virtual lighting and perspective necessary to make figures appear three-dimensional. Also, using a standard digital camera and a technique called phase-shift interferometry we can capture "digital holograms." These are holograms that can be stored on computer and transmitted over conventional networks. We present some research methods to process "digital holograms" for the Internet transmission and results.

  4. Rapid Prototyping Integrated With Nondestructive Evaluation and Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.

    2001-01-01

    Most reverse engineering approaches involve imaging or digitizing an object then creating a computerized reconstruction that can be integrated, in three dimensions, into a particular design environment. Rapid prototyping (RP) refers to the practical ability to build high-quality physical prototypes directly from computer aided design (CAD) files. Using rapid prototyping, full-scale models or patterns can be built using a variety of materials in a fraction of the time required by more traditional prototyping techniques (refs. 1 and 2). Many software packages have been developed and are being designed to tackle the reverse engineering and rapid prototyping issues just mentioned. For example, image processing and three-dimensional reconstruction visualization software such as Velocity2 (ref. 3) are being used to carry out the construction process of three-dimensional volume models and the subsequent generation of a stereolithography file that is suitable for CAD applications. Producing three-dimensional models of objects from computed tomography (CT) scans is becoming a valuable nondestructive evaluation methodology (ref. 4). Real components can be rendered and subjected to temperature and stress tests using structural engineering software codes. For this to be achieved, accurate high-resolution images have to be obtained via CT scans and then processed, converted into a traditional file format, and translated into finite element models. Prototyping a three-dimensional volume of a composite structure by reading in a series of two-dimensional images generated via CT and by using and integrating commercial software (e.g. Velocity2, MSC/PATRAN (ref. 5), and Hypermesh (ref. 6)) is being applied successfully at the NASA Glenn Research Center. The building process from structural modeling to the analysis level is outlined in reference 7. Subsequently, a stress analysis of a composite cooling panel under combined thermomechanical loading conditions was performed to validate this process.

  5. Cardiovascular Imaging and Image Processing: Theory and Practice - 1975

    NASA Technical Reports Server (NTRS)

    Harrison, Donald C. (Editor); Sandler, Harold (Editor); Miller, Harry A. (Editor); Hood, Manley J. (Editor); Purser, Paul E. (Editor); Schmidt, Gene (Editor)

    1975-01-01

    Ultrasonography was examined in regard to the developmental highlights and present applicatons of cardiac ultrasound. Doppler ultrasonic techniques and the technology of miniature acoustic element arrays were reported. X-ray angiography was discussed with special considerations on quantitative three dimensional dynamic imaging of structure and function of the cardiopulmonary and circulatory systems in all regions of the body. Nuclear cardiography and scintigraphy, three--dimensional imaging of the myocardium with isotopes, and the commercialization of the echocardioscope were studied.

  6. A new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Ma, Yayun; Han, Shaokun; Wang, Yulin; Liu, Fei; Zhai, Yu

    2018-06-01

    One of the most important goals of research on three-dimensional nonscanning laser imaging systems is the improvement of the illumination system. In this paper, a new three-dimensional nonscanning laser imaging system based on the illumination pattern of a point-light-source array is proposed. This array is obtained using a fiber array connected to a laser array with each unit laser having independent control circuits. This system uses a point-to-point imaging process, which is realized using the exact corresponding optical relationship between the point-light-source array and a linear-mode avalanche photodiode array detector. The complete working process of this system is explained in detail, and the mathematical model of this system containing four equations is established. A simulated contrast experiment and two real contrast experiments which use the simplified setup without a laser array are performed. The final results demonstrate that unlike a conventional three-dimensional nonscanning laser imaging system, the proposed system meets all the requirements of an eligible illumination system. Finally, the imaging performance of this system is analyzed under defocusing situations, and analytical results show that the system has good defocusing robustness and can be easily adjusted in real applications.

  7. Evaluation of three-dimensional virtual perception of garments

    NASA Astrophysics Data System (ADS)

    Aydoğdu, G.; Yeşilpinar, S.; Erdem, D.

    2017-10-01

    In recent years, three-dimensional design, dressing and simulation programs came into prominence in the textile industry. By these programs, the need to produce clothing samples for every design in design process has been eliminated. Clothing fit, design, pattern, fabric and accessory details and fabric drape features can be evaluated easily. Also, body size of virtual mannequin can be adjusted so more realistic simulations can be created. Moreover, three-dimensional virtual garment images created by these programs can be used while presenting the product to end-user instead of two-dimensional photograph images. In this study, a survey was carried out to investigate the visual perception of consumers. The survey was conducted for three different garment types, separately. Questions about gender, profession etc. was asked to the participants and expected them to compare real samples and artworks or three-dimensional virtual images of garments. When survey results were analyzed statistically, it is seen that demographic situation of participants does not affect visual perception and three-dimensional virtual garment images reflect the real sample characteristics better than artworks for each garment type. Also, it is reported that there is no perception difference depending on garment type between t-shirt, sweatshirt and tracksuit bottom.

  8. Three-dimensional image contrast using biospeckle

    NASA Astrophysics Data System (ADS)

    Godinho, Robson Pierangeli; Braga, Roberto A., Jr.

    2010-09-01

    The biospeckle laser (BSL) has been applied in many areas of knowledge and a variety of approaches has been presented to address the best results in biological and non-biological samples, in fast or slow activities, or else in defined flow of materials or in random activities. The methodologies accounted in the literature consider the apparatus used in the image assembling and the way the collected data is processed. The image processing steps presents in turn a variety of procedures with first or second order statistics analysis, and as well with different sizes of data collected. One way to access the biospeckle in defined flow, such as in capillary blood flow in alive animals, was the adoption of the image contrast technique which uses only one image from the illuminated sample. That approach presents some problems related to the resolution of the image, which is reduced during the image contrast processing. In order to help the visualization of the low resolution image formed by the contrast technique, this work presents the three-dimensional procedure as a reliable alternative to enhance the final image. The work based on a parallel processing, with the generation of a virtual map of amplitudes, and maintaining the quasi-online characteristic of the contrast technique. Therefore, it was possible to generate in the same display the observed material, the image contrast result and in addiction the three-dimensional image with adjustable options of rotation. The platform also offers to the user the possibility to access the 3D image offline.

  9. Multimodal imaging system for dental caries detection

    NASA Astrophysics Data System (ADS)

    Liang, Rongguang; Wong, Victor; Marcus, Michael; Burns, Peter; McLaughlin, Paul

    2007-02-01

    Dental caries is a disease in which minerals of the tooth are dissolved by surrounding bacterial plaques. A caries process present for some time may result in a caries lesion. However, if it is detected early enough, the dentist and dental professionals can implement measures to reverse and control caries. Several optical, nonionized methods have been investigated and used to detect dental caries in early stages. However, there is not a method that can singly detect the caries process with both high sensitivity and high specificity. In this paper, we present a multimodal imaging system that combines visible reflectance, fluorescence, and Optical Coherence Tomography (OCT) imaging. This imaging system is designed to obtain one or more two-dimensional images of the tooth (reflectance and fluorescence images) and a three-dimensional OCT image providing depth and size information of the caries. The combination of two- and three-dimensional images of the tooth has the potential for highly sensitive and specific detection of dental caries.

  10. Pre-operative CT angiography and three-dimensional image post processing for deep inferior epigastric perforator flap breast reconstructive surgery.

    PubMed

    Lam, D L; Mitsumori, L M; Neligan, P C; Warren, B H; Shuman, W P; Dubinsky, T J

    2012-12-01

    Autologous breast reconstructive surgery with deep inferior epigastric artery (DIEA) perforator flaps has become the mainstay for breast reconstructive surgery. CT angiography and three-dimensional image post processing can depict the number, size, course and location of the DIEA perforating arteries for the pre-operative selection of the best artery to use for the tissue flap. Knowledge of the location and selection of the optimal perforating artery shortens operative times and decreases patient morbidity.

  11. Extracting three-dimensional orientation and tractography of myofibers using optical coherence tomography

    PubMed Central

    Gan, Yu; Fleming, Christine P.

    2013-01-01

    Abnormal changes in orientation of myofibers are associated with various cardiac diseases such as arrhythmia, irregular contraction, and cardiomyopathy. To extract fiber information, we present a method of quantifying fiber orientation and reconstructing three-dimensional tractography of myofibers using optical coherence tomography (OCT). A gradient based algorithm was developed to quantify fiber orientation in three dimensions and particle filtering technique was employed to track myofibers. Prior to image processing, three-dimensional image data set were acquired from all cardiac chambers and ventricular septum of swine hearts using OCT system without optical clearing. The algorithm was validated through rotation test and comparison with manual measurements. The experimental results demonstrate that we are able to visualize three-dimensional fiber tractography in myocardium tissues. PMID:24156071

  12. 3D reconstruction techniques made easy: know-how and pictures.

    PubMed

    Luccichenti, Giacomo; Cademartiri, Filippo; Pezzella, Francesca Romana; Runza, Giuseppe; Belgrano, Manuel; Midiri, Massimo; Sabatini, Umberto; Bastianello, Stefano; Krestin, Gabriel P

    2005-10-01

    Three-dimensional reconstructions represent a visual-based tool for illustrating the basis of three-dimensional post-processing such as interpolation, ray-casting, segmentation, percentage classification, gradient calculation, shading and illumination. The knowledge of the optimal scanning and reconstruction parameters facilitates the use of three-dimensional reconstruction techniques in clinical practise. The aim of this article is to explain the principles of multidimensional image processing in a pictorial way and the advantages and limitations of the different possibilities of 3D visualisation.

  13. Images as embedding maps and minimal surfaces: Movies, color, and volumetric medical images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimmel, R.; Malladi, R.; Sochen, N.

    A general geometrical framework for image processing is presented. The authors consider intensity images as surfaces in the (x,I) space. The image is thereby a two dimensional surface in three dimensional space for gray level images. The new formulation unifies many classical schemes, algorithms, and measures via choices of parameters in a {open_quote}master{close_quotes} geometrical measure. More important, it is a simple and efficient tool for the design of natural schemes for image enhancement, segmentation, and scale space. Here the authors give the basic motivation and apply the scheme to enhance images. They present the concept of an image as amore » surface in dimensions higher than the three dimensional intuitive space. This will help them handle movies, color, and volumetric medical images.« less

  14. 3D Surface Reconstruction for Lower Limb Prosthetic Model using Radon Transform

    NASA Astrophysics Data System (ADS)

    Sobani, S. S. Mohd; Mahmood, N. H.; Zakaria, N. A.; Razak, M. A. Abdul

    2018-03-01

    This paper describes the idea to realize three-dimensional surfaces of objects with cylinder-based shapes where the techniques adopted and the strategy developed for a non-rigid three-dimensional surface reconstruction of an object from uncalibrated two-dimensional image sequences using multiple-view digital camera and turntable setup. The surface of an object is reconstructed based on the concept of tomography with the aid of performing several digital image processing algorithms on the two-dimensional images captured by a digital camera in thirty-six different projections and the three-dimensional structure of the surface is analysed. Four different objects are used as experimental models in the reconstructions and each object is placed on a manually rotated turntable. The results shown that the proposed method has successfully reconstruct the three-dimensional surface of the objects and practicable. The shape and size of the reconstructed three-dimensional objects are recognizable and distinguishable. The reconstructions of objects involved in the test are strengthened with the analysis where the maximum percent error obtained from the computation is approximately 1.4 % for the height whilst 4.0%, 4.79% and 4.7% for the diameters at three specific heights of the objects.

  15. Image processing and 3D visualization in forensic pathologic examination

    NASA Astrophysics Data System (ADS)

    Oliver, William R.; Altschuler, Bruce R.

    1996-02-01

    The use of image processing is becoming increasingly important in the evaluation of violent crime. While much work has been done in the use of these techniques for forensic purposes outside of forensic pathology, its use in the pathologic examination of wounding has been limited. We are investigating the use of image processing and three-dimensional visualization in the analysis of patterned injuries and tissue damage. While image processing will never replace classical understanding and interpretation of how injuries develop and evolve, it can be a useful tool in helping an observer notice features in an image, may help provide correlation of surface to deep tissue injury, and provide a mechanism for the development of a metric for analyzing how likely it may be that a given object may have caused a given wound. We are also exploring methods of acquiring three-dimensional data for such measurements, which is the subject of a second paper.

  16. The relationship between three-dimensional imaging and group decision making: an exploratory study.

    PubMed

    Litynski, D M; Grabowski, M; Wallace, W A

    1997-07-01

    This paper describes an empirical investigation of the effect of three dimensional (3-D) imaging on group performance in a tactical planning task. The objective of the study is to examine the role that stereoscopic imaging can play in supporting face-to-face group problem solving and decision making-in particular, the alternative generation and evaluation processes in teams. It was hypothesized that with the stereoscopic display, group members would better visualize the information concerning the task environment, producing open communication and information exchanges. The experimental setting was a tactical command and control task, and the quality of the decisions and nature of the group decision process were investigated with three treatments: 1) noncomputerized, i.e., topographic maps with depth cues; 2) two-dimensional (2-D) imaging; and 3) stereoscopic imaging. The results were mixed on group performance. However, those groups with the stereoscopic displays generated more alternatives and spent less time on evaluation. In addition, the stereoscopic decision aid did not interfere with the group problem solving and decision-making processes. The paper concludes with a discussion of potential benefits, and the need to resolve demonstrated weaknesses of the technology.

  17. Fast and background-free three-dimensional (3D) live-cell imaging with lanthanide-doped upconverting nanoparticles.

    PubMed

    Jo, Hong Li; Song, Yo Han; Park, Jinho; Jo, Eun-Jung; Goh, Yeongchang; Shin, Kyujin; Kim, Min-Gon; Lee, Kang Taek

    2015-12-14

    We report on the development of a three-dimensional (3D) live-cell imaging technique with high spatiotemporal resolution using lanthanide-doped upconverting nanoparticles (UCNPs). It employs the sectioning capability of confocal microscopy except that the two-dimensional (2D) section images are acquired by wide-field epi-fluorescence microscopy. Although epi-fluorescence images are contaminated with the out-of-focus background in general, the near-infrared (NIR) excitation used for the excitation of UCNPs does not generate any autofluorescence, which helps to lower the background. Moreover, the image blurring due to defocusing was naturally eliminated in the image reconstruction process. The 3D images were used to investigate the cellular dynamics such as nuclear uptake and single-particle tracking that require 3D description.

  18. Terahertz Imaging of Three-Dimensional Dehydrated Breast Cancer Tumors

    NASA Astrophysics Data System (ADS)

    Bowman, Tyler; Wu, Yuhao; Gauch, John; Campbell, Lucas K.; El-Shenawee, Magda

    2017-06-01

    This work presents the application of terahertz imaging to three-dimensional formalin-fixed, paraffin-embedded human breast cancer tumors. The results demonstrate the capability of terahertz for in-depth scanning to produce cross section images without the need to slice the tumor. Samples of tumors excised from women diagnosed with infiltrating ductal carcinoma and lobular carcinoma are investigated using a pulsed terahertz time domain imaging system. A time of flight estimation is used to obtain vertical and horizontal cross section images of tumor tissues embedded in paraffin block. Strong agreement is shown comparing the terahertz images obtained by electronically scanning the tumor in-depth in comparison with histopathology images. The detection of cancer tissue inside the block is found to be accurate to depths over 1 mm. Image processing techniques are applied to provide improved contrast and automation of the obtained terahertz images. In particular, unsharp masking and edge detection methods are found to be most effective for three-dimensional block imaging.

  19. X-ray tomographic image magnification process, system and apparatus therefor

    DOEpatents

    Kinney, J.H.; Bonse, U.K.; Johnson, Q.C.; Nichols, M.C.; Saroyan, R.A.; Massey, W.N.; Nusshardt, R.

    1993-09-14

    A computerized three-dimensional x-ray tomographic microscopy system is disclosed, comprising: (a) source means for providing a source of parallel x-ray beams, (b) staging means for staging and sequentially rotating a sample to be positioned in the path of the (c) x-ray image magnifier means positioned in the path of the beams downstream from the sample, (d) detecting means for detecting the beams after being passed through and magnified by the image magnifier means, and (e) computing means for analyzing values received from the detecting means, and converting the values into three-dimensional representations. Also disclosed is a process for magnifying an x-ray image, and apparatus therefor. 25 figures.

  20. X-ray tomographic image magnification process, system and apparatus therefor

    DOEpatents

    Kinney, John H.; Bonse, Ulrich K.; Johnson, Quintin C.; Nichols, Monte C.; Saroyan, Ralph A.; Massey, Warren N.; Nusshardt, Rudolph

    1993-01-01

    A computerized three-dimensional x-ray tomographic microscopy system is disclosed, comprising: a) source means for providing a source of parallel x-ray beams, b) staging means for staging and sequentially rotating a sample to be positioned in the path of the c) x-ray image magnifier means positioned in the path of the beams downstream from the sample, d) detecting means for detecting the beams after being passed through and magnified by the image magnifier means, and e) computing means for analyzing values received from the detecting means, and converting the values into three-dimensional representations. Also disclosed is a process for magnifying an x-ray image, and apparatus therefor.

  1. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography.

    PubMed

    Wojtkowski, Maciej; Srinivasan, Vivek; Fujimoto, James G; Ko, Tony; Schuman, Joel S; Kowalczyk, Andrzej; Duker, Jay S

    2005-10-01

    To demonstrate high-speed, ultrahigh-resolution, 3-dimensional optical coherence tomography (3D OCT) and new protocols for retinal imaging. Ultrahigh-resolution OCT using broadband light sources achieves axial image resolutions of approximately 2 microm compared with standard 10-microm-resolution OCT current commercial instruments. High-speed OCT using spectral/Fourier domain detection enables dramatic increases in imaging speeds. Three-dimensional OCT retinal imaging is performed in normal human subjects using high-speed ultrahigh-resolution OCT. Three-dimensional OCT data of the macula and optic disc are acquired using a dense raster scan pattern. New processing and display methods for generating virtual OCT fundus images; cross-sectional OCT images with arbitrary orientations; quantitative maps of retinal, nerve fiber layer, and other intraretinal layer thicknesses; and optic nerve head topographic parameters are demonstrated. Three-dimensional OCT imaging enables new imaging protocols that improve visualization and mapping of retinal microstructure. An OCT fundus image can be generated directly from the 3D OCT data, which enables precise and repeatable registration of cross-sectional OCT images and thickness maps with fundus features. Optical coherence tomography images with arbitrary orientations, such as circumpapillary scans, can be generated from 3D OCT data. Mapping of total retinal thickness and thicknesses of the nerve fiber layer, photoreceptor layer, and other intraretinal layers is demonstrated. Measurement of optic nerve head topography and disc parameters is also possible. Three-dimensional OCT enables measurements that are similar to those of standard instruments, including the StratusOCT, GDx, HRT, and RTA. Three-dimensional OCT imaging can be performed using high-speed ultrahigh-resolution OCT. Three-dimensional OCT provides comprehensive visualization and mapping of retinal microstructures. The high data acquisition speeds enable high-density data sets with large numbers of transverse positions on the retina, which reduces the possibility of missing focal pathologies. In addition to providing image information such as OCT cross-sectional images, OCT fundus images, and 3D rendering, quantitative measurement and mapping of intraretinal layer thickness and topographic features of the optic disc are possible. We hope that 3D OCT imaging may help to elucidate the structural changes associated with retinal disease as well as improve early diagnosis and monitoring of disease progression and response to treatment.

  2. High-resolution three-dimensional imaging radar

    NASA Technical Reports Server (NTRS)

    Cooper, Ken B. (Inventor); Chattopadhyay, Goutam (Inventor); Siegel, Peter H. (Inventor); Dengler, Robert J. (Inventor); Schlecht, Erich T. (Inventor); Mehdi, Imran (Inventor); Skalare, Anders J. (Inventor)

    2010-01-01

    A three-dimensional imaging radar operating at high frequency e.g., 670 GHz, is disclosed. The active target illumination inherent in radar solves the problem of low signal power and narrow-band detection by using submillimeter heterodyne mixer receivers. A submillimeter imaging radar may use low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform. Three-dimensional images are generated through range information derived for each pixel scanned over a target. A peak finding algorithm may be used in processing for each pixel to differentiate material layers of the target. Improved focusing is achieved through a compensation signal sampled from a point source calibration target and applied to received signals from active targets prior to FFT-based range compression to extract and display high-resolution target images. Such an imaging radar has particular application in detecting concealed weapons or contraband.

  3. A three-dimensional quality-guided phase unwrapping method for MR elastography

    NASA Astrophysics Data System (ADS)

    Wang, Huifang; Weaver, John B.; Perreard, Irina I.; Doyley, Marvin M.; Paulsen, Keith D.

    2011-07-01

    Magnetic resonance elastography (MRE) uses accumulated phases that are acquired at multiple, uniformly spaced relative phase offsets, to estimate harmonic motion information. Heavily wrapped phase occurs when the motion is large and unwrapping procedures are necessary to estimate the displacements required by MRE. Two unwrapping methods were developed and compared in this paper. The first method is a sequentially applied approach. The three-dimensional MRE phase image block for each slice was processed by two-dimensional unwrapping followed by a one-dimensional phase unwrapping approach along the phase-offset direction. This unwrapping approach generally works well for low noise data. However, there are still cases where the two-dimensional unwrapping method fails when noise is high. In this case, the baseline of the corrupted regions within an unwrapped image will not be consistent. Instead of separating the two-dimensional and one-dimensional unwrapping in a sequential approach, an interleaved three-dimensional quality-guided unwrapping method was developed to combine both the two-dimensional phase image continuity and one-dimensional harmonic motion information. The quality of one-dimensional harmonic motion unwrapping was used to guide the three-dimensional unwrapping procedures and it resulted in stronger guidance than in the sequential method. In this work, in vivo results generated by the two methods were compared.

  4. Three-dimensional analysis of alveolar bone resorption by image processing of 3-D dental CT images

    NASA Astrophysics Data System (ADS)

    Nagao, Jiro; Kitasaka, Takayuki; Mori, Kensaku; Suenaga, Yasuhito; Yamada, Shohzoh; Naitoh, Munetaka

    2006-03-01

    We have developed a novel system that provides total support for assessment of alveolar bone resorption, caused by periodontitis, based on three-dimensional (3-D) dental CT images. In spite of the difficulty in perceiving the complex 3-D shape of resorption, dentists assessing resorption location and severity have been relying on two-dimensional radiography and probing, which merely provides one-dimensional information (depth) about resorption shape. However, there has been little work on assisting assessment of the disease by 3-D image processing and visualization techniques. This work provides quantitative evaluation results and figures for our system that measures the three-dimensional shape and spread of resorption. It has the following functions: (1) measures the depth of resorption by virtually simulating probing in the 3-D CT images, taking advantage of image processing of not suffering obstruction by teeth on the inter-proximal sides and much smaller measurement intervals than the conventional examination; (2) visualizes the disposition of the depth by movies and graphs; (3) produces a quantitative index and intuitive visual representation of the spread of resorption in the inter-radicular region in terms of area; and (4) calculates the volume of resorption as another severity index in the inter-radicular region and the region outside it. Experimental results in two cases of 3-D dental CT images and a comparison of the results with the clinical examination results and experts' measurements of the corresponding patients confirmed that the proposed system gives satisfying results, including 0.1 to 0.6mm of resorption measurement (probing) error and fairly intuitive presentation of measurement and calculation results.

  5. Three-dimensional cardiac architecture determined by two-photon microtomy

    NASA Astrophysics Data System (ADS)

    Huang, Hayden; MacGillivray, Catherine; Kwon, Hyuk-Sang; Lammerding, Jan; Robbins, Jeffrey; Lee, Richard T.; So, Peter

    2009-07-01

    Cardiac architecture is inherently three-dimensional, yet most characterizations rely on two-dimensional histological slices or dissociated cells, which remove the native geometry of the heart. We previously developed a method for labeling intact heart sections without dissociation and imaging large volumes while preserving their three-dimensional structure. We further refine this method to permit quantitative analysis of imaged sections. After data acquisition, these sections are assembled using image-processing tools, and qualitative and quantitative information is extracted. By examining the reconstructed cardiac blocks, one can observe end-to-end adjacent cardiac myocytes (cardiac strands) changing cross-sectional geometries, merging and separating from other strands. Quantitatively, representative cross-sectional areas typically used for determining hypertrophy omit the three-dimensional component; we show that taking orientation into account can significantly alter the analysis. Using fast-Fourier transform analysis, we analyze the gross organization of cardiac strands in three dimensions. By characterizing cardiac structure in three dimensions, we are able to determine that the α crystallin mutation leads to hypertrophy with cross-sectional area increases, but not necessarily via changes in fiber orientation distribution.

  6. Efficient analysis of three dimensional EUV mask induced imaging artifacts using the waveguide decomposition method

    NASA Astrophysics Data System (ADS)

    Shao, Feng; Evanschitzky, Peter; Fühner, Tim; Erdmann, Andreas

    2009-10-01

    This paper employs the Waveguide decomposition method as an efficient rigorous electromagnetic field (EMF) solver to investigate three dimensional mask-induced imaging artifacts in EUV lithography. The major mask diffraction induced imaging artifacts are first identified by applying the Zernike analysis of the mask nearfield spectrum of 2D lines/spaces. Three dimensional mask features like 22nm semidense/dense contacts/posts, isolated elbows and line-ends are then investigated in terms of lithographic results. After that, the 3D mask-induced imaging artifacts such as feature orientation dependent best focus shift, process window asymmetries, and other aberration-like phenomena are explored for the studied mask features. The simulation results can help lithographers to understand the reasons of EUV-specific imaging artifacts and to devise illumination and feature dependent strategies for their compensation in the optical proximity correction (OPC) for EUV masks. At last, an efficient approach using the Zernike analysis together with the Waveguide decomposition technique is proposed to characterize the impact of mask properties for the future OPC process.

  7. Wave field restoration using three-dimensional Fourier filtering method.

    PubMed

    Kawasaki, T; Takai, Y; Ikuta, T; Shimizu, R

    2001-11-01

    A wave field restoration method in transmission electron microscopy (TEM) was mathematically derived based on a three-dimensional (3D) image formation theory. Wave field restoration using this method together with spherical aberration correction was experimentally confirmed in through-focus images of amorphous tungsten thin film, and the resolution of the reconstructed phase image was successfully improved from the Scherzer resolution limit to the information limit. In an application of this method to a crystalline sample, the surface structure of Au(110) was observed in a profile-imaging mode. The processed phase image showed quantitatively the atomic relaxation of the topmost layer.

  8. Dual-dimensional microscopy: real-time in vivo three-dimensional observation method using high-resolution light-field microscopy and light-field display.

    PubMed

    Kim, Jonghyun; Moon, Seokil; Jeong, Youngmo; Jang, Changwon; Kim, Youngmin; Lee, Byoungho

    2018-06-01

    Here, we present dual-dimensional microscopy that captures both two-dimensional (2-D) and light-field images of an in-vivo sample simultaneously, synthesizes an upsampled light-field image in real time, and visualizes it with a computational light-field display system in real time. Compared with conventional light-field microscopy, the additional 2-D image greatly enhances the lateral resolution at the native object plane up to the diffraction limit and compensates for the image degradation at the native object plane. The whole process from capturing to displaying is done in real time with the parallel computation algorithm, which enables the observation of the sample's three-dimensional (3-D) movement and direct interaction with the in-vivo sample. We demonstrate a real-time 3-D interactive experiment with Caenorhabditis elegans. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  9. A new method to acquire 3-D images of a dental cast

    NASA Astrophysics Data System (ADS)

    Li, Zhongke; Yi, Yaxing; Zhu, Zhen; Li, Hua; Qin, Yongyuan

    2006-01-01

    This paper introduced our newly developed method to acquire three-dimensional images of a dental cast. A rotatable table, a laser-knife, a mirror, a CCD camera and a personal computer made up of a three-dimensional data acquiring system. A dental cast is placed on the table; the mirror is installed beside the table; a linear laser is projected to the dental cast; the CCD camera is put up above the dental cast, it can take picture of the dental cast and the shadow in the mirror; while the table rotating, the camera records the shape of the laser streak projected on the dental cast, and transmit the data to the computer. After the table rotated one circuit, the computer processes the data, calculates the three-dimensional coordinates of the dental cast's surface. In data processing procedure, artificial neural networks are enrolled to calibrate the lens distortion, map coordinates form screen coordinate system to world coordinate system. According to the three-dimensional coordinates, the computer reconstructs the stereo image of the dental cast. It is essential for computer-aided diagnosis and treatment planning in orthodontics. In comparison with other systems in service, for example, laser beam three-dimensional scanning system, the characteristic of this three-dimensional data acquiring system: a. celerity, it casts only 1 minute to scan a dental cast; b. compact, the machinery is simple and compact; c. no blind zone, a mirror is introduced ably to reduce blind zone.

  10. Three-dimensional video imaging of drainage and imbibition processes in model porous medium

    NASA Astrophysics Data System (ADS)

    Sharma, Prerna; Aswathi, P.; Sane, Anit; Ghosh, Shankar; Bhattacharya, Sabyasachi

    2011-03-01

    We report experimental results where we have performed three dimensional video imaging of the displacement of an oil phase by an aqueous phase and vice versa in a model porous medium. The stability of the oil water interface was studied as a function of their viscosity ratios, the wettability of the porous medium and the variation in the pore size distribution. Our experiments captures the pore scale information of the displacement process and its role in determining the long time structure of the interface.

  11. Visidep (TM): A Three-Dimensional Imaging System For The Unaided Eye

    NASA Astrophysics Data System (ADS)

    McLaurin, A. Porter; Jones, Edwin R.; Cathey, LeConte

    1984-05-01

    The VISIDEP process for creating images in three dimensions on flat screens is suitable for photographic, electrographic and computer generated imaging systems. Procedures for generating these images vary from medium to medium due to the specific requirements of each technology. Imaging requirements for photographic and electrographic media are more directly tied to the hardware than are computer based systems. Applications of these technologies are not limited to entertainment, but have implications for training, interactive computer/video systems, medical imaging, and inspection equipment. Through minor modification the system can provide three-dimensional images with accurately measureable relationships for robotics and adds this factor for future developments in artificial intelligence. In almost any area requiring image analysis or critical review, VISIDEP provides the added advantage of three-dimensionality. All of this is readily accomplished without aids to the human eye. The system can be viewed in full color, false-color infra-red, and monochromatic modalities from any angle and is also viewable with a single eye. Thus, the potential of application for this developing system is extensive and covers the broad spectrum of human endeavor from entertainment to scientific study.

  12. Two-Dimensional Sectioned Images and Three-Dimensional Surface Models for Learning the Anatomy of the Female Pelvis

    ERIC Educational Resources Information Center

    Shin, Dong Sun; Jang, Hae Gwon; Hwang, Sung Bae; Har, Dong-Hwan; Moon, Young Lae; Chung, Min Suk

    2013-01-01

    In the Visible Korean project, serially sectioned images of the pelvis were made from a female cadaver. Outlines of significant structures in the sectioned images were drawn and stacked to build surface models. To improve the accessibility and informational content of these data, a five-step process was designed and implemented. First, 154 pelvic…

  13. Incompressible Deformation Estimation Algorithm (IDEA) from Tagged MR Images

    PubMed Central

    Liu, Xiaofeng; Abd-Elmoniem, Khaled Z.; Stone, Maureen; Murano, Emi Z.; Zhuo, Jiachen; Gullapalli, Rao P.; Prince, Jerry L.

    2013-01-01

    Measuring the three-dimensional motion of muscular tissues, e.g., the heart or the tongue, using magnetic resonance (MR) tagging is typically carried out by interpolating the two-dimensional motion information measured on orthogonal stacks of images. The incompressibility of muscle tissue is an important constraint on the reconstructed motion field and can significantly help to counter the sparsity and incompleteness of the available motion information. Previous methods utilizing this fact produced incompressible motions with limited accuracy. In this paper, we present an incompressible deformation estimation algorithm (IDEA) that reconstructs a dense representation of the three-dimensional displacement field from tagged MR images and the estimated motion field is incompressible to high precision. At each imaged time frame, the tagged images are first processed to determine components of the displacement vector at each pixel relative to the reference time. IDEA then applies a smoothing, divergence-free, vector spline to interpolate velocity fields at intermediate discrete times such that the collection of velocity fields integrate over time to match the observed displacement components. Through this process, IDEA yields a dense estimate of a three-dimensional displacement field that matches our observations and also corresponds to an incompressible motion. The method was validated with both numerical simulation and in vivo human experiments on the heart and the tongue. PMID:21937342

  14. Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning

    PubMed Central

    Anselmi, Francesca; Ventalon, Cathie; Bègue, Aurélien; Ogden, David; Emiliani, Valentina

    2011-01-01

    Access to three-dimensional structures in the brain is fundamental to probe signal processing at multiple levels, from integration of synaptic inputs to network activity mapping. Here, we present an optical method for independent three-dimensional photoactivation and imaging by combination of digital holography with remote-focusing. We experimentally demonstrate compensation of spherical aberration for out-of-focus imaging in a range of at least 300 μm, as well as scanless imaging along oblique planes. We apply this method to perform functional imaging along tilted dendrites of hippocampal pyramidal neurons in brain slices, after photostimulation by multiple spots glutamate uncaging. By bringing extended portions of tilted dendrites simultaneously in-focus, we monitor the spatial extent of dendritic calcium signals, showing a shift from a widespread to a spatially confined response upon blockage of voltage-gated Na+ channels. PMID:22074779

  15. Three-dimensional rocking curve imaging to measure the effective distortion in the neighbourhood of a defect within a crystal: an ice example

    PubMed Central

    Philip, Armelle; Meyssonnier, Jacques; Kluender, Rafael T.; Baruchel, José

    2013-01-01

    Rocking curve imaging (RCI) is a quantitative version of monochromatic beam diffraction topography that involves using a two-dimensional detector, each pixel of which records its own ‘local’ rocking curve. From these local rocking curves one can reconstruct maps of particularly relevant quantities (e.g. integrated intensity, angular position of the centre of gravity, FWHM). Up to now RCI images have been exploited in the reflection case, giving a quantitative picture of the features present in a several-micrometre-thick subsurface layer. Recently, a three-dimensional Bragg diffraction imaging technique, which combines RCI with ‘pinhole’ and ‘section’ diffraction topography in the transmission case, was implemented. It allows three-dimensional images of defects to be obtained and measurement of three-dimensional distortions within a 50 × 50 × 50 µm elementary volume inside the crystal with angular misorientations down to 10−5–10−6 rad. In the present paper, this three-dimensional-RCI (3D-RCI) technique is used to study one of the grains of a three-grained ice polycrystal. The inception of the deformation process is followed by reconstructing virtual slices in the crystal bulk. 3D-RCI capabilities allow the effective distortion in the bulk of the crystal to be investigated, and the predictions of diffraction theories to be checked, well beyond what has been possible up to now. PMID:24046486

  16. Three-dimensional rocking curve imaging to measure the effective distortion in the neighbourhood of a defect within a crystal: an ice example.

    PubMed

    Philip, Armelle; Meyssonnier, Jacques; Kluender, Rafael T; Baruchel, José

    2013-08-01

    Rocking curve imaging (RCI) is a quantitative version of monochromatic beam diffraction topography that involves using a two-dimensional detector, each pixel of which records its own 'local' rocking curve. From these local rocking curves one can reconstruct maps of particularly relevant quantities ( e.g. integrated intensity, angular position of the centre of gravity, FWHM). Up to now RCI images have been exploited in the reflection case, giving a quantitative picture of the features present in a several-micrometre-thick subsurface layer. Recently, a three-dimensional Bragg diffraction imaging technique, which combines RCI with 'pinhole' and 'section' diffraction topography in the transmission case, was implemented. It allows three-dimensional images of defects to be obtained and measurement of three-dimensional distortions within a 50 × 50 × 50 µm elementary volume inside the crystal with angular misorientations down to 10 -5 -10 -6  rad. In the present paper, this three-dimensional-RCI (3D-RCI) technique is used to study one of the grains of a three-grained ice polycrystal. The inception of the deformation process is followed by reconstructing virtual slices in the crystal bulk. 3D-RCI capabilities allow the effective distortion in the bulk of the crystal to be investigated, and the predictions of diffraction theories to be checked, well beyond what has been possible up to now.

  17. Virtual reality exposure using three-dimensional images for the treatment of social phobia.

    PubMed

    Gebara, Cristiane M; Barros-Neto, Tito P de; Gertsenchtein, Leticia; Lotufo-Neto, Francisco

    2016-03-01

    To test a potential treatment for social phobia, which provides exposure to phobia-inducing situations via computer-generated, three-dimensional images, using an open clinical trial design. Twenty-one patients with a DSM-IV diagnosis of social phobia took part in the trial. Treatment consisted of up to 12 sessions of exposure to relevant images, each session lasting 50 minutes. Improvements in social anxiety were seen in all scales and instruments used, including at follow-up 6 months after the end of treatment. The average number of sessions was seven, as the participants habituated rapidly to the process. Only one participant dropped out. This study provides evidence that exposure to computer-generated three-dimensional images is relatively inexpensive, leads to greater treatment adherence, and can reduce social anxiety. Further studies are needed to corroborate these findings.

  18. Three-dimensional real-time imaging of bi-phasic flow through porous media

    NASA Astrophysics Data System (ADS)

    Sharma, Prerna; Aswathi, P.; Sane, Anit; Ghosh, Shankar; Bhattacharya, S.

    2011-11-01

    We present a scanning laser-sheet video imaging technique to image bi-phasic flow in three-dimensional porous media in real time with pore-scale spatial resolution, i.e., 35 μm and 500 μm for directions parallel and perpendicular to the flow, respectively. The technique is illustrated for the case of viscous fingering. Using suitable image processing protocols, both the morphology and the movement of the two-fluid interface, were quantitatively estimated. Furthermore, a macroscopic parameter such as the displacement efficiency obtained from a microscopic (pore-scale) analysis demonstrates the versatility and usefulness of the method.

  19. Real-time stereo generation for surgical vision during minimal invasive robotic surgery

    NASA Astrophysics Data System (ADS)

    Laddi, Amit; Bhardwaj, Vijay; Mahapatra, Prasant; Pankaj, Dinesh; Kumar, Amod

    2016-03-01

    This paper proposes a framework for 3D surgical vision for minimal invasive robotic surgery. It presents an approach for generating the three dimensional view of the in-vivo live surgical procedures from two images captured by very small sized, full resolution camera sensor rig. A pre-processing scheme is employed to enhance the image quality and equalizing the color profile of two images. Polarized Projection using interlacing two images give a smooth and strain free three dimensional view. The algorithm runs in real time with good speed at full HD resolution.

  20. Three-dimensional displacement measurement of image point by point-diffraction interferometry

    NASA Astrophysics Data System (ADS)

    He, Xiao; Chen, Lingfeng; Meng, Xiaojie; Yu, Lei

    2018-01-01

    This paper presents a method for measuring the three-dimensional (3-D) displacement of an image point based on point-diffraction interferometry. An object Point-light-source (PLS) interferes with a fixed PLS and its interferograms are captured by an exit pupil. When the image point of the object PLS is slightly shifted to a new position, the wavefront of the image PLS changes. And its interferograms also change. Processing these figures (captured before and after the movement), the wavefront difference of the image PLS can be obtained and it contains the information of three-dimensional (3-D) displacement of the image PLS. However, the information of its three-dimensional (3-D) displacement cannot be calculated until the distance between the image PLS and the exit pupil is calibrated. Therefore, we use a plane-parallel-plate with a known refractive index and thickness to determine this distance, which is based on the Snell's law for small angle of incidence. Thus, since the distance between the exit pupil and the image PLS is a known quantity, the 3-D displacement of the image PLS can be simultaneously calculated through two interference measurements. Preliminary experimental results indicate that its relative error is below 0.3%. With the ability to accurately locate an image point (whatever it is real or virtual), a fiber point-light-source can act as the reticle by itself in optical measurement.

  1. Mouse fetal whole intestine culture system for ex vivo manipulation of signaling pathways and three-dimensional live imaging of villus development.

    PubMed

    Walton, Katherine D; Kolterud, Asa

    2014-09-04

    Most morphogenetic processes in the fetal intestine have been inferred from thin sections of fixed tissues, providing snapshots of changes over developmental stages. Three-dimensional information from thin serial sections can be challenging to interpret because of the difficulty of reconstructing serial sections perfectly and maintaining proper orientation of the tissue over serial sections. Recent findings by Grosse et al., 2011 highlight the importance of three- dimensional information in understanding morphogenesis of the developing villi of the intestine(1). Three-dimensional reconstruction of singly labeled intestinal cells demonstrated that the majority of the intestinal epithelial cells contact both the apical and basal surfaces. Furthermore, three-dimensional reconstruction of the actin cytoskeleton at the apical surface of the epithelium demonstrated that the intestinal lumen is continuous and that secondary lumens are an artifact of sectioning. Those two points, along with the demonstration of interkinetic nuclear migration in the intestinal epithelium, defined the developing intestinal epithelium as a pseudostratified epithelium and not stratified as previously thought(1). The ability to observe the epithelium three-dimensionally was seminal to demonstrating this point and redefining epithelial morphogenesis in the fetal intestine. With the evolution of multi-photon imaging technology and three-dimensional reconstruction software, the ability to visualize intact, developing organs is rapidly improving. Two-photon excitation allows less damaging penetration deeper into tissues with high resolution. Two-photon imaging and 3D reconstruction of the whole fetal mouse intestines in Walton et al., 2012 helped to define the pattern of villus outgrowth(2). Here we describe a whole organ culture system that allows ex vivo development of villi and extensions of that culture system to allow the intestines to be three-dimensionally imaged during their development.

  2. Three-Dimensional Imaging of the Mouse Organ of Corti Cytoarchitecture for Mechanical Modeling

    NASA Astrophysics Data System (ADS)

    Puria, Sunil; Hartman, Byron; Kim, Jichul; Oghalai, John S.; Ricci, Anthony J.; Liberman, M. Charles

    2011-11-01

    Cochlear models typically use continuous anatomical descriptions and homogenized parameters based on two-dimensional images for describing the organ of Corti. To produce refined models based more closely on the actual cochlear cytoarchitecture, three-dimensional morphometric parameters of key mechanical structures are required. Towards this goal, we developed and compared three different imaging methods: (1) A fixed cochlear whole-mount preparation using the fluorescent dye Cellmask®, which is a molecule taken up by cell membranes and clearly delineates Deiters' cells, outer hair cells, and the phalangeal process, imaged using confocal microscopy; (2) An in situ fixed preparation with hair cells labeled using anti-prestin and supporting structures labeled using phalloidin, imaged using two-photon microscopy; and (3) A membrane-tomato (mT) mouse with fluorescent proteins expressed in all cell membranes, which enables two-photon imaging of an in situ live preparation with excellent visualization of the organ of Corti. Morphometric parameters including lengths, diameters, and angles, were extracted from 3D cellular surface reconstructions of the resulting images. Preliminary results indicate that the length of the phalangeal processes decreases from the first (inner most) to third (outer most) row of outer hair cells, and that their length also likely varies from base to apex and across species.

  3. The performance analysis of three-dimensional track-before-detect algorithm based on Fisher-Tippett-Gnedenko theorem

    NASA Astrophysics Data System (ADS)

    Cho, Hoonkyung; Chun, Joohwan; Song, Sungchan

    2016-09-01

    The dim moving target tracking from the infrared image sequence in the presence of high clutter and noise has been recently under intensive investigation. The track-before-detect (TBD) algorithm processing the image sequence over a number of frames before decisions on the target track and existence is known to be especially attractive in very low SNR environments (⩽ 3 dB). In this paper, we shortly present a three-dimensional (3-D) TBD with dynamic programming (TBD-DP) algorithm using multiple IR image sensors. Since traditional two-dimensional TBD algorithm cannot track and detect the along the viewing direction, we use 3-D TBD with multiple sensors and also strictly analyze the detection performance (false alarm and detection probabilities) based on Fisher-Tippett-Gnedenko theorem. The 3-D TBD-DP algorithm which does not require a separate image registration step uses the pixel intensity values jointly read off from multiple image frames to compute the merit function required in the DP process. Therefore, we also establish the relationship between the pixel coordinates of image frame and the reference coordinates.

  4. Producing a Linear Laser System for 3d Modelimg of Small Objects

    NASA Astrophysics Data System (ADS)

    Amini, A. Sh.; Mozaffar, M. H.

    2012-07-01

    Today, three dimensional modeling of objects is considered in many applications such as documentation of ancient heritage, quality control, reverse engineering and animation In this regard, there are a variety of methods for producing three-dimensional models. In this paper, a 3D modeling system is developed based on photogrammetry method using image processing and laser line extraction from images. In this method the laser beam profile is radiated on the body of the object and with video image acquisition, and extraction of laser line from the frames, three-dimensional coordinates of the objects can be achieved. In this regard, first the design and implementation of hardware, including cameras and laser systems was conducted. Afterwards, the system was calibrated. Finally, the software of the system was implemented for three dimensional data extraction. The system was investigated for modeling a number of objects. The results showed that the system can provide benefits such as low cost, appropriate speed and acceptable accuracy in 3D modeling of objects.

  5. Stereo Image Ranging For An Autonomous Robot Vision System

    NASA Astrophysics Data System (ADS)

    Holten, James R.; Rogers, Steven K.; Kabrisky, Matthew; Cross, Steven

    1985-12-01

    The principles of stereo vision for three-dimensional data acquisition are well-known and can be applied to the problem of an autonomous robot vehicle. Coincidental points in the two images are located and then the location of that point in a three-dimensional space can be calculated using the offset of the points and knowledge of the camera positions and geometry. This research investigates the application of artificial intelligence knowledge representation techniques as a means to apply heuristics to relieve the computational intensity of the low level image processing tasks. Specifically a new technique for image feature extraction is presented. This technique, the Queen Victoria Algorithm, uses formal language productions to process the image and characterize its features. These characterized features are then used for stereo image feature registration to obtain the required ranging information. The results can be used by an autonomous robot vision system for environmental modeling and path finding.

  6. Atomic Force Microscopy Based Cell Shape Index

    NASA Astrophysics Data System (ADS)

    Adia-Nimuwa, Usienemfon; Mujdat Tiryaki, Volkan; Hartz, Steven; Xie, Kan; Ayres, Virginia

    2013-03-01

    Stellation is a measure of cell physiology and pathology for several cell groups including neural, liver and pancreatic cells. In the present work, we compare the results of a conventional two-dimensional shape index study of both atomic force microscopy (AFM) and fluorescent microscopy images with the results obtained using a new three-dimensional AFM-based shape index similar to sphericity index. The stellation of astrocytes is investigated on nanofibrillar scaffolds composed of electrospun polyamide nanofibers that has demonstrated promise for central nervous system (CNS) repair. Recent work by our group has given us the ability to clearly segment the cells from nanofibrillar scaffolds in AFM images. The clear-featured AFM images indicated that the astrocyte processes were longer than previously identified at 24h. It was furthermore shown that cell spreading could vary significantly as a function of environmental parameters, and that AFM images could record these variations. The new three-dimensional AFM-based shape index incorporates the new information: longer stellate processes and cell spreading. The support of NSF PHY-095776 is acknowledged.

  7. Teaching Anatomy and Physiology Using Computer-Based, Stereoscopic Images

    ERIC Educational Resources Information Center

    Perry, Jamie; Kuehn, David; Langlois, Rick

    2007-01-01

    Learning real three-dimensional (3D) anatomy for the first time can be challenging. Two-dimensional drawings and plastic models tend to over-simplify the complexity of anatomy. The approach described uses stereoscopy to create 3D images of the process of cadaver dissection and to demonstrate the underlying anatomy related to the speech mechanisms.…

  8. Digital data registration and differencing compression system

    NASA Technical Reports Server (NTRS)

    Ransford, Gary A. (Inventor); Cambridge, Vivien J. (Inventor)

    1990-01-01

    A process is disclosed for x ray registration and differencing which results in more efficient compression. Differencing of registered modeled subject image with a modeled reference image forms a differenced image for compression with conventional compression algorithms. Obtention of a modeled reference image includes modeling a relatively unrelated standard reference image upon a three-dimensional model, which three-dimensional model is also used to model the subject image for obtaining the modeled subject image. The registration process of the modeled subject image and modeled reference image translationally correlates such modeled images for resulting correlation thereof in spatial and spectral dimensions. Prior to compression, a portion of the image falling outside a designated area of interest may be eliminated, for subsequent replenishment with a standard reference image. The compressed differenced image may be subsequently transmitted and/or stored, for subsequent decompression and addition to a standard reference image so as to form a reconstituted or approximated subject image at either a remote location and/or at a later moment in time. Overall effective compression ratios of 100:1 are possible for thoracic x ray digital images.

  9. Digital Data Registration and Differencing Compression System

    NASA Technical Reports Server (NTRS)

    Ransford, Gary A. (Inventor); Cambridge, Vivien J. (Inventor)

    1996-01-01

    A process for X-ray registration and differencing results in more efficient compression. Differencing of registered modeled subject image with a modeled reference image forms a differenced image for compression with conventional compression algorithms. Obtention of a modeled reference image includes modeling a relatively unrelated standard reference image upon a three-dimensional model, which three-dimensional model is also used to model the subject image for obtaining the modeled subject image. The registration process of the modeled subject image and modeled reference image translationally correlates such modeled images for resulting correlation thereof in spatial and spectral dimensions. Prior to compression, a portion of the image falling outside a designated area of interest may be eliminated, for subsequent replenishment with a standard reference image. The compressed differenced image may be subsequently transmitted and/or stored, for subsequent decompression and addition to a standard reference image so as to form a reconstituted or approximated subject image at either a remote location and/or at a later moment in time. Overall effective compression ratios of 100:1 are possible for thoracic X-ray digital images.

  10. Digital data registration and differencing compression system

    NASA Technical Reports Server (NTRS)

    Ransford, Gary A. (Inventor); Cambridge, Vivien J. (Inventor)

    1992-01-01

    A process for x ray registration and differencing results in more efficient compression is discussed. Differencing of registered modeled subject image with a modeled reference image forms a differential image for compression with conventional compression algorithms. Obtention of a modeled reference image includes modeling a relatively unrelated standard reference image upon a three dimensional model, which three dimensional model is also used to model the subject image for obtaining the modeled subject image. The registration process of the modeled subject image and modeled reference image translationally correlates such modeled images for resulting correlation thereof in spatial and spectral dimensions. Prior to compression, a portion of the image falling outside a designated area of interest may be eliminated, for subsequent replenishment with a standard reference image. The compressed differenced image may be subsequently transmitted and/or stored, for subsequent decompression and addition to a standard reference image so as to form a reconstituted or approximated subject image at either remote location and/or at a later moment in time. Overall effective compression ratios of 100:1 are possible for thoracic x ray digital images.

  11. Confocal Imaging of porous media

    NASA Astrophysics Data System (ADS)

    Shah, S.; Crawshaw, D.; Boek, D.

    2012-12-01

    Carbonate rocks, which hold approximately 50% of the world's oil and gas reserves, have a very complicated and heterogeneous structure in comparison with sandstone reservoir rock. We present advances with different techniques to image, reconstruct, and characterize statistically the micro-geometry of carbonate pores. The main goal here is to develop a technique to obtain two dimensional and three dimensional images using Confocal Laser Scanning Microscopy. CLSM is used in epi-fluorescent imaging mode, allowing for the very high optical resolution of features well below 1μm size. Images of pore structures were captured using CLSM imaging where spaces in the carbonate samples were impregnated with a fluorescent, dyed epoxy-resin, and scanned in the x-y plane by a laser probe. We discuss the sample preparation in detail for Confocal Imaging to obtain sub-micron resolution images of heterogeneous carbonate rocks. We also discuss the technical and practical aspects of this imaging technique, including its advantages and limitation. We present several examples of this application, including studying pore geometry in carbonates, characterizing sub-resolution porosity in two dimensional images. We then describe approaches to extract statistical information about porosity using image processing and spatial correlation function. We have managed to obtain very low depth information in z -axis (~ 50μm) to develop three dimensional images of carbonate rocks with the current capabilities and limitation of CLSM technique. Hence, we have planned a novel technique to obtain higher depth information to obtain high three dimensional images with sub-micron resolution possible in the lateral and axial planes.

  12. Pseudo-shading technique in the two-dimensional domain: a post-processing algorithm for enhancing the Z-buffer of a three-dimensional binary image.

    PubMed

    Tan, A C; Richards, R

    1989-01-01

    Three-dimensional (3D) medical graphics is becoming popular in clinical use on tomographic scanners. Research work in 3D reconstructive display of computerized tomography (CT) and magnetic resonance imaging (MRI) scans on conventional computers has produced many so-called pseudo-3D images. The quality of these images depends on the rendering algorithm, the coarseness of the digitized object, the number of grey levels and the image screen resolution. CT and MRI data are fundamentally voxel based and they produce images that are coarse because of the resolution of the data acquisition system. 3D images produced by the Z-buffer depth shading technique suffer loss of detail when complex objects with fine textural detail need to be displayed. Attempts have been made to improve the display of voxel objects, and existing techniques have shown the improvement possible using these post-processing algorithms. The improved rendering technique works on the Z-buffer image to generate a shaded image using a single light source in any direction. The effectiveness of the technique in generating a shaded image has been shown to be a useful means of presenting 3D information for clinical use.

  13. 3D printing from microfocus computed tomography (micro-CT) in human specimens: education and future implications.

    PubMed

    Shelmerdine, Susan C; Simcock, Ian C; Hutchinson, John Ciaran; Aughwane, Rosalind; Melbourne, Andrew; Nikitichev, Daniil I; Ong, Ju-Ling; Borghi, Alessandro; Cole, Garrard; Kingham, Emilia; Calder, Alistair D; Capelli, Claudio; Akhtar, Aadam; Cook, Andrew C; Schievano, Silvia; David, Anna; Ourselin, Sebastian; Sebire, Neil J; Arthurs, Owen J

    2018-06-14

    Microfocus CT (micro-CT) is an imaging method that provides three-dimensional digital data sets with comparable resolution to light microscopy. Although it has traditionally been used for non-destructive testing in engineering, aerospace industries and in preclinical animal studies, new applications are rapidly becoming available in the clinical setting including post-mortem fetal imaging and pathological specimen analysis. Printing three-dimensional models from imaging data sets for educational purposes is well established in the medical literature, but typically using low resolution (0.7 mm voxel size) data acquired from CT or MR examinations. With higher resolution imaging (voxel sizes below 1 micron, <0.001 mm) at micro-CT, smaller structures can be better characterised, and data sets post-processed to create accurate anatomical models for review and handling. In this review, we provide examples of how three-dimensional printing of micro-CT imaged specimens can provide insight into craniofacial surgical applications, developmental cardiac anatomy, placental imaging, archaeological remains and high-resolution bone imaging. We conclude with other potential future usages of this emerging technique.

  14. Efficient processing of two-dimensional arrays with C or C++

    USGS Publications Warehouse

    Donato, David I.

    2017-07-20

    Because fast and efficient serial processing of raster-graphic images and other two-dimensional arrays is a requirement in land-change modeling and other applications, the effects of 10 factors on the runtimes for processing two-dimensional arrays with C and C++ are evaluated in a comparative factorial study. This study’s factors include the choice among three C or C++ source-code techniques for array processing; the choice of Microsoft Windows 7 or a Linux operating system; the choice of 4-byte or 8-byte array elements and indexes; and the choice of 32-bit or 64-bit memory addressing. This study demonstrates how programmer choices can reduce runtimes by 75 percent or more, even after compiler optimizations. Ten points of practical advice for faster processing of two-dimensional arrays are offered to C and C++ programmers. Further study and the development of a C and C++ software test suite are recommended.Key words: array processing, C, C++, compiler, computational speed, land-change modeling, raster-graphic image, two-dimensional array, software efficiency

  15. Server-based Approach to Web Visualization of Integrated Three-dimensional Brain Imaging Data

    PubMed Central

    Poliakov, Andrew V.; Albright, Evan; Hinshaw, Kevin P.; Corina, David P.; Ojemann, George; Martin, Richard F.; Brinkley, James F.

    2005-01-01

    The authors describe a client-server approach to three-dimensional (3-D) visualization of neuroimaging data, which enables researchers to visualize, manipulate, and analyze large brain imaging datasets over the Internet. All computationally intensive tasks are done by a graphics server that loads and processes image volumes and 3-D models, renders 3-D scenes, and sends the renderings back to the client. The authors discuss the system architecture and implementation and give several examples of client applications that allow visualization and analysis of integrated language map data from single and multiple patients. PMID:15561787

  16. Frontal slab composite magnetic resonance neurography of the brachial plexus: implications for infraclavicular block approaches.

    PubMed

    Raphael, David T; McIntee, Diane; Tsuruda, Jay S; Colletti, Patrick; Tatevossian, Ray

    2005-12-01

    Magnetic resonance neurography (MRN) is an imaging method by which nerves can be selectively highlighted. Using commercial software, the authors explored a variety of approaches to develop a three-dimensional volume-rendered MRN image of the entire brachial plexus and used it to evaluate the accuracy of infraclavicular block approaches. With institutional review board approval, MRN of the brachial plexus was performed in 10 volunteer subjects. MRN imaging was performed on a GE 1.5-tesla magnetic resonance scanner (General Electric Healthcare Technologies, Waukesha, WI) using a phased array torso coil. Coronal STIR and T1 oblique sagittal sequences of the brachial plexus were obtained. Multiple software programs were explored for enhanced display and manipulation of the composite magnetic resonance images. The authors developed a frontal slab composite approach that allows single-frame reconstruction of a three-dimensional volume-rendered image of the entire brachial plexus. Automatic segmentation was supplemented by manual segmentation in nearly all cases. For each of three infraclavicular approaches (posteriorly directed needle below midclavicle, infracoracoid, or caudomedial to coracoid), the targeting error was measured as the distance from the MRN plexus midpoint to the approach-targeted site. Composite frontal slabs (coronal views), which are single-frame three-dimensional volume renderings from image-enhanced two-dimensional frontal view projections of the underlying coronal slices, were created. The targeting errors (mean +/- SD) for the approaches-midclavicle, infracoracoid, caudomedial to coracoid-were 0.43 +/- 0.67, 0.99 +/- 1.22, and 0.65 +/- 1.14 cm, respectively. Image-processed three-dimensional volume-rendered MNR scans, which allow visualization of the entire brachial plexus within a single composite image, have educational value in illustrating the complexity and individual variation of the plexus. Suggestions for improved guidance during infraclavicular block procedures are presented.

  17. A memory-efficient staining algorithm in 3D seismic modelling and imaging

    NASA Astrophysics Data System (ADS)

    Jia, Xiaofeng; Yang, Lu

    2017-08-01

    The staining algorithm has been proven to generate high signal-to-noise ratio (S/N) images in poorly illuminated areas in two-dimensional cases. In the staining algorithm, the stained wavefield relevant to the target area and the regular source wavefield forward propagate synchronously. Cross-correlating these two wavefields with the backward propagated receiver wavefield separately, we obtain two images: the local image of the target area and the conventional reverse time migration (RTM) image. This imaging process costs massive computer memory for wavefield storage, especially in large scale three-dimensional cases. To make the staining algorithm applicable to three-dimensional RTM, we develop a method to implement the staining algorithm in three-dimensional acoustic modelling in a standard staggered grid finite difference (FD) scheme. The implementation is adaptive to the order of spatial accuracy of the FD operator. The method can be applied to elastic, electromagnetic, and other wave equations. Taking the memory requirement into account, we adopt a random boundary condition (RBC) to backward extrapolate the receiver wavefield and reconstruct it by reverse propagation using the final wavefield snapshot only. Meanwhile, we forward simulate the stained wavefield and source wavefield simultaneously using the nearly perfectly matched layer (NPML) boundary condition. Experiments on a complex geologic model indicate that the RBC-NPML collaborative strategy not only minimizes the memory consumption but also guarantees high quality imaging results. We apply the staining algorithm to three-dimensional RTM via the proposed strategy. Numerical results show that our staining algorithm can produce high S/N images in the target areas with other structures effectively muted.

  18. A new method for recognizing quadric surfaces from range data and its application to telerobotics and automation

    NASA Technical Reports Server (NTRS)

    Alvertos, Nicolas; Dcunha, Ivan

    1993-01-01

    The problem of recognizing and positioning of objects in three-dimensional space is important for robotics and navigation applications. In recent years, digital range data, also referred to as range images or depth maps, have been available for the analysis of three-dimensional objects owing to the development of several active range finding techniques. The distinct advantage of range images is the explicitness of the surface information available. Many industrial and navigational robotics tasks will be more easily accomplished if such explicit information can be efficiently interpreted. In this research, a new technique based on analytic geometry for the recognition and description of three-dimensional quadric surfaces from range images is presented. Beginning with the explicit representation of quadrics, a set of ten coefficients are determined for various three-dimensional surfaces. For each quadric surface, a unique set of two-dimensional curves which serve as a feature set is obtained from the various angles at which the object is intersected with a plane. Based on a discriminant method, each of the curves is classified as a parabola, circle, ellipse, hyperbola, or a line. Each quadric surface is shown to be uniquely characterized by a set of these two-dimensional curves, thus allowing discrimination from the others. Before the recognition process can be implemented, the range data have to undergo a set of pre-processing operations, thereby making it more presentable to classification algorithms. One such pre-processing step is to study the effect of median filtering on raw range images. Utilizing a variety of surface curvature techniques, reliable sets of image data that approximate the shape of a quadric surface are determined. Since the initial orientation of the surfaces is unknown, a new technique is developed wherein all the rotation parameters are determined and subsequently eliminated. This approach enables us to position the quadric surfaces in a desired coordinate system. Experiments were conducted on raw range images of spheres, cylinders, and cones. Experiments were also performed on simulated data for surfaces such as hyperboloids of one and two sheets, elliptical and hyperbolic paraboloids, elliptical and hyperbolic cylinders, ellipsoids and the quadric cones. Both the real and simulated data yielded excellent results. Our approach is found to be more accurate and computationally inexpensive as compared to traditional approaches, such as the three-dimensional discriminant approach which involves evaluation of the rank of a matrix. Finally, we have proposed one other new approach, which involves the formulation of a mapping between the explicit and implicit forms of representing quadric surfaces. This approach, when fully realized, will yield a three-dimensional discriminant, which will recognize quadric surfaces based upon their component surfaces patches. This approach is faster than prior approaches and at the same time is invariant to pose and orientation of the surfaces in three-dimensional space.

  19. A new method for recognizing quadric surfaces from range data and its application to telerobotics and automation

    NASA Astrophysics Data System (ADS)

    Alvertos, Nicolas; Dcunha, Ivan

    1993-03-01

    The problem of recognizing and positioning of objects in three-dimensional space is important for robotics and navigation applications. In recent years, digital range data, also referred to as range images or depth maps, have been available for the analysis of three-dimensional objects owing to the development of several active range finding techniques. The distinct advantage of range images is the explicitness of the surface information available. Many industrial and navigational robotics tasks will be more easily accomplished if such explicit information can be efficiently interpreted. In this research, a new technique based on analytic geometry for the recognition and description of three-dimensional quadric surfaces from range images is presented. Beginning with the explicit representation of quadrics, a set of ten coefficients are determined for various three-dimensional surfaces. For each quadric surface, a unique set of two-dimensional curves which serve as a feature set is obtained from the various angles at which the object is intersected with a plane. Based on a discriminant method, each of the curves is classified as a parabola, circle, ellipse, hyperbola, or a line. Each quadric surface is shown to be uniquely characterized by a set of these two-dimensional curves, thus allowing discrimination from the others. Before the recognition process can be implemented, the range data have to undergo a set of pre-processing operations, thereby making it more presentable to classification algorithms. One such pre-processing step is to study the effect of median filtering on raw range images. Utilizing a variety of surface curvature techniques, reliable sets of image data that approximate the shape of a quadric surface are determined. Since the initial orientation of the surfaces is unknown, a new technique is developed wherein all the rotation parameters are determined and subsequently eliminated. This approach enables us to position the quadric surfaces in a desired coordinate system. Experiments were conducted on raw range images of spheres, cylinders, and cones. Experiments were also performed on simulated data for surfaces such as hyperboloids of one and two sheets, elliptical and hyperbolic paraboloids, elliptical and hyperbolic cylinders, ellipsoids and the quadric cones. Both the real and simulated data yielded excellent results. Our approach is found to be more accurate and computationally inexpensive as compared to traditional approaches, such as the three-dimensional discriminant approach which involves evaluation of the rank of a matrix.

  20. Three-dimensional reconstruction of the size and shape of protein microcrystals using Bragg coherent diffractive imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coughlan, H. D.; Darmanin, C.; Kirkwood, H. J.

    2016-03-14

    Three-dimensional imaging of protein crystals during X-ray diffraction experiments opens up a range of possibilities for optimising crystal quality and gaining new insights into the fundamental processes that drive radiation damage. Obtaining this information at the appropriate lengthscales however is extremely challenging. One approach that has been recently demonstrated as a promising avenue for charactering the size and shape of protein crystals at nanometre lengthscales is Bragg Coherent Diffractive Imaging (BCDI). BCDI is a recently developed technique that is able to recover the phase of the continuous diffraction intensity signal around individual Bragg peaks. When data is collected at multiplemore » points on a rocking curve a Reciprocal Space Map (RSM) can be assembled and then inverted using BCDI to obtain a three-dimensional image of the crystal. The first demonstration of two-dimensional BCDI of protein crystals was reported by Boutet at al., recently this work was extended to the study of radiation damage of micron-sized crystals. Here we present the first three-dimensional reconstructions of a Lysozyme protein crystal using BDI. The results are validated against RSM and TEM data and have implications for both radiation damage studies and for developing new approaches to structure retrieval from micron-sized protein crystals.« less

  1. [Clinical effect of three dimensional human body scanning system BurnCalc in the evaluation of burn wound area].

    PubMed

    Lu, J; Wang, L; Zhang, Y C; Tang, H T; Xia, Z F

    2017-10-20

    Objective: To validate the clinical effect of three dimensional human body scanning system BurnCalc developed by our research team in the evaluation of burn wound area. Methods: A total of 48 burn patients treated in the outpatient department of our unit from January to June 2015, conforming to the study criteria, were enrolled in. For the first 12 patients, one wound on the limbs or torso was selected from each patient. The stability of the system was tested by 3 attending physicians using three dimensional human body scanning system BurnCalc to measure the area of wounds individually. For the following 36 patients, one wound was selected from each patient, including 12 wounds on limbs, front torso, and side torso, respectively. The area of wounds was measured by the same attending physician using transparency tracing method, National Institutes of Health (NIH) Image J method, and three dimensional human body scanning system BurnCalc, respectively. The time for getting information of 36 wounds by three methods was recorded by stopwatch. The stability among the testers was evaluated by the intra-class correlation coefficient (ICC). Data were processed with randomized blocks analysis of variance and Bonferroni test. Results: (1) Wound area of patients measured by three physicians using three dimensional human body scanning system BurnCalc was (122±95), (121±95), and (123±96) cm(2,) respectively, and there was no statistically significant difference among them ( F =1.55, P >0.05). The ICC among 3 physicians was 0.999. (2) The wound area of limbs of patients measured by transparency tracing method, NIH Image J method, and three dimensional human body scanning system BurnCalc was (84±50), (76±46), and (84±49) cm(2,) respectively. There was no statistically significant difference in the wound area of limbs of patients measured by transparency tracing method and three dimensional human body scanning system BurnCalc ( P >0.05). The wound area of limbs of patients measured by NIH Image J method was smaller than that measured by transparency tracing method and three dimensional human body scanning system BurnCalc (with P values below 0.05). There was no statistically significant difference in the wound area of front torso of patients measured by transparency tracing method, NIH Image J method, and three dimensional human body scanning system BurnCalc ( F =0.33, P >0.05). The wound area of side torso of patients measured by transparency tracing method, NIH Image J method, and three dimensional human body scanning system BurnCalc was (169±88), (150±80), and (169±86) cm(2,) respectively. There was no statistically significant difference in the wound area of side torso of patients measured by transparency tracing method and three dimensional human body scanning system BurnCalc ( P >0.05). The wound area of side torso of patients measured by NIH Image J method was smaller than that measured by transparency tracing method and three dimensional human body scanning system BurnCalc (with P values below 0.05). (3) The time for getting information of wounds of patients by transparency tracing method, NIH Image J method, and three dimensional human body scanning system BurnCalc was (77±14), (10±3), and (9±3) s, respectively. The time for getting information of wounds of patients by transparency tracing method was longer than that by NIH Image J method and three dimensional human body scanning system BurnCalc (with P values below 0.05). The time for getting information of wounds of patients by three dimensional human body scanning system BurnCalc was close to that by NIH Image J method ( P >0.05). Conclusions: The three dimensional human body scanning system BurnCalc is stable and can accurately evaluate the wound area on limbs and torso of burn patients.

  2. Three dimensional identification card and applications

    NASA Astrophysics Data System (ADS)

    Zhou, Changhe; Wang, Shaoqing; Li, Chao; Li, Hao; Liu, Zhao

    2016-10-01

    Three dimensional Identification Card, with its three-dimensional personal image displayed and stored for personal identification, is supposed be the advanced version of the present two-dimensional identification card in the future [1]. Three dimensional Identification Card means that there are three-dimensional optical techniques are used, the personal image on ID card is displayed to be three-dimensional, so we can see three dimensional personal face. The ID card also stores the three-dimensional face information in its inside electronics chip, which might be recorded by using two-channel cameras, and it can be displayed in computer as three-dimensional images for personal identification. Three-dimensional ID card might be one interesting direction to update the present two-dimensional card in the future. Three-dimension ID card might be widely used in airport custom, entrance of hotel, school, university, as passport for on-line banking, registration of on-line game, etc...

  3. Image processing methods used to simulate flight over remotely sensed data

    NASA Technical Reports Server (NTRS)

    Mortensen, H. B.; Hussey, K. J.; Mortensen, R. A.

    1988-01-01

    It has been demonstrated that image processing techniques can provide an effective means of simulating flight over remotely sensed data (Hussey et al. 1986). This paper explains the methods used to simulate and animate three-dimensional surfaces from two-dimensional imagery. The preprocessing techniques used on the input data, the selection of the animation sequence, the generation of the animation frames, and the recording of the animation is covered. The software used for all steps is discussed.

  4. Viking image processing. [digital stereo imagery and computer mosaicking

    NASA Technical Reports Server (NTRS)

    Green, W. B.

    1977-01-01

    The paper discusses the camera systems capable of recording black and white and color imagery developed for the Viking Lander imaging experiment. Each Viking Lander image consisted of a matrix of numbers with 512 rows and an arbitrary number of columns up to a maximum of about 9,000. Various techniques were used in the processing of the Viking Lander images, including: (1) digital geometric transformation, (2) the processing of stereo imagery to produce three-dimensional terrain maps, and (3) computer mosaicking of distinct processed images. A series of Viking Lander images is included.

  5. Reconstruction 3-dimensional image from 2-dimensional image of status optical coherence tomography (OCT) for analysis of changes in retinal thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arinilhaq,; Widita, Rena

    2014-09-30

    Optical Coherence Tomography is often used in medical image acquisition to diagnose that change due easy to use and low price. Unfortunately, this type of examination produces a two-dimensional retinal image of the point of acquisition. Therefore, this study developed a method that combines and reconstruct 2-dimensional retinal images into three-dimensional images to display volumetric macular accurately. The system is built with three main stages: data acquisition, data extraction and 3-dimensional reconstruction. At data acquisition step, Optical Coherence Tomography produced six *.jpg images of each patient were further extracted with MATLAB 2010a software into six one-dimensional arrays. The six arraysmore » are combined into a 3-dimensional matrix using a kriging interpolation method with SURFER9 resulting 3-dimensional graphics of macula. Finally, system provides three-dimensional color graphs based on the data distribution normal macula. The reconstruction system which has been designed produces three-dimensional images with size of 481 × 481 × h (retinal thickness) pixels.« less

  6. Space-based optical image encryption.

    PubMed

    Chen, Wen; Chen, Xudong

    2010-12-20

    In this paper, we propose a new method based on a three-dimensional (3D) space-based strategy for the optical image encryption. The two-dimensional (2D) processing of a plaintext in the conventional optical encryption methods is extended to a 3D space-based processing. Each pixel of the plaintext is considered as one particle in the proposed space-based optical image encryption, and the diffraction of all particles forms an object wave in the phase-shifting digital holography. The effectiveness and advantages of the proposed method are demonstrated by numerical results. The proposed method can provide a new optical encryption strategy instead of the conventional 2D processing, and may open up a new research perspective for the optical image encryption.

  7. Utility of three-dimensional and multiplanar reformatted computed tomography for evaluation of pediatric congenital spine abnormalities.

    PubMed

    Newton, Peter O; Hahn, Gregory W; Fricka, Kevin B; Wenger, Dennis R

    2002-04-15

    A retrospective radiographic review of 31 patients with congenital spine abnormalities who underwent conventional radiography and advanced imaging studies was conducted. To analyze the utility of three-dimensional computed tomography with multiplanar reformatted images for congenital spine anomalies, as compared with plain radiographs and axial two-dimensional computed tomography imaging. Conventional radiographic imaging for congenital spine disorders often are difficult to interpret because of the patient's small size, the complexity of the disorder, a deformity not in the plane of the radiographs, superimposed structures, and difficulty in forming a mental three-dimensional image. Multiplanar reformatted and three-dimensional computed tomographic imaging offers many potential advantages for defining congenital spine anomalies including visualization of the deformity in any plane, from any angle, with the overlying structures subtracted. The imaging studies of patients who had undergone a three-dimensional computed tomography for congenital deformities of the spine between 1992 and 1998 were reviewed (31 cases). All plain radiographs and axial two-dimensional computed tomography images performed before the three-dimensional computed tomography were reviewed and the findings documented. This was repeated for the three-dimensional reconstructions and, when available, the multiplanar reformatted images (15 cases). In each case, the utility of the advanced imaging was graded as one of the following: Grade A (substantial new information obtained), Grade B (confirmatory with improved visualization and understanding of the deformity), and Grade C (no added useful information obtained). In 17 of 31 cases, the multiplanar reformatted and three-dimensional images allowed identification of unrecognized malformations. In nine additional cases, the advanced imaging was helpful in better visualizing and understanding previously identified deformities. In five cases, no new information was gained. The standard and curved multiplanar reformatted images were best for defining the occiput-C1-C2 anatomy and the extent of segmentation defects. The curved multiplanar reformatted images were especially helpful in keeping the spine from "coming in" and "going out" of the plane of the image when there was significant spine deformity in the sagittal or coronal plane. The three-dimensional reconstructions proved valuable in defining failures of formation. Advanced computed tomography imaging (three-dimensional computed tomography and curved/standard multiplanar reformatted images) allows better definition of congenital spine anomalies. More than 50% of the cases showed additional abnormalities not appreciated on plain radiographs or axial two-dimensional computed tomography images. Curved multiplanar reformatted images allowed imaging in the coronal and sagittal planes of the entire deformity.

  8. Three-dimensional face model reproduction method using multiview images

    NASA Astrophysics Data System (ADS)

    Nagashima, Yoshio; Agawa, Hiroshi; Kishino, Fumio

    1991-11-01

    This paper describes a method of reproducing three-dimensional face models using multi-view images for a virtual space teleconferencing system that achieves a realistic visual presence for teleconferencing. The goal of this research, as an integral component of a virtual space teleconferencing system, is to generate a three-dimensional face model from facial images, synthesize images of the model virtually viewed from different angles, and with natural shadow to suit the lighting conditions of the virtual space. The proposed method is as follows: first, front and side view images of the human face are taken by TV cameras. The 3D data of facial feature points are obtained from front- and side-views by an image processing technique based on the color, shape, and correlation of face components. Using these 3D data, the prepared base face models, representing typical Japanese male and female faces, are modified to approximate the input facial image. The personal face model, representing the individual character, is then reproduced. Next, an oblique view image is taken by TV camera. The feature points of the oblique view image are extracted using the same image processing technique. A more precise personal model is reproduced by fitting the boundary of the personal face model to the boundary of the oblique view image. The modified boundary of the personal face model is determined by using face direction, namely rotation angle, which is detected based on the extracted feature points. After the 3D model is established, the new images are synthesized by mapping facial texture onto the model.

  9. Three-Dimensional Geometric Modeling of Membrane-bound Organelles in Ventricular Myocytes: Bridging the Gap between Microscopic Imaging and Mathematical Simulation

    PubMed Central

    Yu, Zeyun; Holst, Michael J.; Hayashi, Takeharu; Bajaj, Chandrajit L.; Ellisman, Mark H.; McCammon, J. Andrew; Hoshijima, Masahiko

    2009-01-01

    A general framework of image-based geometric processing is presented to bridge the gap between three-dimensional (3D) imaging that provides structural details of a biological system and mathematical simulation where high-quality surface or volumetric meshes are required. A 3D density map is processed in the order of image pre-processing (contrast enhancement and anisotropic filtering), feature extraction (boundary segmentation and skeletonization), and high-quality and realistic surface (triangular) and volumetric (tetrahedral) mesh generation. While the tool-chain described is applicable to general types of 3D imaging data, the performance is demonstrated specifically on membrane-bound organelles in ventricular myocytes that are imaged and reconstructed with electron microscopic (EM) tomography and two-photon microscopy (T-PM). Of particular interest in this study are two types of membrane-bound Ca2+-handling organelles, namely, transverse tubules (T-tubules) and junctional sarcoplasmic reticulum (jSR), both of which play an important role in regulating the excitation-contraction (E-C) coupling through dynamic Ca2+ mobilization in cardiomyocytes. PMID:18835449

  10. Three-dimensional geometric modeling of membrane-bound organelles in ventricular myocytes: bridging the gap between microscopic imaging and mathematical simulation.

    PubMed

    Yu, Zeyun; Holst, Michael J; Hayashi, Takeharu; Bajaj, Chandrajit L; Ellisman, Mark H; McCammon, J Andrew; Hoshijima, Masahiko

    2008-12-01

    A general framework of image-based geometric processing is presented to bridge the gap between three-dimensional (3D) imaging that provides structural details of a biological system and mathematical simulation where high-quality surface or volumetric meshes are required. A 3D density map is processed in the order of image pre-processing (contrast enhancement and anisotropic filtering), feature extraction (boundary segmentation and skeletonization), and high-quality and realistic surface (triangular) and volumetric (tetrahedral) mesh generation. While the tool-chain described is applicable to general types of 3D imaging data, the performance is demonstrated specifically on membrane-bound organelles in ventricular myocytes that are imaged and reconstructed with electron microscopic (EM) tomography and two-photon microscopy (T-PM). Of particular interest in this study are two types of membrane-bound Ca(2+)-handling organelles, namely, transverse tubules (T-tubules) and junctional sarcoplasmic reticulum (jSR), both of which play an important role in regulating the excitation-contraction (E-C) coupling through dynamic Ca(2+) mobilization in cardiomyocytes.

  11. In vitro three-dimensional aortic vasculature modeling based on sensor fusion between intravascular ultrasound and magnetic tracker.

    PubMed

    Shi, Chaoyang; Tercero, Carlos; Ikeda, Seiichi; Ooe, Katsutoshi; Fukuda, Toshio; Komori, Kimihiro; Yamamoto, Kiyohito

    2012-09-01

    It is desirable to reduce aortic stent graft installation time and the amount of contrast media used for this process. Guidance with augmented reality can achieve this by facilitating alignment of the stent graft with the renal and mesenteric arteries. For this purpose, a sensor fusion is proposed between intravascular ultrasound (IVUS) and magnetic trackers to construct three-dimensional virtual reality models of the blood vessels, as well as improvements to the gradient vector flow snake for boundary detection in ultrasound images. In vitro vasculature imaging experiments were done with hybrid probe and silicone models of the vasculature. The dispersion of samples for the magnetic tracker in the hybrid probe increased less than 1 mm when the IVUS was activated. Three-dimensional models of the descending thoracic aorta, with cross-section radius average error of 0.94 mm, were built from the data fusion. The development of this technology will enable reduction in the amount of contrast media required for in vivo and real-time three-dimensional blood vessel imaging. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Three-dimensional simulation of human teeth and its application in dental education and research.

    PubMed

    Koopaie, Maryam; Kolahdouz, Sajad

    2016-01-01

    Background: A comprehensive database, comprising geometry and properties of human teeth, is needed for dentistry education and dental research. The aim of this study was to create a three-dimensional model of human teeth to improve the dental E-learning and dental research. Methods: In this study, a cross-section picture of the three-dimensional model of the teeth was used. CT-Scan images were used in the first method. The space between the cross- sectional images was about 200 to 500 micrometers. Hard tissue margin was detected in each image by Matlab (R2009b), as image processing software. The images were transferred to Solidworks 2015 software. Tooth border curve was fitted on B-spline curves, using the least square-curve fitting algorithm. After transferring all curves for each tooth to Solidworks, the surface was created based on the surface fitting technique. This surface was meshed in Meshlab-v132 software, and the optimization of the surface was done based on the remeshing technique. The mechanical properties of the teeth were applied to the dental model. Results: This study presented a methodology for communication between CT-Scan images and the finite element and training software through which modeling and simulation of the teeth were performed. In this study, cross-sectional images were used for modeling. According to the findings, the cost and time were reduced compared to other studies. Conclusion: The three-dimensional model method presented in this study facilitated the learning of the dental students and dentists. Based on the three-dimensional model proposed in this study, designing and manufacturing the implants and dental prosthesis are possible.

  13. Three-dimensional simulation of human teeth and its application in dental education and research

    PubMed Central

    Koopaie, Maryam; Kolahdouz, Sajad

    2016-01-01

    Background: A comprehensive database, comprising geometry and properties of human teeth, is needed for dentistry education and dental research. The aim of this study was to create a three-dimensional model of human teeth to improve the dental E-learning and dental research. Methods: In this study, a cross-section picture of the three-dimensional model of the teeth was used. CT-Scan images were used in the first method. The space between the cross- sectional images was about 200 to 500 micrometers. Hard tissue margin was detected in each image by Matlab (R2009b), as image processing software. The images were transferred to Solidworks 2015 software. Tooth border curve was fitted on B-spline curves, using the least square-curve fitting algorithm. After transferring all curves for each tooth to Solidworks, the surface was created based on the surface fitting technique. This surface was meshed in Meshlab-v132 software, and the optimization of the surface was done based on the remeshing technique. The mechanical properties of the teeth were applied to the dental model. Results: This study presented a methodology for communication between CT-Scan images and the finite element and training software through which modeling and simulation of the teeth were performed. In this study, cross-sectional images were used for modeling. According to the findings, the cost and time were reduced compared to other studies. Conclusion: The three-dimensional model method presented in this study facilitated the learning of the dental students and dentists. Based on the three-dimensional model proposed in this study, designing and manufacturing the implants and dental prosthesis are possible. PMID:28491836

  14. Three-dimensional characterization of pigment dispersion in dried paint films using focused ion beam-scanning electron microscopy.

    PubMed

    Lin, Jui-Ching; Heeschen, William; Reffner, John; Hook, John

    2012-04-01

    The combination of integrated focused ion beam-scanning electron microscope (FIB-SEM) serial sectioning and imaging techniques with image analysis provided quantitative characterization of three-dimensional (3D) pigment dispersion in dried paint films. The focused ion beam in a FIB-SEM dual beam system enables great control in slicing paints, and the sectioning process can be synchronized with SEM imaging providing high quality serial cross-section images for 3D reconstruction. Application of Euclidean distance map and ultimate eroded points image analysis methods can provide quantitative characterization of 3D particle distribution. It is concluded that 3D measurement of binder distribution in paints is effective to characterize the order of pigment dispersion in dried paint films.

  15. Three-dimensional imaging of cultural heritage artifacts with holographic printers

    NASA Astrophysics Data System (ADS)

    Kang, Hoonjong; Stoykova, Elena; Berberova, Nataliya; Park, Jiyong; Nazarova, Dimana; Park, Joo Sup; Kim, Youngmin; Hong, Sunghee; Ivanov, Branimir; Malinowski, Nikola

    2016-01-01

    Holography is defined as a two-steps process of capture and reconstruction of the light wavefront scattered from three-dimensional (3D) objects. Capture of the wavefront is possible due to encoding of both amplitude and phase in the hologram as a result of interference of the light beam coming from the object and mutually coherent reference beam. Three-dimensional imaging provided by holography motivates development of digital holographic imaging methods based on computer generation of holograms as a holographic display or a holographic printer. The holographic printing technique relies on combining digital 3D object representation and encoding of the holographic data with recording of analog white light viewable reflection holograms. The paper considers 3D contents generation for a holographic stereogram printer and a wavefront printer as a means of analogue recording of specific artifacts which are complicated objects with regards to conventional analog holography restrictions.

  16. Three-Dimensional Optical Coherence Tomography

    NASA Technical Reports Server (NTRS)

    Gutin, Mikhail; Wang, Xu-Ming; Gutin, Olga

    2009-01-01

    Three-dimensional (3D) optical coherence tomography (OCT) is an advanced method of noninvasive infrared imaging of tissues in depth. Heretofore, commercial OCT systems for 3D imaging have been designed principally for external ophthalmological examination. As explained below, such systems have been based on a one-dimensional OCT principle, and in the operation of such a system, 3D imaging is accomplished partly by means of a combination of electronic scanning along the optical (Z) axis and mechanical scanning along the two axes (X and Y) orthogonal to the optical axis. In 3D OCT, 3D imaging involves a form of electronic scanning (without mechanical scanning) along all three axes. Consequently, the need for mechanical adjustment is minimal and the mechanism used to position the OCT probe can be correspondingly more compact. A 3D OCT system also includes a probe of improved design and utilizes advanced signal- processing techniques. Improvements in performance over prior OCT systems include finer resolution, greater speed, and greater depth of field.

  17. Parallel phase-sensitive three-dimensional imaging camera

    DOEpatents

    Smithpeter, Colin L.; Hoover, Eddie R.; Pain, Bedabrata; Hancock, Bruce R.; Nellums, Robert O.

    2007-09-25

    An apparatus is disclosed for generating a three-dimensional (3-D) image of a scene illuminated by a pulsed light source (e.g. a laser or light-emitting diode). The apparatus, referred to as a phase-sensitive 3-D imaging camera utilizes a two-dimensional (2-D) array of photodetectors to receive light that is reflected or scattered from the scene and processes an electrical output signal from each photodetector in the 2-D array in parallel using multiple modulators, each having inputs of the photodetector output signal and a reference signal, with the reference signal provided to each modulator having a different phase delay. The output from each modulator is provided to a computational unit which can be used to generate intensity and range information for use in generating a 3-D image of the scene. The 3-D camera is capable of generating a 3-D image using a single pulse of light, or alternately can be used to generate subsequent 3-D images with each additional pulse of light.

  18. Three-dimensional shape analysis of miarolitic cavities and enclaves in the Kakkonda granite by X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Ohtani, Tomoyuki; Nakano, Tsukasa; Nakashima, Yoshito; Muraoka, Hirofumi

    2001-11-01

    Three-dimensional shape analysis of miarolitic cavities and enclaves from the Kakkonda granite, NE Japan, was performed by X-ray computed tomography (CT) and image analysis. The three-dimensional shape of the miarolitic cavities and enclaves was reconstructed by stacked two-dimensional CT slice images with an in-plane resolution of 0.3 mm and an inter-slice spacing of 1 mm. An ellipsoid was fitted to each reconstructed object by the image processing programs. The shortest, intermediate, and longest axes of the ellipsoids fitted to miarolitic cavities had E-W, N-S, and vertical directions, respectively. The shortest axes of the ellipsoids fitted to enclaves were sub-vertical to vertical. Three-dimensional strains calculated from miarolitic cavities and enclaves have E-W and vertical shortening, respectively. The shape characteristics of miarolitic cavities probably reflect regional stress during the late magmatic stage, and those of enclaves reflect shortening by later-intruded magma or body rotation during the early magmatic stage. The miarolitic cavities may not be strained homogeneously with the surrounding granite, because the competence of minerals is different from that of the fluid-filled cavities. Although the strain markers require sufficient contrast between their CT numbers and those of the surrounding minerals, this method has several advantages over conventional methods, including the fact that it is non-destructive, expedient, and allows direct three-dimensional observation of each object.

  19. From Wheatstone to Cameron and beyond: overview in 3-D and 4-D imaging technology

    NASA Astrophysics Data System (ADS)

    Gilbreath, G. Charmaine

    2012-02-01

    This paper reviews three-dimensional (3-D) and four-dimensional (4-D) imaging technology, from Wheatstone through today, with some prognostications for near future applications. This field is rich in variety, subject specialty, and applications. A major trend, multi-view stereoscopy, is moving the field forward to real-time wide-angle 3-D reconstruction as breakthroughs in parallel processing and multi-processor computers enable very fast processing. Real-time holography meets 4-D imaging reconstruction at the goal of achieving real-time, interactive, 3-D imaging. Applications to telesurgery and telemedicine as well as to the needs of the defense and intelligence communities are also discussed.

  20. Pursuing Mirror Image Reconstruction in Unilateral Microtia: Customizing Auricular Framework by Application of Three-Dimensional Imaging and Three-Dimensional Printing.

    PubMed

    Chen, Hsin-Yu; Ng, Li-Shia; Chang, Chun-Shin; Lu, Ting-Chen; Chen, Ning-Hung; Chen, Zung-Chung

    2017-06-01

    Advances in three-dimensional imaging and three-dimensional printing technology have expanded the frontier of presurgical design for microtia reconstruction from two-dimensional curved lines to three-dimensional perspectives. This study presents an algorithm for combining three-dimensional surface imaging, computer-assisted design, and three-dimensional printing to create patient-specific auricular frameworks in unilateral microtia reconstruction. Between January of 2015 and January of 2016, six patients with unilateral microtia were enrolled. The average age of the patients was 7.6 years. A three-dimensional image of the patient's head was captured by 3dMDcranial, and virtual sculpture carried out using Geomagic Freeform software and a Touch X Haptic device for fabrication of the auricular template. Each template was tailored according to the patient's unique auricular morphology. The final construct was mirrored onto the defective side and printed out with biocompatible acrylic material. During the surgery, the prefabricated customized template served as a three-dimensional guide for surgical simulation and sculpture of the MEDPOR framework. Average follow-up was 10.3 months. Symmetric and good aesthetic results with regard to auricular shape, projection, and orientation were obtained. One case with severe implant exposure was salvaged with free temporoparietal fascia transfer and skin grafting. The combination of three-dimensional imaging and manufacturing technology with the malleability of MEDPOR has surpassed existing limitations resulting from the use of autologous materials and the ambiguity of two-dimensional planning. This approach allows surgeons to customize the auricular framework in a highly precise and sophisticated manner, taking a big step closer to the goal of mirror-image reconstruction for unilateral microtia patients. Therapeutic, IV.

  1. Photogrammetry of the three-dimensional shape and texture of a nanoscale particle using scanning electron microscopy and free software.

    PubMed

    Gontard, Lionel C; Schierholz, Roland; Yu, Shicheng; Cintas, Jesús; Dunin-Borkowski, Rafal E

    2016-10-01

    We apply photogrammetry in a scanning electron microscope (SEM) to study the three-dimensional shape and surface texture of a nanoscale LiTi2(PO4)3 particle. We highlight the fact that the technique can be applied non-invasively in any SEM using free software (freeware) and does not require special sample preparation. Three-dimensional information is obtained in the form of a surface mesh, with the texture of the sample stored as a separate two-dimensional image (referred to as a UV Map). The mesh can be used to measure parameters such as surface area, volume, moment of inertia and center of mass, while the UV map can be used to study the surface texture using conventional image processing techniques. We also illustrate the use of 3D printing to visualize the reconstructed model. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Phase retrieval and 3D imaging in gold nanoparticles based fluorescence microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ilovitsh, Tali; Ilovitsh, Asaf; Weiss, Aryeh M.; Meir, Rinat; Zalevsky, Zeev

    2017-02-01

    Optical sectioning microscopy can provide highly detailed three dimensional (3D) images of biological samples. However, it requires acquisition of many images per volume, and is therefore time consuming, and may not be suitable for live cell 3D imaging. We propose the use of the modified Gerchberg-Saxton phase retrieval algorithm to enable full 3D imaging of gold nanoparticles tagged sample using only two images. The reconstructed field is free space propagated to all other focus planes using post processing, and the 2D z-stack is merged to create a 3D image of the sample with high fidelity. Because we propose to apply the phase retrieving on nano particles, the regular ambiguities typical to the Gerchberg-Saxton algorithm, are eliminated. The proposed concept is then further enhanced also for tracking of single fluorescent particles within a three dimensional (3D) cellular environment based on image processing algorithms that can significantly increases localization accuracy of the 3D point spread function in respect to regular Gaussian fitting. All proposed concepts are validated both on simulated data as well as experimentally.

  3. The representation of visual depth perception based on the plenoptic function in the retina and its neural computation in visual cortex V1.

    PubMed

    Songnian, Zhao; Qi, Zou; Chang, Liu; Xuemin, Liu; Shousi, Sun; Jun, Qiu

    2014-04-23

    How it is possible to "faithfully" represent a three-dimensional stereoscopic scene using Cartesian coordinates on a plane, and how three-dimensional perceptions differ between an actual scene and an image of the same scene are questions that have not yet been explored in depth. They seem like commonplace phenomena, but in fact, they are important and difficult issues for visual information processing, neural computation, physics, psychology, cognitive psychology, and neuroscience. The results of this study show that the use of plenoptic (or all-optical) functions and their dual plane parameterizations can not only explain the nature of information processing from the retina to the primary visual cortex and, in particular, the characteristics of the visual pathway's optical system and its affine transformation, but they can also clarify the reason why the vanishing point and line exist in a visual image. In addition, they can better explain the reasons why a three-dimensional Cartesian coordinate system can be introduced into the two-dimensional plane to express a real three-dimensional scene. 1. We introduce two different mathematical expressions of the plenoptic functions, Pw and Pv that can describe the objective world. We also analyze the differences between these two functions when describing visual depth perception, that is, the difference between how these two functions obtain the depth information of an external scene.2. The main results include a basic method for introducing a three-dimensional Cartesian coordinate system into a two-dimensional plane to express the depth of a scene, its constraints, and algorithmic implementation. In particular, we include a method to separate the plenoptic function and proceed with the corresponding transformation in the retina and visual cortex.3. We propose that size constancy, the vanishing point, and vanishing line form the basis of visual perception of the outside world, and that the introduction of a three-dimensional Cartesian coordinate system into a two dimensional plane reveals a corresponding mapping between a retinal image and the vanishing point and line.

  4. The representation of visual depth perception based on the plenoptic function in the retina and its neural computation in visual cortex V1

    PubMed Central

    2014-01-01

    Background How it is possible to “faithfully” represent a three-dimensional stereoscopic scene using Cartesian coordinates on a plane, and how three-dimensional perceptions differ between an actual scene and an image of the same scene are questions that have not yet been explored in depth. They seem like commonplace phenomena, but in fact, they are important and difficult issues for visual information processing, neural computation, physics, psychology, cognitive psychology, and neuroscience. Results The results of this study show that the use of plenoptic (or all-optical) functions and their dual plane parameterizations can not only explain the nature of information processing from the retina to the primary visual cortex and, in particular, the characteristics of the visual pathway’s optical system and its affine transformation, but they can also clarify the reason why the vanishing point and line exist in a visual image. In addition, they can better explain the reasons why a three-dimensional Cartesian coordinate system can be introduced into the two-dimensional plane to express a real three-dimensional scene. Conclusions 1. We introduce two different mathematical expressions of the plenoptic functions, P w and P v that can describe the objective world. We also analyze the differences between these two functions when describing visual depth perception, that is, the difference between how these two functions obtain the depth information of an external scene. 2. The main results include a basic method for introducing a three-dimensional Cartesian coordinate system into a two-dimensional plane to express the depth of a scene, its constraints, and algorithmic implementation. In particular, we include a method to separate the plenoptic function and proceed with the corresponding transformation in the retina and visual cortex. 3. We propose that size constancy, the vanishing point, and vanishing line form the basis of visual perception of the outside world, and that the introduction of a three-dimensional Cartesian coordinate system into a two dimensional plane reveals a corresponding mapping between a retinal image and the vanishing point and line. PMID:24755246

  5. Analysis of x-ray tomography data of an extruded low density styrenic foam: an image analysis study

    NASA Astrophysics Data System (ADS)

    Lin, Jui-Ching; Heeschen, William

    2016-10-01

    Extruded styrenic foams are low density foams that are widely used for thermal insulation. It is difficult to precisely characterize the structure of the cells in low density foams by traditional cross-section viewing due to the frailty of the walls of the cells. X-ray computed tomography (CT) is a non-destructive, three dimensional structure characterization technique that has great potential for structure characterization of styrenic foams. Unfortunately the intrinsic artifacts of the data and the artifacts generated during image reconstruction are often comparable in size and shape to the thin walls of the foam, making robust and reliable analysis of cell sizes challenging. We explored three different image processing methods to clean up artifacts in the reconstructed images, thus allowing quantitative three dimensional determination of cell size in a low density styrenic foam. Three image processing approaches - an intensity based approach, an intensity variance based approach, and a machine learning based approach - are explored in this study, and the machine learning image feature classification method was shown to be the best. Individual cells are segmented within the images after the images were cleaned up using the three different methods and the cell sizes are measured and compared in the study. Although the collected data with the image analysis methods together did not yield enough measurements for a good statistic of the measurement of cell sizes, the problem can be resolved by measuring multiple samples or increasing imaging field of view.

  6. Volume Segmentation and Ghost Particles

    NASA Astrophysics Data System (ADS)

    Ziskin, Isaac; Adrian, Ronald

    2011-11-01

    Volume Segmentation Tomographic PIV (VS-TPIV) is a type of tomographic PIV in which images of particles in a relatively thick volume are segmented into images on a set of much thinner volumes that may be approximated as planes, as in 2D planar PIV. The planes of images can be analysed by standard mono-PIV, and the volume of flow vectors can be recreated by assembling the planes of vectors. The interrogation process is similar to a Holographic PIV analysis, except that the planes of image data are extracted from two-dimensional camera images of the volume of particles instead of three-dimensional holographic images. Like the tomographic PIV method using the MART algorithm, Volume Segmentation requires at least two cameras and works best with three or four. Unlike the MART method, Volume Segmentation does not require reconstruction of individual particle images one pixel at a time and it does not require an iterative process, so it operates much faster. As in all tomographic reconstruction strategies, ambiguities known as ghost particles are produced in the segmentation process. The effect of these ghost particles on the PIV measurement is discussed. This research was supported by Contract 79419-001-09, Los Alamos National Laboratory.

  7. Three-dimensional imaging of adherent cells using FIB/SEM and STEM.

    PubMed

    Villinger, Clarissa; Schauflinger, Martin; Gregorius, Heiko; Kranz, Christine; Höhn, Katharina; Nafeey, Soufi; Walther, Paul

    2014-01-01

    In this chapter we describe three different approaches for three-dimensional imaging of electron microscopic samples: serial sectioning transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM) tomography, and focused ion beam/scanning electron microscopy (FIB/SEM) tomography. With these methods, relatively large volumes of resin-embedded biological structures can be analyzed at resolutions of a few nm within a reasonable expenditure of time. The traditional method is serial sectioning and imaging the same area in all sections. Another method is TEM tomography that involves tilting a section in the electron beam and then reconstruction of the volume by back projection of the images. When the scanning transmission (STEM) mode is used, thicker sections (up to 1 μm) can be analyzed. The third approach presented here is focused ion beam/scanning electron microscopy (FIB/SEM) tomography, in which a sample is repeatedly milled with a focused ion beam (FIB) and each newly produced block face is imaged with the scanning electron microscope (SEM). This process can be repeated ad libitum in arbitrary small increments allowing 3D analysis of relatively large volumes such as eukaryotic cells. We show that resolution of this approach is considerably improved when the secondary electron signal is used. However, the most important prerequisite for three-dimensional imaging is good specimen preparation. For all three imaging methods, cryo-fixed (high-pressure frozen) and freeze-substituted samples have been used.

  8. Process for combining multiple passes of interferometric SAR data

    DOEpatents

    Bickel, Douglas L.; Yocky, David A.; Hensley, Jr., William H.

    2000-11-21

    Interferometric synthetic aperture radar (IFSAR) is a promising technology for a wide variety of military and civilian elevation modeling requirements. IFSAR extends traditional two dimensional SAR processing to three dimensions by utilizing the phase difference between two SAR images taken from different elevation positions to determine an angle of arrival for each pixel in the scene. This angle, together with the two-dimensional location information in the traditional SAR image, can be transformed into geographic coordinates if the position and motion parameters of the antennas are known accurately.

  9. Computer-aided light sheet flow visualization using photogrammetry

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1994-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and a visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) results, was chosen to interactively display the reconstructed light sheet images with the numerical surface geometry for the model or aircraft under study. The photogrammetric reconstruction technique and the image processing and computer graphics techniques and equipment are described. Results of the computer-aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images with CFD solutions in the same graphics environment is also demonstrated.

  10. Computer-Aided Light Sheet Flow Visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  11. Computer-aided light sheet flow visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  12. [Research on non-rigid registration of multi-modal medical image based on Demons algorithm].

    PubMed

    Hao, Peibo; Chen, Zhen; Jiang, Shaofeng; Wang, Yang

    2014-02-01

    Non-rigid medical image registration is a popular subject in the research areas of the medical image and has an important clinical value. In this paper we put forward an improved algorithm of Demons, together with the conservation of gray model and local structure tensor conservation model, to construct a new energy function processing multi-modal registration problem. We then applied the L-BFGS algorithm to optimize the energy function and solve complex three-dimensional data optimization problem. And finally we used the multi-scale hierarchical refinement ideas to solve large deformation registration. The experimental results showed that the proposed algorithm for large de formation and multi-modal three-dimensional medical image registration had good effects.

  13. Wigner analysis of three dimensional pupil with finite lateral aperture

    PubMed Central

    Chen, Hsi-Hsun; Oh, Se Baek; Zhai, Xiaomin; Tsai, Jui-Chang; Cao, Liang-Cai; Barbastathis, George; Luo, Yuan

    2015-01-01

    A three dimensional (3D) pupil is an optical element, most commonly implemented on a volume hologram, that processes the incident optical field on a 3D fashion. Here we analyze the diffraction properties of a 3D pupil with finite lateral aperture in the 4-f imaging system configuration, using the Wigner Distribution Function (WDF) formulation. Since 3D imaging pupil is finite in both lateral and longitudinal directions, the WDF of the volume holographic 4-f imager theoretically predicts distinct Bragg diffraction patterns in phase space. These result in asymmetric profiles of diffracted coherent point spread function between degenerate diffraction and Bragg diffraction, elucidating the fundamental performance of volume holographic imaging. Experimental measurements are also presented, confirming the theoretical predictions. PMID:25836443

  14. A synchrotron radiation microtomography system for the analysis of trabecular bone samples.

    PubMed

    Salomé, M; Peyrin, F; Cloetens, P; Odet, C; Laval-Jeantet, A M; Baruchel, J; Spanne, P

    1999-10-01

    X-ray computed microtomography is particularly well suited for studying trabecular bone architecture, which requires three-dimensional (3-D) images with high spatial resolution. For this purpose, we describe a three-dimensional computed microtomography (microCT) system using synchrotron radiation, developed at ESRF. Since synchrotron radiation provides a monochromatic and high photon flux x-ray beam, it allows high resolution and a high signal-to-noise ratio imaging. The principle of the system is based on truly three-dimensional parallel tomographic acquisition. It uses a two-dimensional (2-D) CCD-based detector to record 2-D radiographs of the transmitted beam through the sample under different angles of view. The 3-D tomographic reconstruction, performed by an exact 3-D filtered backprojection algorithm, yields 3-D images with cubic voxels. The spatial resolution of the detector was experimentally measured. For the application to bone investigation, the voxel size was set to 6.65 microm, and the experimental spatial resolution was found to be 11 microm. The reconstructed linear attenuation coefficient was calibrated from hydroxyapatite phantoms. Image processing tools are being developed to extract structural parameters quantifying trabecular bone architecture from the 3-D microCT images. First results on human trabecular bone samples are presented.

  15. Three-dimensional image acquisition and reconstruction system on a mobile device based on computer-generated integral imaging.

    PubMed

    Erdenebat, Munkh-Uchral; Kim, Byeong-Jun; Piao, Yan-Ling; Park, Seo-Yeon; Kwon, Ki-Chul; Piao, Mei-Lan; Yoo, Kwan-Hee; Kim, Nam

    2017-10-01

    A mobile three-dimensional image acquisition and reconstruction system using a computer-generated integral imaging technique is proposed. A depth camera connected to the mobile device acquires the color and depth data of a real object simultaneously, and an elemental image array is generated based on the original three-dimensional information for the object, with lens array specifications input into the mobile device. The three-dimensional visualization of the real object is reconstructed on the mobile display through optical or digital reconstruction methods. The proposed system is implemented successfully and the experimental results certify that the system is an effective and interesting method of displaying real three-dimensional content on a mobile device.

  16. A Three-Dimensional Statistical Average Skull: Application of Biometric Morphing in Generating Missing Anatomy.

    PubMed

    Teshima, Tara Lynn; Patel, Vaibhav; Mainprize, James G; Edwards, Glenn; Antonyshyn, Oleh M

    2015-07-01

    The utilization of three-dimensional modeling technology in craniomaxillofacial surgery has grown exponentially during the last decade. Future development, however, is hindered by the lack of a normative three-dimensional anatomic dataset and a statistical mean three-dimensional virtual model. The purpose of this study is to develop and validate a protocol to generate a statistical three-dimensional virtual model based on a normative dataset of adult skulls. Two hundred adult skull CT images were reviewed. The average three-dimensional skull was computed by processing each CT image in the series using thin-plate spline geometric morphometric protocol. Our statistical average three-dimensional skull was validated by reconstructing patient-specific topography in cranial defects. The experiment was repeated 4 times. In each case, computer-generated cranioplasties were compared directly to the original intact skull. The errors describing the difference between the prediction and the original were calculated. A normative database of 33 adult human skulls was collected. Using 21 anthropometric landmark points, a protocol for three-dimensional skull landmarking and data reduction was developed and a statistical average three-dimensional skull was generated. Our results show the root mean square error (RMSE) for restoration of a known defect using the native best match skull, our statistical average skull, and worst match skull was 0.58, 0.74, and 4.4  mm, respectively. The ability to statistically average craniofacial surface topography will be a valuable instrument for deriving missing anatomy in complex craniofacial defects and deficiencies as well as in evaluating morphologic results of surgery.

  17. Quantitative imaging methods in osteoporosis.

    PubMed

    Oei, Ling; Koromani, Fjorda; Rivadeneira, Fernando; Zillikens, M Carola; Oei, Edwin H G

    2016-12-01

    Osteoporosis is characterized by a decreased bone mass and quality resulting in an increased fracture risk. Quantitative imaging methods are critical in the diagnosis and follow-up of treatment effects in osteoporosis. Prior radiographic vertebral fractures and bone mineral density (BMD) as a quantitative parameter derived from dual-energy X-ray absorptiometry (DXA) are among the strongest known predictors of future osteoporotic fractures. Therefore, current clinical decision making relies heavily on accurate assessment of these imaging features. Further, novel quantitative techniques are being developed to appraise additional characteristics of osteoporosis including three-dimensional bone architecture with quantitative computed tomography (QCT). Dedicated high-resolution (HR) CT equipment is available to enhance image quality. At the other end of the spectrum, by utilizing post-processing techniques such as the trabecular bone score (TBS) information on three-dimensional architecture can be derived from DXA images. Further developments in magnetic resonance imaging (MRI) seem promising to not only capture bone micro-architecture but also characterize processes at the molecular level. This review provides an overview of various quantitative imaging techniques based on different radiological modalities utilized in clinical osteoporosis care and research.

  18. SU-E-I-91: Development of a Compact Radiographic Simulator Using Microsoft Kinect.

    PubMed

    Ono, M; Kozono, K; Aoki, M; Mizoguchi, A; Kamikawa, Y; Umezu, Y; Arimura, H; Toyofuku, F

    2012-06-01

    Radiographic simulator system is useful for learning radiographic techniques and confirmation of positioning before x-ray irradiation. Conventional x-ray simulators have drawbacks in cost and size, and are only applicable to situations in which position of the object does not change. Therefore, we have developed a new radiographic simulator system using an infrared-ray based three-dimensional shape measurement device (Microsoft Kinect). We made a computer program using OpenCV and OpenNI for processing of depth image data obtained from Kinect, and calculated the exact distance from Kinect to the object by calibration. Theobject was measured from various directions, and positional relationship between the x-ray tube and the object was obtained. X-ray projection images were calculated by projecting x-rays onto the mathematical three-dimensional CT data of a head phantom with almost the same size. The object was rotated from 0 degree (standard position) through 90 degrees in increments of 10 degrees, and the accuracy of the measured rotation angle values was evaluated. In order to improve the computational time, the projection image size was changed (512*512, 256*256, and 128*128). The x-ray simulation images corresponding to the radiographic images produced by using the x-ray tube were obtained. The three-dimensional position of the object was measured with good precision from 0 to 50 degrees, but above 50 degrees, measured position error increased with the increase of the rotation angle. The computational time and image size were 30, 12, and 7 seconds for 512*512, 256*256, and 128*128, respectively. We could measure the three-dimensional position of the object using properly calibrated Kinect sensor, and obtained projection images at relatively high-speed using the three-dimensional CTdata. It was suggested that this system can be used for obtaining simulated projection x-ray images before x-ray exposure by attaching this device onto an x-ray tube. © 2012 American Association of Physicists in Medicine.

  19. Dependence of quantitative accuracy of CT perfusion imaging on system parameters

    NASA Astrophysics Data System (ADS)

    Li, Ke; Chen, Guang-Hong

    2017-03-01

    Deconvolution is a popular method to calculate parametric perfusion parameters from four dimensional CT perfusion (CTP) source images. During the deconvolution process, the four dimensional space is squeezed into three-dimensional space by removing the temporal dimension, and a prior knowledge is often used to suppress noise associated with the process. These additional complexities confound the understanding about deconvolution-based CTP imaging system and how its quantitative accuracy depends on parameters and sub-operations involved in the image formation process. Meanwhile, there has been a strong clinical need in answering this question, as physicians often rely heavily on the quantitative values of perfusion parameters to make diagnostic decisions, particularly during an emergent clinical situation (e.g. diagnosis of acute ischemic stroke). The purpose of this work was to develop a theoretical framework that quantitatively relates the quantification accuracy of parametric perfusion parameters with CTP acquisition and post-processing parameters. This goal was achieved with the help of a cascaded systems analysis for deconvolution-based CTP imaging systems. Based on the cascaded systems analysis, the quantitative relationship between regularization strength, source image noise, arterial input function, and the quantification accuracy of perfusion parameters was established. The theory could potentially be used to guide developments of CTP imaging technology for better quantification accuracy and lower radiation dose.

  20. The Role of Motion Concepts in Understanding Non-Motion Concepts

    PubMed Central

    Khatin-Zadeh, Omid; Banaruee, Hassan; Khoshsima, Hooshang; Marmolejo-Ramos, Fernando

    2017-01-01

    This article discusses a specific type of metaphor in which an abstract non-motion domain is described in terms of a motion event. Abstract non-motion domains are inherently different from concrete motion domains. However, motion domains are used to describe abstract non-motion domains in many metaphors. Three main reasons are suggested for the suitability of motion events in such metaphorical descriptions. Firstly, motion events usually have high degrees of concreteness. Secondly, motion events are highly imageable. Thirdly, components of any motion event can be imagined almost simultaneously within a three-dimensional space. These three characteristics make motion events suitable domains for describing abstract non-motion domains, and facilitate the process of online comprehension throughout language processing. Extending the main point into the field of mathematics, this article discusses the process of transforming abstract mathematical problems into imageable geometric representations within the three-dimensional space. This strategy is widely used by mathematicians to solve highly abstract and complex problems. PMID:29240715

  1. Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Jermyn, Michael; Ghadyani, Hamid; Mastanduno, Michael A.; Turner, Wes; Davis, Scott C.; Dehghani, Hamid; Pogue, Brian W.

    2013-08-01

    Multimodal approaches that combine near-infrared (NIR) and conventional imaging modalities have been shown to improve optical parameter estimation dramatically and thus represent a prevailing trend in NIR imaging. These approaches typically involve applying anatomical templates from magnetic resonance imaging/computed tomography/ultrasound images to guide the recovery of optical parameters. However, merging these data sets using current technology requires multiple software packages, substantial expertise, significant time-commitment, and often results in unacceptably poor mesh quality for optical image reconstruction, a reality that represents a significant roadblock for translational research of multimodal NIR imaging. This work addresses these challenges directly by introducing automated digital imaging and communications in medicine image stack segmentation and a new one-click three-dimensional mesh generator optimized for multimodal NIR imaging, and combining these capabilities into a single software package (available for free download) with a streamlined workflow. Image processing time and mesh quality benchmarks were examined for four common multimodal NIR use-cases (breast, brain, pancreas, and small animal) and were compared to a commercial image processing package. Applying these tools resulted in a fivefold decrease in image processing time and 62% improvement in minimum mesh quality, in the absence of extra mesh postprocessing. These capabilities represent a significant step toward enabling translational multimodal NIR research for both expert and nonexpert users in an open-source platform.

  2. Fractal dimension of trabecular bone projection texture is related to three-dimensional microarchitecture.

    PubMed

    Pothuaud, L; Benhamou, C L; Porion, P; Lespessailles, E; Harba, R; Levitz, P

    2000-04-01

    The purpose of this work was to understand how fractal dimension of two-dimensional (2D) trabecular bone projection images could be related to three-dimensional (3D) trabecular bone properties such as porosity or connectivity. Two alteration processes were applied to trabecular bone images obtained by magnetic resonance imaging: a trabeculae dilation process and a trabeculae removal process. The trabeculae dilation process was applied from the 3D skeleton graph to the 3D initial structure with constant connectivity. The trabeculae removal process was applied from the initial structure to an altered structure having 99% of porosity, in which both porosity and connectivity were modified during this second process. Gray-level projection images of each of the altered structures were simply obtained by summation of voxels, and fractal dimension (Df) was calculated. Porosity (phi) and connectivity per unit volume (Cv) were calculated from the 3D structure. Significant relationships were found between Df, phi, and Cv. Df values increased when porosity increased (dilation and removal processes) and when connectivity decreased (only removal process). These variations were in accordance with all previous clinical studies, suggesting that fractal evaluation of trabecular bone projection has real meaning in terms of porosity and connectivity of the 3D architecture. Furthermore, there was a statistically significant linear dependence between Df and Cv when phi remained constant. Porosity is directly related to bone mineral density and fractal dimension can be easily evaluated in clinical routine. These two parameters could be associated to evaluate the connectivity of the structure.

  3. Biodynamic profiling of three-dimensional tissue growth techniques

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Merrill, Dan; Turek, John; Nolte, David

    2016-03-01

    Three-dimensional tissue culture presents a more biologically relevant environment in which to perform drug development than conventional two-dimensional cell culture. However, obtaining high-content information from inside three dimensional tissue has presented an obstacle to rapid adoption of 3D tissue culture for pharmaceutical applications. Biodynamic imaging is a high-content three-dimensional optical imaging technology based on low-coherence interferometry and digital holography that uses intracellular dynamics as high-content image contrast. In this paper, we use biodynamic imaging to compare pharmaceutical responses to Taxol of three-dimensional multicellular spheroids grown by three different growth techniques: rotating bioreactor, hanging-drop and plate-grown spheroids. The three growth techniques have systematic variations among tissue cohesiveness and intracellular activity and consequently display different pharmacodynamics under identical drug dose conditions. The in vitro tissue cultures are also compared to ex vivo living biopsies. These results demonstrate that three-dimensional tissue cultures are not equivalent, and that drug-response studies must take into account the growth method.

  4. Jini service to reconstruct tomographic data

    NASA Astrophysics Data System (ADS)

    Knoll, Peter; Mirzaei, S.; Koriska, K.; Koehn, H.

    2002-06-01

    A number of imaging systems rely on the reconstruction of a 3- dimensional model from its projections through the process of computed tomography (CT). In medical imaging, for example magnetic resonance imaging (MRI), positron emission tomography (PET), and Single Computer Tomography (SPECT) acquire two-dimensional projections of a three dimensional projections of a three dimensional object. In order to calculate the 3-dimensional representation of the object, i.e. its voxel distribution, several reconstruction algorithms have been developed. Currently, mainly two reconstruct use: the filtered back projection(FBP) and iterative methods. Although the quality of iterative reconstructed SPECT slices is better than that of FBP slices, such iterative algorithms are rarely used for clinical routine studies because of their low availability and increased reconstruction time. We used Jini and a self-developed iterative reconstructions algorithm to design and implement a Jini reconstruction service. With this service, the physician selects the patient study from a database and a Jini client automatically discovers the registered Jini reconstruction services in the department's Intranet. After downloading the proxy object the this Jini service, the SPECT acquisition data are reconstructed. The resulting transaxial slices are visualized using a Jini slice viewer, which can be used for various imaging modalities.

  5. Simulated electronic heterodyne recording and processing of pulsed-laser holograms

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    1979-01-01

    The electronic recording of pulsed-laser holograms is proposed. The polarization sensitivity of each resolution element of the detector is controlled independently to add an arbitrary phase to the image waves. This method which can be used to simulate heterodyne recording and to process three-dimensional optical images, is based on a similar method for heterodyne recording and processing of continuous-wave holograms.

  6. A novel method to acquire 3D data from serial 2D images of a dental cast

    NASA Astrophysics Data System (ADS)

    Yi, Yaxing; Li, Zhongke; Chen, Qi; Shao, Jun; Li, Xinshe; Liu, Zhiqin

    2007-05-01

    This paper introduced a newly developed method to acquire three-dimensional data from serial two-dimensional images of a dental cast. The system consists of a computer and a set of data acquiring device. The data acquiring device is used to take serial pictures of the a dental cast; an artificial neural network works to translate two-dimensional pictures to three-dimensional data; then three-dimensional image can reconstruct by the computer. The three-dimensional data acquiring of dental casts is the foundation of computer-aided diagnosis and treatment planning in orthodontics.

  7. Intraoperative navigation-guided resection of anomalous transverse processes in patients with Bertolotti's syndrome

    PubMed Central

    Babu, Harish; Lagman, Carlito; Kim, Terrence T.; Grode, Marshall; Johnson, J. Patrick; Drazin, Doniel

    2017-01-01

    Background: Bertolotti's syndrome is characterized by enlargement of the transverse process at the most caudal lumbar vertebra with a pseudoarticulation between the transverse process and sacral ala. Here, we describe the use of intraoperative three-dimensional image-guided navigation in the resection of anomalous transverse processes in two patients with Bertolotti's syndrome. Case Descriptions: Two patients diagnosed with Bertolotti's syndrome who had undergone the above-mentioned procedure were identified. The patients were 17- and 38-years-old, and presented with severe, chronic low back pain that was resistant to conservative treatment. Imaging revealed lumbosacral transitional vertebrae at the level of L5-S1, which was consistent with Bertolotti's syndrome. Injections of the pseudoarticulations resulted in only temporary symptomatic relief. Thus, the patients subsequently underwent O-arm neuronavigational resection of the bony defects. Both patients experienced immediate pain resolution (documented on the postoperative notes) and remained asymptomatic 1 year later. Conclusion: Intraoperative three-dimensional imaging and navigation guidance facilitated the resection of anomalous transverse processes in two patients with Bertolotti's syndrome. Excellent outcomes were achieved in both patients. PMID:29026672

  8. Intraoperative navigation-guided resection of anomalous transverse processes in patients with Bertolotti's syndrome.

    PubMed

    Babu, Harish; Lagman, Carlito; Kim, Terrence T; Grode, Marshall; Johnson, J Patrick; Drazin, Doniel

    2017-01-01

    Bertolotti's syndrome is characterized by enlargement of the transverse process at the most caudal lumbar vertebra with a pseudoarticulation between the transverse process and sacral ala. Here, we describe the use of intraoperative three-dimensional image-guided navigation in the resection of anomalous transverse processes in two patients with Bertolotti's syndrome. Two patients diagnosed with Bertolotti's syndrome who had undergone the above-mentioned procedure were identified. The patients were 17- and 38-years-old, and presented with severe, chronic low back pain that was resistant to conservative treatment. Imaging revealed lumbosacral transitional vertebrae at the level of L5-S1, which was consistent with Bertolotti's syndrome. Injections of the pseudoarticulations resulted in only temporary symptomatic relief. Thus, the patients subsequently underwent O-arm neuronavigational resection of the bony defects. Both patients experienced immediate pain resolution (documented on the postoperative notes) and remained asymptomatic 1 year later. Intraoperative three-dimensional imaging and navigation guidance facilitated the resection of anomalous transverse processes in two patients with Bertolotti's syndrome. Excellent outcomes were achieved in both patients.

  9. High-resolution non-destructive three-dimensional imaging of integrated circuits

    NASA Astrophysics Data System (ADS)

    Holler, Mirko; Guizar-Sicairos, Manuel; Tsai, Esther H. R.; Dinapoli, Roberto; Müller, Elisabeth; Bunk, Oliver; Raabe, Jörg; Aeppli, Gabriel

    2017-03-01

    Modern nanoelectronics has advanced to a point at which it is impossible to image entire devices and their interconnections non-destructively because of their small feature sizes and the complex three-dimensional structures resulting from their integration on a chip. This metrology gap implies a lack of direct feedback between design and manufacturing processes, and hampers quality control during production, shipment and use. Here we demonstrate that X-ray ptychography—a high-resolution coherent diffractive imaging technique—can create three-dimensional images of integrated circuits of known and unknown designs with a lateral resolution in all directions down to 14.6 nanometres. We obtained detailed device geometries and corresponding elemental maps, and show how the devices are integrated with each other to form the chip. Our experiments represent a major advance in chip inspection and reverse engineering over the traditional destructive electron microscopy and ion milling techniques. Foreseeable developments in X-ray sources, optics and detectors, as well as adoption of an instrument geometry optimized for planar rather than cylindrical samples, could lead to a thousand-fold increase in efficiency, with concomitant reductions in scan times and voxel sizes.

  10. High-resolution non-destructive three-dimensional imaging of integrated circuits.

    PubMed

    Holler, Mirko; Guizar-Sicairos, Manuel; Tsai, Esther H R; Dinapoli, Roberto; Müller, Elisabeth; Bunk, Oliver; Raabe, Jörg; Aeppli, Gabriel

    2017-03-15

    Modern nanoelectronics has advanced to a point at which it is impossible to image entire devices and their interconnections non-destructively because of their small feature sizes and the complex three-dimensional structures resulting from their integration on a chip. This metrology gap implies a lack of direct feedback between design and manufacturing processes, and hampers quality control during production, shipment and use. Here we demonstrate that X-ray ptychography-a high-resolution coherent diffractive imaging technique-can create three-dimensional images of integrated circuits of known and unknown designs with a lateral resolution in all directions down to 14.6 nanometres. We obtained detailed device geometries and corresponding elemental maps, and show how the devices are integrated with each other to form the chip. Our experiments represent a major advance in chip inspection and reverse engineering over the traditional destructive electron microscopy and ion milling techniques. Foreseeable developments in X-ray sources, optics and detectors, as well as adoption of an instrument geometry optimized for planar rather than cylindrical samples, could lead to a thousand-fold increase in efficiency, with concomitant reductions in scan times and voxel sizes.

  11. Multispectral embedding-based deep neural network for three-dimensional human pose recovery

    NASA Astrophysics Data System (ADS)

    Yu, Jialin; Sun, Jifeng

    2018-01-01

    Monocular image-based three-dimensional (3-D) human pose recovery aims to retrieve 3-D poses using the corresponding two-dimensional image features. Therefore, the pose recovery performance highly depends on the image representations. We propose a multispectral embedding-based deep neural network (MSEDNN) to automatically obtain the most discriminative features from multiple deep convolutional neural networks and then embed their penultimate fully connected layers into a low-dimensional manifold. This compact manifold can explore not only the optimum output from multiple deep networks but also the complementary properties of them. Furthermore, the distribution of each hierarchy discriminative manifold is sufficiently smooth so that the training process of our MSEDNN can be effectively implemented only using few labeled data. Our proposed network contains a body joint detector and a human pose regressor that are jointly trained. Extensive experiments conducted on four databases show that our proposed MSEDNN can achieve the best recovery performance compared with the state-of-the-art methods.

  12. Computer-generated 3D ultrasound images of the carotid artery

    NASA Technical Reports Server (NTRS)

    Selzer, Robert H.; Lee, Paul L.; Lai, June Y.; Frieden, Howard J.; Blankenhorn, David H.

    1989-01-01

    A method is under development to measure carotid artery lesions from a computer-generated three-dimensional ultrasound image. For each image, the position of the transducer in six coordinates (x, y, z, azimuth, elevation, and roll) is recorded and used to position each B-mode picture element in its proper spatial position in a three-dimensional memory array. After all B-mode images have been assembled in the memory, the three-dimensional image is filtered and resampled to produce a new series of parallel-plane two-dimensional images from which arterial boundaries are determined using edge tracking methods.

  13. Computer-generated 3D ultrasound images of the carotid artery

    NASA Astrophysics Data System (ADS)

    Selzer, Robert H.; Lee, Paul L.; Lai, June Y.; Frieden, Howard J.; Blankenhorn, David H.

    A method is under development to measure carotid artery lesions from a computer-generated three-dimensional ultrasound image. For each image, the position of the transducer in six coordinates (x, y, z, azimuth, elevation, and roll) is recorded and used to position each B-mode picture element in its proper spatial position in a three-dimensional memory array. After all B-mode images have been assembled in the memory, the three-dimensional image is filtered and resampled to produce a new series of parallel-plane two-dimensional images from which arterial boundaries are determined using edge tracking methods.

  14. Three-dimensional nanometre localization of nanoparticles to enhance super-resolution microscopy

    NASA Astrophysics Data System (ADS)

    Bon, Pierre; Bourg, Nicolas; Lécart, Sandrine; Monneret, Serge; Fort, Emmanuel; Wenger, Jérôme; Lévêque-Fort, Sandrine

    2015-07-01

    Meeting the nanometre resolution promised by super-resolution microscopy techniques (pointillist: PALM, STORM, scanning: STED) requires stabilizing the sample drifts in real time during the whole acquisition process. Metal nanoparticles are excellent probes to track the lateral drifts as they provide crisp and photostable information. However, achieving nanometre axial super-localization is still a major challenge, as diffraction imposes large depths-of-fields. Here we demonstrate fast full three-dimensional nanometre super-localization of gold nanoparticles through simultaneous intensity and phase imaging with a wavefront-sensing camera based on quadriwave lateral shearing interferometry. We show how to combine the intensity and phase information to provide the key to the third axial dimension. Presently, we demonstrate even in the occurrence of large three-dimensional fluctuations of several microns, unprecedented sub-nanometre localization accuracies down to 0.7 nm in lateral and 2.7 nm in axial directions at 50 frames per second. We demonstrate that nanoscale stabilization greatly enhances the image quality and resolution in direct stochastic optical reconstruction microscopy imaging.

  15. Image improvement and three-dimensional reconstruction using holographic image processing

    NASA Technical Reports Server (NTRS)

    Stroke, G. W.; Halioua, M.; Thon, F.; Willasch, D. H.

    1977-01-01

    Holographic computing principles make possible image improvement and synthesis in many cases of current scientific and engineering interest. Examples are given for the improvement of resolution in electron microscopy and 3-D reconstruction in electron microscopy and X-ray crystallography, following an analysis of optical versus digital computing in such applications.

  16. System and method to create three-dimensional images of non-linear acoustic properties in a region remote from a borehole

    DOEpatents

    Vu, Cung; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher; Johnson, Paul A.; Guyer, Robert; TenCate, James A.; Le Bas, Pierre-Yves

    2013-01-01

    In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.

  17. Three-dimensional imaging of flat natural and cultural heritage objects by a Compton scattering modality

    NASA Astrophysics Data System (ADS)

    Guerrero Prado, Patricio; Nguyen, Mai K.; Dumas, Laurent; Cohen, Serge X.

    2017-01-01

    Characterization and interpretation of flat ancient material objects, such as those found in archaeology, paleoenvironments, paleontology, and cultural heritage, have remained a challenging task to perform by means of conventional x-ray tomography methods due to their anisotropic morphology and flattened geometry. To overcome the limitations of the mentioned methodologies for such samples, an imaging modality based on Compton scattering is proposed in this work. Classical x-ray tomography treats Compton scattering data as noise in the image formation process, while in Compton scattering tomography the conditions are set such that Compton data become the principal image contrasting agent. Under these conditions, we are able, first, to avoid relative rotations between the sample and the imaging setup, and second, to obtain three-dimensional data even when the object is supported by a dense material by exploiting backscattered photons. Mathematically this problem is addressed by means of a conical Radon transform and its inversion. The image formation process and object reconstruction model are presented. The feasibility of this methodology is supported by numerical simulations.

  18. Clinical utility of three-dimensional contrast-enhanced ultrasound in the differentiation between noninvasive and invasive neoplasms of urinary bladder.

    PubMed

    Li, Qiu-yang; Tang, Jie; He, En-hui; Li, Yan-mi; Zhou, Yun; Zhang, Xu; Chen, Guangfu

    2012-11-01

    The purpose of this study was to evaluate the effectiveness of three-dimensional contrast-enhanced ultrasound in differentiating invasive and noninvasive neoplasms of urinary bladder. A total of 60 lesions in 60 consecutive patients with bladder tumors received three dimensional ultrasonography, low acoustic power contrast enhanced ultrasonography and low acoustic power three-dimensional contrast-enhanced ultrasound examination. The IU22 ultrasound scanner and a volume transducer were used and the ultrasound contrast agent was SonoVue. The contrast-specific sonographic imaging modes were PI (pulse inversion) and PM (power modulation). The three dimensional ultrasonography, contrast enhanced ultrasonography, and three-dimensional contrast-enhanced ultrasound images were independently reviewed by two readers who were not in the images acquisition. Images were analyzed off-site. A level of confidence in the diagnosis of tumor invasion of the muscle layer was assigned on a 5° scale. Receiver operating characteristic analysis was used to assess overall confidence in the diagnosis of muscle invasion by tumor. Kappa values were used to assess inter-readers agreement. Histologic diagnosis was obtained for all patients. Final pathologic staging revealed 44 noninvasive tumors and 16 invasive tumors. Three-dimensional contrast-enhanced ultrasound depicted all 16 muscle-invasive tumors. The diagnostic performance of three-dimensional contrast-enhanced ultrasound was better than those of three dimensional ultrasonography and contrast enhanced ultrasonography. The receiver operating characteristic curves were 0.976 and 0.967 for three-dimensional contrast-enhanced ultrasound, those for three dimensional ultrasonography were 0.881 and 0.869, those for contrast enhanced ultrasonography were 0.927 and 0.929. The kappa values in the three dimensional ultrasonography, contrast enhanced ultrasonography and three-dimensional contrast-enhanced ultrasound for inter-reader agreements were 0.717, 0.794 and 0.914. Three-dimensional contrast-enhanced ultrasound imaging, with contrast-enhanced spatial visualization is clinical useful for differentiating invasive and noninvasive neoplasms of urinary bladder objectively. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. System and method for investigating sub-surface features and 3D imaging of non-linear property, compressional velocity VP, shear velocity VS and velocity ratio VP/VS of a rock formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt

    A system and a method for generating a three-dimensional image of a rock formation, compressional velocity VP, shear velocity VS and velocity ratio VP/VS of a rock formation are provided. A first acoustic signal includes a first plurality of pulses. A second acoustic signal from a second source includes a second plurality of pulses. A detected signal returning to the borehole includes a signal generated by a non-linear mixing process from the first and second acoustic signals in a non-linear mixing zone within an intersection volume. The received signal is processed to extract the signal over noise and/or signals resultingmore » from linear interaction and the three dimensional image of is generated.« less

  20. Real-time catheter localization and visualization using three-dimensional echocardiography

    NASA Astrophysics Data System (ADS)

    Kozlowski, Pawel; Bandaru, Raja Sekhar; D'hooge, Jan; Samset, Eigil

    2017-03-01

    Real-time three-dimensional transesophageal echocardiography (RT3D-TEE) is increasingly used during minimally invasive cardiac surgeries (MICS). In many cath labs, RT3D-TEE is already one of the requisite tools for image guidance during MICS. However, the visualization of the catheter is not always satisfactory making 3D- TEE challenging to use as the only modality for guidance. We propose a novel technique for better visualization of the catheter along with the cardiac anatomy using TEE alone - exploiting both beamforming and post processing methods. We extended our earlier method called Delay and Standard Deviation (DASD) beamforming to 3D in order to enhance specular reflections. The beam-formed image was further post-processed by the Frangi filter to segment the catheter. Multi-variate visualization techniques enabled us to render both the standard tissue and the DASD beam-formed image on a clinical ultrasound scanner simultaneously. A frame rate of 15 FPS was achieved.

  1. Three dimensional single molecule localization using a phase retrieved pupilfunction

    PubMed Central

    Liu, Sheng; Kromann, Emil B.; Krueger, Wesley D.; Bewersdorf, Joerg; Lidke, Keith A.

    2013-01-01

    Localization-based superresolution imaging is dependent on finding the positions of individualfluorophores in a sample by fitting the observed single-molecule intensity pattern to the microscopepoint spread function (PSF). For three-dimensional imaging, system-specific aberrations of theoptical system can lead to inaccurate localizations when the PSF model does not account for theseaberrations. Here we describe the use of phase-retrieved pupil functions to generate a more accuratePSF and therefore more accurate 3D localizations. The complex-valued pupil function containsinformation about the system-specific aberrations and can thus be used to generate the PSF forarbitrary defocus. Further, it can be modified to include depth dependent aberrations. We describethe phase retrieval process, the method for including depth dependent aberrations, and a fastfitting algorithm using graphics processing units. The superior localization accuracy of the pupilfunction generated PSF is demonstrated with dual focal plane 3D superresolution imaging ofbiological structures. PMID:24514501

  2. Three-dimensional representation of curved nanowires.

    PubMed

    Huang, Z; Dikin, D A; Ding, W; Qiao, Y; Chen, X; Fridman, Y; Ruoff, R S

    2004-12-01

    Nanostructures, such as nanowires, nanotubes and nanocoils, can be described in many cases as quasi one-dimensional curved objects projecting in three-dimensional space. A parallax method to construct the correct three-dimensional geometry of such one-dimensional nanostructures is presented. A series of scanning electron microscope images was acquired at different view angles, thus providing a set of image pairs that were used to generate three-dimensional representations using a matlab program. An error analysis as a function of the view angle between the two images is presented and discussed. As an example application, the importance of knowing the true three-dimensional shape of boron nanowires is demonstrated; without the nanowire's correct length and diameter, mechanical resonance data cannot provide an accurate estimate of Young's modulus.

  3. BioImageXD: an open, general-purpose and high-throughput image-processing platform.

    PubMed

    Kankaanpää, Pasi; Paavolainen, Lassi; Tiitta, Silja; Karjalainen, Mikko; Päivärinne, Joacim; Nieminen, Jonna; Marjomäki, Varpu; Heino, Jyrki; White, Daniel J

    2012-06-28

    BioImageXD puts open-source computer science tools for three-dimensional visualization and analysis into the hands of all researchers, through a user-friendly graphical interface tuned to the needs of biologists. BioImageXD has no restrictive licenses or undisclosed algorithms and enables publication of precise, reproducible and modifiable workflows. It allows simple construction of processing pipelines and should enable biologists to perform challenging analyses of complex processes. We demonstrate its performance in a study of integrin clustering in response to selected inhibitors.

  4. Fabric pilling measurement using three-dimensional image

    NASA Astrophysics Data System (ADS)

    Ouyang, Wenbin; Wang, Rongwu; Xu, Bugao

    2013-10-01

    We introduce a stereovision system and the three-dimensional (3-D) image analysis algorithms for fabric pilling measurement. Based on the depth information available in the 3-D image, the pilling detection process starts from the seed searching at local depth maxima to the region growing around the selected seeds using both depth and distance criteria. After the pilling detection, the density, height, and area of individual pills in the image can be extracted to describe the pilling appearance. According to the multivariate regression analysis on the 3-D images of 30 cotton fabrics treated by the random-tumble and home-laundering machines, the pilling grade is highly correlated with the pilling density (R=0.923) but does not consistently change with the pilling height and area. The pilling densities measured from the 3-D images also correlate well with those counted manually from the samples (R=0.985).

  5. Comparison of mechanisms involved in image enhancement of Tissue Harmonic Imaging

    NASA Astrophysics Data System (ADS)

    Cleveland, Robin O.; Jing, Yuan

    2006-05-01

    Processes that have been suggested as responsible for the improved imaging in Tissue Harmonic Imaging (THI) include: 1) reduced sensitivity to reverberation, 2) reduced sensitivity to aberration, and 3) reduction in the amplitude of diffraction side lobes. A three-dimensional model of the forward propagation of nonlinear sound beams in media with arbitrary spatial properties (a generalized KZK equation) was developed and solved using a time-domain code. The numerical simulations were validated through experiments with tissue mimicking phantoms. The impact of aberration from tissue-like media was determined through simulations using three-dimensional maps of tissue properties derived from datasets available through the Visible Female Project. The experiments and simulations demonstrated that second harmonic imaging suffers less clutter from reverberation and side-lobes but is not immune to aberration effects. The results indicate that side lobe suppression is the most significant reason for the improvement of second harmonic imaging.

  6. Automatic registration of fused lidar/digital imagery (texel images) for three-dimensional image creation

    NASA Astrophysics Data System (ADS)

    Budge, Scott E.; Badamikar, Neeraj S.; Xie, Xuan

    2015-03-01

    Several photogrammetry-based methods have been proposed that the derive three-dimensional (3-D) information from digital images from different perspectives, and lidar-based methods have been proposed that merge lidar point clouds and texture the merged point clouds with digital imagery. Image registration alone has difficulty with smooth regions with low contrast, whereas point cloud merging alone has difficulty with outliers and a lack of proper convergence in the merging process. This paper presents a method to create 3-D images that uses the unique properties of texel images (pixel-fused lidar and digital imagery) to improve the quality and robustness of fused 3-D images. The proposed method uses both image processing and point-cloud merging to combine texel images in an iterative technique. Since the digital image pixels and the lidar 3-D points are fused at the sensor level, more accurate 3-D images are generated because registration of image data automatically improves the merging of the point clouds, and vice versa. Examples illustrate the value of this method over other methods. The proposed method also includes modifications for the situation where an estimate of position and attitude of the sensor is known, when obtained from low-cost global positioning systems and inertial measurement units sensors.

  7. The application of a unique flow modeling technique to complex combustion systems

    NASA Astrophysics Data System (ADS)

    Waslo, J.; Hasegawa, T.; Hilt, M. B.

    1986-06-01

    This paper describes the application of a unique three-dimensional water flow modeling technique to the study of complex fluid flow patterns within an advanced gas turbine combustor. The visualization technique uses light scattering, coupled with real-time image processing, to determine flow fields. Additional image processing is used to make concentration measurements within the combustor.

  8. Parallax scanning methods for stereoscopic three-dimensional imaging

    NASA Astrophysics Data System (ADS)

    Mayhew, Christopher A.; Mayhew, Craig M.

    2012-03-01

    Under certain circumstances, conventional stereoscopic imagery is subject to being misinterpreted. Stereo perception created from two static horizontally separated views can create a "cut out" 2D appearance for objects at various planes of depth. The subject volume looks three-dimensional, but the objects themselves appear flat. This is especially true if the images are captured using small disparities. One potential explanation for this effect is that, although three-dimensional perception comes primarily from binocular vision, a human's gaze (the direction and orientation of a person's eyes with respect to their environment) and head motion also contribute additional sub-process information. The absence of this information may be the reason that certain stereoscopic imagery appears "odd" and unrealistic. Another contributing factor may be the absence of vertical disparity information in a traditional stereoscopy display. Recently, Parallax Scanning technologies have been introduced, which provide (1) a scanning methodology, (2) incorporate vertical disparity, and (3) produce stereo images with substantially smaller disparities than the human interocular distances.1 To test whether these three features would improve the realism and reduce the cardboard cutout effect of stereo images, we have applied Parallax Scanning (PS) technologies to commercial stereoscopic digital cinema productions and have tested the results with a panel of stereo experts. These informal experiments show that the addition of PS information into the left and right image capture improves the overall perception of three-dimensionality for most viewers. Parallax scanning significantly increases the set of tools available for 3D storytelling while at the same time presenting imagery that is easy and pleasant to view.

  9. Three-dimensional visualization of endolymphatic hydrops after intravenous administration of single-dose gadodiamide.

    PubMed

    Naganawa, Shinji; Yamazaki, Masahiro; Kawai, Hisashi; Bokura, Kiminori; Sone, Michihiko; Nakashima, Tsutomu

    2013-01-01

    Endolymphatic hydrops can be visualized with high contrast-to-noise ratio even after intravenous injection of single-dose gadolinium-based contrast material (IV-SD-GBCM) using HYDROPS-Mi2 images. We applied 3-dimensional rendering software to process HYDROPS-Mi2 images of 15 ears with and without suspected Ménière's disease and separately visualized the volumes of endo- and perilymph in patients with Ménière's disease even after IV-SD-GBCM. Such dimensional visualization will aid understanding of the pathophysiology of Ménière's disease.

  10. Barriers to front propagation in laminar, three-dimensional fluid flows

    NASA Astrophysics Data System (ADS)

    Doan, Minh; Simons, J. J.; Lilienthal, Katherine; Solomon, Tom; Mitchell, Kevin A.

    2018-03-01

    We present experiments on one-way barriers that block reaction fronts in a fully three-dimensional (3D) fluid flow. Fluorescent Belousov-Zhabotinsky reaction fronts are imaged with laser-scanning in a laminar, overlapping vortex flow. The barriers are analyzed with a 3D extension to burning invariant manifold (BIM) theory that was previously applied to two-dimensional advection-reaction-diffusion processes. We discover tube and sheet barriers that guide the front evolution. The experimentally determined barriers are explained by BIMs calculated from a model of the flow.

  11. Acceleration of integral imaging based incoherent Fourier hologram capture using graphic processing unit.

    PubMed

    Jeong, Kyeong-Min; Kim, Hee-Seung; Hong, Sung-In; Lee, Sung-Keun; Jo, Na-Young; Kim, Yong-Soo; Lim, Hong-Gi; Park, Jae-Hyeung

    2012-10-08

    Speed enhancement of integral imaging based incoherent Fourier hologram capture using a graphic processing unit is reported. Integral imaging based method enables exact hologram capture of real-existing three-dimensional objects under regular incoherent illumination. In our implementation, we apply parallel computation scheme using the graphic processing unit, accelerating the processing speed. Using enhanced speed of hologram capture, we also implement a pseudo real-time hologram capture and optical reconstruction system. The overall operation speed is measured to be 1 frame per second.

  12. Target recognition for ladar range image using slice image

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Han, Shaokun; Wang, Liang

    2015-12-01

    A shape descriptor and a complete shape-based recognition system using slice images as geometric feature descriptor for ladar range images are introduced. A slice image is a two-dimensional image generated by three-dimensional Hough transform and the corresponding mathematical transformation. The system consists of two processes, the model library construction and recognition. In the model library construction process, a series of range images are obtained after the model object is sampled at preset attitude angles. Then, all the range images are converted into slice images. The number of slice images is reduced by clustering analysis and finding a representation to reduce the size of the model library. In the recognition process, the slice image of the scene is compared with the slice image in the model library. The recognition results depend on the comparison. Simulated ladar range images are used to analyze the recognition and misjudgment rates, and comparison between the slice image representation method and moment invariants representation method is performed. The experimental results show that whether in conditions without noise or with ladar noise, the system has a high recognition rate and low misjudgment rate. The comparison experiment demonstrates that the slice image has better representation ability than moment invariants.

  13. Three-Dimensional Terahertz Coded-Aperture Imaging Based on Single Input Multiple Output Technology.

    PubMed

    Chen, Shuo; Luo, Chenggao; Deng, Bin; Wang, Hongqiang; Cheng, Yongqiang; Zhuang, Zhaowen

    2018-01-19

    As a promising radar imaging technique, terahertz coded-aperture imaging (TCAI) can achieve high-resolution, forward-looking, and staring imaging by producing spatiotemporal independent signals with coded apertures. In this paper, we propose a three-dimensional (3D) TCAI architecture based on single input multiple output (SIMO) technology, which can reduce the coding and sampling times sharply. The coded aperture applied in the proposed TCAI architecture loads either purposive or random phase modulation factor. In the transmitting process, the purposive phase modulation factor drives the terahertz beam to scan the divided 3D imaging cells. In the receiving process, the random phase modulation factor is adopted to modulate the terahertz wave to be spatiotemporally independent for high resolution. Considering human-scale targets, images of each 3D imaging cell are reconstructed one by one to decompose the global computational complexity, and then are synthesized together to obtain the complete high-resolution image. As for each imaging cell, the multi-resolution imaging method helps to reduce the computational burden on a large-scale reference-signal matrix. The experimental results demonstrate that the proposed architecture can achieve high-resolution imaging with much less time for 3D targets and has great potential in applications such as security screening, nondestructive detection, medical diagnosis, etc.

  14. Linking brain, mind and behavior.

    PubMed

    Makeig, Scott; Gramann, Klaus; Jung, Tzyy-Ping; Sejnowski, Terrence J; Poizner, Howard

    2009-08-01

    Cortical brain areas and dynamics evolved to organize motor behavior in our three-dimensional environment also support more general human cognitive processes. Yet traditional brain imaging paradigms typically allow and record only minimal participant behavior, then reduce the recorded data to single map features of averaged responses. To more fully investigate the complex links between distributed brain dynamics and motivated natural behavior, we propose the development of wearable mobile brain/body imaging (MoBI) systems that continuously capture the wearer's high-density electrical brain and muscle signals, three-dimensional body movements, audiovisual scene and point of regard, plus new data-driven analysis methods to model their interrelationships. The new imaging modality should allow new insights into how spatially distributed brain dynamics support natural human cognition and agency.

  15. Real-time in situ three-dimensional integral videography and surgical navigation using augmented reality: a pilot study

    PubMed Central

    Suenaga, Hideyuki; Hoang Tran, Huy; Liao, Hongen; Masamune, Ken; Dohi, Takeyoshi; Hoshi, Kazuto; Mori, Yoshiyuki; Takato, Tsuyoshi

    2013-01-01

    To evaluate the feasibility and accuracy of a three-dimensional augmented reality system incorporating integral videography for imaging oral and maxillofacial regions, based on preoperative computed tomography data. Three-dimensional surface models of the jawbones, based on the computed tomography data, were used to create the integral videography images of a subject's maxillofacial area. The three-dimensional augmented reality system (integral videography display, computed tomography, a position tracker and a computer) was used to generate a three-dimensional overlay that was projected on the surgical site via a half-silvered mirror. Thereafter, a feasibility study was performed on a volunteer. The accuracy of this system was verified on a solid model while simulating bone resection. Positional registration was attained by identifying and tracking the patient/surgical instrument's position. Thus, integral videography images of jawbones, teeth and the surgical tool were superimposed in the correct position. Stereoscopic images viewed from various angles were accurately displayed. Change in the viewing angle did not negatively affect the surgeon's ability to simultaneously observe the three-dimensional images and the patient, without special glasses. The difference in three-dimensional position of each measuring point on the solid model and augmented reality navigation was almost negligible (<1 mm); this indicates that the system was highly accurate. This augmented reality system was highly accurate and effective for surgical navigation and for overlaying a three-dimensional computed tomography image on a patient's surgical area, enabling the surgeon to understand the positional relationship between the preoperative image and the actual surgical site, with the naked eye. PMID:23703710

  16. A 3D ultrasound scanner: real time filtering and rendering algorithms.

    PubMed

    Cifarelli, D; Ruggiero, C; Brusacà, M; Mazzarella, M

    1997-01-01

    The work described here has been carried out within a collaborative project between DIST and ESAOTE BIOMEDICA aiming to set up a new ultrasonic scanner performing 3D reconstruction. A system is being set up to process and display 3D ultrasonic data in a fast, economical and user friendly way to help the physician during diagnosis. A comparison is presented among several algorithms for digital filtering, data segmentation and rendering for real time, PC based, three-dimensional reconstruction from B-mode ultrasonic biomedical images. Several algorithms for digital filtering have been compared as relates to processing time and to final image quality. Three-dimensional data segmentation techniques and rendering has been carried out with special reference to user friendly features for foreseeable applications and reconstruction speed.

  17. Live-cell imaging of migrating cells expressing fluorescently-tagged proteins in a three-dimensional matrix.

    PubMed

    Shih, Wenting; Yamada, Soichiro

    2011-12-22

    Traditionally, cell migration has been studied on two-dimensional, stiff plastic surfaces. However, during important biological processes such as wound healing, tissue regeneration, and cancer metastasis, cells must navigate through complex, three-dimensional extracellular tissue. To better understand the mechanisms behind these biological processes, it is important to examine the roles of the proteins responsible for driving cell migration. Here, we outline a protocol to study the mechanisms of cell migration using the epithelial cell line (MDCK), and a three-dimensional, fibrous, self-polymerizing matrix as a model system. This optically clear extracellular matrix is easily amenable to live-cell imaging studies and better mimics the physiological, soft tissue environment. This report demonstrates a technique for directly visualizing protein localization and dynamics, and deformation of the surrounding three-dimensional matrix. Examination of protein localization and dynamics during cellular processes provides key insight into protein functions. Genetically encoded fluorescent tags provide a unique method for observing protein localization and dynamics. Using this technique, we can analyze the subcellular accumulation of key, force-generating cytoskeletal components in real-time as the cell maneuvers through the matrix. In addition, using multiple fluorescent tags with different wavelengths, we can examine the localization of multiple proteins simultaneously, thus allowing us to test, for example, whether different proteins have similar or divergent roles. Furthermore, the dynamics of fluorescently tagged proteins can be quantified using Fluorescent Recovery After Photobleaching (FRAP) analysis. This measurement assays the protein mobility and how stably bound the proteins are to the cytoskeletal network. By combining live-cell imaging with the treatment of protein function inhibitors, we can examine in real-time the changes in the distribution of proteins and morphology of migrating cells. Furthermore, we also combine live-cell imaging with the use of fluorescent tracer particles embedded within the matrix to visualize the matrix deformation during cell migration. Thus, we can visualize how a migrating cell distributes force-generating proteins, and where the traction forces are exerted to the surrounding matrix. Through these techniques, we can gain valuable insight into the roles of specific proteins and their contributions to the mechanisms of cell migration.

  18. Magnetic resonance imaging-three-dimensional printing technology fabricates customized scaffolds for brain tissue engineering

    PubMed Central

    Fu, Feng; Qin, Zhe; Xu, Chao; Chen, Xu-yi; Li, Rui-xin; Wang, Li-na; Peng, Ding-wei; Sun, Hong-tao; Tu, Yue; Chen, Chong; Zhang, Sai; Zhao, Ming-liang; Li, Xiao-hong

    2017-01-01

    Conventional fabrication methods lack the ability to control both macro- and micro-structures of generated scaffolds. Three-dimensional printing is a solid free-form fabrication method that provides novel ways to create customized scaffolds with high precision and accuracy. In this study, an electrically controlled cortical impactor was used to induce randomized brain tissue defects. The overall shape of scaffolds was designed using rat-specific anatomical data obtained from magnetic resonance imaging, and the internal structure was created by computer-aided design. As the result of limitations arising from insufficient resolution of the manufacturing process, we magnified the size of the cavity model prototype five-fold to successfully fabricate customized collagen-chitosan scaffolds using three-dimensional printing. Results demonstrated that scaffolds have three-dimensional porous structures, high porosity, highly specific surface areas, pore connectivity and good internal characteristics. Neural stem cells co-cultured with scaffolds showed good viability, indicating good biocompatibility and biodegradability. This technique may be a promising new strategy for regenerating complex damaged brain tissues, and helps pave the way toward personalized medicine. PMID:28553343

  19. Application of Time-Frequency Domain Transform to Three-Dimensional Interpolation of Medical Images.

    PubMed

    Lv, Shengqing; Chen, Yimin; Li, Zeyu; Lu, Jiahui; Gao, Mingke; Lu, Rongrong

    2017-11-01

    Medical image three-dimensional (3D) interpolation is an important means to improve the image effect in 3D reconstruction. In image processing, the time-frequency domain transform is an efficient method. In this article, several time-frequency domain transform methods are applied and compared in 3D interpolation. And a Sobel edge detection and 3D matching interpolation method based on wavelet transform is proposed. We combine wavelet transform, traditional matching interpolation methods, and Sobel edge detection together in our algorithm. What is more, the characteristics of wavelet transform and Sobel operator are used. They deal with the sub-images of wavelet decomposition separately. Sobel edge detection 3D matching interpolation method is used in low-frequency sub-images under the circumstances of ensuring high frequency undistorted. Through wavelet reconstruction, it can get the target interpolation image. In this article, we make 3D interpolation of the real computed tomography (CT) images. Compared with other interpolation methods, our proposed method is verified to be effective and superior.

  20. Three-dimensional imaging of the craniofacial complex.

    PubMed

    Nguyen, Can X.; Nissanov, Jonathan; Öztürk, Cengizhan; Nuveen, Michiel J.; Tuncay, Orhan C.

    2000-02-01

    Orthodontic treatment requires the rearrangement of craniofacial complex elements in three planes of space, but oddly the diagnosis is done with two-dimensional images. Here we report on a three-dimensional (3D) imaging system that employs the stereoimaging method of structured light to capture the facial image. The images can be subsequently integrated with 3D cephalometric tracings derived from lateral and PA films (www.clinorthodres.com/cor-c-070). The accuracy of the reconstruction obtained with this inexpensive system is about 400 µ.

  1. Eliminating Bias In Acousto-Optical Spectrum Analysis

    NASA Technical Reports Server (NTRS)

    Ansari, Homayoon; Lesh, James R.

    1992-01-01

    Scheme for digital processing of video signals in acousto-optical spectrum analyzer provides real-time correction for signal-dependent spectral bias. Spectrum analyzer described in "Two-Dimensional Acousto-Optical Spectrum Analyzer" (NPO-18092), related apparatus described in "Three-Dimensional Acousto-Optical Spectrum Analyzer" (NPO-18122). Essence of correction is to average over digitized outputs of pixels in each CCD row and to subtract this from the digitized output of each pixel in row. Signal processed electro-optically with reference-function signals to form two-dimensional spectral image in CCD camera.

  2. D Tracking Based Augmented Reality for Cultural Heritage Data Management

    NASA Astrophysics Data System (ADS)

    Battini, C.; Landi, G.

    2015-02-01

    The development of contactless documentation techniques is allowing researchers to collect high volumes of three-dimensional data in a short time but with high levels of accuracy. The digitalisation of cultural heritage opens up the possibility of using image processing and analysis, and computer graphics techniques, to preserve this heritage for future generations; augmenting it with additional information or with new possibilities for its enjoyment and use. The collection of precise datasets about cultural heritage status is crucial for its interpretation, its conservation and during the restoration processes. The application of digital-imaging solutions for various feature extraction, image data-analysis techniques, and three-dimensional reconstruction of ancient artworks, allows the creation of multidimensional models that can incorporate information coming from heterogeneous data sets, research results and historical sources. Real objects can be scanned and reconstructed virtually, with high levels of data accuracy and resolution. Real-time visualisation software and hardware is rapidly evolving and complex three-dimensional models can be interactively visualised and explored on applications developed for mobile devices. This paper will show how a 3D reconstruction of an object, with multiple layers of information, can be stored and visualised through a mobile application that will allow interaction with a physical object for its study and analysis, using 3D Tracking based Augmented Reality techniques.

  3. Evaluation of the Anisotropic Radiative Conductivity of a Low-Density Carbon Fiber Material from Realistic Microscale Imaging

    NASA Technical Reports Server (NTRS)

    Nouri, Nima; Panerai, Francesco; Tagavi, Kaveh A.; Mansour, Nagi N.; Martin, Alexandre

    2015-01-01

    The radiative heat transfer inside a low-density carbon fiber insulator is analyzed using a three-dimensional direct simulation model. A robust procedure is presented for the numerical calculation of the geometric configuration factor to compute the radiative energy exchange processes among the small discretized surface areas of the fibrous material. The methodology is applied to a polygonal mesh of a fibrous insulator obtained from three-dimensional microscale imaging of the real material. The anisotropic values of the radiative conductivity are calculated for that geometry. The results yield both directional and thermal dependence of the radiative conductivity.

  4. Volume rendering based on magnetic resonance imaging: advances in understanding the three-dimensional anatomy of the human knee

    PubMed Central

    Anastasi, Giuseppe; Bramanti, Placido; Di Bella, Paolo; Favaloro, Angelo; Trimarchi, Fabio; Magaudda, Ludovico; Gaeta, Michele; Scribano, Emanuele; Bruschetta, Daniele; Milardi, Demetrio

    2007-01-01

    The choice of medical imaging techniques, for the purpose of the present work aimed at studying the anatomy of the knee, derives from the increasing use of images in diagnostics, research and teaching, and the subsequent importance that these methods are gaining within the scientific community. Medical systems using virtual reality techniques also offer a good alternative to traditional methods, and are considered among the most important tools in the areas of research and teaching. In our work we have shown some possible uses of three-dimensional imaging for the study of the morphology of the normal human knee, and its clinical applications. We used the direct volume rendering technique, and created a data set of images and animations to allow us to visualize the single structures of the human knee in three dimensions. Direct volume rendering makes use of specific algorithms to transform conventional two-dimensional magnetic resonance imaging sets of slices into see-through volume data set images. It is a technique which does not require the construction of intermediate geometric representations, and has the advantage of allowing the visualization of a single image of the full data set, using semi-transparent mapping. Digital images of human structures, and in particular of the knee, offer important information about anatomical structures and their relationships, and are of great value in the planning of surgical procedures. On this basis we studied seven volunteers with an average age of 25 years, who underwent magnetic resonance imaging. After elaboration of the data through post-processing, we analysed the structure of the knee in detail. The aim of our investigation was the three-dimensional image, in order to comprehend better the interactions between anatomical structures. We believe that these results, applied to living subjects, widen the frontiers in the areas of teaching, diagnostics, therapy and scientific research. PMID:17645453

  5. Software for visualization, analysis, and manipulation of laser scan images

    NASA Astrophysics Data System (ADS)

    Burnsides, Dennis B.

    1997-03-01

    The recent introduction of laser surface scanning to scientific applications presents a challenge to computer scientists and engineers. Full utilization of this two- dimensional (2-D) and three-dimensional (3-D) data requires advances in techniques and methods for data processing and visualization. This paper explores the development of software to support the visualization, analysis and manipulation of laser scan images. Specific examples presented are from on-going efforts at the Air Force Computerized Anthropometric Research and Design (CARD) Laboratory.

  6. Processing Cones: A Computational Structure for Image Analysis.

    DTIC Science & Technology

    1981-12-01

    image analysis applications, referred to as a processing cone, is described and sample algorithms are presented. A fundamental characteristic of the structure is its hierarchical organization into two-dimensional arrays of decreasing resolution. In this architecture, a protypical function is defined on a local window of data and applied uniformly to all windows in a parallel manner. Three basic modes of processing are supported in the cone: reduction operations (upward processing), horizontal operations (processing at a single level) and projection operations (downward

  7. Digital image transformation and rectification of spacecraft and radar images

    USGS Publications Warehouse

    Wu, S.S.C.

    1985-01-01

    Digital image transformation and rectification can be described in three categories: (1) digital rectification of spacecraft pictures on workable stereoplotters; (2) digital correction of radar image geometry; and (3) digital reconstruction of shaded relief maps and perspective views including stereograms. Digital rectification can make high-oblique pictures workable on stereoplotters that would otherwise not accommodate such extreme tilt angles. It also enables panoramic line-scan geometry to be used to compile contour maps with photogrammetric plotters. Rectifications were digitally processed on both Viking Orbiter and Lander pictures of Mars as well as radar images taken by various radar systems. By merging digital terrain data with image data, perspective and three-dimensional views of Olympus Mons and Tithonium Chasma, also of Mars, are reconstructed through digital image processing. ?? 1985.

  8. Analysis of scene distortions in stereoscopic images due to the variation of the ideal viewing conditions

    NASA Astrophysics Data System (ADS)

    Viale, Alberto; Villa, Dario

    2011-03-01

    Recently stereoscopy has increased a lot its popularity and various technologies are spreading in theaters and homes allowing observation of stereoscopic images and movies, becoming affordable even for home users. However there are some golden rules that users should follow to ensure a better enjoyment of stereoscopic images, first of all the viewing condition should not be too different from the ideal ones, which were assumed during the production process. To allow the user to perceive stereo depth instead of a flat image, two different views of the same scene are shown to the subject, one is seen just through his left eye and the other just through the right one; the vision process is making the work of merging the two images in a virtual three-dimensional scene, giving to the user the perception of depth. The two images presented to the user were created, either from image synthesis or from more traditional techniques, following the rules of perspective. These rules need some boundary conditions to be explicit, such as eye separation, field of view, parallax distance, viewer position and orientation. In this paper we are interested in studying how the variation of the viewer position and orientation from the ideal ones expressed as specified parameters in the image creation process, is affecting the correctness of the reconstruction of the three-dimensional virtual scene.

  9. Two-photon excitation based photochemistry and neural imaging

    NASA Astrophysics Data System (ADS)

    Hatch, Kevin Andrew

    Two-photon microscopy is a fluorescence imaging technique which provides distinct advantages in three-dimensional cellular and molecular imaging. The benefits of this technology may extend beyond imaging capabilities through exploitation of the quantum processes responsible for fluorescent events. This study utilized a two-photon microscope to investigate a synthetic photoreactive collagen peptidomimetic, which may serve as a potential material for tissue engineering using the techniques of two-photon photolysis and two-photon polymerization. The combination of these techniques could potentially be used to produce a scaffold for the vascularization of engineered three-dimensional tissues in vitro to address the current limitations of tissue engineering. Additionally, two-photon microscopy was used to observe the effects of the application of the neurotransmitter dopamine to the mushroom body neural structures of Drosophila melanogaster to investigate dopamine's connection to cognitive degeneration.

  10. Three-dimensional printing for restoration of the donor face: A new digital technique tested and used in the first facial allotransplantation patient in Finland.

    PubMed

    Mäkitie, A A; Salmi, M; Lindford, A; Tuomi, J; Lassus, P

    2016-12-01

    Prosthetic mask restoration of the donor face is essential in current facial transplant protocols. The aim was to develop a new three-dimensional (3D) printing (additive manufacturing; AM) process for the production of a donor face mask that fulfilled the requirements for facial restoration after facial harvest. A digital image of a single test person's face was obtained in a standardized setting and subjected to three different image processing techniques. These data were used for the 3D modeling and printing of a donor face mask. The process was also tested in a cadaver setting and ultimately used clinically in a donor patient after facial allograft harvest. and Conclusions: All the three developed and tested techniques enabled the 3D printing of a custom-made face mask in a timely manner that is almost an exact replica of the donor patient's face. This technique was successfully used in a facial allotransplantation donor patient. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  11. Semi-automated Neuron Boundary Detection and Nonbranching Process Segmentation in Electron Microscopy Images

    PubMed Central

    Jurrus, Elizabeth; Watanabe, Shigeki; Giuly, Richard J.; Paiva, Antonio R. C.; Ellisman, Mark H.; Jorgensen, Erik M.; Tasdizen, Tolga

    2013-01-01

    Neuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor-intensive task. To aid in the analysis, new segmentation techniques for identifying neurons in these feature rich datasets are required. This paper presents a method for neuron boundary detection and nonbranching process segmentation in electron microscopy images and visualizing them in three dimensions. It combines both automated segmentation techniques with a graphical user interface for correction of mistakes in the automated process. The automated process first uses machine learning and image processing techniques to identify neuron membranes that deliniate the cells in each two-dimensional section. To segment nonbranching processes, the cell regions in each two-dimensional section are connected in 3D using correlation of regions between sections. The combination of this method with a graphical user interface specially designed for this purpose, enables users to quickly segment cellular processes in large volumes. PMID:22644867

  12. Clinical application of three-dimensional printing to the management of complex univentricular hearts with abnormal systemic or pulmonary venous drainage.

    PubMed

    McGovern, Eimear; Kelleher, Eoin; Snow, Aisling; Walsh, Kevin; Gadallah, Bassem; Kutty, Shelby; Redmond, John M; McMahon, Colin J

    2017-09-01

    In recent years, three-dimensional printing has demonstrated reliable reproducibility of several organs including hearts with complex congenital cardiac anomalies. This represents the next step in advanced image processing and can be used to plan surgical repair. In this study, we describe three children with complex univentricular hearts and abnormal systemic or pulmonary venous drainage, in whom three-dimensional printed models based on CT data assisted with preoperative planning. For two children, after group discussion and examination of the models, a decision was made not to proceed with surgery. We extend the current clinical experience with three-dimensional printed modelling and discuss the benefits of such models in the setting of managing complex surgical problems in children with univentricular circulation and abnormal systemic or pulmonary venous drainage.

  13. Score-level fusion of two-dimensional and three-dimensional palmprint for personal recognition systems

    NASA Astrophysics Data System (ADS)

    Chaa, Mourad; Boukezzoula, Naceur-Eddine; Attia, Abdelouahab

    2017-01-01

    Two types of scores extracted from two-dimensional (2-D) and three-dimensional (3-D) palmprint for personal recognition systems are merged, introducing a local image descriptor for 2-D palmprint-based recognition systems, named bank of binarized statistical image features (B-BSIF). The main idea of B-BSIF is that the extracted histograms from the binarized statistical image features (BSIF) code images (the results of applying the different BSIF descriptor size with the length 12) are concatenated into one to produce a large feature vector. 3-D palmprint contains the depth information of the palm surface. The self-quotient image (SQI) algorithm is applied for reconstructing illumination-invariant 3-D palmprint images. To extract discriminative Gabor features from SQI images, Gabor wavelets are defined and used. Indeed, the dimensionality reduction methods have shown their ability in biometrics systems. Given this, a principal component analysis (PCA)+linear discriminant analysis (LDA) technique is employed. For the matching process, the cosine Mahalanobis distance is applied. Extensive experiments were conducted on a 2-D and 3-D palmprint database with 10,400 range images from 260 individuals. Then, a comparison was made between the proposed algorithm and other existing methods in the literature. Results clearly show that the proposed framework provides a higher correct recognition rate. Furthermore, the best results were obtained by merging the score of B-BSIF descriptor with the score of the SQI+Gabor wavelets+PCA+LDA method, yielding an equal error rate of 0.00% and a recognition rate of rank-1=100.00%.

  14. Systems Imaging of the Immune Synapse.

    PubMed

    Ambler, Rachel; Ruan, Xiangtao; Murphy, Robert F; Wülfing, Christoph

    2017-01-01

    Three-dimensional live cell imaging of the interaction of T cells with antigen-presenting cells (APCs) visualizes the subcellular distributions of signaling intermediates during T cell activation at thousands of resolved positions within a cell. These information-rich maps of local protein concentrations are a valuable resource in understanding T cell signaling. Here, we describe a protocol for the efficient acquisition of such imaging data and their computational processing to create four-dimensional maps of local concentrations. This protocol allows quantitative analysis of T cell signaling as it occurs inside live cells with resolution in time and space across thousands of cells.

  15. Study on the high-frequency laser measurement of slot surface difference

    NASA Astrophysics Data System (ADS)

    Bing, Jia; Lv, Qiongying; Cao, Guohua

    2017-10-01

    In view of the measurement of the slot surface difference in the large-scale mechanical assembly process, Based on high frequency laser scanning technology and laser detection imaging principle, This paragraph designs a double galvanometer pulse laser scanning system. Laser probe scanning system architecture consists of three parts: laser ranging part, mechanical scanning part, data acquisition and processing part. The part of laser range uses high-frequency laser range finder to measure the distance information of the target shape and get a lot of point cloud data. Mechanical scanning part includes high-speed rotary table, high-speed transit and related structure design, in order to realize the whole system should be carried out in accordance with the design of scanning path on the target three-dimensional laser scanning. Data processing part mainly by FPGA hardware with LAbVIEW software to design a core, to process the point cloud data collected by the laser range finder at the high-speed and fitting calculation of point cloud data, to establish a three-dimensional model of the target, so laser scanning imaging is realized.

  16. Visualization of anisotropic-isotropic phase transformation dynamics in battery electrode particles

    DOE PAGES

    Wang, Jiajun; Karen Chen-Wiegart, Yu-chen; Eng, Christopher; ...

    2016-08-12

    Anisotropy, or alternatively, isotropy of phase transformations extensively exist in a number of solid-state materials, with performance depending on the three-dimensional transformation features. Fundamental insights into internal chemical phase evolution allow manipulating materials with desired functionalities, and can be developed via real-time multi-dimensional imaging methods. In this paper, we report a five-dimensional imaging method to track phase transformation as a function of charging time in individual lithium iron phosphate battery cathode particles during delithiation. The electrochemically driven phase transformation is initially anisotropic with a preferred boundary migration direction, but becomes isotropic as delithiation proceeds further. We also observe the expectedmore » two-phase coexistence throughout the entire charging process. Finally, we expect this five-dimensional imaging method to be broadly applicable to problems in energy, materials, environmental and life sciences.« less

  17. Dimensionality and noise in energy selective x-ray imaging

    PubMed Central

    Alvarez, Robert E.

    2013-01-01

    Purpose: To develop and test a method to quantify the effect of dimensionality on the noise in energy selective x-ray imaging. Methods: The Cramèr-Rao lower bound (CRLB), a universal lower limit of the covariance of any unbiased estimator, is used to quantify the noise. It is shown that increasing dimensionality always increases, or at best leaves the same, the variance. An analytic formula for the increase in variance in an energy selective x-ray system is derived. The formula is used to gain insight into the dependence of the increase in variance on the properties of the additional basis functions, the measurement noise covariance, and the source spectrum. The formula is also used with computer simulations to quantify the dependence of the additional variance on these factors. Simulated images of an object with three materials are used to demonstrate the trade-off of increased information with dimensionality and noise. The images are computed from energy selective data with a maximum likelihood estimator. Results: The increase in variance depends most importantly on the dimension and on the properties of the additional basis functions. With the attenuation coefficients of cortical bone, soft tissue, and adipose tissue as the basis functions, the increase in variance of the bone component from two to three dimensions is 1.4 × 103. With the soft tissue component, it is 2.7 × 104. If the attenuation coefficient of a high atomic number contrast agent is used as the third basis function, there is only a slight increase in the variance from two to three basis functions, 1.03 and 7.4 for the bone and soft tissue components, respectively. The changes in spectrum shape with beam hardening also have a substantial effect. They increase the variance by a factor of approximately 200 for the bone component and 220 for the soft tissue component as the soft tissue object thickness increases from 1 to 30 cm. Decreasing the energy resolution of the detectors increases the variance of the bone component markedly with three dimension processing, approximately a factor of 25 as the resolution decreases from 100 to 3 bins. The increase with two dimension processing for adipose tissue is a factor of two and with the contrast agent as the third material for two or three dimensions is also a factor of two for both components. The simulated images show that a maximum likelihood estimator can be used to process energy selective x-ray data to produce images with noise close to the CRLB. Conclusions: The method presented can be used to compute the effects of the object attenuation coefficients and the x-ray system properties on the relationship of dimensionality and noise in energy selective x-ray imaging systems. PMID:24320442

  18. Visualization and quantification of three-dimensional distribution of yeast in bread dough.

    PubMed

    Maeda, Tatsuro; DO, Gab-Soo; Sugiyama, Junichi; Araki, Tetsuya; Tsuta, Mizuki; Shiraga, Seizaburo; Ueda, Mitsuyoshi; Yamada, Masaharu; Takeya, Koji; Sagara, Yasuyuki

    2009-07-01

    A three-dimensional (3-D) bio-imaging technique was developed for visualizing and quantifying the 3-D distribution of yeast in frozen bread dough samples in accordance with the progress of the mixing process of the samples, applying cell-surface engineering to the surfaces of the yeast cells. The fluorescent yeast was recognized as bright spots at the wavelength of 520 nm. Frozen dough samples were sliced at intervals of 1 microm by an micro-slicer image processing system (MSIPS) equipped with a fluorescence microscope for acquiring cross-sectional images of the samples. A set of successive two-dimensional images was reconstructed to analyze the 3-D distribution of the yeast. The average shortest distance between centroids of enhanced green fluorescent protein (EGFP) yeasts was 10.7 microm at the pick-up stage, 9.7 microm at the clean-up stage, 9.0 microm at the final stage, and 10.2 microm at the over-mixing stage. The results indicated that the distribution of the yeast cells was the most uniform in the dough of white bread at the final stage, while the heterogeneous distribution at the over-mixing stage was possibly due to the destruction of the gluten network structure within the samples.

  19. Creating three-dimensional tooth models from tomographic images.

    PubMed

    Lima da Silva, Isaac Newton; Barbosa, Gustavo Frainer; Soares, Rodrigo Borowski Grecco; Beltrao, Maria Cecilia Gomes; Spohr, Ana Maria; Mota, Eduardo Golcalves; Oshima, Hugo Mitsuo Silva; Burnett, Luiz Henrique

    2008-01-01

    The use of Finite Element Analysis (FEA) is becoming very frequent in Dentistry. However, most of the three-dimensional models presented by the literature for teeth are limited in terms of geometry. Discrepancy in shape and dimensions can cause wrong results to occur. Sharp cusps and faceted contour can produce stress concentrations, which are incoherent with the reality. The aim of this study was the processing of tomographic images in order to develop an advanced three-dimensional reconstruction of the anatomy of a molar tooth and the integration of the resulting solid with commercially available CAD/CAE software. Computed tomographic images were obtained from 0.5 mm thick slices of mandibular molar and transferred to commercial cad software. Once the point cloud data have been generated, the work on these points started to get to the solid model of the tooth with Pro/Engineer software. The obtained tooth model showed very accurate shape and dimensions, as it was obtained from real tooth data with error of 0.0 to -0.8 mm. The methodology presented was efficient for creating a biomodel of a tooth from tomographic images that realistically represented its anatomy.

  20. Characterization of Homopolymer and Polymer Blend Films by Phase Sensitive Acoustic Microscopy

    NASA Astrophysics Data System (ADS)

    Ngwa, Wilfred; Wannemacher, Reinhold; Grill, Wolfgang

    2003-03-01

    CHARACTERIZATION OF HOMOPOLYMER AND POLYMER BLEND FILMS BY PHASE SENSITIVE ACOUSTIC MICROSCOPY W Ngwa, R Wannemacher, W Grill Institute of Experimental Physics II, University of Leipzig, 04103 Leipzig, Germany Abstract We have used phase sensitive acoustic microscopy (PSAM) to study homopolymer thin films of polystyrene (PS) and poly (methyl methacrylate) (PMMA), as well as PS/PMMA blend films. We show from our results that PSAM can be used as a complementary and highly valuable technique for elucidating the three-dimensional (3D) morphology and micromechanical properties of thin films. Three-dimensional image acquisition with vector contrast provides the basis for: complex V(z) analysis (per image pixel), 3D image processing, height profiling, and subsurface image analysis of the polymer films. Results show good agreement with previous studies. In addition, important new information on the three dimensional structure and properties of polymer films is obtained. Homopolymer film structure analysis reveals (pseudo-) dewetting by retraction of droplets, resulting in a morphology that can serve as a starting point for the analysis of polymer blend thin films. The outcome of confocal laser scanning microscopy studies, performed on the same samples are correlated with the obtained results. Advantages and limitations of PSAM are discussed.

  1. Scene Segmentation For Autonomous Robotic Navigation Using Sequential Laser Projected Structured Light

    NASA Astrophysics Data System (ADS)

    Brown, C. David; Ih, Charles S.; Arce, Gonzalo R.; Fertell, David A.

    1987-01-01

    Vision systems for mobile robots or autonomous vehicles navigating in an unknown terrain environment must provide a rapid and accurate method of segmenting the scene ahead into regions of pathway and background. A major distinguishing feature between the pathway and background is the three dimensional texture of these two regions. Typical methods of textural image segmentation are very computationally intensive, often lack the required robustness, and are incapable of sensing the three dimensional texture of various regions of the scene. A method is presented where scanned laser projected lines of structured light, viewed by a stereoscopically located single video camera, resulted in an image in which the three dimensional characteristics of the scene were represented by the discontinuity of the projected lines. This image was conducive to processing with simple regional operators to classify regions as pathway or background. Design of some operators and application methods, and demonstration on sample images are presented. This method provides rapid and robust scene segmentation capability that has been implemented on a microcomputer in near real time, and should result in higher speed and more reliable robotic or autonomous navigation in unstructured environments.

  2. Accelerating the reconstruction of magnetic resonance imaging by three-dimensional dual-dictionary learning using CUDA.

    PubMed

    Jiansen Li; Jianqi Sun; Ying Song; Yanran Xu; Jun Zhao

    2014-01-01

    An effective way to improve the data acquisition speed of magnetic resonance imaging (MRI) is using under-sampled k-space data, and dictionary learning method can be used to maintain the reconstruction quality. Three-dimensional dictionary trains the atoms in dictionary in the form of blocks, which can utilize the spatial correlation among slices. Dual-dictionary learning method includes a low-resolution dictionary and a high-resolution dictionary, for sparse coding and image updating respectively. However, the amount of data is huge for three-dimensional reconstruction, especially when the number of slices is large. Thus, the procedure is time-consuming. In this paper, we first utilize the NVIDIA Corporation's compute unified device architecture (CUDA) programming model to design the parallel algorithms on graphics processing unit (GPU) to accelerate the reconstruction procedure. The main optimizations operate in the dictionary learning algorithm and the image updating part, such as the orthogonal matching pursuit (OMP) algorithm and the k-singular value decomposition (K-SVD) algorithm. Then we develop another version of CUDA code with algorithmic optimization. Experimental results show that more than 324 times of speedup is achieved compared with the CPU-only codes when the number of MRI slices is 24.

  3. Validation of a rapid, semiautomatic image analysis tool for measurement of gastric accommodation and emptying by magnetic resonance imaging

    PubMed Central

    Dixit, Sudeepa; Fox, Mark; Pal, Anupam

    2014-01-01

    Magnetic resonance imaging (MRI) has advantages for the assessment of gastrointestinal structures and functions; however, processing MRI data is time consuming and this has limited uptake to a few specialist centers. This study introduces a semiautomatic image processing system for rapid analysis of gastrointestinal MRI. For assessment of simpler regions of interest (ROI) such as the stomach, the system generates virtual images along arbitrary planes that intersect the ROI edges in the original images. This generates seed points that are joined automatically to form contours on each adjacent two-dimensional image and reconstructed in three dimensions (3D). An alternative thresholding approach is available for rapid assessment of complex structures like the small intestine. For assessment of dynamic gastrointestinal function, such as gastric accommodation and emptying, the initial 3D reconstruction is used as reference to process adjacent image stacks automatically. This generates four-dimensional (4D) reconstructions of dynamic volume change over time. Compared with manual processing, this semiautomatic system reduced the user input required to analyze a MRI gastric emptying study (estimated 100 vs. 10,000 mouse clicks). This analysis was not subject to variation in volume measurements seen between three human observers. In conclusion, the image processing platform presented processed large volumes of MRI data, such as that produced by gastric accommodation and emptying studies, with minimal user input. 3D and 4D reconstructions of the stomach and, potentially, other gastrointestinal organs are produced faster and more accurately than manual methods. This system will facilitate the application of MRI in gastrointestinal research and clinical practice. PMID:25540229

  4. Near-field three-dimensional radar imaging techniques and applications.

    PubMed

    Sheen, David; McMakin, Douglas; Hall, Thomas

    2010-07-01

    Three-dimensional radio frequency imaging techniques have been developed for a variety of near-field applications, including radar cross-section imaging, concealed weapon detection, ground penetrating radar imaging, through-barrier imaging, and nondestructive evaluation. These methods employ active radar transceivers that operate at various frequency ranges covering a wide range, from less than 100 MHz to in excess of 350 GHz, with the frequency range customized for each application. Computational wavefront reconstruction imaging techniques have been developed that optimize the resolution and illumination quality of the images. In this paper, rectilinear and cylindrical three-dimensional imaging techniques are described along with several application results.

  5. A VLSI implementation for synthetic aperture radar image processing

    NASA Technical Reports Server (NTRS)

    Premkumar, A.; Purviance, J.

    1990-01-01

    A simple physical model for the Synthetic Aperture Radar (SAR) is presented. This model explains the one dimensional and two dimensional nature of the received SAR signal in the range and azimuth directions. A time domain correlator, its algorithm, and features are explained. The correlator is ideally suited for VLSI implementation. A real time SAR architecture using these correlators is proposed. In the proposed architecture, the received SAR data is processed using one dimensional correlators for determining the range while two dimensional correlators are used to determine the azimuth of a target. The architecture uses only three different types of custom VLSI chips and a small amount of memory.

  6. Three-dimensional T1rho-weighted MRI at 1.5 Tesla.

    PubMed

    Borthakur, Arijitt; Wheaton, Andrew; Charagundla, Sridhar R; Shapiro, Erik M; Regatte, Ravinder R; Akella, Sarma V S; Kneeland, J Bruce; Reddy, Ravinder

    2003-06-01

    To design and implement a magnetic resonance imaging (MRI) pulse sequence capable of performing three-dimensional T(1rho)-weighted MRI on a 1.5-T clinical scanner, and determine the optimal sequence parameters, both theoretically and experimentally, so that the energy deposition by the radiofrequency pulses in the sequence, measured as the specific absorption rate (SAR), does not exceed safety guidelines for imaging human subjects. A three-pulse cluster was pre-encoded to a three-dimensional gradient-echo imaging sequence to create a three-dimensional, T(1rho)-weighted MRI pulse sequence. Imaging experiments were performed on a GE clinical scanner with a custom-built knee-coil. We validated the performance of this sequence by imaging articular cartilage of a bovine patella and comparing T(1rho) values measured by this sequence to those obtained with a previously tested two-dimensional imaging sequence. Using a previously developed model for SAR calculation, the imaging parameters were adjusted such that the energy deposition by the radiofrequency pulses in the sequence did not exceed safety guidelines for imaging human subjects. The actual temperature increase due to the sequence was measured in a phantom by a MRI-based temperature mapping technique. Following these experiments, the performance of this sequence was demonstrated in vivo by obtaining T(1rho)-weighted images of the knee joint of a healthy individual. Calculated T(1rho) of articular cartilage in the specimen was similar for both and three-dimensional and two-dimensional methods (84 +/- 2 msec and 80 +/- 3 msec, respectively). The temperature increase in the phantom resulting from the sequence was 0.015 degrees C, which is well below the established safety guidelines. Images of the human knee joint in vivo demonstrate a clear delineation of cartilage from surrounding tissues. We developed and implemented a three-dimensional T(1rho)-weighted pulse sequence on a 1.5-T clinical scanner. Copyright 2003 Wiley-Liss, Inc.

  7. Computer system for definition of the quantitative geometry of musculature from CT images.

    PubMed

    Daniel, Matej; Iglic, Ales; Kralj-Iglic, Veronika; Konvicková, Svatava

    2005-02-01

    The computer system for quantitative determination of musculoskeletal geometry from computer tomography (CT) images has been developed. The computer system processes series of CT images to obtain three-dimensional (3D) model of bony structures where the effective muscle fibres can be interactively defined. Presented computer system has flexible modular structure and is suitable also for educational purposes.

  8. A compact structured light based otoscope for three dimensional imaging of the tympanic membrane

    NASA Astrophysics Data System (ADS)

    Das, Anshuman J.; Estrada, Julio C.; Ge, Zhifei; Dolcetti, Sara; Chen, Deborah; Raskar, Ramesh

    2015-02-01

    Three dimensional (3D) imaging of the tympanic membrane (TM) has been carried out using a traditional otoscope equipped with a high-definition webcam, a portable projector and a telecentric optical system. The device allows us to project fringe patterns on the TM and the magnified image is processed using phase shifting algorithms to arrive at a 3D description of the TM. Obtaining a 3D image of the TM can aid in the diagnosis of ear infections such as otitis media with effusion, which is essentially fluid build-up in the middle ear. The high resolution of this device makes it possible examine a computer generated 3D profile for abnormalities in the shape of the eardrum. This adds an additional dimension to the image that can be obtained from a traditional otoscope by allowing visualization of the TM from different perspectives. In this paper, we present the design and construction of this device and details of the imaging processing for recovering the 3D profile of the subject under test. The design of the otoscope is similar to that of the traditional device making it ergonomically compatible and easy to adopt in clinical practice.

  9. Semi-Automated Neuron Boundary Detection and Nonbranching Process Segmentation in Electron Microscopy Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurrus, Elizabeth R.; Watanabe, Shigeki; Giuly, Richard J.

    2013-01-01

    Neuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor-intensive task. To aid in the analysis, new segmentation techniques for identifying neurons in these feature rich datasets are required. This paper presents a method for neuron boundary detection and nonbranching process segmentation in electron microscopy images and visualizing them in three dimensions. It combines both automated segmentation techniques with a graphical user interface for correction of mistakes in the automated process. The automated processmore » first uses machine learning and image processing techniques to identify neuron membranes that deliniate the cells in each two-dimensional section. To segment nonbranching processes, the cell regions in each two-dimensional section are connected in 3D using correlation of regions between sections. The combination of this method with a graphical user interface specially designed for this purpose, enables users to quickly segment cellular processes in large volumes.« less

  10. CAD/CAM guided surgery in implant dentistry. A review of software packages and step-by-step protocols for planning surgical guides.

    PubMed

    Scherer, Michael D; Kattadiyil, Mathew T; Parciak, Ewa; Puri, Shweta

    2014-01-01

    Three-dimensional radiographic imaging for dental implant treatment planning is gaining widespread interest and popularity. However, application of the data from 30 imaging can be a complex and daunting process initially. The purpose of this article is to describe features of three software packages and the respective computerized guided surgical templates (GST) fabricated from them. A step-by-step method of interpreting and ordering a GST to simplify the process of the surgical planning and implant placement is discussed.

  11. A survey of GPU-based medical image computing techniques

    PubMed Central

    Shi, Lin; Liu, Wen; Zhang, Heye; Xie, Yongming

    2012-01-01

    Medical imaging currently plays a crucial role throughout the entire clinical applications from medical scientific research to diagnostics and treatment planning. However, medical imaging procedures are often computationally demanding due to the large three-dimensional (3D) medical datasets to process in practical clinical applications. With the rapidly enhancing performances of graphics processors, improved programming support, and excellent price-to-performance ratio, the graphics processing unit (GPU) has emerged as a competitive parallel computing platform for computationally expensive and demanding tasks in a wide range of medical image applications. The major purpose of this survey is to provide a comprehensive reference source for the starters or researchers involved in GPU-based medical image processing. Within this survey, the continuous advancement of GPU computing is reviewed and the existing traditional applications in three areas of medical image processing, namely, segmentation, registration and visualization, are surveyed. The potential advantages and associated challenges of current GPU-based medical imaging are also discussed to inspire future applications in medicine. PMID:23256080

  12. Automated segmentation of three-dimensional MR brain images

    NASA Astrophysics Data System (ADS)

    Park, Jonggeun; Baek, Byungjun; Ahn, Choong-Il; Ku, Kyo Bum; Jeong, Dong Kyun; Lee, Chulhee

    2006-03-01

    Brain segmentation is a challenging problem due to the complexity of the brain. In this paper, we propose an automated brain segmentation method for 3D magnetic resonance (MR) brain images which are represented as a sequence of 2D brain images. The proposed method consists of three steps: pre-processing, removal of non-brain regions (e.g., the skull, meninges, other organs, etc), and spinal cord restoration. In pre-processing, we perform adaptive thresholding which takes into account variable intensities of MR brain images corresponding to various image acquisition conditions. In segmentation process, we iteratively apply 2D morphological operations and masking for the sequences of 2D sagittal, coronal, and axial planes in order to remove non-brain tissues. Next, final 3D brain regions are obtained by applying OR operation for segmentation results of three planes. Finally we reconstruct the spinal cord truncated during the previous processes. Experiments are performed with fifteen 3D MR brain image sets with 8-bit gray-scale. Experiment results show the proposed algorithm is fast, and provides robust and satisfactory results.

  13. Three-dimensional non-destructive optical evaluation of laser-processing performance using optical coherence tomography.

    PubMed

    Kim, Youngseop; Choi, Eun Seo; Kwak, Wooseop; Shin, Yongjin; Jung, Woonggyu; Ahn, Yeh-Chan; Chen, Zhongping

    2008-06-01

    We demonstrate the use of optical coherence tomography (OCT) as a non-destructive diagnostic tool for evaluating laser-processing performance by imaging the features of a pit and a rim. A pit formed on a material at different laser-processing conditions is imaged using both a conventional scanning electron microscope (SEM) and OCT. Then using corresponding images, the geometrical characteristics of the pit are analyzed and compared. From the results, we could verify the feasibility and the potential of the application of OCT to the monitoring of the laser-processing performance.

  14. Three-dimensional non-destructive optical evaluation of laser-processing performance using optical coherence tomography

    PubMed Central

    Kim, Youngseop; Choi, Eun Seo; Kwak, Wooseop; Shin, Yongjin; Jung, Woonggyu; Ahn, Yeh-Chan; Chen, Zhongping

    2014-01-01

    We demonstrate the use of optical coherence tomography (OCT) as a non-destructive diagnostic tool for evaluating laser-processing performance by imaging the features of a pit and a rim. A pit formed on a material at different laser-processing conditions is imaged using both a conventional scanning electron microscope (SEM) and OCT. Then using corresponding images, the geometrical characteristics of the pit are analyzed and compared. From the results, we could verify the feasibility and the potential of the application of OCT to the monitoring of the laser-processing performance. PMID:24932051

  15. Three-Dimensional Anatomic Evaluation of the Anterior Cruciate Ligament for Planning Reconstruction

    PubMed Central

    Hoshino, Yuichi; Kim, Donghwi; Fu, Freddie H.

    2012-01-01

    Anatomic study related to the anterior cruciate ligament (ACL) reconstruction surgery has been developed in accordance with the progress of imaging technology. Advances in imaging techniques, especially the move from two-dimensional (2D) to three-dimensional (3D) image analysis, substantially contribute to anatomic understanding and its application to advanced ACL reconstruction surgery. This paper introduces previous research about image analysis of the ACL anatomy and its application to ACL reconstruction surgery. Crucial bony landmarks for the accurate placement of the ACL graft can be identified by 3D imaging technique. Additionally, 3D-CT analysis of the ACL insertion site anatomy provides better and more consistent evaluation than conventional “clock-face” reference and roentgenologic quadrant method. Since the human anatomy has a complex three-dimensional structure, further anatomic research using three-dimensional imaging analysis and its clinical application by navigation system or other technologies is warranted for the improvement of the ACL reconstruction. PMID:22567310

  16. Parallel-Processing Software for Correlating Stereo Images

    NASA Technical Reports Server (NTRS)

    Klimeck, Gerhard; Deen, Robert; Mcauley, Michael; DeJong, Eric

    2007-01-01

    A computer program implements parallel- processing algorithms for cor relating images of terrain acquired by stereoscopic pairs of digital stereo cameras on an exploratory robotic vehicle (e.g., a Mars rove r). Such correlations are used to create three-dimensional computatio nal models of the terrain for navigation. In this program, the scene viewed by the cameras is segmented into subimages. Each subimage is assigned to one of a number of central processing units (CPUs) opera ting simultaneously.

  17. [Three-dimensional finite element study on the change of glossopharyngeum in patient with obstructive sleep apnea hypopnea syndrome during titrated mandible advancement].

    PubMed

    Yang, Suixing; Feng, Jing; Zhang, Zuo; Qu, Aili; Gong, Miao; Tang, Jie; Fan, Junheng; Li, Songqing; Zhao, Yanling

    2013-04-01

    To construct a three-dimensional finite element model of the upper airway and adjacent structure of an obstructive sleep apnea hypopnea syndrome (OSAHS) patient for biomechanical analysis. And to study the influence of glossopharyngeum of an OSAHS patient with three-dimensional finite element model during titrated mandible advancement. DICOM format image information of an OSAHS patient's upper airway was obtained by thin-section CT scanning and digital image processing were utilized to construct a three-dimensional finite element model by Mimics 10.0, Imageware 10.0 and Ansys software. The changes and the law of glossopharyngeum were observed by biomechanics and morphology after loading with titrated mandible advancement. A three-dimensional finite element model of the adjacent upper airway structure of OSAHS was established successfully. After loading, the transverse diameter of epiglottis tip of glossopharyngeum increased significantly, although the sagittal diameter decreased correspondingly. The principal stress was mainly distributed in anterior wall of the upper airway. The location of principal stress concentration did not change significantly with the increasing of distance. The stress of glossopharyngeum increased during titrated mandible advancement. A more precise three-dimensional finite model of upper airway and adjacent structure of an OSAHS patient is established and improved efficiency by Mimics, Imageware and Ansys software. The glossopharyngeum of finite element model of OSAHS is analyzed by titrated mandible advancement and can effectively show the relationship between mandible advancement and the glossopharyngeum.

  18. A novel image processing technique for 3D volumetric analysis of severely resorbed alveolar sockets with CBCT.

    PubMed

    Manavella, Valeria; Romano, Federica; Garrone, Federica; Terzini, Mara; Bignardi, Cristina; Aimetti, Mario

    2017-06-01

    The aim of this study was to present and validate a novel procedure for the quantitative volumetric assessment of extraction sockets that combines cone-beam computed tomography (CBCT) and image processing techniques. The CBCT dataset of 9 severely resorbed extraction sockets was analyzed by means of two image processing software, Image J and Mimics, using manual and automated segmentation techniques. They were also applied on 5-mm spherical aluminum markers of known volume and on a polyvinyl chloride model of one alveolar socket scanned with Micro-CT to test the accuracy. Statistical differences in alveolar socket volume were found between the different methods of volumetric analysis (P<0.0001). The automated segmentation using Mimics was the most reliable and accurate method with a relative error of 1.5%, considerably smaller than the error of 7% and of 10% introduced by the manual method using Mimics and by the automated method using ImageJ. The currently proposed automated segmentation protocol for the three-dimensional rendering of alveolar sockets showed more accurate results, excellent inter-observer similarity and increased user friendliness. The clinical application of this method enables a three-dimensional evaluation of extraction socket healing after the reconstructive procedures and during the follow-up visits.

  19. Semisupervised kernel marginal Fisher analysis for face recognition.

    PubMed

    Wang, Ziqiang; Sun, Xia; Sun, Lijun; Huang, Yuchun

    2013-01-01

    Dimensionality reduction is a key problem in face recognition due to the high-dimensionality of face image. To effectively cope with this problem, a novel dimensionality reduction algorithm called semisupervised kernel marginal Fisher analysis (SKMFA) for face recognition is proposed in this paper. SKMFA can make use of both labelled and unlabeled samples to learn the projection matrix for nonlinear dimensionality reduction. Meanwhile, it can successfully avoid the singularity problem by not calculating the matrix inverse. In addition, in order to make the nonlinear structure captured by the data-dependent kernel consistent with the intrinsic manifold structure, a manifold adaptive nonparameter kernel is incorporated into the learning process of SKMFA. Experimental results on three face image databases demonstrate the effectiveness of our proposed algorithm.

  20. Flow visualization studies of transverse fuel injection patterns in a nonreacting Mach 2 combustor

    NASA Technical Reports Server (NTRS)

    Mcdaniel, J. C.

    1987-01-01

    Planar visualization images are recorded of transverse jet mixing in a supersonic combustor flowfield, without chemical reaction, using laser-induced fluorescence from iodine molecules. Digital image processing and three-dimensional display enable complete representations of fuel penetration boundary and shock surfaces corresponding to several injection geometries and pressures.

  1. A Tractography Study in Dyslexia: Neuroanatomic Correlates of Orthographic, Phonological and Speech Processing

    ERIC Educational Resources Information Center

    Vandermosten, Maaike; Boets, Bart; Poelmans, Hanne; Sunaert, Stefan; Wouters, Jan; Ghesquiere, Pol

    2012-01-01

    Diffusion tensor imaging tractography is a structural magnetic resonance imaging technique allowing reconstruction and assessment of the integrity of three dimensional white matter tracts, as indexed by their fractional anisotropy. It is assumed that the left arcuate fasciculus plays a crucial role for reading development, as it connects two…

  2. Three dimensional HiLo-based structured illumination for a digital scanned laser sheet microscopy (DSLM) in thick tissue imaging

    PubMed Central

    Bhattacharya, Dipanjan; Singh, Vijay Raj; Zhi, Chen; So, Peter T. C.; Matsudaira, Paul; Barbastathis, George

    2012-01-01

    Laser sheet based microscopy has become widely accepted as an effective active illumination method for real time three-dimensional (3D) imaging of biological tissue samples. The light sheet geometry, where the camera is oriented perpendicular to the sheet itself, provides an effective method of eliminating some of the scattered light and minimizing the sample exposure to radiation. However, residual background noise still remains, limiting the contrast and visibility of potentially interesting features in the samples. In this article, we investigate additional structuring of the illumination for improved background rejection, and propose a new technique, “3D HiLo” where we combine two HiLo images processed from orthogonal directions to improve the condition of the 3D reconstruction. We present a comparative study of conventional structured illumination based demodulation methods, namely 3Phase and HiLo with a newly implemented 3D HiLo approach and demonstrate that the latter yields superior signal-to-background ratio in both lateral and axial dimensions, while simultaneously suppressing image processing artifacts. PMID:23262684

  3. Three dimensional HiLo-based structured illumination for a digital scanned laser sheet microscopy (DSLM) in thick tissue imaging.

    PubMed

    Bhattacharya, Dipanjan; Singh, Vijay Raj; Zhi, Chen; So, Peter T C; Matsudaira, Paul; Barbastathis, George

    2012-12-03

    Laser sheet based microscopy has become widely accepted as an effective active illumination method for real time three-dimensional (3D) imaging of biological tissue samples. The light sheet geometry, where the camera is oriented perpendicular to the sheet itself, provides an effective method of eliminating some of the scattered light and minimizing the sample exposure to radiation. However, residual background noise still remains, limiting the contrast and visibility of potentially interesting features in the samples. In this article, we investigate additional structuring of the illumination for improved background rejection, and propose a new technique, "3D HiLo" where we combine two HiLo images processed from orthogonal directions to improve the condition of the 3D reconstruction. We present a comparative study of conventional structured illumination based demodulation methods, namely 3Phase and HiLo with a newly implemented 3D HiLo approach and demonstrate that the latter yields superior signal-to-background ratio in both lateral and axial dimensions, while simultaneously suppressing image processing artifacts.

  4. Three-dimensional super-resolved live cell imaging through polarized multi-angle TIRF.

    PubMed

    Zheng, Cheng; Zhao, Guangyuan; Liu, Wenjie; Chen, Youhua; Zhang, Zhimin; Jin, Luhong; Xu, Yingke; Kuang, Cuifang; Liu, Xu

    2018-04-01

    Measuring three-dimensional nanoscale cellular structures is challenging, especially when the structure is dynamic. Owing to the informative total internal reflection fluorescence (TIRF) imaging under varied illumination angles, multi-angle (MA) TIRF has been examined to offer a nanoscale axial and a subsecond temporal resolution. However, conventional MA-TIRF still performs badly in lateral resolution and fails to characterize the depth image in densely distributed regions. Here, we emphasize the lateral super-resolution in the MA-TIRF, exampled by simply introducing polarization modulation into the illumination procedure. Equipped with a sparsity and accelerated proximal algorithm, we examine a more precise 3D sample structure compared with previous methods, enabling live cell imaging with a temporal resolution of 2 s and recovering high-resolution mitochondria fission and fusion processes. We also shared the recovery program, which is the first open-source recovery code for MA-TIRF, to the best of our knowledge.

  5. Single-shot three-dimensional reconstruction based on structured light line pattern

    NASA Astrophysics Data System (ADS)

    Wang, ZhenZhou; Yang, YongMing

    2018-07-01

    Reconstruction of the object by single-shot is of great importance in many applications, in which the object is moving or its shape is non-rigid and changes irregularly. In this paper, we propose a single-shot structured light 3D imaging technique that calculates the phase map from the distorted line pattern. This technique makes use of the image processing techniques to segment and cluster the projected structured light line pattern from one single captured image. The coordinates of the clustered lines are extracted to form a low-resolution phase matrix which is then transformed to full-resolution phase map by spline interpolation. The 3D shape of the object is computed from the full-resolution phase map and the 2D camera coordinates. Experimental results show that the proposed method was able to reconstruct the three-dimensional shape of the object robustly from one single image.

  6. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells

    PubMed Central

    Rodriguez, Jose A.; Xu, Rui; Chen, Chien-Chun; Huang, Zhifeng; Jiang, Huaidong; Chen, Allan L.; Raines, Kevin S.; Pryor Jr, Alan; Nam, Daewoong; Wiegart, Lutz; Song, Changyong; Madsen, Anders; Chushkin, Yuriy; Zontone, Federico; Bradley, Peter J.; Miao, Jianwei

    2015-01-01

    A structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 keV X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and the three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. It is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres. PMID:26306199

  7. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells

    DOE PAGES

    Rodriguez, Jose A.; Xu, Rui; Chen, Chien -Chun; ...

    2015-09-01

    Here, a structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 Kev X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and themore » three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. Finally, it is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres.« less

  8. Three-dimensional coherent X-ray diffractive imaging of whole frozen-hydrated cells.

    PubMed

    Rodriguez, Jose A; Xu, Rui; Chen, Chien-Chun; Huang, Zhifeng; Jiang, Huaidong; Chen, Allan L; Raines, Kevin S; Pryor, Alan; Nam, Daewoong; Wiegart, Lutz; Song, Changyong; Madsen, Anders; Chushkin, Yuriy; Zontone, Federico; Bradley, Peter J; Miao, Jianwei

    2015-09-01

    A structural understanding of whole cells in three dimensions at high spatial resolution remains a significant challenge and, in the case of X-rays, has been limited by radiation damage. By alleviating this limitation, cryogenic coherent diffractive imaging (cryo-CDI) can in principle be used to bridge the important resolution gap between optical and electron microscopy in bio-imaging. Here, the first experimental demonstration of cryo-CDI for quantitative three-dimensional imaging of whole frozen-hydrated cells using 8 keV X-rays is reported. As a proof of principle, a tilt series of 72 diffraction patterns was collected from a frozen-hydrated Neospora caninum cell and the three-dimensional mass density of the cell was reconstructed and quantified based on its natural contrast. This three-dimensional reconstruction reveals the surface and internal morphology of the cell, including its complex polarized sub-cellular structure. It is believed that this work represents an experimental milestone towards routine quantitative three-dimensional imaging of whole cells in their natural state with spatial resolutions in the tens of nanometres.

  9. Assessment of Normal Eyeball Protrusion Using Computed Tomographic Imaging and Three-Dimensional Reconstruction in Korean Adults.

    PubMed

    Shin, Kang-Jae; Gil, Young-Chun; Lee, Shin-Hyo; Kim, Jeong-Nam; Yoo, Ja-Young; Kim, Soon-Heum; Choi, Hyun-Gon; Shin, Hyun Jin; Koh, Ki-Seok; Song, Wu-Chul

    2017-01-01

    The aim of the present study was to assess normal eyeball protrusion from the orbital rim using two- and three-dimensional images and demonstrate the better suitability of CT images for assessment of exophthalmos. The facial computed tomographic (CT) images of Korean adults were acquired in sagittal and transverse views. The CT images were used in reconstructing three-dimensional volume of faces using computer software. The protrusion distances from orbital rims and the diameters of eyeballs were measured in the two views of the CT image and three-dimensional volume of the face. Relative exophthalmometry was calculated by the difference in protrusion distance between the right and left sides. The eyeball protrusion was 4.9 and 12.5 mm in sagittal and transverse views, respectively. The protrusion distances were 2.9 mm in the three-dimensional volume of face. There were no significant differences between right and left sides in the degree of protrusion, and the difference was within 2 mm in more than 90% of the subjects. The results of the present study will provide reliable criteria for precise diagnosis and postoperative monitoring using CT imaging of diseases such as thyroid-associated ophthalmopathy and orbital tumors.

  10. Four-Dimensional Imaging of T Cells in Kidney Transplant Rejection.

    PubMed

    Hughes, Andrew D; Lakkis, Fadi G; Oberbarnscheidt, Martin H

    2018-06-01

    Kidney transplantation is the treatment of choice for ESRD but is complicated by the response of the recipient's immune system to nonself histocompatibility antigens on the graft, resulting in rejection. Multiphoton intravital microscopy, referred to as four-dimensional imaging because it records dynamic events in three-dimensional tissue volumes, has emerged as a powerful tool to study immunologic processes in living animals. Here, we will review advances in understanding the complex mechanisms of T cell-mediated rejection made possible by four-dimensional imaging of mouse renal allografts. We will summarize recent data showing that activated (effector) T cell migration to the graft is driven by cognate antigen presented by dendritic cells that surround and penetrate peritubular capillaries, and that T cell-dendritic cell interactions persist in the graft over time, maintaining the immune response in the tissue. Copyright © 2018 by the American Society of Nephrology.

  11. Three-dimensional confocal microscopy of the living cornea and ocular lens

    NASA Astrophysics Data System (ADS)

    Masters, Barry R.

    1991-07-01

    The three-dimensional reconstruction of the optic zone of the cornea and the ocular crystalline lens has been accomplished using confocal microscopy and volume rendering computer techniques. A laser scanning confocal microscope was used in the reflected light mode to obtain the two-dimensional images from the cornea and the ocular lens of a freshly enucleated rabbit eye. The light source was an argon ion laser with a 488 nm wavelength. The microscope objective was a Leitz X25, NA 0.6 water immersion lens. The 400 micron thick cornea was optically sectioned into 133 three micron sections. The semi-transparent cornea and the in-situ ocular lens was visualized as high resolution, high contrast two-dimensional images. The structures observed in the cornea include: superficial epithelial cells and their nuclei, basal epithelial cells and their 'beaded' cell borders, basal lamina, nerve plexus, nerve fibers, nuclei of stromal keratocytes, and endothelial cells. The structures observed in the in- situ ocular lens include: lens capsule, lens epithelial cells, and individual lens fibers. The three-dimensional data sets of the cornea and the ocular lens were reconstructed in the computer using volume rendering techniques. Stereo pairs were also created of the two- dimensional ocular images for visualization. The stack of two-dimensional images was reconstructed into a three-dimensional object using volume rendering techniques. This demonstration of the three-dimensional visualization of the intact, enucleated eye provides an important step toward quantitative three-dimensional morphometry of the eye. The important aspects of three-dimensional reconstruction are discussed.

  12. Life is three-dimensional, and it begins with molecules.

    PubMed

    Bourne, Philip E

    2017-03-01

    The iconic image of the DNA double helix embodies the central role that three-dimensional structures play in understanding biological processes, which, in turn, impact health and well-being. Here, that role is explored through the eyes of one scientist, who has been lucky enough to have over 150 talented people pass through his laboratory. Each contributed to that understanding. What follows is a small fraction of their story, with an emphasis on basic research outcomes of importance to society at large.

  13. A fuzzy structural matching scheme for space robotics vision

    NASA Technical Reports Server (NTRS)

    Naka, Masao; Yamamoto, Hiromichi; Homma, Khozo; Iwata, Yoshitaka

    1994-01-01

    In this paper, we propose a new fuzzy structural matching scheme for space stereo vision which is based on the fuzzy properties of regions of images and effectively reduces the computational burden in the following low level matching process. Three dimensional distance images of a space truss structural model are estimated using this scheme from stereo images sensed by Charge Coupled Device (CCD) TV cameras.

  14. Recursive search method for the image elements of functionally defined surfaces

    NASA Astrophysics Data System (ADS)

    Vyatkin, S. I.

    2017-05-01

    This paper touches upon the synthesis of high-quality images in real time and the technique for specifying three-dimensional objects on the basis of perturbation functions. The recursive search method for the image elements of functionally defined objects with the use of graphics processing units is proposed. The advantages of such an approach over the frame-buffer visualization method are shown.

  15. Three-dimensional imaging modalities in endodontics

    PubMed Central

    Mao, Teresa

    2014-01-01

    Recent research in endodontics has highlighted the need for three-dimensional imaging in the clinical arena as well as in research. Three-dimensional imaging using computed tomography (CT) has been used in endodontics over the past decade. Three types of CT scans have been studied in endodontics, namely cone-beam CT, spiral CT, and peripheral quantitative CT. Contemporary endodontics places an emphasis on the use of cone-beam CT for an accurate diagnosis of parameters that cannot be visualized on a two-dimensional image. This review discusses the role of CT in endodontics, pertaining to its importance in the diagnosis of root canal anatomy, detection of peri-radicular lesions, diagnosis of trauma and resorption, presurgical assessment, and evaluation of the treatment outcome. PMID:25279337

  16. Color image encryption by using Yang-Gu mixture amplitude-phase retrieval algorithm in gyrator transform domain and two-dimensional Sine logistic modulation map

    NASA Astrophysics Data System (ADS)

    Sui, Liansheng; Liu, Benqing; Wang, Qiang; Li, Ye; Liang, Junli

    2015-12-01

    A color image encryption scheme is proposed based on Yang-Gu mixture amplitude-phase retrieval algorithm and two-coupled logistic map in gyrator transform domain. First, the color plaintext image is decomposed into red, green and blue components, which are scrambled individually by three random sequences generated by using the two-dimensional Sine logistic modulation map. Second, each scrambled component is encrypted into a real-valued function with stationary white noise distribution in the iterative amplitude-phase retrieval process in the gyrator transform domain, and then three obtained functions are considered as red, green and blue channels to form the color ciphertext image. Obviously, the ciphertext image is real-valued function and more convenient for storing and transmitting. In the encryption and decryption processes, the chaotic random phase mask generated based on logistic map is employed as the phase key, which means that only the initial values are used as private key and the cryptosystem has high convenience on key management. Meanwhile, the security of the cryptosystem is enhanced greatly because of high sensitivity of the private keys. Simulation results are presented to prove the security and robustness of the proposed scheme.

  17. Multi-camera volumetric PIV for the study of jumping fish

    NASA Astrophysics Data System (ADS)

    Mendelson, Leah; Techet, Alexandra H.

    2018-01-01

    Archer fish accurately jump multiple body lengths for aerial prey from directly below the free surface. Multiple fins provide combinations of propulsion and stabilization, enabling prey capture success. Volumetric flow field measurements are crucial to characterizing multi-propulsor interactions during this highly three-dimensional maneuver; however, the fish's behavior also drives unique experimental constraints. Measurements must be obtained in close proximity to the water's surface and in regions of the flow field which are partially-occluded by the fish body. Aerial jump trajectories must also be known to assess performance. This article describes experiment setup and processing modifications to the three-dimensional synthetic aperture particle image velocimetry (SAPIV) technique to address these challenges and facilitate experimental measurements on live jumping fish. The performance of traditional SAPIV algorithms in partially-occluded regions is characterized, and an improved non-iterative reconstruction routine for SAPIV around bodies is introduced. This reconstruction procedure is combined with three-dimensional imaging on both sides of the free surface to reveal the fish's three-dimensional wake, including a series of propulsive vortex rings generated by the tail. In addition, wake measurements from the anal and dorsal fins indicate their stabilizing and thrust-producing contributions as the archer fish jumps.

  18. Plexus structure imaging with thin slab MR neurography: rotating frames, fly-throughs, and composite projections

    NASA Astrophysics Data System (ADS)

    Raphael, David T.; McIntee, Diane; Tsuruda, Jay S.; Colletti, Patrick; Tatevossian, Raymond; Frazier, James

    2006-03-01

    We explored multiple image processing approaches by which to display the segmented adult brachial plexus in a three-dimensional manner. Magnetic resonance neurography (MRN) 1.5-Tesla scans with STIR sequences, which preferentially highlight nerves, were performed in adult volunteers to generate high-resolution raw images. Using multiple software programs, the raw MRN images were then manipulated so as to achieve segmentation of plexus neurovascular structures, which were incorporated into three different visualization schemes: rotating upper thoracic girdle skeletal frames, dynamic fly-throughs parallel to the clavicle, and thin slab volume-rendered composite projections.

  19. Crack Modelling for Radiography

    NASA Astrophysics Data System (ADS)

    Chady, T.; Napierała, L.

    2010-02-01

    In this paper, possibility of creation of three-dimensional crack models, both random type and based on real-life radiographic images is discussed. Method for storing cracks in a number of two-dimensional matrices, as well algorithm for their reconstruction into three-dimensional objects is presented. Also the possibility of using iterative algorithm for matching simulated images of cracks to real-life radiographic images is discussed.

  20. Automated Quantification of Pneumothorax in CT

    PubMed Central

    Do, Synho; Salvaggio, Kristen; Gupta, Supriya; Kalra, Mannudeep; Ali, Nabeel U.; Pien, Homer

    2012-01-01

    An automated, computer-aided diagnosis (CAD) algorithm for the quantification of pneumothoraces from Multidetector Computed Tomography (MDCT) images has been developed. Algorithm performance was evaluated through comparison to manual segmentation by expert radiologists. A combination of two-dimensional and three-dimensional processing techniques was incorporated to reduce required processing time by two-thirds (as compared to similar techniques). Volumetric measurements on relative pneumothorax size were obtained and the overall performance of the automated method shows an average error of just below 1%. PMID:23082091

  1. Image intensifier-based volume tomographic angiography imaging system: system evaluation

    NASA Astrophysics Data System (ADS)

    Ning, Ruola; Wang, Xiaohui; Shen, Jianjun; Conover, David L.

    1995-05-01

    An image intensifier-based rotational volume tomographic angiography imaging system has been constructed. The system consists of an x-ray tube and an image intensifier that are separately mounted on a gantry. This system uses an image intensifier coupled to a TV camera as a two-dimensional detector so that a set of two-dimensional projections can be acquired for a direct three-dimensional reconstruction (3D). This system has been evaluated with two phantoms: a vascular phantom and a monkey head cadaver. One hundred eighty projections of each phantom were acquired with the system. A set of three-dimensional images were directly reconstructed from the projection data. The experimental results indicate that good imaging quality can be obtained with this system.

  2. Laser interference fringe tomography: a novel 3D imaging technique for pathology

    NASA Astrophysics Data System (ADS)

    Kazemzadeh, Farnoud; Haylock, Thomas M.; Chifman, Lev M.; Hajian, Arsen R.; Behr, Bradford B.; Cenko, Andrew T.; Meade, Jeff T.; Hendrikse, Jan

    2011-03-01

    Laser interference fringe tomography (LIFT) is within the class of optical imaging devices designed for in vivo and ex vivo medical imaging applications. LIFT is a very simple and cost-effective three-dimensional imaging device with performance rivaling some of the leading three-dimensional imaging devices used for histology. Like optical coherence tomography (OCT), it measures the reflectivity as a function of depth within a sample and is capable of producing three-dimensional images from optically scattering media. LIFT has the potential capability to produce high spectral resolution, full-color images. The optical design of LIFT along with the planned iterations for improvements and miniaturization are presented and discussed in addition to the theoretical concepts and preliminary imaging results of the device.

  3. Kinematic reconstruction in cardiovascular imaging.

    PubMed

    Bastarrika, G; Huebra Rodríguez, I J González de la; Calvo-Imirizaldu, M; Suárez Vega, V M; Alonso-Burgos, A

    2018-05-17

    Advances in clinical applications of computed tomography have been accompanied by improvements in advanced post-processing tools. In addition to multiplanar reconstructions, curved planar reconstructions, maximum intensity projections, and volumetric reconstructions, very recently kinematic reconstruction has been developed. This new technique, based on mathematical models that simulate the propagation of light beams through a volume of data, makes it possible to obtain very realistic three dimensional images. This article illustrates examples of kinematic reconstructions and compares them with classical volumetric reconstructions in patients with cardiovascular disease in a way that makes it easy to establish the differences between the two types of reconstruction. Kinematic reconstruction is a new method for representing three dimensional images that facilitates the explanation and comprehension of the findings. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. TakeTwo: an indexing algorithm suited to still images with known crystal parameters

    PubMed Central

    Ginn, Helen Mary; Roedig, Philip; Kuo, Anling; Evans, Gwyndaf; Sauter, Nicholas K.; Ernst, Oliver; Meents, Alke; Mueller-Werkmeister, Henrike; Miller, R. J. Dwayne; Stuart, David Ian

    2016-01-01

    The indexing methods currently used for serial femtosecond crystallography were originally developed for experiments in which crystals are rotated in the X-ray beam, providing significant three-dimensional information. On the other hand, shots from both X-ray free-electron lasers and serial synchrotron crystallo­graphy experiments are still images, in which the few three-dimensional data available arise only from the curvature of the Ewald sphere. Traditional synchrotron crystallography methods are thus less well suited to still image data processing. Here, a new indexing method is presented with the aim of maximizing information use from a still image given the known unit-cell dimensions and space group. Efficacy for cubic, hexagonal and orthorhombic space groups is shown, and for those showing some evidence of diffraction the indexing rate ranged from 90% (hexagonal space group) to 151% (cubic space group). Here, the indexing rate refers to the number of lattices indexed per image. PMID:27487826

  5. THREE-DIMENSIONAL RANDOM ACCESS MULTIPHOTON MICROSCOPY FOR FAST FUNCTIONAL IMAGING OF NEURONAL ACTIVITY

    PubMed Central

    Reddy, Gaddum Duemani; Kelleher, Keith; Fink, Rudy; Saggau, Peter

    2009-01-01

    The dynamic ability of neuronal dendrites to shape and integrate synaptic responses is the hallmark of information processing in the brain. Effectively studying this phenomenon requires concurrent measurements at multiple sites on live neurons. Significant progress has been made by optical imaging systems which combine confocal and multiphoton microscopy with inertia-free laser scanning. However, all systems developed to date restrict fast imaging to two dimensions. This severely limits the extent to which neurons can be studied, since they represent complex three-dimensional (3D) structures. Here we present a novel imaging system that utilizes a unique arrangement of acousto-optic deflectors to steer a focused ultra-fast laser beam to arbitrary locations in 3D space without moving the objective lens. As we demonstrate, this highly versatile random-access multiphoton microscope supports functional imaging of complex 3D cellular structures such as neuronal dendrites or neural populations at acquisition rates on the order of tens of kilohertz. PMID:18432198

  6. TakeTwo: an indexing algorithm suited to still images with known crystal parameters

    DOE PAGES

    Ginn, Helen Mary; Roedig, Philip; Kuo, Anling; ...

    2016-08-01

    The indexing methods currently used for serial femtosecond crystallography were originally developed for experiments in which crystals are rotated in the X-ray beam, providing significant three-dimensional information. On the other hand, shots from both X-ray free-electron lasers and serial synchrotron crystallography experiments are still images, in which the few three-dimensional data available arise only from the curvature of the Ewald sphere. Traditional synchrotron crystallography methods are thus less well suited to still image data processing. Here, a new indexing method is presented with the aim of maximizing information use from a still image given the known unit-cell dimensions and spacemore » group. Efficacy for cubic, hexagonal and orthorhombic space groups is shown, and for those showing some evidence of diffraction the indexing rate ranged from 90% (hexagonal space group) to 151% (cubic space group). Here, the indexing rate refers to the number of lattices indexed per image.« less

  7. Venus - 3D Perspective View of Maat Mons

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Maat Mons is displayed in this three-dimensional perspective view of the surface of Venus. The viewpoint is located 560 kilometers (347 miles) north of Maat Mons at an elevation of 1.7 kilometers (1 mile) above the terrain. Lava flows extend for hundreds of kilometers across the fractured plains shown in the foreground, to the base of Maat Mons. The view is to the south with Maat Mons appearing at the center of the image on the horizon. Maat Mons, an 8-kilometer (5 mile) high volcano, is located at approximately 0.9 degrees north latitude, 194.5 degrees east longitude. Maat Mons is named for an Egyptian goddess of truth and justice. Magellan synthetic aperture radar data is combined with radar altimetry to develop a three-dimensional map of the surface. The vertical scale in this perspective has been exaggerated 22.5 times. Rays cast in a computer intersect the surface to create a three-dimensional perspective view. Simulated color and a digital elevation map developed by the U.S. Geological Survey, are used to enhance small-scale structure. The simulated hues are based on color images recorded by the Soviet Venera 13 and 14 spacecraft. The image was produced at the JPL Multimission Image Processing Laboratory.

  8. Identification of ginseng root using quantitative X-ray microtomography.

    PubMed

    Ye, Linlin; Xue, Yanling; Wang, Yudan; Qi, Juncheng; Xiao, Tiqiao

    2017-07-01

    The use of X-ray phase-contrast microtomography for the investigation of Chinese medicinal materials is advantageous for its nondestructive, in situ , and three-dimensional quantitative imaging properties. The X-ray phase-contrast microtomography quantitative imaging method was used to investigate the microstructure of ginseng, and the phase-retrieval method is also employed to process the experimental data. Four different ginseng samples were collected and investigated; these were classified according to their species, production area, and sample growth pattern. The quantitative internal characteristic microstructures of ginseng were extracted successfully. The size and position distributions of the calcium oxalate cluster crystals (COCCs), important secondary metabolites that accumulate in ginseng, are revealed by the three-dimensional quantitative imaging method. The volume and amount of the COCCs in different species of the ginseng are obtained by a quantitative analysis of the three-dimensional microstructures, which shows obvious difference among the four species of ginseng. This study is the first to provide evidence of the distribution characteristics of COCCs to identify four types of ginseng, with regard to species authentication and age identification, by X-ray phase-contrast microtomography quantitative imaging. This method is also expected to reveal important relationships between COCCs and the occurrence of the effective medicinal components of ginseng.

  9. A Layered Approach for Robust Spatial Virtual Human Pose Reconstruction Using a Still Image

    PubMed Central

    Guo, Chengyu; Ruan, Songsong; Liang, Xiaohui; Zhao, Qinping

    2016-01-01

    Pedestrian detection and human pose estimation are instructive for reconstructing a three-dimensional scenario and for robot navigation, particularly when large amounts of vision data are captured using various data-recording techniques. Using an unrestricted capture scheme, which produces occlusions or breezing, the information describing each part of a human body and the relationship between each part or even different pedestrians must be present in a still image. Using this framework, a multi-layered, spatial, virtual, human pose reconstruction framework is presented in this study to recover any deficient information in planar images. In this framework, a hierarchical parts-based deep model is used to detect body parts by using the available restricted information in a still image and is then combined with spatial Markov random fields to re-estimate the accurate joint positions in the deep network. Then, the planar estimation results are mapped onto a virtual three-dimensional space using multiple constraints to recover any deficient spatial information. The proposed approach can be viewed as a general pre-processing method to guide the generation of continuous, three-dimensional motion data. The experiment results of this study are used to describe the effectiveness and usability of the proposed approach. PMID:26907289

  10. Venus - 3D Perspective View of Eistla Regio

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A portion of western Eistla Regio is displayed in this three-dimensional perspective view of the surface of Venus. The viewpoint is located 1,310 kilometers (812 miles) southwest of Gula Mons at an elevation of 0.78 kilometer (0.48 mile). The view is to the northeast with Gula Mons appearing on the horizon. Gula Mons, a 3 kilometer (1.86 mile) high volcano, is located at approximately 22 degrees north latitude, 359 degrees east longitude. The impact crater Cunitz, named for the astronomer and mathematician Maria Cunitz, is visible in the center of the image. The crater is 48.5 kilometers (30 miles) in diameter and is 215 kilometers (133 miles) from the viewer's position. Magellan synthetic aperture radar data is combined with radar altimetry to develop a three-dimensional map of the surface. Rays cast in a computer intersect the surface to create a three-dimensional perspective view. Simulated color and a digital elevation map developed by the U.S. Geological Survey, are used to enhance small-scale structure. The simulated hues are based on color images recorded by the Soviet Venera 13 and 14 spacecraft. The image was produced at the JPL Multimission Image Processing Laboratory and is a single frame from a video released at the March 5, 1991, JPL news conference.

  11. Virtual Diagnostic Interface: Aerospace Experimentation in the Synthetic Environment

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; McCrea, Andrew C.

    2009-01-01

    The Virtual Diagnostics Interface (ViDI) methodology combines two-dimensional image processing and three-dimensional computer modeling to provide comprehensive in-situ visualizations commonly utilized for in-depth planning of wind tunnel and flight testing, real time data visualization of experimental data, and unique merging of experimental and computational data sets in both real-time and post-test analysis. The preparation of such visualizations encompasses the realm of interactive three-dimensional environments, traditional and state of the art image processing techniques, database management and development of toolsets with user friendly graphical user interfaces. ViDI has been under development at the NASA Langley Research Center for over 15 years, and has a long track record of providing unique and insightful solutions to a wide variety of experimental testing techniques and validation of computational simulations. This report will address the various aspects of ViDI and how it has been applied to test programs as varied as NASCAR race car testing in NASA wind tunnels to real-time operations concerning Space Shuttle aerodynamic flight testing. In addition, future trends and applications will be outlined in the paper.

  12. Virtual Diagnostic Interface: Aerospace Experimentation in the Synthetic Environment

    NASA Technical Reports Server (NTRS)

    Schwartz, Richard J.; McCrea, Andrew C.

    2010-01-01

    The Virtual Diagnostics Interface (ViDI) methodology combines two-dimensional image processing and three-dimensional computer modeling to provide comprehensive in-situ visualizations commonly utilized for in-depth planning of wind tunnel and flight testing, real time data visualization of experimental data, and unique merging of experimental and computational data sets in both real-time and post-test analysis. The preparation of such visualizations encompasses the realm of interactive three-dimensional environments, traditional and state of the art image processing techniques, database management and development of toolsets with user friendly graphical user interfaces. ViDI has been under development at the NASA Langley Research Center for over 15 years, and has a long track record of providing unique and insightful solutions to a wide variety of experimental testing techniques and validation of computational simulations. This report will address the various aspects of ViDI and how it has been applied to test programs as varied as NASCAR race car testing in NASA wind tunnels to real-time operations concerning Space Shuttle aerodynamic flight testing. In addition, future trends and applications will be outlined in the paper.

  13. 1-Dimensional AgVO3 nanowires hybrid with 2-dimensional graphene nanosheets to create 3-dimensional composite aerogels and their improved electrochemical properties

    NASA Astrophysics Data System (ADS)

    Liang, Liying; Xu, Yimeng; Lei, Yong; Liu, Haimei

    2014-03-01

    Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability.Three-dimensional (3D) porous composite aerogels have been synthesized via an innovative in situ hydrothermal method assisted by a freeze-drying process. In this hybrid structure, one-dimensional (1D) AgVO3 nanowires are uniformly dispersed on two-dimensional (2D) graphene nanosheet surfaces and/or are penetrated through the graphene sheets, forming 3D porous composite aerogels. As cathode materials for lithium-ion batteries, the composite aerogels exhibit high discharge capacity, excellent rate capability, and good cycling stability. Electronic supplementary information (ESI) available: Preparation, characterization, SEM images, XRD patterns, and XPS of AgVO3/GAs. See DOI: 10.1039/c3nr06899d

  14. Three-dimensional display technologies

    PubMed Central

    Geng, Jason

    2014-01-01

    The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies. PMID:25530827

  15. Modeling and numerical simulations of growth and morphologies of three dimensional aggregated silver films

    NASA Astrophysics Data System (ADS)

    Davis, L. J.; Boggess, M.; Kodpuak, E.; Deutsch, M.

    2012-11-01

    We report on a model for the deposition of three dimensional, aggregated nanocrystalline silver films, and an efficient numerical simulation method developed for visualizing such structures. We compare our results to a model system comprising chemically deposited silver films with morphologies ranging from dilute, uniform distributions of nanoparticles to highly porous aggregated networks. Disordered silver films grown in solution on silica substrates are characterized using digital image analysis of high resolution scanning electron micrographs. While the latter technique provides little volume information, plane-projected (two dimensional) island structure and surface coverage may be reliably determined. Three parameters governing film growth are evaluated using these data and used as inputs for the deposition model, greatly reducing computing requirements while still providing direct access to the complete (bulk) structure of the films throughout the growth process. We also show how valuable three dimensional characteristics of the deposited materials can be extracted using the simulated structures.

  16. Holographic Reciprocity Law Failure, with Applications to the Three-Dimensional Display of Medical Data

    NASA Astrophysics Data System (ADS)

    Johnson, Kristina Mary

    In 1973 the computerized tomography (CT) scanner revolutionized medical imaging. This machine can isolate and display in two-dimensional cross-sections, internal lesions and organs previously impossible to visualize. The possibility of three-dimensional imaging however is not yet exploited by present tomographic systems. Using multiple-exposure holography, three-dimensional displays can be synthesizing from two-dimensional CT cross -sections. A multiple-exposure hologram is an incoherent superposition of many individual holograms. Intuitively it is expected that holograms recorded with equal energy will reconstruct images with equal brightness. It is found however, that holograms recorded first are brighter than holograms recorded later in the superposition. This phenomena is called Holographic Reciprocity Law Failure (HRLF). Computer simulations of latent image formation in multiple-exposure holography are one of the methods used to investigate HRLF. These simulations indicate that it is the time between individual exposures in the multiple -exposure hologram that is responsible for HRLF. This physical parameter introduces an asymmetry into the latent image formation process that favors the signal of previously recorded holograms over holograms recorded later in the superposition. The origin of this asymmetry lies in the dynamics of latent image formation, and in particular in the decay of single-atom latent image specks, which have lifetimes that are short compared to typical times between exposures. An analytical model is developed for a double exposure hologram that predicts a decrease in the brightness of the second exposure as compared to the first exposure as the time between exposures increases. These results are consistent with the computer simulations. Experiments investigating the influence of this parameter on the diffraction efficiency of reconstructed images in a double exposure hologram are also found to be consistent with the computer simulations and analytical results. From this information, two techniques are presented that correct for HRLF, and succeed in reconstructing multiple holographic images of CT cross-sections with equal brightness. The multiple multiple-exposure hologram is a new hologram that increases the number of equally bright images that can be superimposed on one photographic plate.

  17. Dimensionality and noise in energy selective x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarez, Robert E.

    Purpose: To develop and test a method to quantify the effect of dimensionality on the noise in energy selective x-ray imaging.Methods: The Cramèr-Rao lower bound (CRLB), a universal lower limit of the covariance of any unbiased estimator, is used to quantify the noise. It is shown that increasing dimensionality always increases, or at best leaves the same, the variance. An analytic formula for the increase in variance in an energy selective x-ray system is derived. The formula is used to gain insight into the dependence of the increase in variance on the properties of the additional basis functions, the measurementmore » noise covariance, and the source spectrum. The formula is also used with computer simulations to quantify the dependence of the additional variance on these factors. Simulated images of an object with three materials are used to demonstrate the trade-off of increased information with dimensionality and noise. The images are computed from energy selective data with a maximum likelihood estimator.Results: The increase in variance depends most importantly on the dimension and on the properties of the additional basis functions. With the attenuation coefficients of cortical bone, soft tissue, and adipose tissue as the basis functions, the increase in variance of the bone component from two to three dimensions is 1.4 × 10{sup 3}. With the soft tissue component, it is 2.7 × 10{sup 4}. If the attenuation coefficient of a high atomic number contrast agent is used as the third basis function, there is only a slight increase in the variance from two to three basis functions, 1.03 and 7.4 for the bone and soft tissue components, respectively. The changes in spectrum shape with beam hardening also have a substantial effect. They increase the variance by a factor of approximately 200 for the bone component and 220 for the soft tissue component as the soft tissue object thickness increases from 1 to 30 cm. Decreasing the energy resolution of the detectors increases the variance of the bone component markedly with three dimension processing, approximately a factor of 25 as the resolution decreases from 100 to 3 bins. The increase with two dimension processing for adipose tissue is a factor of two and with the contrast agent as the third material for two or three dimensions is also a factor of two for both components. The simulated images show that a maximum likelihood estimator can be used to process energy selective x-ray data to produce images with noise close to the CRLB.Conclusions: The method presented can be used to compute the effects of the object attenuation coefficients and the x-ray system properties on the relationship of dimensionality and noise in energy selective x-ray imaging systems.« less

  18. Space Radar Image of Kilauea, Hawaii - Interferometry 1

    NASA Image and Video Library

    1999-05-01

    This X-band image of the volcano Kilauea was taken on October 4, 1994, by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar. The area shown is about 9 kilometers by 13 kilometers (5.5 miles by 8 miles) and is centered at about 19.58 degrees north latitude and 155.55 degrees west longitude. This image and a similar image taken during the first flight of the radar instrument on April 13, 1994 were combined to produce the topographic information by means of an interferometric process. This is a process by which radar data acquired on different passes of the space shuttle is overlaid to obtain elevation information. Three additional images are provided showing an overlay of radar data with interferometric fringes; a three-dimensional image based on altitude lines; and, finally, a topographic view of the region. http://photojournal.jpl.nasa.gov/catalog/PIA01763

  19. Reconstruction of Mammary Gland Structure Using Three-Dimensional Computer-Based Microscopy

    DTIC Science & Technology

    2004-08-01

    for image analysis in cytology" Ortiz de Solorzano C., R . Malladi , Lockett S. In: Geometric methods in bio-medical image processing. Ravikanth Malladi ...Deschamps T., Idica A.K., Malladi R ., Ortiz de Solorzano C. Journal of Biomedical Optics 9(3):445-453, 2004.. Manuscripts (in preparation): "* "Three...Deschamps T., Idica A.K., 16 Malladi R ., Ortiz de Solorzano C., Proceedings of Photonics West 2003, Vol. 4964, 2003 "* "Automatic and segmentation

  20. Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation

    DOE PAGES

    Ulvestad, A.; Welland, M. J.; Cha, W.; ...

    2017-01-16

    Crystallographic imperfections can significantly alter material properties and responses to external stimuli, including solute induced phase transformations and crystal growth and dissolution . Despite recent progress in imaging defects using both electron and x-ray techniques, in situ three-dimensional imaging studies of defect dynamics, necessary to understand and engineer nanoscale processes, remains challenging. Here, we report in situ three-dimensional imaging of defect dynamics during the hydriding phase transformation of individual palladium nanocrystals by Bragg Coherent Diffractive Imaging (BCDI) . During constant pressure experiments, we observed that the phase transformation begins after the nucleation of dislocations in large (300 nm) particles. Themore » 3D dislocation network shows that dislocations are close to the phase boundary. The 3D phase morphology resolved by BCDI suggests that the hydrogen-rich phase is more similar to a spherical cap on the hydrogen-poor phase than the core-shell model commonly assumed. We substantiate this conclusion using 3D phase field modeling and demonstrate how phase morphology affects the critical size for dislocation nucleation. We determine the size dependence of the transformation pressure for large (150-300 nm) palladium nanocrystals using variable pressure experiments. Our results reveal a pathway for solute induced structural phase transformations in nanocrystals and demonstrate BCDI as a novel method for understanding dislocation dynamics in phase transforming systems at the nanoscale.« less

  1. Three Dimensional Sheaf of Ultrasound Planes Reconstruction (SOUPR) of Ablated Volumes

    PubMed Central

    Ingle, Atul; Varghese, Tomy

    2014-01-01

    This paper presents an algorithm for three dimensional reconstruction of tumor ablations using ultrasound shear wave imaging with electrode vibration elastography. Radiofrequency ultrasound data frames are acquired over imaging planes that form a subset of a sheaf of planes sharing a common axis of intersection. Shear wave velocity is estimated separately on each imaging plane using a piecewise linear function fitting technique with a fast optimization routine. An interpolation algorithm then computes velocity maps on a fine grid over a set of C-planes that are perpendicular to the axis of the sheaf. A full three dimensional rendering of the ablation can then be created from this stack of C-planes; hence the name “Sheaf Of Ultrasound Planes Reconstruction” or SOUPR. The algorithm is evaluated through numerical simulations and also using data acquired from a tissue mimicking phantom. Reconstruction quality is gauged using contrast and contrast-to-noise ratio measurements and changes in quality from using increasing number of planes in the sheaf are quantified. The highest contrast of 5 dB is seen between the stiffest and softest regions of the phantom. Under certain idealizing assumptions on the true shape of the ablation, good reconstruction quality while maintaining fast processing rate can be obtained with as few as 6 imaging planes suggesting that the method is suited for parsimonious data acquisitions with very few sparsely chosen imaging planes. PMID:24808405

  2. Three-dimensional imaging of dislocation dynamics during the hydriding phase transformation

    NASA Astrophysics Data System (ADS)

    Ulvestad, A.; Welland, M. J.; Cha, W.; Liu, Y.; Kim, J. W.; Harder, R.; Maxey, E.; Clark, J. N.; Highland, M. J.; You, H.; Zapol, P.; Hruszkewycz, S. O.; Stephenson, G. B.

    2017-05-01

    Crystallographic imperfections significantly alter material properties and their response to external stimuli, including solute-induced phase transformations. Despite recent progress in imaging defects using electron and X-ray techniques, in situ three-dimensional imaging of defect dynamics remains challenging. Here, we use Bragg coherent diffractive imaging to image defects during the hydriding phase transformation of palladium nanocrystals. During constant-pressure experiments we observe that the phase transformation begins after dislocation nucleation close to the phase boundary in particles larger than 300 nm. The three-dimensional phase morphology suggests that the hydrogen-rich phase is more similar to a spherical cap on the hydrogen-poor phase than to the core-shell model commonly assumed. We substantiate this using three-dimensional phase field modelling, demonstrating how phase morphology affects the critical size for dislocation nucleation. Our results reveal how particle size and phase morphology affects transformations in the PdH system.

  3. Improving your four-dimensional image: traveling through a decade of light-sheet-based fluorescence microscopy research.

    PubMed

    Strobl, Frederic; Schmitz, Alexander; Stelzer, Ernst H K

    2017-06-01

    Light-sheet-based fluorescence microscopy features optical sectioning in the excitation process. This reduces phototoxicity and photobleaching by up to four orders of magnitude compared with that caused by confocal fluorescence microscopy, simplifies segmentation and quantification for three-dimensional cell biology, and supports the transition from on-demand to systematic data acquisition in developmental biology applications.

  4. Isotropic-resolution linear-array-based photoacoustic computed tomography through inverse Radon transform

    NASA Astrophysics Data System (ADS)

    Li, Guo; Xia, Jun; Li, Lei; Wang, Lidai; Wang, Lihong V.

    2015-03-01

    Linear transducer arrays are readily available for ultrasonic detection in photoacoustic computed tomography. They offer low cost, hand-held convenience, and conventional ultrasonic imaging. However, the elevational resolution of linear transducer arrays, which is usually determined by the weak focus of the cylindrical acoustic lens, is about one order of magnitude worse than the in-plane axial and lateral spatial resolutions. Therefore, conventional linear scanning along the elevational direction cannot provide high-quality three-dimensional photoacoustic images due to the anisotropic spatial resolutions. Here we propose an innovative method to achieve isotropic resolutions for three-dimensional photoacoustic images through combined linear and rotational scanning. In each scan step, we first elevationally scan the linear transducer array, and then rotate the linear transducer array along its center in small steps, and scan again until 180 degrees have been covered. To reconstruct isotropic three-dimensional images from the multiple-directional scanning dataset, we use the standard inverse Radon transform originating from X-ray CT. We acquired a three-dimensional microsphere phantom image through the inverse Radon transform method and compared it with a single-elevational-scan three-dimensional image. The comparison shows that our method improves the elevational resolution by up to one order of magnitude, approaching the in-plane lateral-direction resolution. In vivo rat images were also acquired.

  5. Highly cytocompatible and flexible three-dimensional graphene/polydimethylsiloxane composite for culture and electrochemical detection of L929 fibroblast cells.

    PubMed

    Waiwijit, Uraiwan; Maturos, Thitima; Pakapongpan, Saithip; Phokharatkul, Ditsayut; Wisitsoraat, Anurat; Tuantranont, Adisorn

    2016-08-01

    Recently, three-dimensional graphene interconnected network has attracted great interest as a scaffold structure for tissue engineering due to its high biocompatibility, high electrical conductivity, high specific surface area and high porosity. However, free-standing three-dimensional graphene exhibits poor flexibility and stability due to ease of disintegration during processing. In this work, three-dimensional graphene is composited with polydimethylsiloxane to improve the structural flexibility and stability by a new simple two-step process comprising dip coating of polydimethylsiloxane on chemical vapor deposited graphene/Ni foam and wet etching of nickel foam. Structural characterizations confirmed an interconnected three-dimensional multi-layer graphene structure with thin polydimethylsiloxane scaffold. The composite was employed as a substrate for culture of L929 fibroblast cells and its cytocompatibility was evaluated by cell viability (Alamar blue assay), reactive oxygen species production and vinculin immunofluorescence imaging. The result revealed that cell viability on three-dimensional graphene/polydimethylsiloxane composite increased with increasing culture time and was slightly different from a polystyrene substrate (control). Moreover, cells cultured on three-dimensional graphene/polydimethylsiloxane composite generated less ROS than the control at culture times of 3-6 h. The results of immunofluorescence staining demonstrated that fibroblast cells expressed adhesion protein (vinculin) and adhered well on three-dimensional graphene/polydimethylsiloxane surface. Good cell adhesion could be attributed to suitable surface properties of three-dimensional graphene/polydimethylsiloxane with moderate contact angle and small negative zeta potential in culture solution. The results of electrochemical study by cyclic voltammetry showed that an oxidation current signal with no apparent peak was induced by fibroblast cells and the oxidation current at an oxidation potential of +0.9 V increased linearly with increasing cell number. Therefore, the three-dimensional graphene/polydimethylsiloxane composite exhibits high cytocompatibility and can potentially be used as a conductive substrate for cell-based electrochemical sensing. © The Author(s) 2016.

  6. Single-Shot, Volumetrically Illuminated, Three-Dimensional, Tomographic Laser-Induced-Fluorescence Imaging in a Gaseous Free Jet

    DTIC Science & Technology

    2016-04-28

    Single- shot , volumetrically illuminated, three- dimensional, tomographic laser-induced- fluorescence imaging in a gaseous free jet Benjamin R. Halls...us.af.mil Abstract: Single- shot , tomographic imaging of the three-dimensional concentration field is demonstrated in a turbulent gaseous free jet in co-flow...2001). 6. K. M. Tacina and W. J. A. Dahm, “Effects of heat release on turbulent shear flows, Part 1. A general equivalence principle for non-buoyant

  7. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, George P.; Skeate, Michael F.

    1996-01-01

    An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.

  8. Identifying microbial habitats in soil using quantum dots and x-ray fluorescence microtomography

    NASA Astrophysics Data System (ADS)

    O'Brien, S. L.; Whiteside, M. D.; Sholto-Douglas, D.; Dohnalkova, A.; Durall, D. M.; Gursoy, D.; Jones, M. D.; Kovarik, L.; Lai, B.; Roehrig, C.; Sullivan, S.; Vogt, S.; Kemner, K. M.

    2015-12-01

    The metabolic activities of soil microbes are the primary drivers of biogeochemical processes controlling the terrestrial carbon cycle, nutrient availability to plants, contaminant remediation, water quality, and other ecosystem services. However, we have a limited understanding of microbial metabolic processes such as nutrient uptake rates, substrate preferences, or how microbes and microbial metabolism are distributed throughout the three-dimensional pore network of the soil. Here we use a novel combination of imaging techniques with quantum dots (QDs, engineered semiconductor nanoparticles that produce size or composition-dependent fluorescence) to locate bacteria in the three-dimensional pore network of a soil aggregate. First, we show using confocal and aberration-corrected transmission electron microscopies that bacteria (Bacillus subtilis, Pseudomonas fluorescens, and Pseudomonas protogens) actively take up and internalize CdSe/ZnS core/shell QDs conjugated to biologically relevant substrates. Next, we show that cells bearing QDs can be identified using fluorescence imaging with hard x-rays at 2ID-D at the Advanced Photon Source (APS). Finally, we demonstrate that the Se constituent to the QDs can be used to label bacteria in three-dimensional tomographic reconstructions of natural soil at 0.5 nm spatial resolution using hard x-rays at 2ID-E at the APS. This is the first time soil bacteria have been imaged in the intact soil matrix at such high resolution. These results offer a new way to experimentally investigate basic bacterial ecology in situ, revealing constraints on microbial function in soil that will help improve connections between pore-scale and ecosystem-scale processes in models.

  9. Three-dimensional optical reconstruction of vocal fold kinematics using high-speed video with a laser projection system

    PubMed Central

    Luegmair, Georg; Mehta, Daryush D.; Kobler, James B.; Döllinger, Michael

    2015-01-01

    Vocal fold kinematics and its interaction with aerodynamic characteristics play a primary role in acoustic sound production of the human voice. Investigating the temporal details of these kinematics using high-speed videoendoscopic imaging techniques has proven challenging in part due to the limitations of quantifying complex vocal fold vibratory behavior using only two spatial dimensions. Thus, we propose an optical method of reconstructing the superior vocal fold surface in three spatial dimensions using a high-speed video camera and laser projection system. Using stereo-triangulation principles, we extend the camera-laser projector method and present an efficient image processing workflow to generate the three-dimensional vocal fold surfaces during phonation captured at 4000 frames per second. Initial results are provided for airflow-driven vibration of an ex vivo vocal fold model in which at least 75% of visible laser points contributed to the reconstructed surface. The method captures the vertical motion of the vocal folds at a high accuracy to allow for the computation of three-dimensional mucosal wave features such as vibratory amplitude, velocity, and asymmetry. PMID:26087485

  10. A Method of Visualizing Three-Dimensional Distribution of Yeast in Bread Dough

    NASA Astrophysics Data System (ADS)

    Maeda, Tatsurou; Do, Gab-Soo; Sugiyama, Junichi; Oguchi, Kosei; Shiraga, Seizaburou; Ueda, Mitsuyoshi; Takeya, Koji; Endo, Shigeru

    A novel technique was developed to monitor the change in three-dimensional (3D) distribution of yeast in frozen bread dough samples in accordance with the progress of mixing process. Application of a surface engineering technology allowed the identification of yeast in bread dough by bonding EGFP (Enhanced Green Fluorescent Protein) to the surface of yeast cells. The fluorescent yeast (a biomarker) was recognized as bright spots at the wavelength of 520 nm. A Micro-Slicer Image Processing System (MSIPS) with a fluorescence microscope was utilized to acquire cross-sectional images of frozen dough samples sliced at intervals of 1 μm. A set of successive two-dimensional images was reconstructed to analyze 3D distribution of yeast. Samples were taken from each of four normal mixing stages (i.e., pick up, clean up, development, and final stages) and also from over mixing stage. In the pick up stage yeast distribution was uneven with local areas of dense yeast. As the mixing progressed from clean up to final stages, the yeast became more evenly distributed throughout the dough sample. However, the uniformity in yeast distribution was lost in the over mixing stage possibly due to the breakdown of gluten structure within the dough sample.

  11. Real-time model-based vision system for object acquisition and tracking

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian; Gennery, Donald B.; Bon, Bruce; Litwin, Todd

    1987-01-01

    A machine vision system is described which is designed to acquire and track polyhedral objects moving and rotating in space by means of two or more cameras, programmable image-processing hardware, and a general-purpose computer for high-level functions. The image-processing hardware is capable of performing a large variety of operations on images and on image-like arrays of data. Acquisition utilizes image locations and velocities of the features extracted by the image-processing hardware to determine the three-dimensional position, orientation, velocity, and angular velocity of the object. Tracking correlates edges detected in the current image with edge locations predicted from an internal model of the object and its motion, continually updating velocity information to predict where edges should appear in future frames. With some 10 frames processed per second, real-time tracking is possible.

  12. The Newport Button: The Large Scale Replication Of Combined Three-And Two-Dimensional Holographic Images

    NASA Astrophysics Data System (ADS)

    Cowan, James J.

    1984-05-01

    A unique type of holographic imagery and its large scale replication are described. The "Newport Button", which was designed as an advertising premium item for the Newport Corporation, incorporates a complex overlay of holographic diffraction gratings surrounding a three-dimensional holographic image of a real object. The combined pattern is recorded onto a photosensitive medium from which a metal master is made. The master is subsequently used to repeatedly emboss the pattern into a thin plastic sheet. Individual patterns are then die cut from the metallized plastic and mounted onto buttons. A discussion is given of the diffraction efficiencies of holograms made in this particular fashion and of the special requirements of the replication process.

  13. Three Dimensional Imaging with Multiple Wavelength Speckle Interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernacki, Bruce E.; Cannon, Bret D.; Schiffern, John T.

    2014-05-28

    We present the design, modeling, construction, and results of a three-dimensional imager based upon multiple-wavelength speckle interferometry. A surface under test is illuminated with tunable laser light in a Michelson interferometer configuration while a speckled image is acquired at each laser frequency step. The resulting hypercube is Fourier transformed in the frequency dimension and the beat frequencies that result map the relative offsets of surface features. Synthetic wavelengths resulting from the laser tuning can probe features ranging from 18 microns to hundreds of millimeters. Three dimensional images will be presented along with modeling results.

  14. Three-dimensional visualization of geographical terrain data using temporal parallax difference induction

    NASA Astrophysics Data System (ADS)

    Mayhew, Christopher A.; Mayhew, Craig M.

    2009-02-01

    Vision III Imaging, Inc. (the Company) has developed Parallax Image Display (PIDTM) software tools to critically align and display aerial images with parallax differences. Terrain features are rendered obvious to the viewer when critically aligned images are presented alternately at 4.3 Hz. The recent inclusion of digital elevation models in geographic data browsers now allows true three-dimensional parallax to be acquired from virtual globe programs like Google Earth. The authors have successfully developed PID methods and code that allow three-dimensional geographical terrain data to be visualized using temporal parallax differences.

  15. X-ray Phase Contrast Allows Three Dimensional, Quantitative Imaging of Hydrogel Implants

    PubMed Central

    Appel, Alyssa A.; Larson, Jeffery C.; Jiang, Bin; Zhong, Zhong; Anastasio, Mark A.; Brey, Eric M.

    2015-01-01

    Three dimensional imaging techniques are needed for the evaluation and assessment of biomaterials used for tissue engineering and drug delivery applications. Hydrogels are a particularly popular class of materials for medical applications but are difficult to image in tissue using most available imaging modalities. Imaging techniques based on X-ray Phase Contrast (XPC) have shown promise for tissue engineering applications due to their ability to provide image contrast based on multiple X-ray properties. In this manuscript, we investigate the use of XPC for imaging a model hydrogel and soft tissue structure. Porous fibrin loaded poly(ethylene glycol) hydrogels were synthesized and implanted in a rodent subcutaneous model. Samples were explanted and imaged with an analyzer-based XPC technique and processed and stained for histology for comparison. Both hydrogel and soft tissues structures could be identified in XPC images. Structure in skeletal muscle adjacent could be visualized and invading fibrovascular tissue could be quantified. There were no differences between invading tissue measurements from XPC and the gold-standard histology. These results provide evidence of the significant potential of techniques based on XPC for 3D imaging of hydrogel structure and local tissue response. PMID:26487123

  16. X-ray Phase Contrast Allows Three Dimensional, Quantitative Imaging of Hydrogel Implants

    DOE PAGES

    Appel, Alyssa A.; Larson, Jeffrey C.; Jiang, Bin; ...

    2015-10-20

    Three dimensional imaging techniques are needed for the evaluation and assessment of biomaterials used for tissue engineering and drug delivery applications. Hydrogels are a particularly popular class of materials for medical applications but are difficult to image in tissue using most available imaging modalities. Imaging techniques based on X-ray Phase Contrast (XPC) have shown promise for tissue engineering applications due to their ability to provide image contrast based on multiple X-ray properties. In this manuscript we describe results using XPC to image a model hydrogel and soft tissue structure. Porous fibrin loaded poly(ethylene glycol) hydrogels were synthesized and implanted inmore » a rodent subcutaneous model. Samples were explanted and imaged with an analyzer-based XPC technique and processed and stained for histology for comparison. Both hydrogel and soft tissues structures could be identified in XPC images. Structure in skeletal muscle adjacent could be visualized and invading fibrovascular tissue could be quantified. In quantitative results, there were no differences between XPC and the gold-standard histological measurements. These results provide evidence of the significant potential of techniques based on XPC for 3D imaging of hydrogel structure and local tissue response.« less

  17. Three-dimensional reconstruction from serial sections in PC-Windows platform by using 3D_Viewer.

    PubMed

    Xu, Yi-Hua; Lahvis, Garet; Edwards, Harlene; Pitot, Henry C

    2004-11-01

    Three-dimensional (3D) reconstruction from serial sections allows identification of objects of interest in 3D and clarifies the relationship among these objects. 3D_Viewer, developed in our laboratory for this purpose, has four major functions: image alignment, movie frame production, movie viewing, and shift-overlay image generation. Color images captured from serial sections were aligned; then the contours of objects of interest were highlighted in a semi-automatic manner. These 2D images were then automatically stacked at different viewing angles, and their composite images on a projected plane were recorded by an image transform-shift-overlay technique. These composition images are used in the object-rotation movie show. The design considerations of the program and the procedures used for 3D reconstruction from serial sections are described. This program, with a digital image-capture system, a semi-automatic contours highlight method, and an automatic image transform-shift-overlay technique, greatly speeds up the reconstruction process. Since images generated by 3D_Viewer are in a general graphic format, data sharing with others is easy. 3D_Viewer is written in MS Visual Basic 6, obtainable from our laboratory on request.

  18. Light field imaging and application analysis in THz

    NASA Astrophysics Data System (ADS)

    Zhang, Hongfei; Su, Bo; He, Jingsuo; Zhang, Cong; Wu, Yaxiong; Zhang, Shengbo; Zhang, Cunlin

    2018-01-01

    The light field includes the direction information and location information. Light field imaging can capture the whole light field by single exposure. The four-dimensional light field function model represented by two-plane parameter, which is proposed by Levoy, is adopted in the light field. Acquisition of light field is based on the microlens array, camera array and the mask. We calculate the dates of light-field to synthetize light field image. The processing techniques of light field data include technology of refocusing rendering, technology of synthetic aperture and technology of microscopic imaging. Introducing the technology of light field imaging into THz, the efficiency of 3D imaging is higher than that of conventional THz 3D imaging technology. The advantages compared with visible light field imaging include large depth of field, wide dynamic range and true three-dimensional. It has broad application prospects.

  19. Coherent three-dimensional X-ray cryo-imaging.

    PubMed

    Robinson, Ian

    2015-09-01

    The combination of cryogenic sample temperatures with three-dimensional coherent diffractive imaging for the case of whole frozen-hydrated cells is discussed in the light of theoretical predictions of the achievable resolution.

  20. Quantitative characterization of 3D deformations of cell interactions with soft biomaterials

    NASA Astrophysics Data System (ADS)

    Franck, Christian

    In recent years, the importance of mechanical forces in directing cellular function has been recognized as a significant factor in biological and physiological processes. In fact, these physical forces are now viewed equally as important as biochemical stimuli in controlling cellular response. Not only do these cellular forces, or cell tractions, play an important role in cell migration, they are also significant to many other physiological and pathological processes, both at the tissue and organ level, including wound healing, inflammation, angiogenesis, and embryogenesis. A complete quantification of cell tractions during cell-material interactions can lead to a deeper understanding of the fundamental role these forces play in cell biology. Thus, understanding the function and role of a cell from a mechanical framework can have important implications towards the development of new implant materials and drug treatments. Previous research has contributed significant descriptions of cell-tissue interactions by quantifying cell tractions in two-dimensional environments; however, most physiological processes are three-dimensional in nature. Recent studies have shown morphological differences in cells cultured on two-dimensional substrates versus three-dimensional matrices, and that the intrinsic extracellular matrix interactions and migration behavior are different in three dimensions versus two dimensions. Hence, measurement techniques are needed to investigate cellular behavior in all three dimensions. This thesis presents a full-field imaging technique capable of quantitatively measuring cell traction forces in all three spatial dimensions, and hence addresses the need of a three-dimensional quantitative imaging technique to gain insight into the fundamental role of physical forces in biological processes. The technique combines laser scanning confocal microscopy (LSCM) with digital volume correlation (DVC) to track the motion of fluorescent particles during cell-induced or externally applied deformations. This method is validated by comparing experimentally measured non-uniform deformation fields near hard and soft spherical inclusions under uniaxial compression with the corresponding analytical solution. Utilization of a newly developed computationally efficient stretch-correlation and deconvolution algorithm is shown to improve the overall measurement accuracy, in particular under large deformations. Using this technique, the full three-dimensional substrate displacement fields are experimentally determined during the migration of individual fibroblast cells on polyacrylamide gels. This is the first study to show the highly three-dimensional structure of cell-induced displacement and traction fields. These new findings suggest a three-dimensional push-pull cell motility, which differs from the traditional theories based on two-dimensional data. These results provide new insight into the dynamic cell-matrix force exchange or mechanotransduction of migrating cells, and will aid in the development of new three-dimensional cell motility and adhesion models. As this study reveals, the mechanical interactions of cells and their extracellular matrix appear to be highly three-dimensional. It also shows that the LSCM-DVC technique is well suited for investigating the mechanics of cell-matrix interactions while providing a platform to access detailed information of the intricate biomechanical coupling for many cellular responses. Thus, this method has the capability to provide direct quantitative experimental data showing how cells interact with their surroundings in three dimensions and might stimulate new avenues of scientific thought in understanding the fundamental role physical forces play in regulating cell behavior.

  1. Three-dimensional fluorescent microscopy via simultaneous illumination and detection at multiple planes.

    PubMed

    Ma, Qian; Khademhosseinieh, Bahar; Huang, Eric; Qian, Haoliang; Bakowski, Malina A; Troemel, Emily R; Liu, Zhaowei

    2016-08-16

    The conventional optical microscope is an inherently two-dimensional (2D) imaging tool. The objective lens, eyepiece and image sensor are all designed to capture light emitted from a 2D 'object plane'. Existing technologies, such as confocal or light sheet fluorescence microscopy have to utilize mechanical scanning, a time-multiplexing process, to capture a 3D image. In this paper, we present a 3D optical microscopy method based upon simultaneously illuminating and detecting multiple focal planes. This is implemented by adding two diffractive optical elements to modify the illumination and detection optics. We demonstrate that the image quality of this technique is comparable to conventional light sheet fluorescent microscopy with the advantage of the simultaneous imaging of multiple axial planes and reduced number of scans required to image the whole sample volume.

  2. Automated Coronal Loop Identification using Digital Image Processing Techniques

    NASA Astrophysics Data System (ADS)

    Lee, J. K.; Gary, G. A.; Newman, T. S.

    2003-05-01

    The results of a Master's thesis study of computer algorithms for automatic extraction and identification (i.e., collectively, "detection") of optically-thin, 3-dimensional, (solar) coronal-loop center "lines" from extreme ultraviolet and X-ray 2-dimensional images will be presented. The center lines, which can be considered to be splines, are proxies of magnetic field lines. Detecting the loops is challenging because there are no unique shapes, the loop edges are often indistinct, and because photon and detector noise heavily influence the images. Three techniques for detecting the projected magnetic field lines have been considered and will be described in the presentation. The three techniques used are (i) linear feature recognition of local patterns (related to the inertia-tensor concept), (ii) parametric space inferences via the Hough transform, and (iii) topological adaptive contours (snakes) that constrain curvature and continuity. Since coronal loop topology is dominated by the magnetic field structure, a first-order magnetic field approximation using multiple dipoles provides a priori information that has also been incorporated into the detection process. Synthesized images have been generated to benchmark the suitability of the three techniques, and the performance of the three techniques on both synthesized and solar images will be presented and numerically evaluated in the presentation. The process of automatic detection of coronal loops is important in the reconstruction of the coronal magnetic field where the derived magnetic field lines provide a boundary condition for magnetic models ( cf. , Gary (2001, Solar Phys., 203, 71) and Wiegelmann & Neukirch (2002, Solar Phys., 208, 233)). . This work was supported by NASA's Office of Space Science - Solar and Heliospheric Physics Supporting Research and Technology Program.

  3. A novel forward projection-based metal artifact reduction method for flat-detector computed tomography.

    PubMed

    Prell, Daniel; Kyriakou, Yiannis; Beister, Marcel; Kalender, Willi A

    2009-11-07

    Metallic implants generate streak-like artifacts in flat-detector computed tomography (FD-CT) reconstructed volumetric images. This study presents a novel method for reducing these disturbing artifacts by inserting discarded information into the original rawdata using a three-step correction procedure and working directly with each detector element. Computation times are minimized by completely implementing the correction process on graphics processing units (GPUs). First, the original volume is corrected using a three-dimensional interpolation scheme in the rawdata domain, followed by a second reconstruction. This metal artifact-reduced volume is then segmented into three materials, i.e. air, soft-tissue and bone, using a threshold-based algorithm. Subsequently, a forward projection of the obtained tissue-class model substitutes the missing or corrupted attenuation values directly for each flat detector element that contains attenuation values corresponding to metal parts, followed by a final reconstruction. Experiments using tissue-equivalent phantoms showed a significant reduction of metal artifacts (deviations of CT values after correction compared to measurements without metallic inserts reduced typically to below 20 HU, differences in image noise to below 5 HU) caused by the implants and no significant resolution losses even in areas close to the inserts. To cover a variety of different cases, cadaver measurements and clinical images in the knee, head and spine region were used to investigate the effectiveness and applicability of our method. A comparison to a three-dimensional interpolation correction showed that the new approach outperformed interpolation schemes. Correction times are minimized, and initial and corrected images are made available at almost the same time (12.7 s for the initial reconstruction, 46.2 s for the final corrected image compared to 114.1 s and 355.1 s on central processing units (CPUs)).

  4. Redundancy Analysis of Capacitance Data of a Coplanar Electrode Array for Fast and Stable Imaging Processing

    PubMed Central

    Wen, Yintang; Zhang, Zhenda; Zhang, Yuyan; Sun, Dongtao

    2017-01-01

    A coplanar electrode array sensor is established for the imaging of composite-material adhesive-layer defect detection. The sensor is based on the capacitive edge effect, which leads to capacitance data being considerably weak and susceptible to environmental noise. The inverse problem of coplanar array electrical capacitance tomography (C-ECT) is ill-conditioning, in which a small error of capacitance data can seriously affect the quality of reconstructed images. In order to achieve a stable image reconstruction process, a redundancy analysis method for capacitance data is proposed. The proposed method is based on contribution rate and anti-interference capability. According to the redundancy analysis, the capacitance data are divided into valid and invalid data. When the image is reconstructed by valid data, the sensitivity matrix needs to be changed accordingly. In order to evaluate the effectiveness of the sensitivity map, singular value decomposition (SVD) is used. Finally, the two-dimensional (2D) and three-dimensional (3D) images are reconstructed by the Tikhonov regularization method. Through comparison of the reconstructed images of raw capacitance data, the stability of the image reconstruction process can be improved, and the quality of reconstructed images is not degraded. As a result, much invalid data are not collected, and the data acquisition time can also be reduced. PMID:29295537

  5. Image-guided robotic surgery.

    PubMed

    Marescaux, Jacques; Solerc, Luc

    2004-06-01

    Medical image processing leads to an improvement in patient care by guiding the surgical gesture. Three-dimensional models of patients that are generated from computed tomographic scans or magnetic resonance imaging allow improved surgical planning and surgical simulation that offers the opportunity for a surgeon to train the surgical gesture before performing it for real. These two preoperative steps can be used intra-operatively because of the development of augmented reality, which consists of superimposing the preoperative three-dimensional model of the patient onto the real intraoperative view. Augmented reality provides the surgeon with a view of the patient in transparency and can also guide the surgeon, thanks to the real-time tracking of surgical tools during the procedure. When adapted to robotic surgery, this tool tracking enables visual serving with the ability to automatically position and control surgical robotic arms in three dimensions. It is also now possible to filter physiologic movements such as breathing or the heart beat. In the future, by combining augmented reality and robotics, these image-guided robotic systems will enable automation of the surgical procedure, which will be the next revolution in surgery.

  6. Three-dimensional displays for natural hazards analysis, using classified Landsat Thematic Mapper digital data and large-scale digital elevation models

    NASA Technical Reports Server (NTRS)

    Butler, David R.; Walsh, Stephen J.; Brown, Daniel G.

    1991-01-01

    Methods are described for using Landsat Thematic Mapper digital data and digital elevation models for the display of natural hazard sites in a mountainous region of northwestern Montana, USA. Hazard zones can be easily identified on the three-dimensional images. Proximity of facilities such as highways and building locations to hazard sites can also be easily displayed. A temporal sequence of Landsat TM (or similar) satellite data sets could also be used to display landscape changes associated with dynamic natural hazard processes.

  7. Medical ultrasound - From inner space to outer space

    NASA Technical Reports Server (NTRS)

    Rooney, J. A.

    1984-01-01

    During the last decade, medical ultrasound has rapidly become a widely accepted imaging modality used in many medical specialties. It has the advantages that it is noninvasive, does not use ionizing radiation, is relatively inexpensive and is easy to use. Future trends in ultrasound include expanded areas of use, advanced signal processing and digital image analysis including tissue characterization and three-dimensional reconstructions.

  8. Three-dimensional Hessian matrix-based quantitative vascular imaging of rat iris with optical-resolution photoacoustic microscopy in vivo

    NASA Astrophysics Data System (ADS)

    Zhao, Huangxuan; Wang, Guangsong; Lin, Riqiang; Gong, Xiaojing; Song, Liang; Li, Tan; Wang, Wenjia; Zhang, Kunya; Qian, Xiuqing; Zhang, Haixia; Li, Lin; Liu, Zhicheng; Liu, Chengbo

    2018-04-01

    For the diagnosis and evaluation of ophthalmic diseases, imaging and quantitative characterization of vasculature in the iris are very important. The recently developed photoacoustic imaging, which is ultrasensitive in imaging endogenous hemoglobin molecules, provides a highly efficient label-free method for imaging blood vasculature in the iris. However, the development of advanced vascular quantification algorithms is still needed to enable accurate characterization of the underlying vasculature. We have developed a vascular information quantification algorithm by adopting a three-dimensional (3-D) Hessian matrix and applied for processing iris vasculature images obtained with a custom-built optical-resolution photoacoustic imaging system (OR-PAM). For the first time, we demonstrate in vivo 3-D vascular structures of a rat iris with a the label-free imaging method and also accurately extract quantitative vascular information, such as vessel diameter, vascular density, and vascular tortuosity. Our results indicate that the developed algorithm is capable of quantifying the vasculature in the 3-D photoacoustic images of the iris in-vivo, thus enhancing the diagnostic capability of the OR-PAM system for vascular-related ophthalmic diseases in vivo.

  9. Iris recognition via plenoptic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos-Villalobos, Hector J.; Boehnen, Chris Bensing; Bolme, David S.

    Iris recognition can be accomplished for a wide variety of eye images by using plenoptic imaging. Using plenoptic technology, it is possible to correct focus after image acquisition. One example technology reconstructs images having different focus depths and stitches them together, resulting in a fully focused image, even in an off-angle gaze scenario. Another example technology determines three-dimensional data for an eye and incorporates it into an eye model used for iris recognition processing. Another example technology detects contact lenses. Application of the technologies can result in improved iris recognition under a wide variety of scenarios.

  10. Three-dimensional thermographic imaging using a virtual wave concept

    NASA Astrophysics Data System (ADS)

    Burgholzer, Peter; Thor, Michael; Gruber, Jürgen; Mayr, Günther

    2017-03-01

    In this work, it is shown that image reconstruction methods from ultrasonic imaging can be employed for thermographic signals. Before using these imaging methods, a virtual signal is calculated by applying a local transformation to the temperature evolution measured on a sample surface. The introduced transformation describes all the irreversibility of the heat diffusion process and can be used for every sample shape. To date, one-dimensional methods have been primarily used in thermographic imaging. The proposed two-stage algorithm enables reconstruction in two and three dimensions. The feasibility of this approach is demonstrated through simulations and experiments. For the latter, small steel beads embedded in an epoxy resin are imaged. The resolution limit is found to be proportional to the depth of the structures and to be inversely proportional to the logarithm of the signal-to-noise ratio. Limited-view artefacts can arise if the measurement is performed on a single planar detection surface. These artifacts can be reduced by measuring the thermographic signals from multiple planes, which is demonstrated by numerical simulations and by experiments performed on an epoxy cube.

  11. Multiparallel Three-Dimensional Optical Microscopy

    NASA Technical Reports Server (NTRS)

    Nguyen, Lam K.; Price, Jeffrey H.; Kellner, Albert L.; Bravo-Zanoquera, Miguel

    2010-01-01

    Multiparallel three-dimensional optical microscopy is a method of forming an approximate three-dimensional image of a microscope sample as a collection of images from different depths through the sample. The imaging apparatus includes a single microscope plus an assembly of beam splitters and mirrors that divide the output of the microscope into multiple channels. An imaging array of photodetectors in each channel is located at a different distance along the optical path from the microscope, corresponding to a focal plane at a different depth within the sample. The optical path leading to each photodetector array also includes lenses to compensate for the variation of magnification with distance so that the images ultimately formed on all the photodetector arrays are of the same magnification. The use of optical components common to multiple channels in a simple geometry makes it possible to obtain high light-transmission efficiency with an optically and mechanically simple assembly. In addition, because images can be read out simultaneously from all the photodetector arrays, the apparatus can support three-dimensional imaging at a high scanning rate.

  12. Application of two segmentation protocols during the processing of virtual images in rapid prototyping: ex vivo study with human dry mandibles.

    PubMed

    Ferraz, Eduardo Gomes; Andrade, Lucio Costa Safira; dos Santos, Aline Rode; Torregrossa, Vinicius Rabelo; Rubira-Bullen, Izabel Regina Fischer; Sarmento, Viviane Almeida

    2013-12-01

    The aim of this study was to evaluate the accuracy of virtual three-dimensional (3D) reconstructions of human dry mandibles, produced from two segmentation protocols ("outline only" and "all-boundary lines"). Twenty virtual three-dimensional (3D) images were built from computed tomography exam (CT) of 10 dry mandibles, in which linear measurements between anatomical landmarks were obtained and compared to an error probability of 5 %. The results showed no statistically significant difference among the dry mandibles and the virtual 3D reconstructions produced from segmentation protocols tested (p = 0,24). During the designing of a virtual 3D reconstruction, both "outline only" and "all-boundary lines" segmentation protocols can be used. Virtual processing of CT images is the most complex stage during the manufacture of the biomodel. Establishing a better protocol during this phase allows the construction of a biomodel with characteristics that are closer to the original anatomical structures. This is essential to ensure a correct preoperative planning and a suitable treatment.

  13. Design and development of an ultrasound calibration phantom and system

    NASA Astrophysics Data System (ADS)

    Cheng, Alexis; Ackerman, Martin K.; Chirikjian, Gregory S.; Boctor, Emad M.

    2014-03-01

    Image-guided surgery systems are often used to provide surgeons with informational support. Due to several unique advantages such as ease of use, real-time image acquisition, and no ionizing radiation, ultrasound is a common medical imaging modality used in image-guided surgery systems. To perform advanced forms of guidance with ultrasound, such as virtual image overlays or automated robotic actuation, an ultrasound calibration process must be performed. This process recovers the rigid body transformation between a tracked marker attached to the ultrasound transducer and the ultrasound image. A phantom or model with known geometry is also required. In this work, we design and test an ultrasound calibration phantom and software. The two main considerations in this work are utilizing our knowledge of ultrasound physics to design the phantom and delivering an easy to use calibration process to the user. We explore the use of a three-dimensional printer to create the phantom in its entirety without need for user assembly. We have also developed software to automatically segment the three-dimensional printed rods from the ultrasound image by leveraging knowledge about the shape and scale of the phantom. In this work, we present preliminary results from using this phantom to perform ultrasound calibration. To test the efficacy of our method, we match the projection of the points segmented from the image to the known model and calculate a sum squared difference between each point for several combinations of motion generation and filtering methods. The best performing combination of motion and filtering techniques had an error of 1.56 mm and a standard deviation of 1.02 mm.

  14. Three-Dimensional, Live-Cell Imaging of Chromatin Dynamics in Plant Nuclei Using Chromatin Tagging Systems.

    PubMed

    Hirakawa, Takeshi; Matsunaga, Sachihiro

    2016-01-01

    In plants, chromatin dynamics spatiotemporally change in response to various environmental stimuli. However, little is known about chromatin dynamics in the nuclei of plants. Here, we introduce a three-dimensional, live-cell imaging method that can monitor chromatin dynamics in nuclei via a chromatin tagging system that can visualize specific genomic loci in living plant cells. The chromatin tagging system is based on a bacterial operator/repressor system in which the repressor is fused to fluorescent proteins. A recent refinement of promoters for the system solved the problem of gene silencing and abnormal pairing frequencies between operators. Using this system, we can detect the spatiotemporal dynamics of two homologous loci as two fluorescent signals within a nucleus and monitor the distance between homologous loci. These live-cell imaging methods will provide new insights into genome organization, development processes, and subnuclear responses to environmental stimuli in plants.

  15. [Computer-aided method and rapid prototyping for the personalized fabrication of a silicone bandage digital prosthesis].

    PubMed

    Ventura Ferreira, Nuno; Leal, Nuno; Correia Sá, Inês; Reis, Ana; Marques, Marisa

    2014-01-01

    The fabrication of digital prostheses has acquired growing importance not only for the possibility for the patient to overcome psychosocial trauma but also to promote grip functionality. An application method of three dimensional-computer-aided design technologies for the production of passive prostheses is presented by means of a fifth finger amputee clinical case following bilateral hand replantation.Three-dimensional-computerized tomography was used for the collection of anthropometric images of the hands. Computer-aided design techniques were used to develop the digital file-based prosthesis from the reconstruction images by inversion and superimposing the contra-lateral finger images. The rapid prototyping manufacturing method was used for the production of a silicone bandage prosthesis prototype. This approach replaces the traditional manual method by a virtual method that is basis for the optimization of a high speed, accurate and innovative process.

  16. Three-dimensional imaging of crystalline inclusions embedded in intact maize stalks.

    PubMed

    Badger, John; Lal, Jyotsana; Harder, Ross; Inouye, Hideyo; Gleber, S Charlotte; Vogt, Stefan; Robinson, Ian; Makowski, Lee

    2013-10-03

    Mineral inclusions in biomass are attracting increased scrutiny due to their potential impact on processing methods designed to provide renewable feedstocks for the production of chemicals and fuels. These inclusions are often sculpted by the plant into shapes required to support functional roles that include the storage of specific elements, strengthening of the plant structure, and providing a defense against pathogens and herbivores. In situ characterization of these inclusions faces substantial challenges since they are embedded in an opaque, complex polymeric matrix. Here we describe the use of Bragg coherent diffraction imaging (BCDI) to study mineral inclusions within intact maize stalks. Three-dimensional BCDI data sets were collected and used to reconstruct images of mineral inclusions at 50-100 nm resolution. Asymmetries in the intensity distributions around the Bragg peaks provided detailed information about the deformation fields within these crystal particles revealing lattice defects that result in distinct internal crystal domains.

  17. The study of integration about measurable image and 4D production

    NASA Astrophysics Data System (ADS)

    Zhang, Chunsen; Hu, Pingbo; Niu, Weiyun

    2008-12-01

    In this paper, we create the geospatial data of three-dimensional (3D) modeling by the combination of digital photogrammetry and digital close-range photogrammetry. For large-scale geographical background, we make the establishment of DEM and DOM combination of three-dimensional landscape model based on the digital photogrammetry which uses aerial image data to make "4D" (DOM: Digital Orthophoto Map, DEM: Digital Elevation Model, DLG: Digital Line Graphic and DRG: Digital Raster Graphic) production. For the range of building and other artificial features which the users are interested in, we realize that the real features of the three-dimensional reconstruction adopting the method of the digital close-range photogrammetry can come true on the basis of following steps : non-metric cameras for data collection, the camera calibration, feature extraction, image matching, and other steps. At last, we combine three-dimensional background and local measurements real images of these large geographic data and realize the integration of measurable real image and the 4D production.The article discussed the way of the whole flow and technology, achieved the three-dimensional reconstruction and the integration of the large-scale threedimensional landscape and the metric building.

  18. Diagnostic value of three-dimensional magnetic resonance imaging of inner ear after intratympanic gadolinium injection, and clinical application of magnetic resonance imaging scoring system in patients with delayed endolymphatic hydrops.

    PubMed

    Gu, X; Fang, Z-M; Liu, Y; Lin, S-L; Han, B; Zhang, R; Chen, X

    2014-01-01

    Three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging of the inner ear after intratympanic injection of gadolinium, together with magnetic resonance imaging scoring of the perilymphatic space, were used to investigate the positive identification rate of hydrops and determine the technique's diagnostic value for delayed endolymphatic hydrops. Twenty-five patients with delayed endolymphatic hydrops underwent pure tone audiometry, bithermal caloric testing, vestibular-evoked myogenic potential testing and three-dimensional magnetic resonance imaging of the inner ear after bilateral intratympanic injection of gadolinium. The perilymphatic space of the scanned images was analysed to investigate the positive identification rate of endolymphatic hydrops. According to the magnetic resonance imaging scoring of the perilymphatic space and the diagnostic standard, 84 per cent of the patients examined had endolymphatic hydrops. In comparison, the positive identification rates for vestibular-evoked myogenic potential and bithermal caloric testing were 52 per cent and 72 per cent respectively. Three-dimensional magnetic resonance imaging after intratympanic injection of gadolinium is valuable in the diagnosis of delayed endolymphatic hydrops and its classification. The perilymphatic space scoring system improved the diagnostic accuracy of magnetic resonance imaging.

  19. New deconvolution method for microscopic images based on the continuous Gaussian radial basis function interpolation model.

    PubMed

    Chen, Zhaoxue; Chen, Hao

    2014-01-01

    A deconvolution method based on the Gaussian radial basis function (GRBF) interpolation is proposed. Both the original image and Gaussian point spread function are expressed as the same continuous GRBF model, thus image degradation is simplified as convolution of two continuous Gaussian functions, and image deconvolution is converted to calculate the weighted coefficients of two-dimensional control points. Compared with Wiener filter and Lucy-Richardson algorithm, the GRBF method has an obvious advantage in the quality of restored images. In order to overcome such a defect of long-time computing, the method of graphic processing unit multithreading or increasing space interval of control points is adopted, respectively, to speed up the implementation of GRBF method. The experiments show that based on the continuous GRBF model, the image deconvolution can be efficiently implemented by the method, which also has a considerable reference value for the study of three-dimensional microscopic image deconvolution.

  20. Iterative Stable Alignment and Clustering of 2D Transmission Electron Microscope Images

    PubMed Central

    Yang, Zhengfan; Fang, Jia; Chittuluru, Johnathan; Asturias, Francisco J.; Penczek, Pawel A.

    2012-01-01

    SUMMARY Identification of homogeneous subsets of images in a macromolecular electron microscopy (EM) image data set is a critical step in single-particle analysis. The task is handled by iterative algorithms, whose performance is compromised by the compounded limitations of image alignment and K-means clustering. Here we describe an approach, iterative stable alignment and clustering (ISAC) that, relying on a new clustering method and on the concepts of stability and reproducibility, can extract validated, homogeneous subsets of images. ISAC requires only a small number of simple parameters and, with minimal human intervention, can eliminate bias from two-dimensional image clustering and maximize the quality of group averages that can be used for ab initio three-dimensional structural determination and analysis of macromolecular conformational variability. Repeated testing of the stability and reproducibility of a solution within ISAC eliminates heterogeneous or incorrect classes and introduces critical validation to the process of EM image clustering. PMID:22325773

  1. Three-dimensional reconstruction of rat knee joint using episcopic fluorescence image capture.

    PubMed

    Takaishi, R; Aoyama, T; Zhang, X; Higuchi, S; Yamada, S; Takakuwa, T

    2014-10-01

    Development of the knee joint was morphologically investigated, and the process of cavitation was analyzed by using episcopic fluorescence image capture (EFIC) to create spatial and temporal three-dimensional (3D) reconstructions. Knee joints of Wister rat embryos between embryonic day (E)14 and E20 were investigated. Samples were sectioned and visualized using an EFIC. Then, two-dimensional image stacks were reconstructed using OsiriX software, and 3D reconstructions were generated using Amira software. Cavitations of the knee joint were constructed from five divided portions. Cavity formation initiated at multiple sites at E17; among them, the femoropatellar cavity (FPC) was the first. Cavitations of the medial side preceded those of the lateral side. Each cavity connected at E20 when cavitations around the anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) were completed. Cavity formation initiated from six portions. In each portion, development proceeded asymmetrically. These results concerning anatomical development of the knee joint using EFIC contribute to a better understanding of the structural feature of the knee joint. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  2. Classification by Using Multispectral Point Cloud Data

    NASA Astrophysics Data System (ADS)

    Liao, C. T.; Huang, H. H.

    2012-07-01

    Remote sensing images are generally recorded in two-dimensional format containing multispectral information. Also, the semantic information is clearly visualized, which ground features can be better recognized and classified via supervised or unsupervised classification methods easily. Nevertheless, the shortcomings of multispectral images are highly depending on light conditions, and classification results lack of three-dimensional semantic information. On the other hand, LiDAR has become a main technology for acquiring high accuracy point cloud data. The advantages of LiDAR are high data acquisition rate, independent of light conditions and can directly produce three-dimensional coordinates. However, comparing with multispectral images, the disadvantage is multispectral information shortage, which remains a challenge in ground feature classification through massive point cloud data. Consequently, by combining the advantages of both LiDAR and multispectral images, point cloud data with three-dimensional coordinates and multispectral information can produce a integrate solution for point cloud classification. Therefore, this research acquires visible light and near infrared images, via close range photogrammetry, by matching images automatically through free online service for multispectral point cloud generation. Then, one can use three-dimensional affine coordinate transformation to compare the data increment. At last, the given threshold of height and color information is set as threshold in classification.

  3. JADA: a graphical user interface for comprehensive internal dose assessment in nuclear medicine.

    PubMed

    Grimes, Joshua; Uribe, Carlos; Celler, Anna

    2013-07-01

    The main objective of this work was to design a comprehensive dosimetry package that would keep all aspects of internal dose calculation within the framework of a single software environment and that would be applicable for a variety of dose calculation approaches. Our MATLAB-based graphical user interface (GUI) can be used for processing data obtained using pure planar, pure SPECT, or hybrid planar/SPECT imaging. Time-activity data for source regions are obtained using a set of tools that allow the user to reconstruct SPECT images, load images, coregister a series of planar images, and to perform two-dimensional and three-dimensional image segmentation. Curve fits are applied to the acquired time-activity data to construct time-activity curves, which are then integrated to obtain time-integrated activity coefficients. Subsequently, dose estimates are made using one of three methods. The organ level dose calculation subGUI calculates mean organ doses that are equivalent to dose assessment performed by OLINDA/EXM. Voxelized dose calculation options, which include the voxel S value approach and Monte Carlo simulation using the EGSnrc user code DOSXYZnrc, are available within the process 3D image data subGUI. The developed internal dosimetry software package provides an assortment of tools for every step in the dose calculation process, eliminating the need for manual data transfer between programs. This saves times and minimizes user errors, while offering a versatility that can be used to efficiently perform patient-specific internal dose calculations in a variety of clinical situations.

  4. System for forming a quadrified image comprising angularly related fields of view of a three dimensional object

    NASA Technical Reports Server (NTRS)

    Chamberlain, F. R. (Inventor)

    1980-01-01

    A system for generating, within a single frame of photographic film, a quadrified image including images of angularly (including orthogonally) related fields of view of a near field three dimensional object is described. It is characterized by three subsystems each of which includes a plurality of reflective surfaces for imaging a different field of view of the object at a different quadrant of the quadrified image. All of the subsystems have identical path lengths to the object photographed.

  5. Microwave imaging by three-dimensional Born linearization of electromagnetic scattering

    NASA Astrophysics Data System (ADS)

    Caorsi, S.; Gragnani, G. L.; Pastorino, M.

    1990-11-01

    An approach to microwave imaging is proposed that uses a three-dimensional vectorial form of the Born approximation to linearize the equation of electromagnetic scattering. The inverse scattering problem is numerically solved for three-dimensional geometries by means of the moment method. A pseudoinversion algorithm is adopted to overcome ill conditioning. Results show that the method is well suited for qualitative imaging purposes, while its capability for exactly reconstructing the complex dielectric permittivity is affected by the limitations inherent in the Born approximation and in ill conditioning.

  6. Three-dimensional ultrasound and image-directed surgery: implications for operating room personnel.

    PubMed

    Macedonia, C

    1997-04-01

    The proliferation of new imaging technologies is having a profound impact on all surgical specialties. New means of surgical visualization are allowing more surgeries to be performed less invasively. Three-dimensional ultrasound is a technology that has potential as a diagnostic tool, as a presurgical planning simulator, and as an adjunct to image-directed surgery. This article describes how three-dimensional ultrasound is being used by the United States Department of Defense and how it may change the role of the perioperative nurse in the near future.

  7. Image matrix processor for fast multi-dimensional computations

    DOEpatents

    Roberson, G.P.; Skeate, M.F.

    1996-10-15

    An apparatus for multi-dimensional computation is disclosed which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination. 10 figs.

  8. Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging.

    PubMed

    Park, Jae-Hyeung; Kim, Hak-Rin; Kim, Yunhee; Kim, Joohwan; Hong, Jisoo; Lee, Sin-Doo; Lee, Byoungho

    2004-12-01

    A depth-enhanced three-dimensional-two-dimensional convertible display that uses a polymer-dispersed liquid crystal based on the principle of integral imaging is proposed. In the proposed method, a lens array is located behind a transmission-type display panel to form an array of point-light sources, and a polymer-dispersed liquid crystal is electrically controlled to pass or to scatter light coming from these point-light sources. Therefore, three-dimensional-two-dimensional conversion is accomplished electrically without any mechanical movement. Moreover, the nonimaging structure of the proposed method increases the expressible depth range considerably. We explain the method of operation and present experimental results.

  9. National Defense Center of Excellence for Industrial Metrology and 3D Imaging

    DTIC Science & Technology

    2012-10-18

    validation rather than mundane data-reduction/analysis tasks. Indeed, the new financial and technical resources being brought to bear by integrating CT...of extremely fast axial scanners. By replacing the single-spot detector by a detector array, a three-dimensional image is acquired by one depth scan...the number of acquired voxels per complete two-dimensional or three-dimensional image, the axial and lateral resolution, the depth range, the

  10. Stereo imaging with spaceborne radars

    NASA Technical Reports Server (NTRS)

    Leberl, F.; Kobrick, M.

    1983-01-01

    Stereo viewing is a valuable tool in photointerpretation and is used for the quantitative reconstruction of the three dimensional shape of a topographical surface. Stereo viewing refers to a visual perception of space by presenting an overlapping image pair to an observer so that a three dimensional model is formed in the brain. Some of the observer's function is performed by machine correlation of the overlapping images - so called automated stereo correlation. The direct perception of space with two eyes is often called natural binocular vision; techniques of generating three dimensional models of the surface from two sets of monocular image measurements is the topic of stereology.

  11. Systematic Parameterization, Storage, and Representation of Volumetric DICOM Data.

    PubMed

    Fischer, Felix; Selver, M Alper; Gezer, Sinem; Dicle, Oğuz; Hillen, Walter

    Tomographic medical imaging systems produce hundreds to thousands of slices, enabling three-dimensional (3D) analysis. Radiologists process these images through various tools and techniques in order to generate 3D renderings for various applications, such as surgical planning, medical education, and volumetric measurements. To save and store these visualizations, current systems use snapshots or video exporting, which prevents further optimizations and requires the storage of significant additional data. The Grayscale Softcopy Presentation State extension of the Digital Imaging and Communications in Medicine (DICOM) standard resolves this issue for two-dimensional (2D) data by introducing an extensive set of parameters, namely 2D Presentation States (2DPR), that describe how an image should be displayed. 2DPR allows storing these parameters instead of storing parameter applied images, which cause unnecessary duplication of the image data. Since there is currently no corresponding extension for 3D data, in this study, a DICOM-compliant object called 3D presentation states (3DPR) is proposed for the parameterization and storage of 3D medical volumes. To accomplish this, the 3D medical visualization process is divided into four tasks, namely pre-processing, segmentation, post-processing, and rendering. The important parameters of each task are determined. Special focus is given to the compression of segmented data, parameterization of the rendering process, and DICOM-compliant implementation of the 3DPR object. The use of 3DPR was tested in a radiology department on three clinical cases, which require multiple segmentations and visualizations during the workflow of radiologists. The results show that 3DPR can effectively simplify the workload of physicians by directly regenerating 3D renderings without repeating intermediate tasks, increase efficiency by preserving all user interactions, and provide efficient storage as well as transfer of visualized data.

  12. Three-dimensional biofilm structure quantification.

    PubMed

    Beyenal, Haluk; Donovan, Conrad; Lewandowski, Zbigniew; Harkin, Gary

    2004-12-01

    Quantitative parameters describing biofilm physical structure have been extracted from three-dimensional confocal laser scanning microscopy images and used to compare biofilm structures, monitor biofilm development, and quantify environmental factors affecting biofilm structure. Researchers have previously used biovolume, volume to surface ratio, roughness coefficient, and mean and maximum thicknesses to compare biofilm structures. The selection of these parameters is dependent on the availability of software to perform calculations. We believe it is necessary to develop more comprehensive parameters to describe heterogeneous biofilm morphology in three dimensions. This research presents parameters describing three-dimensional biofilm heterogeneity, size, and morphology of biomass calculated from confocal laser scanning microscopy images. This study extends previous work which extracted quantitative parameters regarding morphological features from two-dimensional biofilm images to three-dimensional biofilm images. We describe two types of parameters: (1) textural parameters showing microscale heterogeneity of biofilms and (2) volumetric parameters describing size and morphology of biomass. The three-dimensional features presented are average (ADD) and maximum diffusion distances (MDD), fractal dimension, average run lengths (in X, Y and Z directions), aspect ratio, textural entropy, energy and homogeneity. We discuss the meaning of each parameter and present the calculations in detail. The developed algorithms, including automatic thresholding, are implemented in software as MATLAB programs which will be available at site prior to publication of the paper.

  13. [Three-dimensional tooth model reconstruction based on fusion of dental computed tomography images and laser-scanned images].

    PubMed

    Zhang, Dongxia; Gan, Yangzhou; Xiong, Jing; Xia, Zeyang

    2017-02-01

    Complete three-dimensional(3D) tooth model provides essential information to assist orthodontists for diagnosis and treatment planning. Currently, 3D tooth model is mainly obtained by segmentation and reconstruction from dental computed tomography(CT) images. However, the accuracy of 3D tooth model reconstructed from dental CT images is low and not applicable for invisalign design. And another serious problem also occurs, i.e. frequentative dental CT scan during different intervals of orthodontic treatment often leads to radiation to the patients. Hence, this paper proposed a method to reconstruct tooth model based on fusion of dental CT images and laser-scanned images. A complete3 D tooth model was reconstructed with the registration and fusion between the root reconstructed from dental CT images and the crown reconstructed from laser-scanned images. The crown of the complete 3D tooth model reconstructed with the proposed method has higher accuracy. Moreover, in order to reconstruct complete 3D tooth model of each orthodontic treatment interval, only one pre-treatment CT scan is needed and in the orthodontic treatment process only the laser-scan is required. Therefore, radiation to the patients can be reduced significantly.

  14. Heterodyne range imaging as an alternative to photogrammetry

    NASA Astrophysics Data System (ADS)

    Dorrington, Adrian; Cree, Michael; Carnegie, Dale; Payne, Andrew; Conroy, Richard

    2007-01-01

    Solid-state full-field range imaging technology, capable of determining the distance to objects in a scene simultaneously for every pixel in an image, has recently achieved sub-millimeter distance measurement precision. With this level of precision, it is becoming practical to use this technology for high precision three-dimensional metrology applications. Compared to photogrammetry, range imaging has the advantages of requiring only one viewing angle, a relatively short measurement time, and simplistic fast data processing. In this paper we fist review the range imaging technology, then describe an experiment comparing both photogrammetric and range imaging measurements of a calibration block with attached retro-reflective targets. The results show that the range imaging approach exhibits errors of approximately 0.5 mm in-plane and almost 5 mm out-of-plane; however, these errors appear to be mostly systematic. We then proceed to examine the physical nature and characteristics of the image ranging technology and discuss the possible causes of these systematic errors. Also discussed is the potential for further system characterization and calibration to compensate for the range determination and other errors, which could possibly lead to three-dimensional measurement precision approaching that of photogrammetry.

  15. In vivo three-dimensional imaging of human corneal nerves using Fourier-domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Shin, Jun Geun; Hwang, Ho Sik; Eom, Tae Joong; Lee, Byeong Ha

    2017-01-01

    We have employed Fourier-domain optical coherence tomography (FD-OCT) to achieve corneal nerve imaging, which could be useful in surgical planning and refractive surgery. Because the three-dimensional (3-D) images of the corneal nerves were acquired in vivo, unintentional movement of the subject during the measurement led to imaging artifacts. These artifacts were compensated for with a series of signal processing techniques, namely realigning A-scan images to flatten the boundary and cross-correlating adjacent B-scan images. To overcome the undesirably large signal from scattering at the corneal surface and iris, volume rendering and maximum intensity projections were performed with only the data taken in the stromal region of the cornea, which is located between 200 and 500 μm from the corneal surface. The 3-D volume imaging of a 10×10 mm2 area took 9.8 s, which is slightly shorter than the normal tear breakup time. This allowed us to image the branched and threadlike corneal nerve bundles within the human eye. The experimental results show that FD-OCT systems have the potential to be useful in clinical investigations of corneal nerves and by minimizing nerve injury during clinical or surgical procedures.

  16. Image gathering, coding, and processing: End-to-end optimization for efficient and robust acquisition of visual information

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.; Fales, Carl L.

    1990-01-01

    Researchers are concerned with the end-to-end performance of image gathering, coding, and processing. The applications range from high-resolution television to vision-based robotics, wherever the resolution, efficiency and robustness of visual information acquisition and processing are critical. For the presentation at this workshop, it is convenient to divide research activities into the following two overlapping areas: The first is the development of focal-plane processing techniques and technology to effectively combine image gathering with coding, with an emphasis on low-level vision processing akin to the retinal processing in human vision. The approach includes the familiar Laplacian pyramid, the new intensity-dependent spatial summation, and parallel sensing/processing networks. Three-dimensional image gathering is attained by combining laser ranging with sensor-array imaging. The second is the rigorous extension of information theory and optimal filtering to visual information acquisition and processing. The goal is to provide a comprehensive methodology for quantitatively assessing the end-to-end performance of image gathering, coding, and processing.

  17. Cardiovascular imaging and image processing: Theory and practice - 1975; Proceedings of the Conference, Stanford University, Stanford, Calif., July 10-12, 1975

    NASA Technical Reports Server (NTRS)

    Harrison, D. C.; Sandler, H.; Miller, H. A.

    1975-01-01

    The present collection of papers outlines advances in ultrasonography, scintigraphy, and commercialization of medical technology as applied to cardiovascular diagnosis in research and clinical practice. Particular attention is given to instrumentation, image processing and display. As necessary concomitants to mathematical analysis, recently improved magnetic recording methods using tape or disks and high-speed computers of large capacity are coming into use. Major topics include Doppler ultrasonic techniques, high-speed cineradiography, three-dimensional imaging of the myocardium with isotopes, sector-scanning echocardiography, and commercialization of the echocardioscope. Individual items are announced in this issue.

  18. Visual Image Sensor Organ Replacement

    NASA Technical Reports Server (NTRS)

    Maluf, David A.

    2014-01-01

    This innovation is a system that augments human vision through a technique called "Sensing Super-position" using a Visual Instrument Sensory Organ Replacement (VISOR) device. The VISOR device translates visual and other sensors (i.e., thermal) into sounds to enable very difficult sensing tasks. Three-dimensional spatial brightness and multi-spectral maps of a sensed image are processed using real-time image processing techniques (e.g. histogram normalization) and transformed into a two-dimensional map of an audio signal as a function of frequency and time. Because the human hearing system is capable of learning to process and interpret extremely complicated and rapidly changing auditory patterns, the translation of images into sounds reduces the risk of accidentally filtering out important clues. The VISOR device was developed to augment the current state-of-the-art head-mounted (helmet) display systems. It provides the ability to sense beyond the human visible light range, to increase human sensing resolution, to use wider angle visual perception, and to improve the ability to sense distances. It also allows compensation for movement by the human or changes in the scene being viewed.

  19. 3-D characterization of weathered building limestones by high resolution synchrotron X-ray microtomography.

    PubMed

    Rozenbaum, O

    2011-04-15

    Understanding the weathering processes of building stones and more generally of their transfer properties requires detailed knowledge of the porosity characteristics. This study aims at analyzing three-dimensional images obtained by X-ray microtomography of building stones. In order to validate these new results a weathered limestone previously characterised (Rozenbaum et al., 2007) by two-dimensional image analysis was selected. The 3-D images were analysed by a set of mathematical tools that enable the description of the pore and solid phase distribution. Results show that 3-D image analysis is a powerful technique to characterise the morphological, structural and topological differences due to weathering. The paper also discusses criteria for mathematically determining whether a stone is weathered or not. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Fractal Dimensionality of Pore and Grain Volume of a Siliciclastic Marine Sand

    NASA Astrophysics Data System (ADS)

    Reed, A. H.; Pandey, R. B.; Lavoie, D. L.

    Three-dimensional (3D) spatial distributions of pore and grain volumes were determined from high-resolution computer tomography (CT) images of resin-impregnated marine sands. Using a linear gradient extrapolation method, cubic three-dimensional samples were constructed from two-dimensional CT images. Image porosity (0.37) was found to be consistent with the estimate of porosity by water weight loss technique (0.36). Scaling of the pore volume (Vp) with the linear size (L), V~LD provides the fractal dimensionalities of the pore volume (D=2.74+/-0.02) and grain volume (D=2.90+/-0.02) typical for sedimentary materials.

  1. Development of a system for acquiring, reconstructing, and visualizing three-dimensional ultrasonic angiograms

    NASA Astrophysics Data System (ADS)

    Edwards, Warren S.; Ritchie, Cameron J.; Kim, Yongmin; Mack, Laurence A.

    1995-04-01

    We have developed a three-dimensional (3D) imaging system using power Doppler (PD) ultrasound (US). This system can be used for visualizing and analyzing the vascular anatomy of parenchymal organs. To create the 3D PD images, we acquired a series of two-dimensional PD images from a commercial US scanner and recorded the position and orientation of each image using a 3D magnetic position sensor. Three-dimensional volumes were reconstructed using specially designed software and then volume rendered for display. We assessed the feasibility and geometric accuracy of our system with various flow phantoms. The system was then tested on a volunteer by scanning a transplanted kidney. The reconstructed volumes of the flow phantom contained less than 1 mm of geometric distortion and the 3D images of the transplanted kidney depicted the segmental, arcuate, and interlobar vessels.

  2. Optical design and development of a snapshot light-field laryngoscope

    NASA Astrophysics Data System (ADS)

    Zhu, Shuaishuai; Jin, Peng; Liang, Rongguang; Gao, Liang

    2018-02-01

    The convergence of recent advances in optical fabrication and digital processing yields a generation of imaging technology-light-field (LF) cameras which bridge the realms of applied mathematics, optics, and high-performance computing. Herein for the first time, we introduce the paradigm of LF imaging into laryngoscopy. The resultant probe can image the three-dimensional shape of vocal folds within a single camera exposure. Furthermore, to improve the spatial resolution, we developed an image fusion algorithm, providing a simple solution to a long-standing problem in LF imaging.

  3. Edge detection and localization with edge pattern analysis and inflection characterization

    NASA Astrophysics Data System (ADS)

    Jiang, Bo

    2012-05-01

    In general edges are considered to be abrupt changes or discontinuities in two dimensional image signal intensity distributions. The accuracy of front-end edge detection methods in image processing impacts the eventual success of higher level pattern analysis downstream. To generalize edge detectors designed from a simple ideal step function model to real distortions in natural images, research on one dimensional edge pattern analysis to improve the accuracy of edge detection and localization proposes an edge detection algorithm, which is composed by three basic edge patterns, such as ramp, impulse, and step. After mathematical analysis, general rules for edge representation based upon the classification of edge types into three categories-ramp, impulse, and step (RIS) are developed to reduce detection and localization errors, especially reducing "double edge" effect that is one important drawback to the derivative method. But, when applying one dimensional edge pattern in two dimensional image processing, a new issue is naturally raised that the edge detector should correct marking inflections or junctions of edges. Research on human visual perception of objects and information theory pointed out that a pattern lexicon of "inflection micro-patterns" has larger information than a straight line. Also, research on scene perception gave an idea that contours have larger information are more important factor to determine the success of scene categorization. Therefore, inflections or junctions are extremely useful features, whose accurate description and reconstruction are significant in solving correspondence problems in computer vision. Therefore, aside from adoption of edge pattern analysis, inflection or junction characterization is also utilized to extend traditional derivative edge detection algorithm. Experiments were conducted to test my propositions about edge detection and localization accuracy improvements. The results support the idea that these edge detection method improvements are effective in enhancing the accuracy of edge detection and localization.

  4. Making three-dimensional echocardiography more tangible: a workflow for three-dimensional printing with echocardiographic data.

    PubMed

    Mashari, Azad; Montealegre-Gallegos, Mario; Knio, Ziyad; Yeh, Lu; Jeganathan, Jelliffe; Matyal, Robina; Khabbaz, Kamal R; Mahmood, Feroze

    2016-12-01

    Three-dimensional (3D) printing is a rapidly evolving technology with several potential applications in the diagnosis and management of cardiac disease. Recently, 3D printing (i.e. rapid prototyping) derived from 3D transesophageal echocardiography (TEE) has become possible. Due to the multiple steps involved and the specific equipment required for each step, it might be difficult to start implementing echocardiography-derived 3D printing in a clinical setting. In this review, we provide an overview of this process, including its logistics and organization of tools and materials, 3D TEE image acquisition strategies, data export, format conversion, segmentation, and printing. Generation of patient-specific models of cardiac anatomy from echocardiographic data is a feasible, practical application of 3D printing technology. © 2016 The authors.

  5. Three-dimensional head anthropometric analysis

    NASA Astrophysics Data System (ADS)

    Enciso, Reyes; Shaw, Alex M.; Neumann, Ulrich; Mah, James

    2003-05-01

    Currently, two-dimensional photographs are most commonly used to facilitate visualization, assessment and treatment of facial abnormalities in craniofacial care but are subject to errors because of perspective, projection, lack metric and 3-dimensional information. One can find in the literature a variety of methods to generate 3-dimensional facial images such as laser scans, stereo-photogrammetry, infrared imaging and even CT however each of these methods contain inherent limitations and as such no systems are in common clinical use. In this paper we will focus on development of indirect 3-dimensional landmark location and measurement of facial soft-tissue with light-based techniques. In this paper we will statistically evaluate and validate a current three-dimensional image-based face modeling technique using a plaster head model. We will also develop computer graphics tools for indirect anthropometric measurements in a three-dimensional head model (or polygonal mesh) including linear distances currently used in anthropometry. The measurements will be tested against a validated 3-dimensional digitizer (MicroScribe 3DX).

  6. Development and Translation of Hybrid Optoacoustic/Ultrasonic Tomography for Early Breast Cancer Detection

    DTIC Science & Technology

    2014-09-01

    to develop an optimized system design and associated image reconstruction algorithms for a hybrid three-dimensional (3D) breast imaging system that...research is to develop an optimized system design and associated image reconstruction algorithms for a hybrid three-dimensional (3D) breast imaging ...i) developed time-of- flight extraction algorithms to perform USCT, (ii) developing image reconstruction algorithms for USCT, (iii) developed

  7. Recent advances in imaging technologies in dentistry.

    PubMed

    Shah, Naseem; Bansal, Nikhil; Logani, Ajay

    2014-10-28

    Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools, specially imaging methods, have become mandatory. From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation (brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry.

  8. Recent advances in imaging technologies in dentistry

    PubMed Central

    Shah, Naseem; Bansal, Nikhil; Logani, Ajay

    2014-01-01

    Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools, specially imaging methods, have become mandatory. From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation (brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry. PMID:25349663

  9. 4-D photoacoustic tomography.

    PubMed

    Xiang, Liangzhong; Wang, Bo; Ji, Lijun; Jiang, Huabei

    2013-01-01

    Photoacoustic tomography (PAT) offers three-dimensional (3D) structural and functional imaging of living biological tissue with label-free, optical absorption contrast. These attributes lend PAT imaging to a wide variety of applications in clinical medicine and preclinical research. Despite advances in live animal imaging with PAT, there is still a need for 3D imaging at centimeter depths in real-time. We report the development of four dimensional (4D) PAT, which integrates time resolutions with 3D spatial resolution, obtained using spherical arrays of ultrasonic detectors. The 4D PAT technique generates motion pictures of imaged tissue, enabling real time tracking of dynamic physiological and pathological processes at hundred micrometer-millisecond resolutions. The 4D PAT technique is used here to image needle-based drug delivery and pharmacokinetics. We also use this technique to monitor 1) fast hemodynamic changes during inter-ictal epileptic seizures and 2) temperature variations during tumor thermal therapy.

  10. Investigations on the change of texture of plant cells due to preservative treatments by digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Vora, Priyanka; Anand, Arun

    2014-10-01

    Texture change is observed in preserved fruits and vegetables. Responsible factors for texture change during preservative treatments are cell morphology, cell wall structure, cell turger, water content and some biochemical components, and also the environmental conditions. Digital Holographic microscopy (DHM) is a quantitative phase contrast imaging technique, which provides three dimensional optical thickness profiles of transparent specimen. Using DHM the morphology of plant cells preserved by refrigeration or stored in vinegar or in sodium chloride can be obtained. This information about the spatio-temporal evolution of optical volume and thickness can be an important tool in area of food processing. Also from the three dimensional images, the texture of the cell can be retrieved and can be investigated under varying conditions.

  11. 75 FR 77885 - Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... of federally-funded research and development. Foreign patent applications are filed on selected... applications. Software System for Quantitative Assessment of Vasculature in Three Dimensional Images... three dimensional vascular networks from medical and basic research images. Deregulation of angiogenesis...

  12. Lesson learned and dispelled myths: three-dimensional imaging of the human vagina.

    PubMed

    Barnhart, Kurt T; Pretorius, E Scott; Malamud, Daniel

    2004-05-01

    Three-dimensional imaging of the human vagina demonstrates that the cross section can be a "W," rather than an "H," and that intravaginal gel can ascend into the endocervix and presumably into the endometrium.

  13. Building quantitative, three-dimensional atlases of gene expression and morphology at cellular resolution.

    PubMed

    Knowles, David W; Biggin, Mark D

    2013-01-01

    Animals comprise dynamic three-dimensional arrays of cells that express gene products in intricate spatial and temporal patterns that determine cellular differentiation and morphogenesis. A rigorous understanding of these developmental processes requires automated methods that quantitatively record and analyze complex morphologies and their associated patterns of gene expression at cellular resolution. Here we summarize light microscopy-based approaches to establish permanent, quantitative datasets-atlases-that record this information. We focus on experiments that capture data for whole embryos or large areas of tissue in three dimensions, often at multiple time points. We compare and contrast the advantages and limitations of different methods and highlight some of the discoveries made. We emphasize the need for interdisciplinary collaborations and integrated experimental pipelines that link sample preparation, image acquisition, image analysis, database design, visualization, and quantitative analysis. Copyright © 2013 Wiley Periodicals, Inc.

  14. A Low-Cost PC-Based Image Workstation for Dynamic Interactive Display of Three-Dimensional Anatomy

    NASA Astrophysics Data System (ADS)

    Barrett, William A.; Raya, Sai P.; Udupa, Jayaram K.

    1989-05-01

    A system for interactive definition, automated extraction, and dynamic interactive display of three-dimensional anatomy has been developed and implemented on a low-cost PC-based image workstation. An iconic display is used for staging predefined image sequences through specified increments of tilt and rotation over a solid viewing angle. Use of a fast processor facilitates rapid extraction and rendering of the anatomy into predefined image views. These views are formatted into a display matrix in a large image memory for rapid interactive selection and display of arbitrary spatially adjacent images within the viewing angle, thereby providing motion parallax depth cueing for efficient and accurate perception of true three-dimensional shape, size, structure, and spatial interrelationships of the imaged anatomy. The visual effect is that of holding and rotating the anatomy in the hand.

  15. Stereoscopic Imaging in Hypersonics Boundary Layers using Planar Laser-Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Bathel, Brett; Inman, Jennifer A.; Alderfer, David W.; Jones, Stephen B.

    2008-01-01

    Stereoscopic time-resolved visualization of three-dimensional structures in a hypersonic flow has been performed for the first time. Nitric Oxide (NO) was seeded into hypersonic boundary layer flows that were designed to transition from laminar to turbulent. A thick laser sheet illuminated and excited the NO, causing spatially-varying fluorescence. Two cameras in a stereoscopic configuration were used to image the fluorescence. The images were processed in a computer visualization environment to provide stereoscopic image pairs. Two methods were used to display these image pairs: a cross-eyed viewing method which can be viewed by naked eyes, and red/blue anaglyphs, which require viewing through red/blue glasses. The images visualized three-dimensional information that would be lost if conventional planar laser-induced fluorescence imaging had been used. Two model configurations were studied in NASA Langley Research Center's 31-Inch Mach 10 Air Wind tunnel. One model was a 10 degree half-angle wedge containing a small protuberance to force the flow to transition. The other model was a 1/3-scale, truncated Hyper-X forebody model with blowing through a series of holes to force the boundary layer flow to transition to turbulence. In the former case, low flowrates of pure NO seeded and marked the boundary layer fluid. In the latter, a trace concentration of NO was seeded into the injected N2 gas. The three-dimensional visualizations have an effective time resolution of about 500 ns, which is fast enough to freeze this hypersonic flow. The 512x512 resolution of the resulting images is much higher than high-speed laser-sheet scanning systems with similar time response, which typically measure 10-20 planes.

  16. Three-dimensional propagation in near-field tomographic X-ray phase retrieval

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruhlandt, Aike, E-mail: aruhlan@gwdg.de; Salditt, Tim

    An extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions is presented, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. This paper presents an extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. The approach is based on a novel three-dimensional propagator and is derived for the case of optically weak objects. It can be easily implemented in current phase retrieval architectures, is computationally efficient and reduces the need for restrictive prior assumptions, resultingmore » in superior reconstruction quality.« less

  17. Three-Dimensional Root Phenotyping with a Novel Imaging and Software Platform1[C][W][OA

    PubMed Central

    Clark, Randy T.; MacCurdy, Robert B.; Jung, Janelle K.; Shaff, Jon E.; McCouch, Susan R.; Aneshansley, Daniel J.; Kochian, Leon V.

    2011-01-01

    A novel imaging and software platform was developed for the high-throughput phenotyping of three-dimensional root traits during seedling development. To demonstrate the platform’s capacity, plants of two rice (Oryza sativa) genotypes, Azucena and IR64, were grown in a transparent gellan gum system and imaged daily for 10 d. Rotational image sequences consisting of 40 two-dimensional images were captured using an optically corrected digital imaging system. Three-dimensional root reconstructions were generated and analyzed using a custom-designed software, RootReader3D. Using the automated and interactive capabilities of RootReader3D, five rice root types were classified and 27 phenotypic root traits were measured to characterize these two genotypes. Where possible, measurements from the three-dimensional platform were validated and were highly correlated with conventional two-dimensional measurements. When comparing gellan gum-grown plants with those grown under hydroponic and sand culture, significant differences were detected in morphological root traits (P < 0.05). This highly flexible platform provides the capacity to measure root traits with a high degree of spatial and temporal resolution and will facilitate novel investigations into the development of entire root systems or selected components of root systems. In combination with the extensive genetic resources that are now available, this platform will be a powerful resource to further explore the molecular and genetic determinants of root system architecture. PMID:21454799

  18. Towards an easier creation of three-dimensional data for embedding into scholarly 3D PDF (Portable Document Format) files

    PubMed Central

    2015-01-01

    The Portable Document Format (PDF) allows for embedding three-dimensional (3D) models and is therefore particularly suitable to communicate respective data, especially as regards scholarly articles. The generation of the necessary model data, however, is still challenging, especially for inexperienced users. This prevents an unrestrained proliferation of 3D PDF usage in scholarly communication. This article introduces a new solution for the creation of three of types of 3D geometry (point clouds, polylines and triangle meshes), that is based on MeVisLab, a framework for biomedical image processing. This solution enables even novice users to generate the model data files without requiring programming skills and without the need for an intensive training by simply using it as a conversion tool. Advanced users can benefit from the full capability of MeVisLab to generate and export the model data as part of an overall processing chain. Although MeVisLab is primarily designed for handling biomedical image data, the new module is not restricted to this domain. It can be used for all scientific disciplines. PMID:25780759

  19. Towards an easier creation of three-dimensional data for embedding into scholarly 3D PDF (Portable Document Format) files.

    PubMed

    Newe, Axel

    2015-01-01

    The Portable Document Format (PDF) allows for embedding three-dimensional (3D) models and is therefore particularly suitable to communicate respective data, especially as regards scholarly articles. The generation of the necessary model data, however, is still challenging, especially for inexperienced users. This prevents an unrestrained proliferation of 3D PDF usage in scholarly communication. This article introduces a new solution for the creation of three of types of 3D geometry (point clouds, polylines and triangle meshes), that is based on MeVisLab, a framework for biomedical image processing. This solution enables even novice users to generate the model data files without requiring programming skills and without the need for an intensive training by simply using it as a conversion tool. Advanced users can benefit from the full capability of MeVisLab to generate and export the model data as part of an overall processing chain. Although MeVisLab is primarily designed for handling biomedical image data, the new module is not restricted to this domain. It can be used for all scientific disciplines.

  20. Award-Winning Animation Helps Scientists See Nature at Work | News | NREL

    Science.gov Websites

    Scientists See Nature at Work August 8, 2008 A computer-aided image combines a photo of a man with a three -dimensional, computer-generated image. The man has long brown hair and a long beard. He is wearing a blue - simultaneously. "It is very difficult to parallelize the process to run even on a huge computer,"

  1. The Design, Implementation, and Evaluation of a Digital Interactive Globe System Integrated into an Earth Science Course

    ERIC Educational Resources Information Center

    Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen

    2018-01-01

    The aim of this study is to design and implement a digital interactive globe system (DIGS), by integrating low-cost equipment to make DIGS cost-effective. DIGS includes a data processing unit, a wireless control unit, an image-capturing unit, a laser emission unit, and a three-dimensional hemispheric body-imaging screen. A quasi-experimental study…

  2. Two- and three-dimensional ultrasound imaging to facilitate detection and targeting of taut bands in myofascial pain syndrome.

    PubMed

    Shankar, Hariharan; Reddy, Sapna

    2012-07-01

    Ultrasound imaging has gained acceptance in pain management interventions. Features of myofascial pain syndrome have been explored using ultrasound imaging and elastography. There is a paucity of reports showing the benefit clinically. This report provides three-dimensional features of taut bands and highlights the advantages of using two-dimensional ultrasound imaging to improve targeting of taut bands in deeper locations. Fifty-eight-year-old man with pain and decreased range of motion of the right shoulder was referred for further management of pain above the scapula after having failed conservative management for myofascial pain syndrome. Three-dimensional ultrasound images provided evidence of aberrancy in the architecture of the muscle fascicles around the taut bands compared to the adjacent normal muscle tissue during serial sectioning of the accrued image. On two-dimensional ultrasound imaging over the palpated taut band, areas of hyperechogenicity were visualized in the trapezius and supraspinatus muscles. Subsequently, the patient received ultrasound-guided real-time lidocaine injections to the trigger points with successful resolution of symptoms. This is a successful demonstration of utility of ultrasound imaging of taut bands in the management of myofascial pain syndrome. Utility of this imaging modality in myofascial pain syndrome requires further clinical validation. Wiley Periodicals, Inc.

  3. Evaluation of three-dimensional computed tomography processing for deep inferior epigastric perforator flap breast reconstruction.

    PubMed

    Teoh, Raymond; Johnson, Raleigh F; Nishino, Thomas K; Ethridge, Richard T

    2007-01-01

    The deep inferior epigastric perforator flap procedure has become a popular alternative for women who require breast reconstruction. One of the difficulties with this procedure is identifying perforator arteries large enough to ensure that the harvested tissue is well vascularized. Current techniques involve imaging the perforator arteries with computed tomography (CT) to produce a grid mapping the locations of the perforator arteries relative to the umbilicus. To compare the time it takes to produce a map of the perforators using either two-dimensional (2D) or three-dimensional (3D) CT, and to see whether there is a benefit in using a 3D model. Patient CT abdomen and pelvis scans were acquired from a GE 64-slice scanner. CT image processing was performed with the GE 3D Advantage Workstation v4.2 software. Maps of the perforators were generated both as 2D and 3D representations. Perforators within a region 5 cm rostral and 7 cm caudal to the umbilicus were measured and the times to perform these measurements using both 2D and 3D images were recorded by a stopwatch. Although the 3D method took longer than the 2D method (mean [+/- SD] time 1:51+/-0:35 min versus 1:08+/-0:16 min per perforator artery, respectively), producing a 3D image provides much more information than the 2D images alone. Additionally, an actual-sized 3D image can be printed out, removing the need to make measurements and producing a grid. Although it took less time to create a grid of the perforators using 2D axial CT scans, the 3D reconstruction of the abdomen allows the plastic surgeons to better visualize the patient's anatomy and has definite clinical utility.

  4. Integration of Computed Tomography and Three-Dimensional Echocardiography for Hybrid Three-Dimensional Printing in Congenital Heart Disease.

    PubMed

    Gosnell, Jordan; Pietila, Todd; Samuel, Bennett P; Kurup, Harikrishnan K N; Haw, Marcus P; Vettukattil, Joseph J

    2016-12-01

    Three-dimensional (3D) printing is an emerging technology aiding diagnostics, education, and interventional, and surgical planning in congenital heart disease (CHD). Three-dimensional printing has been derived from computed tomography, cardiac magnetic resonance, and 3D echocardiography. However, individually the imaging modalities may not provide adequate visualization of complex CHD. The integration of the strengths of two or more imaging modalities has the potential to enhance visualization of cardiac pathomorphology. We describe the feasibility of hybrid 3D printing from two imaging modalities in a patient with congenitally corrected transposition of the great arteries (L-TGA). Hybrid 3D printing may be useful as an additional tool for cardiologists and cardiothoracic surgeons in planning interventions in children and adults with CHD.

  5. Adaptation of an articulated fetal skeleton model to three-dimensional fetal image data

    NASA Astrophysics Data System (ADS)

    Klinder, Tobias; Wendland, Hannes; Wachter-Stehle, Irina; Roundhill, David; Lorenz, Cristian

    2015-03-01

    The automatic interpretation of three-dimensional fetal images poses specific challenges compared to other three-dimensional diagnostic data, especially since the orientation of the fetus in the uterus and the position of the extremities is highly variable. In this paper, we present a comprehensive articulated model of the fetal skeleton and the adaptation of the articulation for pose estimation in three-dimensional fetal images. The model is composed out of rigid bodies where the articulations are represented as rigid body transformations. Given a set of target landmarks, the model constellation can be estimated by optimization of the pose parameters. Experiments are carried out on 3D fetal MRI data yielding an average error per case of 12.03+/-3.36 mm between target and estimated landmark positions.

  6. Label-free imaging of the dynamics of cell-to-cell string-like structure bridging in the free-space by low-coherent quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Yamauchi, Toyohiko; Iwai, Hidenao; Yamashita, Yutaka

    2013-03-01

    We succeeded in utilizing our low-coherent quantitative phase microscopy (LC-QPM) to achieve label-free and three-dimensional imaging of string-like structures bridging the free-space between live cells. In past studies, three dimensional morphology of the string-like structures between cells had been investigated by electron microscopies and fluorescence microscopies and these structures were called "membrane nanotubes" or "tunneling nanotubes." However, use of electron microscopy inevitably kills these cells and fluorescence microscopy is itself a potentially invasive method. To achieve noninvasive imaging of live cells, we applied our LC-QPM which is a reflection-type, phase resolved and full-field interference microscope employing a low-coherent light source. LC-QPM is able to visualize the three-dimensional morphology of live cells without labeling by means of low-coherence interferometry. The lateral (diffraction limit) and longitudinal (coherence-length) spatial resolution of LC-QPM were respectively 0.49 and 0.93 micrometers and the repeatability of the phase measurement was 0.02 radians (1.0 nm). We successfully obtained three-dimensional morphology of live cultured epithelial cells (cell type: HeLa, derived from cervix cancer) and were able to clearly observe the individual string-like structures interconnecting the cells. When we performed volumetric imaging, a 80 micrometer by 60 micrometer by 6.5 micrometer volume was scanned every 5.67 seconds and 70 frames of a three-dimensional movie were recorded for a duration of 397 seconds. Moreover, the optical phase images gave us detailed information about the three-dimensional morphology of the string-like structure at sub-wavelength resolution. We believe that our LC-QPM will be a useful tool for the study of three-dimensional morphology of live cells.

  7. Laboratory-size three-dimensional water-window x-ray microscope with Wolter type I mirror optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohsuka, Shinji; The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishi-ku, Hamamatsu-City, 431-1202; Ohba, Akira

    2016-01-28

    We constructed a laboratory-size three-dimensional water-window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques. It consists of an electron-impact x-ray source emitting oxygen Kα x-rays, Wolter type I grazing incidence mirror optics, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit better than 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm-scale three-dimensional fine structures were resolved.

  8. Development of technique for three-dimensional visualization of grain boundaries by white X-ray microbeam

    NASA Astrophysics Data System (ADS)

    Kajiwara, K.; Shobu, T.; Toyokawa, H.; Sato, M.

    2014-04-01

    A technique for three-dimensional visualization of grain boundaries was developed at BL28B2 at SPring-8. The technique uses white X-ray microbeam diffraction and a rotating slit. Three-dimensional images of small silicon single crystals filled in a plastic tube were successfully obtained using this technique for demonstration purposes. The images were consistent with those obtained by X-ray computed tomography.

  9. AAPM/RSNA physics tutorial for residents. Topics in US: B-mode US: basic concepts and new technology.

    PubMed

    Hangiandreou, Nicholas J

    2003-01-01

    Ultrasonography (US) has been used in medical imaging for over half a century. Current US scanners are based largely on the same basic principles used in the initial devices for human imaging. Modern equipment uses a pulse-echo approach with a brightness-mode (B-mode) display. Fundamental aspects of the B-mode imaging process include basic ultrasound physics, interactions of ultrasound with tissue, ultrasound pulse formation, scanning the ultrasound beam, and echo detection and signal processing. Recent technical innovations that have been developed to improve the performance of modern US equipment include the following: tissue harmonic imaging, spatial compound imaging, extended field of view imaging, coded pulse excitation, electronic section focusing, three-dimensional and four-dimensional imaging, and the general trend toward equipment miniaturization. US is a relatively inexpensive, portable, safe, and real-time modality, all of which make it one of the most widely used imaging modalities in medicine. Although B-mode US is sometimes referred to as a mature technology, this modality continues to experience a significant evolution in capability with even more exciting developments on the horizon. Copyright RSNA, 2003

  10. 3D digital image processing for biofilm quantification from confocal laser scanning microscopy: Multidimensional statistical analysis of biofilm modeling

    NASA Astrophysics Data System (ADS)

    Zielinski, Jerzy S.

    The dramatic increase in number and volume of digital images produced in medical diagnostics, and the escalating demand for rapid access to these relevant medical data, along with the need for interpretation and retrieval has become of paramount importance to a modern healthcare system. Therefore, there is an ever growing need for processed, interpreted and saved images of various types. Due to the high cost and unreliability of human-dependent image analysis, it is necessary to develop an automated method for feature extraction, using sophisticated mathematical algorithms and reasoning. This work is focused on digital image signal processing of biological and biomedical data in one- two- and three-dimensional space. Methods and algorithms presented in this work were used to acquire data from genomic sequences, breast cancer, and biofilm images. One-dimensional analysis was applied to DNA sequences which were presented as a non-stationary sequence and modeled by a time-dependent autoregressive moving average (TD-ARMA) model. Two-dimensional analyses used 2D-ARMA model and applied it to detect breast cancer from x-ray mammograms or ultrasound images. Three-dimensional detection and classification techniques were applied to biofilm images acquired using confocal laser scanning microscopy. Modern medical images are geometrically arranged arrays of data. The broadening scope of imaging as a way to organize our observations of the biophysical world has led to a dramatic increase in our ability to apply new processing techniques and to combine multiple channels of data into sophisticated and complex mathematical models of physiological function and dysfunction. With explosion of the amount of data produced in a field of biomedicine, it is crucial to be able to construct accurate mathematical models of the data at hand. Two main purposes of signal modeling are: data size conservation and parameter extraction. Specifically, in biomedical imaging we have four key problems that were addressed in this work: (i) registration, i.e. automated methods of data acquisition and the ability to align multiple data sets with each other; (ii) visualization and reconstruction, i.e. the environment in which registered data sets can be displayed on a plane or in multidimensional space; (iii) segmentation, i.e. automated and semi-automated methods to create models of relevant anatomy from images; (iv) simulation and prediction, i.e. techniques that can be used to simulate growth end evolution of researched phenomenon. Mathematical models can not only be used to verify experimental findings, but also to make qualitative and quantitative predictions, that might serve as guidelines for the future development of technology and/or treatment.

  11. Right ventricular volumes assessed by echocardiographic three-dimensional knowledge-based reconstruction compared with magnetic resonance imaging in a clinical setting.

    PubMed

    Neukamm, Christian; Try, Kirsti; Norgård, Gunnar; Brun, Henrik

    2014-01-01

    A technique that uses two-dimensional images to create a knowledge-based, three-dimensional model was tested and compared to magnetic resonance imaging. Measurement of right ventricular volumes and function is important in the follow-up of patients after pulmonary valve replacement. Magnetic resonance imaging is the gold standard for volumetric assessment. Echocardiographic methods have been validated and are attractive alternatives. Thirty patients with tetralogy of Fallot (25 ± 14 years) after pulmonary valve replacement were examined. Magnetic resonance imaging volumetric measurements and echocardiography-based three-dimensional reconstruction were performed. End-diastolic volume, end-systolic volume, and ejection fraction were measured, and the results were compared. Magnetic resonance imaging measurements gave coefficient of variation in the intraobserver study of 3.5, 4.6, and 5.3 and in the interobserver study of 3.6, 5.9, and 6.7 for end-diastolic volume, end-systolic volume, and ejection fraction, respectively. Echocardiographic three-dimensional reconstruction was highly feasible (97%). In the intraobserver study, the corresponding values were 6.0, 7.0, and 8.9 and in the interobserver study 7.4, 10.8, and 13.4. In comparison of the methods, correlations with magnetic resonance imaging were r = 0.91, 0.91, and 0.38, and the corresponding coefficient of variations were 9.4, 10.8, and 14.7. Echocardiography derived volumes (mL/m(2)) were significantly higher than magnetic resonance imaging volumes in end-diastolic volume 13.7 ± 25.6 and in end-systolic volume 9.1 ± 17.0 (both P < .05). The knowledge-based three-dimensional right ventricular volume method was highly feasible. Intra and interobserver variabilities were satisfactory. Agreement with magnetic resonance imaging measurements for volumes was reasonable but unsatisfactory for ejection fraction. Knowledge-based reconstruction may replace magnetic resonance imaging measurements for serial follow-up, whereas magnetic resonance imaging should be used for surgical decision making.

  12. A modified sparse reconstruction method for three-dimensional synthetic aperture radar image

    NASA Astrophysics Data System (ADS)

    Zhang, Ziqiang; Ji, Kefeng; Song, Haibo; Zou, Huanxin

    2018-03-01

    There is an increasing interest in three-dimensional Synthetic Aperture Radar (3-D SAR) imaging from observed sparse scattering data. However, the existing 3-D sparse imaging method requires large computing times and storage capacity. In this paper, we propose a modified method for the sparse 3-D SAR imaging. The method processes the collection of noisy SAR measurements, usually collected over nonlinear flight paths, and outputs 3-D SAR imagery. Firstly, the 3-D sparse reconstruction problem is transformed into a series of 2-D slices reconstruction problem by range compression. Then the slices are reconstructed by the modified SL0 (smoothed l0 norm) reconstruction algorithm. The improved algorithm uses hyperbolic tangent function instead of the Gaussian function to approximate the l0 norm and uses the Newton direction instead of the steepest descent direction, which can speed up the convergence rate of the SL0 algorithm. Finally, numerical simulation results are given to demonstrate the effectiveness of the proposed algorithm. It is shown that our method, compared with existing 3-D sparse imaging method, performs better in reconstruction quality and the reconstruction time.

  13. The Visible Cement Data Set

    PubMed Central

    Bentz, Dale P.; Mizell, Symoane; Satterfield, Steve; Devaney, Judith; George, William; Ketcham, Peter; Graham, James; Porterfield, James; Quenard, Daniel; Vallee, Franck; Sallee, Hebert; Boller, Elodie; Baruchel, Jose

    2002-01-01

    With advances in x-ray microtomography, it is now possible to obtain three-dimensional representations of a material’s microstructure with a voxel size of less than one micrometer. The Visible Cement Data Set represents a collection of 3-D data sets obtained using the European Synchrotron Radiation Facility in Grenoble, France in September 2000. Most of the images obtained are for hydrating portland cement pastes, with a few data sets representing hydrating Plaster of Paris and a common building brick. All of these data sets are being made available on the Visible Cement Data Set website at http://visiblecement.nist.gov. The website includes the raw 3-D datafiles, a description of the material imaged for each data set, example two-dimensional images and visualizations for each data set, and a collection of C language computer programs that will be of use in processing and analyzing the 3-D microstructural images. This paper provides the details of the experiments performed at the ESRF, the analysis procedures utilized in obtaining the data set files, and a few representative example images for each of the three materials investigated. PMID:27446723

  14. 3D fluorescence anisotropy imaging using selective plane illumination microscopy.

    PubMed

    Hedde, Per Niklas; Ranjit, Suman; Gratton, Enrico

    2015-08-24

    Fluorescence anisotropy imaging is a popular method to visualize changes in organization and conformation of biomolecules within cells and tissues. In such an experiment, depolarization effects resulting from differences in orientation, proximity and rotational mobility of fluorescently labeled molecules are probed with high spatial resolution. Fluorescence anisotropy is typically imaged using laser scanning and epifluorescence-based approaches. Unfortunately, those techniques are limited in either axial resolution, image acquisition speed, or by photobleaching. In the last decade, however, selective plane illumination microscopy has emerged as the preferred choice for three-dimensional time lapse imaging combining axial sectioning capability with fast, camera-based image acquisition, and minimal light exposure. We demonstrate how selective plane illumination microscopy can be utilized for three-dimensional fluorescence anisotropy imaging of live cells. We further examined the formation of focal adhesions by three-dimensional time lapse anisotropy imaging of CHO-K1 cells expressing an EGFP-paxillin fusion protein.

  15. Adaptive Iterative Dose Reduction Using Three Dimensional Processing (AIDR3D) improves chest CT image quality and reduces radiation exposure.

    PubMed

    Yamashiro, Tsuneo; Miyara, Tetsuhiro; Honda, Osamu; Kamiya, Hisashi; Murata, Kiyoshi; Ohno, Yoshiharu; Tomiyama, Noriyuki; Moriya, Hiroshi; Koyama, Mitsuhiro; Noma, Satoshi; Kamiya, Ayano; Tanaka, Yuko; Murayama, Sadayuki

    2014-01-01

    To assess the advantages of Adaptive Iterative Dose Reduction using Three Dimensional Processing (AIDR3D) for image quality improvement and dose reduction for chest computed tomography (CT). Institutional Review Boards approved this study and informed consent was obtained. Eighty-eight subjects underwent chest CT at five institutions using identical scanners and protocols. During a single visit, each subject was scanned using different tube currents: 240, 120, and 60 mA. Scan data were converted to images using AIDR3D and a conventional reconstruction mode (without AIDR3D). Using a 5-point scale from 1 (non-diagnostic) to 5 (excellent), three blinded observers independently evaluated image quality for three lung zones, four patterns of lung disease (nodule/mass, emphysema, bronchiolitis, and diffuse lung disease), and three mediastinal measurements (small structure visibility, streak artifacts, and shoulder artifacts). Differences in these scores were assessed by Scheffe's test. At each tube current, scans using AIDR3D had higher scores than those without AIDR3D, which were significant for lung zones (p<0.0001) and all mediastinal measurements (p<0.01). For lung diseases, significant improvements with AIDR3D were frequently observed at 120 and 60 mA. Scans with AIDR3D at 120 mA had significantly higher scores than those without AIDR3D at 240 mA for lung zones and mediastinal streak artifacts (p<0.0001), and slightly higher or equal scores for all other measurements. Scans with AIDR3D at 60 mA were also judged superior or equivalent to those without AIDR3D at 120 mA. For chest CT, AIDR3D provides better image quality and can reduce radiation exposure by 50%.

  16. The role of three-dimensional imaging in optimizing diagnosis, classification and surgical treatment of hepatocellular carcinoma with portal vein tumor thrombus.

    PubMed

    Wei, Xu-Biao; Xu, Jie; Li, Nan; Yu, Ying; Shi, Jie; Guo, Wei-Xing; Cheng, Hong-Yan; Wu, Meng-Chao; Lau, Wan-Yee; Cheng, Shu-Qun

    2016-03-01

    Accurate assessment of characteristics of tumor and portal vein tumor thrombus is crucial in the management of hepatocellular carcinoma. Comparison of the three-dimensional imaging with multiple-slice computed tomography in the diagnosis and treatment of hepatocellular carcinoma with portal vein tumor thrombus. Patients eligible for surgical resection were divided into the three-dimensional imaging group or the multiple-slice computed tomography group according to the type of preoperative assessment. The clinical data were collected and compared. 74 patients were enrolled into this study. The weighted κ values for comparison between the thrombus type based on preoperative evaluation and intraoperative findings were 0.87 for the three-dimensional reconstruction group (n = 31) and 0.78 for the control group (n = 43). Three-dimensional reconstruction was significantly associated with a higher rate of en-bloc resection of tumor and thrombus (P = 0.025). Using three-dimensional reconstruction, significant correlation existed between the predicted and actual volumes of the resected specimens (r = 0.82, P < 0.01), as well as the predicted and actual resection margins (r = 0.97, P < 0.01). Preoperative three-dimensional reconstruction significantly decreased tumor recurrence and tumor-related death, with hazard ratios of 0.49 (95% confidential interval, 0.27-0.90) and 0.41 (95% confidential interval, 0.21-0.78), respectively. For hepatocellular carcinoma with portal vein tumor thrombus, three-dimensional imaging was efficient in facilitating surgical treatment and benefiting postoperative survivals. Copyright © 2015 International Hepato-Pancreato-Biliary Association Inc. Published by Elsevier Ltd. All rights reserved.

  17. An improved three-dimensional non-scanning laser imaging system based on digital micromirror device

    NASA Astrophysics Data System (ADS)

    Xia, Wenze; Han, Shaokun; Lei, Jieyu; Zhai, Yu; Timofeev, Alexander N.

    2018-01-01

    Nowadays, there are two main methods to realize three-dimensional non-scanning laser imaging detection, which are detection method based on APD and detection method based on Streak Tube. However, the detection method based on APD possesses some disadvantages, such as small number of pixels, big pixel interval and complex supporting circuit. The detection method based on Streak Tube possesses some disadvantages, such as big volume, bad reliability and high cost. In order to resolve the above questions, this paper proposes an improved three-dimensional non-scanning laser imaging system based on Digital Micromirror Device. In this imaging system, accurate control of laser beams and compact design of imaging structure are realized by several quarter-wave plates and a polarizing beam splitter. The remapping fiber optics is used to sample the image plane of receiving optical lens, and transform the image into line light resource, which can realize the non-scanning imaging principle. The Digital Micromirror Device is used to convert laser pulses from temporal domain to spatial domain. The CCD with strong sensitivity is used to detect the final reflected laser pulses. In this paper, we also use an algorithm which is used to simulate this improved laser imaging system. In the last, the simulated imaging experiment demonstrates that this improved laser imaging system can realize three-dimensional non-scanning laser imaging detection.

  18. Design and Implementation of a Self-Directed Stereochemistry Lesson Using Embedded Virtual Three-Dimensional Images in a Portable Document Format

    ERIC Educational Resources Information Center

    Cody, Jeremy A.; Craig, Paul A.; Loudermilk, Adam D.; Yacci, Paul M.; Frisco, Sarah L.; Milillo, Jennifer R.

    2012-01-01

    A novel stereochemistry lesson was prepared that incorporated both handheld molecular models and embedded virtual three-dimensional (3D) images. The images are fully interactive and eye-catching for the students; methods for preparing 3D molecular images in Adobe Acrobat are included. The lesson was designed and implemented to showcase the 3D…

  19. Real time three dimensional sensing system

    DOEpatents

    Gordon, S.J.

    1996-12-31

    The invention is a three dimensional sensing system which utilizes two flexibly located cameras for receiving and recording visual information with respect to a sensed object illuminated by a series of light planes. Each pixel of each image is converted to a digital word and the words are grouped into stripes, each stripe comprising contiguous pixels. One pixel of each stripe in one image is selected and an epi-polar line of that point is drawn in the other image. The three dimensional coordinate of each selected point is determined by determining the point on said epi-polar line which also lies on a stripe in the second image and which is closest to a known light plane. 7 figs.

  20. Real time three dimensional sensing system

    DOEpatents

    Gordon, Steven J.

    1996-01-01

    The invention is a three dimensional sensing system which utilizes two flexibly located cameras for receiving and recording visual information with respect to a sensed object illuminated by a series of light planes. Each pixel of each image is converted to a digital word and the words are grouped into stripes, each stripe comprising contiguous pixels. One pixel of each stripe in one image is selected and an epi-polar line of that point is drawn in the other image. The three dimensional coordinate of each selected point is determined by determining the point on said epi-polar line which also lies on a stripe in the second image and which is closest to a known light plane.

  1. High-precision tracking of brownian boomerang colloidal particles confined in quasi two dimensions.

    PubMed

    Chakrabarty, Ayan; Wang, Feng; Fan, Chun-Zhen; Sun, Kai; Wei, Qi-Huo

    2013-11-26

    In this article, we present a high-precision image-processing algorithm for tracking the translational and rotational Brownian motion of boomerang-shaped colloidal particles confined in quasi-two-dimensional geometry. By measuring mean square displacements of an immobilized particle, we demonstrate that the positional and angular precision of our imaging and image-processing system can achieve 13 nm and 0.004 rad, respectively. By analyzing computer-simulated images, we demonstrate that the positional and angular accuracies of our image-processing algorithm can achieve 32 nm and 0.006 rad. Because of zero correlations between the displacements in neighboring time intervals, trajectories of different videos of the same particle can be merged into a very long time trajectory, allowing for long-time averaging of different physical variables. We apply this image-processing algorithm to measure the diffusion coefficients of boomerang particles of three different apex angles and discuss the angle dependence of these diffusion coefficients.

  2. Three-dimensional image orientation through only one rotation applied to image processing in engineering.

    PubMed

    Rodríguez, Jaime; Martín, María T; Herráez, José; Arias, Pedro

    2008-12-10

    Photogrammetry is a science with many fields of application in civil engineering where image processing is used for different purposes. In most cases, the use of multiple images simultaneously for the reconstruction of 3D scenes is commonly used. However, the use of isolated images is becoming more and more frequent, for which it is necessary to calculate the orientation of the image with respect to the object space (exterior orientation), which is usually made through three rotations through known points in the object space (Euler angles). We describe the resolution of this problem by means of a single rotation through the vanishing line of the image space and completely external to the object, to be more precise, without any contact with it. The results obtained appear to be optimal, and the procedure is simple and of great utility, since no points over the object are required, which is very useful in situations where access is difficult.

  3. Evaluation of training nurses to perform semi-automated three-dimensional left ventricular ejection fraction using a customised workstation-based training protocol.

    PubMed

    Guppy-Coles, Kristyan B; Prasad, Sandhir B; Smith, Kym C; Hillier, Samuel; Lo, Ada; Atherton, John J

    2015-06-01

    We aimed to determine the feasibility of training cardiac nurses to evaluate left ventricular function utilising a semi-automated, workstation-based protocol on three dimensional echocardiography images. Assessment of left ventricular function by nurses is an attractive concept. Recent developments in three dimensional echocardiography coupled with border detection assistance have reduced inter- and intra-observer variability and analysis time. This could allow abbreviated training of nurses to assess cardiac function. A comparative, diagnostic accuracy study evaluating left ventricular ejection fraction assessment utilising a semi-automated, workstation-based protocol performed by echocardiography-naïve nurses on previously acquired three dimensional echocardiography images. Nine cardiac nurses underwent two brief lectures about cardiac anatomy, physiology and three dimensional left ventricular ejection fraction assessment, before a hands-on demonstration in 20 cases. We then selected 50 cases from our three dimensional echocardiography library based on optimal image quality with a broad range of left ventricular ejection fractions, which was quantified by two experienced sonographers and the average used as the comparator for the nurses. Nurses independently measured three dimensional left ventricular ejection fraction using the Auto lvq package with semi-automated border detection. The left ventricular ejection fraction range was 25-72% (70% with a left ventricular ejection fraction <55%). All nurses showed excellent agreement with the sonographers. Minimal intra-observer variability was noted on both short-term (same day) and long-term (>2 weeks later) retest. It is feasible to train nurses to measure left ventricular ejection fraction utilising a semi-automated, workstation-based protocol on previously acquired three dimensional echocardiography images. Further study is needed to determine the feasibility of training nurses to acquire three dimensional echocardiography images on real-world patients to measure left ventricular ejection fraction. Nurse-performed evaluation of left ventricular function could facilitate the broader application of echocardiography to allow cost-effective screening and monitoring for left ventricular dysfunction in high-risk populations. © 2014 John Wiley & Sons Ltd.

  4. Investigation of the relative orientation of the system of optical sensors to monitor the technosphere objects

    NASA Astrophysics Data System (ADS)

    Petrochenko, Andrey; Konyakhin, Igor

    2017-06-01

    In connection with the development of robotics have become increasingly popular variety of three-dimensional reconstruction of the system mapping and image-set received from the optical sensors. The main objective of technical and robot vision is the detection, tracking and classification of objects of the space in which these systems and robots operate [15,16,18]. Two-dimensional images sometimes don't contain sufficient information to address those or other problems: the construction of the map of the surrounding area for a route; object identification, tracking their relative position and movement; selection of objects and their attributes to complement the knowledge base. Three-dimensional reconstruction of the surrounding space allows you to obtain information on the relative positions of objects, their shape, surface texture. Systems, providing training on the basis of three-dimensional reconstruction of the results of the comparison can produce two-dimensional images of three-dimensional model that allows for the recognition of volume objects on flat images. The problem of the relative orientation of industrial robots with the ability to build threedimensional scenes of controlled surfaces is becoming actual nowadays.

  5. Three-dimensional reconstruction of teeth and jaws based on segmentation of CT images using watershed transformation.

    PubMed

    Naumovich, S S; Naumovich, S A; Goncharenko, V G

    2015-01-01

    The objective of the present study was the development and clinical testing of a three-dimensional (3D) reconstruction method of teeth and a bone tissue of the jaw on the basis of CT images of the maxillofacial region. 3D reconstruction was performed using the specially designed original software based on watershed transformation. Computed tomograms in digital imaging and communications in medicine format obtained on multispiral CT and CBCT scanners were used for creation of 3D models of teeth and the jaws. The processing algorithm is realized in the stepwise threshold image segmentation with the placement of markers in the mode of a multiplanar projection in areas relating to the teeth and a bone tissue. The developed software initially creates coarse 3D models of the entire dentition and the jaw. Then, certain procedures specify the model of the jaw and cut the dentition into separate teeth. The proper selection of the segmentation threshold is very important for CBCT images having a low contrast and high noise level. The developed semi-automatic algorithm of multispiral and cone beam computed tomogram processing allows 3D models of teeth to be created separating them from a bone tissue of the jaws. The software is easy to install in a dentist's workplace, has an intuitive interface and takes little time in processing. The obtained 3D models can be used for solving a wide range of scientific and clinical tasks.

  6. The contribution of synchrotron X-ray computed microtomography to understanding volcanic processes.

    PubMed

    Polacci, Margherita; Mancini, Lucia; Baker, Don R

    2010-03-01

    A series of computed microtomography experiments are reported which were performed by using a third-generation synchrotron radiation source on volcanic rocks from various active hazardous volcanoes in Italy and other volcanic areas in the world. The applied technique allowed the internal structure of the investigated material to be accurately imaged at the micrometre scale and three-dimensional views of the investigated samples to be produced as well as three-dimensional quantitative measurements of textural features. The geometry of the vesicle (gas-filled void) network in volcanic products of both basaltic and trachytic compositions were particularly focused on, as vesicle textures are directly linked to the dynamics of volcano degassing. This investigation provided novel insights into modes of gas exsolution, transport and loss in magmas that were not recognized in previous studies using solely conventional two-dimensional imaging techniques. The results of this study are important to understanding the behaviour of volcanoes and can be combined with other geosciences disciplines to forecast their future activity.

  7. Magnetic Resonance Imaging of Three-Dimensional Cervical Anatomy in the Second and Third Trimester

    PubMed Central

    HOUSE, Michael; BHADELIA, Rafeeque A.; MYERS, Kristin; SOCRATE, Simona

    2009-01-01

    OBJECTIVE Although a short cervix is known to be associated with preterm birth, the patterns of three-dimensional, anatomic changes leading to a short cervix are unknown. Our objective was to 1) construct three-dimensional anatomic models during normal pregnancy and 2) use the models to compare cervical anatomy in the second and third trimester. STUDY DESIGN A cross sectional study was performed in a population of patients referred to magnetic resonance imaging (MRI) for a fetal indication. Using magnetic resonance images for guidance, three-dimensional solid models of the following anatomic structures were constructed: amniotic cavity, uterine wall, cervical stroma, cervical mucosa and anterior vaginal wall. To compare cervical anatomy in the second and third trimester, models were matched according the size of the bony pelvis. RESULTS Fourteen patients were imaged and divided into two groups according to gestational age: 20 – 24 weeks (n=7)) and 31 – 36 weeks (n=7). Compared to the second trimester, the third trimester was associated with significant descent of the amniotic sac. (p=.02). Descent of the amniotic sac was associated with modified anatomy of the uterocervical junction. These 3-dimensional changes were associated with a cervix that appeared shorter in the third trimester. CONCLUSION We report a technique for constructing MRI-based, three-dimensional anatomic models during pregnancy. Compared to the second trimester, the third trimester is associated with three-dimensional changes in the cervix and lower uterine segment. PMID:19297070

  8. [Localization of perforators in the lower leg by digital antomy imaging methods].

    PubMed

    Wei, Peng; Ma, Liang-Liang; Fang, Ye-Dong; Xia, Wei-Zhi; Ding, Mao-Chao; Mei, Jin

    2012-03-01

    To offer both the accurate three-dimensional anatomical information and algorithmic morphology of perforators in the lower leg for perforator flaps design. The cadaver was injected with a modified lead oxide-gelatin mixture. Radiography was first performed and the images were analyzed using the software Photoshop and Scion Image. Then spiral CT scan was also performed and 3-dimensional images were reconstructed with MIMICS 10.01 software. There are (27 +/- 4) perforators whose outer diameter > or = 0.5 mm ( average, 0.8 +/- 0.2 mm). The average pedicle length within the superficial fascia is (37.3 +/- 18.6) mm. The average supplied area of each perforator is (49.5 +/- 25.5) cm2. The three-dimensional model displayed accurate morphology structure and three-dimensional distribution of the perforator-to- perforator and perforator-to-source artery. The 3D reconstruction model can clearly show the geometric, local details and three-dimensional distribution. It is a considerable method for the study of morphological characteristics of the individual perforators in human calf and preoperative planning of the perforator flap.

  9. Laser electro-optic system for rapid three-dimensional /3-D/ topographic mapping of surfaces

    NASA Technical Reports Server (NTRS)

    Altschuler, M. D.; Altschuler, B. R.; Taboada, J.

    1981-01-01

    It is pointed out that the generic utility of a robot in a factory/assembly environment could be substantially enhanced by providing a vision capability to the robot. A standard videocamera for robot vision provides a two-dimensional image which contains insufficient information for a detailed three-dimensional reconstruction of an object. Approaches which supply the additional information needed for the three-dimensional mapping of objects with complex surface shapes are briefly considered and a description is presented of a laser-based system which can provide three-dimensional vision to a robot. The system consists of a laser beam array generator, an optical image recorder, and software for controlling the required operations. The projection of a laser beam array onto a surface produces a dot pattern image which is viewed from one or more suitable perspectives. Attention is given to the mathematical method employed, the space coding technique, the approaches used for obtaining the transformation parameters, the optics for laser beam array generation, the hardware for beam array coding, and aspects of image acquisition.

  10. Conversion of NIMROD simulation results for graphical analysis using VisIt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero-Talamas, C A

    Software routines developed to prepare NIMROD [C. R. Sovinec et al., J. Comp. Phys. 195, 355 (2004)] results for three-dimensional visualization from simulations of the Sustained Spheromak Physics Experiment (SSPX ) [E. B. Hooper et al., Nucl. Fusion 39, 863 (1999)] are presented here. The visualization is done by first converting the NIMROD output to a format known as legacy VTK and then loading it to VisIt, a graphical analysis tool that includes three-dimensional rendering and various mathematical operations for large data sets. Sample images obtained from the processing of NIMROD data with VisIt are included.

  11. Incoherent imaging of radar targets

    NASA Astrophysics Data System (ADS)

    van Ommen, A.; van der Spek, G. A.

    1986-05-01

    Theory suggests that, if a target can be modeled as a rigid constellation of point scatterers, the RCS pattern over a certain aspect change can be used to produce a one-dimensional image. The results for actual measured RCS patterns, however, are not promising. This is illustrated by processing on 4 s of echo data obtained from a Boeing 737 in straight flight, during which its aspect change is 2 deg. The conclusion might be that, for the application considered, aircraft cannot be modeled as a rigid constellation of point scatterers; this is partly due to the treatment of a three-dimensional target as a line target.

  12. Extended sources near-field processing of experimental aperture synthesis data and application of the Gerchberg method for enhancing radiometric three-dimensional millimetre-wave images in security screening portals

    NASA Astrophysics Data System (ADS)

    Salmon, Neil A.

    2017-10-01

    Aperture synthesis for passive millimetre wave imaging provides a means to screen people for concealed threats in the extreme near-field configuration of a portal, a regime where the imager to subject distance is of the order of both the required depth-of-field and the field-of-view. Due to optical aberrations, focal plane array imagers cannot deliver the large depth-of-fields and field-of-views required in this regime. Active sensors on the other hand can deliver these but face challenges of illumination, speckle and multi-path issues when imaging canyon regions of the body. Fortunately an aperture synthesis passive millimetre wave imaging system can deliver large depth-of-fields and field-of-views, whilst having no speckle effects, as the radiometric emission from the human body is spatially incoherent. Furthermore, as in portal security screening scenarios the aperture synthesis imaging technique delivers a half-wavelength spatial resolution, it can effectively screen the whole of the human body. Some recent measurements are presented that demonstrate the three-dimensional imaging capability of extended sources using a 22 GHz aperture synthesis system. A comparison is made between imagery generated via the analytic Fourier transform and a gridding fast Fourier transform method. The analytic Fourier transform enables aliasing in the imagery to be more clearly identified. Some initial results are also presented of how the Gerchberg technique, an image enhancement algorithm used in radio astronomy, is adapted for three-dimensional imaging in security screening. This technique is shown to be able to improve the quality of imagery, without adding extra receivers to the imager. The requirements of a walk through security screening system for use at entrances to airport departure lounges are discussed, concluding that these can be met by an aperture synthesis imager.

  13. Space-Based Three-Dimensional Imaging of Equatorial Plasma Bubbles: Advancing the Understanding of Ionospheric Density Depletions and Scintillation

    DTIC Science & Technology

    2012-03-28

    Scintillation 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Comberiate, Joseph M. 5e. TASK NUMBER 5f. WORK...bubble climatology. A tomographic reconstruction technique was modified and applied to SSUSI data to reconstruct three-dimensional cubes of ionospheric... modified and applied to SSUSI data to reconstruct three-dimensional cubes of ionospheric electron density. These data cubes allowed for 3-D imaging of

  14. Real-time Three-dimensional Echocardiography: From Diagnosis to Intervention.

    PubMed

    Orvalho, João S

    2017-09-01

    Echocardiography is one of the most important diagnostic tools in veterinary cardiology, and one of the greatest recent developments is real-time three-dimensional imaging. Real-time three-dimensional echocardiography is a new ultrasonography modality that provides comprehensive views of the cardiac valves and congenital heart defects. The main advantages of this technique, particularly real-time three-dimensional transesophageal echocardiography, are the ability to visualize the catheters, and balloons or other devices, and the ability to image the structure that is undergoing intervention with unprecedented quality. This technique may become one of the main choices for the guidance of interventional cardiology procedures. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Multifunctional, three-dimensional tomography for analysis of eletrectrohydrodynamic jetting

    NASA Astrophysics Data System (ADS)

    Nguyen, Xuan Hung; Gim, Yeonghyeon; Ko, Han Seo

    2015-05-01

    A three-dimensional optical tomography technique was developed to reconstruct three-dimensional objects using a set of two-dimensional shadowgraphic images and normal gray images. From three high-speed cameras, which were positioned at an offset angle of 45° between each other, number, size, and location of electrohydrodynamic jets with respect to the nozzle position were analyzed using shadowgraphic tomography employing multiplicative algebraic reconstruction technique (MART). Additionally, a flow field inside a cone-shaped liquid (Taylor cone) induced under an electric field was observed using a simultaneous multiplicative algebraic reconstruction technique (SMART), a tomographic method for reconstructing light intensities of particles, combined with three-dimensional cross-correlation. Various velocity fields of circulating flows inside the cone-shaped liquid caused by various physico-chemical properties of liquid were also investigated.

  16. Concept and development of an orthotropic FE model of the proximal femur.

    PubMed

    Wirtz, Dieter Christian; Pandorf, Thomas; Portheine, Frank; Radermacher, Klaus; Schiffers, Norbert; Prescher, Andreas; Weichert, Dieter; Niethard, Fritz Uwe

    2003-02-01

    In contrast to many isotropic finite-element (FE) models of the femur in literature, it was the object of our study to develop an orthotropic FE "model femur" to realistically simulate three-dimensional bone remodelling. The three-dimensional geometry of the proximal femur was reconstructed by CT scans of a pair of cadaveric femurs at equal distances of 2mm. These three-dimensional CT models were implemented into an FE simulation tool. Well-known "density-determined" bony material properties (Young's modulus; Poisson's ratio; ultimate strength in pressure, tension and torsion; shear modulus) were assigned to each FE of the same "CT-density-characterized" volumetric group. In order to fix the principal directions of stiffness in FE areas with the same "density characterization", the cadaveric femurs were cut in 2mm slices in frontal (left femur) and sagittal plane (right femur). Each femoral slice was scanned into a computer-based image processing system. On these images, the principal directions of stiffness of cancellous and cortical bone were determined manually using the orientation of the trabecular structures and the Haversian system. Finally, these geometric data were matched with the "CT-density characterized" three-dimensional femur model. In addition, the time and density-dependent adaptive behaviour of bone remodelling was taken into account by implementation of Carter's criterion. In the constructed "model femur", each FE is characterized by the principal directions of the stiffness and the "CT-density-determined" material properties of cortical and cancellous bone. Thus, on the basis of anatomic data a three-dimensional FE simulation reference model of the proximal femur was realized considering orthotropic conditions of bone behaviour. With the orthotropic "model femur", the fundamental basis has been formed to realize realistic simulations of the dynamical processes of bone remodelling under different loading conditions or operative procedures (osteotomies, total hip replacements, etc).

  17. Fine Metal Mask 3-Dimensional Measurement by using Scanning Digital Holographic Microscope

    NASA Astrophysics Data System (ADS)

    Shin, Sanghoon; Yu, Younghun

    2018-04-01

    For three-dimensional microscopy, fast and high axial resolution are very important. Extending the depth of field for digital holographic is necessary for three-dimensional measurements of thick samples. We propose an optical sectioning method for optical scanning digital holography that is performed in the frequency domain by spatial filtering of a reconstructed amplitude image. We established a scanning dual-wavelength off-axis digital holographic microscope to measure samples that exhibit a large amount of coherent noise and a thickness larger than the depth of focus of the objective lens. As a demonstration, we performed a three-dimensional measurement of a fine metal mask with a reconstructed sectional phase image and filtering with a reconstructed amplitude image.

  18. A study to evaluate the reliability of using two-dimensional photographs, three-dimensional images, and stereoscopic projected three-dimensional images for patient assessment.

    PubMed

    Zhu, S; Yang, Y; Khambay, B

    2017-03-01

    Clinicians are accustomed to viewing conventional two-dimensional (2D) photographs and assume that viewing three-dimensional (3D) images is similar. Facial images captured in 3D are not viewed in true 3D; this may alter clinical judgement. The aim of this study was to evaluate the reliability of using conventional photographs, 3D images, and stereoscopic projected 3D images to rate the severity of the deformity in pre-surgical class III patients. Forty adult patients were recruited. Eight raters assessed facial height, symmetry, and profile using the three different viewing media and a 100-mm visual analogue scale (VAS), and appraised the most informative viewing medium. Inter-rater consistency was above good for all three media. Intra-rater reliability was not significantly different for rating facial height using 2D (P=0.704), symmetry using 3D (P=0.056), and profile using projected 3D (P=0.749). Using projected 3D for rating profile and symmetry resulted in significantly lower median VAS scores than either 3D or 2D images (all P<0.05). For 75% of the raters, stereoscopic 3D projection was the preferred method for rating. The reliability of assessing specific characteristics was dependent on the viewing medium. Clinicians should be aware that the visual information provided when viewing 3D images is not the same as when viewing 2D photographs, especially for facial depth, and this may change the clinical impression. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  19. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE PAGES

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; ...

    2006-01-01

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore » resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  20. Advanced Scintillator Detectors for Neutron Imaging in Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Geppert-Kleinrath, Verena; Danly, Christopher; Merrill, Frank; Simpson, Raspberry; Volegov, Petr; Wilde, Carl

    2016-10-01

    The neutron imaging team at Los Alamos National Laboratory (LANL) has been providing two-dimensional neutron imaging of the inertial confinement fusion process at the National Ignition Facility (NIF) for over five years. Neutron imaging is a powerful tool in which position-sensitive detectors register neutrons emitted in the fusion reactions, producing a picture of the burning fuel. Recent images have revealed possible multi-dimensional asymmetries, calling for additional views to facilitate three-dimensional imaging. These will be along shorter lines of sight to stay within the existing facility at NIF. In order to field imaging capabilities equivalent to the existing system several technological challenges have to be met: high spatial resolution, high light output, and fast scintillator response to capture lower-energy neutrons, which have scattered from non-burning regions of fuel. Deuterated scintillators are a promising candidate to achieve the timing and resolution required; a systematic study of deuterated and non-deuterated polystyrene and liquid samples is currently ongoing. A test stand has been implemented to measure the response function, and preliminary data on resolution and light output have been obtained at the LANL Weapons Neutrons Research facility.

  1. CT liver volumetry using three-dimensional image data in living donor liver transplantation: Effects of slice thickness on volume calculation

    PubMed Central

    Hori, Masatoshi; Suzuki, Kenji; Epstein, Mark L.; Baron, Richard L.

    2011-01-01

    The purpose was to evaluate a relationship between slice thickness and calculated volume on CT liver volumetry by comparing the results for images with various slice thicknesses including three-dimensional images. Twenty adult potential liver donors (12 men, 8 women; mean age, 39 years; range, 24–64) underwent CT with a 64-section multi-detector row CT scanner after intra-venous injection of contrast material. Four image sets with slice thicknesses of 0.625 mm, 2.5 mm, 5 mm, and 10 mm were used. First, a program developed in our laboratory for automated liver extraction was applied to CT images, and the liver boundary was obtained automatically. Then, an abdominal radiologist reviewed all images on which automatically extracted boundaries were superimposed, and edited the boundary on each slice to enhance the accuracy. Liver volumes were determined by counting of the voxels within the liver boundary. Mean whole liver volumes estimated with CT were 1322.5 cm3 on 0.625-mm, 1313.3 cm3 on 2.5-mm, 1310.3 cm3 on 5-mm, and 1268.2 cm3 on 10-mm images. Volumes calculated for three-dimensional (0.625-mm-thick) images were significantly larger than those for thicker images (P<.0001). Partial liver volumes of right lobe, left lobe, and lateral segment were also evaluated in a similar manner. Estimated maximum differences in calculated volumes of lateral segment was −10.9 cm3 (−4.6%) between 0.625-mm and 5-mm images. In conclusion, liver volumes calculated on 2.5-mm or thicker images were significantly smaller than volumes calculated on three-dimensional images. If a maximum error of 5% in the calculated graft volume is within the range of having an insignificant clinical impact, 5-mm thick images are acceptable for CT volumetry. If not, three-dimensional images could be essential. PMID:21850689

  2. [Three-dimensional finite element analysis of three conjunctive methods of free iliac bone graft for established mandibular body defects].

    PubMed

    Wang, Dong; Yang, Zhuang-qun; Hu, Xiao-yi

    2007-08-01

    To analyze the stress and displacement distribution of 3D-FE models in three conjunctive methods of vascularized iliac bone graft for established mandibular body defects. Using computer image process technique, a series of spiral CT images were put into Ansys preprocess programe to establish three 3D-FE models of different conjunctions. The three 3D-FE models of established mandibular body defects by vascularized iliac bone graft were built up. The distribution of Von Mises stress and displacement around mandibular segment, grafted ilium, plates and screws was obtained. It may be determined successfully that the optimal conjunctive shape be the on-lay conjunction.

  3. BIM-Sim: Interactive Simulation of Broadband Imaging Using Mie Theory

    PubMed Central

    Berisha, Sebastian; van Dijk, Thomas; Bhargava, Rohit; Carney, P. Scott; Mayerich, David

    2017-01-01

    Understanding the structure of a scattered electromagnetic (EM) field is critical to improving the imaging process. Mechanisms such as diffraction, scattering, and interference affect an image, limiting the resolution, and potentially introducing artifacts. Simulation and visualization of scattered fields thus plays an important role in imaging science. However, EM fields are high-dimensional, making them time-consuming to simulate, and difficult to visualize. In this paper, we present a framework for interactively computing and visualizing EM fields scattered by micro and nano-particles. Our software uses graphics hardware for evaluating the field both inside and outside of these particles. We then use Monte-Carlo sampling to reconstruct and visualize the three-dimensional structure of the field, spectral profiles at individual points, the structure of the field at the surface of the particle, and the resulting image produced by an optical system. PMID:29170738

  4. Enhanced Fluorescence Imaging of Live Cells by Effective Cytosolic Delivery of Probes

    PubMed Central

    Massignani, Marzia; Canton, Irene; Sun, Tao; Hearnden, Vanessa; MacNeil, Sheila; Blanazs, Adam; Armes, Steven P.; Lewis, Andrew; Battaglia, Giuseppe

    2010-01-01

    Background Microscopic techniques enable real-space imaging of complex biological events and processes. They have become an essential tool to confirm and complement hypotheses made by biomedical scientists and also allow the re-examination of existing models, hence influencing future investigations. Particularly imaging live cells is crucial for an improved understanding of dynamic biological processes, however hitherto live cell imaging has been limited by the necessity to introduce probes within a cell without altering its physiological and structural integrity. We demonstrate herein that this hurdle can be overcome by effective cytosolic delivery. Principal Findings We show the delivery within several types of mammalian cells using nanometre-sized biomimetic polymer vesicles (a.k.a. polymersomes) that offer both highly efficient cellular uptake and endolysomal escape capability without any effect on the cellular metabolic activity. Such biocompatible polymersomes can encapsulate various types of probes including cell membrane probes and nucleic acid probes as well as labelled nucleic acids, antibodies and quantum dots. Significance We show the delivery of sufficient quantities of probes to the cytosol, allowing sustained functional imaging of live cells over time periods of days to weeks. Finally the combination of such effective staining with three-dimensional imaging by confocal laser scanning microscopy allows cell imaging in complex three-dimensional environments under both mono-culture and co-culture conditions. Thus cell migration and proliferation can be studied in models that are much closer to the in vivo situation. PMID:20454666

  5. System and method to estimate compressional to shear velocity (VP/VS) ratio in a region remote from a borehole

    DOEpatents

    Vu, Cung; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher; Johnson, Paul A; Guyer, Robert; TenCate, James A; Le Bas, Pierre-Yves

    2012-10-16

    In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.

  6. Nonuniform multiview color texture mapping of image sequence and three-dimensional model for faded cultural relics with sift feature points

    NASA Astrophysics Data System (ADS)

    Li, Na; Gong, Xingyu; Li, Hongan; Jia, Pengtao

    2018-01-01

    For faded relics, such as Terracotta Army, the 2D-3D registration between an optical camera and point cloud model is an important part for color texture reconstruction and further applications. This paper proposes a nonuniform multiview color texture mapping for the image sequence and the three-dimensional (3D) model of point cloud collected by Handyscan3D. We first introduce nonuniform multiview calibration, including the explanation of its algorithm principle and the analysis of its advantages. We then establish transformation equations based on sift feature points for the multiview image sequence. At the same time, the selection of nonuniform multiview sift feature points is introduced in detail. Finally, the solving process of the collinear equations based on multiview perspective projection is given with three steps and the flowchart. In the experiment, this method is applied to the color reconstruction of the kneeling figurine, Tangsancai lady, and general figurine. These results demonstrate that the proposed method provides an effective support for the color reconstruction of the faded cultural relics and be able to improve the accuracy of 2D-3D registration between the image sequence and the point cloud model.

  7. Transport Imaging of Spatial Distribution of Mobility-Lifetime (Micro Tau) Product in Bulk Semiconductors for Nuclear Radiation Detection

    DTIC Science & Technology

    2012-06-01

    the diffusion length L and the mobility-lifetime product  from the luminescence distribution using the 2D model for transport imaging in bulk...C. Scandrett, and N. M. Haegel, “Three-dimensional transport imaging for the spatially resolved determination of carrier diffusion length in bulk...that allows measurements of the diffusion length and extraction of the  product in luminescent materials without the need for device processing

  8. Tomographic diffractive microscopy with agile illuminations for imaging targets in a noisy background.

    PubMed

    Zhang, T; Godavarthi, C; Chaumet, P C; Maire, G; Giovannini, H; Talneau, A; Prada, C; Sentenac, A; Belkebir, K

    2015-02-15

    Tomographic diffractive microscopy is a marker-free optical digital imaging technique in which three-dimensional samples are reconstructed from a set of holograms recorded under different angles of incidence. We show experimentally that, by processing the holograms with singular value decomposition, it is possible to image objects in a noisy background that are invisible with classical wide-field microscopy and conventional tomographic reconstruction procedure. The targets can be further characterized with a selective quantitative inversion.

  9. The accuracy of a designed software for automated localization of craniofacial landmarks on CBCT images.

    PubMed

    Shahidi, Shoaleh; Bahrampour, Ehsan; Soltanimehr, Elham; Zamani, Ali; Oshagh, Morteza; Moattari, Marzieh; Mehdizadeh, Alireza

    2014-09-16

    Two-dimensional projection radiographs have been traditionally considered the modality of choice for cephalometric analysis. To overcome the shortcomings of two-dimensional images, three-dimensional computed tomography (CT) has been used to evaluate craniofacial structures. However, manual landmark detection depends on medical expertise, and the process is time-consuming. The present study was designed to produce software capable of automated localization of craniofacial landmarks on cone beam (CB) CT images based on image registration and to evaluate its accuracy. The software was designed using MATLAB programming language. The technique was a combination of feature-based (principal axes registration) and voxel similarity-based methods for image registration. A total of 8 CBCT images were selected as our reference images for creating a head atlas. Then, 20 CBCT images were randomly selected as the test images for evaluating the method. Three experts twice located 14 landmarks in all 28 CBCT images during two examinations set 6 weeks apart. The differences in the distances of coordinates of each landmark on each image between manual and automated detection methods were calculated and reported as mean errors. The combined intraclass correlation coefficient for intraobserver reliability was 0.89 and for interobserver reliability 0.87 (95% confidence interval, 0.82 to 0.93). The mean errors of all 14 landmarks were <4 mm. Additionally, 63.57% of landmarks had a mean error of <3 mm compared with manual detection (gold standard method). The accuracy of our approach for automated localization of craniofacial landmarks, which was based on combining feature-based and voxel similarity-based methods for image registration, was acceptable. Nevertheless we recommend repetition of this study using other techniques, such as intensity-based methods.

  10. Making Holograms at School

    ERIC Educational Resources Information Center

    Robinson, M. L. A.; Saunders, A. P.

    1973-01-01

    Discusses holography, a process by which a three-dimensional image of an object can be completely recorded on a photographic film or plate. Introduces hologram theory with a view to presenting it to senior high school students, and explains how the apparently very great experimental difficulties can be overcome. (JR)

  11. Technique of semiautomatic surface reconstruction of the visible Korean human data using commercial software.

    PubMed

    Park, Jin Seo; Shin, Dong Sun; Chung, Min Suk; Hwang, Sung Bae; Chung, Jinoh

    2007-11-01

    This article describes the technique of semiautomatic surface reconstruction of anatomic structures using widely available commercial software. This technique would enable researchers to promptly and objectively perform surface reconstruction, creating three-dimensional anatomic images without any assistance from computer engineers. To develop the technique, we used data from the Visible Korean Human project, which produced digitalized photographic serial images of an entire cadaver. We selected 114 anatomic structures (skin [1], bones [32], knee joint structures [7], muscles [60], arteries [7], and nerves [7]) from the 976 anatomic images which were generated from the left lower limb of the cadaver. Using Adobe Photoshop, the selected anatomic structures in each serial image were outlined, creating a segmented image. The Photoshop files were then converted into Adobe Illustrator files to prepare isolated segmented images, so that the contours of the structure could be viewed independent of the surrounding anatomy. Using Alias Maya, these isolated segmented images were then stacked to construct a contour image. Gaps between the contour lines were filled with surfaces, and three-dimensional surface reconstruction could be visualized with Rhinoceros. Surface imperfections were then corrected to complete the three-dimensional images in Alias Maya. We believe that the three-dimensional anatomic images created by these methods will have widespread application in both medical education and research. 2007 Wiley-Liss, Inc

  12. Operating scheme for the light-emitting diode array of a volumetric display that exhibits multiple full-color dynamic images

    NASA Astrophysics Data System (ADS)

    Hirayama, Ryuji; Shiraki, Atsushi; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2017-07-01

    We designed and developed a control circuit for a three-dimensional (3-D) light-emitting diode (LED) array to be used in volumetric displays exhibiting full-color dynamic 3-D images. The circuit was implemented on a field-programmable gate array; therefore, pulse-width modulation, which requires high-speed processing, could be operated in real time. We experimentally evaluated the developed system by measuring the luminance of an LED with varying input and confirmed that the system works appropriately. In addition, we demonstrated that the volumetric display exhibits different full-color dynamic two-dimensional images in two orthogonal directions. Each of the exhibited images could be obtained only from the prescribed viewpoint. Such directional characteristics of the system are beneficial for applications, including digital signage, security systems, art, and amusement.

  13. Holographic digital microscopy in on-line process control

    NASA Astrophysics Data System (ADS)

    Osanlou, Ardeshir

    2011-09-01

    This article investigates the feasibility of real-time three-dimensional imaging of microscopic objects within various emulsions while being produced in specialized production vessels. The study is particularly relevant to on-line process monitoring and control in chemical, pharmaceutical, food, cleaning, and personal hygiene industries. Such processes are often dynamic and the materials cannot be measured once removed from the production vessel. The technique reported here is applicable to three-dimensional characterization analyses on stirred fluids in small reaction vessels. Relatively expensive pulsed lasers have been avoided through the careful control of the speed of the moving fluid in relation to the speed of the camera exposure and the wavelength of the continuous wave laser used. The ultimate aim of the project is to introduce a fully robust and compact digital holographic microscope as a process control tool in a full size specialized production vessel.

  14. Combining remote sensing image with DEM to identify ancient Minqin Oasis, northwest of China

    NASA Astrophysics Data System (ADS)

    Xie, Yaowen

    2008-10-01

    The developing and desertification process of Minqin oasis is representative in the whole arid area of northwest China. Combining Remote Sensing image with Digital Elevation Model (DEM) can produce the three-dimensional image of the research area which can give prominence to the spatial background of historical geography phenomenon's distribution, providing the conditions for extracting and analyzing historical geographical information thoroughly. This research rebuilds the ancient artificial Oasis based on the three-dimensional images produced by the TM digital Remote Sensing image and DEM created using 1:100000 topographic maps. The result indicates that the whole area of the ancient artificial oasis in Minqin Basin over the whole historical period reaches 321km2, in the form of discontinuous sheet, separated on the two banks of ancient Shiyang River and its branches, namely, Xishawo area, west to modern Minqin Basin and Zhongshawo area, in the center of the oasis. Except for a little of the ancient oasis unceasingly used by later people, most of it became desert. The combination of digital Remote Sensing image and DEM can integrate the advantages of both in identifying ancient oasis and improve the interpreting accuracy greatly.

  15. Real-Time Three-Dimensional Cell Segmentation in Large-Scale Microscopy Data of Developing Embryos.

    PubMed

    Stegmaier, Johannes; Amat, Fernando; Lemon, William C; McDole, Katie; Wan, Yinan; Teodoro, George; Mikut, Ralf; Keller, Philipp J

    2016-01-25

    We present the Real-time Accurate Cell-shape Extractor (RACE), a high-throughput image analysis framework for automated three-dimensional cell segmentation in large-scale images. RACE is 55-330 times faster and 2-5 times more accurate than state-of-the-art methods. We demonstrate the generality of RACE by extracting cell-shape information from entire Drosophila, zebrafish, and mouse embryos imaged with confocal and light-sheet microscopes. Using RACE, we automatically reconstructed cellular-resolution tissue anisotropy maps across developing Drosophila embryos and quantified differences in cell-shape dynamics in wild-type and mutant embryos. We furthermore integrated RACE with our framework for automated cell lineaging and performed joint segmentation and cell tracking in entire Drosophila embryos. RACE processed these terabyte-sized datasets on a single computer within 1.4 days. RACE is easy to use, as it requires adjustment of only three parameters, takes full advantage of state-of-the-art multi-core processors and graphics cards, and is available as open-source software for Windows, Linux, and Mac OS. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Four dimensional observations of clouds from geosynchronous orbit using stereo display and measurement techniques on an interactive information processing system

    NASA Technical Reports Server (NTRS)

    Hasler, A. F.; Desjardins, M.; Shenk, W. E.

    1979-01-01

    Simultaneous Geosynchronous Operational Environmental Satellite (GOES) 1 km resolution visible image pairs can provide quantitative three dimensional measurements of clouds. These data have great potential for severe storms research and as a basic parameter measurement source for other areas of meteorology (e.g. climate). These stereo cloud height measurements are not subject to the errors and ambiguities caused by unknown cloud emissivity and temperature profiles that are associated with infrared techniques. This effort describes the display and measurement of stereo data using digital processing techniques.

  17. Importance of preoperative imaging with 64-row three-dimensional multidetector computed tomography for safer video-assisted thoracic surgery in lung cancer.

    PubMed

    Akiba, Tadashi; Marushima, Hideki; Harada, Junta; Kobayashi, Susumu; Morikawa, Toshiaki

    2009-01-01

    Video-assisted thoracic surgery (VATS) has recently been adopted for complicated anatomical lung resections. During these thoracoscopic procedures, surgeons view the operative field on a two-dimensional (2-D) video monitor and cannot palpate the organ directly, thus frequently encountering anatomical difficulties. This study aimed to estimate the usefulness of preoperative three-dimensional (3-D) imaging of thoracic organs. We compared the preoperative 64-row three-dimensional multidetector computed tomography (3DMDCT) findings of lung cancer-affected thoracic organs to the operative findings. In comparison to the operative findings, the branches of pulmonary arteries, veins, and bronchi were well defined in the 3D-MDCT images of 27 patients. 3D-MDCT imaging is useful for preoperatively understanding the individual thoracic anatomy in lung cancer surgery. This modality can therefore contribute to safer anatomical pulmonary operations, especially in VATS.

  18. Novel 16-channel receive coil array for accelerated upper airway MRI at 3 Tesla.

    PubMed

    Kim, Yoon-Chul; Hayes, Cecil E; Narayanan, Shrikanth S; Nayak, Krishna S

    2011-06-01

    Upper airway MRI can provide a noninvasive assessment of speech and swallowing disorders and sleep apnea. Recent work has demonstrated the value of high-resolution three-dimensional imaging and dynamic two-dimensional imaging and the importance of further improvements in spatio-temporal resolution. The purpose of the study was to describe a novel 16-channel 3 Tesla receive coil that is highly sensitive to the human upper airway and investigate the performance of accelerated upper airway MRI with the coil. In three-dimensional imaging of the upper airway during static posture, 6-fold acceleration is demonstrated using parallel imaging, potentially leading to capturing a whole three-dimensional vocal tract with 1.25 mm isotropic resolution within 9 sec of sustained sound production. Midsagittal spiral parallel imaging of vocal tract dynamics during natural speech production is demonstrated with 2 × 2 mm(2) in-plane spatial and 84 ms temporal resolution. Copyright © 2010 Wiley-Liss, Inc.

  19. Athermally photoreduced graphene oxides for three-dimensional holographic images

    PubMed Central

    Li, Xiangping; Ren, Haoran; Chen, Xi; Liu, Juan; Li, Qin; Li, Chengmingyue; Xue, Gaolei; Jia, Jia; Cao, Liangcai; Sahu, Amit; Hu, Bin; Wang, Yongtian; Jin, Guofan; Gu, Min

    2015-01-01

    The emerging graphene-based material, an atomic layer of aromatic carbon atoms with exceptional electronic and optical properties, has offered unprecedented prospects for developing flat two-dimensional displaying systems. Here, we show that reduced graphene oxide enabled write-once holograms for wide-angle and full-colour three-dimensional images. This is achieved through the discovery of subwavelength-scale multilevel optical index modulation of athermally reduced graphene oxides by a single femtosecond pulsed beam. This new feature allows for static three-dimensional holographic images with a wide viewing angle up to 52 degrees. In addition, the spectrally flat optical index modulation in reduced graphene oxides enables wavelength-multiplexed holograms for full-colour images. The large and polarization-insensitive phase modulation over π in reduced graphene oxide composites enables to restore vectorial wavefronts of polarization discernible images through the vectorial diffraction of a reconstruction beam. Therefore, our technique can be leveraged to achieve compact and versatile holographic components for controlling light. PMID:25901676

  20. Single-camera three-dimensional tracking of natural particulate and zooplankton

    NASA Astrophysics Data System (ADS)

    Troutman, Valerie A.; Dabiri, John O.

    2018-07-01

    We develop and characterize an image processing algorithm to adapt single-camera defocusing digital particle image velocimetry (DDPIV) for three-dimensional (3D) particle tracking velocimetry (PTV) of natural particulates, such as those present in the ocean. The conventional DDPIV technique is extended to facilitate tracking of non-uniform, non-spherical particles within a volume depth an order of magnitude larger than current single-camera applications (i.e. 10 cm  ×  10 cm  ×  24 cm depth) by a dynamic template matching method. This 2D cross-correlation method does not rely on precise determination of the centroid of the tracked objects. To accommodate the broad range of particle number densities found in natural marine environments, the performance of the measurement technique at higher particle densities has been improved by utilizing the time-history of tracked objects to inform 3D reconstruction. The developed processing algorithms were analyzed using synthetically generated images of flow induced by Hill’s spherical vortex, and the capabilities of the measurement technique were demonstrated empirically through volumetric reconstructions of the 3D trajectories of particles and highly non-spherical, 5 mm zooplankton.

  1. Iterative optimizing quantization method for reconstructing three-dimensional images from a limited number of views

    DOEpatents

    Lee, Heung-Rae

    1997-01-01

    A three-dimensional image reconstruction method comprises treating the object of interest as a group of elements with a size that is determined by the resolution of the projection data, e.g., as determined by the size of each pixel. One of the projections is used as a reference projection. A fictitious object is arbitrarily defined that is constrained by such reference projection. The method modifies the known structure of the fictitious object by comparing and optimizing its four projections to those of the unknown structure of the real object and continues to iterate until the optimization is limited by the residual sum of background noise. The method is composed of several sub-processes that acquire four projections from the real data and the fictitious object: generate an arbitrary distribution to define the fictitious object, optimize the four projections, generate a new distribution for the fictitious object, and enhance the reconstructed image. The sub-process for the acquisition of the four projections from the input real data is simply the function of acquiring the four projections from the data of the transmitted intensity. The transmitted intensity represents the density distribution, that is, the distribution of absorption coefficients through the object.

  2. Fully Mechanically Controlled Automated Electron Microscopic Tomography

    DOE PAGES

    Liu, Jinxin; Li, Hongchang; Zhang, Lei; ...

    2016-07-11

    Knowledge of three-dimensional (3D) structures of each individual particles of asymmetric and flexible proteins is essential in understanding those proteins' functions; but their structures are difficult to determine. Electron tomography (ET) provides a tool for imaging a single and unique biological object from a series of tilted angles, but it is challenging to image a single protein for three-dimensional (3D) reconstruction due to the imperfect mechanical control capability of the specimen goniometer under both a medium to high magnification (approximately 50,000-160,000×) and an optimized beam coherence condition. Here, we report a fully mechanical control method for automating ET data acquisitionmore » without using beam tilt/shift processes. This method could reduce the accumulation of beam tilt/shift that used to compensate the error from the mechanical control, but downgraded the beam coherence. Our method was developed by minimizing the error of the target object center during the tilting process through a closed-loop proportional-integral (PI) control algorithm. The validations by both negative staining (NS) and cryo-electron microscopy (cryo-EM) suggest that this method has a comparable capability to other ET methods in tracking target proteins while maintaining optimized beam coherence conditions for imaging.« less

  3. Geometric modeling of the temporal bone for cochlea implant simulation

    NASA Astrophysics Data System (ADS)

    Todd, Catherine A.; Naghdy, Fazel; O'Leary, Stephen

    2004-05-01

    The first stage in the development of a clinically valid surgical simulator for training otologic surgeons in performing cochlea implantation is presented. For this purpose, a geometric model of the temporal bone has been derived from a cadaver specimen using the biomedical image processing software package Analyze (AnalyzeDirect, Inc) and its three-dimensional reconstruction is examined. Simulator construction begins with registration and processing of a Computer Tomography (CT) medical image sequence. Important anatomical structures of the middle and inner ear are identified and segmented from each scan in a semi-automated threshold-based approach. Linear interpolation between image slices produces a three-dimensional volume dataset: the geometrical model. Artefacts are effectively eliminated using a semi-automatic seeded region-growing algorithm and unnecessary bony structures are removed. Once validated by an Ear, Nose and Throat (ENT) specialist, the model may be imported into the Reachin Application Programming Interface (API) (Reachin Technologies AB) for visual and haptic rendering associated with a virtual mastoidectomy. Interaction with the model is realized with haptics interfacing, providing the user with accurate torque and force feedback. Electrode array insertion into the cochlea will be introduced in the final stage of design.

  4. Three-dimensional device characterization by high-speed cinematography

    NASA Astrophysics Data System (ADS)

    Maier, Claus; Hofer, Eberhard P.

    2001-10-01

    Testing of micro-electro-mechanical systems (MEMS) for optimization purposes or reliability checks can be supported by device visualization whenever an optical access is available. The difficulty in such an investigation is the short time duration of dynamical phenomena in micro devices. This paper presents a test setup to visualize movements within MEMS in real-time and in two perpendicular directions. A three-dimensional view is achieved by the combination of a commercial high-speed camera system, which allows to take up to 8 images of the same process with a minimum interframe time of 10 ns for the first direction, with a second visualization system consisting of a highly sensitive CCD camera working with a multiple exposure LED illumination in the perpendicular direction. Well synchronized this provides 3-D information which is treated by digital image processing to correct image distortions and to perform the detection of object contours. Symmetric and asymmetric binary collisions of micro drops are chosen as test experiments, featuring coalescence and surface rupture. Another application shown here is the investigation of sprays produced by an atomizer. The second direction of view is a prerequisite for this measurement to select an intended plane of focus.

  5. Three-dimensional scene reconstruction from a two-dimensional image

    NASA Astrophysics Data System (ADS)

    Parkins, Franz; Jacobs, Eddie

    2017-05-01

    We propose and simulate a method of reconstructing a three-dimensional scene from a two-dimensional image for developing and augmenting world models for autonomous navigation. This is an extension of the Perspective-n-Point (PnP) method which uses a sampling of the 3D scene, 2D image point parings, and Random Sampling Consensus (RANSAC) to infer the pose of the object and produce a 3D mesh of the original scene. Using object recognition and segmentation, we simulate the implementation on a scene of 3D objects with an eye to implementation on embeddable hardware. The final solution will be deployed on the NVIDIA Tegra platform.

  6. Volumetric three-dimensional display system with rasterization hardware

    NASA Astrophysics Data System (ADS)

    Favalora, Gregg E.; Dorval, Rick K.; Hall, Deirdre M.; Giovinco, Michael; Napoli, Joshua

    2001-06-01

    An 8-color multiplanar volumetric display is being developed by Actuality Systems, Inc. It will be capable of utilizing an image volume greater than 90 million voxels, which we believe is the greatest utilizable voxel set of any volumetric display constructed to date. The display is designed to be used for molecular visualization, mechanical CAD, e-commerce, entertainment, and medical imaging. As such, it contains a new graphics processing architecture, novel high-performance line- drawing algorithms, and an API similar to a current standard. Three-dimensional imagery is created by projecting a series of 2-D bitmaps ('image slices') onto a diffuse screen that rotates at 600 rpm. Persistence of vision fuses the slices into a volume-filling 3-D image. A modified three-panel Texas Instruments projector provides slices at approximately 4 kHz, resulting in 8-color 3-D imagery comprised of roughly 200 radially-disposed slices which are updated at 20 Hz. Each slice has a resolution of 768 by 768 pixels, subtending 10 inches. An unusual off-axis projection scheme incorporating tilted rotating optics is used to maintain good focus across the projection screen. The display electronics includes a custom rasterization architecture which converts the user's 3- D geometry data into image slices, as well as 6 Gbits of DDR SDRAM graphics memory.

  7. Individual headless compression screws fixed with three-dimensional image processing technology improves fusion rates of isolated talonavicular arthrodesis.

    PubMed

    Xie, Mei-Ming; Xia, Kang; Zhang, Hong-Xin; Cao, Hong-Hui; Yang, Zhi-Jin; Cui, Hai-Feng; Gao, Shang; Tang, Kang-Lai

    2017-01-23

    Screw fixation is a typical technique for isolated talonavicular arthrodesis (TNA), however, no consensus has been reached on how to select most suitable inserted position and direction. The study aimed to present a new fixation technique and to evaluate the clinical outcome of individual headless compression screws (HCSs) applied with three-dimensional (3D) image processing technology to isolated TNA. From 2007 to 2014, 69 patients underwent isolated TNA by using double Acutrak HCSs. The preoperative three-dimensional (3D) insertion model of double HCSs was applied by Mimics, Catia, and SolidWorks reconstruction software. One HCS oriented antegradely from the edge of dorsal navicular tail where intersected interspace between the first and the second cuneiform into the talus body along the talus axis, and the other one paralleled the first screw oriented from the dorsal-medial navicular where intersected at the medial plane of the first cuneiform. The anteroposterior and lateral X-ray examinations certified that the double HCSs were placed along the longitudinal axis of the talus. Postoperative assessment included the American Orthopaedic Foot & Ankle Society hindfoot (AOFAS), the visual analogue scale (VAS) score, satisfaction score, imaging assessments, and complications. At the mean 44-months follow-up, all patients exhibited good articular congruity and solid bone fusion at an average of 11.26 ± 0.85 weeks (range, 10 ~ 13 weeks) without screw loosening, shifting, or breakage. The overall fusion rates were 100%. The average AOFAS score increased from 46.62 ± 4.6 (range, 37 ~ 56) preoperatively to 74.77 ± 5.4 (range, 64-88) at the final follow-up (95% CI: -30.86 ~ -27.34; p < 0.001). The mean VAS score decreased from 7.01 ± 1.2 (range, 4 ~ 9) to 1.93 ± 1.3 (range, 0 ~ 4) (95% CI: 4.69 ~ 5.48; p < 0.001). One cases (1.45%) and three cases (4.35%) experienced wound infection and adjacent arthritis respectively. The postoperative satisfaction score including pain relief, activities of daily living, and return to recreational activities were good to excellent in 62 (89.9%) cases. Individual 3D reconstruction of HCSs insertion model can be designed with three-dimensional image processing technology in TNA. The technology is safe, effective, and reliable to isolated TNA method with high bone fusion rates, low incidences of complications.

  8. SU-E-J-111: Finite Element-Based Deformable Image Registration of Pleural Cavity for Photodynamic Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penjweini, R; Zhu, T

    Purpose: The pleural volumes will deform during surgery portion of the pleural photodynamic therapy (PDT) of lung cancer when the pleural cavity is opened. This impact the delivered dose when using highly conformal treatment techniques. In this study, a finite element-based (FEM) deformable image registration is used to quantify the anatomical variation between the contours for the pleural cavities obtained in the operating room and those determined from pre-surgery computed tomography (CT) scans. Methods: An infrared camera-based navigation system (NDI) is used during PDT to track the anatomical changes and contour the lung and chest cavity. A series of CTsmore » of the lungs, in the same patient, are also acquired before the surgery. The structure contour of lung and the CTs are processed and contoured in Matlab and MeshLab. Then, the contours are imported into COMSOL Multiphysics 5.0, where the FEM-based deformable image registration is obtained using the deformed mesh - moving mesh (ALE) model. The NDI acquired lung contour is considered as the reference contour, and the CT contour is used as the target one, which will be deformed. Results: The reconstructed three-dimensional contours from both NDI and CT can be converted to COMSOL so that a three-dimensional ALE model can be developed. The contours can be registered using COMSOL ALE moving mesh model, which takes into account the deformation along x, y and z-axes. The deformed contour has good matches to the reference contour after the dynamic matching process. The resulting 3D deformation map can be used to obtain the locations of other critical anatomic structures, e.g., heart, during surgery. Conclusion: Deformable image registration can fuse images acquired by different modalities. It provides insights into the development of phenomenon and variation in normal anatomical structures over time. The initial assessments of three-dimensional registration show good agreement.« less

  9. 3-D Ultrafast Doppler Imaging Applied to the Noninvasive and Quantitative Imaging of Blood Vessels in Vivo

    PubMed Central

    Provost, J.; Papadacci, C.; Demene, C.; Gennisson, J-L.; Tanter, M.; Pernot, M.

    2016-01-01

    Ultrafast Doppler Imaging was introduced as a technique to quantify blood flow in an entire 2-D field of view, expanding the field of application of ultrasound imaging to the highly sensitive anatomical and functional mapping of blood vessels. We have recently developed 3-D Ultrafast Ultrasound Imaging, a technique that can produce thousands of ultrasound volumes per second, based on three-dimensional plane and diverging wave emissions, and demonstrated its clinical feasibility in human subjects in vivo. In this study, we show that non-invasive 3-D Ultrafast Power Doppler, Pulsed Doppler, and Color Doppler Imaging can be used to perform quantitative imaging of blood vessels in humans when using coherent compounding of three-dimensional tilted plane waves. A customized, programmable, 1024-channel ultrasound system was designed to perform 3-D Ultrafast Imaging. Using a 32X32, 3-MHz matrix phased array (Vermon, France), volumes were beamformed by coherently compounding successive tilted plane wave emissions. Doppler processing was then applied in a voxel-wise fashion. 3-D Ultrafast Power Doppler Imaging was first validated by imaging Tygon tubes of varying diameter and its in vivo feasibility was demonstrated by imaging small vessels in the human thyroid. Simultaneous 3-D Color and Pulsed Doppler Imaging using compounded emissions were also applied in the carotid artery and the jugular vein in one healthy volunteer. PMID:26276956

  10. Finding glenoid surface on scapula in 3D medical images for shoulder joint implant operation planning: 3D OCR

    NASA Astrophysics Data System (ADS)

    Mohammad Sadeghi, Majid; Kececi, Emin Faruk; Bilsel, Kerem; Aralasmak, Ayse

    2017-03-01

    Medical imaging has great importance in earlier detection, better treatment and follow-up of diseases. 3D Medical image analysis with CT Scan and MRI images has also been used to aid surgeries by enabling patient specific implant fabrication, where having a precise three dimensional model of associated body parts is essential. In this paper, a 3D image processing methodology for finding the plane on which the glenoid surface has a maximum surface area is proposed. Finding this surface is the first step in designing patient specific shoulder joint implant.

  11. Computer-aided endovascular aortic repair using fully automated two- and three-dimensional fusion imaging.

    PubMed

    Panuccio, Giuseppe; Torsello, Giovanni Federico; Pfister, Markus; Bisdas, Theodosios; Bosiers, Michel J; Torsello, Giovanni; Austermann, Martin

    2016-12-01

    To assess the usability of a fully automated fusion imaging engine prototype, matching preinterventional computed tomography with intraoperative fluoroscopic angiography during endovascular aortic repair. From June 2014 to February 2015, all patients treated electively for abdominal and thoracoabdominal aneurysms were enrolled prospectively. Before each procedure, preoperative planning was performed with a fully automated fusion engine prototype based on computed tomography angiography, creating a mesh model of the aorta. In a second step, this three-dimensional dataset was registered with the two-dimensional intraoperative fluoroscopy. The main outcome measure was the applicability of the fully automated fusion engine. Secondary outcomes were freedom from failure of automatic segmentation or of the automatic registration as well as accuracy of the mesh model, measuring deviations from intraoperative angiography in millimeters, if applicable. Twenty-five patients were enrolled in this study. The fusion imaging engine could be used in successfully 92% of the cases (n = 23). Freedom from failure of automatic segmentation was 44% (n = 11). The freedom from failure of the automatic registration was 76% (n = 19), the median error of the automatic registration process was 0 mm (interquartile range, 0-5 mm). The fully automated fusion imaging engine was found to be applicable in most cases, albeit in several cases a fully automated data processing was not possible, requiring manual intervention. The accuracy of the automatic registration yielded excellent results and promises a useful and simple to use technology. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  12. Echocardiography derived three-dimensional printing of normal and abnormal mitral annuli.

    PubMed

    Mahmood, Feroze; Owais, Khurram; Montealegre-Gallegos, Mario; Matyal, Robina; Panzica, Peter; Maslow, Andrew; Khabbaz, Kamal R

    2014-01-01

    The objective of this study was to assess the clinical feasibility of using echocardiographic data to generate three-dimensional models of normal and pathologic mitral valve annuli before and after repair procedures. High-resolution transesophageal echocardiographic data from five patients was analyzed to delineate and track the mitral annulus (MA) using Tom Tec Image-Arena software. Coordinates representing the annulus were imported into Solidworks software for constructing solid models. These solid models were converted to stereolithographic (STL) file format and three-dimensionally printed by a commercially available Maker Bot Replicator 2 three-dimensional printer. Total time from image acquisition to printing was approximately 30 min. Models created were highly reflective of known geometry, shape and size of normal and pathologic mitral annuli. Post-repair models also closely resembled shapes of the rings they were implanted with. Compared to echocardiographic images of annuli seen on a computer screen, physical models were able to convey clinical information more comprehensively, making them helpful in appreciating pathology, as well as post-repair changes. Three-dimensional printing of the MA is possible and clinically feasible using routinely obtained echocardiographic images. Given the short turn-around time and the lack of need for additional imaging, a technique we describe here has the potential for rapid integration into clinical practice to assist with surgical education, planning and decision-making.

  13. An overview of contemporary nuclear cardiology.

    PubMed

    Lewin, Howard C; Sciammarella, Maria G; Watters, Thomas A; Alexander, Herbert G

    2004-01-01

    Myocardial perfusion single photon emission computed tomography (SPECT) is a widely utilized noninvasive imaging modality for the diagnosis, prognosis, and risk stratification of coronary artery disease. It is clearly superior to the traditional planar technique in terms of imaging contrast and consequent diagnostic and prognostic yield. The strength of SPECT images is largely derived from the three-dimensional, volumetric nature of its image. Thus, this modality permits three-dimensional assessment and quantitation of the perfused myocardium and functional assessment through electrocardiographic gating of the perfusion images.

  14. Three-dimensional quantitative flow diagnostics

    NASA Technical Reports Server (NTRS)

    Miles, Richard B.; Nosenchuck, Daniel M.

    1989-01-01

    The principles, capabilities, and practical implementation of advanced measurement techniques for the quantitative characterization of three-dimensional flows are reviewed. Consideration is given to particle, Rayleigh, and Raman scattering; fluorescence; flow marking by H2 bubbles, photochromism, photodissociation, and vibrationally excited molecules; light-sheet volume imaging; and stereo imaging. Also discussed are stereo schlieren methods, holographic particle imaging, optical tomography, acoustic and magnetic-resonance imaging, and the display of space-filling data. Extensive diagrams, graphs, photographs, sample images, and tables of numerical data are provided.

  15. Diatom Valve Three-Dimensional Representation: A New Imaging Method Based on Combined Microscopies

    PubMed Central

    Ferrara, Maria Antonietta; De Tommasi, Edoardo; Coppola, Giuseppe; De Stefano, Luca; Rea, Ilaria; Dardano, Principia

    2016-01-01

    The frustule of diatoms, unicellular microalgae, shows very interesting photonic features, generally related to its complicated and quasi-periodic micro- and nano-structure. In order to simulate light propagation inside and through this natural structure, it is important to develop three-dimensional (3D) models for synthetic replica with high spatial resolution. In this paper, we present a new method that generates images of microscopic diatoms with high definition, by merging scanning electron microscopy and digital holography microscopy or atomic force microscopy data. Starting from two digital images, both acquired separately with standard characterization procedures, a high spatial resolution (Δz = λ/20, Δx = Δy ≅ 100 nm, at least) 3D model of the object has been generated. Then, the two sets of data have been processed by matrix formalism, using an original mathematical algorithm implemented on a commercially available software. The developed methodology could be also of broad interest in the design and fabrication of micro-opto-electro-mechanical systems. PMID:27690008

  16. Active control of jet flowfields

    NASA Astrophysics Data System (ADS)

    Kibens, Valdis; Wlezien, Richard W.

    1987-06-01

    Passive and active control of jet shear layer development were investigated as mechanisms for modifying the global characteristics of jet flowfields. Slanted and stepped indeterminate origin (I.O.) nozzles were used as passive, geometry-based control devices which modified the flow origins. Active control techniques were also investigated, in which periodic acoustic excitation signals were injected into the I.O. nozzle shear layers. Flow visualization techniques based on a pulsed copper-vapor laser were used in a phase-conditioned image acquisition mode to assemble optically averaged sets of images acquired at known times throughout the repetition cycle of the basic flow oscillation period. Hot wire data were used to verify the effect of the control techniques on the mean and fluctuating flow properties. The flow visualization images were digitally enhanced and processed to show locations of prominent vorticity concentrations. Three-dimensional vortex interaction patterns were assembled in a format suitable for movie mode on a graphic display workstation, showing the evolution of three-dimensional vortex system in time.

  17. SERODS optical data storage with parallel signal transfer

    DOEpatents

    Vo-Dinh, Tuan

    2003-09-02

    Surface-enhanced Raman optical data storage (SERODS) systems having increased reading and writing speeds, that is, increased data transfer rates, are disclosed. In the various SERODS read and write systems, the surface-enhanced Raman scattering (SERS) data is written and read using a two-dimensional process called parallel signal transfer (PST). The various embodiments utilize laser light beam excitation of the SERODS medium, optical filtering, beam imaging, and two-dimensional light detection. Two- and three-dimensional SERODS media are utilized. The SERODS write systems employ either a different laser or a different level of laser power.

  18. SERODS optical data storage with parallel signal transfer

    DOEpatents

    Vo-Dinh, Tuan

    2003-06-24

    Surface-enhanced Raman optical data storage (SERODS) systems having increased reading and writing speeds, that is, increased data transfer rates, are disclosed. In the various SERODS read and write systems, the surface-enhanced Raman scattering (SERS) data is written and read using a two-dimensional process called parallel signal transfer (PST). The various embodiments utilize laser light beam excitation of the SERODS medium, optical filtering, beam imaging, and two-dimensional light detection. Two- and three-dimensional SERODS media are utilized. The SERODS write systems employ either a different laser or a different level of laser power.

  19. Study of optical design of three-dimensional digital ophthalmoscopes.

    PubMed

    Fang, Yi-Chin; Yen, Chih-Ta; Chu, Chin-Hsien

    2015-10-01

    This study primarily involves using optical zoom structures to design a three-dimensional (3D) human-eye optical sensory system with infrared and visible light. According to experimental data on two-dimensional (2D) and 3D images, human-eye recognition of 3D images is substantially higher (approximately 13.182%) than that of 2D images. Thus, 3D images are more effective than 2D images when they are used at work or in high-recognition devices. In the optical system design, infrared and visible light wavebands were incorporated as light sources to perform simulations. The results can be used to facilitate the design of optical systems suitable for 3D digital ophthalmoscopes.

  20. Ruby-Helix: an implementation of helical image processing based on object-oriented scripting language.

    PubMed

    Metlagel, Zoltan; Kikkawa, Yayoi S; Kikkawa, Masahide

    2007-01-01

    Helical image analysis in combination with electron microscopy has been used to study three-dimensional structures of various biological filaments or tubes, such as microtubules, actin filaments, and bacterial flagella. A number of packages have been developed to carry out helical image analysis. Some biological specimens, however, have a symmetry break (seam) in their three-dimensional structure, even though their subunits are mostly arranged in a helical manner. We refer to these objects as "asymmetric helices". All the existing packages are designed for helically symmetric specimens, and do not allow analysis of asymmetric helical objects, such as microtubules with seams. Here, we describe Ruby-Helix, a new set of programs for the analysis of "helical" objects with or without a seam. Ruby-Helix is built on top of the Ruby programming language and is the first implementation of asymmetric helical reconstruction for practical image analysis. It also allows easier and semi-automated analysis, performing iterative unbending and accurate determination of the repeat length. As a result, Ruby-Helix enables us to analyze motor-microtubule complexes with higher throughput to higher resolution.

  1. Spectrum image analysis tool - A flexible MATLAB solution to analyze EEL and CL spectrum images.

    PubMed

    Schmidt, Franz-Philipp; Hofer, Ferdinand; Krenn, Joachim R

    2017-02-01

    Spectrum imaging techniques, gaining simultaneously structural (image) and spectroscopic data, require appropriate and careful processing to extract information of the dataset. In this article we introduce a MATLAB based software that uses three dimensional data (EEL/CL spectrum image in dm3 format (Gatan Inc.'s DigitalMicrograph ® )) as input. A graphical user interface enables a fast and easy mapping of spectral dependent images and position dependent spectra. First, data processing such as background subtraction, deconvolution and denoising, second, multiple display options including an EEL/CL moviemaker and, third, the applicability on a large amount of data sets with a small work load makes this program an interesting tool to visualize otherwise hidden details. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Spatio-temporal patterns of sediment particle movement on 2D and 3D bedforms

    NASA Astrophysics Data System (ADS)

    Tsubaki, Ryota; Baranya, Sándor; Muste, Marian; Toda, Yuji

    2018-06-01

    An experimental study was conducted to explore sediment particle motion in an open channel and its relationship to bedform characteristics. High-definition submersed video cameras were utilized to record images of particle motion over a dune's length scale. Image processing was conducted to account for illumination heterogeneity due to bedform geometric irregularity and light reflection at the water's surface. Identification of moving particles using a customized algorithm was subsequently conducted and then the instantaneous velocity distribution of sediment particles was evaluated using particle image velocimetry. Obtained experimental results indicate that the motion of sediment particles atop dunes differs depending on dune geometry (i.e., two-dimensional or three-dimensional, respectively). Sediment motion and its relationship to dune shape and dynamics are also discussed.

  3. Cochlear implant-related three-dimensional characteristics determined by micro-computed tomography reconstruction.

    PubMed

    Ni, Yusu; Dai, Peidong; Dai, Chunfu; Li, Huawei

    2017-01-01

    To explore the structural characteristics of the cochlea in three-dimensional (3D) detail using 3D micro-computed tomography (mCT) image reconstruction of the osseous labyrinth, with the aim of improving the structural design of electrodes, the selection of stimulation sites, and the effectiveness of cochlear implantation. Three temporal bones were selected from among adult donors' temporal bone specimens. A micro-CT apparatus (GE eXplore) was used to scan three specimens with a voxel resolution of 45 μm. We obtained about 460 slices/specimen, which produced abundant data. The osseous labyrinth images of three specimens were reconstructed from mCT. The cochlea and its spiral characteristics were measured precisely using Able Software 3D-DOCTOR. The 3D images of the osseous labyrinth, including the cochlea, vestibule, and semicircular canals, were reconstructed. The 3D models of the cochlea showed the spatial relationships and surface structural characteristics. Quantitative data concerning the cochlea and its spiral structural characteristics were analyzed with regard to cochlear implantation. The 3D reconstruction of mCT images clearly displayed the detailed spiral structural characteristics of the osseous labyrinth. Quantitative data regarding the cochlea and its spiral structural characteristics could help to improve electrode structural design, signal processing, and the effectiveness of cochlear implantation. Clin. Anat. 30:39-43, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  4. Standoff concealed weapon detection using a 350-GHz radar imaging system

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Hall, Thomas E.; Severtsen, Ronald H.; McMakin, Douglas L.; Hatchell, Brian K.; Valdez, Patrick L. J.

    2010-04-01

    The sub-millimeter (sub-mm) wave frequency band from 300 - 1000 GHz is currently being developed for standoff concealed weapon detection imaging applications. This frequency band is of interest due to the unique combination of high resolution and clothing penetration. The Pacific Northwest National Laboratory (PNNL) is currently developing a 350 GHz, active, wideband, three-dimensional, radar imaging system to evaluate the feasibility of active sub-mm imaging for standoff detection. Standoff concealed weapon and explosive detection is a pressing national and international need for both civilian and military security, as it may allow screening at safer distances than portal screening techniques. PNNL has developed a prototype active wideband 350 GHz radar imaging system based on a wideband, heterodyne, frequency-multiplier-based transceiver system coupled to a quasi-optical focusing system and high-speed rotating conical scanner. This prototype system operates at ranges up to 10+ meters, and can acquire an image in 10 - 20 seconds, which is fast enough to scan cooperative personnel for concealed weapons. The wideband operation of this system provides accurate ranging information, and the images obtained are fully three-dimensional. During the past year, several improvements to the system have been designed and implemented, including increased imaging speed using improved balancing techniques, wider bandwidth, and improved image processing techniques. In this paper, the imaging system is described in detail and numerous imaging results are presented.

  5. Robust and automated three-dimensional segmentation of densely packed cell nuclei in different biological specimens with Lines-of-Sight decomposition.

    PubMed

    Mathew, B; Schmitz, A; Muñoz-Descalzo, S; Ansari, N; Pampaloni, F; Stelzer, E H K; Fischer, S C

    2015-06-08

    Due to the large amount of data produced by advanced microscopy, automated image analysis is crucial in modern biology. Most applications require reliable cell nuclei segmentation. However, in many biological specimens cell nuclei are densely packed and appear to touch one another in the images. Therefore, a major difficulty of three-dimensional cell nuclei segmentation is the decomposition of cell nuclei that apparently touch each other. Current methods are highly adapted to a certain biological specimen or a specific microscope. They do not ensure similarly accurate segmentation performance, i.e. their robustness for different datasets is not guaranteed. Hence, these methods require elaborate adjustments to each dataset. We present an advanced three-dimensional cell nuclei segmentation algorithm that is accurate and robust. Our approach combines local adaptive pre-processing with decomposition based on Lines-of-Sight (LoS) to separate apparently touching cell nuclei into approximately convex parts. We demonstrate the superior performance of our algorithm using data from different specimens recorded with different microscopes. The three-dimensional images were recorded with confocal and light sheet-based fluorescence microscopes. The specimens are an early mouse embryo and two different cellular spheroids. We compared the segmentation accuracy of our algorithm with ground truth data for the test images and results from state-of-the-art methods. The analysis shows that our method is accurate throughout all test datasets (mean F-measure: 91%) whereas the other methods each failed for at least one dataset (F-measure≤69%). Furthermore, nuclei volume measurements are improved for LoS decomposition. The state-of-the-art methods required laborious adjustments of parameter values to achieve these results. Our LoS algorithm did not require parameter value adjustments. The accurate performance was achieved with one fixed set of parameter values. We developed a novel and fully automated three-dimensional cell nuclei segmentation method incorporating LoS decomposition. LoS are easily accessible features that ensure correct splitting of apparently touching cell nuclei independent of their shape, size or intensity. Our method showed superior performance compared to state-of-the-art methods, performing accurately for a variety of test images. Hence, our LoS approach can be readily applied to quantitative evaluation in drug testing, developmental and cell biology.

  6. The 3D scanner prototype utilize object profile imaging using line laser and octave software

    NASA Astrophysics Data System (ADS)

    Nurdini, Mugi; Manunggal, Trikarsa Tirtadwipa; Samsi, Agus

    2016-11-01

    Three-dimensional scanner or 3D Scanner is a device to reconstruct the real object into digital form on a computer. 3D Scanner is a technology that is being developed, especially in developed countries, where the current 3D Scanner devices is the advanced version with a very expensive prices. This study is basically a simple prototype of 3D Scanner with a very low investment costs. 3D Scanner prototype device consists of a webcam, a rotating desk system controlled by a stepper motor and Arduino UNO, and a line laser. Objects that limit the research is the object with same radius from its center point (object pivot). Scanning is performed by using object profile imaging by line laser which is then captured by the camera and processed by a computer (image processing) using Octave software. On each image acquisition, the scanned object on a rotating desk rotated by a certain degree, so for one full turn multiple images of a number of existing side are finally obtained. Then, the profile of the entire images is extracted in order to obtain digital object dimension. Digital dimension is calibrated by length standard, called gage block. Overall dimensions are then digitally reconstructed into a three-dimensional object. Validation of the scanned object reconstruction of the original object dimensions expressed as a percentage error. Based on the results of data validation, horizontal dimension error is about 5% to 23% and vertical dimension error is about +/- 3%.

  7. Measurements of morphology and refractive indexes on human downy hairs using three-dimensional quantitative phase imaging.

    PubMed

    Lee, SangYun; Kim, Kyoohyun; Lee, Yuhyun; Park, Sungjin; Shin, Heejae; Yang, Jongwon; Ko, Kwanhong; Park, HyunJoo; Park, YongKeun

    2015-01-01

    We present optical measurements of morphology and refractive indexes (RIs) of human downy arm hairs using three-dimensional (3-D) quantitative phase imaging techniques. 3-D RI tomograms and high-resolution two-dimensional synthetic aperture images of individual downy arm hairs were measured using a Mach–Zehnder laser interferometric microscopy equipped with a two-axis galvanometer mirror. From the measured quantitative images, the RIs and morphological parameters of downy hairs were noninvasively quantified including the mean RI, volume, cylinder, and effective radius of individual hairs. In addition, the effects of hydrogen peroxide on individual downy hairs were investigated.

  8. Three-dimensional spiral CT during arterial portography: comparison of three rendering techniques.

    PubMed

    Heath, D G; Soyer, P A; Kuszyk, B S; Bliss, D F; Calhoun, P S; Bluemke, D A; Choti, M A; Fishman, E K

    1995-07-01

    The three most common techniques for three-dimensional reconstruction are surface rendering, maximum-intensity projection (MIP), and volume rendering. Surface-rendering algorithms model objects as collections of geometric primitives that are displayed with surface shading. The MIP algorithm renders an image by selecting the voxel with the maximum intensity signal along a line extended from the viewer's eye through the data volume. Volume-rendering algorithms sum the weighted contributions of all voxels along the line. Each technique has advantages and shortcomings that must be considered during selection of one for a specific clinical problem and during interpretation of the resulting images. With surface rendering, sharp-edged, clear three-dimensional reconstruction can be completed on modest computer systems; however, overlapping structures cannot be visualized and artifacts are a problem. MIP is computationally a fast technique, but it does not allow depiction of overlapping structures, and its images are three-dimensionally ambiguous unless depth cues are provided. Both surface rendering and MIP use less than 10% of the image data. In contrast, volume rendering uses nearly all of the data, allows demonstration of overlapping structures, and engenders few artifacts, but it requires substantially more computer power than the other techniques.

  9. Interferometric inverse synthetic aperture radar imaging for space targets based on wideband direct sampling using two antennas

    NASA Astrophysics Data System (ADS)

    Tian, Biao; Liu, Yang; Xu, Shiyou; Chen, Zengping

    2014-01-01

    Interferometric inverse synthetic aperture radar (InISAR) imaging provides complementary information to monostatic inverse synthetic aperture radar (ISAR) imaging. This paper proposes a new InISAR imaging system for space targets based on wideband direct sampling using two antennas. The system is easy to realize in engineering since the motion trajectory of space targets can be known in advance, which is simpler than that of three receivers. In the preprocessing step, high speed movement compensation is carried out by designing an adaptive matched filter containing speed that is obtained from the narrow band information. Then, the coherent processing and keystone transform for ISAR imaging are adopted to reserve the phase history of each antenna. Through appropriate collocation of the system, image registration and phase unwrapping can be avoided. Considering the situation not to be satisfied, the influence of baseline variance is analyzed and compensation method is adopted. The corresponding size can be achieved by interferometric processing of the two complex ISAR images. Experimental results prove the validity of the analysis and the three-dimensional imaging algorithm.

  10. Three-dimensional Imaging and Scanning: Current and Future Applications for Pathology

    PubMed Central

    Farahani, Navid; Braun, Alex; Jutt, Dylan; Huffman, Todd; Reder, Nick; Liu, Zheng; Yagi, Yukako; Pantanowitz, Liron

    2017-01-01

    Imaging is vital for the assessment of physiologic and phenotypic details. In the past, biomedical imaging was heavily reliant on analog, low-throughput methods, which would produce two-dimensional images. However, newer, digital, and high-throughput three-dimensional (3D) imaging methods, which rely on computer vision and computer graphics, are transforming the way biomedical professionals practice. 3D imaging has been useful in diagnostic, prognostic, and therapeutic decision-making for the medical and biomedical professions. Herein, we summarize current imaging methods that enable optimal 3D histopathologic reconstruction: Scanning, 3D scanning, and whole slide imaging. Briefly mentioned are emerging platforms, which combine robotics, sectioning, and imaging in their pursuit to digitize and automate the entire microscopy workflow. Finally, both current and emerging 3D imaging methods are discussed in relation to current and future applications within the context of pathology. PMID:28966836

  11. Supervised Classification Techniques for Hyperspectral Data

    NASA Technical Reports Server (NTRS)

    Jimenez, Luis O.

    1997-01-01

    The recent development of more sophisticated remote sensing systems enables the measurement of radiation in many mm-e spectral intervals than previous possible. An example of this technology is the AVIRIS system, which collects image data in 220 bands. The increased dimensionality of such hyperspectral data provides a challenge to the current techniques for analyzing such data. Human experience in three dimensional space tends to mislead one's intuition of geometrical and statistical properties in high dimensional space, properties which must guide our choices in the data analysis process. In this paper high dimensional space properties are mentioned with their implication for high dimensional data analysis in order to illuminate the next steps that need to be taken for the next generation of hyperspectral data classifiers.

  12. The geometry of three-dimensional measurement from paired coplanar x-ray images.

    PubMed

    Baumrind, S; Moffitt, F H; Curry, S

    1983-10-01

    This article outlines the geometric principles which underlie the process of making craniofacial measurements in three dimensions by combining information from pairs of coplanar x-ray images. The main focus is upon the rationale of the method rather than upon the computational details. We stress particularly the importance of having available accurate measurements as to the relative positions of the x-ray tubes and the film plane. The use of control arrays of radiopaque "points" whose projected images upon the film plane allow the retrospective calculation of the spatial relationship between the x-ray tubes and the film plane is explained. Finally, the question of correcting for movement of the subject between two films of an image pair is considered briefly.

  13. Drag and drop simulation: from pictures to full three-dimensional simulations

    NASA Astrophysics Data System (ADS)

    Bergmann, Michel; Iollo, Angelo

    2014-11-01

    We present a suite of methods to achieve ``drag and drop'' simulation, i.e., to fully automatize the process to perform thee-dimensional flow simulations around a bodies defined by actual images of moving objects. The overall approach requires a skeleton graph generation to get level set function from pictures, optimal transportation to get body velocity on the surface and then flow simulation thanks to a cartesian method based on penalization. We illustrate this paradigm simulating the swimming of a mackerel fish.

  14. Physics of tissue harmonic imaging by ultrasound

    NASA Astrophysics Data System (ADS)

    Jing, Yuan

    Tissue Harmonic Imaging (THI) is an imaging modality that is currently deployed on diagnostic ultrasound scanners. In THI the amplitude of the ultrasonic pulse that is used to probe the tissue is large enough that the pulse undergoes nonlinear distortion as it propagates into the tissue. One result of the distortion is that as the pulse propagates energy is shifted from the fundamental frequency of the source pulse into its higher harmonics. These harmonics will scatter off objects in the tissue and images formed from the scattered higher harmonics are considered to have superior quality to the images formed from the fundamental frequency. Processes that have been suggested as possibly responsible for the improved imaging in THI include: (1) reduced sensitivity to reverberation, (2) reduced sensitivity to aberration, and (3) reduction in side lobes. By using a combination of controlled experiments and numerical simulations, these three reasons have been investigated. A single element transducer and a clinical ultrasound scanner with a phased array transducer were used to image a commercial tissue-mimicking phantom with calibrated targets. The higher image quality achieved with THI was quantified in terms of spatial resolution and "clutter" signals. A three-dimensional model of the forward propagation of nonlinear sound beams in media with arbitrary spatial properties (a generalized KZK equation) was developed. A time-domain code for solving the KZK equation was validated with measurements of the acoustic field generated by the single element transducer and the phased array transducer. The code was used to investigate the impact of aberration using tissue-like media with three-dimensional variations in all acoustic properties. The three-dimensional maps of tissue properties were derived from the datasets available through the Visible Female project. The experiments and simulations demonstrated that second harmonic imaging (1) suffers less clutter associated with reverberation; (2) is not immune to aberration effects and (3) suffers less clutter due to reduced side-lobe levels. The results indicate that side lobe suppression is the most significant reason for the improvement of second harmonic imaging.

  15. One ligand in dual roles: self-assembly of a bis-rhomboidal-shaped, three-dimensional molecular wheel.

    PubMed

    Lu, Xiaocun; Li, Xiaopeng; Guo, Kai; Wang, Jing; Huang, Mingjun; Wang, Jin-Liang; Xie, Ting-Zheng; Moorefield, Charles N; Cheng, Stephen Z D; Wesdemiotis, Chrys; Newkome, George R

    2014-10-06

    A facile high yield, self-assembly process that leads to a terpyridine-based, three-dimensional, bis-rhomboidal-shaped, molecular wheel is reported. The desired coordination-driven supramolecular wheel involves eight structurally distorted tristerpyridine (tpy) ligands possessing a 60° angle between the adjacent tpy units and twelve Zn(2+) ions. The tpy ligand plays dual roles in the self-assembly process: two are staggered at 180° to create the internal hub, while six produce the external rim. The wheel can be readily generated by mixing the tpy ligand and Zn(2+) in a stoichiometric ratio of 2:3; full characterization is provided by ESI-MS, NMR spectroscopy, and TEM imaging. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Preliminary Groundwater Simulations To Compare Different Reconstruction Methods of 3-d Alluvial Heterogeneity

    NASA Astrophysics Data System (ADS)

    Teles, V.; de Marsily, G.; Delay, F.; Perrier, E.

    Alluvial floodplains are extremely heterogeneous aquifers, whose three-dimensional structures are quite difficult to model. In general, when representing such structures, the medium heterogeneity is modeled with classical geostatistical or Boolean meth- ods. Another approach, still in its infancy, is called the genetic method because it simulates the generation of the medium by reproducing sedimentary processes. We developed a new genetic model to obtain a realistic three-dimensional image of allu- vial media. It does not simulate the hydrodynamics of sedimentation but uses semi- empirical and statistical rules to roughly reproduce fluvial deposition and erosion. The main processes, either at the stream scale or at the plain scale, are modeled by simple rules applied to "sediment" entities or to conceptual "erosion" entities. The model was applied to a several kilometer long portion of the Aube River floodplain (France) and reproduced the deposition and erosion cycles that occurred during the inferred climate periods (15 000 BP to present). A three-dimensional image of the aquifer was gener- ated, by extrapolating the two-dimensional information collected on a cross-section of the floodplain. Unlike geostatistical methods, this extrapolation does not use a statis- tical spatial analysis of the data, but a genetic analysis, which leads to a more realistic structure. Groundwater flow and transport simulations in the alluvium were carried out with a three-dimensional flow code or simulator (MODFLOW), using different rep- resentations of the alluvial reservoir of the Aube River floodplain: first an equivalent homogeneous medium, and then different heterogeneous media built either with the traditional geostatistical approach simulating the permeability distribution, or with the new genetic model presented here simulating sediment facies. In the latter case, each deposited entity of a given lithology was assigned a constant hydraulic conductivity value. Results of these models have been compared to assess the value of the genetic approach and will be presented.

  17. The Application of Three-Dimensional Surface Imaging System in Plastic and Reconstructive Surgery.

    PubMed

    Li, Yanqi; Yang, Xin; Li, Dong

    2016-02-01

    Three-dimensional (3D) surface imaging system has gained popularity worldwide in clinical application. Unlike computed tomography and magnetic resonance imaging, it has the ability to capture 3D images with both shape and texture information. This feature has made it quite useful for plastic surgeons. This review article is mainly focusing on demonstrating the current status and analyzing the future of the application of 3D surface imaging systems in plastic and reconstructive surgery.Currently, 3D surface imaging system is mainly used in plastic and reconstructive surgery to help improve the reliability of surgical planning and assessing surgical outcome objectively. There have already been reports of its using on plastic and reconstructive surgery from head to toe. Studies on facial aging process, online applications development, and so on, have also been done through the use of 3D surface imaging system.Because different types of 3D surface imaging devices have their own advantages and disadvantages, a basic knowledge of their features is required and careful thought should be taken to choose the one that best fits a surgeon's demand.In the future, by integrating with other imaging tools and the 3D printing technology, 3D surface imaging system will play an important role in individualized surgical planning, implants production, meticulous surgical simulation, operative techniques training, and patient education.

  18. A feasibility study of hand kinematics for EVA analysis using magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Dickenson, Rueben D.; Lorenz, Christine H.; Peterson, Steven W.; Strauss, Alvin M.; Main, John A.

    1992-01-01

    A new method of analyzing the kinematics of joint motion is developed. Magnetic Resonance Imaging (MRI) offers several distinct advantages. Past methods of studying anatomic joint motion have usually centered on four approaches. These methods are x-ray projection, goniometric linkage analysis, sonic digitization, and landmark measurement of photogrammetry. Of these four, only x-ray is applicable for in vivo studies. The remaining three methods utilize other types of projections of inter-joint measurements, which can cause various types of error. MRI offers accuracy in measurement due to its tomographic nature (as opposed to projection) without the problems associated with x-ray dosage. Once the data acquisition of MR images was complete, the images were processed using a 3D volume rendering workstation. The metacarpalphalangeal (MCP) joint of the left index finger was selected and reconstructed into a three-dimensional graphic display. From the reconstructed volumetric images, measurements of the angles of movement of the applicable bones were obtained and processed by analyzing the screw motion of the MCP joint. Landmark positions were chosen at distinctive locations of the joint at fixed image threshold intensity levels to ensure repeatability. The primarily two dimensional planar motion of this joint was then studied using a method of constructing coordinate systems using three (or more) points. A transformation matrix based on a world coordinate system described the location and orientation of a local target coordinate system. Future research involving volume rendering of MRI data focusing on the internal kinematics of the hand's individual ligaments, cartilage, tendons, etc. will follow. Its findings will show the applicability of MRI to joint kinematics for gaining further knowledge of the hand-glove (power assisted) design for extravehicular activity (EVA).

  19. Three-dimensional ophthalmic optical coherence tomography with a refraction correction algorithm

    NASA Astrophysics Data System (ADS)

    Zawadzki, Robert J.; Leisser, Christoph; Leitgeb, Rainer; Pircher, Michael; Fercher, Adolf F.

    2003-10-01

    We built an optical coherence tomography (OCT) system with a rapid scanning optical delay (RSOD) line, which allows probing full axial eye length. The system produces Three-dimensional (3D) data sets that are used to generate 3D tomograms of the model eye. The raw tomographic data were processed by an algorithm, which is based on Snell"s law to correct the interface positions. The Zernike polynomials representation of the interfaces allows quantitative wave aberration measurements. 3D images of our results are presented to illustrate the capabilities of the system and the algorithm performance. The system allows us to measure intra-ocular distances.

  20. Three-dimensional multispectral hand-held optoacoustic imaging with microsecond-level delayed laser pulses

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. L.; Bay, Erwin; Razansky, Daniel

    2015-03-01

    Three-dimensional hand-held optoacoustic imaging comes with important advantages that prompt the clinical translation of this modality, with applications envisioned in cardiovascular and peripheral vascular disease, disorders of the lymphatic system, breast cancer, arthritis or inflammation. Of particular importance is the multispectral acquisition of data by exciting the tissue at several wavelengths, which enables functional imaging applications. However, multispectral imaging of entire three-dimensional regions is significantly challenged by motion artefacts in concurrent acquisitions at different wavelengths. A method based on acquisition of volumetric datasets having a microsecond-level delay between pulses at different wavelengths is described in this work. This method can avoid image artefacts imposed by a scanning velocity greater than 2 m/s, thus, does not only facilitate imaging influenced by respiratory, cardiac or other intrinsic fast movements in living tissues, but can achieve artifact-free imaging in the presence of more significant motion, e.g., abrupt displacements during handheld-mode operation in a clinical environment.

  1. [3D Virtual Reality Laparoscopic Simulation in Surgical Education - Results of a Pilot Study].

    PubMed

    Kneist, W; Huber, T; Paschold, M; Lang, H

    2016-06-01

    The use of three-dimensional imaging in laparoscopy is a growing issue and has led to 3D systems in laparoscopic simulation. Studies on box trainers have shown differing results concerning the benefit of 3D imaging. There are currently no studies analysing 3D imaging in virtual reality laparoscopy (VRL). Five surgical fellows, 10 surgical residents and 29 undergraduate medical students performed abstract and procedural tasks on a VRL simulator using conventional 2D and 3D imaging in a randomised order. No significant differences between the two imaging systems were shown for students or medical professionals. Participants who preferred three-dimensional imaging showed significantly better results in 2D as wells as in 3D imaging. First results on three-dimensional imaging on box trainers showed different results. Some studies resulted in an advantage of 3D imaging for laparoscopic novices. This study did not confirm the superiority of 3D imaging over conventional 2D imaging in a VRL simulator. In the present study on 3D imaging on a VRL simulator there was no significant advantage for 3D imaging compared to conventional 2D imaging. Georg Thieme Verlag KG Stuttgart · New York.

  2. The approximate entropy concept extended to three dimensions for calibrated, single parameter structural complexity interrogation of volumetric images.

    PubMed

    Moore, Christopher; Marchant, Thomas

    2017-07-12

    Reconstructive volumetric imaging permeates medical practice because of its apparently clear depiction of anatomy. However, the tell tale signs of abnormality and its delineation for treatment demand experts work at the threshold of visibility for hints of structure. Hitherto, a suitable assistive metric that chimes with clinical experience has been absent. This paper develops the complexity measure approximate entropy (ApEn) from its 1D physiological origin into a three-dimensional (3D) algorithm to fill this gap. The first 3D algorithm for this is presented in detail. Validation results for known test arrays are followed by a comparison of fan-beam and cone-beam x-ray computed tomography image volumes used in image guided radiotherapy for cancer. Results show the structural detail down to individual voxel level, the strength of which is calibrated by the ApEn process itself. The potential for application in machine assisted manual interaction and automated image processing and interrogation, including radiomics associated with predictive outcome modeling, is discussed.

  3. The approximate entropy concept extended to three dimensions for calibrated, single parameter structural complexity interrogation of volumetric images

    NASA Astrophysics Data System (ADS)

    Moore, Christopher; Marchant, Thomas

    2017-08-01

    Reconstructive volumetric imaging permeates medical practice because of its apparently clear depiction of anatomy. However, the tell tale signs of abnormality and its delineation for treatment demand experts work at the threshold of visibility for hints of structure. Hitherto, a suitable assistive metric that chimes with clinical experience has been absent. This paper develops the complexity measure approximate entropy (ApEn) from its 1D physiological origin into a three-dimensional (3D) algorithm to fill this gap. The first 3D algorithm for this is presented in detail. Validation results for known test arrays are followed by a comparison of fan-beam and cone-beam x-ray computed tomography image volumes used in image guided radiotherapy for cancer. Results show the structural detail down to individual voxel level, the strength of which is calibrated by the ApEn process itself. The potential for application in machine assisted manual interaction and automated image processing and interrogation, including radiomics associated with predictive outcome modeling, is discussed.

  4. Combustion monitoring of a water tube boiler using a discriminant radial basis network.

    PubMed

    Sujatha, K; Pappa, N

    2011-01-01

    This research work includes a combination of Fisher's linear discriminant (FLD) analysis and a radial basis network (RBN) for monitoring the combustion conditions for a coal fired boiler so as to allow control of the air/fuel ratio. For this, two-dimensional flame images are required, which were captured with a CCD camera; the features of the images-average intensity, area, brightness and orientation etc of the flame-are extracted after preprocessing the images. The FLD is applied to reduce the n-dimensional feature size to a two-dimensional feature size for faster learning of the RBN. Also, three classes of images corresponding to different burning conditions of the flames have been extracted from continuous video processing. In this, the corresponding temperatures, and the carbon monoxide (CO) emissions and those of other flue gases have been obtained through measurement. Further, the training and testing of Fisher's linear discriminant radial basis network (FLDRBN), with the data collected, have been carried out and the performance of the algorithms is presented. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Three-Dimensional Super-Resolution: Theory, Modeling, and Field Tests Results

    NASA Technical Reports Server (NTRS)

    Bulyshev, Alexander; Amzajerdian, Farzin; Roback, Vincent E.; Hines, Glenn; Pierrottet, Diego; Reisse, Robert

    2014-01-01

    Many flash lidar applications continue to demand higher three-dimensional image resolution beyond the current state-of-the-art technology of the detector arrays and their associated readout circuits. Even with the available number of focal plane pixels, the required number of photons for illuminating all the pixels may impose impractical requirements on the laser pulse energy or the receiver aperture size. Therefore, image resolution enhancement by means of a super-resolution algorithm in near real time presents a very attractive solution for a wide range of flash lidar applications. This paper describes a superresolution technique and illustrates its performance and merits for generating three-dimensional image frames at a video rate.

  6. Design of an open-ended plenoptic camera for three-dimensional imaging of dusty plasmas

    NASA Astrophysics Data System (ADS)

    Sanpei, Akio; Tokunaga, Kazuya; Hayashi, Yasuaki

    2017-08-01

    Herein, the design of a plenoptic imaging system for three-dimensional reconstructions of dusty plasmas using an integral photography technique has been reported. This open-ended system is constructed with a multi-convex lens array and a typical reflex CMOS camera. We validated the design of the reconstruction system using known target particles. Additionally, the system has been applied to observations of fine particles floating in a horizontal, parallel-plate radio-frequency plasma. Furthermore, the system works well in the range of our dusty plasma experiment. We can identify the three-dimensional positions of dust particles from a single-exposure image obtained from one viewing port.

  7. Venus - Three-Dimensional Perspective View of Alpha Regio

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A portion of Alpha Regio is displayed in this three-dimensional perspective view of the surface of Venus. Alpha Regio, a topographic upland approximately 1300 kilometers across, is centered on 25 degrees south latitude, 4 degrees east longitude. In 1963, Alpha Regio was the first feature on Venus to be identified from Earth-based radar. The radar-bright area of Alpha Regio is characterized by multiple sets of intersecting trends of structural features such as ridges, troughs, and flat-floored fault valleys that, together, form a polygonal outline. Directly south of the complex ridged terrain is a large ovoid-shaped feature named Eve. The radar-bright spot located centrally within Eve marks the location of the prime meridian of Venus. Magellan synthetic aperture radar data is combined with radar altimetry to develop a three-dimensional map of the surface. Ray tracing is used to generate a perspective view from this map. The vertical scale is exaggerated approximately 23 times. Simulated color and a digital elevation map developed by the U. S. Geological Survey are used to enhance small scale structure. The simulated hues are based on color images recorded by the Soviet Venera 13 and 14 spacecraft. The image was produced at the JPL Multimission Image Processing Laboratory by Eric De Jong, Jeff Hall, and Myche McAuley, and is a single frame from the movie released at the March 5, 1991, press conference.

  8. Atherosclerosis of the carotid artery: evaluation by magnetic resonance angiography.

    PubMed

    Wildy, K S; Yuan, C; Tsuruda, J S; Ferguson, M S; Wen, N; Subramaniam, D S; Strandness, D E

    1996-01-01

    Carotid artery atherosclerotic plaques (APs) can lead to brain ischemia, an event shown to correlate with both the degree of stenosis and the composition of the AP. Currently, accurate estimates of stenosis can be obtained by either x-ray angiography or three-dimensional time-of-flight (TOF) magnetic resonance angiography (MRA). Our purpose was to determine whether three-dimensional TOF MRA images could also provide information on plaque location, morphology, and composition. Seven pre-endarterectomy patients underwent three-dimensional TOF MRA. After endarterectomy, plaque histology was evaluated. Three-dimensional TOF MRA images contained sufficient soft tissue contrast to differentiate the plaques from the surrounding tissues in all cases. Estimation of plaque morphology had 80% correlation with histology. Finally, intraplaque hemorrhage and calcification were deplicted as regions of moderately high and very low intensity, respectively. These preliminary results suggest that three-dimensional TOF MRA may be useful in studying the development and progression of carotid atherosclerosis.

  9. Effects of emotional valence and three-dimensionality of visual stimuli on brain activation: an fMRI study.

    PubMed

    Dores, A R; Almeida, I; Barbosa, F; Castelo-Branco, M; Monteiro, L; Reis, M; de Sousa, L; Caldas, A Castro

    2013-01-01

    Examining changes in brain activation linked with emotion-inducing stimuli is essential to the study of emotions. Due to the ecological potential of techniques such as virtual reality (VR), inspection of whether brain activation in response to emotional stimuli can be modulated by the three-dimensional (3D) properties of the images is important. The current study sought to test whether the activation of brain areas involved in the emotional processing of scenarios of different valences can be modulated by 3D. Therefore, the focus was made on the interaction effect between emotion-inducing stimuli of different emotional valences (pleasant, unpleasant and neutral valences) and visualization types (2D, 3D). However, main effects were also analyzed. The effect of emotional valence and visualization types and their interaction were analyzed through a 3 × 2 repeated measures ANOVA. Post-hoc t-tests were performed under a ROI-analysis approach. The results show increased brain activation for the 3D affective-inducing stimuli in comparison with the same stimuli in 2D scenarios, mostly in cortical and subcortical regions that are related to emotional processing, in addition to visual processing regions. This study has the potential of clarify brain mechanisms involved in the processing of emotional stimuli (scenarios' valence) and their interaction with three-dimensionality.

  10. Hand-held optoacoustic probe for three-dimensional imaging of human morphology and function

    NASA Astrophysics Data System (ADS)

    Deán-Ben, X. Luís.; Razansky, Daniel

    2014-03-01

    We report on a hand-held imaging probe for real-time optoacoustic visualization of deep tissues in three dimensions. The proposed solution incorporates a two-dimensional array of ultrasonic sensors densely distributed on a spherical surface, whereas illumination is performed coaxially through a cylindrical cavity in the array. Visualization of three-dimensional tomographic data at a frame rate of 10 images per second is enabled by parallel recording of 256 time-resolved signals for each individual laser pulse along with a highly efficient GPUbased real-time reconstruction. A liquid coupling medium (water), enclosed in a transparent membrane, is used to guarantee transmission of the optoacoustically generated waves to the ultrasonic detectors. Excitation at multiple wavelengths further allows imaging spectrally distinctive tissue chromophores such as oxygenated and deoxygenated haemoglobin. The performance is showcased by video-rate tracking of deep tissue vasculature and three-dimensional measurements of blood oxygenenation in a healthy human volunteer. The flexibility provided by the hand-held hardware design, combined with the real-time operation, makes the developed platform highly usable for both small animal research and clinical imaging in multiple indications, including cancer, inflammation, skin and cardiovascular diseases, diagnostics of lymphatic system and breast

  11. Two-dimensional signal processing with application to image restoration

    NASA Technical Reports Server (NTRS)

    Assefi, T.

    1974-01-01

    A recursive technique for modeling and estimating a two-dimensional signal contaminated by noise is presented. A two-dimensional signal is assumed to be an undistorted picture, where the noise introduces the distortion. Both the signal and the noise are assumed to be wide-sense stationary processes with known statistics. Thus, to estimate the two-dimensional signal is to enhance the picture. The picture representing the two-dimensional signal is converted to one dimension by scanning the image horizontally one line at a time. The scanner output becomes a nonstationary random process due to the periodic nature of the scanner operation. Procedures to obtain a dynamical model corresponding to the autocorrelation function of the scanner output are derived. Utilizing the model, a discrete Kalman estimator is designed to enhance the image.

  12. Open-loop measurement of data sampling point for SPM

    NASA Astrophysics Data System (ADS)

    Wang, Yueyu; Zhao, Xuezeng

    2006-03-01

    SPM (Scanning Probe Microscope) provides "three-dimensional images" with nanometer level resolution, and some of them can be used as metrology tools. However, SPM's images are commonly distorted by non-ideal properties of SPM's piezoelectric scanner, which reduces metrological accuracy and data repeatability. In order to eliminate this limit, an "open-loop sampling" method is presented. In this method, the positional values of sampling points in all three directions on the surface of the sample are measured by the position sensor and recorded in SPM's image file, which is used to replace the image file from a conventional SPM. Because the positions in X and Y directions are measured at the same time of sampling height information in Z direction, the image distortion caused by scanner locating error can be reduced by proper image processing algorithm.

  13. Three-Dimensional Flow Behavior Inside the Submerged Entry Nozzle

    NASA Astrophysics Data System (ADS)

    Real-Ramirez, Cesar Augusto; Carvajal-Mariscal, Ignacio; Sanchez-Silva, Florencio; Cervantes-de-la-Torre, Francisco; Diaz-Montes, Jesus; Gonzalez-Trejo, Jesus

    2018-05-01

    According to various authors, the surface quality of steel depends on the dynamic conditions that occur within the continuous casting mold's upper region. The meniscus, found in that upper region, is where the solidification process begins. The liquid steel is distributed into the mold through a submerged entry nozzle (SEN). In this paper, the dynamic behavior inside the SEN is analyzed by means of physical experiments and numerical simulations. The particle imaging velocimetry technique was used to obtain the vector field in different planes and three-dimensional flow patterns inside the SEN volume. Moreover, large eddy simulation was performed, and the turbulence model results were used to understand the nonlinear flow pattern inside the SEN. Using scaled physical and numerical models, quasi-periodic behavior was observed due to the interaction of two three-dimensional vortices that move inside the SEN lower region located between the exit ports of the nozzle.

  14. Rationalisation and Validation of an Acrylamide-Free Procedure in Three-Dimensional Histological Imaging

    PubMed Central

    Lai, Hei Ming; Liu, Alan King Lun; Ng, Wai-Lung; DeFelice, John; Lee, Wing Sang; Li, Heng; Li, Wen; Ng, Ho Man; Chang, Raymond Chuen-Chung; Lin, Bin; Wu, Wutian; Gentleman, Steve M.

    2016-01-01

    Three-dimensional visualization of intact tissues is now being achieved by turning tissues transparent. CLARITY is a unique tissue clearing technique, which features the use of detergents to remove lipids from fixed tissues to achieve optical transparency. To preserve tissue integrity, an acrylamide-based hydrogel has been proposed to embed the tissue. In this study, we examined the rationale behind the use of acrylamide in CLARITY, and presented evidence to suggest that the omission of acrylamide-hydrogel embedding in CLARITY does not alter the preservation of tissue morphology and molecular information in fixed tissues. We therefore propose a novel and simplified workflow for formaldehyde-fixed tissue clearing, which will facilitate the laboratory implementation of this technique. Furthermore, we have investigated the basic tissue clearing process in detail and have highlighted some areas for targeted improvement of technologies essential for the emerging subject of three-dimensional histology. PMID:27359336

  15. Photoacoustic projection imaging using an all-optical detector array

    NASA Astrophysics Data System (ADS)

    Bauer-Marschallinger, J.; Felbermayer, K.; Berer, T.

    2018-02-01

    We present a prototype for all-optical photoacoustic projection imaging. By generating projection images, photoacoustic information of large volumes can be retrieved with less effort compared to common photoacoustic computed tomography where many detectors and/or multiple measurements are required. In our approach, an array of 60 integrating line detectors is used to acquire photoacoustic waves. The line detector array consists of fiber-optic MachZehnder interferometers, distributed on a cylindrical surface. From the measured variation of the optical path lengths of the interferometers, induced by photoacoustic waves, a photoacoustic projection image can be reconstructed. The resulting images represent the projection of the three-dimensional spatial light absorbance within the imaged object onto a two-dimensional plane, perpendicular to the line detector array. The fiber-optic detectors achieve a noise-equivalent pressure of 24 Pascal at a 10 MHz bandwidth. We present the operational principle, the structure of the array, and resulting images. The system can acquire high-resolution projection images of large volumes within a short period of time. Imaging large volumes at high frame rates facilitates monitoring of dynamic processes.

  16. Import and visualization of clinical medical imagery into multiuser VR environments

    NASA Astrophysics Data System (ADS)

    Mehrle, Andreas H.; Freysinger, Wolfgang; Kikinis, Ron; Gunkel, Andreas; Kral, Florian

    2005-03-01

    The graphical representation of three-dimensional data obtained from tomographic imaging has been the central problem since this technology is available. Neither the representation as a set of two-dimensional slices nor the 2D projection of three-dimensional models yields satisfactory results. In this paper a way is outlined which permits the investigation of volumetric clinical data obtained from standard CT, MR, PET, SPECT or experimental very high resolution CT-scanners in a three dimensional environment within a few worksteps. Volumetric datasets are converted into surface data (segmentation process) using the 3D-Slicer software tool and saved as .vtk files and exported as a collection of primitives in any common file format (.iv, .pfb). Subsequently this files can be displayed and manipulated in the CAVE virtual reality center. The CAVE is a multiuser walkable virtual room consisting of several walls on which stereoscopic images are projected by rear panel beamers. Adequate tracking of the head position and separate image calculation for each eye yields a vivid impression for one or several users. With the use of a seperately tracked 6D joystick manipulations such as rotation, translation, zooming, decomposition or highlighting can be done intuitively. The usage of the CAVE technology opens new possibilities especially in surgical training ("hands-on-effect") and as an educational tool (availability of pathological data). Unlike concurring technologies the CAVE permits a walk-through into the virtual scene but preserves enough physical perception to allow interaction between multiple users, e.g. gestures and movements. By training in a virtual environment on one hand the learning process of students in complex anatomic findings may be improved considerably and on the other hand unaccustomed views such as the one through a microscope or endoscope can be trained in advance. The availability of low-cost PC based CAVE-like systems and the rapidly decreasing price of high-performance video beamers makes the CAVE an affordable alternative to conventional surgical training techniques and without limitations in handling cadavers.

  17. Real-time spectral imaging in three spatial dimensions

    NASA Astrophysics Data System (ADS)

    Liu, Wenhai; Psaltis, Demetri; Barbastathis, George

    2002-05-01

    We report what is to our knowledge the first volume-holographic optical imaging instrument with the capability to return three-dimensional spatial as well as spectral information about semitranslucent microscopic objects in a single measurement. The four-dimensional volume-holographic microscope is characterized theoretically and experimentally by use of fluorescent microspheres as objects.

  18. Social Inferences from Faces: Ambient Images Generate a Three-Dimensional Model

    ERIC Educational Resources Information Center

    Sutherland, Clare A. M.; Oldmeadow, Julian A.; Santos, Isabel M.; Towler, John; Burt, D. Michael; Young, Andrew W.

    2013-01-01

    Three experiments are presented that investigate the two-dimensional valence/trustworthiness by dominance model of social inferences from faces (Oosterhof & Todorov, 2008). Experiment 1 used image averaging and morphing techniques to demonstrate that consistent facial cues subserve a range of social inferences, even in a highly variable sample of…

  19. Structural Anomalies Detected in Ceramic Matrix Composites Using Combined Nondestructive Evaluation and Finite Element Analysis (NDE and FEA)

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Bhatt, Ramakrishna T.

    2003-01-01

    Most reverse engineering approaches involve imaging or digitizing an object and then creating a computerized reconstruction that can be integrated, in three dimensions, into a particular design environment. The rapid prototyping technique builds high-quality physical prototypes directly from computer-aided design files. This fundamental technique for interpreting and interacting with large data sets is being used here via Velocity2 (an integrated image-processing software, ref. 1) using computed tomography (CT) data to produce a prototype three-dimensional test specimen model for analyses. A study at the NASA Glenn Research Center proposes to use these capabilities to conduct a combined nondestructive evaluation (NDE) and finite element analysis (FEA) to screen pretest and posttest structural anomalies in structural components. A tensile specimen made of silicon nitrite (Si3N4) ceramic matrix composite was considered to evaluate structural durability and deformity. Ceramic matrix composites are being sought as candidate materials to replace nickel-base superalloys for turbine engine applications. They have the unique characteristics of being able to withstand higher operating temperatures and harsh combustion environments. In addition, their low densities relative to metals help reduce component mass (ref. 2). Detailed three-dimensional volume rendering of the tensile test specimen was successfully carried out with Velocity2 (ref. 1) using two-dimensional images that were generated via computed tomography. Subsequent, three-dimensional finite element analyses were performed, and the results obtained were compared with those predicted by NDE-based calculations and experimental tests. It was shown that Velocity2 software can be used to render a three-dimensional object from a series of CT scan images with a minimum level of complexity. The analytical results (ref. 3) show that the high-stress regions correlated well with the damage sites identified by the CT scans and the experimental data. Furthermore, modeling of the voids collected via NDE offered an analytical advantage that resulted in more accurate assessments of the material s structural strength. The top figure shows a CT scan image of the specimen test section illustrating various hidden structural entities in the material and an optical image of the test specimen considered in this study. The bottom figure represents the stress response predicted from the finite element analyses (ref .3 ) for a selected CT slice where it clearly illustrates the correspondence of the high stress risers due to voids in the material with those predicted by the NDE. This study is continuing, and efforts are concentrated on improving the modeling capabilities to imitate the structural anomalies as detected.

  20. An automatic panoramic image reconstruction scheme from dental computed tomography images

    PubMed Central

    Papakosta, Thekla K; Savva, Antonis D; Economopoulos, Theodore L; Gröhndal, H G

    2017-01-01

    Objectives: Panoramic images of the jaws are extensively used for dental examinations and/or surgical planning because they provide a general overview of the patient's maxillary and mandibular regions. Panoramic images are two-dimensional projections of three-dimensional (3D) objects. Therefore, it should be possible to reconstruct them from 3D radiographic representations of the jaws, produced by CBCT scanning, obviating the need for additional exposure to X-rays, should there be a need of panoramic views. The aim of this article is to present an automated method for reconstructing panoramic dental images from CBCT data. Methods: The proposed methodology consists of a series of sequential processing stages for detecting a fitting dental arch which is used for projecting the 3D information of the CBCT data to the two-dimensional plane of the panoramic image. The detection is based on a template polynomial which is constructed from a training data set. Results: A total of 42 CBCT data sets of real clinical pre-operative and post-operative representations from 21 patients were used. Eight data sets were used for training the system and the rest for testing. Conclusions: The proposed methodology was successfully applied to CBCT data sets, producing corresponding panoramic images, suitable for examining pre-operatively and post-operatively the patients' maxillary and mandibular regions. PMID:28112548

  1. Imaging plasmodesmata with high-resolution scanning electron microscopy.

    PubMed

    Barton, Deborah A; Overall, Robyn L

    2015-01-01

    High-resolution scanning electron microscopy (HRSEM) is an effective tool to investigate the distribution of plasmodesmata within plant cell walls as well as to probe their complex, three-dimensional architecture. It is a useful alternative to traditional transmission electron microscopy (TEM) in which plasmodesmata are sectioned to reveal their internal substructures. Benefits of adopting an HRSEM approach to studies of plasmodesmata are that the specimen preparation methods are less complex and time consuming than for TEM, many plasmodesmata within a large region of tissue can be imaged in a single session, and three-dimensional information is readily available without the need for reconstructing TEM serial sections or employing transmission electron tomography, both of which are lengthy processes. Here we describe methods to prepare plant samples for HRSEM using pre- or postfixation extraction of cellular material in order to visualize plasmodesmata embedded within plant cell walls.

  2. Multi-pixel high-resolution three-dimensional imaging radar

    NASA Technical Reports Server (NTRS)

    Cooper, Ken B. (Inventor); Dengler, Robert J. (Inventor); Siegel, Peter H. (Inventor); Chattopadhyay, Goutam (Inventor); Ward, John S. (Inventor); Juan, Nuria Llombart (Inventor); Bryllert, Tomas E. (Inventor); Mehdi, Imran (Inventor); Tarsala, Jan A. (Inventor)

    2012-01-01

    A three-dimensional imaging radar operating at high frequency e.g., 670 GHz radar using low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform, is disclosed that operates with a multiplexed beam to obtain range information simultaneously on multiple pixels of a target. A source transmit beam may be divided by a hybrid coupler into multiple transmit beams multiplexed together and directed to be reflected off a target and return as a single receive beam which is demultiplexed and processed to reveal range information of separate pixels of the target associated with each transmit beam simultaneously. The multiple transmit beams may be developed with appropriate optics to be temporally and spatially differentiated before being directed to the target. Temporal differentiation corresponds to a different intermediate frequencies separating the range information of the multiple pixels. Collinear transmit beams having differentiated polarizations may also be implemented.

  3. Experimental research of digital holographic microscopic measuring

    NASA Astrophysics Data System (ADS)

    Zhu, Xueliang; Chen, Feifei; Li, Jicheng

    2013-06-01

    Digital holography is a new imaging technique, which is developed on the base of optical holography, Digital processing, and Computer techniques. It is using CCD instead of the conventional silver to record hologram, and then reproducing the 3D contour of the object by the way of computer simulation. Compared with the traditional optical holographic, the whole process is of simple measuring, lower production cost, faster the imaging speed, and with the advantages of non-contact real-time measurement. At present, it can be used in the fields of the morphology detection of tiny objects, micro deformation analysis, and biological cells shape measurement. It is one of the research hot spot at home and abroad. This paper introduced the basic principles and relevant theories about the optical holography and Digital holography, and researched the basic questions which influence the reproduce images in the process of recording and reconstructing of the digital holographic microcopy. In order to get a clear digital hologram, by analyzing the optical system structure, we discussed the recording distance and of the hologram. On the base of the theoretical studies, we established a measurement and analyzed the experimental conditions, then adjusted them to the system. To achieve a precise measurement of tiny object in three-dimension, we measured MEMS micro device for example, and obtained the reproduction three-dimensional contour, realized the three dimensional profile measurement of tiny object. According to the experiment results consider: analysis the reference factors between the zero-order term and a pair of twin-images by the choice of the object light and the reference light and the distance of the recording and reconstructing and the characteristics of reconstruction light on the measurement, the measurement errors were analyzed. The research result shows that the device owns certain reliability.

  4. Neuroanatomical phenotyping of the mouse brain with three-dimensional autofluorescence imaging

    PubMed Central

    Wong, Michael D.; Dazai, Jun; Altaf, Maliha; Mark Henkelman, R.; Lerch, Jason P.; Nieman, Brian J.

    2012-01-01

    The structural organization of the brain is important for normal brain function and is critical to understand in order to evaluate changes that occur during disease processes. Three-dimensional (3D) imaging of the mouse brain is necessary to appreciate the spatial context of structures within the brain. In addition, the small scale of many brain structures necessitates resolution at the ∼10 μm scale. 3D optical imaging techniques, such as optical projection tomography (OPT), have the ability to image intact large specimens (1 cm3) with ∼5 μm resolution. In this work we assessed the potential of autofluorescence optical imaging methods, and specifically OPT, for phenotyping the mouse brain. We found that both specimen size and fixation methods affected the quality of the OPT image. Based on these findings we developed a specimen preparation method to improve the images. Using this method we assessed the potential of optical imaging for phenotyping. Phenotypic differences between wild-type male and female mice were quantified using computer-automated methods. We found that optical imaging of the endogenous autofluorescence in the mouse brain allows for 3D characterization of neuroanatomy and detailed analysis of brain phenotypes. This will be a powerful tool for understanding mouse models of disease and development and is a technology that fits easily within the workflow of biology and neuroscience labs. PMID:22718750

  5. Echocardiography Comparison Between Two and Three Dimensional Echocardiograms

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Echocardiography uses sound waves to image the heart and other organs. Developing a compact version of the latest technology improved the ease of monitoring crew member health, a critical task during long space flights. NASA researchers plan to adapt the three-dimensional (3-D) echocardiogram for space flight. The two-dimensional (2-D) echocardiogram utilized in orbit on the International Space Station (ISS) was effective, but difficult to use with precision. A heart image from a 2-D echocardiogram (left) is of a better quality than that from a 3-D device (right), but the 3-D imaging procedure is more user-friendly.

  6. Three-dimensional object recognition based on planar images

    NASA Astrophysics Data System (ADS)

    Mital, Dinesh P.; Teoh, Eam-Khwang; Au, K. C.; Chng, E. K.

    1993-01-01

    This paper presents the development and realization of a robotic vision system for the recognition of 3-dimensional (3-D) objects. The system can recognize a single object from among a group of known regular convex polyhedron objects that is constrained to lie on a calibrated flat platform. The approach adopted comprises a series of image processing operations on a single 2-dimensional (2-D) intensity image to derive an image line drawing. Subsequently, a feature matching technique is employed to determine 2-D spatial correspondences of the image line drawing with the model in the database. Besides its identification ability, the system can also provide important position and orientation information of the recognized object. The system was implemented on an IBM-PC AT machine executing at 8 MHz without the 80287 Maths Co-processor. In our overall performance evaluation based on a 600 recognition cycles test, the system demonstrated an accuracy of above 80% with recognition time well within 10 seconds. The recognition time is, however, indirectly dependent on the number of models in the database. The reliability of the system is also affected by illumination conditions which must be clinically controlled as in any industrial robotic vision system.

  7. A perspective view of the plane mixing layer

    NASA Technical Reports Server (NTRS)

    Jimenez, J.; Cogollos, M.; Bernal, L. P.

    1984-01-01

    A three-dimensional model of the plane mixing layer is constructed by applying digital image processing and computer graphic techniques to laser fluorescent motion pictures of its transversal sections. A system of streamwise vortex pairs is shown to exist on top of the classical spanwise eddies. Its influence on mixing is examined.

  8. Three-dimensional imaging of the brain cavities in human embryos.

    PubMed

    Blaas, H G; Eik-Nes, S H; Kiserud, T; Berg, S; Angelsen, B; Olstad, B

    1995-04-01

    A system for high-resolution three-dimensional imaging of small structures has been developed, based on the Vingmed CFM-800 annular array sector scanner with a 7.5-MHz transducer attached to a PC-based TomTec Echo-Scan unit. A stepper motor rotates the transducer 180 degrees and the complete three-dimensional scan consists of 132 two-dimensional images, video-grabbed and scan-converted into a regular volumetric data set by the TomTec unit. Three normal pregnancies with embryos of gestational age 7, 9 and 10 weeks received a transvaginal examination with special attention to the embryonic/fetal brain. In all three cases, it was possible to obtain high-resolution images of the brain cavities. At 7 weeks, both hemispheres and their connection to the third ventricle were delineated. The isthmus rhombencephali could be visualized. At 9 weeks, the continuous development of the brain cavities could be followed and at 11 weeks the dominating size of the hemispheres could be depicted. It is concluded that present ultrasound technology has reached a stage where structures of only a few millimeters can be imaged in vivo in three-dimensions with a quality that resembles the plaster figures used in embryonic laboratories. The method can become an important tool in future embryological research and also in the detection of early developmental disorders of the embryo.

  9. Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy.

    PubMed

    Disler, D G; McCauley, T R; Kelman, C G; Fuchs, M D; Ratner, L M; Wirth, C R; Hospodar, P P

    1996-07-01

    The sensitivity of fat-suppressed three-dimensional spoiled gradient-echo (SPGR) images was compared with that of standard MR images for detecting hyaline cartilage defects of the knee, using arthroscopy as the standard of reference. We assessed 114 consecutive patients for hyaline cartilage defects of the knee with both standard MR imaging sequences and a sagittal fat-suppressed three-dimensional SPGR sequence. Of these patients, 48 with meniscal or ligament injury, or persistent symptoms, underwent subsequent arthroscopy. The standard MR images and SPGR images of these 48 patients were then retrospectively analyzed for articular defects in a blinded fashion by two independent observers. Sensitivity, specificity, and intraobserver and interobserver agreement were determined for the different imaging techniques. One fourth of the patients who went on to arthroscopy were shown to have isolated hyaline cartilage lesions that were clinically confused with meniscal tears and that were missed on the standard MR images. When looking at all surfaces combined for each reader, the SPGR imaging sequence had a significantly higher sensitivity than the standard MR imaging sequences for detecting hyaline cartilage defects (75-85% versus 29-38%, p < .001 for each comparison). When looking at individual surfaces for each reader, significant differences in sensitivity were shown for each surface except the trochlear and lateral tibial surfaces. We found no difference in specificity (97% versus 97%, p > .99). We also found that combined evaluation of standard MR and SPGR images gave no added diagnostic advantage (sensitivity, 86%; specificity, 97%; p > .42). Except for the lateral tibial surface, the study achieved excellent reproducibility among readings and between readers. Fat-suppressed three-dimensional SPGR imaging is more sensitive than standard MR imaging for the detection of hyaline cartilage defects of the knee.

  10. A review of breast tomosynthesis. Part II. Image reconstruction, processing and analysis, and advanced applications

    PubMed Central

    Sechopoulos, Ioannis

    2013-01-01

    Many important post-acquisition aspects of breast tomosynthesis imaging can impact its clinical performance. Chief among them is the reconstruction algorithm that generates the representation of the three-dimensional breast volume from the acquired projections. But even after reconstruction, additional processes, such as artifact reduction algorithms, computer aided detection and diagnosis, among others, can also impact the performance of breast tomosynthesis in the clinical realm. In this two part paper, a review of breast tomosynthesis research is performed, with an emphasis on its medical physics aspects. In the companion paper, the first part of this review, the research performed relevant to the image acquisition process is examined. This second part will review the research on the post-acquisition aspects, including reconstruction, image processing, and analysis, as well as the advanced applications being investigated for breast tomosynthesis. PMID:23298127

  11. Nonlinear microscopy of collagen fibers

    NASA Astrophysics Data System (ADS)

    Strupler, M.; Pena, A.-M.; Hernest, M.; Tharaux, P.-L.; Fabre, A.; Marchal-Somme, J.; Crestani, B.; Débarre, D.; Martin, J.-L.; Beaurepaire, E.; Schanne-Klein, M.-C.

    2007-02-01

    We used intrinsic Second Harmonic Generation (SHG) by fibrillar collagen to visualize the three-dimensional architecture of collagen fibrosis at the micrometer scale using laser scanning nonlinear microscopy. We showed that SHG signals are highly specific to fibrillar collagen and provide a sensitive probe of the micrometer-scale structural organization of collagen in tissues. Moreover, recording simultaneously other nonlinear optical signals in a multimodal setup, we visualized the tissue morphology using Two-Photon Excited Fluorescence (2PEF) signals from endogenous chromophores such as NADH or elastin. We then compared different methods to determine accurate indexes of collagen fibrosis using nonlinear microscopy, given that most collagen fibrils are smaller than the microscope resolution and that second harmonic generation is a coherent process. In order to define a robust method to process our three-dimensional images, we either calculated the fraction of the images occupied by a significant SHG signal, or averaged SHG signal intensities. We showed that these scores provide an estimation of the extension of renal and pulmonary fibrosis in murine models, and that they clearly sort out the fibrotic mice.

  12. Synchrotron X-ray computed laminography of the three-dimensional anatomy of tomato leaves.

    PubMed

    Verboven, Pieter; Herremans, Els; Helfen, Lukas; Ho, Quang T; Abera, Metadel; Baumbach, Tilo; Wevers, Martine; Nicolaï, Bart M

    2015-01-01

    Synchrotron radiation computed laminography (SR-CL) is presented as an imaging method for analyzing the three-dimensional (3D) anatomy of leaves. The SR-CL method was used to provide 3D images of 1-mm² samples of intact leaves at a pixel resolution of 750 nm. The method allowed visualization and quantitative analysis of palisade and spongy mesophyll cells, and showed local venation patterns, aspects of xylem vascular structure and stomata. The method failed to image subcellular organelles such as chloroplasts. We constructed 3D computer models of leaves that can provide a basis for calculating gas exchange, light penetration and water and solute transport. The leaf anatomy of two different tomato genotypes grown in saturating light conditions was compared by 3D analysis. Differences were found in calculated values of tissue porosity, cell number density, cell area to volume ratio and cell volume and cell shape distributions of palisade and spongy cell layers. In contrast, the exposed cell area to leaf area ratio in mesophyll, a descriptor that correlates to the maximum rate of photosynthesis in saturated light conditions, was no different between spongy and palisade cells or between genotypes. The use of 3D image processing avoids many of the limitations of anatomical analysis with two-dimensional sections. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  13. TDat: An Efficient Platform for Processing Petabyte-Scale Whole-Brain Volumetric Images.

    PubMed

    Li, Yuxin; Gong, Hui; Yang, Xiaoquan; Yuan, Jing; Jiang, Tao; Li, Xiangning; Sun, Qingtao; Zhu, Dan; Wang, Zhenyu; Luo, Qingming; Li, Anan

    2017-01-01

    Three-dimensional imaging of whole mammalian brains at single-neuron resolution has generated terabyte (TB)- and even petabyte (PB)-sized datasets. Due to their size, processing these massive image datasets can be hindered by the computer hardware and software typically found in biological laboratories. To fill this gap, we have developed an efficient platform named TDat, which adopts a novel data reformatting strategy by reading cuboid data and employing parallel computing. In data reformatting, TDat is more efficient than any other software. In data accessing, we adopted parallelization to fully explore the capability for data transmission in computers. We applied TDat in large-volume data rigid registration and neuron tracing in whole-brain data with single-neuron resolution, which has never been demonstrated in other studies. We also showed its compatibility with various computing platforms, image processing software and imaging systems.

  14. Structural and congenital heart disease interventions: the role of three-dimensional printing.

    PubMed

    Meier, L M; Meineri, M; Qua Hiansen, J; Horlick, E M

    2017-02-01

    Advances in catheter-based interventions in structural and congenital heart disease have mandated an increased demand for three-dimensional (3D) visualisation of complex cardiac anatomy. Despite progress in 3D imaging modalities, the pre- and periprocedural visualisation of spatial anatomy is relegated to two-dimensional flat screen representations. 3D printing is an evolving technology based on the concept of additive manufacturing, where computerised digital surface renders are converted into physical models. Printed models replicate complex structures in tangible forms that cardiovascular physicians and surgeons can use for education, preprocedural planning and device testing. In this review we discuss the different steps of the 3D printing process, which include image acquisition, segmentation, printing methods and materials. We also examine the expanded applications of 3D printing in the catheter-based treatment of adult patients with structural and congenital heart disease while highlighting the current limitations of this technology in terms of segmentation, model accuracy and dynamic capabilities. Furthermore, we provide information on the resources needed to establish a hospital-based 3D printing laboratory.

  15. Three-dimensional reconstruction of highly complex microscopic samples using scanning electron microscopy and optical flow estimation.

    PubMed

    Baghaie, Ahmadreza; Pahlavan Tafti, Ahmad; Owen, Heather A; D'Souza, Roshan M; Yu, Zeyun

    2017-01-01

    Scanning Electron Microscope (SEM) as one of the major research and industrial equipment for imaging of micro-scale samples and surfaces has gained extensive attention from its emerge. However, the acquired micrographs still remain two-dimensional (2D). In the current work a novel and highly accurate approach is proposed to recover the hidden third-dimension by use of multi-view image acquisition of the microscopic samples combined with pre/post-processing steps including sparse feature-based stereo rectification, nonlocal-based optical flow estimation for dense matching and finally depth estimation. Employing the proposed approach, three-dimensional (3D) reconstructions of highly complex microscopic samples were achieved to facilitate the interpretation of topology and geometry of surface/shape attributes of the samples. As a byproduct of the proposed approach, high-definition 3D printed models of the samples can be generated as a tangible means of physical understanding. Extensive comparisons with the state-of-the-art reveal the strength and superiority of the proposed method in uncovering the details of the highly complex microscopic samples.

  16. Phase correction system for automatic focusing of synthetic aperture radar

    DOEpatents

    Eichel, Paul H.; Ghiglia, Dennis C.; Jakowatz, Jr., Charles V.

    1990-01-01

    A phase gradient autofocus system for use in synthetic aperture imaging accurately compensates for arbitrary phase errors in each imaged frame by locating highlighted areas and determining the phase disturbance or image spread associated with each of these highlight areas. An estimate of the image spread for each highlighted area in a line in the case of one dimensional processing or in a sector, in the case of two-dimensional processing, is determined. The phase error is determined using phase gradient processing. The phase error is then removed from the uncorrected image and the process is iteratively performed to substantially eliminate phase errors which can degrade the image.

  17. 3D Imaging with Structured Illumination for Advanced Security Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birch, Gabriel Carisle; Dagel, Amber Lynn; Kast, Brian A.

    2015-09-01

    Three-dimensional (3D) information in a physical security system is a highly useful dis- criminator. The two-dimensional data from an imaging systems fails to provide target dis- tance and three-dimensional motion vector, which can be used to reduce nuisance alarm rates and increase system effectiveness. However, 3D imaging devices designed primarily for use in physical security systems are uncommon. This report discusses an architecture favorable to physical security systems; an inexpensive snapshot 3D imaging system utilizing a simple illumination system. The method of acquiring 3D data, tests to understand illumination de- sign, and software modifications possible to maximize information gathering capabilitymore » are discussed.« less

  18. Comparative study of cranial anthropometric measurement by traditional calipers to computed tomography and three-dimensional photogrammetry.

    PubMed

    Mendonca, Derick A; Naidoo, Sybill D; Skolnick, Gary; Skladman, Rachel; Woo, Albert S

    2013-07-01

    Craniofacial anthropometry by direct caliper measurements is a common method of quantifying the morphology of the cranial vault. New digital imaging modalities including computed tomography and three-dimensional photogrammetry are similarly being used to obtain craniofacial surface measurements. This study sought to compare the accuracy of anthropometric measurements obtained by calipers versus 2 methods of digital imaging.Standard anterior-posterior, biparietal, and cranial index measurements were directly obtained on 19 participants with an age range of 1 to 20 months. Computed tomographic scans and three-dimensional photographs were both obtained on each child within 2 weeks of the clinical examination. Two analysts measured the anterior-posterior and biparietal distances on the digital images. Measures of reliability and bias between the modalities were calculated and compared.Caliper measurements were found to underestimate the anterior-posterior and biparietal distances as compared with those of the computed tomography and the three-dimensional photogrammetry (P < 0.001). Cranial index measurements between the computed tomography and the calipers differed by up to 6%. The difference between the 2 modalities was statistically significant (P = 0.021). The biparietal and cranial index results were similar between the digital modalities, but the anterior-posterior measurement was greater with the three-dimensional photogrammetry (P = 0.002). The coefficients of variation for repeated measures based on the computed tomography and the three-dimensional photogrammetry were 0.008 and 0.007, respectively.In conclusion, measurements based on digital modalities are generally reliable and interchangeable. Caliper measurements lead to underestimation of anterior-posterior and biparietal values compared with digital imaging.

  19. Composite ultrasound imaging apparatus and method

    DOEpatents

    Morimoto, Alan K.; Bow, Jr., Wallace J.; Strong, David Scott; Dickey, Fred M.

    1998-01-01

    An imaging apparatus and method for use in presenting composite two dimensional and three dimensional images from individual ultrasonic frames. A cross-sectional reconstruction is applied by using digital ultrasound frames, transducer orientation and a known center. Motion compensation, rank value filtering, noise suppression and tissue classification are utilized to optimize the composite image.

  20. Composite ultrasound imaging apparatus and method

    DOEpatents

    Morimoto, A.K.; Bow, W.J. Jr.; Strong, D.S.; Dickey, F.M.

    1998-09-15

    An imaging apparatus and method for use in presenting composite two dimensional and three dimensional images from individual ultrasonic frames. A cross-sectional reconstruction is applied by using digital ultrasound frames, transducer orientation and a known center. Motion compensation, rank value filtering, noise suppression and tissue classification are utilized to optimize the composite image. 37 figs.

  1. Volumetric MRI of the lungs during forced expiration.

    PubMed

    Berman, Benjamin P; Pandey, Abhishek; Li, Zhitao; Jeffries, Lindsie; Trouard, Theodore P; Oliva, Isabel; Cortopassi, Felipe; Martin, Diego R; Altbach, Maria I; Bilgin, Ali

    2016-06-01

    Lung function is typically characterized by spirometer measurements, which do not offer spatially specific information. Imaging during exhalation provides spatial information but is challenging due to large movement over a short time. The purpose of this work is to provide a solution to lung imaging during forced expiration using accelerated magnetic resonance imaging. The method uses radial golden angle stack-of-stars gradient echo acquisition and compressed sensing reconstruction. A technique for dynamic three-dimensional imaging of the lungs from highly undersampled data is developed and tested on six subjects. This method takes advantage of image sparsity, both spatially and temporally, including the use of reference frames called bookends. Sparsity, with respect to total variation, and residual from the bookends, enables reconstruction from an extremely limited amount of data. Dynamic three-dimensional images can be captured at sub-150 ms temporal resolution, using only three (or less) acquired radial lines per slice per timepoint. The images have a spatial resolution of 4.6×4.6×10 mm. Lung volume calculations based on image segmentation are compared to those from simultaneously acquired spirometer measurements. Dynamic lung imaging during forced expiration is made possible by compressed sensing accelerated dynamic three-dimensional radial magnetic resonance imaging. Magn Reson Med 75:2295-2302, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  2. Towards Automated Screening of Two-dimensional Crystals

    PubMed Central

    Cheng, Anchi; Leung, Albert; Fellmann, Denis; Quispe, Joel; Suloway, Christian; Pulokas, James; Carragher, Bridget; Potter, Clinton S.

    2007-01-01

    Screening trials to determine the presence of two-dimensional (2D) protein crystals suitable for three-dimensional structure determination using electron crystallography is a very labor-intensive process. Methods compatible with fully automated screening have been developed for the process of crystal production by dialysis and for producing negatively stained grids of the resulting trials. Further automation via robotic handling of the EM grids, and semi-automated transmission electron microscopic imaging and evaluation of the trial grids is also possible. We, and others, have developed working prototypes for several of these tools and tested and evaluated them in a simple screen of 24 crystallization conditions. While further development of these tools is certainly required for a turn-key system, the goal of fully automated screening appears to be within reach. PMID:17977016

  3. Thermal-Wave Microscope

    NASA Technical Reports Server (NTRS)

    Jones, Robert E.; Kramarchuk, Ihor; Williams, Wallace D.; Pouch, John J.; Gilbert, Percy

    1989-01-01

    Computer-controlled thermal-wave microscope developed to investigate III-V compound semiconductor devices and materials. Is nondestructive technique providing information on subsurface thermal features of solid samples. Furthermore, because this is subsurface technique, three-dimensional imaging also possible. Microscope uses intensity-modulated electron beam of modified scanning electron microscope to generate thermal waves in sample. Acoustic waves generated by thermal waves received by transducer and processed in computer to form images displayed on video display of microscope or recorded on magnetic disk.

  4. Customized cranioplasty implants using three-dimensional printers and polymethyl-methacrylate casting.

    PubMed

    Kim, Bum-Joon; Hong, Ki-Sun; Park, Kyung-Jae; Park, Dong-Hyuk; Chung, Yong-Gu; Kang, Shin-Hyuk

    2012-12-01

    The prefabrication of customized cranioplastic implants has been introduced to overcome the difficulties of intra-operative implant molding. The authors present a new technique, which consists of the prefabrication of implant molds using three-dimensional (3D) printers and polymethyl-methacrylate (PMMA) casting. A total of 16 patients with large skull defects (>100 cm(2)) underwent cranioplasty between November 2009 and April 2011. For unilateral cranial defects, 3D images of the skull were obtained from preoperative axial 1-mm spiral computed tomography (CT) scans. The image of the implant was generated by a digital subtraction mirror-imaging process using the normal side of the cranium as a model. For bilateral cranial defects, precraniectomy routine spiral CT scan data were merged with postcraniectomy 3D CT images following a smoothing process. Prefabrication of the mold was performed by the 3D printer. Intraoperatively, the PMMA implant was created with the prefabricated mold, and fit into the cranial defect. The median operation time was 184.36±26.07 minutes. Postoperative CT scans showed excellent restoration of the symmetrical contours and curvature of the cranium in all cases. The median follow-up period was 23 months (range, 14-28 months). Postoperative infection was developed in one case (6.2%) who had an open wound defect previously. Customized cranioplasty PMMA implants using 3D printer may be a useful technique for the reconstruction of various cranial defects.

  5. Syntactic Approach To Geometric Surface Shell Determination

    NASA Astrophysics Data System (ADS)

    DeGryse, Donald G.; Panton, Dale J.

    1980-12-01

    Autonomous terminal homing of a smart missile requires a stored reference scene of the target for which the missle is destined. The reference scene is produced from stereo source imagery by deriving a three-dimensional model containing cultural structures such as buildings, towers, bridges, and tanks. This model is obtained by the precise matching of cultural features from one image of the stereo pair to the other. In the past, this stereo matching process has relied heavily on local edge operators and a gray scale matching metric. The processing is performed line by line over the imagery and the amount of geometric control is minimal. As a result, the gross structure of the scene is determined but the derived three-dimensional data is noisy, oscillatory, and at times significantly inaccurate. This paper discusses new concepts that are currently being developed to stabilize this geometric reference preparation process. The new concepts involve the use of a structural syntax which will be used as a geometric constraint on automatic stereo matching. The syntax arises from the stereo configuration of the imaging platforms at the time of exposure and the knowledge of how various cultural structures are constructed. The syntax is used to parse a scene in terms of its cultural surfaces and to dictate to the matching process the allowable relative positions and orientations of surface edges in the image planes. Using the syntax, extensive searches using a gray scale matching metric are reduced.

  6. Role of a computer-generated three-dimensional laryngeal model in anatomy teaching for advanced learners.

    PubMed

    Tan, S; Hu, A; Wilson, T; Ladak, H; Haase, P; Fung, K

    2012-04-01

    (1) To investigate the efficacy of a computer-generated three-dimensional laryngeal model for laryngeal anatomy teaching; (2) to explore the relationship between students' spatial ability and acquisition of anatomical knowledge; and (3) to assess participants' opinion of the computerised model. Forty junior doctors were randomised to undertake laryngeal anatomy study supplemented by either a three-dimensional computer model or two-dimensional images. Outcome measurements comprised a laryngeal anatomy test, the modified Vandenberg and Kuse mental rotation test, and an opinion survey. Mean scores ± standard deviations for the anatomy test were 15.7 ± 2.0 for the 'three dimensions' group and 15.5 ± 2.3 for the 'standard' group (p = 0.7222). Pearson's correlation between the rotation test scores and the scores for the spatial ability questions in the anatomy test was 0.4791 (p = 0.086, n = 29). Opinion survey answers revealed significant differences in respondents' perceptions of the clarity and 'user friendliness' of, and their preferences for, the three-dimensional model as regards anatomical study. The three-dimensional computer model was equivalent to standard two-dimensional images, for the purpose of laryngeal anatomy teaching. There was no association between students' spatial ability and functional anatomy learning. However, students preferred to use the three-dimensional model.

  7. Accurate color synthesis of three-dimensional objects in an image

    NASA Astrophysics Data System (ADS)

    Xin, John H.; Shen, Hui-Liang

    2004-05-01

    Our study deals with color synthesis of a three-dimensional object in an image; i.e., given a single image, a target color can be accurately mapped onto the object such that the color appearance of the synthesized object closely resembles that of the actual one. As it is almost impossible to acquire the complete geometric description of the surfaces of an object in an image, this study attempted to recover the implicit description of geometry for the color synthesis. The description was obtained from either a series of spectral reflectances or the RGB signals at different surface positions on the basis of the dichromatic reflection model. The experimental results showed that this implicit image-based representation is related to the object geometry and is sufficient for accurate color synthesis of three-dimensional objects in an image. The method established is applicable to the color synthesis of both rigid and deformable objects and should contribute to color fidelity in virtual design, manufacturing, and retailing.

  8. Comparison between various patch wise strategies for reconstruction of ultra-spectral cubes captured with a compressive sensing system

    NASA Astrophysics Data System (ADS)

    Oiknine, Yaniv; August, Isaac Y.; Revah, Liat; Stern, Adrian

    2016-05-01

    Recently we introduced a Compressive Sensing Miniature Ultra-Spectral Imaging (CS-MUSI) system. The system is based on a single Liquid Crystal (LC) cell and a parallel sensor array where the liquid crystal cell performs spectral encoding. Within the framework of compressive sensing, the CS-MUSI system is able to reconstruct ultra-spectral cubes captured with only an amount of ~10% samples compared to a conventional system. Despite the compression, the technique is extremely complex computationally, because reconstruction of ultra-spectral images requires processing huge data cubes of Gigavoxel size. Fortunately, the computational effort can be alleviated by using separable operation. An additional way to reduce the reconstruction effort is to perform the reconstructions on patches. In this work, we consider processing on various patch shapes. We present an experimental comparison between various patch shapes chosen to process the ultra-spectral data captured with CS-MUSI system. The patches may be one dimensional (1D) for which the reconstruction is carried out spatially pixel-wise, or two dimensional (2D) - working on spatial rows/columns of the ultra-spectral cube, as well as three dimensional (3D).

  9. Computer analysis of three-dimensional morphological characteristics of the bile duct

    NASA Astrophysics Data System (ADS)

    Ma, Jinyuan; Chen, Houjin; Peng, Yahui; Shang, Hua

    2017-01-01

    In this paper, a computer image-processing algorithm for analyzing the morphological characteristics of bile ducts in Magnetic Resonance Cholangiopancreatography (MRCP) images was proposed. The algorithm consisted of mathematical morphology methods including erosion, closing and skeletonization, and a spline curve fitting method to obtain the length and curvature of the center line of the bile duct. Of 10 cases, the average length of the bile duct was 14.56 cm. The maximum curvature was in the range of 0.111 2.339. These experimental results show that using the computer image-processing algorithm to assess the morphological characteristics of the bile duct is feasible and further research is needed to evaluate its potential clinical values.

  10. Parametric boundary reconstruction algorithm for industrial CT metrology application.

    PubMed

    Yin, Zhye; Khare, Kedar; De Man, Bruno

    2009-01-01

    High-energy X-ray computed tomography (CT) systems have been recently used to produce high-resolution images in various nondestructive testing and evaluation (NDT/NDE) applications. The accuracy of the dimensional information extracted from CT images is rapidly approaching the accuracy achieved with a coordinate measuring machine (CMM), the conventional approach to acquire the metrology information directly. On the other hand, CT systems generate the sinogram which is transformed mathematically to the pixel-based images. The dimensional information of the scanned object is extracted later by performing edge detection on reconstructed CT images. The dimensional accuracy of this approach is limited by the grid size of the pixel-based representation of CT images since the edge detection is performed on the pixel grid. Moreover, reconstructed CT images usually display various artifacts due to the underlying physical process and resulting object boundaries from the edge detection fail to represent the true boundaries of the scanned object. In this paper, a novel algorithm to reconstruct the boundaries of an object with uniform material composition and uniform density is presented. There are three major benefits in the proposed approach. First, since the boundary parameters are reconstructed instead of image pixels, the complexity of the reconstruction algorithm is significantly reduced. The iterative approach, which can be computationally intensive, will be practical with the parametric boundary reconstruction. Second, the object of interest in metrology can be represented more directly and accurately by the boundary parameters instead of the image pixels. By eliminating the extra edge detection step, the overall dimensional accuracy and process time can be improved. Third, since the parametric reconstruction approach shares the boundary representation with other conventional metrology modalities such as CMM, boundary information from other modalities can be directly incorporated as prior knowledge to improve the convergence of an iterative approach. In this paper, the feasibility of parametric boundary reconstruction algorithm is demonstrated with both simple and complex simulated objects. Finally, the proposed algorithm is applied to the experimental industrial CT system data.

  11. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    NASA Astrophysics Data System (ADS)

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-01

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  12. Virtual three-dimensional blackboard: three-dimensional finger tracking with a single camera

    NASA Astrophysics Data System (ADS)

    Wu, Andrew; Hassan-Shafique, Khurram; Shah, Mubarak; da Vitoria Lobo, N.

    2004-01-01

    We present a method for three-dimensional (3D) tracking of a human finger from a monocular sequence of images. To recover the third dimension from the two-dimensional images, we use the fact that the motion of the human arm is highly constrained owing to the dependencies between elbow and forearm and the physical constraints on joint angles. We use these anthropometric constraints to derive a 3D trajectory of a gesticulating arm. The system is fully automated and does not require human intervention. The system presented can be used as a visualization tool, as a user-input interface, or as part of some gesture-analysis system in which 3D information is important.

  13. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source.

    PubMed

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-01

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  14. A simple approach to quantitative analysis using three-dimensional spectra based on selected Zernike moments.

    PubMed

    Zhai, Hong Lin; Zhai, Yue Yuan; Li, Pei Zhen; Tian, Yue Li

    2013-01-21

    A very simple approach to quantitative analysis is proposed based on the technology of digital image processing using three-dimensional (3D) spectra obtained by high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD). As the region-based shape features of a grayscale image, Zernike moments with inherently invariance property were employed to establish the linear quantitative models. This approach was applied to the quantitative analysis of three compounds in mixed samples using 3D HPLC-DAD spectra, and three linear models were obtained, respectively. The correlation coefficients (R(2)) for training and test sets were more than 0.999, and the statistical parameters and strict validation supported the reliability of established models. The analytical results suggest that the Zernike moment selected by stepwise regression can be used in the quantitative analysis of target compounds. Our study provides a new idea for quantitative analysis using 3D spectra, which can be extended to the analysis of other 3D spectra obtained by different methods or instruments.

  15. Thermal analysis of fused deposition modeling process using infrared thermography imaging and finite element modeling

    NASA Astrophysics Data System (ADS)

    Zhou, Xunfei; Hsieh, Sheng-Jen

    2017-05-01

    After years of development, Fused Deposition Modeling (FDM) has become the most popular technique in commercial 3D printing due to its cost effectiveness and easy-to-operate fabrication process. Mechanical strength and dimensional accuracy are two of the most important factors for reliability of FDM products. However, the solid-liquid-solid state changes of material in the FDM process make it difficult to monitor and model. In this paper, an experimental model was developed to apply cost-effective infrared thermography imaging method to acquire temperature history of filaments at the interface and their corresponding cooling mechanism. A three-dimensional finite element model was constructed to simulate the same process using element "birth and death" feature and validated with the thermal response from the experimental model. In 6 of 9 experimental conditions, a maximum of 13% difference existed between the experimental and numerical models. This work suggests that numerical modeling of FDM process is reliable and can facilitate better understanding of bead spreading and road-to-road bonding mechanics during fabrication.

  16. Three-dimensional passive sensing photon counting for object classification

    NASA Astrophysics Data System (ADS)

    Yeom, Seokwon; Javidi, Bahram; Watson, Edward

    2007-04-01

    In this keynote address, we address three-dimensional (3D) distortion-tolerant object recognition using photon-counting integral imaging (II). A photon-counting linear discriminant analysis (LDA) is discussed for classification of photon-limited images. We develop a compact distortion-tolerant recognition system based on the multiple-perspective imaging of II. Experimental and simulation results have shown that a low level of photons is sufficient to classify out-of-plane rotated objects.

  17. Imaging pathways in fractured rock using three-dimensional electrical resistivity tomography

    USGS Publications Warehouse

    Robinson, Judith; Slater, Lee; Johnson, Timothy B.; Shapiro, Allen M.; Tiedeman, Claire; Ntlargiannis, Dimitrios; Johnson, Carole D.; Day-Lewis, Frederick D.; Lacombe, Pierre; Imbrigiotta, Thomas; Lane, John W.

    2016-01-01

    Major challenges exist in delineating bedrock fracture zones because these cause abrupt changes in geological and hydrogeological properties over small distances. Borehole observations cannot sufficiently capture heterogeneity in these systems. Geophysical techniques offer the potential to image properties and processes in between boreholes. We used three-dimensional cross borehole electrical resistivity tomography (ERT) in a 9 m (diameter) × 15 m well field to capture high-resolution flow and transport processes in a fractured mudstone contaminated by chlorinated solvents, primarily trichloroethylene. Conductive (sodium bromide) and resistive (deionized water) injections were monitored in seven boreholes. Electrode arrays with isolation packers and fluid sampling ports were designed to enable acquisition of ERT measurements during pulsed tracer injections. Fracture zone locations and hydraulic pathways inferred from hydraulic head drawdown data were compared with electrical conductivity distributions from ERT measurements. Static ERT imaging has limited resolution to decipher individual fractures; however, these images showed alternating conductive and resistive zones, consistent with alternating laminated and massive mudstone units at the site. Tracer evolution and migration was clearly revealed in time-lapse ERT images and supported by in situ borehole vertical apparent conductivity profiles collected during the pulsed tracer test. While water samples provided important local information at the extraction borehole, ERT delineated tracer migration over spatial scales capturing the primary hydrogeological heterogeneity controlling flow and transport. The fate of these tracer injections at this scale could not have been quantified using borehole logging and/or borehole sampling methods alone.

  18. Three-dimensional surface reconstruction for industrial computed tomography

    NASA Technical Reports Server (NTRS)

    Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.

    1985-01-01

    Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.

  19. System for generating two-dimensional masks from a three-dimensional model using topological analysis

    DOEpatents

    Schiek, Richard [Albuquerque, NM

    2006-06-20

    A method of generating two-dimensional masks from a three-dimensional model comprises providing a three-dimensional model representing a micro-electro-mechanical structure for manufacture and a description of process mask requirements, reducing the three-dimensional model to a topological description of unique cross sections, and selecting candidate masks from the unique cross sections and the cross section topology. The method further can comprise reconciling the candidate masks based on the process mask requirements description to produce two-dimensional process masks.

  20. Three dimensional mapping of strontium in bone by dual energy K-edge subtraction imaging

    NASA Astrophysics Data System (ADS)

    Cooper, D. M. L.; Chapman, L. D.; Carter, Y.; Wu, Y.; Panahifar, A.; Britz, H. M.; Bewer, B.; Zhouping, W.; Duke, M. J. M.; Doschak, M.

    2012-09-01

    The bones of many terrestrial vertebrates, including humans, are continually altered through an internal process of turnover known as remodeling. This process plays a central role in bone adaptation and disease. The uptake of fluorescent tetracyclines within bone mineral is widely exploited as a means of tracking new tissue formation. While investigation of bone microarchitecture has undergone a dimensional shift from 2D to 3D in recent years, we lack a 3D equivalent to fluorescent labeling. In the current study we demonstrate the ability of synchrotron radiation dual energy K-edge subtraction (KES) imaging to map the 3D distribution of elemental strontium within rat vertebral samples. This approach has great potential for ex vivo analysis of preclinical models and human tissue samples. KES also represents a powerful tool for investigating the pharmokinetics of strontium-based drugs recently approved in many countries around the globe for the treatment of osteoporosis.

  1. Automated Reconstruction of Three-Dimensional Fish Motion, Forces, and Torques

    PubMed Central

    Voesenek, Cees J.; Pieters, Remco P. M.; van Leeuwen, Johan L.

    2016-01-01

    Fish can move freely through the water column and make complex three-dimensional motions to explore their environment, escape or feed. Nevertheless, the majority of swimming studies is currently limited to two-dimensional analyses. Accurate experimental quantification of changes in body shape, position and orientation (swimming kinematics) in three dimensions is therefore essential to advance biomechanical research of fish swimming. Here, we present a validated method that automatically tracks a swimming fish in three dimensions from multi-camera high-speed video. We use an optimisation procedure to fit a parameterised, morphology-based fish model to each set of video images. This results in a time sequence of position, orientation and body curvature. We post-process this data to derive additional kinematic parameters (e.g. velocities, accelerations) and propose an inverse-dynamics method to compute the resultant forces and torques during swimming. The presented method for quantifying 3D fish motion paves the way for future analyses of swimming biomechanics. PMID:26752597

  2. A three-dimensional image processing program for accurate, rapid, and semi-automated segmentation of neuronal somata with dense neurite outgrowth

    PubMed Central

    Ross, James D.; Cullen, D. Kacy; Harris, James P.; LaPlaca, Michelle C.; DeWeerth, Stephen P.

    2015-01-01

    Three-dimensional (3-D) image analysis techniques provide a powerful means to rapidly and accurately assess complex morphological and functional interactions between neural cells. Current software-based identification methods of neural cells generally fall into two applications: (1) segmentation of cell nuclei in high-density constructs or (2) tracing of cell neurites in single cell investigations. We have developed novel methodologies to permit the systematic identification of populations of neuronal somata possessing rich morphological detail and dense neurite arborization throughout thick tissue or 3-D in vitro constructs. The image analysis incorporates several novel automated features for the discrimination of neurites and somata by initially classifying features in 2-D and merging these classifications into 3-D objects; the 3-D reconstructions automatically identify and adjust for over and under segmentation errors. Additionally, the platform provides for software-assisted error corrections to further minimize error. These features attain very accurate cell boundary identifications to handle a wide range of morphological complexities. We validated these tools using confocal z-stacks from thick 3-D neural constructs where neuronal somata had varying degrees of neurite arborization and complexity, achieving an accuracy of ≥95%. We demonstrated the robustness of these algorithms in a more complex arena through the automated segmentation of neural cells in ex vivo brain slices. These novel methods surpass previous techniques by improving the robustness and accuracy by: (1) the ability to process neurites and somata, (2) bidirectional segmentation correction, and (3) validation via software-assisted user input. This 3-D image analysis platform provides valuable tools for the unbiased analysis of neural tissue or tissue surrogates within a 3-D context, appropriate for the study of multi-dimensional cell-cell and cell-extracellular matrix interactions. PMID:26257609

  3. Three-dimensional image authentication scheme using sparse phase information in double random phase encoded integral imaging.

    PubMed

    Yi, Faliu; Jeoung, Yousun; Moon, Inkyu

    2017-05-20

    In recent years, many studies have focused on authentication of two-dimensional (2D) images using double random phase encryption techniques. However, there has been little research on three-dimensional (3D) imaging systems, such as integral imaging, for 3D image authentication. We propose a 3D image authentication scheme based on a double random phase integral imaging method. All of the 2D elemental images captured through integral imaging are encrypted with a double random phase encoding algorithm and only partial phase information is reserved. All the amplitude and other miscellaneous phase information in the encrypted elemental images is discarded. Nevertheless, we demonstrate that 3D images from integral imaging can be authenticated at different depths using a nonlinear correlation method. The proposed 3D image authentication algorithm can provide enhanced information security because the decrypted 2D elemental images from the sparse phase cannot be easily observed by the naked eye. Additionally, using sparse phase images without any amplitude information can greatly reduce data storage costs and aid in image compression and data transmission.

  4. Three-dimensional morphological imaging of human induced pluripotent stem cells by using low-coherence quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Yamauchi, Toyohiko; Kakuno, Yumi; Goto, Kentaro; Fukami, Tadashi; Sugiyama, Norikazu; Iwai, Hidenao; Mizuguchi, Yoshinori; Yamashita, Yutaka

    2014-03-01

    There is an increasing need for non-invasive imaging techniques in the field of stem cell research. Label-free techniques are the best choice for assessment of stem cells because the cells remain intact after imaging and can be used for further studies such as differentiation induction. To develop a high-resolution label-free imaging system, we have been working on a low-coherence quantitative phase microscope (LC-QPM). LC-QPM is a Linnik-type interference microscope equipped with nanometer-resolution optical-path-length control and capable of obtaining three-dimensional volumetric images. The lateral and vertical resolutions of our system are respectively 0.5 and 0.93 μm and this performance allows capturing sub-cellular morphological features of live cells without labeling. Utilizing LC-QPM, we reported on three-dimensional imaging of membrane fluctuations, dynamics of filopodia, and motions of intracellular organelles. In this presentation, we report three-dimensional morphological imaging of human induced pluripotent stem cells (hiPS cells). Two groups of monolayer hiPS cell cultures were prepared so that one group was cultured in a suitable culture medium that kept the cells undifferentiated, and the other group was cultured in a medium supplemented with retinoic acid, which forces the stem cells to differentiate. The volumetric images of the 2 groups show distinctive differences, especially in surface roughness. We believe that our LC-QPM system will prove useful in assessing many other stem cell conditions.

  5. Three-dimensional ultrasound molecular imaging of angiogenesis in colon cancer using a clinical matrix array ultrasound transducer.

    PubMed

    Wang, Huaijun; Kaneko, Osamu F; Tian, Lu; Hristov, Dimitre; Willmann, Jürgen K

    2015-05-01

    We sought to assess the feasibility and reproducibility of 3-dimensional ultrasound molecular imaging (USMI) of vascular endothelial growth factor receptor 2 (VEGFR2) expression in tumor angiogenesis using a clinical matrix array transducer and a clinical grade VEGFR2-targeted contrast agent in a murine model of human colon cancer. Animal studies were approved by the Institutional Administrative Panel on Laboratory Animal Care. Mice with human colon cancer xenografts (n = 33) were imaged with a clinical ultrasound system and transducer (Philips iU22; X6-1) after intravenous injection of either clinical grade VEGFR2-targeted microbubbles or nontargeted control microbubbles. Nineteen mice were scanned twice to assess imaging reproducibility. Fourteen mice were scanned both before and 24 hours after treatment with either bevacizumab (n = 7) or saline only (n = 7). Three-dimensional USMI data sets were retrospectively reconstructed into multiple consecutive 1-mm-thick USMI data sets to simulate 2-dimensional imaging. Vascular VEGFR2 expression was assessed ex vivo using immunofluorescence. Three-dimensional USMI was highly reproducible using both VEGFR2-targeted microbubbles and nontargeted control microbubbles (intraclass correlation coefficient, 0.83). The VEGFR2-targeted USMI signal significantly (P = 0.02) decreased by 57% after antiangiogenic treatment compared with the control group, which correlated well with ex vivo VEGFR2 expression on immunofluorescence (ρ = 0.93, P = 0.003). If only central 1-mm tumor planes were analyzed to assess antiangiogenic treatment response, the USMI signal change was significantly (P = 0.006) overestimated by an average of 27% (range, 2%-73%) compared with 3-dimensional USMI. Three-dimensional USMI is feasible and highly reproducible and allows accurate assessment and monitoring of VEGFR2 expression in tumor angiogenesis in a murine model of human colon cancer.

  6. Three-Dimensional Media Technologies: Potentials for Study in Visual Literacy.

    ERIC Educational Resources Information Center

    Thwaites, Hal

    This paper presents an overview of three-dimensional media technologies (3Dmt). Many of the new 3Dmt are the direct result of interactions of computing, communications, and imaging technologies. Computer graphics are particularly well suited to the creation of 3D images due to the high resolution and programmable nature of the current displays.…

  7. Implementation of Remote 3-Dimensional Image Guided Radiation Therapy Quality Assurance for Radiation Therapy Oncology Group Clinical Trials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui Yunfeng; Galvin, James M.; Radiation Therapy Oncology Group, American College of Radiology, Philadelphia, Pennsylvania

    2013-01-01

    Purpose: To report the process and initial experience of remote credentialing of three-dimensional (3D) image guided radiation therapy (IGRT) as part of the quality assurance (QA) of submitted data for Radiation Therapy Oncology Group (RTOG) clinical trials; and to identify major issues resulting from this process and analyze the review results on patient positioning shifts. Methods and Materials: Image guided radiation therapy datasets including in-room positioning CT scans and daily shifts applied were submitted through the Image Guided Therapy QA Center from institutions for the IGRT credentialing process, as required by various RTOG trials. A centralized virtual environment is establishedmore » at the RTOG Core Laboratory, containing analysis tools and database infrastructure for remote review by the Physics Principal Investigators of each protocol. The appropriateness of IGRT technique and volumetric image registration accuracy were evaluated. Registration accuracy was verified by repeat registration with a third-party registration software system. With the accumulated review results, registration differences between those obtained by the Physics Principal Investigators and from the institutions were analyzed for different imaging sites, shift directions, and imaging modalities. Results: The remote review process was successfully carried out for 87 3D cases (out of 137 total cases, including 2-dimensional and 3D) during 2010. Frequent errors in submitted IGRT data and challenges in the review of image registration for some special cases were identified. Workarounds for these issues were developed. The average differences of registration results between reviewers and institutions ranged between 2 mm and 3 mm. Large discrepancies in the superior-inferior direction were found for megavoltage CT cases, owing to low spatial resolution in this direction for most megavoltage CT cases. Conclusion: This first experience indicated that remote review for 3D IGRT as part of QA for RTOG clinical trials is feasible and effective. The magnitude of registration discrepancy between institution and reviewer was presented, and the major issues were investigated to further improve this remote evaluation process.« less

  8. Contextual analysis of immunological response through whole-organ fluorescent imaging.

    PubMed

    Woodruff, Matthew C; Herndon, Caroline N; Heesters, B A; Carroll, Michael C

    2013-09-01

    As fluorescent microscopy has developed, significant insights have been gained into the establishment of immune response within secondary lymphoid organs, particularly in draining lymph nodes. While established techniques such as confocal imaging and intravital multi-photon microscopy have proven invaluable, they provide limited insight into the architectural and structural context in which these responses occur. To interrogate the role of the lymph node environment in immune response effectively, a new set of imaging tools taking into account broader architectural context must be implemented into emerging immunological questions. Using two different methods of whole-organ imaging, optical clearing and three-dimensional reconstruction of serially sectioned lymph nodes, fluorescent representations of whole lymph nodes can be acquired at cellular resolution. Using freely available post-processing tools, images of unlimited size and depth can be assembled into cohesive, contextual snapshots of immunological response. Through the implementation of robust iterative analysis techniques, these highly complex three-dimensional images can be objectified into sortable object data sets. These data can then be used to interrogate complex questions at the cellular level within the broader context of lymph node biology. By combining existing imaging technology with complex methods of sample preparation and capture, we have developed efficient systems for contextualizing immunological phenomena within lymphatic architecture. In combination with robust approaches to image analysis, these advances provide a path to integrating scientific understanding of basic lymphatic biology into the complex nature of immunological response.

  9. Three-dimensional radar imaging techniques and systems for near-field applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, David M.; Hall, Thomas E.; McMakin, Douglas L.

    2016-05-12

    The Pacific Northwest National Laboratory has developed three-dimensional holographic (synthetic aperture) radar imaging techniques and systems for a wide variety of near-field applications. These applications include radar cross-section (RCS) imaging, personnel screening, standoff concealed weapon detection, concealed threat detection, through-barrier imaging, ground penetrating radar (GPR), and non-destructive evaluation (NDE). Sequentially-switched linear arrays are used for many of these systems to enable high-speed data acquisition and 3-D imaging. In this paper, the techniques and systems will be described along with imaging results that demonstrate the utility of near-field 3-D radar imaging for these compelling applications.

  10. BIM-Sim: Interactive Simulation of Broadband Imaging Using Mie Theory

    NASA Astrophysics Data System (ADS)

    Berisha, Sebastian; van Dijk, Thomas; Bhargava, Rohit; Carney, P. Scott; Mayerich, David

    2017-02-01

    Understanding the structure of a scattered electromagnetic (EM) field is critical to improving the imaging process. Mechanisms such as diffraction, scattering, and interference affect an image, limiting the resolution and potentially introducing artifacts. Simulation and visualization of scattered fields thus plays an important role in imaging science. However, the calculation of scattered fields is extremely time-consuming on desktop systems and computationally challenging on task-parallel systems such as supercomputers and cluster systems. In addition, EM fields are high-dimensional, making them difficult to visualize. In this paper, we present a framework for interactively computing and visualizing EM fields scattered by micro and nano-particles. Our software uses graphics hardware for evaluating the field both inside and outside of these particles. We then use Monte-Carlo sampling to reconstruct and visualize the three-dimensional structure of the field, spectral profiles at individual points, the structure of the field at the surface of the particle, and the resulting image produced by an optical system.

  11. Three-dimensional in vitro cancer spheroid models for Photodynamic Therapy: Strengths and Opportunities

    NASA Astrophysics Data System (ADS)

    Evans, Conor

    2015-03-01

    Three dimensional, in vitro spheroid cultures offer considerable utility for the development and testing of anticancer photodynamic therapy regimens. More complex than monolayer cultures, three-dimensional spheroid systems replicate many of the important cell-cell and cell-matrix interactions that modulate treatment response in vivo. Simple enough to be grown by the thousands and small enough to be optically interrogated, spheroid cultures lend themselves to high-content and high-throughput imaging approaches. These advantages have enabled studies investigating photosensitizer uptake, spatiotemporal patterns of therapeutic response, alterations in oxygen diffusion and consumption during therapy, and the exploration of mechanisms that underlie therapeutic synergy. The use of quantitative imaging methods, in particular, has accelerated the pace of three-dimensional in vitro photodynamic therapy studies, enabling the rapid compilation of multiple treatment response parameters in a single experiment. Improvements in model cultures, the creation of new molecular probes of cell state and function, and innovations in imaging toolkits will be important for the advancement of spheroid culture systems for future photodynamic therapy studies.

  12. Three-dimensional deformation of orthodontic brackets

    PubMed Central

    Melenka, Garrett W; Nobes, David S; Major, Paul W

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire–bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design. PMID:23762201

  13. Three-dimensional deformation of orthodontic brackets.

    PubMed

    Melenka, Garrett W; Nobes, David S; Major, Paul W; Carey, Jason P

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire-bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design.

  14. Electrical Capacitance Volume Tomography: Design and Applications

    PubMed Central

    Wang, Fei; Marashdeh, Qussai; Fan, Liang-Shih; Warsito, Warsito

    2010-01-01

    This article reports recent advances and progress in the field of electrical capacitance volume tomography (ECVT). ECVT, developed from the two-dimensional electrical capacitance tomography (ECT), is a promising non-intrusive imaging technology that can provide real-time three-dimensional images of the sensing domain. Images are reconstructed from capacitance measurements acquired by electrodes placed on the outside boundary of the testing vessel. In this article, a review of progress on capacitance sensor design and applications to multi-phase flows is presented. The sensor shape, electrode configuration, and the number of electrodes that comprise three key elements of three-dimensional capacitance sensors are illustrated. The article also highlights applications of ECVT sensors on vessels of various sizes from 1 to 60 inches with complex geometries. Case studies are used to show the capability and validity of ECVT. The studies provide qualitative and quantitative real-time three-dimensional information of the measuring domain under study. Advantages of ECVT render it a favorable tool to be utilized for industrial applications and fundamental multi-phase flow research. PMID:22294905

  15. Venus - 3D Perspective View of Maat Mons

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Maat Mons is displayed in this computer generated three-dimensional perspective of the surface of Venus. The viewpoint is located 634 kilometers (393 miles) north of Maat Mons at an elevation of 3 kilometers (2 miles) above the terrain. Lava flows extend for hundreds of kilometers across the fractured plains shown in the foreground, to the base of Maat Mons. The view is to the south with the volcano Maat Mons appearing at the center of the image on the horizon and rising to almost 5 kilometers (3 miles) above the surrounding terrain. Maat Mons is located at approximately 0.9 degrees north latitude, 194.5 degrees east longitude with a peak that ascends to 8 kilometers (5 miles) above the mean surface. Maat Mons is named for an Egyptian Goddess of truth and justice. Magellan synthetic aperture radar data is combined with radar altimetry to develop a three-dimensional map of the surface. The vertical scale in this perspective has been exaggerated 10 times. Rays cast in a computer intersect the surface to crate a three-dimensional perspective view. Simulated color and a digital elevation map developed by the U.S. Geological Survey are used to enhance small-scale structure. The simulated hues are based on color images recorded by the Soviet Venera 13 and 14 spacecraft. The image was produced by the Solar System Visualization project and the Magellan Science team at the JPL Multimission Image Processing Laboratory and is a single frame from a video released at the April 22, 1992 news conference.

  16. High-resolution three-dimensional partially coherent diffraction imaging.

    PubMed

    Clark, J N; Huang, X; Harder, R; Robinson, I K

    2012-01-01

    The wave properties of light, particularly its coherence, are responsible for interference effects, which can be exploited in powerful imaging applications. Coherent diffractive imaging relies heavily on coherence and has recently experienced rapid growth. Coherent diffractive imaging recovers an object from its diffraction pattern by computational phasing with the potential of wavelength-limited resolution. Diminished coherence results in reconstructions that suffer from artefacts or fail completely. Here we demonstrate ab initio phasing of partially coherent diffraction patterns in three dimensions, while simultaneously determining the coherence properties of the illuminating wavefield. Both the dramatic improvements in image interpretability and the three-dimensional evaluation of the coherence will have broad implications for quantitative imaging of nanostructures and wavefield characterization with X-rays and electrons.

  17. Utilizing broadband X-rays in a Bragg coherent X-ray diffraction imaging experiment

    DOE PAGES

    Cha, Wonsuk; Liu, Wenjun; Harder, Ross; ...

    2016-07-26

    A method is presented to simplify Bragg coherent X-ray diffraction imaging studies of complex heterogeneous crystalline materials with a two-stage screening/imaging process that utilizes polychromatic and monochromatic coherent X-rays and is compatible with in situ sample environments. Coherent white-beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three-dimensional reciprocal-space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifyingin situchamber design. This approach was demonstrated with Au nanoparticles and will enable,more » for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load.« less

  18. Utilizing broadband X-rays in a Bragg coherent X-ray diffraction imaging experiment.

    PubMed

    Cha, Wonsuk; Liu, Wenjun; Harder, Ross; Xu, Ruqing; Fuoss, Paul H; Hruszkewycz, Stephan O

    2016-09-01

    A method is presented to simplify Bragg coherent X-ray diffraction imaging studies of complex heterogeneous crystalline materials with a two-stage screening/imaging process that utilizes polychromatic and monochromatic coherent X-rays and is compatible with in situ sample environments. Coherent white-beam diffraction is used to identify an individual crystal particle or grain that displays desired properties within a larger population. A three-dimensional reciprocal-space map suitable for diffraction imaging is then measured for the Bragg peak of interest using a monochromatic beam energy scan that requires no sample motion, thus simplifying in situ chamber design. This approach was demonstrated with Au nanoparticles and will enable, for example, individual grains in a polycrystalline material of specific orientation to be selected, then imaged in three dimensions while under load.

  19. A Web-based Visualization System for Three Dimensional Geological Model using Open GIS

    NASA Astrophysics Data System (ADS)

    Nemoto, T.; Masumoto, S.; Nonogaki, S.

    2017-12-01

    A three dimensional geological model is an important information in various fields such as environmental assessment, urban planning, resource development, waste management and disaster mitigation. In this study, we have developed a web-based visualization system for 3D geological model using free and open source software. The system has been successfully implemented by integrating web mapping engine MapServer and geographic information system GRASS. MapServer plays a role of mapping horizontal cross sections of 3D geological model and a topographic map. GRASS provides the core components for management, analysis and image processing of the geological model. Online access to GRASS functions has been enabled using PyWPS that is an implementation of WPS (Web Processing Service) Open Geospatial Consortium (OGC) standard. The system has two main functions. Two dimensional visualization function allows users to generate horizontal and vertical cross sections of 3D geological model. These images are delivered via WMS (Web Map Service) and WPS OGC standards. Horizontal cross sections are overlaid on the topographic map. A vertical cross section is generated by clicking a start point and an end point on the map. Three dimensional visualization function allows users to visualize geological boundary surfaces and a panel diagram. The user can visualize them from various angles by mouse operation. WebGL is utilized for 3D visualization. WebGL is a web technology that brings hardware-accelerated 3D graphics to the browser without installing additional software. The geological boundary surfaces can be downloaded to incorporate the geologic structure in a design on CAD and model for various simulations. This study was supported by JSPS KAKENHI Grant Number JP16K00158.

  20. Iterative optimizing quantization method for reconstructing three-dimensional images from a limited number of views

    DOEpatents

    Lee, H.R.

    1997-11-18

    A three-dimensional image reconstruction method comprises treating the object of interest as a group of elements with a size that is determined by the resolution of the projection data, e.g., as determined by the size of each pixel. One of the projections is used as a reference projection. A fictitious object is arbitrarily defined that is constrained by such reference projection. The method modifies the known structure of the fictitious object by comparing and optimizing its four projections to those of the unknown structure of the real object and continues to iterate until the optimization is limited by the residual sum of background noise. The method is composed of several sub-processes that acquire four projections from the real data and the fictitious object: generate an arbitrary distribution to define the fictitious object, optimize the four projections, generate a new distribution for the fictitious object, and enhance the reconstructed image. The sub-process for the acquisition of the four projections from the input real data is simply the function of acquiring the four projections from the data of the transmitted intensity. The transmitted intensity represents the density distribution, that is, the distribution of absorption coefficients through the object. 5 figs.

Top