NASA Astrophysics Data System (ADS)
Kamiya, Ryo; Kanki, Masataka; Mase, Takafumi; Tokihiro, Tetsuji
2017-01-01
We introduce a so-called coprimeness-preserving non-integrable extension to the two-dimensional Toda lattice equation. We believe that this equation is the first example of such discrete equations defined over a three-dimensional lattice. We prove that all the iterates of the equation are irreducible Laurent polynomials of the initial data and that every pair of two iterates is co-prime, which indicate confined singularities of the equation. By reducing the equation to two- or one-dimensional lattices, we obtain coprimeness-preserving non-integrable extensions to the one-dimensional Toda lattice equation and the Somos-4 recurrence.
Fu, Wei; Nijhoff, Frank W
2017-07-01
A unified framework is presented for the solution structure of three-dimensional discrete integrable systems, including the lattice AKP, BKP and CKP equations. This is done through the so-called direct linearizing transform, which establishes a general class of integral transforms between solutions. As a particular application, novel soliton-type solutions for the lattice CKP equation are obtained.
NASA Technical Reports Server (NTRS)
Mager, Arthur
1952-01-01
The Navier-Stokes equations of motion and the equation of continuity are transformed so as to apply to an orthogonal curvilinear coordinate system rotating with a uniform angular velocity about an arbitrary axis in space. A usual simplification of these equations as consistent with the accepted boundary-layer theory and an integration of these equations through the boundary layer result in boundary-layer momentum-integral equations for three-dimensional flows that are applicable to either rotating or nonrotating fluid boundaries. These equations are simplified and an approximate solution in closed integral form is obtained for a generalized boundary-layer momentum-loss thickness and flow deflection at the wall in the turbulent case. A numerical evaluation of this solution carried out for data obtained in a curving nonrotating duct shows a fair quantitative agreement with the measures values. The form in which the equations are presented is readily adaptable to cases of steady, three-dimensional, incompressible boundary-layer flow like that over curved ducts or yawed wings; and it also may be used to describe the boundary-layer flow over various rotating surfaces, thus applying to turbomachinery, propellers, and helicopter blades.
Dynamics of a differential-difference integrable (2+1)-dimensional system.
Yu, Guo-Fu; Xu, Zong-Wei
2015-06-01
A Kadomtsev-Petviashvili- (KP-) type equation appears in fluid mechanics, plasma physics, and gas dynamics. In this paper, we propose an integrable semidiscrete analog of a coupled (2+1)-dimensional system which is related to the KP equation and the Zakharov equation. N-soliton solutions of the discrete equation are presented. Some interesting examples of soliton resonance related to the two-soliton and three-soliton solutions are investigated. Numerical computations using the integrable semidiscrete equation are performed. It is shown that the integrable semidiscrete equation gives very accurate numerical results in the cases of one-soliton evolution and soliton interactions.
Vertically Integrated Models for Carbon Storage Modeling in Heterogeneous Domains
NASA Astrophysics Data System (ADS)
Bandilla, K.; Celia, M. A.
2017-12-01
Numerical modeling is an essential tool for studying the impacts of geologic carbon storage (GCS). Injection of carbon dioxide (CO2) into deep saline aquifers leads to multi-phase flow (injected CO2 and resident brine), which can be described by a set of three-dimensional governing equations, including mass-balance equation, volumetric flux equations (modified Darcy), and constitutive equations. This is the modeling approach on which commonly used reservoir simulators such as TOUGH2 are based. Due to the large density difference between CO2 and brine, GCS models can often be simplified by assuming buoyant segregation and integrating the three-dimensional governing equations in the vertical direction. The integration leads to a set of two-dimensional equations coupled with reconstruction operators for vertical profiles of saturation and pressure. Vertically-integrated approaches have been shown to give results of comparable quality as three-dimensional reservoir simulators when applied to realistic CO2 injection sites such as the upper sand wedge at the Sleipner site. However, vertically-integrated approaches usually rely on homogeneous properties over the thickness of a geologic layer. Here, we investigate the impact of general (vertical and horizontal) heterogeneity in intrinsic permeability, relative permeability functions, and capillary pressure functions. We consider formations involving complex fluvial deposition environments and compare the performance of vertically-integrated models to full three-dimensional models for a set of hypothetical test cases consisting of high permeability channels (streams) embedded in a low permeability background (floodplains). The domains are randomly generated assuming that stream channels can be represented by sinusoidal waves in the plan-view and by parabolas for the streams' cross-sections. Stream parameters such as width, thickness and wavelength are based on values found at the Ketzin site in Germany. Results from the vertically-integrated approach are compared to results using TOUGH2, both in terms of depth-averaged saturation and vertical saturation profiles.
Whitham modulation theory for (2 + 1)-dimensional equations of Kadomtsev–Petviashvili type
NASA Astrophysics Data System (ADS)
Ablowitz, Mark J.; Biondini, Gino; Rumanov, Igor
2018-05-01
Whitham modulation theory for certain two-dimensional evolution equations of Kadomtsev–Petviashvili (KP) type is presented. Three specific examples are considered in detail: the KP equation, the two-dimensional Benjamin–Ono (2DBO) equation and a modified KP (m2KP) equation. A unified derivation is also provided. In the case of the m2KP equation, the corresponding Whitham modulation system exhibits features different from the other two. The approach presented here does not require integrability of the original evolution equation. Indeed, while the KP equation is known to be a completely integrable equation, the 2DBO equation and the m2KP equation are not known to be integrable. In each of the cases considered, the Whitham modulation system obtained consists of five first-order quasilinear partial differential equations. The Riemann problem (i.e. the analogue of the Gurevich–Pitaevskii problem) for the one-dimensional reduction of the m2KP equation is studied. For the m2KP equation, the system of modulation equations is used to analyze the linear stability of traveling wave solutions.
NASA Technical Reports Server (NTRS)
Chan, S. T. K.; Lee, C. H.; Brashears, M. R.
1975-01-01
A finite element algorithm for solving unsteady, three-dimensional high velocity impact problems is presented. A computer program was developed based on the Eulerian hydroelasto-viscoplastic formulation and the utilization of the theorem of weak solutions. The equations solved consist of conservation of mass, momentum, and energy, equation of state, and appropriate constitutive equations. The solution technique is a time-dependent finite element analysis utilizing three-dimensional isoparametric elements, in conjunction with a generalized two-step time integration scheme. The developed code was demonstrated by solving one-dimensional as well as three-dimensional impact problems for both the inviscid hydrodynamic model and the hydroelasto-viscoplastic model.
Three-dimensional marginal separation
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1988-01-01
The three dimensional marginal separation of a boundary layer along a line of symmetry is considered. The key equation governing the displacement function is derived, and found to be a nonlinear integral equation in two space variables. This is solved iteratively using a pseudo-spectral approach, based partly in double Fourier space, and partly in physical space. Qualitatively, the results are similar to previously reported two dimensional results (which are also computed to test the accuracy of the numerical scheme); however quantitatively the three dimensional results are much different.
NASA Technical Reports Server (NTRS)
Pan, Y. S.
1978-01-01
A three dimensional, partially elliptic, computer program was developed. Without requiring three dimensional computer storage locations for all flow variables, the partially elliptic program is capable of predicting three dimensional combustor flow fields with large downstream effects. The program requires only slight increase of computer storage over the parabolic flow program from which it was developed. A finite difference formulation for a three dimensional, fully elliptic, turbulent, reacting, flow field was derived. Because of the negligible diffusion effects in the main flow direction in a supersonic combustor, the set of finite-difference equations can be reduced to a partially elliptic form. Only the pressure field was governed by an elliptic equation and requires three dimensional storage; all other dependent variables are governed by parabolic equations. A numerical procedure which combines a marching integration scheme with an iterative scheme for solving the elliptic pressure was adopted.
Nonlinear ion acoustic waves scattered by vortexes
NASA Astrophysics Data System (ADS)
Ohno, Yuji; Yoshida, Zensho
2016-09-01
The Kadomtsev-Petviashvili (KP) hierarchy is the archetype of infinite-dimensional integrable systems, which describes nonlinear ion acoustic waves in two-dimensional space. This remarkably ordered system resides on a singular submanifold (leaf) embedded in a larger phase space of more general ion acoustic waves (low-frequency electrostatic perturbations). The KP hierarchy is characterized not only by small amplitudes but also by irrotational (zero-vorticity) velocity fields. In fact, the KP equation is derived by eliminating vorticity at every order of the reductive perturbation. Here, we modify the scaling of the velocity field so as to introduce a vortex term. The newly derived system of equations consists of a generalized three-dimensional KP equation and a two-dimensional vortex equation. The former describes 'scattering' of vortex-free waves by ambient vortexes that are determined by the latter. We say that the vortexes are 'ambient' because they do not receive reciprocal reactions from the waves (i.e., the vortex equation is independent of the wave fields). This model describes a minimal departure from the integrable KP system. By the Painlevé test, we delineate how the vorticity term violates integrability, bringing about an essential three-dimensionality to the solutions. By numerical simulation, we show how the solitons are scattered by vortexes and become chaotic.
NASA Technical Reports Server (NTRS)
Gabrielsen, R. E.; Uenal, A.
1981-01-01
A numerical scheme for solving two dimensional Fredholm integral equations of the second kind is developed. The proof of the convergence of the numerical scheme is shown for three cases: the case of periodic kernels, the case of semiperiodic kernels, and the case of nonperiodic kernels. Applications to the incompressible, stationary Navier-Stokes problem are of primary interest.
Equation of state of the one- and three-dimensional Bose-Bose gases
NASA Astrophysics Data System (ADS)
Chiquillo, Emerson
2018-06-01
We calculate the equation of state of Bose-Bose gases in one and three dimensions in the framework of an effective quantum field theory. The beyond-mean-field approximation at zero temperature and the one-loop finite-temperature results are obtained performing functional integration on a local effective action. The ultraviolet divergent zero-point quantum fluctuations are removed by means of dimensional regularization. We derive the nonlinear Schrödinger equation to describe one- and three-dimensional Bose-Bose mixtures and solve it analytically in the one-dimensional scenario. This equation supports self-trapped brightlike solitonic droplets and self-trapped darklike solitons. At low temperature, we also find that the pressure and the number of particles of symmetric quantum droplets have a nontrivial dependence on the chemical potential and the difference between the intra- and the interspecies coupling constants.
NASA Technical Reports Server (NTRS)
Blanchard, D. L.; Chan, F. K.
1973-01-01
For a time-dependent, n-dimensional, special diagonal Hamilton-Jacobi equation a necessary and sufficient condition for the separation of variables to yield a complete integral of the form was established by specifying the admissible forms in terms of arbitrary functions. A complete integral was then expressed in terms of these arbitrary functions and also the n irreducible constants. As an application of the results obtained for the two-dimensional Hamilton-Jacobi equation, analysis was made for a comparatively wide class of dynamical problems involving a particle moving in Euclidean three-dimensional space under the action of external forces but constrained on a moving surface. All the possible cases in which this equation had a complete integral of the form were obtained and these are tubulated for reference.
Integral equations in the study of polar and ionic interaction site fluids
Howard, Jesse J.
2011-01-01
In this review article we consider some of the current integral equation approaches and application to model polar liquid mixtures. We consider the use of multidimensional integral equations and in particular progress on the theory and applications of three dimensional integral equations. The IEs we consider may be derived from equilibrium statistical mechanical expressions incorporating a classical Hamiltonian description of the system. We give example including salt solutions, inhomogeneous solutions and systems including proteins and nucleic acids. PMID:22383857
Addendum to "Free energies from integral equation theories: enforcing path independence".
Kast, Stefan M
2006-01-01
The variational formalism developed for the analysis of the path dependence of free energies from integral equation theories [S. M. Kast, Phys. Rev. E 67, 041203 (2003)] is extended in order to allow for the three-dimensional treatment of arbitrarily shaped solutes.
NASA Technical Reports Server (NTRS)
Cwik, Tom; Zuffada, Cinzia; Jamnejad, Vahraz
1996-01-01
Finite element modeling has proven useful for accurtely simulating scattered or radiated fields from complex three-dimensional objects whose geometry varies on the scale of a fraction of a wavelength.
NASA Technical Reports Server (NTRS)
Lee, Jong-Hun
1993-01-01
The basic governing equations for the second-order three-dimensional hypersonic thermal and chemical nonequilibrium boundary layer are derived by means of an order-of-magnitude analysis. A two-temperature concept is implemented into the system of boundary-layer equations by simplifying the rather complicated general three-temperature thermal gas model. The equations are written in a surface-oriented non-orthogonal curvilinear coordinate system, where two curvilinear coordinates are non-orthogonial and a third coordinate is normal to the surface. The equations are described with minimum use of tensor expressions arising from the coordinate transformation, to avoid unnecessary confusion for readers. The set of equations obtained will be suitable for the development of a three-dimensional nonequilibrium boundary-layer code. Such a code could be used to determine economically the aerodynamic/aerothermodynamic loads to the surfaces of hypersonic vehicles with general configurations. In addition, the basic equations for three-dimensional stagnation flow, of which solution is required as an initial value for space-marching integration of the boundary-layer equations, are given along with the boundary conditions, the boundary-layer parameters, and the inner-outer layer matching procedure. Expressions for the chemical reaction rates and the thermodynamic and transport properties in the thermal nonequilibrium environment are explicitly given.
Computation of Three-Dimensional Boundary Layers Including Separation
1987-02-01
As demonstrated by the 1968 and 1980 -1981 STANFORD Conferences, integral methods remain a valuable engineering tool to calculate the effects of...has been given by WHITFIELD, 1980 , which is valid over the whole thickness of the boundary layer. Another method to generate a velocity profiles...boundary layer equations and inviscid equations. A very clear presentation of the problem is given for example by VELOMAN, 1980 . 6.3. Three-dimensional
Quasi-local gravitational angular momentum and centre of mass from generalised Witten equations
NASA Astrophysics Data System (ADS)
Wieland, Wolfgang
2017-03-01
Witten's proof for the positivity of the ADM mass gives a definition of energy in terms of three-surface spinors. In this paper, we give a generalisation for the remaining six Poincaré charges at spacelike infinity, which are the angular momentum and centre of mass. The construction improves on certain three-surface spinor equations introduced by Shaw. We solve these equations asymptotically obtaining the ten Poincaré charges as integrals over the Nester-Witten two-form. We point out that the defining differential equations can be extended to three-surfaces of arbitrary signature and we study them on the entire boundary of a compact four-dimensional region of spacetime. The resulting quasi-local expressions for energy and angular momentum are integrals over a two-dimensional cross-section of the boundary. For any two consecutive such cross-sections, conservation laws are derived that determine the influx (outflow) of matter and gravitational radiation.
On the symmetries of integrability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellon, M.; Maillard, J.M.; Viallet, C.
1992-06-01
In this paper the authors show that the Yang-Baxter equations for two-dimensional models admit as a group of symmetry the infinite discrete group A{sub 2}{sup (1)}. The existence of this symmetry explains the presence of a spectral parameter in the solutions of the equations. The authors show that similarly, for three-dimensional vertex models and the associated tetrahedron equations, there also exists an infinite discrete group of symmetry. Although generalizing naturally the previous one, it is a much bigger hyperbolic Coxeter group. The authors indicate how this symmetry can help to resolve the Yang-Baxter equations and their higher-dimensional generalizations and initiatemore » the study of three-dimensional vertex models. These symmetries are naturally represented as birational projective transformations. They may preserve non-trivial algebraic varieties, and lead to proper parametrizations of the models, be they integrable or not. The authors mention the relation existing between spin models and the Bose-Messner algebras of algebraic combinatorics. The authors' results also yield the generalization of the condition q{sup n} = 1 so often mentioned in the theory of quantum groups, when no q parameter is available.« less
Three New (2+1)-dimensional Integrable Systems and Some Related Darboux Transformations
NASA Astrophysics Data System (ADS)
Guo, Xiu-Rong
2016-06-01
We introduce two operator commutators by using different-degree loop algebras of the Lie algebra A1, then under the framework of zero curvature equations we generate two (2+1)-dimensional integrable hierarchies, including the (2+1)-dimensional shallow water wave (SWW) hierarchy and the (2+1)-dimensional Kaup-Newell (KN) hierarchy. Through reduction of the (2+1)-dimensional hierarchies, we get a (2+1)-dimensional SWW equation and a (2+1)-dimensional KN equation. Furthermore, we obtain two Darboux transformations of the (2+1)-dimensional SWW equation. Similarly, the Darboux transformations of the (2+1)-dimensional KN equation could be deduced. Finally, with the help of the spatial spectral matrix of SWW hierarchy, we generate a (2+1) heat equation and a (2+1) nonlinear generalized SWW system containing inverse operators with respect to the variables x and y by using a reduction spectral problem from the self-dual Yang-Mills equations. Supported by the National Natural Science Foundation of China under Grant No. 11371361, the Shandong Provincial Natural Science Foundation of China under Grant Nos. ZR2012AQ011, ZR2013AL016, ZR2015EM042, National Social Science Foundation of China under Grant No. 13BJY026, the Development of Science and Technology Project under Grant No. 2015NS1048 and A Project of Shandong Province Higher Educational Science and Technology Program under Grant No. J14LI58
Extremely Fast Numerical Integration of Ocean Surface Wave Dynamics
2007-09-30
sub-processor must be added as shown in the blue box of Fig. 1. We first consider the Kadomtsev - Petviashvili (KP) equation ηt + coηx +αηηx + βη ...analytic integration of the so-called “soliton equations ,” I have discovered how the GFT can be used to solved higher order equations for which study...analytical study and extremely fast numerical integration of the extended nonlinear Schroedinger equation for fully three dimensional wave motion
NASA Technical Reports Server (NTRS)
Krishnamoorthy, S.; Ramaswamy, B.; Joo, S. W.
1995-01-01
A thin film draining on an inclined plate has been studied numerically using finite element method. Three-dimensional governing equations of continuity, momentum and energy with a moving boundary are integrated in an arbitrary Lagrangian Eulerian frame of reference. Kinematic equation is solved to precisely update interface location. Rivulet formation based on instability mechanism has been simulated using full-scale computation. Comparisons with long-wave theory are made to validate the numerical scheme. Detailed analysis of two- and three-dimensional nonlinear wave formation and spontaneous rupture forming rivulets under the influence of combined thermocapillary and surface-wave instabilities is performed.
A Semi-Implicit, Three-Dimensional Model for Estuarine Circulation
Smith, Peter E.
2006-01-01
A semi-implicit, finite-difference method for the numerical solution of the three-dimensional equations for circulation in estuaries is presented and tested. The method uses a three-time-level, leapfrog-trapezoidal scheme that is essentially second-order accurate in the spatial and temporal numerical approximations. The three-time-level scheme is shown to be preferred over a two-time-level scheme, especially for problems with strong nonlinearities. The stability of the semi-implicit scheme is free from any time-step limitation related to the terms describing vertical diffusion and the propagation of the surface gravity waves. The scheme does not rely on any form of vertical/horizontal mode-splitting to treat the vertical diffusion implicitly. At each time step, the numerical method uses a double-sweep method to transform a large number of small tridiagonal equation systems and then uses the preconditioned conjugate-gradient method to solve a single, large, five-diagonal equation system for the water surface elevation. The governing equations for the multi-level scheme are prepared in a conservative form by integrating them over the height of each horizontal layer. The layer-integrated volumetric transports replace velocities as the dependent variables so that the depth-integrated continuity equation that is used in the solution for the water surface elevation is linear. Volumetric transports are computed explicitly from the momentum equations. The resulting method is mass conservative, efficient, and numerically accurate.
Lump Solitons in Surface Tension Dominated Flows
NASA Astrophysics Data System (ADS)
Milewski, Paul; Berger, Kurt
1999-11-01
The Kadomtsev-Petviashvilli I equation (KPI) which models small-amplitude, weakly three-dimensional surface-tension dominated long waves is integrable and allows for algebraically decaying lump solitary waves. It is not known (theoretically or numerically) whether the full free-surface Euler equations support such solutions. We consider an intermediate model, the generalised Benney-Luke equation (gBL) which is isotropic (not weakly three-dimensional) and contains KPI as a limit. We show numerically that: 1. gBL supports lump solitary waves; 2. These waves collide elastically and are stable; 3. They are generated by resonant flow over an obstacle.
NASA Technical Reports Server (NTRS)
Heaslet, Max A; Lomax, Harvard
1950-01-01
Following the introduction of the linearized partial differential equation for nonsteady three-dimensional compressible flow, general methods of solution are given for the two and three-dimensional steady-state and two-dimensional unsteady-state equations. It is also pointed out that, in the absence of thickness effects, linear theory yields solutions consistent with the assumptions made when applied to lifting-surface problems for swept-back plan forms at sonic speeds. The solutions of the particular equations are determined in all cases by means of Green's theorem, and thus depend on the use of Green's equivalent layer of sources, sinks, and doublets. Improper integrals in the supersonic theory are treated by means of Hadamard's "finite part" technique.
Unsteady transonic flows - Introduction, current trends, applications
NASA Technical Reports Server (NTRS)
Yates, E. C., Jr.
1985-01-01
The computational treatment of unsteady transonic flows is discussed, reviewing the historical development and current techniques. The fundamental physical principles are outlined; the governing equations are introduced; three-dimensional linearized and two-dimensional linear-perturbation theories in frequency domain are described in detail; and consideration is given to frequency-domain FEMs and time-domain finite-difference and integral-equation methods. Extensive graphs and diagrams are included.
On the theory of oscillating airfoils of finite span in subsonic compressible flow
NASA Technical Reports Server (NTRS)
Reissner, Eric
1950-01-01
The problem of oscillating lifting surface of finite span in subsonic compressible flow is reduced to an integral equation. The kernel of the integral equation is approximated by a simpler expression, on the basis of the assumption of sufficiently large aspect ratio. With this approximation the double integral occurring in the formulation of the problem is reduced to two single integrals, one of which is taken over the chord and the other over the span of the lifting surface. On the basis of this reduction the three-dimensional problem appears separated into two two-dimensional problems, one of them being effectively the problem of two-dimensional flow and the other being the problem of spanwise circulation distribution. Earlier results concerning the oscillating lifting surface of finite span in incompressible flow are contained in the present more general results.
NASA Astrophysics Data System (ADS)
Gumral, Hasan
Poisson structure of completely integrable 3 dimensional dynamical systems can be defined in terms of an integrable 1-form. We take advantage of this fact and use the theory of foliations in discussing the geometrical structure underlying complete and partial integrability. We show that the Halphen system can be formulated in terms of a flat SL(2,R)-valued connection and belongs to a non-trivial Godbillon-Vey class. On the other hand, for the Euler top and a special case of 3-species Lotka-Volterra equations which are contained in the Halphen system as limiting cases, this structure degenerates into the form of globally integrable bi-Hamiltonian structures. The globally integrable bi-Hamiltonian case is a linear and the sl_2 structure is a quadratic unfolding of an integrable 1-form in 3 + 1 dimensions. We complete the discussion of the Hamiltonian structure of 2-component equations of hydrodynamic type by presenting the Hamiltonian operators for Euler's equation and a continuum limit of Toda lattice. We present further infinite sequences of conserved quantities for shallow water equations and show that their generalizations by Kodama admit bi-Hamiltonian structure. We present a simple way of constructing the second Hamiltonian operators for N-component equations admitting some scaling properties. The Kodama reduction of the dispersionless-Boussinesq equations and the Lax reduction of the Benney moment equations are shown to be equivalent by a symmetry transformation. They can be cast into the form of a triplet of conservation laws which enable us to recognize a non-trivial scaling symmetry. The resulting bi-Hamiltonian structure generates three infinite sequences of conserved densities.
Three-dimensional simulation of vortex breakdown
NASA Technical Reports Server (NTRS)
Kuruvila, G.; Salas, M. D.
1990-01-01
The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.
An Integrated Magnetic Circuit Model and Finite Element Model Approach to Magnetic Bearing Design
NASA Technical Reports Server (NTRS)
Provenza, Andrew J.; Kenny, Andrew; Palazzolo, Alan B.
2003-01-01
A code for designing magnetic bearings is described. The code generates curves from magnetic circuit equations relating important bearing performance parameters. Bearing parameters selected from the curves by a designer to meet the requirements of a particular application are input directly by the code into a three-dimensional finite element analysis preprocessor. This means that a three-dimensional computer model of the bearing being developed is immediately available for viewing. The finite element model solution can be used to show areas of magnetic saturation and make more accurate predictions of the bearing load capacity, current stiffness, position stiffness, and inductance than the magnetic circuit equations did at the start of the design process. In summary, the code combines one-dimensional and three-dimensional modeling methods for designing magnetic bearings.
Evaluating four-loop conformal Feynman integrals by D-dimensional differential equations
NASA Astrophysics Data System (ADS)
Eden, Burkhard; Smirnov, Vladimir A.
2016-10-01
We evaluate a four-loop conformal integral, i.e. an integral over four four-dimensional coordinates, by turning to its dimensionally regularized version and applying differential equations for the set of the corresponding 213 master integrals. To solve these linear differential equations we follow the strategy suggested by Henn and switch to a uniformly transcendental basis of master integrals. We find a solution to these equations up to weight eight in terms of multiple polylogarithms. Further, we present an analytical result for the given four-loop conformal integral considered in four-dimensional space-time in terms of single-valued harmonic polylogarithms. As a by-product, we obtain analytical results for all the other 212 master integrals within dimensional regularization, i.e. considered in D dimensions.
NASA Technical Reports Server (NTRS)
Ryabenkii, V. S.; Turchaninov, V. I.; Tsynkov, S. V.
1999-01-01
We propose a family of algorithms for solving numerically a Cauchy problem for the three-dimensional wave equation. The sources that drive the equation (i.e., the right-hand side) are compactly supported in space for any given time; they, however, may actually move in space with a subsonic speed. The solution is calculated inside a finite domain (e.g., sphere) that also moves with a subsonic speed and always contains the support of the right-hand side. The algorithms employ a standard consistent and stable explicit finite-difference scheme for the wave equation. They allow one to calculate tile solution for arbitrarily long time intervals without error accumulation and with the fixed non-growing amount of tile CPU time and memory required for advancing one time step. The algorithms are inherently three-dimensional; they rely on the presence of lacunae in the solutions of the wave equation in oddly dimensional spaces. The methodology presented in the paper is, in fact, a building block for constructing the nonlocal highly accurate unsteady artificial boundary conditions to be used for the numerical simulation of waves propagating with finite speed over unbounded domains.
Force Evaluation in the Lattice Boltzmann Method Involving Curved Geometry
NASA Technical Reports Server (NTRS)
Mei, Renwei; Yu, Dazhi; Shyy, Wei; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The present work investigates two approaches for force evaluation in the lattice Boltzmann equation: the momentum- exchange method and the stress-integration method on the surface of a body. The boundary condition for the particle distribution functions on curved geometries is handled with second order accuracy based on our recent works. The stress-integration method is computationally laborious for two-dimensional flows and in general difficult to implement for three-dimensional flows, while the momentum-exchange method is reliable, accurate, and easy to implement for both two-dimensional and three-dimensional flows. Several test cases are selected to evaluate the present methods, including: (i) two-dimensional pressure-driven channel flow; (ii) two-dimensional uniform flow past a column of cylinders; (iii) two-dimensional flow past a cylinder asymmetrically placed in a channel (with vortex shedding); (iv) three-dimensional pressure-driven flow in a circular pipe; and (v) three-dimensional flow past a sphere. The drag evaluated by using the momentum-exchange method agrees well with the exact or other published results.
NASA Technical Reports Server (NTRS)
Turc, Catalin; Anand, Akash; Bruno, Oscar; Chaubell, Julian
2011-01-01
We present a computational methodology (a novel Nystrom approach based on use of a non-overlapping patch technique and Chebyshev discretizations) for efficient solution of problems of acoustic and electromagnetic scattering by open surfaces. Our integral equation formulations (1) Incorporate, as ansatz, the singular nature of open-surface integral-equation solutions, and (2) For the Electric Field Integral Equation (EFIE), use analytical regularizes that effectively reduce the number of iterations required by iterative linear-algebra solution based on Krylov-subspace iterative solvers.
NASA Astrophysics Data System (ADS)
Bilyeu, David
This dissertation presents an extension of the Conservation Element Solution Element (CESE) method from second- to higher-order accuracy. The new method retains the favorable characteristics of the original second-order CESE scheme, including (i) the use of the space-time integral equation for conservation laws, (ii) a compact mesh stencil, (iii) the scheme will remain stable up to a CFL number of unity, (iv) a fully explicit, time-marching integration scheme, (v) true multidimensionality without using directional splitting, and (vi) the ability to handle two- and three-dimensional geometries by using unstructured meshes. This algorithm has been thoroughly tested in one, two and three spatial dimensions and has been shown to obtain the desired order of accuracy for solving both linear and non-linear hyperbolic partial differential equations. The scheme has also shown its ability to accurately resolve discontinuities in the solutions. Higher order unstructured methods such as the Discontinuous Galerkin (DG) method and the Spectral Volume (SV) methods have been developed for one-, two- and three-dimensional application. Although these schemes have seen extensive development and use, certain drawbacks of these methods have been well documented. For example, the explicit versions of these two methods have very stringent stability criteria. This stability criteria requires that the time step be reduced as the order of the solver increases, for a given simulation on a given mesh. The research presented in this dissertation builds upon the work of Chang, who developed a fourth-order CESE scheme to solve a scalar one-dimensional hyperbolic partial differential equation. The completed research has resulted in two key deliverables. The first is a detailed derivation of a high-order CESE methods on unstructured meshes for solving the conservation laws in two- and three-dimensional spaces. The second is the code implementation of these numerical methods in a computer code. For code development, a one-dimensional solver for the Euler equations was developed. This work is an extension of Chang's work on the fourth-order CESE method for solving a one-dimensional scalar convection equation. A generic formulation for the nth-order CESE method, where n ≥ 4, was derived. Indeed, numerical implementation of the scheme confirmed that the order of convergence was consistent with the order of the scheme. For the two- and three-dimensional solvers, SOLVCON was used as the basic framework for code implementation. A new solver kernel for the fourth-order CESE method has been developed and integrated into the framework provided by SOLVCON. The main part of SOLVCON, which deals with unstructured meshes and parallel computing, remains intact. The SOLVCON code for data transmission between computer nodes for High Performance Computing (HPC). To validate and verify the newly developed high-order CESE algorithms, several one-, two- and three-dimensional simulations where conducted. For the arbitrary order, one-dimensional, CESE solver, three sets of governing equations were selected for simulation: (i) the linear convection equation, (ii) the linear acoustic equations, (iii) the nonlinear Euler equations. All three systems of equations were used to verify the order of convergence through mesh refinement. In addition the Euler equations were used to solve the Shu-Osher and Blastwave problems. These two simulations demonstrated that the new high-order CESE methods can accurately resolve discontinuities in the flow field.For the two-dimensional, fourth-order CESE solver, the Euler equation was employed in four different test cases. The first case was used to verify the order of convergence through mesh refinement. The next three cases demonstrated the ability of the new solver to accurately resolve discontinuities in the flows. This was demonstrated through: (i) the interaction between acoustic waves and an entropy pulse, (ii) supersonic flow over a circular blunt body, (iii) supersonic flow over a guttered wedge. To validate and verify the three-dimensional, fourth-order CESE solver, two different simulations where selected. The first used the linear convection equations to demonstrate fourth-order convergence. The second used the Euler equations to simulate supersonic flow over a spherical body to demonstrate the scheme's ability to accurately resolve shocks. All test cases used are well known benchmark problems and as such, there are multiple sources available to validate the numerical results. Furthermore, the simulations showed that the high-order CESE solver was stable at a CFL number near unity.
Application of the Green's function method for 2- and 3-dimensional steady transonic flows
NASA Technical Reports Server (NTRS)
Tseng, K.
1984-01-01
A Time-Domain Green's function method for the nonlinear time-dependent three-dimensional aerodynamic potential equation is presented. The Green's theorem is being used to transform the partial differential equation into an integro-differential-delay equation. Finite-element and finite-difference methods are employed for the spatial and time discretizations to approximate the integral equation by a system of differential-delay equations. Solution may be obtained by solving for this nonlinear simultaneous system of equations in time. This paper discusses the application of the method to the Transonic Small Disturbance Equation and numerical results for lifting and nonlifting airfoils and wings in steady flows are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moslem, W. M.; Sabry, R.; Shukla, P. K.
2010-03-15
By using the hydrodynamic equations of ions, Thomas-Fermi electron/positron density distribution, and Poisson equation, a three-dimensional cylindrical Kadomtsev-Petviashvili (CKP) equation is derived for small but finite amplitude ion-acoustic waves. The generalized expansion method is used to analytically solve the CKP equation. New class of solutions admits a train of well-separated bell-shaped periodic pulses is obtained. At certain condition, the latter degenerates to solitary wave solution. The effects of physical parameters on the solitary pulse structures are examined. Furthermore, the energy integral equation is used to study the existence regions of the localized pulses. The present study might be helpful tomore » understand the excitation of nonlinear ion-acoustic waves in a very dense astrophysical objects such as white dwarfs.« less
What is integrability of discrete variational systems?
Boll, Raphael; Petrera, Matteo; Suris, Yuri B
2014-02-08
We propose a notion of a pluri-Lagrangian problem, which should be understood as an analogue of multi-dimensional consistency for variational systems. This is a development along the line of research of discrete integrable Lagrangian systems initiated in 2009 by Lobb and Nijhoff, however, having its more remote roots in the theory of pluriharmonic functions, in the Z -invariant models of statistical mechanics and their quasiclassical limit, as well as in the theory of variational symmetries going back to Noether. A d -dimensional pluri-Lagrangian problem can be described as follows: given a d -form [Formula: see text] on an m -dimensional space (called multi-time, m > d ), whose coefficients depend on a sought-after function x of m independent variables (called field), find those fields x which deliver critical points to the action functionals [Formula: see text] for any d -dimensional manifold Σ in the multi-time. We derive the main building blocks of the multi-time Euler-Lagrange equations for a discrete pluri-Lagrangian problem with d =2, the so-called corner equations, and discuss the notion of consistency of the system of corner equations. We analyse the system of corner equations for a special class of three-point two-forms, corresponding to integrable quad-equations of the ABS list. This allows us to close a conceptual gap of the work by Lobb and Nijhoff by showing that the corresponding two-forms are closed not only on solutions of (non-variational) quad-equations, but also on general solutions of the corresponding corner equations. We also find an example of a pluri-Lagrangian system not coming from a multi-dimensionally consistent system of quad-equations.
What is integrability of discrete variational systems?
Boll, Raphael; Petrera, Matteo; Suris, Yuri B.
2014-01-01
We propose a notion of a pluri-Lagrangian problem, which should be understood as an analogue of multi-dimensional consistency for variational systems. This is a development along the line of research of discrete integrable Lagrangian systems initiated in 2009 by Lobb and Nijhoff, however, having its more remote roots in the theory of pluriharmonic functions, in the Z-invariant models of statistical mechanics and their quasiclassical limit, as well as in the theory of variational symmetries going back to Noether. A d-dimensional pluri-Lagrangian problem can be described as follows: given a d-form on an m-dimensional space (called multi-time, m>d), whose coefficients depend on a sought-after function x of m independent variables (called field), find those fields x which deliver critical points to the action functionals for any d-dimensional manifold Σ in the multi-time. We derive the main building blocks of the multi-time Euler–Lagrange equations for a discrete pluri-Lagrangian problem with d=2, the so-called corner equations, and discuss the notion of consistency of the system of corner equations. We analyse the system of corner equations for a special class of three-point two-forms, corresponding to integrable quad-equations of the ABS list. This allows us to close a conceptual gap of the work by Lobb and Nijhoff by showing that the corresponding two-forms are closed not only on solutions of (non-variational) quad-equations, but also on general solutions of the corresponding corner equations. We also find an example of a pluri-Lagrangian system not coming from a multi-dimensionally consistent system of quad-equations. PMID:24511254
Dark soliton pair of ultracold Fermi gases for a generalized Gross-Pitaevskii equation model.
Wang, Ying; Zhou, Yu; Zhou, Shuyu; Zhang, Yongsheng
2016-07-01
We present the theoretical investigation of dark soliton pair solutions for one-dimensional as well as three-dimensional generalized Gross-Pitaevskii equation (GGPE) which models the ultracold Fermi gas during Bardeen-Cooper-Schrieffer-Bose-Einstein condensates crossover. Without introducing any integrability constraint and via the self-similar approach, the three-dimensional solution of GGPE is derived based on the one-dimensional dark soliton pair solution, which is obtained through a modified F-expansion method combined with a coupled modulus-phase transformation technique. We discovered the oscillatory behavior of the dark soliton pair from the theoretical results obtained for the three-dimensional case. The calculated period agrees very well with the corresponding reported experimental result [Weller et al., Phys. Rev. Lett. 101, 130401 (2008)PRLTAO0031-900710.1103/PhysRevLett.101.130401], demonstrating the applicability of the theoretical treatment presented in this work.
Danwanichakul, Panu; Glandt, Eduardo D
2004-11-15
We applied the integral-equation theory to the connectedness problem. The method originally applied to the study of continuum percolation in various equilibrium systems was modified for our sequential quenching model, a particular limit of an irreversible adsorption. The development of the theory based on the (quenched-annealed) binary-mixture approximation includes the Ornstein-Zernike equation, the Percus-Yevick closure, and an additional term involving the three-body connectedness function. This function is simplified by introducing a Kirkwood-like superposition approximation. We studied the three-dimensional (3D) system of randomly placed spheres and 2D systems of square-well particles, both with a narrow and with a wide well. The results from our integral-equation theory are in good accordance with simulation results within a certain range of densities.
NASA Astrophysics Data System (ADS)
Danwanichakul, Panu; Glandt, Eduardo D.
2004-11-01
We applied the integral-equation theory to the connectedness problem. The method originally applied to the study of continuum percolation in various equilibrium systems was modified for our sequential quenching model, a particular limit of an irreversible adsorption. The development of the theory based on the (quenched-annealed) binary-mixture approximation includes the Ornstein-Zernike equation, the Percus-Yevick closure, and an additional term involving the three-body connectedness function. This function is simplified by introducing a Kirkwood-like superposition approximation. We studied the three-dimensional (3D) system of randomly placed spheres and 2D systems of square-well particles, both with a narrow and with a wide well. The results from our integral-equation theory are in good accordance with simulation results within a certain range of densities.
NASA Technical Reports Server (NTRS)
Logan, Terry G.
1994-01-01
The purpose of this study is to investigate the performance of the integral equation computations using numerical source field-panel method in a massively parallel processing (MPP) environment. A comparative study of computational performance of the MPP CM-5 computer and conventional Cray-YMP supercomputer for a three-dimensional flow problem is made. A serial FORTRAN code is converted into a parallel CM-FORTRAN code. Some performance results are obtained on CM-5 with 32, 62, 128 nodes along with those on Cray-YMP with a single processor. The comparison of the performance indicates that the parallel CM-FORTRAN code near or out-performs the equivalent serial FORTRAN code for some cases.
A Corresponding Lie Algebra of a Reductive homogeneous Group and Its Applications
NASA Astrophysics Data System (ADS)
Zhang, Yu-Feng; Wu, Li-Xin; Rui, Wen-Juan
2015-05-01
With the help of a Lie algebra of a reductive homogeneous space G/K, where G is a Lie group and K is a resulting isotropy group, we introduce a Lax pair for which an expanding (2+1)-dimensional integrable hierarchy is obtained by applying the binormial-residue representation (BRR) method, whose Hamiltonian structure is derived from the trace identity for deducing (2+1)-dimensional integrable hierarchies, which was proposed by Tu, et al. We further consider some reductions of the expanding integrable hierarchy obtained in the paper. The first reduction is just right the (2+1)-dimensional AKNS hierarchy, the second-type reduction reveals an integrable coupling of the (2+1)-dimensional AKNS equation (also called the Davey-Stewartson hierarchy), a kind of (2+1)-dimensional Schrödinger equation, which was once reobtained by Tu, Feng and Zhang. It is interesting that a new (2+1)-dimensional integrable nonlinear coupled equation is generated from the reduction of the part of the (2+1)-dimensional integrable coupling, which is further reduced to the standard (2+1)-dimensional diffusion equation along with a parameter. In addition, the well-known (1+1)-dimensional AKNS hierarchy, the (1+1)-dimensional nonlinear Schrödinger equation are all special cases of the (2+1)-dimensional expanding integrable hierarchy. Finally, we discuss a few discrete difference equations of the diffusion equation whose stabilities are analyzed by making use of the von Neumann condition and the Fourier method. Some numerical solutions of a special stationary initial value problem of the (2+1)-dimensional diffusion equation are obtained and the resulting convergence and estimation formula are investigated. Supported by the Innovation Team of Jiangsu Province hosted by China University of Mining and Technology (2014), the National Natural Science Foundation of China under Grant No. 11371361, the Fundamental Research Funds for the Central Universities (2013XK03), and the Natural Science Foundation of Shandong Province under Grant No. ZR2013AL016
NASA Technical Reports Server (NTRS)
Lakin, W. D.
1981-01-01
The use of integrating matrices in solving differential equations associated with rotating beam configurations is examined. In vibration problems, by expressing the equations of motion of the beam in matrix notation, utilizing the integrating matrix as an operator, and applying the boundary conditions, the spatial dependence is removed from the governing partial differential equations and the resulting ordinary differential equations can be cast into standard eigenvalue form. Integrating matrices are derived based on two dimensional rectangular grids with arbitrary grid spacings allowed in one direction. The derivation of higher dimensional integrating matrices is the initial step in the generalization of the integrating matrix methodology to vibration and stability problems involving plates and shells.
Nonalgebraic integrability of one reversible dynamical system of the Cremona type
NASA Astrophysics Data System (ADS)
Rerikh, K. V.
1998-05-01
A reversible dynamical system (RDS) and a system of nonlinear functional equations, defined by a certain rational quadratic Cremona mapping and arising from the static model of the dispersion approach in the theory of strong interactions [the Chew-Low-type equations with crossing-symmetry matrix A(l,1)], are considered. This RDS is split into one- and two-dimensional ones. An explicit Cremona transformation that completely determines the exact solution of the two-dimensional system is found. This solution depends on an odd function satisfying a nonlinear autonomous three-point functional equation. Nonalgebraic integrability of RDS under consideration is proved using the method of Poincaré normal forms and the Siegel theorem on biholomorphic linearization of a mapping at a nonresonant fixed point.
Multigrid for hypersonic viscous two- and three-dimensional flows
NASA Technical Reports Server (NTRS)
Turkel, E.; Swanson, R. C.; Vatsa, V. N.; White, J. A.
1991-01-01
The use of a multigrid method with central differencing to solve the Navier-Stokes equations for hypersonic flows is considered. The time dependent form of the equations is integrated with an explicit Runge-Kutta scheme accelerated by local time stepping and implicit residual smoothing. Variable coefficients are developed for the implicit process that removes the diffusion limit on the time step, producing significant improvement in convergence. A numerical dissipation formulation that provides good shock capturing capability for hypersonic flows is presented. This formulation is shown to be a crucial aspect of the multigrid method. Solutions are given for two-dimensional viscous flow over a NACA 0012 airfoil and three-dimensional flow over a blunt biconic.
Upon Generating (2+1)-dimensional Dynamical Systems
NASA Astrophysics Data System (ADS)
Zhang, Yufeng; Bai, Yang; Wu, Lixin
2016-06-01
Under the framework of the Adler-Gel'fand-Dikii(AGD) scheme, we first propose two Hamiltonian operator pairs over a noncommutative ring so that we construct a new dynamical system in 2+1 dimensions, then we get a generalized special Novikov-Veselov (NV) equation via the Manakov triple. Then with the aid of a special symmetric Lie algebra of a reductive homogeneous group G, we adopt the Tu-Andrushkiw-Huang (TAH) scheme to generate a new integrable (2+1)-dimensional dynamical system and its Hamiltonian structure, which can reduce to the well-known (2+1)-dimensional Davey-Stewartson (DS) hierarchy. Finally, we extend the binormial residue representation (briefly BRR) scheme to the super higher dimensional integrable hierarchies with the help of a super subalgebra of the super Lie algebra sl(2/1), which is also a kind of symmetric Lie algebra of the reductive homogeneous group G. As applications, we obtain a super 2+1 dimensional MKdV hierarchy which can be reduced to a super 2+1 dimensional generalized AKNS equation. Finally, we compare the advantages and the shortcomings for the three schemes to generate integrable dynamical systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
A.A. Bingham; R.M. Ferrer; A.M. ougouag
2009-09-01
An accurate and computationally efficient two or three-dimensional neutron diffusion model will be necessary for the development, safety parameters computation, and fuel cycle analysis of a prismatic Very High Temperature Reactor (VHTR) design under Next Generation Nuclear Plant Project (NGNP). For this purpose, an analytical nodal Green’s function solution for the transverse integrated neutron diffusion equation is developed in two and three-dimensional hexagonal geometry. This scheme is incorporated into HEXPEDITE, a code first developed by Fitzpatrick and Ougouag. HEXPEDITE neglects non-physical discontinuity terms that arise in the transverse leakage due to the transverse integration procedure application to hexagonal geometry andmore » cannot account for the effects of burnable poisons across nodal boundaries. The test code being developed for this document accounts for these terms by maintaining an inventory of neutrons by using the nodal balance equation as a constraint of the neutron flux equation. The method developed in this report is intended to restore neutron conservation and increase the accuracy of the code by adding these terms to the transverse integrated flux solution and applying the nodal Green’s function solution to the resulting equation to derive a semi-analytical solution.« less
Three-dimensional multigrid Navier-Stokes computations for turbomachinery applications
NASA Astrophysics Data System (ADS)
Subramanian, S. V.
1989-07-01
The fully three-dimensional, time-dependent compressible Navier-Stokes equations in cylindrical coordinates are presently used, in conjunction with the multistage Runge-Kutta numerical integration scheme for solution of the governing flow equations, to simulate complex flowfields within turbomechanical components whose pertinent effects encompass those of viscosity, compressibility, blade rotation, and tip clearance. Computed results are presented for selected cascades, emphasizing the code's capabilities in the accurate prediction of such features as airfoil loadings, exit flow angles, shocks, and secondary flows. Computations for several test cases have been performed on a Cray-YMP, using nearly 90,000 grid points.
Steady and unsteady three-dimensional transonic flow computations by integral equation method
NASA Technical Reports Server (NTRS)
Hu, Hong
1994-01-01
This is the final technical report of the research performed under the grant: NAG1-1170, from the National Aeronautics and Space Administration. The report consists of three parts. The first part presents the work on unsteady flows around a zero-thickness wing. The second part presents the work on steady flows around non-zero thickness wings. The third part presents the massively parallel processing implementation and performance analysis of integral equation computations. At the end of the report, publications resulting from this grant are listed and attached.
A theoretical analysis of fluid flow and energy transport in hydrothermal systems
Faust, Charles R.; Mercer, James W.
1977-01-01
A mathematical derivation for fluid flow and energy transport in hydrothermal systems is presented. Specifically, the mathematical model describes the three-dimensional flow of both single- and two-phase, single-component water and the transport of heat in porous media. The derivation begins with the point balance equations for mass, momentum, and energy. These equations are then averaged over a finite volume to obtain the macroscopic balance equations for a porous medium. The macroscopic equations are combined by appropriate constitutive relationships to form two similified partial differential equations posed in terms of fluid pressure and enthalpy. A two-dimensional formulation of the simplified equations is also derived by partial integration in the vertical dimension. (Woodard-USGS)
Three-dimensional viscous rotor flow calculations using a viscous-inviscid interaction approach
NASA Technical Reports Server (NTRS)
Chen, Ching S.; Bridgeman, John O.
1990-01-01
A three-dimensional viscous-inviscid interaction analysis was developed to predict the performance of rotors in hover and in forward flight at subsonic and transonic tip speeds. The analysis solves the full-potential and boundary-layer equations by finite-difference numerical procedures. Calculations were made for several different model rotor configurations. The results were compared with predictions from a two-dimensional integral method and with experimental data. The comparisons show good agreement between predictions and test data.
NASA Technical Reports Server (NTRS)
Tatom, F. B.; King, R. L.
1977-01-01
The proper application of constant-volume balloons (CVB) for measurement of atmospheric phenomena was determined. And with the proper interpretation of the resulting data. A literature survey covering 176 references is included. the governing equations describing the three-dimensional motion of a CVB immersed in a flow field are developed. The flowfield model is periodic, three-dimensional, and nonhomogeneous, with mean translational motion. The balloon motion and flow field equations are cast into dimensionless form for greater generality, and certain significant dimensionless groups are identified. An alternate treatment of the balloon motion, based on first-order perturbation analysis, is also presented. A description of the digital computer program, BALLOON, used for numerically integrating the governing equations is provided.
NASA Astrophysics Data System (ADS)
Stritzel, J.; Melchert, O.; Wollweber, M.; Roth, B.
2017-09-01
The direct problem of optoacoustic signal generation in biological media consists of solving an inhomogeneous three-dimensional (3D) wave equation for an initial acoustic stress profile. In contrast, the more defiant inverse problem requires the reconstruction of the initial stress profile from a proper set of observed signals. In this article, we consider an effectively 1D approach, based on the assumption of a Gaussian transverse irradiation source profile and plane acoustic waves, in which the effects of acoustic diffraction are described in terms of a linear integral equation. The respective inverse problem along the beam axis can be cast into a Volterra integral equation of the second kind for which we explore here efficient numerical schemes in order to reconstruct initial stress profiles from observed signals, constituting a methodical progress of computational aspects of optoacoustics. In this regard, we explore the validity as well as the limits of the inversion scheme via numerical experiments, with parameters geared toward actual optoacoustic problem instances. The considered inversion input consists of synthetic data, obtained in terms of the effectively 1D approach, and, more generally, a solution of the 3D optoacoustic wave equation. Finally, we also analyze the effect of noise and different detector-to-sample distances on the optoacoustic signal and the reconstructed pressure profiles.
On the existence of mosaic-skeleton approximations for discrete analogues of integral operators
NASA Astrophysics Data System (ADS)
Kashirin, A. A.; Taltykina, M. Yu.
2017-09-01
Exterior three-dimensional Dirichlet problems for the Laplace and Helmholtz equations are considered. By applying methods of potential theory, they are reduced to equivalent Fredholm boundary integral equations of the first kind, for which discrete analogues, i.e., systems of linear algebraic equations (SLAEs) are constructed. The existence of mosaic-skeleton approximations for the matrices of the indicated systems is proved. These approximations make it possible to reduce the computational complexity of an iterative solution of the SLAEs. Numerical experiments estimating the capabilities of the proposed approach are described.
Development of advanced Navier-Stokes solver
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan
1994-01-01
The objective of research was to develop and validate new computational algorithms for solving the steady and unsteady Euler and Navier-Stokes equations. The end-products are new three-dimensional Euler and Navier-Stokes codes that are faster, more reliable, more accurate, and easier to use. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible/incompressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. Convergence rates and the robustness of the codes are enhanced by the use of an implicit full approximation storage multigrid method.
Divergent expansion, Borel summability and three-dimensional Navier-Stokes equation.
Costin, Ovidiu; Luo, Guo; Tanveer, Saleh
2008-08-13
We describe how the Borel summability of a divergent asymptotic expansion can be expanded and applied to nonlinear partial differential equations (PDEs). While Borel summation does not apply for non-analytic initial data, the present approach generates an integral equation (IE) applicable to much more general data. We apply these concepts to the three-dimensional Navier-Stokes (NS) system and show how the IE approach can give rise to local existence proofs. In this approach, the global existence problem in three-dimensional NS systems, for specific initial condition and viscosity, becomes a problem of asymptotics in the variable p (dual to 1/t or some positive power of 1/t). Furthermore, the errors in numerical computations in the associated IE can be controlled rigorously, which is very important for nonlinear PDEs such as NS when solutions are not known to exist globally.Moreover, computation of the solution of the IE over an interval [0,p0] provides sharper control of its p-->infinity behaviour. Preliminary numerical computations give encouraging results.
Effect of nose shape on three-dimensional stagnation region streamlines and heating rates
NASA Technical Reports Server (NTRS)
Hassan, Basil; Dejarnette, Fred R.; Zoby, E. V.
1991-01-01
A new method for calculating the three-dimensional inviscid surface streamlines and streamline metrics using Cartesian coordinates and time as the independent variable of integration has been developed. The technique calculates the streamline from a specified point on the body to a point near the stagnation point by using a prescribed pressure distribution in the Euler equations. The differential equations, which are singular at the stagnation point, are of the two point boundary value problem type. Laminar heating rates are calculated using the axisymmetric analog concept for three-dimensional boundary layers and approximate solutions to the axisymmetric boundary layer equations. Results for elliptic conic forebody geometries show that location of the point of maximum heating depends on the type of conic in the plane of symmetry and the angle of attack, and that this location is in general different from the stagnation point. The new method was found to give smooth predictions of heat transfer in the nose region where previous methods gave oscillatory results.
Parallel computation of three-dimensional aeroelastic fluid-structure interaction
NASA Astrophysics Data System (ADS)
Sadeghi, Mani
This dissertation presents a numerical method for the parallel computation of aeroelasticity (ParCAE). A flow solver is coupled to a structural solver by use of a fluid-structure interface method. The integration of the three-dimensional unsteady Navier-Stokes equations is performed in the time domain, simultaneously to the integration of a modal three-dimensional structural model. The flow solution is accelerated by using a multigrid method and a parallel multiblock approach. Fluid-structure coupling is achieved by subiteration. A grid-deformation algorithm is developed to interpolate the deformation of the structural boundaries onto the flow grid. The code is formulated to allow application to general, three-dimensional, complex configurations with multiple independent structures. Computational results are presented for various configurations, such as turbomachinery blade rows and aircraft wings. Investigations are performed on vortex-induced vibrations, effects of cascade mistuning on flutter, and cases of nonlinear cascade and wing flutter.
Research in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Murman, Earll M.
1987-01-01
The numerical integration of quasi-one-dimensional unsteady flow problems which involve finite rate chemistry are discussed, and are expressed in terms of conservative form Euler and species conservation equations. Hypersonic viscous calculations for delta wing geometries is also examined. The conical Navier-Stokes equations model was selected in order to investigate the effects of viscous-inviscid interations. The more complete three-dimensional model is beyond the available computing resources. The flux vector splitting method with van Leer's MUSCL differencing is being used. Preliminary results were computed for several conditions.
NASA Astrophysics Data System (ADS)
Landi Degl'Innocenti, E.; Bommier, V.; Sahal-Brechot, S.
1990-08-01
A general formalism is presented to describe resonance line polarization for a two-level atom in an optically thick, three-dimensional medium embedded in an arbitrary varying magnetic field and irradiated by an arbitrary radiation field. The magnetic field is supposed sufficiently small to induce a Zeeman splitting much smaller than the typical line width. By neglecting atomic polarization in the lower level and stimulated emission, an integral equation is derived for the multipole moments of the density matrix of the upper level. This equation shows how the multipole moments at any assigned point of the medium are coupled to the multipole moments relative at a different point as a consequence of the propagation of polarized radiation between the two points. The equation also accounts for the effect of the magnetic field, described by a kernel locally connecting multipole moments of the same rank, and for the role of inelastic and elastic (or depolarizing) collisions. After having given its formal derivation for the general case, the integral equation is particularized to the one-dimensional and two-dimensional cases. For the one-dimensional case of a plane parallel atmosphere, neglecting both the magnetic field and depolarizing collisions, the equation here derived reduces to a previous one given by Rees (1978).
A compressible Navier-Stokes solver with two-equation and Reynolds stress turbulence closure models
NASA Technical Reports Server (NTRS)
Morrison, Joseph H.
1992-01-01
This report outlines the development of a general purpose aerodynamic solver for compressible turbulent flows. Turbulent closure is achieved using either two equation or Reynolds stress transportation equations. The applicable equation set consists of Favre-averaged conservation equations for the mass, momentum and total energy, and transport equations for the turbulent stresses and turbulent dissipation rate. In order to develop a scheme with good shock capturing capabilities, good accuracy and general geometric capabilities, a multi-block cell centered finite volume approach is used. Viscous fluxes are discretized using a finite volume representation of a central difference operator and the source terms are treated as an integral over the control volume. The methodology is validated by testing the algorithm on both two and three dimensional flows. Both the two equation and Reynolds stress models are used on a two dimensional 10 degree compression ramp at Mach 3, and the two equation model is used on the three dimensional flow over a cone at angle of attack at Mach 3.5. With the development of this algorithm, it is now possible to compute complex, compressible high speed flow fields using both two equation and Reynolds stress turbulent closure models, with the capability of eventually evaluating their predictive performance.
Nonlocal Reformulations of Water and Internal Waves and Asymptotic Reductions
NASA Astrophysics Data System (ADS)
Ablowitz, Mark J.
2009-09-01
Nonlocal reformulations of the classical equations of water waves and two ideal fluids separated by a free interface, bounded above by either a rigid lid or a free surface, are obtained. The kinematic equations may be written in terms of integral equations with a free parameter. By expressing the pressure, or Bernoulli, equation in terms of the surface/interface variables, a closed system is obtained. An advantage of this formulation, referred to as the nonlocal spectral (NSP) formulation, is that the vertical component is eliminated, thus reducing the dimensionality and fixing the domain in which the equations are posed. The NSP equations and the Dirichlet-Neumann operators associated with the water wave or two-fluid equations can be related to each other and the Dirichlet-Neumann series can be obtained from the NSP equations. Important asymptotic reductions obtained from the two-fluid nonlocal system include the generalizations of the Benney-Luke and Kadomtsev-Petviashvili (KP) equations, referred to as intermediate-long wave (ILW) generalizations. These 2+1 dimensional equations possess lump type solutions. In the water wave problem high-order asymptotic series are obtained for two and three dimensional gravity-capillary solitary waves. In two dimensions, the first term in the asymptotic series is the well-known hyperbolic secant squared solution of the KdV equation; in three dimensions, the first term is the rational lump solution of the KP equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, Abhik, E-mail: abhik.mukherjee@saha.ac.in; Janaki, M. S., E-mail: ms.janaki@saha.ac.in; Kundu, Anjan, E-mail: anjan.kundu@saha.ac.in
2015-07-15
A new, completely integrable, two dimensional evolution equation is derived for an ion acoustic wave propagating in a magnetized, collisionless plasma. The equation is a multidimensional generalization of a modulated wavepacket with weak transverse propagation, which has resemblance to nonlinear Schrödinger (NLS) equation and has a connection to Kadomtsev-Petviashvili equation through a constraint relation. Higher soliton solutions of the equation are derived through Hirota bilinearization procedure, and an exact lump solution is calculated exhibiting 2D structure. Some mathematical properties demonstrating the completely integrable nature of this equation are described. Modulational instability using nonlinear frequency correction is derived, and the correspondingmore » growth rate is calculated, which shows the directional asymmetry of the system. The discovery of this novel (2+1) dimensional integrable NLS type equation for a magnetized plasma should pave a new direction of research in the field.« less
Versatile rogue waves in scalar, vector, and multidimensional nonlinear systems
NASA Astrophysics Data System (ADS)
Chen, Shihua; Baronio, Fabio; Soto-Crespo, Jose M.; Grelu, Philippe; Mihalache, Dumitru
2017-11-01
This review is dedicated to recent progress in the active field of rogue waves, with an emphasis on the analytical prediction of versatile rogue wave structures in scalar, vector, and multidimensional integrable nonlinear systems. We first give a brief outline of the historical background of the rogue wave research, including referring to relevant up-to-date experimental results. Then we present an in-depth discussion of the scalar rogue waves within two different integrable frameworks—the infinite nonlinear Schrödinger (NLS) hierarchy and the general cubic-quintic NLS equation, considering both the self-focusing and self-defocusing Kerr nonlinearities. We highlight the concept of chirped Peregrine solitons, the baseband modulation instability as an origin of rogue waves, and the relation between integrable turbulence and rogue waves, each with illuminating examples confirmed by numerical simulations. Later, we recur to the vector rogue waves in diverse coupled multicomponent systems such as the long-wave short-wave equations, the three-wave resonant interaction equations, and the vector NLS equations (alias Manakov system). In addition to their intriguing bright-dark dynamics, a series of other peculiar structures, such as coexisting rogue waves, watch-hand-like rogue waves, complementary rogue waves, and vector dark three sisters, are reviewed. Finally, for practical considerations, we also remark on higher-dimensional rogue waves occurring in three closely-related (2 + 1)D nonlinear systems, namely, the Davey-Stewartson equation, the composite (2 + 1)D NLS equation, and the Kadomtsev-Petviashvili I equation. As an interesting contrast to the peculiar X-shaped light bullets, a concept of rogue wave bullets intended for high-dimensional systems is particularly put forward by combining contexts in nonlinear optics.
NASA Astrophysics Data System (ADS)
Caplan, R. M.
2013-04-01
We present a simple to use, yet powerful code package called NLSEmagic to numerically integrate the nonlinear Schrödinger equation in one, two, and three dimensions. NLSEmagic is a high-order finite-difference code package which utilizes graphic processing unit (GPU) parallel architectures. The codes running on the GPU are many times faster than their serial counterparts, and are much cheaper to run than on standard parallel clusters. The codes are developed with usability and portability in mind, and therefore are written to interface with MATLAB utilizing custom GPU-enabled C codes with the MEX-compiler interface. The packages are freely distributed, including user manuals and set-up files. Catalogue identifier: AEOJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOJ_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 124453 No. of bytes in distributed program, including test data, etc.: 4728604 Distribution format: tar.gz Programming language: C, CUDA, MATLAB. Computer: PC, MAC. Operating system: Windows, MacOS, Linux. Has the code been vectorized or parallelized?: Yes. Number of processors used: Single CPU, number of GPU processors dependent on chosen GPU card (max is currently 3072 cores on GeForce GTX 690). Supplementary material: Setup guide, Installation guide. RAM: Highly dependent on dimensionality and grid size. For typical medium-large problem size in three dimensions, 4GB is sufficient. Keywords: Nonlinear Schröodinger Equation, GPU, high-order finite difference, Bose-Einstien condensates. Classification: 4.3, 7.7. Nature of problem: Integrate solutions of the time-dependent one-, two-, and three-dimensional cubic nonlinear Schrödinger equation. Solution method: The integrators utilize a fully-explicit fourth-order Runge-Kutta scheme in time and both second- and fourth-order differencing in space. The integrators are written to run on NVIDIA GPUs and are interfaced with MATLAB including built-in visualization and analysis tools. Restrictions: The main restriction for the GPU integrators is the amount of RAM on the GPU as the code is currently only designed for running on a single GPU. Unusual features: Ability to visualize real-time simulations through the interaction of MATLAB and the compiled GPU integrators. Additional comments: Setup guide and Installation guide provided. Program has a dedicated web site at www.nlsemagic.com. Running time: A three-dimensional run with a grid dimension of 87×87×203 for 3360 time steps (100 non-dimensional time units) takes about one and a half minutes on a GeForce GTX 580 GPU card.
NASA Astrophysics Data System (ADS)
Tsivilskiy, I. V.; Nagulin, K. Yu.; Gilmutdinov, A. Kh.
2016-02-01
A full three-dimensional nonstationary numerical model of graphite electrothermal atomizers of various types is developed. The model is based on solution of a heat equation within solid walls of the atomizer with a radiative heat transfer and numerical solution of a full set of Navier-Stokes equations with an energy equation for a gas. Governing equations for the behavior of a discrete phase, i.e., atomic particles suspended in a gas (including gas-phase processes of evaporation and condensation), are derived from the formal equations molecular kinetics by numerical solution of the Hertz-Langmuir equation. The following atomizers test the model: a Varian standard heated electrothermal vaporizer (ETV), a Perkin Elmer standard THGA transversely heated graphite tube with integrated platform (THGA), and the original double-stage tube-helix atomizer (DSTHA). The experimental verification of computer calculations is carried out by a method of shadow spectral visualization of the spatial distributions of atomic and molecular vapors in an analytical space of an atomizer.
NASA Technical Reports Server (NTRS)
MacKenzie, Anne I.; Rao, Sadasiva M.; Baginski, Michael E.
2007-01-01
A pair of basis functions is presented for the surface integral, method of moment solution of scattering by arbitrarily-shaped, three-dimensional dielectric bodies. Equivalent surface currents are represented by orthogonal unit pulse vectors in conjunction with triangular patch modeling. The electric field integral equation is employed with closed geometries for dielectric bodies; the method may also be applied to conductors. Radar cross section results are shown for dielectric bodies having canonical spherical, cylindrical, and cubic shapes. Pulse basis function results are compared to results by other methods.
Electromagnetic inverse scattering
NASA Technical Reports Server (NTRS)
Bojarski, N. N.
1972-01-01
A three-dimensional electromagnetic inverse scattering identity, based on the physical optics approximation, is developed for the monostatic scattered far field cross section of perfect conductors. Uniqueness of this inverse identity is proven. This identity requires complete scattering information for all frequencies and aspect angles. A nonsingular integral equation is developed for the arbitrary case of incomplete frequence and/or aspect angle scattering information. A general closed-form solution to this integral equation is developed, which yields the shape of the scatterer from such incomplete information. A specific practical radar solution is presented. The resolution of this solution is developed, yielding short-pulse target resolution radar system parameter equations. The special cases of two- and one-dimensional inverse scattering and the special case of a priori knowledge of scatterer symmetry are treated in some detail. The merits of this solution over the conventional radar imaging technique are discussed.
Calculation of unsteady transonic flows with mild separation by viscous-inviscid interaction
NASA Technical Reports Server (NTRS)
Howlett, James T.
1992-01-01
This paper presents a method for calculating viscous effects in two- and three-dimensional unsteady transonic flow fields. An integral boundary-layer method for turbulent viscous flow is coupled with the transonic small-disturbance potential equation in a quasi-steady manner. The viscous effects are modeled with Green's lag-entrainment equations for attached flow and an inverse boundary-layer method for flows that involve mild separation. The boundary-layer method is used stripwise to approximate three-dimensional effects. Applications are given for two-dimensional airfoils, aileron buzz, and a wing planform. Comparisons with inviscid calculations, other viscous calculation methods, and experimental data are presented. The results demonstrate that the present technique can economically and accurately calculate unsteady transonic flow fields that have viscous-inviscid interactions with mild flow separation.
An exact solution of the van der Waals interaction between two ground-state hydrogen atoms
NASA Astrophysics Data System (ADS)
Koga, Toshikatsu; Matsumoto, Shinya
1985-06-01
A momentum space treatment shows that perturbation equations for the H(1s)-H(1s) van der Waals interaction can be exactly solved in their Schrödinger forms without invoking any variational methods. Using the Fock transformation, which projects the momentum vector of an electron from the three-dimensional hyperplane onto the four-dimensional hypersphere, we solve the third order integral-type perturbation equation with respect to the reciprocal of the internuclear distance R. An exact third order wave function is found as a linear combination of infinite number of four-dimensional spherical harmonics. The result allows us to evaluate the exact dispersion energy E6R-6, which is completely determined by the first three coefficients of the above linear combination.
NASA Technical Reports Server (NTRS)
Busemann, A.; Vinh, N. X.; Culp, R. D.
1976-01-01
The problem of determining the trajectories, partially or wholly contained in the atmosphere of a spherical, nonrotating planet, is considered. The exact equations of motion for three-dimensional, aerodynamically affected flight are derived. Modified Chapman variables are introduced and the equations are transformed into a set suitable for analytic integration using asymptotic expansions. The trajectory is solved in two regions: the outer region, where the force may be considered a gravitational field with aerodynamic perturbations, and the inner region, where the force is predominantly aerodynamic, with gravity as a perturbation. The two solutions are matched directly. A composite solution, valid everywhere, is constructed by additive composition. This approach of directly matched asymptotic expansions applied to the exact equations of motion couched in terms of modified Chapman variables yields an analytical solution which should prove to be a powerful tool for aerodynamic orbit calculations.
NASA Technical Reports Server (NTRS)
Gabrielsen, R. E.; Uenal, A.
1981-01-01
Two dimensional Fredholm integral equations with logarithmic potential kernels are numerically solved. The explicit consequence of these solutions to their true solutions is demonstrated. The results are based on a previous work in which numerical solutions were obtained for Fredholm integral equations of the second kind with continuous kernels.
NASA Astrophysics Data System (ADS)
Jones, R. M.; Riley, J. P.; Georges, T. M.
1986-08-01
The modular FORTRAN 77 computer program traces the three-dimensional paths of acoustic rays through continuous model atmospheres by numerically integrating Hamilton's equations (a differential expression of Fermat's principle). The user specifies an atmospheric model by writing closed-form formulas for its three-dimensional wind and temperature (or sound speed) distribution, and by defining the height of the reflecting terrain vs. geographic latitude and longitude. Some general-purpose models are provided, or users can readily design their own. In addition to computing the geometry of each raypath, HARPA can calculate pulse travel time, phase time, Doppler shift (if the medium varies in time), absorption, and geometrical path length. The program prints a step-by-step account of a ray's progress. The 410-page documentation describes the ray-tracing equations and the structure of the program, and provides complete instructions, illustrated by a sample case.
A Global Interpolation Function (GIF) boundary element code for viscous flows
NASA Technical Reports Server (NTRS)
Reddy, D. R.; Lafe, O.; Cheng, A. H-D.
1995-01-01
Using global interpolation functions (GIF's), boundary element solutions are obtained for two- and three-dimensional viscous flows. The solution is obtained in the form of a boundary integral plus a series of global basis functions. The unknown coefficients of the GIF's are determined to ensure the satisfaction of the governing equations at selected collocation points. The values of the coefficients involved in the boundary integral equations are determined by enforcing the boundary conditions. Both primitive variable and vorticity-velocity formulations are examined.
Exact soliton of (2 + 1)-dimensional fractional Schrödinger equation
NASA Astrophysics Data System (ADS)
Rizvi, S. T. R.; Ali, K.; Bashir, S.; Younis, M.; Ashraf, R.; Ahmad, M. O.
2017-07-01
The nonlinear fractional Schrödinger equation is the basic equation of fractional quantum mechanics introduced by Nick Laskin in 2002. We apply three tools to solve this mathematical-physical model. First, we find the solitary wave solutions including the trigonometric traveling wave solutions, bell and kink shape solitons using the F-expansion and Improve F-expansion method. We also obtain the soliton solution, singular soliton solutions, rational function solution and elliptic integral function solutions, with the help of the extended trial equation method.
NASA Astrophysics Data System (ADS)
Rabinskiy, L. N.; Zhavoronok, S. I.
2018-04-01
The transient interaction of acoustic media and elastic shells is considered on the basis of the transition function approach. The three-dimensional hyperbolic initial boundary-value problem is reduced to a two-dimensional problem of shell theory with integral operators approximating the acoustic medium effect on the shell dynamics. The kernels of these integral operators are determined by the elementary solution of the problem of acoustic waves diffraction at a rigid obstacle with the same boundary shape as the wetted shell surface. The closed-form elementary solution for arbitrary convex obstacles can be obtained at the initial interaction stages on the background of the so-called “thin layer hypothesis”. Thus, the shell–wave interaction model defined by integro-differential dynamic equations with analytically determined kernels of integral operators becomes hence two-dimensional but nonlocal in time. On the other hand, the initial interaction stage results in localized dynamic loadings and consequently in complex strain and stress states that require higher-order shell theories. Here the modified theory of I.N.Vekua–A.A.Amosov-type is formulated in terms of analytical continuum dynamics. The shell model is constructed on a two-dimensional manifold within a set of field variables, Lagrangian density, and constraint equations following from the boundary conditions “shifted” from the shell faces to its base surface. Such an approach allows one to construct consistent low-order shell models within a unified formal hierarchy. The equations of the N th-order shell theory are singularly perturbed and contain second-order partial derivatives with respect to time and surface coordinates whereas the numerical integration of systems of first-order equations is more efficient. Such systems can be obtained as Hamilton–de Donder–Weyl-type equations for the Lagrangian dynamical system. The Hamiltonian formulation of the elementary N th-order shell theory is here briefly described.
NASA Technical Reports Server (NTRS)
Braun, M. J.; Wheeler, R. L., III; Hendricks, R. C.
1986-01-01
The goal set forth here is to continue the work started by Braun et al. (1984-1985) and present an integrated analysis of the behavior of the two row, 20 staggered pockets, hydrostatic cryogenic bearing used by the turbopumps of the Space Shuttle main engine. The variable properties Reynolds equation is fully coupled with the two-dimensional fluid film energy equation. The three-dimensional equations of the shaft and bushing model the boundary conditions of the fluid film energy equation. The effects of shaft eccentricity, angular velocity, and inertia pressure drops at pocket edge are incorporated in the model. Their effects on the bearing fluid properties, load carrying capacity, mass flow, pressure, velocity, and temperature form the ultimate object of this paper.
A spectral-finite difference solution of the Navier-Stokes equations in three dimensions
NASA Astrophysics Data System (ADS)
Alfonsi, Giancarlo; Passoni, Giuseppe; Pancaldo, Lea; Zampaglione, Domenico
1998-07-01
A new computational code for the numerical integration of the three-dimensional Navier-Stokes equations in their non-dimensional velocity-pressure formulation is presented. The system of non-linear partial differential equations governing the time-dependent flow of a viscous incompressible fluid in a channel is managed by means of a mixed spectral-finite difference method, in which different numerical techniques are applied: Fourier decomposition is used along the homogeneous directions, second-order Crank-Nicolson algorithms are employed for the spatial derivatives in the direction orthogonal to the solid walls and a fourth-order Runge-Kutta procedure is implemented for both the calculation of the convective term and the time advancement. The pressure problem, cast in the Helmholtz form, is solved with the use of a cyclic reduction procedure. No-slip boundary conditions are used at the walls of the channel and cyclic conditions are imposed at the other boundaries of the computing domain.Results are provided for different values of the Reynolds number at several time steps of integration and are compared with results obtained by other authors.
An integral equation formulation for rigid bodies in Stokes flow in three dimensions
NASA Astrophysics Data System (ADS)
Corona, Eduardo; Greengard, Leslie; Rachh, Manas; Veerapaneni, Shravan
2017-03-01
We present a new derivation of a boundary integral equation (BIE) for simulating the three-dimensional dynamics of arbitrarily-shaped rigid particles of genus zero immersed in a Stokes fluid, on which are prescribed forces and torques. Our method is based on a single-layer representation and leads to a simple second-kind integral equation. It avoids the use of auxiliary sources within each particle that play a role in some classical formulations. We use a spectrally accurate quadrature scheme to evaluate the corresponding layer potentials, so that only a small number of spatial discretization points per particle are required. The resulting discrete sums are computed in O (n) time, where n denotes the number of particles, using the fast multipole method (FMM). The particle positions and orientations are updated by a high-order time-stepping scheme. We illustrate the accuracy, conditioning and scaling of our solvers with several numerical examples.
NASA Astrophysics Data System (ADS)
Motsepa, Tanki; Masood Khalique, Chaudry
2018-05-01
In this paper, we study a (2+1) dimensional KdV-mKdV equation, which models many physical phenomena of mathematical physics. This equation has two integral terms in it. By an appropriate substitution, we convert this equation into two partial differential equations, which do not have integral terms and are equivalent to the original equation. We then work with the system of two equations and obtain its exact travelling wave solutions in form of Jacobi elliptic functions. Furthermore, we employ the multiplier method to construct conservation laws for the system. Finally, we revert the results obtained into the original variables of the (2+1) dimensional KdV-mKdV equation.
Renormalization of the fragmentation equation: exact self-similar solutions and turbulent cascades.
Saveliev, V L; Gorokhovski, M A
2012-12-01
Using an approach developed earlier for renormalization of the Boltzmann collision integral [Saveliev and Nanbu, Phys. Rev. E 65, 051205 (2002)], we derive an exact divergence form for the fragmentation operator. Then we reduce the fragmentation equation to the continuity equation in size space, with the flux given explicitly. This allows us to obtain self-similar solutions and to find the integral of motion for these solutions (we call it the bare flux). We show how these solutions can be applied as a description of cascade processes in three- and two-dimensional turbulence. We also suggested an empirical cascade model of impact fragmentation of brittle materials.
Darboux transformation and explicit solutions for some (2+1)-dimensional equations
NASA Astrophysics Data System (ADS)
Wang, Yan; Shen, Lijuan; Du, Dianlou
2007-06-01
Three systems of (2+1)-dimensional soliton equations and their decompositions into the (1+1)-dimensional soliton equations are proposed. These equations include KPI, CKP, MKPI. With the help of Darboux transformation of (1+1)-dimensional equations, we get the explicit solutions of the (2+1)-dimensional equations.
Boundary element modelling of dynamic behavior of piecewise homogeneous anisotropic elastic solids
NASA Astrophysics Data System (ADS)
Igumnov, L. A.; Markov, I. P.; Litvinchuk, S. Yu
2018-04-01
A traditional direct boundary integral equations method is applied to solve three-dimensional dynamic problems of piecewise homogeneous linear elastic solids. The materials of homogeneous parts are considered to be generally anisotropic. The technique used to solve the boundary integral equations is based on the boundary element method applied together with the Radau IIA convolution quadrature method. A numerical example of suddenly loaded 3D prismatic rod consisting of two subdomains with different anisotropic elastic properties is presented to verify the accuracy of the proposed formulation.
Multiexponential models of (1+1)-dimensional dilaton gravity and Toda-Liouville integrable models
NASA Astrophysics Data System (ADS)
de Alfaro, V.; Filippov, A. T.
2010-01-01
We study general properties of a class of two-dimensional dilaton gravity (DG) theories with potentials containing several exponential terms. We isolate and thoroughly study a subclass of such theories in which the equations of motion reduce to Toda and Liouville equations. We show that the equation parameters must satisfy a certain constraint, which we find and solve for the most general multiexponential model. It follows from the constraint that integrable Toda equations in DG theories generally cannot appear without accompanying Liouville equations. The most difficult problem in the two-dimensional Toda-Liouville (TL) DG is to solve the energy and momentum constraints. We discuss this problem using the simplest examples and identify the main obstacles to solving it analytically. We then consider a subclass of integrable two-dimensional theories where scalar matter fields satisfy the Toda equations and the two-dimensional metric is trivial. We consider the simplest case in some detail. In this example, we show how to obtain the general solution. We also show how to simply derive wavelike solutions of general TL systems. In the DG theory, these solutions describe nonlinear waves coupled to gravity and also static states and cosmologies. For static states and cosmologies, we propose and study a more general one-dimensional TL model typically emerging in one-dimensional reductions of higher-dimensional gravity and supergravity theories. We especially attend to making the analytic structure of the solutions of the Toda equations as simple and transparent as possible.
Equations of motion of slung load systems with results for dual lift
NASA Technical Reports Server (NTRS)
Cicolani, Luigi S.; Kanning, Gerd
1990-01-01
General simulation equations are derived for the rigid body motion of slung load systems. These systems are viewed as consisting of several rigid bodies connected by straight-line cables or links. The suspension can be assumed to be elastic or inelastic, both cases being of interest in simulation and control studies. Equations for the general system are obtained via D'Alembert's principle and the introduction of generalized velocity coordinates. Three forms are obtained. Two of these generalize previous case-specific results for single helicopter systems with elastic or inelastic suspensions. The third is a new formulation for inelastic suspensions. It is derived from the elastic suspension equations by choosing the generalized coordinates so as to separate motion due to cable stretching from motion with invariant cable lengths. The result is computationally more efficient than the conventional formulation, and is readily integrated with the elastic suspension formulation and readily applied to the complex dual lift and multilift systems. Equations are derived for dual lift systems. Three proposed suspension arrangements can be integrated in a single equation set. The equations are given in terms of the natural vectors and matrices of three-dimensional rigid body mechanics and are tractable for both analysis and programming.
Three-dimensional unstructured grid Euler computations using a fully-implicit, upwind method
NASA Technical Reports Server (NTRS)
Whitaker, David L.
1993-01-01
A method has been developed to solve the Euler equations on a three-dimensional unstructured grid composed of tetrahedra. The method uses an upwind flow solver with a linearized, backward-Euler time integration scheme. Each time step results in a sparse linear system of equations which is solved by an iterative, sparse matrix solver. Local-time stepping, switched evolution relaxation (SER), preconditioning and reuse of the Jacobian are employed to accelerate the convergence rate. Implicit boundary conditions were found to be extremely important for fast convergence. Numerical experiments have shown that convergence rates comparable to that of a multigrid, central-difference scheme are achievable on the same mesh. Results are presented for several grids about an ONERA M6 wing.
NASA Astrophysics Data System (ADS)
Chen, Shanzhen; Jiang, Xiaoyun
2012-08-01
In this paper, analytical solutions to time-fractional partial differential equations in a multi-layer annulus are presented. The final solutions are obtained in terms of Mittag-Leffler function by using the finite integral transform technique and Laplace transform technique. In addition, the classical diffusion equation (α=1), the Helmholtz equation (α→0) and the wave equation (α=2) are discussed as special cases. Finally, an illustrative example problem for the three-layer semi-circular annular region is solved and numerical results are presented graphically for various kind of order of fractional derivative.
Bellez, Sami; Bourlier, Christophe; Kubické, Gildas
2015-03-01
This paper deals with the evaluation of electromagnetic scattering from a three-dimensional structure consisting of two nested homogeneous dielectric bodies with arbitrary shape. The scattering problem is formulated in terms of a set of Poggio-Miller-Chang-Harrington-Wu integral equations that are afterwards converted into a system of linear equations (impedance matrix equation) by applying the Galerkin method of moments (MoM) with Rao-Wilton-Glisson basis functions. The MoM matrix equation is then solved by deploying the iterative propagation-inside-layer expansion (PILE) method in order to obtain the unknown surface current densities, which are thereafter used to handle the radar cross-section (RCS) patterns. Some numerical results for various structures including canonical geometries are presented and compared with those of the FEKO software in order to validate the PILE-based approach as well as to show its efficiency to analyze the full-polarized RCS patterns.
The terminal area simulation system. Volume 1: Theoretical formulation
NASA Technical Reports Server (NTRS)
Proctor, F. H.
1987-01-01
A three-dimensional numerical cloud model was developed for the general purpose of studying convective phenomena. The model utilizes a time splitting integration procedure in the numerical solution of the compressible nonhydrostatic primitive equations. Turbulence closure is achieved by a conventional first-order diagnostic approximation. Open lateral boundaries are incorporated which minimize wave reflection and which do not induce domain-wide mass trends. Microphysical processes are governed by prognostic equations for potential temperature water vapor, cloud droplets, ice crystals, rain, snow, and hail. Microphysical interactions are computed by numerous Orville-type parameterizations. A diagnostic surface boundary layer is parameterized assuming Monin-Obukhov similarity theory. The governing equation set is approximated on a staggered three-dimensional grid with quadratic-conservative central space differencing. Time differencing is approximated by the second-order Adams-Bashforth method. The vertical grid spacing may be either linear or stretched. The model domain may translate along with a convective cell, even at variable speeds.
Numerical methods for engine-airframe integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murthy, S.N.B.; Paynter, G.C.
1986-01-01
Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison ofmore » full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment.« less
Numerical integration of KPZ equation with restrictions
NASA Astrophysics Data System (ADS)
Torres, M. F.; Buceta, R. C.
2018-03-01
In this paper, we introduce a novel integration method of Kardar–Parisi–Zhang (KPZ) equation. It is known that if during the discrete integration of the KPZ equation the nearest-neighbor height-difference exceeds a critical value, instabilities appear and the integration diverges. One way to avoid these instabilities is to replace the KPZ nonlinear-term by a function of the same term that depends on a single adjustable parameter which is able to control pillars or grooves growing on the interface. Here, we propose a different integration method which consists of directly limiting the value taken by the KPZ nonlinearity, thereby imposing a restriction rule that is applied in each integration time-step, as if it were the growth rule of a restricted discrete model, e.g. restricted-solid-on-solid (RSOS). Taking the discrete KPZ equation with restrictions to its dimensionless version, the integration depends on three parameters: the coupling constant g, the inverse of the time-step k, and the restriction constant ε which is chosen to eliminate divergences while keeping all the properties of the continuous KPZ equation. We study in detail the conditions in the parameters’ space that avoid divergences in the 1-dimensional integration and reproduce the scaling properties of the continuous KPZ with a particular parameter set. We apply the tested methodology to the d-dimensional case (d = 3, 4 ) with the purpose of obtaining the growth exponent β, by establishing the conditions of the coupling constant g under which we recover known values reached by other authors, particularly for the RSOS model. This method allows us to infer that d = 4 is not the critical dimension of the KPZ universality class, where the strong-coupling phase disappears.
Yan, Zai You; Hung, Kin Chew; Zheng, Hui
2003-05-01
Regularization of the hypersingular integral in the normal derivative of the conventional Helmholtz integral equation through a double surface integral method or regularization relationship has been studied. By introducing the new concept of discretized operator matrix, evaluation of the double surface integrals is reduced to calculate the product of two discretized operator matrices. Such a treatment greatly improves the computational efficiency. As the number of frequencies to be computed increases, the computational cost of solving the composite Helmholtz integral equation is comparable to that of solving the conventional Helmholtz integral equation. In this paper, the detailed formulation of the proposed regularization method is presented. The computational efficiency and accuracy of the regularization method are demonstrated for a general class of acoustic radiation and scattering problems. The radiation of a pulsating sphere, an oscillating sphere, and a rigid sphere insonified by a plane acoustic wave are solved using the new method with curvilinear quadrilateral isoparametric elements. It is found that the numerical results rapidly converge to the corresponding analytical solutions as finer meshes are applied.
Boundary-integral methods in elasticity and plasticity. [solutions of boundary value problems
NASA Technical Reports Server (NTRS)
Mendelson, A.
1973-01-01
Recently developed methods that use boundary-integral equations applied to elastic and elastoplastic boundary value problems are reviewed. Direct, indirect, and semidirect methods using potential functions, stress functions, and displacement functions are described. Examples of the use of these methods for torsion problems, plane problems, and three-dimensional problems are given. It is concluded that the boundary-integral methods represent a powerful tool for the solution of elastic and elastoplastic problems.
Renormalization of the fragmentation equation: Exact self-similar solutions and turbulent cascades
NASA Astrophysics Data System (ADS)
Saveliev, V. L.; Gorokhovski, M. A.
2012-12-01
Using an approach developed earlier for renormalization of the Boltzmann collision integral [Saveliev and Nanbu, Phys. Rev. E1539-375510.1103/PhysRevE.65.051205 65, 051205 (2002)], we derive an exact divergence form for the fragmentation operator. Then we reduce the fragmentation equation to the continuity equation in size space, with the flux given explicitly. This allows us to obtain self-similar solutions and to find the integral of motion for these solutions (we call it the bare flux). We show how these solutions can be applied as a description of cascade processes in three- and two-dimensional turbulence. We also suggested an empirical cascade model of impact fragmentation of brittle materials.
Dual boundary element formulation for elastoplastic fracture mechanics
NASA Astrophysics Data System (ADS)
Leitao, V.; Aliabadi, M. H.; Rooke, D. P.
1995-01-01
In this paper the extension of the dual boundary element method (DBEM) to the analysis of elastoplastic fracture mechanics (EPFM) problems is presented. The dual equations of the method are the displacement and the traction boundary integral equations. When the displacement equation is applied on one of the crack surfaces and the traction equation on the other, general mixed-mode crack problems can be solved with a single-region formulation. In order to avoid collocation at crack tips, crack kinks and crack-edge corners, both crack surfaces are discretized with discontinuous quadratic boundary elements. The elasto-plastic behavior is modelled through the use of an approximation for the plastic component of the strain tensor on the region expected to yield. This region is discretized with internal quadratic, quadrilateral and/or triangular cells. This formulation was implemented for two-dimensional domains only, although there is no theoretical or numerical limitation to its application to three-dimensional ones. A center-cracked plate and a slant edge-cracked plate subjected to tensile load are analysed and the results are compared with others available in the literature. J-type integrals are calculated.
NASA Technical Reports Server (NTRS)
Collins, J. D.; Volakis, John L.
1992-01-01
A method that combines the finite element and boundary integral techniques for the numerical solution of electromagnetic scattering problems is presented. The finite element method is well known for requiring a low order storage and for its capability to model inhomogeneous structures. Of particular emphasis in this work is the reduction of the storage requirement by terminating the finite element mesh on a boundary in a fashion which renders the boundary integrals in convolutional form. The fast Fourier transform is then used to evaluate these integrals in a conjugate gradient solver, without a need to generate the actual matrix. This method has a marked advantage over traditional integral equation approaches with respect to the storage requirement of highly inhomogeneous structures. Rectangular, circular, and ogival mesh termination boundaries are examined for two-dimensional scattering. In the case of axially symmetric structures, the boundary integral matrix storage is reduced by exploiting matrix symmetries and solving the resulting system via the conjugate gradient method. In each case several results are presented for various scatterers aimed at validating the method and providing an assessment of its capabilities. Important in methods incorporating boundary integral equations is the issue of internal resonance. A method is implemented for their removal, and is shown to be effective in the two-dimensional and three-dimensional applications.
NASA Astrophysics Data System (ADS)
Lin, Pei-Chun; Yu, Chun-Chang; Chen, Charlie Chung-Ping
2015-01-01
As one of the critical stages of a very large scale integration fabrication process, postexposure bake (PEB) plays a crucial role in determining the final three-dimensional (3-D) profiles and lessening the standing wave effects. However, the full 3-D chemically amplified resist simulation is not widely adopted during the postlayout optimization due to the long run-time and huge memory usage. An efficient simulation method is proposed to simulate the PEB while considering standing wave effects and resolution enhancement techniques, such as source mask optimization and subresolution assist features based on the Sylvester equation and Abbe-principal component analysis method. Simulation results show that our algorithm is 20× faster than the conventional Gaussian convolution method.
Three-Dimensional Structure of Boundary Layers in Transition to Turbulence
1989-03-01
step-by-step Orr- Sommerfeld solution and integration. What is needed is an initial condition and initial wavenumber. These data can be obtained from a ...general than unsteady boundary-layer equations and Orr- Sommerfeld equation which are special cases. There- fore, the PSE will be a valuable tool for...spectra (discrete, continuous) result in a given problem is discussed in monographs and journal articles. Here, we try to find solutions to the
The aerodynamics of propellers and rotors using an acoustic formulation in the time domain
NASA Technical Reports Server (NTRS)
Long, L. N.
1983-01-01
The aerodynamics of propellers and rotors is especially complicated because of the highly three-dimensional and compressible nature of the flow field. However, in linearized theory the problem is governed by the wave equation, and a numerically-efficient integral formulation can be derived. This reduces the problem from one in space to one over a surface. Many such formulations exist in the aeroacoustics literature, but these become singular integral equations if one naively tries to use them to predict surface pressures, i.e., for aerodynamics. The present paper illustrates how one must interpret these equations in order to obtain nonambiguous results. After the regularized form of the integral equation is derived, a method for solving it numerically is described. This preliminary computer code uses Legendre-Gaussian quadrature to solve the equation. Numerical results are compared to experimental results for ellipsoids, wings, and rotors, including effects due to lift. Compressibility and the farfield boundary conditions are satisfied automatically using this method.
Integrability of the one dimensional Schrödinger equation
NASA Astrophysics Data System (ADS)
Combot, Thierry
2018-02-01
We present a definition of integrability for the one-dimensional Schrödinger equation, which encompasses all known integrable systems, i.e., systems for which the spectrum can be explicitly computed. For this, we introduce the class of rigid functions, built as Liouvillian functions, but containing all solutions of rigid differential operators in the sense of Katz, and a notion of natural of boundary conditions. We then make a complete classification of rational integrable potentials. Many new integrable cases are found, some of them physically interesting.
Solution of the Burnett equations for hypersonic flows near the continuum limit
NASA Technical Reports Server (NTRS)
Imlay, Scott T.
1992-01-01
The INCA code, a three-dimensional Navier-Stokes code for analysis of hypersonic flowfields, was modified to analyze the lower reaches of the continuum transition regime, where the Navier-Stokes equations become inaccurate and Monte Carlo methods become too computationally expensive. The two-dimensional Burnett equations and the three-dimensional rotational energy transport equation were added to the code and one- and two-dimensional calculations were performed. For the structure of normal shock waves, the Burnett equations give consistently better results than Navier-Stokes equations and compare reasonably well with Monte Carlo methods. For two-dimensional flow of Nitrogen past a circular cylinder the Burnett equations predict the total drag reasonably well. Care must be taken, however, not to exceed the range of validity of the Burnett equations.
NASA Astrophysics Data System (ADS)
Daiguji, Hisaaki; Yamamoto, Satoru
1988-12-01
The implicit time-marching finite-difference method for solving the three-dimensional compressible Euler equations developed by the authors is extended to the Navier-Stokes equations. The distinctive features of this method are to make use of momentum equations of contravariant velocities instead of physical boundaries, and to be able to treat the periodic boundary condition for the three-dimensional impeller flow easily. These equations can be solved by using the same techniques as the Euler equations, such as the delta-form approximate factorization, diagonalization and upstreaming. In addition to them, a simplified total variation diminishing scheme by the authors is applied to the present method in order to capture strong shock waves clearly. Finally, the computed results of the three-dimensional flow through a transonic compressor rotor with tip clearance are shown.
Acidity in DMSO from the embedded cluster integral equation quantum solvation model.
Heil, Jochen; Tomazic, Daniel; Egbers, Simon; Kast, Stefan M
2014-04-01
The embedded cluster reference interaction site model (EC-RISM) is applied to the prediction of acidity constants of organic molecules in dimethyl sulfoxide (DMSO) solution. EC-RISM is based on a self-consistent treatment of the solute's electronic structure and the solvent's structure by coupling quantum-chemical calculations with three-dimensional (3D) RISM integral equation theory. We compare available DMSO force fields with reference calculations obtained using the polarizable continuum model (PCM). The results are evaluated statistically using two different approaches to eliminating the proton contribution: a linear regression model and an analysis of pK(a) shifts for compound pairs. Suitable levels of theory for the integral equation methodology are benchmarked. The results are further analyzed and illustrated by visualizing solvent site distribution functions and comparing them with an aqueous environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Argo, P.E.; DeLapp, D.; Sutherland, C.D.
TRACKER is an extension of a three-dimensional Hamiltonian raytrace code developed some thirty years ago by R. Michael Jones. Subsequent modifications to this code, which is commonly called the {open_quotes}Jones Code,{close_quotes} were documented by Jones and Stephensen (1975). TRACKER incorporates an interactive user`s interface, modern differential equation integrators, graphical outputs, homing algorithms, and the Ionospheric Conductivity and Electron Density (ICED) ionosphere. TRACKER predicts the three-dimensional paths of radio waves through model ionospheres by numerically integrating Hamilton`s equations, which are a differential expression of Fermat`s principle of least time. By using continuous models, the Hamiltonian method avoids false caustics and discontinuousmore » raypath properties often encountered in other raytracing methods. In addition to computing the raypath, TRACKER also calculates the group path (or pulse travel time), the phase path, the geometrical (or {open_quotes}real{close_quotes}) pathlength, and the Doppler shift (if the time variation of the ionosphere is explicitly included). Computational speed can be traded for accuracy by specifying the maximum allowable integration error per step in the integration. Only geometrical optics are included in the main raytrace code; no partial reflections or diffraction effects are taken into account. In addition, TRACKER does not lend itself to statistical descriptions of propagation -- it requires a deterministic model of the ionosphere.« less
Weak solutions of the three-dimensional vorticity equation with vortex singularities
NASA Technical Reports Server (NTRS)
Winckelmans, G.; Leonard, A.
1988-01-01
The extension of the concept of vortex singularities, developed by Saffman and Meiron (1986) for the case of two-dimensional point vortices in an incompressible vortical flow, to the three-dimensional case of vortex sticks (vortons) is investigated analytically. The derivation of the governing equations is explained, and it is demonstrated that the formulation obtained conserves total vorticity and is a weak solution of the vorticity equation, making it an appropriate means for representing three-dimensional vortical flows with limited numbers of vortex singularities.
Lai, Chintu
1977-01-01
Two-dimensional unsteady flows of homogeneous density in estuaries and embayments can be described by hyperbolic, quasi-linear partial differential equations involving three dependent and three independent variables. A linear combination of these equations leads to a parametric equation of characteristic form, which consists of two parts: total differentiation along the bicharacteristics and partial differentiation in space. For its numerical solution, the specified-time-interval scheme has been used. The unknown, partial space-derivative terms can be eliminated first by suitable combinations of difference equations, converted from the corresponding differential forms and written along four selected bicharacteristics and a streamline. Other unknowns are thus made solvable from the known variables on the current time plane. The computation is carried to the second-order accuracy by using trapezoidal rule of integration. Means to handle complex boundary conditions are developed for practical application. Computer programs have been written and a mathematical model has been constructed for flow simulation. The favorable computer outputs suggest further exploration and development of model worthwhile. (Woodard-USGS)
Argani, L. P.; Bigoni, D.; Capuani, D.; Movchan, N. V.
2014-01-01
The infinite-body three-dimensional Green's function set (for incremental displacement and mean stress) is derived for the incremental deformation of a uniformly strained incompressible, nonlinear elastic body. Particular cases of the developed formulation are the Mooney–Rivlin elasticity and the J2-deformation theory of plasticity. These Green's functions are used to develop a boundary integral equation framework, by introducing an ad hoc potential, which paves the way for a boundary element formulation of three-dimensional problems of incremental elasticity. Results are used to investigate the behaviour of a material deformed near the limit of ellipticity and to reveal patterns of shear failure. In fact, within the investigated three-dimensional framework, localized deformations emanating from a perturbation are shown to be organized in conical geometries rather than in planar bands, so that failure is predicted to develop through curved and thin surfaces of intense shearing, as can for instance be observed in the cup–cone rupture of ductile metal bars. PMID:25197258
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Mankbadi, Reda R.
2002-01-01
An analysis of the nonlinear development of the large-scale structures or instability waves in compressible round jets was conducted using the integral energy method. The equations of motion were decomposed into two sets of equations; one set governing the mean flow motion and the other set governing the large-scale structure motion. The equations in each set were then combined to derive kinetic energy equations that were integrated in the radial direction across the jet after the boundary-layer approximations were applied. Following the application of further assumptions regarding the radial shape of the mean flow and the large structures, equations were derived that govern the nonlinear, streamwise development of the large structures. Using numerically generated mean flows, calculations show the energy exchanges and the effects of the initial amplitude on the coherent structure development in the jet.
Spinning particle and gauge theories as integrability conditions
NASA Astrophysics Data System (ADS)
Eisenberg, Yeshayahu
1992-02-01
Starting from a new four dimensional spinning point particle we obtain new representations of the standard four dimensional gauge field equations in terms of a generalized space (Minkowski + light cone). In terms of this new formulation we define linear systems whose integrability conditions imply the massive Dirac-Maxwell and the Yang-Mills equations. Research supported by the Rothschild Fellowship.
Gilson, C; Hietarinta, J; Nimmo, J; Ohta, Y
2003-07-01
Higher-order and multicomponent generalizations of the nonlinear Schrödinger equation are important in various applications, e.g., in optics. One of these equations, the integrable Sasa-Satsuma equation, has particularly interesting soliton solutions. Unfortunately, the construction of multisoliton solutions to this equation presents difficulties due to its complicated bilinearization. We discuss briefly some previous attempts and then give the correct bilinearization based on the interpretation of the Sasa-Satsuma equation as a reduction of the three-component Kadomtsev-Petviashvili hierarchy. In the process, we also get bilinearizations and multisoliton formulas for a two-component generalization of the Sasa-Satsuma equation (the Yajima-Oikawa-Tasgal-Potasek model), and for a (2+1)-dimensional generalization.
Acoustic scattering by arbitrary distributions of disjoint, homogeneous cylinders or spheres.
Hesford, Andrew J; Astheimer, Jeffrey P; Waag, Robert C
2010-05-01
A T-matrix formulation is presented to compute acoustic scattering from arbitrary, disjoint distributions of cylinders or spheres, each with arbitrary, uniform acoustic properties. The generalized approach exploits the similarities in these scattering problems to present a single system of equations that is easily specialized to cylindrical or spherical scatterers. By employing field expansions based on orthogonal harmonic functions, continuity of pressure and normal particle velocity are directly enforced at each scatterer using diagonal, analytic expressions to eliminate the need for integral equations. The effect of a cylinder or sphere that encloses all other scatterers is simulated with an outer iterative procedure that decouples the inner-object solution from the effect of the enclosing object to improve computational efficiency when interactions among the interior objects are significant. Numerical results establish the validity and efficiency of the outer iteration procedure for nested objects. Two- and three-dimensional methods that employ this outer iteration are used to measure and characterize the accuracy of two-dimensional approximations to three-dimensional scattering of elevation-focused beams.
NASA Astrophysics Data System (ADS)
Kinoshita, T.; Sato, K.
2016-12-01
The Transformed Eulerian-Mean (TEM) equations were derived by Andrews and McIntyre (1976, 1978) and have been widely used to examine wave-mean flow interaction in the meridional cross section. According to previous studies, the Brewer-Dobson circulation in the stratosphere is driven by planetary waves, baroclinic waves, and inertia-gravity waves, and that the meridional circulation from the summer hemisphere to the winter hemisphere in the mesosphere is mainly driven by gravity waves (e.g., Garcia and Boville 1994; Plumb and Semeniuk 2003; Watanabe et al. 2008; Okamoto et al. 2011). However, the TEM equations do not provide the three-dimensional view of the transport, so that the three dimensional TEM equations have been formulated (Hoskins et al. 1983, Trenberth 1986, Plumb 1985, 1986, Takaya and Nakamura 1997, 2001, Miyahara 2006, Kinoshita et al. 2010, Noda 2010, Kinoshita and Sato 2013a, b, and Noda 2014). On the other hand, the TEM equations cannot properly treat the lower boundary and unstable waves. The Mass-weighted Isentropic Mean (MIM) equations derived by Iwasaki (1989, 1990) are the equations that overcome those problems and the formulation of three-dimensional MIM equations have been studied. The present study applies the three-dimensional TEM and MIM equations to the ERA-Interim reanalysis data and examines the climatological character of three-dimensional structure of Stratospheric Brewer-Dobson circulation. Next, we will discuss how to treat the flow associated with spatial structure of stationary waves.
On a modified form of navier-stokes equations for three-dimensional flows.
Venetis, J
2015-01-01
A rephrased form of Navier-Stokes equations is performed for incompressible, three-dimensional, unsteady flows according to Eulerian formalism for the fluid motion. In particular, we propose a geometrical method for the elimination of the nonlinear terms of these fundamental equations, which are expressed in true vector form, and finally arrive at an equivalent system of three semilinear first order PDEs, which hold for a three-dimensional rectangular Cartesian coordinate system. Next, we present the related variational formulation of these modified equations as well as a general type of weak solutions which mainly concern Sobolev spaces.
On a Modified Form of Navier-Stokes Equations for Three-Dimensional Flows
Venetis, J.
2015-01-01
A rephrased form of Navier-Stokes equations is performed for incompressible, three-dimensional, unsteady flows according to Eulerian formalism for the fluid motion. In particular, we propose a geometrical method for the elimination of the nonlinear terms of these fundamental equations, which are expressed in true vector form, and finally arrive at an equivalent system of three semilinear first order PDEs, which hold for a three-dimensional rectangular Cartesian coordinate system. Next, we present the related variational formulation of these modified equations as well as a general type of weak solutions which mainly concern Sobolev spaces. PMID:25918743
Shao, Xuan-Min
2016-04-12
The fundamental electromagnetic equations used by lightning researchers were introduced in a seminal paper by Uman, McLain, and Krider in 1975. However, these equations were derived for an infinitely thin, one-dimensional source current, and not for a general three-dimensional current distribution. In this paper, we introduce a corresponding pair of generalized equations that are determined from a three-dimensional, time-dependent current density distribution based on Jefimenko's original electric and magnetic equations. To do this, we derive the Jefimenko electric field equation into a new form that depends only on the time-dependent current density similar to that of Uman, McLain, and Krider,more » rather than on both the charge and current densities in its original form. The original Jefimenko magnetic field equation depends only on current, so no further derivation is needed. We show that the equations of Uman, McLain, and Krider can be readily obtained from the generalized equations if a one-dimensional source current is considered. For the purpose of practical applications, we discuss computational implementation of the new equations and present electric field calculations for a three-dimensional, conical-shape discharge.« less
Development Of A Navier-Stokes Computer Code
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Kwak, Dochan
1993-01-01
Report discusses aspects of development of CENS3D computer code, solving three-dimensional Navier-Stokes equations of compressible, viscous, unsteady flow. Implements implicit finite-difference or finite-volume numerical-integration scheme, called "lower-upper symmetric-Gauss-Seidel" (LU-SGS), offering potential for very low computer time per iteration and for fast convergence.
NASA Technical Reports Server (NTRS)
Jin, Jian-Ming; Volakis, John L.
1990-01-01
A numerical technique is proposed for the electromagnetic characterization of the scattering by a three-dimensional cavity-backed aperture in an infinite ground plane. The technique combines the finite element and boundary integral methods to formulate a system of equations for the solution of the aperture fields and those inside the cavity. Specifically, the finite element method is employed to formulate the fields in the cavity region and the boundary integral approach is used in conjunction with the equivalence principle to represent the fields above the ground plane. Unlike traditional approaches, the proposed technique does not require knowledge of the cavity's Green's function and is, therefore, applicable to arbitrary shape depressions and material fillings. Furthermore, the proposed formulation leads to a system having a partly full and partly sparse as well as symmetric and banded matrix which can be solved efficiently using special algorithms.
Dynamical behavior for the three-dimensional generalized Hasegawa-Mima equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Ruifeng; Guo Boling; Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088
2007-01-15
The long time behavior of solution of the three-dimensional generalized Hasegawa-Mima [Phys. Fluids 21, 87 (1978)] equations with dissipation term is considered. The global attractor problem of the three-dimensional generalized Hasegawa-Mima equations with periodic boundary condition was studied. Applying the method of uniform a priori estimates, the existence of global attractor of this problem was proven, and also the dimensions of the global attractor are estimated.
Methods for analysis of cracks in three-dimensional solids
NASA Technical Reports Server (NTRS)
Raju, I. S.; Newman, J. C., Jr.
1984-01-01
Analytical and numerical methods evaluating the stress-intensity factors for three-dimensional cracks in solids are presented, with reference to fatigue failure in aerospace structures. The exact solutions for embedded elliptical and circular cracks in infinite solids, and the approximate methods, including the finite-element, the boundary-integral equation, the line-spring models, and the mixed methods are discussed. Among the mixed methods, the superposition of analytical and finite element methods, the stress-difference, the discretization-error, the alternating, and the finite element-alternating methods are reviewed. Comparison of the stress-intensity factor solutions for some three-dimensional crack configurations showed good agreement. Thus, the choice of a particular method in evaluating the stress-intensity factor is limited only to the availability of resources and computer programs.
NASA Astrophysics Data System (ADS)
Popov, Nikolay S.
2017-11-01
Solvability of some initial-boundary value problems for linear hyperbolic equations of the fourth order is studied. A condition on the lateral boundary in these problems relates the values of a solution or the conormal derivative of a solution to the values of some integral operator applied to a solution. Nonlocal boundary-value problems for one-dimensional hyperbolic second-order equations with integral conditions on the lateral boundary were considered in the articles by A.I. Kozhanov. Higher-dimensional hyperbolic equations of higher order with integral conditions on the lateral boundary were not studied earlier. The existence and uniqueness theorems of regular solutions are proven. The method of regularization and the method of continuation in a parameter are employed to establish solvability.
On the statistical mechanics of the 2D stochastic Euler equation
NASA Astrophysics Data System (ADS)
Bouchet, Freddy; Laurie, Jason; Zaboronski, Oleg
2011-12-01
The dynamics of vortices and large scale structures is qualitatively very different in two dimensional flows compared to its three dimensional counterparts, due to the presence of multiple integrals of motion. These are believed to be responsible for a variety of phenomena observed in Euler flow such as the formation of large scale coherent structures, the existence of meta-stable states and random abrupt changes in the topology of the flow. In this paper we study stochastic dynamics of the finite dimensional approximation of the 2D Euler flow based on Lie algebra su(N) which preserves all integrals of motion. In particular, we exploit rich algebraic structure responsible for the existence of Euler's conservation laws to calculate the invariant measures and explore their properties and also study the approach to equilibrium. Unexpectedly, we find deep connections between equilibrium measures of finite dimensional su(N) truncations of the stochastic Euler equations and random matrix models. Our work can be regarded as a preparation for addressing the questions of large scale structures, meta-stability and the dynamics of random transitions between different flow topologies in stochastic 2D Euler flows.
The staircase method: integrals for periodic reductions of integrable lattice equations
NASA Astrophysics Data System (ADS)
van der Kamp, Peter H.; Quispel, G. R. W.
2010-11-01
We show, in full generality, that the staircase method (Papageorgiou et al 1990 Phys. Lett. A 147 106-14, Quispel et al 1991 Physica A 173 243-66) provides integrals for mappings, and correspondences, obtained as traveling wave reductions of (systems of) integrable partial difference equations. We apply the staircase method to a variety of equations, including the Korteweg-De Vries equation, the five-point Bruschi-Calogero-Droghei equation, the quotient-difference (QD)-algorithm and the Boussinesq system. We show that, in all these cases, if the staircase method provides r integrals for an n-dimensional mapping, with 2r, then one can introduce q <= 2r variables, which reduce the dimension of the mapping from n to q. These dimension-reducing variables are obtained as joint invariants of k-symmetries of the mappings. Our results support the idea that often the staircase method provides sufficiently many integrals for the periodic reductions of integrable lattice equations to be completely integrable. We also study reductions on other quad-graphs than the regular {\\ Z}^2 lattice, and we prove linear growth of the multi-valuedness of iterates of high-dimensional correspondences obtained as reductions of the QD-algorithm.
Advanced development of BEM for elastic and inelastic dynamic analysis of solids
NASA Technical Reports Server (NTRS)
Banerjee, P. K.; Ahmad, S.; Wang, H. C.
1989-01-01
Direct Boundary Element formulations and their numerical implementation for periodic and transient elastic as well as inelastic transient dynamic analyses of two-dimensional, axisymmetric and three-dimensional solids are presented. The inelastic formulation is based on an initial stress approach and is the first of its kind in the field of Boundary Element Methods. This formulation employs the Navier-Cauchy equation of motion, Graffi's dynamic reciprocal theorem, Stokes' fundamental solution, and the divergence theorem, together with kinematical and constitutive equations to obtain the pertinent integral equations of the problem in the time domain within the context of the small displacement theory of elastoplasticity. The dynamic (periodic, transient as well as nonlinear transient) formulations have been applied to a range of problems. The numerical formulations presented here are included in the BEST3D and GPBEST systems.
Theory for the three-dimensional Mercedes-Benz model of water.
Bizjak, Alan; Urbic, Tomaz; Vlachy, Vojko; Dill, Ken A
2009-11-21
The two-dimensional Mercedes-Benz (MB) model of water has been widely studied, both by Monte Carlo simulations and by integral equation methods. Here, we study the three-dimensional (3D) MB model. We treat water as spheres that interact through Lennard-Jones potentials and through a tetrahedral Gaussian hydrogen bonding function. As the "right answer," we perform isothermal-isobaric Monte Carlo simulations on the 3D MB model for different pressures and temperatures. The purpose of this work is to develop and test Wertheim's Ornstein-Zernike integral equation and thermodynamic perturbation theories. The two analytical approaches are orders of magnitude more efficient than the Monte Carlo simulations. The ultimate goal is to find statistical mechanical theories that can efficiently predict the properties of orientationally complex molecules, such as water. Also, here, the 3D MB model simply serves as a useful workbench for testing such analytical approaches. For hot water, the analytical theories give accurate agreement with the computer simulations. For cold water, the agreement is not as good. Nevertheless, these approaches are qualitatively consistent with energies, volumes, heat capacities, compressibilities, and thermal expansion coefficients versus temperature and pressure. Such analytical approaches offer a promising route to a better understanding of water and also the aqueous solvation.
Theory for the three-dimensional Mercedes-Benz model of water
Bizjak, Alan; Urbic, Tomaz; Vlachy, Vojko; Dill, Ken A.
2009-01-01
The two-dimensional Mercedes-Benz (MB) model of water has been widely studied, both by Monte Carlo simulations and by integral equation methods. Here, we study the three-dimensional (3D) MB model. We treat water as spheres that interact through Lennard-Jones potentials and through a tetrahedral Gaussian hydrogen bonding function. As the “right answer,” we perform isothermal-isobaric Monte Carlo simulations on the 3D MB model for different pressures and temperatures. The purpose of this work is to develop and test Wertheim’s Ornstein–Zernike integral equation and thermodynamic perturbation theories. The two analytical approaches are orders of magnitude more efficient than the Monte Carlo simulations. The ultimate goal is to find statistical mechanical theories that can efficiently predict the properties of orientationally complex molecules, such as water. Also, here, the 3D MB model simply serves as a useful workbench for testing such analytical approaches. For hot water, the analytical theories give accurate agreement with the computer simulations. For cold water, the agreement is not as good. Nevertheless, these approaches are qualitatively consistent with energies, volumes, heat capacities, compressibilities, and thermal expansion coefficients versus temperature and pressure. Such analytical approaches offer a promising route to a better understanding of water and also the aqueous solvation. PMID:19929057
Theory for the three-dimensional Mercedes-Benz model of water
NASA Astrophysics Data System (ADS)
Bizjak, Alan; Urbic, Tomaz; Vlachy, Vojko; Dill, Ken A.
2009-11-01
The two-dimensional Mercedes-Benz (MB) model of water has been widely studied, both by Monte Carlo simulations and by integral equation methods. Here, we study the three-dimensional (3D) MB model. We treat water as spheres that interact through Lennard-Jones potentials and through a tetrahedral Gaussian hydrogen bonding function. As the "right answer," we perform isothermal-isobaric Monte Carlo simulations on the 3D MB model for different pressures and temperatures. The purpose of this work is to develop and test Wertheim's Ornstein-Zernike integral equation and thermodynamic perturbation theories. The two analytical approaches are orders of magnitude more efficient than the Monte Carlo simulations. The ultimate goal is to find statistical mechanical theories that can efficiently predict the properties of orientationally complex molecules, such as water. Also, here, the 3D MB model simply serves as a useful workbench for testing such analytical approaches. For hot water, the analytical theories give accurate agreement with the computer simulations. For cold water, the agreement is not as good. Nevertheless, these approaches are qualitatively consistent with energies, volumes, heat capacities, compressibilities, and thermal expansion coefficients versus temperature and pressure. Such analytical approaches offer a promising route to a better understanding of water and also the aqueous solvation.
The boundary element method applied to 3D magneto-electro-elastic dynamic problems
NASA Astrophysics Data System (ADS)
Igumnov, L. A.; Markov, I. P.; Kuznetsov, Iu A.
2017-11-01
Due to the coupling properties, the magneto-electro-elastic materials possess a wide number of applications. They exhibit general anisotropic behaviour. Three-dimensional transient analyses of magneto-electro-elastic solids can hardly be found in the literature. 3D direct boundary element formulation based on the weakly-singular boundary integral equations in Laplace domain is presented in this work for solving dynamic linear magneto-electro-elastic problems. Integral expressions of the three-dimensional fundamental solutions are employed. Spatial discretization is based on a collocation method with mixed boundary elements. Convolution quadrature method is used as a numerical inverse Laplace transform scheme to obtain time domain solutions. Numerical examples are provided to illustrate the capability of the proposed approach to treat highly dynamic problems.
Kataoka; Tsutahara; Akuzawa
2000-02-14
We derive a fully nonlinear evolution equation that can describe the two-dimensional motion of finite-amplitude long internal waves in a uniformly stratified three-dimensional fluid of finite depth. The derived equation is the two-dimensional counterpart of the evolution equation obtained by Grimshaw and Yi [J. Fluid Mech. 229, 603 (1991)]. In the small-amplitude limit, our equation is reduced to the celebrated Kadomtsev-Petviashvili equation.
Finite-difference model for 3-D flow in bays and estuaries
Smith, Peter E.; Larock, Bruce E.; ,
1993-01-01
This paper describes a semi-implicit finite-difference model for the numerical solution of three-dimensional flow in bays and estuaries. The model treats the gravity wave and vertical diffusion terms in the governing equations implicitly, and other terms explicitly. The model achieves essentially second-order accurate and stable solutions in strongly nonlinear problems by using a three-time-level leapfrog-trapezoidal scheme for the time integration.
An exponential time-integrator scheme for steady and unsteady inviscid flows
NASA Astrophysics Data System (ADS)
Li, Shu-Jie; Luo, Li-Shi; Wang, Z. J.; Ju, Lili
2018-07-01
An exponential time-integrator scheme of second-order accuracy based on the predictor-corrector methodology, denoted PCEXP, is developed to solve multi-dimensional nonlinear partial differential equations pertaining to fluid dynamics. The effective and efficient implementation of PCEXP is realized by means of the Krylov method. The linear stability and truncation error are analyzed through a one-dimensional model equation. The proposed PCEXP scheme is applied to the Euler equations discretized with a discontinuous Galerkin method in both two and three dimensions. The effectiveness and efficiency of the PCEXP scheme are demonstrated for both steady and unsteady inviscid flows. The accuracy and efficiency of the PCEXP scheme are verified and validated through comparisons with the explicit third-order total variation diminishing Runge-Kutta scheme (TVDRK3), the implicit backward Euler (BE) and the implicit second-order backward difference formula (BDF2). For unsteady flows, the PCEXP scheme generates a temporal error much smaller than the BDF2 scheme does, while maintaining the expected acceleration at the same time. Moreover, the PCEXP scheme is also shown to achieve the computational efficiency comparable to the implicit schemes for steady flows.
Symmetries and integrability of a fourth-order Euler-Bernoulli beam equation
NASA Astrophysics Data System (ADS)
Bokhari, Ashfaque H.; Mahomed, F. M.; Zaman, F. D.
2010-05-01
The complete symmetry group classification of the fourth-order Euler-Bernoulli ordinary differential equation, where the elastic modulus and the area moment of inertia are constants and the applied load is a function of the normal displacement, is obtained. We perform the Lie and Noether symmetry analysis of this problem. In the Lie analysis, the principal Lie algebra which is one dimensional extends in four cases, viz. the linear, exponential, general power law, and a negative fractional power law. It is further shown that two cases arise in the Noether classification with respect to the standard Lagrangian. That is, the linear case for which the Noether algebra dimension is one less than the Lie algebra dimension as well as the negative fractional power law. In the latter case the Noether algebra is three dimensional and is isomorphic to the Lie algebra which is sl(2,R). This exceptional case, although admitting the nonsolvable algebra sl(2,R), remarkably allows for a two-parameter family of exact solutions via the Noether integrals. The Lie reduction gives a second-order ordinary differential equation which has nonlocal symmetry.
Song, Hongjun; Wang, Yi; Pant, Kapil
2011-01-01
This article presents a three-dimensional analytical model to investigate cross-stream diffusion transport in rectangular microchannels with arbitrary aspect ratios under pressure-driven flow. The Fourier series solution to the three-dimensional convection–diffusion equation is obtained using a double integral transformation method and associated eigensystem calculation. A phase diagram derived from the dimensional analysis is presented to thoroughly interrogate the characteristics in various transport regimes and examine the validity of the model. The analytical model is verified against both experimental and numerical models in terms of the concentration profile, diffusion scaling law, and mixing efficiency with excellent agreement (with <0.5% relative error). Quantitative comparison against other prior analytical models in extensive parameter space is also performed, which demonstrates that the present model accommodates much broader transport regimes with significantly enhanced applicability. PMID:22247719
Song, Hongjun; Wang, Yi; Pant, Kapil
2012-01-01
This article presents a three-dimensional analytical model to investigate cross-stream diffusion transport in rectangular microchannels with arbitrary aspect ratios under pressure-driven flow. The Fourier series solution to the three-dimensional convection-diffusion equation is obtained using a double integral transformation method and associated eigensystem calculation. A phase diagram derived from the dimensional analysis is presented to thoroughly interrogate the characteristics in various transport regimes and examine the validity of the model. The analytical model is verified against both experimental and numerical models in terms of the concentration profile, diffusion scaling law, and mixing efficiency with excellent agreement (with <0.5% relative error). Quantitative comparison against other prior analytical models in extensive parameter space is also performed, which demonstrates that the present model accommodates much broader transport regimes with significantly enhanced applicability.
Multigrid calculation of three-dimensional turbomachinery flows
NASA Technical Reports Server (NTRS)
Caughey, David A.
1989-01-01
Research was performed in the general area of computational aerodynamics, with particular emphasis on the development of efficient techniques for the solution of the Euler and Navier-Stokes equations for transonic flows through the complex blade passages associated with turbomachines. In particular, multigrid methods were developed, using both explicit and implicit time-stepping schemes as smoothing algorithms. The specific accomplishments of the research have included: (1) the development of an explicit multigrid method to solve the Euler equations for three-dimensional turbomachinery flows based upon the multigrid implementation of Jameson's explicit Runge-Kutta scheme (Jameson 1983); (2) the development of an implicit multigrid scheme for the three-dimensional Euler equations based upon lower-upper factorization; (3) the development of a multigrid scheme using a diagonalized alternating direction implicit (ADI) algorithm; (4) the extension of the diagonalized ADI multigrid method to solve the Euler equations of inviscid flow for three-dimensional turbomachinery flows; and also (5) the extension of the diagonalized ADI multigrid scheme to solve the Reynolds-averaged Navier-Stokes equations for two-dimensional turbomachinery flows.
Rigid supersymmetric backgrounds of 3-dimensional Newton-Cartan supergravity
Knodel, Gino; Lisbao, Pedro; Liu, James T.
2016-06-06
Recently, a non-relativistic off-shell formulation of three dimensional Newton-Cartan supergravity was proposed as the c → ∞ limit of three dimensional N = 2 super-gravity [1]. Here in the present paper we study supersymmetric backgrounds within this theory. Using integrability constraints for the non-relativistic Killing spinor equations, we explicitly construct all maximally supersymmetric solutions, which admit four supercharges. In addition to these solutions, there aremore » $$\\frac{1}{2}$$ -BPS solutions with reduced supersymmetry. We give explicit examples of such backgrounds and derive necessary conditions for backgrounds preserving two supercharges. Finally, we address how supersymmetric backgrounds of N = 2 supergravity are connected to the solutions found here in the c → ∞ limit.« less
A 3-D turbulent flow analysis using finite elements with k-ɛ model
NASA Astrophysics Data System (ADS)
Okuda, H.; Yagawa, G.; Eguchi, Y.
1989-03-01
This paper describes the finite element turbulent flow analysis, which is suitable for three-dimensional large scale problems. The k-ɛ turbulence model as well as the conservation equations of mass and momentum are discretized in space using rather low order elements. Resulting coefficient matrices are evaluated by one-point quadrature in order to reduce the computational storage and the CPU cost. The time integration scheme based on the velocity correction method is employed to obtain steady state solutions. For the verification of this FEM program, two-dimensional plenum flow is simulated and compared with experiment. As the application to three-dimensional practical problems, the turbulent flows in the upper plenum of the fast breeder reactor are calculated for various boundary conditions.
Construction and comparison of parallel implicit kinetic solvers in three spatial dimensions
NASA Astrophysics Data System (ADS)
Titarev, Vladimir; Dumbser, Michael; Utyuzhnikov, Sergey
2014-01-01
The paper is devoted to the further development and systematic performance evaluation of a recent deterministic framework Nesvetay-3D for modelling three-dimensional rarefied gas flows. Firstly, a review of the existing discretization and parallelization strategies for solving numerically the Boltzmann kinetic equation with various model collision integrals is carried out. Secondly, a new parallelization strategy for the implicit time evolution method is implemented which improves scaling on large CPU clusters. Accuracy and scalability of the methods are demonstrated on a pressure-driven rarefied gas flow through a finite-length circular pipe as well as an external supersonic flow over a three-dimensional re-entry geometry of complicated aerodynamic shape.
NASA Astrophysics Data System (ADS)
Yi, Dake; Wang, TzuChiang
2018-06-01
In the paper, a new procedure is proposed to investigate three-dimensional fracture problems of a thin elastic plate with a long through-the-thickness crack under remote uniform tensile loading. The new procedure includes a new analytical method and high accurate finite element simulations. In the part of theoretical analysis, three-dimensional Maxwell stress functions are employed in order to derive three-dimensional crack tip fields. Based on the theoretical analysis, an equation which can describe the relationship among the three-dimensional J-integral J( z), the stress intensity factor K( z) and the tri-axial stress constraint level T z ( z) is derived first. In the part of finite element simulations, a fine mesh including 153360 elements is constructed to compute the stress field near the crack front, J( z) and T z ( z). Numerical results show that in the plane very close to the free surface, the K field solution is still valid for in-plane stresses. Comparison with the numerical results shows that the analytical results are valid.
Theoretical study of the incompressible Navier-Stokes equations by the least-squares method
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Loh, Ching Y.; Povinelli, Louis A.
1994-01-01
Usually the theoretical analysis of the Navier-Stokes equations is conducted via the Galerkin method which leads to difficult saddle-point problems. This paper demonstrates that the least-squares method is a useful alternative tool for the theoretical study of partial differential equations since it leads to minimization problems which can often be treated by an elementary technique. The principal part of the Navier-Stokes equations in the first-order velocity-pressure-vorticity formulation consists of two div-curl systems, so the three-dimensional div-curl system is thoroughly studied at first. By introducing a dummy variable and by using the least-squares method, this paper shows that the div-curl system is properly determined and elliptic, and has a unique solution. The same technique then is employed to prove that the Stokes equations are properly determined and elliptic, and that four boundary conditions on a fixed boundary are required for three-dimensional problems. This paper also shows that under four combinations of non-standard boundary conditions the solution of the Stokes equations is unique. This paper emphasizes the application of the least-squares method and the div-curl method to derive a high-order version of differential equations and additional boundary conditions. In this paper, an elementary method (integration by parts) is used to prove Friedrichs' inequalities related to the div and curl operators which play an essential role in the analysis.
Nonlinear truncation error analysis of finite difference schemes for the Euler equations
NASA Technical Reports Server (NTRS)
Klopfer, G. H.; Mcrae, D. S.
1983-01-01
It is pointed out that, in general, dissipative finite difference integration schemes have been found to be quite robust when applied to the Euler equations of gas dynamics. The present investigation considers a modified equation analysis of both implicit and explicit finite difference techniques as applied to the Euler equations. The analysis is used to identify those error terms which contribute most to the observed solution errors. A technique for analytically removing the dominant error terms is demonstrated, resulting in a greatly improved solution for the explicit Lax-Wendroff schemes. It is shown that the nonlinear truncation errors are quite large and distributed quite differently for each of the three conservation equations as applied to a one-dimensional shock tube problem.
On the mechanics of stress analysis of fiber-reinforced composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, V.G.
A general mathematical formulation is developed for the three-dimensional inclusion and inhomogeneity problems, which are practically important in many engineering applications such as fiber pullout of reinforced composites, load transfer behavior in the stiffened structural components, and material defects and impurities existing in engineering materials. First, the displacement field (Green's function) for an elastic solid subjected to various distributions of ring loading is derived in closed form using the Papkovich-Neuber displacement potentials and the Hankel transforms. The Green's functions are used to derive the displacement and stress fields due to a finite cylindrical inclusion of prescribed dilatational eigenstrain such asmore » thermal expansion caused by an internal heat source. Unlike an elliptical inclusion, the interior stress field in the cylindrical inclusion is not uniform. Next, the three-dimensional inhomogeneity problem of a cylindrical fiber embedded in an infinite matrix of different material properties is considered to study load transfer of a finite fiber to an elastic medium. By using the equivalent inclusion method, the fiber is modeled as an inclusion with distributed eigenstrains of unknown strength, and the inhomogeneity problem can be treated as an equivalent inclusion problem. The eigenstrains are determined to simulate the disturbance due to the existing fiber. The equivalency of elastic field between inhomogeneity and inclusion problems leads to a set of integral equations. To solve the integral equations, the inclusion domain is discretized into a finite number of sub-inclusions with uniform eigenstrains, and the integral equations are reduced to a set of algebraic equations. The distributions of eigenstrains, interior stress field and axial force along the fiber are presented for various fiber lengths and the ratio of material properties of the fiber relative to the matrix.« less
Noncontact thermophysical property measurement by levitation of a thin liquid disk.
Lee, Sungho; Ohsaka, Kenichi; Rednikov, Alexei; Sadhal, Satwindar Singh
2006-09-01
The purpose of the current research program is to develop techniques for noncontact measurement of thermophysical properties of highly viscous liquids. The application would be for undercooled liquids that remain liquid even below the freezing point when suspended without a container. The approach being used here consists of carrying out thermocapillary flow and temperature measurements in a horizontally levitated, laser-heated thin glycerin disk. In a levitated state, the disk is flattened by an intense acoustic field. Such a disk has the advantage of a relatively low gravitational potential over the thickness, thus mitigating the buoyancy effects, and helping isolate the thermocapillary-driven flows. For the purpose of predicting the thermal properties from these measurements, it is necessary to develop a theoretical model of the thermal processes. Such a model has been developed, and, on the basis of the observed shape, the thickness is taken to be a minimum at the center with a gentle parabolic profile at both the top and the bottom surfaces. This minimum thickness is much smaller than the radius of disk drop and the ratio of thickness to radius becomes much less than unity. It is heated by laser beam in normal direction to the edge. A general three-dimensional momentum equation is transformed into a two-variable vorticity equation. For the highly viscous liquid, a few millimeters in size, Stokes equations adequately describe the flow. Additional approximations are made by considering average flow properties over the disk thickness in a manner similar to lubrication theory. In the same way, the three-dimensional energy equation is averaged over the disk thickness. With convection boundary condition at the surfaces, we integrate a general three-dimensional energy equation to get an averaged two-dimensional energy equation that has convection terms, conduction terms, and additional source terms corresponding to a Biot number. A finite-difference numerical approach is used to solve these steady-state governing equations in the cylindrical coordinate system. The calculations yield the temperature distribution and the thermally driven flow field. These results have been used to formulate a model that, in conjunction with experiments, has enabled the development of a method for the noncontact thermophysical property measurement of liquids.
Organization of the cytokeratin network in an epithelial cell.
Portet, Stéphanie; Arino, Ovide; Vassy, Jany; Schoëvaërt, Damien
2003-08-07
The cytoskeleton is a dynamic three-dimensional structure mainly located in the cytoplasm. It is involved in many cell functions such as mechanical signal transduction and maintenance of cell integrity. Among the three cytoskeletal components, intermediate filaments (the cytokeratin in epithelial cells) are the best candidates for this mechanical role. A model of the establishment of the cytokeratin network of an epithelial cell is proposed to study the dependence of its structural organization on extracellular mechanical environment. To implicitly describe the latter and its effects on the intracellular domain, we use mechanically regulated protein synthesis. Our model is a hybrid of a partial differential equation of parabolic type, governing the evolution of the concentration of cytokeratin, and a set of stochastic differential equations describing the dynamics of filaments. Each filament is described by a stochastic differential equation that reflects both the local interactions with the environment and the non-local interactions via the past history of the filament. A three-dimensional simulation model is derived from this mathematical model. This simulation model is then used to obtain examples of cytokeratin network architectures under given mechanical conditions, and to study the influence of several parameters.
Development of computational methods for heavy lift launch vehicles
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Ryan, James S.
1993-01-01
The research effort has been focused on the development of an advanced flow solver for complex viscous turbulent flows with shock waves. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. A new computer program named CENS3D has been developed for viscous turbulent flows with discontinuities. Details of the code are described in Appendix A and Appendix B. With the developments of the numerical algorithm and dissipation model, the simulation of three-dimensional viscous compressible flows has become more efficient and accurate. The results of the research are expected to yield a direct impact on the design process of future liquid fueled launch systems.
Evolution of spherical cavitation bubbles: Parametric and closed-form solutions
NASA Astrophysics Data System (ADS)
Mancas, Stefan C.; Rosu, Haret C.
2016-02-01
We present an analysis of the Rayleigh-Plesset equation for a three dimensional vacuous bubble in water. In the simplest case when the effects of surface tension are neglected, the known parametric solutions for the radius and time evolution of the bubble in terms of a hypergeometric function are briefly reviewed. By including the surface tension, we show the connection between the Rayleigh-Plesset equation and Abel's equation, and obtain the parametric rational Weierstrass periodic solutions following the Abel route. In the same Abel approach, we also provide a discussion of the nonintegrable case of nonzero viscosity for which we perform a numerical integration.
Construction of Three Dimensional Solutions for the Maxwell Equations
NASA Technical Reports Server (NTRS)
Yefet, A.; Turkel, E.
1998-01-01
We consider numerical solutions for the three dimensional time dependent Maxwell equations. We construct a fourth order accurate compact implicit scheme and compare it to the Yee scheme for free space in a box.
NASA Astrophysics Data System (ADS)
Yang, Xiao; Du, Dianlou
2010-08-01
The Poisson structure on CN×RN is introduced to give the Hamiltonian system associated with a spectral problem which yields the nonlinear Schrödinger (NLS) hierarchy. The Hamiltonian system is proven to be Liouville integrable. Some (2+1)-dimensional equations including NLS equation, Kadomtesev-Petviashvili I (KPI) equation, coupled KPI equation, and modified Kadomtesev-Petviashvili (mKP) equation, are decomposed into Hamilton flows via the NLS hierarchy. The algebraic curve, Abel-Jacobi coordinates, and Riemann-Jacobi inversion are used to obtain the algebrogeometric solutions of these equations.
Methods of separation of variables in turbulence theory
NASA Technical Reports Server (NTRS)
Tsuge, S.
1978-01-01
Two schemes of closing turbulent moment equations are proposed both of which make double correlation equations separated into single-point equations. The first is based on neglected triple correlation, leading to an equation differing from small perturbed gasdynamic equations where the separation constant appears as the frequency. Grid-produced turbulence is described in this light as time-independent, cylindrically-isotropic turbulence. Application to wall turbulence guided by a new asymptotic method for the Orr-Sommerfeld equation reveals a neutrally stable mode of essentially three dimensional nature. The second closure scheme is based on an assumption of identity of the separated variables through which triple and quadruple correlations are formed. The resulting equation adds, to its equivalent of the first scheme, an integral of nonlinear convolution in the frequency describing a role due to triple correlation of direct energy-cascading.
NASA Technical Reports Server (NTRS)
Iyer, V.; Harris, J. E.
1987-01-01
The three-dimensional boundary-layer equations in the limit as the normal coordinate tends to infinity are called the surface Euler equations. The present paper describes an accurate method for generating edge conditions for three-dimensional boundary-layer codes using these equations. The inviscid pressure distribution is first interpolated to the boundary-layer grid. The surface Euler equations are then solved with this pressure field and a prescribed set of initial and boundary conditions to yield the velocities along the two surface coordinate directions. Results for typical wing and fuselage geometries are presented. The smoothness and accuracy of the edge conditions obtained are found to be superior to the conventional interpolation procedures.
NASA Astrophysics Data System (ADS)
Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi
2015-07-01
In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein-Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple SN2 reaction (Cl- + CH3Cl → ClCH3 + Cl-) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.
Kido, Kentaro; Kasahara, Kento; Yokogawa, Daisuke; Sato, Hirofumi
2015-07-07
In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein-Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple SN2 reaction (Cl(-) + CH3Cl → ClCH3 + Cl(-)) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.
Surface operators, chiral rings and localization in N =2 gauge theories
NASA Astrophysics Data System (ADS)
Ashok, S. K.; Billò, M.; Dell'Aquila, E.; Frau, M.; Gupta, V.; John, R. R.; Lerda, A.
2017-11-01
We study half-BPS surface operators in supersymmetric gauge theories in four and five dimensions following two different approaches. In the first approach we analyze the chiral ring equations for certain quiver theories in two and three dimensions, coupled respectively to four- and five-dimensional gauge theories. The chiral ring equations, which arise from extremizing a twisted chiral superpotential, are solved as power series in the infrared scales of the quiver theories. In the second approach we use equivariant localization and obtain the twisted chiral superpotential as a function of the Coulomb moduli of the four- and five-dimensional gauge theories, and find a perfect match with the results obtained from the chiral ring equations. In the five-dimensional case this match is achieved after solving a number of subtleties in the localization formulas which amounts to choosing a particular residue prescription in the integrals that yield the Nekrasov-like partition functions for ramified instantons. We also comment on the necessity of including Chern-Simons terms in order to match the superpotentials obtained from dual quiver descriptions of a given surface operator.
Some problems of the calculation of three-dimensional boundary layer flows on general configurations
NASA Technical Reports Server (NTRS)
Cebeci, T.; Kaups, K.; Mosinskis, G. J.; Rehn, J. A.
1973-01-01
An accurate solution of the three-dimensional boundary layer equations over general configurations such as those encountered in aircraft and space shuttle design requires a very efficient, fast, and accurate numerical method with suitable turbulence models for the Reynolds stresses. The efficiency, speed, and accuracy of a three-dimensional numerical method together with the turbulence models for the Reynolds stresses are examined. The numerical method is the implicit two-point finite difference approach (Box Method) developed by Keller and applied to the boundary layer equations by Keller and Cebeci. In addition, a study of some of the problems that may arise in the solution of these equations for three-dimensional boundary layer flows over general configurations.
A semi-implicit finite difference model for three-dimensional tidal circulation,
Casulli, V.; Cheng, R.T.
1992-01-01
A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is presented. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that in the absence of horizontal viscosity the resulting algorithm is unconditionally stable at a minimal computational cost. When only one vertical layer is specified this method reduces, as a particular case, to a semi-implicit scheme for the solutions of the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm is fast, accurate and mass conservative. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers.
NASA Astrophysics Data System (ADS)
Manukure, Solomon
2018-04-01
We construct finite-dimensional Hamiltonian systems by means of symmetry constraints from the Lax pairs and adjoint Lax pairs of a bi-Hamiltonian hierarchy of soliton equations associated with the 3-dimensional special linear Lie algebra, and discuss the Liouville integrability of these systems based on the existence of sufficiently many integrals of motion.
A variable resolution nonhydrostatic global atmospheric semi-implicit semi-Lagrangian model
NASA Astrophysics Data System (ADS)
Pouliot, George Antoine
2000-10-01
The objective of this project is to develop a variable-resolution finite difference adiabatic global nonhydrostatic semi-implicit semi-Lagrangian (SISL) model based on the fully compressible nonhydrostatic atmospheric equations. To achieve this goal, a three-dimensional variable resolution dynamical core was developed and tested. The main characteristics of the dynamical core can be summarized as follows: Spherical coordinates were used in a global domain. A hydrostatic/nonhydrostatic switch was incorporated into the dynamical equations to use the fully compressible atmospheric equations. A generalized horizontal variable resolution grid was developed and incorporated into the model. For a variable resolution grid, in contrast to a uniform resolution grid, the order of accuracy of finite difference approximations is formally lost but remains close to the order of accuracy associated with the uniform resolution grid provided the grid stretching is not too significant. The SISL numerical scheme was implemented for the fully compressible set of equations. In addition, the generalized minimum residual (GMRES) method with restart and preconditioner was used to solve the three-dimensional elliptic equation derived from the discretized system of equations. The three-dimensional momentum equation was integrated in vector-form to incorporate the metric terms in the calculations of the trajectories. Using global re-analysis data for a specific test case, the model was compared to similar SISL models previously developed. Reasonable agreement between the model and the other independently developed models was obtained. The Held-Suarez test for dynamical cores was used for a long integration and the model was successfully integrated for up to 1200 days. Idealized topography was used to test the variable resolution component of the model. Nonhydrostatic effects were simulated at grid spacings of 400 meters with idealized topography and uniform flow. Using a high-resolution topographic data set and the variable resolution grid, sets of experiments with increasing resolution were performed over specific regions of interest. Using realistic initial conditions derived from re-analysis fields, nonhydrostatic effects were significant for grid spacings on the order of 0.1 degrees with orographic forcing. If the model code was adapted for use in a message passing interface (MPI) on a parallel supercomputer today, it was estimated that a global grid spacing of 0.1 degrees would be achievable for a global model. In this case, nonhydrostatic effects would be significant for most areas. A variable resolution grid in a global model provides a unified and flexible approach to many climate and numerical weather prediction problems. The ability to configure the model from very fine to very coarse resolutions allows for the simulation of atmospheric phenomena at different scales using the same code. We have developed a dynamical core illustrating the feasibility of using a variable resolution in a global model.
NASA Astrophysics Data System (ADS)
Zhang, Yu-Feng; Zhang, Xiang-Zhi; Dong, Huan-He
2017-12-01
Two new shift operators are introduced for which a few differential-difference equations are generated by applying the R-matrix method. These equations can be reduced to the standard Toda lattice equation and (1+1)-dimensional and (2+1)-dimensional Toda-type equations which have important applications in hydrodynamics, plasma physics, and so on. Based on these consequences, we deduce the Hamiltonian structures of two discrete systems. Finally, we obtain some new infinite conservation laws of two discrete equations and employ Lie-point transformation group to obtain some continuous symmetries and part of invariant solutions for the (1+1) and (2+1)-dimensional Toda-type equations. Supported by the Fundamental Research Funds for the Central University under Grant No. 2017XKZD11
On integrable boundaries in the 2 dimensional O(N) σ-models
NASA Astrophysics Data System (ADS)
Aniceto, Inês; Bajnok, Zoltán; Gombor, Tamás; Kim, Minkyoo; Palla, László
2017-09-01
We make an attempt to map the integrable boundary conditions for 2 dimensional non-linear O(N) σ-models. We do it at various levels: classically, by demanding the existence of infinitely many conserved local charges and also by constructing the double row transfer matrix from the Lax connection, which leads to the spectral curve formulation of the problem; at the quantum level, we describe the solutions of the boundary Yang-Baxter equation and derive the Bethe-Yang equations. We then show how to connect the thermodynamic limit of the boundary Bethe-Yang equations to the spectral curve.
Yan, Zhenya; Konotop, V V
2009-09-01
It is shown that using the similarity transformations, a set of three-dimensional p-q nonlinear Schrödinger (NLS) equations with inhomogeneous coefficients can be reduced to one-dimensional stationary NLS equation with constant or varying coefficients, thus allowing for obtaining exact localized and periodic wave solutions. In the suggested reduction the original coordinates in the (1+3) space are mapped into a set of one-parametric coordinate surfaces, whose parameter plays the role of the coordinate of the one-dimensional equation. We describe the algorithm of finding solutions and concentrate on power (linear and nonlinear) potentials presenting a number of case examples. Generalizations of the method are also discussed.
NASA Astrophysics Data System (ADS)
Besse, Nicolas; Coulette, David
2016-08-01
Achieving plasmas with good stability and confinement properties is a key research goal for magnetic fusion devices. The underlying equations are the Vlasov-Poisson and Vlasov-Maxwell (VPM) equations in three space variables, three velocity variables, and one time variable. Even in those somewhat academic cases where global equilibrium solutions are known, studying their stability requires the analysis of the spectral properties of the linearized operator, a daunting task. We have identified a model, for which not only equilibrium solutions can be constructed, but many of their stability properties are amenable to rigorous analysis. It uses a class of solution to the VPM equations (or to their gyrokinetic approximations) known as waterbag solutions which, in particular, are piecewise constant in phase-space. It also uses, not only the gyrokinetic approximation of fast cyclotronic motion around magnetic field lines, but also an asymptotic approximation regarding the magnetic-field-induced anisotropy: the spatial variation along the field lines is taken much slower than across them. Together, these assumptions result in a drastic reduction in the dimensionality of the linearized problem, which becomes a set of two nested one-dimensional problems: an integral equation in the poloidal variable, followed by a one-dimensional complex Schrödinger equation in the radial variable. We show here that the operator associated to the poloidal variable is meromorphic in the eigenparameter, the pulsation frequency. We also prove that, for all but a countable set of real pulsation frequencies, the operator is compact and thus behaves mostly as a finite-dimensional one. The numerical algorithms based on such ideas have been implemented in a companion paper [D. Coulette and N. Besse, "Numerical resolution of the global eigenvalue problem for gyrokinetic-waterbag model in toroidal geometry" (submitted)] and were found to be surprisingly close to those for the original gyrokinetic-Vlasov equations. The purpose of the present paper is to make these new ideas accessible to two readerships: applied mathematicians and plasma physicists.
An implicit fast Fourier transform method for integration of the time dependent Schrodinger equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, M.E.; Ritchie, A.B.
1997-12-31
One finds that the conventional exponentiated split operator procedure is subject to difficulties when solving the time-dependent Schrodinger equation for Coulombic systems. By rearranging the kinetic and potential energy terms in the temporal propagator of the finite difference equations, one can find a propagation algorithm for three dimensions that looks much like the Crank-Nicholson and alternating direction implicit methods for one- and two-space-dimensional partial differential equations. The authors report investigations of this novel implicit split operator procedure. The results look promising for a purely numerical approach to certain electron quantum mechanical problems. A charge exchange calculation is presented as anmore » example of the power of the method.« less
A finite area scheme for shallow granular flows on three-dimensional surfaces
NASA Astrophysics Data System (ADS)
Rauter, Matthias
2017-04-01
Shallow granular flow models have become a popular tool for the estimation of natural hazards, such as landslides, debris flows and avalanches. The shallowness of the flow allows to reduce the three-dimensional governing equations to a quasi two-dimensional system. Three-dimensional flow fields are replaced by their depth-integrated two-dimensional counterparts, which yields a robust and fast method [1]. A solution for a simple shallow granular flow model, based on the so-called finite area method [3] is presented. The finite area method is an adaption of the finite volume method [4] to two-dimensional curved surfaces in three-dimensional space. This method handles the three dimensional basal topography in a simple way, making the model suitable for arbitrary (but mildly curved) topography, such as natural terrain. Furthermore, the implementation into the open source software OpenFOAM [4] is shown. OpenFOAM is a popular computational fluid dynamics application, designed so that the top-level code mimics the mathematical governing equations. This makes the code easy to read and extendable to more sophisticated models. Finally, some hints on how to get started with the code and how to extend the basic model will be given. I gratefully acknowledge the financial support by the OEAW project "beyond dense flow avalanches". Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics 199, 177-215. Ferziger, J. & Peric, M. 2002 Computational methods for fluid dynamics, 3rd edn. Springer. Tukovic, Z. & Jasak, H. 2012 A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Computers & fluids 55, 70-84. Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics 12(6), 620-631.
2017-01-01
We study the G-strand equations that are extensions of the classical chiral model of particle physics in the particular setting of broken symmetries described by symmetric spaces. These equations are simple field theory models whose configuration space is a Lie group, or in this case a symmetric space. In this class of systems, we derive several models that are completely integrable on finite dimensional Lie group G, and we treat in more detail examples with symmetric space SU(2)/S1 and SO(4)/SO(3). The latter model simplifies to an apparently new integrable nine-dimensional system. We also study the G-strands on the infinite dimensional group of diffeomorphisms, which gives, together with the Sobolev norm, systems of 1+2 Camassa–Holm equations. The solutions of these equations on the complementary space related to the Witt algebra decomposition are the odd function solutions. PMID:28413343
Plates and shells containing a surface crack under general loading conditions
NASA Technical Reports Server (NTRS)
Joseph, Paul F.; Erdogan, Fazil
1986-01-01
The severity of the underlying assumptions of the line-spring model (LSM) are such that verification with three-dimensional solutions is necessary. Such comparisons show that the model is quite accurate, and therefore, its use in extensive parameter studies is justified. Investigations into the endpoint behavior of the line-spring model have led to important conclusions about the ability of the model to predict stresses in front of the crack tip. An important application of the LSM was to solve the contact plate bending problem. Here the flexibility of the model to allow for any crack shape is exploited. The use of displacement quantities as unknowns in the formulation of the problem leads to strongly singular integral equations, rather than singular integral equations which result from using displacement derivatives. The collocation method of solving the integral equations was found to be better and more convenient than the quadrature technique. Orthogonal polynomials should be used as fitting functions when using the LSM as opposed to simpler functions such as power series.
Shape sensing using multi-core fiber optic cable and parametric curve solutions.
Moore, Jason P; Rogge, Matthew D
2012-01-30
The shape of a multi-core optical fiber is calculated by numerically solving a set of Frenet-Serret equations describing the path of the fiber in three dimensions. Included in the Frenet-Serret equations are curvature and bending direction functions derived from distributed fiber Bragg grating strain measurements in each core. The method offers advantages over prior art in that it determines complex three-dimensional fiber shape as a continuous parametric solution rather than an integrated series of discrete planar bends. Results and error analysis of the method using a tri-core optical fiber is presented. Maximum error expressed as a percentage of fiber length was found to be 7.2%.
A unique set of micromechanics equations for high temperature metal matrix composites
NASA Technical Reports Server (NTRS)
Hopkins, D. A.; Chamis, C. C.
1985-01-01
A unique set of micromechanic equations is presented for high temperature metal matrix composites. The set includes expressions to predict mechanical properties, thermal properties and constituent microstresses for the unidirectional fiber reinforced ply. The equations are derived based on a mechanics of materials formulation assuming a square array unit cell model of a single fiber, surrounding matrix and an interphase to account for the chemical reaction which commonly occurs between fiber and matrix. A three-dimensional finite element analysis was used to perform a preliminary validation of the equations. Excellent agreement between properties predicted using the micromechanics equations and properties simulated by the finite element analyses are demonstrated. Implementation of the micromechanics equations as part of an integrated computational capability for nonlinear structural analysis of high temperature multilayered fiber composites is illustrated.
NASA Technical Reports Server (NTRS)
Chen, Y. S.
1986-01-01
In this report, a numerical method for solving the equations of motion of three-dimensional incompressible flows in nonorthogonal body-fitted coordinate (BFC) systems has been developed. The equations of motion are transformed to a generalized curvilinear coordinate system from which the transformed equations are discretized using finite difference approximations in the transformed domain. The hybrid scheme is used to approximate the convection terms in the governing equations. Solutions of the finite difference equations are obtained iteratively by using a pressure-velocity correction algorithm (SIMPLE-C). Numerical examples of two- and three-dimensional, laminar and turbulent flow problems are employed to evaluate the accuracy and efficiency of the present computer code. The user's guide and computer program listing of the present code are also included.
Prediction of drag at subsonic and transonic speeds using Euler methods
NASA Technical Reports Server (NTRS)
Nikfetrat, K.; Van Dam, C. P.; Vijgen, P. M. H. W.; Chang, I. C.
1992-01-01
A technique for the evaluation of aerodynamic drag from flowfield solutions based on the Euler equations is discussed. The technique is limited to steady attached flows around three-dimensional configurations in the absence of active systems such as surface blowing/suction and propulsion. It allows the decomposition of the total drag into induced drag and wave drag and, consequently, it provides more information on the drag sources than the conventional surface-pressure integration technique. The induced drag is obtained from the integration of the kinetic energy (per unit distance) of the trailing vortex system on a wake plane and the wave drag is obtained from the integration of the entropy production on a plane just downstream of the shocks. The drag-evaluation technique is applied to three-dimensional flowfield solutions for the ONERA M6 wing as well as an aspect-ratio-7 wing with an elliptic spanwise chord distribution and an NACA-0012 section shape. Comparisons between the drag obtained with the present technique and the drag based on the integration of surface pressures are presented for two Euler codes.
NASA Astrophysics Data System (ADS)
Hasegawa, Chika; Nakayama, Yu
2018-03-01
In this paper, we solve the two-point function of the lowest dimensional scalar operator in the critical ϕ4 theory on 4 ‑ 𝜖 dimensional real projective space in three different methods. The first is to use the conventional perturbation theory, and the second is to impose the cross-cap bootstrap equation, and the third is to solve the Schwinger-Dyson equation under the assumption of conformal invariance. We find that the three methods lead to mutually consistent results but each has its own advantage.
Solving the hypersingular boundary integral equation for the Burton and Miller formulation.
Langrenne, Christophe; Garcia, Alexandre; Bonnet, Marc
2015-11-01
This paper presents an easy numerical implementation of the Burton and Miller (BM) formulation, where the hypersingular Helmholtz integral is regularized by identities from the associated Laplace equation and thus needing only the evaluation of weakly singular integrals. The Helmholtz equation and its normal derivative are combined directly with combinations at edge or corner collocation nodes not used when the surface is not smooth. The hypersingular operators arising in this process are regularized and then evaluated by an indirect procedure based on discretized versions of the Calderón identities linking the integral operators for associated Laplace problems. The method is valid for acoustic radiation and scattering problems involving arbitrarily shaped three-dimensional bodies. Unlike other approaches using direct evaluation of hypersingular integrals, collocation points still coincide with mesh nodes, as is usual when using conforming elements. Using higher-order shape functions (with the boundary element method model size kept fixed) reduces the overall numerical integration effort while increasing the solution accuracy. To reduce the condition number of the resulting BM formulation at low frequencies, a regularized version α = ik/(k(2 )+ λ) of the classical BM coupling factor α = i/k is proposed. Comparisons with the combined Helmholtz integral equation Formulation method of Schenck are made for four example configurations, two of them featuring non-smooth surfaces.
Viscous wing theory development. Volume 2: GRUMWING computer program user's manual
NASA Technical Reports Server (NTRS)
Chow, R. R.; Ogilvie, P. L.
1986-01-01
This report is a user's manual which describes the operation of the computer program, GRUMWING. The program computes the viscous transonic flow over three-dimensional wings using a boundary layer type viscid-inviscid interaction approach. The inviscid solution is obtained by an approximate factorization (AFZ)method for the full potential equation. The boundary layer solution is based on integral entrainment methods.
Quantum integrability and functional equations
NASA Astrophysics Data System (ADS)
Volin, Dmytro
2010-03-01
In this thesis a general procedure to represent the integral Bethe Ansatz equations in the form of the Reimann-Hilbert problem is given. This allows us to study in simple way integrable spin chains in the thermodynamic limit. Based on the functional equations we give the procedure that allows finding the subleading orders in the solution of various integral equations solved to the leading order by the Wiener-Hopf technics. The integral equations are studied in the context of the AdS/CFT correspondence, where their solution allows verification of the integrability conjecture up to two loops of the strong coupling expansion. In the context of the two-dimensional sigma models we analyze the large-order behavior of the asymptotic perturbative expansion. Obtained experience with the functional representation of the integral equations allowed us also to solve explicitly the crossing equations that appear in the AdS/CFT spectral problem.
Generalized Lie symmetry approach for fractional order systems of differential equations. III
NASA Astrophysics Data System (ADS)
Singla, Komal; Gupta, R. K.
2017-06-01
The generalized Lie symmetry technique is proposed for the derivation of point symmetries for systems of fractional differential equations with an arbitrary number of independent as well as dependent variables. The efficiency of the method is illustrated by its application to three higher dimensional nonlinear systems of fractional order partial differential equations consisting of the (2 + 1)-dimensional asymmetric Nizhnik-Novikov-Veselov system, (3 + 1)-dimensional Burgers system, and (3 + 1)-dimensional Navier-Stokes equations. With the help of derived Lie point symmetries, the corresponding invariant solutions transform each of the considered systems into a system of lower-dimensional fractional partial differential equations.
Geometric constraints on potentially singular solutions for the 3-D Euler equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constantin, P.; Fefferman, C.; Majda, A.J.
1996-12-31
We discuss necessary and sufficient conditions for the formation of finite time singularities (blow up) in the incompressible three dimensional Euler equations. The well-known result of Beale, Kato and Majda states that these equations have smooth solutions on the time interval (0,t) if, and only if lim/t{r_arrow}T {integral}{sup t}{sub 0} {parallel}{Omega}({center_dot},s){parallel}{sub L}{sup {infinity}} (dx)dx < {infinity} where {Omega} = {triangledown} X u is the vorticity of the fluid and u is its divergence=free velocity. In this paper we prove criteria in which the direction of vorticity {xi} = {Omega}/{vert_bar}{Omega}{vert_bar} plays an important role.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borhanian, J.; Shahmansouri, M.
2013-01-15
A theoretical investigation is carried out to study the existence and characteristics of propagation of dust-acoustic (DA) waves in an electron-depleted dusty plasma with two-temperature ions, which are modeled by kappa distribution functions. A three-dimensional cylindrical Kadomtsev-Petviashvili equation governing evolution of small but finite amplitude DA waves is derived by means of a reductive perturbation method. The influence of physical parameters on solitary wave structure is examined. Furthermore, the energy integral equation is used to study the existence domains of the localized structures. It is found that the present model can be employed to describe the existence of positive asmore » well as negative polarity DA solitary waves by selecting special values for parameters of the system, e.g., superthermal index of cold and/or hot ions, cold to hot ion density ratio, and hot to cold ion temperature ratio. This model may be useful to understand the excitation of nonlinear DA waves in astrophysical objects.« less
Anisotropic fractal media by vector calculus in non-integer dimensional space
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2014-08-01
A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.
A Few New 2+1-Dimensional Nonlinear Dynamics and the Representation of Riemann Curvature Tensors
NASA Astrophysics Data System (ADS)
Wang, Yan; Zhang, Yufeng; Zhang, Xiangzhi
2016-09-01
We first introduced a linear stationary equation with a quadratic operator in ∂x and ∂y, then a linear evolution equation is given by N-order polynomials of eigenfunctions. As applications, by taking N=2, we derived a (2+1)-dimensional generalized linear heat equation with two constant parameters associative with a symmetric space. When taking N=3, a pair of generalized Kadomtsev-Petviashvili equations with the same eigenvalues with the case of N=2 are generated. Similarly, a second-order flow associative with a homogeneous space is derived from the integrability condition of the two linear equations, which is a (2+1)-dimensional hyperbolic equation. When N=3, the third second flow associative with the homogeneous space is generated, which is a pair of new generalized Kadomtsev-Petviashvili equations. Finally, as an application of a Hermitian symmetric space, we established a pair of spectral problems to obtain a new (2+1)-dimensional generalized Schrödinger equation, which is expressed by the Riemann curvature tensors.
NASA Technical Reports Server (NTRS)
Moitra, A.
1982-01-01
An implicit finite-difference algorithm is developed for the numerical solution of the incompressible three dimensional Navier-Stokes equations in the non-conservative primitive-variable formulation. The flow field about an airfoil spanning a wind-tunnel is computed. The coordinate system is generated by an extension of the two dimensional body-fitted coordinate generation techniques of Thompson, as well as that of Sorenson, into three dimensions. Two dimensional grids are stacked along a spanwise coordinate defined by a simple analytical function. A Poisson pressure equation for advancing the pressure in time is arrived at by performing a divergence operation on the momentum equations. The pressure at each time-step is calculated on the assumption that continuity be unconditionally satisfied. An eddy viscosity coefficient, computed according to the algebraic turbulence formulation of Baldwin and Lomax, simulates the effects of turbulence.
Two-Dimensional Computational Model for Wave Rotor Flow Dynamics
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
1996-01-01
A two-dimensional (theta,z) Navier-Stokes solver for multi-port wave rotor flow simulation is described. The finite-volume form of the unsteady thin-layer Navier-Stokes equations are integrated in time on multi-block grids that represent the stationary inlet and outlet ports and the moving rotor passages of the wave rotor. Computed results are compared with three-port wave rotor experimental data. The model is applied to predict the performance of a planned four-port wave rotor experiment. Two-dimensional flow features that reduce machine performance and influence rotor blade and duct wall thermal loads are identified. The performance impact of rounding the inlet port wall, to inhibit separation during passage gradual opening, is assessed.
NASA Astrophysics Data System (ADS)
Onate, C. A.; Onyeaju, M. C.; Ikot, A. N.; Ebomwonyi, O.
2017-11-01
By using the supersymmetric approach, we studied the approximate analytic solutions of the three-dimensional Schrödinger equation with the Hellmann potential by applying a suitable approximation scheme to the centrifugal term. The solutions of other useful potentials, such as Coulomb potential and Yukawa potential, are obtained by transformation of variables from the Hellmann potential. Finally, we calculated the Tsallis entropy and Rényi entropy both in position and momentum spaces under the Hellmann potential using integral method. The effects of these entropies on the angular momentum quantum number are investigated in detail.
Three dimensional fluid-kinetic model of a magnetically guided plasma jet
NASA Astrophysics Data System (ADS)
Ramos, Jesús J.; Merino, Mario; Ahedo, Eduardo
2018-06-01
A fluid-kinetic model of the collisionless plasma flow in a convergent-divergent magnetic nozzle is presented. The model combines the leading-order Vlasov equation and the fluid continuity and perpendicular momentum equation for magnetized electrons, and the fluid equations for cold ions, which must be solved iteratively to determine the self-consistent plasma response in a three-dimensional magnetic field. The kinetic electron solution identifies three electron populations and provides the plasma density and pressure tensor. The far downstream asymptotic behavior shows the anisotropic cooling of the electron populations. The fluid equations determine the electric potential and the fluid velocities. In the small ion-sound gyroradius case, the solution is constructed one magnetic line at a time. In the large ion-sound gyroradius case, ion detachment from magnetic lines makes the problem fully three-dimensional.
Three-dimensional compact explicit-finite difference time domain scheme with density variation
NASA Astrophysics Data System (ADS)
Tsuchiya, Takao; Maruta, Naoki
2018-07-01
In this paper, the density variation is implemented in the three-dimensional compact-explicit finite-difference time-domain (CE-FDTD) method. The formulation is first developed based on the continuity equation and the equation of motion, which include the density. Some numerical demonstrations are performed for the three-dimensional sound wave propagation in a two density layered medium. The numerical results are compared with the theoretical results to verify the proposed formulation.
NASA Astrophysics Data System (ADS)
Song, Sisi
2018-04-01
This paper concerns the three-dimensional nonhomogeneous incompressible magnetohydrodynamic equations with density-dependent viscosity and vacuum on Ω \\subset R^3. The domain Ω \\subset R^3 is a general connected smooth one, either bounded or unbounded. In particular, the initial density can have compact support when Ω is unbounded. First, we obtain the local existence and uniqueness of strong solution to the three-dimensional nonhomogeneous incompressible magnetohydrodynamic equations without any compatibility condition assumed on the initial data. Then, we also prove the continuous dependence of strong solution on the initial data under an additional compatibility condition.
Zarmi, Yair
2015-01-01
The (1+1)-dimensional Sine-Gordon equation passes integrability tests commonly applied to nonlinear evolution equations. Its kink solutions (one-dimensional fronts) are obtained by a Hirota algorithm. In higher space-dimensions, the equation does not pass these tests. Although it has been derived over the years for quite a few physical systems that have nothing to do with Special Relativity, the Sine-Gordon equation emerges as a non-linear relativistic wave equation. This opens the way for exploiting the tools of the Theory of Special Relativity. Using no more than the relativistic kinematics of tachyonic momentum vectors, from which the solutions are constructed through the Hirota algorithm, the existence and classification of N-moving-front solutions of the (1+2)- and (1+3)-dimensional equations for all N ≥ 1 are presented. In (1+2) dimensions, each multi-front solution propagates rigidly at one velocity. The solutions are divided into two subsets: Solutions whose velocities are lower than a limiting speed, c = 1, or are greater than or equal to c. To connect with concepts of the Theory of Special Relativity, c will be called "the speed of light." In (1+3)-dimensions, multi-front solutions are characterized by spatial structure and by velocity composition. The spatial structure is either planar (rotated (1+2)-dimensional solutions), or genuinely three-dimensional--branes. Planar solutions, propagate rigidly at one velocity, which is lower than, equal to, or higher than c. Branes must contain clusters of fronts whose speed exceeds c = 1. Some branes are "hybrids": different clusters of fronts propagate at different velocities. Some velocities may be lower than c but some must be equal to, or exceed, c. Finally, the speed of light cannot be approached from within the subset of slower-than-light solutions in both (1+2) and (1+3) dimensions.
A three-dimensional kinematic model for the dissolution of crystals
NASA Astrophysics Data System (ADS)
Tellier, C. R.
1989-06-01
The two-dimensional kinematic theory developed by Frank is extended into three dimensions. It is shown that the theoretical equations for the propagation vector associated with the displacement of a moving surface element can be directly derived from the polar equation of the slowness surface.
NASA Astrophysics Data System (ADS)
Malykh, A. A.; Nutku, Y.; Sheftel, M. B.
2007-08-01
We demonstrate that partner symmetries provide a lift of noninvariant solutions of the three-dimensional Boyer-Finley equation to noninvariant solutions of the four-dimensional hyperbolic complex Monge-Ampère equation. The lift is applied to noninvariant solutions of the Boyer-Finley equation, obtained earlier by the method of group foliation, to yield noninvariant solutions of the hyperbolic complex Monge-Ampère equation. Using these solutions we construct new Ricci-flat ultra-hyperbolic metrics with non-zero curvature tensor that have no Killing vectors.
Meta-Symplectic Geometry of 3rd Order Monge-Ampère Equations and their Characteristics
NASA Astrophysics Data System (ADS)
Manno, Gianni; Moreno, Giovanni
2016-03-01
This paper is a natural companion of [Alekseevsky D.V., Alonso Blanco R., Manno G., Pugliese F., Ann. Inst. Fourier (Grenoble) 62 (2012), 497-524, arXiv:1003.5177], generalising its perspectives and results to the context of third-order (2D) Monge-Ampère equations, by using the so-called ''meta-symplectic structure'' associated with the 8D prolongation M^{(1)} of a 5D contact manifold M. We write down a geometric definition of a third-order Monge-Ampère equation in terms of a (class of) differential two-form on M^{(1)}. In particular, the equations corresponding to decomposable forms admit a simple description in terms of certain three-dimensional distributions, which are made from the characteristics of the original equations. We conclude the paper with a study of the intermediate integrals of these special Monge-Ampère equations, herewith called of Goursat type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noguera, Norman, E-mail: norman.noguera@ucr.ac.cr; Rózga, Krzysztof, E-mail: krzysztof.rozga@upr.edu
In this work, one provides a justification of the condition that is usually imposed on the parameters of the hypergeometric equation, related to the solutions of the stationary Schrödinger equation for the harmonic oscillator in two-dimensional constant curvature spaces, in order to determine the solutions which are square-integrable. One proves that in case of negative curvature, it is a necessary condition of square integrability and in case of positive curvature, a necessary condition of regularity. The proof is based on the analytic continuation formulas for the hypergeometric function. It is observed also that the same is true in case ofmore » a slightly more general potential than the one for harmonic oscillator.« less
NASA Astrophysics Data System (ADS)
Pimenova, Anastasiya V.; Goldobin, Denis S.; Lyubimova, Tatyana P.
2018-02-01
We study the waves at the interface between two thin horizontal layers of immiscible liquids subject to high-frequency tangential vibrations. Nonlinear governing equations are derived for the cases of two- and three-dimensional flows and arbitrary ratio of layer thicknesses. The derivation is performed within the framework of the long-wavelength approximation, which is relevant as the linear instability of a thin-layers system is long-wavelength. The dynamics of equations is integrable and the equations themselves can be compared to the Boussinesq equation for the gravity waves in shallow water, which allows one to compare the action of the vibrational field to the action of the gravity and its possible effective inversion.
Santos, Andrés; Manzano, Gema
2010-04-14
As is well known, approximate integral equations for liquids, such as the hypernetted chain (HNC) and Percus-Yevick (PY) theories, are in general thermodynamically inconsistent in the sense that the macroscopic properties obtained from the spatial correlation functions depend on the route followed. In particular, the values of the fourth virial coefficient B(4) predicted by the HNC and PY approximations via the virial route differ from those obtained via the compressibility route. Despite this, it is shown in this paper that the value of B(4) obtained from the virial route in the HNC theory is exactly three halves the value obtained from the compressibility route in the PY theory, irrespective of the interaction potential (whether isotropic or not), the number of components, and the dimensionality of the system. This simple relationship is confirmed in one-component systems by analytical results for the one-dimensional penetrable-square-well model and the three-dimensional penetrable-sphere model, as well as by numerical results for the one-dimensional Lennard-Jones model, the one-dimensional Gaussian core model, and the three-dimensional square-well model.
A panning DLT procedure for three-dimensional videography.
Yu, B; Koh, T J; Hay, J G
1993-06-01
The direct linear transformation (DLT) method [Abdel-Aziz and Karara, APS Symposium on Photogrammetry. American Society of Photogrammetry, Falls Church, VA (1971)] is widely used in biomechanics to obtain three-dimensional space coordinates from film and video records. This method has some major shortcomings when used to analyze events which take place over large areas. To overcome these shortcomings, a three-dimensional data collection method based on the DLT method, and making use of panning cameras, was developed. Several small single control volumes were combined to construct a large total control volume. For each single control volume, a regression equation (calibration equation) is developed to express each of the 11 DLT parameters as a function of camera orientation, so that the DLT parameters can then be estimated from arbitrary camera orientations. Once the DLT parameters are known for at least two cameras, and the associated two-dimensional film or video coordinates of the event are obtained, the desired three-dimensional space coordinates can be computed. In a laboratory test, five single control volumes (in a total control volume of 24.40 x 2.44 x 2.44 m3) were used to test the effect of the position of the single control volume on the accuracy of the computed three dimensional space coordinates. Linear and quadratic calibration equations were used to test the effect of the order of the equation on the accuracy of the computed three dimensional space coordinates. For four of the five single control volumes tested, the mean resultant errors associated with the use of the linear calibration equation were significantly larger than those associated with the use of the quadratic calibration equation. The position of the single control volume had no significant effect on the mean resultant errors in computed three dimensional coordinates when the quadratic calibration equation was used. Under the same data collection conditions, the mean resultant errors in the computed three dimensional coordinates associated with the panning and stationary DLT methods were 17 and 22 mm, respectively. The major advantages of the panning DLT method lie in the large image sizes obtained and in the ease with which the data can be collected. The method also has potential for use in a wide variety of contexts. The major shortcoming of the method is the large amount of digitizing necessary to calibrate the total control volume. Adaptations of the method to reduce the amount of digitizing required are being explored.
NASA Astrophysics Data System (ADS)
Ye, H.; Liu, F.; Turner, I.; Anh, V.; Burrage, K.
2013-09-01
Fractional partial differential equations with more than one fractional derivative in time describe some important physical phenomena, such as the telegraph equation, the power law wave equation, or the Szabo wave equation. In this paper, we consider two- and three-dimensional multi-term time and space fractional partial differential equations. The multi-term time-fractional derivative is defined in the Caputo sense, whose order belongs to the interval (1,2],(2,3],(3,4] or (0, m], and the space-fractional derivative is referred to as the fractional Laplacian form. We derive series expansion solutions based on a spectral representation of the Laplacian operator on a bounded region. Some applications are given for the two- and three-dimensional telegraph equation, power law wave equation and Szabo wave equation.
NASA Astrophysics Data System (ADS)
Lu, Dianchen; Seadawy, A. R.; Arshad, M.; Wang, Jun
In this paper, new exact solitary wave, soliton and elliptic function solutions are constructed in various forms of three dimensional nonlinear partial differential equations (PDEs) in mathematical physics by utilizing modified extended direct algebraic method. Soliton solutions in different forms such as bell and anti-bell periodic, dark soliton, bright soliton, bright and dark solitary wave in periodic form etc are obtained, which have large applications in different branches of physics and other areas of applied sciences. The obtained solutions are also presented graphically. Furthermore, many other nonlinear evolution equations arising in mathematical physics and engineering can also be solved by this powerful, reliable and capable method. The nonlinear three dimensional extended Zakharov-Kuznetsov dynamica equation and (3 + 1)-dimensional modified KdV-Zakharov-Kuznetsov equation are selected to show the reliability and effectiveness of the current method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nekrasov, Nikita; ITEP, Moscow; Shatashvili, Samson
Supersymmetric vacua of two dimensional N = 4 gauge theories with matter, softly broken by the twisted masses down to N = 2, are shown to be in one-to-one correspondence with the eigenstates of integrable spin chain Hamiltonians. Examples include: the Heisenberg SU(2)XXX spin chain which is mapped to the two dimensional U(N) theory with fundamental hypermultiplets, the XXZ spin chain which is mapped to the analogous three dimensional super-Yang-Mills theory compactified on a circle, the XYZ spin chain and eight-vertex model which are related to the four dimensional theory compactified on T{sup 2}. A consequence of our correspondence ismore » the isomorphism of the quantum cohomology ring of various quiver varieties, such as cotangent bundles to (partial) flag varieties and the ring of quantum integrals of motion of various spin chains. The correspondence extends to any spin group, representations, boundary conditions, and inhomogeneity, it includes Sinh-Gordon and non-linear Schroedinger models as well as the dynamical spin chains like Hubbard model. Compactifications of four dimensional N = 2 theories on a two-sphere lead to the instanton-corrected Bethe equations.« less
NASA Technical Reports Server (NTRS)
Craidon, C. B.
1975-01-01
A computer program that uses a three-dimensional geometric technique for fitting a smooth surface to the component parts of an aircraft configuration is presented. The resulting surface equations are useful in performing various kinds of calculations in which a three-dimensional mathematical description is necessary. Programs options may be used to compute information for three-view and orthographic projections of the configuration as well as cross-section plots at any orientation through the configuration. The aircraft geometry input section of the program may be easily replaced with a surface point description in a different form so that the program could be of use for any three-dimensional surface equations.
Global existence of the three-dimensional viscous quantum magnetohydrodynamic model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Jianwei, E-mail: yangjianwei@ncwu.edu.cn; Ju, Qiangchang, E-mail: qiangchang-ju@yahoo.com
2014-08-15
The global-in-time existence of weak solutions to the viscous quantum Magnetohydrodynamic equations in a three-dimensional torus with large data is proved. The global existence of weak solutions to the viscous quantum Magnetohydrodynamic equations is shown by using the Faedo-Galerkin method and weak compactness techniques.
General methods for determining the linear stability of coronal magnetic fields
NASA Technical Reports Server (NTRS)
Craig, I. J. D.; Sneyd, A. D.; Mcclymont, A. N.
1988-01-01
A time integration of a linearized plasma equation of motion has been performed to calculate the ideal linear stability of arbitrary three-dimensional magnetic fields. The convergence rates of the explicit and implicit power methods employed are speeded up by using sequences of cyclic shifts. Growth rates are obtained for Gold-Hoyle force-free equilibria, and the corkscrew-kink instability is found to be very weak.
Computer-Aided Design Of Turbine Blades And Vanes
NASA Technical Reports Server (NTRS)
Hsu, Wayne Q.
1988-01-01
Quasi-three-dimensional method for determining aerothermodynamic configuration of turbine uses computer-interactive analysis and design and computer-interactive graphics. Design procedure executed rapidly so designer easily repeats it to arrive at best performance, size, structural integrity, and engine life. Sequence of events in aerothermodynamic analysis and design starts with engine-balance equations and ends with boundary-layer analysis and viscous-flow calculations. Analysis-and-design procedure interactive and iterative throughout.
General methods for determining the linear stability of coronal magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Craig, I.J.D.; Sneyd, A.D.; McClymont, A.N.
1988-12-01
A time integration of a linearized plasma equation of motion has been performed to calculate the ideal linear stability of arbitrary three-dimensional magnetic fields. The convergence rates of the explicit and implicit power methods employed are speeded up by using sequences of cyclic shifts. Growth rates are obtained for Gold-Hoyle force-free equilibria, and the corkscrew-kink instability is found to be very weak. 19 references.
Three-dimensional vibration analysis of a uniform beam with offset inertial masses at the ends
NASA Technical Reports Server (NTRS)
Robertson, D. K.
1985-01-01
Analysis of a flexible beam with displaced end-located inertial masses is presented. The resulting three-dimensional mode shape is shown to consist of two one-plane bending modes and one torsional mode. These three components of the mode shapes are shown to be linear combinations of trigonometric and hyperbolic sine and cosine functions. Boundary conditions are derived to obtain nonlinear algebraic equations through kinematic coupling of the general solutions of the three governing partial differential equations. A method of solution which takes these boundary conditions into account is also presented. A computer program has been written to obtain unique solutions to the resulting nonlinear algebraic equations. This program, which calculates natural frequencies and three-dimensional mode shapes for any number of modes, is presented and discussed.
FEL amplifier performance in the Compton regime
NASA Astrophysics Data System (ADS)
Cover, R. A.; Bhowmik, A.
1984-01-01
The Kroll-Morton-Rosenbluth equations of motion for electrons in a linearly polarized, tapered wiggler are utilized to describe gain in free-electron laser amplifiers. The three-dimensional amplifier model includes the effects of density variation in the electron beam, off-axis variations in the wiggler magnetic field, and betatron oscillations. The input electromagnetic field is injected and subsequently propagated within the wiggler by computing the Fresnel-Kirchhoff diffraction integral using the Gardner-Fresnel-Kirchhoff algorithm. The injected optical beam used in evaluating amplifier performance is initially a Gaussian which in general may be astigmatic. The importance of the above effects on extraction efficiency is computed both with rigorous three-dimensional electromagnetic wave propagation and a Gaussian treatment of the field.
NASA Astrophysics Data System (ADS)
Di Nucci, Carmine
2018-05-01
This note examines the two-dimensional unsteady isothermal free surface flow of an incompressible fluid in a non-deformable, homogeneous, isotropic, and saturated porous medium (with zero recharge and neglecting capillary effects). Coupling a Boussinesq-type model for nonlinear water waves with Darcy's law, the two-dimensional flow problem is solved using one-dimensional model equations including vertical effects and seepage face. In order to take into account the seepage face development, the system equations (given by the continuity and momentum equations) are completed by an integral relation (deduced from the Cauchy theorem). After testing the model against data sets available in the literature, some numerical simulations, concerning the unsteady flow through a rectangular dam (with an impermeable horizontal bottom), are presented and discussed.
Fully three-dimensional direct numerical simulation of a plunging breaker
NASA Astrophysics Data System (ADS)
Lubin, Pierre; Vincent, Stéphane; Caltagirone, Jean-Paul; Abadie, Stéphane
2003-07-01
The scope of this paper is to show the results obtained for simulating three-dimensional breaking waves by solving the Navier-Stokes equations in air and water. The interface tracking is achieved by a Lax-Wendroff TVD scheme (Total Variation Diminishing), which is able to handle interface reconnections. We first present the equations and the numerical methods used in this work. We then proceed to the study of a three-dimensional plunging breaking wave, using initial conditions corresponding to unstable periodic sinusoidal waves of large amplitudes. We compare the results obtained for two simulations, a longshore depth perturbation has been introduced in the solution of the flow equations in order to see the transition from a two-dimensional velocity field to a fully three-dimensional one after plunging. Breaking processes including overturning, splash-up and breaking induced vortex-like motion beneath the surface are presented and discussed. To cite this article: P. Lubin et al., C. R. Mecanique 331 (2003).
Gazizov, R. K.
2017-01-01
We suggest an algorithm for integrating systems of two second-order ordinary differential equations with four symmetries. In particular, if the admitted transformation group has two second-order differential invariants, the corresponding system can be integrated by quadratures using invariant representation and the operator of invariant differentiation. Otherwise, the systems reduce to partially uncoupled forms and can also be integrated by quadratures. PMID:28265184
Gainetdinova, A A; Gazizov, R K
2017-01-01
We suggest an algorithm for integrating systems of two second-order ordinary differential equations with four symmetries. In particular, if the admitted transformation group has two second-order differential invariants, the corresponding system can be integrated by quadratures using invariant representation and the operator of invariant differentiation. Otherwise, the systems reduce to partially uncoupled forms and can also be integrated by quadratures.
NASA Technical Reports Server (NTRS)
Baker, A. J.
1982-01-01
An order-of-magnitude analysis of the subsonic three dimensional steady time averaged Navier-Stokes equations, for semibounded aerodynamic juncture geometries, yields the parabolic Navier-Stokes simplification. The numerical solution of the resultant pressure Poisson equation is cast into complementary and particular parts, yielding an iterative interaction algorithm with an exterior three dimensional potential flow solution. A parabolic transverse momentum equation set is constructed, wherein robust enforcement of first order continuity effects is accomplished using a penalty differential constraint concept within a finite element solution algorithm. A Reynolds stress constitutive equation, with low turbulence Reynolds number wall functions, is employed for closure, using parabolic forms of the two-equation turbulent kinetic energy-dissipation equation system. Numerical results document accuracy, convergence, and utility of the developed finite element algorithm, and the CMC:3DPNS computer code applied to an idealized wing-body juncture region. Additional results document accuracy aspects of the algorithm turbulence closure model.
Properties of the two-dimensional heterogeneous Lennard-Jones dimers: An integral equation study
Urbic, Tomaz
2016-01-01
Structural and thermodynamic properties of a planar heterogeneous soft dumbbell fluid are examined using Monte Carlo simulations and integral equation theory. Lennard-Jones particles of different sizes are the building blocks of the dimers. The site-site integral equation theory in two dimensions is used to calculate the site-site radial distribution functions and the thermodynamic properties. Obtained results are compared to Monte Carlo simulation data. The critical parameters for selected types of dimers were also estimated and the influence of the Lennard-Jones parameters was studied. We have also tested the correctness of the site-site integral equation theory using different closures. PMID:27875894
An analytical method for the inverse Cauchy problem of Lame equation in a rectangle
NASA Astrophysics Data System (ADS)
Grigor’ev, Yu
2018-04-01
In this paper, we present an analytical computational method for the inverse Cauchy problem of Lame equation in the elasticity theory. A rectangular domain is frequently used in engineering structures and we only consider the analytical solution in a two-dimensional rectangle, wherein a missing boundary condition is recovered from the full measurement of stresses and displacements on an accessible boundary. The essence of the method consists in solving three independent Cauchy problems for the Laplace and Poisson equations. For each of them, the Fourier series is used to formulate a first-kind Fredholm integral equation for the unknown function of data. Then, we use a Lavrentiev regularization method, and the termwise separable property of kernel function allows us to obtain a closed-form regularized solution. As a result, for the displacement components, we obtain solutions in the form of a sum of series with three regularization parameters. The uniform convergence and error estimation of the regularized solutions are proved.
Three-dimensional analysis of chevron-notched specimens by boundary integral method
NASA Technical Reports Server (NTRS)
Mendelson, A.; Ghosn, L.
1983-01-01
The chevron-notched short bar and short rod specimens was analyzed by the boundary integral equations method. This method makes use of boundary surface elements in obtaining the solution. The boundary integral models were composed of linear triangular and rectangular surface segments. Results were obtained for two specimens with width to thickness ratios of 1.45 and 2.00 and for different crack length to width ratios ranging from 0.4 to 0.7. Crack opening displacement and stress intensity factors determined from displacement calculations along the crack front and compliance calculations were compared with experimental values and with finite element analysis.
Black Holes, Hidden Symmetry and Complete Integrability: Brief Review
NASA Astrophysics Data System (ADS)
Frolov, Valeri P.
This chapter contains a brief review of the remarkable properties of higher dimensional rotating black holes with the spherical topology of the horizon. We demonstrate that these properties are connected with and generated by a special geometrical object, the Principal Conformal Killing-Yano tensor (PCKYT). The most general solution, describing such black holes, Kerr-NUT-ADS metric, admits this structure. Moreover a solution of the Einstein Equations with (or without) a cosmological constant which possesses PCKYT is the Kerr-NUT-ADS metric. This object (PCKYT) is responsible for such remarkable properties of higher dimensional rotating black holes as: (i) complete integrability of geodesic equations and (ii) complete separation of variables of the important field equations.
NASA Astrophysics Data System (ADS)
Hayati, Yazdan; Eskandari-Ghadi, Morteza
2018-02-01
An asymmetric three-dimensional thermoelastodynamic wave propagation with scalar potential functions is presented for an isotropic half-space, in such a way that the wave may be originated from an arbitrary either traction or heat flux applied on a patch at the free surface of the half-space. The displacements, stresses and temperature are presented within the framework of Biot's coupled thermoelasticity formulations. By employing a complete representation for the displacement and temperature fields in terms of two scalar potential functions, the governing equations of coupled thermoelasticity are uncoupled into a sixth- and a second-order partial differential equation in cylindrical coordinate system. By virtue of Fourier expansion and Hankel integral transforms, the angular and radial variables are suppressed respectively, and a 6{th}- and a 2{nd}-order ordinary differential equation in terms of depth are received, which are solved readily, from which the displacement, stresses and temperature fields are derived in transformed space by satisfying both the regularity and boundary conditions. By applying the inverse Hankel integral transforms, the displacements and temperature are numerically evaluated to determine the solutions in the real space. The numerical evaluations are done for three specific cases of vertical and horizontal time-harmonic patch traction and a constant heat flux passing through a circular disc on the surface of the half-space. It has been previously proved that the potential functions used in this paper are applicable from elastostatics to thermoelastodynamics. Thus, the analytical solutions presented in this paper are verified by comparing the results of this study with two specific problems reported in the literature, which are an elastodynamic problem and an axisymmetric quasi-static thermoelastic problem. To show the accuracy of numerical results, the solution of this study is also compared with the solution for elastodynamics exists in the literature for surface excitation, where a very good agreement is achieved. The formulations presented in this study may be used as benchmark for other related researches and it may be implemented in the related boundary integral equations.
Closed-form integrator for the quaternion (euler angle) kinematics equations
NASA Technical Reports Server (NTRS)
Whitmore, Stephen A. (Inventor)
2000-01-01
The invention is embodied in a method of integrating kinematics equations for updating a set of vehicle attitude angles of a vehicle using 3-dimensional angular velocities of the vehicle, which includes computing an integrating factor matrix from quantities corresponding to the 3-dimensional angular velocities, computing a total integrated angular rate from the quantities corresponding to a 3-dimensional angular velocities, computing a state transition matrix as a sum of (a) a first complementary function of the total integrated angular rate and (b) the integrating factor matrix multiplied by a second complementary function of the total integrated angular rate, and updating the set of vehicle attitude angles using the state transition matrix. Preferably, the method further includes computing a quanternion vector from the quantities corresponding to the 3-dimensional angular velocities, in which case the updating of the set of vehicle attitude angles using the state transition matrix is carried out by (a) updating the quanternion vector by multiplying the quanternion vector by the state transition matrix to produce an updated quanternion vector and (b) computing an updated set of vehicle attitude angles from the updated quanternion vector. The first and second trigonometric functions are complementary, such as a sine and a cosine. The quantities corresponding to the 3-dimensional angular velocities include respective averages of the 3-dimensional angular velocities over plural time frames. The updating of the quanternion vector preserves the norm of the vector, whereby the updated set of vehicle attitude angles are virtually error-free.
Galactic Cosmic-ray Transport in the Global Heliosphere: A Four-Dimensional Stochastic Model
NASA Astrophysics Data System (ADS)
Florinski, V.
2009-04-01
We study galactic cosmic-ray transport in the outer heliosphere and heliosheath using a newly developed transport model based on stochastic integration of the phase-space trajectories of Parker's equation. The model employs backward integration of the diffusion-convection transport equation using Ito calculus and is four-dimensional in space+momentum. We apply the model to the problem of galactic proton transport in the heliosphere during a negative solar minimum. Model results are compared with the Voyager measurements of galactic proton radial gradients and spectra in the heliosheath. We show that the heliosheath is not as efficient in diverting cosmic rays during solar minima as predicted by earlier two-dimensional models.
An accessible four-dimensional treatment of Maxwell's equations in terms of differential forms
NASA Astrophysics Data System (ADS)
Sá, Lucas
2017-03-01
Maxwell’s equations are derived in terms of differential forms in the four-dimensional Minkowski representation, starting from the three-dimensional vector calculus differential version of these equations. Introducing all the mathematical and physical concepts needed (including the tool of differential forms), using only knowledge of elementary vector calculus and the local vector version of Maxwell’s equations, the equations are reduced to a simple and elegant set of two equations for a unified quantity, the electromagnetic field. The treatment should be accessible for students taking a first course on electromagnetism.
Einstein-Weyl spaces and third-order differential equations
NASA Astrophysics Data System (ADS)
Tod, K. P.
2000-08-01
The three-dimensional null-surface formalism of Tanimoto [M. Tanimoto, "On the null surface formalism," Report No. gr-qc/9703003 (1997)] and Forni et al. [Forni et al., "Null surfaces formation in 3D," J. Math Phys. (submitted)] are extended to describe Einstein-Weyl spaces, following Cartan [E. Cartan, "Les espaces généralisées et l'integration de certaines classes d'equations différentielles," C. R. Acad. Sci. 206, 1425-1429 (1938); "La geometria de las ecuaciones diferenciales de tercer order," Rev. Mat. Hispano-Am. 4, 1-31 (1941)]. In the resulting formalism, Einstein-Weyl spaces are obtained from a particular class of third-order differential equations. Some examples of the construction which include some new Einstein-Weyl spaces are given.
NASA Astrophysics Data System (ADS)
Huck, Thierry; Vallis, Geoffrey K.
2001-08-01
What can we learn from performing a linear stability analysis of the large-scale ocean circulation? Can we predict from the basic state the occurrence of interdecadal oscillations, such as might be found in a forward integration of the full equations of motion? If so, do the structure and period of the linearly unstable modes resemble those found in a forward integration? We pursue here a preliminary study of these questions for a case in idealized geometry, in which the full nonlinear behavior can also be explored through forward integrations. Specifically, we perform a three-dimensional linear stability analysis of the thermally-driven circulation of the planetary geostrophic equations. We examine the resulting eigenvalues and eigenfunctions, comparing them with the structure of the interdecadal oscillations found in the fully nonlinear model in various parameter regimes. We obtain a steady state by running the time-dependent, nonlinear model to equilibrium using restoring boundary conditions on surface temperature. If the surface heat fluxes are then diagnosed, and these values applied as constant flux boundary conditions, the nonlinear model switches into a state of perpetual, finite amplitude, interdecadal oscillations. We construct a linearized version of the model by empirically evaluating the tangent linear matrix at the steady state, under both restoring and constant-flux boundary conditions. An eigen-analysis shows there are no unstable eigenmodes of the linearized model with restoring conditions. In contrast, under constant flux conditions, we find a single unstable eigenmode that shows a striking resemblance to the fully-developed oscillations in terms of three-dimensional structure, period and growth rate. The mode may be damped through either surface restoring boundary conditions or sufficiently large horizontal tracer diffusion. The success of this simple numerical method in idealized geometry suggests applications in the study of the stability of the ocean circulation in more realistic configurations, and the possibility of predicting potential oceanic modes, even weakly damped, that might be excited by stochastic atmospheric forcing or mesoscale ocean eddies.
NASA Astrophysics Data System (ADS)
Newman, James Charles, III
1997-10-01
The first two steps in the development of an integrated multidisciplinary design optimization procedure capable of analyzing the nonlinear fluid flow about geometrically complex aeroelastic configurations have been accomplished in the present work. For the first step, a three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design optimization has been developed. The advantage of unstructured grids, when compared with a structured-grid approach, is their inherent ability to discretize irregularly shaped domains with greater efficiency and less effort. Hence, this approach is ideally suited for geometrically complex configurations of practical interest. In this work the time-dependent, nonlinear Euler equations are solved using an upwind, cell-centered, finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional cases and a Gauss-Seidel algorithm for the three-dimensional; at steady-state, similar procedures are used to solve the accompanying linear aerodynamic sensitivity equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale gradient-based aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact Jacobian matrix-vector products. Various surface parameterization techniques have been employed in the current study to control the shape of the design surface. Once this surface has been deformed, the interior volume of the unstructured grid is adapted by considering the mesh as a system of interconnected tension springs. Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with ADIFOR, an advanced automatic-differentiation software tool. To demonstrate the ability of this procedure to analyze and design complex configurations of practical interest, the sensitivity analysis and shape optimization has been performed for several two- and three-dimensional cases. In twodimensions, an initially symmetric NACA-0012 airfoil and a high-lift multielement airfoil were examined. For the three-dimensional configurations, an initially rectangular wing with uniform NACA-0012 cross-sections was optimized; in addition, a complete Boeing 747-200 aircraft was studied. Furthermore, the current study also examines the effect of inconsistency in the order of spatial accuracy between the nonlinear fluid and linear shape sensitivity equations. The second step was to develop a computationally efficient, high-fidelity, integrated static aeroelastic analysis procedure. To accomplish this, a structural analysis code was coupled with the aforementioned unstructured grid aerodynamic analysis solver. The use of an unstructured grid scheme for the aerodynamic analysis enhances the interaction compatibility with the wing structure. The structural analysis utilizes finite elements to model the wing so that accurate structural deflections may be obtained. In the current work, parameters have been introduced to control the interaction of the computational fluid dynamics and structural analyses; these control parameters permit extremely efficient static aeroelastic computations. To demonstrate and evaluate this procedure, static aeroelastic analysis results for a flexible wing in low subsonic, high subsonic (subcritical), transonic (supercritical), and supersonic flow conditions are presented.
Three-dimensional modeling of the plasma arc in arc welding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, G.; Tsai, H. L.; Hu, J.
2008-11-15
Most previous three-dimensional modeling on gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) focuses on the weld pool dynamics and assumes the two-dimensional axisymmetric Gaussian distributions for plasma arc pressure and heat flux. In this article, a three-dimensional plasma arc model is developed, and the distributions of velocity, pressure, temperature, current density, and magnetic field of the plasma arc are calculated by solving the conservation equations of mass, momentum, and energy, as well as part of the Maxwell's equations. This three-dimensional model can be used to study the nonaxisymmetric plasma arc caused by external perturbations such asmore » an external magnetic field. It also provides more accurate boundary conditions when modeling the weld pool dynamics. The present work lays a foundation for true three-dimensional comprehensive modeling of GTAW and GMAW including the plasma arc, weld pool, and/or electrode.« less
NASA Technical Reports Server (NTRS)
Young, D. P.; Woo, A. C.; Bussoletti, J. E.; Johnson, F. T.
1986-01-01
A general method is developed combining fast direct methods and boundary integral equation methods to solve Poisson's equation on irregular exterior regions. The method requires O(N log N) operations where N is the number of grid points. Error estimates are given that hold for regions with corners and other boundary irregularities. Computational results are given in the context of computational aerodynamics for a two-dimensional lifting airfoil. Solutions of boundary integral equations for lifting and nonlifting aerodynamic configurations using preconditioned conjugate gradient are examined for varying degrees of thinness.
NASA Astrophysics Data System (ADS)
Guglielmino, F.; Nunnari, G.; Puglisi, G.; Spata, A.
2009-04-01
We propose a new technique, based on the elastic theory, to efficiently produce an estimate of three-dimensional surface displacement maps by integrating sparse Global Position System (GPS) measurements of deformations and Differential Interferometric Synthetic Aperture Radar (DInSAR) maps of movements of the Earth's surface. The previous methodologies known in literature, for combining data from GPS and DInSAR surveys, require two steps: the first, in which sparse GPS measurements are interpolated in order to fill in GPS displacements at the DInSAR grid, and the second, to estimate the three-dimensional surface displacement maps by using a suitable optimization technique. One of the advantages of the proposed approach is that both these steps are unified. We propose a linear matrix equation which accounts for both GPS and DInSAR data whose solution provide simultaneously the strain tensor, the displacement field and the rigid body rotation tensor throughout the entire investigated area. The mentioned linear matrix equation is solved by using the Weighted Least Square (WLS) thus assuring both numerical robustness and high computation efficiency. The proposed methodology was tested on both synthetic and experimental data, these last from GPS and DInSAR measurements carried out on Mt. Etna. The goodness of the results has been evaluated by using standard errors. These tests also allow optimising the choice of specific parameters of this algorithm. This "open" structure of the method will allow in the near future to take account of other available data sets, such as additional interferograms, or other geodetic data (e.g. levelling, tilt, etc.), in order to achieve even higher accuracy.
Statistics of extreme waves in the framework of one-dimensional Nonlinear Schrodinger Equation
NASA Astrophysics Data System (ADS)
Agafontsev, Dmitry; Zakharov, Vladimir
2013-04-01
We examine the statistics of extreme waves for one-dimensional classical focusing Nonlinear Schrodinger (NLS) equation, iΨt + Ψxx + |Ψ |2Ψ = 0, (1) as well as the influence of the first nonlinear term beyond Eq. (1) - the six-wave interactions - on the statistics of waves in the framework of generalized NLS equation accounting for six-wave interactions, dumping (linear dissipation, two- and three-photon absorption) and pumping terms, We solve these equations numerically in the box with periodically boundary conditions starting from the initial data Ψt=0 = F(x) + ?(x), where F(x) is an exact modulationally unstable solution of Eq. (1) seeded by stochastic noise ?(x) with fixed statistical properties. We examine two types of initial conditions F(x): (a) condensate state F(x) = 1 for Eq. (1)-(2) and (b) cnoidal wave for Eq. (1). The development of modulation instability in Eq. (1)-(2) leads to formation of one-dimensional wave turbulence. In the integrable case the turbulence is called integrable and relaxes to one of infinite possible stationary states. Addition of six-wave interactions term leads to appearance of collapses that eventually are regularized by the dumping terms. The energy lost during regularization of collapses in (2) is restored by the pumping term. In the latter case the system does not demonstrate relaxation-like behavior. We measure evolution of spectra Ik =< |Ψk|2 >, spatial correlation functions and the PDFs for waves amplitudes |Ψ|, concentrating special attention on formation of "fat tails" on the PDFs. For the classical integrable NLS equation (1) with condensate initial condition we observe Rayleigh tails for extremely large waves and a "breathing region" for middle waves with oscillations of the frequency of waves appearance with time, while nonintegrable NLS equation with dumping and pumping terms (2) with the absence of six-wave interactions α = 0 demonstrates perfectly Rayleigh PDFs without any oscillations with time. In case of the cnoidal wave initial condition we observe severely non-Rayleigh PDFs for the classical NLS equation (1) with the regions corresponding to 2-, 3- and so on soliton collisions clearly seen of the PDFs. Addition of six-wave interactions in Eq. (2) for condensate initial condition results in appearance of non-Rayleigh addition to the PDFs that increase with six-wave interaction constant α and disappears with the absence of six-wave interactions α = 0. References: [1] D.S. Agafontsev, V.E. Zakharov, Rogue waves statistics in the framework of one-dimensional Generalized Nonlinear Schrodinger Equation, arXiv:1202.5763v3.
Plates and shells containing a surface crack under general loading conditions
NASA Technical Reports Server (NTRS)
Joseph, Paul F.; Erdogan, Fazil
1987-01-01
Various through and part-through crack problems in plates and shells are considered. The line-spring model of Rice and Levy is generalized to the skew-symmetric case to solve surface crack problems involving mixed-mode, coplanar crack growth. Compliance functions are introduced which are valid for crack depth to thickness ratios at least up to .95. This includes expressions for tension and bending as well as expressions for in-plane shear, out-of-plane shear, and twisting. Transverse shear deformation is taken into account in the plate and shell theories and this effect is shown to be important in comparing stress intensity factors obtained from the plate theory with three-dimensional solutions. Stress intensity factors for cylinders obtained by the line-spring model also compare well with three-dimensional solution. By using the line-spring approach, stress intensity factors can be obtained for the through crack and for part-through crack of any crack front shape, without recalculation integrals that take up the bulk of the computer time. Therefore, parameter studies involving crack length, crack depth, shell type, and shell curvature are made in some detail. The results will be useful in brittle fracture and in fatigue crack propagation studies. All problems considered are of the mixed boundary value type and are reducted to strongly singular integral equations which make use of the finite-part integrals of Hadamard. The equations are solved numerically in a manner that is very efficient.
Assessment of a 3-D boundary layer code to predict heat transfer and flow losses in a turbine
NASA Technical Reports Server (NTRS)
Anderson, O. L.
1984-01-01
Zonal concepts are utilized to delineate regions of application of three-dimensional boundary layer (DBL) theory. The zonal approach requires three distinct analyses. A modified version of the 3-DBL code named TABLET is used to analyze the boundary layer flow. This modified code solves the finite difference form of the compressible 3-DBL equations in a nonorthogonal surface coordinate system which includes coriolis forces produced by coordinate rotation. These equations are solved using an efficient, implicit, fully coupled finite difference procedure. The nonorthogonal surface coordinate system is calculated using a general analysis based on the transfinite mapping of Gordon which is valid for any arbitrary surface. Experimental data is used to determine the boundary layer edge conditions. The boundary layer edge conditions are determined by integrating the boundary layer edge equations, which are the Euler equations at the edge of the boundary layer, using the known experimental wall pressure distribution. Starting solutions along the inflow boundaries are estimated by solving the appropriate limiting form of the 3-DBL equations.
Stress-intensity factor equations for cracks in three-dimensional finite bodies
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Raju, I. S.
1981-01-01
Empirical stress intensity factor equations are presented for embedded elliptical cracks, semi-elliptical surface cracks, quarter-elliptical corner cracks, semi-elliptical surface cracks at a hole, and quarter-elliptical corner cracks at a hole in finite plates. The plates were subjected to remote tensile loading. Equations give stress intensity factors as a function of parametric angle, crack depth, crack length, plate thickness, and where applicable, hole radius. The stress intensity factors used to develop the equations were obtained from three dimensional finite element analyses of these crack configurations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Besse, Nicolas, E-mail: Nicolas.Besse@oca.eu; Institut Jean Lamour, UMR CNRS/UL 7198, Université de Lorraine, BP 70239 54506 Vandoeuvre-lès-Nancy Cedex; Coulette, David, E-mail: David.Coulette@ipcms.unistra.fr
2016-08-15
Achieving plasmas with good stability and confinement properties is a key research goal for magnetic fusion devices. The underlying equations are the Vlasov–Poisson and Vlasov–Maxwell (VPM) equations in three space variables, three velocity variables, and one time variable. Even in those somewhat academic cases where global equilibrium solutions are known, studying their stability requires the analysis of the spectral properties of the linearized operator, a daunting task. We have identified a model, for which not only equilibrium solutions can be constructed, but many of their stability properties are amenable to rigorous analysis. It uses a class of solution to themore » VPM equations (or to their gyrokinetic approximations) known as waterbag solutions which, in particular, are piecewise constant in phase-space. It also uses, not only the gyrokinetic approximation of fast cyclotronic motion around magnetic field lines, but also an asymptotic approximation regarding the magnetic-field-induced anisotropy: the spatial variation along the field lines is taken much slower than across them. Together, these assumptions result in a drastic reduction in the dimensionality of the linearized problem, which becomes a set of two nested one-dimensional problems: an integral equation in the poloidal variable, followed by a one-dimensional complex Schrödinger equation in the radial variable. We show here that the operator associated to the poloidal variable is meromorphic in the eigenparameter, the pulsation frequency. We also prove that, for all but a countable set of real pulsation frequencies, the operator is compact and thus behaves mostly as a finite-dimensional one. The numerical algorithms based on such ideas have been implemented in a companion paper [D. Coulette and N. Besse, “Numerical resolution of the global eigenvalue problem for gyrokinetic-waterbag model in toroidal geometry” (submitted)] and were found to be surprisingly close to those for the original gyrokinetic-Vlasov equations. The purpose of the present paper is to make these new ideas accessible to two readerships: applied mathematicians and plasma physicists.« less
Theory of relativistic Brownian motion: the (1+3) -dimensional case.
Dunkel, Jörn; Hänggi, Peter
2005-09-01
A theory for (1+3) -dimensional relativistic Brownian motion under the influence of external force fields is put forward. Starting out from a set of relativistically covariant, but multiplicative Langevin equations we describe the relativistic stochastic dynamics of a forced Brownian particle. The corresponding Fokker-Planck equations are studied in the laboratory frame coordinates. In particular, the stochastic integration prescription--i.e., the discretization rule dilemma--is elucidated (prepoint discretization rule versus midpoint discretization rule versus postpoint discretization rule). Remarkably, within our relativistic scheme we find that the postpoint rule (or the transport form) yields the only Fokker-Planck dynamics from which the relativistic Maxwell-Boltzmann statistics is recovered as the stationary solution. The relativistic velocity effects become distinctly more pronounced by going from one to three spatial dimensions. Moreover, we present numerical results for the asymptotic mean-square displacement of a free relativistic Brownian particle moving in 1+3 dimensions.
Orientation-dependent integral equation theory for a two-dimensional model of water
NASA Astrophysics Data System (ADS)
Urbič, T.; Vlachy, V.; Kalyuzhnyi, Yu. V.; Dill, K. A.
2003-03-01
We develop an integral equation theory that applies to strongly associating orientation-dependent liquids, such as water. In an earlier treatment, we developed a Wertheim integral equation theory (IET) that we tested against NPT Monte Carlo simulations of the two-dimensional Mercedes Benz model of water. The main approximation in the earlier calculation was an orientational averaging in the multidensity Ornstein-Zernike equation. Here we improve the theory by explicit introduction of an orientation dependence in the IET, based upon expanding the two-particle angular correlation function in orthogonal basis functions. We find that the new orientation-dependent IET (ODIET) yields a considerable improvement of the predicted structure of water, when compared to the Monte Carlo simulations. In particular, ODIET predicts more long-range order than the original IET, with hexagonal symmetry, as expected for the hydrogen bonded ice in this model. The new theoretical approximation still errs in some subtle properties; for example, it does not predict liquid water's density maximum with temperature or the negative thermal expansion coefficient.
Semi-implicit finite difference methods for three-dimensional shallow water flow
Casulli, Vincenzo; Cheng, Ralph T.
1992-01-01
A semi-implicit finite difference method for the numerical solution of three-dimensional shallow water flows is presented and discussed. The governing equations are the primitive three-dimensional turbulent mean flow equations where the pressure distribution in the vertical has been assumed to be hydrostatic. In the method of solution a minimal degree of implicitness has been adopted in such a fashion that the resulting algorithm is stable and gives a maximal computational efficiency at a minimal computational cost. At each time step the numerical method requires the solution of one large linear system which can be formally decomposed into a set of small three-diagonal systems coupled with one five-diagonal system. All these linear systems are symmetric and positive definite. Thus the existence and uniquencess of the numerical solution are assured. When only one vertical layer is specified, this method reduces as a special case to a semi-implicit scheme for solving the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm has been shown to be fast, accurate and mass-conservative and can also be applied to simulate flooding and drying of tidal mud-flats in conjunction with three-dimensional flows. Furthermore, the resulting algorithm is fully vectorizable for an efficient implementation on modern vector computers.
Numerical solutions of Navier-Stokes equations for a Butler wing
NASA Technical Reports Server (NTRS)
Abolhassani, J. S.; Tiwari, S. N.
1985-01-01
The flow field is simulated on the surface of a given delta wing (Butler wing) at zero incident in a uniform stream. The simulation is done by integrating a set of flow field equations. This set of equations governs the unsteady, viscous, compressible, heat conducting flow of an ideal gas. The equations are written in curvilinear coordinates so that the wing surface is represented accurately. These equations are solved by the finite difference method, and results obtained for high-speed freestream conditions are compared with theoretical and experimental results. In this study, the Navier-Stokes equations are solved numerically. These equations are unsteady, compressible, viscous, and three-dimensional without neglecting any terms. The time dependency of the governing equations allows the solution to progress naturally for an arbitrary initial initial guess to an asymptotic steady state, if one exists. The equations are transformed from physical coordinates to the computational coordinates, allowing the solution of the governing equations in a rectangular parallel-piped domain. The equations are solved by the MacCormack time-split technique which is vectorized and programmed to run on the CDC VPS 32 computer.
NASA Technical Reports Server (NTRS)
Stein, M.
1985-01-01
Nonlinear strain displacement relations for three-dimensional elasticity are determined in orthogonal curvilinear coordinates. To develop a two-dimensional theory, the displacements are expressed by trigonometric series representation through-the-thickness. The nonlinear strain-displacement relations are expanded into series which contain all first and second degree terms. In the series for the displacements only the first few terms are retained. Insertion of the expansions into the three-dimensional virtual work expression leads to nonlinear equations of equilibrium for laminated and thick plates and shells that include the effects of transverse shearing. Equations of equilibrium and buckling equations are derived for flat plates and cylindrical shells. The shell equations reduce to conventional transverse shearing shell equations when the effects of the trigonometric terms are omitted and to classical shell equations when the trigonometric terms are omitted and the shell is assumed to be thin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahmansouri, M.; Alinejad, H.
2015-04-15
We give a theoretical investigation on the dynamics of nonlinear electrostatic waves in a strongly coupled dusty plasma with strong electrostatic interaction between dust grains in the presence of the polarization force (i.e., the force due to the polarized Debye sheath). Adopting a reductive perturbation method, we derived a three-dimensional Kadomtsev-Petviashvili equation that describes the evolution of weakly nonlinear electrostatic localized waves. The energy integral equation is used to study the existence domains of the localized structures. The analysis provides the localized structure existence region, in terms of the effects of strong interaction between the dust particles and polarization force.
Three-dimensional gauge theories and gravitational instantons from string theory
NASA Astrophysics Data System (ADS)
Cherkis, Sergey Alexander
Various realizations of gauge theories in string theory allow an identification of their spaces of vacua with gravitational instantons. Also, they provide a correspondence of vacua of gauge theories with nonabelian monopole configurations and solutions of a system of integrable equations called Nahm equations. These identifications make it possible to apply powerful techniques of differential and algebraic geometry to solve the gauge theories in question. In other words, it becomes possible to find the exact metrics on their moduli spaces of vacua with all quantum corrections included. As another outcome we obtain for the first time the description of a series of all Dk-type gravitational instantons.
Integral method for the calculation of three-dimensional, laminar and turbulent boundary layers
NASA Technical Reports Server (NTRS)
Stock, H. W.
1978-01-01
The method for turbulent flows is a further development of an existing method; profile families with two parameters and a lag entrainment method replace the simple entrainment method and power profiles with one parameter. The method for laminar flows is a new development. Moment of momentum equations were used for the solution of the problem, the profile families were derived from similar solutions of boundary layer equations. Laminar and turbulent flows at the wings were calculated. The influence of wing tapering on the boundary layer development was shown. The turbulent boundary layer for a revolution ellipsoid is calculated for 0 deg and 10 deg incidence angles.
Voltera's Solution of the Wave Equation as Applied to Three-Dimensional Supersonic Airfoil Problems
NASA Technical Reports Server (NTRS)
Heslet, Max A; Lomax, Harvard; Jones, Arthur L
1947-01-01
A surface integral is developed which yields solutions of the linearized partial differential equation for supersonic flow. These solutions satisfy boundary conditions arising in wing theory. Particular applications of this general method are made, using acceleration potentials, to flat surfaces and to uniformly loaded lifting surfaces. Rectangular and trapezoidal plan forms are considered along with triangular forms adaptable to swept-forward and swept-back wings. The case of the triangular plan form in sideslip is also included. Emphasis is placed on the systematic application of the method to the lifting surfaces considered and on the possibility of further application.
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.
2017-01-01
The propagation of three-dimensional nonlinear irrotational flow of an inviscid and incompressible fluid of the long waves in dispersive shallow-water approximation is analyzed. The problem formulation of the long waves in dispersive shallow-water approximation lead to fifth-order Kadomtsev-Petviashvili (KP) dynamical equation by applying the reductive perturbation theory. By using an extended auxiliary equation method, the solitary travelling-wave solutions of the two-dimensional nonlinear fifth-order KP dynamical equation are derived. An analytical as well as a numerical solution of the two-dimensional nonlinear KP equation are obtained and analyzed with the effects of external pressure flow.
The applications of a higher-dimensional Lie algebra and its decomposed subalgebras
Yu, Zhang; Zhang, Yufeng
2009-01-01
With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 × 6 matrix Lie algebra sμ(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra sμ(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras sμ(6) and E is used to directly construct integrable couplings. PMID:20084092
The applications of a higher-dimensional Lie algebra and its decomposed subalgebras.
Yu, Zhang; Zhang, Yufeng
2009-01-15
With the help of invertible linear transformations and the known Lie algebras, a higher-dimensional 6 x 6 matrix Lie algebra smu(6) is constructed. It follows a type of new loop algebra is presented. By using a (2 + 1)-dimensional partial-differential equation hierarchy we obtain the integrable coupling of the (2 + 1)-dimensional KN integrable hierarchy, then its corresponding Hamiltonian structure is worked out by employing the quadratic-form identity. Furthermore, a higher-dimensional Lie algebra denoted by E, is given by decomposing the Lie algebra smu(6), then a discrete lattice integrable coupling system is produced. A remarkable feature of the Lie algebras smu(6) and E is used to directly construct integrable couplings.
A finite element approach for solution of the 3D Euler equations
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Ramakrishnan, R.; Dechaumphai, P.
1986-01-01
Prediction of thermal deformations and stresses has prime importance in the design of the next generation of high speed flight vehicles. Aerothermal load computations for complex three-dimensional shapes necessitate development of procedures to solve the full Navier-Stokes equations. This paper details the development of a three-dimensional inviscid flow approach which can be extended for three-dimensional viscous flows. A finite element formulation, based on a Taylor series expansion in time, is employed to solve the compressible Euler equations. Model generation and results display are done using a commercially available program, PATRAN, and vectorizing strategies are incorporated to ensure computational efficiency. Sample problems are presented to demonstrate the validity of the approach for analyzing high speed compressible flows.
NASA Astrophysics Data System (ADS)
Ivanov, Rossen I.; Prodanov, Emil M.
2018-01-01
The cosmological dynamics of a quintessence model based on real gas with general equation of state is presented within the framework of a three-dimensional dynamical system describing the time evolution of the number density, the Hubble parameter and the temperature. Two global first integrals are found and examples for gas with virial expansion and van der Waals gas are presented. The van der Waals system is completely integrable. In addition to the unbounded trajectories, stemming from the presence of the conserved quantities, stable periodic solutions (closed orbits) also exist under certain conditions and these represent models of a cyclic Universe. The cyclic solutions exhibit regions characterized by inflation and deflation, while the open trajectories are characterized by inflation in a “fly-by” near an unstable critical point.
NASA Technical Reports Server (NTRS)
Smith, R. E.
1981-01-01
A grid generation technique called the two boundary technique is developed and applied for the solution of the three dimensional Navier-Stokes equations. The Navier-Stokes equations are transformed from a cartesian coordinate system to a computational coordinate system, and the grid generation technique provides the Jacobian matrix describing the transformation. The two boundary technique is based on algebraically defining two distinct boundaries of a flow domain and the distribution of the grid is achieved by applying functions to the uniform computational grid which redistribute the computational independent variables and consequently concentrate or disperse the grid points in the physical domain. The Navier-Stokes equations are solved using a MacCormack time-split technique. Grids and supersonic laminar flow solutions are obtained for a family of three dimensional corners and two spike-nosed bodies.
Anisotropic fractal media by vector calculus in non-integer dimensional space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru
2014-08-15
A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensionalmore » space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.« less
NASA Technical Reports Server (NTRS)
Jin, Jian-Ming; Volakis, John L.
1992-01-01
A hybrid numerical technique is presented for a characterization of the scattering and radiation properties of three-dimensional cavity arrays recessed in a ground plane. The technique combines the finite element and boundary integral methods and invokes Floquet's representation to formulate a system of equations for the fields at the apertures and those inside the cavities. The system is solved via the conjugate gradient method in conjunction with the Fast Fourier Transform (FFT) thus achieving an O(N) storage requirement. By virtue of the finite element method, the proposed technique is applicable to periodic arrays comprised of cavities having arbitrary shape and filled with inhomogeneous dielectrics. Several numerical results are presented, along with new measured data, which demonstrate the validity, efficiency, and capability of the technique.
NASA Astrophysics Data System (ADS)
Quan, Wei-cai; Zhang, Zhu-ying; Zhang, Ai-qun; Zhang, Qi-feng; Tian, Yu
2015-04-01
This paper proposes a geometrically exact formulation for three-dimensional static and dynamic analyses of the umbilical cable in a deep-sea remotely operated vehicle (ROV) system. The presented formulation takes account of the geometric nonlinearities of large displacement, effects of axial load and bending stiffness for modeling of slack cables. The resulting nonlinear second-order governing equations are discretized spatially by the finite element method and solved temporally by the generalized- α implicit time integration algorithm, which is adapted to the case of varying coefficient matrices. The ability to consider three-dimensional union action of ocean current and ship heave motion upon the umbilical cable is the key feature of this analysis. The presented formulation is firstly validated, and then three numerical examples for the umbilical cable in a deep-sea ROV system are demonstrated and discussed, including the steady configurations only under the action of depth-dependent ocean current, the dynamic responses in the case of the only ship heave motion, and in the case of the combined action of the ship heave motion and ocean current.
Element Library for Three-Dimensional Stress Analysis by the Integrated Force Method
NASA Technical Reports Server (NTRS)
Kaljevic, Igor; Patnaik, Surya N.; Hopkins, Dale A.
1996-01-01
The Integrated Force Method, a recently developed method for analyzing structures, is extended in this paper to three-dimensional structural analysis. First, a general formulation is developed to generate the stress interpolation matrix in terms of complete polynomials of the required order. The formulation is based on definitions of the stress tensor components in term of stress functions. The stress functions are written as complete polynomials and substituted into expressions for stress components. Then elimination of the dependent coefficients leaves the stress components expressed as complete polynomials whose coefficients are defined as generalized independent forces. Such derived components of the stress tensor identically satisfy homogenous Navier equations of equilibrium. The resulting element matrices are invariant with respect to coordinate transformation and are free of spurious zero-energy modes. The formulation provides a rational way to calculate the exact number of independent forces necessary to arrive at an approximation of the required order for complete polynomials. The influence of reducing the number of independent forces on the accuracy of the response is also analyzed. The stress fields derived are used to develop a comprehensive finite element library for three-dimensional structural analysis by the Integrated Force Method. Both tetrahedral- and hexahedral-shaped elements capable of modeling arbitrary geometric configurations are developed. A number of examples with known analytical solutions are solved by using the developments presented herein. The results are in good agreement with the analytical solutions. The responses obtained with the Integrated Force Method are also compared with those generated by the standard displacement method. In most cases, the performance of the Integrated Force Method is better overall.
Macroscopic response in active nonlinear photonic crystals.
Alagappan, Gandhi; John, Sajeev; Li, Er Ping
2013-09-15
We derive macroscopic equations of motion for the slowly varying electric field amplitude in three-dimensional active nonlinear optical nanostructures. We show that the microscopic Maxwell equations and polarization dynamics can be simplified to a macroscopic one-dimensional problem in the direction of group velocity. For a three-level active material, we derive the steady-state equations for normal mode frequency, threshold pumping, nonlinear Bloch mode amplitude, and lasing in photonic crystals. Our analytical results accurately recapture the results of exact numerical methods.
KP Equation in a Three-Dimensional Unmagnetized Warm Dusty Plasma with Variable Dust Charge
NASA Astrophysics Data System (ADS)
El-Shorbagy, Kh. H.; Mahassen, Hania; El-Bendary, Atef Ahmed
2017-12-01
In this work, we investigate the propagation of three-dimensional nonlinear dust-acoustic and dust-Coulomb waves in an unmagnetized warm dusty plasma consisting of electrons, ions, and charged dust particles. The grain charge fluctuation is incorporated through the current balance equation. Using the perturbation method, a Kadomtsev-Petviashvili (KP) equation is obtained. It has been shown that the charge fluctuation would modify the wave structures, and the waves in such systems are unstable due to high-order long wave perturbations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lue Xing; Sun Kun; Wang Pan
In the framework of Bell-polynomial manipulations, under investigation hereby are three single-field bilinearizable equations: the (1+1)-dimensional shallow water wave model, Boiti-Leon-Manna-Pempinelli model, and (2+1)-dimensional Sawada-Kotera model. Based on the concept of scale invariance, a direct and unifying Bell-polynomial scheme is employed to achieve the Baecklund transformations and Lax pairs associated with those three soliton equations. Note that the Bell-polynomial expressions and Bell-polynomial-typed Baecklund transformations for those three soliton equations can be, respectively, cast into the bilinear equations and bilinear Baecklund transformations with symbolic computation. Consequently, it is also shown that the Bell-polynomial-typed Baecklund transformations can be linearized into the correspondingmore » Lax pairs.« less
Nonlinear response from transport theory and quantum field theory at finite temperature
NASA Astrophysics Data System (ADS)
Carrington, M. E.; Defu, Hou; Kobes, R.
2001-07-01
We study the nonlinear response in weakly coupled hot φ4 theory. We obtain an expression for a quadratic shear viscous response coefficient using two different formalisms: transport theory and response theory. The transport theory calculation is done by assuming a local equilibrium form for the distribution function and expanding in the gradient of the local four dimensional velocity field. By performing a Chapman-Enskog expansion on the Boltzmann equation we obtain a hierarchy of equations for the coefficients of the expanded distribution function. To do the response theory calculation we use Zubarev's techniques in nonequilibrium statistical mechanics to derive a generalized Kubo formula. Using this formula allows us to obtain the quadratic shear viscous response from the three-point retarded Green function of the viscous shear stress tensor. We use the closed time path formalism of real time finite temperature field theory to show that this three-point function can be calculated by writing it as an integral equation involving a four-point vertex. This four-point vertex can in turn be obtained from an integral equation which represents the resummation of an infinite series of ladder and extended-ladder diagrams. The connection between transport theory and response theory is made when we show that the integral equation for this four-point vertex has exactly the same form as the equation obtained from the Boltzmann equation for the coefficient of the quadratic term of the gradient expansion of the distribution function. We conclude that calculating the quadratic shear viscous response using transport theory and keeping terms that are quadratic in the gradient of the velocity field in the Chapman-Enskog expansion of the Boltzmann equation is equivalent to calculating the quadratic shear viscous response from response theory using the next-to-linear response Kubo formula, with a vertex given by an infinite resummation of ladder and extended-ladder diagrams.
NASA Technical Reports Server (NTRS)
Baker, A. J.; Manhardt, P. D.; Orzechowski, J. A.
1979-01-01
A numerical solution algorithm is established for prediction of subsonic turbulent three-dimensional flows in aerodynamic configuration juncture regions. A turbulence closure model is established using the complete Reynolds stress. Pressure coupling is accomplished using the concepts of complementary and particular solutions to a Poisson equation. Specifications for data input juncture geometry modification are presented.
Development and Verification of the Charring Ablating Thermal Protection Implicit System Solver
NASA Technical Reports Server (NTRS)
Amar, Adam J.; Calvert, Nathan D.; Kirk, Benjamin S.
2010-01-01
The development and verification of the Charring Ablating Thermal Protection Implicit System Solver is presented. This work concentrates on the derivation and verification of the stationary grid terms in the equations that govern three-dimensional heat and mass transfer for charring thermal protection systems including pyrolysis gas flow through the porous char layer. The governing equations are discretized according to the Galerkin finite element method with first and second order implicit time integrators. The governing equations are fully coupled and are solved in parallel via Newton's method, while the fully implicit linear system is solved with the Generalized Minimal Residual method. Verification results from exact solutions and the Method of Manufactured Solutions are presented to show spatial and temporal orders of accuracy as well as nonlinear convergence rates.
Development and Verification of the Charring, Ablating Thermal Protection Implicit System Simulator
NASA Technical Reports Server (NTRS)
Amar, Adam J.; Calvert, Nathan; Kirk, Benjamin S.
2011-01-01
The development and verification of the Charring Ablating Thermal Protection Implicit System Solver (CATPISS) is presented. This work concentrates on the derivation and verification of the stationary grid terms in the equations that govern three-dimensional heat and mass transfer for charring thermal protection systems including pyrolysis gas flow through the porous char layer. The governing equations are discretized according to the Galerkin finite element method (FEM) with first and second order fully implicit time integrators. The governing equations are fully coupled and are solved in parallel via Newton s method, while the linear system is solved via the Generalized Minimum Residual method (GMRES). Verification results from exact solutions and Method of Manufactured Solutions (MMS) are presented to show spatial and temporal orders of accuracy as well as nonlinear convergence rates.
Shape reanalysis and sensitivities utilizing preconditioned iterative boundary solvers
NASA Technical Reports Server (NTRS)
Guru Prasad, K.; Kane, J. H.
1992-01-01
The computational advantages associated with the utilization of preconditined iterative equation solvers are quantified for the reanalysis of perturbed shapes using continuum structural boundary element analysis (BEA). Both single- and multi-zone three-dimensional problems are examined. Significant reductions in computer time are obtained by making use of previously computed solution vectors and preconditioners in subsequent analyses. The effectiveness of this technique is demonstrated for the computation of shape response sensitivities required in shape optimization. Computer times and accuracies achieved using the preconditioned iterative solvers are compared with those obtained via direct solvers and implicit differentiation of the boundary integral equations. It is concluded that this approach employing preconditioned iterative equation solvers in reanalysis and sensitivity analysis can be competitive with if not superior to those involving direct solvers.
An Alternative Treatment of Heat Flow for Charge Transport in Semiconductor Devices (Postprint)
2010-07-01
is tantamount to treating them as ideal gases. A three-dimensional ideal Fermi gas is spherically symmetric in momentum space, and its distribution in...the first mo- ment of the Boltzmann equation using the momentum relax- ation time and effective mass approximations.13 Neglecting any magnetic field and...where the integral is over all momentum vectors k, v is electron velocity, k is the momentum relaxation time, and kf denotes the gradient in momentum
Body and Surface Wave Modeling of Observed Seismic Events. Part 2.
1987-05-12
is based on expand - ing the complete three dimensional solution of the wave equation expressed in cylindrical S coordinates in an asymptotic form which...using line source (2-D) theory. It is based on expand - ing the complete three dimensional solution of the wave equation expressed in cylindrical...generating synthetic point-source seismograms for shear dislocation sources using line source (2-D) theory. It is based on expanding the complete three
NASA Technical Reports Server (NTRS)
Elmiligui, Alaa; Cannizzaro, Frank; Melson, N. D.
1991-01-01
A general multiblock method for the solution of the three-dimensional, unsteady, compressible, thin-layer Navier-Stokes equations has been developed. The convective and pressure terms are spatially discretized using Roe's flux differencing technique while the viscous terms are centrally differenced. An explicit Runge-Kutta method is used to advance the solution in time. Local time stepping, adaptive implicit residual smoothing, and the Full Approximation Storage (FAS) multigrid scheme are added to the explicit time stepping scheme to accelerate convergence to steady state. Results for three-dimensional test cases are presented and discussed.
Equation for the Nakanishi Weight Function Using the Inverse Stieltjes Transform
NASA Astrophysics Data System (ADS)
Karmanov, V. A.; Carbonell, J.; Frederico, T.
2018-05-01
The bound state Bethe-Salpeter amplitude was expressed by Nakanishi in terms of a smooth weight function g. By using the generalized Stieltjes transform, we derive an integral equation for the Nakanishi function g for a bound state case. It has the standard form g= \\hat{V} g, where \\hat{V} is a two-dimensional integral operator. The prescription for obtaining the kernel V starting with the kernel K of the Bethe-Salpeter equation is given.
Self-Consistent Sources for Integrable Equations Via Deformations of Binary Darboux Transformations
NASA Astrophysics Data System (ADS)
Chvartatskyi, Oleksandr; Dimakis, Aristophanes; Müller-Hoissen, Folkert
2016-08-01
We reveal the origin and structure of self-consistent source extensions of integrable equations from the perspective of binary Darboux transformations. They arise via a deformation of the potential that is central in this method. As examples, we obtain in particular matrix versions of self-consistent source extensions of the KdV, Boussinesq, sine-Gordon, nonlinear Schrödinger, KP, Davey-Stewartson, two-dimensional Toda lattice and discrete KP equation. We also recover a (2+1)-dimensional version of the Yajima-Oikawa system from a deformation of the pKP hierarchy. By construction, these systems are accompanied by a hetero binary Darboux transformation, which generates solutions of such a system from a solution of the source-free system and additionally solutions of an associated linear system and its adjoint. The essence of all this is encoded in universal equations in the framework of bidifferential calculus.
A three-dimensional method-of-characteristics solute-transport model (MOC3D)
Konikow, Leonard F.; Goode, D.J.; Hornberger, G.Z.
1996-01-01
This report presents a model, MOC3D, that simulates three-dimensional solute transport in flowing ground water. The model computes changes in concentration of a single dissolved chemical constituent over time that are caused by advective transport, hydrodynamic dispersion (including both mechanical dispersion and diffusion), mixing (or dilution) from fluid sources, and mathematically simple chemical reactions (including linear sorption, which is represented by a retardation factor, and decay). The transport model is integrated with MODFLOW, a three-dimensional ground-water flow model that uses implicit finite-difference methods to solve the transient flow equation. MOC3D uses the method of characteristics to solve the transport equation on the basis of the hydraulic gradients computed with MODFLOW for a given time step. This implementation of the method of characteristics uses particle tracking to represent advective transport and explicit finite-difference methods to calculate the effects of other processes. However, the explicit procedure has several stability criteria that may limit the size of time increments for solving the transport equation; these are automatically determined by the program. For improved efficiency, the user can apply MOC3D to a subgrid of the primary MODFLOW grid that is used to solve the flow equation. However, the transport subgrid must have uniform grid spacing along rows and columns. The report includes a description of the theoretical basis of the model, a detailed description of input requirements and output options, and the results of model testing and evaluation. The model was evaluated for several problems for which exact analytical solutions are available and by benchmarking against other numerical codes for selected complex problems for which no exact solutions are available. These test results indicate that the model is very accurate for a wide range of conditions and yields minimal numerical dispersion for advection-dominated problems. Mass-balance errors are generally less than 10 percent, and tend to decrease and stabilize with time.
NASA Technical Reports Server (NTRS)
Haj-Ali, Rami; Aboudi, Jacob
2012-01-01
The recent two-dimensional (2-D) parametric formulation of the high fidelity generalized method of cells (HFGMC) reported by the authors is generalized for the micromechanical analysis of three-dimensional (3-D) multiphase composites with periodic microstructure. Arbitrary hexahedral subcell geometry is developed to discretize a triply periodic repeating unit-cell (RUC). Linear parametric-geometric mapping is employed to transform the arbitrary hexahedral subcell shapes from the physical space to an auxiliary orthogonal shape, where a complete quadratic displacement expansion is performed. Previously in the 2-D case, additional three equations are needed in the form of average moments of equilibrium as a result of the inclusion of the bilinear terms. However, the present 3-D parametric HFGMC formulation eliminates the need for such additional equations. This is achieved by expressing the coefficients of the full quadratic polynomial expansion of the subcell in terms of the side or face average-displacement vectors. The 2-D parametric and orthogonal HFGMC are special cases of the present 3-D formulation. The continuity of displacements and tractions, as well as the equilibrium equations, are imposed in the average (integral) sense as in the original HFGMC formulation. Each of the six sides (faces) of a subcell has an independent average displacement micro-variable vector which forms an energy-conjugate pair with the transformed average-traction vector. This allows generating symmetric stiffness matrices along with internal resisting vectors for the subcells which enhances the computational efficiency. The established new parametric 3-D HFGMC equations are formulated and solution implementations are addressed. Several applications for triply periodic 3-D composites are presented to demonstrate the general capability and varsity of the present parametric HFGMC method for refined micromechanical analysis by generating the spatial distributions of local stress fields. These applications include triply periodic composites with inclusions in the form of a cavity, spherical inclusion, ellipsoidal inclusion, discontinuous aligned short fiber. A 3-D repeating unit-cell for foam material composite is simulated.
Investigation of Volumetric Sources in Airframe Noise Simulations
NASA Technical Reports Server (NTRS)
Casper, Jay H.; Lockard, David P.; Khorrami, Mehdi R.; Streett, Craig L.
2004-01-01
Hybrid methods for the prediction of airframe noise involve a simulation of the near field flow that is used as input to an acoustic propagation formula. The acoustic formulations discussed herein are those based on the Ffowcs Williams and Hawkings equation. Some questions have arisen in the published literature in regard to an apparently significant dependence of radiated noise predictions on the location of the integration surface used in the solution of the Ffowcs Williams and Hawkings equation. These differences in radiated noise levels are most pronounced between solid-body surface integrals and off-body, permeable surface integrals. Such differences suggest that either a non-negligible volumetric source is contributing to the total radiation or the input flow simulation is suspect. The focus of the current work is the issue of internal consistency of the flow calculations that are currently used as input to airframe noise predictions. The case study for this research is a computer simulation for a three-element, high-lift wing profile during landing conditions. The noise radiated from this flow is predicted by a two-dimensional, frequency-domain formulation of the Ffowcs Williams and Hawkings equation. Radiated sound from volumetric sources is assessed by comparison of a permeable surface integration with the sum of a solid-body surface integral and a volume integral. The separate noise predictions are found in good agreement.
Large eddy simulation of incompressible turbulent channel flow
NASA Technical Reports Server (NTRS)
Moin, P.; Reynolds, W. C.; Ferziger, J. H.
1978-01-01
The three-dimensional, time-dependent primitive equations of motion were numerically integrated for the case of turbulent channel flow. A partially implicit numerical method was developed. An important feature of this scheme is that the equation of continuity is solved directly. The residual field motions were simulated through an eddy viscosity model, while the large-scale field was obtained directly from the solution of the governing equations. An important portion of the initial velocity field was obtained from the solution of the linearized Navier-Stokes equations. The pseudospectral method was used for numerical differentiation in the horizontal directions, and second-order finite-difference schemes were used in the direction normal to the walls. The large eddy simulation technique is capable of reproducing some of the important features of wall-bounded turbulent flows. The resolvable portions of the root-mean square wall pressure fluctuations, pressure velocity-gradient correlations, and velocity pressure-gradient correlations are documented.
Cosmological applications of singular hypersurfaces in general relativity
NASA Astrophysics Data System (ADS)
Laguna-Castillo, Pablo
Three applications to cosmology of surface layers, based on Israel's formalism of singular hypersurfaces and thin shells in general relativity, are presented. Einstein's field equations are analyzed in the presence of a bubble nucleated in vacuum phase transitions within the context of the old inflationary universe scenario. The evolution of a bubble with vanishing surface energy density is studied. It is found that such bubbles lead to a worm-hole matching. Next, the observable four-dimensional universe is considered as a singular hypersurface of discontinuity embedded in a five-dimensional Kaluza-Klein cosmology. It is possible to rewrite the projected five-dimensional Einstein equations on the surface layer in a similar way to the four-dimensional Robertson-Walker cosmology equations. Next, a model is described for an infinite-length, straight U(1) cosmic string as a cylindrical, singular shell enclosing a region of false vacuum. A set of equations is introduced which are required to develop a three-dimensional computer code whose purpose is to study the process of intercommuting cosmic strings with the inclusion of gravitational effects. The outcome is evolution and constraint equations for the gravitational, scalar and gauge field of two initially separated, perpendicular, cosmic strings.
The Numerical Analysis of a Turbulent Compressible Jet. Degree awarded by Ohio State Univ., 2000
NASA Technical Reports Server (NTRS)
DeBonis, James R.
2001-01-01
A numerical method to simulate high Reynolds number jet flows was formulated and applied to gain a better understanding of the flow physics. Large-eddy simulation was chosen as the most promising approach to model the turbulent structures due to its compromise between accuracy and computational expense. The filtered Navier-Stokes equations were developed including a total energy form of the energy equation. Subgrid scale models for the momentum and energy equations were adapted from compressible forms of Smagorinsky's original model. The effect of using disparate temporal and spatial accuracy in a numerical scheme was discovered through one-dimensional model problems and a new uniformly fourth-order accurate numerical method was developed. Results from two- and three-dimensional validation exercises show that the code accurately reproduces both viscous and inviscid flows. Numerous axisymmetric jet simulations were performed to investigate the effect of grid resolution, numerical scheme, exit boundary conditions and subgrid scale modeling on the solution and the results were used to guide the three-dimensional calculations. Three-dimensional calculations of a Mach 1.4 jet showed that this LES simulation accurately captures the physics of the turbulent flow. The agreement with experimental data was relatively good and is much better than results in the current literature. Turbulent intensities indicate that the turbulent structures at this level of modeling are not isotropic and this information could lend itself to the development of improved subgrid scale models for LES and turbulence models for RANS simulations. A two point correlation technique was used to quantify the turbulent structures. Two point space correlations were used to obtain a measure of the integral length scale, which proved to be approximately 1/2 D(sub j). Two point space-time correlations were used to obtain the convection velocity for the turbulent structures. This velocity ranged from 0.57 to 0.71 U(sub j).
Renormalizable Quantum Field Theories in the Large -n Limit
NASA Astrophysics Data System (ADS)
Guruswamy, Sathya
1995-01-01
In this thesis, we study two examples of renormalizable quantum field theories in the large-N limit. Chapter one is a general introduction describing physical motivations for studying such theories. In chapter two, we describe the large-N method in field theory and discuss the pioneering work of 't Hooft in large-N two-dimensional Quantum Chromodynamics (QCD). In chapter three we study a spherically symmetric approximation to four-dimensional QCD ('spherical QCD'). We recast spherical QCD into a bilocal (constrained) theory of hadrons which in the large-N limit is equivalent to large-N spherical QCD for all energy scales. The linear approximation to this theory gives an eigenvalue equation which is the analogue of the well-known 't Hooft's integral equation in two dimensions. This eigenvalue equation is a scale invariant one and therefore leads to divergences in the theory. We give a non-perturbative renormalization prescription to cure this and obtain a beta function which shows that large-N spherical QCD is asymptotically free. In chapter four, we review the essentials of conformal field theories in two and higher dimensions, particularly in the context of critical phenomena. In chapter five, we study the O(N) non-linear sigma model on three-dimensional curved spaces in the large-N limit and show that there is a non-trivial ultraviolet stable critical point at which it becomes conformally invariant. We study this model at this critical point on examples of spaces of constant curvature and compute the mass gap in the theory, the free energy density (which turns out to be a universal function of the information contained in the geometry of the manifold) and the two-point correlation functions. The results we get give an indication that this model is an example of a three-dimensional analogue of a rational conformal field theory. A conclusion with a brief summary and remarks follows at the end.
Killing vector fields in three dimensions: a method to solve massive gravity field equations
NASA Astrophysics Data System (ADS)
Gürses, Metin
2010-10-01
Killing vector fields in three dimensions play an important role in the construction of the related spacetime geometry. In this work we show that when a three-dimensional geometry admits a Killing vector field then the Ricci tensor of the geometry is determined in terms of the Killing vector field and its scalars. In this way we can generate all products and covariant derivatives at any order of the Ricci tensor. Using this property we give ways to solve the field equations of topologically massive gravity (TMG) and new massive gravity (NMG) introduced recently. In particular when the scalars of the Killing vector field (timelike, spacelike and null cases) are constants then all three-dimensional symmetric tensors of the geometry, the Ricci and Einstein tensors, their covariant derivatives at all orders, and their products of all orders are completely determined by the Killing vector field and the metric. Hence, the corresponding three-dimensional metrics are strong candidates for solving all higher derivative gravitational field equations in three dimensions.
NASA Astrophysics Data System (ADS)
El-Zein, Abbas; Carter, John P.; Airey, David W.
2006-06-01
A three-dimensional finite-element model of contaminant migration in fissured clays or contaminated sand which includes multiple sources of non-equilibrium processes is proposed. The conceptual framework can accommodate a regular network of fissures in 1D, 2D or 3D and immobile solutions in the macro-pores of aggregated topsoils, as well as non-equilibrium sorption. A Galerkin weighted-residual statement for the three-dimensional form of the equations in the Laplace domain is formulated. Equations are discretized using linear and quadratic prism elements. The system of algebraic equations is solved in the Laplace domain and solution is inverted to the time domain numerically. The model is validated and its scope is illustrated through the analysis of three problems: a waste repository deeply buried in fissured clay, a storage tank leaking into sand and a sanitary landfill leaching into fissured clay over a sand aquifer.
Relativistic collisions as Yang-Baxter maps
NASA Astrophysics Data System (ADS)
Kouloukas, Theodoros E.
2017-10-01
We prove that one-dimensional elastic relativistic collisions satisfy the set-theoretical Yang-Baxter equation. The corresponding collision maps are symplectic and admit a Lax representation. Furthermore, they can be considered as reductions of a higher dimensional integrable Yang-Baxter map on an invariant manifold. In this framework, we study the integrability of transfer maps that represent particular periodic sequences of collisions.
NASA Astrophysics Data System (ADS)
Braun, Stefan; Kluwick, Alfred
2004-09-01
Earlier investigations of steady two-dimensional marginally separated laminar boundary layers have shown that the non-dimensional wall shear (or equivalently the negative non-dimensional perturbation displacement thickness) is governed by a nonlinear integro-differential equation. This equation contains a single controlling parameter Gamma characterizing, for example, the angle of attack of a slender airfoil and has the important property that (real) solutions exist up to a critical value Gamma_c of Gamma only. Here we investigate three-dimensional unsteady perturbations of an incompressible steady two-dimensional marginally separated laminar boundary layer with special emphasis on the flow behaviour near Gamma_c. Specifically, it is shown that the integro differential equation which governs these disturbances if Gamma_c {-} Gamma {=} O(1) reduces to a nonlinear partial differential equation known as the Fisher equation as Gamma approaches the critical value Gamma_c. This in turn leads to a significant simplification of the problem allowing, among other things, a systematic study of devices used in boundary-layer control and an analytical investigation of the conditions leading to the formation of finite-time singularities which have been observed in earlier numerical studies of unsteady two-dimensional and three-dimensional flows in the vicinity of a line of symmetry. Also, it is found that it is possible to construct exact solutions which describe waves of constant form travelling in the spanwise direction. These waves may contain singularities which can be interpreted as vortex sheets. The existence of these solutions strongly suggests that solutions of the Fisher equation which lead to finite-time blow-up may be extended beyond the blow-up time, thereby generating moving singularities which can be interpreted as vortical structures qualitatively similar to those emerging in direct numerical simulations of near critical (i.e. transitional) laminar separation bubbles. This is supported by asymptotic analysis.
Minimal parameter solution of the orthogonal matrix differential equation
NASA Technical Reports Server (NTRS)
Bar-Itzhack, Itzhack Y.; Markley, F. Landis
1990-01-01
As demonstrated in this work, all orthogonal matrices solve a first order differential equation. The straightforward solution of this equation requires n sup 2 integrations to obtain the element of the nth order matrix. There are, however, only n(n-1)/2 independent parameters which determine an orthogonal matrix. The questions of choosing them, finding their differential equation and expressing the orthogonal matrix in terms of these parameters are considered. Several possibilities which are based on attitude determination in three dimensions are examined. It is shown that not all 3-D methods have useful extensions to higher dimensions. It is also shown why the rate of change of the matrix elements, which are the elements of the angular rate vector in 3-D, are the elements of a tensor of the second rank (dyadic) in spaces other than three dimensional. It is proven that the 3-D Gibbs vector (or Cayley Parameters) are extendable to other dimensions. An algorithm is developed emplying the resulting parameters, which are termed Extended Rodrigues Parameters, and numerical results are presented of the application of the algorithm to a fourth order matrix.
Minimal parameter solution of the orthogonal matrix differential equation
NASA Technical Reports Server (NTRS)
Baritzhack, Itzhack Y.; Markley, F. Landis
1988-01-01
As demonstrated in this work, all orthogonal matrices solve a first order differential equation. The straightforward solution of this equation requires n sup 2 integrations to obtain the element of the nth order matrix. There are, however, only n(n-1)/2 independent parameters which determine an orthogonal matrix. The questions of choosing them, finding their differential equation and expressing the orthogonal matrix in terms of these parameters are considered. Several possibilities which are based on attitude determination in three dimensions are examined. It is shown that not all 3-D methods have useful extensions to higher dimensions. It is also shown why the rate of change of the matrix elements, which are the elements of the angular rate vector in 3-D, are the elements of a tensor of the second rank (dyadic) in spaces other than three dimensional. It is proven that the 3-D Gibbs vector (or Cayley Parameters) are extendable to other dimensions. An algorithm is developed employing the resulting parameters, which are termed Extended Rodrigues Parameters, and numerical results are presented of the application of the algorithm to a fourth order matrix.
A vectorized algorithm for 3D dynamics of a tethered satellite
NASA Technical Reports Server (NTRS)
Wilson, Howard B.
1989-01-01
Equations of motion characterizing the three dimensional motion of a tethered satellite during the retrieval phase are studied. The mathematical model involves an arbitrary number of point masses connected by weightless cords. Motion occurs in a gravity gradient field. The formulation presented accounts for general functions describing support point motion, rate of tether retrieval, and arbitrary forces applied to the point masses. The matrix oriented program language MATLAB is used to produce an efficient vectorized formulation for computing natural frequencies and mode shapes for small oscillations about the static equilibrium configuration; and for integrating the nonlinear differential equations governing large amplitude motions. An example of time response pertaining to the skip rope effect is investigated.
Analysis and testing of numerical formulas for the initial value problem
NASA Technical Reports Server (NTRS)
Brown, R. L.; Kovach, K. R.; Popyack, J. L.
1980-01-01
Three computer programs for evaluating and testing numerical integration formulas used with fixed stepsize programs to solve initial value systems of ordinary differential equations are described. A program written in PASCAL SERIES, takes as input the differential equations and produces a FORTRAN subroutine for the derivatives of the system and for computing the actual solution through recursive power series techniques. Both of these are used by STAN, a FORTRAN program that interactively displays a discrete analog of the Liapunov stability region of any two dimensional subspace of the system. The derivatives may be used by CLMP, a FORTRAN program, to test the fixed stepsize formula against a good numerical result and interactively display the solutions.
An Implicit Characteristic Based Method for Electromagnetics
NASA Technical Reports Server (NTRS)
Beggs, John H.; Briley, W. Roger
2001-01-01
An implicit characteristic-based approach for numerical solution of Maxwell's time-dependent curl equations in flux conservative form is introduced. This method combines a characteristic based finite difference spatial approximation with an implicit lower-upper approximate factorization (LU/AF) time integration scheme. This approach is advantageous for three-dimensional applications because the characteristic differencing enables a two-factor approximate factorization that retains its unconditional stability in three space dimensions, and it does not require solution of tridiagonal systems. Results are given both for a Fourier analysis of stability, damping and dispersion properties, and for one-dimensional model problems involving propagation and scattering for free space and dielectric materials using both uniform and nonuniform grids. The explicit Finite Difference Time Domain Method (FDTD) algorithm is used as a convenient reference algorithm for comparison. The one-dimensional results indicate that for low frequency problems on a highly resolved uniform or nonuniform grid, this LU/AF algorithm can produce accurate solutions at Courant numbers significantly greater than one, with a corresponding improvement in efficiency for simulating a given period of time. This approach appears promising for development of dispersion optimized LU/AF schemes for three dimensional applications.
Computation of three-dimensional three-phase flow of carbon dioxide using a high-order WENO scheme
NASA Astrophysics Data System (ADS)
Gjennestad, Magnus Aa.; Gruber, Andrea; Lervåg, Karl Yngve; Johansen, Øyvind; Ervik, Åsmund; Hammer, Morten; Munkejord, Svend Tollak
2017-11-01
We have developed a high-order numerical method for the 3D simulation of viscous and inviscid multiphase flow described by a homogeneous equilibrium model and a general equation of state. Here we focus on single-phase, two-phase (gas-liquid or gas-solid) and three-phase (gas-liquid-solid) flow of CO2 whose thermodynamic properties are calculated using the Span-Wagner reference equation of state. The governing equations are spatially discretized on a uniform Cartesian grid using the finite-volume method with a fifth-order weighted essentially non-oscillatory (WENO) scheme and the robust first-order centered (FORCE) flux. The solution is integrated in time using a third-order strong-stability-preserving Runge-Kutta method. We demonstrate close to fifth-order convergence for advection-diffusion and for smooth single- and two-phase flows. Quantitative agreement with experimental data is obtained for a direct numerical simulation of an air jet flowing from a rectangular nozzle. Quantitative agreement is also obtained for the shape and dimensions of the barrel shock in two highly underexpanded CO2 jets.
Latent Heating Retrieval from TRMM Observations Using a Simplified Thermodynamic Model
NASA Technical Reports Server (NTRS)
Grecu, Mircea; Olson, William S.
2003-01-01
A procedure for the retrieval of hydrometeor latent heating from TRMM active and passive observations is presented. The procedure is based on current methods for estimating multiple-species hydrometeor profiles from TRMM observations. The species include: cloud water, cloud ice, rain, and graupel (or snow). A three-dimensional wind field is prescribed based on the retrieved hydrometeor profiles, and, assuming a steady-state, the sources and sinks in the hydrometeor conservation equations are determined. Then, the momentum and thermodynamic equations, in which the heating and cooling are derived from the hydrometeor sources and sinks, are integrated one step forward in time. The hydrometeor sources and sinks are reevaluated based on the new wind field, and the momentum and thermodynamic equations are integrated one more step. The reevalution-integration process is repeated until a steady state is reached. The procedure is tested using cloud model simulations. Cloud-model derived fields are used to synthesize TRMM observations, from which hydrometeor profiles are derived. The procedure is applied to the retrieved hydrometeor profiles, and the latent heating estimates are compared to the actual latent heating produced by the cloud model. Examples of procedure's applications to real TRMM data are also provided.
One-dimensional transport equation models for sound energy propagation in long spaces: theory.
Jing, Yun; Larsen, Edward W; Xiang, Ning
2010-04-01
In this paper, a three-dimensional transport equation model is developed to describe the sound energy propagation in a long space. Then this model is reduced to a one-dimensional model by approximating the solution using the method of weighted residuals. The one-dimensional transport equation model directly describes the sound energy propagation in the "long" dimension and deals with the sound energy in the "short" dimensions by prescribed functions. Also, the one-dimensional model consists of a coupled set of N transport equations. Only N=1 and N=2 are discussed in this paper. For larger N, although the accuracy could be improved, the calculation time is expected to significantly increase, which diminishes the advantage of the model in terms of its computational efficiency.
NASA Astrophysics Data System (ADS)
Scholle, M.; Gaskell, P. H.; Marner, F.
2018-04-01
An exact first integral of the full, unsteady, incompressible Navier-Stokes equations is achieved in its most general form via the introduction of a tensor potential and parallels drawn with Maxwell's theory. Subsequent to this gauge freedoms are explored, showing that when used astutely they lead to a favourable reduction in the complexity of the associated equation set and number of unknowns, following which the inviscid limit case is discussed. Finally, it is shown how a change in gauge criteria enables a variational principle for steady viscous flow to be constructed having a self-adjoint form. Use of the new formulation is demonstrated, for different gauge variants of the first integral as the starting point, through the solution of a hierarchy of classical three-dimensional flow problems, two of which are tractable analytically, the third being solved numerically. In all cases the results obtained are found to be in excellent accord with corresponding solutions available in the open literature. Concurrently, the prescription of appropriate commonly occurring physical and necessary auxiliary boundary conditions, incorporating for completeness the derivation of a first integral of the dynamic boundary condition at a free surface, is established, together with how the general approach can be advantageously reformulated for application in solving unsteady flow problems with periodic boundaries.
NASA Technical Reports Server (NTRS)
Elbanna, Hesham M.; Carlson, Leland A.
1992-01-01
The quasi-analytical approach is applied to the three-dimensional full potential equation to compute wing aerodynamic sensitivity coefficients in the transonic regime. Symbolic manipulation is used to reduce the effort associated with obtaining the sensitivity equations, and the large sensitivity system is solved using 'state of the art' routines. Results are compared to those obtained by the direct finite difference approach and both methods are evaluated to determine their computational accuracy and efficiency. The quasi-analytical approach is shown to be accurate and efficient for large aerodynamic systems.
The method of lines in three dimensional fracture mechanics
NASA Technical Reports Server (NTRS)
Gyekenyesi, J.; Berke, L.
1980-01-01
A review of recent developments in the calculation of design parameters for fracture mechanics by the method of lines (MOL) is presented. Three dimensional elastic and elasto-plastic formulations are examined and results from previous and current research activities are reported. The application of MOL to the appropriate partial differential equations of equilibrium leads to coupled sets of simultaneous ordinary differential equations. Solutions of these equations are obtained by the Peano-Baker and by the recurrance relations methods. The advantages and limitations of both solution methods from the computational standpoint are summarized.
Lin, Ying-Tsong; Collis, Jon M; Duda, Timothy F
2012-11-01
An alternating direction implicit (ADI) three-dimensional fluid parabolic equation solution method with enhanced accuracy is presented. The method uses a square-root Helmholtz operator splitting algorithm that retains cross-multiplied operator terms that have been previously neglected. With these higher-order cross terms, the valid angular range of the parabolic equation solution is improved. The method is tested for accuracy against an image solution in an idealized wedge problem. Computational efficiency improvements resulting from the ADI discretization are also discussed.
NASA Technical Reports Server (NTRS)
Stein, M.; Stein, P. A.
1978-01-01
Approximate solutions for three nonlinear orthotropic plate problems are presented: (1) a thick plate attached to a pad having nonlinear material properties which, in turn, is attached to a substructure which is then deformed; (2) a long plate loaded in inplane longitudinal compression beyond its buckling load; and (3) a long plate loaded in inplane shear beyond its buckling load. For all three problems, the two dimensional plate equations are reduced to one dimensional equations in the y-direction by using a one dimensional trigonometric approximation in the x-direction. Each problem uses different trigonometric terms. Solutions are obtained using an existing algorithm for simultaneous, first order, nonlinear, ordinary differential equations subject to two point boundary conditions. Ordinary differential equations are derived to determine the variable coefficients of the trigonometric terms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, R.
This report documents the initial progress on the reduced-order flow model developments in SAM for thermal stratification and mixing modeling. Two different modeling approaches are pursued. The first one is based on one-dimensional fluid equations with additional terms accounting for the thermal mixing from both flow circulations and turbulent mixing. The second approach is based on three-dimensional coarse-grid CFD approach, in which the full three-dimensional fluid conservation equations are modeled with closure models to account for the effects of turbulence.
On high-order perturbative calculations at finite density
Ghisoiu, Ioan; Gorda, Tyler; Kurkela, Aleksi; ...
2016-12-01
We discuss the prospects of performing high-order perturbative calculations in systems characterized by a vanishing temperature but finite density. In particular, we show that the determination of generic Feynman integrals containing fermionic chemical potentials can be reduced to the evaluation of three-dimensional phase space integrals over vacuum on-shell amplitudes — aresult reminiscent of a previously proposed “naive real-time formalism” for vacuum diagrams. Applications of these rules are discussed in the context of the thermodynamics of cold and dense QCD, where it is argued that they facilitate an extension of the Equation of State of cold quark matter to higher perturbativemore » orders.« less
Accurate D-bar Reconstructions of Conductivity Images Based on a Method of Moment with Sinc Basis.
Abbasi, Mahdi
2014-01-01
Planar D-bar integral equation is one of the inverse scattering solution methods for complex problems including inverse conductivity considered in applications such as Electrical impedance tomography (EIT). Recently two different methodologies are considered for the numerical solution of D-bar integrals equation, namely product integrals and multigrid. The first one involves high computational burden and the other one suffers from low convergence rate (CR). In this paper, a novel high speed moment method based using the sinc basis is introduced to solve the two-dimensional D-bar integral equation. In this method, all functions within D-bar integral equation are first expanded using the sinc basis functions. Then, the orthogonal properties of their products dissolve the integral operator of the D-bar equation and results a discrete convolution equation. That is, the new moment method leads to the equation solution without direct computation of the D-bar integral. The resulted discrete convolution equation maybe adapted to a suitable structure to be solved using fast Fourier transform. This allows us to reduce the order of computational complexity to as low as O (N (2)log N). Simulation results on solving D-bar equations arising in EIT problem show that the proposed method is accurate with an ultra-linear CR.
Projection of angular momentum via linear algebra
Johnson, Calvin W.; O'Mara, Kevin D.
2017-12-01
Projection of many-body states with good angular momentum from an initial state is usually accomplished by a three-dimensional integral. Here, we show how projection can instead be done by solving a straightforward system of linear equations. We demonstrate the method and give sample applications tomore » $$^{48}$$Cr and $$^{60}$$Fe in the $pf$ shell. This new projection scheme, which is competitive against the standard numerical quadrature, should also be applicable to other quantum numbers such as isospin and particle number.« less
Projection of angular momentum via linear algebra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Calvin W.; O'Mara, Kevin D.
Projection of many-body states with good angular momentum from an initial state is usually accomplished by a three-dimensional integral. Here, we show how projection can instead be done by solving a straightforward system of linear equations. We demonstrate the method and give sample applications tomore » $$^{48}$$Cr and $$^{60}$$Fe in the $pf$ shell. This new projection scheme, which is competitive against the standard numerical quadrature, should also be applicable to other quantum numbers such as isospin and particle number.« less
NASA Astrophysics Data System (ADS)
Cajiao Vélez, F.; Kamiński, J. Z.; Krajewska, K.
2018-04-01
High-energy photoionization driven by short and circularly-polarized laser pulses is studied in the framework of the relativistic strong-field approximation. The saddle-point analysis of the integrals defining the probability amplitude is used to determine the general properties of the probability distributions. Additionally, an approximate solution to the saddle-point equation is derived. This leads to the concept of the three-dimensional spiral of life in momentum space, around which the ionization probability distribution is maximum. We demonstrate that such spiral is also obtained from a classical treatment.
Time-Domain Computation Of Electromagnetic Fields In MMICs
NASA Technical Reports Server (NTRS)
Lansing, Faiza S.; Rascoe, Daniel L.
1995-01-01
Maxwell's equations solved on three-dimensional, conformed orthogonal grids by finite-difference techniques. Method of computing frequency-dependent electrical parameters of monolithic microwave integrated circuit (MMIC) involves time-domain computation of propagation of electromagnetic field in response to excitation by single pulse at input terminal, followed by computation of Fourier transforms to obtain frequency-domain response from time-domain response. Parameters computed include electric and magnetic fields, voltages, currents, impedances, scattering parameters, and effective dielectric constants. Powerful and efficient means for analyzing performance of even complicated MMIC.
Projection of angular momentum via linear algebra
NASA Astrophysics Data System (ADS)
Johnson, Calvin W.; O'Mara, Kevin D.
2017-12-01
Projection of many-body states with good angular momentum from an initial state is usually accomplished by a three-dimensional integral. We show how projection can instead be done by solving a straightforward system of linear equations. We demonstrate the method and give sample applications to 48Cr and 60Fe in the p f shell. This new projection scheme, which is competitive against the standard numerical quadrature, should also be applicable to other quantum numbers such as isospin and particle number.
Electron kinematics in a plasma focus
NASA Technical Reports Server (NTRS)
Hohl, F.; Gary, S. P.
1977-01-01
The results of numerical integrations of the three-dimensional relativistic equations of motion of electrons subject to given electric and magnetic fields are presented. Fields due to two different models are studied: (1) a circular distribution of current filaments, and (2) a uniform current distribution; both the collapse and the current reduction phases are studied in each model. Decreasing current in the uniform current model yields 100 keV electrons accelerated toward the anode and, as for earlier ion computations, provides general agreement with experimental results.
NASA Technical Reports Server (NTRS)
Hohl, F.; Gary, S. P.
1974-01-01
Ion acceleration and heating in a plasma focus were investigated by the numerical integration of the three-dimensional equations of motion. The electric and magnetic fields given were derived from experimental data. The results obtained show that during the collapse phase of focus formation, ions are efficiently heated to temperatures of several keV. During the phase of rapid current reduction, ions are accelerated to large velocities in the axial direction. The results obtained with the model are in general agreement with experimental results.
Characteristic-based algorithms for flows in thermo-chemical nonequilibrium
NASA Technical Reports Server (NTRS)
Walters, Robert W.; Cinnella, Pasquale; Slack, David C.; Halt, David
1990-01-01
A generalized finite-rate chemistry algorithm with Steger-Warming, Van Leer, and Roe characteristic-based flux splittings is presented in three-dimensional generalized coordinates for the Navier-Stokes equations. Attention is placed on convergence to steady-state solutions with fully coupled chemistry. Time integration schemes including explicit m-stage Runge-Kutta, implicit approximate-factorization, relaxation and LU decomposition are investigated and compared in terms of residual reduction per unit of CPU time. Practical issues such as code vectorization and memory usage on modern supercomputers are discussed.
Three-dimensional multigrid algorithms for the flux-split Euler equations
NASA Technical Reports Server (NTRS)
Anderson, W. Kyle; Thomas, James L.; Whitfield, David L.
1988-01-01
The Full Approximation Scheme (FAS) multigrid method is applied to several implicit flux-split algorithms for solving the three-dimensional Euler equations in a body fitted coordinate system. Each of the splitting algorithms uses a variation of approximate factorization and is implemented in a finite volume formulation. The algorithms are all vectorizable with little or no scalar computation required. The flux vectors are split into upwind components using both the splittings of Steger-Warming and Van Leer. The stability and smoothing rate of each of the schemes are examined using a Fourier analysis of the complete system of equations. Results are presented for three-dimensional subsonic, transonic, and supersonic flows which demonstrate substantially improved convergence rates with the multigrid algorithm. The influence of using both a V-cycle and a W-cycle on the convergence is examined.
A comparison of two- and three-dimensional tracer transport within a stratospheric circulation model
NASA Technical Reports Server (NTRS)
Schneider, H.-R.; Geller, M. A.
1985-01-01
Use of the residual circulation for stratospheric tracer transport has been compared to a fully three-dimensional calculation. The wind fields used in this study were obtained from a global, semispectral, primitive equation model, extending from 10 to 100 km in altitude. Comparisons were done with a passive tracer and an ozone-like substance over a two-month period corresponding to a Northern Hemisphere winter. It was found that the use of the residual circulation can lead to errors in the tracer concentrations of about a factor of 2. The error is made up of two components. One is fluctuating with a period of approximately one month and reflects directly the wave transience that occurs on that time-scale. The second part is increasing steadily over the integration period and results from an overestimate of the vertical transport by the residual circulation. Furthermore, the equatorward and upward mixing that occurs with transport by the three-dimensional circulation at low latitudes is not well reproduced when the residual circulation is used.
Pseudo-invariants contributing to inverse energy cascades in three-dimensional turbulence
NASA Astrophysics Data System (ADS)
Rathmann, Nicholas M.; Ditlevsen, Peter D.
2017-05-01
Three-dimensional (3D) turbulence is characterized by a dual forward cascade of both kinetic energy and helicity, a second inviscid flow invariant besides energy, from the integral scale of motion to the viscous dissipative scale. In helical flows, however, such as strongly rotating flows with broken mirror symmetry, an inverse (reversed) energy cascade can be observed analogous to that of two-dimensional turbulence (2D) where enstrophy, a second positive-definite flow invariant, unlike helicity in 3D, effectively blocks the forward cascade of energy. In the spectral-helical decomposition of the Navier-Stokes equation, it has previously been shown that a subset of three-wave (triad) interactions conserve helicity in 3D in a fashion similar to enstrophy in 2D, thus leading to a 2D-like inverse energy cascade in 3D. In this work, we show, both theoretically and numerically, that an additional subset of interactions exist, conserving a new pseudo-invariant in addition to energy and helicity, which contributes either to a forward or an inverse energy cascade depending on the specific triad interaction geometry.
Dynamic analysis of geometrically non-linear three-dimensional beams under moving mass
NASA Astrophysics Data System (ADS)
Zupan, E.; Zupan, D.
2018-01-01
In this paper, we present a coupled dynamic analysis of a moving particle on a deformable three-dimensional frame. The presented numerical model is capable of considering arbitrary curved and twisted initial geometry of the beam and takes into account geometric non-linearity of the structure. Coupled with dynamic equations of the structure, the equations of moving particle are solved. The moving particle represents the dynamic load and varies the mass distribution of the structure and at the same time its path is adapting due to deformability of the structure. A coupled geometrically non-linear behaviour of beam and particle is studied. The equation of motion of the particle is added to the system of the beam dynamic equations and an additional unknown representing the coordinate of the curvilinear path of the particle is introduced. The specially designed finite-element formulation of the three-dimensional beam based on the weak form of consistency conditions is employed where only the boundary conditions are affected by the contact forces.
Efficient implementation of a 3-dimensional ADI method on the iPSC/860
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van der Wijngaart, R.F.
1993-12-31
A comparison is made between several domain decomposition strategies for the solution of three-dimensional partial differential equations on a MIMD distributed memory parallel computer. The grids used are structured, and the numerical algorithm is ADI. Important implementation issues regarding load balancing, storage requirements, network latency, and overlap of computations and communications are discussed. Results of the solution of the three-dimensional heat equation on the Intel iPSC/860 are presented for the three most viable methods. It is found that the Bruno-Cappello decomposition delivers optimal computational speed through an almost complete elimination of processor idle time, while providing good memory efficiency.
NASA Technical Reports Server (NTRS)
Van Dalsem, W. R.; Steger, J. L.
1985-01-01
A simple and computationally efficient algorithm for solving the unsteady three-dimensional boundary-layer equations in the time-accurate or relaxation mode is presented. Results of the new algorithm are shown to be in quantitative agreement with detailed experimental data for flow over a swept infinite wing. The separated flow over a 6:1 ellipsoid at angle of attack, and the transonic flow over a finite-wing with shock-induced 'mushroom' separation are also computed and compared with available experimental data. It is concluded that complex, separated, three-dimensional viscous layers can be economically and routinely computed using a time-relaxation boundary-layer algorithm.
Three-dimensional boundary layers approaching separation
NASA Technical Reports Server (NTRS)
Williams, J. C., III
1976-01-01
The theory of semi-similar solutions of the laminar boundary layer equations is applied to several flows in which the boundary layer approaches a three-dimensional separation line. The solutions obtained are used to deduce the nature of three-dimensional separation. It is shown that in these cases separation is of the "ordinary" type. A solution is also presented for a case in which a vortex is embedded within the three-dimensional boundary layer.
Three-Dimensional Electron Optics Model Developed for Traveling-Wave Tubes
NASA Technical Reports Server (NTRS)
Kory, Carol L.
2000-01-01
A three-dimensional traveling-wave tube (TWT) electron beam optics model including periodic permanent magnet (PPM) focusing has been developed at the NASA Glenn Research Center at Lewis Field. This accurate model allows a TWT designer to develop a focusing structure while reducing the expensive and time-consuming task of building the TWT and hot-testing it (with the electron beam). In addition, the model allows, for the first time, an investigation of the effect on TWT operation of the important azimuthally asymmetric features of the focusing stack. The TWT is a vacuum device that amplifies signals by transferring energy from an electron beam to a radiofrequency (RF) signal. A critically important component is the focusing structure, which keeps the electron beam from diverging and intercepting the RF slow wave circuit. Such an interception can result in excessive circuit heating and decreased efficiency, whereas excessive growth in the beam diameter can lead to backward wave oscillations and premature saturation, indicating a serious reduction in tube performance. The most commonly used focusing structure is the PPM stack, which consists of a sequence of cylindrical iron pole pieces and opposite-polarity magnets. Typically, two-dimensional electron optics codes are used in the design of magnetic focusing devices. In general, these codes track the beam from the gun downstream by solving equations of motion for the electron beam in static-electric and magnetic fields in an azimuthally symmetric structure. Because these two-dimensional codes cannot adequately simulate a number of important effects, the simulation code MAFIA (solution of Maxwell's equations by the Finite-Integration-Algorithm) was used at Glenn to develop a three-dimensional electron optics model. First, a PPM stack was modeled in three dimensions. Then, the fields obtained using the magnetostatic solver were loaded into a particle-in-cell solver where the fully three-dimensional behavior of the beam was simulated in the magnetic focusing field. For the first time, the effects of azimuthally asymmetric designs and critical azimuthally asymmetric characteristics of the focusing stack (such as shunts, C-magnets, or magnet misalignment) on electron beam behavior have been investigated. A cutaway portion of a simulated electron beam focused by a PPM stack is illustrated.
An efficient model for coupling structural vibrations with acoustic radiation
NASA Technical Reports Server (NTRS)
Frendi, Abdelkader; Maestrello, Lucio; Ting, LU
1993-01-01
The scattering of an incident wave by a flexible panel is studied. The panel vibration is governed by the nonlinear plate equations while the loading on the panel, which is the pressure difference across the panel, depends on the reflected and transmitted waves. Two models are used to calculate this structural-acoustic interaction problem. One solves the three dimensional nonlinear Euler equations for the flow-field coupled with the plate equations (the fully coupled model). The second uses the linear wave equation for the acoustic field and expresses the load as a double integral involving the panel oscillation (the decoupled model). The panel oscillation governed by a system of integro-differential equations is solved numerically and the acoustic field is then defined by an explicit formula. Numerical results are obtained using the two models for linear and nonlinear panel vibrations. The predictions given by these two models are in good agreement but the computational time needed for the 'fully coupled model' is 60 times longer than that for 'the decoupled model'.
Numerical aerodynamic simulation facility. [for flows about three-dimensional configurations
NASA Technical Reports Server (NTRS)
Bailey, F. R.; Hathaway, A. W.
1978-01-01
Critical to the advancement of computational aerodynamics capability is the ability to simulate flows about three-dimensional configurations that contain both compressible and viscous effects, including turbulence and flow separation at high Reynolds numbers. Analyses were conducted of two solution techniques for solving the Reynolds averaged Navier-Stokes equations describing the mean motion of a turbulent flow with certain terms involving the transport of turbulent momentum and energy modeled by auxiliary equations. The first solution technique is an implicit approximate factorization finite-difference scheme applied to three-dimensional flows that avoids the restrictive stability conditions when small grid spacing is used. The approximate factorization reduces the solution process to a sequence of three one-dimensional problems with easily inverted matrices. The second technique is a hybrid explicit/implicit finite-difference scheme which is also factored and applied to three-dimensional flows. Both methods are applicable to problems with highly distorted grids and a variety of boundary conditions and turbulence models.
A mixed finite difference/Galerkin method for three-dimensional Rayleigh-Benard convection
NASA Technical Reports Server (NTRS)
Buell, Jeffrey C.
1988-01-01
A fast and accurate numerical method, for nonlinear conservation equation systems whose solutions are periodic in two of the three spatial dimensions, is presently implemented for the case of Rayleigh-Benard convection between two rigid parallel plates in the parameter region where steady, three-dimensional convection is known to be stable. High-order streamfunctions secure the reduction of the system of five partial differential equations to a system of only three. Numerical experiments are presented which verify both the expected convergence rates and the absolute accuracy of the method.
A three-dimensional, finite element model for coastal and estuarine circulation
Walters, R.A.
1992-01-01
This paper describes the development and application of a three-dimensional model for coastal and estuarine circulation. The model uses a harmonic expansion in time and a finite element discretization in space. All nonlinear terms are retained, including quadratic bottom stress, advection and wave transport (continuity nonlinearity). The equations are solved as a global and a local problem, where the global problem is the solution of the wave equation formulation of the shallow water equations, and the local problem is the solution of the momentum equation for the vertical velocity profile. These equations are coupled to the advection-diffusion equation for salt so that density gradient forcing is included in the momentum equations. The model is applied to a study of Delaware Bay, U.S.A., where salinity intrusion is the primary focus. ?? 1991.
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.
1990-01-01
The development and applications of multiblock/multizone and adaptive grid methodologies for solving the three-dimensional simplified Navier-Stokes equations are described. Adaptive grid and multiblock/multizone approaches are introduced and applied to external and internal flow problems. These new implementations increase the capabilities and flexibility of the PAB3D code in solving flow problems associated with complex geometry.
Semi-implicit integration factor methods on sparse grids for high-dimensional systems
NASA Astrophysics Data System (ADS)
Wang, Dongyong; Chen, Weitao; Nie, Qing
2015-07-01
Numerical methods for partial differential equations in high-dimensional spaces are often limited by the curse of dimensionality. Though the sparse grid technique, based on a one-dimensional hierarchical basis through tensor products, is popular for handling challenges such as those associated with spatial discretization, the stability conditions on time step size due to temporal discretization, such as those associated with high-order derivatives in space and stiff reactions, remain. Here, we incorporate the sparse grids with the implicit integration factor method (IIF) that is advantageous in terms of stability conditions for systems containing stiff reactions and diffusions. We combine IIF, in which the reaction is treated implicitly and the diffusion is treated explicitly and exactly, with various sparse grid techniques based on the finite element and finite difference methods and a multi-level combination approach. The overall method is found to be efficient in terms of both storage and computational time for solving a wide range of PDEs in high dimensions. In particular, the IIF with the sparse grid combination technique is flexible and effective in solving systems that may include cross-derivatives and non-constant diffusion coefficients. Extensive numerical simulations in both linear and nonlinear systems in high dimensions, along with applications of diffusive logistic equations and Fokker-Planck equations, demonstrate the accuracy, efficiency, and robustness of the new methods, indicating potential broad applications of the sparse grid-based integration factor method.
Parallel CARLOS-3D code development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Putnam, J.M.; Kotulski, J.D.
1996-02-01
CARLOS-3D is a three-dimensional scattering code which was developed under the sponsorship of the Electromagnetic Code Consortium, and is currently used by over 80 aerospace companies and government agencies. The code has been extensively validated and runs on both serial workstations and parallel super computers such as the Intel Paragon. CARLOS-3D is a three-dimensional surface integral equation scattering code based on a Galerkin method of moments formulation employing Rao- Wilton-Glisson roof-top basis for triangular faceted surfaces. Fully arbitrary 3D geometries composed of multiple conducting and homogeneous bulk dielectric materials can be modeled. This presentation describes some of the extensions tomore » the CARLOS-3D code, and how the operator structure of the code facilitated these improvements. Body of revolution (BOR) and two-dimensional geometries were incorporated by simply including new input routines, and the appropriate Galerkin matrix operator routines. Some additional modifications were required in the combined field integral equation matrix generation routine due to the symmetric nature of the BOR and 2D operators. Quadrilateral patched surfaces with linear roof-top basis functions were also implemented in the same manner. Quadrilateral facets and triangular facets can be used in combination to more efficiently model geometries with both large smooth surfaces and surfaces with fine detail such as gaps and cracks. Since the parallel implementation in CARLOS-3D is at high level, these changes were independent of the computer platform being used. This approach minimizes code maintenance, while providing capabilities with little additional effort. Results are presented showing the performance and accuracy of the code for some large scattering problems. Comparisons between triangular faceted and quadrilateral faceted geometry representations will be shown for some complex scatterers.« less
A numerical study of three-dimensional vortex breakdown
NASA Technical Reports Server (NTRS)
Spall, Robert E.; Ash, Robert L.
1987-01-01
A numerical simulation of bubble-type vortex breakdown using a unique discrete form of the full 3-D, unsteady incompressible Navier-Stokes equations was performed. The Navier-Stokes equations were written in a vorticity-velocity form and the physical problem was not restricted to axisymmetric flow. The problem was parametized on a Rossby- Reynolds-number basis. Utilization of this parameter duo was shown to dictate the form of the free-field boundary condition specification and allowed control of axial breakdown location within the computational domain. The structure of the breakdown bubble was studied through time evolution plots of planar projected velocity vectors as well as through plots of particle traces and vortex lines. These results compared favorably with previous experimental studies. In addition, profiles of all three velocity components are presented at various axial stations and a Fourier analysis was performed to identify the dominant circumferential modes. The dynamics of the breakdown process were studied through plots of axial variation of rate of change of integrated total energy and rate of change of integrated enstrophy, as well as through contour plots of velocity, vorticity and pressure.
NASA Technical Reports Server (NTRS)
Chan, Daniel C.; Darian, Armen; Sindir, Munir
1992-01-01
We have applied and compared the efficiency and accuracy of two commonly used numerical methods for the solution of Navier-Stokes equations. The artificial compressibility method augments the continuity equation with a transient pressure term and allows one to solve the modified equations as a coupled system. Due to its implicit nature, one can have the luxury of taking a large temporal integration step at the expense of higher memory requirement and larger operation counts per step. Meanwhile, the fractional step method splits the Navier-Stokes equations into a sequence of differential operators and integrates them in multiple steps. The memory requirement and operation count per time step are low, however, the restriction on the size of time marching step is more severe. To explore the strengths and weaknesses of these two methods, we used them for the computation of a two-dimensional driven cavity flow with Reynolds number of 100 and 1000, respectively. Three grid sizes, 41 x 41, 81 x 81, and 161 x 161 were used. The computations were considered after the L2-norm of the change of the dependent variables in two consecutive time steps has fallen below 10(exp -5).
Fast Maximum Entropy Moment Closure Approach to Solving the Boltzmann Equation
NASA Astrophysics Data System (ADS)
Summy, Dustin; Pullin, Dale
2015-11-01
We describe a method for a moment-based solution of the Boltzmann Equation (BE). This is applicable to an arbitrary set of velocity moments whose transport is governed by partial-differential equations (PDEs) derived from the BE. The equations are unclosed, containing both higher-order moments and molecular-collision terms. These are evaluated using a maximum-entropy reconstruction of the velocity distribution function f (c , x , t) , from the known moments, within a finite-box domain of single-particle velocity (c) space. Use of a finite-domain alleviates known problems (Junk and Unterreiter, Continuum Mech. Thermodyn., 2002) concerning existence and uniqueness of the reconstruction. Unclosed moments are evaluated with quadrature while collision terms are calculated using any desired method. This allows integration of the moment PDEs in time. The high computational cost of the general method is greatly reduced by careful choice of the velocity moments, allowing the necessary integrals to be reduced from three- to one-dimensional in the case of strictly 1D flows. A method to extend this enhancement to fully 3D flows is discussed. Comparison with relaxation and shock-wave problems using the DSMC method will be presented. Partially supported by NSF grant DMS-1418903.
NASA Technical Reports Server (NTRS)
Hicks, Raymond M.; Cliff, Susan E.
1991-01-01
Full-potential, Euler, and Navier-Stokes computational fluid dynamics (CFD) codes were evaluated for use in analyzing the flow field about airfoils sections operating at Mach numbers from 0.20 to 0.60 and Reynolds numbers from 500,000 to 2,000,000. The potential code (LBAUER) includes weakly coupled integral boundary layer equations for laminar and turbulent flow with simple transition and separation models. The Navier-Stokes code (ARC2D) uses the thin-layer formulation of the Reynolds-averaged equations with an algebraic turbulence model. The Euler code (ISES) includes strongly coupled integral boundary layer equations and advanced transition and separation calculations with the capability to model laminar separation bubbles and limited zones of turbulent separation. The best experiment/CFD correlation was obtained with the Euler code because its boundary layer equations model the physics of the flow better than the other two codes. An unusual reversal of boundary layer separation with increasing angle of attack, following initial shock formation on the upper surface of the airfoil, was found in the experiment data. This phenomenon was not predicted by the CFD codes evaluated.
Viscoelastic tides: models for use in Celestial Mechanics
NASA Astrophysics Data System (ADS)
Ragazzo, C.; Ruiz, L. S.
2017-05-01
This paper contains equations for the motion of linear viscoelastic bodies interacting under gravity. The equations are fully three dimensional and allow for the integration of the spin, the orbit, and the deformation of each body. The goal is to present good models for the tidal forces that take into account the possibly different rheology of each body. The equations are obtained within a finite dimension Lagrangian framework with dissipation function. The main contribution is a procedure to associate to each spring-dashpot model, which defines the rheology of a body, a potential and a dissipation function for the body deformation variables. The theory is applied to the Earth (solid part plus oceans) and a comparison between model and observation of the following quantities is made: norm of the Love numbers, rate of tidal energy dissipation, Chandler period, and Earth-Moon distance increase.
NASA Technical Reports Server (NTRS)
Bainum, P. M.; Evans, K. S.
1974-01-01
The three dimensional equations of motion for a cable connected space station--counterweight system are developed using a Lagrangian formulation. The system model employed allows for cable and end body damping and restoring effects. The equations are then linearized about the equilibrium motion and nondimensionalized. To first degree, the out-of-plane equations uncouple from the inplane equations. Therefore, the characteristic polynomials for the in-plane and out-of-plane equations are developed and treated separately. From the general in-plane characteristic equation, necessary conditions for stability are obtained. The Routh-Hurwitz necessary and sufficient conditions for stability are derived for the general out-of-plane characteristic equation. Special cases of the in-plane and out-of-plane equations (such as identical end masses, and when the cable is attached to the centers of mass of the two end bodies) are then examined for stability criteria.
NASA Technical Reports Server (NTRS)
Johnson, Charles S.
1986-01-01
Physical quantities using various units of measurement can be well represented in Ada by the use of abstract types. Computation involving these quantities (electric potential, mass, volume) can also automatically invoke the computation and checking of some of the implicitly associable attributes of measurements. Quantities can be held internally in SI units, transparently to the user, with automatic conversion. Through dimensional analysis, the type of the derived quantity resulting from a computation is known, thereby allowing dynamic checks of the equations used. The impact of the possible implementation of these techniques in integration and test applications is discussed. The overhead of computing and transporting measurement attributes is weighed against the advantages gained by their use. The construction of a run time interpreter using physical quantities in equations can be aided by the dynamic equation checks provided by dimensional analysis. The effects of high levels of abstraction on the generation and maintenance of software used in integration and test applications are also discussed.
NASA Astrophysics Data System (ADS)
Deng, Gao-Fu; Gao, Yi-Tian; Gao, Xin-Yi
2018-07-01
In this paper, an extended (3+1)-dimensional Jimbo-Miwa equation with time-dependent coefficients is investigated, which comes from the second member of the Kadomtsev-Petviashvili hierarchy and is shown to be conditionally integrable. Bilinear form, Bäcklund transformation, Lax pair and infinitely-many conservation laws are derived via the binary Bell polynomials and symbolic computation. With the help of the bilinear form, one-, two- and three-soliton solutions are obtained via the Hirota method, one-periodic wave solutions are constructed via the Riemann theta function. Additionally, propagation and interaction of the solitons are investigated analytically and graphically, from which we find that the interaction between the solitons is elastic and the time-dependent coefficients can affect the soliton velocities, but the soliton amplitudes remain unchanged. One-periodic waves approach the one-solitary waves with the amplitudes vanishing and can be viewed as a superposition of the overlapping solitary waves, placed one period apart.
NASA Astrophysics Data System (ADS)
Conway, John T.; Cohl, Howard S.
2010-06-01
A new method is presented for Fourier decomposition of the Helmholtz Green function in cylindrical coordinates, which is equivalent to obtaining the solution of the Helmholtz equation for a general ring source. The Fourier coefficients of the Green function are split into their half advanced + half retarded and half advanced-half retarded components, and closed form solutions for these components are then obtained in terms of a Horn function and a Kampé de Fériet function respectively. Series solutions for the Fourier coefficients are given in terms of associated Legendre functions, Bessel and Hankel functions and a hypergeometric function. These series are derived either from the closed form 2-dimensional hypergeometric solutions or from an integral representation, or from both. A simple closed form far-field solution for the general Fourier coefficient is derived from the Hankel series. Numerical calculations comparing different methods of calculating the Fourier coefficients are presented. Fourth order ordinary differential equations for the Fourier coefficients are also given and discussed briefly.
A two-dimensional model of water: Theory and computer simulations
NASA Astrophysics Data System (ADS)
Urbič, T.; Vlachy, V.; Kalyuzhnyi, Yu. V.; Southall, N. T.; Dill, K. A.
2000-02-01
We develop an analytical theory for a simple model of liquid water. We apply Wertheim's thermodynamic perturbation theory (TPT) and integral equation theory (IET) for associative liquids to the MB model, which is among the simplest models of water. Water molecules are modeled as 2-dimensional Lennard-Jones disks with three hydrogen bonding arms arranged symmetrically, resembling the Mercedes-Benz (MB) logo. The MB model qualitatively predicts both the anomalous properties of pure water and the anomalous solvation thermodynamics of nonpolar molecules. IET is based on the orientationally averaged version of the Ornstein-Zernike equation. This is one of the main approximations in the present work. IET correctly predicts the pair correlation function of the model water at high temperatures. Both TPT and IET are in semi-quantitative agreement with the Monte Carlo values of the molar volume, isothermal compressibility, thermal expansion coefficient, and heat capacity. A major advantage of these theories is that they require orders of magnitude less computer time than the Monte Carlo simulations.
High Performance Parallel Analysis of Coupled Problems for Aircraft Propulsion
NASA Technical Reports Server (NTRS)
Felippa, C. A.; Farhat, C.; Lanteri, S.; Maman, N.; Piperno, S.; Gumaste, U.
1994-01-01
In order to predict the dynamic response of a flexible structure in a fluid flow, the equations of motion of the structure and the fluid must be solved simultaneously. In this paper, we present several partitioned procedures for time-integrating this focus coupled problem and discuss their merits in terms of accuracy, stability, heterogeneous computing, I/O transfers, subcycling, and parallel processing. All theoretical results are derived for a one-dimensional piston model problem with a compressible flow, because the complete three-dimensional aeroelastic problem is difficult to analyze mathematically. However, the insight gained from the analysis of the coupled piston problem and the conclusions drawn from its numerical investigation are confirmed with the numerical simulation of the two-dimensional transient aeroelastic response of a flexible panel in a transonic nonlinear Euler flow regime.
Extended resolvent and inverse scattering with an application to KPI
NASA Astrophysics Data System (ADS)
Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.; Prinari, B.
2003-08-01
We present in detail an extended resolvent approach for investigating linear problems associated to 2+1 dimensional integrable equations. Our presentation is based as an example on the nonstationary Schrödinger equation with potential being a perturbation of the one-soliton potential by means of a decaying two-dimensional function. Modification of the inverse scattering theory as well as properties of the Jost solutions and spectral data as follows from the resolvent approach are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benedetti, R. L.; Lords, L. V.; Kiser, D. M.
1978-02-01
The SCORE-EVET code was developed to study multidimensional transient fluid flow in nuclear reactor fuel rod arrays. The conservation equations used were derived by volume averaging the transient compressible three-dimensional local continuum equations in Cartesian coordinates. No assumptions associated with subchannel flow have been incorporated into the derivation of the conservation equations. In addition to the three-dimensional fluid flow equations, the SCORE-EVET code ocntains: (a) a one-dimensional steady state solution scheme to initialize the flow field, (b) steady state and transient fuel rod conduction models, and (c) comprehensive correlation packages to describe fluid-to-fuel rod interfacial energy and momentum exchange. Velocitymore » and pressure boundary conditions can be specified as a function of time and space to model reactor transient conditions such as a hypothesized loss-of-coolant accident (LOCA) or flow blockage.« less
Gluon scattering amplitudes from gauge/string duality and integrability
NASA Astrophysics Data System (ADS)
Satoh, Yuji
2014-06-01
We discuss the gluon scattering amplitudes of the four-dimensional maximally supersymmetric Yang-Mills theory. By the gauge/string duality, the amplitudes at strong coupling are given by the area of the minimal surfaces in anti-de Sitter space, which can be analyzed by a set of integral equations of the thermodynamic Bethe ansatz (TBA) type. By using the two-dimensional integrable models and conformal field theories underlying the TBA system, we derive analytic expansions of the amplitudes around certain kinematic configurations.
Study of three-dimensional effects on vortex breakdown
NASA Technical Reports Server (NTRS)
Salas, M. D.; Kuruvila, G.
1988-01-01
The incompressible axisymmetric steady Navier-Stokes equations in primitive variables are used to simulate vortex breakdown. The equations, discretized using a second-order, central-difference scheme, are linearized and then solved using an exact LU decomposition, Gaussian elimination, and Newton iteration. Solutions are presented for Reynolds numbers, based on vortex-core radius, as high as 1500. An attempt to study the stability of the axisymmetric solutions against three-dimensional perturbations is discussed.
A Non-hydrostatic Atmospheric Model for Global High-resolution Simulation
NASA Astrophysics Data System (ADS)
Peng, X.; Li, X.
2017-12-01
A three-dimensional non-hydrostatic atmosphere model, GRAPES_YY, is developed on the spherical Yin-Yang grid system in order to enforce global high-resolution weather simulation or forecasting at the CAMS/CMA. The quasi-uniform grid makes the computation be of high efficiency and free of pole problem. Full representation of the three-dimensional Coriolis force is considered in the governing equations. Under the constraint of third-order boundary interpolation, the model is integrated with the semi-implicit semi-Lagrangian method using the same code on both zones. A static halo region is set to ensure computation of cross-boundary transport and updating Dirichlet-type boundary conditions in the solution process of elliptical equations with the Schwarz method. A series of dynamical test cases, including the solid-body advection, the balanced geostrophic flow, zonal flow over an isolated mountain, development of the Rossby-Haurwitz wave and a baroclinic wave, are carried out, and excellent computational stability and accuracy of the dynamic core has been confirmed. After implementation of the physical processes of long and short-wave radiation, cumulus convection, micro-physical transformation of water substances and the turbulent processes in the planetary boundary layer include surface layer vertical fluxes parameterization, a long-term run of the model is then put forward under an idealized aqua-planet configuration to test the model physics and model ability in both short-term and long-term integrations. In the aqua-planet experiment, the model shows an Earth-like structure of circulation. The time-zonal mean temperature, wind components and humidity illustrate reasonable subtropical zonal westerly jet, meridional three-cell circulation, tropical convection and thermodynamic structures. The specific SST and solar insolation being symmetric about the equator enhance the ITCZ and tropical precipitation, which concentrated in tropical region. Additional analysis and tuning of the model is still going on, and preliminary results have demonstrated the possibility of high-resolution application of the model to global weather prediction and even seasonal climate projection.
NASA Astrophysics Data System (ADS)
Chai, Jun; Tian, Bo; Zhen, Hui-Ling; Sun, Wen-Rong
2015-11-01
Energy transfer through a (2+1)-dimensional α-helical protein can be described by a (2+1)-dimensional fourth-order nonlinear Schrödinger equation. For such an equation, a Lax pair and the infinitely-many conservation laws are derived. Using an auxiliary function and a bilinear formulation, we get the one-, two-, three- and N-soliton solutions via the Hirota method. The soliton velocity is linearly related to the lattice parameter γ, while the soliton' direction and amplitude do not depend on γ. Interactions between the two solitons are elastic, while those among the three solitons are pairwise elastic. Oblique, head-on and overtaking interactions between the two solitons are displayed. Oblique interaction among the three solitons and interactions among the two parallel solitons and a single one are presented as well.
Nodal-line pairing with 1D-3D coupled Fermi surfaces: A model motivated by Cr-based superconductors
NASA Astrophysics Data System (ADS)
Wachtel, Gideon; Kim, Yong Baek
2016-09-01
Motivated by the recent discovery of a new family of chromium-based superconductors, we consider a two-band model, where a band of electrons dispersing only in one direction interacts with a band of electrons dispersing in all three directions. Strong 2 kf density fluctuations in the one-dimensional band induces attractive interactions between the three-dimensional electrons, which, in turn, makes the system superconducting. Solving the associated Eliashberg equations, we obtain a gap function which is peaked at the "poles" of the three-dimensional Fermi sphere, and decreases towards the "equator." When strong enough local repulsion is included, the gap actually changes sign around the equator and nodal rings are formed. These nodal rings manifest themselves in several experimentally observable quantities, some of which resemble unconventional observations in the newly discovered superconductors which motivated this work.
NASA Astrophysics Data System (ADS)
Wilson, F.; Neukirch, T.
2018-01-01
We present new analytical three-dimensional solutions of the magnetohydrostatic equations, which are applicable to the co-rotating frame of reference outside a rigidly rotating cylindrical body, and have potential applications to planetary magnetospheres and stellar coronae. We consider the case with centrifugal force only, and use a transformation method in which the governing equation for the "pseudo-potential" (from which the magnetic field can be calculated) becomes the Laplace partial differential equation. The new solutions extend the set of previously found solutions to those of a "fractional multipole" nature, and offer wider possibilities for modelling than before. We consider some special cases, and present example solutions.
Fractional calculus in hydrologic modeling: A numerical perspective
Benson, David A.; Meerschaert, Mark M.; Revielle, Jordan
2013-01-01
Fractional derivatives can be viewed either as handy extensions of classical calculus or, more deeply, as mathematical operators defined by natural phenomena. This follows the view that the diffusion equation is defined as the governing equation of a Brownian motion. In this paper, we emphasize that fractional derivatives come from the governing equations of stable Lévy motion, and that fractional integration is the corresponding inverse operator. Fractional integration, and its multi-dimensional extensions derived in this way, are intimately tied to fractional Brownian (and Lévy) motions and noises. By following these general principles, we discuss the Eulerian and Lagrangian numerical solutions to fractional partial differential equations, and Eulerian methods for stochastic integrals. These numerical approximations illuminate the essential nature of the fractional calculus. PMID:23524449
High-Order Moving Overlapping Grid Methodology in a Spectral Element Method
NASA Astrophysics Data System (ADS)
Merrill, Brandon E.
A moving overlapping mesh methodology that achieves spectral accuracy in space and up to second-order accuracy in time is developed for solution of unsteady incompressible flow equations in three-dimensional domains. The targeted applications are in aerospace and mechanical engineering domains and involve problems in turbomachinery, rotary aircrafts, wind turbines and others. The methodology is built within the dual-session communication framework initially developed for stationary overlapping meshes. The methodology employs semi-implicit spectral element discretization of equations in each subdomain and explicit treatment of subdomain interfaces with spectrally-accurate spatial interpolation and high-order accurate temporal extrapolation, and requires few, if any, iterations, yet maintains the global accuracy and stability of the underlying flow solver. Mesh movement is enabled through the Arbitrary Lagrangian-Eulerian formulation of the governing equations, which allows for prescription of arbitrary velocity values at discrete mesh points. The stationary and moving overlapping mesh methodologies are thoroughly validated using two- and three-dimensional benchmark problems in laminar and turbulent flows. The spatial and temporal global convergence, for both methods, is documented and is in agreement with the nominal order of accuracy of the underlying solver. Stationary overlapping mesh methodology was validated to assess the influence of long integration times and inflow-outflow global boundary conditions on the performance. In a turbulent benchmark of fully-developed turbulent pipe flow, the turbulent statistics are validated against the available data. Moving overlapping mesh simulations are validated on the problems of two-dimensional oscillating cylinder and a three-dimensional rotating sphere. The aerodynamic forces acting on these moving rigid bodies are determined, and all results are compared with published data. Scaling tests, with both methodologies, show near linear strong scaling, even for moderately large processor counts. The moving overlapping mesh methodology is utilized to investigate the effect of an upstream turbulent wake on a three-dimensional oscillating NACA0012 extruded airfoil. A direct numerical simulation (DNS) at Reynolds Number 44,000 is performed for steady inflow incident upon the airfoil oscillating between angle of attack 5.6° and 25° with reduced frequency k=0.16. Results are contrasted with subsequent DNS of the same oscillating airfoil in a turbulent wake generated by a stationary upstream cylinder.
NASA Technical Reports Server (NTRS)
Dunham, R. S.
1976-01-01
FORTRAN coded out-of-core equation solvers that solve using direct methods symmetric banded systems of simultaneous algebraic equations. Banded, frontal and column (skyline) solvers were studied as well as solvers that can partition the working area and thus could fit into any available core. Comparison timings are presented for several typical two dimensional and three dimensional continuum type grids of elements with and without midside nodes. Extensive conclusions are also given.
Initial values for the integration scheme to compute the eigenvalues for propagation in ducts
NASA Technical Reports Server (NTRS)
Eversman, W.
1977-01-01
A scheme for the calculation of eigenvalues in the problem of acoustic propagation in a two-dimensional duct is described. The computation method involves changing the coupled transcendental nonlinear algebraic equations into an initial value problem involving a nonlinear ordinary differential equation. The simplest approach is to use as initial values the hardwall eigenvalues and to integrate away from these values as the admittance varies from zero to its actual value with a linear variation. The approach leads to a powerful root finding routine capable of computing the transverse and axial wave numbers for two-dimensional ducts for any frequency, lining, admittance and Mach number without requiring initial guesses or starting points.
NASA Technical Reports Server (NTRS)
Jiang, Yi-Tsann
1993-01-01
A general solution adaptive scheme-based on a remeshing technique is developed for solving the two-dimensional and quasi-three-dimensional Euler and Favre-averaged Navier-Stokes equations. The numerical scheme is formulated on an unstructured triangular mesh utilizing an edge-based pointer system which defines the edge connectivity of the mesh structure. Jameson's four-stage hybrid Runge-Kutta scheme is used to march the solution in time. The convergence rate is enhanced through the use of local time stepping and implicit residual averaging. As the solution evolves, the mesh is regenerated adaptively using flow field information. Mesh adaptation parameters are evaluated such that an estimated local numerical error is equally distributed over the whole domain. For inviscid flows, the present approach generates a complete unstructured triangular mesh using the advancing front method. For turbulent flows, the approach combines a local highly stretched structured triangular mesh in the boundary layer region with an unstructured mesh in the remaining regions to efficiently resolve the important flow features. One-equation and two-equation turbulence models are incorporated into the present unstructured approach. Results are presented for a wide range of flow problems including two-dimensional multi-element airfoils, two-dimensional cascades, and quasi-three-dimensional cascades. This approach is shown to gain flow resolution in the refined regions while achieving a great reduction in the computational effort and storage requirements since solution points are not wasted in regions where they are not required.
NASA Technical Reports Server (NTRS)
Jiang, Yi-Tsann; Usab, William J., Jr.
1993-01-01
A general solution adaptive scheme based on a remeshing technique is developed for solving the two-dimensional and quasi-three-dimensional Euler and Favre-averaged Navier-Stokes equations. The numerical scheme is formulated on an unstructured triangular mesh utilizing an edge-based pointer system which defines the edge connectivity of the mesh structure. Jameson's four-stage hybrid Runge-Kutta scheme is used to march the solution in time. The convergence rate is enhanced through the use of local time stepping and implicit residual averaging. As the solution evolves, the mesh is regenerated adaptively using flow field information. Mesh adaptation parameters are evaluated such that an estimated local numerical error is equally distributed over the whole domain. For inviscid flows, the present approach generates a complete unstructured triangular mesh using the advancing front method. For turbulent flows, the approach combines a local highly stretched structured triangular mesh in the boundary layer region with an unstructured mesh in the remaining regions to efficiently resolve the important flow features. One-equation and two-equation turbulence models are incorporated into the present unstructured approach. Results are presented for a wide range of flow problems including two-dimensional multi-element airfoils, two-dimensional cascades, and quasi-three-dimensional cascades. This approach is shown to gain flow resolution in the refined regions while achieving a great reduction in the computational effort and storage requirements since solution points are not wasted in regions where they are not required.
Deep circulations under simple classes of stratification
NASA Technical Reports Server (NTRS)
Salby, Murry L.
1989-01-01
Deep circulations where the motion field is vertically aligned over one or more scale heights are studied under barotropic and equivalent barotropic stratifications. The study uses two-dimensional equations reduced from the three-dimensional primitive equations in spherical geometry. A mapping is established between the full primitive equations and general shallow water behavior and the correspondence between variables describing deep atmospheric motion and those of shallow water behavior is established.
Oscillations and stability of numerical solutions of the heat conduction equation
NASA Technical Reports Server (NTRS)
Kozdoba, L. A.; Levi, E. V.
1976-01-01
The mathematical model and results of numerical solutions are given for the one dimensional problem when the linear equations are written in a rectangular coordinate system. All the computations are easily realizable for two and three dimensional problems when the equations are written in any coordinate system. Explicit and implicit schemes are shown in tabular form for stability and oscillations criteria; the initial temperature distribution is considered uniform.
NASA Astrophysics Data System (ADS)
Liu, Jitao; Niu, Dongjuan
2017-06-01
In this paper, we investigate the global well-posedness of three-dimensional Navier-Stokes equations with horizontal viscosity under a special symmetric structure: helical symmetry. More precisely, by a revised Ladyzhenskaya-type inequality and utilizing the behavior of helical flows, we prove the global existence and uniqueness of weak and strong solutions to the three-dimensional helical flows. Our result reveals that for the issue of global well-posedness of the viscous helical flows, the horizontal viscosity plays the important role. To some extent, our work can be seen as a generalization of the result by Mahalov et al. (Arch Ration Mech Anal 112(3):193-222, 1990).
NASA Technical Reports Server (NTRS)
Manro, M. E.
1983-01-01
Two separated flow computer programs and a semiempirical method for incorporating the experimentally measured separated flow effects into a linear aeroelastic analysis were evaluated. The three dimensional leading edge vortex (LEV) code is evaluated. This code is an improved panel method for three dimensional inviscid flow over a wing with leading edge vortex separation. The governing equations are the linear flow differential equation with nonlinear boundary conditions. The solution is iterative; the position as well as the strength of the vortex is determined. Cases for both full and partial span vortices were executed. The predicted pressures are good and adequately reflect changes in configuration.
Solution of 3-dimensional time-dependent viscous flows. Part 2: Development of the computer code
NASA Technical Reports Server (NTRS)
Weinberg, B. C.; Mcdonald, H.
1980-01-01
There is considerable interest in developing a numerical scheme for solving the time dependent viscous compressible three dimensional flow equations to aid in the design of helicopter rotors. The development of a computer code to solve a three dimensional unsteady approximate form of the Navier-Stokes equations employing a linearized block emplicit technique in conjunction with a QR operator scheme is described. Results of calculations of several Cartesian test cases are presented. The computer code can be applied to more complex flow fields such as these encountered on rotating airfoils.
NASA Astrophysics Data System (ADS)
Martelloni, Gianluca; Bagnoli, Franco; Guarino, Alessio
2017-09-01
We present a three-dimensional model of rain-induced landslides, based on cohesive spherical particles. The rainwater infiltration into the soil follows either the fractional or the fractal diffusion equations. We analytically solve the fractal partial differential equation (PDE) for diffusion with particular boundary conditions to simulate a rainfall event. We developed a numerical integration scheme for the PDE, compared with the analytical solution. We adapt the fractal diffusion equation obtaining the gravimetric water content that we use as input of a triggering scheme based on Mohr-Coulomb limit-equilibrium criterion. This triggering is then complemented by a standard molecular dynamics algorithm, with an interaction force inspired by the Lennard-Jones potential, to update the positions and velocities of particles. We present our results for homogeneous and heterogeneous systems, i.e., systems composed by particles with same or different radius, respectively. Interestingly, in the heterogeneous case, we observe segregation effects due to the different volume of the particles. Finally, we analyze the parameter sensibility both for the triggering and the propagation phases. Our simulations confirm the results of a previous two-dimensional model and therefore the feasible applicability to real cases.
NASA Astrophysics Data System (ADS)
Egorov, I. V.; Novikov, A. V.; Fedorov, A. V.
2017-08-01
A method for direct numerical simulation of three-dimensional unsteady disturbances leading to a laminar-turbulent transition at hypersonic flow speeds is proposed. The simulation relies on solving the full three-dimensional unsteady Navier-Stokes equations. The computational technique is intended for multiprocessor supercomputers and is based on a fully implicit monotone approximation scheme and the Newton-Raphson method for solving systems of nonlinear difference equations. This approach is used to study the development of three-dimensional unstable disturbances in a flat-plate and compression-corner boundary layers in early laminar-turbulent transition stages at the free-stream Mach number M = 5.37. The three-dimensional disturbance field is visualized in order to reveal and discuss features of the instability development at the linear and nonlinear stages. The distribution of the skin friction coefficient is used to detect laminar and transient flow regimes and determine the onset of the laminar-turbulent transition.
NASA Astrophysics Data System (ADS)
Selima, Ehab S.; Seadawy, Aly R.; Yao, Xiaohua; Essa, F. A.
2018-02-01
This paper is devoted to study the (1+1)-dimensional coupled cubic-quintic complex Ginzburg-Landau equations (cc-qcGLEs) with complex coefficients. This equation can be used to describe the nonlinear evolution of slowly varying envelopes of periodic spatial-temporal patterns in a convective binary fluid. Dispersion relation and properties of cc-qcGLEs are constructed. Painlevé analysis is used to check the integrability of cc-qcGLEs and to establish the Bäcklund transformation form. New traveling wave solutions and a general form of multiple-soliton solutions of cc-qcGLEs are obtained via the Bäcklund transformation and simplest equation method with Bernoulli, Riccati and Burgers’ equations as simplest equations.
NASA Technical Reports Server (NTRS)
Hamilton, H. H., II
1980-01-01
A theoretical method was developed for computing approximate laminar heating rates on three dimensional configurations at angle of attack. The method is based on the axisymmetric analogue which is used to reduce the three dimensional boundary layer equations along surface streamlines to an equivalent axisymmetric form by using the metric coefficient which describes streamline divergence (or convergence). The method was coupled with a three dimensional inviscid flow field program for computing surface streamline paths, metric coefficients, and boundary layer edge conditions.
Vertically-integrated Approaches for Carbon Sequestration Modeling
NASA Astrophysics Data System (ADS)
Bandilla, K.; Celia, M. A.; Guo, B.
2015-12-01
Carbon capture and sequestration (CCS) is being considered as an approach to mitigate anthropogenic CO2 emissions from large stationary sources such as coal fired power plants and natural gas processing plants. Computer modeling is an essential tool for site design and operational planning as it allows prediction of the pressure response as well as the migration of both CO2 and brine in the subsurface. Many processes, such as buoyancy, hysteresis, geomechanics and geochemistry, can have important impacts on the system. While all of the processes can be taken into account simultaneously, the resulting models are computationally very expensive and require large numbers of parameters which are often uncertain or unknown. In many cases of practical interest, the computational and data requirements can be reduced by choosing a smaller domain and/or by neglecting or simplifying certain processes. This leads to a series of models with different complexity, ranging from coupled multi-physics, multi-phase three-dimensional models to semi-analytical single-phase models. Under certain conditions the three-dimensional equations can be integrated in the vertical direction, leading to a suite of two-dimensional multi-phase models, termed vertically-integrated models. These models are either solved numerically or simplified further (e.g., assumption of vertical equilibrium) to allow analytical or semi-analytical solutions. This presentation focuses on how different vertically-integrated models have been applied to the simulation of CO2 and brine migration during CCS projects. Several example sites, such as the Illinois Basin and the Wabamun Lake region of the Alberta Basin, are discussed to show how vertically-integrated models can be used to gain understanding of CCS operations.
EDDA: integrated simulation of debris flow erosion, deposition and property changes
NASA Astrophysics Data System (ADS)
Chen, H. X.; Zhang, L. M.
2014-11-01
Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA, is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during the flow process. The yield stress of debris flow mixture is determined at limit equilibrium using the Mohr-Coulomb equation, which is applicable to clear water flow, hyper-concentrated flow and fully developed debris flow. To assure numerical stability and computational efficiency at the same time, a variable time stepping algorithm is developed to solve the governing differential equations. Four numerical tests are conducted to validate the model. The first two tests involve a one-dimensional dam-break water flow and a one-dimensional debris flow with constant properties. The last two tests involve erosion and deposition, and the movement of multi-directional debris flows. The changes in debris flow mass and properties due to either erosion or deposition are shown to affect the runout characteristics significantly. The model is also applied to simulate a large-scale debris flow in Xiaojiagou Ravine to test the performance of the model in catchment-scale simulations. The results suggest that the model estimates well the volume, inundated area, and runout distance of the debris flow. The model is intended for use as a module in a real-time debris flow warning system.
On the dimensionally correct kinetic theory of turbulence for parallel propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaelzer, R., E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: 007gasun@khu.ac.kr, E-mail: luiz.ziebell@ufrgs.br; Ziebell, L. F., E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: 007gasun@khu.ac.kr, E-mail: luiz.ziebell@ufrgs.br; Yoon, P. H., E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: 007gasun@khu.ac.kr, E-mail: luiz.ziebell@ufrgs.br
2015-03-15
Yoon and Fang [Phys. Plasmas 15, 122312 (2008)] formulated a second-order nonlinear kinetic theory that describes the turbulence propagating in directions parallel/anti-parallel to the ambient magnetic field. Their theory also includes discrete-particle effects, or the effects due to spontaneously emitted thermal fluctuations. However, terms associated with the spontaneous fluctuations in particle and wave kinetic equations in their theory contain proper dimensionality only for an artificial one-dimensional situation. The present paper extends the analysis and re-derives the dimensionally correct kinetic equations for three-dimensional case. The new formalism properly describes the effects of spontaneous fluctuations emitted in three-dimensional space, while the collectivelymore » emitted turbulence propagates predominantly in directions parallel/anti-parallel to the ambient magnetic field. As a first step, the present investigation focuses on linear wave-particle interaction terms only. A subsequent paper will include the dimensionally correct nonlinear wave-particle interaction terms.« less
Advantages of multigrid methods for certifying the accuracy of PDE modeling
NASA Technical Reports Server (NTRS)
Forester, C. K.
1981-01-01
Numerical techniques for assessing and certifying the accuracy of the modeling of partial differential equations (PDE) to the user's specifications are analyzed. Examples of the certification process with conventional techniques are summarized for the three dimensional steady state full potential and the two dimensional steady Navier-Stokes equations using fixed grid methods (FG). The advantages of the Full Approximation Storage (FAS) scheme of the multigrid technique of A. Brandt compared with the conventional certification process of modeling PDE are illustrated in one dimension with the transformed potential equation. Inferences are drawn for how MG will improve the certification process of the numerical modeling of two and three dimensional PDE systems. Elements of the error assessment process that are common to FG and MG are analyzed.
Three-variable solution in the (2+1)-dimensional null-surface formulation
NASA Astrophysics Data System (ADS)
Harriott, Tina A.; Williams, J. G.
2018-04-01
The null-surface formulation of general relativity (NSF) describes gravity by using families of null surfaces instead of a spacetime metric. Despite the fact that the NSF is (to within a conformal factor) equivalent to general relativity, the equations of the NSF are exceptionally difficult to solve, even in 2+1 dimensions. The present paper gives the first exact (2+1)-dimensional solution that depends nontrivially upon all three of the NSF's intrinsic spacetime variables. The metric derived from this solution is shown to represent a spacetime whose source is a massless scalar field that satisfies the general relativistic wave equation and the Einstein equations with minimal coupling. The spacetime is identified as one of a family of (2+1)-dimensional general relativistic spacetimes discovered by Cavaglià.
Three-dimensional unsteady lifting surface theory in the subsonic range
NASA Technical Reports Server (NTRS)
Kuessner, H. G.
1985-01-01
The methods of the unsteady lifting surface theory are surveyed. Linearized Euler's equations are simplified by means of a Galileo-Lorentz transformation and a Laplace transformation so that the time and the compressibility of the fluid are limited to two constants. The solutions to this simplified problem are represented as integrals with a differential nucleus; these results in tolerance conditions, for which any exact solution must suffice. It is shown that none of the existing three-dimensional lifting surface theories in subsonic range satisfy these conditions. An oscillating elliptic lifting surface which satisfies the tolerance conditions is calculated through the use of Lame's functions. Numerical examples are calculated for the borderline cases of infinitely stretched elliptic lifting surfaces and of circular lifting surfaces. Out of the harmonic solutions any such temporal changes of the down current are calculated through the use of an inverse Laplace transformation.
NASA Technical Reports Server (NTRS)
Cannizzaro, Frank E.; Ash, Robert L.
1992-01-01
A state-of-the-art computer code has been developed that incorporates a modified Runge-Kutta time integration scheme, upwind numerical techniques, multigrid acceleration, and multi-block capabilities (RUMM). A three-dimensional thin-layer formulation of the Navier-Stokes equations is employed. For turbulent flow cases, the Baldwin-Lomax algebraic turbulence model is used. Two different upwind techniques are available: van Leer's flux-vector splitting and Roe's flux-difference splitting. Full approximation multi-grid plus implicit residual and corrector smoothing were implemented to enhance the rate of convergence. Multi-block capabilities were developed to provide geometric flexibility. This feature allows the developed computer code to accommodate any grid topology or grid configuration with multiple topologies. The results shown in this dissertation were chosen to validate the computer code and display its geometric flexibility, which is provided by the multi-block structure.
Navier-Stokes simulation of the crossflow instability in swept-wing flows
NASA Technical Reports Server (NTRS)
Reed, Helen L.
1989-01-01
The computational modeling of the transition process characteristic of flows over swept wings are described. Specifically, the crossflow instability and crossflow/T-S wave interactions are analyzed through the numerical solution of the full three-dimensional Navier-Stokes equations including unsteadiness, curvature, and sweep. This approach is chosen because of the complexity of the problem and because it appears that linear stability theory is insufficient to explain the discrepancies between different experiments and between theory and experiments. The leading edge region of a swept wing is considered in a three-dimensional spatial simulation with random disturbances as the initial conditions. The work has been closely coordinated with the experimental program of Professor William Saric, examining the same problem. Comparisons with NASA flight test data and the experiments at Arizona State University were a necessary and an important integral part of this work.
Fast integration-based prediction bands for ordinary differential equation models.
Hass, Helge; Kreutz, Clemens; Timmer, Jens; Kaschek, Daniel
2016-04-15
To gain a deeper understanding of biological processes and their relevance in disease, mathematical models are built upon experimental data. Uncertainty in the data leads to uncertainties of the model's parameters and in turn to uncertainties of predictions. Mechanistic dynamic models of biochemical networks are frequently based on nonlinear differential equation systems and feature a large number of parameters, sparse observations of the model components and lack of information in the available data. Due to the curse of dimensionality, classical and sampling approaches propagating parameter uncertainties to predictions are hardly feasible and insufficient. However, for experimental design and to discriminate between competing models, prediction and confidence bands are essential. To circumvent the hurdles of the former methods, an approach to calculate a profile likelihood on arbitrary observations for a specific time point has been introduced, which provides accurate confidence and prediction intervals for nonlinear models and is computationally feasible for high-dimensional models. In this article, reliable and smooth point-wise prediction and confidence bands to assess the model's uncertainty on the whole time-course are achieved via explicit integration with elaborate correction mechanisms. The corresponding system of ordinary differential equations is derived and tested on three established models for cellular signalling. An efficiency analysis is performed to illustrate the computational benefit compared with repeated profile likelihood calculations at multiple time points. The integration framework and the examples used in this article are provided with the software package Data2Dynamics, which is based on MATLAB and freely available at http://www.data2dynamics.org helge.hass@fdm.uni-freiburg.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Khater, Mostafa M. A.; Seadawy, Aly R.; Lu, Dianchen
2018-06-01
In this research, we study new two techniques that called the extended simple equation method and the novel (G‧/G) -expansion method. The extended simple equation method depend on the auxiliary equation (dϕ/dξ = α + λϕ + μϕ2) which has three ways for solving depends on the specific condition on the parameters as follow: When (λ = 0) this auxiliary equation reduces to Riccati equation, when (α = 0) this auxiliary equation reduces to Bernoulli equation and when (α ≠ 0, λ ≠ 0, μ ≠ 0) we the general solutions of this auxiliary equation while the novel (G‧/G) -expansion method depends also on similar auxiliary equation (G‧/G)‧ = μ + λ(G‧/G) + (v - 1)(G‧/G) 2 which depend also on the value of (λ2 - 4 (v - 1) μ) and the specific condition on the parameters as follow: When (λ = 0) this auxiliary equation reduces to Riccati equation, when (μ = 0) this auxiliary equation reduces to Bernoulli equation and when (λ2 ≠ 4 (v - 1) μ) we the general solutions of this auxiliary equation. This show how both of these auxiliary equation are special cases of Riccati equation. We apply these methods on two dimensional nonlinear Kadomtsev-Petviashvili Burgers equation in quantum plasma and three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in a magnetized plasma. We obtain the exact traveling wave solutions of these important models and under special condition on the parameters, we get solitary traveling wave solutions. All calculations in this study have been established and verified back with the aid of the Maple package program. The executed method is powerful, effective and straightforward for solving nonlinear partial differential equations to obtain more and new solutions.
Several reverse-time integrable nonlocal nonlinear equations: Rogue-wave solutions
NASA Astrophysics Data System (ADS)
Yang, Bo; Chen, Yong
2018-05-01
A study of rogue-wave solutions in the reverse-time nonlocal nonlinear Schrödinger (NLS) and nonlocal Davey-Stewartson (DS) equations is presented. By using Darboux transformation (DT) method, several types of rogue-wave solutions are constructed. Dynamics of these rogue-wave solutions are further explored. It is shown that the (1 + 1)-dimensional fundamental rogue-wave solutions in the reverse-time NLS equation can be globally bounded or have finite-time blowing-ups. It is also shown that the (2 + 1)-dimensional line rogue waves in the reverse-time nonlocal DS equations can be bounded for all space and time or develop singularities in critical time. In addition, the multi- and higher-order rogue waves exhibit richer structures, most of which have no counterparts in the corresponding local nonlinear equations.
NASA Technical Reports Server (NTRS)
Davis, J. E.; Bonnett, W. S.; Medan, R. T.
1976-01-01
A computer program known as SOLN was developed as an independent segment of the NASA-Ames three-dimensional potential flow analysis systems of linear algebraic equations. Methods used include: LU decomposition, Householder's method, a partitioning scheme, and a block successive relaxation method. Due to the independent modular nature of the program, it may be used by itself and not necessarily in conjunction with other segments of the POTFAN system.
Stratified Shear Flows In Pipe Geometries
NASA Astrophysics Data System (ADS)
Harabin, George; Camassa, Roberto; McLaughlin, Richard; UNC Joint Fluids Lab Team Team
2015-11-01
Exact and series solutions to the full Navier-Stokes equations coupled to the advection diffusion equation are investigated in tilted three-dimensional pipe geometries. Analytic techniques for studying the three-dimensional problem provide a means for tackling interesting questions such as the optimal domain for mass transport, and provide new avenues for experimental investigation of diffusion driven flows. Both static and time dependent solutions will be discussed. NSF RTG DMS-0943851, NSF RTG ARC-1025523, NSF DMS-1009750.
Three dimensional PNS solutions of hypersonic internal flows with equilibrium chemistry
NASA Technical Reports Server (NTRS)
Liou, May-Fun
1989-01-01
An implicit procedure for solving parabolized Navier-Stokes equations under the assumption of a general equation of state for a gas in chemical equilibrium is given. A general and consistent approach for the evaluation of Jacobian matrices in the implicit operator avoids the use of unnecessary auxiliary quantities and approximations, and leads to a simple expression. Applications to two- and three-dimensional flow problems show efficiency in computer time and economy in storage.
Three-Dimensional Lissajous Figures.
ERIC Educational Resources Information Center
D'Mura, John M.
1989-01-01
Described is a mechanically driven device for generating three-dimensional harmonic space figures with different frequencies and phase angles on the X, Y, and Z axes. Discussed are apparatus, viewing stereo pairs, equations of motion, and using space figures in classroom. (YP)
Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions
NASA Technical Reports Server (NTRS)
Hodge, Steve L.; Zorumski, William E.; Watson, Willie R.
1995-01-01
The Helmholtz equation is solved within a three-dimensional rectangular duct with a nonlocal radiation boundary condition at the duct exit plane. This condition accurately models the acoustic admittance at an arbitrarily-located computational boundary plane. A linear system of equations is constructed with second-order central differences for the Helmholtz operator and second-order backward differences for both local admittance conditions and the gradient term in the nonlocal radiation boundary condition. The resulting matrix equation is large, sparse, and non-Hermitian. The size and structure of the matrix makes direct solution techniques impractical; as a result, a nonstationary iterative technique is used for its solution. The theory behind the nonstationary technique is reviewed, and numerical results are presented for radiation from both a point source and a planar acoustic source. The solutions with the nonlocal boundary conditions are invariant to the location of the computational boundary, and the same nonlocal conditions are valid for all solutions. The nonlocal conditions thus provide a means of minimizing the size of three-dimensional computational domains.
NASA Technical Reports Server (NTRS)
Pavish, D. L.; Spaulding, M. L.
1977-01-01
A computer coded Lagrangian marker particle in Eulerian finite difference cell solution to the three dimensional incompressible mass transport equation, Water Advective Particle in Cell Technique, WAPIC, was developed, verified against analytic solutions, and subsequently applied in the prediction of long term transport of a suspended sediment cloud resulting from an instantaneous dredge spoil release. Numerical results from WAPIC were verified against analytic solutions to the three dimensional incompressible mass transport equation for turbulent diffusion and advection of Gaussian dye releases in unbounded uniform and uniformly sheared uni-directional flow, and for steady-uniform plug channel flow. WAPIC was utilized to simulate an analytic solution for non-equilibrium sediment dropout from an initially vertically uniform particle distribution in one dimensional turbulent channel flow.
Siegert-state expansion for nonstationary systems. IV. Three-dimensional case
NASA Astrophysics Data System (ADS)
Tolstikhin, Oleg I.
2008-03-01
The Siegert-state expansion approach [O. I. Tolstikhin, Phys. Rev. A 73, 062705 (2006)] is extended to the three-dimensional case. Coupled equations defining the time evolution of coefficients in the expansion of the solution to the time-dependent Schrödinger equation in terms of partial-wave Siegert states are derived, and physical observables (probabilities of transitions to discrete states and the momentum distribution of ejected particles) are expressed in terms of these coefficients. The approach is implemented in terms of Siegert pseudostates and illustrated by calculations of the photodetachment of H- by strong high-frequency laser pulses. The present calculations demonstrate that the interference effect in the laser-atom interaction dynamics found recently in the one-dimensional case [K. Toyota , Phys. Rev. A 76, 043418 (2007)] reveals itself in the three-dimensional case as well.
Rota-Baxter operators on sl (2,C) and solutions of the classical Yang-Baxter equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, Jun, E-mail: peitsun@163.com; Bai, Chengming, E-mail: baicm@nankai.edu.cn; Guo, Li, E-mail: liguo@rutgers.edu
2014-02-15
We explicitly determine all Rota-Baxter operators (of weight zero) on sl (2,C) under the Cartan-Weyl basis. For the skew-symmetric operators, we give the corresponding skew-symmetric solutions of the classical Yang-Baxter equation in sl (2,C), confirming the related study by Semenov-Tian-Shansky. In general, these Rota-Baxter operators give a family of solutions of the classical Yang-Baxter equation in the six-dimensional Lie algebra sl (2,C)⋉{sub ad{sup *}} sl (2,C){sup *}. They also give rise to three-dimensional pre-Lie algebras which in turn yield solutions of the classical Yang-Baxter equation in other six-dimensional Lie algebras.
NASA Astrophysics Data System (ADS)
Minezawa, Noriyuki; Kato, Shigeki
2007-02-01
The authors present an implementation of the three-dimensional reference interaction site model self-consistent-field (3D-RISM-SCF) method. First, they introduce a robust and efficient algorithm for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second, they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the electrostatic potential (ESP) map on a 3D grid is constructed directly from the electron density. The charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP acting on the solute molecule is derived from the solvent charge distribution obtained by solving the 3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct numerical integration. A remarkable reduction in the computational time is observed in both routes. Finally, the authors implement the first derivatives of the free energy with respect to the solute nuclear coordinates. They apply the present method to "solute" water and formaldehyde in aqueous solvent using the simple point charge model, and the results are compared with those from other methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with the experimental and other theoretical results.
Minezawa, Noriyuki; Kato, Shigeki
2007-02-07
The authors present an implementation of the three-dimensional reference interaction site model self-consistent-field (3D-RISM-SCF) method. First, they introduce a robust and efficient algorithm for solving the 3D-RISM equation. The algorithm is a hybrid of the Newton-Raphson and Picard methods. The Jacobian matrix is analytically expressed in a computationally useful form. Second, they discuss the solute-solvent electrostatic interaction. For the solute to solvent route, the electrostatic potential (ESP) map on a 3D grid is constructed directly from the electron density. The charge fitting procedure is not required to determine the ESP. For the solvent to solute route, the ESP acting on the solute molecule is derived from the solvent charge distribution obtained by solving the 3D-RISM equation. Matrix elements of the solute-solvent interaction are evaluated by the direct numerical integration. A remarkable reduction in the computational time is observed in both routes. Finally, the authors implement the first derivatives of the free energy with respect to the solute nuclear coordinates. They apply the present method to "solute" water and formaldehyde in aqueous solvent using the simple point charge model, and the results are compared with those from other methods: the six-dimensional molecular Ornstein-Zernike SCF, the one-dimensional site-site RISM-SCF, and the polarizable continuum model. The authors also calculate the solvatochromic shifts of acetone, benzonitrile, and nitrobenzene using the present method and compare them with the experimental and other theoretical results.
Augustin, Moritz; Ladenbauer, Josef; Baumann, Fabian; Obermayer, Klaus
2017-06-01
The spiking activity of single neurons can be well described by a nonlinear integrate-and-fire model that includes somatic adaptation. When exposed to fluctuating inputs sparsely coupled populations of these model neurons exhibit stochastic collective dynamics that can be effectively characterized using the Fokker-Planck equation. This approach, however, leads to a model with an infinite-dimensional state space and non-standard boundary conditions. Here we derive from that description four simple models for the spike rate dynamics in terms of low-dimensional ordinary differential equations using two different reduction techniques: one uses the spectral decomposition of the Fokker-Planck operator, the other is based on a cascade of two linear filters and a nonlinearity, which are determined from the Fokker-Planck equation and semi-analytically approximated. We evaluate the reduced models for a wide range of biologically plausible input statistics and find that both approximation approaches lead to spike rate models that accurately reproduce the spiking behavior of the underlying adaptive integrate-and-fire population. Particularly the cascade-based models are overall most accurate and robust, especially in the sensitive region of rapidly changing input. For the mean-driven regime, when input fluctuations are not too strong and fast, however, the best performing model is based on the spectral decomposition. The low-dimensional models also well reproduce stable oscillatory spike rate dynamics that are generated either by recurrent synaptic excitation and neuronal adaptation or through delayed inhibitory synaptic feedback. The computational demands of the reduced models are very low but the implementation complexity differs between the different model variants. Therefore we have made available implementations that allow to numerically integrate the low-dimensional spike rate models as well as the Fokker-Planck partial differential equation in efficient ways for arbitrary model parametrizations as open source software. The derived spike rate descriptions retain a direct link to the properties of single neurons, allow for convenient mathematical analyses of network states, and are well suited for application in neural mass/mean-field based brain network models.
Baumann, Fabian; Obermayer, Klaus
2017-01-01
The spiking activity of single neurons can be well described by a nonlinear integrate-and-fire model that includes somatic adaptation. When exposed to fluctuating inputs sparsely coupled populations of these model neurons exhibit stochastic collective dynamics that can be effectively characterized using the Fokker-Planck equation. This approach, however, leads to a model with an infinite-dimensional state space and non-standard boundary conditions. Here we derive from that description four simple models for the spike rate dynamics in terms of low-dimensional ordinary differential equations using two different reduction techniques: one uses the spectral decomposition of the Fokker-Planck operator, the other is based on a cascade of two linear filters and a nonlinearity, which are determined from the Fokker-Planck equation and semi-analytically approximated. We evaluate the reduced models for a wide range of biologically plausible input statistics and find that both approximation approaches lead to spike rate models that accurately reproduce the spiking behavior of the underlying adaptive integrate-and-fire population. Particularly the cascade-based models are overall most accurate and robust, especially in the sensitive region of rapidly changing input. For the mean-driven regime, when input fluctuations are not too strong and fast, however, the best performing model is based on the spectral decomposition. The low-dimensional models also well reproduce stable oscillatory spike rate dynamics that are generated either by recurrent synaptic excitation and neuronal adaptation or through delayed inhibitory synaptic feedback. The computational demands of the reduced models are very low but the implementation complexity differs between the different model variants. Therefore we have made available implementations that allow to numerically integrate the low-dimensional spike rate models as well as the Fokker-Planck partial differential equation in efficient ways for arbitrary model parametrizations as open source software. The derived spike rate descriptions retain a direct link to the properties of single neurons, allow for convenient mathematical analyses of network states, and are well suited for application in neural mass/mean-field based brain network models. PMID:28644841
Mean-field models for heterogeneous networks of two-dimensional integrate and fire neurons.
Nicola, Wilten; Campbell, Sue Ann
2013-01-01
We analytically derive mean-field models for all-to-all coupled networks of heterogeneous, adapting, two-dimensional integrate and fire neurons. The class of models we consider includes the Izhikevich, adaptive exponential and quartic integrate and fire models. The heterogeneity in the parameters leads to different moment closure assumptions that can be made in the derivation of the mean-field model from the population density equation for the large network. Three different moment closure assumptions lead to three different mean-field systems. These systems can be used for distinct purposes such as bifurcation analysis of the large networks, prediction of steady state firing rate distributions, parameter estimation for actual neurons and faster exploration of the parameter space. We use the mean-field systems to analyze adaptation induced bursting under realistic sources of heterogeneity in multiple parameters. Our analysis demonstrates that the presence of heterogeneity causes the Hopf bifurcation associated with the emergence of bursting to change from sub-critical to super-critical. This is confirmed with numerical simulations of the full network for biologically reasonable parameter values. This change decreases the plausibility of adaptation being the cause of bursting in hippocampal area CA3, an area with a sizable population of heavily coupled, strongly adapting neurons.
Funamoto, Kenichi; Hayase, Toshiyuki; Saijo, Yoshifumi; Yambe, Tomoyuki
2008-08-01
Integration of ultrasonic measurement and numerical simulation is a possible way to break through limitations of existing methods for obtaining complete information on hemodynamics. We herein propose Ultrasonic-Measurement-Integrated (UMI) simulation, in which feedback signals based on the optimal estimation of errors in the velocity vector determined by measured and computed Doppler velocities at feedback points are added to the governing equations. With an eye towards practical implementation of UMI simulation with real measurement data, its efficiency for three-dimensional unsteady blood flow analysis and a method for treating low time resolution of ultrasonic measurement were investigated by a numerical experiment dealing with complicated blood flow in an aneurysm. Even when simplified boundary conditions were applied, the UMI simulation reduced the errors of velocity and pressure to 31% and 53% in the feedback domain which covered the aneurysm, respectively. Local maximum wall shear stress was estimated, showing both the proper position and the value with 1% deviance. A properly designed intermittent feedback applied only at the time when measurement data were obtained had the same computational accuracy as feedback applied at every computational time step. Hence, this feedback method is a possible solution to overcome the insufficient time resolution of ultrasonic measurement.
Mean-field models for heterogeneous networks of two-dimensional integrate and fire neurons
Nicola, Wilten; Campbell, Sue Ann
2013-01-01
We analytically derive mean-field models for all-to-all coupled networks of heterogeneous, adapting, two-dimensional integrate and fire neurons. The class of models we consider includes the Izhikevich, adaptive exponential and quartic integrate and fire models. The heterogeneity in the parameters leads to different moment closure assumptions that can be made in the derivation of the mean-field model from the population density equation for the large network. Three different moment closure assumptions lead to three different mean-field systems. These systems can be used for distinct purposes such as bifurcation analysis of the large networks, prediction of steady state firing rate distributions, parameter estimation for actual neurons and faster exploration of the parameter space. We use the mean-field systems to analyze adaptation induced bursting under realistic sources of heterogeneity in multiple parameters. Our analysis demonstrates that the presence of heterogeneity causes the Hopf bifurcation associated with the emergence of bursting to change from sub-critical to super-critical. This is confirmed with numerical simulations of the full network for biologically reasonable parameter values. This change decreases the plausibility of adaptation being the cause of bursting in hippocampal area CA3, an area with a sizable population of heavily coupled, strongly adapting neurons. PMID:24416013
Liu, Jian-Guo; Du, Jian-Qiang; Zeng, Zhi-Fang; Ai, Guo-Ping
2016-10-01
The Korteweg-de Vries (KdV)-type models have been shown to describe many important physical situations such as fluid flows, plasma physics, and solid state physics. In this paper, a new (2 + 1)-dimensional KdV equation is discussed. Based on the Hirota's bilinear form and a generalized three-wave approach, we obtain new exact solutions for the new (2 + 1)-dimensional KdV equation. With the help of symbolic computation, the properties for some new solutions are presented with some figures.
Integrated Aeromechanics with Three-Dimensional Solid-Multibody Structures
NASA Technical Reports Server (NTRS)
Datta, Anubhav; Johnson, Wayne
2014-01-01
A full three-dimensional finite element-multibody structural dynamic solver is coupled to a three-dimensional Reynolds-averaged Navier-Stokes solver for the prediction of integrated aeromechanical stresses and strains on a rotor blade in forward flight. The objective is to lay the foundations of all major pieces of an integrated three-dimensional rotor dynamic analysis - from model construction to aeromechanical solution to stress/strain calculation. The primary focus is on the aeromechanical solution. Two types of three-dimensional CFD/CSD interfaces are constructed for this purpose with an emphasis on resolving errors from geometry mis-match so that initial-stage approximate structural geometries can also be effectively analyzed. A three-dimensional structural model is constructed as an approximation to a UH-60A-like fully articulated rotor. The aerodynamic model is identical to the UH-60A rotor. For preliminary validation measurements from a UH-60A high speed flight is used where CFD coupling is essential to capture the advancing side tip transonic effects. The key conclusion is that an integrated aeromechanical analysis is indeed possible with three-dimensional structural dynamics but requires a careful description of its geometry and discretization of its parts.
BMS3 invariant fluid dynamics at null infinity
NASA Astrophysics Data System (ADS)
Penna, Robert F.
2018-02-01
We revisit the boundary dynamics of asymptotically flat, three dimensional gravity. The boundary is governed by a momentum conservation equation and an energy conservation equation, which we interpret as fluid equations, following the membrane paradigm. We reformulate the boundary’s equations of motion as Hamiltonian flow on the dual of an infinite-dimensional, semi-direct product Lie algebra equipped with a Lie–Poisson bracket. This gives the analogue for boundary fluid dynamics of the Marsden–Ratiu–Weinstein formulation of the compressible Euler equations on a manifold, M, as Hamiltonian flow on the dual of the Lie algebra of \
Intermediate boundary conditions for LOD, ADI and approximate factorization methods
NASA Technical Reports Server (NTRS)
Leveque, R. J.
1985-01-01
A general approach to determining the correct intermediate boundary conditions for dimensional splitting methods is presented. The intermediate solution U is viewed as a second order accurate approximation to a modified equation. Deriving the modified equation and using the relationship between this equation and the original equation allows us to determine the correct boundary conditions for U*. This technique is illustrated by applying it to locally one dimensional (LOD) and alternating direction implicit (ADI) methods for the heat equation in two and three space dimensions. The approximate factorization method is considered in slightly more generality.
Study of coupled nonlinear partial differential equations for finding exact analytical solutions.
Khan, Kamruzzaman; Akbar, M Ali; Koppelaar, H
2015-07-01
Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G'/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd-Sokolov-Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics.
Three-dimensional implicit lambda methods
NASA Technical Reports Server (NTRS)
Napolitano, M.; Dadone, A.
1983-01-01
This paper derives the three dimensional lambda-formulation equations for a general orthogonal curvilinear coordinate system and provides various block-explicit and block-implicit methods for solving them, numerically. Three model problems, characterized by subsonic, supersonic and transonic flow conditions, are used to assess the reliability and compare the efficiency of the proposed methods.
Aerodynamic Simulation of Indoor Flight
ERIC Educational Resources Information Center
De Leon, Nelson; De Leon, Matthew N.
2007-01-01
We develop a two-dimensional flight simulator for lightweight (less than 10 g) indoor planes. The simulator consists of four coupled time differential equations describing the plane CG, plane pitch and motor. The equations are integrated numerically with appropriate parameters and initial conditions for two planes: (1) Science Olympiad and (2)…
NASA Astrophysics Data System (ADS)
Angraini, Lily Maysari; Suparmi, Variani, Viska Inda
2010-12-01
SUSY quantum mechanics can be applied to solve Schrodinger equation for high dimensional system that can be reduced into one dimensional system and represented in lowering and raising operators. Lowering and raising operators can be obtained using relationship between original Hamiltonian equation and the (super) potential equation. In this paper SUSY quantum mechanics is used as a method to obtain the wave function and the energy level of the Modified Poschl Teller potential. The graph of wave function equation and probability density is simulated by using Delphi 7.0 programming language. Finally, the expectation value of quantum mechanics operator could be calculated analytically using integral form or probability density graph resulted by the programming.
Classical integrable many-body systems disconnected with semi-simple Lie algebras
NASA Astrophysics Data System (ADS)
Inozemtsev, V. I.
2017-05-01
The review of the results in the theory of integrable many-body systems disconnected with semisimple Lie algebras is done. The one-dimensional systems of light Calogero-Sutherland-Moser particles interacting with one particle of infinite mass located at the origin are described in detail. In some cases the exact solutions of the equations of motion are obtained. The general theory of integration of the equations of motion needs the methods of algebraic geometry. The Lax pairs with spectral parameter are constructed for this purpose. The theory still contains many unsolved problems.
Redundancy of constraints in the classical and quantum theories of gravitation.
NASA Technical Reports Server (NTRS)
Moncrief, V.
1972-01-01
It is shown that in Dirac's version of the quantum theory of gravitation, the Hamiltonian constraints are greatly redundant. If the Hamiltonian constraint condition is satisfied at one point on the underlying, closed three-dimensional manifold, then it is automatically satisfied at every point, provided only that the momentum constraints are everywhere satisfied. This permits one to replace the usual infinity of Hamiltonian constraints by a single condition which may be taken in the form of an integral over the manifold. Analogous theorems are given for the classical Einstein Hamilton-Jacobi equations.
Refinement Of Hexahedral Cells In Euler Flow Computations
NASA Technical Reports Server (NTRS)
Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.
1996-01-01
Topologically Independent Grid, Euler Refinement (TIGER) computer program solves Euler equations of three-dimensional, unsteady flow of inviscid, compressible fluid by numerical integration on unstructured hexahedral coordinate grid refined where necessary to resolve shocks and other details. Hexahedral cells subdivided, each into eight smaller cells, as needed to refine computational grid in regions of high flow gradients. Grid Interactive Refinement and Flow-Field Examination (GIRAFFE) computer program written in conjunction with TIGER program to display computed flow-field data and to assist researcher in verifying specified boundary conditions and refining grid.
Windowed Green function method for the Helmholtz equation in the presence of multiply layered media
NASA Astrophysics Data System (ADS)
Bruno, O. P.; Pérez-Arancibia, C.
2017-06-01
This paper presents a new methodology for the solution of problems of two- and three-dimensional acoustic scattering (and, in particular, two-dimensional electromagnetic scattering) by obstacles and defects in the presence of an arbitrary number of penetrable layers. Relying on the use of certain slow-rise windowing functions, the proposed windowed Green function approach efficiently evaluates oscillatory integrals over unbounded domains, with high accuracy, without recourse to the highly expensive Sommerfeld integrals that have typically been used to account for the effect of underlying planar multilayer structures. The proposed methodology, whose theoretical basis was presented in the recent contribution (Bruno et al. 2016 SIAM J. Appl. Math. 76, 1871-1898. (doi:10.1137/15M1033782)), is fast, accurate, flexible and easy to implement. Our numerical experiments demonstrate that the numerical errors resulting from the proposed approach decrease faster than any negative power of the window size. In a number of examples considered in this paper, the proposed method is up to thousands of times faster, for a given accuracy, than corresponding methods based on the use of Sommerfeld integrals.
Windowed Green function method for the Helmholtz equation in the presence of multiply layered media.
Bruno, O P; Pérez-Arancibia, C
2017-06-01
This paper presents a new methodology for the solution of problems of two- and three-dimensional acoustic scattering (and, in particular, two-dimensional electromagnetic scattering) by obstacles and defects in the presence of an arbitrary number of penetrable layers. Relying on the use of certain slow-rise windowing functions, the proposed windowed Green function approach efficiently evaluates oscillatory integrals over unbounded domains, with high accuracy, without recourse to the highly expensive Sommerfeld integrals that have typically been used to account for the effect of underlying planar multilayer structures. The proposed methodology, whose theoretical basis was presented in the recent contribution (Bruno et al. 2016 SIAM J. Appl. Math. 76 , 1871-1898. (doi:10.1137/15M1033782)), is fast, accurate, flexible and easy to implement. Our numerical experiments demonstrate that the numerical errors resulting from the proposed approach decrease faster than any negative power of the window size. In a number of examples considered in this paper, the proposed method is up to thousands of times faster, for a given accuracy, than corresponding methods based on the use of Sommerfeld integrals.
NASA Technical Reports Server (NTRS)
Swanson, R. Charles; Radespiel, Rolf; Mccormick, V. Edward
1989-01-01
The two-dimensional (2-D) and three-dimensional Navier-Stokes equations are solved for flow over a NAE CAST-10 airfoil model. Recently developed finite-volume codes that apply a multistage time stepping scheme in conjunction with steady state acceleration techniques are used to solve the equations. Two-dimensional results are shown for flow conditions uncorrected and corrected for wind tunnel wall interference effects. Predicted surface pressures from 3-D simulations are compared with those from 2-D calculations. The focus of the 3-D computations is the influence of the sidewall boundary layers. Topological features of the 3-D flow fields are indicated. Lift and drag results are compared with experimental measurements.
NASA Technical Reports Server (NTRS)
Palmer, Grant
1989-01-01
This study presents a three-dimensional explicit, finite-difference, shock-capturing numerical algorithm applied to viscous hypersonic flows in thermochemical nonequilibrium. The algorithm employs a two-temperature physical model. Equations governing the finite-rate chemical reactions are fully-coupled to the gas dynamic equations using a novel coupling technique. The new coupling method maintains stability in the explicit, finite-rate formulation while allowing relatively large global time steps. The code uses flux-vector accuracy. Comparisons with experimental data and other numerical computations verify the accuracy of the present method. The code is used to compute the three-dimensional flowfield over the Aeroassist Flight Experiment (AFE) vehicle at one of its trajectory points.
NASA Astrophysics Data System (ADS)
Chang, S. L.; Lottes, S. A.; Berry, G. F.
Argonne National Laboratory is investigating the non-reacting jet-gas mixing patterns in a magnetohydrodynamics (MHD) second stage combustor by using a three-dimensional single-phase hydrodynamics computer program. The computer simulation is intended to enhance the understanding of flow and mixing patterns in the combustor, which in turn may improve downstream MHD channel performance. The code is used to examine the three-dimensional effects of the side walls and the distributed jet flows on the non-reacting jet-gas mixing patterns. The code solves the conservation equations of mass, momentum, and energy, and a transport equation of a turbulence parameter and allows permeable surfaces to be specified for any computational cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xibing; Dong, Longjun, E-mail: csudlj@163.com; Australian Centre for Geomechanics, The University of Western Australia, Crawley, 6009
This paper presents an efficient closed-form solution (ECS) for acoustic emission(AE) source location in three-dimensional structures using time difference of arrival (TDOA) measurements from N receivers, N ≥ 6. The nonlinear location equations of TDOA are simplified to linear equations. The unique analytical solution of AE sources for unknown velocity system is obtained by solving the linear equations. The proposed ECS method successfully solved the problems of location errors resulting from measured deviations of velocity as well as the existence and multiplicity of solutions induced by calculations of square roots in existed close-form methods.
Numerical solution of 3D Navier-Stokes equations with upwind implicit schemes
NASA Technical Reports Server (NTRS)
Marx, Yves P.
1990-01-01
An upwind MUSCL type implicit scheme for the three-dimensional Navier-Stokes equations is presented. Comparison between different approximate Riemann solvers (Roe and Osher) are performed and the influence of the reconstructions schemes on the accuracy of the solution as well as on the convergence of the method is studied. A new limiter is introduced in order to remove the problems usually associated with non-linear upwind schemes. The implementation of a diagonal upwind implicit operator for the three-dimensional Navier-Stokes equations is also discussed. Finally the turbulence modeling is assessed. Good prediction of separated flows are demonstrated if a non-equilibrium turbulence model is used.
Development of a three-dimensional supersonic inlet flow analysis
NASA Technical Reports Server (NTRS)
Buggeln, R. C.; Mcdonald, H.; Levy, R.; Kreskovsky, J. P.
1980-01-01
A method for computing three dimensional flow in supersonic inlets is described. An approximate set of governing equations is given for viscous flows which have a primary flow direction. The governing equations are written in general orthogonal coordinates. These equations are modified in the subsonic region of the flow to prevent the phenomenon of branching. Results are presented for the two sample cases: a Mach number equals 2.5 flow in a square duct, and a Mach number equals 3.0 flow in a research jet engine inlet. In the latter case the computed results are compared with the experimental data. A users' manual is included.
Biala, T A; Jator, S N
2015-01-01
In this article, the boundary value method is applied to solve three dimensional elliptic and hyperbolic partial differential equations. The partial derivatives with respect to two of the spatial variables (y, z) are discretized using finite difference approximations to obtain a large system of ordinary differential equations (ODEs) in the third spatial variable (x). Using interpolation and collocation techniques, a continuous scheme is developed and used to obtain discrete methods which are applied via the Block unification approach to obtain approximations to the resulting large system of ODEs. Several test problems are investigated to elucidate the solution process.
NASA Astrophysics Data System (ADS)
Chávez, Yoshua; Chacón-Acosta, Guillermo; Dagdug, Leonardo
2018-05-01
Axial diffusion in channels and tubes of smoothly-varying geometry can be approximately described as one-dimensional diffusion in the entropy potential with a position-dependent effective diffusion coefficient, by means of the modified Fick–Jacobs equation. In this work, we derive analytical expressions for the position-dependent effective diffusivity for two-dimensional asymmetric varying-width channels, and for three-dimensional curved midline tubes, formed by straight walls. To this end, we use a recently developed theoretical framework using the Frenet–Serret moving frame as the coordinate system (2016 J. Chem. Phys. 145 074105). For narrow tubes and channels, an effective one-dimensional description reducing the diffusion equation to a Fick–Jacobs-like equation in general coordinates is used. From this last equation, one can calculate the effective diffusion coefficient applying Neumann boundary conditions.
Forms of null Lagrangians in field theories of continuum mechanics
NASA Astrophysics Data System (ADS)
Kovalev, V. A.; Radaev, Yu. N.
2012-02-01
The divergence representation of a null Lagrangian that is regular in a star-shaped domain is used to obtain its general expression containing field gradients of order ≤ 1 in the case of spacetime of arbitrary dimension. It is shown that for a static three-component field in the three-dimensional space, a null Lagrangian can contain up to 15 independent elements in total. The general form of a null Lagrangian in the four-dimensional Minkowski spacetime is obtained (the number of physical field variables is assumed arbitrary). A complete theory of the null Lagrangian for the n-dimensional spacetime manifold (including the four-dimensional Minkowski spacetime as a special case) is given. Null Lagrangians are then used as a basis for solving an important variational problem of an integrating factor. This problem involves searching for factors that depend on the spacetime variables, field variables, and their gradients and, for a given system of partial differential equations, ensure the equality between the scalar product of a vector multiplier by the system vector and some divergence expression for arbitrary field variables and, hence, allow one to formulate a divergence conservation law on solutions to the system.
Quantum field between moving mirrors: A three dimensional example
NASA Technical Reports Server (NTRS)
Hacyan, S.; Jauregui, Roco; Villarreal, Carlos
1995-01-01
The scalar quantum field uniformly moving plates in three dimensional space is studied. Field equations for Dirichlet boundary conditions are solved exactly. Comparison of the resulting wavefunctions with their instantaneous static counterpart is performed via Bogolubov coefficients. Unlike the one dimensional problem, 'particle' creation as well as squeezing may occur. The time dependent Casimir energy is also evaluated.
A candidate secular variation model for IGRF-12 based on Swarm data and inverse geodynamo modelling
NASA Astrophysics Data System (ADS)
Fournier, Alexandre; Aubert, Julien; Thébault, Erwan
2015-05-01
In the context of the 12th release of the international geomagnetic reference field (IGRF), we present the methodology we followed to design a candidate secular variation model for years 2015-2020. An initial geomagnetic field model centered around 2014.3 is first constructed, based on Swarm magnetic measurements, for both the main field and its instantaneous secular variation. This initial model is next fed to an inverse geodynamo modelling framework in order to specify, for epoch 2014.3, the initial condition for the integration of a three-dimensional numerical dynamo model. The initialization phase combines the information contained in the initial model with that coming from the numerical dynamo model, in the form of three-dimensional multivariate statistics built from a numerical dynamo run unconstrained by data. We study the performance of this novel approach over two recent 5-year long intervals, 2005-2010 and 2009-2014. For a forecast horizon of 5 years, shorter than the large-scale secular acceleration time scale (˜10 years), we find that it is safer to neglect the flow acceleration and to assume that the flow determined by the initialization is steady. This steady flow is used to advance the three-dimensional induction equation forward in time, with the benefit of estimating the effects of magnetic diffusion. The result of this deterministic integration between 2015.0 and 2020.0 yields our candidate average secular variation model for that time frame, which is thus centered on 2017.5.
Applications of an exponential finite difference technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handschuh, R.F.; Keith, T.G. Jr.
1988-07-01
An exponential finite difference scheme first presented by Bhattacharya for one dimensional unsteady heat conduction problems in Cartesian coordinates was extended. The finite difference algorithm developed was used to solve the unsteady diffusion equation in one dimensional cylindrical coordinates and was applied to two and three dimensional conduction problems in Cartesian coordinates. Heat conduction involving variable thermal conductivity was also investigated. The method was used to solve nonlinear partial differential equations in one and two dimensional Cartesian coordinates. Predicted results are compared to exact solutions where available or to results obtained by other numerical methods.
Ahmad, Hassan
2013-01-01
The spread and perpetuation of the HIV/AIDS epidemic in South Africa has hindered the country's social and economic growth after apartheid. This paper documents my experiences while working with the Projects Abroad Human Rights Office and specifically my interactions with the Treatment Action Campaign (TAC), an organization which has taken a multi-dimensional approach in order to educate people about HIV/AIDS and attempt to provide access to medicines for millions of South Africans afflicted with the disease. I discuss how TAC has used both traditional and non-traditional methods of advocacy to combat the epidemic and equate access to health care to a social justice issue by empowering marginalized communities. The paper's dual purpose is to applaud TAC's continuous success in combating HIV/AIDS with such a multi-dimensional approach and illustrate how other organizations can utilize such an approach in order to affect social change. To illustrate TAC's approach, I utilize Lucie White's three dimensions of lawyering and equate TAC to a single cause lawyer, signifying that White's characterization of multi-dimensional activism is not limited to individuals, but can rather be applied at the firm level. White's three dimensions include: (a) advocacy through litigation, (b) advocacy in stimulating progressive change, and (c) advocacy as a pedagogic process. From this analysis, I conclude that TAC's multi-dimensional approach and specifically its inherent practice of White's three dimensions has been the root of its success in educating millions about the virus and advocating for access to medicines for those who have contracted HIV. TAC's innovative advocacy has also mobilized a new generation of South African activists who have helped TAC grow into a vibrant and integral organization within the country's post-apartheid culture. Such an example can serve as a framework for future organizations who wish to tackle other challenges that face the country. PMID:23819672
Ahmad, Hassan
2013-03-01
The spread and perpetuation of the HIV/AIDS epidemic in South Africa has hindered the country's social and economic growth after apartheid. This paper documents my experiences while working with the Projects Abroad Human Rights Office and specifically my interactions with the Treatment Action Campaign (TAC), an organization which has taken a multi-dimensional approach in order to educate people about HIV/AIDS and attempt to provide access to medicines for millions of South Africans afflicted with the disease. I discuss how TAC has used both traditional and non-traditional methods of advocacy to combat the epidemic and equate access to health care to a social justice issue by empowering marginalized communities. The paper's dual purpose is to applaud TAC's continuous success in combating HIV/AIDS with such a multi-dimensional approach and illustrate how other organizations can utilize such an approach in order to affect social change. To illustrate TAC's approach, I utilize Lucie White's three dimensions of lawyering and equate TAC to a single cause lawyer, signifying that White's characterization of multi-dimensional activism is not limited to individuals, but can rather be applied at the firm level. White's three dimensions include: (a) advocacy through litigation, (b) advocacy in stimulating progressive change, and (c) advocacy as a pedagogic process. From this analysis, I conclude that TAC's multi-dimensional approach and specifically its inherent practice of White's three dimensions has been the root of its success in educating millions about the virus and advocating for access to medicines for those who have contracted HIV. TAC's innovative advocacy has also mobilized a new generation of South African activists who have helped TAC grow into a vibrant and integral organization within the country's post-apartheid culture. Such an example can serve as a framework for future organizations who wish to tackle other challenges that face the country.
Numerical Modeling of Three-Dimensional Confined Flows
NASA Technical Reports Server (NTRS)
Greywall, M. S.
1981-01-01
A three dimensional confined flow model is presented. The flow field is computed by calculating velocity and enthalpy along a set of streamlines. The finite difference equations are obtained by applying conservation principles to streamtubes constructed around the chosen streamlines. With appropriate substitutions for the body force terms, the approach computes three dimensional magnetohydrodynamic channel flows. A listing of a computer code, based on this approach is presented in FORTRAN IV language. The code computes three dimensional compressible viscous flow through a rectangular duct, with the duct cross section specified along the axis.
NASA Astrophysics Data System (ADS)
Tavelli, Maurizio; Dumbser, Michael
2017-07-01
We propose a new arbitrary high order accurate semi-implicit space-time discontinuous Galerkin (DG) method for the solution of the two and three dimensional compressible Euler and Navier-Stokes equations on staggered unstructured curved meshes. The method is pressure-based and semi-implicit and is able to deal with all Mach number flows. The new DG scheme extends the seminal ideas outlined in [1], where a second order semi-implicit finite volume method for the solution of the compressible Navier-Stokes equations with a general equation of state was introduced on staggered Cartesian grids. Regarding the high order extension we follow [2], where a staggered space-time DG scheme for the incompressible Navier-Stokes equations was presented. In our scheme, the discrete pressure is defined on the primal grid, while the discrete velocity field and the density are defined on a face-based staggered dual grid. Then, the mass conservation equation, as well as the nonlinear convective terms in the momentum equation and the transport of kinetic energy in the energy equation are discretized explicitly, while the pressure terms appearing in the momentum and energy equation are discretized implicitly. Formal substitution of the discrete momentum equation into the total energy conservation equation yields a linear system for only one unknown, namely the scalar pressure. Here the equation of state is assumed linear with respect to the pressure. The enthalpy and the kinetic energy are taken explicitly and are then updated using a simple Picard procedure. Thanks to the use of a staggered grid, the final pressure system is a very sparse block five-point system for three dimensional problems and it is a block four-point system in the two dimensional case. Furthermore, for high order in space and piecewise constant polynomials in time, the system is observed to be symmetric and positive definite. This allows to use fast linear solvers such as the conjugate gradient (CG) method. In addition, all the volume and surface integrals needed by the scheme depend only on the geometry and the polynomial degree of the basis and test functions and can therefore be precomputed and stored in a preprocessing stage. This leads to significant savings in terms of computational effort for the time evolution part. In this way also the extension to a fully curved isoparametric approach becomes natural and affects only the preprocessing step. The viscous terms and the heat flux are also discretized making use of the staggered grid by defining the viscous stress tensor and the heat flux vector on the dual grid, which corresponds to the use of a lifting operator, but on the dual grid. The time step of our new numerical method is limited by a CFL condition based only on the fluid velocity and not on the sound speed. This makes the method particularly interesting for low Mach number flows. Finally, a very simple combination of artificial viscosity and the a posteriori MOOD technique allows to deal with shock waves and thus permits also to simulate high Mach number flows. We show computational results for a large set of two and three-dimensional benchmark problems, including both low and high Mach number flows and using polynomial approximation degrees up to p = 4.
Integrable systems with BMS3 Poisson structure and the dynamics of locally flat spacetimes
NASA Astrophysics Data System (ADS)
Fuentealba, Oscar; Matulich, Javier; Pérez, Alfredo; Pino, Miguel; Rodríguez, Pablo; Tempo, David; Troncoso, Ricardo
2018-01-01
We construct a hierarchy of integrable systems whose Poisson structure corresponds to the BMS3 algebra, and then discuss its description in terms of the Riemannian geometry of locally flat spacetimes in three dimensions. The analysis is performed in terms of two-dimensional gauge fields for isl(2,R) , being isomorphic to the Poincaré algebra in 3D. Although the algebra is not semisimple, the formulation can still be carried out à la Drinfeld-Sokolov because it admits a nondegenerate invariant bilinear metric. The hierarchy turns out to be bi-Hamiltonian, labeled by a nonnegative integer k, and defined through a suitable generalization of the Gelfand-Dikii polynomials. The symmetries of the hierarchy are explicitly found. For k ≥ 1, the corresponding conserved charges span an infinite-dimensional Abelian algebra without central extensions, so that they are in involution; while in the case of k = 0, they generate the BMS3 algebra. In the special case of k = 1, by virtue of a suitable field redefinition and time scaling, the field equations are shown to be equivalent to the ones of a specific type of the Hirota-Satsuma coupled KdV systems. For k ≥ 1, the hierarchy also includes the so-called perturbed KdV equations as a particular case. A wide class of analytic solutions is also explicitly constructed for a generic value of k. Remarkably, the dynamics can be fully geometrized so as to describe the evolution of spacelike surfaces embedded in locally flat spacetimes. Indeed, General Relativity in 3D can be endowed with a suitable set of boundary conditions, so that the Einstein equations precisely reduce to the ones of the hierarchy aforementioned. The symmetries of the integrable systems then arise as diffeomorphisms that preserve the asymptotic form of the spacetime metric, and therefore, they become Noetherian. The infinite set of conserved charges is then recovered from the corresponding surface integrals in the canonical approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien, T.H.; Domanus, H.M.; Sha, W.T.
1993-02-01
The COMMIX-PPC computer pregrain is an extended and improved version of earlier COMMIX codes and is specifically designed for evaluating the thermal performance of power plant condensers. The COMMIX codes are general-purpose computer programs for the analysis of fluid flow and heat transfer in complex Industrial systems. In COMMIX-PPC, two major features have been added to previously published COMMIX codes. One feature is the incorporation of one-dimensional equations of conservation of mass, momentum, and energy on the tube stile and the proper accounting for the thermal interaction between shell and tube side through the porous-medium approach. The other added featuremore » is the extension of the three-dimensional conservation equations for shell-side flow to treat the flow of a multicomponent medium. COMMIX-PPC is designed to perform steady-state and transient. Three-dimensional analysis of fluid flow with heat transfer tn a power plant condenser. However, the code is designed in a generalized fashion so that, with some modification, it can be used to analyze processes in any heat exchanger or other single-phase engineering applications. Volume I (Equations and Numerics) of this report describes in detail the basic equations, formulation, solution procedures, and models for a phenomena. Volume II (User`s Guide and Manual) contains the input instruction, flow charts, sample problems, and descriptions of available options and boundary conditions.« less
Higher-order gravity in higher dimensions: geometrical origins of four-dimensional cosmology?
NASA Astrophysics Data System (ADS)
Troisi, Antonio
2017-03-01
Determining the cosmological field equations is still very much debated and led to a wide discussion around different theoretical proposals. A suitable conceptual scheme could be represented by gravity models that naturally generalize Einstein theory like higher-order gravity theories and higher-dimensional ones. Both of these two different approaches allow one to define, at the effective level, Einstein field equations equipped with source-like energy-momentum tensors of geometrical origin. In this paper, the possibility is discussed to develop a five-dimensional fourth-order gravity model whose lower-dimensional reduction could provide an interpretation of cosmological four-dimensional matter-energy components. We describe the basic concepts of the model, the complete field equations formalism and the 5-D to 4-D reduction procedure. Five-dimensional f( R) field equations turn out to be equivalent, on the four-dimensional hypersurfaces orthogonal to the extra coordinate, to an Einstein-like cosmological model with three matter-energy tensors related with higher derivative and higher-dimensional counter-terms. By considering the gravity model with f(R)=f_0R^n the possibility is investigated to obtain five-dimensional power law solutions. The effective four-dimensional picture and the behaviour of the geometrically induced sources are finally outlined in correspondence to simple cases of such higher-dimensional solutions.
NASA Astrophysics Data System (ADS)
Xu, Jing; Wang, Yu-Tian; Liu, Xiao-Fei
2015-04-01
Edible blend oil is a mixture of vegetable oils. Eligible blend oil can meet the daily need of two essential fatty acids for human to achieve the balanced nutrition. Each vegetable oil has its different composition, so vegetable oils contents in edible blend oil determine nutritional components in blend oil. A high-precision quantitative analysis method to detect the vegetable oils contents in blend oil is necessary to ensure balanced nutrition for human being. Three-dimensional fluorescence technique is high selectivity, high sensitivity, and high-efficiency. Efficiency extraction and full use of information in tree-dimensional fluorescence spectra will improve the accuracy of the measurement. A novel quantitative analysis is proposed based on Quasi-Monte-Carlo integral to improve the measurement sensitivity and reduce the random error. Partial least squares method is used to solve nonlinear equations to avoid the effect of multicollinearity. The recovery rates of blend oil mixed by peanut oil, soybean oil and sunflower are calculated to verify the accuracy of the method, which are increased, compared the linear method used commonly for component concentration measurement.
Fuchsia : A tool for reducing differential equations for Feynman master integrals to epsilon form
NASA Astrophysics Data System (ADS)
Gituliar, Oleksandr; Magerya, Vitaly
2017-10-01
We present Fuchsia - an implementation of the Lee algorithm, which for a given system of ordinary differential equations with rational coefficients ∂x J(x , ɛ) = A(x , ɛ) J(x , ɛ) finds a basis transformation T(x , ɛ) , i.e., J(x , ɛ) = T(x , ɛ) J‧(x , ɛ) , such that the system turns into the epsilon form : ∂xJ‧(x , ɛ) = ɛ S(x) J‧(x , ɛ) , where S(x) is a Fuchsian matrix. A system of this form can be trivially solved in terms of polylogarithms as a Laurent series in the dimensional regulator ɛ. That makes the construction of the transformation T(x , ɛ) crucial for obtaining solutions of the initial system. In principle, Fuchsia can deal with any regular systems, however its primary task is to reduce differential equations for Feynman master integrals. It ensures that solutions contain only regular singularities due to the properties of Feynman integrals. Program Files doi:http://dx.doi.org/10.17632/zj6zn9vfkh.1 Licensing provisions: MIT Programming language:Python 2.7 Nature of problem: Feynman master integrals may be calculated from solutions of a linear system of differential equations with rational coefficients. Such a system can be easily solved as an ɛ-series when its epsilon form is known. Hence, a tool which is able to find the epsilon form transformations can be used to evaluate Feynman master integrals. Solution method: The solution method is based on the Lee algorithm (Lee, 2015) which consists of three main steps: fuchsification, normalization, and factorization. During the fuchsification step a given system of differential equations is transformed into the Fuchsian form with the help of the Moser method (Moser, 1959). Next, during the normalization step the system is transformed to the form where eigenvalues of all residues are proportional to the dimensional regulator ɛ. Finally, the system is factorized to the epsilon form by finding an unknown transformation which satisfies a system of linear equations. Additional comments including Restrictions and Unusual features: Systems of single-variable differential equations are considered. A system needs to be reducible to Fuchsian form and eigenvalues of its residues must be of the form n + m ɛ, where n is integer. Performance depends upon the input matrix, its size, number of singular points and their degrees. It takes around an hour to reduce an example 74 × 74 matrix with 20 singular points on a PC with a 1.7 GHz Intel Core i5 CPU. An additional slowdown is to be expected for matrices with complex and/or irrational singular point locations, as these are particularly difficult for symbolic algebra software to handle.
Stochastic analysis of three-dimensional flow in a bounded domain
Naff, R.L.; Vecchia, A.V.
1986-01-01
A commonly accepted first-order approximation of the equation for steady state flow in a fully saturated spatially random medium has the form of Poisson's equation. This form allows for the advantageous use of Green's functions to solve for the random output (hydraulic heads) in terms of a convolution over the random input (the logarithm of hydraulic conductivity). A solution for steady state three- dimensional flow in an aquifer bounded above and below is presented; consideration of these boundaries is made possible by use of Green's functions to solve Poisson's equation. Within the bounded domain the medium hydraulic conductivity is assumed to be a second-order stationary random process as represented by a simple three-dimensional covariance function. Upper and lower boundaries are taken to be no-flow boundaries; the mean flow vector lies entirely in the horizontal dimensions. The resulting hydraulic head covariance function exhibits nonstationary effects resulting from the imposition of boundary conditions. Comparisons are made with existing infinite domain solutions.
Discontinuous Transition from Direct to Inverse Cascade in Three-Dimensional Turbulence
NASA Astrophysics Data System (ADS)
Sahoo, Ganapati; Alexakis, Alexandros; Biferale, Luca
2017-04-01
Inviscid invariants of flow equations are crucial in determining the direction of the turbulent energy cascade. In this work we investigate a variant of the three-dimensional Navier-Stokes equations that shares exactly the same ideal invariants (energy and helicity) and the same symmetries (under rotations, reflections, and scale transforms) as the original equations. It is demonstrated that the examined system displays a change in the direction of the energy cascade when varying the value of a free parameter which controls the relative weights of the triadic interactions between different helical Fourier modes. The transition from a forward to inverse cascade is shown to occur at a critical point in a discontinuous manner with diverging fluctuations close to criticality. Our work thus supports the observation that purely isotropic and three-dimensional flow configurations can support inverse energy transfer when interactions are altered and that inside all turbulent flows there is a competition among forward and backward transfer mechanisms which might lead to multiple energy-containing turbulent states.
Austerity and geometric structure of field theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kheyfets, A.
The relation between the austerity idea and the geometric structure of the three basic field theories - electrodynamics, Yang-Mills theory, and general relativity - is studied. One of the most significant manifestations of the austerity idea in field theories is thought to be expressed by the boundary of a boundary principle (BBP). The BBP says that almost all content of the field theories can be deduced from the topological identity of delta dot produced with delta = 0 used twice, at the 1-2-3-dimensional level (providing the homogeneous field equations), and at the 2-3-4-dimensional level (providing the conservation laws for themore » source currents). There are some difficulties in this line of thought due to the apparent lack of universality in application of the BBP to the three basic modern field theories above. This dissertation: (a) analyzes the difficulties by means of algebraic topology, integration theory, and modern differential geometry based on the concepts of principal bundles and Ehresmann connections: (b) extends the BBP to the unified Kaluza-Klein theory; (c) reformulates the inhomogeneous field equations and the BBP in terms of E. Cartan moment of rotation, in the way universal for the three theories and compatible with the original austerity idea; and (d) underlines the important role of the soldering structure on spacetime, and indicates that the future development of the austerity idea would involve the generalized theories.« less
Study of coupled nonlinear partial differential equations for finding exact analytical solutions
Khan, Kamruzzaman; Akbar, M. Ali; Koppelaar, H.
2015-01-01
Exact solutions of nonlinear partial differential equations (NPDEs) are obtained via the enhanced (G′/G)-expansion method. The method is subsequently applied to find exact solutions of the Drinfel'd–Sokolov–Wilson (DSW) equation and the (2+1)-dimensional Painlevé integrable Burgers (PIB) equation. The efficiency of this method for finding these exact solutions is demonstrated. The method is effective and applicable for many other NPDEs in mathematical physics. PMID:26587256
Three dimensional dynamics of a flexible Motorised Momentum Exchange Tether
NASA Astrophysics Data System (ADS)
Ismail, N. A.; Cartmell, M. P.
2016-03-01
This paper presents a new flexural model for the three dimensional dynamics of the Motorised Momentum Exchange Tether (MMET) concept. This study has uncovered the relationships between planar and nonplanar motions, and the effect of the coupling between these two parameters on pragmatic circular and elliptical orbits. The tether sub-spans are modelled as stiffened strings governed by partial differential equations of motion, with specific boundary conditions. The tether sub-spans are flexible and elastic, thereby allowing three dimensional displacements. The boundary conditions lead to a specific frequency equation and the eigenvalues from this provide the natural frequencies of the orbiting flexible motorised tether when static, accelerating in monotonic spin, and at terminal angular velocity. A rotation transformation matrix has been utilised to get the position vectors of the system's components in an assumed inertial frame. Spatio-temporal coordinates are transformed to modal coordinates before applying Lagrange's equations, and pre-selected linear modes are included to generate the equations of motion. The equations of motion contain inertial nonlinearities which are essentially of cubic order, and these show the potential for intricate intermodal coupling effects. A simulation of planar and non-planar motions has been undertaken and the differences in the modal responses, for both motions, and between the rigid body and flexible models are highlighted and discussed.
Suenaga, Hideyuki; Hoang Tran, Huy; Liao, Hongen; Masamune, Ken; Dohi, Takeyoshi; Hoshi, Kazuto; Mori, Yoshiyuki; Takato, Tsuyoshi
2013-01-01
To evaluate the feasibility and accuracy of a three-dimensional augmented reality system incorporating integral videography for imaging oral and maxillofacial regions, based on preoperative computed tomography data. Three-dimensional surface models of the jawbones, based on the computed tomography data, were used to create the integral videography images of a subject's maxillofacial area. The three-dimensional augmented reality system (integral videography display, computed tomography, a position tracker and a computer) was used to generate a three-dimensional overlay that was projected on the surgical site via a half-silvered mirror. Thereafter, a feasibility study was performed on a volunteer. The accuracy of this system was verified on a solid model while simulating bone resection. Positional registration was attained by identifying and tracking the patient/surgical instrument's position. Thus, integral videography images of jawbones, teeth and the surgical tool were superimposed in the correct position. Stereoscopic images viewed from various angles were accurately displayed. Change in the viewing angle did not negatively affect the surgeon's ability to simultaneously observe the three-dimensional images and the patient, without special glasses. The difference in three-dimensional position of each measuring point on the solid model and augmented reality navigation was almost negligible (<1 mm); this indicates that the system was highly accurate. This augmented reality system was highly accurate and effective for surgical navigation and for overlaying a three-dimensional computed tomography image on a patient's surgical area, enabling the surgeon to understand the positional relationship between the preoperative image and the actual surgical site, with the naked eye. PMID:23703710
Pdf - Transport equations for chemically reacting flows
NASA Technical Reports Server (NTRS)
Kollmann, W.
1989-01-01
The closure problem for the transport equations for pdf and the characteristic functions of turbulent, chemically reacting flows is addressed. The properties of the linear and closed equations for the characteristic functional for Eulerian and Lagrangian variables are established, and the closure problem for the finite-dimensional case is discussed for pdf and characteristic functions. It is shown that the closure for the scalar dissipation term in the pdf equation developed by Dopazo (1979) and Kollmann et al. (1982) results in a single integral, in contrast to the pdf, where double integration is required. Some recent results using pdf methods obtained for turbulent flows with combustion, including effects of chemical nonequilibrium, are discussed.
The influence of a wind tunnel on helicopter rotational noise: Formulation of analysis
NASA Technical Reports Server (NTRS)
Mosher, M.
1984-01-01
An analytical model is discussed that can be used to examine the effects of wind tunnel walls on helicopter rotational noise. A complete physical model of an acoustic source in a wind tunnel is described and a simplified version is then developed. This simplified model retains the important physical processes involved, yet it is more amenable to analysis. The simplified physical model is then modeled as a mathematical problem. An inhomogeneous partial differential equation with mixed boundary conditions is set up and then transformed into an integral equation. Details of generating a suitable Green's function and integral equation are included and the equation is discussed and also given for a two-dimensional case.
NASA Technical Reports Server (NTRS)
Kim, Sang-Wook
1988-01-01
A velocity-pressure integrated, mixed interpolation, Galerkin finite element method for the Navier-Stokes equations is presented. In the method, the velocity variables were interpolated using complete quadratic shape functions and the pressure was interpolated using linear shape functions. For the two dimensional case, the pressure is defined on a triangular element which is contained inside the complete biquadratic element for velocity variables; and for the three dimensional case, the pressure is defined on a tetrahedral element which is again contained inside the complete tri-quadratic element. Thus the pressure is discontinuous across the element boundaries. Example problems considered include: a cavity flow for Reynolds number of 400 through 10,000; a laminar backward facing step flow; and a laminar flow in a square duct of strong curvature. The computational results compared favorable with those of the finite difference methods as well as experimental data available. A finite elememt computer program for incompressible, laminar flows is presented.
On computations of the integrated space shuttle flowfield using overset grids
NASA Technical Reports Server (NTRS)
Chiu, I-T.; Pletcher, R. H.; Steger, J. L.
1990-01-01
Numerical simulations using the thin-layer Navier-Stokes equations and chimera (overset) grid approach were carried out for flows around the integrated space shuttle vehicle over a range of Mach numbers. Body-conforming grids were used for all the component grids. Testcases include a three-component overset grid - the external tank (ET), the solid rocket booster (SRB) and the orbiter (ORB), and a five-component overset grid - the ET, SRB, ORB, forward and aft attach hardware, configurations. The results were compared with the wind tunnel and flight data. In addition, a Poisson solution procedure (a special case of the vorticity-velocity formulation) using primitive variables was developed to solve three-dimensional, irrotational, inviscid flows for single as well as overset grids. The solutions were validated by comparisons with other analytical or numerical solution, and/or experimental results for various geometries. The Poisson solution was also used as an initial guess for the thin-layer Navier-Stokes solution procedure to improve the efficiency of the numerical flow simulations. It was found that this approach resulted in roughly a 30 percent CPU time savings as compared with the procedure solving the thin-layer Navier-Stokes equations from a uniform free stream flowfield.
Three-dimensional vortex wake structure of flapping wings in hovering flight.
Cheng, Bo; Roll, Jesse; Liu, Yun; Troolin, Daniel R; Deng, Xinyan
2014-02-06
Flapping wings continuously create and send vortices into their wake, while imparting downward momentum into the surrounding fluid. However, experimental studies concerning the details of the three-dimensional vorticity distribution and evolution in the far wake are limited. In this study, the three-dimensional vortex wake structure in both the near and far field of a dynamically scaled flapping wing was investigated experimentally, using volumetric three-component velocimetry. A single wing, with shape and kinematics similar to those of a fruitfly, was examined. The overall result of the wing action is to create an integrated vortex structure consisting of a tip vortex (TV), trailing-edge shear layer (TESL) and leading-edge vortex. The TESL rolls up into a root vortex (RV) as it is shed from the wing, and together with the TV, contracts radially and stretches tangentially in the downstream wake. The downwash is distributed in an arc-shaped region enclosed by the stretched tangential vorticity of the TVs and the RVs. A closed vortex ring structure is not observed in the current study owing to the lack of well-established starting and stopping vortex structures that smoothly connect the TV and RV. An evaluation of the vorticity transport equation shows that both the TV and the RV undergo vortex stretching while convecting downwards: a three-dimensional phenomenon in rotating flows. It also confirms that convection and secondary tilting and stretching effects dominate the evolution of vorticity.
SIERRA - A 3-D device simulator for reliability modeling
NASA Astrophysics Data System (ADS)
Chern, Jue-Hsien; Arledge, Lawrence A., Jr.; Yang, Ping; Maeda, John T.
1989-05-01
SIERRA is a three-dimensional general-purpose semiconductor-device simulation program which serves as a foundation for investigating integrated-circuit (IC) device and reliability issues. This program solves the Poisson and continuity equations in silicon under dc, transient, and small-signal conditions. Executing on a vector/parallel minisupercomputer, SIERRA utilizes a matrix solver which uses an incomplete LU (ILU) preconditioned conjugate gradient square (CGS, BCG) method. The ILU-CGS method provides a good compromise between memory size and convergence rate. The authors have observed a 5x to 7x speedup over standard direct methods in simulations of transient problems containing highly coupled Poisson and continuity equations such as those found in reliability-oriented simulations. The application of SIERRA to parasitic CMOS latchup and dynamic random-access memory single-event-upset studies is described.
NASA Technical Reports Server (NTRS)
Arakawa, A.; Lamb, V. R.
1979-01-01
A three-dimensional finite difference scheme for the solution of the shallow water momentum equations which accounts for the conservation of potential enstrophy in the flow of a homogeneous incompressible shallow atmosphere over steep topography as well as for total energy conservation is presented. The scheme is derived to be consistent with a reasonable scheme for potential vorticity advection in a long-term integration for a general flow with divergent mass flux. Numerical comparisons of the characteristics of the present potential enstrophy-conserving scheme with those of a scheme that conserves potential enstrophy only for purely horizontal nondivergent flow are presented which demonstrate the reduction of computational noise in the wind field with the enstrophy-conserving scheme and its convergence even in relatively coarse grids.
Bessel-Gauss resonator with spherical output mirror: geometrical- and wave-optics analysis.
Gutiérrez-Vega, Julio C; Rodríguez-Masegosa, Rodolfo; Chávez-Cerda, Sabino
2003-11-01
A detailed study of the axicon-based Bessel-Gauss resonator with concave output coupler is presented. We employ a technique to convert the Huygens-Fresnel integral self-consistency equation into a matrix equation and then find the eigenvalues and the eigenfields of the resonator at one time. A paraxial ray analysis is performed to find the self-consistency condition to have stable periodic ray trajectories after one or two round trips. The fast-Fourier-transform-based Fox and Li algorithm is applied to describe the three-dimensional intracavity field distribution. Special attention was directed to the dependence of the output transverse profiles, the losses, and the modal-frequency changes on the curvature of the output coupler and the cavity length. The propagation of the output beam is discussed.
MOM3D method of moments code theory manual
NASA Technical Reports Server (NTRS)
Shaeffer, John F.
1992-01-01
MOM3D is a FORTRAN algorithm that solves Maxwell's equations as expressed via the electric field integral equation for the electromagnetic response of open or closed three dimensional surfaces modeled with triangle patches. Two joined triangles (couples) form the vector current unknowns for the surface. Boundary conditions are for perfectly conducting or resistive surfaces. The impedance matrix represents the fundamental electromagnetic interaction of the body with itself. A variety of electromagnetic analysis options are possible once the impedance matrix is computed including backscatter radar cross section (RCS), bistatic RCS, antenna pattern prediction for user specified body voltage excitation ports, RCS image projection showing RCS scattering center locations, surface currents excited on the body as induced by specified plane wave excitation, and near field computation for the electric field on or near the body.
Radiative transfer of X-rays in the solar corona
NASA Technical Reports Server (NTRS)
Acton, L. W.
1978-01-01
The problem of resonance scattering of X-ray emission lines in the solar corona is investigated. For the resonance lines of some helium-like ions, significant optical depths are reached over distances small compared with the size of typical coronal features. A general integral equation for the transfer of resonance-line radiation under solar coronal conditions is derived. This expression is in a form useful for modeling the complex three-dimensional temperature and density structure of coronal active regions. The transfer equation is then cast in a form illustrating the terms which give rise to the attenuation or enhancement of the resonance-line intensity. The source function for helium-like oxygen (O VII) under coronal conditions is computed and discussed in terms of the relative importance of scattering.
Petrov, Pavel S; Sturm, Frédéric
2016-03-01
A problem of sound propagation in a shallow-water waveguide with a weakly sloping penetrable bottom is considered. The adiabatic mode parabolic equations are used to approximate the solution of the three-dimensional (3D) Helmholtz equation by modal decomposition of the acoustic pressure field. The mode amplitudes satisfy parabolic equations that admit analytical solutions in the special case of the 3D wedge. Using the analytical formula for modal amplitudes, an explicit and remarkably simple expression for the acoustic pressure in the wedge is obtained. The proposed solution is validated by the comparison with a solution of the 3D penetrable wedge problem obtained using a fully 3D parabolic equation that includes a leading-order cross term correction.
NASA Technical Reports Server (NTRS)
Bathel, Brett F.; Danehy, Paul M.; Johansen, Craig T.; Ashcraft, Scott W.; Novak, Luke A.
2013-01-01
Numerical predictions of the Mars Science Laboratory reaction control system jets interacting with a Mach 10 hypersonic flow are compared to experimental nitric oxide planar laser-induced fluorescence data. The steady Reynolds Averaged Navier Stokes equations using the Baldwin-Barth one-equation turbulence model were solved using the OVERFLOW code. The experimental fluorescence data used for comparison consists of qualitative two-dimensional visualization images, qualitative reconstructed three-dimensional flow structures, and quantitative two-dimensional distributions of streamwise velocity. Through modeling of the fluorescence signal equation, computational flow images were produced and directly compared to the qualitative fluorescence data.
Effective electrodiffusion equation for non-uniform nanochannels.
Marini Bettolo Marconi, Umberto; Melchionna, Simone; Pagonabarraga, Ignacio
2013-06-28
We derive a one-dimensional formulation of the Planck-Nernst-Poisson equation to describe the dynamics of a symmetric binary electrolyte in channels whose section is nanometric and varies along the axial direction. The approach is in the spirit of the Fick-Jacobs diffusion equation and leads to a system of coupled equations for the partial densities which depends on the charge sitting at the walls in a non-trivial fashion. We consider two kinds of non-uniformities, those due to the spatial variation of charge distribution and those due to the shape variation of the pore and report one- and three-dimensional solutions of the electrokinetic equations.
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.
1987-01-01
An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that were more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.
exponential finite difference technique for solving partial differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handschuh, R.F.
1987-01-01
An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that weremore » more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.« less
Mohanasubha, R.; Chandrasekar, V. K.; Lakshmanan, M.
2016-01-01
In this work, we establish a connection between the extended Prelle–Singer procedure and other widely used analytical methods to identify integrable systems in the case of nth-order nonlinear ordinary differential equations (ODEs). By synthesizing these methods, we bring out the interlink between Lie point symmetries, contact symmetries, λ-symmetries, adjoint symmetries, null forms, Darboux polynomials, integrating factors, the Jacobi last multiplier and generalized λ-symmetries corresponding to the nth-order ODEs. We also prove these interlinks with suitable examples. By exploiting these interconnections, the characteristic quantities associated with different methods can be deduced without solving the associated determining equations. PMID:27436964
NASA Technical Reports Server (NTRS)
Swafford, Timothy W.; Huddleston, David H.; Busby, Judy A.; Chesser, B. Lawrence
1992-01-01
Computations of viscous-inviscid interacting internal flowfields are presented for steady and unsteady quasi-one-dimensional (Q1D) test cases. The unsteady Q1D Euler equations are coupled with integral boundary-layer equations for unsteady, two-dimensional (planar or axisymmetric), turbulent flow over impermeable, adiabatic walls. The coupling methodology differs from that used in most techniques reported previously in that the above mentioned equation sets are written as a complete system and solved simultaneously; that is, the coupling is carried out directly through the equations as opposed to coupling the solutions of the different equation sets. Solutions to the coupled system of equations are obtained using both explicit and implicit numerical schemes for steady subsonic, steady transonic, and both steady and unsteady supersonic internal flowfields. Computed solutions are compared with measurements as well as Navier-Stokes and inverse boundary-layer methods. An analysis of the eigenvalues of the coefficient matrix associated with the quasi-linear form of the coupled system of equations indicates the presence of complex eigenvalues for certain flow conditions. It is concluded that although reasonable solutions can be obtained numerically, these complex eigenvalues contribute to the overall difficulty in obtaining numerical solutions to the coupled system of equations.
NASA Astrophysics Data System (ADS)
Santucci, F.; Santini, P. M.
2016-10-01
We study the generalization of the dispersionless Kadomtsev-Petviashvili (dKP) equation in n+1 dimensions and with nonlinearity of degree m+1, a model equation describing the propagation of weakly nonlinear, quasi one-dimensional waves in the absence of dispersion and dissipation, and arising in several physical contexts, like acoustics, plasma physics, hydrodynamics and nonlinear optics. In 2 + 1 dimensions and with quadratic nonlinearity, this equation is integrable through a novel inverse scattering transform, and it has been recently shown to be a prototype model equation in the description of the two-dimensional wave breaking of localized initial data. In higher dimensions and with higher nonlinearity, the generalized dKP equations are not integrable, but their invariance under motions on the paraboloid allows one to construct in this paper a family of exact solutions describing waves constant on their paraboloidal wave front and breaking simultaneously in all points of it, developing after breaking either multivaluedness or single-valued discontinuous profiles (shocks). Then such exact solutions are used to build the longtime behavior of the solutions of the Cauchy problem, for small and localized initial data, showing that wave breaking of small initial data takes place in the longtime regime if and only if m(n-1)≤slant 2. Lastly, the analytic aspects of such wave breaking are investigated in detail in terms of the small initial data, in both cases in which the solution becomes multivalued after breaking or it develops a shock. These results, contained in the 2012 master’s thesis of one of the authors (FS) [1], generalize those obtained in [2] for the dKP equation in n+1 dimensions with quadratic nonlinearity, and are obtained following the same strategy.
Three-Dimensional Multi-fluid Moment Simulation of Ganymede
NASA Astrophysics Data System (ADS)
Wang, L.; Germaschewski, K.; Hakim, A.; Bhattacharjee, A.; Dong, C.
2016-12-01
Plasmas in space environments, such as solar wind and Earth's magnetosphere, are often constituted of multiple species. Conventional MHD-based, single-fluid systems, have additional complications when multiple fluid species are introduced. We suggest space application of an alternative multi-fluid moment approach, treating each species on equal footing using exact evolution equations for moments of their distribution function, and electromagnetic fields through full Maxwell equations. Non-ideal effects like Hall effect, inertia, and even tensorial pressures, are self-consistently embedded without the need to explicitly solve a complicated Ohm's law. Previously, we have benchmarked this approach in classical test problems like the Orszag-Tang vortex and GEM reconnection challenge problem. Recently, we performed three-dimensional two-fluid simulation of the magnetosphere of Ganymede, using both five-moment (scalar pressures) and ten-moment (tensorial pressures) models. In both models, the formation of Alfven wing structure due to subsonic inflow is correctly captured, and the magnetic field data agree well with in-situ measurements from the Galileo flyby G8. The ten-moment simulation also showed the contribution of pressure tensor divergence to the reconnecting electric field. Initial results of coupling to state-of-art global simulation codes like OpenGGCM will also be shown, which will in the future provide a rigorous way for integration of ionospheric physics.
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Kim, Yong H.
1995-01-01
A study is made of the effect of mesh distortion on the accuracy of transverse shear stresses and their first-order and second-order sensitivity coefficients in multilayered composite panels subjected to mechanical and thermal loads. The panels are discretized by using a two-field degenerate solid element, with the fundamental unknowns consisting of both displacement and strain components, and the displacement components having a linear variation throughout the thickness of the laminate. A two-step computational procedure is used for evaluating the transverse shear stresses. In the first step, the in-plane stresses in the different layers are calculated at the numerical quadrature points for each element. In the second step, the transverse shear stresses are evaluated by using piecewise integration, in the thickness direction, of the three-dimensional equilibrium equations. The same procedure is used for evaluating the sensitivity coefficients of transverse shear stresses. Numerical results are presented showing no noticeable degradation in the accuracy of the in-plane stresses and their sensitivity coefficients with mesh distortion. However, such degradation is observed for the transverse shear stresses and their sensitivity coefficients. The standard of comparison is taken to be the exact solution of the three-dimensional thermoelasticity equations of the panel.
NASA Astrophysics Data System (ADS)
Coppa, G. G.; Ricci, Paolo
2002-10-01
This work deals with a noncollisional kinetic model for non-neutral plasmas in a Penning trap. Using the spatial coordinates r, θ, z and the axial velocity vz as phase-space variables, a kinetic model is developed starting from the kinetic equation for the distribution function f(r,θ,z,vz,t). In order to reduce the complexity of the model, the kinetic equations are integrated along the axial direction by assuming an ergodic distribution in the phase space (z,vz) for particles of the same axial energy ɛ and the same planar position. In this way, a kinetic equation for the z-integrated electron distribution F(r,θ,ɛ,t) is obtained taking into account implicitly the three-dimensionality of the problem. The general properties of the model are discussed, in particular the conservation laws. The model is also related to the fluid model that was introduced by Finn et al. [Phys. Plasmas 6, 3744 (1999); Phys. Rev. Lett. 84, 2401 (2000)] and developed by Coppa et al. [Phys. Plasmas 8, 1133 (2001)]. Finally, numerical investigations are presented regarding the stationary solutions of the model.
A three-dimensional wide-angle BPM for optical waveguide structures.
Ma, Changbao; Van Keuren, Edward
2007-01-22
Algorithms for effective modeling of optical propagation in three- dimensional waveguide structures are critical for the design of photonic devices. We present a three-dimensional (3-D) wide-angle beam propagation method (WA-BPM) using Hoekstra's scheme. A sparse matrix algebraic equation is formed and solved using iterative methods. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation, along with a technique for shifting the simulation window to reduce the dimension of the numerical equation and a threshold technique to further ensure its convergence. These techniques can ensure the implementation of iterative methods for waveguide structures by relaxing the convergence problem, which will further enable us to develop higher-order 3-D WA-BPMs based on Padé approximant operators.
Transonic Navier-Stokes solutions of three-dimensional afterbody flows
NASA Technical Reports Server (NTRS)
Compton, William B., III; Thomas, James L.; Abeyounis, William K.; Mason, Mary L.
1989-01-01
The performance of a three-dimensional Navier-Stokes solution technique in predicting the transonic flow past a nonaxisymmetric nozzle was investigated. The investigation was conducted at free-stream Mach numbers ranging from 0.60 to 0.94 and an angle of attack of 0 degrees. The numerical solution procedure employs the three-dimensional, unsteady, Reynolds-averaged Navier-Stokes equations written in strong conservation form, a thin layer assumption, and the Baldwin-Lomax turbulence model. The equations are solved by using the finite-volume principle in conjunction with an approximately factored upwind-biased numerical algorithm. In the numerical procedure, the jet exhaust is represented by a solid sting. Wind-tunnel data with the jet exhaust simulated by high pressure air were also obtained to compare with the numerical calculations.
A three-dimensional wide-angle BPM for optical waveguide structures
NASA Astrophysics Data System (ADS)
Ma, Changbao; van Keuren, Edward
2007-01-01
Algorithms for effective modeling of optical propagation in three- dimensional waveguide structures are critical for the design of photonic devices. We present a three-dimensional (3-D) wide-angle beam propagation method (WA-BPM) using Hoekstra’s scheme. A sparse matrix algebraic equation is formed and solved using iterative methods. The applicability, accuracy and effectiveness of our method are demonstrated by applying it to simulations of wide-angle beam propagation, along with a technique for shifting the simulation window to reduce the dimension of the numerical equation and a threshold technique to further ensure its convergence. These techniques can ensure the implementation of iterative methods for waveguide structures by relaxing the convergence problem, which will further enable us to develop higher-order 3-D WA-BPMs based on Padé approximant operators.
Computational unsteady aerodynamics for lifting surfaces
NASA Technical Reports Server (NTRS)
Edwards, John W.
1988-01-01
Two dimensional problems are solved using numerical techniques. Navier-Stokes equations are studied both in the vorticity-stream function formulation which appears to be the optimal choice for two dimensional problems, using a storage approach, and in the velocity pressure formulation which minimizes the number of unknowns in three dimensional problems. Analysis shows that compact centered conservative second order schemes for the vorticity equation are the most robust for high Reynolds number flows. Serious difficulties remain in the choice of turbulent models, to keep reasonable CPU efficiency.
NASA Technical Reports Server (NTRS)
Amar, Adam J.; Blackwell, Ben F.; Edwards, Jack R.
2007-01-01
The development and verification of a one-dimensional material thermal response code with ablation is presented. The implicit time integrator, control volume finite element spatial discretization, and Newton's method for nonlinear iteration on the entire system of residual equations have been implemented and verified for the thermochemical ablation of internally decomposing materials. This study is a continuation of the work presented in "One-Dimensional Ablation with Pyrolysis Gas Flow Using a Full Newton's Method and Finite Control Volume Procedure" (AIAA-2006-2910), which described the derivation, implementation, and verification of the constant density solid energy equation terms and boundary conditions. The present study extends the model to decomposing materials including decomposition kinetics, pyrolysis gas flow through the porous char layer, and a mixture (solid and gas) energy equation. Verification results are presented for the thermochemical ablation of a carbon-phenolic ablator which involves the solution of the entire system of governing equations.
Computation for Electromigration in Interconnects of Microelectronic Devices
NASA Astrophysics Data System (ADS)
Averbuch, Amir; Israeli, Moshe; Ravve, Igor; Yavneh, Irad
2001-03-01
Reliability and performance of microelectronic devices depend to a large extent on the resistance of interconnect lines. Voids and cracks may occur in the interconnects, causing a severe increase in the total resistance and even open circuits. In this work we analyze void motion and evolution due to surface diffusion effects and applied external voltage. The interconnects under consideration are three-dimensional (sandwich) constructs made of a very thin metal film of possibly variable thickness attached to a substrate of nonvanishing conductance. A two-dimensional level set approach was applied to study the dynamics of the moving (assumed one-dimensional) boundary of a void in the metal film. The level set formulation of an electromigration and diffusion model results in a fourth-order nonlinear (two-dimensional) time-dependent PDE. This equation was discretized by finite differences on a regular grid in space and a Runge-Kutta integration scheme in time, and solved simultaneously with a second-order static elliptic PDE describing the electric potential distribution throughout the interconnect line. The well-posed three-dimensional problem for the potential was approximated via singular perturbations, in the limit of small aspect ratio, by a two-dimensional elliptic equation with variable coefficients describing the combined local conductivity of metal and substrate (which is allowed to vary in time and space). The difference scheme for the elliptic PDE was solved by a multigrid technique at each time step. Motion of voids in both weak and strong electric fields was examined, and different initial void configurations were considered, including circles, ellipses, polygons with rounded corners, a butterfly, and long grooves. Analysis of the void behavior and its influence on the resistance gives the circuit designer a tool for choosing the proper parameters of an interconnect (width-to-length ratio, properties of the line material, conductivity of the underlayer, etc.).
On the Rigorous Derivation of the 3D Cubic Nonlinear Schrödinger Equation with a Quadratic Trap
NASA Astrophysics Data System (ADS)
Chen, Xuwen
2013-11-01
We consider the dynamics of the three-dimensional N-body Schrödinger equation in the presence of a quadratic trap. We assume the pair interaction potential is N 3 β-1 V( N β x). We justify the mean-field approximation and offer a rigorous derivation of the three-dimensional cubic nonlinear Schrödinger equation (NLS) with a quadratic trap. We establish the space-time bound conjectured by Klainerman and Machedon (Commun Math Phys 279:169-185, 2008) for by adapting and simplifying an argument in Chen and Pavlović (Annales Henri Poincaré, 2013) which solves the problem for in the absence of a trap.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien, T.H.; Domanus, H.M.; Sha, W.T.
1993-02-01
The COMMIX-PPC computer pregrain is an extended and improved version of earlier COMMIX codes and is specifically designed for evaluating the thermal performance of power plant condensers. The COMMIX codes are general-purpose computer programs for the analysis of fluid flow and heat transfer in complex Industrial systems. In COMMIX-PPC, two major features have been added to previously published COMMIX codes. One feature is the incorporation of one-dimensional equations of conservation of mass, momentum, and energy on the tube stile and the proper accounting for the thermal interaction between shell and tube side through the porous-medium approach. The other added featuremore » is the extension of the three-dimensional conservation equations for shell-side flow to treat the flow of a multicomponent medium. COMMIX-PPC is designed to perform steady-state and transient. Three-dimensional analysis of fluid flow with heat transfer tn a power plant condenser. However, the code is designed in a generalized fashion so that, with some modification, it can be used to analyze processes in any heat exchanger or other single-phase engineering applications. Volume I (Equations and Numerics) of this report describes in detail the basic equations, formulation, solution procedures, and models for a phenomena. Volume II (User's Guide and Manual) contains the input instruction, flow charts, sample problems, and descriptions of available options and boundary conditions.« less
EDDA 1.0: integrated simulation of debris flow erosion, deposition and property changes
NASA Astrophysics Data System (ADS)
Chen, H. X.; Zhang, L. M.
2015-03-01
Debris flow material properties change during the initiation, transportation and deposition processes, which influences the runout characteristics of the debris flow. A quasi-three-dimensional depth-integrated numerical model, EDDA (Erosion-Deposition Debris flow Analysis), is presented in this paper to simulate debris flow erosion, deposition and induced material property changes. The model considers changes in debris flow density, yield stress and dynamic viscosity during the flow process. The yield stress of the debris flow mixture determined at limit equilibrium using the Mohr-Coulomb equation is applicable to clear water flow, hyper-concentrated flow and fully developed debris flow. To assure numerical stability and computational efficiency at the same time, an adaptive time stepping algorithm is developed to solve the governing differential equations. Four numerical tests are conducted to validate the model. The first two tests involve a one-dimensional debris flow with constant properties and a two-dimensional dam-break water flow. The last two tests involve erosion and deposition, and the movement of multi-directional debris flows. The changes in debris flow mass and properties due to either erosion or deposition are shown to affect the runout characteristics significantly. The model is also applied to simulate a large-scale debris flow in Xiaojiagou Ravine to test the performance of the model in catchment-scale simulations. The results suggest that the model estimates well the volume, inundated area, and runout distance of the debris flow. The model is intended for use as a module in a real-time debris flow warning system.
MODELING THREE-DIMENSIONAL SUBSURFACE FLOW, FATE AND TRANSPORT OF MICROBES AND CHEMICALS (3DFATMIC)
A three-dimensional model simulating the subsurface flow, microbial growth and degradation, microbial-chemical reaction, and transport of microbes and chemicals has been developed. he model is designed to solve the coupled flow and transport equations. asically, the saturated-uns...
Schrödinger–Langevin equation with quantum trajectories for photodissociation dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chou, Chia-Chun, E-mail: ccchou@mx.nthu.edu.tw
The Schrödinger–Langevin equation is integrated to study the wave packet dynamics of quantum systems subject to frictional effects by propagating an ensemble of quantum trajectories. The equations of motion for the complex action and quantum trajectories are derived from the Schrödinger–Langevin equation. The moving least squares approach is used to evaluate the spatial derivatives of the complex action required for the integration of the equations of motion. Computational results are presented and analyzed for the evolution of a free Gaussian wave packet, a two-dimensional barrier model, and the photodissociation dynamics of NOCl. The absorption spectrum of NOCl obtained from themore » Schrödinger–Langevin equation displays a redshift when frictional effects increase. This computational result agrees qualitatively with the experimental results in the solution-phase photochemistry of NOCl.« less
NASA Technical Reports Server (NTRS)
Fujii, K.
1983-01-01
A method for generating three dimensional, finite difference grids about complicated geometries by using Poisson equations is developed. The inhomogenous terms are automatically chosen such that orthogonality and spacing restrictions at the body surface are satisfied. Spherical variables are used to avoid the axis singularity, and an alternating-direction-implicit (ADI) solution scheme is used to accelerate the computations. Computed results are presented that show the capability of the method. Since most of the results presented have been used as grids for flow-field computations, this is indicative that the method is a useful tool for generating three-dimensional grids about complicated geometries.
The two-dimensional kinetic ballooning theory for ion temperature gradient mode in tokamak
NASA Astrophysics Data System (ADS)
Xie, T.; Zhang, Y. Z.; Mahajan, S. M.; Hu, S. L.; He, Hongda; Liu, Z. Y.
2017-10-01
The two-dimensional (2D) kinetic ballooning theory is developed for the ion temperature gradient mode in an up-down symmetric equilibrium (illustrated via concentric circular magnetic surfaces). The ballooning transform converts the basic 2D linear gyro-kinetic equation into two equations: (1) the lowest order equation (ballooning equation) is an integral equation essentially the same as that reported by Dong et al., [Phys. Fluids B 4, 1867 (1992)] but has an undetermined Floquet phase variable, (2) the higher order equation for the rapid phase envelope is an ordinary differential equation in the same form as the 2D ballooning theory in a fluid model [Xie et al., Phys. Plasmas 23, 042514 (2016)]. The system is numerically solved by an iterative approach to obtain the (phase independent) eigen-value. The new results are compared to the two earlier theories. We find a strongly modified up-down asymmetric mode structure, and non-trivial modifications to the eigen-value.
Prediction of unsteady transonic flow around missile configurations
NASA Technical Reports Server (NTRS)
Nixon, D.; Reisenthel, P. H.; Torres, T. O.; Klopfer, G. H.
1990-01-01
This paper describes the preliminary development of a method for predicting the unsteady transonic flow around missiles at transonic and supersonic speeds, with the final goal of developing a computer code for use in aeroelastic calculations or during maneuvers. The basic equations derived for this method are an extension of those derived by Klopfer and Nixon (1989) for steady flow and are a subset of the Euler equations. In this approach, the five Euler equations are reduced to an equation similar to the three-dimensional unsteady potential equation, and a two-dimensional Poisson equation. In addition, one of the equations in this method is almost identical to the potential equation for which there are well tested computer codes, allowing the development of a prediction method based in part on proved technology.
An exact solution for the solidification of a liquid slab of binary mixture
NASA Technical Reports Server (NTRS)
Antar, B. N.; Collins, F. G.; Aumalia, A. E.
1986-01-01
The time dependent temperature and concentration profiles of a one dimensional finite slab of a binary liquid alloy is investigated during solidification. The governing equations are reduced to a set of coupled, nonlinear initial value problems using the method outlined by Meyer. Two methods will be used to solve these equations. The first method uses a Runge-Kutta-Fehlberg integrator to solve the equations numerically. The second method comprises of finding closed form solutions of the equations.
Highly Parallel Alternating Directions Algorithm for Time Dependent Problems
NASA Astrophysics Data System (ADS)
Ganzha, M.; Georgiev, K.; Lirkov, I.; Margenov, S.; Paprzycki, M.
2011-11-01
In our work, we consider the time dependent Stokes equation on a finite time interval and on a uniform rectangular mesh, written in terms of velocity and pressure. For this problem, a parallel algorithm based on a novel direction splitting approach is developed. Here, the pressure equation is derived from a perturbed form of the continuity equation, in which the incompressibility constraint is penalized in a negative norm induced by the direction splitting. The scheme used in the algorithm is composed of two parts: (i) velocity prediction, and (ii) pressure correction. This is a Crank-Nicolson-type two-stage time integration scheme for two and three dimensional parabolic problems in which the second-order derivative, with respect to each space variable, is treated implicitly while the other variable is made explicit at each time sub-step. In order to achieve a good parallel performance the solution of the Poison problem for the pressure correction is replaced by solving a sequence of one-dimensional second order elliptic boundary value problems in each spatial direction. The parallel code is implemented using the standard MPI functions and tested on two modern parallel computer systems. The performed numerical tests demonstrate good level of parallel efficiency and scalability of the studied direction-splitting-based algorithm.
Numerical investigations of low-density nozzle flow by solving the Boltzmann equation
NASA Technical Reports Server (NTRS)
Deng, Zheng-Tao; Liaw, Goang-Shin; Chou, Lynn Chen
1995-01-01
A two-dimensional finite-difference code to solve the BGK-Boltzmann equation has been developed. The solution procedure consists of three steps: (1) transforming the BGK-Boltzmann equation into two simultaneous partial differential equations by taking moments of the distribution function with respect to the molecular velocity u(sub z), with weighting factors 1 and u(sub z)(sup 2); (2) solving the transformed equations in the physical space based on the time-marching technique and the four-stage Runge-Kutta time integration, for a given discrete-ordinate. The Roe's second-order upwind difference scheme is used to discretize the convective terms and the collision terms are treated as source terms; and (3) using the newly calculated distribution functions at each point in the physical space to calculate the macroscopic flow parameters by the modified Gaussian quadrature formula. Repeating steps 2 and 3, the time-marching procedure stops when the convergent criteria is reached. A low-density nozzle flow field has been calculated by this newly developed code. The BGK Boltzmann solution and experimental data show excellent agreement. It demonstrated that numerical solutions of the BGK-Boltzmann equation are ready to be experimentally validated.
An interactive adaptive remeshing algorithm for the two-dimensional Euler equations
NASA Technical Reports Server (NTRS)
Slack, David C.; Walters, Robert W.; Lohner, R.
1990-01-01
An interactive adaptive remeshing algorithm utilizing a frontal grid generator and a variety of time integration schemes for the two-dimensional Euler equations on unstructured meshes is presented. Several device dependent interactive graphics interfaces have been developed along with a device independent DI-3000 interface which can be employed on any computer that has the supporting software including the Cray-2 supercomputers Voyager and Navier. The time integration methods available include: an explicit four stage Runge-Kutta and a fully implicit LU decomposition. A cell-centered finite volume upwind scheme utilizing Roe's approximate Riemann solver is developed. To obtain higher order accurate results a monotone linear reconstruction procedure proposed by Barth is utilized. Results for flow over a transonic circular arc and flow through a supersonic nozzle are examined.
Close range fault tolerant noncontacting position sensor
Bingham, D.N.; Anderson, A.A.
1996-02-20
A method and system are disclosed for locating the three dimensional coordinates of a moving or stationary object in real time. The three dimensional coordinates of an object in half space or full space are determined based upon the time of arrival or phase of the wave front measured by a plurality of receiver elements and an established vector magnitudes proportional to the measured time of arrival or phase at each receiver element. The coordinates of the object are calculated by solving a matrix equation or a set of closed form algebraic equations. 3 figs.
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.
1978-01-01
A mathematical model package for thermal pollution analyses and prediction is presented. These models, intended as user's manuals, are three dimensional and time dependent using the primitive equation approach. Although they have sufficient generality for application at sites with diverse topographical features; they also present specific instructions regarding data preparation for program execution and sample problems. The mathematical formulation of these models is presented including assumptions, approximations, governing equations, boundary and initial conditions, numerical method of solution, and same results.
Quasiconservation laws for compressible three-dimensional Navier-Stokes flow.
Gibbon, J D; Holm, D D
2012-10-01
We formulate the quasi-Lagrangian fluid transport dynamics of mass density ρ and the projection q=ω·∇ρ of the vorticity ω onto the density gradient, as determined by the three-dimensional compressible Navier-Stokes equations for an ideal gas, although the results apply for an arbitrary equation of state. It turns out that the quasi-Lagrangian transport of q cannot cross a level set of ρ. That is, in this formulation, level sets of ρ (isopycnals) are impermeable to the transport of the projection q.
Analytical solution of the optimal three dimensional reentry problem using Chapman's exact equations
NASA Technical Reports Server (NTRS)
Vinh, N. X.; Busemann, A.; Culp, R. D.
1974-01-01
This paper presents the general solution for the optimal three dimensional aerodynamic control of a lifting vehicle entering a planetary atmosphere. A set of dimensionless variables is introduced, and the resulting exact equations of motion have the distinctive advantage that they are completely free of the physical characteristics of the vehicle. Furthermore, a general lift-drag polar is used to define the aerodynamic control. Hence, the results obtained apply to any type of vehicle of arbitrary weight, dimensions and shape, having an arbitrary polar and entering any planetary atmosphere.
NASA Astrophysics Data System (ADS)
Sivasubramaniam, Kiruba
This thesis makes advances in three dimensional finite element analysis of electrical machines and the quantification of their parameters and performance. The principal objectives of the thesis are: (1)the development of a stable and accurate method of nonlinear three-dimensional field computation and application to electrical machinery and devices; and (2)improvement in the accuracy of determination of performance parameters, particularly forces and torque computed from finite elements. Contributions are made in two general areas: a more efficient formulation for three dimensional finite element analysis which saves time and improves accuracy, and new post-processing techniques to calculate flux density values from a given finite element solution. A novel three-dimensional magnetostatic solution based on a modified scalar potential method is implemented. This method has significant advantages over the traditional total scalar, reduced scalar or vector potential methods. The new method is applied to a 3D geometry of an iron core inductor and a permanent magnet motor. The results obtained are compared with those obtained from traditional methods, in terms of accuracy and speed of computation. A technique which has been observed to improve force computation in two dimensional analysis using a local solution of Laplace's equation in the airgap of machines is investigated and a similar method is implemented in the three dimensional analysis of electromagnetic devices. A new integral formulation to improve force calculation from a smoother flux-density profile is also explored and implemented. Comparisons are made and conclusions drawn as to how much improvement is obtained and at what cost. This thesis also demonstrates the use of finite element analysis to analyze torque ripples due to rotor eccentricity in permanent magnet BLDC motors. A new method for analyzing torque harmonics based on data obtained from a time stepping finite element analysis of the machine is explored and implemented.
Incomplete Thermalization from Trap-Induced Integrability Breaking: Lessons from Classical Hard Rods
NASA Astrophysics Data System (ADS)
Cao, Xiangyu; Bulchandani, Vir B.; Moore, Joel E.
2018-04-01
We study a one-dimensional gas of hard rods trapped in a harmonic potential, which breaks integrability of the hard-rod interaction in a nonuniform way. We explore the consequences of such broken integrability for the dynamics of a large number of particles and find three distinct regimes: initial, chaotic, and stationary. The initial regime is captured by an evolution equation for the phase-space distribution function. For any finite number of particles, this hydrodynamics breaks down and the dynamics becomes chaotic after a characteristic timescale determined by the interparticle distance and scattering length. The system fails to thermalize over the timescale studied (1 04 natural units), but the time-averaged ensemble is a stationary state of the hydrodynamic evolution. We close by discussing logical extensions of the results to similar systems of quantum particles.
3-D Forward modeling of Induced Polarization Effects of Transient Electromagnetic Method
NASA Astrophysics Data System (ADS)
Wu, Y.; Ji, Y.; Guan, S.; Li, D.; Wang, A.
2017-12-01
In transient electromagnetic (TEM) detection, Induced polarization (IP) effects are so important that they cannot be ignored. The authors simulate the three-dimensional (3-D) induced polarization effects in time-domain directly by applying the finite-difference time-domain method (FDTD) based on Cole-Cole model. Due to the frequency dispersion characteristics of the electrical conductivity, the computations of convolution in the generalized Ohm's law of fractional order system makes the forward modeling particularly complicated. Firstly, we propose a method to approximate the fractional order function of Cole-Cole model using a lower order rational transfer function based on error minimum theory in the frequency domain. In this section, two auxiliary variables are introduced to transform nonlinear least square fitting problem of the fractional order system into a linear programming problem, thus avoiding having to solve a system of equations and nonlinear problems. Secondly, the time-domain expression of Cole-Cole model is obtained by using Inverse Laplace transform. Then, for the calculation of Ohm's law, we propose an e-index auxiliary equation of conductivity to transform the convolution to non-convolution integral; in this section, the trapezoid rule is applied to compute the integral. We then substitute the recursion equation into Maxwell's equations to derive the iterative equations of electromagnetic field using the FDTD method. Finally, we finish the stimulation of 3-D model and evaluate polarization parameters. The results are compared with those obtained from the digital filtering solution of the analytical equation in the homogeneous half space, as well as with the 3-D model results from the auxiliary ordinary differential equation method (ADE). Good agreements are obtained across the three methods. In terms of the 3-D model, the proposed method has higher efficiency and lower memory requirements as execution times and memory usage were reduced by 20% compared with ADE method.
High-Order Implicit-Explicit Multi-Block Time-stepping Method for Hyperbolic PDEs
NASA Technical Reports Server (NTRS)
Nielsen, Tanner B.; Carpenter, Mark H.; Fisher, Travis C.; Frankel, Steven H.
2014-01-01
This work seeks to explore and improve the current time-stepping schemes used in computational fluid dynamics (CFD) in order to reduce overall computational time. A high-order scheme has been developed using a combination of implicit and explicit (IMEX) time-stepping Runge-Kutta (RK) schemes which increases numerical stability with respect to the time step size, resulting in decreased computational time. The IMEX scheme alone does not yield the desired increase in numerical stability, but when used in conjunction with an overlapping partitioned (multi-block) domain significant increase in stability is observed. To show this, the Overlapping-Partition IMEX (OP IMEX) scheme is applied to both one-dimensional (1D) and two-dimensional (2D) problems, the nonlinear viscous Burger's equation and 2D advection equation, respectively. The method uses two different summation by parts (SBP) derivative approximations, second-order and fourth-order accurate. The Dirichlet boundary conditions are imposed using the Simultaneous Approximation Term (SAT) penalty method. The 6-stage additive Runge-Kutta IMEX time integration schemes are fourth-order accurate in time. An increase in numerical stability 65 times greater than the fully explicit scheme is demonstrated to be achievable with the OP IMEX method applied to 1D Burger's equation. Results from the 2D, purely convective, advection equation show stability increases on the order of 10 times the explicit scheme using the OP IMEX method. Also, the domain partitioning method in this work shows potential for breaking the computational domain into manageable sizes such that implicit solutions for full three-dimensional CFD simulations can be computed using direct solving methods rather than the standard iterative methods currently used.
Detwiler, R.L.; Mehl, S.; Rajaram, H.; Cheung, W.W.
2002-01-01
Numerical solution of large-scale ground water flow and transport problems is often constrained by the convergence behavior of the iterative solvers used to solve the resulting systems of equations. We demonstrate the ability of an algebraic multigrid algorithm (AMG) to efficiently solve the large, sparse systems of equations that result from computational models of ground water flow and transport in large and complex domains. Unlike geometric multigrid methods, this algorithm is applicable to problems in complex flow geometries, such as those encountered in pore-scale modeling of two-phase flow and transport. We integrated AMG into MODFLOW 2000 to compare two- and three-dimensional flow simulations using AMG to simulations using PCG2, a preconditioned conjugate gradient solver that uses the modified incomplete Cholesky preconditioner and is included with MODFLOW 2000. CPU times required for convergence with AMG were up to 140 times faster than those for PCG2. The cost of this increased speed was up to a nine-fold increase in required random access memory (RAM) for the three-dimensional problems and up to a four-fold increase in required RAM for the two-dimensional problems. We also compared two-dimensional numerical simulations of steady-state transport using AMG and the generalized minimum residual method with an incomplete LU-decomposition preconditioner. For these transport simulations, AMG yielded increased speeds of up to 17 times with only a 20% increase in required RAM. The ability of AMG to solve flow and transport problems in large, complex flow systems and its ready availability make it an ideal solver for use in both field-scale and pore-scale modeling.
Numerical simulation of the control of the three-dimensional transition process in boundary layers
NASA Technical Reports Server (NTRS)
Kral, L. D.; Fasel, H. F.
1990-01-01
Surface heating techniques to control the three-dimensional laminar-turbulent transition process are numerically investigated for a water boundary layer. The Navier-Stokes and energy equations are solved using a fully implicit finite difference/spectral method. The spatially evolving boundary layer is simulated. Results of both passive and active methods of control are shown for small amplitude two-dimensional and three-dimensional disturbance waves. Control is also applied to the early stages of the secondary instability process using passive or active control techniques.
NASA Astrophysics Data System (ADS)
Morozov, Oleg I.
2018-06-01
The important unsolved problem in theory of integrable systems is to find conditions guaranteeing existence of a Lax representation for a given PDE. The exotic cohomology of the symmetry algebras opens a way to formulate such conditions in internal terms of the PDE s under the study. In this paper we consider certain examples of infinite-dimensional Lie algebras with nontrivial second exotic cohomology groups and show that the Maurer-Cartan forms of the associated extensions of these Lie algebras generate Lax representations for integrable systems, both known and new ones.
NASA Technical Reports Server (NTRS)
Rogers, S. E.; Kwak, D.; Chang, J. L. C.
1986-01-01
The method of pseudocompressibility has been shown to be an efficient method for obtaining a steady-state solution to the incompressible Navier-Stokes equations. Recent improvements to this method include the use of a diagonal scheme for the inversion of the equations at each iteration. The necessary transformations have been derived for the pseudocompressibility equations in generalized coordinates. The diagonal algorithm reduces the computing time necessary to obtain a steady-state solution by a factor of nearly three. Implicit viscous terms are maintained in the equations, and it has become possible to use fourth-order implicit dissipation. The steady-state solution is unchanged by the approximations resulting from the diagonalization of the equations. Computed results for flow over a two-dimensional backward-facing step and a three-dimensional cylinder mounted normal to a flat plate are presented for both the old and new algorithms. The accuracy and computing efficiency of these algorithms are compared.
A moist Boussinesq shallow water equations set for testing atmospheric models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zerroukat, M., E-mail: mohamed.zerroukat@metoffice.gov.uk; Allen, T.
The shallow water equations have long been used as an initial test for numerical methods applied to atmospheric models with the test suite of Williamson et al. being used extensively for validating new schemes and assessing their accuracy. However the lack of physics forcing within this simplified framework often requires numerical techniques to be reworked when applied to fully three dimensional models. In this paper a novel two-dimensional shallow water equations system that retains moist processes is derived. This system is derived from three-dimensional Boussinesq approximation of the hydrostatic Euler equations where, unlike the classical shallow water set, we allowmore » the density to vary slightly with temperature. This results in extra (or buoyancy) terms for the momentum equations, through which a two-way moist-physics dynamics feedback is achieved. The temperature and moisture variables are advected as separate tracers with sources that interact with the mean-flow through a simplified yet realistic bulk moist-thermodynamic phase-change model. This moist shallow water system provides a unique tool to assess the usually complex and highly non-linear dynamics–physics interactions in atmospheric models in a simple yet realistic way. The full non-linear shallow water equations are solved numerically on several case studies and the results suggest quite realistic interaction between the dynamics and physics and in particular the generation of cloud and rain. - Highlights: • Novel shallow water equations which retains moist processes are derived from the three-dimensional hydrostatic Boussinesq equations. • The new shallow water set can be seen as a more general one, where the classical equations are a special case of these equations. • This moist shallow water system naturally allows a feedback mechanism from the moist physics increments to the momentum via buoyancy. • Like full models, temperature and moistures are advected as tracers that interact through a simplified yet realistic phase-change model. • This model is a unique tool to test numerical methods for atmospheric models, and physics–dynamics coupling, in a very realistic and simple way.« less
Robertson, Scott; Leonhardt, Ulf
2014-11-01
Hawking radiation has become experimentally testable thanks to the many analog systems which mimic the effects of the event horizon on wave propagation. These systems are typically dominated by dispersion and give rise to a numerically soluble and stable ordinary differential equation only if the rest-frame dispersion relation Ω^{2}(k) is a polynomial of relatively low degree. Here we present a new method for the calculation of wave scattering in a one-dimensional medium of arbitrary dispersion. It views the wave equation as an integral equation in Fourier space, which can be solved using standard and efficient numerical techniques.
NASA Technical Reports Server (NTRS)
Gabrielsen, R. E.
1981-01-01
Present approaches to solving the stationary Navier-Stokes equations are of limited value; however, there does exist an equivalent representation of the problem that has significant potential in solving such problems. This is due to the fact that the equivalent representation consists of a sequence of Fredholm integral equations of the second kind, and the solving of this type of problem is very well developed. For the problem in this form, there is an excellent chance to also determine explicit error estimates, since bounded, rather than unbounded, linear operators are dealt with.
Numerical solution of the Navier-Stokes equations about three-dimensional configurations: A survey
NASA Technical Reports Server (NTRS)
Holst, Terry L.
1987-01-01
The numerical solution of the Navier-Stokes equations about three-dimensional configurations is reviewed. Formulational and computational requirements for the various Navier-Stokes approaches are examined for typical problems including the viscous flow field solution about a complete aerospace vehicle. Recent computed results, with experimental comparisons when available, are presented to highlight the presentation. The future of Navier-Stokes applications in three-dimensions is seen to be rapidly expanding across a broad front including internal and external flows, and flows across the entire speed regime from incompressible to hypersonic applications. Prospects for the future are described and recommendations for areas of concentrated research are indicated.
Proteus three-dimensional Navier-Stokes computer code, version 1.0. Volume 1: Analysis description
NASA Technical Reports Server (NTRS)
Towne, Charles E.; Schwab, John R.; Bui, Trong T.
1993-01-01
A computer code called Proteus 3D has been developed to solve the three dimensional, Reynolds averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort has been to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation have been emphasized. The governing equations are solved in generalized non-orthogonal body-fitted coordinates by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. This is the Analysis Description, and presents the equations and solution procedure. It describes in detail the governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models.
Three-dimensional unsteady flow calculations in an advanced gas generator turbine
NASA Technical Reports Server (NTRS)
Rangwalla, Akil A.
1993-01-01
This paper deals with the application of a three-dimensional, unsteady Navier-Stokes code for predicting the unsteady flow in a single stage of an advanced gas generator turbine. The numerical method solves the three-dimensional thin-layer Navier-Stokes equations, using a system of overlaid grids, which allow for relative motion between the rotor and stator airfoils. Results in the form of time averaged pressures and pressure amplitudes on the airfoil surfaces will be shown. In addition, instantaneous contours of pressure, Mach number, etc. will be presented in order to provide a greater understanding of the inviscid as well as the viscous aspects of the flowfield. Also, relevant secondary flow features such as cross-plane velocity vectors and total pressure contours will be presented. Prior work in two-dimensions has indicated that for the advanced designs, the unsteady interactions can play a significant role in turbine performance. These interactions affect not only the stage efficiency but can substantially alter the time-averaged features of the flow. This work is a natural extension of the work done in two-dimensions and hopes to address some of the issues raised by the two-dimensional calculations. These calculations are being performed as an integral part of an actual design process and demonstrate the value of unsteady rotor-stator interaction calculations in the design of turbomachines.
Fast Neural Solution Of A Nonlinear Wave Equation
NASA Technical Reports Server (NTRS)
Barhen, Jacob; Toomarian, Nikzad
1996-01-01
Neural algorithm for simulation of class of nonlinear wave phenomena devised. Numerically solves special one-dimensional case of Korteweg-deVries equation. Intended to be executed rapidly by neural network implemented as charge-coupled-device/charge-injection device, very-large-scale integrated-circuit analog data processor of type described in "CCD/CID Processors Would Offer Greater Precision" (NPO-18972).
Solution of the Wang Chang-Uhlenbeck equation for molecular hydrogen
NASA Astrophysics Data System (ADS)
Anikin, Yu. A.
2017-06-01
Molecular hydrogen is modeled by numerically solving the Wang Chang-Uhlenbeck equation. The differential scattering cross sections of molecules are calculated using the quantum mechanical scattering theory of rigid rotors. The collision integral is computed by applying a fully conservative projection method. Numerical results for relaxation, heat conduction, and a one-dimensional shock wave are presented.
Lie symmetry analysis, conservation laws, solitary and periodic waves for a coupled Burger equation
NASA Astrophysics Data System (ADS)
Xu, Mei-Juan; Tian, Shou-Fu; Tu, Jian-Min; Zhang, Tian-Tian
2017-01-01
Under investigation in this paper is a generalized (2 + 1)-dimensional coupled Burger equation with variable coefficients, which describes lots of nonlinear physical phenomena in geophysical fluid dynamics, condense matter physics and lattice dynamics. By employing the Lie group method, the symmetry reductions and exact explicit solutions are obtained, respectively. Based on a direct method, the conservations laws of the equation are also derived. Furthermore, by virtue of the Painlevé analysis, we successfully obtain the integrable condition on the variable coefficients, which plays an important role in further studying the integrability of the equation. Finally, its auto-Bäcklund transformation as well as some new analytic solutions including solitary and periodic waves are also presented via algebraic and differential manipulation.
NASA Astrophysics Data System (ADS)
Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru
2017-12-01
This paper addresses the nonlinear Schrödinger type equation (NLSE) in (2+1)-dimensions which describes the nonlinear spin dynamics of Heisenberg ferromagnetic spin chains (HFSC) with anisotropic and bilinear interactions in the semiclassical limit. Two integration schemes are employed to study the equation. These are the complex envelope function ansatz and the generalized tanh methods. Dark, dark-bright or combined optical and singular soliton solutions of the equation are derived. Furthermore, the modulational instability (MI) is studied based on the standard linear-stability analysis and the MI gain is got. Numerical simulation of the obtained results are analyzed with interesting figures showing the physical meaning of the solutions.
Numerical study of radiometric forces via the direct solution of the Boltzmann kinetic equation
NASA Astrophysics Data System (ADS)
Anikin, Yu. A.
2011-07-01
The two-dimensional rarefied gas motion in a Crookes radiometer and the resulting radiometric forces are studied by numerically solving the Boltzmann kinetic equation. The collision integral is directly evaluated using a projection method, and second-order accurate TVD schemes are used to solve the advection equation. The radiometric forces are found as functions of the Knudsen number and the temperatures, and their spatial distribution is analyzed.
NASA Technical Reports Server (NTRS)
Walker, Kevin P.; Freed, Alan D.; Jordan, Eric H.
1993-01-01
Local stress and strain fields in the unit cell of an infinite, two-dimensional, periodic fibrous lattice have been determined by an integral equation approach. The effect of the fibres is assimilated to an infinite two-dimensional array of fictitious body forces in the matrix constituent phase of the unit cell. By subtracting a volume averaged strain polarization term from the integral equation we effectively embed a finite number of unit cells in a homogenized medium in which the overall stress and strain correspond to the volume averaged stress and strain of the constrained unit cell. This paper demonstrates that the zeroth term in the governing integral equation expansion, which embeds one unit cell in the homogenized medium, corresponds to the generalized self-consistent approximation. By comparing the zeroth term approximation with higher order approximations to the integral equation summation, both the accuracy of the generalized self-consistent composite model and the rate of convergence of the integral summation can be assessed. Two example composites are studied. For a tungsten/copper elastic fibrous composite the generalized self-consistent model is shown to provide accurate, effective, elastic moduli and local field representations. The local elastic transverse stress field within the representative volume element of the generalized self-consistent method is shown to be in error by much larger amounts for a composite with periodically distributed voids, but homogenization leads to a cancelling of errors, and the effective transverse Young's modulus of the voided composite is shown to be in error by only 23% at a void volume fraction of 75%.
Three-dimensional unsteady Euler equations solutions on dynamic grids
NASA Technical Reports Server (NTRS)
Belk, D. M.; Janus, J. M.; Whitfield, D. L.
1985-01-01
A method is presented for solving the three-dimensional unsteady Euler equations on dynamic grids based on flux vector splitting. The equations are cast in curvilinear coordinates and a finite volume discretization is used for handling arbitrary geometries. The discretized equations are solved using an explicit upwind second-order predictor corrector scheme that is stable for a CFL of 2. Characteristic variable boundary conditions are developed and used for unsteady impermeable surfaces and for the far-field boundary. Dynamic-grid results are presented for an oscillating air-foil and for a store separating from a reflection plate. For the cases considered of stores separating from a reflection plate, the unsteady aerodynamic forces on the store are significantly different from forces obtained by steady-state aerodynamics with the body inclination angle changed to account for plunge velocity.
Shock formation in the dispersionless Kadomtsev-Petviashvili equation
NASA Astrophysics Data System (ADS)
Grava, T.; Klein, C.; Eggers, J.
2016-04-01
The dispersionless Kadomtsev-Petviashvili (dKP) equation {{≤ft({{u}t}+u{{u}x}\\right)}x}={{u}yy} is one of the simplest nonlinear wave equations describing two-dimensional shocks. To solve the dKP equation numerically we use a coordinate transformation inspired by the method of characteristics for the one-dimensional Hopf equation {{u}t}+u{{u}x}=0 . We show numerically that the solutions to the transformed equation stays regular for longer times than the solution of the dKP equation. This permits us to extend the dKP solution as the graph of a multivalued function beyond the critical time when the gradients blow up. This overturned solution is multivalued in a lip shape region in the (x, y) plane, where the solution of the dKP equation exists in a weak sense only, and a shock front develops. A local expansion reveals the universal scaling structure of the shock, which after a suitable change of coordinates corresponds to a generic cusp catastrophe. We provide a heuristic derivation of the shock front position near the critical point for the solution of the dKP equation, and study the solution of the dKP equation when a small amount of dissipation is added. Using multiple-scale analysis, we show that in the limit of small dissipation and near the critical point of the dKP solution, the solution of the dissipative dKP equation converges to a Pearcey integral. We test and illustrate our results by detailed comparisons with numerical simulations of both the regularized equation, the dKP equation, and the asymptotic description given in terms of the Pearcey integral.
NASA Astrophysics Data System (ADS)
Mihalache, D.; Mazilu, D.; Lederer, F.; Leblond, H.; Malomed, B. A.
2008-03-01
We present generic outcomes of collisions between stable solitons with intrinsic vorticity S=1 or S=2 in the complex Ginzburg-Landau equation with the cubic-quintic nonlinearity, for the axially symmetric configuration. An essential ingredient of the complex Ginzburg-Landau equation is an effective transverse diffusivity (which is known in models of laser cavities), as vortex solitons cannot be stable without it. For the sake of comparison, results are also included for fundamental three-dimensional solitons, with S=0 . Depending on the collision momentum, χ , three generic outcomes are identified: merger of the solitons into a single one, at small χ ; quasielastic interaction, at large χ ; and creation of an extra soliton, in an intermediate region. In addition to the final outcomes, we also highlight noteworthy features of the transient dynamics.
An Integral Prediction Method for Three-Dimensional Turbulent Boundary Layers on Rotating Blades.
1981-06-01
in’siscid streamline 6 Boundary-dyer thickness 61 StreamwNise displacement thickness. 61 f (I -)d (- ro,,,,isk displacement tikes 0 D~istance along thle...hl h2 ar)+(Uhl al, + 2w3 2022 a U + - 61 + _ I- 022+dl) =-Cf2U Uh 2 8 1 In equations 3a and 3b, 011, 012 , 021 , 022 , dl, and 62 are the momentum...K2 (6-6w)-62 ( h2U arl ( 61 ) Details of the cntrainment function are given in a later section of this paper. ADDITIONAL RELATIONSHIPS Further
PREFACE: Symmetries and Integrability of Difference Equations
NASA Astrophysics Data System (ADS)
Doliwa, Adam; Korhonen, Risto; Lafortune, Stéphane
2007-10-01
The notion of integrability was first introduced in the 19th century in the context of classical mechanics with the definition of Liouville integrability for Hamiltonian flows. Since then, several notions of integrability have been introduced for partial and ordinary differential equations. Closely related to integrability theory is the symmetry analysis of nonlinear evolution equations. Symmetry analysis takes advantage of the Lie group structure of a given equation to study its properties. Together, integrability theory and symmetry analysis provide the main method by which nonlinear evolution equations can be solved explicitly. Difference equations (DE), like differential equations, are important in numerous fields of science and have a wide variety of applications in such areas as mathematical physics, computer visualization, numerical analysis, mathematical biology, economics, combinatorics, and quantum field theory. It is thus crucial to develop tools to study and solve DEs. While the theory of symmetry and integrability for differential equations is now largely well-established, this is not yet the case for discrete equations. Although over recent years there has been significant progress in the development of a complete analytic theory of difference equations, further tools are still needed to fully understand, for instance, the symmetries, asymptotics and the singularity structure of difference equations. The series of SIDE meetings on Symmetries and Integrability of Difference Equations started in 1994. Its goal is to provide a platform for an international and interdisciplinary communication for researchers working in areas associated with integrable discrete systems, such as classical and quantum physics, computer science and numerical analysis, mathematical biology and economics, discrete geometry and combinatorics, theory of special functions, etc. The previous SIDE meetings took place in Estérel near Montréal, Canada (1994), at the University of Kent in Canterbury, UK (1996), in Sabaudia near Rome, Italy (1998), at the University of Tokyo, Japan (2000), in Giens, France (2002), and in Helsinki, Finland (2004). The SIDE VII meeting was held at the University of Melbourne from 10-14 July 2006. The scientific committee consisted of Nalini Joshi (The University of Sydney), Frank W Nijhoff (University of Leeds), Reinout Quispel (La Trobe University) and Colin Rogers (University of New South Wales). The local organization was in the hands of John A G Roberts and Wolfgang K Schief. Proceedings of all the previous SIDE meetings have been published; the 1994 and 1988 meetings (edited respectively by D Levi, L Vinet and P Winternitz, and by D Levi and O Ragnisco) as volumes of the CRM Proceedings and Lecture Notes (AMS Publications), the 1996 meeting (edited by P Clarkson and F W Nijhoff) as Volume 255 in the LMS Lecture Note Series. Starting from the 1996 meeting the formula of publication has been changed to include rather selected refereed contributions submitted in response to a call for papers issued after the meetings and not restricted to their participants. Thus publications reflecting the scope of the 1996 meeting (edited by J Hietarinta, F W Nijhoff and J Satsuma) appeared in Journal of Physics A: Mathematical and General 34 48 (special issue), and of the 1998 and 2000 meetings (edited respectively by F W Nijhoff, Yu B Suris and C-M Viallet, and by J F van Diejen and R Halburd) in Journal of Nonlinear Mathematical Physics 10 (Suppl. 2) and 12 (Suppl. 2). The aim of this special issue is to benefit from the occasion offered by the SIDE VII meeting, producing an issue containing papers which represent the state-of-the-art knowledge for studying integrability and symmetry properties of difference equations. This special issue features high quality research papers and invited reviews which deal with themes that were covered by the SIDE VII conference. These are in alphabetical order: Algebraic-geometric approaches to integrability. The first section contains a paper by T Hamamoto and K Kajiwara on hypergeometric solutions to the q-Painlevé equation of type A4(1). Discrete geometry. In this category there are three papers. J Cielinski offers a geometric definition and a spectral approach on pseudospherical surfaces on time scales, while A Doliwa considers generalized isothermic lattices. The paper by U Pinkall, B Springborn and S Weiss mann is concerned with a new doubly discrete analogue of smoke ring flow and the real time simulation of fluid flow. Integrable systems in statistical physics. Under this heading there is a paper by R J Baxter on corner transfer matrices in statistical mechanics, and a paper by S Boukraa, S Hassani, J-M Maillard, B M McCoy, J-A Weil and N Zenine where the authors consider Fuchs-Painlevé elliptic representation of the Painlevé VI equation. KP lattices and differential-difference hierarchies. In this section we have seven articles. C R Gilson, J J C Nimmo and Y Ohta consider quasideterminant solutions of a non-Abelian Hirota-Miwa equation, while B Grammaticos, A Ramani, V Papageorgiou, J Satsuma and R Willox discuss the construction of lump-like solutions of the Hirota-Miwa equation. J Hietarinta and C Viallet analyze the factorization process for lattice maps searching for integrable cases, the paper by X-B Hu and G-F Yu is concerned with integrable discretizations of the (2+1)-dimensional sinh-Gordon equation, and K Kajiwara, M Mazzocco and Y Ohta consider the Hankel determinant formula of the tau-functions of the Toda equation. Finally, V G Papageorgiou and A G Tongas study Yang-Baxter maps and multi-field integrable lattice equations, and H-Y Wang, X-B Hu and H-W Tam consider the two-dimensional Leznov lattice equation with self-consistent sources. Quantum integrable systems. This category contains a paper on q-extended eigenvectors of the integral and finite Fourier transforms by N M Atakishiyev, J P Rueda and K B Wolf, and an article by S M Sergeev on quantization of three-wave equations. Random matrix theory. This section contains a paper by A V Kitaev on the boundary conditions for scaled random matrix ensembles in the bulk of the spectrum. Symmetries and conservation laws. In this section we have five articles. H Gegen, X-B Hu, D Levi and S Tsujimoto consider a difference-analogue of Davey-Stewartson system giving its discrete Gram-type determinant solution and Lax pair. The paper by D Levi, M Petrera, and C Scimiterna is about the lattice Schwarzian KDV equation and its symmetries, while O G Rasin and P E Hydon study the conservation laws for integrable difference equations. S Saito and N Saitoh discuss recurrence equations associated with invariant varieties of periodic points, and P H van der Kamp presents closed-form expressions for integrals of MKDV and sine-Gordon maps. Ultra-discrete systems. This final category contains an article by C Ormerod on connection matrices for ultradiscrete linear problems. We would like to express our sincerest thanks to all contributors, and to everyone involved in compiling this special issue.
NASA Technical Reports Server (NTRS)
Liu, Yen; Vinokur, Marcel; Wang, Z. J.
2004-01-01
A three-dimensional, high-order, conservative, and efficient discontinuous spectral volume (SV) method for the solutions of Maxwell's equations on unstructured grids is presented. The concept of discontinuous 2nd high-order loca1 representations to achieve conservation and high accuracy is utilized in a manner similar to the Discontinuous Galerkin (DG) method, but instead of using a Galerkin finite-element formulation, the SV method is based on a finite-volume approach to attain a simpler formulation. Conventional unstructured finite-volume methods require data reconstruction based on the least-squares formulation using neighboring cell data. Since each unknown employs a different stencil, one must repeat the least-squares inversion for every cell at each time step, or to store the inversion coefficients. In a high-order, three-dimensional computation, the former would involve impractically large CPU time, while for the latter the memory requirement becomes prohibitive. In the SV method, one starts with a relatively coarse grid of triangles or tetrahedra, called spectral volumes (SVs), and partition each SV into a number of structured subcells, called control volumes (CVs), that support a polynomial expansion of a desired degree of precision. The unknowns are cell averages over CVs. If all the SVs are partitioned in a geometrically similar manner, the reconstruction becomes universal as a weighted sum of unknowns, and only a few universal coefficients need to be stored for the surface integrals over CV faces. Since the solution is discontinuous across the SV boundaries, a Riemann solver is thus necessary to maintain conservation. In the paper, multi-parameter and symmetric SV partitions, up to quartic for triangle and cubic for tetrahedron, are first presented. The corresponding weight coefficients for CV face integrals in terms of CV cell averages for each partition are analytically determined. These discretization formulas are then applied to the integral form of the Maxwell equations. All numerical procedures for outer boundary, material interface, zonal interface, and interior SV face are unified with a single characteristic formulation. The load balancing in a massive parallel computing environment is therefore easier to achieve. A parameter is introduced in the Riemann solver to control the strength of the smoothing term. Important aspects of the data structure and its effects to communication and the optimum use of cache memory are discussed. Results will be presented for plane TE and TM waves incident on a perfectly conducting cylinder for up to fifth order of accuracy, and a plane wave incident on a perfectly conducting sphere for up to fourth order of accuracy. Comparisons are made with exact solutions for these cases.
Numerical solutions of 3-dimensional Navier-Stokes equations for closed bluff-bodies
NASA Technical Reports Server (NTRS)
Abolhassani, J. S.; Tiwari, S. N.
1985-01-01
The Navier-Stokes equations are solved numerically. These equations are unsteady, compressible, viscous, and three-dimensional without neglecting any terms. The time dependency of the governing equations allows the solution to progress naturally for an arbitrary initial guess to an asymptotic steady state, if one exists. The equations are transformed from physical coordinates to the computational coordinates, allowing the solution of the governing equations in a rectangular parallelepiped domain. The equations are solved by the MacCormack time-split technique which is vectorized and programmed to run on the CDc VPS 32 computer. The codes are written in 32-bit (half word) FORTRAN, which provides an approximate factor of two decreasing in computational time and doubles the memory size compared to the 54-bit word size.
Lax representations for matrix short pulse equations
NASA Astrophysics Data System (ADS)
Popowicz, Z.
2017-10-01
The Lax representation for different matrix generalizations of Short Pulse Equations (SPEs) is considered. The four-dimensional Lax representations of four-component Matsuno, Feng, and Dimakis-Müller-Hoissen-Matsuno equations are obtained. The four-component Feng system is defined by generalization of the two-dimensional Lax representation to the four-component case. This system reduces to the original Feng equation, to the two-component Matsuno equation, or to the Yao-Zang equation. The three-component version of the Feng equation is presented. The four-component version of the Matsuno equation with its Lax representation is given. This equation reduces the new two-component Feng system. The two-component Dimakis-Müller-Hoissen-Matsuno equations are generalized to the four-parameter family of the four-component SPE. The bi-Hamiltonian structure of this generalization, for special values of parameters, is defined. This four-component SPE in special cases reduces to the new two-component SPE.
TRIM—3D: a three-dimensional model for accurate simulation of shallow water flow
Casulli, Vincenzo; Bertolazzi, Enrico; Cheng, Ralph T.
1993-01-01
A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is discussed. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that the resulting algorithm permits the use of large time steps at a minimal computational cost. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers. The high computational efficiency of this method has made it possible to provide the fine details of circulation structure in complex regions that previous studies were unable to obtain. For proper interpretation of the model results suitable interactive graphics is also an essential tool.
A cell-vertex multigrid method for the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Radespiel, R.
1989-01-01
A cell-vertex scheme for the Navier-Stokes equations, which is based on central difference approximations and Runge-Kutta time stepping, is described. Using local time stepping, implicit residual smoothing, a multigrid method, and carefully controlled artificial dissipative terms, very good convergence rates are obtained for a wide range of two- and three-dimensional flows over airfoils and wings. The accuracy of the code is examined by grid refinement studies and comparison with experimental data. For an accurate prediction of turbulent flows with strong separations, a modified version of the nonequilibrium turbulence model of Johnson and King is introduced, which is well suited for an implementation into three-dimensional Navier-Stokes codes. It is shown that the solutions for three-dimensional flows with strong separations can be dramatically improved, when a nonequilibrium model of turbulence is used.
Dependence of energy characteristics of ascending swirling air flow on velocity of vertical blowing
NASA Astrophysics Data System (ADS)
Volkov, R. E.; Obukhov, A. G.; Kutrunov, V. N.
2018-05-01
In the model of a compressible continuous medium, for the complete Navier-Stokes system of equations, an initial boundary problem is proposed that corresponds to the conducted and planned experiments and describes complex three-dimensional flows of a viscous compressible heat-conducting gas in ascending swirling flows that are initiated by a vertical cold blowing. Using parallelization methods, three-dimensional nonstationary flows of a polytropic viscous compressible heat-conducting gas are constructed numerically in different scaled ascending swirling flows under the condition when gravity and Coriolis forces act. With the help of explicit difference schemes and the proposed initial boundary conditions, approximate solutions of the complete system of Navier-Stokes equations are constructed as well as the velocity and energy characteristics of three-dimensional nonstationary gas flows in ascending swirling flows are determined.
NASA Technical Reports Server (NTRS)
Cebeci, T.; Kaups, K.; Ramsey, J.; Moser, A.
1975-01-01
A very general method for calculating compressible three-dimensional laminar and turbulent boundary layers on arbitrary wings is described. The method utilizes a nonorthogonal coordinate system for the boundary-layer calculations and includes a geometry package that represents the wing analytically. In the calculations all the geometric parameters of the coordinate system are accounted for. The Reynolds shear-stress terms are modeled by an eddy-viscosity formulation developed by Cebeci. The governing equations are solved by a very efficient two-point finite-difference method used earlier by Keller and Cebeci for two-dimensional flows and later by Cebeci for three-dimensional flows.
Transition to turbulence in plane channel flows
NASA Technical Reports Server (NTRS)
Biringen, S.
1984-01-01
Results obtained from a numerical simulation of the final stages of transition to turbulence in plane channel flow are described. Three dimensional, incompressible Navier-Stokes equations are numerically integrated to obtain the time evolution of two and three dimensional finite amplitude disturbances. Computations are performed on CYBER-203 vector processor for a 32x51x32 grid. Results are presented for no-slip boundary conditions at the solid walls as well as for periodic suction blowing to simulate active control of transition by mass transfer. Solutions indicate that the method is capable of simulating the complex character of vorticity dynamics during the various stages of transition and final breakdown. In particular, evidence points to the formation of a lambda-shape vortex and the subsequent system of horseshoe vortices inclined to the main flow direction as the main elements of transition. Calculations involving periodic suction-blowing indicate that interference with a wave of suitable phase and amplitude reduces the disturbance growth rates.
Methods for analysis of cracks in three-dimensional solids
NASA Technical Reports Server (NTRS)
Raju, I. S.; Newman, J. C., Jr.
1984-01-01
Various analytical and numerical methods used to evaluate the stress intensity factors for cracks in three-dimensional (3-D) solids are reviewed. Classical exact solutions and many of the approximate methods used in 3-D analyses of cracks are reviewed. The exact solutions for embedded elliptic cracks in infinite solids are discussed. The approximate methods reviewed are the finite element methods, the boundary integral equation (BIE) method, the mixed methods (superposition of analytical and finite element method, stress difference method, discretization-error method, alternating method, finite element-alternating method), and the line-spring model. The finite element method with singularity elements is the most widely used method. The BIE method only needs modeling of the surfaces of the solid and so is gaining popularity. The line-spring model appears to be the quickest way to obtain good estimates of the stress intensity factors. The finite element-alternating method appears to yield the most accurate solution at the minimum cost.
Bruno, Oscar P.; Turc, Catalin; Venakides, Stephanos
2016-01-01
This work, part I in a two-part series, presents: (i) a simple and highly efficient algorithm for evaluation of quasi-periodic Green functions, as well as (ii) an associated boundary-integral equation method for the numerical solution of problems of scattering of waves by doubly periodic arrays of scatterers in three-dimensional space. Except for certain ‘Wood frequencies’ at which the quasi-periodic Green function ceases to exist, the proposed approach, which is based on smooth windowing functions, gives rise to tapered lattice sums which converge superalgebraically fast to the Green function—that is, faster than any power of the number of terms used. This is in sharp contrast to the extremely slow convergence exhibited by the lattice sums in the absence of smooth windowing. (The Wood-frequency problem is treated in part II.) This paper establishes rigorously the superalgebraic convergence of the windowed lattice sums. A variety of numerical results demonstrate the practical efficiency of the proposed approach. PMID:27493573
NASA Technical Reports Server (NTRS)
Cunefare, K. A.; Koopmann, G. H.
1991-01-01
This paper presents the theoretical development of an approach to active noise control (ANC) applicable to three-dimensional radiators. The active noise control technique, termed ANC Optimization Analysis, is based on minimizing the total radiated power by adding secondary acoustic sources on the primary noise source. ANC Optimization Analysis determines the optimum magnitude and phase at which to drive the secondary control sources in order to achieve the best possible reduction in the total radiated power from the noise source/control source combination. For example, ANC Optimization Analysis predicts a 20 dB reduction in the total power radiated from a sphere of radius at a dimensionless wavenumber ka of 0.125, for a single control source representing 2.5 percent of the total area of the sphere. ANC Optimization Analysis is based on a boundary element formulation of the Helmholtz Integral Equation, and thus, the optimization analysis applies to a single frequency, while multiple frequencies can be treated through repeated analyses.
On the Impact of Wind Farms on a Convective Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Lu, Hao; Porté-Agel, Fernando
2015-10-01
With the rapid growth in the number of wind turbines installed worldwide, a demand exists for a clear understanding of how wind farms modify land-atmosphere exchanges. Here, we conduct three-dimensional large-eddy simulations to investigate the impact of wind farms on a convective atmospheric boundary layer. Surface temperature and heat flux are determined using a surface thermal energy balance approach, coupled with the solution of a three-dimensional heat equation in the soil. We study several cases of aligned and staggered wind farms with different streamwise and spanwise spacings. The farms consist of Siemens SWT-2.3-93 wind turbines. Results reveal that, in the presence of wind turbines, the stability of the atmospheric boundary layer is modified, the boundary-layer height is increased, and the magnitude of the surface heat flux is slightly reduced. Results also show an increase in land-surface temperature, a slight reduction in the vertically-integrated temperature, and a heterogeneous spatial distribution of the surface heat flux.
NASA Technical Reports Server (NTRS)
Steger, Joseph L.
1989-01-01
Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, an extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations.
NASA Technical Reports Server (NTRS)
Steger, Joseph L.
1989-01-01
Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations.
Lie-Hamilton systems on the plane: Properties, classification and applications
NASA Astrophysics Data System (ADS)
Ballesteros, A.; Blasco, A.; Herranz, F. J.; de Lucas, J.; Sardón, C.
2015-04-01
We study Lie-Hamilton systems on the plane, i.e. systems of first-order differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional real Lie algebra of planar Hamiltonian vector fields with respect to a Poisson structure. We start with the local classification of finite-dimensional real Lie algebras of vector fields on the plane obtained in González-López, Kamran, and Olver (1992) [23] and we interpret their results as a local classification of Lie systems. By determining which of these real Lie algebras consist of Hamiltonian vector fields relative to a Poisson structure, we provide the complete local classification of Lie-Hamilton systems on the plane. We present and study through our results new Lie-Hamilton systems of interest which are used to investigate relevant non-autonomous differential equations, e.g. we get explicit local diffeomorphisms between such systems. We also analyse biomathematical models, the Milne-Pinney equations, second-order Kummer-Schwarz equations, complex Riccati equations and Buchdahl equations.
Two-layer interfacial flows beyond the Boussinesq approximation: a Hamiltonian approach
NASA Astrophysics Data System (ADS)
Camassa, R.; Falqui, G.; Ortenzi, G.
2017-02-01
The theory of integrable systems of Hamiltonian PDEs and their near-integrable deformations is used to study evolution equations resulting from vertical-averages of the Euler system for two-layer stratified flows in an infinite two-dimensional channel. The Hamiltonian structure of the averaged equations is obtained directly from that of the Euler equations through the process of Hamiltonian reduction. Long-wave asymptotics together with the Boussinesq approximation of neglecting the fluids’ inertia is then applied to reduce the leading order vertically averaged equations to the shallow-water Airy system, albeit in a non-trivial way. The full non-Boussinesq system for the dispersionless limit can then be viewed as a deformation of this well known equation. In a perturbative study of this deformation, a family of approximate constants of the motion are explicitly constructed and used to find local solutions of the evolution equations by means of hodograph-like formulae.
NASA Technical Reports Server (NTRS)
Gorton, C. A.; Lakshminarayana, B.
1974-01-01
The effort conducted to gather additional understanding of the complex inviscid and viscid effects existing within the passages of a three-bladed axial flow inducer operating at a flow coefficient of 0.065 is summarized. The experimental investigations included determination of the blade static pressure and blade limiting streamline angle distributions, and measurement of the three components of mean velocity, turbulence intensities and turbulence stresses at locations inside the inducer blade passage utilizing a rotating three-sensor hotwire probe. Applicable equations were derived for the hotwire data reduction analysis and solved numerically to obtain the appropriate flow parameters. Analytical investigations were conducted to predict the three-dimensional inviscid flow in the inducer by numerically solving the exact equations of motion, and to approximately predict the three-dimensional viscid flow by incorporating the dominant viscous terms into the exact equations. The analytical results are compared with the experimental measurements and design values where appropriate.
Constant fields and constant gradients in open ionic channels.
Chen, D P; Barcilon, V; Eisenberg, R S
1992-01-01
Ions enter cells through pores in proteins that are holes in dielectrics. The energy of interaction between ion and charge induced on the dielectric is many kT, and so the dielectric properties of channel and pore are important. We describe ionic movement by (three-dimensional) Nemst-Planck equations (including flux and net charge). Potential is described by Poisson's equation in the pore and Laplace's equation in the channel wall, allowing induced but not permanent charge. Asymptotic expansions are constructed exploiting the long narrow shape of the pore and the relatively high dielectric constant of the pore's contents. The resulting one-dimensional equations can be integrated numerically; they can be analyzed when channels are short or long (compared with the Debye length). Traditional constant field equations are derived if the induced charge is small, e.g., if the channel is short or if the total concentration gradient is zero. A constant gradient of concentration is derived if the channel is long. Plots directly comparable to experiments are given of current vs voltage, reversal potential vs. concentration, and slope conductance vs. concentration. This dielectric theory can easily be tested: its parameters can be determined by traditional constant field measurements. The dielectric theory then predicts current-voltage relations quite different from constant field, usually more linear, when gradients of total concentration are imposed. Numerical analysis shows that the interaction of ion and channel can be described by a mean potential if, but only if, the induced charge is negligible, that is to say, the electric field is spatially constant. Images FIGURE 1 PMID:1376159
NASA Technical Reports Server (NTRS)
Harris, J. E.; Blanchard, D. K.
1982-01-01
A numerical algorithm and computer program are presented for solving the laminar, transitional, or turbulent two dimensional or axisymmetric compressible boundary-layer equations for perfect-gas flows. The governing equations are solved by an iterative three-point implicit finite-difference procedure. The software, program VGBLP, is a modification of the approach presented in NASA TR R-368 and NASA TM X-2458, respectively. The major modifications are: (1) replacement of the fourth-order Runge-Kutta integration technique with a finite-difference procedure for numerically solving the equations required to initiate the parabolic marching procedure; (2) introduction of the Blottner variable-grid scheme; (3) implementation of an iteration scheme allowing the coupled system of equations to be converged to a specified accuracy level; and (4) inclusion of an iteration scheme for variable-entropy calculations. These modifications to the approach presented in NASA TR R-368 and NASA TM X-2458 yield a software package with high computational efficiency and flexibility. Turbulence-closure options include either two-layer eddy-viscosity or mixing-length models. Eddy conductivity is modeled as a function of eddy viscosity through a static turbulent Prandtl number formulation. Several options are provided for specifying the static turbulent Prandtl number. The transitional boundary layer is treated through a streamwise intermittency function which modifies the turbulence-closure model. This model is based on the probability distribution of turbulent spots and ranges from zero to unity for laminar and turbulent flow, respectively. Several test cases are presented as guides for potential users of the software.
NASA Astrophysics Data System (ADS)
Volchkov, Yu. M.
2017-09-01
This paper describes the modified bending equations of layered orthotropic plates in the first approximation. The approximation of the solution of the equation of the three-dimensional theory of elasticity by the Legendre polynomial segments is used to obtain differential equations of the elastic layer. For the approximation of equilibrium equations and boundary conditions of three-dimensional theory of elasticity, several approximations of each desired function (stresses and displacements) are used. The stresses at the internal points of the plate are determined from the defining equations for the orthotropic material, averaged with respect to the plate thickness. The construction of the bending equations of layered plates for each layer is carried out with the help of the elastic layer equations and the conjugation conditions on the boundaries between layers, which are conditions for the continuity of normal stresses and displacements. The numerical solution of the problem of bending of the rectangular layered plate obtained with the help of modified equations is compared with an analytical solution. It is determined that the maximum error in determining the stresses does not exceed 3 %.
Numerical computation of viscous flow about unconventional airfoil shapes
NASA Technical Reports Server (NTRS)
Ahmed, S.; Tannehill, J. C.
1990-01-01
A new two-dimensional computer code was developed to analyze the viscous flow around unconventional airfoils at various Mach numbers and angles of attack. The Navier-Stokes equations are solved using an implicit, upwind, finite-volume scheme. Both laminar and turbulent flows can be computed. A new nonequilibrium turbulence closure model was developed for computing turbulent flows. This two-layer eddy viscosity model was motivated by the success of the Johnson-King model in separated flow regions. The influence of history effects are described by an ordinary differential equation developed from the turbulent kinetic energy equation. The performance of the present code was evaluated by solving the flow around three airfoils using the Reynolds time-averaged Navier-Stokes equations. Excellent results were obtained for both attached and separated flows about the NACA 0012 airfoil, the RAE 2822 airfoil, and the Integrated Technology A 153W airfoil. Based on the comparison of the numerical solutions with the available experimental data, it is concluded that the present code in conjunction with the new nonequilibrium turbulence model gives excellent results.
Explicit formulation of second and third order optical nonlinearity in the FDTD framework
NASA Astrophysics Data System (ADS)
Varin, Charles; Emms, Rhys; Bart, Graeme; Fennel, Thomas; Brabec, Thomas
2018-01-01
The finite-difference time-domain (FDTD) method is a flexible and powerful technique for rigorously solving Maxwell's equations. However, three-dimensional optical nonlinearity in current commercial and research FDTD softwares requires solving iteratively an implicit form of Maxwell's equations over the entire numerical space and at each time step. Reaching numerical convergence demands significant computational resources and practical implementation often requires major modifications to the core FDTD engine. In this paper, we present an explicit method to include second and third order optical nonlinearity in the FDTD framework based on a nonlinear generalization of the Lorentz dispersion model. A formal derivation of the nonlinear Lorentz dispersion equation is equally provided, starting from the quantum mechanical equations describing nonlinear optics in the two-level approximation. With the proposed approach, numerical integration of optical nonlinearity and dispersion in FDTD is intuitive, transparent, and fully explicit. A strong-field formulation is also proposed, which opens an interesting avenue for FDTD-based modelling of the extreme nonlinear optics phenomena involved in laser filamentation and femtosecond micromachining of dielectrics.